
ON THE NUMBER OF DISTINCT SQUARES IN

STRINGS

ON THE NUMBER OF DISTINCT SQUARES IN STRINGS

By

MEI JIANG, B.C.S.

A Thesis

Submitted to the Department of Computing and Software

and the School of Graduate Studies

of McMaster University

in Partial Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

McMaster University c© Copyright by Mei Jiang, January 2014

Doctor of Philosophy (2014) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: On the number of distinct squares in strings

AUTHOR: Mei Jiang

M.Sc. (Transferred to Ph.D. Program)

McMaster University, Hamilton, Canada

B.C.S.

University of New Brunswick, Fredericton, Canada

SUPERVISOR: Dr. Antoine Deza, Dr. Frantisek Franek

NUMBER OF PAGES: xiv, 118

ii

To my family

Abstract

We investigate the problem of the maximum number of distinct primitively rooted

squares in a string. In comparison to considering general strings, the number of

distinct symbols in the string is introduced as an additional parameter of the problem.

Let σd(n) = max{s(x) | x is a (d, n)-string}, where s(x) denotes the number of distinct

primitively rooted squares in a string x and a (d, n)-string denotes a string of length

n with exactly d distinct symbols.

Inspired by the d-step approach which was instrumental in Santos’ tackling of the

Hirsch conjecture, we introduce a (d, n − d)-table with entries σd(n) where d is the

index for the rows and n− d is the index for the columns. We examine the properties

of the σd(n) function in the context of (d, n− d)-table and conjecture that the value

of σd(n) is no more than n − d. We present several equivalent properties with the

conjecture. We discuss the significance of the main diagonal of the (d, n−d)-table, i.e.

the square-maximal (d, 2d)-strings for their relevance to the conjectured bound for all

strings. We explore their structural properties under both assumptions, complying

or not complying with the conjecture, with the intention to derive a contradiction.

The result yields novel properties and statements equivalent with the conjecture with

computational application to the determination of the values σd(n).

To further populate the (d, n − d)-table, we design and implement an efficient

computational framework for computing σd(n). Instead of generating all possible

iii

(d, n)-strings as the brute-force approach needs to do, the computational effort is sig-

nificantly reduced by narrowing down the search space for square-maximal strings.

With an easily accessible lower bound obtained either from the previously computed

values inductively or by an effective heuristic search, only a relatively small set of

candidate strings that might possibly exceed the lower bound is generated. To this

end, the notions of s-cover and the density of a string are introduced and utilized.

In special circumstances, the computational efficiency can be further improved by

starting the s-cover with a double square structure. In addition, we present an auxil-

iary algorithm that returns the required information including the number of distinct

squares for each generated candidate string. This algorithm is a modified version of

FJW algorithm, an implementation based on Crochemore’s partition algorithm, de-

veloped by Franek, Jiang and Weng. As of writing of this thesis, we have been able

to obtain the maximum number of distinct squares in binary strings till the length of

70.

iv

Acknowledgements

I would like to express my gratitude to my supervisors, Dr. Antoine Deza and Dr.

Frantisek Franek, for their invaluable guidance, generous support and continuous

encouragement to my research studies and my life.

My special thanks go to the members of the supervisory and defence committees:

Dr. Antoine Deza, Dr. Frantisek Franek, Dr. Fred Hoppe, Dr. Shmuel Tomi Klein,

Dr. Zdislav Kovarik, and Dr. Nedialko Nedialkov.

I appreciate the help and moral support from all my colleagues including the

members of Advanced Optimization Laboratory.

Furthermore, I am grateful for the financial aid provided by the Ontario Graduate

Scholarship program and the Queen Elizabeth II Graduate Scholarship in Science and

Technology program.

Finally, I would like to thank my family and friends from the bottom of my heart

for always believing in me, and for their constant love, support and encouragement.

v

Contents

Abstract iii

Acknowledgements v

List of Abbreviations and Symbols xiii

1 Introduction 1

1.1 Preliminaries . 1

1.1.1 String . 1

1.1.2 Repeat . 3

1.1.3 Repetition . 3

1.1.4 Run . 4

1.2 Background . 6

1.3 Thesis Outline . 7

1.4 Notations . 8

2 A d-Step Approach 9

2.1 Hirsch Conjecture . 9

2.2 Auxiliary Lemmas . 11

2.3 (d, n− d)-Table . 14

vi

2.4 Properties of (d, n− d)-Table . 17

2.5 σd(n) Conjecture . 21

3 Structure of Square-Maximal Strings 24

3.1 Square-Maximal Strings with σd(2d) = σd(2d+ 1) 25

3.2 Square-Maximal Strings with σd(2d) > d 26

3.2.1 Auxiliary Lemma . 26

3.2.2 Pair . 27

3.2.3 Triple . 28

3.2.4 Singletons Estimation . 30

3.3 Additional Combinatorial Property Equivalent with the Conjectured

Upper Bound . 38

4 Computational Approach 39

4.1 Dense s-Covered Strings . 40

4.1.1 The Notion of s-Cover . 41

4.1.2 Core Vector . 43

4.1.3 Dense Strings . 45

4.1.4 s-Covered Strings . 45

4.2 Generating s-Covers . 49

4.2.1 Algorithm . 50

4.2.2 Conflict Check . 53

4.2.3 Primitiveness Check . 54

4.2.4 No Intermediate Square Check 55

4.2.5 Density Check . 57

4.2.6 Parity Condition . 59

4.3 Lower Bound Determination . 62

vii

4.3.1 Lower Bound σ−d (n) . 63

4.3.2 Lower Bound σ−d (2d) . 64

4.3.3 Heuristic Search for σ−2 (n) . 64

4.4 Using Upper Bound to Simplify Computation 68

4.4.1 Double Square . 68

4.4.2 Algorithm . 69

5 Computing Periodicity 72

5.1 Crochemore’s Repetition Algorithm 73

5.2 FJW Algorithm . 76

5.2.1 Data Structures . 78

5.2.2 Gap Function . 83

5.3 Extend FJW to Produce k-Vector and p-Vector 86

5.3.1 k-Vector . 87

5.3.2 p-Vector . 90

5.3.3 Data Structures . 92

6 Computational Results 93

6.1 Values in (d, n− d)-Table . 93

6.1.1 Three Consecutive Equal Values 94

6.1.2 Increasing on Descending Diagonals 95

6.2 Current Bound for σd(n) . 95

7 Conclusion 98

7.1 Relation to ρd(n) . 99

7.1.1 Similarities and Differences . 99

7.1.2 Differences on Values . 102

viii

7.1.3 Strings Achieving Both Square- and Run-Maximality 103

7.2 Future Work . 105

A Tables of σd(n) 108

A.1 (d, n− d)-Table . 108

A.2 (d, n− 2d)-Table . 108

B Tables of ρd(n)− σd(n) 111

B.1 (d, n− d)-Table . 111

B.2 (d, n− 2d)-Table . 111

ix

List of Tables

2.1 (d, n− d)-Table of σd(n) for 2 ≤ d ≤ 15 and 2 ≤ n− d ≤ 15. 15

4.1 Comparison on number of s-covered strings and non s-covered strings. 49

4.2 Determining a lower bound for σd(n) in (d, n− d)-table. 63

4.3 Heuristic search parameters for d = 2, 34 ≤ n ≤ 38. 66

4.4 Strings of length n+1 with σ2(n)+1 distinct squares for 45 ≤ n ≤ 46. 67

4.5 Strings of length n+1 with σ2(n)+1 distinct squares for 52 ≤ n ≤ 55. 67

4.6 Strings of length n+1 with σ2(n)+1 distinct squares for n = 50. . . . 68

7.1 Existence of strings achieving both square- and run-maximality. . . . 104

7.2 (d, n− d)-Table of ρd(n)− σd(n) for 2 ≤ d ≤ 10 and 2 ≤ n− d ≤ 10. . 104

7.3 Dual square/run-maximal strings for d = 2, n = 5, 6, 7, 9. 105

A.1 (d, n− d)-Table with larger d and n. 109

A.2 (d, n− 2d)-Table with larger d and n. 110

B.3 (d, n− d)-Table of ρd(n)− σd(n). 112

B.4 (d, n− 2d)-Table of ρd(n)− σd(n). 113

x

List of Figures

4.1 s-Cover of string x. 42

4.2 Core of each square in string x. 43

4.3 Core vector of string x. 44

4.4 Candidate strings. 48

4.5 s-Cover generation. 51

5.1 Example of Crochemore’s repetition algorithm. 74

5.2 Core computation: core and new occurrence are not intersected. . . . 89

5.3 Core computation: new occurrence is on the left. 89

5.4 Core computation: core is on the left. 89

5.5 Core computation: core is contained in new occurrence. 90

5.6 p-Vector of string x. 91

5.7 p-Vector computation: for every s = x[i1 .. i2] is the leftmost occur-

rence, pi(x) = pi(x) + 1, for i2 ≤ i ≤ n. 92

xi

List of Algorithms

4.1 Conflict check. 54

4.2 Primitiveness check. 56

4.3 No intermediate square check. 57

4.4 Density check. 59

4.5 Double square s-cover generation. 71

xii

List of Abbreviations and Symbols

• x[1 .. n]: a string x of length n with indices from 1 to n.

• x[i]: the i-th symbol of string x.

• xy: when x and y are strings denotes the concatenation of the two strings.

• ε: empty string.

• ∅: empty set.

• |x|: the size (cardinality) of the set x; or, if x is a string, the length of the string.

• x1 ∪ x2: union of the sets x1 and x2; or if x1 and x2 are adjacent or overlapping

strings, this represents the union of the two strings, i.e. the concatenation of x1

and x2 with the overlapping portion removed.

•
⋃

1≤i≤m

Si: represents the union of all Si where 1 ≤ i ≤ m; that is, S1∪S2∪ .. ∪Sm.

• x1∩x2: intersection of the sets x1 and x2; or if x1 and x2 are overlapping strings,

this represents the overlapping portion of the two strings.

• x ⊆ y: the set x is a subset of the set y; or if x and y are strings, this represents

that x is a substring of y.

• (d, n)-string: a string of length n with exactly d distinct symbols.

xiii

• s(x): the number of distinct primitively rooted squares in string x.

• σd(n): the maximum number of distinct primitively rooted squares over all

strings of length n with exactly d distinct symbols.

• ρd(n): the maximum number of runs over all strings of length n with exactly d

distinct symbols.

• A(x): the alphabet of string x, i.e. the set of all symbols occurring in x.

• singleton, pair, triple, and k-tuple: refers to a symbol occurring in a string

exactly once, twice, three times, and k times, respectively.

xiv

Chapter 1

Introduction

Periodicity is the most studied and important topic in the discipline of combinatorics

on words and algorithms on strings, going back to Thue [33]. It has been applied in

many different fields such as data mining, pattern matching, data compression, and

computational biology.

This thesis entails our investigation of the problem of the maximum number of

distinct primitively rooted squares in strings. In this chapter we first introduce some

basic terminology followed by some background information on the problem, and then

we present the outline of the thesis and the notation used throughout the thesis.

1.1 Preliminaries

1.1.1 String

A string x is a finite contiguous sequence of characters referred as symbols drawn

from a non-empty finite alphabet A. Denote A(x) the set of distinct symbols that

occur in x, then A(x) ⊆ A and |A(x)| is the number of distinct symbols in x. We

present a string x as an array x[1 .. n], n ≥ 1, of symbols, where n = |x| is the length

1

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

of the string and x[i] represents a symbol at position i. The empty string is denoted as

ε. We use x[i .. j] to denote a substring of x starting at position i of length j− i+ 1,

where 1 ≤ i ≤ j ≤ n. Using this notation we can write a prefix of x as x[1 .. i] where

1 ≤ i ≤ n. A prefix is said to be a proper prefix when i < n. Similarly, a suffix

of x is denoted as x[i .. n] where 1 ≤ i ≤ n; a suffix is said to be a proper suffix if

i > 1. Consider an example x[1 .. 3] = aba, substring x[1 .. 2] = ab is a proper prefix

of x, and x[2 .. 3] = ba is a proper suffix of x.

The basic operation for strings is concatenation ; that is, joining two strings

together into one. The concatenation of two strings is denoted in the order that

they are concatenated. For instance, xy represents a string that is the concatenation

of string x followed by string y; that is, xy = x[1]x[2] · · ·x[i]y[1]y[2] · · · y[j], where

x = x[1 .. i] and y = y[1 .. j]. Let us consider x = ab and y = b, then xy = abb and

yx = bab.

The union x[i1 .. ik] ∪ x[j1 .. jm] of two substrings of a string x = x[1 .. n] is

defined if i1 ≤ j1 ≤ ik +1 and then x[i1 .. ik] ∪ x[j1 .. jm] = x[i1 .. max{ik, jm}]; or if

j1 ≤ i1 ≤ jm + 1 and then x[i1 .. ik] ∪ x[j1 .. jm] = x[j1 .. max{ik, jm}]. Simply put,

the union is defined when the two substrings either are adjacent or overlapped. For

instance, x[1 .. 8] = abaababa, substring x1 = x[2 .. 5] = baab and x2 = x[4 .. 6] =

aba, then x1 ∪ x2 = x[2 .. 6] = baaba.

Similarly, the intersection x[i1 .. ik] ∩ x[j1 .. jm] of two substrings of a string

x = x[1 .. n] is defined only when the two substrings are overlapped; that is, if

i1 ≤ j1 ≤ ik and then x[i1 .. ik] ∩ x[j1 .. jm] = x[j1 .. min{ik, jm}], or if j1 ≤ i1 ≤ jm

and then x[i1 .. ik] ∩ x[j1 .. jm] = x[i1 .. min{ik, jm}]. Consider the same example

above, x1 ∩ x2 = x[4 .. 5] = ab.

2

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

1.1.2 Repeat

A repeat is a collection of identical repeating substrings in x[1 .. n] described by

u = x[i1 .. i1 +p−1] = x[i2 .. i2 +p−1] = · · · = x[iq .. iq +p−1], where 1 ≤ i1 < i2 <

· · · < iq ≤ n, q ≥ 2, and p ≥ 1. The repeating substring u is the generator of the

repeat, and |u| = p. For example, x[1 .. 5] = abbab contains a repeat with generator

ab at position 1 and 4.

1.1.3 Repetition

A repetition or a tandem repeat is a repeat with adjacent repeating substrings; that

is, for every two consecutive identical substrings in a repeat, the gap between their

starting positions is equal to the length of the generator. A repetition with generator

u repeating q times can be presented as uq, where u is a non-empty string, and q ≥ 2.

We refer p = |u| the period and q the exponent (or power) of the repetition. If

u is irreducible, i.e. itself is not a repetition, then we say u is primitive , and uq is

a primitively rooted repetition . A square is a repetition with power of 2. If u

is primitive, then u2 is a primitively rooted square . Consider square (ababab)2 is

not a primitively rooted square as the generator ababab is not primitive, i.e. ababab

is a repetition and can be written in the form of (ab)3.

If a repetition uq = x[s .. s + qp − 1] where p = |u|, can be extended by another

copy of u to the left of x, that is, x[s − p .. s − 1] = u, then we say the repetition

can be extended to the left. A repetition is called a left-maximal repetition if it

cannot be extended to the left. Similarly, if we cannot extend another copy of u to the

right, then the repetition is a right-maximal repetition . A maximal repetition

refers to a repetition that cannot be extended to either left or right. In the context of

this thesis, when we use the term repetition, we mean maximal repetition. Consider

3

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

x[1 .. 7] = abababa, repetition x[3 .. 6] is right-maximal, but it’s not left-maximal since

there is another copy of ab at x[1 .. 2], similarly, repetition x[1 .. 4] is left-maximal

but not right-maximal; and repetition x[1 .. 6] is a maximal repetition since it’s not

extendible to either left or right.

A repetition uq = x[s .. s + qp − 1] where p = |u|, is left shiftable if x[s − 1]

is defined (i.e. s > 1) and x[s − 1] = x[s + p − 1]; that is, when we move one

position to the left, x[s− 1 .. s+ qp− 2] is also a repetition with the same period of

p. Similarly, right shiftable can be defined as x[s+ qp] is defined (i.e. s+ qp ≤ |x|)

and x[s + (q − 1)p] = x[s + qp]. Consider the same example used above x[1 .. 7] =

abababa, maximal repetition x[1 .. 6] = ababab is right shiftable because x[5] = x[7],

i.e. x[2 .. 7] = bababa is also a repetition with the same period when moving one

position to the right.

A repetition can be encoded in a triple of a form (s, e, p) where s specifies the

starting position, e specifies the ending position, and p is the period of the repetition.

The exponent of the repetition can be calculated by (e − s + 1)/p. For instance,

x[1 .. 7] = abababb has three repetitions: (1, 6, 2) represents (ab)3, (2, 5, 2) represents

(ba)2, and (6, 7, 1) represents (b)2; where the last two are squares.

1.1.4 Run

The notion of run that captures maximal repetitions was first introduced by Main

[30], where it was called maximal periodicity . The term maximal repetition short

for maximal fractional repetition is also used [27]. To avoid the ambiguity, we

refer to maximal repetitions as repetitions, not runs. A run is formed by a maximal

repetition followed by a proper prefix (possibly empty) of the generator we call the

tail of the run. Thus, a repetition is a run with an empty tail. If the tail of a run is

4

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

non-empty, we say it is a non-trivial run . For example, x[1 .. 10] = abaabaabaa =

(aba)3a (formed by repetition (aba)3 followed by a prefix of the generator a) is a run

with period p = |aba| = 3. A run can be also seen as a fractional repetition as x

contains 3 full generators and 1
3

partial generator, i.e. the tail. Formally, we define a

run as follows:

Definition 1.1. A string uqu′ = x[s .. s + qp + t − 1] where u′ is a proper prefix

(possibly empty) of u, |u| = p, and |u′| = t, is a run if:

• x[s + i .. s + i + qp − 1] is a maximal repetition with period of p, for every

0 ≤ i ≤ t;

• x[s − 1] is defined and x[s − 1] 6= x[s + p − 1], i.e. repetition x[s .. s + qp − 1]

is not left shiftable;

• x[s + t + qp] is defined and x[s + t + (q − 1)p] 6= x[s + t + qp], i.e. repetition

x[s+ t .. s+ t+ qp− 1] is not right shiftable;

• u is primitive.

A run thus is a compressed form of one or more repetitions. Consider the example

mentioned above, x[1 .. 10] = abaabaabaa = (aba)3a encodes three maximal repeti-

tions: (1,9,3) represents (aba)3, (2,10,3) represents (baa)3, and (3, 8, 3) represents

(aab)2. Note that the exponent of the last repetition (aab)2 is 2 while the exponent

of the first two repetitions is 3. We refer the first repetition in a run as the leading

repetition. The rotation of a string is a string resulting from moving the first symbol

to the end of the original string, i.e. baba is a rotation of abab. In general, a run with

period of p, exponent of q, and tail length of t, contains t+ 1 repetitions (leading rep-

etition and its t rotations) with exponent of q, and p− t−1 repetitions with exponent

of q − 1. For q = 2, a run contains t+ 1 squares.

5

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

A run can also be encoded as a triple (s, e, p) where s, e, and p specifies the starting

position, the ending position, and the period of the run, respectively. The exponent

and the tail size of the run can be easily computed through equations q = (e − s +

1)/p (integer division) and t = (e − s + 1)%p (modulus), respectively. For example,

x[1 .. 10] = abaabaabaa is encoded as (1, 10, 3) with exponent q = (10− 1 + 1)/3 = 3,

and tail length t = (10− 1 + 1)%3 = 1.

1.2 Background

While all forms of periodicities are important for investigation of properties of strings,

the problem we are interested in is the maximum number of distinct primitively rooted

squares when the types of squares rather than their occurrences are counted. The

problem of counting the occurrences of squares is essentially the problem of counting

runs; Baker, Deza, and Franek investigated the problem of the maximum number of

runs using a similar approach to ours and entailed the results in [1]. We elaborate

on the interrelations between the investigations of the two problems in Chapter 7.

Kubica et al. [28] showed the number of distinct non-primitively rooted squares is

bounded by bn
2
c − 1 where n is the length of the string, therefore it is worthwhile to

focus on the problem of distinct primitively rooted squares.

In 1998 Fraenkel and Simpson [14] showed that the maximum number of distinct

squares (not necessarily primitively rooted) in a string of length n is bounded by 2n.

Based on the empirical evidence, they conjectured that the upper bound should be

n. Ilie [21] first gave a simpler proof of the result and later provided an asymptotic

upper bound of 2n− Θ(log n) in 2007 [22]. The most recent results on the bound of

distinct primitively rooted squares in strings was given by Deza, Franek, and Thierry

[13]. They proved that there are at most 11n
6

distinct squares in a string of length n,

6

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

by showing there are at most 5n
6

double squares in the string.

1.3 Thesis Outline

As opposed to considering it for general length, our approach to the problem of dis-

tinct primitively rooted squares is that we introduce the size of the alphabet, i.e. the

number of distinct symbols in the string, as a parameter into the problem. We explore

the problem on both theoretical and computational levels. For the theoretical aspects,

we investigate how the function of the maximum number of distinct squares behaves

with respect to the length and the number of distinct symbols of the input string

in the context of a so-called (d, n − d)-table in Chapter 2; and a conjectured upper

bound is introduced and a series of reformulation to the conjecture are discussed in

the chapter. In Chapter 3, we examine the combinatorial properties of the square-

maximal strings that are under both assumptions of complying and not complying

with the conjectured upper bound; these structural insights not only point to a direc-

tion of possibly proving the conjecture, but can also be applied in the computational

aspects of the problem. Chapter 4 describes a computational framework to efficiently

compute the maximum number of distinct squares in strings exploiting the combina-

torial properties of the square-maximal strings. In addition, the underlying algorithm

that returns the required information for the computational framework is discussed in

Chapter 5. Some of the main computational results are shown in Chapter 6. Finally,

we briefly discuss the interrelation to the problem of runs investigated using a similar

approach, and some opportunities for future work of the problem in Chapter 7.

7

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

1.4 Notations

We use the following notations throughout this thesis. A (d, n)-string denotes a

string of length n with exactly d distinct symbols. s(x) denotes the number of distinct

primitively rooted squares in a string x. As a convention, when we use the term dis-

tinct squares, we always refer to the distinct primitively rooted squares. σd(n) denotes

the maximum number of distinct primitively rooted squares in strings with length n

and number of distinct symbols d; that is, σd(n) = max{s(x) | x is a (d, n)-string}.

A square-maximal string refers to a string that contains the maximum number of

distinct primitively rooted squares; that is, a (d, n)-string x is square-maximal when

s(x) = σd(n). A(x) denotes the alphabet of a string x and thus |A(x)| = d is the

number of distinct symbols in x. A singleton of x refers to a symbol in a string x

that occurs exactly once. Similarly, a pair , a triple and in general a k-tuple of x

refers to a symbol that occurs in x exactly twice, three times and k times, respectively.

8

Chapter 2

A d-Step Approach

In this chapter we discuss a theoretical approach to the number of distinct squares

problem. We have adopted a so-called d-step approach which was used originally in

the investigation of the Hirsch conjecture problem. We briefly introduce the Hirsch

conjecture and the d-step technique, followed by several auxiliary lemmas which will

be used later in the thesis. Then we discuss how we apply the d-step approach to

the problem of the maximum number of distinct squares to generate the so-called

(d, n − d)-table and the basic properties of σd(n) are exhibited. In Section 2.4, we

show and prove several more complex properties of σd(n). In the last section of

this Chapter, we conjecture an upper bound for the number of distinct primitively

rooted squares, and present several propositions equivalent with the conjectured upper

bound. These properties may indicate possible ways to tackle the problem. Most of

the contents in this chapter were reported in [11] and some in [12].

2.1 Hirsch Conjecture

Before we look into the Hirsch conjecture, let us define some basic terminologies.

9

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Definition 2.1. Let a ∈ Rd, a 6= 0, and c ∈ R, the set of x ∈ Rd satisfying aTx = c

is called a hyperplane.

If we replace the above equality with inequality, we get a half space . When

the inequality includes the equality, then it is a closed half space , otherwise it is

an open half space . A polyhedron is an intersection of finite number of closed

half spaces. A bounded polyhedron is called a polytope . A face of a polytope P

is the intersection of P with a supporting hyperplane, a hyperplane that intersects

the boundary but not the interior of P . A face of dimension k is called a k-face.

0-faces are called vertices , 1-faces are called edges , and (d − 1)-faces are called

facets . The facets of a d-dimensional polytope are (d− 1)-faces with one dimension

less than the polytope itself. For instances, the facets of a line are its 0-faces or

vertices. The diameter d(P) of a polytope P is the smallest integer such that any

pair of vertices of P can be connected by an edge-path of length d(P) or less. A

(d, n)-polytope is a polytope of dimension d having n facets. Let ∆(d, n) denote

the maximum possible diameter over all (d, n)-polytopes. A (d, n− d)-table is a

table with entries of ∆(d, n), rows are indexed by d and columns are indexed by n−d.

