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Abstract

In this thesis we present a procedure by which synthetic photometry of a

hydrodynamic model of star or star-like object can be calculated in a regime

where the photosphere is not radially resolved. In order to properly model the

unresolved photosphere, we present a method where pressure and density are

integrated outward from the outermost resolved radius of the star and then

interpolated in temperature-surface gravity space between a set of MARCS

(Gustafsson et al., 2008) stellar atmosphere models. These interpolations are

accurate to within 10% of expected temperature values and are determined by

minimizing the difference between the integrated pressure, density and surface

gravity and that of the atmosphere model. Using the Monte Carlo Radiative

Transfer code radmc3d(Dullemond, 2012), we produce blackbody spectra of

stars and photometric light curves of equal and unequal mass detached bina-

ries and a contact binary. Stellar blackbody spectra are accurate to better

than 1%. Resultant light curves have less scatter than existing methods, such

as shellspec(Budaj & Richards, 2004) and show the expected morphology.

Our method allows for imaging directly from hydrodynamic simulations, with

minimal user set-up. This procedure is designed with the intent of producing

simulated photometry of stellar merger models.
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Chapter 1

Introduction

Most1 stars appear as single, unresolved points of light in nearly all obser-

vations. The details of their structure and evolution are revealed to us through

careful study of their emitted light. Spectroscopy, the analysis of light emitted

at different wavelengths, can reveal composition as well as many other prop-

erties, and can be used to probe the surface of a star which is thousands of

light years away (e.g., see Abazajian et al. (2009)). Spectroscopy is expensive

and time-consuming, requires a signal to noise ratio of 100 or higher to ob-

tain certainty within 1%, as well as a high resolving power R. R is defined

as λ
δλ

where λ is the observing wavelength and δλ is the smallest wavelength

difference the instrument can distinguish. A less time-intensive, but less de-

tailed method is called photometry. Photometry simply collects photons in

a well-defined wavelength range, called a bandpass, and is less time consum-

ing than spectroscopy. These bandpasses are also called Photometric colours.

Photometric colours can be used to compare the total flux emitted in differ-

ent portions of the electromagnetic spectrum. Since stars mostly emit light

like classical blackbodies, they will be inherently brighter in certain regions of

1 The notable exclusion is the Sun
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the electromagnetic spectrum according to a function that depends mainly on

their surface temperature. However, stars are only approximately blackbodies.

Photometry and spectroscopy have numerous applications in astronomy

from probing the interior of stars via astroseismology (Gilliland et al., 2010), to

exploring the expansion of the universe (Riess et al., 1998; Spergel et al., 2003).

These methods reveal that a considerable fraction, and even a majority are in

fact, multiple systems. Around 50% (Duquennoy & Mayor, 1991; Raghavan

et al., 2010) of stars that we see in the sky are not actually single stars, but

multiple systems of two, three, four or even more stars which are all bound

gravitationally.

The simplest way to determine if a star is single or not is to observe it

photometrically, over a long period of time. However, this observation will

vastly underestimate the number of binary systems, as it will only detect

systems with orbital planes perpendicular to the plane of the sky. Binary

stars orbit one another with a well defined period which comes from Newton’s

version of Kepler’s Third Law

P 2 =
4π2

G(M1 +M2)
a3. (1.1)

Here P is the period of the orbit of two stars with masses M1 and M2

with a semi-major axis a and G is Newton’s constant of universal gravitation

6.67384 × 10−11 m3 kg−1 s−2. Kepler’s first law tells us that celestial orbits

take the form of ellipses. The semi-major axis is the analogue to the radius

of a circle, but when measured on the longest axis of the ellipse. If the axis

of the orbit is approximately perpendicular to the plane of the sky, the stars

2
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will undergo mutual eclipses, and so long-term monitoring of the orbit will

produce a light curve with periodic dips, which reveal the physical size and

effective temperature of the stars. Unfortunately, this method is limited be-

cause eclipses are required, so only a small fraction of the inclination parameter

space is amenable to binary detections via photometric detection.

A more general method is based on spectroscopic techniques. Since stars

are not perfect blackbodies, but instead have spectral lines, and considering

that binary stars orbit a common centre of mass, we can observe Doppler shifts

as the stars move towards or away from us. This motion will, in general, have

a radial and a tangential component, unless the plane of the orbit is parallel

to the plane of the sky. In all other cases, the spectral lines of the stars will

be shifted, with the shift depending on the radial velocity, which is a periodic

function of the orbital phase. A radial velocity measurement produces a signal

much like the one shown in Figure 1.1 where the semi-amplitude K is given by

K1 =

(
2πG

P

) 1
3

qM
1
3

sini√
1− e2

(1.2)

which is the radial velocity equation. Here M is the total mass of the binary

system, q is the mass ratio M1

M2
, P is the orbital period and i and e are the orbital

inclination and eccentricity, respectively. In addition to this signal, since the

radial velocity method is inherently spectroscopic, we also have access to all

the stellar attributes normally obtained via spectroscopy, in particular surface

gravity and effective temperature, of one or both of the companions, depending

on the mass ratio q. In the case of approximately equal-mass systems with

comparable luminosities, two sets of spectral lines may be visible.

3
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[htb]

Figure 1.1: An illustration of how the period P and semi-amplitude K can be
determined from radial velocity data. Image Credit: Planetary Systems and
the Origins of Life, Cambridge University Press, 2007

With the results from photometric and spectroscopic surveys of the sky,

we can determine some statistics and trends of binary stars. Raghavan et al.

(2010) reports, for stars like the sun:

1. More massive stars have a larger tendency to be binary.

2. The orbital period distribution follows a roughly Gaussian distribution

with a peak at P' 293 years and a standard deviation σP ' 190 days.

3. The period-eccentricity distribution shows that orbits are circularized

over the age of the galaxy for periods less than 12 days. For larger

periods, the distribution is roughly flat.

4. The mass ratio distribution shows a preference for equal mass pairs,

particularly in systems with small orbital periods.

While the majority of binary systems have large periods, in the realm

of many years and even several centuries, there is a small population with

4
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periods of a handful of days and smaller. Through equation 1.1 we can see

that these systems have very small semi-major axes, making the components

of these systems are so close to one another that differential tidal forces become

increasingly important. Because of this, as the orbital periods become very

short, around 3 days or less, the stars can actually begin to distort from

their ordinary spherical states into a “tear drop” shape, given by the Roche

potential (see Kopal (1959)). If the periods get shorter still, the tear drop

shapes can actually make contact with one another, and the two stars become

one extended object in hydrostatic equilibrium. The physics governing contact

binary formation and subsequent evolution is poorly understood, making these

objects rich for further study. One thing, however, is certain: the end state of

their evolution is a merger event (Gazeas & Stepien, 2008).

Merger events are rare, and until recently, none had been observed. This

all changed with the outburst of V1309 Scorpii in 2008. Nova Scorpii (Sco)

2008 was reported by Nakano et al. (2008) as a 9.5-10 magnitude outburst with

two previous non-detections at limiting I band magnitudes of 12.8 and 12 on

the 20th and 21st of August 2008. Outbursts of this type are called red novae,

which is a type of stellar explosion. Spectra were taken September 3rd, 4th and

5th, revealing a nova with a few emission lines, but mostly narrow absorption

lines which did not return to its initial brightness for a considerable time, nearly

a year, after the outburst. Near-infrared spectroscopy revealed a cool (M type)

giant with molecular absorption bands due to from CO and H2O, with some

TiO and VO. Luckily, this object happened to lie in the monitoring fields of

the Optical Gravitational Lensing Experiment (OGLE) project. OGLE had

been collecting data on V1309 Sco continuously with over 2000 observations

5
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in the Cousins I band, centred at 786.5 nm with a width of approximately 100

nm. Observations began in August 2001 and excluding periodic conjunctions

with the sun, continued until late 2010 (Tylenda et al., 2010). Upon analysis

of the photometry, a light curve, shown in Figure 1, revealed that this outburst

was in fact the result of a binary merger of a contact binary. The scatter of

approximately 0.5 magnitudes in the light curve before the outburst is strictly

periodic with a period of 1.4 days. The period decreased exponentially, with

a least squares fit for the period given by

P = 1.4456exp

(
15.29

t− t0

)
(1.3)

where P is the period in days, and t is the observation date and t0 is the Julian

Date 2 455 233.5. Recent simulations by Nandez et al. (2013) reveals a likely

progenitor comprised of a 1.52 M� giant primary and a 0.16 M� companion.

