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ABSTRACT

A microprocessor based system to convert the Walsh spectrum of a
frequency limited signal to its Fourier spectrum has been designed and
built. The entire processing hardware is implemented on a single PLS-401
card, which consists of an Intel 4004 microprocessor, read only memories
to store the conversion program and matrices of constants, random access
memories to store results, and input/output ports. The converter can pro-
cess up to 32 coefficients, and utilizes an 8-bit word length. For test
purposes, the Walsh spectra are programmed into a read only memory, and
the Fourier spectra are displayed in binary form on an LED matrix. The
maximum conversion time is 1.81 seconds, and the maximum absolute error

is 2.03% of the largest possible coefficient.
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CHAPTER 1

INTRODUCTION

The microprocessor has developed over the last few years into a
computer built on a few low cost chips. This has facilitated the use of
software techniques in many areas where, previously, computer applications
were too expensive. Thus, it is finding widespread use in digital signal
processing, and this report describes a microprocessor.in such an appli-

cation,

Sinusoids have long been used to characterize wave phenomena.
Many naturally occuring waves are sinusoidal in form, and the use of
Fourier analysis is very helpful for studying linear systems, particularly
in electrical engineering. However, with the continuing advances in digi-
tal electronics, it is increasingly attractive to consider alternative
methods of signal analysis, especially those employing binary Easis func-
tions. The Walsh functions form such a binary orthogonal set, and have

been used to build a Walsh spectral analyzer [1].

For a frequency limited signal, a Fourier spectrum is still pre-
ferred, and the Walsh spectrum needs to be converted to the corresponding
Fourier spectrum. This thesis discusses the design and implementation of

a microprocessor based Walsh-Fourier converter.

One method which has been proposed [2] to implement this conver-
sion utilizes standard integrated circuits to control a Fairchild 9344

fast multiplier, and various memories for storage of constants. An

(1



alternative method would be to perform the conversion by a software rou-
tine running on a digital computer. Until recently, the high cost of com-
puters prevented their use in a dedicated instrument. However, in recent
years low cost microprocessors have become available, and these can be
used to build programmable digital instruments, such as the Walsh-Fourier
converter;

The microprocessor instrument has a number of advantages over a
random logic converter. It is cheaper, smaller, and consumes less power.
The number of devices used is much less, reducing assembly requirements
and increasing reliability. It is more flexible, allowing modifications
in the functions to be easily implemented by merely changing the program.
Indeed, while the system may be used as a dedicated instrument, it can
also be used for many other applications, again only involving repro-
gramming.

The main disadvantage of the microprocessor is its low speed. An
improvement can be achieved by using the microprocessor to control a fast
multiplier, but again this entails higher cost and lower reliaBility.

Microprocessor costs are continually falling, and their perform-
ance is improving; thus their use in a Walsh-Fourier converter is indeed
very attractive.

Chapter II describes the Walsh Functions and the process of Walsh
to Fourier conversion.

Chapter III describes the microprocessor hardware.

Chapter IV details the conversion program.

Chapter V discusses the test results and design features, together

with suggestions for further improvements.



CHAPTER I1I

WALSH FUNCTIONS AND WALSH-FOURIER CONVERSION

2.1 Definition

The Walsh functions are a complete set of orthonormal functions,
which take on only two values, +1 and -1. A natural Walsh set comprises
2" functions wal(k,t), 0O < k < 2n—1, where n is the number of bits in the
binary representation of the order, k, of the Walsh function. The normal-

ized time, t, takes values between 0 and 1.

The Walsh set for n=4 is shown in Figure 2.1. As can be seen from
the figure, the functions change sign only when t = 2.(%Jm , where & and
m are integers. The sequency of any Walsh function is defined as half
the number of sign changes in the unit interval, and is denoted by the
letter s. As in the case of Fourier functions, the Walsh functions can
be divided into two subsets: the cal functions and the sal functions.
Wal(0,t), which corresponds to d.c., is generally regarded as cal(0,t).
Subsequent Walsh functions are then alternately sal and cal. For every
sequency value there is one cal and one sal function, and the relation

between the sequency and the order is:
k = 2s for cal functions (2-1a)
k = 2s-1 for sal functions (2-1b)
A formal definition of the Walsh functions, as given by Cardot[3],

is as follows:

(3
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The order, k, is expressed in the form

m-1 r
k= 2 (27k) (2-2)
T
r=0
where {kr} are the digits, 0 or 1, of the binary representation of k,
and 2™ is any power of 2 that exceeds k. Then,

m-1 k
wal(k,t) = 7] sgn(cos T27nt) (2-3)
r=0

The signum function, sgn(x), is +1 according as x>0 or x<0

Each one of the above cosines turns into a square wave, when kr
is 1, the period depending on r. For kr = 0, the cosine becomes the con-
stant 1. The Walsh function, then, is the product of as many such square

waves as there are ones in the binary representation of k.

As an example, let us take the case of k = 5. Then,

and kO =1, k1 =0, k, = 1. Wal(5,t) is, therefore, the product of
sgn(coszoﬂt) = sgn{cosmt) and sgn(coszzﬂt) = sgn(cos4nt). Figure 2.2,
which shows cosnt, sgn(cosnt), cosd4nt, sgn(cosé4nt) and wal(5,t), illus-

trates how each cosine is turned into a square wave, and how these con-

tribute to the Walsh function.

2.2 Walsh Spectral Analysis

It is an established fact that any periodic waveform can be ex-
pressed in terms of any orthonormal set of functions, the most common of

which are the Fourier functions. Fourier analysis utilizes the frequency
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concept, which is particularly attractive in electrical engineering, as
this helps to simplify network analysis. Sinusoids remain sinusoids after
various mathematical operations such as addition, subtraction, integration,
and differentiation. Thus, if a linear system is excited by a sum of sin-
usoids, the output will also be a sum of sinusoids, and it is easier to
determine the response of a system this way, rather than by solving its

differential equation.

Conventional frequency analyzers, however, are generally limited
to frequencies above 20 Hertz. At lower frequencies, the frequency selec-
tive elements become increasingly difficult to realize. Thus, in this

frequency range, a digital approach becomes necessary.

As seen in the previous section, Walsh functions also form an
orthonormal set, which may be used for spectral anlysis. A function, f(t),

may be expanded in a Walsh series in the form

£(t) = A, + 21 [A,cal(s,t) + B_sal(s,t)] ‘ (2-4)
s:

where s is the sequency of the cal or sal function. The Walsh coefficients

are obtained from the relations:

T
1
Ay = Tfo £(t).dt (2-5)
T
A, = %fo £(t).cal(s,t).dt C(2-6)
T

B = %fo £(t) .sal(s,t).dt (2-7)



T is the period of f(t).

The Walsh functions are bipolar in nature, and readily lend them-
selves fér use in a binary digital system. A digital Walsh spectral ana-
lyzer, in evaluating the above integrals, would only have to accumulate
the sampled values of f(t), with the sign depending on the sign of the
sample and that of the Walsh function. The multiplications which are re-
quired in Fourier analysis are eliminated. This simplifies the hardware
and increases the speed of the analyzer. Even in the case of computer ana-
lysis, a fast Walsh transform is much faster than a fast Fourier transform.
A digital Walsh spectral analyzer, to generate the first 64 coefficients

of a periodic or random signal, has been designed and built by Siemens[1].

2.3 Walsh-Fourier Conversion

While the Walsh spectrum of a periodic waveform is easily computed,
in most practical applications we are more concerned with the Fourier spec-
trum. Thus, it is necessary to convert the Walsh spectrum to the corre-
sponding Fourier spectrum, using the process derived by Siemens and

Kitai [4].

2.3.1 Conversion Equations

Each of the cal or sal functions in equation (2-4) can be expanded
in a Fourier series, with the series for cal containing only cosine terms,
and that for sal containing only sines. The coefficients of the series are
found by evaluating the two expressions:

1
ag ¢ = 2.f0 cal(s,t).cos2nft.dt (2-8)



1
bf,s = 2j0 sal(s,t).sin2nft.dt (2-9)
where af s and bf s are the fth cosine and sine coefficients of cal(s,t)
3 3

and §a1(s,t), respectively.

The Fourier series for each Walsh function is now substituted back
into equation (2-4). Coefficients of like frequency components are col-
lected, and equated to the corresponding terms in the Fourier expansion
of f(t):

a [o2]

20 + 2 [af.0052nft + b
f=1

£(t) = _sin2nft] (2-10)

f

Thus, we obtain the Walsh-Fourier conversion equations:

a = 2 af,S.AS (2-11)
s=1

by = 2 bf,s.Bs (2-12)
s=1

a, = 2.A, (2-13)

In effect, this is equivalent to multiplying the vectors of Walsh

coefficients, A and B, by conversion matrices Ea and The matrix form

F .
—5
of the conversion equations is:

a = F.A (2-14)

F
—a

b = B (2-15)

Eb'

where a and b are the vectors of Fourier coefficients.



10.

The first 4x4 elements of Ea and F, are listed below:

__b
4/t 0  0.527 0
0 4/w 0 0
-4/3% 0 1.025 0 e
F = (2-16)
- 0 0 0 4/
O, —
P—' nawameny
4/t 0 -0.527 0
0 4/n 0 0
4/31 0 1.025 0 ..
F, = (2-17)
- 0 0 0 4/n

The sth column of each matrix represents the Fourier expansion of
cal(s,t) or sal(s,t), with the fth element in that column representing the
fth Fourier coefficient. For example, the first column of Ea represents

the Fourier series for cal(l,t):
cal(l,t) = (4/m).cost - (4/3m).cos3t + ...

Similarly, the rows of each matrix represent the Walsh expansion of the
corresponding Fourier function. For example, the third row of Eb gives

the Walsh expansion of sin3t:

sin3t = (4/3m).sal(1l,t) + 1.025 sal(3,t)
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2.3.2 Compensation for Truncated Spectra [4]

Any Walsh speétral analyzer can only provide a limited number of
Walsh coefficients, and evaluating equations (2-14) and (2-15) using these

truncated spectra would introduce errors in the conversion.

However, if the signal being analyzed is frequency limited, so that
the highest component is of frequency F, then these F Fourier coefficients
can be exactly calculated from the first S Walsh coefficients, provided

n-1

S>F, and § = 2 , n being an integer. The conversion equations (2-14)

and (2-15) are modified to:

i:

| =

F A (2-18)

b =K.F.B (2-19)

&

where K is a diagonal matrix, of order SxS, with the diagonal elements

given by

-~
i

‘g sinc 2 (£/2™) , for £ < 2 . (2-20a)

K =

sinc—2(1/2)
£,f 7

, for f =2 (2-20b)

As n » o, Kf £ approaches 1, for all values of f.