Note that the entries on the main diagonal of the table are ∆(d, 2d), which are the

maximum diameters for (d, 2d)-polytopes.

The Hirsch conjecture, first posed in 1957 by Hirsch [8] and stating that ∆(d, n) ≤

n − d, was disproved by Santos [32] in 2012 by exhibiting a violation on the main

diagonal of the (d, n− d)-table; specifically, a (43, 86)-polytope with a diameter more

than 43. The associated (d, n− d)-table exhibits similar regularities as the (d, n− d)-

table for σd(n) we will present in Section 2.3. Namely, corresponding to Proposition

2.6, it is known that ∆(d, n) ≤ ∆(d, n+ 1), ∆(d, n) ≤ ∆(d+ 1, n+ 1), and ∆(d, n) <

∆(d+ 1, n+ 2) for n ≥ d ≥ 2; and that ∆(d, n) = ∆(d+ 1, n+ 1) for 2d ≥ n ≥ d ≥ 2.

10

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

In other words, the maximum of ∆(d, n) within a column in the (d, n − d)-table is

achieved on the main diagonal and all values below a value on the main diagonal

are equal to that value; which is also true for the (d, n − d)-table of σd(n). The role

played by the main diagonal of the (d, n − d)-table was underlined in 1967 by Klee

and Walkup [24] who showed the equivalency between the Hirsch conjecture and the

d-step conjecture stating that ∆(d, 2d) ≤ d for all d ≥ 2 (corresponding to Theorem

2.14). Note that the d-cube is a (d, 2d)-polytope having diameter d and therefore

∆(d, 2d) ≥ d for any d (corresponding to Lemma 2.7). In other words, the (d, 2d)-

string aabbcc · · · consisting of d pairs can be viewed as an analogue of the d-cube. We

examine the structure of square-maximal (d, 2d)-strings in Chapter 3.

2.2 Auxiliary Lemmas

Here we present auxiliary lemmas that are frequently used in later sections. Lemma

2.2 is quite intuitive and we provide a formal proof that a removal of a singleton or

appending one does not reduce the number of distinct squares in a string. Lemma

2.4 shows that, if the frequency of every symbol in a square-maximal string does not

exceed 3, then every pair can be placed adjacent to each other in the end of the string

while keeping its maximality. Lemma 2.5 is a stronger version of Lemma 2.4 and

states that if the frequency of every symbol is less or equal than 2, then every pair

must be adjacent. Lemma 2.3 is used by Lemma 2.4 and other proofs in the thesis,

it shows that if a pair occurs in more than one square, then in fact it occurs in a

non-trivial run formed by all these squares.

Lemma 2.2. The singletons of a string can be removed or appended to end of the

string without reducing the number of distinct squares in the string.

Proof. Let x be a string containing a singleton C at a position i, that is x[i] = C. We

11

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

can write the string as x = x[1 .. i− 1]Cx[i+ 1 .. n].

If we remove C or move it to the end, the string becomes either x′ = x[1 .. i −

1]x[i+ 1 .. n] or x′′ = x[1 .. i− 1]x[i+ 1 .. n]C. Since x[i] is the only occurrence of C

in x, C is not in any squares as a square would require at least 2 occurrences of every

symbol involved in the square. Therefore, we do not destroy any existing squares.

However, the concatenation of x[1 .. i − 1] and x[i + 1 .. n] may create new squares,

but they might be of a type already existing. Thus, s(x) ≤ s(x′) = s(x′′).

Lemma 2.3. If a pair of C’s occurs in two or more squares in a string x, then all

these squares form a non-trivial run.

Proof. Without loss of generality, let us assume C’s occur in two distinct squares

uCvuCv and u′Cv′u′Cv′, where v 6= v′ and u 6= u′. Since vu = v′u′ as the symbols

occur between the C’s are the same for both squares, the periods of the two squares

are the same as |uCv| = |Cvu|, |u′Cv′| = |Cv′u′| and |Cvu| = |Cv′u′|. The length

of the overlapping portion of the two squares is at least |CvuC| = |Cv′u′C| which is

more than the period. Thus, uCvuCv and u′Cv′u′Cv′ are rotations of each other and

therefore form a non-trivial run.

Lemma 2.4. Let x be a square-maximal (d, n)-string, and every symbol of x occurs

at most 3 times. Then every pair in x can be moved together so that they are adjacent

in the end of the string, without destroying the maximality of x.

Proof. Let us suppose that there is a non-adjacent pair of C’s in x.

(i) If the C’s do not occur in any squares, then we could move both C’s to the end

of the string. This would not destroy any squares of x, but we gain a new square

CC which contradicts the maximality of x.

12

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

(ii) If the C’s occur in exactly one square uCvuCv (where u and v are some strings

and at least one of them is non-empty), we can move both C’s to the end of x to

form a new string y. The squares created by this move are uvuv and CC while

the old square uCvuCv is destroyed (uCvuCv does not exist in any other part

of x since C has only 2 occurrences and it would require C to appear at least 3

times in order to have another occurrence of uCvuCv). If uvuv is a new square

type and does not exist in any other part of x, then s(y) = s(x) + 2− 1 > s(x)

which contradicts the maximality of x; if uvuv already existed in some other

part of x, we should not consider uvuv a new square, then we only gained CC

and lost uCvuCv, therefore s(y) = s(x) + 1− 1 = s(x).

(iii) If the C’s occur in more than one square, these squares must form a non-trivial

run by Lemma 2.3. Let the form of such non-trivial run be tuCvtuCvt, where t

is a non-empty string with each symbol occurs 1 time (total of 3 times). Without

loss of generality, let us assume t has only one symbol. If u = v = ε, then the

run is tCtCt containing two distinct squares tCtC and CtCt. We can move the

C’s to the end forming tttCC, destroying the two squares, but gaining two new

squares tt and CC. Thus, the number of distinct squares in x is unchanged. If

either u 6= ε or v 6= ε, then by moving both C’s to the end of x, we destroyed the

two distinct squares tuCvtuCv and uCvtuCvt, but we gained three new squares

types tuvtuv, uvtuvt, and CC. Note that neither tuvtuv nor uvtuvt can exist

anywhere else in x because that would require each symbol in t occurs at least

4 times which it is not possible. Thus, we have more distinct squares than x,

which contradicts the maximality of x.

Therefore, we have shown for a square-maximal string with each symbol occurring

no more than 3 times, either non-adjacent pairs do not exist or, if they do, we can

13

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

safely move the pairs together to the end without reducing the number of distinct

squares in the string.

Lemma 2.5. Let x be a square-maximal (d, n)-string, and every symbol of x occurs

at most 2 times. Then every pair in x must be adjacent.

Proof. The proof is similar as Lemma 2.4. Let us suppose that there is a non-adjacent

pair of C’s in x.

(i) If the C’s do not occur in any squares, move both C’s to the end of string. By

this we gain a new square CC which contradicts the maximality of x.

(ii) If the C’s occur in at least one square, let us move the two C’s to the end of

the string. uCvuCv (where u and v are strings and at least one of them is

non-empty) is destroyed by the removal of the C’s, and uvuv is created. The

square uvuv is a new square type because if uvuv already existed in some other

part of x, every symbol of uv would have to occur in x at least 3 times, which is

not possible since every symbol of x occurs at most twice. Thus, the destroyed

square uCvuCv is replaced by a new square uvuv, in addition we gain a new

square CC. This contradicts the maximality of x.

Therefore, every pair in x must be adjacent.

2.3 (d, n− d)-Table

Inspired by the (d, n−d)-table used for investigating the Hirsch bound for the diameter

of polytopes as discussed in Section 2.1, we adopt the similar approach to the problem

of distinct squares in strings. A (d, n− d)-table with entries of σd(n), whose rows are

indexed by the number of distinct symbols d and columns are indexed by the difference

14

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

of the string length and number of distinct symbols n−d, is constructed. A fragment

of the table for d ≤ 15 and n − d ≤ 15 is shown in Table 2.1. A larger portion

of the table is shown in Table A.1, and the completed table with up to date values

is maintained in [10]. Note that we only consider the maximum number of distinct

primitively rooted squares for d ≥ 2 and n − d ≥ 2 since σd(n) = 1 for d = 1 or

n− d = 1 are the trivial cases.

n− d
2 3 4 5 6 7 8 9 10 11 12 13 14 15

d

2 2 2 3 3 4 5 6 7 7 8 9 10 11 12
3 2 3 3 4 4 5 6 7 8 8 9 10 11 12
4 2 3 4 4 5 5 6 7 8 9 9 10 11 12
5 2 3 4 5 5 6 6 7 8 9 10 10 11 12
6 2 3 4 5 6 6 7 7 8 9 10 11 11 12
7 2 3 4 5 6 7 7 8 8 9 10 11 12 12
8 2 3 4 5 6 7 8 8 9 9 10 11 12 13
9 2 3 4 5 6 7 8 9 9 10 10 11 12 13
10 2 3 4 5 6 7 8 9 10 10 11 11 12 13
11 2 3 4 5 6 7 8 9 10 11 11 12 12 13
12 2 3 4 5 6 7 8 9 10 11 12 12 13 13
13 2 3 4 5 6 7 8 9 10 11 12 13 13 14
14 2 3 4 5 6 7 8 9 10 11 12 13 14 14
15 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 2.1: (d, n− d)-Table of σd(n) for 2 ≤ d ≤ 15 and 2 ≤ n− d ≤ 15.

Viewing the table, one can make several observations, such as: the entries are

non-decreasing from left to right per row, and the entries are non-decreasing from top

to down per column. Proposition 2.6 summarizes the elementary properties of the

(d, n− d)-table.

Proposition 2.6. For any 2 ≤ d ≤ n− 2:

(a) σd(n) ≤ σd(n + 1), i.e. the values are non-decreasing when moving left-to-right

along a row.

15

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

(b) σd(n) ≤ σd+1(n+1), i.e. the values are non-decreasing when moving top-to-bottom

along a column.

(c) σd(n) < σd+1(n + 2), i.e. the values are strictly increasing when moving top-left

to bottom-right along a descending diagonal.

(d) σd(n) = σd+1(n + 1) for n ≤ 2d, i.e. the values under and on the main diagonal

along a column are constant.

Proof. (a) Let x be a square-maximal (d, n)-string. Let y be x appended with a

symbol a ∈ A(x), then y is a (d, n+ 1)-string. By doing this, we will not destroy

any squares in x, and we may have created a new square; for example, if the last

symbol in x is a, and x does not contain a square aa, therefore we have created

a new square aa by adding a symbol a in the end of x. Thus, σd(n) = s(x) ≤

s(y) ≤ σd(n+ 1).

(b) Let x be a square-maximal (d, n)-string. Let y be x appended with a symbol

a /∈ A(x), then y is a (d + 1, n + 1)-string. Since a is a new symbol and does

not occur in x, it will not destroy or create squares for x. Therefore, by adding

a in the end of x will not change the number of distinct squares in x. Thus,

σd(n) = s(x) = s(y) ≤ σd+1(n+ 1).

(c) Let x be a square-maximal (d, n)-string. Let y be x concatenated with aa in the

end, where a /∈ A(x), then y is a (d+ 1, n+ 2)-string. With the similar argument

in the proof of (b), this will not destroy or create squares for x; however, aa is a

square itself and does not occur in x, therefore y is guaranteed to have one more

square than x. Thus, σd(n) = s(x) < s(x) + 1 = s(y) ≤ σd+1(n+ 2).

(d) Let n ≤ 2d and x be a square-maximal (d+1, n+1)-string. Suppose every symbol

in x occur at least twice, then we would need 2(d + 1) symbols, since 2d ≥ n,

16

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

2(d+1) ≥ n+2, but we only have n+1 symbols in x, therefore x contains at least

one singleton. Let y be x with the singleton removed, then y is a (d, n)-string. By

auxiliary Lemma 2.2, this will not destroy any squares while some squares may be

created when left portion and right portion of the string are concatenated. Thus,

σd(n) ≥ s(y) ≥ s(x) = σd+1(n + 1). By (b), σd(n) ≤ σd+1(n + 1). Therefore,

σd(n) = σd+1(n + 1) for n ≤ 2d. When n = 2d, σd(n) is a value on the main

diagonal of the (d, n− d)-table.

When we combine the fact that entries are non-decreasing in every column by

Proposition 2.6 (b), and entries on and under the main diagonal entry are constant

in every column by Proposition 2.6 (d), we can conclude that the maximum entry in

every column is the entry on the main diagonal of the (d, n−d)-table; namely, σd(2d).

2.4 Properties of (d, n− d)-Table

In this section, we present a set of more complex properties of the (d, n − d)-table.

Lemma 2.7 shows the fact that the entries on and under the main diagonal are at

least as big as its column index (i.e. the conjectured value we will show in Section

2.5). Lemma 2.8 provides the lower bound for the two entries immediately on the

right neighbourhood of the main diagonal entry.

Lemma 2.7. For any 2 ≤ d, d+ 2 ≤ n ≤ 2d, σd(n) ≥ n− d.

Proof. Let n ≤ 2d and consider string x = aabbcc . . . consisting of n − d adjacent

pairs. Then x is a (n − d, 2n − 2d)-string and s(x) = n − d. By Proposition 2.6(d),

any value under the main diagonal equals to the value on the main diagonal along a

column. Thus, σd(n) = σn−d(2n− 2d) ≥ s(x) = n− d.

17

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Lemma 2.8. For any 2 ≤ d, σd(2d+ 1) ≥ d and σd(2d+ 2) ≥ d+ 1.

Proof. Consider string x = aaabbcc . . . consisting of d − 1 adjacent pairs except the

first three symbols being aaa. Then x is a (d, 2d + 1)-string and s(x) = d. Thus,

σd(2d + 1) ≥ s(x) = d. Similarly, consider string y = aababaccdd . . . consisting of

d−2 adjacent pairs except the first six symbols being aababa containing three distinct

squares aa, abab and baba. Then y is a (d, 2d + 2)-string and s(y) = d + 1. Thus,

σd(2d+ 2) ≥ s(y) = d+ 1.

Lemma 2.9 shows the difference between the value on the main diagonal and the

value immediately above it is no more than 1.

Lemma 2.9. For any 3 ≤ d, σd(2d)− σd−1(2d− 1) ≤ 1.

Proof. Let x be a square-maximal (d, 2d)-string.

(i) If x has a singleton, let y be x with the singleton removed, then y is a (d −

1, 2d − 1)-string and s(y) ≥ s(x). It follows that σd(2d) = s(x) ≤ s(y) ≤

σd−1(2d − 1), and since σd(2d) ≥ σd−1(2d − 1) by Proposition 2.6(b), we get

σd(2d) = σd−1(2d− 1).

(ii) If x does not have a singleton, then x only consists of pairs. By Lemma 2.5, all

pairs in x must be adjacent. Thus, σd(2d) = s(x) = d. By Lemma 2.8, σd−1(2d−

1) ≥ d−1. Therefore, σd−1(2d−1) ≥ σd(2d)−1, i.e., σd(2d)−σd−1(2d−1) ≤ 1.

Based on Fraenkel and Simpson’s lemma [14], Lemma 2.10 and Lemma 2.11 show

that in the (d, n− d)-table the difference between any two consecutive entries along a

row, or along the main diagonal, is bounded by 2. They essentially provide an upper

bound for the next unknown entry when computing the value of σd(n) inductively

18

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

in the (d, n − d)-table, as we discuss the details of the computational framework for

distinct squares in Chapter 4.

Lemma 2.10. For any 2 ≤ d ≤ n− 2, σd(n+ 1)− σd(n) ≤ 2.

Proof. Let x be a square-maximal (d, n+ 1)-string. Without loss of generality we can

assume that the first symbol in x is not a singleton because otherwise we can move all

singletons from the beginning of x to the end of x without destroying any squares by

Lemma 2.2. Remove the first symbol of x to form string y. Then y is a (d, n)-string

as the number of symbols d is unchanged because the first symbol is not a singleton.

By Fraenkel and Simpson [14], there are at most two rightmost occurrences of square

types starting at the same position in a string. In other words, the removal of the first

symbol destroyed at most two distinct squares. That is, s(x) − 2 ≤ s(y). Therefore,

σd(n+ 1)− 2 ≤ s(y) ≤ σd(n), implying σd(n+ 1)− σd(n) ≤ 2.

Lemma 2.11. For any 2 ≤ d, σd+1(2d+ 2)− σd(2d) ≤ 2.

Proof. By Lemma 2.10, σd+1(2d + 2) − σd+1(2d + 1) ≤ 2. By Proposition 2.6 (d),

the entries under and on the main diagonal along a column are constant; that is,

σd+1(2d+ 1) = σd(2d). Therefore, σd+1(2d+ 2)− σd(2d) ≤ 2.

Lemma 2.12 shows that the two entries immediately above the main diagonal entry

along a column are identical.

Lemma 2.12. For any 3 ≤ d, σd(2d+ 1) = σd−1(2d).

Proof. We prove it by induction. Let Hd be the statement that σd(2d+1) = σd−1(2d).

Hd for 3 ≤ d ≤ 14 is true from Table 2.1. This takes care of the base case of the

induction. Assume that Hd−1 is true, and let us prove that Hd is true. Let x be a

square-maximal (d, 2d+ 1)-string.

19

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

(i) If x contains a singleton, remove it to form a new string y. Then y is a (d−1, 2d)-

string, and σd(2d + 1) = s(x) ≤ s(y) ≤ σd−1(2d). Since σd(2d + 1) ≥ σd−1(2d)

by Proposition 2.6 (b), σd(2d+ 1) = σd−1(2d).

(ii) If x contains no singletons, then x contains exactly d− 1 pairs and 1 triple. By

Lemma 2.4, we can move all the pairs to be adjacent without destroying the

maximality of x. Then we can assume x has the form of aaabbccdd · · · . Remove

one pair to form string z. Then z is a (d− 1, 2d− 1)-string and σd(2d+ 1)− 1 =

s(x)−1 = s(z) ≤ σd−1(2d−1). Since σd(2d+1)−1 ≥ σd−1(2d−1) by Proposition

2.6 (c), σd(2d+ 1) = σd−1(2d− 1) + 1. Since Hd−1 : σd−1(2d− 1) = σd−2(2d− 2)

holds, σd(2d + 1) = σd−2(2d − 2) + 1. By Proposition 2.6 (c), σd−1(2d) ≥

σd−2(2d − 2) + 1. Thus, σd−1(2d) ≥ σd(2d + 1). Since σd−1(2d) ≤ σd(2d + 1)

according to Proposition 2.6 (b), hence σd(2d+ 1) = σd−1(2d).

Let (d, 2d)-diagonal denote the main diagonal of the (d, n − d)-table as the

entries on the main diagonal are σd(2d). Similarly, (d, 2d+ i)-diagonal where

i ≥ 1 denotes a diagonal above the main diagonal containing the entries of σd(2d+ i).

For example, (d, 2d + 1)-diagonal refers to the diagonal immediately above the main

diagonal. Corollary 2.13 demonstrates the fact that the difference between any two

consecutive entries on (d, 2d + 1)-diagonal and (d, 2d + 2)-diagonal of the (d, n − d)-

table is also bounded by 2.

Corollary 2.13. For any 3 ≤ d, σd(2d + 1) − σd−1(2d − 1) ≤ 2 and σd(2d + 2) −

σd−1(2d) ≤ 2.

Proof. By Lemma 2.10, σd−1(2d)−σd−1(2d− 1) ≤ 2; and by Lemma 2.12, σd−1(2d) =

σd(2d+ 1). Therefore, σd(2d+ 1)− σd−1(2d− 1) ≤ 2. Similarly, σd(2d+ 2)− σd(2d+

20

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

1) ≤ 2 by Lemma 2.10, and σd(2d + 1) = σd−1(2d) by Lemma 2.12. Therefore,

σd(2d+ 2)− σd−1(2d) ≤ 2.

2.5 σd(n) Conjecture

It is widely believed that the number of distinct squares in a string is bounded by

its length n. Inspired by the d-step approach, we conjecture that the upper bound

for the number of distinct primitively rooted squares in a string is n − d, that is,

σd(n) ≤ n − d, for 2 ≤ d ≤ n − 2. It is observed that this conjectured upper bound

holds for all known entries in the (d, n − d)-table [10], i.e. every entry in the table

is smaller or equal to its column index. This section contains the reformulations of

the conjectured upper bound for σd(n) in Theorems 2.14 and 2.15. We also present

conditions that lead to a slightly stronger upper bound in Theorems 2.16 and 2.17.

It can be observed in Table 2.1 that the known entries on the main diagonal satisfy

σd(2d) = d. Theorem 2.14 shows that, indeed, this observation is equivalent with the

conjectured bound. In essence, Theorem 2.14 shows that if the conjectured upper

bound is violated somewhere in the (d, n − d)-table, then there must be a violation

on the main diagonal of the same column as well. In fact, the violation propagates

through the descending diagonals because of the strictly increase on the entries by

Proposition 2.6 (c); that is, if d column is the first column that contains a counter-

example to the conjectured upper bound, then so do the subsequent columns bigger

than d. On the other hand, if σd(2d) = d is true for some column d in the (d, n− d)-

table, then all the entries on the same column are less than d thus complying with

the conjectured upper bound, since σd(2d) is the maximal value in the column. This

fact can be used to confirm that σd(n) ≤ n − d holds up to certain column without

even computing the actual values of the entries. Note that this theorem corresponds

21

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

to the equivalency between the d-step conjecture and the Hirsch conjecture showed

by Klee and Walkup [24].

Theorem 2.14. The conjectured upper bound σd(n) ≤ n − d holding true for all

2 ≤ d ≤ n− 2, is equivalent with the statement: σd(2d) ≤ d for every d ≥ 2.

Proof. σd(n) ≤ n − d clearly implies that σd(2d) ≤ d when n = 2d; that is, by

Lemma 2.7, σd(2d) = d. To prove the other direction, we consider (i) n ≤ 2d:

by Proposition 2.6 (d) we have σd(n) = σn−d(2n − 2d) ≤ n − d; (ii) n > 2d: by

Proposition 2.6 (b) we have σd(n) ≤ σn−d(2n− 2d) ≤ n− d.

Another observation in Table 2.1 is that the value on the main diagonal and the

value of its right neighbour are identical. Theorem 2.15 shows that the inequality

of the difference is bounded by 1, is equivalent with the conjectured upper bound;

while the equality of the two gives rise to a slightly stronger upper bound given in

Theorem 2.17.

Theorem 2.15. The conjectured upper bound σd(n) ≤ n − d holding true for all

2 ≤ d ≤ n − 2, is equivalent with the statement: σd(2d + 1) − σd(2d) ≤ 1 for every

d ≥ 2.

Proof. That the statement follows from the conjectured upper bound is clear. Let us

thus prove the opposite direction. We shall prove by contradiction that σd(2d) ≤ d

for d ≥ 2, as it is equivalent to the conjectured upper bound by Theorem 2.14. Let

d ≥ 2 be the smallest such that σd(2d) > d. Let x be a square-maximal (d, 2d)-string.

If x does not have a singleton, then x consists of only pairs. By Lemma 2.5, all the

pairs in x must be adjacent, and thus σd(2d) = d, a contradiction. Thus, x must have

a singleton. Let y be x with the a singleton removed. Then y is a (d−1, 2d−1)-string

and s(y) ≥ s(x) by Lemma 2.2. Thus, σd−1(2d − 1) ≥ s(y) ≥ s(x) = σd(2d). By

22

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

assumption, σd−1(2d−1) ≤ σd−1(2d−2)+1 ≤ d−1+1 = d. Thus, d ≥ σd−1(2d−1) =

σd(2d) > d, a contradiction. Therefore, σd(2d) ≤ d for every d ≥ 2 holds and the

conjectured upper bound follows.

The portion of the (d, n− d)-table given in Table 2.1 shows that not only σd(2d)

is bounded by d, but also it is true for σd(2d + 1). Theorem 2.16 shows that this

property implies a slightly stronger upper bound.

Theorem 2.16. If σd(2d+ 1) ≤ d for every d ≥ 2, then σd(n) ≤ n− d− 1 for n > 2d

and σd(n) = n− d for n ≤ 2d.

Proof. By Lemma 2.7 and Proposition 2.6 (a), we have d ≤ σd(2d), and σd(2d) ≤

σd(2d + 1), respectively. Since σd(2d + 1) ≤ d, then σd(2d) = σd(2d + 1) = d. It

implies that σd(n) = n− d for n ≤ 2d by Proposition 2.6 (d). For n > 2d we have, by

Proposition 2.6(b), σd(n) ≤ σn−d−1(2n− 2d− 1) = n− d− 1.

