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ABSTRACT 

A microprocessor based system to convert the Walsh spectrum of a 

frequency limited signal to its Fourier spectrum has been designed and 

built. The entire processing hardware is implemented on a single PLS-40l 

card, which consists of an Intel 4004 microprocessor, read only memories 

to store the conversion program and matrices of constants, random access 

memories to store results, and input/output ports. The converter can pro­

cess up to 32 coefficients, and utilizes an 8-bit word length. For test 

purposes, the Walsh spectra are programmed into a read only memory, and 

the Fourier spectra are displayed in binary form on an LED matrix. The 

maximulll conversion time is 1.Sl seconds, and the maximum absolute error 

is ~.03% of the largest possible coefficient. 
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CHAPTER I 

INTRODUCTION 

The microprocessor has developed over the last few years into a 

computer built on a few low cost chips. This has facilitated the use of 

software techniques in many areas where, previously, computer applications 

were too expensive. Thus, it is finding widespread use in digital signal 

processing, and this report describes a microprocessor in such an appli­

cation. 

Sinusoids have long been used to characterize wave phenomena. 

Many naturally occuring waves are sinusoidal in form, and the use of 

Fourier analysis is very helpful for studying linear systems, particularly 

in electrical engineering. However, with the continuing advances in digi­

tal electronics, it is increasingly attractive to consider alternative 

methods of signal analysis, especially those employing binary basis func­

tions. The Walsh functions form such a binary orthogonal set, and have 

been used to build a Walsh spectral analyzer [1]. 

For a frequency limited signal, a Fourier spectrum is still pre­

ferred, and the Walsh spectrum needs to be converted to the corresponding 

Fourier spectrum. This thesis discusses the design and implementation of 

a microprocessor based Walsh-Fourier converter. 

One method which has been proposed [2] to implement this conver­

sion utilizes standard integrated circuits to control a Fairchild 9344 

fast multiplier, and various memories for storage of constants. An 

(1) 
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alternative method would be to perform the conversion by a software rou­

tine running on a digital computer. Until recently, the high cost of com­

puters prevented their use in a dedicated instrument. However, in recent 

years low cost microprocessors have become available, and these can be 

used to build programmable digital instruments, such as the Walsh-Fourier 

converter. 

The microprocessor instrument has a number of advantages over a 

random logic converter. It is cheaper, smaller, and consumes less power. 

The number of devices used is much less, reducing assembly requirements 

and increasing reliability. It is more flexible, allowing modifications 

in the functions to be easily implemented by merely changing the program. 

Indeed, while the system may be used as a dedicated instrument, it can 

also be used for many other applications, again only involving repro­

gramming. 

The ~ain disadvantage of the microprocessor is its low speed. An 

improvement can be achieved by using the microprocessor to control a fast 

multiplier, but again this entails higher cost and lower reliability. 

Microprocessor costs are continually falling~ and their perform­

ance is improving; thus their use in a Walsh-Fourier converter is indeed 

very attractive. 

Chapter II describes the Walsh Functions and the process of Walsh 

to Fourier conversion. 

Chapter III describes the microprocessor hardware. 

Chapter IV details the conversion program. 

Chapter V discusses the test results and design features, together 

with suggestions for further improvements. 



CHAPTER II 

WALSH FUNCTIONS AND WALSH-FOURIER CONVERSION 

2.1 Definition 

The Walsh functions are a complete set of orthonormal functions, 

which take on only two values, +1 and -1. A natural Walsh set comprises 

2
n functions wal(k,t), 0 < k < 2

n _l, where n is the number of bits in the 

binary representation of the order, k, of the Walsh function. The normal­

ized time, t, takes values between 0 and 1. 

The Walsh set for n=4 is shown in Figure 2.1. As can be seen from 

the figure, the functions change sign only when t = ~.(~)m , where ~ and 

m are integers. The sequency of any Walsh function is defined as half 

the number of sign changes in the unit interval, and is denoted by the 

letter s. As in the case of Fourier functions, the Walsh functions can 

be divided into two subsets: the cal functions and the sal functions. 