2.3.3 An Example

Consider the frequency limited function:
f(t) = cost + 0.25sint - 1.25sin2t + sin3t

The first sixteen cal and sal coefficients of the Walsh spectrum of this

function are given in table 2.1. Using this truncated spectrum, the matrix



TABLE 2.1

Walsh Spectrum of £(t)

12.

cost +0.25sint - 1.25sin2t + sin3t

Cal Coefficients

Coefficient No. Decimal Binary Hexadecimal (xZZ)
0 0.63662 0.1010001 51
1 0.00000 0.00000600 00
2 0.26370 0.0100010 2 2
3 0.00000 0.0000000 00
4 -0.05245 -0.0000111 -0 7
5 0.00000 0.0000000 00
6 0.12663 0.0010000 10
7 0.00000 0,0000000 00
8 -0.01247 -0.0000010 -0 2
9 0.00000 0.0000000 00

10 -0.00517 -0.0000001 -0 1
11 0.00000 0.0000000 00
12 -0.02597 -0.0000011 -0 3
13 0.00000 0.0000000 00
14 0.06270 0.0001000 08
15 0.00000 0.0000000 00

Sal Coefficients

Coefficient No. Decimal Binary Hexadecimal (x27)
0 0.37136 0.0110000 30
1 -0.79577 -0.1100110 -6 6
2 0.44639 0.0111001 39
3 0.00000 0.0000000 00
4 -0.35543 -0.0101101 2D
5 0.32962 0.0101010 2 A
6 0.11013 0.0001110 0 E
7 0.00000 0.0000000 00
8 -0.04613 -0.0000110 -0 6
9 0.06557 0.0001000 08

10 -0.10255 -0.0001101 -0 D
11 0.00000 0.0000000 00
12 -0.16190 -0.0010101 -1 5
13 0.15829 0.0010100 14
14 0.04870 0.0000110 06
15 0.00000 0.0000000 00
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multiplications shown below are executed, to obtain the uncompensated
Fourier spectrum. It can be seen that the values of the Fourier coeffi-

cients are substantially in error.

Cosine evaluation

e —— —

1.273 0 0.527 . . . 0 0.636 [ 0.997]
0 1.273 0 ... 0 0 0
~0.424 0 1.025 . . . 0 0.264| = 0
0 0 0 . . . 1.273 0 0
I — S — - ——
Sine evaluation
1.273 0 -0.527 ... .0 | [o.371] T 0.249 ]
0 1.273 0 ... 0 -0.796 -1.234
0.424 0 1.025 . . . 0 0.446 = 0.972
0 0 0 . . . 1.273 0 0

Fig. 2.3 Evaluation of the Fourier Spectrum

To compensate for the truncation, the vector of Fourier coeffi-
cients is premultiplied by the K matrix, as shown in Fig. 2.4. The original
Fourier spectrum is now obtained.

This example was also used to test the microprocessor program.
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Compensation of cosine coefficients

1.003 0 0 ... 0 0.997 _ 1.00
0 1.013 0 ... 0 0 0
0 0 1.029 . . . 0 0 = 0
0 0 0 ... 1,234 0 0

Compensation of sine coefficients

1.003 0 0 ... 0 0.249 0.25
0 1.013 0 .. .0 ~1.234 -1.25
0 0 1.029 . . .0 0.972 = 1.00
0 0 0 1.234 0 0]

— —_ L ] L .

Fig. 2.4 Compensation for Truncation

2.4 Storage of Matrices of Constants

The‘three matrices involved in the conversion are the Ea’ Eb and
K matrices. Since the 4004 is a 4-bit microprocessor, it directly suggests
the processing of 24 = 16 coefficients. Thus, the dimension of each of
these matrices is chosen to be 16x16, so each contains 256 elements. How-
ever, we shall see that, owing to certain properties of the matrices, all

elements need not be stored, thus effecting saving in memory requirements.

The actual scheme for storing the matrices will be detailed in Chapter IV.
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In the following sections, we shall see the properties which enable sav-

ing in the memory requirements.

2.4.1  Storage of the Ea and Eb Matrices

2.4.1.1 Unique Elements in Ea and Eb

The Fourier series for each Walsh function has been calculated by
Siemens [1] , using a non-recursive equation for the Fourier transform of
a Walsh function. He has shown that each element of the Ea matrix has the
same absolute value as the corresponding element in the Eb matrix. Thus,
only one matrix of absolute values need be stored, together with the sep-

arate signs for ac o and bf s The matrix of absolute values is denoted F.

Further savings in memory space are effected by realizing that
only some of the elements of F are non-zero, and these are the only ones

which need to be stored. The pattern of non-zero elements is shown in Fig.

2.5,

From Fig. 2.5, it can also be seen that not all the non-zero ele-
ments are unique. Thus, only alternate rows contain unique elements. There
are eight such rows, and each row has eight elements, giving a total of 64
unique elements. This matrix, which represents the only elements which

need to be stored, is denoted the matrix, and is shown in Fig. 2.6.

Eeq

The magnitudes and signs of the elements of the matrix are

Fea
listed in table 2.3.

2.4.1.2 Algorithm for the Retrieval of Elements from the Eé4 Matrix

While computing the fth cosine or sine coefficient, it is necessary

to multiply the corresponding elements of the fth row of the Ea or Eb



ROW (£)

ROW (Q)

COLUMN

(A) (B) (C) (D)

0 2 4 6
1 3 5 7

(s)

(E) (F) (6) (H)

8 10 12 14
9 11 13 15

(A O AA AB AC AD AE AF AG AH
1 AA AB AC AD
(B) 2 BA BB BC BD BE BF BG BH
3 AA AB
) 4 CA CB CC CD CE CF CG CH
5 BA BB BC BD
{D) 6 DA DB DC DD DE DF DG DH
7 AA
(E) 8 EA EB EC ED EE EF EG EH
9 CA CB CC Ch
(F) 10 FA 'FB FC FD TFE FF FG FH
11 BA BB
(G) 12 GA GB GC GD GE GF GG GH
13 DA DB DC DD
(H) 14 HA HR HC HD HE HF HG HH
15 AA
Fig. 2. Pattern of Non-Zero Elements in F Matrix

COLUMN (X)
0 1 2 3 4 5 6 7
0 AL AB AC AD AE AF AG AH
1 BA BB BC BD BE BF BG BH
2 CA CB CC CD CE CF CG CH
3 DA DB DC DD DE DF DG DH
4 EA EB EC ED EE EF EG EH
5 FA FB FC FD FE FF FG FH
6 GA GB GC GD GE GF GG GH
7 HA HB HC HD HE HF HG HH
Fig. 2.6 F, , Matrix (8x8)

Z64

16.
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TABLE 2.2  Elements of 564 Matrix
Magnitude Sign
Word f,s
Decimal Binary Hexadecimal £,s £,s
0 0, 0 1.2732395 1.0100011 A3 0 0
1 0, 2 0.5273931 0.1000100 4 4 0 1
2 0, 4 0.1049050 0.0001101 0D 1 1
3 0, 6 0.2532631 0.0100000 20 0 1
4 0, 8 0.0245442 0.0000011 03 1 1
5 0,10 0.0103322 0.0000001 01 1 0
6 0,12 0.0519437 0.0000111 07 1 1
7 0,14 0.1254031 0.0010000 10 0 1
8 2, 0 0.4244132 0.0110110 36 1 0
9 2, 2 1.0246241 1.0000011 8 3 0 0
10 2, 4 0.6846319 0.1011000 58 0 1
11 2, 6 0.2835838 0.0100100 24 0 0
12 2, 8 0.0860242 0.0001011 0B 0 1
13 2,10 0.2076808 0.0011011 1B 1 1
14 2,12 0.3108163 0.0101000 2 8 0 1
15 2,14 0.1287443 0.0010000 10 0 0
16 4, 0 0.2546479 0.0100001 21 0 0
17 4, 2 0.6147744 0.1001111 4 F 1 0
18 4, 4 0.9200750 0.1110110 76 0 0
19 4, 6 0.3811075 0.0110001 31 0 1
20 4, 8 0.2037062 0.0011010 1A 1 1
21 4,10 0.4917903 0.0111111 3F 0 1
22 4,12 0.3286038 0.0101010 2 A 0 0
23 4,14 0.1361121 0.0010001 11 0 1
24 6, 0 0.1818914 0.0010111 17 1 -0
25 6, 2 0.0753419 0.0001010 0A 1 1
26 6, 4 0.3787692 0.0110000 30 1 0
27 6, 6 0.9144296 0.1110101 75 0 0
28 6, 8 0.7504530 0.1100000 6 0 0 1
29 6,10 0.3108478 0.0101000 2 8 0 0
30 6,12 0.0618315 0.0001000 08 1 0
31 6,14 0.1492744 0.0010011 13 0 0
0 = plus sign
1 = minus sign
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TABLE 2.2 (cont'd) Elements of Eé4 Matrix
Magnitude
Word f,s
Decimal Binary Hexadecimal £,5 £.5
32 8, 0 0.1414711 0.0010010 12 0 0
33 8, 2 0.0585992 0.0001000 0 8 0 1
34 8, 4 0.2945982 0.0100110 26 0 0
35 8, 6 0.7112230 0.1011011 5B 1 0
36 8, 8 0.8666278 0.1101111 6 F 0 0
37 8,10 0.3589690C 0.0101110 2 E 0 1
38 8,12 0.0714034 0.0001001 09 1 1
39 8,14 0.1723830 0.0010110 16 0 1
40 10, O 0.1157490 0.0001111 0 F 1 0
41 10, 2 0.2794429 0.0100100 24 0 0
42 10, 4 0.4182159 0.0110110 36 1 0
43 10, 6 0.1732307 0.0010110 16 1 1
44 10, 8 0.3240918 0.0101001 29 1 0
45 10,10 0.7824269 0.1100100 6 4 0 0
46 10,12 0.5228009 0.1000011 4 3 0 1
47 10,14 0.2165512 0.0011100 1C 0 0
48 12, 0 0.0979415 0.0001101 0D 0 0
49 12, 2 0.2364517 0.0011110 1E 1 0
50 12, 4 0.1579920 0.0010100 14 1 1
51 12, 6 0.0654424 0.0001000 08 1 0
52 12, 8 0.2157347 0.0011100 1C 0 0
53 12,10 0.5208298 0.1000011 43 1 0
54 12,12 0.7794768 0.1100100 6 4 0 0
55 12,14 0.3228699 0.0101001 29 0 1
56 14, 0 0.0848826 0.0001011 0B 1 0
57 14, 2 0.0351595 0.0000101 05 1 1
58 14, 4 0.0069937 0.0000001 01 0 1
59 14, 6 0.0168842 0.0000010 02 1 1
60 14, 8 0.1714282 0.0010110 16 1 0
61 14,10 0.0710079 0.0001001 09 1 1
62 14,12 0.3569808 0.0101110 2 E 1 0
63 14,14 0.8618279 0.1101110 6 E 0 0
0 = plus sign

minus sign
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by the Walsh coefficient vector, and to accumulate the products. Since it

is the 264 matrix which is stored, and not the F matrix, it is necessary

to find a relationship between the elements of and those in F. The

Fea

algorithm for this has been given by Siemens [1], and is explained below.
The rows and columns of the F matrix are numbered from 0 to 15,

and denoted f and s respectively. The rows and columns of the Eé4 matrix

are numbered from 0 to 7, and are denoted Q and X respectively.

When computing the fth Fourier coefficient, we will take the fth

row of F, and multiply the sth element in that row by the sth element in
the Walsh coefficient vector. Therefore; we have to find the row, Q, in

564 corresponding to the fth row in F, and the relationship between the

two 1is:

i
H

£f=2%20+ 2 - 1) (2-21)

where x represents the number of ones to the right of the least signifi-
cant zero in the binary representation of f. Since f needs 4 bits to

represent it in binary, x can take values from O to 4.

For example, if £ = 11, then £

binary = 1011. Hence, x = 2, Q = 1.

This can be verified by referring to Figs. 2.5 and 2.6, where it can be -

seen that row 1 of contains the same elements as row 11 of F

Feq

Having located the correct row in we take each element in

e
that row and multiply it by the corresponding element in the Walsh vector.

/ Since consecutive elements in an row do not represent consecutive ele-

Fea
ments in an F row, we do not multiply by consecutive Walsh coefficients.

Rather, the Walsh coefficient which is multiplied by the X" clement of
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of the Qth row of E64 is:

s=2%2x+ 2° -1 (2-22)

where x has been computed, for a given f, from equation (2-21).

