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Abstract

Smooth actions of odd order cyclic groups on closed positive definite sim-
ply connected 4-manifolds are considered. For such an action, by study-
ing its associated instanton one Yang-Mills equivariant moduli space, it is
proved that the fixed point pattern of the singular set and the isotropy
representations are the same as those of an equivariant connected sum of
complex projective spaces acted linearly by the same group. Under certain
assumptions, questions regarding the number of distinct possible isotropy
representations at singular points arising in smooth actions and equivariant
connected sums of algebraic actions on 4-dimensional complex projective

spaces are answered.
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Notations

A The space of connections on some bundle over a four-manifold .

G The gauge group of some bundle over a four-manifold.

C, The cyclic group of order n.

M a left R—module.

Yim the m-symmetric group.

Gl(n, R) the general linear group, or the group of automorphisms of R™.
(X,G) the space X is a G-space.

Fix(G, X) the fized set of the group G in X.
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Introduction

Metric spaces together with their groups of isometries influenced the birth
of modern geometry and topology. Today the study of group actions on
manifolds occupies a central place in the development of these disciplines.
Compact Lie group actions on manifolds have been extensively studied by
mathematicians including P. A. Smith, G. D. Montgomery and Zippin, G.
E. Bredon, R. S. Palais. From their work and that of others, multiple
problems have remained yet to be investigated. In this thesis we analyze
actions of odd order cyclic groups on positive definite 4-manifolds in the
smooth category. Tools like the Lefschetz Fixed-Point Formula (Theorem
1.4) and the G-Signature Theorem (Corollary 0.50) used for this analysis
come from the more general setups of topological and locally linear actions
(Definition 0.13) on 4-manifolds but the smooth case allowed us also the
employment of the equivariant moduli space developed by Hambleton-Lee
in [17]. There are more advantages offered by considering smooth actions:
in view of Theorem 1.1, it is enough to analyze the smooth 4-manifold
model #CP?, where we know that the induced action on integral homology
admits a representation by permutations (Proposition 1.11). In the non-
smooth case this latter statement is not known yet to be true. Locally

linear cyclic group actions on positive definite 4-manifolds like Fg have been



studied by Edmonds in {12] and from there it was conjectured that such an
action induces signed permutation representations in homology. One can
distinguish two directions for the study of group actions. One is to describe
non-isomorphic groups that can act in a given way under certain conditions,
and the other is to classify all actions of a given group supported by a given
space. For the first direction we point out the results of [17] and [35] where
it is shown that the groups that can act locally linearly on CP? are those
that can act linearly. For the second direction, the results of [10] give some
progress towards a classification: the singular sets of locally linear actions
of cyclic groups on CP? are compared with those of linear actions. Our
work continues this development and we extend the results of [16] to the
case of an action by permutations in homology.

In Chapter 1 we use the discussion presented in [9] to prove that the
fixed point set of the action of an odd order cyclic group on a positive defi-
nite 4-manifold X consists of isolated fixed points and 2-spheres. Chapter
2 and Chapter 3 describe properties of the equivariant moduli space that
are going to be used in the proof of Theorem 3.7, the main result. We give
a detailed description of the fixed point data and isotropy representations
of equivariant connected sums of linear actioﬁs of odd order cyclic groups
on CP?%s. The cases of trivial and nontrivial induced permutation repre-
sentations in homology are considered separately and we answer negatively
a question posed in [11]: is it true that the number of distinct orbit types
arising in an effective locally linear action of an odd order cyclic group on
a positive definite 4-manifold cannot be larger then the maximum number
of orbit types appearing on CP? acted linearly by the same group? Actu-

ally Proposition 4.6 shows that the number of orbit types has no bound as



long as we allow a connected sum of any large length. As an application of
the equivariant moduli space we prove in Chapter 5 the smooth case of a

conjecture also stated in [11] (see Chapter 5, Conjecture 1.).



Chapter 0

In this chapter G denotes a compact Lie group and X denotes a manifold.
If not otherwise specified, X will be assumed a topological manifold. All

the rings considered are commutative integral domains with unit.

Definition 0.1. The action of the Lie group G on the smooth manifold X

is called smooth if the map of the action, p: G x X — X, is smooth.

It is true, but non-trivial to prove, that in order to have a smooth action,

it is enough to have g: X — X smooth, for any g € G (see [25]).

Definition 0.2. Let R be a ring. A group homomorphism p: G — Gl(n, R)

is called an n-dimensional R-representation of &.

Thus any representation p of a group G on the free R-module R"™ is equiv-

alent to an R|G]-module structure on R™ by (2,7,9) . m = Zgrgp(g)m.

Definition 0.3. The representations r,p: G — Gl(n, R) are equivalent

if there exists A € Gl(n, R) such that r(g) = Ap(g)A™, for any g € G.
From now on, two group representations will be different up to equivalence.
Definition 0.4. If H is a subgroup of G acting on X, then

X" ={z|gz=1xVge H}

denotes the fixed point set of H.



If G(z) = {9z | g € G} denotes the orbit through z € X, and G, =
{9 | gz = z} denotes the isotropy group of z, then it is easy to see that
Gy ~ Gy, ie. Gy = gG,g7%, for any y € G(z), for some g € G. This
fact asserts that the isotropy groups at any two points of one orbit are
conjugate. The set of cosets G/G, is into one-to-one correspondence with

the orbit point set G(z).

Definition 0.5. We denote by Xy = {z | G, ~ H} the subset of X

consisting of all points of isotropy H.

Definition 0.6. We say that an orbit G(z) has orbit type G/H if H ~ G,

Thus Xy is the union of all orbits of type G/H. The points of X whose
isotropy groups are exactly H are denoted Xp = Xz () X H and let’s notice
that Xy = X = X€. Also, in the case when G is abelian, X =Xp C
X,

Definition 0.7. The action of G on X is effective if there is no element

in G, different from the identity element e, that fizes every point of X.

Definition 0.8. An effective action of G on X is semifree if the only

isotropy types are G and {e}.

Definition 0.9. An effective action of G on X is pseudofree if for any

isotropy type H, X% is a discrete set.

Definition 0.10. If the group G acts on X, a slice atz € X is a G-

invariant subset S in X such that



l.ze8
2. S is closed in G(S)
3. G(S) is a neighbourhood of G(x)
4. Gz(5) =5
5 gSNS#0=g€G,
Theorem 0.11. The connected subset S of X is a slice at x € X if and

only if the map
G XG, S5 — X,

defined by [g, s] — g(s), is a G-equivariant embedding onto an open neigh-

bourhood of the orbit G(z).

Proof. See [7}, pp. 82-83. [ |

More explicitly, if S is a slice and if there exists f: U — G, a local cross-
section of m: G — G/G,, then F(u,s): U x S — X, F(u,s) = f(u)s
is a diffeomorphism onto an open subset of X which extends the natural

bijection G/G, 4= G - 2.

Definition 0.12. A slice S in z € X is called linear if the representation
of the action of G, on S is equivalent to an orthogonal representation of G,

on an Fuclidean space.

Definition 0.13. The action of G on X is locally smooth, or locally

linear, if in any point = of X, there exists a linear slice, S.



Proposition 0.14. A smooth action is a locally smooth action.
Proof. See [7], VL. Cor 2.4. B

Theorem 0.15. If G acts on X and H 1is a subgroup of G, then Mgy is
a manifold, locally closed in X. Moreover, if X is a topological (smooth)
manifold, then My is topological (smooth) manifold, and the closure ZT/f(;)
contains only orbits of types less or equal to H. The manifold My, is the
total space of a G/H-bundle over My, /G with structure group N(H)/H,
where N(H) is the normalizer of H in G.

Proof. Like in [7], IV. Thm 3.3. |
Corollary 0.16. If in Theorem 0.15 G is commutative, then G/H acts
freely on My and My is o G/H-principal bundle over My /G.

Remark 0.17. Let (X, G) be a G-space and let’s assume that for anyz € X
there is a slice S through z. Then (G x¢, S)(q,) = G/G, x 5%.
Proposition 0.18. [7], IV. Lemma 5.1 If G acts (locally) smoothly on X,
and H is a subgroup of G, then N(H) acts (locally) smoothly on MH.

If the action of G on X is smooth, then G inherits a representation on T'X,
by
gu = dgx(U) < TXg(I),V’U € TXQ(I),

where dg, is the derivative at = of the action g: X — X.

Remark 0.19. If G is finite cyclic and G = {g), then X = X9.



Indeed, X9 = {z | gz =z} and, because r € X9 = g’r =gz =z =z €
X9, we have X9 C¢ X9 C --- C X" ¢ X, where m is the order of G.
But, if z € X", then gVt === g =g = T =gz => z € X9,

Thus, X9 = X9 = ... = X9"" and X¢ = X9,

Proposition 0.20. If G is a finite group acting smoothly on the manifold
X, then (I'X)? =TX9Vg € G.

Proof. Let v be a vector in T, X9 Then there exists a path v C X9 such
that v(0) = z and Z;—o(v(¢)) = v. Of course, z € TX, and v C X.

gv = dga(v) = Llemo(g7(8)) = Llomol7(8)) = v.

Therefore, v € (T, X)?, and, indeed T, X9 C (T, X)9.

For the other way around, because G is compact, we obtain a G-invariant
metric, (,), on X by averaging the action on an arbitrary metric. Let’s
pick v € (1;X)? Then gv = v. Let also v(t) = exp,v(t) be the geodesic in
the direction of v. The tangent vector in 0 to the curve g is %Itzgg'y(t) =
dg.(v) = gv = v. Since z € X9, we have also g7(0) = gz = z = v(0). Then,
locally around 0, v and g7y coincide and, because the metric is invariant, v

is a local geodesic in X9. Thus v € T, X9. [ ]

0.1 Elementary representation theory

We present now basic results concerning the finite dimensional K- repre-
sentations of finite groups, with K = R or K = C. Let V be a finite
dimensional K-vector space and G be a finite group. A representation of
G on V is a group homomorphism p: G — GI(V). We often say V is a

representation of G.



Definition 0.21. If W is a G-invariant subspace of V, the corestriction of

ptoW, p": G — GUW), g+ plg)lw, is a subrepresentation of V.

Because V is a finite dimensional vector space, and therefore any G-invariant

subspace is a direct summand, we have the theorem

Theorem 0.22. Every representation is & direct sum of irreducible repre-

sentations.

and a result concerning the number of non isomorphic irreducible represen-

tations of G on complex vector spaces:

Lemma 0.23 (Schur). If p: G — GI(V) and 0: G — GUW) are two
irreducible complexr representations, and T:V — W is a G-equivariant

linear transformation, then:
1. If V is not isomorphic to W, then T = 0.

2. If V=W andp is equivalent to 0, then T' = cl, where c € C and [

is the identity.

Proof. This is an immediate consequence of the fact that Ker T and Im 7" are
subrepresentations. The space V needs to be complex only for the second

assertion. ]
We denote by xv(g) the trace of p(g) when g € G.

Definition 0.24. The map xv: G — C is called the character of the

representation V.

Ifp: G — GI(V) and 6: G — GI(W) are representations , we list the

basic properties of characters (for proofs, see [29]):
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L p+6: G— GUV @& W) is a representation and its character is
Xvew = Xv + Xw (1)
2. p.0: G — GUV ® W) is a representation and its character is
Xvew = XVXW (2)

Always x(1) = dimV and x(hgh™1) = x(g), where 1 is the identity and
h,g € G. This means that the characters of G are class functions on
(. Because of these properties and Lemma 0.23 we have a more precise

statement for Theorem 0.22:

Proposition 0.25. If G: — GI(V) is a representation with character ¥,
and all the irreducible representations of G are Cy,...,Cy, with characters
X1y - -, Xn, Tespectively, then x =Y mgxy and V is isomorphic to émkck,
where my, > 0 is called the multiplicity of Ci in V and m,Cy dekn:;tes the

direct sum of Cy by itself my, times.

Definition 0.26. The ring R(G) = @ Zx is the representation ring of
k=1

the group G.

When the representations are real, the representation ring is denoted by

RO(G). On R(G) one can define a scalar product, (, ) by

(1) = — 3 xa(g)xal9)

geG

Then the following results (see [29]) are straightforward:

Proposition 0.27.
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i. When x is the character of an irreducible representation we have
X =1,
. When x1 and xq are the characters of two different representations of

G, we have (x1,x2) = 0.

5. The multiplicities my from Proposition 0.25 are independent of the

decomposition of V.
iv. Two representations with the same character are equivalent.

Our special interest resides in the complex or real representations of G =

(g) = C,, which, according to the general results above, are described by
Proposition 0.28.

i. When m = 2k there are irreducible representations Vo, Vi, ..., Vi with
characters xo, X1, - - - » Xk, Tespectively, where:
1. Vy is the trivial degree-one representation with xo = 1.
2. Vi is the degree-one representation gv = —v with x, = —1.
3. For j # 0,k, the representations V; are the degree-two represen-

tations given in the canonical basis of R? by the matrices

cos(t;) —sin(t;)
pi(9)
sin(t;)  cos(t;)
with x; = 2cos(t;).
ii. When m = 2k—1 we have the same kinds of irreducible represeniations

as m (1) except Vi, which cannot occur.
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Definition 0.29. A G-homotopy between the G-spaces X and Y is a G-
equivariant map F: [0,1] x X — Y, where G acts trivially on [0,1] and
diagonally on [0,1] x X. The G-equivariant maps fo, fi: X — Y are G
-homotopic if there exists a G-homotopy F: [0,1] x X — Y such that
F(0,z) = fo(z) and F(1,z) = fi(z). A G-equivariant map f: X — Y isa
G-homotopy equivalence if there exists a G-equivariant map h: Y —— X
such that fh is G-homotopic to the identity map ly and hf is G-homotopic
to the identity map 1x. The map f: X — Y is a weak G-homotopy
equivalence if there ezists a G-equivariant map h: Y — X such that fh

and hf are only homotopic to 1y and 1y, respectively.

Let’s notice also that the condition that the maps fi;: X — Y be G-
equivariant, for all ¢ € [0,1], fu(z) = F(t,z), provides an equivalent defini-

tion for a G-homotopy F.

0.2 TI'-equivariant G-principal and I'-equivariant
vector bundles.

In this section G denotes the group of a bundle over X while the compact

Lie group T" acts on the Hausdorff space X. For more detail we refer to [33],

pp. 67.

Definition 0.30. For I' and G groups and for a group homomorphism
¢: I' — Aut(G) we define the semidirect product of T and G relative to

¢ to be the group I" x4 G having the same group set as T' x G and with the
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group multiplication

(9. g) = (7 e(M(9)g")
where v, ¥ €T and g, g’ € G.

Notice that for a trivial homomorphism ¢ the semidirect product is the
product ' x G with the usual group multiplication. Let E ~2+ X be a
G-prineipal bundle and let T’ 2, Aut(G) be a topological action of the Lie

group I" on the Lie group G.

Definition 0.31. A (', ¢, G)-bundle is a G-principal bundle E 5 X such

that

1. E and X are I'-spaces and p is T-equivariant.

2. v(eg) = (ve)(8(7)(9)), VY ET, Ve € E, Vg € G.

Remark 0.32. If ¢ is trivial then there is a lift of the action of T on X to an
action on the principal bundle E — X, i.e. there exists a map T’ — Aut(E),

where Aut(E) is the infinite dimensional group of bundle automorphisms of

E.

Definition 0.33. A G-principal bundle E -2~ X is a T-equivariant prin-
cipal bundle if it is a (T, ¢, G)-bundle as in Definition 0.31 with ¢ trivial.

Remark 0.34. For I'-equivariant principal G-bundles we have the identity:

(ve)g = v(eg), Vy € T'\Vg € G. (3)
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Definition 0.35. Let = be a I'-fized point on X and let E 5 X be a T-
equivariant principal bundle with bundle group G acting freely to the right
on E. Then the isotropy representation af x in E is the group homo-
morphism o,: I’ — G satisfying ve = ea,(vy), ¥y € I'. Note that o, is

independent of the choice of e € p~1(x) up to G-conjugacy.

Definition 0.36. A (I', ¢, G)-bundle map is a I'-equivariant G-bundle
map. Two (T, ¢, G)-bundles E and E' are equivalent if there erists a I'-

equivariant G-bundle automorphism between E and E'.

Definition 0.37. A real or complex vector bundle E % X is aT -equivariant
vector bundle if (£,T") and (X,T) are I'-spaces and p is T'-equivariant such
that for any y € I', v: E — E is a bundle map, t.e. p(y(e)) = p(e) and the

restrictions to the fibers v: p~(z) — p~Y(yz) are linear maps.

Remark 0.38. Let E -5 X be a I-vector bundle and let z be in X. Then,
from 0.37, there is a representation of the isotropy group Iy on the fiber
pH(z).

It is easy to verify that the usual operations with bundles, like the Whitney
sum, the tensor product, the pull-back via I'-maps, have natural analogues
in the category of I'-vector bundles. The trivial I'-vector bundle has an
additional structure. Thus X x F' — X is a trivial I bundle once we fix a
representation of I' on the fiber F' (see Remark 0.38). Therefore we have as

many ['-trivial vector bundles with fiber F' as I'-representations on F'.

Definition 0.39. Two I'-equivariant vector bundles £ and E’ are equiva-

lent if there exists a I'-equivariant vector bundle automorphism between E

and E'.
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If I' acts smoothly on the smooth manifold X, we denote by Vectr(X) the
set, of equivalent classes of I'-vector bundles over X. With the Whitney sum
operation, Vectp(X) becomes a commutative semigroup with the unit equal
to the zero-dimensional trivial [-bundle over X. Also (see for example [2])

we have the theorem:

Theorem 0.40. If E - X is a T'-equivariant (vector or principal) bundle
and F: [0,1] x Y — X is a T'-homotopy, then the pull-backs f}(E) and
i (E) are the same in Vectp(Y'), where fo(y) = F(0,y) and fi(y) = F(1,y).

For non-equivariant G-principal bundles over a CW-complex X we have the

classification theorem:

Theorem 0.41. The map
(X, BG] % {[G — P — X]}

defined by $([f]) = [f*(EG)] is a bijection.

Here [X, BG] is the space of homotopy classes [f] of maps f: X — BG,
EG — BG is the universal G-principal bundle constructed by Milnor, and
F(EQ) is the pull-back of EG by f.

For I'-equivariant G-principal bundles over a CW T'-complex X T. tom
Dieck constructed E(I',G) — B(T',G) a universal I'-bundle (see [33], pp.
57-60), where E(T', &) is the naturally I'-equivariant Milnor join EG. By

Theorem 0.40, one obtains:

Theorem 0.42. The map

Vectr X - [X, B(T, Q)|
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defined by &([f]) = [f/*(E(T,Q))] is a bijection. Here [X, B(T,G)]" is the
space of T-homotopy classes [f] of T'-maps f: X — B(I',G).

