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ABs'rRAc'r e B Tt

Properties of the model triton have been calculated

for two classes of.phase equivalent,potentials.; The partly
mi‘non-local (PNL) potentials are an attempt to simulate what
‘we know about the nucleon-nucleon interaction, combining |

long-range locality with short-range non-locality. Rank-two

"——*separablehpotentials are also used for arieon, being 2

_,____

constructed not only phase equivalent to the total“intqraction,.F
but with the attractive part‘phase equivalent\to the local
- part of the partly non-local potentials. Trit&n binding

' energies, wavefunctidns, form factors and asymptotic normali-

) zation constants have been calculated for all these poten-i
tials. Comparisons are made between the two - classes of
potentials and other types of phase equivalent potentials.
Deuteron, triton and nuclear matter properties are discussed

' Both clasees of potentials give increasing triton
binding energy, Ep, as the attractive part of the'potential
ts weakened, with a sharp rise nearftne limiting condition,
when the attractive bart of the interaction prodnces-the -
same binding enérgy as the complete interaction. 1In all_cases,
however, each PNL potential gives 1 to 2 MeV Iessrbinding
energy than its purely separable cdunter;art; Two;body

properties - such as the zero-energy wound integral and deuteron

wavefunction greatly influence the triton binding energy.

; . iii



The PNL potentials give much more realistic form factors than .jﬂi=3'°

TTjdo the separable potentials although this is due mainly to theirfg.?’

rilower values of E HoWever, none of the potentials repro- o

. T -
"j duce the experimental form factor of He near and beyond the.ln
.?i diffraction minimnm inn '*; There is a strong resemblance };ﬂ5

t'of deuteron and triton form factor? The effects of the o
'fneutron and proton form factors is discussed., The new | i o
robservable, the triton asymptotic normalization constant, CT?.H;;;-'
*T is’ not sensitive to changes in the PNL potentials ‘except | |
5cfin the limiting case._It does Vary, for the separable poten-u
jtials, increasing with increasing E p as the attractive part

r;of the interaction weakens.
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CHAPTER I.- [ i et
\\INTRODUCTION ST

Thls is a study of some of the prdpertles of the
‘model trlton uszng partly non—local potentlals-i ?he model °
triton is a 51mp11i1ed version-of the ground state of the
neutron-n utron-proton §ystem,‘the‘3ﬂ nucleus. If we

-

ignore the électroﬁagnetic fdrcé, then neutrons and.protons
can beé regarded as/diffe;ent.states of the same particle.
'fhns the proton-proton-neutron system, the 3ge nucléus,
can be treated in the.same way; the Coulomb energy can be
added later as a perturbation.' The primary motivation for '
the study of the three nucleon.problem is thatgge still
do not know how two nucleons interact. ~ There are few
" problems in modern theoretical physics which have éttracted
more attention than that of determining the fundamental in—.
teraction between two nucleons. It is also true that scarcely
ever has the world of physics owed so littlelto so many” )
{Gol 60).

The most important component of the interaction
between two nucleons is the strong force. Although it is

known that the strong interaction is due to the exchange of

mesons, the concept of using a potential to describe the
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'f.lnteraction between tWO nucleons 1s thought to be a useful one,

2 e A e T ol
[N . . . -t - - P - " . -

1"

"model namely the Schrodlnger equatlon or some equ;valent
.. \\__—

luwhlch can be applled to any nuclear problem.' However, the ff.

4

.'exper1mental two—body data are not suff1c1ent to determlne

the nuclear force unlquely. The pr1nc1p 1 data for the .

two- nucleon system are the deuteron blndlng energy and the.

proton-proton and: neutron-proton phase ShlftS. ‘Even‘if'

these were known to arbltrary accuracy and at all energies,

-
—\-.J

‘it would not be possible to determine a unique potential

without making further assumptions about 1ts form, such as
Al

locallty or separablllty. It is therefore necesSary‘tO'study

|
about the nuclear force. After nuclear matter, the three

many—nucl?gg systems in order to gain further information
nucleon system is the simplest many-body problem, and one

on which experiments can be performed. Yet only in the last
few years have theoretical and Computational advances been
made, which make it possible to solve even the three-body
bound state problem using realistic potentials. Scattering
problems’ are being attacked with some success. The four-
body problem is an order of magnitude more difficult although
the Faddeev equations have been generalized and preliminary
attempts made at their solution (Tjo 76).

By stydying the three nucleon system we hope to

differentiaté between potentials which fit the experimental

S~

.:.}_. g
N

.f51nce once we have SPGCIfled a potent1a1 then we have a’ dynamrcal“



-r‘ '

c 3ftwo nucleon data.' Ideally we would llke to 1earn about such5_';;f

‘5:th1ngs as the tensor force, the hard cate, the non-locallty,i

ﬁ;the’;eutron—neutron force, three—body forces,_ relatLV1st1c
,eféects, mesonlc degrees of freedom, ‘and so on.‘ The-flrst.
;and perhaps only success along these 11nes came in- 1935 when‘
Thomas (Tho 35) shcwed that a zero—range force, Wthh at that
time was compatlble wrthlexperlment, gave_lnfrnrte blndlng |
~energy for the triton. After that cime the nuclear data and
force becaﬁe more complicated at a faster'rate than ourlabilit§
to solve the rritOn. It was 1969 fDel+»69],before a (variational)
calculation of the triton binding_energy was:perfqrme& using
a-realistic porentiai. Meanyhiie.rwo important advances had
. been made: since 1962 Mitra and his co-workers-had solved
the triton usinc separable potentials with the Schrddinger
‘eQUation in momentum epace (Mit 69); in 1961 the great break—
throcgh had come when Faddeev (FPad 61) had reformulat the
three-body Lippmann-Schwinger .equation into a form whifh re-
moved the singularities that had been a plague since day one.
However, these Faddeev equations were three coupled integral
equations i six continuous‘variables and still too complica-
ted to treat directly. Various methods of angular momentum
decomposition have been attempted but the most successful is
that of Ahmadzadeh and Tjon (AT 65) which reduced the problem
to two continuous variables and many coupled equations. For

realistic nuclear forces, with tensor forces and the like, the



fproblem 15 st111 more compllcated and only recently have
dnumerlcal technques and computers advanced to a stage where
calculatlons can be made for rea}lstlc nuclear forces.
The current 31tuatlon for-therbound.state problem

..(TJO 76) is that reallstlc potentlals glve 1 to l 7 MeV 1ess:{f:
d”_blndlng for 3H than the experlmental value of 8 5 MeV _ More—

 over there 15 goodaagreement between various groups who use .
different methods of solutlon.. There is, however, some |
disnarity‘for the-dip in the charge form factor of_BHe-between
variational methOds (based on the Schroedinger equation in
coordinate space) and integral equation methods (based on the
Faddéev-equations.in momentun‘sgace, Inaaddition, modifications
- of the potentials (without changing the two—nucleon phase
shifts and'binding energy) which increase triton binding
energies toward better agreement witn experiment;'tend‘aiso
to push out to larcer momentum transfer the minimum of the
form factor, giving poorer agreement withlexperiment. The
popular explanatien for these discrepancies with experiment is
that they are due to mesonic effects - three-body forces and
exchange currents and the like. This is discussed further in
Chapter 1IV.

A muich simpler system than the real triton is the

model triton. The ground state of the triton is predominantly
a space symmetric state in which the average force between the

nucleon pairs is one half the central force in the triplet

even state of the two-body system, plus one half the central



';_51ng1et-even.force. f@hy thls 15 so wlll be dlscussed 1n Chap—f
'"-ter II where the model trzton 1s treated in- more\detall -) Thls
ia-state, called the pqlnclpal S state makes up more than 90%..
of tﬁe ground state probabllzty of the trlton, even in the‘itf}n
apresence of strong tensor forces, ‘and 1s the Only state lfff
'we con51der a central spln- and 1sosp1n—1ndependent force,-
'By taklng "a force whlch is the average of the751nglet anc ._H

'trlplet forces, the problem szmpllﬁies to that of three

1dentlcal bosons. Slnce the compllcatlon of" spln no. longer

'enters, it is possible to calculate (model) trlton proPertles

for a large number of potentlals for the same amount of ef—

-fort as would be reguired to do a reallstlc calculatlon.

Moreover effects which are 1mportant in the model triton should:
also be of comparable importance in the real triton.
When comparing properties (which depend on the off-

shell T-matrix) of various potentials, it is important that

'these-potentials be strictly phase-equivalent (deG 75, p. 57).

Two potentials are said to be phase-equivalent if they produce
the same two-body binding energy and identical phase shifts

at all energies. All of the potentlals used in this study

are of this form. The standard potential is the average

of two potentials fit to the 2=0 singlet and triplet n-p

phase shifts (Tab 65, potential 1 of Table 1). It will be
referred to as ST. This‘potential is then used to generate

a set of phase shifts. Together with the binding energy of

the model deuteron (0.428 MeV) they constitute the experimental
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“Yxﬁrdata to whrch the other potentrals used here are fltted

Two classes of potentrals are constructed (Srn 72

~11yf-~ partly non-local potentials, havrng a local

:'attractlve part and a repulsive separable part
'bfadjusted so as; to ensure phase equivalence. These

w1ll be referred to as YBS plus a number.'

C(ii) rank-two separable potentlals, in whlch the attractlve

term is made phase‘equrvalent to the local part of the
partly'non-local'potentiels; and again: a repulsive
term adjusted to give overall phase equivalence.

These will be identified by YSS plus a number.

-

There are a number of reasons for choo;}ng these
potentialst The nuclear force‘is predominantliy locallat
large distances and non-local at short range. The simplest
form of non—locelity is separability. ,Thus if the separable
part of these potentials is of short range, they will be
physically appealing. The local part is a Bargmann potential
which unfortunately does not have‘the one-pion—-exchange tail
that a realistic potential should have. However, this is a
model calculation in which the difference between locality
and separability is being studied. The form of the potential
makes many formulae expressible'in analytic form and simpli-

fies the overall calculation. Another reason for using these

potentials is that they are fitted to the average of a



;.51nglet and a trlplet force - just what the model trlton needs
'fThe part1Cu1arch01ce ofpotentlals made here allows a direct

'ﬂcomparlson to be made Wlth prevzous work on thls problem.

B 1F1ede1dey'has done 51milar model trlton calculatlons w1th rankr‘ T

K two separeble potentlals and for certaln 11m1t1ng potentzals

obtaxned abnormally hlgh triton blndlng energles.l Moreover,.
‘he used an 1nver91on procedure 31m11ar to the One used here
and used the same phase shlfts as 1nput! Thus a comparlson
can be made, not Only between two classes of rank—two o
'separable potentlals, but also between separable and partly
local potentlals. FPiedeldey's results 1nsp1red workers at
McMaster to use his potentlals in nuclear matter calculatlons
(SSB 70). They found that those potentials which gave very
high triton biddidg energy gave verf low.binding,energy ia
nuclear matter and that the variation was much more pronounced.
The partly non-local potentiale were found to give much less
variation in nuclear marter binding energy. The missing
part in all these calculations is the triton binding energy

for the partly nQQ;iocal potentials and their phase equivalent
5 .

[

separable counterparts.
The system of programs which I have developed allows

the calculation of the following properties of the model triton:

Eq the triton binding energy
¢T{pq) the wave function in momentum;cpace
Fch(Qz) the charge form factor

C the asymptotic normal;;ation constant .

T



e

h.TThese pr0pert1es may be calculated for any 1nteract10n for f-'

‘Thus any potent1a1 local, separable, or non-local may be
l?”used- 1n fact one does not need a potent1a1 at all, only the

) fT-matrlx.“f

‘f;WhICh the two-body T-matrlx can be obtalned in the 2—0 state.. fg-.

/

i

e .

The three-body parameters most sensltlve to the de—

'.talls of the nuclear force are the triton bindlng ergy aLd

the doublet scatterlng length :Since these are strongly

correlated and. Spln is effectively 1gnored in. this model the

'scattering length was not calculated.. Wave ﬁuhctiOns, not

being observables, are ‘rather uninteréstiné inrthemselves but

can be used to calculate the form factors and asymptotic

‘normalizations. Form factor calculations. are often done with

realistic potentials, and there have been calculations with

phase equivalent potentials using short ranged unitary trans-
formations {Haf 73, HKT 7éb). For separable potentials, form
factor calculations are not common and none to my knowledge .
have been done for phase equivalent potentials. The asymp-—
totic normalization constant is another observable of the

three nucleon system and one just recently coming under study.
It is related to the probability that the ground state of the
triton consists of a deuteron plus a neutron some distance
from the deuteron. In 3He it would be the proton separated

from the deuteron. Physically, C_ is important in any process

T
where a neutron (ptoton) is added to a deuteron or taken from

3H I3He): this occurs in stripping {(t,d) and transfer (d4,t)

reactions, n-d scattering, electrodisintegration or photo-



 iextracted from the bound state wave function., Perhaps thlS

. '..v-. .

;.disintegration of 3He, and low energy elastic scattering of

-3,

'n7p-3He or: n~"H. The asymptotic normalization constant can be

-parameter w111 be sen81tive to the nuclear force.- Skipping

f ahead the conc1u510n is maybe. 1t is not sensitive at all

to variation Ain t;e\ﬁartly non local potentials except 1n

- the llmiting case,< it is s nSitive to the variatrgn in the

Ve
separable potentials. Howe er these separable potentials

do not. seem very realisti as evidenced by their‘binding
energles and form facto) i'

An outline of{ ‘the remainder of the the31s foilows._
Chapter II discusses the model triton, the potentials used,
and the inversion procedure used to obtain them.

Chapter III deals with the calculation of the biMmding
energy. For the partly non-local potentials the integral
equation approach of the Faddeev equations in the momentum
representation is used. For the separable potentials the
formalism based on the Schrédinger 'equation in momentum space
is used. It is found that the partly non-local potentials
give about 1 to 1.5 MeV less binding energy than do their
separable counterparts. Both classes of potentials give
increasing binding energy as the attractive part of the
potential is weakened and apbroaches the limit where it‘gives
the same deuteron binding energy as the complete potential.

This is very similar to the behaviour of Fiedeldey's rank-two

separable potentials (Fie 69b, FM 72) although the variation



Yois much less.u:;' | _
}}:.‘fy; In Chapter IV the‘extraction of the wave functlon
'and calculatlon of form factors is dlscussed For the partly |
'-non-local potentials the‘wave functlon 1s obtained from the
5Faddeev~amp11tudes obtalned durlng the calculatlon of the
binding energy. For the separable potentials the spectator
'functions‘are_used to calcuIate'the,wave £unct10n. Using these,
the body form factor F(Qz) can be calculated. farious
nucleon forin‘factors are folded in to obtain the charge form
factors. - The form factors near zero momentum transfer depenad
'strcngly on the triton binding energy: there is an almost
linear relation between the tritonﬁpinding energy and the slope
of the form factor near zero momentum transfer. At higher
momentum transter more structure is observed, but there is a
very strong correlation between the "deuteron” form factors
and the triton form factors.

The asymptotic normaliz€tion constant is treated in
Chapter V. For the partly non—I?ca%;potentials the varia-

tion in C, is rather negligible h(—:il?.’;ccept for the limiting case)
and the value of Cop is considerably less than for the standard
potential. Por the separable potentials the values of Cop
increase as the attractive part weakens. The values are
comparable to or greater than that of the standard potential,
and greater than those of the partly non-local potentials.

Chapter VI discusses the results in more detail. cCom-

parison of the triton and nuclear matter properties 1s made



11
for these potentials and those of Piedeldey.' Various prOper—"
tles ‘of the two-body system are examlned and related to the

,trlton properties calculated There is an: almost 11near rela-

tion between the triton. binding energy and . the zero—energy

wound 1ntegral The difference in the trlton blndlng energy

\
1]

from that of the standard potential is proportlonal to the

dlstortlon of the deuteron wave function. |

Chapter Vi contains a summary of results and con-~

-~

clusions.