Theorem 2.17. If σd(2d) = σd(2d + 1) for every d ≥ 2, then σd(n) ≤ n − d − 1 for

n > 2d and σd(n) = n− d for n ≤ 2d.

Proof. The results follow from Theorem 2.16 and the fact that σd(2d) = σd(2d+1) = d

for every d ≥ 2. To show σd(2d) = σd(2d + 1) = d for every d ≥ 2, let us argue by

contradiction. Let d be the smallest such that σd(2d) = σd(2d + 1) > d. Thus,

d− 1 = σd−1(2d− 2) = σd−1(2d− 1). By Lemma 2.9, σd(2d)− σd−1(2d− 1) ≤ 1. It

follows that σd(2d)− (d− 1) ≤ 1. i.e. σd(2d) ≤ d, a contradiction.

23

Chapter 3

Structure of Square-Maximal

Strings

In Chapter 2 we conjectured that n− d is an upper bound for the number of distinct

primitively rooted squares in a string, where n is the length and d is the number

of symbols of the string. We also formulated several properties equivalent with the

conjecture. In this chapter, we explore in more depth the structure of square-maximal

strings, in particular the strings that are on the main diagonal of the (d, n− d)-table,

that is, the strings with n = 2d. The reason is that not only their compliance with

the conjectured upper bound was proven to be equivalent to the conjecture for all

n− 2 ≥ d ≥ 2 in Theorem 2.14; but more importantly, they are more structured and

combinatorially less complex to analyze in comparison with other square-maximal

strings.

Section 3.1 gives the unique structure of square-maximal strings on the main

diagonal if σd(2d) values are identical to their right neighbours in the (d, n− d)-table.

Section 3.2 shows several necessary conditions for the structure of strings on the main

diagonal if they do not comply with the conjectured upper bound. The purpose of this

24

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

exercise is to show that the strings either comply with the conjecture, or otherwise

they have a very special structure and thus are rather less possible to achieve. Of

course, if we could prove that such structure is not possible, then we would have

proved our conjecture on the maximum number of distinct squares. At this time,

we hope that this points to a possible direction on how to tackle the problem. By

analyzing the structure of such strings, we can estimate the number of singletons in

them; from this estimation, another property equivalent with the conjecture is given

in Section 3.3. The results of this chapter were reported in [11].

3.1 Square-Maximal Strings with σd(2d) = σd(2d+1)

In Theorem 2.17 we showed a slightly stronger upper bound with the condition that

all the values on the main diagonal of the (d, n−d)-table are identical to the values of

their right neighbour. Lemma 3.1 shows the unique structure of such square-maximal

strings on the main diagonal.

Lemma 3.1. If σd(2d) = σd(2d + 1) for every d ≥ 2, then for any d ≥ 2 and any

square-maximal (d, 2d)-string x, x consists of d adjacent pairs, i.e. equals to aabbcc . . .

up to relabeling of the alphabet.

Proof. If x contains only pairs, by Lemma 2.5 all these pairs have to be adjacent. If

x does not consist only of pairs, then it would have to have a singleton. Let y be a

string obtained from x by removing a singleton, then y is a (d− 1, 2d− 1)-string and

s(y) ≥ s(x) by Lemma 2.2. Since σd−1(2d−1) = σd−1(2d−2) and σd−1(2d−2) = d−1

by Theorem 2.17, d − 1 = σd−1(2d − 1) ≥ s(y) ≥ s(x) = σd(2d) = d which is

contradiction. Therefore, x contains only d adjacent pairs and is up to relabeling,

unique and equals to x = aabbcc

25

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

3.2 Square-Maximal Strings with σd(2d) > d

In this section we investigate the square-maximal strings that are not in compliance

with the conjectured upper bound, if there are any at all. The main goal of this

investigation is to either find a counterexample on the main diagonal, if there is one;

or to show that there are no counterexamples on the main diagonal, and thus prove

the conjectured upper bound for all strings. We show that a square-maximal string

from the main diagonal either complies with the conjectured upper bound or has to

have many singletons based on the facts that such string (a) cannot contain pairs, see

Lemma 3.3, and (b) if it contains a triple, it is must be a very special triple, implying

the existence of a symbol occurring at least 6 times, see Lemma 3.6. We hope that

it might be possible to show that counterexamples on the main diagonal do not exist

by showing that their structure would be impossible.

3.2.1 Auxiliary Lemma

Auxiliary Lemma 3.2 is used to estimate the number of squares that span from one

part of a string to the other part, and relies on the result of Fraenkel and Simpson

[14].

Lemma 3.2. Consider non-empty strings w, u, and v. The number of distinct prim-

itively rooted squares of the string wuv that start in w and end in v is at most |w|+ |v|

where |w| and |v| denotes the length of w and the length of v, respectively.

Proof. We discuss two cases:

(i) If |w| ≤ |v|, we count the rightmost occurrences of squares. By Fraenkel and

Simpson [14], there are at most two such squares starting at the same position.

Thus, there are at most 2|w| squares that start in w, and 2|w| ≤ |w|+ |v|.

26

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

(ii) If |w| > |v|, let x denote the reversal of the string x, and x = wuv = v u w. By

the previous argument, there are at most 2|v| rightmost squares of the string

starting in v. It follows that there are at most 2|v| squares of wuv that end in

v and 2|v| < |w|+ |v|.

3.2.2 Pair

Our conjectured upper bound holds for all the values in the (d, n− d)-table we have

computed so far. Lemma 3.3 shows that the square-maximal strings in first unknown

position on the main diagonal either continue complying with the conjectured upper

bound or cannot contain a pair. Let us remark that since the main diagonal entry is

the largest entry along a column in the (d, n−d)-table by Proposition 2.6 (b) and (d),

for any column with σd′(2d
′) ≤ d′, the entries in the same column are also bounded

by the column index d′. This fact is used in the proofs of the lemmas in this chapter

when deducing contradictions to the assumption.

Lemma 3.3. Let σd′(2d
′) ≤ d′ for every d′ < d. Let x be a square-maximal (d, 2d)-

string. Then either s(x) = σd(2d) = d or x does not contain a pair.

Proof. We shall prove it by contradiction. Let us assume that s(x) = σd(2d) > d

and x contains a pair of C’s at positions i0 and i1, so x[i0] = x[i1] = C. If the pair

occurs in at most one square, then we can replace the first C with a new symbol

Ĉ /∈ A(x). Let y be x with x[i0] replaced by Ĉ. Then y is a (d + 1, 2d)-string.

Since 2d − (d + 1) = d − 1 < d and σd−1(2d − 2) ≤ d − 1, σd+1(2d) ≤ d − 1. Thus,

d− 1 ≥ σd+1(2d) ≥ s(y) ≥ s(x)− 1 = σd(2d)− 1, i.e. d ≥ σd(2d), a contradiction.

Therefore, the pair must occur in at least two squares, in fact in a non-trivial

run uvCwuvCwu by Lemma 2.3, where |u| ≥ 1. Let us form a new string z by

27

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

removing all the symbols between the C’s so that the run becomes uvCCwu. By

doing this, we may have destroyed |u| + 1 squares, i.e. square uvCwuvCw and its

|u| rotations. For the removal of wuv, the type of every square in w is preserved,

as z has w as a substring. The same is true for u, v, wu, and uv. Thus, the only

squares of wuv we may have destroyed are the squares that start in w and end in v.

By Lemma 3.2, there are at most |w|+ |v| such squares. So, altogether, we may have

destroyed at most |w| + |u| + |v| + 1 squares, but we created a new one CC. Thus,

s(z) ≥ s(x) − (|w| + |u| + |v|). Clearly, A(z) = A(x) as all the symbols occurring

in wuv are preserved, so z is a (d, 2d − k)-string where k = |w| + |u| + |v|. By the

assumption of this lemma as 2d− k − d = d− k < d, we have d− k ≥ σd(2d− k) ≥

s(z) ≥ s(x)− k = σd(2d)− k. Thus, d ≥ σd(2d), a contradiction.

3.2.3 Triple

As discussed in Section 3.2.2, Lemmas 3.4 and 3.5 use the same scenario investigating

the square-maximal strings in the first unknown position on the main diagonal and

showing that they either comply with the conjectured upper bound or may contain

only very specific triples.

Lemma 3.4. Let σd′(2d
′) ≤ d′ for every d′ < d. Let x be a square-maximal (d, 2d)-

string. Then either s(x) = σd(2d) = d, or if x contains a triple, then the triple has to

occur in two distinct runs.

Proof. Let us assume that s(x) = σd(2d) > d. Let x[i0] = x[i1] = x[i2] = C be a

triple in x. We first show that all three symbols occur in some run. Assume that

x[i0] does not occur in any run. If x[i0] does not occur in any run, then x[i0] does not

occur in any square. Let y be x with x[i0] replaced by Ĉ, and Ĉ /∈ A(x). Then y is a

(d+ 1, 2d)-string and σd+1(2d) ≥ s(y) = s(x) = σd(2d). Since 2d− (d+ 1) < d, we get

28

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

2d− (d+ 1) ≥ σd+1(2d) ≥ σd(2d), i.e. d− 1 ≥ σd(2d), a contradiction. Similarly, x[i2]

must occur in some run. If x[i1] does not occur in any run, then none of the elements

of the triple occur in any run. As we proved that x[i0] and x[i2] must occur in some

runs, this would lead to a contradiction.

We have to show that three symbols cannot occur in the same run. Assume

they do occur in the same run uvCwuvCwuvCwu. We can remove wuv between the

first and second C and proceed with the same proof as in Lemma 3.3 to derive a

contradiction.

Lemma 3.5. Let σd′(2d
′) ≤ d′ for every d′ < d. Let x be a square-maximal (d, 2d)-

string. Then either s(x) = σd(2d) = d, or if x has a triple x[i0] = x[i1] = x[i2] = C

occurring in two distinct runs u1v1x[i0]w1u1v1x[i1]w1u1 = u1v1Cw1u1v1Cw1u1 and

u2v2x[i1]w2u2v2x[i2]w2u2 = u2v2Cw2u2v2Cw2u2, then |u1| ≥ 1 and |u2| ≥ 1, and

either u2v2 is not a suffix of u1v1 or w1u1 is not a prefix of w2u2.

Proof. Let us assume that s(x) = σd(2d) > d. If |u1| = 0, then x[i0] occurs in a

trivial run, i.e. a single square v1Cw1v1Cw1. Let y be x with x[i0] replaced by Ĉ,

and Ĉ /∈ A(x). By this replacement, we have destroyed one square. Then y is a

(d+ 1, 2d)-string and σd+1(2d) ≥ s(y) = s(x)−1 = σd(2d)−1. Since 2d− (d+ 1) < d,

we get 2d − (d + 1) ≥ σd+1(2d) ≥ σd(2d) − 1, i.e. d ≥ σd(2d), a contradiction. It

follows that |u1| ≥ 1. To show |u2| ≥ 1, the proof is the same. Thus, |u1| ≥ 1 and

|u2| ≥ 1.

Let us assume that both u2v2 is a suffix of u1v1 and w1u1 a prefix of w2u2. Let us

form a new string from x by removing w1u1v1 between x[i0] and x[i1] and removing

w2u2v2 between x[i1] and x[i2] so that the form of the two runs becomes u1v1CCCw2u2.

How many squares have we destroyed? We might have destroyed |u1| + 1 squares of

u1v1Cw1u1v1Cw1u1 (u1v1Cw1u1v1Cw1 and its |u1| rotations) and |u2| + 1 squares of

29

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

u2v2Cw2u2v2Cw2u2 (u2v2Cw2u2v2Cw2 and its |u2| rotations). For w1u1v1, u1v1 has

been preserved, w1u1 is also preserved since it is a prefix of w2u2, so the only squares

we might have destroyed are the ones that start in w1 and end in v1. By Lemma 3.2

there are at most |w1| + |v1| of them. Similarly for w2u2v2, w2u2 is preserved and

u2v2 is also preserved as it is a suffix of u1v1, the number of squares that span from

w2 to v2 is at most |w2| + |v2|. Thus, in total we might have destroyed at most

|w1| + |u1| + |v1| + |w2| + |u2| + |v2| + 2 = k + 2 squares, where k = |w1| + |u1| +

|v1|+ |w2|+ |u2|+ |v2|, and we gained one square from CCC. Replace the first C by a

new symbol Ĉ /∈ A(x) to form a string z. This will not destroy any square as we still

have square CC, but the number of distinct symbols is increased by one. Then z is a

(d+ 1, 2d− k)-string, and σd+1(2d− k) ≥ s(z) ≥ s(x)− (k + 2) + 1 = σd(2d)− k− 1.

Since 2d−k−(d+1) = d−k−1 < d, we have d−k−1 ≥ σd+1(2d−k) ≥ σd(2d)−k−1,

i.e. d ≥ σd(2d), a contradiction. It follows that either u2v2 is not a suffix of u1v1, in

which case u1v1 is a suffix of u2v2; or w1u1 is not a prefix of w2u2, in which case w2u2

is a prefix of w1u1.

3.2.4 Singletons Estimation

Lemma 3.6 utilizes the previous lemmas and shows that any square-maximal string in

the first unknown position on the main diagonal either complies with the conjectured

upper bound, or if it contains a triple, it must be a very specific one giving rise to

a symbol that must occur at least 6 times. Thus, each triple occurring in the string

must be balanced by an existence of a unique set of 5 occurrences of a certain symbol.

Though the symbol may not be unique to a particular triple, the set of occurrences are

mutually disjoint. Thus, every triple with its assigned set of 5 occurrences is balanced

by an existence of at least 4 singletons unique to the triple and its assigned set.

30

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Lemma 3.6. Let σd′(2d
′) ≤ d′ for every d′ < d. Let x be a square-maximal (d, 2d)-

string. Then either s(x) = σd(2d) = d or x has at least d2d
3
e singletons.

Proof. Let us assume that s(x) = σd(2d) > d. From Lemma 3.3 it follows that x does

not have any pair. From Lemmas 3.4 and 3.5, any triple x[i0] = x[i1] = x[i2] = C of

x must satisfy

1. x[i0] and x[i1] occur in a run r1 = u1v1Cw1u1v1Cw1u1, where |u1| ≥ 1,

2. x[i1] and x[i2] occur in a run r2 = u2v2Cw2u2v2Cw2u2, where |u2| ≥ 1, and

where i1− i0 6= i2− i1 as otherwise the two runs would merge into a single one,

3. either u1v1 is a proper suffix of u2v2, or w2u2 is a proper prefix of w1u1.

Let us discuss the case when u1v1 is a proper suffix of u2v2; the case of w2u2

being a proper prefix of w1u1 is the same just argued from the opposite direction.

Let the run r1 = u1v1Cw1u1v1Cw1u1 start at position t of x. Suppose x[t] = a. If

there is no other occurrence of a in u1v1 except the first position, then we can replace

all the occurrences of a in x[1..i0 − 1] with a new symbol, forming a string y, while

destroying a single square u1v1Cw1u1v1Cw1 of x. Thus, y is a (d + 1, 2d)-string,

2d− d− 1 ≥ σd+1(2d) ≥ s(y) = s(x)− 1 = σd(2d)− 1, so d ≥ σd(2d), a contradiction.

Thus, a occurs at least twice in u1v1. Since u1v1 is a proper suffix of u2v2, a occurs at

least 4 more times – twice in each occurrence of u2v2. Thus, x[t] occurs in x at least

6 times, the last occurrence before the last C. We assign to the triple the sequence

of positions of the first five occurrences of a after the position t and denote it by

As(C) = 〈j0, j1, j2, j3, j4〉, where t < j0 < j1 < j2 < j3 < j4 < i2 and j0 < i0 and t is

the start of the run r1 and x[t] = x[j0] = x[j1] = x[j2] = x[j3] = x[j4]. For the case

that w2u2 is a proper prefix of w1u1, the assignment is from the opposite side of r2.

Then As(C) = 〈j0, j1, j2, j3, j4〉, where i0 < j4 < j3 < j2 < j1 < j0 < t and i2 < j0, t

31

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

is the end of the run r2 and x[j4] = x[j3] = x[j2] = x[j1] = x[j0] = x[t]. Lemma 3.9

shows that such assignments are mutually disjoint, i.e. if C’s and D’s are different

triples, then As(C) ∩ As(D) = ∅.

Now we can estimate the number of singletons in x. Letm0 be the number of triples

in x. Let m1 be the number of multiply occurring symbols that are not assigned to

triples – since there are no pairs, it follows that such symbols occur at least 4 times.

Let m2 be the number of singletons in x. The following two inequalities must hold:

2d ≥ (3 + 5)m0 + 4m1 +m2 (3.1)

d ≤ 2m0 +m1 +m2 (3.2)

In 3.1 we underestimated the length of x as there may be symbols that occur more than

4 times, and in 3.2 we overestimated the number of distinct symbols d because while

the set of five occurrences of a symbol assigned to the triples are disjoint, the symbol

may not be unique to a triple, i.e. two triples are assigned the same symbol. Solving

the inequalities, we get 2d ≥ 8m0 + 4m1 +m2 = 4(2m0 +m1) +m2 ≥ 4(d−m2) +m2,

which gives 3m2 ≥ 2d. Thus, m2 ≥ d2d3 e.

In Lemma 3.5 it is shown that a triple of C’s can exist in x only if it occurs in

two distinct non-trivial runs u1v1Cw1u1v1Cw1u1 and u2v2Cw2u2v2Cw2u2. We refer

to u1v1 and w2u2 as the appendices, and we say that u1v1 is a short appendix

if u1v1 is a proper suffix of u2v2, similarly we say that w2u2 is a short appendix if

it is a proper prefix of w1u1. As we defined in 3.6, short appendix determines the

assignment to a triple As(C); that is, the five occurrences of the assignment counts

from the short appendix side of the runs. Lemma 3.5 also stipulates that at least one

of the appendices must be short.

32

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Before we prove that the two assignments of the triples are mutually disjoint, let

us first show that the square-maximal strings cannot contain parallel k-tuples.

Definition 3.7. A k-tuple of C’s occurring at positions {i1, · · · , ik} and a k-tuple of

D’s occurring at positions {j1, · · · , jk} are parallel if i1 < j1 < i2 < j2 < · · · < ik <

jk, and jb − ia > 1 for any 1 ≤ a, b ≤ k and jb > ia.

Definition 3.7 ensures that C’s and D’s are interleaved one by one, and the strings

in between any C and D are non-empty.

Lemma 3.8. Let x be a square-maximal (d, n)-string. Then x cannot contain two

parallel k-tuples for any k ≥ 2.

Proof. Let us assume that x contains two parallel k-tuples of C’s and D’s. Let us

move all the D’s to the end of x forming a new string y. Similarly to the proof in

Lemma 2.4, the squares that are destroyed by the replacement of D’s will be replaced

by the same number of new squares. For illustration: uCvDuCvD becomes uCvuCv,

where u and v are non-empty strings. Note that uCvuCv is a new square type because

it did not have other occurrences in x since any square that contained C’s would have

contained D’s as they were interleaved. In addition, moving the D’s to the end creates

a new square DD. Thus, s(y) > s(x), a contradiction with the maximality of x.

Lemma 3.9. Let σd′(2d
′) ≤ d′ for every d′ < d. Let x be a square-maximal (d, 2d)-

string. Then either s(x) = σd(2d) = d or if x contains triples C’s and D’s, then

As(C) ∩ As(D) = ∅.

Proof. Let As(C) = 〈j0, j1, j2, j3, j4〉 and As(D) = 〈k0, k1, k2, k3, k4〉. If x[j0] 6= x[k0],

then As(C) ∩ As(D) = ∅. Below, we discuss the case when x[j0] = x[k0] = a.

Without loss of generality, let us assume that the first C precedes the first D.

We must discuss all the possible configurations of the two triples. For better read-

ability, we will denote the first occurrence of C by C1, and the second occurrence

33

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

of C by C2, etc. Similarly for D’s. Then C’s occur in two non-trivial runs r1 =

u1v1C1w1u1v1C2w1u1 and r2 = u2v2C2w2u2v2C3w2u2, while the D’s occur in two non-

trivial runs r3 = u3v3D1w3u3v3D2w3u3 and r4 = u4v4D2w4u4v4D3w4u4.

1. The two triples do not interleave (schematically C1 C2 C3 D1 D2 D3).

(a) First we consider the case when the appendix determining As(C) and the

appendix determining As(D) are on the opposite sides. Thus, the short

appendix determining As(C) is on the left and the short appendix de-

termining As(D) is on the right. Then we are guaranteed the following

pattern of occurrences of a in x (for C’s, a’s are shown in bold; for D’s, a’s

are shown underscored): a a C1 a a C2 a a C3 D1 a a D2 a a D3 a a, so

x[j4] occurs before C3, while the x[k4] occurs after D1. Therefore, j4 < k4

and As(C) ∩ As(D) = ∅.

(b) Next we consider the case when the appendix determining As(C) and

the appendix determining As(D) are facing each other. Thus, for the

C’s we are using the right appendix, and for the D’s we are using the

left appendix. Then the pattern of occurrences of a in x should be:

C1 a a C2 a a C3 a a D1 a a D2 a a D3. Note that it is possible

that the two a’s between C3 and D1 are the same. However, since we do

not take the first occurrence of a for the assignments, As(C)∩As(D) = ∅.

(c) Here we consider the case when the appendix determining As(C) and the

appendix determining As(D) are on the same side. Without loss of general-

ity, we can assume that both appendices used are on the left. Then the pat-

tern of occurrences of a in x is: a a C1 a a C2 a a C3 a a D1 a a D2 a a D3.

Why cannot the first two a’s be the same as the last two a’s? If it were

the case, then C would be in the appendix for the D’s, i.e. a part of the

34

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

run r3 and hence repeat later. So, again As(C) ∩ As(D) = ∅.

2. Case C1 D1 D2 C2 C3 D3, C1 D1 D2 C2 D3 C3, and C1 D1 D2 D3 C2 C3 are not

possible.

For the first two cases, if either D1 or D2 occurred in u1v1, then there would be

a D preceding C1. Thus, both D1 and D2 occur in w1, but then D occurs at

least 4 times since there is another w1 after C2, a contradiction. For the third

case, the proof is the same except all the D’s must occur in w1 but there is no

more D after C2, a contradiction.

3. Case C1 D1 C2 D2 D3 C3 is not possible.

As in the previous cases, but arguing from the opposite side, both D2 and D3

must occur in v2 since if either of them occurs in w2u2 then there would be a D

after C3. Hence D must occur at least 4 times, a contradiction.

4. Case C1 D1 C2 D2 C3 D3 is not possible.

By Lemma 3.8 C’s and D’s cannot be parallel.

5. Case C1 D1 C2 C3 D2 D3 is not possible.

This case is clearly impossible because D1 occurs in w1 since there is no D

preceding C1. But there is no D occurring between C2 and C3, a contradiction.

6. Case C1 C2 D1 D2 C3 D3 and C1 C2 D1 D2 D3 C3 are not possible.

For C1 C2 D1 D2 C3 D3, both D1, D2 must occur in w2 as there is no D preceding

C2. But then D occurs at least 4 times since there is another w2 follows C3, a

contradiction. Proof for C1 C2 D1 D2 D3 C3 is the same except we would need

D occurring at least 6 times which is impossible.

7. Case C1 C2 D1 C3 D2 D3.

We denote by w
(1)
2 the first occurrence of w2 in x, by w

(2)
2 the second occurrence

35

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

of w2 in x, etc.

If D1 occurred in (u2v2)
(2), there would be a D preceding C2. Hence D1 must oc-

cur in w
(1)
2 and hence D2 occurs in w

(2)
2 . Since the distance between C2 and C3 is

the period of r2, and the distance between D1 and D2 is the period of r3, and the

distances are equal, it follows that r2 = r3 = u2v2C2w2
′D1w2

′′u2v2C3w2
′D2w2

′′u2.

Note that u3 = u2 and v3 = v2Cw2
′ and w3 = w2

′′.

Schematically:

r1 : u1v1C1w1u1v1C2w1u1

r2 = r3 : u2v2C2w2
′D1w2

′′u2v2C3w2
′D2w2

′′u2

r4 : u4v4D2w4u4v4D3w4u4

Consider the two runs r1 and r2. Since D1 cannot occur in (w1u1)
(2), it follows

that the w1u1 is a prefix of w2
′ and hence of w2

′D1w2
′′u2, and so the appendix

w2
′D2w2

′′u2 is not short and by Lemma 3.5, u1v1 must be a short appendix and

is used to determine As(C).

Consider the two runs r3 and r4. Since C3 cannot occur in (u4v4)
(1), u4v4 is a

suffix of w′2 and hence of u2v2C3w2
′, and so the appendix u2v2C2w2

′ is not short.