The companion was either a main sequence star or the stripped core of a

giant, with either producing a V1309 Sco type analogue. However, the best

case progenitor is a synchronised binary with a main sequence companion.

The task of modelling a contact binary system from Zero Age Main Se-

quence through contact to merger is non-trivial because of the vast ranges

in time scales of the phenomena involved. For example, the orbital period

evolves over megayears, while the orbital period itself is no more than a few

days (Gazeas & Stepien, 2008; Tylenda et al., 2010; Stepien, 2011). In order to

produce synthetic photometry events such as the V1309 Sco merger, this mod-

elling must be done precisely, and also requires an understanding of how the

object would appear to a distant observer. This thesis tackles a single aspect

of this modelling, namely determining how to accurately produce simulated

6



M.Sc. Thesis –––– Kevin A. Sooley –––– McMaster University - Physics and Astronomy –––– 2014

Figure 1.2: I magnitude of V1309 Sco as a function of time, from OGLE III
and VI. Reprinted with permission from (Tylenda et al., 2010)
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photometry of a hydrodynamic model of a contact binary as it evolves through

contact. Previous work in the field focused on modelling photometry and spec-

troscopy of static systems such as binary stars or quasi-static systems such as

binary stars with disks, jets and spots. For more information, the reader is

referred to Budaj & Richards (2004) and the references located in their intro-

duction. Raw imaging of purely hydrodynamic simulations is currently a hot

topic in the field of radiative transfer, with several codes in development for

various aspects of the problem (See Stamatellos & Whitworth (2005),Forgan

& Rice (2010) and Robitaille (2011)). However, these codes have a distinct

tendency to focus on structures larger than the scale of binary stars (e.g, star

forming regions to quasars) where there is a considerable amount of optically-

thin material. Such simulations tend to concern themselves mainly with the

interaction of light and astronomical dust, whose interactions are consider-

ably simpler than that of light and gas. The difficulty in radiative transfer

in the stellar regime comes from the vast range of the state variables such

a temperature, pressure and density. To circumvent this difficulty, we take

advantage of the fact that each star is optically-thin in a very small radial

region and is in thermodynamic equilibrium inside of that region. The sec-

ond chapter of this thesis will explore the relevant theory behind the methods

used to determine both the intensity of light leaving the surface and the star

and the details of this outer region of the star, called the atmosphere, where

this light escapes using physically motivated, reliable models of stellar atmo-

spheres. These methods are then applied to several test systems to determine

their validity in this unusual regime. These test systems are simple and hier-

archical, with the success of each test depending on the results of the previous

8
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one. The success of these tests indicates that this method is likely applicable

for use in producing simulated photometry of dynamically evolving systems

in this regime. Future work, conclusions, caveats and cautionary tales for the

future of this project will be outlined and discussed in Chapter 4.
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Chapter 2

Methods

In this chapter I will describe the main methods used in the course of this

thesis. There are two separate parts which must work together in order to

obtain simulated photometry from hydrodynamic models of stellar mergers.

Firstly, we have to be able to understand where the fluid in the stars go as

they merge. This can be accomplished by hydrodynamic modelling. While

the hydrodynamics tell us where the fluid is, it gives us no direct information

about the light emitted by the object. In order to make synthetic images

and photometry, a radiative transfer algorithm must be employed. Radiative

transfer comprises a set of tools to model how light travels interacts with

matter as it travels through it. Monte Carlo radiative transfer has been chosen

for this purpose, and will be outlined in the first section of this chapter. As

an input, any radiative transfer scheme will require density, temperature and

opacity information. The density and temperature are primarily determined

by the hydrodynamic modelling, and we require a source of relevant opacities.

I will outline the model stellar atmospheres used to determine these opacities

in the second section of this chapter.

10
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In order to produce hydrodynamic models, an algorithm for solving the

equations of hydrodynamics, for example Smoothed Particle Hydrodynamics

(SPH), can be employed. SPH was developed independently by Gingold &

Monaghan (1977) and Lucy (1977). In SPH, the fluid is replaced with a set

of particles, each assigned a density, pressure and internal energy. To retain

the continuum properties of fluid mechanics, the particles are smoothed over

a finite distance, to allow for the calculation of a continuous pressure and

density from a discrete set of particles. These smoothing lengths are large

enough that they the sphere of influence of a particle overlaps with a number

of its neighbours. SPH can be constructed in such a way that it inherently

conserves energy, which makes it a valuable tool in modelling binary stars,

as we require the orbital energy to be stable over a large number of orbits.

Reviews of the key algorithms and astrophysical applications can be found in

Springel (2010) and Price (2012).

2.1 Monte Carlo Radiative Transfer

Smoothed particle hydrodynamics codes tell us where the mass of the fluid

is, but to compare with astrophysical observations we need to know where the

light is coming from. This requires the use of a radiative transfer algorithm, of

which there are two main classes. The Flux-Limited Diffusion algorithms are

mainly effective in optically-thick regions, where the radiation propagation

can be treated as a diffusive process (See Boss (2008) for a more detailed

description). This is an efficient method for determining the radiation field

in the interior of an optically-thick object, but fails as the object becomes

11
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optically-thin. In optically-thin regions, a scheme called Monte Carlo Ray

Tracing (MCRT) is more efficient, as the modelled photons will only undergo

∼1 interaction before escaping from the medium. For our purposes we will

use the MCRT radiative transfer algorithm, via the radmc3d code, which is

based on a ray tracing method, where rays are cast along grid cells, with the

length of these rays being randomly distributed (see Dullemond (2012) for

details). Section 2.1.1 will discuss the operation of this code in more detail.

This choice is motivated by the fact that the entirety of the information which

we receive from a star is emitted in a small, optically-thin, radial region called

the photosphere, which will be discussed in the second section of this chapter.

In MCRT photons are created, travel some distance, and something hap-

pens to them (either scattering or absorption). This process repeats until

either the photon is determined to be trapped forever or escapes from the

medium. Artificial images are created in much the same way a real image is

created on a CCD chip in a telescope. To take an image, we need to define an

image plane at some angle and location relative to the source we’re attempt-

ing to image. This image plane is divided into pixels, and only photons whose

trajectories after escaping the medium cross the image plane will be counted

in the image.

To talk more about this, we’ll need to introduce concepts from radiation

transfer, namely intensities, cross sections, optical depths and fluxes.

2.1.1 Basic Machinery The photons carry a total energy Eν which is split

equally among them, so each packet carries energy dEν . The photons also

12
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have a direction of travel and are related to the specific intensity Iν , defined as

the radiant energy dEν crossing a surface area dA at an angle θ to the surface

normal within a solid angle dΩ in a frequency range dν in time dt, or, more

succinctly following Rybicki & Lightman (1986),

Iν =
dEν

cos θ dA dt dν dΩ
(2.1)

which has units of ergs cm−2 s−1 Hz−1 sr−1. Flux, defined as

Fν =

∫
Iν cos θ dΩ (2.2)

is the rate of energy flow across an area dA per unit time per unit frequency

with units ergs cm−2 s−1 Hz−1. Photon interactions are inherently probabilis-

tic, with interactions determined by scattering and absorption cross sections.

Cross sections, σ are related to the difference between incoming and outgoing

energies at a point, and are defined by the energy removed from the system

per second per frequency per solid angle, so

∆Et,ν = Iνσ (2.3)

where ∆Et,ν is the energy removed per second per frequency.

The equation of radiative transfer is

dIν
d`

= −Iνκν + jν (2.4)

where κν and jν are the opacity and emissivity of the medium respectively. If

we define the optical depth τν along a line of sight L as

τν =

∫
L

ρκνdx (2.5)

13
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we can rewrite equation 2.4 as

dIν
dτν

= −Iν + Sν (2.6)

where Sν = jν/κν is called the source function of the medium. Note that

the opacity κ is related to the cross section σ by the following

nσ = ρκ (2.7)

where ρ is the mass density of scatterers and n in the number density of

scatterers.

2.1.2 Interactions: Scattering and Absorption

A photon travelling through a medium can either be scattered or absorbed

and the probability of the former depends on the albedo, a, defined as

a =
nsσs

nsσs + naσa
(2.8)

where ns and na are the number densities of scatterers and absorbers with

interaction cross sections σs and σa respectively.