CHAPTER- II

THE MODEL TRITON AND POTENTIALS USED

‘This chaptef discusses the mbdel triton and the phase
éguivalent potentials usea in-this calculatien. The real
triton'and realistic potentials are discussed te see what as-
sumptions and approximations are made and how the model tri-

ton compares with our knowledge of the physical system.
’ A

;THE_MODEL TRITON

\
There are four possible combinations of three nucleons:

nnn {the trlneutron or n),nnp (the triton or _H), npp _(the I

e

helion or *He), and ppp (the triproton ox 34y, of these,
the trineutron and triproton do not form a bound system. The
two bound states 3H and 3He each have total angular momentum
J = % and positive parity. No bound excited states exist.
The binding enzrgy of 3H is 8.482 MeV and that of 3He is
7.718 MeV; the difference, 0.764 MeV, is mainly due to the
Coulomb interaction hetween the two protons in the helium
nucleus.

The strong interaction conserves the quantum numbhers
J, w, and Jz. In addition T, the z-component of the isospin,
is conserved if charge conservation is assumed, and T2 if

charge independence is assumed. Since the binding energies of

3 3 : .
H and “He are approximately equal, and since the trineutiron

12
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. -},”“ o .'."' C  ‘.7 :. .f S R ‘ , .-‘ ff ’
ahd §rip:§t6n1are-not»bound,_wé,infer-ﬁhat the bound pair

form an isospin‘doublet; thus T = 1. 'The total orbital angular

2"
.:mdmentum.L apd sgin S are not’"good".quﬁptum numbé;s but can
;be used fof-classiéicatibﬁ of states. S must'be_% or %
. ' and coupled with L to give total angular momentum J = %; |
festricting L to 0, 1, or. 2. ‘This allows the states (25+1LJ)-‘

1 1 3 .3 ‘
81/2, P1/2' P1/2 and D1/2' There are actually 16 inde
pendent states {DP 69) with J =T = % and positive parity T

since the space, spin, and isospin components#may 5# synmme-

mnmamm

give an_overall antl-symmetric state.

~

e T The most important of these states is the L = 0 space-
symmetric mixed spin ané isospin state, known as the principal 3
5 state. For a central, spin and isospin independent force,
as will be used in this calculation, it is the only state.
Calculations with realistic potentials, even those with strong
tensor forces, show that this state makes up almost 90% of
the probability of the ground state function of the true trj
ten.  An T. - 0 state is invariant under all retations. The
parity operator for this aystem ig equivalent tm» a 180" ro
Fatimn, thua dreg net alter the wave Finetrinn ., Therafore the
parity is positive.

Applying some simplé quantum mechanical arguments,
let us investigate this state further. Figure 1 gives a sche-
malle ploture.  Fot a yround state the total eneryy is minlulzeed.

Lthils weans that the hilnetic enerygy should be small and the
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Figure 1.

The principal S sState of the
triton.

-

. <'J.'_- .
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-'po£éﬁ££51-énéféy.gféat:iahdfnégatiée)L- The former constralnt
'ﬁlmplles a space symmetrlc state wlth relatlve orbltal angular;,'
”:.momentum zero between all palrs so that there are no nodes
 ;1n the wavefunctlon and the curvature thus is kept to a. mlnl-t”
'mun, A space symmetrlc state 1s also best for potentlal :
energY, since the wavefunctlon 15 larce when the partlcles
are close together taklng advantage of . the attractlve nuclear
‘ Iforce. Antl—symmetry wlth-respect to erchange cf;two
particles requiree that the two neutrons have bpposite spin.
Their interaction thus must be in the singlet state. The ~
spin of the proton must therefore be parallel to that of one
of the neutrons; the interaction in this case is in the trlp—'
let state. The thlrd 1nteract10n is between the n—-p pair

with spins anti-parallel. This can be divided as one half

singlet and one half triplet:

N[ 1

a(p)B(n) = Z{a(p) B(n) + a(n)s(p)l+%[a{p)s(n)—a(n)a’<pn- (1)

The three pair interactions sum to % (singlet and triplet),

Or on average _

1
Veff = 5( v + vV ). {(2)

POTENTIALS IN NUCLEAR PHYSICS

Ry far the most important forece acting between twn
nucleons is the strong interaction. Tn the same way that the
electromagnetic force can be attributed to the exchange of

photons, the nuclear force can be attributed to the exchange

K



:of mesohe. The success of the potentlal concept wrthln the
ey L
' |13

framework of guantum mechanlcs, as applled to - problems 1n

The great advantage of a potentlal is- that once 1t has been
dete _gl*ye have a dynamlcal model the Schrodlnger equa—
‘tion, Wthh cjb be applled to any nuclear problem-

-

The 1nteract10n of the“nucleon and meson fields gives
“ o .

rise to the emission of virtual particles, the lightest of

which are pions. This violates energy conservation by

AE n mjc? if their momentum q is small. The uncertainty

principle requires that these pions be reabsorbed in time

At ~ H/BE ~ 5x10 2% seconds. (3)

If the pion is abgorbed by a second nucleon instead of being

reabsorbed, then the second nucleon acquires the extra mo-

mentum, g, and the process appears as elastic scattering; see !

figure 2. If we do not examine times shorter than 10 27

‘seconds, this interaction appears as a force, which can be
described non-relativistically as a potential. The second
nucleon must be sufficiently close so that the emitted pion
can reach it, that is within a distance ¢ At ~ 1.5 fm. Thus
the nuclenn -nucleon (N-N~) potential has a range of the ordar
I to 2 fm. The electramagnetic interaction by comparison
hac infinite range since the exchanged photons have zero mass

The N-N potential does however have a tail which decays as

—-- . (43)

“.-.f atomlc phy51cs, has led to- 1ts appllcatlon in nuclear phy51cs;:”

!

Jf
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%iqure 2.

Diagram showing two nucleons
interacting via meson exchange.
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ﬁwhere u % mc/ﬁ and m.ls the mass of the exchanged partlcle.
"tBeyond 3 fm the NeN interactlon lS glven hy the one—plon—‘
"f exchange potentlal (OPEP) Thls can. be shown by theoretlcal ;

‘-arguments, and by phenomenolog1ca1 f1ts to the experlmental
data in which the plon -Wass and" coupllng constant are treated
as free-parameters; In’add;tlon to 51ng1e pion exchange,
~ heavier partieles or several pions nay Se emitted. The
range is inversely propqrtional to the‘mass of the exchanged
particles, hence they will be important at shorter distances
only; In principle one could use the OPE potential to des-
cribe the long range part of the interaction, the two-pion-
exchange (TPE) to .describe the intermediate region, and so on
to more pions and heavier mesons. However, even the TPE is
difficult and for practical reasons at some stage this proce-
dure has to be abandoned and some sort of phenomenological
description used for short distances. If any potential is
to describe this meson soup, it is undoubtedly non-local.

Most reasonable potentials incorporate only the OPEP

and fits to the experimental data (HJ 62, Rei 68, TRS 75).
The most realistic potentials these days (CDR 72, Cot+ 73)
incnrporate OPEP to describe the interaction at greater than
1 fm along with 27 and w-meson exchange which dAominatae the
interaction between 1 and 3 fm. The remainder of the interac
tion is treated phenomenologically. Since multiple-pion
exchanges are so difficult to treat, and the piens are strong-

ly correlated, they can be simulated to some extent by the
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-,}_one b050n-exchange (OBE) potentlals in: whlch the Zn exchange-'
15 descrlbed in terms of the p—‘and e—mesons.J‘
. Once we have de01ded on a- poJentlal we can use - the

-~

fhrodlnger equatlon to descrlbe the system. In ope:atOIEﬂ'

'form 1; is-

(B |Y> = Elp> | - (5)
where Hd.is the kinetic'energy, V the potential and E the
energy of the system. For two particles in the coordinate

representation it may ‘be written

T K 2 | '
"o V) + | drt <x|vi'sv(d) = Bv(x) . (6)

For a local poEential
<c|vlr'> = vir)s(x-r") (7)
so that eqg. 6 reduces to the familiar form.

For a separable potential the dependence on r and r'

factors:
<c|vlr'> = Af(x)E(x") (8)

or equivalently in momentum space

“plvip'> - rxg(pratp") (9)
where

-3/2

g(p) = (2m) f(re 'L gr | (10)



R

;‘:It is most useful in- momentum space where the Schrodlnger
. equat1on becOmes | . e R

L %)g v .ﬂag(g) . dp_ g(p_ wcg ) = zwtg) - ay
:'Thls is an algebralc equatlon rather than a d1fferent1a1 equa-

‘tlon, and whose solutlon can 1mmed1ate1y be wrltten down,

¥(p). = N _ﬁp)__ a2

.

where.N is a normalization consta7t.

THE T-MATRIX

- An equivalent of the Schrddinger equation and one
better suited to scattering problems is the ' Lippmann-Schwinger

(LS} equation 4

T = V—V(HO—E—iE)-l T (13}

W
i

where the it means we are to approach the real axis at E from
above; thus ensuring the correct boundary conditions; i.e.
outgoing scattered waves. We usually write T not as a fuqetion
of E but as a function of =z =-(2u/H2)E. Sandwiched be-

tween plane wave states eq. 13 becomes

<p|T(z) }k> = <pjv]k> - = - 8

<plvik'><k'|T[k>
2y dk’
A

k' -z-ic

Three cases can be distinguished:



Figure 3.

Scattering of two particles. The
initial céntdg—of—mass momentum
is p; the final centre-of-mass

momentum is k. In elastic scattering
lel® = |k[”.



 ; 2é;

. <p|T(z)]|k> . the fully off-shell T-matrix, ~(I5) '

U’whefeT]plz'#ifk|2]¥ﬁg;y

 <E'T(k2)1E?"tﬁeiﬁafEQQhéll'?rméffixt,:w E g(lGJ.
L where lpl? g % ana
<21Tjk2)|5} fhébbn-sﬁéli'Tfmatrix, J - (l?f
. wnere Ip|? = |k%. |

—— .

- In guantum mechanics,’scatteriﬁg cross sections are
bilinear functions of the scattering matrix,“whose matrix-
-glements are complex functions of energy and angle. "Assumiﬁg
rotational invariaﬁce, each matrix element may be expressed
as a sum of terms, each.réferring to a particular angular
momentum state, and depending on one real parameter: called
a phase shift. At a given energy, only a finite number of
angular momenta are important, so all the scattering data
can be converted into a sﬁall Pumber of real parameters. The
determination of these is called phase shift analysis.

Only the on-shell T-matrix elements are determined by

the two-nucleon scattering data. For a central potential the

T-matrix can be expanded as

i

<p|T(2} k> = —%— B L (22+1)t1(p,k;z)Pl(cosB - (18)

2

)
27 % pk

The on-shell T-matrix elements are then related to the phase
shifts by the relation
tltk,k;kz) = —exp[idi(k)]sinéltk)/k - {19}

the half-shell T-matrix enters into calculations of nucleon-

nucleon bremsstrahlung, but experiments have not yielded much
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sihfermatibnfaﬁoﬁt'the'f?mefri&. Thls forces us to look at

'many nucleon systems 1n order te galn 1nformat10n about the i
:- off—shell T—matrlx. Hany nucleon systems can be : descrlbed in
'm‘terms of the off—shell T—matrlx prov1ded only palr 1nteractlonsf'
‘are assumed f.In partlcular, the three—nucleon system can be |
descrlbed by the Paddeev equatlons, whlch as will be seen in
Chapter III, depend on the fully off-she 1 T-matrix. Poten—
tials which have the same on-shell T-matrix will in general

B

ha différent off-shell T-matrix elements, and ;hus give dif-

ferent kesults in three- and many-body systems. By comparing
the results which various potentials predict for these
systems with the experimentil values, some will be preferable

to others and thus tie down the N-N interaction a bit further.

THE PHASE EQUIVALENT POTENTIALS

The information available for the two nucleon
system comes mainly from scattering experiments; it
is digested somewhat and expressed as phase shifts in various
spin and isospin angular momentum states. In addition, the
n—-p bound state, the deuterom, provides us with additional
information: the binding energy E,+ the electric quadrupole
moment QD' the magnetic dipole moment Ve and the
electric form factor P(Qz) from electron scattering. Since
all of these quantities depend on the various spin and isospin
states and the D state probability of the deuteron, they can-
not be used directly in this model calculation.

L]



It 13 p0551b1e to generate reasonable model phase }
shlfts and ED whlch w1II*be taken as the experlmental data.
All the potentlals used are phase-equlvalent to the standard
Tabakin potent1a1 VST (Tab 65 potent1a1 1 of Table 1)
that is, they have the same phase shifts and "deuteron" binding
energy. This potential is tge average of two potentials
fitted to the experimental'2=0 n-p singlet and triplet phase
shifés respectively. It produces’'a model deuteron/pinding

energy'of 0.428 Mev.

The potentials used are of two ferms (Sin 72):

i) partly non-local potentials

<k|v BSIP) = <k|V |lp> + n(k)n(P) ’ (20)

{;i). rank~two separable potentials

“t

<k|VYS5|p> = ~g{k)g(p) + h(k)h(p) (21)

where n(k), g(k}, and h(k) are separable terms and Vl is an
attractive local potential - in our case a two parameter Bargmann
eq-. (30). The inversion procedure consists of choosing a form
for V1 or g and solving for n or h so that the v and vag

9ive exactly the same phasa ghifts and binding enerqgy as VqT.
The inversion procedure used is that of v. Singh (Sin 772,
SWB 72) who applied the inversion method of Fuda (FPud 70) to

non-local potentials of the form

ViL,r') -~ Vl(x,r') + nf{r)nfr') | (22)

The detalls are given by Singh and only the reclipe Lox con
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structing-ﬁhem.is_given here. The basic ingredients are:
8 (k) phaéé_shiftélove: all momenta 0 < k <
Ep . "deuteron” bindingfepergj (B = (ﬁ2]m)kD2)

vy arbitrary attractive part of the potential.

\

These are subject to only two minor constraints -

i) EB > ED' that_is,the attractive part of the potential

acting by itself must produce a greater binding energy

EB in the two body system than that of the complete

potential (Ej = afz/m)sz)
ii) o0 < Gl(k)—é(k) < 7, that is the phase shifts produced
by the attractive part of the potential alone §5 (k)
" must be greater than the phase shifts of the complete

potential for all momenta; but not too much greater.