Let G be a compact Lie group and let X be a smooth G-manifold endowed
with a G-invariant metric. Let ¥ C X be a G-invariant closed smooth
submanifold. Then the orthogonal complement 7Y+ in TX is a G-vector
bundle isomorphic to the quotient of G-bundles ((T'X)|y)/TY .

Definition 0.43. The normal bundle of Y in X is the denoted by v(Y, X)

and is defined to be the equivalence class of the G-equivariant bundle TY .

Definition 0.44. An open invariant tubular neighbourhood of Y in
X is a smooth G-vector bundle F on Y together with an equivariant dif-
feomorphism ¢ E — X onto a neighbourhood of Y in X such that the
restriction of ¢ to the O-section of Y of £ is the inclusion of Y in X. If
the bundle E is endowed with an inner product on the fibers, then a closed
invariant tubular neighbourhood of Y is given by the restriction of ¢

on the disk bundle D(E).

Theorem 0.45. ( [7], VL, Thm. 2.2.) Y has an invariant tubular neigh-
bourhood in X.

When S is a commutative semigroup we define F'(5) to be the free abelian
group generated by the elements of S. The addition in F(S) is denoted by
@. Then E(S) = s; & s © (51 + s2) is a subgroup of F(S), where “©” is

the inverse operation in F'(S) and “+” is the addition in S.

Definition 0.46. The Grothendieck group of S is Ko(S) = F(S)/E(S).
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We can also define Ky(S) through the universal property (see [2]): there
is a semigroup homomorphism f : S — Ky(S) such that, for any abelian
group A and any semigroup homomorphism 1 : S — A, there is a unique
group homomorphism ¢ : Ko(S) — A with the property that ¢f = . If
S denotes the commutative ring of the (complex or real) representations of
the finite group G, with the addition of 1 and the multiplication of 2, then

the map S 3 p— x, € R(G) can be extended to a group homomorphism
Ko(§) — R(G) (4)

This homomorphism turns out to be a ring isomorphism. Let G be a com-
pact Lie group and let X be a compact oriented G-manifold of even dimen-
sion 2k. We assume that G acts on X preserving the orientation, i.e. for
any g € G, if [X] € Hy(X;Z) denotes the fundamental class of X, then
go[X] = [X], where g,: H.(X;Z) — H.(X;Z) is the induced action on

homology.

Definition 0.47. The R-bilinear form B: H*(X;R) x H¥(X;R) — R given

by B(z,y) = (z ~ y) ~ [X] is the intersection form on X.

Remark 0.48. From z ~« y = (=1)*(y -~ z) we have that B is sym-
metric for k even and skew-symmetric for k odd. Then considering (, )
a inner product on Hi(X;R) and by averaging the action of the compact

group G on (,) we obtain a G-invariant inner product {, ). Then we define

A HHX;R) — H¥(X;R) by (z, Ay) = B(z,y).

If k is even then A is symmetric and it has real eigenvalues and we obtain a
G-invariant splitting of H*(X;R) = H*(A) ® H~(A) in positive and nega-

tive spaces according to positive, respectively negative, eigenvalues of A. If
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y denotes the total character of the representation of G on H*(X;R), then
x* and x~ denote the characters of the restricted representations to H*(A)
and H~(A). If kis odd, then J = AV AA*, with A* the adjoint of A relative
to {,), defines a complex structure on H*(X;R) by (u + tv)y = uy + J(vy)
for any y € H*(X;R). Since A is G-equivariant, J is G-equivariant and
H*(X;R) becomes a complex G-vector space. Let x denote the character

of the complex representation of G on H*(X;R).

Definition 0.49. [3] If k is even, the G-signature of X is the virtual
character
Sign(G, X) = x* — x~ € RO(G).

If k is odd, the G-signature of X is the virtual character

Sign(G, X) = x — x* € R(G),

where x*(g) = x(g) € C, for all g € G.

For k even, Sign(G, X) is a generalization of the non-equivariant signature
associated with the intersection form on a 4k-dimensional manifold. In [4],
Thm. 6.12., the G-signature theorem gives a description of Sign(g, X) =
Sign(G, X)(g) in terms of characteristic classes of orthogonal and unitary
groups and of characteristic classes of the tangent and normal bundles to
the fixed set X9. Of great importance in the study of group actions on

4-manifolds is the following corollary (see [4], Prop. 6.18):

Corollary 0.50. If g is an odd order automorphism of the compact ori-
ented 4-manifold X and we denote by z; and F the isolated fized points,
respectively the fized surfaces that make up X9 (see Lemma 1.18), then

. 4 9
Sign(g, X) = Z —cot % cot% + Zc302 ~2£[Fk] [Fk]
k

J
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1%
where g = is a representation of g on TX,, with ord(g) = m
thi

7

t"™ =1, a;, b; relatively prime to m, and [Fy] € Ha(X;Z) homology classes
Of Fk.



Chapter 1

Permutation Representations

For what follows, X is a closed, smooth, compact, oriented, simply con-
nected 4-manifold. The group actions considered are effective and smooth.
The finite group G acts on X inducing an action in homology, i.e. we have
p: G — Auty(H.(X)) an integral representation. Unless we specify the co-
efficients, H,(X) will denote the integral homology of X. The main result
of this chapter is Theorem 1.14 and its proof will become evident after our
discussion on the properties of p in the case when G is cyclic of odd order,
and X has positive definite intersection form. Throughout, C,, denotes a

cyclic group of order m.

Theorem 1.1 (Donaldson). (8], Thm.1.3.1.) The only positive definite
intersection form (b = n,b_ = 0) that can be realized by a smooth, compact,

simply-connected 4-manifold is the diagonal form , A = n(1).

Theorem 1.2 (Wall). Two simply connected smooth manifolds that have
equivalent intersection forms are h-cobordant, i.e. they are deformation
retracts of the manifold which they bound. In particular, two such manifolds

are homotopy equivalent.

20
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Therefore, according to 1.1, our manifold X, if positive definite, has the
same intersection form as ;;HCIP’Q and, by 1.2, X is a homotopy—%ﬁCPZ. We
denote by ¢;,, ¢ = 1,...,n, 1the fundamental class of CP' embedded in the
standard way in the i-th component of the connected sum %C]P’Q, and the
corresponding homology class in X. Then Hy(X) is a free Z-module with
basis {e1,...,e,}. Since X is simply connected, we have H;(X) = 0, and,
by Poincaré duality, H3(X) = 0 and Ho(X) =~ Hy(X) ~ Z.

Suppose now that X is a compact smooth manifold on which the
compact Lie group G acts smoothly. By works of Mostow, Palais and
Wassermann (see [34]) we know that the associated homology chain com-
plex C,(X) of X (which is a CW-complex) inherits a simplicial G-action,
i.e. G transforms simplices (cells) into simplices. Relevant to this assertion

are the following two results from [34]:

Proposition 1.3. There ezists a G-equivariant Morse function on X.

Proposition 1.4. The manifold X is G-equivariantly homotopic to the G-
complez (Vi xg, G) Uy, (Vo xg, G)U--- Uy, (Vi, X, G), where the V;’s are
radius one Hj-slices, and the f;’s are H;-equivariant attaching maps for all

H; the subgroups of G.

Hence C,(X) is a chain complex of finitely generated Z[G]-modules and,

consequently, the same is true about H,(X).
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1.1 Representations of the induced action on
homology

Let M and N be R[G]-modules and let A: M x M — N be an R[G]-
symmetric bilinear map. Therefore A € Homg(M x M, N) is G-equivariant,
where M x M is the product R[G]-module given by the product action. A is

equivariant iff A is fixed by the induced action of G on Hompg(M x M, N},
(gM)(z,9) = gA(g7'z,971y),¥g € G,¥z,y € M, ie.

Mgz, 9y) = gA(z,y),Vg € G,Vz,y € M.

A is G-invariant iff
Mgz, gy) = Mz, y),¥g € G,Vz,y € M.

In particular, the Z-bilinear intersection pairing A: H?(X) x H*(X) —
H*(X) =~ Z given by the cup product A(z,y) = z «— y is symmetrical and,
because gz — gy = g(z ~ y), for any g € G and any 7,y € H%(X), A is

G-equivariant (i.e. the Poincaré duality isomorphism is G-equivariant).

Proposition 1.5. Letey, ..., e, be the elements of a basis in the free module
R, and let 3, be the symmetric group of ordern. Then, the map P: ¥, —
Homp(R", R"), P(s)e; = ey, defines a representation of X, whose kernel

is trivial.

Proof. For any s,t € £, and ¢ = 1,...,n one obtains P(st)e; = ey =
esqy = P(s)P(t)e;, i.e. P(st) = P(s)P(t). Also, P(s) =14 s =1, and
P(s7') = P(s)7!. Thus X, maps injectively into Gl(n, R). |
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Definition 1.6. If G is any group and f: G — %, is a group-homomorphism,
then the map Po f: G — Gl(n,R) is a degree n R-representation by

permutations of the group G.

Any group is isomorphic to a subgroup of its own automorphisms and G =
{91, 9m}, is isomorphic to a subgroup of P(G), the permutation group

of G. Thus we have the monomorphism G 3 g — ~(g) € P(G) where

v(9)(9:) = 99: = g;-

Definition 1.7. The monomorphism r: G — Gl(n,R), g — P(v(g)) is

the regular representation of G.

If G is a cyclic group of order m, and g is a generator, then the matrix asso-

ciated with the regular representation of G on R™ in the basis {es,...,em}
is
0 0G0 01
100 00
019 00
rig)=10 0 1 00 (1.1)

000 .. 10

\

where the basis was chosen such that r(g)e; = €11, r(g)€m-1 = €;. There
is also another way to look at the representation matrix 1.1. Let’s observe
that the table of the group G determines 1.1 and we obtain 1 at the crossing
between the line ¢ and the column j whenever gg; = g;. In general, once
we find matrix representations for the generators of a group G, these must

also satisfy the relations that define G.
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Definition 1.8. We call a ZG-module M indecomposable if it cannot be

written as a direct sum of two non-trivial ZG -submodules.

Definition 1.9. A finitely generated ZG-module M is Z~irreducible if it

has no non-trivial ZG- submodules of lower Z-rank.

Again, let G be a finite cyclic group of order m, and let g denote a generator.
Let € be a primitive root of unity, £™ = 1. A Z-representation of G on the
free Z-module M is equivalent to a Z[G}-module structure on M. Z[G] is
not an integral domain ring because (g — 1)(1+g+---+ g™ 1) = 0 but we

have the non-split exact sequence of Z[G]-modules
0— Z — Z[G] L5 Z[¢] — 0,

where the Z[G]-module structure of Z[¢] is given by Z[G]/(1+g+- - +¢g™ 1),
and that of Z is given by Z[G]/(g — 1). If the G action on M induces a
Z[G)/(1+g+---+g™ *)-module structure on M then we say that G admits

a cyclotomic representation on M.

Definition 1.10. The representation given by the G-module homomorphism
ZIG] 3 g £ € Z[¢]

is called o cyclotomic representation.

As before, taking into account the fact that £ ! = —1 —¢—... —¢™2 in
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a proper basis of Z™™!, we have the matrix representation:

000 ...0 -1
100 ... 0 -1
010..0 -1

c§)=1001 .. 0 -1 (1.2)
000 1 -1

One can see that the representation matrices 1.1 and 1.2 are not equivalent.

Proposition 1.11. The action of the odd order cyclic group G on X is
orientation preserving and G permutes the elements of the standard basis of

the Z-free module Hy(X).

Proof. Let g be a generator of G = Cy,, and let A: Ho(X) x Ho(X) —
Hy(X) =~ Z be the intersection form. A is a symmetrical G-equivariant Z-
bilinear map given by the cup product homology operation: Mz,y) = = - .

The matrix associated with A in the basis {e;};=1 . is given by A; =

A(ei, e5) = 4. Then g has a Z-representation, still denoted g, g: Hy(X) —
Hy(X). Since g € Autg(Hy(X)), ga = =a, for a, the fundamental class,
and, because m = ord(G) is odd and g™ = 1, we have ga = a. Thus G
acts trivially on Hy(X), i.e. orientation preserving, and therefore A is G-
invariant.

If g represents a permutation, then ge; = ey, for any ¢ = 1,...,n. Then,
A(gei, ge;) = Mex, 1) = 8. It is clear that k and [ are equal if and only if
it and j are equal. Thus, A(ge;, ge;) = 6;; for any g € G, therefore ) is G-

invariant. Conversely, if, for any g € G and any 1, j, A(ge;, ge;) = &y, then,
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writing ge; = > a;*er, A(Xaker, Saler) = 6, or S{a*)? =1, a;* € Z.
s k 1 %
Therefore a;* = %1, for one k, and a;* = 0, for all the others.

These facts are described by the exact sequence of multiplicative groups
L= {£1}" — Aut(H(X),\) = T, — 1,

where Aut(H,(X), \) represents the group of the automorphisms of H,(X)
that leave A invariant. Thus, a A-invariant automorphism has its associated

matrix equal to the product between a matrix of type 1.1 and a matrix
+1

5 = Thus the automorphism that corresponds to g € G,

+1
a(g), is the product s(g)r(g). But a(g)™ = a(g™) = 1 = r(g™) = r(g)™

and we must have s(9)™ = 1. As m is odd, the only possibility is s(g) = 1.
Thus the A-invariant automorphisms induced by G are permutations of the

basis {e;}. B

Remark 1.12. A cyclotomic representation matriz as in 1.2 does not leave

A invariant.

Definition 1.13. Let S be an arbitrary G-set and let LS be the free abelian
group generated by S. The G-module (ZS,G) obtained by the Z-linear ez-

tension of the action on S is called a permutation module.

Let S = | ] Sy be the disjoint union of the isotypical subsets of S. Then
H<G

7S = @ZSH

H<LG

is a direct sum of permutation modules and
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where G, ~ H and z ranges over a set of representatives for the G-orbits
in Sy. In our case § = {ey,...,e,} and ZS = Hy(X). By Proposition 1.11
H,(X) is a permutation module and
Hy(X) = @DzZIe/H]™, (1.3)
H<G
where the integers my show how many times the representations Z[G/H|
oceur.
The purpose of this chapter is to provide a proof for the following result

which can also be inferred from part 1. and part 2. of [9].

Theorem 1.14. If G = C,,,, m odd and X is a closed, smooth, compact,
oriented, simply connected, positive definite 4-manifold, then the fized set

X€ is non-empty and consists of a union of isolated points and 2-spheres.

Definition 1.15. Let (X, G) be a topological locally linear action, with G =

Cp, and m odd. For any element g € G the Lefschetz number of g is

4 .
L(g, X) =Y (~1Ytrace(g.)|n,x:0),
7=0

where g, is the induced homomorphism of g in homology.

Because of Poincaré duality we observe that we can define L(g, X) in the
same way using the rational cohomology groups of X. A well known result

is the Lefschetz Fixed-Point Formula;
L(g,X) =e(X9), (1.4)

where e(X?) is the Euler characteristic of the fixed set of g. Lefschetz

Formula has a direct proof using the transfer map and several other results
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on the G action on homology as pointed out in [9], Prop. 1.2., or, when
(X, G) is smooth, it can be regarded as the DeRham complex of X case
of the more general formula given in [3] for L(g, E), where E is an elliptic

complex.

Corollary 1.16. If G = C,,, m odd, then X% # (.

Proof. Let g be a generator of G. Because m is odd, g acts preserving
the orientation, i.e. g, acts trivially on Ho(X,Z) and H4(X,Z). By 1.4,
e(XC) = e(X9) = 1+trace(g.)|myx:0)+ 1, and by (1.3), we obtain e(X¢) >
2, since trace(g,) on any regular representation Z[G/H] is zero, for H # G,

and equal to 1, otherwise. Therefore X cannot be empty. |
Actually the preceding proof says more about X¢:

Corollary 1.17. The Euler characteristic of the fized set is given by
e(X) =t+2

where t = mg in formula (1.3) represents the multiplicity of the trivial

subrepresentation.

Lemma 1.18. Let G = C,,, m odd. The fized set X€ consists of a union

of isolated points and smooth surfaces.

Proof. In general the connected components of the fixed set of a smooth
G-manifold are G-fixed submanifolds.The lemma follows from the types of
possible representations at the fixed points. Let’s prove the lemma first
for G = Cp, p a prime number. If z € X then the G-slice through z

is G-diffeomorphic to a G-invariant ball in 7, X, according to Proposition
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0.20 and Proposition 0.14. The action on T, X is the differential of the

action on X. Then, because dim 7, X = 4, the complex slice representation

a

at z is given by the matrix , where, by notation £* = e27ie/p,
0 &
a€{0,...,p—1}. Referring to 0.28, we distinguish for a and b the following
cases:
l.a=b=10

2.a=0,b#00ra#0,b6=0
3.a#0,b#0

The case 1. cannot occur because X is connected and the action is non-
trivial.

In case 2. we have a two-dimensional G-invariant space that is the tangent
space of a fixed connected surface. Notice that due to Theorem 0.40, the
representations at two points in the same connected component of X¢ are
equivalent if we regard them as trivial G-bundles over each point and we
consider a G-fixed path connecting the two points as a G-equivariant ho-
motopy.

For the case 3., the action on the slice is free and we have only isolated fixed
points. For the general case, G = C,,,, m odd, notice that X is fixed by Chp,

p|m. Therefore X consists again of isolated fixed points and surfaces. B

Lemma 1.19. Each component of X€ is orientable.

Proof. The statement is true for G finite of odd order, acting locaily smoothly

on the n-dimensional manifold X (compare [7], Theorem IV. 2.1). In our
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case, dim X = 4, the argument is easier because of the complex structure

on the tangent spaces which induces orientations on each surface. |

The next results apply for G = C, with p a prime integer. A result of Reiner
(see [27], pp. 508) gives a complete classification of finitely generated Z|Gl-

modules for G cyclic of prime order.

Lemma 1.20 (Reiner). Let M be a torsion free Z-module and let’s assume
that M has a structure of finitely generated G-module with G cyclic of prime
order p. Then M admits a decomposition in a direct sum M, & --- @& M, of

G-modules, where each of them is of the following three types:
type t: Z (as G-module with trivial G-action,).

type c: J as a non-trivial ideal of Z[£] with the G-module structure
ZIGl/(1+g+--+g¢"")

i.e. a chosen generator g € G acts on Z[¢] by multiplication with ¢,

where £ is a primitive root of 1.
type r: J such that there exists a extension of G-modules
0>J—-JoZ—0
which is not split, and J is of type c.