We can define the mean free path of a photon as

` =
1

ρκ
. (2.9)

And so, following Peraiah (2002), the probability of an interaction within an

infinitesimal length d` is

d`

`
= ρκd` (2.10)
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and the probability of no interaction follows;

1− d`

`
= 1− ρκd`. (2.11)

By defining a distance x as N segments of length dx, we can write the

probability of no interaction as

P (x) =
(

1− ρκx

N

)
·
(

1− ρκx

N

)
· · · =

(
1− ρκx

N

)N
(2.12)

which for large N can be rewritten as

P (x) = 1− ρκx = e−τ (2.13)

where τ is the optical depth1 and we have taken advantage of the Taylor

expansion of ex. So the complementary probability that an interaction does

occur is simply

P (τ) = 1− e−τ . (2.14)

From this distribution we sample τ , or equivalently L, the distance a photon

travels between interactions, such that

τ = −log(1− ξ) (2.15)

where ξ ∈ [0, 1] is a uniformly distributed random number. An interaction

is a photon absorption or scattering event, where the photon’s direction of

1 Note that the optical depth is just the number of photon mean free paths between the

source and the surface.(Carroll & Ostlie, 2006)
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travel changes. Assuming isotropic scattering, the distribution of scattering

angles is

P (µ, φ)dµdφ =
dµ

2

dφ

2π
(2.16)

where we sample random numbers ξi ∈ [0, 1] such that

µ = 2ξ1 − 1φ = 2πξ2 (2.17)

where µ and φ are the new angles of travel. Equation 2.15 is then sampled

for a new distance of travel. If the photon escapes the fluid, it is propagated

onwards until it is collected on an image plane. If not, Equation 2.17 is sampled

again, the photon is scattered or absorbed and the process repeats until it

escapes.

The Monte Carlo aspect of Monte Carlo radiative transfer comes in to

play when this process is iterated multiple times, generally in order to con-

duct a temperature calculation. In this case, photons are emitted and, when

absorbed, they deposit energy into their absorbing cells. This process is then

repeated until an equilibrium temperature is attained. However, this tem-

perature correction process is remarkably slow in a stellar regime, where cells

are very optically-thick, with optical depths much larger than 100. Since this

method is incredibly inefficient, we will take advantage of stellar atmosphere

models to more accurately determine surface temperatures. More details on

this determination can be found in Chapter 3.
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2.2 Stellar Atmospheres

A defining moment of undergraduate education in astronomy is the discov-

ery and understanding of the simplicity of the equations of stellar structure.

Probing the internal structure of a star with these equations, representing hy-

drostatic equilibrium, conservation of mass and an model of energy generation

is a beautiful exercise showing the power of simple models in understand com-

plex systems. The bulk of a star in well modelled by these questions, and it

is these equations can be solved numerically to determine the bulk interior

structure of stars of varying masses and evolutionary states. In this interior

region the density ρ, pressure P and temperature T vary smoothly and en-

ergy transfer is dominated either by convection or radiation, depending on the

temperature of the region. These equations can be solved numerically, to yield

full profiles of P , ρ and T from the centre to virtually the surface.

However, this model is not adequately detailed. The outer layer of the

sun, called the photosphere, is a region where the star transitions from the

optically-thick regime to the optically-thin regime and the temperature drops

dramatically. For example, for the M=0.7 M� model from YREC, this drop

occurs over a range of about 500 km (approximately 0.07% the stellar radius).

The temperature drops by approximately two orders of magnitude in this

range, and it is this region which sets the spectrum which we detect in our

telescopes. While this is a small region in both mass and radius, pressure has

a relatively large range, varying by several orders of magnitude.

Because this region varies from “mildly” optically-thick (τ >100, which is

enormously thick in most cases but optical depths in stars can easily reach
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106) to extremely optically-thin (τ ∼ 10−5) (Gustafsson et al., 2008) a proper

understanding of the photosphere requires detailed calculations of atomic tran-

sitions (see Kurucz (1995)), opacities (see Seaton et al. (1994)) and chemical

abundances as it is here that all detectable spectral lines are produced, and

the relatively homogeneous radiation field from the interior of the star is “fin-

gerprinted” by the atmosphere. Understanding this region is further muddied

by the loose terminology. Model atmospheres are actually model photospheres,

and in the photosphere hydrostatic equilibrium is reduced to

dP

dτ
=

g

κν
. (2.18)

In the interior of the star, it makes sense for the equations of stellar structure

to the written in terms of mass or radius, as those quantities change rather

dramatically. However, in the atmosphere, the enclosed mass is essentially

constant, and the radius changes by no more than a tenth of a percent. Because

of this, the only quantities that matter are g = GM/r2 and opacity. All the

complex physics of atoms and molecules in the outer layers of the star is taken

in to account in the calculation of the opacity, and accuracy here is crucial, as

it is this region from which all of the light from the star escapes.

Opacities are dependent on a number of factors. Opacity κν measures the

amount of light attenuated from a source per unit mass of material between

the observer and the source. Opacities in low mass main sequence stars are

due mainly to hydrogen scattering and metal lines (Gustafsson et al., 2008,

and references therein). Spectral lines are formed by bound-bound transi-

tions which are electronic transitions within an atom, when an electron jumps

from one level to another, absorbing or emitting a photon. The continuum
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opacity is produced mainly by hydrogen is due to two different processes. A

Bound-free transition or photoionization is the complete removal of an elec-

tron from an atom by an incident photon. Free-free absorption is a transition

which occurs when a charged particle scatters off a another nearby charged

particle and absorbs a photon in order to conserve energy and momentum.

Finally, electrons can scatter off one another producing a wavelength indepen-

dent opacity which dominates in high temperatures regions. Spectral lines are

not usually included in the determination of κν , with the notable exception

of an effect called line-blanketing (Gustafsson et al., 2008). The wavelength

dependent opacities are continuous and do not contain lines per se, becase

to include all atomic lines would be an incredible challenge, considering the

sheer number of transitions from heavier elements. These transitions are also

often very close to one another, such that their wavelength ranges overlap and

turn lines into bands. This is line-blanketing, which causes a large number of

line opacities to appear as a continuous opacity. So, taking advantage of this,

the MARCS atmospheres sample these opacities at regularly-spaced points in

frequency space to determine an approximate wavelength continuum opacity,

as described by Peytremann (1974) and Sneden et al. (1976). Each of these

pieces constitutes an entire field on its own, and so an accurate atmospheric

model for a star is an machine with many, many parts. Moreover, a detailed

understanding of the atmosphere region of a star is crucial to understanding

the spectrum from a star. The transition from optically-thin to optically-thick

occurs in this region, and the surface of a star is defined as the region where

τ = 2
3
, or a photon has e−2/3 or about 50% chance of escaping.
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One particular brand of model atmospheres is the Model Atmospheres

in Radiative and Convective Scheme or MARCS (Gustafsson et al., 2008).

MARCS atmospheres provide the user with a grid of models with temperatures

from 2500 to 8000 K, surface gravities between 103.5 and 105 in cgs units and

[Fe/H] ranging from 10−5 to 101. There are a total of 52,000 models available,

spanning the range of solar type stars with varying chemical abundances. Each

atmosphere consists of wavelength dependent opacities, approximate surface

fluxes and chemical abundance information (http://marcs.astro.uu.se/index.php).

Because the MARCS atmospheres include information about chemical abun-

dances, individual lines can be added on top of the continuum opacity, if the

user is interested in spectral calculations. For our purposes, and as a first step,

a continuum opacity is adequate. Any method that works with an continuum

opacity can easily be extended to include spectral lines.

A radiative transfer algorithm coupled with a physically-motivated model

for a wavelength dependent opacity are all we need to image hydrodynamic

simulations. The following chapter will outline a set of simple sanity checks to

examine the validity of this proposed method, as well as a method to determine

surface temperature a priori from the internal structure of the star.
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Chapter 3

Synthetic Photometry Workflow

In this chapter I will present the steps required to take an SPH simulation of

a stellar system and, using the Monte Carlo Radiative Transfer tool radmc3d,

produce either synthetic images or synthetic black-body spectra. With the

stellar atmosphere models from MARCS and the SPH stars from YREC, there

is still a piece missing. Because the stellar atmosphere models are ∼ 500 km

thick, the SPH stars cannot perfectly resolve the YREC stars. In order for

the SPH particles to behave like a fluid, each particle’s smoothing length must

overlap with the position of a user-defined number of nearby particles. To

achieve a smoothing length of less than 500 km in a star of radius 1 R�

would require hundreds of millions of particles, which is not computationally

tractable at this time. This limit causes the atmosphere to be unresolved, in

addition to a small radial region between the atmosphere and the SPH star

where mass is essentially constant, but pressure decreases dramatically with

density. It is the modelling of this region that will be outlined and justified in

the following sections.