Wal(O,t), which corresponds to d.c., is generally regarded as cal(O,t). 

Subsequent Walsh functions are then alternately sal and cal. For every 

sequency value there is one cal and one sal function, and the relation 

between the sequency and the order is: 

k = 2s for cal functions (2-la) 

k = 2s-l for sal functions (2-lb) 

A formal definition of the Walsh functions, as given by Cardot [3] , 

is as follows: 

(3) 
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wal(O, e) I , 
wal(O,G) a 

1 
I I wal(l, e) sal(l,e) 

-1 

1 
wal (2, 0) I ca1(1,e) 

-1 

1 
w-al(3, e) t 531(2,0) 

-1 

1-

1 wa1(4,0) ca1(2,O) 
-1 

val (5, e) -~~ sa1(3,e) 

1 
val(6,e) I ca1(3,e) 

-1 

'Wal(7 t e) -~~n sa1(4,e) 

1 
"Na1(S,e) ca1(4,e) 

-1 

1 
wa1(9, e) sa1(S, e) 

-1 

1 
va1(10,e) ca1(S,e) 

-1 

1 
val(11,0) sal (6, e) 

-1 

1 
101a1(12,e) ca1(6, e) 

-1 

1 
1.T31(13, e) sal (7 , e) 

-1 

'-1al(14,0) 
1 

c31(7,e) 

val (15 , e) 
1 

LJlSL sal(D,e) 
-::1 

at I I ! I 

0 0.5 1 

Fig. 2. 1 \-'31s11 Functions 



5. 

The order, k, is expressed in the form 

m-l 
k = L (2

r
k ) 

r=O r 
(2-2) 

where {k } are the digits, ° or 1, of the binary representation of k, 
r 

and 2m is any power of 2 that exceeds k. Then, 

m-l k 
wal(k,t) = 'f[sgn(cos r 2r TIt) 

r=O 

The signum function, sgn(x) , is ±l according as x>O orx<O 

(2-3) 

Each one of the above cosines turns into a square wave, when k r 

is 1, the period depending on r. For k = 0, the cosine becomes the con­
r 

stant 1. The Walsh function, then, is the product of as many such square 

waves as there are ones in the binary representation of k. 

As an example, let us take the case of k = 5. Then, 

kbO = 101 lnary 

and kO = 1, kl = 0, k2 = 1. Wal(5,t) is, therefore, the product of 

sgn(coS20TIt) = sgn(COSTIt) and sgn(cos22TIt) = sgn(cos4TIt). Figure 2.2, 

which shows cos 'ITt , sgn(cosTIt), cos4TIt, sgn(cos4TIt) and wal (5, t), illus-

trates how each cosine is turned into a square wave, and how these con-

tribute to the Walsh function. 

2.2, Walsh Spectral Analysis 

It is an established fact that any periodic waveform can be ex-

pressed in terms of any orthonormal set of functions, the most common of 

which are the Fourier functions. Fourier analysis utilizes the frequency 
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cos t 

--+-----~------~------~----~---sgn (cost) 

cos 4t 

-+---~~---+---+----+----+----I--~-- sgn (COS 4t) 

wal (5,t) = 

sgn (COS t)· 

sgn (COS 4t) 

Fig. 2.2 The Composite Square Waves in Wal(S,t) 
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concept, which is particularly attractive in electrical engineering, as 

this helps to simplify network analysis. Sinusoids remain sinusoids after 

various mathematical operations such as addition, subtraction, integration, 

and differentiation. Thus, if a linear system is excited by a sum of sin-

usoids, the output will also be a sum of sinusoids, and it is easier to 

determine the response of a system this way, rather than by solving its 

differential equation. 