It

The Fredholm determinant of the complete interaction

is given by

*p 2

2 0
D(k) = (1 + S)expl- = p { 8 {RIPAPy erp [-16 (k)] (23)
w 2
k p -k
0

Using potential V] we can generate Sl(P), E ¢B(D) and fbp(k')

B'
where ¢R and b are the bound state and acattering wavefanaot isna
P
Froom thees we ecan nhtain the Fredholm determinant of V1
B 2 .
Do(k) — (1 ¢+ --T)exp[— = P '~———-—-Iexp[—151(k)]- {(24)

1 " 2 2

x 2 " &, (p)pdp
p ~k

0

Then using

thh) - U(h)/ulib) (23)
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and o
' - . e, . ~ 2
= .| Iimi%pap  Ps
[ Dplk) =1 T2 2 "3 32

: k“-p“+ic k +kB -

(26)

{
0

“?uw{wherelﬁz,,ﬁ and n are defined'in tefms cf n, ¢B and ¢P)

B
equating the real and imaginary parts gives

f) 1% = £ In [D(K) /Dy (k)] (27)
- ® & (p)pdp
= 2 W, 2 . 2 2 1
ng = glkg -k expl- - P [ —2 37 - (28)
P +ky
This gives ni(k) in the basis of the eigenfunctions of V.. In

1

the usual plane wave basis n(k) is given by

podp + 6, (K)Ay . (29)

2 [ Atey<xlvife >
n(k) = cosé, (k)fi(k) + = p P
T p2_k2

o

Choosing a two parametg; Bargmann potential for V1

considerably simplifies the procedure. Writing

9 e—2br
volry - - (8p gy S (30)
1 (11 ge 2br)2
Where g — (hia)/(h a), than there are analytic formulae
kp - A (31)
Dl(k) = (k-ia)/(k+ib) a,b>0 (32)
tand (k) = k(a+b)/(k?-ab) (33)

wa woell das Lue I@ - and I"p -
| b
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' Moreover for the potentials YSS, since 4g(k)g(§)§§%

to be phase-equivalent to‘vl, it is sufficient to have“thel
Fredholm determinants eagual, or.
Imp, (k) & - E%Eigl = - kg2 (k) . (34)
kZp? | |
Hencef
1/2
+
o) = 2R (35
{(k“+b™)

Using the above procedure again for inversion allows the
calculation of h(k).
Six pairs .of potentials are used for this study. All

-

have the same range parameter, b = 1.0 fm-l but ﬁifferent

strength parameters a for the potentials ranginé from a =

1 (the limiting case) +to a—- 0.5 fm"l corresponding

.1016 fm
to about 10 MeV bindina for the attrarti-a part. The para-
meters a,b of the potentials are listed in Tahle 1, along
with nther properties ~f the potontials. Frur of thege nir -~
have hean nsed in nuclear matter «nle-lations (SWP 77) an

that a rcomparigeon with nu~Tear marter anltg ¢ v P e

THhie 20311 bm dirmccpamead Thinptary Y



l rﬂ.
CHAPTER III

- :THE THRBE—BODY EQUAIIONS THE BINDING ENERGY

 In thlS chapter the method of solv1ng the model
trltén 1s presented.; Tt is appllcable to.any 1nteract10n,
fOr whlch the two—body T—matrlx in the 2-0 partlal wave

can be défined. Only pair interactions are con51dered. Flrst
the coordinate systems and basis states are defined. Then
we turn to the Faddeev equatlons. A sketch of their angular
Amomentum reduct10n~1s Dresented. The homogéneous eguation
is solved by successive approximations using a Padé appfoxi—
mant to check for convergence. Triton binding energies are
-calculated for the partly non-local poteptia%é. The binding
gnergies of the separable potenﬁials are calCulated‘by a

simpler method; this is described in Appendix A.

1

THE BASIS STATES

There are several coordinate systems in use for three-—
nucleon systems. The one used for this calculation is defined

in conjunction with figure 4. Consider three particles having

masses My ST, My (1-a)
positions XXy Xy {1-b)
and momenta - kl'kz'k3 . (1-¢)

From the position variables one can construct three basic

28



N (a)

(b)

Figure 4.

Coordinates for the ‘three-body
system; (a) coordinate space
representation (b) momentum
space representation.



- : o .

o vectors

+mx

jo

R e T |

,/ .?_ JL:x"'.' 'ﬁ mlxl+m2_2+m3x3

_ +m2+m

ﬁ ..: o (2_c)

Xy ‘is the-relativewéeparation'of particles 2 and 3, is the

By
dlstance of the centre*of-mass of the 2-3 pair from particle
i, and X is the centre-of—mass of the three particles. The
combination (52'32'5) and (53,3535}‘can be defined by cyclic-—

“ly pefﬁuting the indices 1,2 and 3. The conjugate coordinates

in momentum space are defined:

k k

ko, ks
;o P.o=p. (2 - =2 (3-a)
f 1 723 ™, my .
k.+k. k
L) —_ —_ pue
2 ( 2723 _ -1 (3-Db)

Q, = 1 -
1 1 m2+m3 m

p +k,tk ) ) (3-¢c)

{ky

where the mass ratios used are

4
_ ml(m2+m3)
"33 T movmom (4-a)
R T R
m.m
Ul = 2+3 {4 h)
M,y
M = l+m2+m3 . (4-c)
1 2
For egual masses m, Moy = 5 M, 3y = 3 m, and M = 3m. These
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coordlnates are c0mmenly used in ﬁrlﬁon calculatlons ﬁ51ng -
'saparable potentlals. For calculatlons u51nq the Faddeev'f:

L equatlons 1t 1s common to use a more symmetrlc set (Lov 64)
dlfferlng by /;ﬁ_ {5—53 and /2M resgectlvely and havxng |
units dlffexlng_by ﬁml/z, It seems ieés‘coﬁfusiné;'at'leasﬁ"
to me, to-have the "momenta™ in the’ usual unlts £fm -1 end keep

H and m explicitly. The symmetrlc form.ls rather convenient,

so using Y2pu/m instead of ¢2u, the variables used are

v RS

By = (ky,7kj3)/2 =B (5-a)
q; = (52+53-251)//Tf = /473 0, (5-b)
Po = (k+k+k,)//6 =P //6 . (5-¢)
The'kinetic energy of the system is given by
12 2 2
- 2 Ky X2 k3
Bo =M o * 2 * 20! (6-a)
1 2 3
2 P12 Q12 p2
1oy + 5o+ 5] (6~b)
2uyy 24 - 2M
a2 2 2 2 B
= /m)lp] gy o+ P | (6-c)

Tn the centre~of-mass sytem P =X=0, thus only the variables
P, and q, are needed to describe the system. Tt is convenieant
tn nee other coordinate systems (92’q2) and (93.33) which
can be defined from equations (5) by permuting the indices

1, 2 and 3. The three systems are related by linear relations

{(with Jacobian of unity)
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where i, j, k are cyclic. For equal masses uijl= % and

.'_ﬁ
Bij"'-_z'.

The three particle state can be represented in four

ways as
1k —-23‘3> = Ipygy>) = 1R,9,%5 = Ipja5>5 - 9

The subscript on the ket refers to the coordinate system and
the arguments inside to the value of the momenta. For
identical particles the states under interchange are related:

for example ‘exchanging particles 2 and 3 means

P(1) [k k k> = |k 1kqk,> {10-a)

I-p19y>) = |"R393%; = [-B,9,>5 - (10-Db)

Nnte how equations (7) have been used in writing the last two
parts of equation (10-b}.
Neglecting spin, the states can be expressed as
>, = ; . . o .
lpa>; = I Iptmiqli> ¥, (B}Y, () (11)

im

LM



g,The ground state of the trlton has total angular momentum L,

'therefore coupllng the states of equatlon (11) one gets

lé&mzl-x = I ~_:m}mu|m>_|pgm-,'-¢';ms.'.,(-. < a2)

GESEEEETL - T ¥ o
These form a comélete“set and‘ere-hormalized as-
i—<pqmll'-|p'-q'1-‘l‘!' g L._}i"= S.({p-p!) G(C_{—G ) 6- 5 5 ’ 3

2\ 2 ¢ Ommr g0 SLrr
\ ‘ P q

The discrete quantum numbers LML will often be denoted col-

lectively as a.

THE I"ADDEEV EQUATIONS

Solution of three~partlcle systems had long been hln—
dered by the fact that the three-particle Lippmann-Schwinge
}

- 4
equation

T = V—VGOT ‘ (14)

had a kernel that was net a Schmidt operator. (By a Schmidt
operator K, we mean that tr KK+ < =,) Consequently no genera-
lized Fredholm theory would work, and the area was full of
pitfalls for the unwary. This is because the interaction con-
tains delta functions cortesponding to one of the particles
going straight through without interacting with either of

the others. It was not Umtil 1960 that Faddeev (Fad 61)

was able to reformulate the problem in such a way that the
singularities were removed. The secret of his success lies in

the fact that his equations refer to the two—-body T-matfix
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' f(exaétsbiﬁtidnfofthé'pair;ipféchtion)':athér'thdhﬁﬁhé twdfg
‘body potential.

' The Faddee§ eqﬁations-afe-thréé_cdupled¢intggral équa¥?'

'i-fions“. _'~]   'L'?”i.r'? -""i T .f;' - . : (fx'HA
@ (5) = T (s)-T 816y (s) 172 ()22 P (e)1
1B (s) = 10)-1, (8064 (0) [T (142 ()1 T aas)
23 (s) = 1 (5)-7 (816, () [T (s)4r P (o))

s is the energy of the three-particle system

-is the two-particle T-matrix for particles j and
k (ijk cyclic) in the three-particle Hilbert Space.

. G0 . is the Green function for -three free particles:

Gy (s) = (HOH‘%; s) '
T(%Q is a scattering matrix describiﬂg the sum of all
fﬁ interactions in which particles j andisbinteract last
B
T‘ = Ttl) + T(z) + T(3) is the three-particle T-matrix.
If we write egs. (15) as T(i)=Ti+Kij T(j) with

a kernel K that is a 3x3 matrix, then it can be shown that

some power of K is a Schmidt operator. For s in most parts of
Ehe complex plane, Kz is sufficient; for bound state and
three-particle scattering the fifth power may be needed (Fad 65).
The key point is that K2 has elements of the form

Ti(s)GO(s)Tj(s)GO(s) where i¥j. This absence of diagonal

N



_:elements 1s due to the fact that all the two—partlcle sub—
systems have already been taken 1nto account exactly.. The d :
usual Fredholm methods of solutlon can then be used for solu*v
tlon.’ All prev:ous treatments could only treat one of the

' subsystems exactly. 'lr“ | f : 5 ,_F . ."fa :_‘.j'

- Bquations (15) are usually solved in the momentum'

.representatlon. After remov1ng'the centre-of—mass coordinates
there are Stlll two vectors or 51x 1ndependent varlables des—
crlblng the .three particle system. To reduce the dlmen51ona11ty of
the problem some form of angular momentum reduction is.

needed. Varlous attempts have been made (ElB+73, has a re-

view), but the one most wldely used is that of Ahmadzadeh and

Tjon (AT 65) and generalizations of it (HKT 70, MT.TO). _The

. 8ix continuous variables are reduced to two continuous wvariables

and sums over many discrete guantum numbers. In the repre-

- sentation defined by equation (12), and where n = k1k2k3 ! the

first of equations (15) can be written

i=2 a.

3 2
= 2, " " '
1<pqu|T (S)|n> = 1<pqu|T1(s)|n> - L I J P dpi [ q; dqi
i

(i)

<p aia.|T'* (s) [n>

lll

N +qi‘

1<Paa|T, (s) |pig:a,

i®ivi 1 " (186)

After}aggreat deal of angular momentum algebra (AT 65) equation
(16) simplifies to a form which contains the (fully off-shell)
two-particle T-matrix. Isospin can be added without diffi-
culty. Spin, too, may be included easily, provided the force

does not mix spins. For identical particles



-=df 1<panT(J)(s)ln> = 3<pqalT (S)|n> ,'“ f”-t11i-m

' ; 80 that the three equatlons (15) effectlvely reduce to one.

: Equatlon (16) thus can be wrltten (HT 69)  , ‘ L, :  f,
¥ (paB) = ¢(pgB) - > F(B[B ) '.q-déi, R
. _ - 'ﬂ'qﬁ g : ' . . .
- ! '. R - 2 1 ]
Blad") pigpre , (p, (p' 24q' %-a) Y Zs-aP v (o a' 8"
x £ 2 2 ' (18)
- pl +ql -5
L{qg®) B
where B is alplus spin and isospin

F(B|B') is a spin-isospin coefficient

(1)

¥ (paB) = ;<pqalT " (s) [n>

¢ (pgB) = 1<pqa|Tl(S)|n> )

tBis the "B-th"™ partial wave of the two particle T-matrix, t

L(gq') = |2g-q'|/Y3
(2q+q") /Y3 .

U(gg"')

For the triton § = % and T = %, therefore, the spin-isospin
between particles 2 and 3 can only assume values (0,1) or (1,0),
which gives us a coupled two cﬁannel equation. In the model
triton.we further assume that the singlet and triplet two

body interactions are equal in strength. The average interac-
tion, as explained in Chapter II, is then

_ 1,3 1
= 2( tl + tl)

ne

t t . (19)

eff

The further assumption made for this calculation is that only

the £=0 part of the interaction be used. The coupled equations

-
't is related to T; by

<palT; (s) |p'g'> = <plt(s-g*) [p'>6(g-g")



e
" '(18) ‘then reduce t6 ohe .-

\b(qu) ¢(qu) -'_‘ 8 J q'dq’ J p dp t(p.(p +q 2 2 A]-'/-,z.s -q 2
Cmgd3 L0 . R o
‘, . ) . . : ¥ ( B;- o o (20-).

X p'.z:'_ql
The inhomogensous term ¢ depends on what problem we wish to
solve: the bound state, elastic scattering of a nucleon off
a deuteron, or three particle scattering. For the bound state

the first term is absent .and equation (20) is homogeneous.

METHOY OF SOLUTION

-

Reduction of equation (20) to matrix form %s not ﬁrac-
- tical for two reasons. The.limits on p' vary for different g’
and the resulting siié of the matrix which would have to be
inverted is large. However, the problem can be solved bj
successive iterations (MT 69, Cul 74}. The problem is, given
K, to find the value of s for which egquation (20) is solvable.
We do this indirectly by introducing a parameter A and study

the solution of

Vip,q:is) = A ]{ K(p.q:p'.q':s)¥(p’'.q ss)dp’'dg’ (21)

. . NP . R 0 .
for fixed s. Assuming some initial approximation ¢ , successive

iterations wl, wz, ... can be generated

wn+1(p.q;s) = l[ K(p,q;p'q':s)wn(p.q;s)dg'dg' (22)

n=290,1,2,...
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COnvergence has been achleved 1f succe551ve approxlmatlons

frhaventhe same functlonal dependence on p and q and differ

]

”Lf#cnly by a scalar constant A; that is "3
n+l g C
y - (p.q,e) = A for all p,gq. (23)
n .
¥ (p,g:s)

A of course depends on-s; thue s must be adjusted until Ai=1.
/Theh_s=sT where ET = (ﬁa/hﬂlsT]‘is che triton binding energy.

. wo is arbitrary except- that it must not be orthogonal
to the eigenfﬁnction of the ground state. This is ensured
by taking any nodeless space~symmetric function. Convergence
is enhhanced by_Choosing a form approximately equal to the
eigenfunction. The unitary pole solution, if available, should
be excellent. What was done in this study was to use the
solution for one potential as the starting point for a second
potential. Also, since several guesses for s were needed be-
fore A + 1, the solution for one value of s was used as the
first approximation'for the next value of s, and so on until 2
converged to 1 and s to S

The technigue nf Padé approximants was used to advan

tage here. We write, for some values of p and q,

I A i U (24)

The Padé technique allows this series to be written uniquely

as a ratio of polynomials
PN(u)

F[N,M] {a) - 6;(3)- £25)
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‘where M+N < n, Q (0) =“1, and P {0) wog : Now, sﬁcéeSsive“ '
-terms 1n our 1terat10ns of equatlon (22) 1ook llke ¢ n+l = AP .
This appears as a term_(l—lu) in the denom;nator,,pr a root

i
of the polynomial Qm(a) at
a = 1/\ - ' (26)

Therefore, if we iterate several times, obtaining the Padé
apprdximate for M > 1,.and solving for the root a_ of Q
near unit&, we find that a_ converges more quickly than
other convergenﬁe tests. For example, the (N,1] Padé ap-

proximant corresponds to the ratio test

N+1 .-
Ar = __ﬁ_iEQEL . (27) -
Y (pqB)
In fact'picking a few scattered values of p and g and checking

the zeros of the Padé denominator seems better than the inte-

grated ratio test

[[|¢n+1(pq8)l p°q dpdq

RO e t7a)

[1|¢ o) | "p " ApAnq

Thoe Padd Aonominatnr for M~+ picka np the last ¥ terme nf the
saries (eq. 24), s0 is sensitive to the rate of change of the
eigenfunction with respect to successive Iiterations. Althoughtg

nut exploited here, this information could undoubtedly be

used lu bPeced up wuhveryenie

R o i
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ﬁhe.advantagé'whiéh wés-éxﬁloited'was tﬁeffac£ that_1;_
‘as determiﬁéd by!the Pédé'ﬁeéhod,-ednvergéd‘ﬁﬁch faste% than
‘thé émplitudé w; Thﬁé an iﬁcbrreét vaiue of s copld be
quickly sébtted and cor;ected for, withou£ waiting for ¢ td

converge. Also,.for s near s A is almost linear with res-—

TI
pect to s, so choosing successive values of s is straightfor—

ward. Moreover d\/dE, ~ 0.05 for all potentials for which this

method was used, so that after‘picking only one value for s

and iterating until X convergéd, a reasonable gquess for ET

could be made. Refining E, requires several more choices of

T

s, of course.