Firstly, SPH simulations must be set up and evolved. Our SPH stars are

built up from YREC radial profiles of pressure and density. Each particle is
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initially assigned the same smoothing length h. In order to bring the sphere of

SPH fluid to hydrostatic equilibrium, the fluid is placed in a box and allowed

to relax. In order to properly settle into the gravity wells created by the SPH

fluid, the particles are allowed to move around and settle into an equilibrium

position. In order to avoid unphysical motions, such as a smaller particle flying

away or an unphysical back reaction, leading to oscillations, the particle veloci-

ties are damped such that they move, but no more than a few SPH smoothing

lengths. This relaxation also allows the particles to expand or contract, by

recalculating the smoothing lengths for each particle. This continues until the

fluid reaches hydrostatic equilibrium. Figure 3.1 shows the particles positions

in the x-y plane before and after a relaxation period of 20 tdyn =
√

R3
�

GM�
or

about 10 hours. The particles on the left hand side are initially spaced in a

non regular grid, and as they are allowed to relax, redistribute themselves to

have no preferred axis. For clarity, Figure 3.1 only shows every 10th particle

of approximately 350000.

When the stars are initially modelled in SPH, they have a very sharp radial

profile in ρ, and a completely flat profile in h. As the star relaxes, the h profile

adjusts to keep the number of neighbours approximately constant and ρ profile

spreads out in the surface region as the particles settle into equilibrium. The

deviation is very small, and has little influence over the simulation. The initial

and relaxed profiles are show in figure 3.2.

In order to set up a binary star, this relaxation must be done twice, sepa-

rately for each star. Close binaries experience a large tidal field, whose strength

drops off at 1/r3, and so very close binaries will be considerably distorted with
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Figure 3.1: A 0.7 M� star before (left) and after (right) the relaxation process.
The unrelaxed star has particles arranged in domains which all have a preferred
axis and is unphysical when compared to a real star. The relaxed star is much
more amorphous, and is a much better analogue to a real star.

large tidal bulges. In order to account for this distortion, the stars must be

relaxed in their respective tidal fields. The stars are again placed in an empty

box, this time at the intended orbital separation from one another. They’re

released, allowed to distort and then their centres of mass are shifted back to

their original positions. This repeats until the new hydrostatic equilibrium is

reached, but since binary stars are inherently rotating systems, it is required

that the effects of the Coriolis and centrifugal forces are taken in to account,

and they are part of the force balance with the tidal force, self gravity and fluid

pressure. Once the stars are relaxed, the true work in evolving the equations

of SPH can begin, and they are integrated forward in time, using one of the

Runge-Kutta (see Ziegel et al. (1987)) schemes. Ideally, an integration scheme

would be time symmetric such that the same equations can be used in reverse

to integrate the backwards in time. Integration schemes with this property

have the approximately the same error per step as non-symmetric integrators
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Figure 3.2: Smoothing length h and density ρ profiles of a 0.7 M� star before
an after the relaxation process. Relaxation has a relatively unimportant role
in the interior of the star, but the surface layers are much more dramatically
effected. The smoothing lengths of the exterior particles must readjust in order
to maintain a relatively constant neighbour number as all the particles settle
into the gravitation well of the star. In log space, the density is also smeared
out near the surface, but in real space this effect is not important, as these
density variations are very small.
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of the same order, but a smaller average error as errors tend to cancel out

instead of adding. For our SPH evolution we use the code described in Lajoie

& Sills (2010) which derives from the work of Bate (1995) which uses a second

order Runge-Kutta scheme to integrate the equations of motion.

When the simulation evolution is complete it is time to create synthetic

images, there are a number of preprocessing steps which must be completed.

The bulk of the work of this thesis was designing this preprocessing workflow

in order to allow for an automated calculation of synthetic photometry from

a series of SPH outputs. The automation is important and helpful, as some of

the preprocessing steps are reasonably time consuming.

radmc3d is a code which uses a grid, be it Cartesian, spherical or cylindri-

cal, and so the first preprocessing step in to convert the SPH dumps to a grid

format. In order to do this conversion, we take advantage of the visualization

and processing tool, SPLASH (Price, 2013). SPLASH has access to all the

variables from the SPH simulations, namely internal energy u, density ρ and

smoothing length h. To convert a SPH simulation to a grid format, SPLASH

sets down a box and discretizes it into I × J ×K cells, where I, J and K are

the number of cells in each the x, y and z directions, respectively. Knowing

the smoothing lengths, and assigning a smoothing kernel such as one of the

Schoenberg B-splines, we have full knowledge of the density field at any point,

based on the non-zero contributions from all the particles within 2 smoothing

lengths, for the Schoenberg M4 kernel or 3 for the M6 kernel. SPLASH aver-

ages the contributions within each cell and returned a discrete grid of density

and internal energy.
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The accuracy of the gridding process depends strongly on the accuracy

of the kernel. A higher-order kernel better approximates a Gaussian and so

the particles are more heavily-weighted centrally, and while the higher-order

Schoenberg B-splines extend further, their contributions are not as important.

An example of this is shown in Figures 3.3 and 3.4. Here the gridded density

estimate from the M4 kernel in red, shown in Figure 3.3 diverges dramatically

from the SPH density profile, shown in black, whereas the higher resolution

M6 kernel again in red in Figure 3.4 overlays its SPH counterpart perfectly.

These plots are in code units, where the code units for density, pressure and

internal energy are M�
R3
�

,
GM2

�
R4
�

and GM�
R�

respectively, where G = 6.67384 ×

10−11m3; kg−1; s−2 is Newton’s Gravitational Constant, R� = 695, 500km is

the solar radius and M� = 1.989× 1030kg is the mass of the sun.

The internal energy is used to calculate the temperature via the equipar-

tition theorem

U =
3

2
NkbT (3.1)

where U is the internal energy of a system of N particles with temperature T

and kB = 1.3806488 × 10−23 m2 kg s−2 K−1 is Boltzmann’s constant. If the

N particles have a mass m, N can be expressed as m/µmH , where µ is the

mean molecular weight of the fluid and mH = 1.67372 × 10−27kg is the mass

of a hydrogen atom. So the temperature is

T =
2

3

umhµ

kB
(3.2)

where u is U/m, the specific internal energy. At this point we have a sphere

with a density profile which agrees very well with the density profile of the

star, and a temperature profile which, as shown in Figure 3.5 well models the
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Figure 3.3: Radial pressure (top), density (middle), and internal energy (bot-
tom) profiles as interpolated by the M4 kernel to a thee dimensional Cartesian
grid with cells of side length 0.008 R�. The density grid diverges wildly from
the SPH model as it approaches the surface. Pressure and internal energy do
not suffer from this divergence.
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Figure 3.4: Radial pressure (top), density (middle), and internal energy (bot-
tom) profiles as interpolated by the M6 kernel to the same grid as Figure 3.3.
The higher-order kernel removes the edge divergence present in the lower order
interpolation.
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Figure 3.5: The radial temperature profile of a 0.7 solar mass SPH star shown
in black with its YREC generating conditions overlaid in red. The SPH star
successfully models the temperature profile from the center to very nearly the
surface, but cannot resolve the outer region where the temperature drops from
a few times 105 degrees Kelvin to the surface temperature, 4407 Kelvin in this
case.

interior of the star, but cannot begin to resolve the outer layer of the star

where the temperature drops by two orders of magnitude over (at most) a few

percent of the total stellar radius. As a consequence, the SPH star is smaller

than the YREC star by approximately the smoothing length and the “surface”

temperature is far, far too high, by approximately two orders of magnitude.

Interpolating the simulation to grid has no effect on this temperature profile.

Unfortunately, the grid cells for any workable resolution are four to five orders

of magnitude larger than the atmosphere region, which has a thickness of a

few tens of kilometres, so a compromise must be made, which will be discussed

in upcoming sections.
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3.1 Uniform Sphere Test

At this point, some basic functionality of the method must be verified.

Does the radiative transfer work as intended? Do we reproduce relatively

spherical objects when we interpolate to a Cartesian grid? In order to verify

both of these, a uniform sphere with a constant density of 10−9g/cm3 and a

radius of 0.2 solar radii is placed in a cubic box of side length 0.6 solar radii.