By Lemma 3.5, w4u4 must be a short appendix and is used to determine As(D).

(a) Let a occur twice in u1 and twice in u4 (the dots indicate the occurrences).

·· ·· ··r1 : u1v1C1w1u1v1C2w1u1
r2 = r3 : u2v2C2w2

′D1w2
′′u2v2C3w2

′D2w2
′′u2

r4 : u4v4D2w4u4v4D3w4u4·· ·· ··

Then a occurs twice in each occurrence of u1 and hence x[j4] occurs before

D1 since w1u1 is a prefix of w2
′. Similarly, a occurs twice in each occurrence

of u4 and hence x[k4] occurs after D1 since u4v4 is a suffix of w′2. Thus,

As(C) ∩ As(D) = ∅.

36

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

(b) Let a occur only once in u1 and twice in u4.

· · · · ·
r1 : u1v1C1w1u1v1C2w1u1 · ·
r2 = r3 : u2v2C2w2

′D1w2
′′u2v2C3w2

′D2w2
′′u2

r4 : u4v4D2w4u4v4D3w4u4
·· ·· ··

Then a must occur in v1. Since u1v1 is a suffix of u2v2 and since w1u1 is a

prefix of w′2, we have 7 occurrences of a from the left and 6 occurrences of

a from the right, so again As(C) ∩ As(D) = ∅.

(c) Let a occur twice in u1 and only once in u4.

This is symmetric to the previous case, we have 6 occurrences of a from

the left, and 7 occurrences of a from the right. Thus, As(C)∩As(D) = ∅.

(d) Let a occur in u1 only once and in u4 also only once.

· · · · ·
r1 : u1v1C1w1u1v1C2w1u1 · · ·
r2 = r3 : u2v2C2w2

′D1w2
′′u2v2C3w2

′D2w2
′′u2

· · ·
r4 : u4v4D2w4u4v4D3w4u4· · · · ·

From the left there are 8 occurrences of a: a must occur in v1 and since

u1v1 is a suffix of u2v2, it must occur twice in (u2v2)
(2), and since u1 is a

substring of w′2, a must occur in all the occurrences of w′2. Similarly, there

are 8 occurrences of a from the right. Even though it is possible for some

of the occurrences from the left and from the right are the same, the first

5 occurrences from the left and 5 occurrences from the right are disjoint,

and so As(C) ∩ As(D) = ∅.

37

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

3.3 Additional Combinatorial Property Equivalent

with the Conjectured Upper Bound

We gave a lower bound for the number of singletons in the first square-maximal

string on the main diagonal that violates the conjectured upper bound. Theorem 3.10

stresses the fact that such violation implies the existence of a counterexample higher

up in the (d, n − d)-table. Similarly as Theorems 2.14 and 2.15, this is yet another

combinatorial property equivalent with the conjectured upper bound.

Theorem 3.10. The conjectured upper bound σd(n) ≤ n − d holding true for all

2 ≤ d ≤ n− 2 is equivalent with the statement: σd(4d) ≤ 3d for every d ≥ 2.

Proof. Setting n = 4d in σd(n) ≤ n − d directly yields σd(4d) ≤ 3d. Then, assume

that there is a counterexample to the inequality σd(n) ≤ n − d. By Theorem 2.14,

it follows that there is a counterexample x on the main diagonal, i.e. a square-

maximal (d, 2d)-string x with s(x) = σd(2d) > d. Let us consider the smallest d

in the table where the counterexample occurs. By Lemma 3.6, x has at least d2d
3
e

singletons. If we remove these d2d
3
e singletons from x, we get a (d′, n′)-string y where

d′ = d−d2d
3
e and n′ = 2d−d2d

3
e. Then σd′(n

′) ≥ s(y) ≥ s(x) = σd(2d) > d. Moreover,

4d′ = 4(d − d2d
3
e) = 4d − 4 · d2d

3
e = 4d − 2d − d2d

3
e = 2d − d2d

3
e = n′. So we have

σd′(4d
′) > d. Since 3d′ = 4d′ − d′ = n′ − d′ = (2d− d2d

3
e)− (d− d2d

3
e) = d, it follows

that σd′(4d
′) > 3d′. Therefore, we have a counterexample that is a (d′, 4d′)-string.

38

Chapter 4

Computational Approach

To compute σd(n) by brute force, we would have to generate all possible (d, n)-strings,

compute the number of distinct primitively rooted squares for each of them, and find

out the maximal value among them. This was how we populated the fragment of

the (d, n − d)-table shown in Table 2.1. One could employ some computationally

efficient techniques like generating the strings only in an increasing lexicographic order

utilizing the fact that a relabelling of the alphabet does not change the number of

distinct primitively rooted squares, nevertheless the number of strings to be generated

is O(dn). Clearly, this approach becomes intractable for larger d and n for two reasons

– one is the strings and the numbers to handle becoming too big, and the other is the

computation time becoming too long; with the latter being the most difficult one to

deal with.

To overcome this limitation, and to expand the (d, n−d)-table as much as we can in

order to explore the behaviour of σd(n) in further depth, we designed a computational

framework to compute the maximum number of distinct primitively rooted squares

in strings. The main strategy of this framework is based on reducing the set of

strings needed to be computer generated as much as possible. In other words, instead

39

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

of generating all possible (d, n)-strings as in brute force approach, we would like to

generate only those strings that are likely to produce σd(n). Thus, we can limit our

search to strings that are guaranteed not to give a worse number than a lower bound

established by some other means: we call them candidate strings. We will show that

this reduction is in fact very significant and it allows us to virtually double the range

of computationally tractable instances.

This chapter outlines the computational framework in details, and specifies con-

ditions that the candidate strings must satisfy. Partial contents of this chapter were

reported in [12], and some work was a collaboration with Liu who reported the results

in her Ph.D. thesis [29].

4.1 Dense s-Covered Strings

In this section, we mainly focus on the theoretical aspects of the computational frame-

work. Suppose that a lower bound σ−d (n) for the maximum number of distinct prim-

itively rooted squares for (d, n)-strings is known. The value of σd(n) must either

be larger or equal to σ−d (n). If there is no (d, n)-string x with s(x) > σ−d (n), then

σd(n) = σ−d (n). Therefore, we have to focus on strings x such that s(x) > σ−d (n). If

there is no such string, we established that σd(n) = σ−d (n); if there is one, we can set

σ−d (n) to this new improved value and repeat the whole process. If we can show, and

we can, that |σ−d (n) − σd(n)| ≤ 2, in the worst case after two iterations we have the

real value of σd(n).

We show that in order to obtain a string x with s(x) > σ−d (n), x has to satisfy

certain combinatorial properties. These properties are based on the notions of s-cover,

core vector, and density defined in the section. Specifically, the square-maximal strings

with the number of distinct primitively rooted squares potentially exceeding σ−d (n)

40

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

must be dense s-covered strings.

4.1.1 The Notion of s-Cover

Definition 4.1. An s-cover of a string x = x[1 .. n] is a sequence of primitively

rooted squares {Si = (si, ei, pi) | 1 ≤ i ≤ m} so that:

(1) for any 1 ≤ i < m, si < si+1 ≤ ei + 1 and ei < ei+1;

(2)
⋃

1≤i≤m

Si = x;

(3) for any occurrence of square S in x, there is an i, where 1 ≤ i ≤ m such that S

is a substring of Si, denoted by S ⊆ Si.

Let us analyze each property of the s-cover. We say a square is an s-cover square if

it is in the s-cover of the string. Definition 4.1 (1) means the two consecutive s-cover

squares are either adjacent or overlapping. Definition 4.1 (2) enforces that the union

of all s-cover squares forms the entire string x, that is, every position in x is covered.

Definition 4.1 (3) constraints that every occurrence of a square in x is completely

contained within one of the s-cover squares; in other words, there is no intermediate

square between the two s-cover squares; that is, there is no square starting in the

non-overlapping portion, i.e. the portion that does not overlap with other s-cover

squares, of one s-cover square and ending in the non-overlapping portion of another

s-cover square.

Consider the example given in Figure 4.1 where an s-cover {S1 = (1, 2, 1), S2 =

(2, 7, 3), S3 = (3, 8, 3), S4 = (4, 9, 3)} of the string x is shown. It satisfies all properties

defined in Definition 4.1: any two consecutive squares in the s-cover overlap; every

position of x is contained in a square of the s-cover; and there are no intermediate

squares.

41

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

 1 2 3 4 5 6 7 8 9

x a a b b a b b a b

S1 a a

S2 a b b a b b

S3 b b a b b a

S4 b a b b a b

Figure 4.1: s-Cover of string x.

Lemma 4.2 shows that if a string has an s-cover, then the s-cover must be unique.

Therefore, a string cannot have more than one s-cover, and thus the relationship

between a string and its s-cover is one to one. This ensures that by generating all

possible s-covers for given d and n, we are actually generating all possible (d, n)-strings

admitting s-covers. We call a string with an s-cover, an s-covered string.

Lemma 4.2. An s-cover of a string is unique.

Proof. Let us assume that we have two different s-covers of x, {Si | 1 ≤ i ≤ m}

and {S ′i | 1 ≤ i ≤ k}. We shall prove by induction that they are identical. By

Definition 4.1 (3), S1 ⊆ S ′1. By the same argument, S ′1 ⊆ S1. Thus, S1 = S ′1,

which is the base case. Let the induction hypothesis be Si = S ′i for 1 ≤ i ≤ t. If

t = m = k, we have
⋃

1≤i≤t Si =
⋃

1≤i≤t S
′
i = x and we are done. Otherwise consider

St+1. By Definition 4.1 (3), there is an S ′v so that St+1 ⊆ S ′v and v ≥ t + 1. We

need to show that v = t + 1. Suppose v > t + 1, then there exists a square S ′t+1 in

x such that the starting position of S ′t+1 is in the non-overlapping portion of St and

ending position is in the non-overlapping portion of St+1, which forms an intermediate

square, contradicting with Definition 4.1 (3). Thus, v = t + 1, and St+1 ⊆ S ′t+1. By

the same argument, S ′t+1 ⊆ St+1, therefore St+1 = S ′t+1.

Lemma 4.3 shows that any s-covered string is singleton-free.

42

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Lemma 4.3. An s-covered string is singleton-free.

Proof. Let {Sj | 1 ≤ j ≤ m} be the s-cover of string x[1 .. n]. For any 1 ≤ i ≤ n,

x[i] ∈ St for some 1 ≤ t ≤ m by Definition 4.1 (2). Since St is a square, the symbol

x[i] occurs in x at least twice.

4.1.2 Core Vector

Before we can define what a dense string is, we must first define the notion of the

core of square, followed by the definition of the core vector. The intuition behind the

notion of the core of a square is similar to the core of a run [15], i.e. the set of indices

i of x such that if x[i] is replaced by a symbol not occurring in x, all occurrences of

the square are destroyed.

Definition 4.4. The core of a square S is the set of indices formed by the intersection

of the sets of indices of all occurrences of S in the string.

Square Occurrences Core

aa (1, 2, 1), (9, 10, 1) 
abab (2, 5, 2), (4, 7, 2) {4, 5}

baba (3, 6, 2) {3, 4, 5, 6}

bb (7, 8, 1) {7, 8}

 1 2 3 4 5 6 7 8 9 10

x a a b a b a b b a a

Figure 4.2: Core of each square in string x.

The example shown in Figure 4.2 demonstrates three different scenarios when

determining the core of a square: square abab has two occurrences in x, and the

intersection of the indices of these two occurrences is the core for abab; square aa

also has two occurrences, however they do not intersect, thus the intersection of the

43

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

indices is an empty set and therefore so is the core; and the core for single occurrence

squares like baba and bb is the indices of itself.

Definition 4.5. For a string x with length of n, the core vector k(x) = [k1(x), k2(x),

· · · , kn(x)] of x is defined by ki(x) = the number of cores of squares containing i in x

for 1 ≤ i ≤ n.

To put it simply, the core vector k(x) denotes the number of distinct squares that

a position contains in x. For instance, if ki(x) = p for position i in x, it means there

are p number of cores of squares that contain position i. Therefore, if we were to

replace the symbol x[i] with a new symbol that is not in A(x), the number of distinct

primitively rooted squares in x would be decreased by p. Note that we also refer to

the core vector as k-vector in Section 5.3.

 1 2 3 4 5 6 7 8 9 10

x a a b a b a b b a a

k 0 0 1 2 2 1 1 1 0 0

Figure 4.3: Core vector of string x.

As illustration, Figure 4.3 shows the core vector k(x) of the same string x which

was used in the previous example. The value of each position in k(x) is determined

by the number of cores of squares this position contains, i.e. the number of times this

position occurs in the “Core” column of the table shown in Figure 4.2. For example,

position 4 and 5 occurs twice, that means there are two distinct squares whose cores

contain position 4 and 5, thus k4(x) = k5(x) = 2; similarly, position 3, 6, 7, and 8

occur once, then k3(x) = k6(x) = k7(x) = k8(x) = 1, and position 1, 2, 9, and 10 does

not occur, then k1(x) = k2(x) = k9(x) = k10(x) = 0.

44

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

4.1.3 Dense Strings

Definition 4.6. For a given lower bound σ−d (n), a (d, n)-string x is dense, if its core

vector k(x) satisfies ki(x) > σ−d (n) − s(x[1 .. i − 1]) −mi, for any 1 ≤ i ≤ n, where

mi = max {σd′(n− i) : d− |A(x[1 .. i− 1])| ≤ d′ ≤ min(n− i, d)}.

In Definition 4.6, mi denotes the maximum number of distinct primitively rooted

squares that a string of length n− i and proper number of distinct symbols d′ could

contain. Let y be such a string, then s(y) = σd′(n− i) = mi, and |A(y)∪A(x[1 .. i−

1])| = d.

When we generate s-covered candidate strings, the density condition enforces the

minimum number of cores each position must contain in order for the number of

distinct primitively rooted squares of the candidate string exceeding σ−d (n). Since

s(x[1 .. i − 1]) is the number of distinct squares for the portion of candidate string

we have generated so far, mi is an estimate for the portion of string we have not

generated yet. If any position of the core vector does not meet the density condition,

further generation of the candidate string aborts, otherwise it continues till the entire

string is built. We will discuss the details in Section 4.2.

4.1.4 s-Covered Strings

In this section we make use of the definitions from the previous sections and present

a number of lemmas showing that the set of square-maximal strings with number of

distinct primitively rooted squares exceeding σ−d (n) is a subset of the set of dense

s-covered strings.

Lemma 4.7. If a (d, n)-string x is not dense, then s(x) ≤ σ−d (n).

Proof. If x is not dense, by Definition 4.6, for some i0, ki0(x) ≤ σ−d (n)− s(x[1 .. i0 −

1])−mi0 . The proof follows from the basic observation that for any string x, s(x) ≤

45

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

s(x[1 .. i−1])+ki(x)+s(x[i+1 .. n]), where k(x) is the core vector of x, and 1 ≤ i ≤ n.

Note that the inequality occurs when there are the same types of squares occurring in

both x[1 .. i−1] and x[i+1 .. n]. Thus, s(x) ≤ s(x[1 .. i0−1])+ki0(x)+s(x[i0+1 .. n]).

Since s(x[i0 + 1 .. n]) ≤ mi0 as mi0 is the maximum number of distinct squares with

length n− i0 and appropriate d′. Therefore, s(x) ≤ s(x[1 .. i0 − 1]) + ki0(x) +mi0 ≤

s(x[1 .. i0 − 1]) + (σ−d (n)− s(x[1 .. i0 − 1])−mi0) +mi0 = σ−d (n).

Lemma 4.8. If the core vector k(x) of a (d, n)-string x satisfies ki(x) > 0 for every

1 ≤ i ≤ n, then x has an s-cover.

Proof. We build an s-cover by induction. Since k1(x) ≥ 1, position 1 is in at least

one core, hence there must be at least one square starting at position 1. Among all

squares starting at position 1, set the one with the largest period to be S1. Suppose

that we have built the s-cover {Si = (si, ei, pi) | 1 ≤ i ≤ t}. If
⋃

1≤i≤t Si = x, we

are done. Otherwise
⋃

1≤i≤t Si = x[1 .. et] where et < n. Since ket+1(x) ≥ 1, there

is at least one square (s, e, p) in x so that s ≤ et + 1 ≤ e. From all such squares

choose the leftmost ones, and among them choose the one with the largest period

and set it to St+1. We continue this process until every position of x is covered. It

is straightforward to verify that all the conditions of Definition 4.1 are satisfied and

that we have built the s-cover of x.

Note that for a (d, n)-string having an s-cover implies the string being singleton-

free by Lemma 4.3. However it does not imply that ki(x) ≥ 1 for every 1 ≤ i ≤ n

where k(x) is the core vector of x, even though it is quite close to it. Consider the

s-cover {Sj = (sj, ej, pj) | 1 ≤ j ≤ m} of x. If S1 has another occurrence in x and

there is no other square in x starting at position 1, then position 1 is not in any

core and k1(x) = 0. Similarly, if the s-cover has two consecutive adjacent squares

Sj and Sj+1, Sj+1 is the only square that starts at position sj+1 and Sj+1 has some

46

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

other occurrence in x, then ksj+1
(x) = 0. In a sense, the s-cover is a computationally

efficient structural generalization of the property that every ki(x) ≥ 1.

Lemma 4.9. If a singleton-free square-maximal (d, n)-string x does not have an s-

cover, then σd(n) = σd(n− 1).

Proof. Since x does not have an s-cover, there exist some i0 such that ki0 = 0 by

Lemma 4.8. Remove x[i0] to form a (d, n − 1)-string y. This will not decrease the

number of distinct squares in x since there is no core of any square containing i0.

Then σd(n) = s(x) ≤ s(y) ≤ σd(n − 1). Since σd(n) ≥ σd(n − 1) by Proposition 2.6

(a), σd(n) = σd(n− 1).

Lemma 4.10. If a square-maximal (d, n)-string has a singleton, then σd(n) = σd−1(n−

1).

Proof. Remove the singleton to form a (d− 1, n− 1)-string y. Then σd(n) = s(x) ≤

s(y) ≤ σd−1(n − 1). Since σd(n) ≥ σd−1(n − 1) by Proposition 2.6 (b), σd(n) =

σd−1(n− 1).

Lemma 4.11. If a square-maximal (d, n)-string x has an s-cover with two consecutive

adjacent squares, then σd(n) ≤ σd1(n1) + σd2(n2) for some 2 ≤ d1, d2 ≤ d ≤ d1 + d2

and some n1, n2, possibly equal to zero, such that n1 + n2 = n.

Proof. Let {Si = (si, ei, pi) | 1 ≤ i ≤ m} be the s-cover of x and Sj ∩ Sj+1 = ε, i.e.

Sj and Sj+1 are adjacent. Then s(x) ≤ s(x1) + s(x2), where x1 =
⋃

1≤i≤jSi and x2 =⋃
j+1≤i≤mSi. The inequality occurs when there are the same types of squares appearing

in both x1 and x2. Therefore, σd(n) = s(x) ≤ s(x1) + s(x2) ≤ σd1(n1) +σd2(n2) where

x1 and x2 is a (d1, n1)-string and a (d2, n2)-string, respectively.

Figure 4.4 summarizes the situation: for any square-maximal (d, n)-string, if it

has singletons, then σd(n) = σd−1(n − 1) by Lemma 4.10. If it is singleton free and

47

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

All (d, n)-
Strings

Singleton-
Free

σd(n) = σd−1(n− 1)
No

s-Covered

Yes

σd(n) = σd(n− 1)
No

Dense

Yes

σd(n) = σ−d (n)
NoCandidate

(d, n)-Strings
Yes

Figure 4.4: Candidate strings.

not s-covered, then σd(n) = σd(n− 1) by Lemma 4.9. If it is singleton free, s-covered,

and not dense, then σd(n) = σ−d (n) by Lemma 4.7. Thus, the only unknown is

represented by singleton free, s-covered, and dense strings which we call candidate

strings. Thus, computing the maximum m over all candidate strings, and selecting

max {σd−1(n− 1), σd(n− 1), σ−d (n), m} gives us the true value of σd(n). Note that

as we will discuss in Section 4.3.1, σ−d (n) was obtained from the maximum of the

previously known values including σd−1(n− 1) and σd(n− 1), therefore the true value

of σd(n) is essentially max {σ−d (n), m}.

Furthermore, Lemma 4.11 shows that if an s-covered square-maximal string has

two consecutive adjacent squares, then σd(n) is no bigger than the sum of σd1(n1)

and σd2(n2) with appropriate d1, d2, and n1 + n2 = n; in other words, the value of

σd(n) can be determined by the previously known values as we incrementally compute

the maximum number of distinct squares to populate the (d, n− d)-table from top to

48

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

down and left to right directions.

Therefore, in order to compute σd(n), we are only interested in those dense s-

covered strings with no consecutive adjacent s-cover squares because they are the

candidate strings with the number of distinct squares that could possibly exceed the

lower bound. To illustrate how significant is the discussed reduction of the pool of

candidate strings, we show in Table 4.1 the comparison of the number of s-covered

strings and non s-covered strings for selected small values of d and n. As we can see,

the number of s-covered strings is significantly smaller than the non s-covered string

for every row. Thus, for our computational interests, the number of s-covered strings

that are also dense and with no consecutive adjacent squares is even a more significant

reduction.

d n # s-Covered Strings # Non s-Covered Strings

2 10 154 357
2 15 4074 12,309
2 20 109,437 414,850
3 10 183 9,147
3 15 21,681 2,353,420
3 20 1,908,923 578,697,523

Table 4.1: Comparison on number of s-covered strings and non s-covered strings.

4.2 Generating s-Covers

In Section 4.1 we gave the definitions of s-cover and dense strings, we also proved

that in order to compute the maximum number of distinct primitively rooted squares

for (d, n)-strings, it is sufficient to consider a set of dense s-covered strings with

no consecutive adjacent squares in the s-cover. In this section, we focus on the

programming perspectives on how to recursively generate these strings.

49

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

4.2.1 Algorithm

Recall Lemma 4.2 that every s-covered string has a unique s-cover. Therefore, we

can speak of the s-cover of a string and thus building a string is the same thing as

building the s-cover. When building an s-covered string, the program starts with the

first square of the s-cover. Let the period of the first square be denoted as p1, then

p1 ranges from 1 to bn
2
c. For each value of p1, Main() function of the program calls

ExtendSquare() to build all possible primitive generators for the first square. Once

a generator is properly built, it then calls TidySqaure(), which conducts a series of

validations of the generator. Once all the validations are passed, and the length of the

built string reaches n and number of distinct symbols reaches d, the entire string is

built, its number of distinct squares is calculated and the result is outputted. However,

if the length is not full, the program calls NextSqaure() to build the next square

of the s-cover, all possible generators with different periods are built. Depending

on the starting position and the period length of the next square, the generator of

the next square may be partially or completely determined from the previous square,

i.e. whether the overlapped portion of the two squares is large enough to exceed

the period length. If the generator of next square is completely determined from the

previous square, TidySqaure() is called; otherwise, ExtendSquare() is called to

finish building the generator. It recursively does this process until the string of the

full length is built. When all s-covered strings with first square period of current p1

are built, the program continues with next possible value for p1 for the first square.

Figure 4.5 shows the flow chart of the program, and the dash boxed portion presents

the recursive generation of s-covered strings.

ExtendSquare(): This function is used to build a full generator (when it is called

by Main() function to build the first square), or a partial generator (when it is

50

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Main()

For Every
1 ≤ p1 ≤ bn2 c

ExtendSquare() TidySquare()

Generator
Is Full

No Yes

NextSquare()
String
Length
Is Full

Result

No Yes

Figure 4.5: s-Cover generation.

called by NextSquare() to build a subsequent square) of the s-cover square. It

iteratively sets each position with all possible symbols that are either previously

used or unused, until the required period length is reached. Since we are working

with ordered alphabet, the function ensures that the symbol for each position

does not exceed the maximum symbol, that is, the largest symbol possible in

corresponding to the number of distinct symbols d in the string. It also ensures

that the symbol in the current position is no bigger than 1 compared with the

symbol in the previous position so that the resulting string is in its smallest

lexicographic form. For example, ac is not allowed since it is not in its smallest

lexicographic form as we can replace c by b.

51

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

TidySquare(): When a generator is fully built, this function is called for a series

of validation checks to ensure that the square we have built satisfies all the re-

quirements so that the resulting string can be a candidate for computing σd(n).

These validation checks include conflict check, primitiveness check, no interme-

diate square check and density check, which will be discussed individually in

the next few sections. Once all the validations have been passed, the function

checks if the string generated so far has the required length n and number of

distinct symbols d; if so, the entire string has been built and it then calculates

the number of distinct squares of the string and output the result if a bet-

ter value is produced compared with the known lower bound; if not, function

NextSquare() is called to continue the process of generating the subsequent

squares of the string.