If the non-negative integers t, c, v are the corresponding multiplicities of
each of the three types of G-modules in the decomposition of M, then M is

determined up to isomorphism by t, c, v and the ideal class group Co(Z[€]).
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Proof. Let’s observe that the modules in the direct sum are indecomposable
but not necessarily irreducible. Detailed proofs can be found in [27], page
508, or in [31], page 74. We highlight here the key facts of the proof in
[31]. For a module M and a group G = C, as in the statement of Lemma
1.20, one considers the G-submodules M¢ = {m € M | (g — I)m = 0} and
MY = {m € M|(14+g+...,...,g° Y )m = 0}, where g is a generator of G. Let
€ be a primitive p-root of 1 and let [ = (g—1) and N = (1+g+...,...,¢977 1)
principal ideals in Z[G]. Then Z[G]/I ~ Z, Z|G]/N =~ Z[¢), and we obtain
the torsion free Z-modules A = M/M® and B = M/M". Moreover B
has a Z[¢]-module structure. If C is the G-module M/(M% + MN) and
D is the G-module M/M% N M" we recall the well known exact sequence
0—-D— A®B — C — 0. But we notice M° N MY = {0}. Thus
0—=M—A® B — C — 0is exact, i.e. M is obtained by the pull-back of

the diagram
A

l’ (1.5)

B — C
Ais a free Z-module and we have A = A1+ - @Ay, where A; ~ Z. Also C =
C1®---@®C,, where C; ~ Z[G]/(I+N) =~ Z/p. Because for any ideals I; and
L of Z[E], L © I ~ Z[§)® I1 I, we have B = B, @ - - - @ B, where B; ~ Z[¢],
for i > 2, and By = J is a non-zero ideal of Z[¢]. These decompositions can

G ifi<c C; ifi<e
be chosen such that s(B;) = and r(4;) =

0 if7>¢, 0 ifi>ec
Then the diagram (1.5) is a direct sum of diagrams of the following forms
; 0 A;

[ O ™

-

0 ——
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The pullbacks of the first two diagrams in (1.6) yield obviously A; and B;
as summands of M,i.e. types ¢t and c respectively. Then it is shown that
the pull-back P of the third diagram gives Z[G], for ¢ > 2, or an ideal of
Z|G] of type r, for ¢ = 1 and the isomorphism class of P depends only on

B,, and is independent on the epimorphisms shown in the diagram. B

Applying the result [31], Theorem 3.3., we obtain
M=Z'®oZE e ZIG"® J (1.7)

for J an ideal of Z[G] obtained by the pullback of the third diagram of (1.6)
when B; = B; is a non-principal ideal of Z[¢]. Following the terminology
adopted in [9], we call such an ideal .J exotic. Our interest is in the types of
representations we obtain via Lemma 1.20 for M = Hy(X;Z). It is known
that Z[¢] is a principal ring when p < 23. Therefore we don’t obtain exotic

ideals when £5(X) < 22 or when p < 23. Otherwise, we prove the lemma:

Lemma 1.21. If G = C, acts smoothly on X, then Hy(X) has the standard
decomposition Z' @ Z[¢]° & ZIG]".

To prove 1.21 we take up the approach of Swan as in [31]. We de-
note by Ko(G) the Grothendieck group of the category of finitely generated
projective Z[G]-modules. This is the abelian group generated by genera-
tors [P], where P is a finitely generated projective Z[G]-module, subject to
relations [P] = [P'] + [P"] whenever there is an exact sequence of finitely
generated projective Z[G]-modules 0 — P’ — P — P" — 0. Notice that
the sequence is split. For the abelian category of finitely generated Z[G]-
modules the Grothendieck group Go(Z[G)) is the abelian group generated by
the finitely generated Z[G]-modules [M], with relations [M] = [M'] + [M"]



CHAPTER 1. PERMUTATION REPRESENTATIONS 33

whenever there is an exact sequence (not necessarily split) of finitely gen-
erated Z[Gl-modules 0 — M’ — M — M" — 0. We write Ky(G), respec-
tively Goo(G), when the ring R is the group-ring Z[G), or even Ky and G
if the group is understood. The Cartan map is defined to be the group
homomorphism Ky > [M] — [M] € G,. On K, one introduces the equiva-
lence relation: [Py] ~ [P,] when there exists F; and F}, free G-modules such
that P @ Fy > P, & F;. The quotient Co(Z[G]) = Ky(Z|G])/ ~ can be
viewed here as Kg/ f(g, where Kj is the Grothendieck group of the abelian
category of finitely generated free Z[G]-modules. In [28], theorems 6.19
and 6.24, Rim shows that Cp(Z[G)) is finite, isomorphic to the ideal class
group Co(Z[¢]). According to Swan ([31], Corollary 4.21), the following

Z[G)-modules isomorphism holds:
Go(Z[G]) = Z® Z & Co(Z[¢)) (1.8)

Proof of Lemma. 1.21: The key fact in the proof is that, by Proposition 1.4,
the simplicial chain complex C,(X) inherits a G-simplicial action. In fact
Ci(X) = Cu(X, XP) & C.(XC), where G acts by permuting cells freely on
Ci(X, X) or by fixing cells on C,(X%). We define Gy = Go/{[M]| M is
G—free}. If C, = C(X), H. = H(X), C. & C._y, Z. = Kerd, and
B, = Imé,,,, then it is evident that 0 — B, - Z, - H, — 0 and
0 — Z, — C. — B,_; — 0 are exact sequences. Thus, in Z?—g, Z.] =
[B.] + [H.] and [C,] = [Z,] + [B,_1]. Then the Gy-Euler characteristics
E(C,) = T (-1)[C)] and E(H,) = 3%, (~1)¥[H)] are equal. But
C.(X, X%) is G-free and we have then

E(C.(X)) = E(H.(X)) .

Let’s assume that we have ¢ points and s surfaces in X ¢ and Hy(X ) =
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Z' ® Z[¢)° @ Z|G) @ J, where J is a non-principal G-ideal. Then ¢[Z] +
[Z]+2s[Z] = B(C.(X®)) = E(H.(X)) = (t-+2)[Z]+c[Z[¢]] +r[Z][G)] + ).
But [Z[G]] = [Z] + [Z[¢]] in Gy and therefore 0 = [Z] + [Z[¢]] in Gy. We
obtain q[Z] + b1[Z] + 2s[Z] = (t + 2 — ¢)|Z] + [J] which means [J] = 0 in
Co(Z[g))- =

Proposition 1.11 showed that a Z[G]-summand of type Z[£] cannot occur

either. Thus we have

H(X)=Z'sZ|G]", G=C¢C, (1.9)

1.2 The fixed point set

Because the fixed set X is nonempty, we can use the following important

result from [9] (Prop. 2.4.)

Proposition 1.22 (Edmonds). If G = C,, p an odd prime, and B:(X%)
is the rank of H;(X%;Z,), then

Bu(XC) =c

Bo(XC) + Bo(XG) =t +2
where t, ¢, and r are the positive integers from Lemma 1.20 applied to
M = Hy(X).

The relation (1.9) shows that ¢ = 0. Therefore

Corollary 1.23. 8;(X%) = 0 and the oriented surfaces in XS are homology
2-spheres, i.e. they are diffeomorphic to spheres, when G = C,, with p odd

prime.
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We return to the case G = C,,, m odd integer and we finish the

proof of Theorem. 1.14. The first part, that the G-fixed set is non-empty, is
due to the strong input: the G-invariant intersection form A is the diagonal
form n(1) and this is due on its turn to the hypothesis that our G-action
is smooth. This was shown by Corollary 1.16. Thus, according to (1.3) we
have H5(X) = @;Z[G/G;]", where G; are the isotropy groups of the action
of G on Hy(X). For the second part, let g € G be such that G = (g),and
let p be a prime dividing m. Then H = (¢™/?) ~ Z/p is a subgroup of G
and X# is a union of isolated points and spheres by Corollary 1.23. The
non-empty fixed set X is a substratum of this H-stratum and X is the G-
fixed-point set of X*. Since X€ is non-empty, G cannot permute the points
and the spheres of X freely. Also a cyclic group of odd order cannot act
smoothly and freely on a 2-sphere, it fixes points or the 2-sphere. Therefore

X6 is a union of points and 2-spheres. |



Chapter 2

The Equivariant Moduli Space

For a very good account regarding the definitions and properties of strati-
fications and Whitney stratifications we refer the reader to [24]. What we
call here a stratification is defined in [24] to be a prestratification whereas
the notion of stratification is assigned to an equivalence class of prestratifi-

cations in a certain sense (see [24], pp. 200).

Definition 2.1. A stratification of a topological space X is a partition S

of X into subsets called strata such that the following conditions hold:

t.  Each stratum U is locally closed, i.e. U is the intersection of a closed
set with an open set or, equivalently, Vu € U, AN a neighbourhood of
u in X such that UN N is closed in N.

it. & is locally finite.

iti.  (aziom of frontier) If Uy and Uy are strata of S and Uy N U, # 0,
then Uy C —171

For a triple (U, V, z) with U, V analytic submanifolds of a smooth manifold

W and z € V we present what’s called Whitney’s Condition (a)

36
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Definition 2.2. If {z;}; C U is a sequence of points converging to x € V
and TU,, converges in the Grassmannian of (dim U )-planes in TW to T,

then TV, C .

If W is an open set in R", for any z,y € R™ we denote by z,7 the vector

line determined by z and y. Then we can introduce Whitney’s Condition
(b):

Definition 2.3. For any sequences {z;} of points in V and {y;} of points
in U, such that z; — z, y; — z, x; # vy;, T;y; converges (in the projective
space P*1), and TUy; converges (in the Grassmannian of (dim U )-planes

in R"), we have | C 7 ,where | =lim7Z;y; , 7 = limTU,,.

One can show that Whitney’s Condition (b) is invariant under diffeomor-
phisms of W and therefore, using manifold charts, it can be defined for a
triple (U, V, z), with U and V analytic submanifolds of a manifold W. Also
one can see that Whitney’s Condition (a) is a consequence of Whitney’s

Condition (b).

Definition 2.4. Let Y C X be a subset of a smooth manifold X. If S is a
stratification of Y we say it is a Whitney stratification if each stratum is

a smooth manifold and any two strata U and V with V C U satisfy condition
(b) for any z in V.

Definition 2.5. Let X be a manifold, Y C X and S a Whitney stratification

of Y. Let §, denote a stratum of S containing y. Then
Vi ={yeY|dimS, <k}

make the filtration by dimension associated with S.
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Definition 2.6. If {Yi} and {Y}/} are filirations by dimension associated
with the Whitney stratifications S and 8’ respectively, we say S < S’ if there
is an integer k such that {Yi} C {Y}} and {Vi} = {Y}'}, for I > k.

S =&"if and only if {Yi} = {Y/} for all k.

Definition 2.7. A Whitney stratification is called minimum if it is mini-

mal relative to the order relation defined above.

2.1 General position of equivariant maps

Definition 2.8. If G is a compact Lie group, M, N are G-manifolds and
P is a G-submanifold of N with the same action, then a smooth equivariant

map f: M — N is G-transverse to P at z € M if either f(z) ¢ P or
df . T M, + TPf(z-) = TNf(x)
is satisfied.

In the non-equivariant case we have the well known transversality theorem:

Theorem 2.9. Let M, N, P be smooth manifolds and let f: M — N
and g: P — N be smooth maps. Then there exists a smooth manifold S
and a smooth map F: S x M — N, with F(sg,z) = f(z), for a fized
so € S, and for any x € M, so that F is transverse to g(P). More-
over, defining Fy: M — N, F,(m) = F(s,m) for any s € S, the set
{s| Fyis transverse to g(P)} is a Baire set in S.

This theorem asserts that the transversality condition is generic, i.e. any

two smooth maps can achieve general position by an arbitrarily small per-

turbation of at least one of them. In the equivariant case, transversality
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does not ensure this result. We would have to perturb one map equivari-
antly and we may encounter obstructions. In [5], E. Bierstone introduced
a definition for G-equivariant general position for G-equivariant smooth
maps, separate from G-transversality, that provides the desired result: the
set of smooth G-equivariant maps between the G-manifolds M and N, that
are in general position with respect to a G-submanifold P of N is a Baire
set with respect to C™® or compact-open topology. We will use Bierstone’s
notations in the discussion bellow. Let V and W be G-linear spaces and
let CF(V,W) denote the module of smooth G-equivariant maps over the
ring CX (V') of smooth real valued functions on V invariant under the action
of G. The Malgrange preparation theorem (see [23]) shows that there is a
finite number of G-equivariant polynomials, Fi,...,Fy, generating C¥(V, W)

over CF(V,R). Therefore any map F in CF(V, W) can be written:
k
F(z)=)_h(z)F (),
i=1

with s € CX(V). If h(z) = (z, h(@), ..., ba(z)) and U(z,y) = S5, 4 Fi()
then F(z) = U o graph(h).

Definition 2.10. ([24], pp. 206-207) A subset of R™ is called semialge-

braic if it is in the smallest family of subsets of the form
{f >0, freal polynomial in n variables }

of R™ which is closed under taking finite intersection, finite union, and

complements.

Definition 2.11. ([5], pp. 462) A strongly stratified set is a Hauss-

dorf space H such that for each point in H there is a local presentation of
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H as the transversal intersection of a semialgebraic subset A of R™ by «

diffeomorphism g: R™ — R™.

In [24], Thm.(4.9), Mather shows that there exists a canonical minimum
Whitney stratification of a semialgebraic set and thus a strongly stratified

set has a minimum Whitney stratification as well.

Definition 2.12 ([5], pp. 456). Let X be a smooth manifold and let
i+ X — R? be a smooth map. Then f is transversal to an algebraic
subvariety E of R? if f is transversal (see Definition 2.8) to each stratum

of the minimum Whitney stratification of E.

Definition 2.13 ([5], def.1.1). An equivariant map F:V — W is in
general position with respect to 0 € W at 0 € V if graph(h): V — V x R*
is transverse to the minimum Whitney stratification of the affine algebraic

variety {U(z,y) =0}, at 0 € V.

By [5], Prop.6.1., Definition 2.13 extends to maps f: O C V — W, with
O an open invariant neighbourhood of 0 € V. To extend it further to

G-manifolds we need an intermediate step:

Definition 2.14. If V, W, and Wy are G-representation spaces, then a
G-equivariant map f: V — Wy x Wy is in G-egquivariant general position
with respect to W1 x {0} at 0 € V if and only if proo f: V — Wy is in
G-equivariant general position with 0 € W at 0 € V. pro: Wy x Wy — W,

is the projection map, obviously G-equivariant.

Notice that in the non-equivariant case we similarly have: f: V — W) x W,

is transverse with Wi x {0} if and only if pryo f: V — W is transverse
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with 0 € W,. Let G be a compact Lie group, M and N smooth G-manifolds
and let P C N be a G-submanifold of N. If F': M — N is a G-equivariant
smooth map, z € F~Y(P) and S is a G,-equivariant slice through z, then
dF;: TS, — T Npy) is a G -equivariant map between G-vector spaces. G,
is here the isotropy group of z. An equivariant map sends orbits to orbits

and slices to slices. Thus F'(S) is a slice through F(z) and we have
TNp@ =TF(S)re @ T(G - F(2))Fw) »
TNF(_,E) = TPF(x) @ .

But F(z) € P implies that the orbit G- F(z) is included in P. So T(G-F(z))

is a linear subspace of T'Pp(;). Then Bierstone states:

Definition 2.15. F: M — N is in G-equivariant general position with
respect to P at x € M if either F(z) ¢ P or F(z) € P and for any slice
S of the orbit G - z at z, the G,-equivariant map dF,: TS, — TNy is
in G-general position with respect to T Pp(y), in the sense of the preceding
definition. F is in equivariant general position with P if it is in equivariant

general position with P at any point of M.

Bierstone shows that the definition is not dependent on the slice chosen,
or on the choice of F; and h;. Thus G-equivariant general position at the
level of manifolds reduces naturally to G,-equivariant general position at
the level of slice representations: In our above notations we obtain that
dF;: TS, — v is in G,-general position with 0 € v at 0 € T'S,. Notice that
this is equivalent to the statement dFy: T'S, — TF(S)p(,) is in G,-general
position with 0 € TF(S)p() at 0 € T'S,, since T(G - F(z)) C TPp(). The
following results from [5] are essential for the construction of an equivariant

moduli space:
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Theorem 2.16 ([5], Thm. 1.3. & Thm. 1.4.). Let P be a closed G-
submanifold of N. Then the set of smooth equivariant maps F: M — N
which are in G-equivariant general position with respect to P atl each point
of a compact subset of M is open in the C™ topology and is a countable

intersection of open dense sets.

Proposition 2.17. ([5], Prop. 6.4.) Let F: M — N be a smooth equiv-
ariant map in G-general position with respect to a G-submanifold P of N.
Then F' is stratumwise transverse to P, i.e. for any isotropy subgroup
H < G, Flpy: Mg — N is transverse to PH. If F7Y(P) # epmtyset

then F~(P)y is a manifold of dimension dim My — dim N¥ + dim PH.

Proposition 2.18. ([5], Prop. 6.5.) Let F: M — N be a smooth equivari-
ant map in G-general position with respect to a G-submanifold P of N. Then
F~Y(P) is a strongly stratified set and therefore has a minimum Whitney

stratification.

2.2 The equivariant moduli space

Let m be a compact Lie group acting smoothly, orientation preserving and
by isometries on a smooth compact closed oriented simply connected Rie-
mannian four-manifold X, and let E % X be an SU(2)-vector bundle with
the second Chern number denoted by —k. We also denote by A and G the
afline space of connections and the gauge group of E respectively. The
gauge group of £ is defined to be the group of smooth bundle automor-

phisms of E that cover the identity on X and whose restrictions to each
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fiber E, are elements of SU(2). If we consider instead P, the underlying
principal SU(2)-bundle of E, G can be viewed as the space of smooth sec-
tions of the SU(2)-bundle of groups Ad(P) = P x gy« SU(2), where the
action of SU(2) on the fibers of Ad(P) is by conjugation. G is an infinite
dimensional Lie group and it can be shown that it is connected when the
intersection form of X is odd (see [14], pp 78-80). The Lie algebra of G is
gr = {v € Hom(E,E) | v|g, € su(2)}. A connection on E is a horizontal
distribution in the tangent space of the underlying principal bundle of E
(see for example [8], pp. 31-33). The covariant derivative associated with
a connection A is a smooth R-linear operator d4: I'(E) — I'(T*X ® E)
with the Leibniz property: da(f ® s) = df ® s + f ® dgs, for any smooth
function f: X — R and any s € I'(E), where I'(E) denotes the space of
the smooth sections of the bundle E. We often do not distinguish between
a connection and its covariant derivative. Let Q*(E) be T((A*T*X) @ E).
Then d,4 extends inductively to a smooth operator da: QF(E) — QFL(E)
by da(s1 A s2) = dsy ® s2 + (—1)'s; A dasg, where s; € Q°(E) and s €
QF(E). Also A induces a connection on gg, still denoted A, and de-
fined by da: Q%(ge) — Q'(gr), (dav)(s) = da(v(s)) — v(das), for all s €
Q°(E). In the same inductive manner is defined ds: Q¥(gg) — Q¥ 1(gg):
da(wi A wg) = d(wi) ® wy + (—1)*wy A dawr, wi € Qgp),w, € Q¥(gg).
When X is a Riemannian manifold, the metric on X induces a metric (, )
on the spaces of smooth forms 2*(gg). Let w; and w; be in Q*+1(g £)- Then
wy =01 @M and wy = oy ® N, where ay, oy are real forms in /\k(X) and

M, N are sections of gg. Then for any z € X

(wi,wa)z = (o, ag)szce(TMme) (2.1)
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where (, ) is the metric on real forms defined by the Hodge operator #:
(a1, 02)dV = ay A xay (2.2)

with dV the volume form on X. Let’s remark that the covariant derivative
d 4 associated with a connection A is a natural generalization of the ordinary
derivative on scalar forms d. In fact, when A is the trivial connection we
can identify between d,4 and d.