A sphere of uniform brightness should emit a flux Fν = πBν(T ) (Rybicki &

Lightman, 1986) where Bν(T ) is Planck’s radiation function for a blackbody

in terms of frequency ν, given by

Bν(T ) =
2hν3

c2

1

e
hν
kBT − 1

. (3.3)

where h = 6.626× 10−34 m2 kg s−1 is Planck’s constant, c = 2.99× 108 m/s is

the speed of light and kB is again Boltzmann’s constant. In order for a sphere

of uniform density to be uniformly bright, it must be optically-thick. As the

sphere becomes less and less optically-thick, it is no longer uniformly bright,

as the edge will become more transparent, since the line of sight through the

edge of a sphere is much smaller than through the centre. In order to test this,

I applied a single opacity globally, ray traced an image, and then increased

the opacity. The sphere starts out entirely optically-thin, and as the opacity

increases, it eventually becomes optically-thick and so is expected to become

uniformly bright.
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The intensity emergent from a surface at a fixed temperature T is (Rybicki

& Lightman, 1986)

Iν =

∫ τν

0

e−(τν−τ ′ν)Bν(T )dτ ′ν (3.4)

= (1− e−τν )Bν(T ) (3.5)

If that surface is a sphere, we know that from equation 2.2,

Fν =

∫ π

0

∫ 1

−1

(1− e−τν )Bν(T )cosθdθdφ (3.6)

where θ is the polar angle and φ is the azimuthal angle. To simplify further

analysis, we can set µ = cosθ, and dµ = sinθdθ.

For a perfect sphere of diameter D with a uniform density ρ, we expect

the optical depth τ to be a function of µ only. The symmetry of the sphere

removes any dependence on azimuthal angle, and if we consider the geometry

of the problem shown in Figure 3.6 we can see that for any line of sight from

the surface at point P has an optical depth of τ(µ) = τ0µ. Recall that optical

depth τ =
∫
κρdz, and so τ0, the optical depth along a diameter D, is simply

τ0 = κρD.

Keeping in mind the symmetry of the problem, and equation 3.6 can be

simplified to

Fν = 2πBν(T )

∫ 1

0

(1− e−κρDµ)µdµ. (3.7)

This equation can be integrated numerically, and yields a theoretical prediction

for the flux emergent from the surface of a uniform density sphere with a given

global opacity.
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Figure 3.6: Geometry of the uniformly bright sphere when calculating bright-
ness at point P.

Recall that this scenario was devised to test two phenomena. Primarily, we

have to ensure that the radiative transfer calculations produce the expected re-

sults. But secondly, there is an additional resolution issue with the conversion

from SPH to grid. It is important to know at what grid size does the radius of

the gridded density field best match the initial radius from the YREC stellar

model.

Results of the first part of this test are shown in Figure 3.8. In this figure

the curve is normalized by the its true surface area, to compare with 3.7, so

the flux plotted is

Fν = πBν

(
A

4πR2

)
(3.8)
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Figure 3.7: Results of uniform sphere simulations, showing convergence to
the analytic prediction. The red and black points lie directly on top of one
another, showing the convergence of the SPLASH interpolation to a grid with
increasing resolution.

where A is the surface area of the sphere and R is its distance from the image

plane.

In Figure 3.7, however, the intensities are all normalized by the actual

surface area of the SPH sphere which was used to create them. Here we can

see the dependence of grid resolution on flux output from the star. When

interpolated to grid at low resolution, the flux output can be nearly a factor

of 3 larger than what is expected, whereas higher resolutions approximate the

sphere much more accurately, to within 10% or so. Figure 3.7 shows three

resolutions, with 643, 1283 and 2563 cells giving cubic cells with side lengths

0.00937 R�, 0.00469 R� and 0.00234 R� respectively. The 1283 and 2563 cell

cases reproduce the sphere to better than 1% in area.
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Figure 3.8: When normalized to unity, the calculated intensity curve, shown in
red, very closely matches the theoretical curve, shown in black. The most im-
portant behaviour occurs as towards large κ, as the sphere becomes optically-
thick.
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Figure 3.9: Shown here is the uniform-density sphere, imaged with a globally-
applied opacity such that the central optical depth τ0 ∼ 0.2 and the entire
sphere is optically-thin. Limb-darkening effects can be seen along the edge,
with the sphere brightening toward the centre as expected.
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Figure 3.10: The uniform sphere, now with τ0 ∼ 1. The sphere is optically-
thick along the diameter, but other lines of sight are still optically-thin. Due
to this, we see a central region of maximal intensity, which falls off gradually
along the limbs, as expected.
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Figure 3.11: With τ0 ∼ 10, the sphere is now optically-thick along all lines
of sight. As expected, the brightness is uniform, with all pixels at the same
intensity.
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Figure 3.12: A projection of a 0.7 M� gridded SPH star shown in white.
The star is a good approximation to a sphere, with a circular projected area.
Overlaid in black in a circle of radius 0.6903 R�, which is the true radius of
the YREC stellar model which produced this star.

Snapshots of the sphere with three different opacities are shown in Figures

3.9,3.10 and 3.11. These snapshots have been chosen intentionally to show the

evolution from an optically-thin sphere to one which is optically-thick and so

uniformly bright. As the global opacity increases, the sphere becomes brighter

along each line of sight until it reaches a maximal brightness given by its

blackbody temperature of 5600 K. All cells are normalized to this brightness.

This region of maximal brightness grows radially until the entire sphere is

uniformly bright, as expected.
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3.2 Modelling Real Stars

The previous section represents a sanity check. Without the code behaving

as it should in these tests, it is impossible for any meaningful conclusions to be

made. However, in addition to simply behaving as expected when compared

to analytical results, we can begin to move forward. Stars are not uniformly

dense spheres, and contact binaries have departed entirely from sphericity.

Isolated stars have radial profiles of temperature which, at the centre, can

reach a few 107 degrees K or higher, which smoothly decrease to a few 103

K or even a few 104 K in some cases. The sun, for example, has a surface

temperature of approximately 5800 K, whereas the brightest star in the night

sky, Sirius, is 10, 000 K (Adelman, 2004). Because the blackbody function

increases monotonically with temperature, objects with higher temperatures

are brighter at all wavelengths. Stars are optically-thin only for a very small

percent of their radius, which sets the temperature that we see. In order

to match observations any hydrodynamical stellar model must additionally

be optically-thick for all rays leaving any cell which has a temperature higher

than the surface temperature. Four low-mass star models, with masses ranging

from 0.7 to 1.1 M� have been prepared to test this functionality. The models

should show a blackbody spectrum with a well-defined peak, between 4000

and 6000 K, depending on their mass. Stars of this mass were chosen because

they are representative of the general mass range into which the progenitors of

the V1309 Sco merger fall, as modelling the photometry for low-mass mergers

is the ultimate goal of this method.
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3.2.1 How to build an SPH star

There exist many codes to integrate the equations of stellar structure from

the interior to the surface. One such code is the Yale Rotating Stellar Evolution

Code (YREC) (Demarque et al., 2007). YREC allows for the calculation

of temperature, pressure, density and chemical abundances as a function of

enclosed mass by using a series of concentric shells. These stellar models can

be evolved from time of the zero-age main sequence and throughout their entire

lifetimes. These models return information about the structure of the star

from core to atmosphere. To turn these models into fluid dynamical entities

in SPH, this information must be converted to three dimensions. In order to

do this, the code described in Lajoie & Sills (2010) lays down a hexagonal

grid of particles, in three dimensions, with pressures and densities taken from

stellar evolution runs.