NextSquare(): This function is called by TidySquare() if the length of the string

built so far is not of a full length and more s-cover squares are needed. By

definition of s-cover, two consecutive s-cover squares are either overlapping or

adjacent. By Lemma 4.11, we do not need to consider the case of adjacent s-

cover squares. Thus, the starting position of the current square is ranged from

the first position after the starting position of the previous square, to the ending

position of the previous square. Note that when applying the density check, the

range of the starting position of the current square may be reduced. We will

discuss the details in Section 4.2.5. Depending on the size of the overlapping

portion and the period of the current square, the generator of the current square

is either fully or partially determined from the previous square. If it is fully

determined, then the program calls TidySquare() to perform the validation

checks to either accept or reject the square; if it is only partially determined,

52

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

ExtendSquare() is called to build all possible completions of the generator.

For example, the first s-cover square S1 is built and it is aabaab. When building

S2 = (s2, e2, p2), then s2 ranges from position 2 to position 6. If s2 = 2 and

p2 = 4 then the generator of S2 is fully determined; if s2 = 4 and p2 = 4, then

the generator of S2 is partially determined.

4.2.2 Conflict Check

As one of the validations in TidySquare(), conflict check is required when the current

square’s generator is fully contained within the previous square. It ensures that the

remaining overlapping portion of the two squares is identical to the starting portion

of the current square, i.e. the remaining overlapping portion is a prefix of the current

square’s generator, because otherwise it would be impossible to form a square. For

the same example used previously, S1 is built and it is aabaab. If s2 = 2 and p2 = 4,

the generator of S2 is fully determined. However, s2 fails the conflict check as the

remaining portion b is not a prefix of the generator abaa. Thus, S2 cannot form a

square.

The function iterates through every remaining overlapping position, and compares

it with the corresponding starting position of the current square; if any of them are not

identical, then this generator is impossible to form a square and thus it is rejected.

Algorithm 4.1 shows the pseudo-code for the conflict check. period[] is an array

containing the period for each s-cover square, i.e. period[currentSQ] denotes the

period of the current square. start[] contains the starting position for each s-cover

square and str[] contains the s-covered string built so far, i.e. str[i] denotes the symbol

at position i in the string.

53

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Algorithm 4.1 Conflict check.

p← period[currentSQ]
i← start[currentSQ] + p
while str[i]! = NULL do

if str[i]! = str[i− p] then
return False

end if
i← i+ 1

end while
return True

4.2.3 Primitiveness Check

By Definition 4.1, s-cover is a series of primitively rooted squares. Therefore, the s-

cover squares we build have to be primitive. Primitiveness check ensures the generator

of the s-cover square is primitive; that is, itself is not a repetition. Recall a non-empty

string v is not primitive if it can be written in the form of v = (u)e, where u is a

non-empty string and e is an integer such that e ≥ 2. Logically, we would have to

check every possible e ≥ 2 to see if v can be equally divided into e identical parts.

However, a simple observation can save us some computational effort. Consider a

non-primitive string v can be written in the form of v = (u)4, note that it can be

also written in the form of v = (u′)2 where u′ = (u)2. Therefore, if a string can

be equally divided into 4 identical parts, then it has to be able to be divided into

2 identical parts as well since 4 is divisible by 2. Similarly for other multiples of 2

such as 6, 8, etc. if v can be divided into 6, 8, etc. identical parts, then v must

be able to divided into 2 identical parts. Same argument applies to the multiples of

3, 5, 7, etc. This observation shows that we do not have to check every number of

e ≥ 2 since any multiples of the previously checked numbers would be redundant, i.e.

if v can be equally divided for e = 4, then we would have been found out it when

we checked e = 2. In other words, to check a string if it is primitive, it is sufficient

54

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

to check only the prime numbers that are greater or equal than 2. The pseudo-code

of the primitiveness check is listed in Algorithm 4.2. len denotes the length of the

generator, and start denotes the starting position of the generator.

Let us remark that there exist linear algorithms for checking primitiveness. A

string v is primitive if in v2 there are only two occurrences of v. Thus, we can form

v2 and use any linear pattern matching algorithm such as KMP (Knuth, Morris, and

Pratt’s algorithm) [25] to determine whether v2 contains 2 or more occurrences of v.

If the result is 2, v is primitive, otherwise it is not. However, the implementations of

efficient linear pattern matchers are not trivial and would thus significantly complicate

and extend our code, and since we are not dealing with very large numbers of n and

d, our approach using the prime numbers that are not computed on the fly but pre-

computed and stored is simple and efficient.

4.2.4 No Intermediate Square Check

By the definition of s-cover in Definition 4.1 (3), there cannot be any intermediate

squares occurring across two s-cover squares; that is, there cannot exist a square that

starts in one s-cover square, and ends in another s-cover square. Therefore, when we

recursively build s-cover squares, we need to explicitly check if there is an intermediate

square created between the previously built s-cover squares and the current s-cover

square; if there is, then we must reject the current square for the s-cover being built.

Algorithm 4.3 is the pseudo-code for this function. Basically, the program iterates

all possible intervals of the string, where the starting position of the interval is ranged

from position 1 to the position before the starting position of the current s-cover

square, and ending position of the interval is ranged from the starting position of

the current s-cover square to the ending position of the current s-cover square. For

55

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Algorithm 4.2 Primitiveness check.

for each prime e ≤ len do
if (len%e)! = 0 then

CONTINUE
end if
isPower ←True
u← len/e
for i = start→ start+ u− 1 do

for j = 1→ e− 1 do
if str[i]! = str[i+ j × u]) then
isPower ←False
BREAK

end if
end for
if !isPower then

BREAK
end if

end for
if isPower then

return False
end if

end for
return True

each such interval, it checks whether that interval forms a square; if it does, then

the program checks if the square is one of the s-cover squares; if not, that means an

intermediate square is found that does not belong to the s-cover and occurs across

from previously built s-cover squares to the current s-cover square. intStart respective

intEnd denote the starting respective ending position of the interval. intPer is the

period of the interval. curStart is the starting position of the current s-cover square,

and curEnd is the ending position. SQ[intStart, intEnd] denotes the square that is

formed by the interval, and SCoverList contains the list of the s-cover squares we

built so far.

56

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Algorithm 4.3 No intermediate square check.

intStart← 1
while intStart < curStart do
intEnd← curStart
while intEnd ≤ curEnd do

if (intEnd− intStart)%2) == 1 then
intPer ← (intEnd− intStart+ 1)/2
i← 0
while i < intPer and str[intStart+ i] == str[intStart+ i+ intPer] do
i← i+ 1

end while
if i == intPer and SQ[intStart, intEnd] /∈ SCoverList then

return True
end if

end if
intEnd← intEnd+ 1

end while
intStart← intStart+ 1

end while
return False

4.2.5 Density Check

As discussed previously, computationally we are interested in dense s-covered strings

as they are the candidates to have possibly more distinct primitively rooted squares

than the lower bound. Density check is to ensure the s-covered string being generated

satisfies the conditions of density as defined in Definition 4.6.

If we were to apply density check to the entire s-covered string after it has been

built, we would not gain much computational efficiency as the whole string would have

been built just to be discarded. In addition, once having the whole string, one could

directly compute its number of distinct squares and output the result. If a density

check could be applied to a partially built string as each s-cover square is added,

we could eliminate the non-dense strings as early as possible. However, in general,

the density of a prefix is not an indicator of the density of the same prefix after the

57

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

whole string is generated, as many additional squares starting in the prefix might be

generated. The only situation when the density of a prefix cannot be increased is when

the prefix is the portion of the string from the beginning to the last position before an

s-cover square starts. To be able to apply density check to a partial s-covered string,

we need to show the strings we reject at early stage as non-dense, will not become

dense when they are completed. Lemma 4.12 shows that for any position, the value

in the core vector of any prefix that ends in the last position before an s-cover square

starts is greater or equal to the value in the core vector of the entire string.

Lemma 4.12. Let {Si = (si, ei, pi) | 1 ≤ i ≤ m} be an s-cover of x. Let k(x) be

the core vector of x. Then for any 1 ≤ i < m and the core vector k′(x[1 .. ei]),

(∀ 1 ≤ j < si+1)(k
′
j(x[1 .. ei]) ≥ kj(x)).

Proof. Let us assume for some 1 ≤ i < m there exists a j such that 1 ≤ j < si+1, and

kj(x) > k′j(x[1 .. ei]). Then there must exists a core of a square containing j in x, but

not in x[1 .. ei]. In other words, there exists a square (s, e, p) in x that is not a square

of x[1 .. ei], i.e. s < j < si+1 and e > ei. Thus, this square is an intermediate square

which violates the definition of s-cover in Definition 4.1 (3), a contradiction.

Lemma 4.12 ensures that as we recursively build the s-covered string, the values in

its core vector will not increase as we add more s-cover squares to the string. In other

words, if the density condition is not met for the partially built s-covered string, it

will never be met for the entire string no matter what subsequent squares we append

to it. Therefore, it is possible to perform density check on partially built s-covered

strings.

Algorithm 4.4 lists the pseudo-code for the density check function. The program

iterates each position of the current square, the first position that does not satisfy the

density condition, is set to the maximal starting position of the next square. That

58

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

is because if the starting position of the next square were after this position, the

resulting s-covered string would contain this non-dense position, and thus the string

would not be dense and should be eliminated. If every position of the current square

satisfies the density condition, then the maximal starting position of the next square

is set to the ending position of the current square as discussed in the NextSquare()

function of Section 4.2.1. cut[nextSQ] denotes the maximal starting position of the

next square. start[currentSQ] and end[currentSQ] denotes the starting and ending

position of the current square, respectively. prefixSQ[i− 1] contains the number of

distinct squares in the prefix string x[1..i− 1], k[i] is the number of cores containing

position i, and maxSQ[n − i] contains the maximal number of distinct squares that

a string with length n− i could contain, namely, mi in Definition 4.6.

Algorithm 4.4 Density check.

cut[nextSQ]← 0
i← start[currentSQ]
while cut[nextSQ] == 0 do

if prefixSQ[i− 1] + k[i] +maxSQ[n− i] ≤ σ−d (n) then
cut[nextSQ]← i

end if
i← i+ 1
if i > end[currentSQ] and cut[nextSQ] == 0 then
cut[nextSQ]← end[currentSQ]

end if
end while

4.2.6 Parity Condition

When computing the values on the main diagonal of the (d, n − d)-table, that is,

σd(2d), we can enforce an additional necessary condition, called parity condition, for

the s-covered strings we build. Definition 4.13 formally defines the parity condition.

59

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Definition 4.13. The s-cover {Si = (si, ei, pi) : 1 ≤ i ≤ m} of x[1 .. n] satis-

fies the parity condition if for any 1 ≤ i < m, A(x[1 .. ei]) ∩ A(x[si+1 .. n]) ⊆

A(x[si+1 .. ei]).

In short, an s-covered string satisfies the parity condition if for any overlapping

s-cover squares, the symbols occurring in both the left non-overlapping portion and

the right non-overlapping portion, have to also occur in their overlapping portion.

For instance,if the overlapping portion of two s-cover squares in a string x[1 .. n] is

x[i1 .. i2], then any symbol occurring both in x[1 .. i1− 1] and x[i2 + 1 .. n] must also

occur in x[i1 .. i2]

Consider a square-maximal (d, 2d)-string. Either it is singleton-free, which means

every symbol occurs exactly twice and then σd(2d) = d by Lemma 2.5, or it contains

singletons. Let us investigate such a string. First, all the singletons can be safely

moved to the end of the string without reducing the number of distinct primitively

rooted squares, see Lemma 2.2. Lemma 4.14 shows that the singleton-free portion

of the string has to have a s-cover satisfying the parity condition. Therefore, for

computing σd(2d), it is sufficient to build s-covers that satisfy the parity condition.

Lemma 4.14. The singleton-free part of a square-maximal (d, 2d)-string x with all

its singletons at the end has an s-cover satisfying the parity condition.

Proof. We can assume that x has v singletons all at the end, and 0 ≤ v ≤ d− 2 since

there are at least 2 symbols that are not singletons. Let k(x) be the core vector of

x. Suppose the singleton-free part x[1 .. 2d− v] does not have an s-cover, then there

exist some 1 ≤ i0 ≤ 2d − v such that ki0(x) = 0, by Lemma 4.8. Remove x[i0] to

form a (d, 2d− 1)-string y. Since ki0(x) = 0, there is no core of square containing i0,

then removal of x[i0] will not decrease the number of squares in x. Thus, σd(2d) =

s(x) ≤ s(y) ≤ σd(2d − 1). By Proposition 2.6 (d), σd(2d − 1) = σd−1(2d − 2), hence

60

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

σd(2d) ≤ σd−1(2d− 2), a contradiction since σd(2d) > σd−1(2d− 2) by Proposition 2.6

(c). Therefore, x[1 .. 2d− v] has an s-cover {Si : 1 ≤ i ≤ m}. Let us assume that the

s-cover does not satisfy the parity condition.

(i)
⋃

1≤i≤t Si and
⋃

t<i≤m Si for some 1 ≤ t ≤ m are adjacent and their respective

alphabets have at least one symbol in common, say C. If we replace C in⋃
1≤i≤t Si by a new symbol Ĉ /∈ A(x), we get a new (d+ 1, 2d)-string y. s(y) ≥

s(x) because the squares with C in
⋃

1≤i≤t Si are replaced by the same number

of squares with Ĉ, and we may increase the number of squares if there existed

same square types containing C occurring in both
⋃

1≤i≤t Si and
⋃

t<i≤m Si in x.

Thus, σd(2d) = s(x) ≤ s(y) ≤ σd+1(2d) = σd−1(2d− 2) by Proposition 2.6 (d), a

contradiction since σd(2d) > σd−1(2d− 2) by Proposition 2.6 (c).

(ii)
⋃

1≤i≤t Si and
⋃

t<i≤m Si for some 1 ≤ t ≤ m are overlapping, and there is a

symbol C occurring in
⋃

1≤i≤t Si and in
⋃

t<i≤m Si, but not in the overlapping

portion St ∩ St+1. If we replace C in
⋃

1≤i≤t Si by a new symbol Ĉ /∈ A(x),

we get a new (d+ 1, 2d)-string y. By a similar argument as above, s(y) ≥ s(x).

Thus, σd(2d) = s(x) ≤ s(y) ≤ σd+1(2d) = σd−1(2d− 2), a contradiction.

With additional assumptions, Lemma 4.14 can be strengthened to exclude the

consecutive adjacent squares from the s-cover of a square-maximal (d, 2d)-string.

Lemma 4.15. Let σd′(2d
′) = d′ for every d′ < d. Either σd(2d) = d or for every

square-maximal (d, 2d)-string x with v singletons all at the end, 0 ≤ v ≤ d − 2, and

its singleton-free part x[1 .. 2d − v] has an s-cover that has no consecutive adjacent

squares and that satisfies the parity condition.

61

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Proof. The existence of the s-cover {Si | 1 ≤ i ≤ m} of x[1 .. 2d − v] satisfying the

parity condition follows from Lemma 4.14. We need to prove that either σd(2d) = d

or there are no adjacent squares in the s-cover. Since σd′(2d
′) = d′ for any d′ < d,

σd′(n
′) ≤ n′ − d′ for any n′ − d′ < d. Let us assume that the s-cover of x has two

adjacent squares St and St+1. Let x1 =
⋃

1≤i≤t Si and let x2 =
⋃

t<i≤m Si. Then s(x) ≤

s(x1) + s(x2) where x1 and x2 is a (d1, n1)-string and a (d2, n2)-string, respectively,

with n1 + n2 = 2d − v and d1 + d2 ≥ d − v. Note that the inequality occurs when

there are the same types of squares in both x1 and x2. Since the s-cover satisfies the

parity condition, A(x1) and A(x2) are disjoint and hence d1 + d2 = d− v. Therefore,

(n1 − d1) + (n2 − d2) = (n1 + n2) − (d1 + d2) = (2d − v) − (d − v) = d. Since

n1 − d1 < d and n2 − d2 < d, σd(2d) = s(x) ≤ s(x1) + s(x2) ≤ σd1(n1) + σd2(n2) ≤

(n1 − d1) + (n2 − d2) = d, a contradiction.

When computing σd(2d) on the main diagonal of the (d, n−d)-table, it is clear that

d is a lower bound σ−d (2d) = d. To exceed this lower bound, that is, σd(2d) > d, the

square-maximal (d, 2d)-strings must contain at least d2d
3
e singletons, by Lemma 3.6.

Therefore, with d2d
3
e singletons, the non-singleton part of (d, 2d)-strings are essentially

(d−d2d
3
e, 2d−d2d

3
e)-strings. By Lemmas 4.14 and 4.15, to determine σd(2d), we only

need to consider dense s-covered (d−d2d
3
e, 2d−d2d

3
e)-strings (with lower bound of d)

which contain no consecutive adjacent squares and satisfy the parity condition.

4.3 Lower Bound Determination

In the previous sections we discussed our framework for computing the maximum

number of distinct primitively rooted squares for given d and n. Our discussion was

based on an assumption that a lower bound σ−d (n) for σd(n) is available. Thus, in our

framework we generate a set of s-covered strings that are dense enough to have at

62

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

least σ−d (n) + 1 distinct primitively rooted squares. Therefore, to save computational

efforts, it is essential to determine a lower bound as close to σd(n) as possible since,

the tighter the lower bound is, the higher the threshold for the density check is; that

is, the smaller the pool of candidates is. In this section, we discuss how to obtain an

efficient lower bound σ−d (n) for d ≥ 2 and n > 2d, σ−d (2d) for the values on the main

diagonal, and σ−2 (n) for d = 2.

4.3.1 Lower Bound σ−d (n)

As we populate the (d, n− d)-table incrementally from left to right and top to down,

that is, computing the first (leftmost along the row and topmost along the column)

unknown entry σd(n) in the table based on the previously known values; namely, the

value immediately to its left σd(n−1), the value immediately above it σd−1(n−1), and

the value to its top-left along the descending diagonal σd−1(n− 2). To visualize these

entries in the (d, n− d)-table, the positions of σd(n) and the surrounding entries that

determine its lower bound are shown in Table 4.2. Note that the three known entries

are displayed in gray. In Section 2.3, a number of basic properties of the (d, n − d)-

· · · n− d− 1 n− d · · ·
· · · · · · · · · · · · · · ·
d− 1 · · · σd−1(n− 2) σd−1(n− 1) · · ·
d · · · σd(n− 1) σd(n)
· · · · · · · · ·

Table 4.2: Determining a lower bound for σd(n) in (d, n− d)-table.

table was discussed and proved. These properties can be used as a foundation for

determining the lower bound. Proposition 2.6 (a) and (b) proves that the entries are

non-decreasing in both left-to-right and top-to-down directions in the table; that is,

σd(d) is at least as big as σd(n− 1) and σd−1(n− 1). In addition, Proposition 2.6(c)

63

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

shows that the values are strictly increasing when moving from top-left to bottom-

right along any descending diagonal in the table; that is, σd(d) is at least as big as

σd−1(n − 2) + 1. Therefore, the lower bound σ−d (d) is the maximal value among the

three. Therefore, we define σ−d (n) for general d and n, i.e. when d ≥ 2 and n > 2d.

σ−d (n) = max {σd(n− 1), σd−1(n− 1), σd−1(n− 2) + 1}

4.3.2 Lower Bound σ−d (2d)

For entries on the main diagonal of the (d, n−d)-table, the determination of a suitable

lower bound could be the same as for the general case discussed in Section 4.3.1. That

is, we could set

σ−d (2d) = max {σd(2d− 1), σd−1(2d− 1), σd−1(2d− 2) + 1}.

But we can do slightly better. By Proposition 2.6(d), the values under and on the

main diagonal along a column are constant. In other words, for the first unknown

σd(2d), the value on its left and the value on its top-left are identical, that is, σd(2d−

1) = σd−1(2d− 2), hence σd(2d− 1) < σd−1(2d− 2) + 1. Also as mentioned in Section

4.2.6, we could directly give a lower bound of d for σd(2d) by constructing a (d, 2d)-

strings with only pairs, i.e. singleton-free. Therefore, the lower bound for σ−d (2d) is

defined as followed.

σ−d (2d) = max {d, σd−1(2d− 1), σd−1(2d− 2) + 1}

4.3.3 Heuristic Search for σ−2 (n)

When considering σ−2 (n), the situation is slightly different from the previously dis-

cussed method of obtaining a suitable lower bound. The reason is that d = 2 row in

64

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

the (d, n−d)-table is the top-most row and hence there are no entries above it or on its

top-left along the descending diagonal. That is, σ1(n−1) = σ1(n−2) = 1 < σ2(n−1),

for n ≥ 5. Therefore, σ−2 (n) = σ2(n − 1). In other words, the best lower bound we

could get from the existing computed values is the same value as the entry to its left.

As we will discuss in Section 4.4, σd(n) is at most σd(n− 1) + 2. So far, from all the

computed values, no n satisfy σ2(n) = σ2(n− 1) + 2, and only relatively few n satisfy

σ2(n) = σ2(n− 1). Thus, to obtain a computationally efficient lower bound for σ2(n),

we fist try to generate a (2, n)-string with σ2(n − 1) + 1 distinct primitively rooted

squares which, if it exists, would provide a lower bound σ−2 (n).

Therefore, when computing σ2(n), before recursively generating all the s-covered

strings, we generate only a small set of s-covered strings with certain properties based

on a heuristic and search among them for a string giving σ2(n − 1) + 1 distinct

primitively rooted squares. This heuristic was determined by analyzing the previ-

ously computed square-maximal strings of shorter lengths with a hope that s-covered

strings with these properties would likely produce σ2(n − 1) + 1 distinct primitively

rooted squares. Thus, three parameters were introduced into the heuristic search for

σ−2 (n): the heuristic can be simply described as (i) generate only s-covered strings

with a “balanced” number of a’s and b’s – defined by the maximum difference pa-

rameter, (ii) the s-cover squares have limited periods – defined by the maximum

period parameter, and (iii) the generated strings are forbidden to contain segments

of consecutive identical symbols – defined by the maximum block parameter. They

are described below.

Maximum Difference

In any prefix of the generated string, the difference of the number of a’s and the

number of b’s is no more than a predefined constant we call maximum difference.

65

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Maximum Period

The maximum period parameter specifies the maximum period that is allowed for

each s-cover square. That is, for any square in the s-cover of the string, its period

does not exceed this predefined parameter.

Maximum block

The maximum block parameter specifies the maximum number of consecutive occur-

rences of a symbol that is allowed in a string. For example, if maximum block is set

to 2 in the heuristic search, then it means aaa or bbb is not allowed when building the

s-covered string.

Max.Diff. Max.Per. Max.Bl. String Found with σ2(n− 1) + 1 Squares

σ−2 (34) 3 8 2 abbabbababbababaababaabaababaabaab
σ−2 (35) 3 8 2 abbabbababbababaababaabaababaabaaba
σ−2 (36) 3 8 2 abbabbababbababaababaabaababaabaabab
σ−2 (37) 4 12 2 aabababbabababbababbabababbababbababa
σ−2 (38) 4 12 2 aabababbababbabababbababbabababbababab

Table 4.3: Heuristic search parameters for d = 2, 34 ≤ n ≤ 38.

Table 4.3 illustrates the parameters we used for the heuristic search for σ−2 (34) to

σ−2 (38). The first string that contains σ2(n−1)+1 distinct primitively rooted squares

for each entry is listed in the table and all of these strings were found within a few

seconds. As one would expect, the values of the three parameters gradually increase

as the length of strings increases.

Now we can formulate how the lower bound for σ2(n) is obtained by the heuristic

search. Let T2(n) denote the set of all dense s-covered strings complying with the

three heuristic conditions discussed above. Then,

σ−2 (n) = max { σ2(n− 1), max
x∈T2(n)

s(x)}.

66

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

When we performed the heuristic searches to generate the pool of strings achieving

σ2(n−1)+1 distinct primitively rooted squares for σ−2 (n) for various n’s, we observed

an interesting property, namely, a string that achieves σ2(n) + 1 when computing

σ−2 (n+1), may have exactly the same structure as a string that achieves σ2(n−1)+1

when computing σ−2 (n), except that there is an a or b appended to the end. In other

words, once we have a string achieving σ2(n − 1) + 1 for σ−2 (n), when we add one

more character a or b to the end of the string, the total number of distinct squares is

increased by 1, and thus this string admits σ2(n) + 1 distinct squares and can serve

as a lower bound for σ2(n + 1). Tables 4.4 and 4.5 show the strings that hold this

property for 45 ≤ n ≤ 46 and 52 ≤ n ≤ 55, respectively.