The metric spaces A, G and Q*(E) are only Frechet spaces with the
C*-norm and thus they may not be complete. To ensure good convergence
properties we consider, keeping the same notations, their completions in a
Sobolev l-norm. Let Ag be a base point connection in the affine space A,

[ > 0. Then we define

llufly® = /X(HUIIZ +ldapul® + - ) (day )l ), (2.3)

for u an element in any of the spaces A, G or Q¥(E). With this norm, for
a good choice of [, we benefit now from analysis on Hilbert spaces. For a
more precise description, see ([14], pp. 92-96).

The gauge group G acts on the space of connections A:
Gx A— A
(u,A) »u-A
duas =udgu™'s, Vse QYE) (2.4)
Let B = A/G be the orbit space of the action. Let Aut(E) be the group

of bundle automorphisms of F that cover Dif f(X), the diffeomorphisms of

X. Clearly we have the left-exact sequence of groups

1—-G— Aut(E) — Diff(X) .
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Also 7 can be regarded a subgroup of Dif f(X). We'd like to find conditions
so that 7 acts naturally on A and B. It would be enough to construct a lift of
the m-action to £, i.e. a group homomorphism m — Aut(E), (see Definition
0.33). Let g € 7. The bundles E and its pull-back g‘;E are equivalent since
the m-action is orientation preserving (see the proof of Proposition 1.11), i.e.
the second Chern class co(E) € Hy(X) is m-fixed. We define then G(7) to
be the group of all bundle automorphisms §: £ — E that cover some g € 7.
We can see that the natural action 7 x A — A, (9,4) — § - A, given by
dsa = Gdag™", is well defined up to conjugacy with gauge transformations
v and we have thus an action of 7 on B. Moreover, for any v € G and
any g € m, the bundle automorphism §u§™' covers the identity, i.e. it is a
gauge transformation. Therefore G is normal in G(7) and 7 is the quotient

G(m)/G. We summarize with the exact sequence
1-G—-Gnm)—»m—1 (2.5)

On QF(gg) we have the natural action: (g,v) — gug™', g € 7, v € Q*(gg).
Again, the action is well defined modulo G. Let h and A’ be elements of
G(m) covering the same g € G and acting trivially on a connection A. Then
k' = hu for some u € G. This implies u acts trivially on A. Thus we have

the exact sequence of isotropy groups of A analogous to (2.5),
1—=G4—G(ma—ma—1 (2.6)

and let us note that the groups involved are finite dimensional compact
Lie groups. In the non-equivariant case the self-dual moduli space M is
the space (possibly empty) of the gauge classes of solutions A of the SD

Yang-Mills equations:

Fy~ =0 (2.7)
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where F37 = %(FA —%F4), Fp = dads € Q*(gg) is the curvature operator

of A, and * is the Hodge operator associated with a metric on X.

Proposition 2.19. (see [13], Prop.5.1 & Prop.5.2) Let A be a connection
on E. Then the maps da: QF(gg) — Q5+ (ggp), are G(m)4-equivariant,
Fy € Q*gp)™ and, for any A, A’ in A with 74 = 74, we have A — A’ €
O gp)™.

Therefore M is 7-invariant in B if and only if the equations (2.7) are «-
invariant, i.e. the metric on X is m-invariant. That is why we require that

7 acts on X by isometries.

Definition 2.20. If w is a compact Lie group acting smoothly, orienta-
tion preserving and by isometries on the smooth compact oriented simply-
connected closed Riemannian manifold (X, (,)) with a real analytic metric,
then the self-dual equivariant moduli space (M, ) of an SU(2)-bundle
E — X is the solution space of the m-equivariant elliptic PDE (2.7) in
(B, 7).

Let A be a connection. The dual covariant operator associated with A is
da”: Q¥gp) — QF(gp) defined by [ (dawr,ws) = [, (w1, ds"ws), where
w1 € Q" gg), ws € W¥(gg) and (,) is the metric (2.1).

For a SD-connection A we have the G(r)-equivariant elliptic complex
2°(g5) % Q' (95) 0 (5) (2.8)

The dimension ¢ of the free stratum M* in the self-dual moduli space,
when transversality conditions are satisfied, is provided by the Atyiah-Singer

index formula (see [8], pp. 137):

§ = 8(=cs(E)) — 3(1 — by(X) +b_(X)) (2.9)
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where b1 (X ) is the first Betti number of X, b_(X) is the negative part of the
second Betti number, and J is obtained as the index of the elliptic complex

(2.8).

Remark 2.21. Let 0: A — A x Q_(gg) be the map defined by o(A) =
(A,F4™). By Proposition 2.19, o is a G(7)-equivariant map of infinite
dimensional Hilbert spaces. We can identify the moduli space just defined

with the space (c71(0)/G, ).

Let A be an arbitrary self-dual connection in A. The gauge slice through

A is given by T, the normal space to the orbit G - A (see [14], pp. 48-49):
Ty = {a € Q(gg) | da*a = 0} (2.10)
The reduction of ¢ to a gauge slice through A is

Ya: Ty — Q—(QE)

Pa(a) =d ala) + (aAa)” (2.11)

Notice that T4 becomes a G () 4-representation space by the result of Propo-
sition 2.19. The derivative of 14 at A is the linear map d~ 4 restricted to T}4.
d~ 4 is an elliptic operator and thus 14 is Fredholm. By a similar slice the-
orem as Theorem 0.11 (see [8], Proposition 4.2.9 ), we have that (T4/Ga, 7)
is equivariantly diffeomorphic to a m-invariant neighbourhood U4 C B The
disadvantage of having to work with equivariant maps between infinite di-
mensional spaces is overcome by the Kuranishi method (see [14], Lemma

4.7):

Lemma 2.22. (Kuranishi’s method) Let U and V be G-Hilbert spaces and
let: U~V be a G-Fredholm map so that ¥(0) = 0. If § = dipy: TUy —
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TVy is the differential at the origin, then there are orthogonal splittings
U=ZKer(d)®d U, V =1Im() @ V' and an equivariant map F: U - v,
F(0) = 0, dFy = 0 such that ¢ = (6 + F)(«), where a is an equivariant
diffeomorphism of U with o(0) = 0.

Essential in [17] is the following fact:

Proposition 2.23. ([17], (1.11))

Let M and N be finite dimensional G-representations and let f: M — N
be a map in G-general position with respect to 0 € N. Then we can perturb
f to f' such that the representations Ker(df'y) and Coker(df’y) have no

representations in common.
Then Lemma 2.22 and Proposition 2.23 prove

Proposition 2.24. Let Fredg(U,V) be the space of G-Fredholm maps.
Then the subset of the maps in Fredg(U,V) which are in G-equivariant

general position with respect to 0 € V, is open and dense.

Proposition 2.24 is the equivariant version of Sard-Smale theorem (see [8],

pp. 145) and it makes the following definition possible:

Definition 2.25. Let ¢ be in Fredg(U,V) so that ¢(0) = 0. Let
¢ Ker(dig) — Coker(diy)

be its finite dimensional reduction map: ¢ = pr o Y|Ker(dyy). Lhen P is
in general position with respect to 0 € V if and only if ¢ is in general

position with respect to 0 € Coker(diy).

Let us note that through the regularity theorem of PDE’s, since our PDE

(2.7) is elliptic with real analytic coefficients, the solution (M, ), when
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non-empty, supports a real analytic structure and, according to [20], it
is triangulable. In order to place (M, ) in equivariant general position,
Hambleton and Lee developed in [17] a procedure so that one can equiv-
ariantly perturb o, a G(m)-equivariant map of infinite dimensional spaces,
(see Remark 2.21) to an equivariant general position with the zero sec-
tion. The map o is not Fredholm. To place o in general position means to
place its slice reductions 14, which are Fredholm maps, in general position
with 0 € 2_(gg) according to Definition 2.25. Consider I a locally finite
G(m)-equivariant open covering of a neighbourhood of o=1(0) C A. Using
a partition of unity associated with the covering U (see [8], pp. 143-144,
155), due to Proposition 2.24, one can perturb o to an arbitrarily close (in
the compact-open topology) equivariant map o, sequentially, on each open
set of U, such that eventually o, is in equivariant general position with re-
spect to the zero section. The equivariant moduli space in general position
that is thus obtained is (0¢71(0)/G, n). The Kuranishi method applied to
1 = 14 implies obtaining general position with respect to 0 for the finite
dimensional map ¢4: Ker(diyy) — Coker(dyy), and we can use Proposition
2.13. From general elliptic theory, we have the orthogonal splittings in the

Sobolev norms:
Q'(ge) = Kerda* @ Imdy, 9°gp) =Kerdy @ Imda* (2.12)
Then, for a fixed connection A, we have
H) = Ker(dg)o, H?% = Coker(d)o

where H) = E%A, H?% = Cokerd™ 4, and HY = the Lie algebra of G, are

the cohomology groups of the G(7) 4-equivariant elliptic complex (2.8) and
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thus we have an induced G(r)4-action on H}, (see [8], pp. 135-139, and
[17], pp. 27). Moreover

Proposition 2.26. For any connection A € A, a neighbourhood of [A] in
(M, 1) is modelled on (¢4 (0)/Ga, 7 4), where ¢pa: HYy — H2 is the G(r) 4-
general position map of finite dimensional spaces obtained as in Definition
2.25 by applying Kuranishi’s method to a G()a-equivariant perturbation of
the map (2.11).

In view of Proposition 2.18 and Proposition 2.26 we have:

Theorem 2.27. The w-equivariant moduli space (M, ) is a Whitney strat-
ified space with open manifold strata MZ‘W,), where © is a subgroup of m and
M* C M is the set of irreducible connections. Fach such stratum has

a smoothly locally trivial equivariant cone bundle neighbourhood in (M, )

(see [16] pp. 720).

By Proposition 2.17 the map ¢4 in Proposition 2.26, when in general posi-
tion, is stratumwise transverse to 0 € H% and one obtains (see also Propo-

sition 3.9):

Proposition 2.28. The formal dimension of My is the index of the n'-

fized fundamental complex

7

Q(gp)™ % Q'(ax)" ~ Q- (gp)"
for A a connection in M.

Even when in general position, the moduli space (M, ) just obtained
may not be compact. In the non-equivariant case the Uhlenbeck com-

pactification method consists in taking the closure of M. in the space
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k
IMi = MU My x Symt(X), where Sym'(X) = X x -+ x X/ ~,
k lL:Jl( k-t X Sym'(X) (X) =, /

{ times
with (z1,...,2;) ~ (y1,...,y) if there exists a permutation s € 2; such that

s{z1,.. 7)) = (y1,...,y). The elements ([A], (z1,...,21)), [A] € My, of
I M, are called ideal connections and to each such an element is assigned
a curvature density given by

Fap + 80236,

r=1
where §,, denotes the Dirac distribution in z,. Then the topology of JM
is given by a certain convergence as measures for the curvature densities of

a sequence of ideal connections (see [8], 4.4.1). The main result is:
Theorem 2.29. The closure of My in IMy, is compact.

In [16] it was shown that one can equivariantly perturb M, such that the
closure m has a natural m-action and is compact. We briefly describe
the process here as well by restricting ourselves to the case of our interest:
c3(E) = —1 and X = #CP? The group n may still be any finite group
with the required action.

In the non-equivariant setting one constructs a collar in M which
is diffeomorphic to X x (0,1). By adding to M the closure of this collar,
the moduli space becomes compact. The collar is a subset of the set of
concentrated connections CC which is defined in ([14], pp. 129), as a subset
of the set of connections [A] whose energies are bounded: [, w(A) < 972,
w(A) = |F4*+1. In [14], Thm. 8.31, it is shown that M NCC is non-empty.

By [14], Thm. 8.28., the system of nonlinear equations in A € (0, c0) and
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z € X, parameterized by CC and depending on a fixed metric on X

R(\, z,w(A)) = 4n? (2.13)
OR
b—;()\,x,w(A) =0

has a unique solution (z(A), A(A4)) depending smoothly on A € CC and on

the metric, i.e. there is a well defined map
(z,A): CC — X % (0, 00). (2.14)

Also, for some Xy, we have H2 = 0 if A(4) < Ag. Then My, = X710, ) is
smooth. By [14], Thm. 8.36. we know that M \ M, is compact.

For the equivariant setting, in [6],(1.8), it is proved that the system 2.13
is m-invariant and thus the map (z, ) becomes m-equivariant with respect
to the product action on (X x (0,X), 7). The fact that H3 = 0 for A €
M, ensures that the section o (see Remark 2.21) is in general position
(actually equivariantly transverse) with the zero section on the part of A
that projects over M. We equivariantly perturb ¢ on the complementary
part as above and we obtain an equivariant compact moduli space with a
collar equivariantly diffeomorphic to (X x (0, Ag), 7) with the product action.
The inverse map of (z, ) is denoted by 7 and is called Taubes embedding.
The immediate consequences of this construction that we are going to use

in the sequel are:

Corollary 2.30. ([16], Cor. 3.2.) Let 7’ be a subgroup of © and let S,
be the normal slice representation of 7' at x € X. Then there exists a 5-
dimensional manifold H C M* such that o connected component C of H

has normal slice representation Sy and C N My, = Xu x (0, Ag).

and
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Corollary 2.31. ([16], Cor 3.3.) If z is an isolated fized point in X™ such
that its slice representation S, is not equivalent via an orientation reversing
isomorphism to the slice representation S, at any other fired point y, then
there exist a m-fired path v, : [0,1] — M, v,((0,1)) € M*, such that v,(0) =

z, 7= N My, = {z} x (0, X0) and v,(1) is a reducible connection.

Himan answered in general a question asked by Hilbert (see [19]): When
the smooth action of a Lie group on a smooth manifold X can be made into

a real analytic action on a compatible analytic structure on X7

Definition 2.32. Let G be an arbitrary Lie group and let M be a locally
compact G-space. Then the action of G on X is proper if the map GxM —
MxM, (g,z) — (gz,z) is proper or, equivalently,for any N C M compact,
the set Giyy = {g € G | gN O N # B} is compact. The action is Cartan
if for any point of X there is a compact neighbourhood Y such that Gy is

compact.

Notice that the action of any finite group = is proper on a locally compact

space.

Theorem 2.33 ([19], Thm. 7.1.). If M is a Cartan G-manifold, then
there ezist a real analytic structure § on M such that the action of G on

MP s real analytic.

This generalizes the earlier result of Palais ([26]) for G a compact Lie group.

In our case, Palais’ result still suffices to state:

Proposition 2.34. The 7 action on M is effective, i.e. if a subgroup = of

m acts trivially on an open set of M*, then 7’ = 0.
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This is due to the fact that, by Theorem 2.33, we can choose a real ana-
lytic equivariant metric on X which induces a real analytic structure on AM*.

We know that the non-equivariant moduli space is orientable (see [8], Chp.5).

For (M, ) we have:

Lemma 2.35. ([16], Lemma 8) Let m = C, with p an odd prime. If C C

M*, is a connected component, then C is an orientable manifold.

Remark 2.36. The moduli space might be disconnected but there is a con-
nected component whose closure contains the Taubes boundary X and the
set of reducible connections. From now on M will denote that component.
Also one can see that the closure of M is the same as the closure of M*.
We’ll employ the latter notation to emphasize that the reducible connections

appear in the closure of the manifold of irreducible connections M*.



Chapter 3

Reducible Connections

In this chapter we denote by 7 the cyclic group of order m, with m an odd
positive integer. The group 7 is considered to act smoothly and effectively
on X = %CP2 . The connected sum X is simply connected. We concentrate
on the case n > 1. Also, because we are making use of the n equivariant
moduli space presented in Chapter 2, 7 acts on X by isometries relative to
a real analytic metric on X. Let’s recall also that the action of & preserves

the orientation on X, since m is odd.

Definition 3.1. If X and Y are G-spaces, A is a G-invariant closed subset
of X, and f: X — Y is an equivariant map, then we say that the space
denoted by X Uy Y and equal to X UY/ ~, where a ~ f(a) for all a € A,

is obtained by equivariant attaching via the map f.

Notice that the equivariant attaching process provides a way to construct

new G-spaces from given ones.

Definition 3.2. Let X and Y be connected G-manifolds of the same di-

mension and let z and y be fired points in X% and Y©, respectively. If the

55
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tangential representations of the group G at the fized points on TX, andTY,
are equivalent to a representation V of G, and there ezist the G-equivariant

embeddings

fe: (D(V),0) — (X, 2) ,
fy: (D(V)7O) — (Yay) ’
where D(V) denotes an open disk in V' centered in 0 and f, reverses orien-

tation, then the G-equivariant connected sum of X and Y is defined by

the equivariant attaching
X#Y = (X\D(V)) Uy YAD(V)) ,
with | identifying f. and f, on the sphere boundaries of the two D(V)’s.

We present first a short account of results and notions about finite group
actions on CP? or on a homology CP? that we are going to use. We can
regard CP? = {[20,21,2] | z € C,[to,t1,t2] = [20,21,22] & 3z € C\
{0} such that 2z = 2t;,i € {0,1,2}} C C*. Then we define

Definition 3.3. Let X be a smooth manifold acted locally linearly by the
finite group G. The fixed point data of the action consists in the fized

oint set XC together with the tangential representations of G at every = in
p g

X6,

Definition 3.4. The finite group G acts linearly on CP? if the action is

induced from a faithful comples representation T — Gl3(C).

Definition 3.5. Given the manifold X = CP? acted on by a finite cyclic
group G and z € X G we say that the fized point data of z is linear if the

tangential representation at T is the same as the one of a linear action.
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A description of the linear fixed point data is offered by the rotation
numbers: Let G = 7 = C,, and let ¢ be a generator of 7. Then, in a
proper complex basis, the associated matrix of ¢t: CP? — CP? describes
the action by t[zo,21,2) = [20,%21,& %), where £ = exp®™™ and a, b
are integers mod m. Let’s observe that t[zg, 21, 2] = [ %20, 21,6" %2 =

[€ 712,902, 2o]. Thus the fixed point set of the action can be:

1. three isolated fixed points represented by [1,0,0],[0,1,0] and [0,0, 1},
when a # b;

2. one isolated fixed point represented by [1,0,0] and a 2-sphere repre-

sented by [0, 21, 2], when a = b.