When the YREC models of these stars were converted into SPH, another

resolution issue became apparent. The atmosphere, the region in which the

stellar temperature drops to the surface temperature, is much smaller than an

individual SPH particle at any tractable resolution. Approximately 300,000

particles were used in each star and the smoothing lengths were ∼ 0.02 R�,

approximately two orders of magnitude larger than the thickness of the atmo-

sphere, which is a few hundred kilometres. The main consequence of this is

that the raw “surface” temperature of these SPH stars is two to three orders of

magnitude higher than expected. For scale, if the sun were to be replaced with

one of these model stars, its blackbody peak would be in the X-ray portion of

the spectrum.
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This is a major problem for synthetic photometry, which depends very

heavily on temperature, and scales as T4. It is not simple a priori to determine

the surface temperature of a stellar object based on a temperature from the

interior. The surface temperature of a star is a complicated function of the

mass and radius and composition of that star. These parameters set the mode

of energy transport, be it convective or radiative, the equation of state and the

opacity. These are required to solve the equations of stellar structure, through

which we can determine the surface temperature. Figure 3.13 shows coverage

in P-ρ space of the SPH model, the YREC model from which it is generated

and the MARCS atmospheres which are appropriate. It is clear there is no

simple linear regression from interior to atmosphere, and while models exist

they are either not applicable in general, such as individual stellar models from

YREC or a similar code, or limited in scope, such as the atmosphere models

which do not have adequate coverage to bridge the gap in P-ρ space. We work

in P-ρ space because the specific internal energy u is calculated from pressure,

using the equation of state

P = (γ − 1)ρu (3.9)

where γ is the ratio of specific heats. The temperature is, in turn, calculated

from u using equation 3.2. P and ρ are the important variables in the SPH

simulation, and so it make senses to look at things in this space.

In this section I will present a method to determine surface temperatures

and relevant opacities from a given interior model, given by a hydrodynamic

code, using the equation of hydrostatic equilibrium and the MARCS model

stellar atmospheres. The method is relatively simple and uses the same ideas
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Figure 3.13: Shown in black is the gridded SPH model of a 0.7 M� star with
Teff=4407 K and log(g)=4.6. The blue dashed line shows the YREC model of
the same star, and the four solid lines show the 4 most appropriate MARCS
atmospheres for this stellar model, forming a regular grid around it in T-log(g)
space.

42



M.Sc. Thesis –––– Kevin A. Sooley –––– McMaster University - Physics and Astronomy –––– 2014

used in stellar structure codes to determine the actual structure of the atmo-

spheres. As such, it is far more generally applicable than a linear regression

or a parametric fit.

3.2.2 Temperature Extrapolation

To properly determine a more appropriate surface temperature, we take

advantage of the large resolution in pressure between the outermost layer of

the SPH star and the τ = 2/3 layer of the MARCS atmospheres. The change

in mass in this region is negligible compared to the mass of the star, but the

pressure changes by serveral orders of magnitude. Taking the assumption of

hydrostatic equilibrium where

dr

dP
= − r2

GMencρ
(3.10)

we can integrate inwards from the MARCS atmosphere models to link up with

the SPH model. To get a sensible average and to account for possible outliers,

we take the average pressure PSPH, distance from the center of mass rSPH,

density ρSPH and smoothing length h, of the outermost 0.1% of particles. For

systems of multiple stars, PSPH, rSPH and Menc are calculated separately for

each star. In contact systems, the particles are shared between stars, and

to approximate sphericity, particles are associated with one star or the other

depending on which side of the center of mass of the system they lie on. From

this, effective values of PSPH, rSPH and Menc can be calculated. The SPH stars

are on average larger than their initial YREC conditions by an additive factor
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of about a smoothing length. All of this allows us to numerically integrate the

equation of hydrostatic equilibrium∫ rSPH

rSPH+h

dr =

∫ PSPH

PMARCS

dPr2
SPH

GMencρ
. (3.11)

In order to calculate ρ, we must chose an equation of state. A convenient

and, more importantly, relevant equation of state for this region of a star is

P = Aργ (3.12)

where A is a constant and γ is the ratio of specific heats. To use this

equation of state, we calculate A using the values of P and ρ from the MARCS

atmosphere models and a γ of between 1.4 and 5/3. γ varies across this

range due to the ionization of hydrogen. As hydrogen becomes more and

ionized in the outer layers, the equation of state of the gas changes. The

MARCS atmosphere catalogue has excellent coverage in the range of low mass

stars, with a T ∈ [3000K, 8000K], spaced approximately every 250 degrees

and log(g) = (4.0, 4.5, 5.0). This gives approximately 60 atmosphere model

covering the entire sensible range of (T,log(g)) the low mass stars we are

considering in this chapter.

This integration produces a P-ρ profile which approximates well the ex-

pected profile from YREC. Shown in Figure 3.14, is the success of this model

in bridging the gap in P-ρ space between the MARCS model atmospheres and

the SPH model for the case of the 0.7 M� model. In general, this integration

must be repeated for each atmosphere. The integrated atmosphere models are

then are then grouped into adjacent pairs. An adjacent pair of atmospheres

differ in both surface temperature and surface gravity, but are within one step
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of one another. This is because in general we do not know the actual surface

temperature and surface gravity of the star, and so we must test each pair of

atmospheres find those which are most suitable.

Using the pressure and density profiles integrated inward from the pro-

posed atmosphere to the surface of the star, how do we determine surface

temperature? In order to find temperature and surface gravity, we can assume

that pressure is a function of T and log(g) such that

P = aT + b log(g). (3.13)

Each atmosphere integration will produce a (P,Teff , log(g)) triplet, where P is

the pressure at the depth of the outermost SPH particle. Using the triplets

from adjacent pairs of atmospheres, we have can determine a and and b, which

can then be used to determine Teff and log(g) from the pressure of the outer-

most SPH particle via a bilinear interpolation. In this way, we are determining

the surface temperature of the star based on its interior structure in a realistic

manner. The surface gravity in this interpolation is redundant, as

g =
GMenc

r2
(3.14)

which is used in the integration of the equation of hydrostatic equilibrium.

Nonetheless, we can use the log(g) from this interpolation equation later to

help quantify the error in our interpolation, and to determine which atmo-

spheres are the most appropriate. After these integrations and interpolations

have been performed for each atmosphere, we have Pint and ρint at the same

distance from the center of mass as PSPH and ρSPH, and also log(gint), which
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Figure 3.14: P-ρ profiles from YREC, Gridded SPH simulations, MARCS
model atmospheres and the integration described in this section. The YREC
model shown in the dashed blue line is that of a 0.7 M� star, which, when inter-
polated to SPH (black), does not resolve the red circles of the MARCS model.
The red line is the integrated atmosphere, with initial integration points taken
from the pictured MARCS atmosphere. The integration successfully links the
atmosphere model and the SPH result.
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should compare well to log(gSPH). To determine the most appropriate atmo-

sphere, we minimize the relative error δ in these three quantities where

δ =
|PSPH − Pint|

PSPH

+
|ρSPH − ρint|

ρSPH

+
|log(g)SPH − log(g)int|

log(g)SPH

. (3.15)

Shown in Figure 3.15 is δ for the entire range of interpolated atmospheres of

the 0.7 M� star. δ determines a temperature within ∼10% of the actual Teff

of the star for all models. The four models tested above are all systematically

hotter than expected, but further work is required to determine if this is a

general systematic trend.

3.2.3 Opacity

The final required input to radmc3d is the stellar opacities. Opacities can

be either grey or monochromatic, and can include the effects of scattering. The

MARCS model atmosphere provide opacities, both scattering and absorption

at over 1000 wavelength points in the region of the EM spectrum relevant

to low mass stars, ranging from 90 to 200,048 nm. To properly determine

the opacity based on the interpolated temperature, recall that a given model

atmosphere depends only on temperature and surface gravity, which are two

quantities we now have. The simplest bilinear interpolation in a two dimen-

sional plane involves first interpolating in one dimension, such as T , and then

interpolating again in a perpendicular direction, in this case log(g). Doing

this interpolation at every wavelength point for both scattering and absorp-

tion opacities gives a full, wavelength-dependent opacity function for our new

interpolated atmosphere. Since, due to limits of resolution, each cell is very
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Figure 3.15: Error quantity δ plotted as a function of
Tinterp−Teff

Teff
for the 0.7

M� star. The other models of stars produce similar results. δ rules out higher
temperature atmospheres very effectively, but there can be some redundancy
in atmospheres which have similar interpolated surface temperatures. The
temperature selected by error minimization is indicated in red.
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optically-thick, it is reasonable to apply this opacity to all cells, even though

it is truly valid only at the surface.

This simplification is justified because in radmc3d, if a photon sees an

optical depth along its path of greater than 10, it is considered to be trapped

forever, and its propagation is no longer tracked. As shown in Figure 3.16,

there are two layers in the star from which photons can escape. Obviously,

from the outermost layer of cells, outside of which the density is zero, photons

can stream outward in all directions. Any photons which attempt to travel

into the interior of the star will be lost forever, as they will see a large optical

depth. The optical depth across a single cell is typically greater than 100.

Consider, however, a second layer of cells, one step in from the exterior layer.