NUMERICAL METHODS

To solve equation (20) the integrals must be evaluated
by some gquadrature formula,implying some set of grid points

{p } and {q,}. Thus we have

)

N M ‘
+1 2 2 2 2
" (P, q,8) = - 8 L q.w z pimit(pk,/r;.‘+q. ~q, s, )
wq1/§ j=1 LR ) ' } ’ '
)
g Wlp A B) . W17, K ;8 = 1,2, T (20)
P. tq. S )
i

There are a few things to note:
(i) We are dealing with the bound state, therefore s<{ and

the T-matrix is needed only for negative energies. It
is equivalent to the K-matrix and is real. ¢ is there-

tore also r1eal 30 nu cumplex arithmetic is needed.
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(ii) The T-matrlx t(pk,p s- q2 ) is needed only for the set -
| of pomnts {pk} and {s- ql } at which the Faddeév émpll—‘ &-
"T. © tude ¢ is to be calculated. Therefore it need be
calculated only once, and interpolated over the second
variable 5 as needed. This is important since inter-
polation over three variables'would be prohibitive,
and calculating t many times is costly since a matrix
iﬁversion must be performed.
(iii)  If the set of points {q,} is chosen to be the'same
as the set {qj} required for the integration, there
is a further simplification; namely, that w(piqj) need
only be interpolated over the variable p;- The inter-
polation is thus more accufate and can be done more
guickly.

Various types of mappings were used to choose the inte-

gration points. Since Gauss-Legendre guadr-ature was used through-
out for the integrations, the region (N.~) haAd tn ha mapped antn
£ 1. 1) Thea tranmafarmabrinng naad wer ~
r . X+l T
‘ A1
P - ~ tan T twr 39 )
] ~

where c is a parameter. Note that when x=0, thqp p=c, SO
LT
half the points p; are less than c and half greater. The

welghts avLe (a&)x —x. times the Gauss leyecadre welghls “
i

varyluy from 0.5 to £ was used Lu Indrease Lhe deuslly oL

eelnts wvhere the Tuncltlons were varylng nuwost captdly
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The T—matrlx was calculated from the 2—0 partlal wave Lo

.v:of the Llppmann—Schwlnger equatlon w1th normallzatlon of equa_j_, ;

' t1on (2—19)

> SR . A k‘ S .

;‘byathe~uéua1 ﬁatrix i£verSion.technEQQe>fﬁTL?Oi; Théié?s:
no need even to Subtraﬁi out. the éingulé;iﬁfﬂsipﬁeiz-= s;é£?<b,
Iffthe'botentialfis‘ﬁell éndugh.beha;ed,‘the-samg:set-of grid
ﬁoints gan be‘used for inéérsiOn to éet t, as are used for
the triton calculation. If ndt, sufficient ébints'mayhbe’
used tﬁat accura£e ihterpo;ation can be performed'to obféin;
t on the required grid. 7

One of the chief headaches throughout the calculation,
and in particular the wavefunction calculation of the next
chapter, is interpolation. Theré'is'geneﬁally a trade-off
b;tﬁegn speed and—accuracy. Where in;érpolation was necessary,

various fiddle functions were used to flatten out the func-

tions so as to enhance interpolation accuracy. The forms
2 -
(1+E) ana +3Ip (32)
a b™ ‘

were found quite useful, and simple. The parameters were
chosén SO as to reasonably smooth the function; m and n are
basically determined by the asymptotic regions. The para-
meters a and b then were chosen to make the regions near the

origin as flat as possible. For the potentials used in this



o calculatlon m fromo 5)tol Owas used, and n anyWhere from 1

”f"fto 5:' The amplltude w(pq) drops off much more rapldly as

a functlon of q than as a functlon of P ,_‘

B Interpolatlon was performed u51ng'e1ther p or # as‘
the3§arrable.' Near p—O the functlons are qulte 11near wrth
respeot'toipz._ For 1nterpolatlons over two varlables a ' six-
'p01nt Lagrange formula was used in most: cases.: Where possrhle
cubic spllne 1nterpolatlon was used, partlcularly for 1nter—

, polatlons over one variable.. For two.varlables cubic spline
1nterpolatron though quite accurate is costly. | -

Up to 16 pornts were used in the quadrature formulae
for hoth the p and q varlables. Various adjustments of ¢,
the mesh points, ana‘interpolation procedures were tried
until convergence seemed achrered. Convergence proceeded in
two stages. To obtain the binding energy the input eneroy
had to be varied until the parameter A (see eq. {(23)) was equal
to unity. To obtain the wavafunctlon further iterations were
necessary; the criterion used was that pt (pq) = 3" (pq)
to 1 part in 1000 at every point on the grid. Four to six
iterations were’ usually enough to ensure a converged value
for ); another four or sowere needed to get ) to converge.

Various checks were made to ensure that the computer

code was working: For the standard potential V a binding

ST
energy of B.80 MeV was obtained, compared with the code for
a rank two separable potential which gives 8.806 MeV. In

this case the two-body T-matrix can be calculated analytically



'5_t1a1 the equatlons reduce to 1ntegrat10n over .

44Jf

'1¥Lso the 1nterp01at10n is. unnecessary.; For a separable poten-_‘
R 51ng1e
“varlable.d The Padé method was applled to thlS 31mpllf1ed

f:problem and compared‘w1th a separable calculatlon. For a .

- Yamaguchl potentlal-the.agreement 13 qu1te-good.-9 295

Mev for the separable code versus 9. 343 for the Padé method.
fHaftel (Haf 73) has done a 51m11ar calculatlon to mine for
unitarily transformed phase—equivalent potentials. For his
standard potential I obtained a value of 3,12 MeV compared
to his 7.65 MeV. However, the parameters he lists for his
potential_give a deuteron binding energy of 0.383 MeV, not
- 0.416 as he states.- Adjusting.one'of‘his parametexrs only
slightly from 1.55 to 1;475 gives a deuteron binding energy
of 0.4158 MeVv and'ﬁrings the triton binding energy down to
7.8 MeV. 'Since his.parameters are not given to sufficient
eccuracy, a meaningful comparison of the two calculations cannot .
be made. -

Overall it is beliedved that an accuracy of 0.1 MeV
has been achieved. 1In c0mpariﬁ§ the potentials of this
calculation one might postulate that since they are similer,
any numerical errors will be in the same direction and that
0.02 Mev ie reasonable. Calculations were carried out until
the energy was given to three decimal.places. The numbers have

been rounded to two places in the table.
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Figure 5. The triton binding energies for the two
classes of potentials, as a function of
the strength of the attractive part of
the interaction.
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BINDING EHERGIES
The 1terat10n procedure descrlbed above was usea‘for_-
“the calculatlon of the trlton blndlng energles for the X

'Vpartly non-local potentlals of Table I. For thelr equivelehf-

separable potentlals the formallsm of Tabakln (Tab 65) for,thef"'

‘model trlton was used It is more efflclent from a céiéulaQ
_'t;onal p01ne;9f‘v1eweand depends on matrlx methods. ' The
‘method is outlined in Appendix A. The calculations were per-
formed using a computer‘code.ffom‘ﬂ' Fiedeldey modified to
work on the CDF—6400 and for form factors of general type
g(p) and hip). A further extension allows the calculation of
the spectator fpnetions. |

' The binding energies for the two classeés of'poten-
tials ere displéyed in figure S. Several observations mey,bq

made:

(i) EBach separable potential is more strongly bound by
1 to 1.5 MeV compared with its equivalent partly
non-local potential.

(1i) The variation in binding energy fof the two classes

of potentials is about the same, 2 MeV in both cases.
The partly non-local potentials vary from 7.37 MeV to
9.82 MeV, while the separable potentials range from
8.91 MeV to 11.04 Mev.

(iii)» For both classes of potentials the binding energy in-
creases as the attractive part of Fhe potential is

is

weakened, that is,as the limiting condition EB+ED

approached.



'-‘Thls 1atter typé of behaV1our 1s sxmllar to that found
by Fmedeldey (F1e69b 51172) for phase equlvalent rank—two
”'separable potentlals w1th g(k) Y/(ﬁ2+b2) and h(k) determlned

- from the same phase Shlfts and E ‘as used in thlS calculatlon.

D
In hlS case the varlatlon was much greater, ranglng from

-

' about g8 to 16 Mev.‘ Further dlscu591on of these blndlng ener—

gies is postponed untll Chapter VI.



- CHAPTER IV
WAVEFUNCTION AND FORM FACTOR

The Low equatlon (1) may be used to extract the trl—

ton wavefunctlon from the Faddeev amplltudes obtalned whlle

Acalculatlng the triton’ blndlng energy. The wavefunctlon ‘can
then be used to calculate the form factor. The method used
here is that of Haftel (Haf 73). For the separable potentials,
a quantity equivalent to the Faddeev amplltudes can be extrac-
ted from the spectator functions, and used to calculate the
ﬂwavefunctlons. The charge form factor has been calculated

for the two types of gotentlalsﬂ -In most cases the proton
charge distribution has 5een folded in,with tﬂe neutron charge

form factor taken as zero; however the effect of the neutron

form factor has been examined.

THE WAVEFUNCTION

The triton. wavefunction wT can be obtained from the
residue of the Faddeev amplitude near the triton binding ener-
gy. The starting point in the analysis is the Low equation'

{(rather than the usual Lippmann-Schwinger equation)

T=vy - VGV ‘ (1)
where T is the three ﬁcrticle T-matrix
V is the three particle potential, V = V12+V23+V31
G = (H—E)—l is the three particle Green function for

the complete interaction H = H, + V

48
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E is the energy of the three-body system.f.feg-? ~'7,:}'”‘

"”;Insertlng a complete set of states (1nclud1ng the cne bound o

"state) glves

-

‘-VIWTS-..(Q'.T"IV, 'leq><pq‘|V- dpdq S S
T\; v - 5 — - = o2y
o etm (sps) Gﬁz/m){p +q ey
Thus a pole at the bound state is glVen by the middle term of
equatlon (2). Sandw1ch1ng T between the:state§i1<pq8|_ and
lbg> gives | | |
L <PaB|V v ><v V] v>
ar/m) (s-sy)

1<PaB|T (s} [¥> = . (3)

_ 2 |
To simplify this, note that V|¢T> ='(§;-ST—HO)]¢T> so that
' ‘ |

l?PqB|V|¢T> = (ﬁzfm)(ST—pz—q2)1<qu|¢T> . (4)

Also kwT]V|¢T> = <V> a number independent of p, q and s. Sub-

stituting, the triton wavefunction is obtained

P

1<PaB|T (s) | Vg3
1<PaBlY> = N S5—s (5)
P *q -sSq

where s is near Sp but otherwise is arbitrary and N is a nor-

malizatiog constant determined from

o o

2 2 2
J p“dp [ a“dq | <paBlyg>{® =1 . (6)
0 0

D, o2 (3

Using T = T( the wavefunction can be obtained

(2) (3)

1<PaBlT(s) o> = s<paB|T ™) (s)4r ) (o) ar (s) |vg2. ()



rﬂfThe flrst.term 1s just the Faddeev amplltude of chapter 3. .

'.jU31ng equatlon (3—17) and 1nsert1ng a. complete set of states,':

',glves.:._' ,'. L e o i-l-" S

8 I

. . ° : ‘ Ol- . ’ 0 : ’ .

<p'a’ gt |zt (s)lw > . (8)
The coupling'coefficients'j<pq8|p'q'8'>l can be evaluated
using equations (3-7) to (3-13) along with some angular momen-—

tum coupling formulae. The final result (Haf 73) is

l - 6]:.0 {
<pgBlY. > = N v (pgB)S§, &
1 T po+q°-s,, 2o Lo
1 2 2 /2 2 5 1/2
oI P pax . 39 3p _ fpgx . q_
+ So1 V2241 ‘ VUG = ) . (=3 5+ )
S |
) Pz(x)dx 2,L even
k]
= 0 for % odd _ (9)
where we recall B = (LLLM, + isospin), and x = ﬁ-i.

Notice that evenilhough the interaction acts only in relative
S waves, the partial wave sum is over all e§en . This comes
from trying to express B2 and 9, (of coordinate system 2) in
.terms of the variables of coordinate system 1 and the angle
between them. For the separable potentials a quantity similar
to the residue of the Faddeev amplitudes can be extracted from

the spectator functions. After changing coordinate systens

S50 T
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. equation (9). also applles. ‘The details. are included in

'Heﬁ'Appendlx A

'_ Gauss—Legendre‘quadrature was used to: calcdlate.the
1ntegral. 051ng Y on the grld {Pk}{ql}' 1nterpolat10n over
two variables is needed The functlon was first smoothed
using the forms of eguation (3-32) and either a six point
biveriate Lagrange formula was used or a2 bivariate cubic
spline. The latter is better-by far but more time consﬁming.
Thietprobably represents the 1eastlaccu;ate part of the-calcu—

lation. - ' : =

THE FORM FACTOR

Energetic electron beams can be used’ to probe the
charge distribution of the nucleus. In the first Born approxi-
mation (which is equivalent to single-photon exehange and
valid for light nuclei), the cross section for electron scat—
tering by a spin-zero non-relativistic nucleus is proportio-
nal to the Fourier transform of the nuclear charge density.
We can write o
2

_ (4o 2
ar = @, [P (@) ] | (10)

where Q is the momentum transfer, (dc/dQ}MDtt is the scat-
tering due to a point nucleus of the same charge, and Féh(Qz)

is the charge form factor defined as

2, iQ+x
“F Q@7 = [ "= = pp (xrdx (11}



'-:.whéfelpfh(xl iS;the~chargé:aenéity Bf the'hudleué (horméiizéd_,':7

ﬂ.to unltyl . By"ﬁeaéﬁiiﬂg F (Q 2 we can 1earn aboutfﬁ{x)
.from the 1nverse Fourler transform. To a 1arge -extent com—
parlson of electron scatterlng data ‘with theoretlcal predlc—
tions’ 15 used to judge the “goodness of a wavefunction.
Relat1v1st1c effects can be considered. The Mott
scatterlng ‘term of equation (10) is an 1mprovement on the
Rutherford scattering formula, since it takes into considera-
tion'the spin of the electron and the recoil of the nucleus.
The (thrte;lvéctors of eqﬁation (10) should really be re-
placed by four-vectors and the-integ;al performed over space-
time. - However, if the energy (time component) transferred to
the nucleus is small, as it must be for the nucléus to receoil
" coherently, we can still use the integral over the spatial
charge distribution. If the nucleus has spin,méénetic effects
become important and the problem gets much worse. A variety
of differentrelgtivisticcorrections have been proposed and
there exist almost endless ﬁossibilities for confusion.
Friar (Fri 73) hts carefully examined the, relativistic correc-—
tions to the scattering of electrons by a nonrelativistic
nucleus, particularly 2H, 3He and 4He. &hese corrections
can be tacked on at the end. For the moment the nonrelativis-—
tic treatment is followed. The form factor for the {point)
distribution of nucleons is given bf equation (11) with the
the subscripts dropped. For an A particle system the point

density is given by



'9(5) = (1/;;) f[dx ...dx 1’d§i 1.,.dx up (x ""‘—‘AW(X ...x ”51 =

(12)
where the x s are the dlstances from the centre of mass. To
L)

get the charge density the charge dlstrlbutlon of the nucleons

must be folded in, -

pch(ﬁ) = Jp(ﬁ')pnucleon(lﬁfzil)di' - (lé)