String x |x| s(x)

σ2(44)=33 aabaababaababaabaababaababaabaababaabaababbab 45 34

σ2(45)=34 aabaababaababaabaababaababaabaababaabaababbab b 46 35

σ2(46)=35 aabaababaababaabaababaababaabaababaabaababbab ba 47 36

Table 4.4: Strings of length n+1 with σ2(n)+1 distinct squares for 45 ≤ n ≤ 46.

String x |x| s(x)

σ2(51)=38 aababbabbbabbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbb 52 39

σ2(52)=39 aababbabbbabbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbb b 53 40

σ2(53)=40 aababbabbbabbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbb ba 54 41

σ2(54)=41 aababbabbbabbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbb bab 55 42

σ2(55)=42 aababbabbbabbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbb baba 56 43

Table 4.5: Strings of length n+1 with σ2(n)+1 distinct squares for 52 ≤ n ≤ 55.

Similarly, we also found an instance when prepending a makes the string to admit

σ2(n) + 1 distinct squares. This instance is listed in Table 4.6.

Therefore, when searching for a suitable lower bound for the next n, we can take

the previously found maximal string for σ2(n − 1) and then manipulate it by either

prepending or appending a or b to see whether it increases the number of distinct

67

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

String x |x| s(x)

σ2(49)=37 ababbabbbbabbbbbabbbbabbbbbabbbbabbbabbbbabbbabbbb 50 37
σ2(50)=37 a ababbabbbbabbbbbabbbbabbbbbabbbbabbbabbbbabbbabbbb 51 38

Table 4.6: Strings of length n+1 with σ2(n)+1 distinct squares for n = 50.

squares. This can be used as an efficient alternative method to quickly find a (2, n)-

string with σ2(n− 1) + 1 distinct primitively rooted squares, and thus serves a lower

bound for σ2(n), in addition to the heuristic search.

4.4 Using Upper Bound to Simplify Computation

In terms of the upper bound, by Lemma 2.10 which was deduced from Fraenkel and

Simpson [14], we get σd(n) ≤ σd(n−1)+2. In this section, we show how this constraint

on the upper bound helps with the computation of σd(n).

4.4.1 Double Square

Consider the first unknown value σd(n) in the (d, n − d)-table. If the lower bound

we have determined by the methods discussed in Section 4.3 is large enough, i.e. if

σ−d (n) = σd(n − 1) + 1, then σ−d (n) ≤ σd(n) ≤ σd(n − 1) + 2. Thus, to determine

the true value of σd(n), instead of generating the set of all s-covered strings that

are dense enough to exceed σ−d (n), we shall generate a much smaller set of s-covered

strings dense enough to produce σ−d (n) + 1. If we succeed, then σd(n) = σ−d (n) + 1,

and if we do not succeed, then σd(n) = σ−d (n).

As we will discuss below, for a string to be able to produce σd(n− 1) + 2 distinct

squares, it has to have a very specific structure and therefore the size of the set of

s-cover strings we have to generate is dramatically reduced, and thus the performance

of the computation is significantly improved.

68

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Lemma 4.16. Let k(x) be the core vector of square-maximal (d, n)-string x[1 .. n], if

k1(x) ≤ 1, then σd(n) ≤ σd(n− 1) + 1.

Proof. Since by Lemma 2.2 we can move all possible singletons of x to the end without

reducing the number of distinct squares in x, without loss of generality we can assume

that all singletons of x, if any, are at the end of x. Remove the first symbol in x,

thereby forming a new string y. Because the first symbol is not a singleton, y is a

(d, n − 1)-string. Since k1(x) ≤ 1, there is at most one core of square starting at

position 1, hence we destroyed at most 1 distinct square in x. Thus, σd(n) = s(x) ≤

s(y) + 1 ≤ σd(n− 1) + 1.

By Lemma 4.16, in order for σd(n) = σd(n − 1) + 2, the square-maximal string

x has to satisfy the density condition k1(x) > 1 where k(x) is the core vector of x.

According to Fraenkel and Simpson’s lemma [14], there are at most two rightmost

squares starting at the same position; in other words, k1(x) ≤ 2, that is, position 1

can contain the core of at most two squares; therefore, k1(x) = 2. When two rightmost

occurring squares start at the same position, we call it a double square. Therefore, for

the case of σ−d (n) = σd(n − 1) + 1, we generate a set of s-covered strings where the

first square is the longer square of a double square.

4.4.2 Algorithm

The combinatorial structure of a double square is given by Deza, Franek, and Thierry

[13]: upu1u
p+qu1u

q, where u is a primitive non-empty string, u1 is a proper prefix of u,

and 1 ≤ q ≤ p. The two squares of the double square upu1u
p+qu1u

q are (upu1)(u
pu1)

– the shorter one, and (upu1u
q)(upu1u

q) – the longer one. Note that |(upu1)(upu1)| >

|(upu1uq)| since p ≥ q. String (ab)2a(ab)3a(ab) is an example of a double square,

where u = ab, u1 = a, p = 2 and q = 1; the two squares are (ababa)(ababa) and

69

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

(ababaab)(ababaab). For computational simplicity, we shall consider the form of a

double square is (upu1u
q)2.

The uniqueness of the structure of a double square is proved [13]. Therefore, to

generate s-covered (d, n)-strings with the first square is a double square, the key is

to generate the first s-cover square in the form of (upu1u
q)2. The program generates

all possible primitive strings u, all suitable p’s and q’s, and all possible lengths of u1

such that 1 ≤ |u1| < |u|, under a condition that the total length does not exceeds n.

Algorithm 4.5 shows the pseudo-code. uLen and u1Len denotes the length of u and

u1, respectively. GENERATE(u) represents the process of generating a primitive

string u with length of uLen. SET (upu1u
q) represents the operations of setting the

generator of the first square in the form of upu1u
q. And tidySquare() is the function

we introduced in Section 4.2.1, it verifies the generator of the first square and then

continue to build the next square if all the validations are passed.

70

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Algorithm 4.5 Double square s-cover generation.

uLen← 2
p, q, u1Len← 1
while (uLen× (p+ q) + u1Len)× 2 ≤ n do

GENERATE (u) {generate a primitive string u of length uLen}
while (uLen× (p+ q) + u1Len)× 2 ≤ n do

for u1Len = 1→ uLen− 1 do
for q = 1→ p do

if (uLen× (p+ q) + u1Len)× 2 ≤ n then
SET (upu1u

q) {set first square generator}
tidySquare() {verify first square generator and build next square}

else
BREAK

end if
end for

end for
p← p+ 1

end while
uLen← uLen+ 1
p, q, u1Len← 1

end while

71

Chapter 5

Computing Periodicity

In Chapter 4 we discussed in details how to generate the set of candidate strings,

i.e. singleton free, dense s-covered strings. In this chapter we focus on the underlying

algorithm to compute the periodicity of a given string; that is, in our case, the number

of distinct primitively rooted squares including the core vectors.

We first introduce Crochemore’s partitioning repetition algorithm which is the

foundation for the underlying algorithm of the computational framework for maximum

number of distinct squares problem. Then, we present an algorithm, referred to as

FJW, developed by Franek, Jiang, and Weng [19]. It is a space-efficient modification

and implementation of Crochemore’s algorithm to compute three different periodicity

measurements of a string: maximal repetitions, runs, and distinct primitively rooted

squares. In the end of this chapter, we will discuss how we extend FJW not only to

compute the periodicity of a string, but also to return its core vector, and the vector

contains the number of distinct squares of its prefixes with the length up to the indices

of the vector; namely, k-vector and p-vector. These two parameters are required by

the density check during the generation of the candidate strings as discussed in Section

4.2.5.

72

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

5.1 Crochemore’s Repetition Algorithm

Recall from Section 1.1.3, a repetition is formed by tandem repeats. When the power

of a repetition is 2, it forms a square. Crochemore’s repetitions algorithm [6], often

also referred to as Crochemore’s partitioning algorithm, was introduced in 1981. It

was the first O(n log n) algorithm to compute maximal repetitions in a string of length

n and was shown to be optimal. The main idea of this approach is to successively

refine the indices of the string into equivalent classes.

Definition 5.1. For a string x[1 .. n], we define an equivalence ≈p on positions

1 ≤ i ≤ n and 1 ≤ j ≤ n, by i ≈p j if x[i .. i+ p− 1] = x[j .. j + p− 1].

For technical reasons, a sentinel symbol $ is used to denote the end of the input

string; it is considered to be the lexicographically smallest character. An example is

shown in Figure 5.1, the indices of string x have been grouped into equivalent classes

of ≈p, where p = 1, · · · , 7, and the classes are refined level by level from l = 1 to l = 7.

Each class that has two or more elements represents a repeat of period p, where p

equals to the current level of refinement l. The subscript of each class represents the

repeating string of that class. For instance, class {3, 6}aab on level l = 3 represents a

class of equivalence ≈3, where the elements in the class are the starting positions of

the same substring aab.

Starting from level 1, Crochemore’s repetitions algorithm continuously refines the

indices of the equivalent classes until all classes have been reduced to a singleton

class (i.e. a class contains only one element). A naive approach to refine a level of

classes into the next level would be taking every element from each class and compare

the character on its next position of the string, and then group the elements based

on the comparison. This approach would lead to an O(n2) complexity, as there are

potentially O(n) indices to be processed on each level and there can be potentially

73

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

1

Figure 5.1: Example of Crochemore’s repetition algorithm.

O(n) levels. The fundamental idea of Crochemore’s algorithm is that the refinement

of each equivalent class at each level is not performed directly against the original

string; rather, it is refined using the classes of the previous level. Note that not all

the levels of classes are saved, all we need is the previous level to compute the next

level. Consider a class C and a class D on level L, in order to refine class C by D into

the next level L + 1, we take i, j ∈ C, if i + 1, j + 1 ∈ D, then we move them into

one class, otherwise we must separate them into different classes. For instance, let us

refine class C = {1, 3, 4, 6, 7, 9, 11} by class D = {2, 5, 8, 10} on level 1: 1 and 3 must

be placed into different classes as 2 and 4 are not both in D, 1 and 4 will be put in

the same class, since 2 and 5 are both in D. In fact C is refined into three classes, one

consisting of the indices from D with one position shifted to the left ({1, 4, 7, 9}), one

containing the indices that were separated ({3, 6}), and the last one ({11}) is actually

refined using class {12} on level 1. Computationally, the same results can be achieved

by processing the elements in D; that is, for every element i, j ∈ D, if i− 1, j− 1 ∈ C,

74

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

then i−1, j−1 are put into the same class. In this case, {2−1, 5−1, 8−1, 10−1}, i.e.

{1, 4, 7, 9}, is refined into one class; then class {12} is processed as {12−1}, i.e. {11},

is refined into another class; and {3, 6} is a class with left over elements. Similarly

D = {2, 5, 8, 10} can be refined using C = {1, 3, 4, 6, 7, 9, 11}. If we use all the classes

for refinements, we end up with the next level.

Despite using the classes of the previous level for refinement, the algorithm would

still have O(n2) complexity. Thus, a major innovation of Crochemore’s algorithm is to

use only some of the classes of the previous level for refinements. The classes used for

refinement are so-called small classes. In the next paragraph, we explain the notion

of small classes.

We say classes form a “family” if they form a refinement of same class from the

previous level. For instance, consider the example in Figure 5.1, classes {1, 4, 7, 9},

{3, 6} and {11} on level 2 form a family as they are the refinement of {1, 3, 4, 6, 7, 9, 11}

on level 1. In other words, {1, 3, 4, 6, 7, 9, 11} is the parent class, and {1, 4, 7, 9}, {3, 6}

and {11} are the children classes. Consider class {2, 5, 8, 10} on level 2, in order to

refine it, we would need to use all other classes on the same level, that is, {1, 4, 7, 9},

{3, 6} and {11}. The resulting classes on level 3 are {2, 5} which was obtained by

refinement using {3, 6}, {8} which was obtained by refinement using {1, 4, 7, 9}, and

{10} which was obtained by refinement using {11}. A simple observation can be

made that {2, 5, 8, 10} are refined into three classes of repeating strings with different

suffixes that are the repeating strings of {1, 4, 7, 9}, {3, 6} and {11}, which are from

the same family. Thus, we do not have to use for refinement all three classes as we

could just use two of them and the last one is automatically formed by the left-over

elements. In this case, we could use {3, 6} to get {2, 5} and {11} to get {10}, and

{8} is a left-over to form a class of its own. In other words, we do not have to use

all the classes from of the family; in fact, we could use all the classes except one. For

75

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

computational efficiency, we should not use the class of the largest size, and use all

the other classes. That is, for each family we identify the largest class which contains

the most elements and call all the other classes small. By using only small classes for

refinements, O(n log n) complexity can be achieved since every element in the string

can occur in at most O(log n) small classes. Note that for the first level l = 1, every

class is considered small.

When it comes to the reporting of the repetitions, every equivalent class that

represents repeats of the same substring needs to be examined for the “gaps” between

consecutive indices. According to the definition in Section 1.1.3, repetitions are

tandem repeats. Thus, the algorithm needs to consider only those consecutive indices

that have a gap of the same size as the current level l, as they then represent tandem

repetitions of period l. If the gap is bigger than l, it indicates a split repeats ; if the

gap is smaller than l, it indicates an overlapping repeats. Consider the example

shown in Figure 5.1, at level 3, class {1, 4, 7, 9}, the gap between index 1 and 4 is 3

which equals to the period (level) 3, and the gap between 4 and 7 is also 3; but the

gap between 7 and 9 is 2 which is smaller than 3, that indicates overlapping repeats.

Thus, when counting the exponent of this repetition, we should count index 1, 4, and

7, but not 9, which gives us the final output (1, 9, 3) in the form of (s, e, p), represents

the repetition (aba)3 in the string. We will discuss the gap function in details in

the following section, where the FJW algorithm, a space-efficient implementation of

Crochemore’s algorithm, is discussed.

5.2 FJW Algorithm

One advantage of Crochemore’s repetition algorithm is its independence on the size

of the alphabet of the string. Its disadvantage is in the implementation, because

76

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

the data structures required for keeping track of the refinements and the gaps de-

mand a substantial storage and a complex machinery to update and maintain them.

Originally, when Crochemore’s algorithm was introduced, the estimated storage re-

quirement for its implementation was about 20n of integers, where n is the length of

the input string. In 2003, Franek, Smyth, and Xiao [20] implemented the algorithm

using several memory saving techniques lowering the requirement to 14n integers. To

extend its capability, Franek and Jiang [16] [18] developed a number of extensions

to Franek, Smyth, and Xiao’s implementation [20], to compute the runs in a string,

and the performance of these extensions was benchmarked. The strategy was rather

straightforward, it simply took the maximal repetitions as outputted by the origi-

nal algorithm and consolidated them into runs. Depending on the timing when and

how the consolidation is performed, the extension algorithms have different storage

requirements and complexity, but all needed an extra O(n log n) storage.

In 2011, Franek, Jiang, and Weng [19] re-designed Franek, Smyth, and Xiao’s im-

plementation [20], and we refer it to as FJW. This implementation not only reduces

the storage requirement down to 13n of integers, but also it computes three period-

icity measurements of the input string: namely the number of distinct primitively

rooted squares, maximal repetitions, and runs. Unlike the previous implementation

by Franek and Jiang [16] [18] where runs were computed through the consolidation

of the maximal repetitions, the computation of the three periodicity measurements in

FJW is directly carried out from the gap function, which we will discuss the details

in Section 5.2.2.

77

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

5.2.1 Data Structures

We first describe a naive implementation and its data structures without any regard

for the size of required memory. This leads to an implementation requiring 20n of

integers. Then we use several techniques to reduce the memory to 13n integers. For

practical reasons, we present the data structures as static; in fact they are all allocated

on the heap, but only once at the outset of the program’s processing. So, there is

no memory allocation or deallocation performed during the processing of a string.

Moreover, we do not want to recompile the program each time a different string is to

be processed. The data structures are essentially arrays used to emulate doubly-linked

lists, stacks, and queues to maintain the information about classes, families, and gap

lists, as discussed in Section 5.1.

The first seven arrays deal with classes contained with elements:

1. An integer array CStart[] stores the very first element of a class. CStart[i] = j

means that the first element of class i is j. This emulates a pointer to the

beginning of a class.

2. An integer array CEnd[] stores the very last element of a class. CEnd[i] = j

means that the last element of class i is j. This emulates a pointer to the end

of a class.

3. An integer array CNext[] stores the next element in the class or NULL.

CNext[i] = j indicates that i and j are in the same class and that j is the

next element after i, while CNext[i] = NULL indicates i is the last element in

the class. This emulates the forward links of a class list.

4. An integer array CPrev[] stores the previous element in the class or NULL.

CPrev[i] = j indicates that i and j are in the same class and that j is the

78

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

element just before i, while CPrev[i] = NULL indicates i is the first element

in the class. This emulates the backward links of a class list.

5. An integer array CMember[] stores the class membership of each element.

CMember[i] = j means that element i belongs to class j.

6. An integer array CSize[] stores the sizes of classes. CSize[i] = j means that

class i has j elements.

7. An integer array CEmpty[] is used as a stack of empty classes that can be

used.

The following five arrays deal with families of classes as described above:

8. An integer array FStart[] is used as a stack. It stores the very first class that

belongs to a family. FStart[i] = j means that class j is the first class in family

i. This emulates a pointer to the beginning of a family.

9. An integer array FEnd[] stores the very last class that belongs to a family.

FEnd[i] = j means that class j is the last class in family i. This emulates a

pointer to the end of a family.

10. An integer array FNext[] stores the next class in the family orNULL. FNext[i]

= j indicates that i and j are in the same family and that j is the next class

after i, while FNext[i] = NULL indicates i is the last class in the family. This

emulates the forward links of a family list.

11. An integer array FPrev[] stores the previous class in the family or NULL.

FPrev[i] = j indicates that i and j are in the same family and that j is the

class just before i, while FPrev[i] = NULL indicates i is the first class in the

family. This emulates the backward links of a family list.

79

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

12. An integer array FMember[] stores the family membership of each class.

FMember[i] = j means that class i belongs to family j.

The following four arrays implement the list of gaps between the consecutive elements:

13. An integer arrayGap[] stores the first element of a gap list. Gap[i] = j indicates

that the first element in the list of gap of i is j, i.e. j − i and j are consecutive

elements in the class and j − i is j’s predecessor.

14. An integer array GNext[] stores the next element in the gap list or NULL.

GNext[i] = j indicates that i and j are in the same gap list and that j is the

next element after i, while GNext[i] = NULL indicates i is the last element in

the gap list. This emulates the forward links of a gap list.

15. An integer array GPrev[] stores the previous element in the gap list or NULL.

GPrev[i] = j indicates that i and j are in the same gap list and that j is the

element just before i, while GPrev[i] = NULL indicates i is the first element

in the gap list. This emulates the backward links of a gap list.

16. An integer array GMember[] stores the gap membership of each element.

GMember[i] = j means that element i belongs to the list of gap of j.

The last four arrays are used for the refinement process:

17. An integer array Refine[] is used to memorize the destination class of a class

element after it is refined. Refine[i] = j means that an element from class i

should be moved to class j during the refinement.

18. An integer array RStack[] is used as a stack to memorize which positions in

Refine[] were occupied, so it can be cleared without any need to traverse the

whole array Refine[], as that would destroy the O(n log n) complexity.

80

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

19. An integer array Sel[] is used as a queue containing elements from all the small

classes.

20. An integer array Sc[] is used as a queue to store the last element of each small

class. Thus, the information in Sel[] and Sc[] implements a list of elements of

small classes with indicators where one small class ends and the next small class

starts.

The above adds up a total of 20 integer arrays. Our memory saving techniques

are mainly based on a simple observation; that is, for the double-linked list structure,

the previous element of the head (first element) of a list is always NULL; similarly,

the next element of the tail (last element) of a list is also NULL. Therefore, we can

make use of these unused spaces in the double-linked lists for the information which

we would need a whole array to store. The following is the summary on how we save

seven integer arrays in the FJW algorithm.

1. The last element of a class which was stored in CEnd[] can be stored in the

previous element of the first element of the class. In other words, function

CEnd() replaces integer array CEnd[], and CEnd(i) = CPrev[CStart[i]].

2. Similarly, array FEnd[] is replaced by function FEnd() and FEnd(i) =

FPrev[FStart[i]].

3. The size of a class which was stored in CSize[] can be stored in the next

element of the last element of the class. That is, function CSize(i) =

CNext[CPrev[CStart[i]]] as CEnd(i) = CPrev[CStart[i]] in item 1.

4. GMember[] can be eliminated as the gap membership of an element can be

81

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

directly calculated through function:

GMember(i) =


NULL if i is not a member of any class

NULL if i is the first memeber of a class

i− CPrev[i] otherwise

5. FStart[] is used as a stack, so the spaces after the stack pointer are unused.

Similar to item 3, space for the next element of the tail of a family list is also

unused. Therefore, array FMember[] is replaced it by a function FMember()

that utilizes these spaces:

FMember(i) =


FStart[i] if the stack pointer is NULL

FStart[i] if i > the stack pointer

FNext[FPrev[FStart[i]]] otherwise

6. To replace CMember[], we neither can directly compute the class membership

of an element like GMember() does in item 4, nor we can utilize the unused

spaces in other class arrays such as CPrev[] and CNext[], as they have been

occupied to replace CEnd[] and CSize[] in item 1 and 3. Therefore, we will

make use of the unused spaces in Gap[] and GNext[] in a way similar to function

FMember() in item 5. However, unlike FStart[] is used as a stack and the stack

pointer is an indicator such that the spaces beyond it are not used, the spaces

that are occupied in array Gap[] are completely arbitrary depending on the gaps

between the elements in the classes. To distinguish whether the stored value

represents a class membership of an element or the first element from a gap list,

we store the class membership in its negative value. Therefore, we use long

82

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

instead of unsigned long as the data type for the arrays, thus allowing us to

store negative values and this limits the maximal possible length of an input

string to LONG MAX, which for a 32-bit machine equal to 2, 147, 483, 647, which

is quite sufficient for all practical purposes.

CMember(i) =



NULL if Gap[i] is NULL

NULL if GNext[GPrev[Gap[i]]] is NULL

0−Gap[i] if Gap[i] < 0

0−GNext[GPrev[Gap[i]]] otherwise

7. Array CEmpty[] and Sc[] share the same data structure. Sc[] saves data from

left to right of the array; and on the other hand, CEmpty[] grows from right to

left.

5.2.2 Gap Function

As mentioned in Section 5.1, to compute the periodicity of a string, the program has

to go through the gap list and report the appropriate information as desired. In order

to keep a running complexity of O(n log n), the gap lists are maintained throughout

the process of refinements; that is, every time an element is removed from or added

to a class, the gap list is updated according to the change. Recall Gap[p] points to

the first element whose immediate predecessor in its class is exactly at a distance of p,

while GNext[] and GPrev[] allow us to traverse the whole gap list in either direction

and to update the list in constant time. When computing the periodicity at level p

after the refinement, we are dealing with the gap list with the first element stored in

Gap[p]. If Gap[p] = i, then there is a primitively rooted square of period p starting at

83

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

position i− p. In the following, we will discuss how the three functions that compute

the three periodicity measurements including the number of distinct squares, maximal

repetitions and runs, by directly extracting information from the gap list.

Computing Distinct Squares Function traceSquares() computes the number

of distinct primitively rooted squares in a string. It traverses the gap list for

the current level, once it identifies the first square in each class, it ignores the

identification of the rest from the same class as they represent the same type of

squares. For computing the number of distinct squares, we are only interested

in the types of the squares, not the occurrences. Consider the example shown

in Figure 5.1, at level 3, element 4 and 7 of class {1, 4, 7, 9}aba are in the gap

list because the distance between them and their predecessors are both equal

to the current level, i.e. the period. As the function goes through the gap list,

square (1, 6, 3) is identified while (4, 9, 3) is ignored as they both represent the

same type of square, namely (aba)2. We use Refine[] and RStack[] that are

only needed during the refinement process as auxiliary data structures here to

keep track of which class, i.e. square type, we already have a representative

from. That is, we use Refine[i] to store the representative square from class

i, and we use RStack[] as a stack to memorize which positions in Refine[] are

occupied. In fact, for each type of square, we only store its right most occurrence

for display purpose.