Conventional frequency analyzers, however, are generally limited 

to frequencies above 20 Hertz. At lower frequencies, the frequency selec-

tive elements become increasingly difficult to realize. Thus, in this 

frequency range, a digital approach becomes necessary. 

As seen in the previous section, Walsh functions also form an 

orthonormal set, which may be used for spectral anlysis. A function, f(t), 

may be expanded in a Walsh series in the form 

f(t) = AO + L [A cal(s,t) + B sal(s,t)] 
s=l s s 

(2-4) 

where s is the sequency of the calor sal function. The Walsh coefficients 

are obtained from the relations: 

1 T 
AO = T J f(t) .dt 

0 
(2-5) 

1 T 
A = TJ f(t).cal(s,t).dt s 

0 
(2-6) 

1 T 
B = TJ f(t).sal(s,t).dt s 

0 
(2-7) 
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T is the period of f(t). 

The Walsh functions are bipolar in nature, and readily lend them­

selves for use in a binary digital system. A digital Walsh spectral ana­

lyzer, in evaluating the above integrals, would only have to accumulate 

the sampled values of f(t), with the sign depending on the sign of the 

sample and that of the Walsh function. The multiplications which are re­

quired in Fourier analysis are eliminated. This simplifies the hardware 

and increases the speed of the analyzer. Even in the case of computer ana­

lysis, a fast Walsh transform is much faster than a fast· Fourier transform. 

A digital Walsh spectral analyzer, to generate the first 64 coefficients 

of a periodic or random signal, has been designed and built by Siemens[l]. 

2.3 Walsh-Fourier Conversion 

While the Walsh spectrum of a periodic waveform is easily computed, 

in most practical applications we are more concerned with the Fourier spec­

trum. Thus, it is necessary to convert the Walsh spectrum to the corre~ 

sponding Fourier spectrum, using the process derived by Siemens·and 

Kitai [4]. 

2.3.1 Conversion Equations 

Each of the calor sal functions in equation (2-4) can be expanded 

in a Fourier series, with the series for cal containing only cosine terms, 

and that for sal containing only sines. The coefficients of the series are 

found by evaluating the two expressions: 

a f,s = 2 f 
1 

o 
cal(s,t).cos2TIft.dt (2-8) 



b f,s 

1 
= 2 J sal (s, t) . sin21Tft. dt 

o 

9. 

(2-9) 

where a
f 

and b_ are the fth cosine and sine coefficients of cal(s,t) 
,s t,s 

and ~a1(s,t), respectively. 

The Fourier series for each Walsh function is now substituted back 

into equation (2-4). Coefficients of like frequency components are co1-

1ected, and equated to the corresponding terms in the Fourier expansion 

of f(t): 

f(t) 
ao = -- + 2 

00 

L: [af·cos21Tft + bf ·sin21Tft] 
f=l 

Thus, we obtain the Walsh-Fourier conversion equations: 

00 

L: a f .A 
s=l ,s s 

00 

b
f = L: b f .B 

s= 1 ,s s 

a
O = 2.A

O 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

In effect, this is equivalent to multiplying the vectors of Walsh 

coefficients, ~ and ~, by conversion matrices ~ and ~. The matrix form 

of the conversion equations is: 

a = 

b = 

F .A 
-a -

where a and b are the vectors of Fourier coefficients. 

(2-14) 

(2-15) 
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The first 4x4 elements of F and £b are listed below: -a 

4/1T a 0.527 a 

a 4/1T a a 

-4/31T a 1.025 a 
F = (2-16) -a a a a 4/1T 

.. 

4/1T a -0.527 a 

a 4/1T a a 

4/31T a 1.025 a 
£b= a a a 4/1T 

(2-17) 

The sth C01U~1 of each matrix represents the Fourier expansion of 

1 () 1 ( ) . h h fth . h 1 . h ca s,t or sa s,t, Wlt t e element ln t at co umn representlng t e 

fth Fourier coefficient. For example, the first column of F represents 
-a 

the Fourier series for cal(l,t): 

cal(l,t) = (4/1T).coSt - (4/31T).cos3t + •.. 