A
For three identical particles equation(}lZ) becomes

p(x) = J[ d§2d§3 ¢*(51§2§3)w(5 X )|-J_El —x (14)
and the form factor is ]
2, _ | 2 _ig-x, ¢

Our wavefunctions are defined in momentum space as functions
of p and g (and gc). Conjugate to these coordinates are the

combinations

-2 =3
X +x
v - 2 (TS - x,) (16)
/3
! = /_ (£l+§2+§3) -

tn

Writing ¢ (u v) w(xlx2x3) and uSlng the c.m. constraint

6(51+52+53)' equation (15) becomes
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| 54
Traﬁsforming to momentum space gives :
LT . * } ’ .
F(d) = ” dpday (p q)¥(p,g-Q/v3). . . (18)
. S
our wavefunctioF is
Ve @ = T 1<paBlug>Y, B)Y,, (@ - a9
g ‘

Thus (Haf 73)

FIQ%) = I [ p’ap J q°dq <¥,|pq8>,
B

0 0

- N

&

J d&l<p. //qz—zg-g//§402/3,Ble>YZm(§)YLM(q:5//3)

M|

2 2
£ p°dp (.q"dq <y,|pqB>,
£ even

0 0

1
J ax (p, / a’~20ax//3+ Q%/3,8}4 >, (x)  (20-b)
21
where x, = (q - Qx/fi%&r q2~2qu//§ + 02/3 .

Compensation for relativistic effects can be included

by replacing Q by Qr (Fri 73) where

2.2

2 2 ¥
oz = o“M1 - ——Q:-] (21)

2Mc

(M is the triton mass). The effect is mainly to push out the

(20-a)



. l./ : . 55
_calculated form factor a bit, (.22 fm > at @° = 10.0 £m ),

and is twice the usual Lorentz-contraction.correction.. To j

obtain the charge form factor for comparison with experiment,

thé nucleon charge form factors must be folded in. In momentum-
space this corresponds simply to multiplicationrby the nucleon
chargé form factors. , For the -triton and he%ibp this gives
P2 <« 12 0 + 2 £ (02 1F @) (22-a)
ch ~'“ch ch r’ . .
34e '
_. p 2 n 2 2 _
Fop = [2 £.(Q7) + £, QY IF(Q)) . (22-b)

CALCULATIONS AND RESULTS

The grid on which'<quIwT> was defined cofreSPOst to
Gauss-Legendre points transformeé from (-1,1) to (0,«) by equa-
tions (3-30). Thus the integration over p in eguation (20)
can be done "exactly", that is,no interpolation of wT is nee-
ded. The function was smoothed as discussed in chapter III and
 cubic spline interpolation used. Gauss-Legendre points were
used for the integration depending on the value of ?. Using
terms ¢ - 0,2 and 4 in the sum seemad aufficient to give ahnonr
three figures of accuracy- As mentionad before the main
uncertainty is in the obtaining of - acrurately.

The analytic “three-pole fit" (Jan+ 66) to the proton
form factor was used; the neutron form factor was taken to be
zero. This gives identical charge form factors to 3H and 3Mc

in this model. The charge ftorm factors are ploutted in figure ©
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" Figure 6.
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Triton -form factors for the |
corrected for relativistic effeqts (sea:

R

tentlals YBS

({Bg..- IV-Zl).r Q2 is the square of the -
The identification of

., momentum transfer..
. the curves .used here also applies to
- Figures 7, 9, 10; 15 and 16 (with ¥ss

replacing YBS where appropriate):

a8 s et e s

—t A mt EmEe

Experimental points for

¥BS-10
" ¥BS-11 -

YBS-17

| YBS-25

YBS-35
¥YBS-50
3

He are also given:

the squares are from Collard et.al. (Col+ 65),
the triangles from McCarthy et.al. (MecC+ 70),
and the circular ones from Bernhelm et. al.

{(Bex+ 72a).
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Figure 7. Triton form factors for tha potentials
¥SS. Legend as in Figure 6.
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""ikfor the partly non—locel potentials and in figure 7 for the

*separable potentials. The relativistic correction is included 7
'lvend experimentel points (Col+ 65 Moc+ 70 Ber+7ZaJ are included.-i'
: fifor comperison.‘; e _ T R |

| The moet noteworthy feature ot/these results is that :
the separeble potentials give larger form factors than the |
-pertly nonlocal potentiels and have no minimum in ‘the form fac—
Ltor, whereas: the pertly nonlocel potentials either have a. mi-
nimam or appear to be going to have one just beyond the range
of the graph. The other feature to. note is that ‘the form .
‘factors are quite dependent on the triton binding energy.
Near'q = 0 the slope of the form factor is elmost linearly

related to the binding energy of the triton.. n larger binding

energy corresponds to less slope, and’ using the relation ’-5

rQ?) -1-%<rms>2o Fooens (23)

it can be seen that this means a smaller root-mean—-square
radius. To obtain a more quantitative feeling for this, an

approximate r.m.s. radius is. calculated using the form factor

2

at 02'-0.5 fmfz. {(The limit Q° + 0 dig not'work too well

for some nnmerioal reasons. ) The plots of F(Qz)cn\e semi-
logarithmic graph are almost linear as a function of Qz, 80

2.2

k) . - a .
Fg) = e : | (24)

/
was assumed. Expanding in a Taylor series gives a form like

eq. (23), s0 a can be associated with the r.m.s. radius. It



"fi"turns out that the values of a are almost linear with respect E

L the values of a for the 3H and

-‘to,ﬁT;f They are listed in Table II, and range from¢l 64 to -

-l 99 . The approximate linearity holds true for both clas-.'

ses of potentials, although the limiting caaea tend to depart~-,_,

u.somewhat from tha line. Using ‘the approximation of eq. (24)
3He experimental data are

1. 689 and l 845 fm compared with the actual root—mean—sguare
.radii of 1.70 and l.88 fm reapectively. None of the poten-
tials achieve a minimum at tha experimental value of 11.6 fm 2.
although Potential ¥YBS - 50 comea cloae at.l3 1l fnlzj and - '
none _ comne near the aecondary maximum . Por: potential YBS 17

" which has the binding ehexqy (8 4 Mev) neareat the hinding
energy of 3He, the form ractor minimum is‘at 27 fm 2. The
separable potential YSS-50 with binding of B.91 MeV shows

no indication of giving a minimam. The minima in the form
factors asﬁplotted are due to the formﬁraétor changing sign.
The nucleon form'factora cannot change the position of the
minimum {see eq. (22)) since both the neutron and proton form
factors are positive and, although the neutron form factor

is increasing, the proton form factor is decaying'at a faster
rate. The nucleons do affect the value of the form factorx

and in particular the height .of the secondary maximum.

*aeema to be made about the

A great deal too much fuss
height of the secondary maximum and the fact that calculated

form factors never seem td reach the experimental values:

TSee for exampla many of the raeferences quoted on pp 90-91 of
(KT 74).



Flgure 8.

5 10
Q" (fm")

The effect of the nucleon form factors on
the triton form factor for potential YBS-50.
The dotted line is the body form factor, the
golid line the form factor using fgh only.
(Jan+ 66). The dashed, dash-dot and dash-
dot-dot linea show the effect of the neutron
form factor using the maximal (Ber+ 72b)
standard (Jan+ 66) and minimal (Rer+ 72b)

.‘fita to fgh respeqtivaly.



')This is not at all surprising since most potentials give a ]
7.-minimum at too large al value of Q compared with experiment;g_;*'

5; it has been shown that the form factor must lie below some f77’i :=

o ‘envelope (Dre+ 74) If the secondary maximum lies at largeri.-

- form factor, the height of the secondary maximum does not

fQ, then it is necessarily constrained to have a- smaller value.f

Unless the experimental minimum is fitted by the calculated f

seem to be a greatly useful quantity by which to judge the
"‘potential._ - ' L
| | For compariscn the. deuteron form factors for the y | L
'potentials are shown in figures 9 and 10.' There is‘_g extreme—‘ -
ly strong correlation hetween the deuteron form factore and
the triton form“factors,.particularly-in the position of the
minima._ X ‘
The role of the neutron.charge'form factor is briefly
examined here. The neutron charge form factor is important
in heavy nuclei (Ber+72b) and calculations have been done

(BS 75) using realistic H and 3He wavefunctions. The neutron
form factor is rather poorly defined experimentally but

minimal and marimal fits (Ber+72b) can be used as well as

the standard fit (Jan+ 66). The difference between -the minimal
and maximal values draws in the calculated minimum of 3H by

0.4 £m 2 and moves out the minimum of °He by 0.2 fm 2 . The
sacondary maxima of 3H and 3He can be increased by factors )
of 1.5 and 1.1 respectively (BS 75). In our case the nucleon
form factors have no effect on the position of the minima, but

Tror example for iﬁapb, the envelope Cq-4 was uased with C
determined from the position of the last maximum.

b/
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The deuteron body form factor for the partly

non-local potantials. Curves are labelled
as in Figure 6. - -

Figure 9.
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Figure 10.
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Q° (fm )

The deutaron body form factor for the
separable potentials. Curves are
7" labelled as in Figure 6.
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"have con51derable effect on the value of the form factors.‘f

”The role of. the nucleon form factors 15 deplcted 1n figure 8,_'

where potentlal YBS-SO is used: since 1t cgrresponds most - o
,closely to the experimental data._ The upper curve is that f
;of the body form factor and the lower curve the charge form
lfactor usmng the proton charge form factor only, as in flgures
6 and 7. ‘The neutron form factor 1ncreeses the form factor
somewhat, partlcularly in-the region of the secondary-maxlma.
The effects of the maximal, ‘minimal and standard fits to the
.neutron forn factor are depicted for 3H where the effect is
greatest. For 3He the role of the neutron. form factor is.
reduced by a factor of-4. At Q = 25 fm -2 the form factor

usiug the maximal neutron form factor is almost douhle-

the result using only the proton form factor.

The problem of the 3He charge form factor

One of the problems of the three nucleon system

is the inability to simultaneously fit the binding energy
and the 3He charge form factor near and beyond the diffraction
mlnimum. Realistic potentials typically give triton binding

energies 1 to 1.7 MeV below the experimental-value of 8.5 MaV
| (KT 74 ). Not only do these potentials not fit E, but they
give a charge form factor minimum at momentum transfer squared,
Q2 . which is too large (12-18 fm~2 compared with 11.6 fm 2
experimentelly) and a secondary maximum too small by a factor .

anywhere between 3 and 8 (KT 74.). Moreover, phase shift

equivalent potentials which increase the value of Eg, toward

bt b g



L fted as’ larger E
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' better agreement withiexpé:iment:alsb]inereese.oéih to values
Jf-neven fufther away from the'experimentel value. This is expec~
o causes smaller r. m.s. radlus, and -therefore - -

shlfts thé'diffractlon minimum out in Q—space. Tensor forces,

"'-hlgher partlal ‘waves and relatlvxstic correctlene do not help

- this Ej vs. Qmi dilemma very much (BKT 74). (Tﬁe'further‘l

- complicatlon of the large dlscrepancy between Qmi as obtained
| from variational calculations and as obtained via Faddeev

- methods eppears now much reduced with the improvement of the’
momentum space Faddeev rasults (BKT 75). For the Reid goft

core-potentlel‘(ﬁei 68) fer‘example; the moet‘elaborate

varietional‘method gives E, = 7.230.2 MeV and Q:. = 13.3 fmfz_

T
(SS 74), coordinate space Faddeev calculations give E
-2

- ’
o = 7.0
(LG 73), while the momentum space

- 2 ‘ -2
Faddeev results yield ET = 6.98 MaV and‘Qmin = 13,9 fm

MeV and Qmi = 14.0 fm
(BKT 7%2.
The remarkable agreement among the threa mathods for ET an?
‘ Q;in as well.as the height of the secondary maximum and the
pr?babilities of the various states is an indication of the
reliability of the results.)

This indicates a'role for other effects such as
three-body forces, charge dependent forces and meson exchange
currents. Brayshaw (Bra 73) from a comparison of the form
factor data on 3H and 3He concludes that there is evidence
for a strong attractive three-body force. Theoreticel

estimates indicate that as much as 2.3 MeV in the correct

direction could be cbtained (KT 74). Haftel (Haf 75, Haf 76) \\
| ' .
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'has shown that consxderable 1mprovement can be obtalned

.stant This is another way to invoke three—body forces.

Meson exchange corrections to charge form factor results by

Kloet and Tjon show improved fits to Q;in and the secondary

maximum (KT 76).

{u31ng three—body unltary transformatlops/that leave ET con—



. co CHAPTER v
- THE ASYMPTOTIC NORMALIZATION CONSTANT
It has been p;)posed (Lim 73) that the triton asump-
tot;c normalization constant, CT’
on a par with thechargarudlus,'form fa&tor, and’ binding

be treated as an observable

energy. . The stimulus came from an earlier extraction of
+Cep from a modified phase-shift analysié/;;ﬂelastic p - 3He'
scattering in which a markedlimprov%ment in the weighted
variance followed from using peripheral valueé fbf the -
phase-ghifts in the higher partial waves (BH qzi. As an

T

the'probqbility that the neutron (proton) and deuteron
3

object of theoretical calculations, C 2 is a measure of
are a considerable distance apart in the “H (3He) nucleus.
The quantity can be extracted from various nuéiear scat-
tering and transfer reactions as well as the electrodisin-
tegration and photodisintegration of 3He. It is possible
to extract the triton asymptotic normalization constant
from the triton momentum space wavefunétiona. This is
done for both classes of our potentials to see if it is
a quantity sensitive to the details of the nuclear force.
To begin with, let us look at,the dauteron, where
the dimeﬁsionleaa asymptotic normalization constant CD is

defined by

67
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"where the deuteron’ﬁindihg ehergy is E, = @ﬁzfm)k 27 ' In the

two nucleon problem the asymptotlc normalization is of little

-
’

interes;, being given by (Wil 63)
o . % T:fgf:. | - : (2)
where r, is the effective range. for the triplet n-p interac-
tion (evaluated at the deuteron binding energy) Since all
petentials whether or not they contain tensor force, hard
core, non-locality,or whatever muq; clogely reproduce the
deuteron binding energy (2.225 MeV) and the aeffective range
{(L.76 fm), Cbz is fi:eed at 1.69. Theres appears to be no simple
relation like fhis for the triton.

The triton asympéotic normalization constant (to be
called C rather ﬁhan Co from now on) is defined by

-ap B
a a . X1ﬂ2
w(rlel) v cvZa 8 o YOO(E1)¢D(rl)Y (1‘1) ? (3)

where: r, and p, are the coordinate distances as defined in

equation (3-2),

a = ¥V (4/3) tn/?) (B,E)

Ep = E~Ej is the separation energy of the neutron in
3H,

¢D is the s~gtate deutaron radial wavefunction, norma-
lized to J logtey) %2 Par) = 1,

and xlnz//7 is the spin-isospin function corraesponding to
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A transfer or atiipping reaction in~
which the triton. asymptatic normaliza-

tion conatant will be important: _
A i% a nucleus, N a nucleon nnh; Da
deutexron. A :

Cw



'hif*ytdata: they conniltontly qive valu.a o! c grcatcr than thoae :ﬁf35°{-'

'“T<tffound uling othcr mnthodl. Thil mﬂy bc rolat,n to our ril“1tl

""fgin which the- -eparahlo potontials/qiv0 the. 1l=9°= values of °-.flff?