Taking the previous example of f = 11, and x = 2, we get, for
successive values of X ( i.e. X =0, 1, 2, . . .)
s =3, 11,
This, again, can be verified by referring to Figs. 2.5 and 2.6, where it
is seen that the first two elements of row 1 of E64 are.the same as ele-
ments 3 and 11 of row 11 of F.

The way this algorithm is actually implemented on the microproc-

essor is discussed in Chapter IV.

2.4.2 Storage of the K Matrix

The K matrix, though having a dimension of 16x16, is a diagonal
matrix, and only the 16 diagonal elements need to be stored. These ele-
ments as calculated from equation 2-20, for n = 5, are tabulated in table

2.3.

To save the time involved in multiplying by thé K matrix, we could
premultiply the F and K matrices, and store the resulting matrix. However,
the F matrix would lose its property of having only 64 unique elements.
Since memory storage space is more critical than speed, it is preferable
to store the individual matrices. Furthermore, multiplication by K_really
consists only of multiplying each Fourier coefficient by the corresponding
diagonal element of K. Thus only 16 extra multiplications are involved,

and the loss of speed is not very great.



TABLE 2.3 The K Matrix

Magnitude
Word
Decimal Binary Hexadecimal
0 1.0032190 01.000000 40
1 1.0129507 01.000001 41
2 1.0294235 01.000010 4 2
3 1.0530293 01.000011 43
4 1.0843429 01.000101 4 5
5 1.1241502 01.001000 4 8
6 1.1734882 01.001011 4 B
7 1.2337006 01.001111 4 F
8 1.3065140 01.010100 54
9 1.3941420 01.011001 59
10 1.4994277 01.100000 60
11 1.6260414 01.101000 6 8
12 1.7787576 01.110010 7 2
13 1.9638485 01.111110 7 E
14 2.1896510 10.001100 8 C
15 1.2337006 01.001111 4 F



CHAPTER III

THE MICROPROCESSOR SYSTEM

3.1 Introduction

Within the last five years, the steady advances in semiconductor
technology (particularly MOS) has led to the integration of over 14,000
transistors on a single chip. This substantial increase in chip density
has enabled the realization of a computer central processing unit (CPU)
on a small number of LSI chips, generally less than five. This miniatur-

ized CPU is known, owing to its small size, as a microprocessor.

Different types of microprocessors, with varying degrees of com-
plexity, are available on the market. Some are built on a single chip (e.g.
Intel's 4004), while others, such as Fairchild's PPS-25, have their func-
tions split among several chips. However, all microprocessors perform the
basic functions necessary for executing the operations and processing the
data as specified by the user's program. Thus, any microprocessor must
have a timing and control unit, an instruction decode and execute unit, an
arithmetic unit, and some general purpose registers. Depending on the archi-
tecture of the processor, these functions may be integrated on a single

chip, or distributed among the various chips forming the microprocessor.

3.2 Selection of the Microprocessor

The microprocessor which was selected for use in the converter is .
the Intel 4004. The major factor in selecting this microprocessor is that

it was available, together with memory and input/output ports, on a

(22)
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single card. This card, the PLS-401, manufactured by Pro-Log Corporation,
Monterey, California, is a self-contained microprocessor system, requiring
very little external circuitry. The availability of such an assembled and
tested card greatly simplifies the implementation of the conversion sys-
tem. The PLS-401 is described in section 3.4. Other factors which make

the Intel 4004 particularly suitable for this application are described

below.

The major part of the Walsh-Fourier conversion is the matrix mul-
tiplication. Thus, the microprocessor should be suitable for executing a
large number of arithmetic operations. Therefore, it is impoftant to have
a number of index, or 'scratch pad', registers where the operands, inter-
mediate results and final products can be stored, and where counters can
be set up. If such registers are not available, then the main random access
memory (RAM) has to be used. Referencing the main memory requires many
programming steps, and is slow and inefficient. The 4004 has 16 4-bit
registers, which, according to the comparison given by Torrero [5], is
the largest among available microprocessorsl. As will be seen in Chapter

1V, these index registers are very helpful in programming.

A "TEST" input is available on the 4004, and this can be used to
allow external events to control the program execution. Since input/output

is not a major consideration, an interrupt is not necessary.

The 4004 is provided with a three level hardware stack. Thus, as

with index registers, the main memory need not be accessed during

1. The Intel 4040 microprocessor, which is not included in Torrero's
comparison, does have a larger number of index registers.
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subroutine calls, resulting in program simplicity and saving in execution

time. Further, no software is needed to manage the stack.

The 4004 can, through the interfacing chips, be used with standard
read-only memory (ROM) chips. This is particularly important, because often

the cost of the memory is the largest component of the total system cost.

Finally, the 4004 is one of the cheapest microprocessors avail-

able on the market.

One disadvantage of the 4004 is that it is a 4-bit processor. As
a compromise between accuracy and cost, it was decided fo work with 8-bit
coefficients. This implies the use of multiple precision arithmetic, which
slows down the conversion. Nevertheless, the entire conversion is executed

in less than two seconds, which is quite acceptable in this application.

3.3 Architecture of the Intel 4004

The 4004 is available in a 16-pin dual in line (DIP) package. The
pin configuration and a description of the pin functions is given in

Appendix I.
The instruction set of the 4004 is listed in Appendix II.

The block diagram of the 4004 (Fig. 3.1) consists of the following

functional blocks [6] :

a). - Address Register and Incrementer

The address register is a dynamic RAM cell array of 4x12 bits. It
contains one level used to store the instruction address (program counter)
and three levels used as a stack for subroutine calls. The address incre-

menter is 4-bit carry look ahead circuit which increments the address
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after each instruction. The contents of the stack are multiplexed onto

the 4-bit internal bus.

b). Adder and Accumulator

The 4-bit adder is of the ripple-through carry type. One term of
addition comes from a buffer, while the other term comes from the accu-
mulator. and carry flip-flop. The output of the adder is transferred to
the accumulator and carry flip-flop. The accumulator is provided with a
shifter to implement rotate right and rotate left commands. The accumu-
lator also communicates with special ROMs which perform a code conversion
to implement the DAA and KBP instructions, and with condition logic which

is used in implementing the ISZ and JCN instructions.

c). Index Register

The index register is a dynamic RAM cell array of 16x4 bits and
has two modes of operation. In one mode of operation the index register
provides 16 directly addressable storage locations for intermediate com-
putation and control. In the second mode, the index register provides 8
pairs of addressable storage locations for addressing RAM and ROM, as well
as for storing data fetched from ROM. The index register, too, is multi-

plexed onto the internal bus.

d). Instruction Register, Decoder and Control

The instruction register is loaded with the contents of the inter-
nal bus through a multiplexer and holds the instruction fetched from ROM.
The instructions are decoded in the instruction decoder and approﬁriately
gated with timing signals to provide the control signals for the various

functional blocks.
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3.4 The PLS-401 Card

The PLS-401 system incorporates the Intel 4004 CPU, together with
other necessary system components, such as ROM and RAM, and input/output
ports, on a single card. A block diagram of the card is shown in Fig. 3.2,

while a detailed schematic is given in Fig. 3.3.

The RAMs are Intel 4002-1 and 4002-2, and they interface directly
to the CPU. Each RAM is provided with one 4-bit output port. Only one of

these ports, however, has been wired out, owing to pin limitations.

Upto four ROMs, each containing 256 8-bit words, can be plugged
into.the sockets provided on the card. The ROMs used are Intel's 1702A.
These do not interface directly with the CPU, and hence the two interface
chips, 4008 and 4009, are used. In addition, a 74155 two line to four line

decoder is used to select the designated ROM from a 2-bit address.

74175 latches are used as output ports, while 8234 buffers serve
as input ports. Again, the 4008 and 4009 chips are used for interfacing,

and the 74155 is used for selecting the port.

The clock is an astable multivibrator. The output at each of the
collectors is taken to provide the two phases. The levels .at this stage
are +5 and 0 volts, and therefore a level shifting circuit is used to
obtain the required levels of +5 and -10 volts. The clock operates at a

frequency of 750 KHz.

The reset circuit, similarly, has a level shifter to obtain levels

of +5 and -10 volts.

The card plugs into a 56 pin edge connector, to which all external

connections can be made.
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Power supplies required for the card are +5 and -10 volts. The
power supply is mounted externally, and is connected to the card through

the connector.

Except for the "TEST" input, all inputs and outputs have logic
levels of "1'" = 0 volts and "0" = +5 volts. The "TEST" input has logic

levels of "1"

1

-10 volts and "0" = +5 volts.

All input ports are TTL compatible. The RAM output port is a MOS
port, and requires a 12K pull down resistor to -10 volts for TTL compat-

ibility. The other output ports are TTL compatible.

3.5 Display, Reset and Test Circuits

To utilize the PLS-401, some amount of external circuitry is

required. This is described below.

3.5.1 Display and Input/Output

To display the states of the output ports, an LED matrix was
added on a separate card. Each bit of the output ports is connected to
an LED. If the bit is '"1", the corresponding LED lights up. If‘the bit
is "0", the LED is off. Since the output ports do not have sufficient
current sinking capacity, 7407 buffers are used. The circuit is shown in
Fig. 3.4 and the layout is shown in Fig. 3.5. The 12K pull down resistor

is required only for the RAM output port.

The output ports are also brought to an output connector, through
which other circuits can be connected to the microprocessor. Similarly,
the input ports and the "TEST" input are brought out to an input connector.
The power supplies are also available on the connectors. The scheme of

input and output connections is shown in Fig. 3.6.
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3.5.2 Reset Circuit

A RESET push button is included on the LED matrix card, and is
used to switch the levels at the reset input between 0 and +5 volts. The

circuit used is shown in Fig. 3.7

3.5.3 TEST Circuit

This circuit produces a single pulse, having levels +5 and -10
volts, and is used in reading out the Fourier coefficients. The circuit,
shown in Fig. 3.8, consists of two parts. The cross-connected NAND gates
form an R-S flip-flop which eliminates switch bounce, because the output
of the flip-flop changes only when the input switches between '1' and '"0",
and not when the switch bounces. The output of the flip-flop is fed to a
level shifter, which changes the levels of the output to +5 and -10 volts.
The push button, which is of the momentary contact type, serves to invert
the logic level of the output, as set by the switch. The flip-flop elim-

inates bounce in the push button, too.

The circuit is built on a card which plugs into the input connector.
The power supply for the circuit is picked up from the connector, and the

output is connected to the "TEST'" input through the connector.

+ 5 volts
§4.7 KQ 220 @
W To Reset Input

Fig. 3.7 The Reset Circuit
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CHAPTER 1V

THE CONVERSION PROGRAM

4.1 Introduction

The conversion program calculates the first 16 cosine and 16 sine
coefficients of the Fourier spectrum of a frequency limited signal from
the first 16 cal and 16 sal coefficients of the Walsh spectrum. A brief
description of the major steps involved in the conversion is given below,
while a detailed explanation of the program is given in later sections. A

flow chart for the process is shown in Fig. 4.1.

4.1.1 Inputting the Walsh coefficients

The known Walsh coefficients are presented to the instrument, in
Hexadecimal code, by entering them in a read only memory (ROM), using a
ROM programmer. These coefficients are then read into the random access

memory (RAM), from which they will be fetched during the conversion.

4.1.2 The Walsh-Fourier Conversion

The cosine functions are evaluated first, and then the sines. A
counter is set up to keep track of the number of the coefficient being
evaluated, and from this the first set of Walsh coefficient and conversion
element to be multiplied is selected. The signs of these numbers are read
into the index registers, and the resultant sign decides whether the pro-
duct will be added or subtracted during accumulation. The Walsh coefficient
and the conversion element are then read into the index registers, multi-

plied, and the product accumulated. The next set of Walsh coefficient and

(35%)




Fig. 4.1

Flow Chart for the Conversion Program
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conversion element is then selected, and the above procedure repeated.