As shown in Figure 3.16, these cells can often have a diagonal line of sight

through which a photon can escape unimpeded. All other photons will never

escape. Therefore, we set the temperature of the two outermost cells, as shown

in Figure 3.16, to be that determined by the interpolation using equation 3.15.

The following section will verify the validity of this method with a series of

tests on stellar models.

3.3 Stellar Temperature Tests

The temperature of a star, along with its radius, are the most important

factors in setting the flux emitted from that star. The spectrum of the star

is imprinted by the composition, and studying variations in this composition

is the basis of spectroscopy. These variations in composition on both global

and local scales will change the individual spectral fingerprint by adding or
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Figure 3.16: Shown in blue are cells from which photons will never escape,
whereas red cells have the possibility of a photon escaping. The blue arrows
are the directions in which a photon could be emitted which would never
escape, whereas the red arrows are photons which can escape. Note that for
the inner layer of red cells, photons can escape along the diagonal, as shown
by the red diagonal arrow.
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removing lines and bands. The depth and width of these lines is again strongly

dependent on temperature, in addition to pressure and composition. Without

accurate estimate of temperature, it is impossible to do meaningful synthetic

photometry, and any attempt at synthetic spectroscopy is out of the question.

Synthetic spectroscopy would be a useful tool for example in an attempt to

quantify the rotational properties which would be observed after a merger, or,

with the help of software beyond the scope of this work, chemical evolution

in a possible excretion disk, formed post-merger which could be of interest

considering the results of Nicholls et al. (2013). However, this work is limited

to photometry only, with no individual spectral lines included. The following

section will verify that the method outlined in the previous section is accurate

for real stellar models, allowing for reliable photometric calculations.

In order to test that the corrected temperatures are within a reasonable

range, such that an FGK type star does not have a predicted temperature of

100,000 degrees Kelvin, and appear as an O type star, or in the other direction,

as an M type star with an effective temperature of 2500 degrees Kelvin, we

have a series of 4 stellar models, ranging in mass from 0.7 solar masses, to 1.1

solar masses. The stellar models were evolved in YREC for 10 Gyr. This is

approximately the main sequence lifetime of the 1.0 and 1.1 solar mass models,

and so these stars have just begun to turn off the main sequence. Ideally the

method should not be sensitive to evolutionary state.

Each models was interpolated from SPH to a three-dimensional Cartesian

grid with 1283 pixels in square boxes of side length between 2.0 R� for stars

with masses 0.7 M� and 0.8 M�, and 4.0 R� for the higher-mass stars with
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M= 1.0 M� and 1.1 M�. This difference is to account for expansion as the

higher-mass stars have begun to swell onto the giant branch. This gives grid

cells with side length of 0.01563 and 0.03125 solar radii, respectively.

Figure 3.17 shows the agreement between the emergent flux and a black-

body at the same temperature. Blackbody spectra were obtained for all 4 stars

using both the temperatures determined from the method described in the pre-

vious section and the actual surface temperatures determined in the YREC

modelling stage. Figure 3.17 shows as an example the predicted temperature

spectrum of the 0.7 M� star. All of the spectra, both with interpolated tem-

peratures and with real temperatures match the blackbody spectrum at that

temperature to better than 0.1% . radmc3d beautifully images these stars as

perfect black bodies at any temperature which is assigned to the surface layers.

Some other important results of this test are summarized in Table 3.3. The

theoretical integrated flux of a blackbody is

F = σT 4 (3.16)

where σ = 5.670 × 108 W m2 K4 is the Stefan-Boltzmann constant. These

theoretical fluxes are all accurate to within 30%, which this is the same as

saying that temperature are accurate to within 10%, as shown in Table 1.

Of particular interest for the merger of V1309 Sco is the I band flux, as the

OGLE microlensing project was an I band survey. I band fluxes are accurate

to better than 25%. The I band fluxes are more accurate than the global

fluxes because the red tail of the blackbody spectrum is not as sensitive to

these temperatures. The hydrodynamic models are all larger in radius than

the YREC models used to create them, but interestingly, stars with larger
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Figure 3.17: Interpolated spectrum of 0.7 M� star with associated blackbody
spectrum at the same temperature in blue. All spectra for all stars produced
equally good agreement with theory.
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Mass (M�) Teff (K) Tinterp(K) Global ∆F (%) I band ∆F (%) ∆A
0.7 4407 4423 1.46 1.51 19.0
0.8 5023 5219 16.5 14.9 12.3
1.0 5754 5864 7.87 6.34 1.69
1.1 6025 6451 31.4 23.2 1.68

Table 3.1: Summary of results of single star surface temperature integrations

errors in temperature have a tendency to have a smaller error in projected

area, causing the relative error in I band luminosity to be better than 25% in

all cases.

To test for numerical convergence, the resolution was doubled from 1283

to 2563 grid cells. All the results shown in Table 3.3 were consistent when the

resolution was doubled.

3.4 Binary Star Orbits

With the surety that the single stars reproduce their expected blackbody

spectra with good accuracy, it is now time to test this method in the regime

for which it was designed: binary stars. To reproduce binary star photometry

correctly, each star needs to be opaque to the radiation from the other star, and

the relative areas of the stars must be such that we can accurately reproduce

the expected depths of transits, both as the primary passes in front of the

secondary and vice versa. Consider a primary with luminosity L1 and surface

area A1 and a secondary companion with luminosity L2 and surface area A2.

Since flux F = L/A, for the majority of the orbit, the flux emitted from the

system will be F = L1/A1 + L2/A2. When the larger primary passes in front

of the secondary, we expect a flux of F = L1/A1. Finally, when the secondary
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passes in front of the primary, we expect a flux of F = L1/(A1−A2) +L2/A2.

These dips in flux are characteristic of a detached binary system. A contact

system will have similar extrema, but with broader rises to maxima and slower

decreases to minima.

To test the method in this regime, we’ve devised three test cases. First

we consider an equal-mass, detached binary. Both stars in this system have a

mass of 0.7 M� and a separation 4.0 R� and 512 grid cells in each direction in

a 6.0 R� box, yielding side lengths of 0.0117 R�. Second, we model an unequal

mass system, comprised of a primary with a mass of 1.1 solar masses and a

secondary of 0.7 solar masses, with the same separation and resolution. And

finally, we looked at a contact binary, with components of mass 1.1 and 0.7

solar masses at the same resolution again. Contact binaries have a very distinct

light curve, and reproducing such a light curve is crucial for any future efforts

to model contact binary evolution. To compare with these results, theoretical

light curves were produced using the shellspec code, outlined in Budaj &

Richards (2004). shellspec uses a grid to calculate light curves, spectra and

images of stars with jets, disks and companions immersed in an optically-thin

interstellar medium. shellspec light curves are produced using the same

parameters for temperature and radius that are present in the fully processed,

gridded SPH results which are fed into radmc3d, including the inflated radii

and the interpolated surface temperatures.

Shown in Figure 3.18 is the light curve from the equal-mass binary. As

expected, the minima due to the eclipses are equal in depth, as the two stars

present the same projected area to the observer and completely occult one an-
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other as well as emitting identical fluxes. An artifact of the gridding process is

evident at each quarter phase in both radmc3d and shellspec results. These

light curves are produced by rotating a static binary system through 360 de-

grees, and therefore it is expected that certain grid artifacts, particularly when

looking down an axis of the grid, will be present. The grid cells are all cubic

in shape, and as a cube rotates, its projected area onto a plane perpendicular

to the line of sight is smallest when looking directly at a face. Figure 3.19

shows an image of a single eclipse, where one star has completely blocked out

the light from another identical star.

The unequal-mass binary shows a similar, though distinct light curve in

Figure 3.20, where the two eclipses are of different depths. This system has

the same orbital separation as the equal mass system, but has a primary with

a mass of 1.1 M� and a secondary with a mass of 0.7 M�. When the lower

surface brightness secondary passes in front of the primary, as shown in Figure

3.21, less light is observed than would be emitted from a the primary star alone.

When the secondary passes behind the primary, it is completely occulted and

so the flux incident on an observer is simply the flux emitted from the primary.

This explains the unequal depth of these eclipses.