The pairs of rotation numbers (a,b), (—a,b — a), (—=b,a — b) describe the
linear fixed point data, each pair defining the complex representation at a
fixed point. If one rotation number is zero then we have a fixed sphere. If
both rotation numbers were zero then CP? would be fixed by the group G
and the action would be trivial, i. e. non-effective, in contradiction to our

assumption on the action of 7 in this chapter. In fact we have:

Proposition 3.6. The linear action of m = Cp, = (t) on CP? is effective if
1 0 0
and only if the representation of the generatort = | 0 £* 0

0 0 ¢
is such that g.c.d(g.c.d.(a,m), g.c.d(b,m)) = 1, where g.c.d(z,y) denotes the

greatest common divisor of the integers x and y.

Proof. Let’s assume that there exists 7' a non-trivial subgroup of = that

acts trivially. This is equivalent to: there is k a divisor of m, such that tk
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generates m = C,,; and t* acts trivially on CP?. Since, for any = # 0,
&* acts freely on C\ {0}, we must have m|ak and m|bk. Then mm; = ak,
mmy = bk, m = kki, and kymy = a, kyme = b. Thus ki|g.c.d.(a,m),
kilg.c.d.(b,m) and thus k; = 1. But k; = m/k is the order of 7', a contra-

diction with the assumption ' non-trivial subgroup. |

If the tangential representation at one fixed point is given by the pair (a,b),
then all the other pairs of rotation numbers giving an equivalent represen-
tation are (b,a), (—a,—b) and (b, —a).

The P. A. Smith theory shows that if G = C,, with p prime, acts smoothly
on CP?, then the fixed point set consists of either three isolated fixed points
or a sphere and one isolated fixed point (compare [7], VIL., Thm. 3.2.).
Wilczynski in [35] and Hambleton - Lee in [15] have shown that the only
finite groups that can act locally linearly on CP? are the groups that act
linearly. Wilczynski and Edmonds - Ewing (see [10]) proved that the fixed
point data of the action of G = C, on CP? is linear too. The following the-

orem which we are going to prove in Chapter 5, is central to our discussion:

Theorem 3.7. The fized-point data and tangential isotropy representations
of a smooth w-action on X are the same as those of a w-equivariant con-

nected sum of linear w-actions on the components CP2.

The same result, in the case when the induced 7 action in the homology of
X is trivial was already proved in [16] and we are following the arguments

presented there closely.



CHAPTER 3. REDUCIBLE CONNECTIONS 59
3.1 The equivariant structure of the set of
reducible connections

By Proposition 1.11 we have an induced action by permutations in homol-
ogy. We remark that the hypothesis that m acts smoothly is crucial in
Theorem 3.7 (see [16], Thm.21). As in [16], the smooth m-action enables
us to give a proof of Theorem 3.7 using the m-equivariant self-dual Yang-
Mills moduli space of a m-equivariant principal SU(2)-bundle of instanton
number ¢;(P) = —1. For the next results we consider X and 7 in the more
general assumptions of Chapter 2.

It is classical that the equivalence classes of U(1)-complex bundles over the
simply connected manifold X are in bijection to the space of homotopy
classes of maps [X, BU(1)] which is isomorphic to H?*(X;Z). In particular,
to any class in H2(X;Z) corresponds an equivalence class of a complex line
bundle over X. Let A € A be a reducible connection. Then its gauge
isotropy group G4 is the centralizer in SU(2) of the holonomy group of A
which is S§. This implies G4 = S, (see [14], Thm. 3.1.), and

E=Le®L™, (3.1)

where L is an S*-bundle and L™t is I with the reverse orientation. Conse-

quently
g~ T7® L%, (3.2)

where 7 is the trivial real line bundle over X and L®? is the bundle obtained

from L by tensoring it with itself. Following ([14], pp. 82), the complex
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(2.8) splits
(DA N—— ¢ — s 0
< & & (3.3)
QO(L82) %, ure?) L4, o (18?)

and accordingly we have also an orthogonal splitting in cohomology:
Hj(ge) =~ H(X),
Hj(gp) ~ HA(L®") @ H'(X)

Hi(ge) = HA(L®*) ® H2(X) (3.4)

where H*(X) is the cohomology of the de Rham complex which is the first
summand complex in (3.3). Since A is reducible we have G4 = 5! isotropy
group of A € A and an action of S? on the G-slice T,y and on Q*(gg) such
that the map 4 of (2.11) is S'-equivariant. Then around A, the moduli

space is modelled by

¢4~ (0)/5" (3.5)

where ¢,: Hi(gg) — H%(gg) is the finite dimensional S'-equivariant map

obtained out of ¢4 by Kuranishi method: i.e.
¢a: HY(L®?) & HY(X) — HA(L®?) @ H2(X) (3.6)
The action of 7 on B induces a stratification of Bs).

Proposition 3.8. The group G4 = S* acts trivially on H'(X) and H2(X)
and it acts freely except in the origin (i.e. by complex multiplication) on
the finite dimensional complex spaces HY(L®?) and H3(L®?). If the com-
plex dimensions of HY(L®?) and H%(L®?) are q and p, respectively, and if
HYX)=0and H2(X) =0, theng—p=3



CHAPTER 3. REDUCIBLE CONNECTIONS 61
Proof. (see [14], pp. 67-68 ). B

Let B,.y be the subset classes of reducible connections. The local structure
in [A] € Byeq of M N B, is given by the zero set of the Fredholm map
(14)94 which is the restriction of the map 44 to the Ga-fixed set in the
slice T4 (see also Remark 0.17). Then the corresponding restriction of the

map ¢4 at (3.6) is
(¢a)%4: HH(X) — HZ(X) 3.7)
and we obtain a new feature of the equivariant moduli space (M, r):

Proposition 3.9. The gauge classes of reducible connections form a -
equivariant substratified space Myeq = M\M* in (M, ). For any reducible
SD-connection A and any subgroup ©’ C 74 the dimension of the fized point

set M™ .oq is given by

§ = dimHY(X)" — dim H2 (X)™
with M™ peq =B if § < 0.
Proposition 3.10. ([17}, Prop. 2.14) I[f HY(X) = H2(X) = 0, then we can
perturb M such that M,.q is a union of isolated points and a neighbourhood
of such a point A has a cone structure obtained by factoring the zero set of

G(m) a-general position map by G4 = S*. In addition the dimension of a

7 4-stratum is determined by the index of the subcomplex

QO(L®2)7‘A da Ql(L®2)1rA d”a Q_(L®2)7r,4

We return to the hypothesis on X and 7 made at the beginning of this

chapter.
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Lemma 3.11. Let A € B be a reducible connection. Then A is a self-dual

connection.

Proof. This is a consequence of X being positive definite (b~ (X) = 0).
Let £ = L ® L™ be a corresponding bundle reduction. Then A is a con-
nection on L, i.e. A € Q' (gg) = QUX)® Q' (gr). We can therefore identify
the curvature F4 with 2mia, where « is a real 2-form on X . The Bianchi
identity d4F4 = 0 ensures that « is closed and therefore it represents a co-
homology class {o] € H*(X,R). Through the Hodge and DeRham theorems
P(X) = H*(X,R)®Imd® Imd*, where d: Q' (X) — Q?(X) is the differen-
tial operator on real forms on X, we can see that H%(X,R) = Ker(dd*-+d*d)
is invariant under the * operator which interchanges Kerd and Kerd*.
This implies that, for a fixed metric on X, we have the decomposition
H?*(X,R) = H,. @ H_ in self-dual and antiselfdual harmonic forms. But
0 =b"(X) = dimH_. Thus [¢] is self-dual and therefore A is self-dual. H

Lemma 3.12. (compare [8], Prop. 4.1.15) The set of the classes [A] € M
of reducible SD connections A is in bijection with the set {£c| Mc,c) =

1} € H*(X), where X is the quadratic intersection form of X.

Proof. Let A be reducible and let £ = L @ L' be its correspond-
ing bundle reduction. The choice of the unordered pair of the S'-bundles
(L, L7Y) is unique modulo the automorphisms of G4. Then [A] corre-
sponds uniquely to the chosen representatives (L, L™1), L.e. to e, where
c = c;(L) € H*(X) is the classifying Chern class of L. But the bundle split-
ting implies co(F) = —c®. Since in our case cy(E) = —1 and since H*(X)

classifies the S'-bundles on X, by Lemma 3.11, the result follows. |
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For the equivariant case we have: Let A be a reducible connection and let
74 be the isotropy group of {A] € (B, ). Let c € H?(X) be the unique

pair of cohomology classes corresponding to [A] by Lemma 3.12. Then

Lemma 3.13. There ezists a splitting E = L& L™! as in (3.1), i. e.
given by the reduction coming from the holonomy of A, so that L is a m4-

equivariant S -bundle with the first Chern class ¢1(L) = c.

Corollary 3.14. If A is a reducible connection, then the action of G(m)4

on the gauge slice Ty is the product action S* x 74.

Proof. We know that G4 ~ S! is a normal subgroup in G(7)4 (compare
(2.5)) and 74 = G(m)a/Ga. Because G4 is abelian, there exists ¢: mq —
Aut(G4) defining map as in Definition 0.30and the complex line bundle L
is a (74, ¢, Ga)-bundle in the sense of Definition 0.31. By Lemma 3.13, L is

a mq-equivariant bundle, i.e. ¢ is trivial. Hence G(74) is a product. B
The following lemma is the main result in [22]:

Lemma 3.15 (Lashof, May, Segal). Let 7 be a compact Lie group and
let G be a compact abelian Lie group. Then the space of m-homotopy classes
of m-equivariant maps [X, B(m,G)]" (see Theorem 0.42), which classifies the
m-equivariant G-bundles over the G-manifold X is isomorphic to [E7T X,

X, BG).

Proof of Lemma. 3.13 Let n' = m4 be the isotropy group of [A] € (B, ).
Since S! is a compact abelian Lie group, by Lemma 3.15 we have [X, BS!]™ ~
[Er" xn X,BS'| and, by the classification of S* bundles, [X, BS!|™ =~
H?*(E7' % X,Z). Therefore the n’-equivariant S*-bundles over X are clas-

sified by the 7'~ Borel cohomology group of X, H?(En' X+ X, Z). According
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to Lemma 3.12 there is a splitting F = £ & £ such that ¢;(£) = ¢ and
g*L ~ L as S'-bundles for any g € n’. Therefore ¢ € H*(X)™. We have
to show that there is a 7’-equivariant S'-bundle L with ¢i(L) = ¢, i.e. the
map

H(En' xm X) 5 HH(X)™

is surjective, where ¢* is the induced map in cohomology by the natural
inclusion i: X - En’ X X.

Considering the Lerray-Serre spectral sequence E,*? of the fibration Ex’ X/
X — B7' we have

By = H'(n", {H(X;Z)}).

From group cohomology, E,"? = H(x'; H*(X;Z) = H*(X;Z)™ and, be-
cause 7' is cyclic, H3(n') = 0. Since E,*’ converges to H*(Ex' x . X), we are
done if we show that E9” survives to Ey. Let’s observe that the differential
dy: Eg? — E2' is zero because X simply connected implies E3' =0 and
then ds: Ey? — E3°. But E3° = H3(x’) = 0. Therefore all the possible
differentials d,, r > 2 vanish which means that B,*? = H?(X;Z)™ survives

to F. B

Lemma 3.12 proves more: the set of reducible SD connections is an invariant
of the bundle £ — X and, since A = n(1), we have a finite number of classes
of reducible SD connections in B, one for each element e; of the standard

Z-basis of H?(X). We have showed (Chp.1, (1.9)) that

Hy(X) = @2l /m

where {m;}, are the isotropy subgroups of the action of 7 on Hp(X). By
3.13 and by identifying the Poincaré dual spaces Hy(X) and H?(X) we can
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now summarize:

Corollary 3.16. Let {e1, €2, .- ,en} be the set of the standard Z-basis of the
free Z-module Ho(X) and let {[A1), Az, - -, [An]} be the set of the classes
of reducible connections. Then we can rearrange them if necessary such that

the map e; — A; 18 @ n-equivariant bijection.

Remark 3.17. The isotropy types in the stratum of reducible connections
in (M, m) might not be all the isotropy types in (H 2(X;Z),x). For example,
if m = Z/p acts on H?(X;Z) by permuting the standard basis {e1,...,€p},

then the isotropy of each e; is {1} but the isotropy of ey + -+t €p 1S T.

3.2 Cones over linear actions on CP%s

The remainder of this chapter is dedicated to proving the following theorem

which is the analogue of [16], Thm.15.:

Theorem 3.18. If  acts smoothly on X then the classes of reducible con-
nections form a discrete singular subset of the equivariant moduli space
(M, ™) and each reducible connection class [A] has a m4-invariant neigh-
bourhood N4 in the equivariant moduli space with the properties:

1. Ny is 7 4-homeomorphic to the cone of a linear action over CP2.

2. N is smooth away from the corresponding cone pownt.

8. N4 and the cone of a linear m4-action over CP? are equivariantly dif-

feomorphic away from the cone point.

Let A* = N N B*, where N = T/T'4 is a neighbourhood of a reducible

connection A in the non-equivariant case (7 = 0).
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Lemma 3.19. ( [8], Lemma 5.1.18) The weak homotopy type of N* is that
of CP®>.

Proposition 3.20. ([14], Thm. 4.11 and Cor. 4.10) If b~ (X) = 0 (our
case)and £ — X is a non-trivial SU(2)-bundle of second Chern number
—1,then there exists a perturbation of M such that the cohomology groups
H? are trivial for all A reducible SD-connections on E, and a neighbourhood
of A in the SD-moduli space M is homeomorphic to an open cone over CP¢,
and diffeomorphic off the vertex point, where d = £(6 — 1) and the virtual

dimension of the stratum M* in M is § = 8(—cy(E)) — 3.

In our case § = 5, d = 2 and Prop. 3.20 proves Theorem 3.18 for any A
reducible with 74 = 0, if any, the treatment being the same as in the non-
equivariant case. It is left to show Theorem 3.18 for A € A,.4 with 74 5 0.
Let M be a stratified space (Definition 2.1) with finitely many disjoint
strata M;, ¢ = 0,...,[, M = ‘ L] M; such that each stratum M; is a
manifold modelled by a Hﬂberti;;c’:le Vi. Let z be a point in M; C M.
Then there exists a manifold chart h such that h: D(0,¢) C Vg — M is a

homeomorphism on its image and such that h(0) = z, where D(0, €) is the

disk in Vp = V centered in the origin and of radius e.
Definition 3.21. The link of the singularity = € M; in the stratum M,
18

lk(z) = R(8D(0,€)) N M;

According to Theorem 2.27, (M, 7) is a Whitney stratified space with re-

spect to the action of 7 and, for any 7’ isotropy subgroup, M, is an open
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manifold stratum. Let [A] be the gauge class of a reducible SD-connection
whose isotropy group 74 is non-trivial. For what follows we need to describe
the link of [A] in the closure of the free stratum of (M*, 7).

Let ¢4: Hl(gg) — H?4(gr) be the G(n) 4-equivariant chart that describes
the moduli space around A. Because X is a simply connected positive defi-
nite manifold H*(X) = H? (X) = 0 and by (3.4), ¢a: HL(L®?) — H}(L®?).
By Corollary 3.14, G(7)a = Ga x ma. Thus ¢4 is S X 74-equivariant.

We denote V = HL(L®?%), W = H%(L®?), ¢ = ¢4 and we place ¢ in S x 74~
equivariant general position with respect to 0 € W. Then (Proposition 2.26)
a neighbourhood of [4] in (M, 7) is modelled on (¢~*(0)/S?,74) and, be-
cause equivariant general position implies stratumwise transversality, we
have

dim ¢ (0), = dim Vs, — dim W™

for any w4 subgroup of m4 when ¢7*(0) # 0. For ¢ > 0 let’s consider
#710). = {a € ¢71(0) | |la}]| = €}. Because [4] is isolated in B, we have
¢~ 1(0)/S* € M* for a small enough e. Then the link Ik(A) of [4] in the
closure of the free stratum of (M?*, ) is the intersection between ¢~1(0)./S*
and the closure of the free stratum of (M*, 7).

Let 7 be a eyclic group of odd order m. Let V and W be finite dimensional
complex representations of . Then S! acts as multiplication with scalars
on V and W. Obviously the action of S! is free except at the origins which
are fixed. Let xg,...,xm-1 be the set of irreducible characters of the 7-

action. Then (Proposition 0.25) the character of the representation V is
x(V) =2 muxs and
V= GB V(xx)
1

k=0,...,m~
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where V(xx) = C{xx)™, C(xx) is the degree two complex irreducible repre-
sentation of character xi (see Proposition 0.28), and my = (x&, x(V')) is the
multiplicity. In similar notation, W = . OQ} 1W(Xk), W(xe) = Clxx)*,
Ik = (X Xx(W)).

Let g be a generator of m4. Then choose the representatives yr = xx(g9) =
e?matk/n 2 — 1 Then the representation C(x) is given by gv = yzv. If
v # 0in V(xx), then xx lgv = v. It follows that the isotropy group of v €
V(xx) is (), = m(xx) = (xx~'g) and therefore m(xx, x»') = 7(xx) N7 (xi)
is the isotropy of v € V(xx) ® V(xx). Then we have the isotropy structure
of V:

Proposition 3.22. ([17], pp. 22)

sl = @) Vi)

j=lpr
Vatasgoce) = €D V) = V00D 7005 - 300) G k)
J=lor
and in the notations above
Proposition 3.23.
¢ (0™ =0

-1 —
¢ (O)w(x;cl peoXke)

Q:Zf ij< lea

1<jsr 1<j<r

a submanifold of real dimension 2 3. m; —2 > l;, otherwise.
1<5<r 1<G<r

Remark 3.24. Following Proposition 3.23, the free stratum ¢~1(0), is ei-

ther empty or of dimension 2dim V —2dim W. So far nothing rules out the
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possibility that, for a sequence of characters xp,,..., Xk, 2, mj— . ;>
1<j<r 1<j<sr

dimV —~dim W. If so then dim ¢~1(0) y = dim $7*(0), which means

ﬂ(Xkl S"‘!xk‘r

(see Definition 2.4) that the stratum ¢~1(0) is not contained in the

T{Xky e Xkor )

closure of the free stratum ¢~1(0), but the closures of these two strata do

mtersect.
However in [16], Lemma 9, it was shown:

Lemma 3.25. The closure of the free stratum in M*N¢~1(0)/S? contains
all singular strata of dimension < 5. The link of any singular point of

(M*N ¢ 10)/S*, m4) in the free stratum is connected.

In particular [k(A) is connected and, for any singular point p €

Ik(A), the link lk(p) in the free stratum of (Ik(A),74) is connected.