When all the products required to form one Fourier coefficient have been
accumuléted, the result is multiplied by the K matrix element, and stored

in the RAM. The counter is now incremented, and the whole procedure repeated

for the other Fourier coefficients.

4.1.3 OQutputting the Fourier Coefficients

The Fourier coefficients are read from the RAM and displayed on
the LED matrix, by writing on the output ports. Each coefficient is main-
tained at the port till a pulse is given to the "TEST" input, when the
next coefficient is displayed. When all the the coefficients have been

displayed, the program halts.

4.2 Storage of Walsh and Fourier Coefficients

The Walsh coefficients are entered into ROM # 3, with locations
0 to 15 storing the cals and locations 16 to 31 the sals. Locations 32 to
47 hold the signs of the cals and 48 to 63 store the signs of the sals.

The program then reads these coefficients into the RAM.

Each coefficient is 8 bits long. These coefficients, and the.E
matrix and conversion elements, are floating point numbersfPHowever, the
position of the binary point is always fixed; hence it is ignored, and the
number is treated as an integer. The Hexadecimal code which is entered in

the ROM (as given in tables 2.1, 2.2, and 2.3) corresponds to the integer

formed by ignoring the binary point.

All the Walsh coefficients are scaled so that their magnitude is
always less than 1. It will be noticed from table 2.1 that the most sig-

nificant bit of the Walsh coefficients is always zero, i.e. only 7 bits
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are used. The reason for this is given in section 4.3. The position of the
binary point in the computed Fourier coefficients is also calculated in

section 4.3.

Two RAM chips are required for storing the Walsh and Fourier coef-
ficients. Chip # 0 is used to store the cal and cosine coefficients, and
chip # 1 is used for sals and sines. The advantages of this arrangement
are:

- if only cals or only sals are involved in the conversion, then

only one chip is required;

- the addressing logic for accessing the coefficients is simplified.

The counter which keeps track of whether cals or sals are being

processed also serves to select the RAM chip.

The method of storing the coefficients in the RAM can be under-
stood with the help of Fig. 4.2. This shows the arrangement for chip # 0.

The arrangement for chip # 1 is identical.

Word Status Character
Register o1 2 - - - 1314150 1 2 3
sign for odd s
0 cal coefficients 0 to 7
1 cal coefficients 8 to 15 sign for even s
2 v cos coefficients 0 to 7

sign for odd f

cos coefficients 8 to 15
3 ___///

sign for even f

Fig. 4.2 Cal/Cos Storage RAM (Chip # 0)
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The 4002 RAM is organized into four registers, numbers 0 to 3.
Each regiéter contains 16 4-bit words, and 4 4-bit status characters.
Registers 0 and 1 are used to store Walsh coefficients, and registers 2
and 3 are used for Fourier coefficients. Two 4-bit words are required for
each coefficient. Thus words 0 and 1 of register 0 store the cal O1 coef-

ficient, words 2 and 3 the cal 1 coefficient, and so on.

The signs of the coefficients are stored in the status characters,
with each character holding two signs. Thus, the least significant bit
(LSB) of register 0 status character zero is used to store the sign of
the cal 0 coefficient, and the next higher order bit is used to store the
sign of the cal 1 coefficient. If the sign is positive, the bit is kept

zero. If the sign is negative, it is set to one.

4.3 Maximum Possible Size of a Computed Fourier Coefficient

The Fourier coefficients are calculated from the relation:
15
ag = K £ s§=jo Fe oA

To find the maximum value of ag, we first take the worst case maximum for
the summation, i.e. AS = 1111111, for all s, the signs being such that all
terms add up. Therefore, we should sum up the elements in each row of F,
and multiply by 1111111, to get the maximum possible value of the sum

for each value of f.

The sum of the elements in each row of the 564 matrix is shown in

1. The arguments 0, 1 etc., correspond to values of s, as defined in
section 2.4.1.2, and represent sequency values of 1, 2, etc.
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Fig. 4.3, It can be seen that this sum can require 9 bits. The Walsh coef-
ficients are, therefore, chosen to be 7 bits long, so that the product may

fit within 16 bits, which is equivalent to four 4-bit registers in the

microprocessor.
Row No. Binary Decimal Row No. Binary Decimal
0 100101111 303 4 101010111 343
1 110010011 403 5 101101011 363
2 110101011 427 6 100110011 307
3 101101001 361 7 11001110 205

Fig. 4.3 Sum of Elements in Each Row of E64 Matrix

Each of these sums is now multiplied by the corresponding K ele-
ment, and by As = 1111111, taking care that these sums are for alternate
values of f. Of course, for the intermediate values, the sums will be
less, and need not be considered. The result of the multiplication of the

sums by Kf £ is shown in Fig. 4.4.

Row No. Kf,f‘EEFf,s (decimal) Row No. Kf’f. E:Ff,s (decimal)
0 19392 4 28812
1 26598 5 34848
2 29463 6 34998
3 27075 7 2870

Fig. 4.4 Kf’f.Z:Ff,s for Each Row of F¢y Matrix
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The seventh row can, thus, produce the largest possible coefficient,

11111112 = 12710,

we get the largest possible coefficient as 34998 x 127 = 4444746. In binary,

ti

and this corresponds to f = 14. Now, multiplying by As

this becomes:

100¢00111101001001001010 (23 bits)

This number has been obtained by using integer values for As’ Ff s

and Kf £ The effect of ignoring the binary point is one of multiplying

£ £ £ by 26. Therefore, the computed Fourier coef-
3 3
20

ficient has to be divided by 2. In effect, the binary point has to be

A Dby 27, F by 27 and K
s S
placed 20 positions from the right, as indicated by the arrow. The decimal

equivalent of this number is, therefore, 4.2388.

After each Fourier coefficient is computed to 23 bits, the 8 bits
shown boxed will be picked out and rounded to the nearest bit. The largest

possible value of any coefficient, correct to 8 bits, is

100.01000 (decimal 4.25)

4.4 Storage of and K Matrices

Fea

The matrices of constants are stored in ROM # 2. Each ROM word is
8 bits long, and only one word is needed to store each 8-bit constant. The
564 matrix is stored, one row at a time, in locations 0 to 63. Locations

64 to 79 are used for storing the 16 diagonal elements of the K matrix.

Locations 80 to 143 contain the signs for the cal-cos conversion
matrix, while locations 144 to 207 contain the signs for the sal-sin con-

version matrix. Again, a zero represents a plus, and a one a minus.
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4.5 The Conversion Program

In the following description, numbers within parantheses refer to
program addresses. The first number refers to the page (each ROM chip is
one page of program memory) and the other two numbers refer to the loca-

tion within that page. The program is listed in Appendix III.

4.5.1 The Input Routine

The program begins at location zero of page zero. The first instruc-

tion is NOP (no operation), which avoids any power-on reset problems.

The input routine starts at BEGIN (001). The program jumps to sub-
routine WALSHl, which reads the contents of the ROM location on page 3,
specified by register pair PO, into register pair P5. Initially, PO is O,

so that ROM location 0, which contains cal coefficient 0, is read into PS.

Register pair P6 is a counter which selects the RAM location into
which the Walsh coefficient is to be written. It is initially at 0, thus
selecting RAM chip # 0, register 0, word 0. The SRC instruction (003)
selects this location. The high order 4 bits, which are in register RA,
are loaded into the accumulator (004) and then written into the selected
memory location (005). P6 is then incremented to select the next location,

and the above procedure is repeated for the low order 4 bits (006-009).

Register RO is now incremented twice, thus adding 16 x 2 = 32 to
PO. The sign of any Walsh coefficient is stored 32 locations below its
magnitude, and thus adding 32 to PO selects the address of the sign of
the Walsh coefficient. The program then jumps to subroutine WALSIGN, which

reads the sign word into P3. PO is then restored to its earlier value, by

1. All subroutines are described in section 4.6.
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twice decremehting RO (00E-011). Subroutine SIGNIN then writes the sign

}into the correct RAM status character,

Register pair P6 is again incremented to select the next RAM loca-
tion, which will receive the high order 4 bits of the next Walsh coeffi-
cient. Similarly, PO is incremented to set the ROM address of the next

Walsh coefficient (014-019).

Register RF is a counter, taking values 0 to 15, which keeps track
of the number of the current cal or sal coefficient being transferred. It
is incremented and tested for zero. If it is not zero it indicates that
the transfer is not complete, and the program returns to BEGIN to read the

next Walsh coefficient.

If RF is zero, it indicates that either the first 16, or all 32,
transfers have taken place. To determine which, we load the accumulator
with register RC and decrement by two (01C-01E). If only the cals have
been read in, RC is 0010, and the accumulator becomes zero. Therefore, on
testing the accumulator for a non-zero, control transfers to location 021,
which sets RC to 4, i.e. 0100 binary. The SRC instruction (003) then
selects RAM chip # 1, so that all the sals are transferred to chip # 1.
When 16 sal transfers are complete, RC is 0110, and decrementing by two
(01C-01E) does not make the accumulator zero. Thus, on testing the accu-
mulator for non-zero (01F), control transfers to CONVERT (025), which pro-

ceeds to compute the Fourier coefficients.

4.5.2 The Conversion Routine

At the start (location CONVERT), certain registers, which

will hold information calculated by the routine, are cleared (025-02C).
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These registers are:

Register RC, which will hold X;

Register RD, which will hold X;

Register RB, which will hold the sign of the accumulated products;

Register RA, which will hold the sign of each product.

Register RE is a flag register which indicated whether cosines or
sines are being evaluated. Initially it is 0, for the cosine computation.
After all cosines are calculated, it will be set to 2, for the sine com-

putation.

Register RF, which takes values 0 to 15, is a counter representing
which cosine or sine coefficient is being evaluated. In other words, it

gives the current value of f

For each value of f, up to 8 sets of Walsh coefficients and con-
version elements will be selected, multiplied, and then accumulated, to
form one Fourier coefficient. This will then be compensated for truncation

and stored in the RAM

After one Fourier coefficient has been stored in the RAM, the pro-
gram will return to CONVERT, to clear registers RA to RD, before calculat-

ing the next Fourier coefficient.

4.5.2.1 Selécting the Walsh Coefficient (s value) and Conversion Element
(Q value) |
: Knowing f, the next step is to calculate Q and x, using equation
2-21. Q will be stored in register R1, and x in register RD. Owing to the
limited number of index registers, PO will be used later in the program

for multiplication, and therefore the value of Q cannot be saved.
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Similarly, RD is used later in the program, and x, too, cannot be saved.
Hence, after the multiplication of one Walsh coefficient by its corres-
ponding E_element, Q and x have to be re-calculated for the next multi-
plication. This would not be necessary if more index registers were avail-
able, because Q and x could be saved, and calculated only for a new value
of f. After each multiplication the program loops back to SVAL (02D) and

clears PO and RD to receive Q and x.

To find Q, f is loaded into the accumulator, which is rotated
right. For every 1 in the LSB, as detected by a 1 in the carry after the
right shift, RD is incremented. When a zero is detected in the carry,
rotation stops, the accumulator contains Q, and RD has x. The value of Q

is then stored in R1 (031-039).

To illustrate this, consider the example of section 2.4.1.2, i.e.
f = 1011. When this is loaded into the accumulator, and rotated right, the
accumulator and RD will have the following values:

Accumulator Carry - RD
(after rotation)

Initial value _ 1011 - 0
First rotation 0101 1 1
Second rotation 0010 1 2
Third rotation 0001 0 2

(rotation stops)

We can see that the accumulator contains 1, which is the value of Q, and

RD is 2, which is the value of x.