Y ?u (BH 72)i. The idea ia the same as that u-.a dni;

| }  fadjult|d to givu thc hnnt x tit to thc datl.

l’ffia t:om tho low onnrgy olaatic lcattcrtnq of'P =

"”-Tha annlylia of p -

'ftontill a valuo of. c

Onc of the mnlt_interﬂlting mtthodl ot oxtxacting c :;fﬁ._ S

3H| and

| uol-on-nucleon soattc:lng-(C|i+\59)in which the highor partial_'f 

'?fﬁwavca with ln:g.r impaeg,paramctorl are . anlumnd to be. pu:cly ’
:I;poriphoral and thc oor:ulpondinq phulc lhitta cqgggtcd -
'53 oxp1icitly.: Tha lowor partial wnveu arc arbitrary and u:cd

‘f3fn| the- variahlen in_\\llllt lqua:cs !it to th. dntl., c 1:

e

'~, \Prom an annlxlil d! a. numhoﬁ ot th.l. nxpcrimnnti

J”' iLim (Lim 73) Ohtlinl c (3H|) LN and c (3H.) =3 0. lhout
a‘ten porctnt dittcronc... Anothor analytia taGP. 73) t:om a
" ‘.:r‘woiqhtcd alxvenge o! varioul cxparimntl q.tv.lc:( W) - 3 0:0 6. o

3 3,

KQ and n =1 lcattcring dnta lqucltu  -

© thae 3] oy e n-) 1 Coulohb affects aze prop.:ly taken

into nccount ln axtxactinq c.r

Therc nrt lluo n numhnr o! thcoroticnl onlculltionl of

?~c rrom thl triton wnv.tunotion £or thc Rcid lo£t coro po-‘

2 «:2.86 has h..n ohtaintd e’ 733.

.IShort rungt phalc cquivalcnt ' kitioationn ot thu IIMO poton-
tial givc only nmnll.hgriutioni\;kr 74). Othor potontialn :
'.:qivt quit& 1arg. variationl: th Darwich-arotn potcntiul _
(DG 67) gives ¢ 2% = 3.8 and the u.xs::.t-wjon potential um 69)
"‘qu!l 4.5 (OB 73): £o: vnrioul ltpl;lhlc intcrletionl thn .

-

'”°f%ffigg&f{i7?yﬁ[



"-F.'_‘_'valuaa of c ( H} ramga £rom 2 58 to 3 84. and two valuu o!
e ( HQ) are 2 79 and 3 26 (GL 75). For the po/tmtilll ttu-
U died .tn th:l.a thasil c t H) 3 3 tor all thn partly non—
o ff-.-'-.'l.c.m:ml pot.nntinla (exeept thc limiting cau) v but variu !:om -
i:j_i:o 4 5 for tho rank-two uparabfle counterpu'ts.
IR Thoro aro anumbor of mcthodn to obtain c tm thc
. '.'-“_;"'-Tt:riton wavotunotion. 'rhn !irlt. calculat:l.on vam: thlt ot Rim »
| ‘and '.l‘ubil (x'r 72} who axtrapolatcd thc tr:l.ton wavnf.uncticn )
- in momcntum lpacc wte,g) t:o the (unph.‘!lical) valu. q - - u2 -
, ';T'_where thcro i’ a pol’c. A ucond mcthod (GI. %)y _vali.d tor o
'lepuablc potentiall. il an intcgra.‘l. nlat-.ion involving th-
| B form. tactor g (p) and ‘the apaatator f!unction G(Q) ; 'rhn t:hird
o 3 .,.:mot:hod (LG 76) il a gamnlintionrof thc ucond. and in- " |
_-_*mlvu an intcgrll ovar thn dcutoron wavcfunction. thu potcn- ;
-__t:l.al and a quant:l.ty limilu to tho!‘addnv mplit:ude o! chlptor

' ‘III., 'I‘hc tormula rcumhhl intngrull omployed :I.n oht:nining |

A

| :_thc tﬂ.ton wavdunction and lhoulg hc pa:ticullrly uu!ul
| for: caluulating t:hq uymptotio nom&iution ot wwo!unctionn
" ohtaintd £rom local potcntiall. / n | -
- 'I‘hc tirlt mthod luthu £:om the d:awhack thlt ox=
'trnpolatiom tcnd to bc unltablo nnd p.l‘hlpl not u aaauratc (n:o 5).
- It has the advnntaq. thnt: wry J.:I.t:t:ln compunt.ton h involvnd
ﬁoneq the triton wavctunotion hu bun cuuuhtad) . 'rhn ‘
neond mcthod il not: gcmral onough £or our pot.nthh. m
;_-'third mthod :Ll quuo numt. too n«nt to ha 1ncerponttd
-_'_into thh work. It ia in prinoiph .xaot hut t.ht intugnls o
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lnmﬁinvclvad ara pxchlbitlvaly difflcult tor thc ganaral pctan-"“i”llxﬁ
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Notice thet it 1e equel to l et Q1 eB - uz. hut
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o pert of the potentiel ie weekened.goinq !rom ¢

2 w3043 for

2 LR 5 foxr’ the limiting eeee !ss-lo. 1t
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ie also noteworthy thet £or ell the eepe:eble potentiele c. ie

‘«‘. T



L ae

 };1arger ‘ it ia tor any ot tha partly non-local P°t°n$iala,f$3f{}"

" fngxcept the limiting caue Yas-lo.

Ne expnct the aaymptotic normnlilation to he a péri-;q“flf .f

. :"ﬁ::phoral quantity ot tha threo nucleon ayntem and like the

1

4

“ﬁquartet acattering length. ay rather innensitive to tha

' V'”-,detailed trinucleon dynamica. It may ba nenlitive to the

.Ztail of the interhction only.r Ourl il a mod.l caleulation

;ao tha reuulta may not bo di:eutly comparahla with tha ex—

' pqrimnntal valua of CT or with other extractionn trom realil-"ﬂi.;.:-

'a}:tio trinucleon waw. tunctiona.. SQparablo potcntiall do not

’_havo a realiatio torm in tha aaymptotic ragion: the largq “
/

1l'amplitudn ot the wavu :unotions and torm fautora !or largn

'L'_too rcltrictivo. nnd that variationl.in P

.' momnnta is prohably roaponaihlc £or the variution in c tor 7<.ﬁ7ﬁ"

.tho pot.ntiall Yss._ I o f .
B ;; _ The only other calcnlation ot c with phaue cquivalentw1; '_
tpotentialt.gonnrated by unitary transformationn.tindu vary small |
'vlriation in c (KT 74).. Thil indioatal thnt c 1: not lenai- 1
tivc to- potnntial changel at. vo:y lhort diatanccl. Howtvtr.,f f1
in- the atudy of ET and: n NcGurk and ricdcldcy (ur 7Sh) cluim
. that. the unitary trann!ormntionl hning of ranqe < 1 tm are

D and the N=N.-

. potontinl hetwcnn l and 2 l:c allow‘d contiltonf wihh

expcrimnntal duutoron proportinn. Thuu 1t may bc that Cis

lenlitivu to thil xtgion.‘ our . caloulat&onu and those of Orlov: :

o ‘ and Bclynv (OB ?3) indioatu :I.argc va:i,ation% in c £or L

” R o " . S e S e m e e T Ve
- s > i . 2, . PR ¥ T K T
L PN = . . K . A A . e f
. - .
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poteﬁtialg without an OPE t‘il' It mny ba that one could ,3*'"

use tha triton asymptotic normalization constant ta dia—;Vi'”

fy;;,f.,; tinguish batwean potentials dittering at 1nt0rmediat. .
: diatancea. ‘,‘f‘;:?;- o S Ty .



CoCEAPTER VI Do |
| i_‘n:s'c':us“s:bu_ Ll Rl
"”l:Thia chapter is mainly conccrﬁ:d with the relationa 1

l betwean the triton prcpartles ‘and: tha charactariatica cf the

:‘two nuclacn interaction. The ralaticn batwacn tha triton _1}!'l |

'”-f:bindinq energy and the binding anergy per particla o! nuclaar

";matter is also diacusaad.-. Tha reaulta o! the calculatlcna

B 7_ﬂdeacribad in pravioul chaptara ara diacuased and ccmpa:ad

L wikh those of cthcr model calculaticna and with more raaliltic

‘”*.fcalculaticnsvf Particular attcnticn la paid tc raaulta ch-

o _non-lccal poteﬁtlala havn a lccal attractlva Bargmann part

,7tainad with cthar phaaa aquivalant potantlala. The moat rele-
'Lvant wcrks are thcaa ct Piadalday and McGurk (FM 72). Ha!tal

- (Hat 73) and Singh (SWB 72). Fladaldcy works - almcat axcluaivaly
- with rank-two aeparabla pctantiala whlch hava an attractiva

_fcrm factcr | - o
- gm - mk £y 8 3 R Q)
;and a repulaiva term h(k) balng calculatad IO as- to maintain
_phaac cﬁulvalcnca with thc lh1£t| G(k) of tha aama atandard
Tabakin ‘potential as uaad in thla calculation. Singh haa

" done nuclaar mattcr calculaticna uaing some ct tha aamn po—

tcn&}ala as uacd in my trlton calculaticnl. Tha pprtly

~
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.-;“ :” :

-

P

plus a repulsive separable part choaen to muintain phaao
equivalence;{ Tho aeparable potentials have an attractive "

term phaae equivalont to tha Bargmann and o! the form :f'

(k) - /_'Ba+ //;11? | ‘_.;‘('2)‘
The repulsive term h(k) 13 again choaen for phaaa equivalence.,~ :
Haftel haa caleulated triton propertiea and nuolear mntter -
binding energy and aaturation dennity :or phaae equivalent

potentiala obtained hy unitary tranatormationa o! a two term '.,7¢ ’

‘ Yuknwa potantial acting in tho ralativo gm0 utata. 2

f A number of - review artiolas contain information par-

tioularly relevant to thia diaousaion. A‘wall ro!erenoed

f aummary of raoont work on the thraa body problem is ofntainod

in the reviaw by Kim and Tubia (KT 74). Thp two and ‘three

'f body problems aro diacunsed by Levinger (Lav 74). An excel-

“lent, review of off-shell hehaviour by Srivaltava and Sprung
(SS 75n) was consulted rraquently, not only in this chaptex

but- throughout the thesais.. For nore in:ormation on nuoluar

'_ matter the. roador is referred to the revicw by Sprung (Spr 72)

A short lurvoy of our knowlodgc nhout the deuteron il con=-

tained in anothnr reviaw by Sprung (Spx 75).

riton binding entrginl and :0
At very low energies the. nuolqon nucleon K-matrix can

ba exprollcd as an off-thcll ottcotivu rango tormuln (ss 70)

-[xoitb.q_;k.n - -—:0 ~drgd - 3G (p‘ ‘-ak Y@
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- where ao and ro aré the uSuai bn-éheii'SEatterihg‘iéngth-

5777tund effective range, respectively, and the off-shell para—‘

.i‘mater,- 0, ia the zsro-energy wound integral, ,__:/"
.  -§7'. - L i ,
‘_¥dfft. lfr'aof’“b‘p'r)]?d?' SO qu;,
- ' ' ' '

N

U, ia the wave function atlzero-energy, normaliaed to
r-ao , :

(Otr) :

It was auggeated by Sprung (Spr 70) that a: rclntion '

ahould axiat betweon E and I ' basad on. the halief that thn

Rk ¢ 0
'ttrito ia principally a low*energy syatem..ror aapa:able

'potentialu in. tha model triton Fiedelday {FM 72) found an _

almost 1inaar.relation between E, and I,, provided the at-

T
- tractive part g(k) remains strong enough. The:b exists -

alsoc a atrong corfalttibn batween nuclabn—deuteron‘reaction

'quantitien and I, {hru+ 74).. Fuda (Fud 75) has shown

381-301 atate thc N=N K-mntrix
\

can be characteri:ed by a single parameter, I+ For |

that even in the coualed

realistic phase-equivalent N=N interactions MeGurk and
Fiedoldy (MF 75a) have tound that fixing the othnr otf-tholl
param.tcrn and allowing I.s OF Iot to vary gives lurprilingly

- o
linear relations between ET (or 2nl‘and I or Iot’ in fnot.

os

for fixed triplet interaction Eq and a are almnnt complctely

dotermined by Ios Charge symmetry I.ltticti the allow.d
'variation of I, (88 75b. Sau 74), and the deuteron D-utatc

' prohahility :e-trict- that of. xot (N 75&).‘
: : 3 '

L



Figure 12.

gl

o

Relation of the triton binding energy to the
Zero-energy wound integral. + refers to-

potentials YBS and x to potentials ¥8S. The
line is from Fiedeldey and McGurk's separable

“potential rq!ultl/wn 72} . .



For tho model triton calculations uaing the partly
- non-1ocal and aeparable potantiala of thia thaais. the anm&
’\ftrend holdj,as !or Piodalduy s model cnlculntiona: that is

 E inqroagea with increaaing II l However. tho relation o
' "13 not aa linear as for Fiedeldey s xank-two nepa:ahla potnn;
tials and we. get two curvhn: lee Fig. 12. - Fiedaldcy s lina,
-‘?is includad for- compariuon although hil pointl, too, nhou

llight curvatura though not as’ pronounced. Tho values

'for ‘the limiting Oal.l are not included in Fiq. 12 although=:* ?"

fthey axe 1ilted 1n Tablc I.f~Tho linear ;clation in these,
caaaa o longer holdn at all and the pointl'fail much ‘below

-tha line. T -and E do. howavor, ohungo 1n t-.hn ‘aanpe dirnc-.. ‘

o
'tion. The unma hohnviour wau t;uc of Fiedoldny P limiting
potentials. ' - ' ‘iw{ .

_ . . _ S
" The naparablc potqntiall Yss. for qiv.n I'n yield

',nlight;y more binding~enorgy than do the partly non<local
:pot;ntiala. Tho faature o£ lcpnrablc potnntiull givinq more -
binding nncrgy than local potontiall iz quite common in
triton caluulationn. |

' ‘ r

&

Soon after d-vcioping his prouddurnyfor generating

,phaln-equivalont r;hk-two separable potintiall (Fie 69a), .
Piedoldcy onlaulltld triton bindihg onurgicl using these
potontilll (Fie Ssb, ™ 72) Hq tound that scme of the
,limiting pqtuntiall qav- vcry larqc bindind energies 1n the :
/ triton. up to 16.2 MeV. Whnn thalc potenttnll were appliod

A
o



-rf?}to nuclear matter (SSB 70}, ??-was found'that the'range of;;ﬂ:f',

“?t_variation of tﬁé\binding»energY'PQI particle, Nu’ “35 even

A'“i:fgreater.» Thia‘was ngl_sarprising since nuclear matter is a ;z;:f@fi

more dense system than the triton. What,was surprising,-
e,

'?q_however, was that-the variation;in binding energy’was 0pposite{

”ljin direction to that for the triton \that is, potentials _eﬁ;.g};:k

fwhich increased the binding energy of the triton decreased _
'}_ the binding'energy of nuclear matter even<more drastically._'if?f‘.
. ; .A number of calculations using phase equivalent
‘ ‘potentials generated by short-ranged unitary transformations-*

\

‘:of 1ocal potentials have shown that usually, as one would ex—JZi
'pect, the variation of. ET and EN is in the same directionf

N For the Reid soft core potential (Rei 68) phase-eqpivalent _
:modifications which kept the deuteron electric form factor _f
roughly the same, gave variations AE ,and. AENﬁ which were

of the same sign for all cases where both Eqp and. EHH were \ °
calcélated™(HT 71, HKT 72b). The; triton was much less sen-
eitive to variations than was nuqﬁear'matter. Phase equivalent
modifications of a%two term Yuka;a.potential in the s state
were studied by Haftel (Haf 73) in both the triton and

nuclear matter} ‘Por‘potentials whose deuteron wave functions.

T
the same direction, again with much smaller variations in ET

were almost the same, the variations of E and ENM were in /

than in Egm (1 MeV compared to 26 MeV). The variation in

triton binding energy wasAcomparable to that of nuclear matter
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Y "density k = 0. 6 to 1 o fm 1_,. much below the empirical

'7Ei€pva1ue of k ‘= l 36 fm };f Much larger variations of Er Tffgik,tf-?

”75fmore.;??h Q.