Lemma 3.26. ([16], Lemma 10.) The link [k(A) is a homotopy 4-dimensional

Poincaré complez.

Corollary 3.27. ([16], Cor.11.) The link lk(A) is a homotopy CP?.

Let p = dim¢ H} and let ¢ = dim¢ H%. From Theorem 2.28 we have the

dimension § of the free stratum in M*:
§ = —dim H) +dim H} —dim H% = — dim(L(G4)) +2p—2¢ = —14+2p—2g
By (2.9), 6 = 5. Therefore p — g = 3.

Remark 3.28. The difference in real dimension between two different isotropy
strata in (M, ) is even and possibly zero. The dimension of any nonempty

isotropy stratum of (M, w) is odd. The dimension of the free stratum is 5.
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Proof.  This is a direct consequence of the dimension formula s X8t —
— dim(HY)™*5" 4-dim(H )™ 5" —dim(H%)™*S", for n’ < r-isotropy stratum
and the fact that the action of 74 x S! on HY, the Lie algebra of St is
trivial and V = HY and W = H? are complex representations (Proposition

3.23). |

Let C be a non-compact connected component of the stratumM*,, for
7' < 7 a nontrivial subgroup. Following Remark 3.24 and Remark 3.28 we
have dim C odd and possibly dim C > 5.

Because the determinant line bundle A(F) associated with the elliptic com-
plex (2.8) has a canonical trivialization over B, it induces an orientation on
M which induces the orientation on X if X is identified with the Taubes
boundary of M. By fixing [4] in ¢ C M, where 7 = Z/p, p an odd
prime, the elliptic complex (2.8) splits in a n-fixed complex and its orthog-
onal complex and the line bundle A(E) is the tensor product of the line

bundles of complexes in which (2.8) splits. Then we obtain:

Lemma 3.29. ([16], Lemma 8.) If 7 = Z/p with p an odd prime and if

CCMp,isa connected component, then C is an orientable manifold.

We investigate the intersection properties of C' in the moduli space
and we need to introduce Donaldson’s y-map (see [8], Chp. V).
Let P — X be a SU(2)-principal bundle and let P be the pull-back bundle
of P via the projection map T x X — X, where T is a parameterizing

topological space.

Definition 3.30. A family of connections in P parameterized by T is a
family {A}ier so that A, is a connection in Py, = Pyuyxx and P; is isomor-

phic to P.



CHAPTER 3. REDUCIBLE CONNECTIONS 71

Remark 3.31. P might not be isomorphic to T x P.

We consider now P when T = A*. The gauge group G does not act trivially
on A* x X (the action is diagonal and the gauge isotropy is isomorphic to
the centralizer C(SU(2)) = Z/2). The quotient bundle obtained from P
dividing with the action of G is denoted by P and is a S0(3)-bundle over
B* x X. Let p = p;(P) € H*(B*) be the first Pontryagin class. Using the
slant product operation /: H4(B* x X) x Hy(X) — H?*(B*) we have the
map

p: Hy(X;Q) — H(B* Q) (3.8)

-1

wE) = @)/

and the following result:

Lemma 3.32 ([8], Prop. 5.1.21). For any ¥ € Hy(X;Z), the restriction
of u(X) to the copy of CP™ which links the reducible connection A (see
Prop. 3.20) is given by

p(X)lepe = —(a(L), %) -k,
where L is the line bundle from (3.1) and h € H*(CP*) is the positive

generator.

The restriction to CP* of u(X) is defined as follows. The rational

cohomology sequence
H*(B) — H*(B*) — H3(B;B*) ~ H3(U,0U) ~ H*(oU)

is exact, where U is the union of all cone over CP* neighbourhoods around
every reducible. Let i: CP*™ — B* be the inclusion map. Then p(X)|cpe
is by definition i*u(X) € H?(8U)
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Lemma 3.33. ([16], Lemma 12.) IfdimC > 5 then C is empty. If dimC =
3, then the closure C C M must intersect the Taubes boundary M =
X x {0} ¢ M.

Proof. The non-compactness condition on C implies that its closure must
intersect the set of reducible connections or the Taubes boundary X. Recall
that (M*, 7) is a Whitney stratified space. If dim C' > 5, then by Whitney’s
Condition (a), the closure of the free stratum (of dimension 5) does not
intersect C (see Remark 3.24). However, the closure C' may intersect the
closure of the free stratum only at reducible connections of isotropy =’

The next possibility is dimC = 3. Let’s assume that, in this situation as
well, C does not intersect M but at reducible connections and let (M, Z/p)
be in Z/p-equivariant general position for Z/p subgroup of n’. Then the
deformed stratum C’ of C is fixed by Z/p. Let [A1], ..., [A;] be the reducible
classes which are limit points of C’ in B*. By removing from C’ small
open neighbourhoods around each [4,], we obtain an oriented manifold W
whose boundary components ;W are homotopic to CP¢, where the real
dimension of W is 2d+1, d > 1. Let L; be the line bundle coming from the
reduction induced by [4;], ‘let e; € Hy(X) be the dual of ¢;(L;), and let h; €
H?(8;,W) ~ H?(CP?) be the positive generator. Let (W] € Hagyq (W, 0W)
and [OW] € Hyq(0W) denote the fundamental classes (in this proof the
homology and cohomology are considered with Z/2-coeflicients). We have
a natural homomorphism 0: Hog (W, 0W) — Hyq(0W) such that 9[W] =

[0W] and we have the exact cohomology sequence:

H2W) 5 H¥ (W) 5 HMH (W, W) .
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Then
(i(en)?, [BW]) = (8(fulen)?), W))

for a cocycle representative fi(e;)? of p(e;). From 3.32,
pled)la;w = —{er(Ly), exph; = dijh; (3.9)
Also p(es)|o,w = i*(p(es)lw). Therefore (ji(e;)?,0W) = 0. But

(e, W) = 3 (e, (W) = (b, [OW]) =

This is a contradiction coming from the assumption that C is nonempty

and intersects M only at reducible connections. B

We set up new notation: let ¢: V — W be the m4-equivariant map ¢4: Hj —
H? in 7, general position from Proposition 2.26. Then a 7 s-invariant neigh-
bourhood in (M, ) is diffeomorphic to ¢(0)/S*. Let x; be the irreducible
characters of the 7 4-representation V. Then V = @V(Xj) with V(x;) irre-
ducible representation. Let Vg = Ker(d¢o) and Wy = Coker(d¢g). Then we
have the finite dimensional 7 4-representations decompositions: V = Vo@V’
and W = Wy@W' with V' and W’ isomorphic as complex finite dimensional
spaces.

We restrict to 74 a cyclic group of odd order m. Then the representations V'
and W enjoy the properties described in Proposition 3.22 and Proposition
3.23. Also, by [17], (1.11), V5 and Wy can be assumed to have no representa-
tions in common. Let x; be an irreducible character of the representation V
and let mo(x;) = (x;, x(Vo)) be its multiplicity in V5. Then, in real dimen-
sions, dim ¢ (0)r,(y,) = dim Vo(x;) = 2mao(x;) Recall that lk(A) denotes

the link of [A] in the closure of the free stratum of (M?*, 7) and is described



CHAPTER 3. REDUCIBLE CONNECTIONS 74

by the intersection of the unit sphere in V' with the closure of the free stra-
tum in (¢71(0)/S) N M*. The singular stratum associated with V(x;) in
Ik(A) is lk(A); = lk(A) N S(V(x;))/S*, where S(x;) is the unit sphere in
V(x;). Thus, any isotropy subspace of Vj corresponds to a cone over an
isotropy stratum in [k(A) and {lk(A);}; are all disjoint strata. By lemma
3.25, U*N{¢~1(0)/S?) contains all the isotropy strata of dimension less then
5. Therefore mo(x;) < 3. If mo(x;) = 3 then we have a projectively trivial
representation of Vj and a trivial action of 74 on an open neighbourhood
of M*, in contradiction to the effectiveness of the 7 action on M (see [16],

pp. 724). Therefore mo(x;) < 2 and

Proposition 3.34. Any isotropy stratum, different from the free stratum,

in (¢~1(0)/S, w4) has real dimension less or equal to 3.

In view of Proposition 3.34, the fixed point sets in [k(A) are isolated points
or 2-spheres. The next lemma, which can be proved in the more general
case of w4 arbitrary finite group (see [16], Lemma 14.), establishes how

many different singular strata intersect (k(A).

Lemma 3.35. There are at most 3 nonempty singular strata Ik(A); of real

dimension 2mo(x;) —2 in the link (k(A), and > mo(x;) < 3.

xj trred. character of Vo
Proof of Theorem. 3.18 By Lemma 3.35 we have the real dimension dim V4 =

2mo(x;) < 6, and by Proposition 3.8, 6 = dim V—dim W =
X irred. character of Vo

dim V — dim Wy. Therefore dim Wy = 0 and dim V; = 6. This means that

¢ is m4-equivariantly transverse to 0 € W, H} ~ (C?

,m4) near the origin,
and (¢71(0)/S*,74) is equivariantly diffeomorphic to the cone of a linear

action on CP? away from the origin. |



Chapter 4

Linear Models

4.1 Connected sums of linear actions on CP?2
with trivial action on homology

As usual we restrict to m = C,, cyclic group of odd order m. We investigate
the orbit structure and the number of possible orbit types that can arise
on an equivariant connected sum of linear m-actions on CP? when 7 acts
trivially on H,(X), with X = %CP? The connected sum is such that X is
simply connected.

Let t be one generator of w. Recall that a linear action on CP? corresponds
to m acting as a subgroup of PGL3(C) = GI3(C)/(C \ {0}). The matrix

representation of ¢ in PGl3(C) is the conjugacy class of Gl3(C) matrices
1

t = e given by the rotation numbers (a,b) which are integers

gb

modulo m (see Proposition 3.6).

Proposition 4.1. The group generator t has an equivalent representa-

75
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tion in SOg(R) when we replace (a,b) with the equivalent rotation numbers

(—a,=b), (b,a), (—b,—a).

Proof. We can see this if we pass to the real matrix representation 7(£%) =
cos(2ra/m)  sin(2wa/m) )
of the complex representation £*. If A =
—sin(2wa/m) cos(2wa/m)

0

, then r{¢%) = A-r(67) - A and thus r(¢?) and r(§™) are
10

equivalent real representations. Notice that £* and 7% are not equiva-
lent complex representations. Hence we showed that (a,b) and (—a,—b)
are equivalent rotation numbers describing the same real representation

of t. (a,b) and (b,a) give even equivalent complex representations for ¢:

1 1 1 1

ge = 01 £ 011 |
&b 10 e 10
1 £
One can see that the GL3(C) matrices o , 1 and
\ fb fb_a
¢
gob which fix the coordinate complex subspaces of C3, are
1

among the representatives of that class in PG L3(C) represented by ¢. There-
fore ¢ (i.e. ) fixes [1,0,0], [0,1,0], [0,0,1] in CP2. Thus any linear action
on CP? has at least three fixed points and at most three isolated fixed

points.
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Proposition 4.2. Let m = C,, be a finite cyclic group and let 7’ = C) be a
subgroup. If 7 acts linearly and effectively on CP? and t is one generator
given by the rotation numbers (a,b), then @' fizes a 2-sphere if and only if

one and only one of the following cases happens:

I.a=b modl
2. a=0 mod|{
S b=0 modl

Otherwise 7' fizes only {z1, 9,23}, where, in the homogeneous coordinates
for which the matriz of the generator of ' takes a diagonal form, r, =

[1,0,0], zo = [0,1,0], z5 = [0,0, 1.

Proof. #' fixes a 2-sphere is equivalent to the fact that the generator of
1

7, it = gamit , fixes a 2-sphere and this comes to having
gbm/l

two equal diagonal entries. This happens exactly when m|am/l or m|bm/l
or am/l = bm/l mod m. mlam/l & lla; m|bm/l & l|b; am/l = bm/l
mod m & lla — b. Notice that the occurrence of more than one of the
cases above is equivalent to a non-effective action and each case corresponds
to one distinct fixed 2-sphere that contains two of the fixed points z;. If

none of the three cases happens than indeed the fixed point set of ™/ is

{m1a$2;x3}' .

Regarding the orbit types that can appear in a linear action of # = C,,, on

CP? we give the following example:
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Example 4.3. We consider m = 3.5.7 = 105 and the generator ¢ given by
the rotation numbers (a,b) = (10, 3). In view of Proposition 3.6, the action
is effective and the fixed point set of the action consists of three isolated
points represented by z; = [1,0,0], zo = [0,1,0] and z3 = [0,0,1]. By
Proposition 4.2 we see that each Z/3, Z/5, Z/7 fixes a different 2-sphere
and the other two subgroups act on it linearly with the same two fixed
points belonging to {z1, T2, z3}. We thus have five orbit types: (0), (Z/3),
(Z/5), (Z]7) and (Z/105).

Proposition 4.4. The mazimum number of orbit types that can arise from

a linear action of an odd order cyclic group on CP? is 5.

Proof. The group of the action is 7 = C,,, with m odd. We have remarked
that always z; = [1,0,0], z = [0, 1,0] and z3 = (0,0, 1] are part of the total
fixed set or the whole fixed set of the action. Therefore any subgroup 7’ of
7 = Cp, acts fixing these three points. Let z = [z, 23,0] be a point on the
2-sphere Sy of poles z; and x5, different from z; and z,, and let 72 be the
isotropy group of z. Then all the other points on S}, except the poles have
the isotropy mip (We can easily see this from the representation of the linear
action on Si2). We set similar notations: Sag, a3, S13, m13. Any other point
away Sip U Sps U S13 must be part of the free orbit. Thus, in case m;; are all

different, we count the maximum number of orbit types, five. B
Remark 4.5. The isotropy subgroups m;; cannot be all the same either
because the w-action is effective (see Proposition 4.2).

A natural question is (see [11]) if there exists a maximum number of orbit

types that cannot be exceeded by any action of 7 = C,, on X = #CP? for
1
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all odd integers m and all integers n > 1.

We'll show that the answer to this question is negative providing a procedure
to construct an equivariant connected sum of linear actions on CP%s and
an integer m > 0 such that we obtain all the orbits of type (Z/p), with p a

prime dividing m.

Proposition 4.6. Let ¢ and y be relatively prime odd integers, such that
lz] < ly|. Let m = C,, be a cyclic group of odd order m such that m =
py'ps* ... pym is the decomposition of m in prime factors, all of the form
z + ky with k any integer. Then there exists n > 1 and there exists X =
%;ECP2 equivariant connected sum of linear m-actions on the components

such that we obtain r 4+ 2 orbits of types (0), (Z/m), ..., (Z/p,) and (7).

We will describe a way to generate all possible pairs of rotation
numbers appearing in a simply connected manifold which is an equivariant

connected sum of linear m = C,,-actions on 4-dimensional complex pro-

1
jective spaces with trivial action on homology. Let ¢ = & be
¢b
the representation of one generator of m, with a,b < m and such that the
action is effective. A 2-sphere in CP? is fixed by # when a = 0, b = 0
or a = b. Let zy, zq, 73 be the fixed points [1,0,0], [0,1,0], and 0,0, 1],
respectively. We maintain these notations in this paragraph. The rotation
numbers corresponding to the tangential representations at these points are
(a,b) at z,, (—a,b — a) at zy, and (—b,a — b) at z3. An equivariant con-
nected sum of two copies of CP? can be constructed (see Definition 3.2)
only at two fixed points with opposite oriented tangential representations,

i.e. complementary rotation numbers, (a,b) and (a, —b). If we work out an
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equivariant connected sum at x; we obtain four fixed points corresponding
to four pairs of rotation numbers: the initial ones, (—a,b — a), (—b,a — b)
and two new pairs, (—a, —a — b) and (b,a + b). Working out a connected
sum at x5 and then at z3, we obtain the new rotation numbers (a, 2a — b),
(—a+b,—2a+0b), and (b,2b —a), (a — b,a — 2b), respectively. Let’s remark
that the new six pairs just produced together with the three initial pairs are
the all possible pairs of rotation numbers that can arise from an equivariant
connected sum of two linear 7 actions on CP2%, modulo equivalent rotation
numbers . Notice also that these rotation numbers include the case of an
initial fixed sphere as well. More CP?’s can be connected using the fixed
points of the initial fixed sphere, but no new pairs of rotation numbers are
produced because the points on the sphere correspond to the same pair of
the form (a,0). We remark that an equivariant multiple connected sum
cannot be constructed at points along orbits of a type different from ()
because the action was assumed trivial in H,(X).

We can organize the analysis by constructing the following infinite tree
T = (V, E) of valence three as follows: each vertex in V is one copy of
CP?, each edge in E corresponds to two cancelling pairs of rotation num-
bers present in two vertices. The valence of a vertex is the number of edges
coming out of it and which we call incident edges. It is clear that each
vertex has valence three. Any finite equivariant connected sum of linear
actions corresponds to a finite subtree 7" of T and the fixed point data of
the action is read from the rotation numbers corresponding to the removed
edges in T that were incident to the terminal vertices of 7. Without the
loss of generality we can assume that the vertex of rotation numbers (a, b),

(—a, —a+b), (~b,a—b) is the center vertex of T, i.e. the vertex from which
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we start “growing” all the other possible rotation numbers of any connected
sum.

In order to have a better control over these rotation numbers we consider
2-dimensional square matrices that transform the initial rotation numbers
(a, b) in rotation numbers corresponding to each vertex of 7. We call depth
of one vertex the length of the connected path of edges connecting the ver-
tex to the center. The length of a path in a tree is the number of edges
present in that path. Thus, to generate the rotation numbers of the depth

0 vertex (the center), we need the matrices:

10 -1 0 0 -1
I= S = , D= (4.1)
01 -1 1 1 -1

to be applied to (a,b). To generate the rotation numbers of the reversed

oriented tangential representation we need

K =
0 -1

and we need to apply the matrices KI, KS, KD. To generate the depth 1
rotation numbers we apply to (a,b) the matrices SKI, DKI, SKS, DKS,
SKD, DKD, to generate the depth 2 rotation numbers we apply to (a,b)
the matrices SKSKI, DKSKI, SKRKI, DKDKI, SKSKS, DKSKS,
SKDKS, DKDKS, SKSKD, DKSKD, SKDKD, DKDKD, and so
on. By making the notation I = K5 for the matrix that “travels” to the
left along the tree T', and R = K D for the matrix that “travels” to the right,
we obtain the Figure 4.1. Thus we obtain 3 - 2" rotation numbers of depth
n, of which 2" are given by a reduced word of length 2n, and the others by

a word of length 2n + 1. The letters of these words are the matrices K, S
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Figure 4.1: The fixed point data tree of a connected sum

and D. A word is called reduced when the adjacent letters of any letter are

different from it.

Lemma 4.7 (Dirichlet). Let (z,y) be a pair of relatively prime integers.