Since each row of the 564 matrix occupies 8 locations in the ROM,

the value of Q is multiplied by 8, to get the ROM address of the first
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element in that row. This is done by jumping to subroutine EIGHT.

Register RC contains X, which represents the position along the
Eé4 row of the current glement to be multiplied. Initially it is zero, and
it is incremented after each multiplication. RC is now added to Rl (03C-
03E), to give the ROM address of this matrix element. This address is
called Q'. The element itself is not read into the registers, as this
would block one register pair, which is needed for other calculations. The
reading is done only after the sign of the product is evaluated, when the
registers used to store the signs of the Walsh coefficient and the matrix

element become free.

Having found Q and x, we now have to find the value of s (that is
to choose the Walsh coefficient) for the current ‘value of X, from equation

2-22. This is rewritten below as:

s=2%.2X+1) -1 (4-1)

Therefore, 2% and 2X + 1 are calculated, multiplied, and the product

decremented by 1.

To obtain 2x, the one's complement of x is obtained and stored in
R7. Register R9 is set to 1, and R7 is incremented and tested for zero.
If it is not zero, R8 and R9 are shifted left one place, and R7 is again
incremented and tested for zero. When R7 becomes zero, R8 and R9 contain
,2X, and the program exits from the loop (03F-047). Another way of doing
this would be to take the two's complement of x, and to increment it after
the left shift. The disadvantage of this method is that when x = 0 (i.e.

for all even values of f) the two's complement of x is 0, and 16 left
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shifts are required to obtain the result. With the one's complement method,
no left shifts are required, since 20 = 1, which is the starting value of

R9. The one's complement method, however, requires more memory space.

The sign of the accumulated products, which is held in RB, is
transferred to R7 (050-051), because RB will be used to multiply 2% and

2X + 1.

Register RC is loaded into the accumulator and shifted left. If the
carry is found to be 1, it indicates that X was 8. This means that all’
multiplications and accumulations necessary to form one Fourier coefficient

are over, because the value of X for the last element in an row is 7.

Foa
The program then jumps to address Al2, to multiply the Fourier coefficient

by Kf’f.

If the carry is not zero, the accumulator is incremented to obtain
2X + 1, which is then stored in R6. RC, i.e. X, is then incremented for

the next calculation of s (057-059).

P5 is now cleared (05A) to receive the product of 2* and 2X + 1,
and the multiplication is performed by subroutine MULT. Register RB is
loaded into the accumulator, decremented, and then exchanged with RA, which
will now contain the value of s. We have to check if this value lies be-
tween 0 and 15. If the accumulator is 0, then obviously s must be less than
16, and it can be used to select a Walsh coefficient. If the accumulator
is not 0, then s + 1 must be 16 or more. However, if s + 1 is 16 (i.e. s =
15) then RB must have been 0, and decrementing the accumulator when it
was loaded with RB would set the carry to zero. If s + 1 was 17 or more,
then the carry would be set to 1. Therefore, if the accumulator, when load-

ed with RA is found to be non-zero, the carry is checked. If it is Zero,
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we have a valid s, which is used further (05E-064). If the carry is one,
it implies that the matrix multiplication for the current value of f is
complete, and the program exits from the loop to addréss Al2 (091), to

multiply the coefficient by Kf £

If s <15, it is multiplied by 2, and stored in register RB (065-
068). This is necessary because each Walsh coefficient occupies two add-
resses in the RAM. The contents of register RE are also shifted left one
place (069-06B) and stored in register RA, thus putting the correct RAM
chip number (depending on whether cosines or sines are being evaluated)
in the most significant bits of RA. In addition, any overflow which cc-
curred on multiplying s by 2 is shifted into the LSB of RA, and this gives
the register number within the chip. Thus P5 now has the complete address

of the high order 4 bits of the current Walsh coefficient.

For example, let us take s = 13 (1101 binary) during the compu-
tation of a sine, so that RE is 0010. Register RB, on shifting left,
becomes 1010, and the carry is set to 1. When RE is shifted left, the
accumulator becomes 0101, and this is stored in RA. The complete address
of the Walsh coefficient is then 0101 1010, which specifies chip # 1,
register 1, word 10. This indeed is the location where the 13th sal coef-

ficient is stored.

The SRC instruction to select this RAM location is now executed.
However, the coefficient is not read in immediately, for the same reason
as in the case of the 564 element. Rather, the sign of the product is first

evaluated.
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4.5.2.2 Determining the Sign of the Product

The signs of the Walsh coefficient and the conversion element are

now obtained and combined to form the sign of the product.

The ¢ i of the conversion element is stored 80 or 144 locations
below its magnitude, depending on whether the cal-cosine or sal-sine con-
version is involved. Therefore RE is checked to determine which conversion
is being executed, and then 80 or 144 is added to Q'. This is accomplished
by adding 80/16 = 5 or 144/16 = 9 to the high order part éf Q' (06D-075).
Subroutine SIGN is then used to read the sign into P4, and to restore Q!

to its earlier value.

Subroutine SIGNOUT reads the sign of the Walsh coefficient into RS,
whichvis loaded into the accumulator. The carry, which is set to zero if
s is even and to 1 if s is odd, by SIGNOUT, is checked for a zero. If it
is 1, the accumulator is shifted right to bring the sign into the LSB. If
the carry is zero, no shift is performed, because the sign for an even

numbered Walsh coefficient is already in the LSB (refer section 4.2).

The accumulator and R9 are added together, and the LSB of the
accumulator represents the sign of the product, as can be seen from the

truth table below:

Walsh Coeff. Accumulator Conversion R9 Contents Product Accumulator
Sign Contents Element Sign Sign Contents
+ 0000 + 0000 + 0000
+ 0000 - 0001 - 0001
- 0001 + 0000 - 0001
- 0001 - 0001 + 0010
A

LSB
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The product sign is stored in R9, and will be used during the

multiplication-accumulation to decide whether to add or subtract.

4.5.2.3 Formation and Accumulation of Products

The high order 4 bits are read from the RAM location selected by
the SRC instruction at 06C, and are stored in R6. RB is then incremented
to select the next RAM location, and an SRC instruction is executed. R7,
which holds the sign of the accumulated products, is saved in RB, which
no longer needs to be preserved. The low order 4 bits of the Walsh coeffi-

cient are then read into R7 (081-088).

R9, which holds the product sign, is saved in RA, which too need
not be saved any longer. Subroutine READF then read the conversion ele-

ment into R8 and RY (089-08C).

Subroutine MULTIPLY is now executed. Registers R8 and R9 are mul-
tiplied by registers R6 and R7, and the product is either added into or
subtracted from register pairs P1 and P2, depencing on the sign of the
product. The sign of the accumulated products is set in RB. PO is destroy-

ed during the multiplication.

The program now loops back to SVAL to calculate new values of Q,
x and s. If s > 16, or X > 8, then the program exits from the loop to
address Al2, to multiply the Fourier coefficient by the compensation ele-

ment. The sign of the coefficient is in R7, at this stage.

4.5.2.4 Compensation for Truncation and Storage of the Coefficient.

The sign of the Fourier coefficient is stored first. Subroutine
SELECT selects the RAM chip and register in which the sign is to be

stored, and also the word in which the high order 4 bits of the Fourier
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coefficient will be stored. The address of the word is stored in PO.

Register Rl is transferred to RD, which serves as an argument
for subroutine SIGNIN. This subroutine takes the sign from R7 and puts it

into the correct status character of the RAM.

Register R7 is then checked for a zero (097-099). If it is 1, then
the Fourier coefficient is negative ( in two's complement form), and has

to be recomplemented to obtain it in the true form (09A-0AC).

The K matrix elements are stored from locations 64 to 79 in ROM
# 2. Therefore, the address of the compensation element is generated in PO
by adding 64 to the f value. Subroutine FETCHK is then used to read this

element into P3 (0AD-0B2).

Register pairs P4, P5, P6 are cleared to receive the final Fourier
coefficient, and PO is also cleared to receive the bits shifted out of P1
and P2, when they are shifted left during the multiplication. The multi-

plication is performed by subroutine MUL (0B3-0BC).

Of the 24 bits the product occupies, we have to pick oﬁt the 3
least significant bits of RC, which represent the integer portion, and all
of RD and the MSB of RA. Therefore, RA is loaded into the accumulator and
rotated left, so that the MSB comes into the carry. The accumulator is
then exchanged with RD, and again rotated left. The carry comes into the
LSB and the MSB goes into the carry. The accumulator now contains the low
order 4 bits of the result. It is exchanged with RC and again rotated left.
The 3 least significant bits of RC move up one place, and the carry moves
into the LSB. Now, the accumulator contains the high order 4 bits of the

result. It is exchanged with RD, which contains the remaining 3 bits of
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the original RA. The MSB is shifted left into the carry, and tested for
zero. If it is zero, the result does not have to be rounded up to the
next higher number. If it is one, the result is incremented by 1. The

high order 4 bits are now in RD and the low order 4 bits in RC (0BD-0C9).

To store the results in the RAM, RD is loaded into the accumula-
tor and written into the memory location already selected (OCA-0CB). The
address of this location is again generated in PO by subroutine SELECT.
Rl is then incremented andvan SRC instruction executed to select the next

the next RAM location. RC is then written into this location (0Cc-0Dp1).

Finally, subroutine CHECK checks if all the Fourier coefficients
have been calculated and stored. If not, it increments RF to the next
value of f, ands sets the accﬁmulator to zero. When all the cosines have
been evaluated, it resets RF to zero and sets RE fo 2 and the accumulator
to zero. If all computation is over, it sets the accumulator to 1. The
accumulator is then tested, and if found to be zero, the program returns
to CONVERT, to repeat the whole process for finding the next Fourier coef-
ficient. If the accumulator is 1, the program proceeds to output the

Fourier spectrum.

4.5.3  Output Routine

Register pair P7 is intiallized to zero, and serves as a counter

for the Fourier coefficients, in the same way as in the conversion routine.

Register pairs P1. P2, P3, and P4 are set to (1,0), (2,0), (0,0)
and (3,0) to select output ports 1, 2, 0 and 3 respectively. The accumula-
tor, which contains 1, is written on port 3. This serves as a flag to

indicate that the computation is complete (0D6-0E1).
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Subroutine SELECT then selects the RAM address of the high order
4 bits of the Fourier coefficient, which is read in and written on port
1 (OE2-0E6). The low order 4-bit address is then selected (OE7-0E8). How-
ever, these 4 bits are not read in or outputted at this point, because, in
selecting the output port, the RAM chip selection would be lost. Then, to
read the sign from the RAM would again require RAM selection. Therefore,
the outputting of these bits is done after the sign is read in. RF is
shifted left and placed in RB. This serves as an argument for subroutine
SIGNOUT, which reads the sign of the Fourier coefficient into RS {DE9-0ED).
Again, the sign is not written on an output port at this stage, as this

would destroy the RAM selection.

The low order 4 bits are then read in and written on port 2 (OEE-

0F0) .

The sign of the coefficient is then transferred to the accumulator.
Subroutine SIGNOUT sets the carry to zero for an even numbered coefficient
and to 1 for an odd numbered coefficient. The carry is therefore checked,
and if it is one, the accumulator is shifted right to bring the sign into
the LSB. If the carry is zero, the sign is already in the LSB, but the
next most significant bit contains the sign of the next higher order (odd
numbered) coefficient, and we do not want this to appear on the output
port. Therefore, the accumulator is shifted right, so that the sign goes
into the carry, the accumulator is cleared by loading it with R3 (which
contains zero), and then the sign is shifted left back into the accumula-
tor LSB (OF1-0FA). Output port 0 is then selected, and the sign written

on it.