Similarly, the rows of each matrix represent the Walsh expansion of the 

corresponding Fourier function. For example, the third row of £b gives 

the Walsh expansion of sin3t: 

sin3t = (4/31T).sal(1,t) + 1.025 sal(3,t) 
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2.3.2 Compensation for Truncated Spectra [4] 

Any Walsh spectral analyzer can only provide a limited number of 

Walsh coefficients, and evaluating equations (2-14) and (2-15) using these 

truncated spectra would introduce errors in the conversion. 

However, if the signal being analyzed is frequency limited, so that 

the highest component is of frequency F, then these F Fourier coefficients 

can be exactly calculated from the first S Walsh coefficients, provided 

n-l 
S > F, and S = 2 ,n being an integer. The conversion equations (2-14) 

and (2-15) are modified to: 

a = K.F .A - --a (2-18) 

(2-19) 

where K is a diagonal matrix, of order SxS, with the diagonal elements 

given by 

Kf f 
-2 n n-l = sinc (f/2) for f < 2 , , (2-20a) 

-2 
Kf f = sinc (1/2) for f = 2n - l 

, 2 (2-20b) 

As n ~ 00, Kf,f approaches 1, for all values of f. 

2.3.3 An Example 

Consider the frequency limited function: 

f(t) = cost + O.25sint - 1.25sin2t + sin3t 

The first sixteen cal and sal coefficients of the Walsh spectrum of this 

function are given in table 2.1. Using this truncated spectrum, the matrix 
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TABLE 2.1 Walsh Spectrum of fet) ~ cost +0.25sint - 1.25sin2t + sin3t 

Cal Coefficients 

Coefficient No. Decimal Binary Hexadecimal (x2 7) 

0 0.63662 0.1010001 5 1 
1 0.00000 0.0000000 o 0 
2 0.26370 0.0100010 2 2 
3 0.00000 0.0000000 o 0 
4 -0.05245 -0.0000111 -0 7 
5 0.00000 0.0000000 0 0 
6 0.12663 0.0010000 1 0 
7 0.00000 0.0000000 0 0 
8 -0.01247 -0.0000010 -0 2 
9 0.00000 0.0000000 o 0 

10 .,..0.00517 -0.0000001 -0 1 
11 0.00000 0.0000000 o 0 
12 -0.02597 -0.0000011 -0 3 
13 0.00000 0.0000000 o 0 
14 0.06270 0.0001000 o 8 
15 0.00000 0.0000000 o 0 

Sal Coefficients 

Coefficient No. Decimal Binary Hexadecimal (x27) 

0 0.37136 0.. Qll0000 3 0 
1 -0.79577 -0.1100110 -6 6 
2 0.44639 0.0111001 3 9 
3 0.00000 0.000,0000 o a 
4 -0.35543 -0.0101101 -2 D 
5 0.32962 0.0101010 2 A 
6 0.11013 0.0001110 o E 
7 0.00000 0.0000000 a 0 
8 -0.04613 -0.0000110 -0 6 
9 0.06557 0.0001000 o 8 

10 -0.10255 -0.0001101 -0 D 
11 0.00000 0.0000000 o 0 
12 -0.16190 -0.0010101 -1 5 
13 0.15829 0.0010100 1 4 
14 0.04870 O.OOOOHO o 6 
15 0.00000 0.0000000 o 0 



multiplications shown below are executed, to obtain the uncompensated 

Fourier spectrum. It can be seen that the values of the Fourier coeffi­

cients are substantially in error. 

Cosine evaluation 

1.273 

o 

-0.424 

o 

o 

1.273 

o 

o 

Sine evaluation 

1. 273 

o 

0.424 

o 

o 

1.273 

o 

o 

0.527 

o 

1.025 

o 

-0.527 

o 

1.025 

o 

o 

o 

o 

1.273 

o 

o 

o 

1. 273 

0.636 

o 

0.264 

o 

0.371 

-0.796 

0.446 

o 

= 

= 

0.997 

o 

o 

o 

0.249 

-1. 234 

0.972 

o 

Fig. 2.3 Evaluation of the Fourier Spectrum 

13. 