Then there are infinitely many primes of the form z+ny, with n an integer.
Proof. See ([1], pp. 146) &

We are now ready for the

1 0
Proof of Proposition 4.6. For any k > 0, LF = (~1)F . When
-~k 1

(a,b) are the initial rotation numbers mod m from the tree 7' above, by

travelling always to the left in T along a path v of length & we arrive at
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a a
the rotation numbers L* = (—1)* . According to Lemma

b —ka+b
4.7, for any prime p dividing m we can find k, such that p = ~k,a + b.

Then we consider the connected sum with components the vertices of the
path . By Proposition 4.2, we have then a 2-sphere fixed by Z/p on the
component of depth k,, call it v,. By comparing the rotation numbers at
the parent vertex v,_; of v, we see that v,_; contains the same isotropy

Z /p-sphere (see Figure 4.2). We apply this procedure for p = p; and we

@b L :
#' . k-1
) L
N
Y,_] I# \;’
-\

\
> —~
e
p-fixed spheres

Figure 4.2: The rotation numbers along the tree
find k; for the depth of v,,. Now we bring in p; and we apply the same

procedure starting with the rotation numbers at the Z/p;-isolated fixed

point of v,. Therefore we apply the procedure above for p = py to the

a a

rotation numbers LF1+! = (=1)k+1 . We will find
-—(k‘l + 1)& -+ b

ko such that p; = —koa+b and the equivariant connected sum will be made

along a path of length k; -+ ko + 1 with the depth k; + k3 + 1 terminal vertex
vp, Which has a Z/p,-fixed sphere not fixed by Z/p;. We go on by bringing
in one by one all the other » — 2 remaining prime numbers applying the

same algorithm for each of them. The final path of the connected sum will



CHAPTER 4. LINEAR MODELS 84

have length &y +- - -+ k. 4+ r — 1. Because the p,’s are prime integers, on any
Z /p;-fixed sphere obtained as before, Z/p; acts freely except at the n-fixed
poles, for p; # p;. Thus any Z/p;-fixed sphere contains the isotropy Z/p;-
stratum of the m-action and the connected sum will have then the desired

properties. |

Example 4.8. We construct an equivariant connected sum of linear #-
actions on CP?’s with 6 orbit types, for 7 = Caays.

3315 =3-5-13-17 and all these prime numbers are of the form 4k — 3 with
k=0,k=2, k=4, k=5, respectively (the signs are not important). The
tree of the connected sum and the total fixed point set of the m-action are

illustrated below (see Figure 4.3).

L L L L L
fixed sphere ,Ip ./_—#\\ /}\ ./_}\ /?\ Y
mod 3 \ [ v t - v J
7N T TN

4 ~ N

- ~ ~

fixed sphere mod 5 fixed sphere moé_ 13 fixed sphere mod 17

—

Figure 4.3: An action with six orbit types

We remark that the algorithm above does not address the issue of the maxi-
mum number of orbit types that can appear in a linear equivariant connected
sum of a given number of CP?’s, or the issue of the minimum number of
CP? components necessary to produce a given number of orbit types, but

it may provide the set-up to answer these questions too.



CHAPTER 4. LINEAR MODELS 85

4.2 Equivariant connected sums of linear ac-
tions on CP? with non-trivial action on
homology

We keep the same notations as above. This time 7 does not act neces-
sarily trivially on the homology of X. From Proposition 1.11 we know
that 7 acts trivially on Ho(X) and Hy(X), and permutes the basis ele-

n

ments e; of Hy(X) = @Ze; inducing on Hy(X) the m-module structure
i=1

Hy(z) = @Z[r [my)™, with 7, subgroup of m. Let ¢ be a generator of m. The
k

Lefschetz number of ¢ is L(t) = i(——l)’Tr(t)]Hi(X) >1404+0+0+1=2
with equality only when the re;z)zr(()esentation of t on Hy(X) is regular or a
direct sum of regular representations because only in these cases the trace
Tr(t) of the representation on Ho(X) is 0 (see 1.1). According to Lefschetz
theorem the fixed set Fiz(X,n) is non-empty having Euler characteristic
at least 2. It’s obvious that the manifold X remains diffeomorphically un-
changed if we attach 4-spheres, i.e. X ~ X#5% But we can use linear
m-actions on these spheres to construct the actions to which this section is

dedicated.

Proposition 4.9. The linear action of m on a 4-sphere S* has at most four

orbit types.

Proof. We look at S* as embedded in R®C? acted by the generator ¢ whose
1

SO(5)-representation is e , where €™ = 1 with £ a primitive root

gb
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of unity. This linear action is determined by the rotation numbers (a, ) and
we assume effectiveness by requiring g.c.d.(g.c.d.(a,m), g.c.d.(b,m)) = 1 (see
Proposition 3.6). Let z = (u, 21, 2) be on 5%, i.e. u>+|z|*+|2|* = 1. Then
tr =z < u==xland 2y = z = 0. Let 7’ = C; be a proper subgroup of
7 = Cy, and let assume that = has isotropy #’. As in the proof of Proposition
4.2, the generator t™/" fixes z is equivalent to u = 41 and (I|a or 2, = 0) and
(U|b or z3 = 0). By the effectiveness condition, [ cannot divide both a and b.
‘Therefore the n'-isotropy set may consist of one of the 2-spheres: {z1=0}or
{22 = 0}, less the poles (+1,0,0) or it may be empty. Depending on (a,b)
and m we obtain maximum 4 distinct isotropy groups corresponding to
points sitting on {(£1,0,0)}, {z1 = 0} \ {(£1,0,0)}, {22 = 0}\ {(£1,0,0)},

or on free orbits. | |

The connected sums we considered in the first section of this chapter are
constructed by an iterated procedure, each step being described by Defi-
nition 3.2. For each iteration it was essential to select two n-fixed points
x and y, one in each simply connected and oriented manifold component,
such that the tangential isotropy representations at z and y are given by
the rotation numbers (a,b) and (a, —b), respectively; i.e. there exists a =-
equivariant diffeomorphism between two disks D, and D,, centered in z
and y, which reverses the orientation. The resulting connected sum mani-
fold will be simply connected as well. Essential in Definition 3.2 is the fact
that z and y are points of the same isotropy on each manifold allowing us
to identify disks centered in the points of the same 7-orbits. Let (M, )
and (N, ) be oriented #m-manifolds of the same dimension such that M is

simply connected and N = 7 x,» P with ©’ subgroup of = and P simply
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connected 7'-manifold. As 7 is a discrete group, N is a disconnected mani-
fold diffeomorphic to a disjoint union of ord(x/7’) many P’s. Let = € M,
y € Ny and let D, ¢ M and D, C N be open disks centered in z, and
y such that D, C S; and D, C Sy, with S, and S, the linear slices of the
m-action in z and y (see Definition 0.10). Because both z and y have the
same stabilizer, ', there exists a 7’-equivariant orientation reversing dif-
feomorphism f: D, — D,. The equivariant connected sum we construct is
obtained by the equivariant attaching that identifies via the diffeomorphism
F:7mXw Dy — 7w X Dy, F =7 Xy f, the m-invariant sets 7 x,» 4; and

T X Ay where A; and A, are annuli in D, and D,, respectively.

1
Example 4.10. Let 7 = Z/15. Let t = e be the SOg(R)-
gb
representation of a generator of m, with £ an order 15 primitive root of
unity. Let (M,7) = (8% ) and let N = 7 X, CP?, where 7' = Z/5
and the actions are linear. Then n/7’ = Z/3 acts freely on M, and on
Nr = (w/7') x CP?, (see Corollary 0.16). We choose (a,b) such that the
actions of m on M and N are effective and such that b= 0 mod 5. Then #’
fixes a 2-sphere on S* and on each CP? (see Proposition 4.9 and Proposition
4.2). Then we have M™ = 52 and N™ = 7’ x S%. We pick z € M, S, slice
inz, D, C S, a disk centered in z, and we pick in the same manner y and
D, in a connected component of N,». A diffeomorphism f as above exists
due to the choice of the rotation numbers. Then we construct the connected
sum just described identifying via 7 X, f the annuli centered in the points
of each free Z/3-orbit in each Z/5-fixed set. The resulting manifold X is a

connected sum of three CP?’s on which Z/15 acts by fixing only two isolated
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fixed points (the poles of 5%), and by permuting the elements of the base
{61,62,63} of HQ(X), ie. HQ(X) = Z[Z/?)}

Example 4.11. Let 7 = Z/3 acting linearly on M = CP2, Let N = 7 x P,
P = CP? Wetake D, C S, C M and D, € S, C P disks centered
in z and y respectively, and with S, and S, m-slices. Let h: D, — D,
be an orientation reversing map. Then 7 X h: ® x D, — 7 x D, is the
orientation reversing m-equivariant map that we use in the construction of
an equivariant connected sum. The resulting manifold X is an equivariant
connected sum of four copies of CP? on which 7 acts producing the same

fixed point set as of a linear action of 7 on CP2. The action of 7 on homology

is Hy(X) = Z& Z[Z/3].

Given Hy(X) = Z[r /7] as possible representation on homology
of the action of 7 = C’,: on X = #CP? we can ask if there exists a
m-equivariant connected sum of linear actions on CP? which realizes this
action on X.
The answer is negative and in [11], Thm 5.1., A. Edmonds showed that for
m = p* k > 3 and p prime, there is no locally linear action on X with a
representation in homology of the form Z[Z/p] & Z[Z /p?]. However, we can
construct an equivariant connected sum of linear actions that produces as
many regular summands in H,(X) we want, by considering a combination
of the two procedures presented in Section 1. and Section 2. Let 7 = Ch
with m = p;...p,, and (a,b) be as in Proposition 4.6. Let M denote the
manifold X whose existence is ensured in Proposition 4.6 and let n denote
the necessary number of CP?’s to realize X. Let m; be Zjp;, fori=1,...,r.

We choose z; € My, € M™ ~ 5. Let N; be the m-manifold 7 x,, CP? and



CHAPTER 4. LINEAR MODELS 89

let 3; be a point in CP?,, such that CP?™ ~ S$% For i =1,...,r we apply
the construction described in Section 2. We obtain an equivariant connected
sum of n + m/py + m/p2 + - -+ + m/p, many CP*s with a representation

on homology given by Ho(X) =Z" @ @Z[W/m].



Chapter 5

The Singular Set

The following conjecture appears in [11]:

Conjecture 1 (Edmonds). If m = C,, is an odd order cyclic group acting
locally linearly and pseudofreely (see Definition 0.9) on a simply connected,
positive definite smooth 4-manifold, inducing a representation by permuta-

tions on homology, then 7 acts semifreely (see Definition 0.8).

In the same article (see [11], Thm. 5.4.) Edmonds shows that Conjecture 1
is false in this generality by providing a counterexample: Cas can act locally
linearly and pseudofreely on X = #0CP?, inducing the representation
H,(X) = Z[Z/5)?, but not semifreely. The construction of this action is
based on equivariant attaching of handles and is not smooth. On the other
hand Edmonds suggests as very likely the possibility that Conjecture 1 holds
true in the category of smooth actions. We will show that this is the case.

Let 7 be a cyclic group of odd order m acting smoothly on the simply
connected 4-manifold X. As before, due to Theorem 1.1 and Proposition

1.11, we don’t lose generality if we restrict to the case of X = #CP2,
1

90
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In our notation Hy(X) = @Ze;, where £ = {ey,...,e,} is the standard
i=1

basis of Hy(X). If R = {A44,..., A} denotes the set of classes of reducible

connections, from Corollary 3.16 we know that £ and R are equivalent

w-sets. Let’s recall that the m-representation on homology is given by (1.3):

Hy(X)=Z' @Z[w/m]”, ST (5.1)

5.1 The connectivity of the fixed point sets
and the proof of Conjecture 1.

Let 7’ be a nontrivial subgroup of 7. We continue the work done in Chapter
3 toward the description of the singular set of (M*, ') and (M?*, 7). Let’s
recall that the map (z, A) from (2.14) is m-equivariant and the set M\M,, is
compact ([14], Thm. 8.36.), where My, = A~1((0, X)) is the m-equivariant
end given by Ag > 0. As a direct observation, the closure of any noncompact
subset in the moduli space must intersect the set of reducible connections
or the Taubes boundary X or both. By Theorem 2.27 and Remark 3.28,
M, is an odd dimensional open manifold in M* of maximum dimension
5. One result towards our goal is Lemma 3.33: if C,» is a noncompact

nonempty connected component of M*, and ' # 0, then dimC, < 3.

When dimC, = 3, C NR # @ and C,» N X 5 @. To this result we add

Proposition 5.1. (see also [16], Thm. 16.) No nonempty collection of
2-dimensional n'-fized sets in the links of reducible connections bounds a

compact fized set in M*.
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Proof. Let’s assume that there exists W C M*, compact 3-dimensional 7'-
fixed set, such that the boundary W is a nonempty collection of 7’'-fixed
sets in the links of #'-fixed reducibles. Because the action of 7’ on the links
is a linear action on CP?'s, we may write OW = | |OW,, where 0W, is a
CP! standardly embedded in the link CP?, for all i. Then W is exactly
the manifold constructed in the proof of Lemma 3.33 by trimming around
each reducible the closure of a noncompact connected component of a #'-
stratum Cp-. Thus W must intersect the boundary X, in contradiction with

the assumption made. B

So far we have eliminated configurations for 3-dimensional 7'-fixed compo-
nents of the singular set. We take up now n'-fixed 1-dimensional compo-

nents. Let’s recall Corollary 2.31.

Remark 5.2. The arc emerging from an isolated 7'-fized point on X and
ending to a reducible is unique. The existence of another n'-fized arc would
create a singularity on the manifold M*,. because the two arcs would inter-
sect the equivariantly embedded collar X x [0, Xo] along the same segment

starting at the 7’-fized point too.

Lemma 5.3. ([16], Lemma 17. ) If R™ # §, then the closure of each
noncompact 1-dimensional 7'-fized set in M* contains at least one reducible

connection.

Proof. We remark that in our case all the reducible connections may have
trivial stabilizer. Then it is possible to have a fixed arc in M* with endpoints
two isolated fixed points on X. In the presence of a 7’-fixed reducible, we

have e(X™) > 3 and this ensures the existence of a third isolated fixed
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point on X when a #'-fixed arc with isolated endpoints on the boundary X
is assumed to exist. We arrive in the same way at the same contradiction

as in [16]. ]

Definition 5.4. For any n'-fized reducible connection class [A] (if any), we
call o 7'-incident stratum any connected component C.» of M* s such that
[A] € Cpv. Restricted to the cone Ns of the 7'-linear action over the CP?-

link of |A] (Theorem 3.18), a n'-incident stratum is a connected component

of (Na\ [A])

Notice that, according to Lemma 3.35, there are at most three disjoint inci-
dent strata to a connection A. More precisely, by Theorem 3.18, there are
either three 1-dimensional 74-fixed strata intersecting the CP%-link [k(A)
in three wa-fixed isolated points, or there are one 1-dimensional and one
3-dimensional w4-fixed strata intersecting [k(A) in a 74-fixed isolated point

and a m4-fixed 2-sphere, respectively. Thus

Remark 5.5. The Euler characteristic e(Fix(m4,lk(A))) of the fized set of
the link around each reducible is always equal to 3.

Proposition 5.6. The closure C of any incident stratum can be one of the
following types:

1. C contains only reducibles and it must be 1-dimensional.

2. C contains only one reducible and a subset of X. It must be either 1

or 3-dimensional.

3. C contains more than one reducible and a subset of X. It must be

3-dimensional.



CHAPTER 5. THE SINGULAR SET 94

Proof. 1. According to Proposition 5.1 or Lemma 3.33, any connected com-
ponent of a non-compact singular stratum whose closure contains only re-
ducibles cannot be 3-dimensional. Then it must be 1-dimensional.

2. Both these types of incident strata may exist.

8 IfCis 1-dimensional, contains more then one reducible and intersects
X , then the stratum C which is obtained by removing the limit points

(reducibles and subsets of X) will not be connected, a contradiction. H

Lemma 5.7. For any subset R' C R of connections fized by n' there is
no union of incident one-dimensional singular strata such that its closure

becomes a loop containing R'.

Proof. The argument is, as in the proof of [16], Thm. C., the orientability of
connected manifold components of 7'-strata in the moduli space (see Lemma,
2.35): Suppose the contrary, i.e. there exists a closed path v which is the
closure of a union of one-dimensional incident strata. Then ~ inherits an
orientation. The intersection of -y with the cone N4 of one of the connections
A of isotropy group 74 consists of two incident strata /; and I, which are
distinet and therefore must have distinct isotropies n(l;) < m4 x S* and
m(ly) < waxS*. The complex structure of H! 4 induces the same orientation
on l; and l;. Then one of /; must have the opposite orientation of v, a

contradiction. B

We recall some notions and results from the theory of graphs that we are

going to use in sequel.

Definition 5.8. ([30], 2.1, Def. 1.) A graph T'(V,E) consists of two sets

V and E called vertices, respectively edges with the following structure:
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there exists a map E —V XV, e — (0(e),t(e)), and amap E — E, e — €,
such that € = e, € # e and o(e) = t(€). o(e) is called the origin of the
edge e and t(e) is called terminus of the edge e. T' is oriented if one sets

an orientation, i.e. a subset B, C E such that we have the disjoint union

E:E+UE+.

Definition 5.9. A path of length n in the oriented graph I'(V . E) is a
subgraph given by edges {ey,...,en} C E, such that t(e;) = t(ey), for
i=1,...,n—1. A circuit of length n in T'(V, E) is a path of length n given

by the edges {ei, ..., e,} which in addition satisfy t(e,) = o(e1).

Definition 5.10. A graph I'(V, E) is connected if for any two distinct ver-
tices vy and vy there exists a path {ei,...,e,} such that o(e;) = v; and

tlen) =va, or V= {v} and E =0, or T is empty.

Definition 5.11. A connected graph is a tree if no subset of edges is a

circuit.

Definition 5.12. The group G acts on the graph T'(V, E) if there are defined

actions (V,G) and (E,G) such that the maps o and t are G-equivariant.

Remark 5.13. If G is a finite group of odd order, then, for any edge e
there is no element g such that ge = & because G has no subgroups of order

2.

Definition 5.14. A group G acts freely on a graph U(V, E) if ge # € for

anyg€ G andanyec E, andgv=v & g=1.
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Theorem 5.15. ([30], 3.3, Thm. 4.) Only a free group can act freely on a

tree.
The next result gives a more precise description of the fixed set Fix(n/, W)

Theorem 5.16. In the presence of at least one 7’-fized reducible connection,
no nonempty collection of 2-dimensional n'-fized sets in X bounds a fized
set in M* U X. When there are no n'-fized reducible connections, no more
than one 2-dimensional '-fired sphere can bound a ©'-fized set in M*U X.

In addition, Fix(r', M*) is connected.