The "TEST'" input is checked for a zero, which is the sign for the
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program to proceed. If "TEST'" is "1", the program goes into a waiting loop

till "TEST" becomes '"0". The reason for this is explained below.

if "TEST'" is "0", the program executes subroutine CHECK, which, as
in the conversion routine, checks if all coefficients have been outputted.
If so, the accumulator is set to 1, and the program enters an infinite
loop, i.e. in effect it halts. If the accumulator is zero, the program
must return to address STAR to output the next coefficient. However, if
there were no control over this looping, the program would output the
coefficients so fast that the operator would not be able to see any of
them. Therefore, the program is not allowed to return to STAR unless the
operator sets "TEST' to "1" by pushing the TEST button. Now, if the first
check of the "TEST" input were not present, and "TEST" remained at "in,
again all coefficients would be outputted at a very high speed. By insert-
ing two checks for "TEST", we ensure that the program will step from one
coefficient to another only when the "TEST" input is set to "1" and then

again reset to "0'.

4.6 The Subroutines

4.6.1  WALSH, WALSIGN, READF, FETCHK, SIGN

These subroutines (located at 340, 342, 2DB, 2DF, and 2D0, respec-
tively) are used to read data from a ROM into a specified index register.
They all use the FIN (fetch indirect) instruction, and have to be on the
same page of memory as the data to be read. Subroutine SIGN also restores
the value of Q', by subtracting 80 or 144, to that necessary for reading
the corresponding 564 matrix element. Subroutine READF clears register

pair PO, after the read operation, to prepare it for the multiplication
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subroutine.

4.6.2 EIGHT

This subroutine (location 10F) multiplies the value of Q by eight,
and places the result in PO. The multiplication is effected by shifting

Q left three times.

4.6.3 MULT, MULTIPLY, MUL

These three subroutines (locations 11C, 1CA, and 146, respectively)
perform multiplication. If more index registers were available, it would
be possible to reserve certain registers in which arguments for multipli-
cation could be passed, and only one subroutine would be required. How-
ever, as this is not possible, three subroutines are necessary to handle

the different registers in which the arguments occur.

On entering the multiplication subroutine, the program jumps to
another subroutine, such as 6> (location 344) or 67 (location 12E), which
shifts the LSB of the multiplier into the carry. If the carry is 1, the
multiplicand is added to the product registers; if it is zero, the addition
is skipped. The right shifted multiplier is tested for zero. If it is, the
multiplication is complete; if it is not, the multiplicand is shifted left
one place by another subroutine, such as 89« (location 107) or 0189« (loca-
tion 136) or 014523« (location 349), and the procedure of testing the LSB

of the multiplier is repeated.

One feature of this technique of multiplication is the testing of
the multiplier, after each right shift, for zero. This procedure can save
a lot of time, compared to one where a counter is set up to shift the mul-

tiplier right as many times as there are bits in the multiplier. It is
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particularly useful when one of the numbers to be multiplied can be expec-
ted to be zero, and can be made the multiplier, rather than the multipli-
cand. For example, a number of the Walsh coefficients will be zero, while
none of the Eﬁ4 elements is zero. Therefore, the matrix element is made the
multiplicand, while the Walsh coefficient is made the multiplier. An excep-
tion to this arrangement is the multiplication of the uncompensated Fourier
coefficient by the K factor. Many of the Fourier coefficients can be expec-
ted to be zero, and by the above logic one should make the Fourier coeffi-
cient the multiplier. However, this is a 16-bit number, and in the worst
case it could involve 16 right shifts and additions. The K element is 8
bits long, and if it is made the multiplier a maximum of 8 right shifts

and additions need to be performed. Since addition is a relatively slow
process, it is preferable to make the K element the multiplier. Further,
using the Fourier coefficient as the multiplier would require another sub-
routine for shifting it right, whereas the K element can use the same sub-

routine used for shifting the 8-bit Walsh coefficient.

Subroutine MULTIPLY is slightly different from the other two in
that it checks register RA for the sign of the product, and then either
adds (using subroutine ADD2, location 1DF) or subtracts (using subroutine
SUB2, location 2E1) from the product registers. In ADD2, if, after the
addition is complete, an overflow occurs, then the number must have been
negative and has changed to positive owing to the addition. The sign reg-
ister RB is therefore set to zero. Similarly, in SUB2 if no overflow oc-
curs, the number must have been positive, and has changed to negative owing
to the subtraction. RB is therefore set to 1. All negative numbers are in

two's complement form.
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An alternative method for performing the multiplication would be

, to shift the product registers right after each addition, rather than
shifting the multiplicand left. This would eliminate the need of registers
to take the bits shifted out of the multiplicand. However, this method
would require a counter to keep track of the number of right shifts; sec-

ondly, it cannot be used when the products have to be accumulated.

4.6.4  SELECT

This subroutine (location 153) uses the value of f in register RF,
and the cosine/sine flag register RE, to select a RAM location for reading
from or writing in. The address of the RAM word to hold the cosine or sine
is generated in PO by shifting P7 left one place, incrementing it by 32,
and storing in P0. For example, if the address for the seventh sine is
required, then P7 is 0010 0111. On shifting left it becomes 0100 1110, and
on adding 32 (i.e. adding 2 to the higher 4 bits) the final result in PO
is 01 10 1110. This selects chip # 1 (first two bits), register 2 (next
two bits), word 14 (last four bits), which is where the seventh sine coef-

ficient is stored.

4.6.5 SIGNIN

This subroutine (location 182) writes a sign, available in R7,
into one of the status characters in the RAM register which holds the
corresponding coefficient. The actual status character and bit are selected
by the subroutine from the coefficient number. The logic is best illus-

trated by an example.

Suppose we want to write the sign for a coefficient numbered 0101.
The calling program will already have selected the RAM chip and register,

and will have placed the coefficient number, shifted left by one place,
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in RD, i.e. RD is 10101. Similarly, if the coefficient number were 0100,
RD would be 1000. RD is now shifted right twice in the accumulator, so
that it is left with 0010 for both the above cases. This is the status
character number which holds the sign for both coefficient number 0100

and 0101.

The accumulator is now tested for zero. If it is zero, the selected
status character is number zero; if not the accumulator is again decremen-
ted and tested for zero. If it is now zero, status character 1 is selected;

if not, the accumulator is again decremented, and so on.

Knowing which status character has to be written intd, we now have
to decide whether to write into the LSB or the next most significant bit.
To do this, RF, which is a counter for the coefficient number, is rotated
right in the accumulator to check for an even or odd numbered coefficient.
If the carry is zero, the coefficient is even numbered, and the sign is
directly written into the status character. If the carry is 1, the coeffi-
cient is odd numbered, and the sign cannot be directly stored, as it would
erase the sign of the even numbered coefficient previously stored in the
same status character. Therefore, we first read the status character into
the accumulator, rotate it right to save the previous sign in the carry,
load the new sign word into the accumulator, and rotate it back left. Now
the accumulator can be written into the status character, with the sign of

the even numbered coefficient in the LSB and that of the odd numbered

1. When the sign of the Walsh coefficient is being stored (location
012), RD is incremented before the sign storage, so that it is, for exam-
ple, 1011 and not 1010. However, by clearing the carry between right
shifts, this 1 can be eliminated.
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/coefficient in the next most significant bit.

4.6.6  SIGNOUT

This subroutine (location 167) reads the sign of a coefficient
from a status character. The number of the coefficient must be in RB.
The method of selecting the status character and reading the sign is iden-
tical to that in subroutine SIGNIN. In addition, before returning to the
main program, RB is rotated right twice, so that the carry is set to 0 or
1 depending on whether the coefficient is even or-odd numbered. This will
be used by the main program to decide which bit of the status character

has the sign.

4.6.7  CHECK

This subroutine (location 15E) is used to increment the Fourier
coefficient counter RF. If the counter goes to zero, it indicates that 16
coefficients have been evaluated, and we have to decide if these were the
cosines or sines. RE is checked, and if it is zero the sines are yet to be
processed. RE is set to 2, and the subroutine returns with the accumulator
set to zero. If RF does not become zero on incrementing, the program returns
with the accumulator set to zero. If RE is not zero, then the sines have

been processed, and the subroutine returns with the accumulator set to 1.



CHAPTER V

DISCUSSION

5.1 Test Results

The signal which was chosen to test the program was:
f(t) = cost + 0.25sint - 1.25sin2t + sin3t

The form of this function was chosen for two reasons:

- Both sines and cosines are present, and thus both sections of
the conversion program, and the logic which signals the completion of each
conversion, are tested;

- Both positive and negative signs are involved, and therefore

the logic for keeping track of the signs is tested.

The Walsh spectrum of this signal has already been given in section
2.3.3. This spectrum was entered into ROM # 3, using a ROM programmer. The
entire conversion was executed in about 900 msec. Owing to the drift in
the microprocessor's clock frequency, a more accurate timing was not
possible. The Fourier spectrum obtained at the output ports is listed in

table 5.1.

5.2 Accuracy

The accuracy of the Fourier coefficients depends on the number of
bits used to represent the conversion elements and the coefficients. Thus,
the only errors to be considered are the truncation errors, which occur as

follows:

(62)




TABLE 5.1 Results of the Test Program

Cosine Coefficients

Coefficient No. Magnitude
Binary Decimal
0 001.00000 1.00
1 000.00000 0.00
2 000.00000 0.00
3 000.00000 0.00
4 -000.00000 -0.00
5 000.00000 0.00
6 -000.00000 -0.00
7 000.00000 0.00
8 -000.00000 -0.00
9 000.00000 0.00
10 000.00000 0.00
11 000.00000 0.00
12 000.00000 0.00
13 000.00000 0.00
14 -000.00000 -0.00
15 000.00000 0.00
Sine Coefficients
Coefficient No. Magnitude
Binary Decimal
0 . 000.01000 0.25
1 -001.01000 -1.25
2 001.00000 1.00
3 000.00000 0.00
4 000.00000 0.00
5 000.00000 0.00
6 000.00000 0.00
7 000.00000 0.00
8 -000.00000 -0.00
9 000.00000 0.00
10 000.00000 0.00
11 000.00001 0.03
12 -000.00000 0.00
13 000.00001 0.03
14 000.00000 0.00
15 000.00000 0.00
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a). Truncation of Walsh Coefficients

Seven bits are used to represent the Walsh coefficients, and the

maximum possible error is %—of 2—7, ice. 278,

b). Truncation of Conversion Elements

Again, seven bits are used to represent the fractional part, and

the maximum possible error is +2°%,

c). Truncation of the Compensation Element

Six bits are used to represent the fractional part, and the maxi-
mum possible error is 12-7.
At each multiplication of a Walsh coefficient by a conversion ele-

-8
ment the errors are added. Thus each product can have an error of 2.+2

= *2 . Up to 8 products are needed to form one Fourier coefficient, so

the error in the uncompensated coefficient can be 8.1“2-7

On multiplying the Fourier coefficient by the compensation ele-

7 -7

ment, the error can increase to +(2°' + 8.2-7) = $9.2

Finally, the Fourier coefficient is truncated to 5 binary bits,

and this introduces a further error of 2_6. The total absolute maximum

error is, therefore, 1(9.2_7 + 2_6) = +11.277 = +0.0859. Expressed as a

percentage of the maximum possible coefficient, this becomes:

_—g—%—;—g——xlw = £2.03%

°

This absolute error can, of course, form a larger percentage in a
coefficient of lower magnitude. On the other hand, there may be no error
at all in some cases. For example, the test signal coefficients were ob-

tained without any error, because the various errors cancel each other.
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5.3 Execution Time

To compute the execution time the number of instructions have to
be counted, since the time for each instruction, 10.8 psec., is fixed. Of
course, care has to be taken that the number of times a loop is executed

is accounted for.