""en'the deuteron wave function was allowed\to vary

-, -\‘

ET and AENM were usually, but not alwaya, of the .
;”;same sign,,idf"‘ k_ j',[‘[_"” "A'l . | ‘:i- " _-
%:;tl ‘When Singhﬂ(Sin 72 SWB 72) developed his method of
a:;constructing classes of partly non—local potentials and
.ipequivalent separable ones, he calculated nuclear matter |
ffproperties/and found (see Fig. 13). e thr f "[HiVQg. L
i (i%J: the partly non-local potentials gave more binding in\
h o nuclear matter than the equivalent purely separable
ones,' o '_ ‘ | f _ R ‘
"(ii) ~no drastic drop in E is found as’ the limiting con- o
dition E % E is approached for/fﬂe partly non-* '
local potentials, o | |
iii) the purely separablegpotentialsfbehave much like
those of Piedeldey as tne‘limiting condition is
reached.
dne of the incentives for the investigations of this
thesis was to make the comparison complete by calculating
triton binding energies for Singh's potentials. The same
features that characterize Piedefdéy's potentials are apparent
for both the separable and partly non-local potentials, namely
that as the limiting condit%bn is approached, the triton ~

binding energy increases sharply although the variation is

not as extreme as for Piedeldey's potentials.
“ e



Pigure 13.

1 | | 1 L
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Kg (FM™")

Nuclear matter binding energy per pariicle
for the two classes of potentials, as a

function of the strength of the attractive
part of the interaction.



i J“ﬂwﬁjwound integral are.important features in governing the triton i

h :binding energy, the deuteron ane function and wound integral

.ij?of Bruckner thepry are features important for the binding

zi'ﬁi*energy per partic1e<in nuclear matter.. The wound integral L3 f‘“~1

-'3?;;is aemeasu%p of short range correlations in nuclear matter

K gfand is generally'linked-to the saturation property of the

.:]system It is an integral over the square of the defect

ffwave function and\is similar to I exoept that it cannot be

"iufnegative. Por potentials with approximately the same eiectric:ﬁf‘

T w:\form factor ENM at fixed density is found to be nearly linear d'iﬁg

-

, VR
ilin x, with.increasing K- giving'decreasing binding energy.p__,

-_For Singh's partly non-local'potentials r decreases as' o
' 'criticality is approached For the separable potentials K L
increases as the limiting condition is approached and ENH -
decreases sharply. - The sharp decrease in B for‘critical'
potentials is also true for Piedeldey 8 potentials (SSB 70).
It is peculiar'to gseparable potentials and is associated with
the behaviour of their two—body bound state wave functiOn.

In the limiting case the repulsive part of the potential

‘h(k) myst be orthogonal to the bound state wave function
wB(k). The weah repulsion must be suppressed at the deuteron
pole (S, % -0.01 fm 2 for our potentials) but it qan:§§ more
important further off-shell (S & ~3N0 fm % in nuclear matter).
In view of the large values of I0 produced by the limiting

-

potentials and the proppsed constraints (SS 75b) they should
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Relation of nuclear matter and triton binding
energies for several classes of phase equiva-
lent potentials. The solid line is for poten-
tials YBS, the dashed line for potentials
YSS, and the dash-dot line for separable
potentials (SSB 70). The other points marked
are for unitary transformations of local
potentials: + (Haf 73) and x (HKT 72b).
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Pe considered unraalistic anywayr~-1’fg - 14 ""Pi"“ aome.

"ﬁkj;values of ET and ENM.obtained from several classes*of phase

ﬁ similar'type of variation in binding energy with

'ff:respect to 34 holds in £inite nuclei as. in nuclear matter,-

';UzuSing phase equivalent potentials generated from short-ranged

‘ "lfunitnry transformations (Ss 75a).‘ Thus, for this type of

'iﬁtransformation it appears that ‘a variation which produces""
1.more binding in the triton wil& usually produce more binding

lin finite nuclei and in nuolea? matter.' we have eeen from

-‘5the calculations of z and ENM that thie is not the case

1ff~{for rank-two separable potentials-or the partly non-local

Potentiale. Finite nucleus oalculations have not been done Tl

for these potentials.

The deuteron wavefunction and the triton

' ‘A number of studies have shown the importence of the
deuteron wave function in determining the binding energy
of the triton. It can be seen from a comparigon of Ep with
-Pig.rls end Fig. 16 that a strong correiatipn exists between -
the denteron wave functions and the triton binding energy.
| It is easy to see’why the deuteron wave function
should be so important in the triton, by lookiny at Pig. 17,
where the regions of space where t(p,k:;s) is important are
indicated. The k dimension is'not piotured, being symmetric

with p and omitted for clarity. The phase shifts determine
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the T-matrix on the (on—ehell) line p2 - kz - s. ht s - l

"“L}‘%L-tazes . at this Point it is -eparablﬂ 4"‘ 1' °°”91°t’ly

.;;ﬁ;fdetermined by the deuteron anefunction '—fz]luﬁ

e

e

t.ﬂu;i'tuear 5 - s ,it can be expressed as’”

T o
. -

,,gpcpfgnm g
VAR gnztp)q dq. ']-j*"jfﬂh,
1=y s

el

trp,km -'--

: -éllw

*f=where A is chosen sc as to make the denominator zero at."

g = 50 : In the unitery pole approximation (UPA),

A

vuph(pfki - - ngd(P)Gb(k) . m

and TUPA(P’ i8) ie given everywhere by equation 6.

Prom the Lippmann-Schwinger equation, Eq. 1I-14, it

can be seen that

T(p,ki8) Tf,—-» Vip,k)’ | '(A) “

for any interaction.

From equation III-18 we can see that the triton
depends explicitly on the two-body T-matrix only for values
of s < Bp = q?. Moreover, we expect the region s < 8, to

T o
be the most important. In this region the T-matrix is still

: : D R SR
' '-w.jfpthe‘two-body T-matrix has p pole due to the deuteron bound

¢D(P) - gD(p)/(p -l ) j{*;_*]*a 5y
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to make the intaraction stronger for all a<a

s e,

l atrongly influenced by the dauteron pole. Thc dashad lina -igf<;7}"

i

RS Fig. 17 symbolizes this °ff°°t-*:; . - '
"‘ - lIt ia thus ealy to saa how the deutaron WAVG fu"°t1°” 1';Cdﬁ
'.f_f;gnd binding enargy can influanca tha tritOn binding anergy
:tff;inand wava gunction. For example a shift in thﬂ position of theiitf.
Tl;!ﬂideuteron pole to a mora nagative value will push the’ daahad

' line a corrasponding distance in the sama direction and tand

S

D and. all p and k.‘

-This is in qualitative accord with tha results of Fiedeldey
~and McGurk (MP 75b), in which tha triton binding energy
‘;changcs about twice as much aa tha dcuteron binding energy

'for interactiqna which give slightly mcra deuteron binding

‘energy but which are otharwise similar. Similarly, it ac~ .

'counts for the fact that some of the onc—bosd\\axcha%ge

potentials give Ep nearer the experimental value but -

give too much deuteron binding energy.
' v The shapaJof the deuteron wave function will still

be felt in the region s < s Its presence will be particu-

o
larly noticable in the first variable of the Faddeev
amplitude ¢ (p,q) since ﬁ(p,ﬁ;s—qz) appears in the kernel of
eqdatiou II-18. In the UPA the p dependanca of ¢ is given
exactiy by gD(p) ‘%Bferring to Figs. 15 and 16 again we

see that wave' functions that are more compressed in momentum
space yleld less binding in the triton, at least within each
class of potentials. This ia very similar to the results of

Haftel (Haf 73) who finds that the changes in E_ for his uni-

T



'*'f'meintein off-shell uniterity indicete that there ie e etrong

<. e
v

‘terily transﬁormed poﬁentiele are releted to chengee in

-'tpD(k) in the: region 1 fmf]’ < X <2 i’m elthough thie doee

'7'not neceeeerily meen ‘that the peek of sensitivity of B Ctos

. 'Twn is An. this region.r Modificetione of the T—metrix which
.eensitivity when both momente p,k are lese then 2 fm 1 ,'--‘."
weaker, potential—dependent sensitivity when either ergument

te ie between 2 end 5 fm 1; and essentielly no dependence when

-.either argument exceeds 5 fm (LMS 73)
. ik

‘ie elmoet prOportional to the: dietortion of the deuteron wave
\function for both classes of our potentiels. ‘The distortion

N is defined by

. . o o 1/2

Np = '¥p = ¥p l¥p = ¥ > (%
where wDO is the deuteron wavefunction of the standard poten-
tial vg, and ¥p that of the phase equivalent potentials.
Potentials which give Ep greater than that of the standard
potential give slightly greater values of N than those
which yield ET a corresponding amount less than that of-VéT.
Values of ND are included in Table I. fhe magnitude of ND
is not extremely large for any of the potentials, ranging from
0.015 to 0.088. This is less than the cut off value of 0.12
which Piedeldey found necessary to impose on his to maintain
the linear relation between Io and E,. 1In our case the linear

T

relation is not dependent on Np.

For more realistic interactions including the deuteron

The verietion of E from that of the stenderd potential a




";fwith I :; ET deorealal monotonioally al a tunction of P,

':-D-atate, the wavo tunction ie alao very important, mainly

;'due to the D-state probability PD, whioh il atrongly correlated

. D - e
~and tonaor £orce strength (KT 74)1 1inaarly if othen off-‘ I

Ty ahell constraints are held conetant (MF 15aa.,

2 :
‘l A atriking correlation existe between the douteron

A

1£orm factor and- the triton binding energy and charge form \.‘
factor as’ can be seen.by comparing Pig. 6 with Fig. 9 .and- t |
Pig. 7 with Pig. 10. In particular note the relative position i/ '
-of the minimaffor the partly non-local potentiale. The o «5,“ < e

&

.expression for the deuteron form factor (im0 component only

X y
. in our case) is .

Poia’) = | vhup - L gax © (10-2)

o 1 e .
2 2, 1/2
I dka(k) [ Vo b(k*~kax+a?/4) " 1ax. (10-b)

o -1

ﬂl.
2
If y,, is always positive, so is Py, and thus log, [Ppl will .
not have a sharp minimum, probably no minimum None occurs

for the separable potentials vsSs. Even if wD does be-
come negative, there is no guarantee that F (q ) will, al-
though this is the case for potentiala YBS-17 to YBS~50.

The expregsion for the triton form factor is more complicated

with various couplings of the p's and q's occurring before the

form factor is ‘obtained. If the wave function ¥p(P,q) were



““1_were separable; which 1t clearly 18 not,even~for separable i

.tpotentlals (see equation IVhB), en the expressibn,for the f:

ld;form factor, equatlon IV-20, would bear a strong resemblance

ﬂ”ff{to eqnatlon 10 of this chapter for the term L—L-O.. The"

'f;;f:correlation between the mlnlma of the form factors must be

R . Fp (q ) over ‘a range of q centred at a”

T:more than just a" c01ncidence 31nce a- szmllar sltuation exists.j7ff*f(

for unltarlly transformed potentlals (Haf 73)- Haftel sug-'f;
‘1§gests that changes in ET are’ attrlbutable to changes 1n
ey 12 w2 nj o

‘v1ew of the strong dependence of F and,E on, ¢D' and that

L 'of the trlton form factor on BT 1t may be: 31mp1y that

- E and F depend on ¢ 1n an. am321ng1y correlated way. ThlS

hhhas the unfortunate 1mp11cat10n that three: body bound state
“lcalculatlons do not’convey very much 1nformat10n about the
nuclear force that is not alreaay available from—two-nucleou

calculatlons. " This conclusron was shown not S0 1ong ago

by Brayshaw {Bra 74) for low energy nucleon-deuteron reactions.



CHAPTBR VII

L concmsxon

-*f%fa”iﬁfTrlton propertles have been calculated for two'

.”'3,c1asses of phase equlvalent potentials.m The partly non-l,:"s

local potentlals are an. attempt to’ 31mulate whdt we know

'H'-about the nécleon—nucleon 1nteractlon, that 1s they comblne

'571ong range locallty wlth short range non-locallty.: It WOUId

':zbe most reallstlc to choose a 1oca1 potent1a1 w1th an OPEP
tall however for smmp11c1tx/1n the lnver31on procedure:'au‘xe
‘Bargmann potentlal has been used. The short range non—locallty'
1s 51mulated by a separable potent;al that belng the 51m- -
3p1est form of non—locallty. Rank two separable potentlals
are also used for comparlson, the attractlve part:chosen j

to be phase equivalent to the Bargmann part of the partly
non-local potentials. All of the potentials have been con-
structed to be phase equivalent to the standard Tabakin
potential (Tab 65) which is an average of a singlet and a
triplet potential, each separately fitted to the experimental
=0 phase shifts. This is a particularly relevant form for
the.model triton since the effective interaction in the
triton principal S state is the average of the singlet and

triplet lnteractlon.

Not only are all these potentials phase equivalent

97



ff»rank two separable potentlals Whlch have ‘a Yamaguchl.type

"{fff:blndlng energy for a 1arge number of potentlals of this form..;r,V?

':rbehaviour effects 1t 15 essentlal that the potentlals be

n_all belng phase equlvalent.‘_fx-

e of attractlve form factor._ He has calculated the trlton

\h__"

-Q'Thus a comparlson can .be made wlth a. thrrd set’ of potentlals

D U B

~ 0T

When comparlng potentlals and looklng for off~she11

/

exactly phase Shlft equlvalent ' De Groot (DeG 75) has found

3

'that even sllght on-shell dlfferences of at most four degrees

in the phase shlfts can cause 1arge off—shel} changes in

- the T-matrlx. ‘As’ far as ‘the trlton 1s concerned -1t 15"3
not eo much that the phase Shlfts themselVes above, say,

”50 MeV laboratory energ1e5 are lmportant, but the effect -

which these phase shifts have on the deuterpn wave function
(Pie 74). Forllocal potentials, ¢y, and the phase shiﬁteare ‘
interrelated; that is off-shell effects do not exist but
rather high energy on-shell effeéts.. For‘rank—two separable
potentials there is additional freedom which allows a ciean
separation to be made between the deuteron wave function and
the high eneruy phase shifts.

The triton properties studied in addition to the
binding energf.are the form factor and asymptotic'normaliza—

tion constant. Porm factor calculations with separable

potentials are not common, and this to my knowledge is the

'only one for phase equivalent separable potentials. The "new

sz?to each other, they are phase equivalent to Fledeldey s *'"e“'



.:;trlton observable,ithe asymptotlc normalizatlon constant, 15}'7ﬁ

“3f”ca1cu1ated to see whether 1t is: perhaps a SenSltlve trlton

w,.

'15:;"property.& One would expect xt wiil not be s1nce t ls,yj"

.“'11ke the quartet scatterlng length a per1pheral quantlty-

9 A comparstn between the propertles of the deuteron,b'h

"-fttr1ton,_and nuclear matter has been made.. This is possrble"

Y

-'v51nce nuclear matter propertzes had earller been obtained

"-efor both classes of our potentzals as well as those of

”Fledeldey."' S
- A summary 1s presented here of some—of the results

‘obtained~and concluslons drawn from thls study;l The maln.
_ g _

H_b features of the trlton are. glven by the general features

of the. two nucleon lnteractlone
(1) _: is’ almost 11near w1th respect to I for the non~ .
' llmltzng potentzals.. o ' |

{2)- Changes in«ET.fromhthat of.the_standard potential are
almost linearly related to changes in the deuteron
wave function (NDj, |

(3) The relation between the deuteron and triton form
factors is striking; for some of the partly non-local
potentials the minima positions look correlated.

(4) There 1is a rapid increase in ET as the attractive
part of the potential weakens toward the limiting con-

dition. This seems related to the off-shell parameter

IO, which increases rapidly to unrealistic values.



e

007

.;The rapid decrease in ENB for th limiting separable::;:'

";‘fipotentials is. a'peculiar feature of the separable @fﬂjgf

‘a'b;potentials and related to the fact that the repulsive:”'”'lh

]’part of the potential has to. become orthogonal to thef

_bound state wave function.