Proof. Firstly we prove the theorem in the case of 7’ = 7 = Z/p with p
an odd prime integer and we place M in equivariant general position with
respect to 7.

Case a): The set of 7'-fixed reducibles, R™, is nonempty. Let r = |R"™|.
By Corollaries 3.16 and 1.17, the Euler characteristic of the fixed set is
e(X™)=r+2.

We assume the existence of a collection of 2-dimensional 7'-fixed spheres,
{F;}, in X which bounds a fixed set in M* U X. This means that the
bounded set does not contain any reducible and e({F;}) > 2. If all the
incident strata to all fixed connections intersected X, by Remark 5.5, we
would count an Euler characteristic of the fixed set on X equal to 3r. By
comparison to e(X™) = 742, this is possible only when r = 1 and {F;} = §.
Therefore not all the incident strata intersect X (e.g. there are strata of
types I. and 3., according to Proposition 5.6). Let’s denote by x the charge
representing the number of units due to incident strata that do not intersect

the boundary such that the Euler characteristic of X™ is r + 2, as required,
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ie.
Ir—x<r+2. (5.2)

Notice that, as y was defined, we have equality in 5.2 only when {F;} = 0.
Therefore Case a) is proved if 5.2 is an equality.

We reduce now our topological problem to a combinatorial one by consid-
ering the following graph I'.(V, E): The set of vertices V is R™. An edge

in E corresponding to two vertices v; and vy exists when:

i. there is a type I. stratum whose closure contains v; and ve (one fixed

arc with endpoints in the reducibles v; and vy, see Proposition 5.6)

ii. there is a type &. stratum whose closure contains v; and ve and, if
all the reducibles contained in the closure of the type 3. stratum
are vy, ..., U, then the edges defined are (v;,viy1), 1= 1,...,k— 1,
for a succession of vertices such that the condition of Remark 5.5 is

satisfied.

To each edge so defined we attach a weight of 2, thus one type 1. stratum
contributes 2 units to ¥ and a type 3. stratum with & reducibles contributes
2(k~—1) units to x. Notice that type 2. strata do not contribute to ) because
their closures intersect X. The proof reduces now to showing that I',.(V, E)
is a tree (i.e. a connected graph with no cycles) and x, which represents
now the sum of the weights, equals 2(r — 1). That I, contains no cycles we
could see from Lemma 5.7. We proceed by induction about r. For r = 1,
x =0 =2(r — 1) (no type 1. and no type 3. strata,so E=%) and I'; is a
point. The induction hypothesis is that T'; is connected, x(I';) = 2(I - 1) for

alll =1,...,r. We show that this is true for [ = r + 1. Let’s suppose that
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.41 is disconnected, i.e. T'yp = Ty || T as a disjoint union of graphs which
by the induction hypothesis are trees and for which x(T'x) = 2(k — 1) and
x(T's) = 2(s—1). The inequality 5.2 translates into x(I'y41) > 2r. Moreover
r+1=k+sand x(I'nj1) = x(T) + x(Ts) = 2(k+35) -4 =2r -2, 2
contradiction. Therefore T', is connected and x(I',) = 2(r — 1) for any 7.
This implies that Fix(n’, M*) is connected and x = 2r, ie. {F;} = 0.

Case b): R™ = (. Then e(X™) = 2. By Theorem 1.14, the intersection of
a m'-fixed set in M* with X must be two isolated fixed points or a fixed
sphere. For the general case, when 7’ is a nontrivial subgroup of , let’s

choose Z/p a subgroup of n’. Then Fix(n’ ,M*) C Fix(Z/p, M*) and we
have just shown that Fix(Z/p, M*) is connected. Let’s assume that M; and
M, are two distinct connected components of Fix(n/, M*), and let 4; € M,
and Ay € M, be two reducible connections in R™ < R%P. We choose A,
and A, such that they correspond to terminal vertices in the graphs I';
and I'y constructed as above with the reducibles in M respectively My as
vertices. Because Fix(Z/p, M*) and its associated graph T' are connected
there exists -y an arc in I with endpoints in the vertices A; and A, and such
that v N Fix(r’, M*) = {A;, As}. Let g be the generator of 7/Z/p. Then
gy Ny ={A;, A2} and gyU~ is a circuit in I". But this is in contradiction

to the fact that T is a tree as it results from Lemma 5.7. [ |

Lemma 5.17. Let A € R with nontrivial stabilizer mg < . Let (Na,74)
be the cone over the linear action of s on the CP2-link lk(A) of A in
the closure of the free stratum of M*. If T is a 1-dimensional incident

wi-stratum to A, with 7y # {e} then ny = 74.

Proof. By Corollary 1.17 applied to the linear action of 74 on lk(A), we
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have e(lk(A)™) = 3 and the linear action gives the following possibilities:
1. k(A)™ is a set of three isolated = 4-fixed points; 2. [k(A)™ consists of
an isolated m4-fixed point and a 74-fixed 2-sphere.

Case 1. Let 21, 79, z3 be the three isolated fixed points. The cone structure
of Ny implies that (N4 \ A,74) is ma-diffeomorphic to the linear action
(CP? x [0,1),74), where the action is diagonal and trivial on the second
factor of the product (Theorem 3.18). Therefore there are three m4-fixed
one dimensional strata in M4 given by z; x [0,1), ¢ = 1,2, 3. Let’s assume
that 7 is another 1-dimensional stratum of isotropy n; < a4, 7y # {e} such
that z = lk(A) NZ is an isolated point of the m-stratum of lk(A). This
implies that x is not in the interior of any m-fixed 2-sphere because 7 is
1-dimensional and defined as the connected component of a 7;-stratum in
M*. If £ is distinet from the x;’s, by considering that [k(A)™ C Ik(A)™,
we get in conflict with the condition of Corollary 1.17 because e(lk(A)™)
would be 4. Therefore £ must be one of the z;’s and 7 is a 74-stratum.
Case 2. Assume that an Z as in Case 1. exists. If z is outside the fixed set,

the same Corollary 1.17 is contradicted. B

Proposition 5.18. If 7' # 0 is a subgroup of m and if the n'-fived set
Fix(n', M*) is one-dimensional, then Fix(n’ , M) = Fix(m, M*).

Proof. We place (M, ') in 7'-equivariant general position.

Case a): R™ = . Then Corollary 1.17 implies e(X™) = 2, ie. X"
consists either of two isolated 7'-fixed points or of a n'-fixed 2-sphere. Us-
ing the equivariant Taubes boundary (see Corollary 2.30) we obtain that

Fix(n', M*) is either a 1-dimensional n'-fixed arc joining the two isolated
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fixed points on X, or a connected 3-dimensional manifold with boundary the
'-fixed 2-sphere. The hypothesis of the lemma shows that Fix(n', M*) is
the arc. Since e(X™) > 2and X™ C X™ we have X™ = X™ and Fix(7, M*)
is an arc with boundary X™. But Fix(r, M*) C Fix(«', M*) and by Remark
5.2, Fix(m, M*) = Fix(n/, M*).

Case b) R™ # §. Then e(X™) > 2 and the assumed one-dimensionality of
Fix(n', M*) implies that X™ is discrete and contains at least three points
(see Corollary 1.17). Let A € R™. Then the 7'-fixed incident strata to A are
of type 1. or 1-dimensional type 2. (see Proposition 5.6). By Remark 5.5,

for the types of all incident strata to A we have the following possibilities:

i. three incident strata of type 2.
ii. one incident stratum of type 1. and 2 incident strata of type 2.
iii. two incident strata of type 7. and 1 incident stratum of type 2.

iv. three incident strata of type 1.

Theorem 5.16 shows that Fix(n’, M*) is connected. In fact we can regard
Fix(n', M*) as the topological realization of a finite tree with the 7'-fixed
reducibles as vertices, the n'-fixed points as terminal vertices, and with the
closures of the incident strata as edges. Note that each non-terminal vertex
belongs to exactly 3 edges. Because of the connectivity, by Lemma 5.17,
all vertices and all edges must have the same stabilizer, say 7 > 7’ and
Fix(n', M*) = Fix(r", M*) = M*_». Therefore 7/7" must act freely on
the tree, i.e., by Theorem 5.15, n/n" is a free group. But obviously =/ is

finite. Therefore 7” = 7 and Fix(n', M*) is actually Fix(r, M*). Z

In the case of a smooth action, Conjecture 1. becomes:
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Corollary 5.19. Let 7 be a cyclic group of odd order acting smoothly and
pseudofreely on the smooth, closed, simply connected, positive definite, ori-

ented 4-manifold X. Then 7 acts semifreely.

Proof. Since the action of 7 is pseudofree, for any 7’ nontrivial subgroup of
7, X™ consists of isolated points. If there are no n'-fixed reducibles, then
the two n'-fixed points on X must be in the closure of a one dimensional
7'-fixed stratum of M*. If there are n’-fixed reducibles, from Theorem 2.27

it follows that M*™ = || M » is a union of l-dimensional manifolds.

1
7 >

By Proposition 5.18, we have that Fix(7’ , M*) equals Fix(m, M*). Thus
any 7'-isotropy stratum is a m-fixed stratum and this shows that we have

only one singular orbit type. [ |

5.2 The structure of the singular set

We are now set for the proof of the main result, Theorem 3.7. Let’s re-
call some notation: The set of classes of reducible connections is R =
{A;,...,Ax}. R is in a m-equivariant bijection to the standard base £ =
{e1,...,en} of Ho(X) (Corollary 3.16). If my,...,m, denote all the stabi-
lizer subgroups of all connections in (R, ), then Ha(X) = P Z[r/m|"™ and
|Rr,| = Im/mi| -1, n =3 |m/m|-r;. The multipliciti;s" :, are positive

i=1,....k

integers.

Proof of Theorem 3.7: The set of stabilizers {my, ..., 7} is ordered with the
inclusion and we consider all totally ordered subsets, e.g. chains m; > m; >

.... We distinguish two cases:
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Case 1.: there are connections in R with stabilizer # i.e. there are 7-fixed
reducible connections. Let 7 > m; > ... be a descending chain of stabilizers
that starts with #. If the chain contains only 7 and the trivial subgroup
{e}, the m-representation (5.1) becomes Hy(X) = Z' @ Z[r]™. We have
then only free orbits and singular orbits of type 7 in (M, 7). The proof
in this case is the proof of [16], Theorem C., as the connections in R \ R™
are not contained in the singular set of (_.A—/F‘,'/r). If the chain contains
proper subgroups, for any A € Ry, let (N4, 74) be the neighbourhood
of A which is, according to Theorem 3.18, a cone over a linear action on
the CP2-link of A in M*, and let m; be the successor of 7 in the chain.
Then Fix(m;, M*) = M*,, UFix(r, M*). Because Fix(m;, M*) is connected
(Theorem 5.16) and Fix(m, M*) G Fix(m;, M*), there must be an isotropy
mi-stratum Z of type 1. or type 8 which is incident to A and to a con-
nection B € R,,. By Lemma 5.17, Z cannot be 1-dimensional. So 7 is of
type 8. Since w4 = w, T N N, is w-invariant. Then there exists an open
3-dimensional set U C Z which is w-invariant and such that /NNpg # 0. Let
g be a generator of 7/n;. We have g-U =U and g - N = N,.p. Therefore
0 +#g-UNNp) =UNN,p. By Proposition 5.1 it follows that the closure
U in M contains the orbit of reducibles 7 - B. Therefore we have just shown
that once we have a wp-stratum 7 incident to a connection A of stabilizer
74, and to a connection B with stabilizer wp such that w4 > g, with 74
and wp consecutive in a chain of stabilizers, then 7 must be 3-dimensional
and incident to the reducible connections of w4 /7p - B.

Let’s assume now that we have a chain 7 > m; > 7; > ... which contains
at least 3 nontrivial stabilizers. Because 7\—/1_;,:] is connected, we find again

a connection A with stabilizer 74 > =;, and a 3-dimensional 7;-stratum 7
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incident to A, such that 7 contains a connection B with stabilizer 7 = ;.
If w4 = 7, by the arguments from above, Z must contain the m;-orbit 7 - B
which is the set w/7; x B. If my = m;, 7 is m-invariant and must contain
7+ B ~ m/m; x B. But in this case A is freely permuted by 7/m;. Let
C4 be the connected component of A in m Then C4 is disjoint from
Ca, for any other connection A’ € n/m; x A. This fact is due to Lemma
5.7. Moreover C4 must be the identical copy of C4 and the orbit 7. B is

contained in 7 X,, C4 (see the picture below). The description of the sin-

m-strata
mi-stratum

Figure 5.1: The singular set of (M*, 7)

gular set goes step by step until we exhaust all the stabilizers of the chain.
For another chain which must start with m, we have the same description:
the connected components of connections in R, for one chain are disjoint
from the connected components of connections in R, for another chain that
contains 7;. This is due again to Lemma 5.7.

Case 2.: there are no 7-fixed reducible connections. Then e(X™) = 2

and X™ consists of either two isolated fixed points, or a fixed 2-sphere
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and Fix(r, M*) is either an arc with the endpoint set equal to X™ or a 3
dimensional manifold with boundary equal to the fixed 2-sphere, respec-
tively. If there are connections in R with nontrivial stabilizers, we can
single out chains of stabilizers as in Case 1. with the only difference that
they do not start with w. Let m; be a maximal stabilizer encountered and
let 7 > m; > ... be one of its chains. By Theorem 5.16, Fix(m,—/\T")
is connected and contains Fix(m, M*). Let’s assume that Fix(m;, M*) is
1-dimensional. Then there are w;-fixed arcs which start at the isolated n-
fixed points and end at m;-fixed reducible connections. But the same 7-fixed
points are joined by a n-fixed arc that does not contain reducibles. Then we
are in contradiction with Remark 5.2, and therefore Fix(m;, M*) must con-
tain 3-dimensional manifold components. Among these, there is one whose
m;-fixed sphere boundary on X contains X™, otherwise Fix(m,—ﬁ/lj‘) would
not be connected and we would contradict Theorem 5.16. If X™ were a
sphere, i.e. Fix(m, M*) were 3-dimensional, the intersections of the 3 dimen-
sional m-isotropy component of Fix(m;, M*) and respectively Fix(m, M*)
with the Taubes collar would coincide and would be equivariantly diffeo-
morphic to S% x [0,1) (see Corollary 2.30). Then M; N M3 # @ which
is a contradiction. Hence Fix(w, M*) is an arc which joins the two fixed
points of X™ and is embedded in Fix(m;, M*). Let T be the 3-dimensional
m-stratum which is incident to a m;-fixed connection A and whose closure
is the mw-fixed sphere that contains the two points of X™. The stratum 7
is m-invariant and its closure contains at least one orbit 7 - A by the same
arguments as in Case 1. Now the description of the singular set follows the

same steps and arguments as in Case 1.



CHAPTER 5. THE SINGULAR SET 105
5.3 The stratified cobordism and the rota-
tion numbers

In order to complete the proof of Theorem 3.7, we must show that the rota-
tion numbers of the tangential isotropy representations at the fixed points
of the m-fixed sets of X are the same as those of some equivariant con-
nected sum of linear actions on complex projective spaces, for all stabilizers
; of reducible connections. As usual, we place (M, 7) in equivariant gen-
eral position. The 7-fixed set of X is the intersection with the Taubes
boundary of Fix(m,];l‘*), for any m; < m. Let’s recall (see Theorem 2.27)
that the equivariant moduli space (M, 7) is a Whitney stratified space in
which each singular stratum has a locally trivial equivariant cone bundle
structure in M. In Figure 5.2 is illustrated the situation of one-dimensional

m-strata in M. The n-fixed arc v from the fixed point z to the n-fixed

Figure 5.2: The stratified cobordism

reducible connection A intersects the the CP?-link [k(A) in y. Since the
portion {z,y] of 7 is a contractible path, the equivariant cone bundle struc-

ture over [z,y] is trivial. Therefore the representations of 7 on the fibers at
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z and y are equivalent. But these fibers are the tangential representations
at = to X and at y to [k(A), which means that the rotation numbers at
z and y coincide. By Theorem 3.18, the rotation numbers at y are those
of a linear action on [k(A). Thus, we have the picture of an equivariant
cobordism between the 4-manifold X and the equivariant connected sum of
linear actions on the links of the fixed reducibles. The same is true when
3-dimensional strata are present in (M, 7), and we present the arguments
in what follows. For simplicity we describe the rotation numbers for the «
and 7;-fixed sets, where m > m; > ... is a chain of stabilizers as above. The
description goes on similarly following the steps from Case 1. and Case
2.. Let A denote connections stabilized by 7 and let B denote connections
stabilized by ;. As we could see in Figure 5.1, the m;-fixed set comprises
incident 7 and m;-strata of type 1., type 2., and type 3., which are defined
in Proposition 5.6. Let Z be an incident 3-dimensional m or m;-stratum of
type 2. or type 8. There exist arcs from the links (k(A) NZ or Ik(B)NT
to 7N X, equivariantly embedded in 7. There exist trivial equivariant cone
bundle neighbourhoods around these arcs inside the moduli space. The 7
or m;-representations at each fiber of such a bundle are equivalent to the
tangential representations at the points of intersection of the arc with the
CP?%link lk(A) and with the Taubes boundary X. For a 1-dimensional 7
of type 2, the same argument works by considering an arc as above to be
7 itself. Therefore the rotation numbers of linear actions at fixed points on
the links coincide with rotation numbers at fixed points on X. We show
that these rotation numbers are those of an equivariant connected sum of
linear actions on CP2. We proceed as follows: for each type 1. incident =

or m-stratum Z, there exists an equivariant tubular neighbourhood inside
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M* with trivial equivariant normal bundle structure over Z, such that it
contains as fibers the tangential representations at the points of intersec-
tion of Z with the links of the connections that form the endpoints of 7

(see Figure 5.3). The orientation on 7 and the orientations induced by the

i
1
1
1

Figure 5.3: The singular set and the linear model

complex structure of the links imply that we obtain orientation reversing
rotation numbers (a,b) and (a, —b).

When 7 is a 3-dimensional m;-stratum of type 8. whose closure contains
both types of connections, A and B, let 7.z =~ n/m; x {z} be the orbit of =
on the sphere [k(A)NZ. There exists v C M* an arc joining z and a point y
on lk(B)NZI. By an equivariant perturbation we can make v equivariantly
embedded in Z. Again, by Theorem 0.45, there exists an equivariant neigh-
bourhood around v whose restriction £ to 7 has the structure of a trivial
equivariant normal bundle D! x D? over ~y containing as fibers the tangential
representations on the links at the endpoints of v. We obtain the equivariant

structure (Ik(A)U(m Xz, Lk(B)))\ [ X x, (S X D?) Ui, (50 x51) [T X, (DT x S,
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i. e. an equivariant spherical modification of lk(A) U (7 X, [k(B)) which
is equivalent to the equivariant connected sum of linear m actions between

lk(A) and 7 X, lk(B) along the orbit 7 - z as in Chapter 4. B
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