First, the worst case number of instructions for execution of

each subroutine were counted. These are listed in table 5.2.

Subroutine No. of instructions Subroutine "No. of instructions
WALSH 2 ADD 20
SIGN 11 ADD1 8
READF 4 ADD2 18
FETCHK 2 SELECT 11
SUB2 21 CHECK 8
WALSIGN 2 SIGNOUT 27
6~ 5 SIGNIN 25
67> 8 EIGHT .27
89« 8 MULT 119
0189« 14 MUL 475
014523« 20 MULTIPLY 489

TABLE 5.2 Numbér of Instructions in each Subroutine

Next, the number of instructions in each section of the program
are computed. The number of instructions in each subroutine are accounted
for here. Table 5.3 lists the number of instructions in each section of

the program.
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TABLE 5.3  Number of Instructions in each Section of Conversion Program

Section Number Number of Total
of Instructions times executed

NOP 1 1 1

Inputting Walsh coefficients 54 32 1728

Checking for completion 17 1 17

Initialization for conversion 8 32 256

Computation of each product 833 172 143276

and accumulation

Checking for formation of 126 16 2016

eight products )

Checking for s > 16 259 16 4144

Compensation for trucation 601 32 19232

and storage in RAM

Outputting first coefficient 88 1 88
Total = 170,758.

The execution time for the program is therefore 170,758 x 10.8 usec
= 1.81 sec. This represents the maximum possible time for the first Fourier

coefficient to be displayed at the output port.

5.4 Cost

-

The approximate cost of the system can be split in the following

way:
Programmer $ 2,000
Debugger § 300
PLS-401 card $ 170
LEDs § accessories § 50

In this cost analysis, however, it must be realized that the cost of the
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programmer and debugger should certainly not be allotted to this one sys-

tem alone, since they are used for a variety of purposes. Even the cost of

the card need be allotted solely to this system only if it is to be used

purely for Walsh-Fourier conversion. Otherwise, by merely replacing the

ROMs the system can be used in many different applications, and the great

flexibility of a microprocessor system adds to its economy in use.

5.5

5.6

325 mm.

Power Requirements

The power requirements of the system are estimated as follows:
PLS-401 card +5 volts, 550 mA; -10 volts, 350 mA.

7407 buffers +5 volts, 164 mA.
(4 nos., 41 mA. each)

Total +5 volts, 714 mA; -10 volts, 350 mA.

Size

The system which was constructed has dimensions of approximately

wide x 145 mm. deep x 120 mm. high. The layout, however, was such

as to permit easy access to all parts. All the components can be packaged

into a much smaller volume.

It is instructive to compare the cost, power requirements and size

of this converter with those for the design using standard IC gates

proposed by Doran [2]. The figures for that design are:

Cost $ 1,359
Power + 5 volts, 7.031 A.
requirement - 9 volts, 50 mA.

-12 volts, 52 mA.

Size 305 mm. wide x 127 mm. high x 254 mm. deep
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5.7 Extensions and Improvements

5.7.1  Accuracy, Speed and Number of Coefficients

To process a larger number of coefficients, the program would have
to manage a counter of more than 4 bits. The logical next higher size is
8 bits, and an 8-bit microprocessor could be used to process up to 28 =
256 coefficients. Using an 8-bit microprocessor would also allow using a
larger number of bits for each coefficient, thus improving the accuracy.
The number of fetches and instruction steps could also be reduced, and this,
coupled with the faster instruction cycle time of some 8-bit microprocessors,

could improve the speed of execution.

5.7.2  Input and Output

To demonstrate the working of the program, known Walsh spectra were
programmed into a ROM. In a practical case this would not be a very suitable
way of inputting coefficients. However, the program can be very easily
modified to read the coefficients from the input ports. The coefficients
could then be presented at the input ports through switches or a keyboard,
or the outputs of a Walsh spectral analyzer could be directly interfaced

at these ports.

For outputting the coefficients, the output ports could be inter-
faced to a seven segment display, so as to have a decimal outﬁut. The con-
version from binary may be accomplished either by using external hardware
decoders, or by modifying the program itself. While the program has been
written to allow sequential read-out of the coefficients, it can be very
simply altered to allow read-out only of selected coefficients. The coeffi-
cient to be read out can be set on a rotary switch connected to an input

port through an encoder. The program would interrogate the port and then
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display the coefficient specified.

5.7.3 Conversion from Fourier to Walsh Spectra

The dual function of converting from the Fourier spectrum of a
sequency limited signal to its Walsh spectrum can be readily accomplished.
The entire procedure is the same as for the Walsh-Fourier conversion, and
only the matrices of constants need to be changed. In effect, only ROM # 2

need be reprogrammed with the matrix values for Fourier-Walsh conversion.
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APPENDIX I

PIN FUNCTIONS OF THE 4004 CHIP

The 4004 is packaged in a 16 pin DIP. The pin configuration is

shown in the following figure. A brief functional description of each pin

is given below:

D, O B CH - RaM,
> R (53 CH~RAM,
Data Bus 1/0 2 o3 T CH-RAK, Memory conirol output
Dy 4 B CM-RAM3
¥ OF 23 Vpp
Clock phase | ¢ e #3 CM-RO¥  Memory control outputs
Clock phase 2 4 7 1o TEST
Sync output Sme3e o[ RESET

Pin No. Designation Description of Function

1-4 D0 ~ D3 Bidirectional data bus. All address and
data communication between the processor
and the RAM and ROM chips is handled by
way of these four lines.

5 ss Most positive supply voltage.

6-7 ¢1 - ¢2 Non-overlapping clock signals which
determine processor timing.

8 SYNC SYNC output. Synchronization signal sent
by processor to indicate beginning of
each cycle.

9 . RESET RESET input. A "1'" level applied to this

(71)
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Pin No. Designation Description of Function
pin clears all flag and status flip-flops
and forces the program counter to zero.

10 TEST TEST input. The logical state of this
input can be examined by the JCN instruc-
tion.

11 CM-ROM This pin enables a bank of upto 4K ROM.

12 Vdd Main supply voltage to the processor.
Value must be VSs - 15.0 volts %5%.

13-16 CM—RAM0 to CM-RAM outputs. These outputs act as bank

CM-RAM3 select signals for the 4002 RAM chips in

the system.



APPENDIX IT

INSTRUCTION SET OF THE 4004

Low order addresc bits
High order address bits
Chip select

Register pairs Pp through P7 designated by odd characters 1, 3, 5, 7, 9, B, D, F
Reglster pairs Pg through P7 designated by even characters 0, 2, 4, 6, 8, A, C, E

Register 0 — F
Data '

Data for odd register
Data for even register

Jump conditions

(73)

R R R RN DA SO L VY
HEX MNEMONIC
h CODING OPR OPA DESCRIPTION OF OPERATION A
1 ] 0 NOP No operation. j
3]
2 1 Cx JCN Cx Jump on condition Cx to the program memory address Ag, é
Az A LABEL Ap, otherwise continue in sequence. (see back cover). E
2 P,.0 FIM 3 Fetch immediate from program memory data Dy, to i
X X 1
Dy Dy Dy Dy index register pair Px ;
2 Pyl SRC P Send register control. Send the contents of index register
1 X pair Py to I/O ports and RAM register as chip select and
RAM character address. : 5
g B
3 Px0 FIN Px Fetch indirect. Send contents of register pair O out 25 2 H
program memory address. Data fetched is placed into register
pair Px .
{ 3 le JIN P Jump indirect. Jump to the program memory address desxgnatedg
x by contents of register pair Py g
i 4 A JUN Jump unconditional to program memory address A:, A,, Aq. 2
3 i 2 3
Ay Ay LABEL H
; ¥
: 5 A JMS Jump to subroutine located at program memory address Aj, ‘}
3 Y 1 4
Ay A LABEL Ay, A3. Save previous address (push down in stack). :
4
i §  Rx INC By Increment contents of register R,. H
s
3 7 Ry ISZ Ry Increment and step on zero. Increment contents of register H
Ag -A1 ’ LABEL Ry, if result is not 0 go to program memory address Ay, Ag, g
otherwise step to the next instruction in sequence. ,i
8 Ry ADD | Ry Add contents of register Ry to accumuiator. i
; {
9 Ry SUB Ry Subtract contents of register Ry to accumulator with borrow. 3
i ) £
A Ry Lb Ry Load contents of register Rx to accumulator. i]
4 B Rx XCH Ry Exchange contents of index register Ry and accumulator. %
: ¥
C Dy BBL D, Branch back one level in stack to the program memory address §
stored by a prior JMS instruction. Load data D, to accumulator. &
D, LDM Dy Load data D, to accuwmulator.
b e 1/0 and RAM register instructions
X Accumulator instructions




/0 AND RAM REGISTER INSTRUCTIONS

Hex MNEMOYIC
COoLNG | OPR OPA DZSCRIPTION OF OPERATION
13 [ WRM Write the contents of the acc:x::ml:!r.'»r into thx previously selected 5
RAM reyister charactern. E
3 1 WMP Write tha coaterts of the accumulator into the previously selscted i
RAM output port.  {Output tines.) .
[ 2 | WRR Wrile the contents of the accumulator into tha previcusiy selected
output port. (/O lines.)
i 3 | wem Write the contents of th2 accumulator into the previously selected ja
RAM program m2mory. L
£ 4 WRO Write the contents of the accumulator into the previously selected
RAM status character 0.
E 5 WR1 Writa the contents of the accumulator into the previously selected
RAM status characteri.
E 6 WR2 Write the coatents of the accumulator into the previously selected
RAM status charactar 2.
E 7 {wra Write the tontents of the accumulator into the previously selected
RAM status character 3.
£ 8 {ssM Subtract the previously selected RAM register character {rom |
accumulator with borrow. L,
E 9 | RDM Read the previously selected RAM register character into the
accumulator.
£ A RDR Read the contents of the previocusly selected input port iato the
accumulator. (/O lines.)
E B | AaoM Add the previousiy selected RAM register character to accumulator  §
with carry.
£ ¢ | RrRDO Pead the previously selected RAM status character 0 into
accumulator.
E D RD1 Read the previcusly selected RAM status character 1 into
accurnulator.
£ E |ERD Read the previously selected RAM status characler 2 into
accumulator.
E F RD3 Read the previously selected RAM status character 3 iato
accumulator.
ACCUMULATOR INSTRUCTIONS
HEX MNZMONIC
CODING | OPR OPA DESCRIPTION OF OPERATION
- F 1] CLB Clear both. (Accumulator and carry.) i
F 1 CLC Clear carry.
F 2 |1ac Incremeat accumulator.
F 3 CuC Comp'lement carry.
F 4 jcMmA Complament accumualator.
F 5 RAL Rotate left. (Accumulator and carry.) -
F [ RAR Rotate right. (Accumulator and carry.)
F 1 TCC Transmit carry to accumulator and clear carry.
F 8 DAC Decrement accumulator.
F 9 TCS Transfer carry subtract and clear carry.
F A STC Set carry.
F B DAA Decimal adjust accumulator.
F [ KBP Keyboard process. Converts the contents of the accumulator
fromn a one out of four ccde to a binary code.
F DCL Designate command line.
5
F i
! A
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THE CONVERSION PROGRAM
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4Tt ey Y O A ! 4 + - FRUGRANTASOENIBL Y rUnvi ‘
HEXADECIMAL MNEMONIC
r;rf‘oGFxE Z‘SS INSTR LABEL 7/76;éAF;A'l;;g|JNSTRUCg:>%’;AND T COMMENTS =
O |00 |oo NO P INDEX REGISTERS
1163 BEGIN JMS T El . [PTlcogre.Can
2140 WALSH Weainintg, Warss C |Ran Lec. |PE| Annness
312D SRC & Cocecricients Il Raml|A{Wayen [PB| Coegs,
4 |AA LD A 8| .. . P4 ., .
> |Eo W RM 6lwarsn | P3 Siawn
6 | 6D IMNC D 4 P2
712> SRC ) 21 . |PI
8 | AS LD B O ey s Geerd POl Apppcss
9 |EO WRM ¥
Al ego INC o T
B | 60 INC @) Weaitivg  StenN
C|l53 ITMS Ilm RaAam™
D | 42 WALSIGN
E] A0 LD o
F|FR DAC
10 | €3 bDAac
1 50 X O
2 | 51 JTMS
3182 S/IgNIN ) 4
4 17b 'S Z D T
5147 A1 InceemENTING  Couni TERS
6 | &6¢C INC C Ans  Cueckants, Yok  Comergmion,
7171 Al | S2Z2 1
8 1 4A A2
91¢é0 INC o
A|TF A2 152 3
B |01 BEGIN
ClAC LDd C S
D|Fs DAC
E|ES dDAC
Fl4cC Jond AA




2

HEXADECIMAL

MNEMONIC

PAGE LINE INSTRUCTION TITLE DATE
ADR | ADR [/INSTR LABEL OPERATION OPERAND COMMENTS J
O |20 125 CONVERT INDEX REGISTERS
| 1|2¢ Fiv & E |Casd38e [PT\Cqonren
2 | Ao 4 o cl .x . [ps| =
| 3 | 4o JTuw A el

4 | o1 BE gIN 4 8| P4 L

5 | 2¢c] coNVERT | £1™M 6 T 6| , ., P3 . . .