6

The- range of variation of Bi is, not as drastic as for

'ngiedeldey S potentials, although variations in our th

(7)

(8)

(9)

(10)

range parameter b were not investigated

.:;The partly non-local potentials give less binding B

genergy than do their separable counterparts. Their

deuteron wave functions more closely resemble the

¥p's of 1oca1 potentials in. that they become negative.'”“

.
\

(in momentum space). o ' ¢ _ g
The slope of the form'factor ne‘a'r-Q2 =0isa function

of ET This slope has a lot of effect on the p051tion

of the minlmum.

The neutron form factor has quite an appreciable effect
on the height of the secondary maximum.

The asymptotic normalization constant does not seem to

depend on E, or y, since it is almost constant for

all the partly non-local potentials. There is a strong

potential dependence in the separable cases: this is pos-

-sibly related to the incorrect asymptotic behaviour of

separable potentials.

In view of the importance of the deuteron wave func-

tion several comments can be made. To really see the effect



'rﬁlof separahle potentials vs.llocal potentials it would he

7“3“pinteresting to chdLse thé separable potentlals not 80 that

co iof the corresponding partly non-local potential

‘ belng farther away from the regiOn of momentum space impor-

I“"_figpf;*ﬁ”ﬁ;ﬂ;f_‘ib;.;;';j

'-f‘g(k) is phase equivalent to the local part of the partly
Lo Y
ﬂﬂnon-looal potential Eut so that g(k) ? gD(k) = p +kD )# (k)

i This

'wOuld be posslble provided that the phase shifts 6 (k) pro- iy
~J?duced by gD(k) acting alone do. not become less than the input
ﬁrphase,shifts 5 (k) of the ‘original potential * Another. point

is that 1n tealistic calculations the singlet deuteron may.

,play a role slmllar to that of the deuteron, although

tant for the trlton, it may.not be as 1mportant relatively.'

i

'Know1ng moré about this 81nglet deuteron would ‘help in !

further tying down the allowed range 1n_var1at10n of g .
c0neistent with observed two nucleon data. At present we
have virtdally no experimental information on the form of
this wave function and have considerable freedom in choosing
our interaction. Any potential which is nsedbin triton
calculations should incorporate as much information as pos-
sible about the two-body ‘bound system. This still leaves
considerable variation in ET which must he further restricted
before the role of three body forces and meson exchange
currents can be fully assessed.

This is not a happy period for potentials.- The great

optimism of the late sixties that the three nucleon system

would yield a great deal of information about the (off-shell)

=

'In view of the' success of the UPA one would expect very little
difference in the 3N results with such an interaction.




--and 1n other st

zﬁfnucleon;nucleon interactions abpears to have been crushed+
JJiRealistic two nucleon potentials that f}t the experimental L
;*hfdata quite well underbind the triton by 1"to 2 HEV and fail .h{"‘ ,
Ll!to £it: the 3Be form factor near and beyond the diffraction fﬂx~f"'”

-‘nminimum Modifuzations of potentials, as done in this thesis

ies, indlcate that any attempta to increase':r

-ifET are: 1nvariab1y coupled with ‘a corresponding poorer

‘agreement of . the form factor w1th experiment., Moreover, \V

for potentials obeying the known off—shell constraints, ET and

23 11e on the Phillips band 1ndependent of the potential model

employed (MP 75b).‘ This is a consequence of the fact that

,'E and 2a are only sensitlve to the- broad detail of the N-N

X 3

S-matrix 1n the s0 and s1 D, states and to certain global
features of the residues at the 51ng1et‘and deuteron poles.
Another problem is that of the energy difference (0.764 MeV)
in the binding energies of 24 and 3ge. The usual method of
doing calculations is to invoke charge symmetry ignoring

the electronagnetic force and -treating 3H and 3He as the
same system. Once the binding energy and wave function have
been obtainec the Coulomb energy can be added as a pertur-
bation. Unfortunately, however, model independent calcula-
tions (Fab 72) confirm that there is an nncomfortably large
discrepancy of 0.1 MeV between the calculated difference and
the experimental difference. This long standing discrepancy

is a further indication that all is not well. Thus it

appears that nuclear physics cannot be described in terms

See for example the proceedings of the few nucleon conferences
from 1967 to 1976.



'“;exp11c1tly.;u‘

'-fhof nucleons interacting through a pairwise force, and that

f1the mesonic degrees of freedom will have to be treated

Indications are that meson exchange currents and/or

.-three body forces are necessary in order to simultaneously

lrhfflt E. ané'o (Haf 76 Bra 73). Moreoverr the analYSis fif |

T.

, ”of exchange current contributions to the magnetic moments:f‘

fl'and electromagnetic form factors is presently hampered by

'lthe confused state of theoretical calculatious of exchange

I

'.current operators This confusion is in part related to

. a transxtion in- general nuclear phenomenology from formalisms

which only contain exp11c1t reference to nucleon coordinates
(with the effects of mesonic degrees of freedom expressed
via exchangeecurrent and wave function renormalization opera¥
tors) and formalisms/whiCh-explicitly contain‘somelﬁesonic
degrees of freedom. _

Fhe continuum three body states do not look too
promising either. Brayshaw, in his paper "What can we
learn from three~body reactions?" (Bra 74), concludes, from
his study of neutrdn-deuteron elastic scattering.and detiteron
breakup, that we can learn nothing. Low energy reactions
provide no new information being essentially determined by
the two-nucleon observables and 2a.. If a three-nucleon force
is introduced to explain,the charge form factor data and/or
correct ET, the trinucleon propefties will be essentially

determined.

fifli03qffiff:



oy

T? On the other hand, the absence of off-shell effebts

‘fiin scattering seems to be a valuable piece of information.,.?'ﬁmfﬁf'

7i1:1t.may make it POssible to use three~bOdY reactions as. highly‘

' JQaccurate probes of hard to measure two-body parameters.l5,_~'

) VPresent results for ET and 2a do not place worthwhile limits \::‘

'ﬁ_on corrections due to three-body forces, relativistic.Wﬂ o

"'fi-ieffects and meson degrees of freedom.b Better knowledge3f

'”of deuteron D—state probability Py and deuteron polarization :_u :/
fPé'in electron deuteron ecattering would improve the situation-_r

Cgreatly. B N
: * .. - Once these two body properties are determined, the
‘accuracy with which trinuoleon calculations can now be per-”!* """
formed Will make it possible to estimate the importance

of three-body forces and meson exchange currents. Thus we

may he able to make further-progress in understanding these,

at present, poorly known effects.



s

’tentials.. For a two term.se

dinger equation: can be written,‘“

THE MODEL TRITON WITH TWO TERM SPPARABLE POTENTIALS

The model triton problem reduces to an integral equa-

'!‘tion in only one continuous variable if we use separable po-

i able potential there ‘are’ two.

coupled equations. The fc 'lism of Tabakin (Tab 65) baaed |

‘on the three-bodySchroedi gereqpation is used to obtain

the triton,binding ener and spectator functions for the l

separable potentials..

.
- Y
'

{k' Ky ikg |H"I'¥>'+ ST : | T -

[ax Al Ak’ <Ky Ky K |v|kl,k3,k3>w(51,_152,53)=zw(51,-52,_153)

In terms of the coordinates of equation III-3, for pairwise

interactions the potential can be written

k k k \ k' k' k. = p-P' Q _Q P v P' *
<_1'"2’_3| ]_1'_2'_3> 5(_ _’[6(_1 _])<_1| 1]_1>
{A2)

»

+ dtgzﬂg;}cgzlvzlg'2> + é(g}-g;)<§3lv3|gé>]

where Vi is the two;body potential acting between particles j

-

and k (i,j,k) cyclic.
For identical particles V1=V2=V3 2 V. This may be

expanded in the same way as the T-matrix was (see Eq. II-18)
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7_In the mome tum representation the. three-body Schro—='

\

(A1)



SR N

o <P_|V|k> = —12 —m- £ m.+1)v (p_,k)P (cos p_-k).g (a3) .-
o 2ﬂ R PR
e j‘;r, . L R

;Using only the £=0 part of the interaction and taking'it_to,f—]'

'-'be a rank—two separable potential gives ;-"A

SIS <p_|v|k> =. -2-—5-5‘- [-g(p)g(k)-l-h(p)h(k)] . (p4)

N wming ¥ as

‘i’éklk k) = wpl,ol) + w(P ,oz) 4+ wp3,o3) @s)

and substituting'into (Al) it can be shown that : .
. - N\
g(P)X(Q)~h(P)¢(Q) '
32 (A6)
+ i Q - ST - .

P (2:9_) =

where x and ¢ are called spectator functions and are func-

tions of the magnitude of Q only. They are defined by -

L@ = | dp a@)¥ig, - 5 2R - 5 OB |
' ) . (A7)
¢ .
s = | dp h(p?Q, - 5 @R, — 5 OB

Using equations (a5) and (a6), ¥ can be eliminefed from

equation (A7) giving v
(1-G(Q) 1x (@) + R(Q)¢(Q)

= [ 400’ 216(Q,0' ) x(Q')-M(Q,Q" ) #(Q") ]
5 ' " {A8)

M(Q) x(Q) — [1 - H(Q)1o(Q)

|

l dQ'Q'ZI*M(Q',Q)x(Q')-+ H(Q,Q")e(Q")] »

O
]
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“‘ 5*;-‘ f?-  Lh_ o f_io77u'f‘f
e ) -¢ “;H;2 . ;‘ ;;‘“7
S f .+ EJQZ ' sT B o
| (n9)
o 2 T : - 'pi‘x o
Gl = 2| Sxafu gtv) ¢
-1 ; . : .
and \f

o =0fsfo’-00x . (A10)

P =z0?4+ 0% - 00k,

ﬁ and H are similar to a and G respéctively with the g's

being repléced by h's. ¥ and M are similarly defined, the
second g in each épse'being replaced by h. Since a, f, ﬁ,
G, H and M are all defined in terms of the given functions
g and h,equations (A8) are two coupled integral equations

in one variable and can be solved by standard methods.

Method of solution

We choose a gquadrature formula with points and weights
(pi’wi); 1 =1,...,N. Then we write equations (A8) at the
points Q@ = p,, i = 1,...N. This allows eq. (A8) to be

written in matrix form as

“7
-

1-G M X 6 -Ml |x
. NN, - (ALL)
M -{l-H)| |¢ -M H ¢

where the quantities é, ﬁ, etc. are now matrices or column

vectors rather than functions. g, g,g_are N by Nimatrices



=

"31_ where for example (G)ij jG{pi,pj "5 and ¢ are'colunn "

vectors of length N, and § M and H are diagonal matrices.'

Equation (All) ia a homogeneous set of\ZN linear

equations. It has a solution when .

ead ows .
det | - " '=.aet'|'2|'=‘o . 7 ‘(62)'
|88 Hra-B| | "
All of the matrix eleﬁentS'are functions'of Spe n-Since we
want to solve for Bpr this inVOlves a search for the zero of;‘
the determinant Standard determinant and root finding
routines along with quadratures are all that is needed. By
mapping the range (0,~) into (~1,1) using one of the trans—

formations III-30, Gauss-Legendre quadrature can be used

throughout for the integrations.

On obtaining the spectator functions

One might expect that once 8 . has been obtained to
sufficient accuracy, essentially the same linear_equation
package as used 'in evaluating the determinant could be used
to obtain X and ¢ (to within a multiplicative constant) by
solving a 2N-1 equation system. 1In practice this does not
work very well. FPor example when.det|E| = ¢, then the
smallest term of the eigenfunction is often positive or
negative, depending on.the sign of e. It was found much

better to write the set of equations (All) as



_ where 1, strictly speaking should be 0 but in- practice is

',{' some small quantity e , the magnitude of whlch depends on

how near we are to the solution BT B

The aigorithms that exist for eigenvector routines

seem much more stable . than those for linear equations.5 There

qwas no problem in’ obtaining the eigenvector and there were u
fmuchlsmaller changes for-sncceseive iterations. In particular,
the spectator‘fnnction-always seened to have the .correct signs.

In practice eigenvector ‘routines are much slower than
matrix inversion routines.. Therefore the determinart method
was used until sT-had converged torsufficient accuracy. Then R
the eigenvector subroutine ‘was. called to obtain the spectator
functions. | _

Aside from normalization constants, the quantity
(g(P)x(Q)-h(P)¢(Q)] is equivalent to the FPaddeev amplitudes
v(p,q,8) obtained in ChapterhIII, remembering that the co-
ordinates (P,Q) and (p,q) are slightly different. Thus the

wave function can be obtained by the same technidues as used

for the partly non-local potentials.
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. Potential ‘a(fm 1) b(fm 1) E_(Mev) . I, Ny E,(MevV)

.' ¥35410al3jQ-1Q15f;:a'1?°f:,0.43;f?;43-01”6.947 C9is2 o
5¥ﬁ$+iif '*dJ;i,;* _iiof~015b}fj;12;32;b}013'.«9,#0:5-"
¥BS-17 0175 1.0 1.27 - 8.28 0,027 8.39
1 ¥3$¥25@-i:6,2S o 1;6 | 2.59.-_—_7Q59.o§o42':.3;07:

 ¥BS-35 . 0.35 f".;.df__s,OSV.‘efv.zg 0;039!, 7.78
YBS-50  0.50 1.0 io;37 - 6.83 0.088  7.37
¥SS-10  0.1016 1.0 0.43 -46.26 0.082 .11.04
¥Ss-11 © 0.11 1.0 0.50 -13.38 0.057 10.24
Y8517  0.175 1.0 1.27 - 9.36 o0.034 9.43
¥SS-25  0.25 1.0 2.59 ~-8.86 0.026 ° 9.10
YSS-35 0.35 1.0. 5.08 - 8.61 0.020 9.02

YSS-50 0.50 1.0 10.37 - 8.45 9.015 8§.91

Properties of the partly non-local potentials (YBS) and

the equivalent separable potentials (¥YSs). All potentials
are phase shift equivalent to the standard Tabakin potential
(Tab 65) and have binding energy of 0.428 MeV. a and b

are the potential parameters ({see equations I¥-30 and II-35);
Ep is the binding energy of the attractive part of the
potential acting by itself; Ip is the zero energy wound
integral (see Chapter VI) 'and Np is the deuteron overlap
integral (see VI-5). Er is the binding energy of the triton.
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otentisl By o <@z Gmig . Cp Bam o Kp K
‘ T ) ey (mhy

(Mev)

 ¥BS-10 - 9.82:°- 1.64 . %36 3,67 24,98 2.1 0.0036
. . " . ' .“'- "’-X—“: } " ' . - . : . . N . :.- .l . ) . . - * . : 'VA N .‘. . . l ) - .V".
¥BS=I1T 1 9.20 . 1.70 - X337 3.26 28.32 2.08° 0.0040

-‘¥Bsel7=-: a.39 176 27.0 3033 : .

¥Bs-25. 8,07  1.78 22.5 3.28 33.47° 2.05 0.0099
- ¥YBS-35 © 7.78  1.80 "".17.6_‘§i26  o _
 YBS-50. 7,37 1.81 '13;1;\3.23 -29.0 _~1;85' 0.0296

¥ss-16  11.04 1.75 - '4.50' 9.56. 1.83 0.0165
¥Ss-11 10;24, 1.79 - 4,10 13.60 1.89 0.0129-
¥Ss-17  9.43  1.86 368
YSs-25  9.18 1.90 ‘. - 3.52 22.13 2.00. 0.0071
YSs-35  9.02 1.94 -~ 3.60

¥SSs-50 8.91 1.99 - 3.43 25.73 2.05 0.0050

Triton and nuclear matter proBer}ies of the potentials. Bgp is
the triton binding energy; <a >1/2 jg an approximate r.m.s.
radius; QZ;i, is the momentum transfer squared at which the
form factor has a minimm; CT2 is the triton asymptotic
normalization constant. The nuclear matter properties (SWB 72)
are the binding energy per particle, the saturation ("density")
and the wound integral.