Computing Maximal Repetitions Function traceMaxReps() is used to com-

pute the maximal repetitions of a string. Unlike computing the distinct squares,

not only we need to compute all the occurrences of the repetitions, but also we

need to extend the repetition to its maximum and count the exponent of the

repetition. The algorithm traverses the gap list, and for each entry it checks how

84

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

far left and how far right it can extend the square. Thus, during the tracing

at level p, all the individual squares identified are consolidated into maximal

repetitions. A brief description of how the algorithm determines if the square

can be extended to the left: the entry i from gap list Gap[p] indicates that there

is a primitively rooted square starting at position i− p and element i− p is in

the same class as element i. In fact, i − p is the previous element of i in the

class list. Since the elements of each class are stored in the natural order, the

algorithm iterates through the class list that entry i belongs to, and checks if

the previous element of i is p distance away from it; if so, then the repetition is

extendible to the left starting at position i − 2p; we do this check until we fail

to find such element or we reach the first element of the class. Note that if we

were able to extend the repetition to the left, i − p must be in the gap list as

well. However, it is possible that the element i−p is further away in the gap list

since they are stored in arbitrary order. In order not to process element i − p

again as it would be a redundant work, we again use Refine[] and Rstack[] to

indicate that this entry has already been processed. Similar check applies to the

right extendibility of the repetition.

Computing Runs The computation of runs in a string is performed by function

TraceRuns(). The idea is very similar to the procedure of tracing maximal

repetitions: the identified primitively rooted squares are consolidated into runs

during the traversal of the gap list. We refer to the first square occurs in a

run as the leading square. Consider the leading square of a run (s, e, p) must

be primitively rooted by definition; and at every position s + i, where 0 ≤ i ≤

(q − 2)p + t where q = (e − s + 1)/p (integer division) and t = (e − s + 1)%p

(modulus), there is a primitively rooted square. This fact is based on a simple

85

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

observation that a rotation of a primitive string is also primitive. The algorithm

has to consolidate the runs from all of the primitively rooted squares encoded in

the gap list. Thus, having identified a square, not only must we check if it can

be extended to the left or right as a repetition, but also we have to check if the

repetition can be shifted to the left or right, that is, for every position we move

to its left or right, whether there exists a primitively rooted repetition with

the same period. We perform this check until the repetition can not be shifted

anymore. Again, we use Refine[] and RStack[] as auxiliary data structures to

indicate which element of the gap list had been previously processed so that we

do not process it again.

5.3 Extend FJW to Produce k-Vector and p-Vector

In Section 5.2 we discussed the FJW in details, a program we developed to compute

three types of periodicity measurements in a given string. One of the measurements is

the number of distinct primitively rooted squares, which forms the foundation of the

underlying program for the computational framework for computing the maximum

number of distinct primitively rooted squares in strings. Recall that in order to

compute the maximum number of distinct squares in strings of a given length and a

given number of distinct symbols, we would have to generate a set of singleton free,

dense, s-covered strings. When we generate these candidate strings, not only we are

interested in their respective number of distinct squares; but more importantly, we

need to be able to identify as early as possible whether they are dense enough. By

Lemma 4.12, the density check is done throughout the process of the generation of

the s-cover squares; that is, for each square we build, we check if the partial string

we have built so far is dense enough, if it is, we continue with the generation of the

86

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

next square, otherwise the current square is discarded. Therefore, the earlier we can

eliminate the non-dense strings, the more computational efficiency we can gain.

By Definition 4.6, in order to determine if a string is dense or not, we would have

to check if its core vector k(x) satisfies ki(x) > σ−d (n)− s(x[1 .. i− 1])−mi for every

position 1 ≤ i ≤ n. How a suitable lower bound σ−d (n) is obtained is discussed in

Section 4.3. Each mi is the maximum number of distinct squares that a (d′, n − i)-

string y could contain, where |A(y)| = d′ and |A(y) ∪ A(x[1 .. i − 1])| = d, which

can be obtained from the previously computed values in the (d, n − d)-table. Thus,

we need to compute the core vector k(x), let’s call it k-vector ; and a vector of

s(x[1 .. i− 1]), the number of distinct primitively rooted squares in the prefix of the

string up to position i− 1, for every 1 ≤ i− 1 ≤ n, let’s call it p-vector. Instead of

developing a new algorithm to compute these two vectors, these information can be

directly extracted from the gap list in the FJW algorithm as we compute the distinct

squares. In this section we discuss the modified version of the FJW algorithm that

not only computes the number of distinct squares, but also returns the k-vector and

p-vector of the string.

5.3.1 k-Vector

By Definition 4.5, the k-vector, i.e. core vector, of a string records the number of

cores of squares that each position contains. By Definition 4.4, the core of a square

type is a set of indices that are the intersection of the indices of all its occurrences.

Note that the non-empty core of a square must be either a single index, where the

intersection is one position; or is a set of continuous indices, where the intersection are

the indices of a portion of the string. Thus, we can use the starting index and ending

index of the set of intersection indices to denote a core, as every index in between is

87

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

also in the core. Therefore, to populate the k-vector, we would have to find the core

of each square type, and then within the range of its core, we increment the k-vector

accordingly. This process can be done as we go through the gap list to identify the

squares of the string.

When we traverse the gap list at each level, every entry in the gap list for that

level identifies a square. As discussed before, when computing the distinct squares,

we would only take one representative from each class, i.e. square type; however, to

compute the core of a square, we would have to consider all the occurrences of the

square. Therefore, the idea is for every square identified in the gap list, we check

if it is a new square type, i.e. from a new class; if it is, then we store the starting

index and ending index of its core to be the same as the square itself; if not, then

it means we already have a core for this square type, we would have to update the

core information for this square accordingly. Let us consider string x[1 .. n], as we

go through the gap list at level p, we find a square type s at x[i1 .. i2]. If s is a new

type, then the core of s is {i1, i1 + 1, · · · , i2}. For demonstration purpose, let us use a

substring of x to represent the position of core of s, denoted as cs = x[i1 .. i2], where

every index from i1 to i2, inclusively, is in the core of s. If s is not new, then it is

another occurrence for square type s which we have found previously in the gap list,

this indicates the core for previously found occurrences of square type s must exist,

let it be cs = x[i3 .. i4]; depending on how the position of s to the position of cs,

we update the starting index and ending index of cs accordingly. Once cs is updated

for every occurrence of square type s found in the gap list, cs represents the core of

square type s for all its occurrences in x. There are four different scenarios described

as follows. We refer s = x[i1 .. i2] as the new occurrence of square type s since it is

already been found before.

88

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

1. s = x[i1 .. i2] and cs = x[i3 .. i4] are not overlapped, or cs is empty.

In this case the intersection of the two is empty, therefore the core is a empty

set, and thus there is no incrementation for the k-vector for this square type.

Figure 5.2 shows this scenario.

 1 i1 i2 i3 i4 n

x

Figure 5.2: Core computation: core and new occurrence are not intersected.

2. s = x[i1 .. i2] and cs = x[i3 .. i4] are overlapped, and s is on the left

of cs in x. In this case, the ending index of the core is updated to i2 while

the starting index is unchanged. Thus, cs = x[i3 .. i2]. As shown in Figure 5.3,

indices of the overlapping portion is the new core of square type s.

 1 i1 i3 i2 i4 n

x

Figure 5.3: Core computation: new occurrence is on the left.

3. s = x[i1 .. i2] and cs = x[i3 .. i4] are overlapped, and cs is on the left

of s in x. Similar to above case, the starting index of the core is updated to i1

while the ending index is unchanged. Thus, cs = x[i1 .. i4], as shown in Figure

5.4.

 1 i3 i1 i4 i2 n

x

Figure 5.4: Core computation: core is on the left.

4. cs = x[i3 .. i4] is contained in s = x[i1 .. i2]. In this case, both starting

index and ending index of the core remain unchanged since the overlapping

89

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

portion is equivalent to the core as shown in Figure 5.5, that is cs = x[i3 .. i4].

 1 i1 i3 i4 i2 n

x

Figure 5.5: Core computation: core is contained in new occurrence.

Note that it is not possible for s = x[i1 .. i2] to be contained in cs = x[i3 .. i4].

This is because the core of a square is a set of indices that are the intersection indices

of its all occurrences, and therefore the distance between its starting index and ending

index, is always equal to or smaller than the length of the square.

Once we process the entire gap list for the level, we have obtained the core informa-

tion for every type of squares. Then we shall increment the k-vector on the positions

according to the range of each core. That is, for every core, from its starting index to

its ending index, inclusively, the corresponding positions in k-vector are incremented

by one.

5.3.2 p-Vector

Before we go into any computational details, let us formally define the p-vector.

Definition 5.2. For a string x with length of n, the p-vector p(x) = [p1(x), p2(x), · · · ,

pn(x)] of x is defined by pi(x) = the number of distinct primitively rooted squares con-

tained in x[1 .. i] for 1 ≤ i ≤ n.

Figure 5.6 shows the p-vector of an example string x. Note that every position in

the p-vector contains the number of distinct primitively rooted squares in the prefix

of x up to that position. That is, for every 1 ≤ i ≤ n, pi(x) = s(x[1 .. i]).

Instead of computing the p-vector by brute force, that is, take every possible prefix

of the string and compute the number of distinct squares of it; we could directly extract

90

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

 1 2 3 4 5 6 7 8 9 10

x a a b a b a b b a a

p 0 1 1 1 2 3 3 4 4 4

Figure 5.6: p-Vector of string x.

this information as we go through the gap list to identify different types of squares.

The approach is based on a simple observation, consider any position j in x[1 .. n],

for any distinct square that appears on the left and up to j should be counted into

the value of pi(x) where j ≤ i ≤ n. This is because any prefix of x with longer length

contains the prefixes of x with shorter length, and thus contains all their distinct

squares. Therefore, as we identify each square s = x[i1 .. i2] in the gap list, every

prefix of x that contains s should take it into account; that is, for every i2 ≤ i ≤ n,

x[1 .. i] contains s, pi(x) should be incremented by one. If the square has more than

one occurrences in the string, the prefixes that contain some or all occurrences of the

square should count it only once since we are interested in the type of the squares,

not the occurrences. Therefore, only the leftmost occurrence of the square should be

considered when calculating the p-vector as any occurrences appear after the leftmost

one will be ignored when counting the number of distinct squares in the prefixes of

the string.

The algorithm traverses through the gap list, and every entry in the list indicates

a square of the string. If the square is a new type, i.e. from a new class, then we

set the ending position of its leftmost occurrence (let us refer it as leftmost ending

position for short), to be the ending position of the square. Otherwise it is not new,

thus we have found it in the gap list before, then there must exist a leftmost ending

position for this square type; therefore, we shall compare the leftmost ending position

with the ending position of the square we just found and update it accordingly, i.e.

91

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

set it to the ending position of the square if it is bigger. Once we finish processing

the entire gap list for the level, we have obtained the ending position of the leftmost

occurrence for every square type. For each square type, we increment the values in

the p-vector from its leftmost ending position to the end of the vector. Figure 5.7

demonstrates this process for each square type, the positions in the p-vector that are

incremented are indicated in gray.

 1 i1 i2 n

x

p ..

Figure 5.7: p-Vector computation: for every s = x[i1 .. i2] is the leftmost occurrence,
pi(x) = pi(x) + 1, for i2 ≤ i ≤ n.

5.3.3 Data Structures

As discussed in Section 5.2, the required data storage for the FJW algorithm is 13n

of integers where n is the length of the string. For the modified version of the FJW

algorithm we described in this section, the required data storage is increased to 15n

of integers, where the two extra integer arrays are used to store the starting indices

and ending indices of the cores of squares when the algorithm computes the k-vector.

Array Refine[] is used to store the ending positions of the leftmost occurrences of

squares to produce the p-vector, and it is also used as an indicator to memorize the

square type that has been processed similar to the original FJW algorithm, and array

RStack[] is again used as a stack to keep track of which positions of the above three

arrays are occupied so that they can be cleared out in constant time after a level of

computation is done.

92

Chapter 6

Computational Results

In Chapters 4 and 5 we discussed the computational framework for distinct primitively

rooted squares in strings in details; including the generation of singleton free, dense s-

covered strings in Chapter 4, and the underlying modified FJW algorithm to compute

the distinct squares for each generated string in Chapter 5. In this chapter we focus

on the computational results obtained in our implementation of the framework. In

Section 6.1 we present the computation environment for the framework and the (d, n−

d)-table in a larger scale in comparison to the one presented in Table 2.1, where a

number of interesting properties are observed and discussed. Section 6.2 shows the

current known bounds for σd(n) deduced from the values we have obtained so far.

6.1 Values in (d, n− d)-Table

The complete computational framework including both the s-covered string genera-

tion module and the modified FJW module are implemented in C++ programming

language for its flexibility and efficiency. Most of the computations were performed on

a workstation contains 8 AMD Dual-Core OpteronTM885 processors with frequency of

93

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

2.6 GHz, 64 GB of RAM and 500 GB disks. In Table 2.1 we showed a (d, n− d)-table

with small values of d and n, which was computed by brute force. After implementing

our enhanced computational framework, not only we were able to verify the values

we computed by brute force in a timely manner, but also we were able to expand the

table into a much larger scale. We were able to compute all σ2(n) values for n ≤ 70.

The 10 largest new values are: σ2(61) = 47, σ2(62) = 48, σ2(63) = 48, σ2(64) = 49,

σ2(65) = 50, σ2(66) = 51, σ2(67) = 52, σ2(68) = 53, σ2(69) = 54 and σ2(70) = 55.

Due to the limited space, only a portion of the (d, n − d)-table is shown in Table

A.1 of the Appendix. The complete (d, n− d)-table with the currently known values

is actively maintained and can be found in [10]. Some values in the (d, n − d)-table

[10] are provided with a list of sample square-maximal strings for the corresponding

d and n that were generated by the computation framework. From the values we

currently obtained, the following two interesting properties can be observed from the

(d, n− d)-table.

6.1.1 Three Consecutive Equal Values

Throughout the values we have computed so far, the number of consecutive equal

values along a row is two in most cases except one instance of three consecutive

equal values along a row; that is, σ2(31) = σ2(32) = σ2(33), which are highlighted

in light gray in Table A.1. These three consecutive equal values lead to some previ-

ously unobserved behaviour of the values in the table. One is that the existence of

an increase of 2 between two consecutive values on a descending diagonal; that is,

σd+1(n+2)−σd(n) > 1 when σd(n) = σ2(33), σ2(34), whereas in all other instances in

the table the increase is 1. The second one is an instance of strings with more symbols

of the same length producing more distinct squares. This is quite counter-intuitive,

94

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

because with the same length, the more distinct symbols we have, the less likely we

can repeat the symbols to produce a square; e.g. in the extreme case when a string

contains the same number of symbols as its length, no square can be formed. This

unusual case is σ2(33) < σ3(33); that is, among all strings of length 33, no binary

string achieves the maximum number of distinct primitively rooted squares.

6.1.2 Increasing on Descending Diagonals

By Property 2.6 (c) we presented in Chapter 2, there is a strict increase between the

two values along a descending diagonal from top-left to bottom-right direction. As

mentioned in Section 6.1.1, almost every instance in our (d, n−d)-table shown in Table

A.1, the increase of the two consecutive values along the descending diagonals is 1

except the two instances having increase of 2 which is caused by the three consecutive

equal values. Table A.2 of the Appendix is a (d, n−2d)-table where the column index

is n − 2d instead of n − d as in the (d, n − d)-table. When our values are presented

in the (d, n − 2d)-table, the descending diagonals of the (d, n − d)-table become the

columns of the (d, n − 2d)-table. As we can clearly see from Table A.2, the entries

on every column form an arithmetic sequence with the consecutive term equal to 1,

i.e. every entry in a column is incremented by 1 at each time from top-to-bottom

direction. The only two exceptions as we mentioned are the increment of 2; that is

σ3(35) − σ2(33) = 2 and σ3(36) − σ2(34) = 2. These four values are highlighted in

light gray. The complete (d, n− 2d)-table can be also found in [10].

6.2 Current Bound for σd(n)

Fraenkel and Simpson [14] gave the upper bound of 2n− 8 for n ≥ 5 and any d, and

σ2(n) ≤ 2n−29 for n ≥ 22. Ilie [22] provided an asymptomatic bound of 2n−Θ(log n).

95

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

In 2013, Deza, Franek and Thierry [13] showed that a string of length n contains at

most 11n
6

distinct squares.

Remark 6.1. For any 2 ≤ d ≤ n− d0, σd(n) ≤ 2n− 2d− d0, where d0 is the largest

d such that σd(2d) = d.

Proof. By Theorem 2.14 and Lemma 2.10, σd(n) ≤ d0 + 2k, where n− d = d0 + k and

k ≥ 0. Thus, σd(n) = σd(d0 + k + d) ≤ d0 + 2k = 2(d0 + k + d)− 2d− d0. Therefore,

σd(n) ≤ 2n− 2d− d0 for 2 ≤ d ≤ n− d0.

Remark 6.1 can be intuitively observed from the (d, n− d)-table: for each step we

move from left to right along a row, the maximum increase of values is 2 by Lemma

2.10, and there are total of n− d steps; and we have shown the increase of each step

in the first d0 columns of the (d, n − d)-table is at most 1, thus yields a bound of

σd(n) ≤ 2n− 2d− d0. As of writing this thesis, d0 = 24.

In addition, from the currently computed values, the bound specifically for each

2 ≤ d ≤ 10 are listed as follows:

σ2(70) = 55, thus σ2(n) ≤ 2n− 85 for n ≥ 70;

σ3(45) = 34, thus σ3(n) ≤ 2n− 56 for n ≥ 45;

σ4(38) = 27, thus σ4(n) ≤ 2n− 49 for n ≥ 38;

σ5(37) = 26, thus σ5(n) ≤ 2n− 48 for n ≥ 37;

σ6(35) = 24, thus σ6(n) ≤ 2n− 46 for n ≥ 35;

σ7(37) = 25, thus σ7(n) ≤ 2n− 49 for n ≥ 37;

σ8(29) = 18, thus σ8(n) ≤ 2n− 40 for n ≥ 29;

96

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

σ9(31) = 19, thus σ9(n) ≤ 2n− 43 for n ≥ 31;

σ10(33) = 20, thus σ10(n) ≤ 2n− 46 for n ≥ 33.

97

Chapter 7

Conclusion

The previous chapters entail our investigation of the maximum number of distinct

primitively rooted squares problem of both combinatorial and computational ap-

proach. Chapter 2 introduces the d-step approach to the problem, where σd(n) is

presented in a (d, n−d)-table; a number of properties of σd(n) and then the (d, n−d)-

table are discussed and possible directions to solving the conjecture on the size of

the upper bound are presented. Chapter 3 focuses on the structural aspects of the

square-maximal (d, 2d)-strings under both conditions, complying with the conjectured

upper bound, and not complying. In the latter case, the first square-maximal (d, 2d)-

strings with σd(2d) > d if there are any, are discussed. Chapters 4 and 5 describe

the computational framework for computing the values of σd(n) efficiently by signifi-

cantly reducing the search space based on the notion of singleton free, dense s-covered

strings and utilizing a pre-determined lower bound. Finally, Chapter 6 presents the

main results of the computational experiments and a few interesting observations of

the values obtained are discussed.

In this chapter, we first briefly examine the relation of the maximum number of

distinct primitively rooted squares problem to the problem of maximum number of

98

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

runs as it was investigated by Baker, Deza and Franek, see Baker’s Ph.D. thesis [1],

using a similar approach to the one presented in this thesis. The direction of possible

future work to improve either the theoretical or the computational results are pointed

and discussed in the end of this chapter.

7.1 Relation to ρd(n)

As we mentioned in Section 1.1.4, the notion of run was conceptuality introduced

by Main [30], and the term itself was later coined by Iliopoulos, Moore, and Smyth

[23]. Kolpakov and Kucherov [26] showed that the number of runs in a string is

O(n) and conjectured that maximum number of runs in a string should no more than

its length. Let ρ(n) denote the maximum number of runs over all strings of length

n. Several authors have presented asymptotic bounds on ρ(n); Crochemore, Ilie and

Tinta presented the currently best asymptotic upper bound in [7], and Matsubara et

al. presented the currently best asymptotic lower bound in [31].

Similar to our approach to the problem of maximum number of distinct squares,

besides the length of the string, the number of distinct symbols in the string was

considered as a parameter when the problem of runs was investigated by Baker, Deza,

and Franek [1] [3] [4] [5] [9]. Let ρd(n) be the maximum number of runs over all strings

of length n with exactly d distinct symbols. A run-maximal string refers to a string

containing the maximum number of runs. In the next few sections, we will discuss

briefly on how their findings on ρd(n) relate to our investigation on σd(n).

7.1.1 Similarities and Differences

Similarly to our approach, the values of ρd(n) were presented in a (d, n−d)-table with

row index d and column index n − d, and ρd(n) is conjectured to be no more than

99

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

n−d. The basic properties of the (d, n−d)-table for σd(n) as discussed in Proposition

2.6 also apply to the (d, n− d)-table for ρd(n), such as the values are non-decreasing

from left to right along a row; the values are non-decreasing from top to down along

a column; the values are strictly increasing along a descending diagonal; and the

values on and under the main diagonal along a column are constant [9]. In addition,

some other properties such as the lower bound for the entries on and under the main

diagonal, see Lemma 2.7, the lower bound for the two immediate entries on the right

of the main diagonal entries, see Lemma 2.8, and the upper bound for the difference

of the main diagonal entry and the entry immediately above it, see Lemma 2.9, are

also proved for ρd(n) [4] [9]. A number of equivalent statements to the conjectured

upper bound, which correspond to Theorems 2.14, 2.15, 2.16, and 2.17, are shown [9].

Let us remark that though the properties are similar, the proofs of the corresponding

lemmas are rather different.

While the functions σd(n) and ρd(d) exhibit many similarities, there are still quite

a few differences concerning both the methodologies and the properties due to the

different nature of the problems. For example, the removal of singletons does not

reduce the number of distinct squares in a string, see Lemma 2.2, but may cause a

merge of two runs into one and thus a reduction of the number of runs. On the other

hand, when concatenating two strings into one, the runs occurring in both strings are

counted, while it is not true for distinct squares since only the types of squares are

considered.

While Lemma 2.12 shows that the two consecutive entries immediately above the

main diagonal entry along a column are identical, the three consecutive identical

entries above the main diagonal entry are proved in the (d, n− d)-table for ρd(n) [4].

Based on Fraenkel and Simpson’s Lemma [14], we were able to deduce an upper

bound of 2 for a difference between any two consecutive values along a row or along

100

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

the main diagonal, and along the two descending diagonals (d, 2d + 1)-diagonal and

(d, 2d+2)-diagonal (as we defined in Section 2.4) that are immediately above the main

diagonal in the (d, n − d)-table for σd(n), see Lemmas 2.10 and 2.11, and Corollary

2.13, which are not true for ρd(n). On the other hand, the function of ρd(n) has the

property of ρd(n+2) > ρd(n) [9]; that is, for any three consecutive entries along a row

in the (d, n− d)-table of ρd(n), the third entry is always strictly bigger than the first

entry, which eliminates the possibility of three identical consecutive entries along a row

as it occurs in the (d, n− d)-table for σd(n), in particular σ2(31) = σ2(32) = σ2(33).

In terms of the structure of the run-maximal strings, there is an unique run-

maximal string aabbcc · · · on the main diagonal if ρd(2d) = ρd(2d+ 1) (correspond to

Lemma 3.1); or the first counterexample on the main diagonal, if there is any, does

not contain a symbol occurring exactly 2, 3, · · · , 7, or 8 times, which yields the fact

that such a counter-example string would contain at least d7d
8
e singletons [4]. In our

investigation of the structure of a possible first counterexample on the main diagonal

turned out to be more complicated, as shown in Lemmas 3.3, 3.4, 3.5, and 3.6, we

were able to eliminate only the pairs and some forms of triples to prove the existence

of at least d2d
3
e singletons, obtaining a weaker Theorem 3.10.

Baker, Deza, and Franek [5] described a computational framework for computing

ρd(n). Similar to the s-cover as discussed in Chapter 4, they adopted a r-cover

structure and notion of dense strings in respect to a pre-determined lower bound

ρ−d (n) to reduce the search space for run-maximal strings. However, as we mentioned

above, Lemma 2.10 specifies the property that the difference of any two consecutive

values along a row is bound by 2 is not applicable for the (d, n − d)-table of ρd(n),

thus the structure of double square entailed in Section 4.4.1 that further improves the

computational efficiency could not be used to compute ρd(n). The most up to date

values of ρd(n) are listed in [2].

101

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

7.1.2 Differences on Values

Consider string x = abbab, there is 1 distinct square and 1 run bb in x; for string

y = ababa, there are 2 distinct squares abab and baba, and there is only 1 run ababa;

for string z = aabaa, there is 1 distinct square aa, but there are 2 runs with aa

occurring twice in z. Thus, we have exhibited three scenarios such that for strings

with the same length and the number of symbols, some have the same number of

distinct squares and runs, and some have more distinct squares than runs, some have

more runs than distinct squares. Therefore, it is not easy to discern any relationship

between the values of σd(n) and ρd(n).