The final test of this method is in the non-spherical regime of a contact

binary. Can we accurately predict a temperature for a contact binary, and

will it produce the kind of light curve that we expect? Predicting the real

temperature is difficult, as there is some mechanism of heat transfer occurring

in the system that is poorly understood (see Webbink (2003) and references

therein) and not included either in SPH or in radiative transfer modelling.
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Figure 3.18: The normalized light curve from the equal-mass binary calculated
using radmc3d shown in red. Two 0.7 M� stars orbit one another with an
orbital separation of 4.0 R� and complete one orbital period, showing two
eclipses of equal depth. The black line is the shellspec light curve.
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Figure 3.19: An image of an eclipse of the equal-mass binary system. A single
object is visible, as both stars project the same area onto the sky.
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Figure 3.20: The normalized light curve of the unequal-mass binary calculated
using radmc3d shown in red, consisting of a 1.1 M� primary and a 0.7 M�
secondary at the same orbital separation of 4 R�. The unequal eclipse depths
are clearly shown, due to the difference in area and brightness of the two stars.
The black line is the shellspec light curve.
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Figure 3.21: An eclipse of the unequal-mass binary. Clearly shown is the
dimmer secondary star passing in front of the primary star, leading to the
deeper minimum in the light curve. This is due to differing surface brightness
of the two stars.
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Figure 3.22: A side-view of the 0.7 and 1.1 M� contact binary. The system
presents the expected “peanut shape” defined by the Roche potential.

Our hydrodynamic models assume that each star is separately in hydrostatic

equilibrium, and there is no mechanism for the kind of heat transfer thought

to equilibrate the surface temperatures of these stars.

The interpolated surface temperatures for the 1.1 M� and 0.8 M� compo-

nents of the contact binary shown in Figures 3.22 and 3.23 are T1=3361 K and

T2=3564 K respectively. Figures 3.22 and 3.23 show the side and eclipsing

views of the binary orbit, respectively. These are phenomenologically con-

sistent with the understanding of contact binary stars, where the physically

smaller and less massive star tends to be hotter, and joined to the other star
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in a peanut shape by the Roche potential. The sharp gradient between one

star and the other is due to the temperature calculation, and is approximately

at the center of mass.

The photometric light curve, shown in 3.24 is in excellent agreement with

expected theory. All three light curves are accurate to within the scatter

of the shellspec curves, and the contact binary is accurate to better than

5%. The large scatter in the shellspec curves is due to an inherently lower

resolution. The method reported here allows for high (5123 pixels is easily

doable) resolutions, whereas shellspec has trouble with 90 pixels in a given

direction. The source of this resolution issue is unclear, but it shows the

robustness of directly imaging hydrodynamic simulations via a code such as

radmc3d.
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Figure 3.23: A mid-eclipse view of the 0.7 and 1.1 M� contact binary. The
eclipse looks very similar to that shown in 3.21, but with the temperatures
reversed, as it is the smaller star which in hotter in the contact system.
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Figure 3.24: The light curve of the contact binary, with the shellspec curve
in black and the radmc3d calculation in red. The expected broad eclipses
are clearly evident, and with components of approximately the same surface
temperature, the depths are approximately equal. The second eclipse is deeper,
as expected.
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Chapter 4

Conclusions

The previous chapters outline a method by which hydrodynamic simula-

tions of stellar systems can be imaged, in a manner analogous to the formation

of a real image on a CCD chip. radmc3d is a piece of software which solves

the radiative transfer equation for an arbitrary user-defined geometry, with an

comprised of astrophysical gas or dust, with an arbitrary set of user-selected

spectral lines and user-defined continuous opacities.

We have shown that, given a model of a stellar atmosphere, e.g., MARCS,

we can accurately reproduce the black body spectrum of a star from a stellar

model to a better than 0.1%. In order to test this, we first verified that the

method behaved as expected analytically under the transition from optically-

thin to optically-thick, using a sphere of uniform density and temperature with

a varying opacity, with excellent agreement between the analytical prediction

and the numerical result. Real stars presented and additional challenge, as

the surface temperatures of the hydrodynamic models differed by two orders

of magnitude from the expected effective temperature from YREC stellar evo-

lution models. In order to properly calculate fluxes, a proper surface tem-

perature was required. To calculate this temperature, an algorithm using the

65



M.Sc. Thesis –––– Kevin A. Sooley –––– McMaster University - Physics and Astronomy –––– 2014

equation of hydrostatic equilibrium in the constant mass case was developed

and used to integrate density and pressure outward. The integrated profile

to density and pressure is used to interpolate in the (T,log(g)) space of the

MARCS atmospheres, using the local log(g) and interpolated pressure and

density to minimize the relative error in

δ =
|PSPH − Pint|

PSPH

+
|ρSPH − ρint|

ρSPH

+
|log(g)SPH − log(g)int|

log(g)SPH

. (4.1)

Interpolated temperatures were accurate to within ∼25%. Given the fact

that each radmc3d grid cell is extremely optically thick, this temperature

was assigned to the outermost two cells. Optically thick cells act as a hard

boundary to photons attempting to travel through them, and so in this way the

model mimics the true photosphere of a star, where the star becomes optically

thick and all photons escape.

Black body spectra of stars were accurate to within less than 1% . Further

photometry, namely light curves of detached and contact binaries are also

reproduced with equal accuracy when compared to theoretical expectations

from shellspec calculations. Predicting the surface temperature of contact

binaries is difficult, as they are non-spherical. Care must be taken in deciding

which grid cells are assigned to which star, for which we used a plane through

the center of mass, perpendicular to the orbital plane. For an evolving orbit,

this may not be the best criterion. A poor decision in “which cells belong to

which object” can lead to a large error in surface gravity, which is an integral

part of the error calculation. One option could be to use the local surface

gravity, as determined by the hydrodynamic simulation, but the set up of

radmc3d requires the a set of density and temperature files for each opacity,
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and a spatially varying surface gravity implies a spatially varying opacity,

which increases the number of input files greatly.

The actual merger event will likely be beyond the scope of this method. The

complete lack of symmetry will make the determination of even an approximate

temperature very difficult. Here the only possible option would be to do each

cell, individually, though a difficulty would still arise in determining a radius

for the atmosphere integration. Considerable care must be taken in highly

asymmetric situations such as this, and the choice of method will likely have

to be motivated by the evolution of the merger itself.

4.1 Future Work

An obvious first step for future work on this project would be to to run

an SPH simulation of a contact binary which leads to a merger and then

apply this method to it to determine a synthetic light curve with can either be

compared to the light curve shown in Figure 1 or used to set a lower limit on

alternative theories, such as the one presented by Pejcha (2013), where instead

of a merger and subsequent outburst, the sharp increase in the light curve was

due instead to dynamical mass loss. This dynamical mass loss launches a wind

which eventually becomes optically thick and obscures the binary. However,

while the merger simulations are running and exploring the parameter space

of possible progenitors, given by Stepien (2011), there is some additional work

which could benefit the project greatly. Recent work by Nandez et al. (2013)

extends on this and narrows the progenitor space greatly. Verification of the

Nandez et al. (2013) results with photometry would be an excellent next step.
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These merger events present a class of outbursts, called LNR, including objects

such as V838 Monocerotis (Kimeswenger et al., 2002), M85 OT2006-1 (Rau

et al., 2007) and M31 RV (Boschi & Munari, 2004). This method, when

applied in generality, can be a valuable tool in understanding the evolution of

these systems, and in working to understand the evolution of common envelope

events.

There are a number of areas of this method which could be refined to gain

higher accuracy or efficiency. The results presented in this chapter have all

used cubic boxes with cubic grid cells, and in the case of the binary stars,

there are a large proportion of grid cells which are out of the plane of the

orbit, and are permanently zero valued in density and temperature. A more

careful choice in box size and shape could cut the number of vertical pixels by

half, which would considerably reduce memory use, especially considering that

nothing whatsoever is happening in these cells. In the case of a merger, this

may not be the case for the entire lifetime of the merger event depending if

mergers form an excretion disk or an excretion shell, but is at least a plausible

option for optimization. Additionally, radmc3d has, built in, the capacity to

deal with adaptive grids. Grid codes with adaptive grids to refine the size of

cells in areas of high density, to pick up on finer structure without globally

refining the grid in a way that inflates memory usage without gaining further

accuracy. In the case of stellar systems, and in particular stellar mergers, it is

not the high density regions, but the low density regions which are of particular

interest. If SPLASH could be modified to convert from SPH onto a refined

grid based on a refinement criteria, the majority of the star, where very little

of interest occurs, could be contained in one or a few cells large cells, with
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a large number of highly-refined cells making up the atmosphere. This could

improve efficiency of the imaging process and accuracy of the interpolation

process, with individual cells coming much closer to the actually thickness of

the atmosphere.
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