To compensate for the truncation, the vector of Fourier coeffi­

cients is premultiplied by the ~ matrix, as shown in Fig. 2.4. The original 

Fourier spectrum is now obtained. 

This example was also used to test the microprocessor program. 



Com~nsation of cosine coefficients 

1.003 

o 

o 

o 

o 

1.013 

o 

o 

o 

o 

1.029 

o 

o 

o 

o 

1.234 

Compensation of sine coefficients 

1.003 

o 

o 

o 

o 

1.013 

o 

o 

o 

o 

1.029 

o 

o 

o 

o 

1.234 

0.997 

o 

o 

o 

0.249 

-1.234 

0.972 

o 

= 

= 

Fig. 2.4 Compensation for Truncation 

2.4 Storage of Matrices of Constants 

1.00 

o 

o 

o 

0.25 

-1.25 

1.00 

o 

14. 

The three matrices involved in the conversion are the ~, £b and 

K matrices. Since the 4004 is a 4-bit microprocessor, it directly suggests 

the processing of 24 = 16 coefficients. Thus, the dimension of each of 

these matrices is chosen to be l6x16, so each contains 256 elements. How-

ever, we shall see that, owing to certain properties of the matrices, all 

elements need not be stored, thus effecting saving in memory requirements. 

The actual scheme for storing the matrices will be detailed in Chapter IV. 
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In the following sections, we shall see the properties which enable sav-

ing in the memory requirements. 

2.4.1 Storage of the Ea and Eb Matrices 

2.4.1.1 Unique Elements in !a and Eb 

The Fourier series for each Walsh function has been calculated by 

Siemens [1] , using a non-recursive equation for the Fourier transform of 

a Walsh function. He has shown that each element of the F matrix has the 
-a 

same absolute value as the corresponding element in the ~ matrix. Thus, 

only one matrix of absolute values need be stored, together with the sep-

arate signs for a and b
f 

. The matrix of absolute values is denoted F. 
f,s ,s 

Further savings in memory space are effected by realizing that 

only some of the elements of f are non-zero, and these are the only ones 

which need to be stored. The pattern of non-zero elements is shown in Fig. 

2.5. 

From Fig. 2.5, it can also be seen that not all the non-zero ele-

ments are unique. Thus, only alternate rows contain unique elements. There 

are eight such rows, and each row has eight elements, giving a total of 64 

unique elements. This matrix, which represents the only elements which 

need to be stored, is denoted the !u4 matrix, and is shown in Fig. 2.6. 

The magnitudes and signs of the elements of the !u4 matrix are 

listed in table 2.3. 

2.4.1.2 Algorithm for the Retrieval of Elements from the !u4 Matrix 

While computing the fth cosine or sine coefficient, it is necessary 

to multiply the corresponding elements of the fth row of the fa or Eb 
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COLUMN (s) 

(A) (B) (C) (D) (E) (F) (G) (H) 

0 2 4 6 8 10 12 14 
1 3 5 7 9 11 13 15 

(A) 0 AA AB AC AD AE AF AG AH 
1 AA AB AG AD 

(B) 2 BA BB BC BD BE BF BG BH 
3 AA AB 

(C) 4 CA CB CC CD CE CF CG CH 
5 BA BE BC BD 

(D) 6 DA DB DC DD DE DF DG DH 
7 AA 

ROW (f) (E) 8 EA EB EC ED EE EF EG EH 
9 CA CB CC CD 

(F) 10 FA 'FB FC FD FE -FF FG FH 
11 BA BB 

(G) 12 GA GB GC GD GE GF GG GH 
13 DA DB DC DD 

(H) 14 HA HB HC HD HE HF HG HH 
15 AA 

Fig. 2.5 Pattern of Non-Zero Elements in F Matrix 

COLUMN (X) 