6 | 0o o (®) invviimLLize 4 e P2 e

7124 Fim 2 StorAGE REGIsTERS 2|  |Pl| |

8 | oo =) o Of @ —|PO—"—

S 124 £1m 1

Al oo (@) o

B|l2A =2Y 5 5

Cloo (@) o \

D| 20 SVAL FiMm o T Ciear 8 & x ReorstERS

Eloo o o

F 1 Ao L o

308D Xcw > 4

11 AFf LD F T

2 | €14 A3 cLcC Catcoraze Q, %, &

31 F6 RAR

4 1A Scw cCo

5139 A4

6 | 6D inNC D

7 | 40 JuN

8 | 32 ¢ A3

9 | B1 A4 Xcw A

AlSA IMS

B|of EIGHT 1

C|lAC LD c T 3
| D| g4 ADPD 1
E | &4 | xen 4
| FlAD Lo D
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-

N o PROGRAM ASSEMBLY FORM ’

HEXADECIMAL MNEMONIC
AOR | ADR | INSTR LABEL OPERATlomlNSTRUCg:D%zAND T COMMENTS > |
O |40 | F4 CMA INDEX REGISTERS
1187 X 7 el . . . |PT |
2123 1M A CarvcutaTe S C s I L
3 oA O A4 A . P5 5 !
4 |77 AS |52 7 8| ., P4 |
5| 4% Aé 6| ., . P3 R
6 | 40 FUN 4 ) P2 . f
7180 A7 2 Pl X |
8 | Aq Ac¢ LD - q Oof | PO L
9 | Fg RAL
Al B9 XCW q
Bl ASg LD> 53
ClFs RAL
D »8 Xon 3
E| 4o JuN
FlAa AL -
50| AbB A7 Lbd & T _Save Siaw OF
1187 Xxan 7 Accuvmvuiaten Products
2 | AC N C
31 FA cLc
4 1 F§ AL T Crecraw &
542 Jcad <A Fo R
6 |91 A 72 YX > 8
71 €2 I AC
8 | B6 X CH &
911 6cC INC C
Al 22A €ing 5
B (o N0 o O
C |54 I™MS B
D|AC MULT
ElTAQ D> |5
FIEQ DA C




— " v : < H

HEXADECIMAL MNEMONIC ' DATE
ADR | ADR | INSTR LABEL OPERATION’NSTHUCB:’%';AND ' . COMMENTS |
0 |60 |pna XcH A INDEX REGISTERS
Ry <N A0 T E PTl . .
216S Az Cuecrin g, Fok c| ... P8,
3142 JcN c 4 s > 16 Al 5'—|PS——>
4 191 | A 12 I 8 . P4
5 | £4 Ag cLc BN 6| | P3
6 | AA > A 4 P2 .
71 €8 RAL CALCOLATE 2| . Py,
8 | Bp | X W ‘B s/ = sx2 o] . POl .
9 | AE L» E
Alfrs RAL
B | A XC v A
Clap SRC =3 Y
D|pnE LD E T
ElAC J~ AN
F| 73 A 7?7 ﬁ
7018 Lo™mM 5
1 140 SOUN Read Signs  Awnd
2 |74 A 40 GENERATE  Sign 0O¢  facnser
3| b9 A9 Ld™m a
4 | %0 A 10 ADD o
51860 xch o
6 | §2 I™MS
71 Do S/ N
8 151 IT™MS
91617 : S/ENOUT
AlAR LY 8
Bl11A o £ X) co
HED A 11 %
D| Fé6 RAR
E F1 cLc
Fle9q A 41 ADD 9

:
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FRUGRAIN ALSENMDLT rUnw

HEXADECIMAL

MNEMONIC

PAGE LINE INSTRUCTION TITLE DATE
ADR | apr | INSTR LABEL OPERATION OPERAND COMMENTS )
O {80 R”Y9 XcwH q : INDEX REGISTERS
1T1€E9 R 5™ T Rea> Wprsn Coess. |E P7 e
2 | &6 X H o Anvy  Comversion C P& =
31eb v C & Erement  Any Muemewy (AL IPS
412n SRc 5 8 |Wasw |P4| coere.
5| A7 LD 7 T Save sSigw  0O€ 6|Fen  |P3cerr.
6 | B Xaw B Y Accumuratens Trovucts| 4| PRg—, |P2] Ducx
7 | E9 . >M 2| fPro~ |Pl| ducy
8 187 XCH 7 0 - {PO L
9 | AQ Ly q T save sign OF
Al A Xcw A t PrRo>ucy
B|[52 S™MS
Clyp READ F
D | 51 IMS
E|cA MULTIPLY |
F|l 40 J UN T Revoan To Fowmrg _
90 | 2D S VAL Y Nexx Prob vy
1| 54 A 42 IMs T
21463 , SELECT Store  Sign  0€
31 A1 LD 1 Fouvrrer CoEECICNENT
4 1> XC ¥ >
51 51 JIms
6 | B2 SN IN v
7 AT LD 7 ™
8 | b JcN Ao OptAaIin 2!s  comere meENT
S| AD A3 0 FouriER  Co EFFICIENT |
AlAS LD 3 le = \s  Negatvg _
B | FA ™ A
c|83 X CH 3 3
D| A2 LY 2.
E | E4 e A
FiIBd2 2.

ha e
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v

o ROGRAM ASSEMELY FORM

HEXADECIMAL MNEMONIC TE
;At;;r%e 'Alz’)\'g INSTR LABEL OPERATION'NSTRUC:;:’OE';AND T COMMENTS >
o |ARO |AS LD ) INDEX REGISTERS
1 | E4 <M B E{ P7 .
21ng XcH 3 C [Comeen-|P6|SATED
3 | A4 Ly 4 A|{FovmiealP5|
4 | £4 CMA 8 |Coer - | P41 eEnT,
5 |4 xXon 4 6 | K wmatrix| P3| ELemenn
6 | 73 1S2 3 4 |Uncome- | P2lemsated
7 1 AD A 143 2 [Fovgier | Pl |CoeFF.
8 | 72 sz -2 0 ) FO .
9 | AD A 13
Al 78 {52 5
B|ADd A 13
C | ¢y INC 4 ¥
D| 20 A 43 FivM o T
E| 40 4 0
F | AF Ld «
B0 | &1 X< 1

1152 IMS Comeensate  foa
2 dF | FETCH K TrRuncATION
3 |2c F1™ 6
4 1 o006 O o)
S | 2A M S
6 | OO @) (o}
7128 €M 4

| 8 oo o O
9120 F1mM o
Al oo o o
B|S1 IMS
C|l46¢6 MUL Y =
D|lAA Ly A T '
E| FS AL
FleDd X 5 |

R R R R R RO R R R R R R R R
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HEXADECIMAL

MNEMONIC

TITLE

DATE

i\ADG: hg\‘g (INSTR LABEL OPERATlONINSTRUC;r):’CéNRAND COMMENTS ‘
o |c0 | Fg RAL INDEX REGISTERS
11BC XCH C El .. |P7
2 |es RAL C| [P~ —
3 | &> X< W D SeLecy ¥ B\IS Al .. IPS
4 &S RAL Csviown  Boxen) 8 .. P4
5 | 1A JIcw .0 Anp Rouwn 0f 6 | P3 .
6 lca A 14 4| P2 .
7 173¢ 1S5z c 2 Pl ,
8 |cCA A 14 0 __|FO
9| &d iNC D Y
AlADd A 14 LD D T
B|EO WRM
C| 54 IMS Store . FouvmieR
D|53 SELECT CoeepmiarEnt  IN  RAam.
E| &1 INC 1
Fl 21 SRC () -
D0 | Ac LD C
11 E0 WR M
2 |51 IMS T
3| 5€ CHECK AvL COEFFICIENTS COMPUTED ?
4 | 14 S ol N A
5 | 24 cONVERT | Y NO
6 | 2€ M 7 TYES
7] 00 le) (o)
8 | 22 1™ 1
9110 A o SELECT Quxeux PorTs
Al 24 F 1M 2
B l20 2 o
Cl| Z¢ Fim 3 S
D| 6o (o} o
E|2¢ 1™ b
. Fl 30 3 o ¥
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HEXADECIMAL

MNEMONIC

TTDGF? ADR_| INSTR LABEL OPERATION'NSTRUCB:’OENRAND T COMMENTS > .
o |EO0 |29 SRC 4 T sex fLag INDEX REGISTERS
112 wWRR ‘“COM?UTAT\oN comerere| E , P7
2 | 514 S7AR Ims T C . P6 .
31563 SELECT Al . . I[P5
4 1 ET RbpM™M 8 ) P4
5123 SRC 1 6 P3
6 | €2 wRR 4 . P2
7 | 61 INC 1 2 Pl .
8 | 24 SRAC - 0 . FO
9 | AF L> F QuteuT
AlFg RAL CoerFrIc ENTS
B |®&B XcH )
C | &4 IMMS
D| 67 SrgN oUT
E| E9 RbM™M
Fi1 25 SRC 2.
F0|ge2 W RR
1 A8 b 8
2 | 1A Jced co
3 | F8 A 45
4 | F4 cLcC
5 | £¢ RAR
6 | 40 Jon
71 FB A 16
8 |6 A 15 RAR
9 | AD LD 2
AlFS RA L
B 127 A 46 SRC 3
Cle2 wRR &
D1 19 A 17 Jcn TA wart_ foe “"TEST' = 4"
E[FD A 47 ¥
Flsa IS T
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HEXADECIMAL

MNEMONIC

“PAGE
ADR

LINE
ADR

INSTR

LABEL

INSTRUCTION

TITLE

DATE

—

OPERATION

OPERAND

COMMENTS

INDEX REGISTERS

41100 | sE CHECK ALy Cocencients

111C ALE JCN A QureuxTEDd ? E .. |P7
2 | 01 ALE Yes. Havuy C| . P6
3114 A 49 Jcn TO T NO. waT  FOR Al P5
4103 A 49 "TesT” = "0 8| ., .. P4
5 | 4o JunN T Retugn Yo Qurevur |6 | P3
6 | €2 STAR f Next  Cocerncment |4 P2
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