Based on experimental results, Kolpakov and Kucherov [27] suggested the maxi-

mum number of distinct squares is smaller than or equal than the maximum number

of runs for a given length. Our current computational results on σd(n) and the ρd(n)

values obtained from [2] support this suggestion; that is, for every currently known

value, σd(n) ≤ ρd(n). Table B.3 in the Appendix shows a fragment of the (d, n− d)-

table with entries of ρd(n)− σd(n), and the values on the main diagonal of the table

are shown in gray. As we expected, the values on and under the main diagonal values

are 0, this is because σd(2d) = ρd(2d) = d for all currently known d’s and the values

under the main diagonal values are constant and equal to the main diagonal value

on the same column for both σd(n) and ρd(n) tables. Consider every descending di-

agonal above the main diagonal, (d, 2d + i)-diagonal for i ≥ 1; that is, the diagonal

contains the entries of ρd(2d + 1) − σd(2d + 1), the diagonal contains the entries of

ρd(2d+2)−σd(2d+2), etc., the values are either zero or greater than zero, and remain

constant along each diagonal except few exceptions which are caused by the singu-

larity. For the purpose of illustration, let us define singularity as a (d, n) pair such

that σd+1(n + 2)− σd(n) ≥ 2, or ρd+1(n + 2)− ρd(n) ≥ 2, respectively. As discussed

102

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

in Section 6.1.2, there are two instances where there exist an increase of 2 on the

descending diagonal; that is σ3(35) − σ2(33) = 2 and σ3(36) − σ2(34) = 2, therefore

(2, 33) and (2, 34) are singularities. For ρd(n), there are three singularities that have

been found so far: (2, 13), (2, 41), and (3, 42). Note that (3, 42) is inferred by the fact

that ρ4(44) ≥ ρ3(43) = 35 and ρ3(42) = 33, thus ρ4(44) − ρ3(42) ≥ 2. The values

that are not constant along the descending diagonals are highlighted in light gray in

Table B.3. These values correspond to the singularities we listed above except (2, 41)

and (3, 42) due to the limited space. Table B.4 lists the values of ρd(n) − σd(n) in a

(d, n − 2d)-table, where the descending diagonals of the (d, n − d)-table become the

columns and each column are constant except the singularities shown in light gray.

The complete (d, n− d)-table and (d, n− 2d)-table for ρd(n)− σd(n) with the up

to date values can be found in [10].

7.1.3 Strings Achieving Both Square- and Run-Maximality

In Section 7.1.2 we examined the differences of ρd(n) and σd(n). We provided examples

of strings with the same, more, or fewer distinct squares than runs. One may ask if

there exists a square-maximal string that is also a run-maximal string; in other words,

whether there exists a maximal string achieving both square- and run-maximality. It

turned out that there are such strings. The results for 2 ≤ d ≤ 10 and 2 ≤ n−d ≤ 10

are listed in Table 7.1, where 1 represents the existence of such a string for the

corresponding d and n, and 0 represents that no such string exists.

It is expected that the square-maximal strings and run-maximal strings for entries

on and under the main diagonal have the duality, since both σd(n) and ρd(n) hold the

property that the values on and under the main diagonal values are constant, and the

maximal (d, 2d)-strings are unique in the form of aabbcc · · · for the currently known

103

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

d’s. Let us consider the existence of such strings occurring on the descending diagonals

which are highlighted in Table 7.1, precisely when n = 2d+i where i = 1, 2, 3, 5. Table

7.2 is a fragment of the (d, n − d)-table for ρd(n) − σd(n), which was highlighted on

the same descending diagonals to shows that the dual maximal strings could either

have the same number of distinct squares and runs (where the entries are 0), or have

a different number of distinct squares and runs (where the entries are 1).

n− d
2 3 4 5 6 7 8 9 10

d

2 1 1 1 1 0 1 0 0 0

3 1 1 1 1 1 0 1 0 0

4 1 1 1 1 1 1 0 1 0

5 1 1 1 1 1 1 1 0 1

6 1 1 1 1 1 1 1 1 0

7 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

Table 7.1: Existence of strings achieving
both square- and run-maximality.

n− d
2 3 4 5 6 7 8 9 10

d

2 0 0 0 1 1 0 0 0 1

3 0 0 0 0 1 1 0 0 0

4 0 0 0 0 0 1 1 0 0

5 0 0 0 0 0 0 1 1 0

6 0 0 0 0 0 0 0 1 1

7 0 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0

Table 7.2: (d, n−d)-Table of ρd(n)−σd(n)
for 2 ≤ d ≤ 10 and 2 ≤ n− d ≤ 10.

Table 7.3 lists the strings that are both square-maximal and run-maximal for

d = 2, and n = 5, 6, 7, 9. The distinct squares and runs are listed for each string.

Most of them are equal for distinct squares and runs except a few instances where the

strings contained runs with tails, such as run aaa for (2, 5)-string aaabb and aabaaba

for (2, 9)-string aabaababb. In addition, the second occurrence of aa for (2, 7)-string

was counted for runs, but not for distinct squares since each type of square is only

considered once. The complete list of dual strings for square- and run-maximality for

2 ≤ d ≤ 10 and 2 ≤ n− d ≤ 10 can be found in [10].

104

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

d n Maximal String σd(n) ρd(n) Distinct Squares/Runs

2 5 aaabb 2 2 {aa/aaa, bb}
2 5 aabab 2 2 {aa, abab}
2 6 aababb 3 3 {aa, abab, bb}
2 7 aabaabb 3 4 {aa, aabaab, bb, ε/aa}
2 9 aabaababb 5 5 {aa, aabaab/aabaaba, abaaba, abab, bb}
2 9 aababbaba 5 5 {aa, babbab, abab, baba, bb}

Table 7.3: Dual square/run-maximal strings for d = 2, n = 5, 6, 7, 9.

7.2 Future Work

Deza and Franek [9] hypothesized an upper bound for σd(n) based on currently known

values. To refine the hypothesized upper bound and to examine the properties of σd(n)

function, more computational results are needed, thus the computational efficiency is

deemed to be improved.

Recall the underlying algorithm of the computational framework for computing

the number of distinct squares is a modified version of FJW (Chapter 5), which

is an implementation based on Crochemore’s repetition algorithm. The advantage

of Crochemore’s algorithm is that it relies on successive refinements of equivalence

classes, a process that can be naturally parallelized as the refinement of one class is

independent from the refinements of other classes. Franek and Jiang [17] proposed

a set of methodologies to parallelize the extended Crochemore’s algorithm, which

was developed by the same authors for computing runs [16] [18], under the shared

memory model. In comparison with the extension algorithm, FJW is a much improved

algorithm and with functionality extended to compute runs and distinct squares in

addition to maximal repetitions, nevertheless they are both based on the Crochemore’s

partitioning algorithm, thus the core of them are essentially the same except a few

implementation details. Therefore, for the future work it is important to design and

implement a parallel version of FJW. This will not only help use the computational

105

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

framework of this thesis to extend the (d, n−d)-table to previously intractable values,

but would also be valuable as a standalone program.

In addition, the s-covered strings generation module of the computational frame-

work also can be parallelized. According to Baker [1], the generation of r-covers for

large values were carried by seeding the serial program with different periods and pre-

fixes of the first square, and then run the set of serial programs simultaneously. For

our s-covered strings generation, instead of manually enumerate all possible periods

and prefixes, we can automate this process in a parallel program so that the master

processor automatically assign the computation load to each idle processors based

on a pre-defined work load divider. Note that besides the shared memory model,

the parallelization of both the s-cover generation and the underlying FJW can be

implemented under a distributed memory parallel model. When designing algorithm

under these two models, different issues should be considered. The shared memory

model poses the problems of locking/unlocking the shared data structures to prevent

corruption of the data, while requiring very little overhead for communication. The

distributed memory model, on the other hand, does not have to worry about acciden-

tal corruption of the data, however the communication overhead may be significant.

When increasing the length of a string and number of distinct symbols, the number

of possible strings increases exponentially. Thus, one effective approach to improve the

efficiency of the computational framework is to further reduce the number of strings

it has to generate; that is, to reduce the size of the search space for square-maximal

strings. In Section 4.4.1 we introduced a special structure referred to as double square

that can be applied for the computation of σd(n), where σ−d (n) = σd(n− 1) + 1. This

fixed-form structure dramatically reduces the search space for the square-maximal

strings of σd(n). On the other hand, there are no special properties that can be

applied to σd(n) in general when σ−d (n) = σd(n − 1), thus all the dense s-covered

106

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

strings have to be generated. To illustrate the difference, the computation time for

σ2(58) = 44 was over 58 hours since σ−2 (58) = σ2(57) = 44; and the computation time

for σ2(59) = 45 was under 7 minutes since the heuristic search found a lower bound

of σ−2 (59) = σ2(58) + 1 = 45. In other words, whenever there is a potential tie along

a row in the (d, n− d)-table, the computation time increases significantly. Therefore,

we hope to find more structural insight into the case of ties and thus to conquer the

bottleneck of the computation.

As discussed in Section 4.3.3, the square-maximal strings for some entries exhibit

an interesting property of having common prefixes; that is, by appending one ex-

tra character to a square-maximal string, it forms a string for the next length with

one more square and thus becoming a suitable lower bound for the next length (Ta-

ble 4.4, 4.5). This observation indicates to us that certain amount of computation

in generating the s-covered strings could be redundant as the length increases since

their square-maximal strings have similar structure. Therefore, we hope to design

and develop a mechanism to recursively store the previously generated s-covers in-

cluding their density information, and when the length increases, only the necessary

extension to the stored s-covers are generated and stored for the next length. This

way, tremendous amount of work could be saved in the process of s-covered strings

generation.

While we have to make efforts to improve the efficiency of the computational

framewrok to obtain more values of σd(n), we should also continue the investigation

of the structure of the square-maximal strings as discussed in Chapter 3. To further

examine the structure of the first counterexample, if there is one, we could either

confirm that σd(n) ≤ n− d for larger values of d and n by estimating the singletons;

or to prove the uniqueness of the maximal strings on the main diagonal.

107

Appendix A

Tables of σd(n)

A.1 (d, n− d)-Table

A.2 (d, n− 2d)-Table

108

P
h
.D

.
T

h
esis

-
M

ei
J
ian

g
M

cM
aster

-
C

om
p
u
tin

g
an

d
S
oftw

are

n− d
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

d

2 2 2 3 3 4 5 6 7 7 8 9 10 11 12 12 13 13 14 15 16 17 18 19 20 20 21 22 23 23 23 24 25 26 27
3 2 3 3 4 4 5 6 7 8 8 9 10 11 12 13 13 14 14 15 16 17 18 19 20 21 21 22 23 24 24 25 26 26 27
4 2 3 4 4 5 5 6 7 8 9 9 10 11 12 13 14 14 15 15 16 17 18 19 20 21 22 22 23 24 25 25 26 27
5 2 3 4 5 5 6 6 7 8 9 10 10 11 12 13 14 15 15 16 16 17 18 19 20 21 22 23 23 24 25 26
6 2 3 4 5 6 6 7 7 8 9 10 11 11 12 13 14 15 16 16 17 17 18 19 20 21 22 23 24
7 2 3 4 5 6 7 7 8 8 9 10 11 12 12 13 14 15 16 17 17 18 18 19 20 21 22 23 24 25
8 2 3 4 5 6 7 8 8 9 9 10 11 12 13 13 14 15 16 17 18
9 2 3 4 5 6 7 8 9 9 10 10 11 12 13 14 14 15 16 17 18 19
10 2 3 4 5 6 7 8 9 10 10 11 11 12 13 14 15 15 16 17 18 19 20
11 2 3 4 5 6 7 8 9 10 11 11 12 12 13 14 15 16 16 17 18 19 20 21
12 2 3 4 5 6 7 8 9 10 11 12 12 13 13 14 15 16 17
13 2 3 4 5 6 7 8 9 10 11 12 13 13 14 14 15 16 17 18
14 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 15 16 17 18 19
15 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 16 17 18 19 20
16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 17 18 19
17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 18
18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19
19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 20
20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20
21 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Table A.1: (d, n− d)-Table with larger d and n.

109

P
h
.D

.
T

h
esis

-
M

ei
J
ian

g
M

cM
aster

-
C

om
p
u
tin

g
an

d
S
oftw

are

n− 2d
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

d

2 2 2 3 3 4 5 6 7 7 8 9 10 11 12 12 13 13 14 15 16 17 18 19 20 20 21 22 23 23 23 24 25 26 27
3 3 3 4 4 5 6 7 8 8 9 10 11 12 13 13 14 14 15 16 17 18 19 20 21 21 22 23 24 24 25 26 26 27 28
4 4 4 5 5 6 7 8 9 9 10 11 12 13 14 14 15 15 16 17 18 19 20 21 22 22 23 24 25 25 26 27
5 5 5 6 6 7 8 9 10 10 11 12 13 14 15 15 16 16 17 18 19 20 21 22 23 23 24 25 26
6 6 6 7 7 8 9 10 11 11 12 13 14 15 16 16 17 17 18 19 20 21 22 23 24
7 7 7 8 8 9 10 11 12 12 13 14 15 16 17 17 18 18 19 20 21 22 23 24 25
8 8 8 9 9 10 11 12 13 13 14 15 16 17 18
9 9 9 10 10 11 12 13 14 14 15 16 17 18 19
10 10 10 11 11 12 13 14 15 15 16 17 18 19 20
11 11 11 12 12 13 14 15 16 16 17 18 19 20 21
12 12 12 13 13 14 15 16 17
13 13 13 14 14 15 16 17 18
14 14 14 15 15 16 17 18 19
15 15 15 16 16 17 18 19 20
16 16 16 17 17 18 19
17 17 17 18 18
18 18 18 19
19 19 19 20
20 20 20
21 21
22 22
23 23
24 24

Table A.2: (d, n− 2d)-Table with larger d and n.

110

Appendix B

Tables of ρd(n)− σd(n)

B.1 (d, n− d)-Table

B.2 (d, n− 2d)-Table

111

P
h
.D

.
T

h
esis

-
M

ei
J
ian

g
M

cM
aster

-
C

om
p
u
tin

g
an

d
S
oftw

are

n− d
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

d

2 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 2 1 1 1 1 1 1 1 2 2 2 2 3 4 3 3 3 3
3 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 2 1 1 1 1 1 1 1 2 2 2 2 3 3 2 3 3
4 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 2 1 1 1 1 1 1 1 2 2 2 2 3 3 2
5 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 2 1 1 1 1 1 1 1 2
6 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 2 1 1 1
7 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 2
8 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0
10 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1
11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.3: (d, n− d)-Table of ρd(n)− σd(n).

112

P
h
.D

.
T

h
esis

-
M

ei
J
ian

g
M

cM
aster

-
C

om
p
u
tin

g
an

d
S
oftw

are

n− 2d
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

d

2 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 2 1 1 1 1 1 1 1 2 2 2 2 3 4 3 3 3 3
3 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 2 1 1 1 1 1 1 1 2 2 2 2 3 3 2 3 3 3
4 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 2 1 1 1 1 1 1 1 2 2 2 2 3 3 2
5 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 2 1 1 1 1 1 1 1 2
6 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 2 1 1 1
7 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 2
8 0 0 0 1 1 0 0 0 1 1 1 0 0 0
9 0 0 0 1 1 0 0 0 1 1 1 0 0
10 0 0 0 1 1 0 0 0 1 1
11 0 0 0 1 1 0
12 0 0 0 1 1
13 0 0 0
14 0 0

Table B.4: (d, n− 2d)-Table of ρd(n)− σd(n).

113

Bibliography

[1] A. Baker. Computational and structural approaches to periodicities in strings.

Ph.D. Thesis, Department of Computing and Software, McMaster University,

Ontario, Canada, December 2012.

http://optlab.mcmaster.ca//component/option,com_docman/task,doc_

details/gid,174/Itemid,92/.

[2] A. Baker, A. Deza, and F. Franek. Run-maximal strings.

http://optlab.mcmaster.ca/~bakerar2/research/runmax/index.html.

[3] A. Baker, A. Deza, and F. Franek. On the structure of run-maximal strings.

Journal of Discrete Algorithms, 10:10–14, 2012.

[4] A. Baker, A. Deza, and F. Franek. A parameterized formulation for the max-

imum number of runs problem. In J. Holub, B. W. Watson, and J. Z̆d’árek,

editors, Festschrift for Bor̆ivoj Melichar, pages 102–117. Czech Technical Uni-

versity, Prague, Czech Republic, 2012.

[5] A. Baker, A. Deza, and F. Franek. A computational framework for determining

run-maximal strings. Journal of Discrete Algorithms, 20:43–50, 2013.

[6] M. Crochemore. An optimal algorithm for computing the repetitions in a word.

Information Processing Letters, 12(5):244–250, 1981.

114

http://optlab.mcmaster.ca//component/option,com_docman/task,doc_details/gid,174/Itemid,92/
http://optlab.mcmaster.ca//component/option,com_docman/task,doc_details/gid,174/Itemid,92/
http://optlab.mcmaster.ca/~bakerar2/research/runmax/index.html

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

[7] M. Crochemore, L. Ilie, and L. Tinta. The “runs” conjecture.

http://www.csd.uwo.ca/faculty/ilie/runs.html.

[8] G. B. Dantzig. Linear programming and extensions. Princeton University Press,

1998.

[9] A. Deza and F. Franek. A d-step approach to the maximum number of distinct

squares and runs in strings. Discrete Applied Mathematics, 163:268–274, 2014.

[10] A. Deza, F. Franek, and M. Jiang. Square-maximal strings.

http://optlab.mcmaster.ca/~jiangm5/research/square.html.

[11] A. Deza, F. Franek, and M. Jiang. A d-step approach for distinct squares in

strings. In R. Giancarlo and G. Manzini, editors, Proceedings of the 22nd Annual

Symposium on Combinatorial Pattern Matching - CPM 2011, volume 6661 of

Lecture Notes in Computer Science, pages 77–89. Springer, 2011.

[12] A. Deza, F. Franek, and M. Jiang. A computational framework for determining

square-maximal strings. In J. Holub and J. Z̆d’árek, editors, Proceedings of the

Prague Stringology Conference 2012, pages 111–119. Czech Technical University,

Prague, Czech Republic, 2012.

[13] A. Deza, F. Franek, and A. Thierry. How many double squares can a string

contain? AdvOL-Report 2013/1, Department of Computing and Software, Mc-

Master University, Ontario, Canada, 2013.

[14] A. S. Fraenkel and J. Simpson. How many squares can a string contain? Journal

of Combinatorial Theory, Series A, 82(1):112–120, 1998.

[15] F. Franek and J. Holub. A different proof of Crochemore-Ilie lemma concerning

microruns. In J. Chan, J. W. Daykin, and M. S. Rahman, editors, London

115

http://www.csd.uwo.ca/faculty/ilie/runs.html
http://optlab.mcmaster.ca/~jiangm5/research/square.html

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

Algorithmics 2008: Theory and Practice, pages 1–9. King’s College, London,

United Kingdom, 2009.

[16] F. Franek and M. Jiang. Crochemore’s repetitions algorithm revisited - comput-

ing runs. In J. Holub and J. Z̆d’árek, editors, Proceedings of the Prague Stringol-

ogy Conference 2009, pages 214–224. Czech Technical University, Prague, Czech

Republic, 2009.

[17] F. Franek and M. Jiang. A parallel approach to computing runs in a string.

AdvOL-Report 2010/5, Department of Computing and Software, McMaster Uni-

versity, Ontario, Canada, 2010.

[18] F. Franek and M. Jiang. Crochemore’s repetitions algorithm revisited: Comput-

ing runs. International Journal of Foundations of Computer Science, 23(2):389–

401, 2012.

[19] F. Franek, M. Jiang, and C.-C. Weng. An improved version of the runs algo-

rithm based on Crochemore’s partitioning algorithm. In J. Holub and J. Z̆d’árek,

editors, Stringology, pages 98–105. Czech Technical University, Prague, Czech

Republic, 2011.

[20] F. Franek, W. F. Smyth, and X. Xiao. A note on Crochemore’s repetitions algo-

rithm - a fast space-efficient approach. Nordic Journal of Computing, 10(1):21–28,

2003.

[21] L. Ilie. A simple proof that a word of length n has at most 2n distinct squares.

Journal of Combinatorial Theory, Series A, 112(1):163–164, 2005.

[22] L. Ilie. A note on the number of squares in a word. Theoretical Computer Science,

380(3):373–376, 2007.

116

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

[23] C. S. Iliopoulos, D. Moore, and W. F. Smyth. A characterization of the squares

in a fibonacci string. Theoretical Computer Science, 172(1-2):281–291, 1997.

[24] V. Klee and D. W. Walkup. The d-step conjecture for polyhedra of dimension

d < 6. Acta Mathematica, 117(1):53–78, 1967.

[25] D. E. Knuth, J. H. Morris(Jr.), and V. R. Pratt. Fast pattern matching in strings.

SIAM Journal on Computing, 6(2):323–350, 1977.

[26] R. M. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in

linear time. In Proceedings of the 1999 Symposium on Foundations of Computer

Science, pages 596–604. IEEE Computer Society, 1999.

[27] R. M. Kolpakov and G. Kucherov. On maximal repetitions in words. In

G. Ciobanu and G. Păun, editors, Proceedings of the 12th International Sym-

posium on Fundamentals of Computation Theory, volume 1684 of Lecture Notes

in Computer Science, pages 374–385. Springer, 1999.

[28] M. Kubica, J. Radoszewski, W. Rytter, and T. Waleń. On the maximum number

of cubic subwords in a word. European Journal of Combinatorics, 34(1):27–37,

2013.

[29] M. J. J. Liu. Combinatorial optimization approaches to discrete problems.

Ph.D. Thesis, Department of Computing and Software, McMaster University,

Ontario, Canada, September 2013.

http://optlab.mcmaster.ca//component/option,com_docman/task,doc_

details/gid,178/Itemid,92/.

[30] M. G. Main. Detecting leftmost maximal periodicities. Discrete Applied Mathe-

matics, 25(1-2):145–153, 1989.

117

http://optlab.mcmaster.ca//component/option,com_docman/task,doc_details/gid,178/Itemid,92/
http://optlab.mcmaster.ca//component/option,com_docman/task,doc_details/gid,178/Itemid,92/

Ph.D. Thesis - Mei Jiang McMaster - Computing and Software

[31] W. Matsubara, K. Kusano, A. Ishino, H. Bannai, and A. Shinohara. Lower

bounds for the maximum number of runs in a string.

http://www.shino.ecei.tohoku.ac.jp/runs/.

[32] F. Santos. A counterexample to the Hirsch conjecture. Annals of Mathematics,

176(1):383–412, 2012.

[33] A. Thue. Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr., I. Mat.-Nat.

Kl., Christiania, 7:1–22, 1906.

118

http://www.shino.ecei.tohoku.ac.jp/runs/

	Abstract
	Acknowledgements
	List of Abbreviations and Symbols
	Introduction
	Preliminaries
	String
	Repeat
	Repetition
	Run

	Background
	Thesis Outline
	Notations

	A d-Step Approach
	Hirsch Conjecture
	Auxiliary Lemmas
	(d,n-d)-Table
	Properties of (d,n-d)-Table
	[s]d(n) Conjecture

	Structure of Square-Maximal Strings
	Square-Maximal Strings with [s]d(2d) = [s]d(2d+1)
	Square-Maximal Strings with [s]d(2d) > d
	Auxiliary Lemma
	Pair
	Triple
	Singletons Estimation

	Additional Combinatorial Property Equivalent with the Conjectured Upper Bound

	Computational Approach
	Dense s-Covered Strings
	The Notion of s-Cover
	Core Vector
	Dense Strings
	s-Covered Strings

	Generating s-Covers
	Algorithm
	Conflict Check
	Primitiveness Check
	No Intermediate Square Check
	Density Check
	Parity Condition

	Lower Bound Determination
	Lower Bound [s-]d(n)
	Lower Bound [s-]d(2d)
	Heuristic Search for [s-]2(n)

	Using Upper Bound to Simplify Computation
	Double Square
	Algorithm

	Computing Periodicity
	Crochemore's Repetition Algorithm
	FJW Algorithm
	Data Structures
	Gap Function

	Extend FJW to Produce k-Vector and p-Vector
	k-Vector
	p-Vector
	Data Structures

	Computational Results
	Values in (d,n-d)-Table
	Three Consecutive Equal Values
	Increasing on Descending Diagonals

	Current Bound for [s]d(n)

	Conclusion
	Relation to [r]d(n)
	Similarities and Differences
	Differences on Values
	Strings Achieving Both Square- and Run-Maximality

	Future Work

	Tables of [s]d(n)
	(d,n-d)-Table
	(d,n-2d)-Table

	Tables of [r]d(n)-[s]d(n)
	(d,n-d)-Table
	(d,n-2d)-Table