0 1 2 3 4 5 6 7 

0 AA AB AC AD AE AF AG AH 

1 SA BB BC BD BE SF BG BH 

2 CA CB CC CD CE CF CG CH 

3 DA DB DC DD DE DF DG DH 

ROW (Q) 4 EA EB EC ED EE EF EG EH 

5 FA FB FC FD FE FF FG FH 

6 GA GB GC GD GE GF GG GH 

7 HA HB HC HD HE HF HG HH 

Fig. 2.6 ~4 Matrix (8x8) 
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TABLE 2.2 Elements of ~4 Matrix 

Magnitude Sign 
Word f,s 

Decimal Binary Hexadecimal a 
f ,5 

b f,s 

0 0, 0 1. 2732395 1.0100011 A 3 0 0 
1 0, 2 0.5273931 0.1000100 4 4 0 1 
2 0, 4 0.1049050 0.0001101 o D 1 1 
3 0, 6 0.2532631 0.0100000 2 0 0 1 
4 0, 8 0.0249442 0.0000011 o 3 1 1 
5 0,10 0.0103322 0.0000001 o 1 1 0 
6 0,12 0.0519437 0.0000111 o 7 1 1 
7 0,14 0.1254031 0.0010000 1 0 0 1 
8 2, 0 0.4244132 0.0110110 3 6 1 0 
9 2; 2 1.0246241 1.0000011 8 3 0 0 

10 2, 4 0.6846319 0.1011000 5 8 0 1 
11 2, 6 0.2835838 0.0100100 2 4 0 0 
12 2, 8 0.0860242 0.0001011 o B 0 1 
13 2,10 0.2076808 0.0011011 1 B 1 1 
14 2,12 0.3108163 0.0101000 2 8 0 1 
15 2,14 0.1287443 0.0010000 1 0 0 0 
16 4, 0 0.2546479 0.0100001 2 1 0 0 
17 4, 2 0.6147744 0.1001111 4 F 1 0 
18 4, 4 0.9200750 0.1110110 7 6 0 0 
19 4, 6 0.3811075 0.0110001 3 1 0 1 
20 4, 8 0.2037062 0.0011010 1 A 1 1 
21 4,10 0.4917903 0.0111111 3 F 0 1 
22 4,12 0.3286038 0.0101010 2 A 0 0 
23 4,14 0.1361121 0.0010001 1 1 0 1 
24 6, 0 0.1818914 0.0010111 1 7 1 0 
25 6, 2 0.0753419 0.0001010 o A 1 1 
26 6, 4 0.3787692 0.0110000 3 0 1 0 
27 6, 6 0.9144296 0.1110101 7 5 0 0 
28 6, 8 0.7504530 0.1100000 6 0 0 1 
29 6,10 0.3108478 0.0101000 2 8 0 0 
30 6,12 0.0618315 0.0001000 o 8 1 0 
31 6,14 0.1492744 0.0010011 1 3 0 0 

0 = plus sign 
1 = minus sign 
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TABLE 2.2 (cont'd) Elements of £U4 Matrix 

Magnitude Sign 
Word f,s 

Decimal Binary Hexadecimal a f,s b f,s 

32 8, 0 0.1414711 0.0010010 1 2 0 0 
33 8, 2 0.0585992 0.0001000 0 8 0 1 
34 8, 4 0.2945982 0.0100110 2 6 0 0 
35 8, 6 0.7112230 0.1011011 5 B 1 0 
36 8, 8 0.8666278 0.110lll1 6 F 0 0 
37 8,10 0.3589690 0.010ll10 2 E 0 1 
38 8,12 0.0714034 0.0001001 o 9 1 1 
39 8,14 0.1723830 0.0010ll0 1 6 0 1 
40 la, 0 0.1157490 0.0001l11 o F 1 0 
41 10, 2 0.2794429 0.0100100 2 4 0 0 
42 10, 4 0.4182159 0.01l01l0 3 6 1 0 
43 10, 6 0.1732307 0.0010110 1 6 1 1 
44 10, 8 0.3240918 0.0101001 2 9 1 0 
45 10,10 0.7824269 0.1100100 6 4 0 0 
46 10,12 0.5228009 0.10000ll 4 3 0 1 
47 10,14 0.2165512 0.0011100 1 C 0 0 
48 12, 0 0.0979415 0.0001101 o D 0 0 
49 12, 2 0.2364517 0.0011110 1 E 1 0 
50 12, 4 0.1579920 0.0010100 1 4 1 1 
51 12, 6 0.0654424 0.0001000 o 8 1 0 
52 12, 8 0.2157347 0.0011100 1 C 0 0 
53 12,10 0.5208298 0.1000011 4 3 1 0 
54 12,12 0.7794768 0.1l00100 6 4 0 0 
55 12,14 0.3228699 0.0101001 2 9 a 1 
56 14, 0 0.0848826 0.0001011 0 B 1 0 
57 14, 2 0.0351595 0.000010l 0 5 1 1 
58 14, 4 0.0069937 0.0000001 a 1 0 1 
S9 14, 6 0.0168842 0.0000010 0 2 1 1 
60 14, 8 0.1714282 0.0010110 1 6 1 0 
61 14,10 0.0710079 0.0001001 o 9 1 1 
62 14,12 0.3569808 0.010ll10 2 E 1 0 
63 14,14 0.8618279 o .1l01l10 6 E 0 0 

o = plus sign 

1 = minus sign 
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by the Walsh coefficient vector, and to accumulate the products. Since it 

is the ~4 matrix which is stored, and not the f matrix, it is necessary 

to find a relationship between the elements of ~4 and those in f. The 

algorithm for this has been given by Siemens [1], and is explained below. 

The rows and columns of the F matrix are numbered from a to 15, 

and denoted f and s respectively. The rows and columns of the ~4 matrix 

are numbered from a to 7, and are denoted Q and X respectively. 

When computing the fth Fourier coefficient, we will take the fth 

f F d 1 · 1 the sth 1 t' th t b th th 1 t' row 0 _, an mu tlP y e emen ln a row yes e emen ln 

the Walsh coefficient vector. Therefore; we have to find the row, Q, in 

F d · h fth . F d hI' h' b h ~4 correspon lng to t e row ln _, an t e re atlons lp etween t e 

two is: 

(2-21) 

where x represents the number of ones to the right of the least signifi-

cant zero in the binary representatio~ of f. Since f needs 4 bits to 

represent it in binary, x can take values from a to 4. 

For example, if f = 11, then fb · lnary = 1011. Hence, x = 2, Q = 1. 

This can be verified by referring to Figs. 2.5 and 2.6, where it can be 

seen that row 1 of ~4 contains the s-ame elements as row 11 of F 

Having located the correct row in ~4' we take each element in 

that row and multiply it by the corresponding element in the Walsh vector. 

Since consecutive elements in an ~4 row do not represent consecutive ele­

ments in an f row, we do not multiply by consecutive Walsh coefficients. 

- th 
Rather, the Walsh coefficient which is multiplied by the X element of 
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of the Qth row of !u4 is: 

x x s = 2 .2X + (2 - 1) (2-22) 

where x has been computed, for a given f, from equation (2-21). 

Taking the previous example of f = 11, and x = 2, we get, for 

successive values of X ( i.e. X = 0, 1, 2, . ) 

s = 3, 11, . 

This, again, can be verified by referring to Figs. 2.5 and 2.6, where it 

is seen that the first two elements of row 1 of !u4 are the same as ele­

ments 3 and 11 of row 11 of F. 

The way this algorithm is actually implemented on the microproc-

essor is discussed in Chapter IV. 

2.4.2 Storage of the K Matrix 

The ~ matrix, though having a dimension of l6x16, is a diagonal 

matrix, and only the 16 diagonal elements need to be stored. These ele-

ments as calculated from equation 2-20, for n = 5, are tabulated in table 

2.3. 

To save the time involved in multiplying by the ~ matrix, we could 

premultiply the I and ~ matrices, and store the resulting matrix. However, 

the F matrix would lose its property of having only 64 unique elements. 

Since memory storage space is more critical than speed, it is preferable 

to store the individual matrices. Furthermore, multiplication by ~ really 

consists only of multiplying each Fourier coefficient by the corresponding 

diagonal element of ~. Thus only 16 extra multiplications are involved, 

and the loss of speed is not very great. 
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TABLE 2.3 The K Matrix 

Magnitude 
Word 

Decimal Binary Hexadecimal 

0 1.0032190 01.000000 4 0 
1 1.0129507 01.000001 4 1 
2 1.0294235 01. 000010 4 2 
3 1.0530293 01. 000011 4 3 
4 1.0843429 01. 000101 4 5 
5 1.1241502 01. 001000 4 8 
6 1.1734882 01. 001011 4 B 
7 1. 2337006 01. 001111 4 F 
8 L3065140 01.010100 5 4 
9 1.3941420 01. 011001 5 9 

10 1.4994277 01.100000 6 0 
11 1. 6260414 01.101000 6 8 
12 1. 7787576 01.110010 7 2 
13 1.9638485 01.111110 7 E 
14 2.1896510 10.001100 8 C 
15 1. 2337006 01.001111 4 F 



CHAPTER III 

THE MICROPROCESSOR SYSTEM 

3.1 Introduction 

Within the last five years, the steady advances in semiconductor 

technology (particularly MOS) has led to the integration of over 14,000 

transistors on a single chip. ·This substantial increase in chip density 

has enabled the realization of a computer central processing unit (CPU) 

on a small number of LSI chips, generally less than five. This miniatur­

ized CPU is known, owing to its small size, as a microprocessor. 

Different types of microprocessors, with varying degrees of com­

plexity, are available on the market. Some are built on a single chip (e.g. 

Intel's 4004), while others, such as Fairchild's PPS-2S, have their func­

tions split among several chips. However, all microprocessors perform the 

basic functions necessary for executing the operations and processing the 

data as specified by the user's program. Thus, any microprocessor must 

have a timing and control unit, an instruction decode and execute unit, an 

arithmetic unit, and some general purpose registers. Depending on the archi­

tecture of the processor, these functions may be integrated on a single 

chip, or distributed among the various chips forming the microprocessor. 

3.2 Selection of the Microprocessor 

The microprocessor which was selected for use in the converter is 

the Intel 4004. The major factor in selecting this microprocessor is that 

it was available, together with memory and input/output ports, on a 

(22) 
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single card. This card, the PLS-40l, manufactured by Pro-Log Corporation, 

Monterey, California, is a self-contained microprocessor system, requiring 

very little external circuitry. The availability of such an assembled and 

tested card greatly simplifies the implementation of the conversion sys-

tern. The PLS-40l is described in section 3.4. Other factors which make 

the Intel 4004 particularly suitable for this application are described 

below. 

The major part of the Walsh-Fourier conversion is the matrix mul-

tiplication. Thus, the microprocessor should be suitable for executing a 

large number of arithmetic operations. Therefore, it is important to have 

a number of index, or "scratch pad", registers where the operands, inter-

mediate results and final products can be stored, and where counters can 

be set up. If such registers are not available, then the main random access 

memory (RAM) has to be used. Referencing the main memory requires many 

programming steps, and is slow and inefficient. The 4004 has 16 4-bit 

registers, which, according to the comparison given by Torrero [5], is 

the largest among available microprocessors l . As will be seen in Chapter 

IV, these index registers are very helpful in programming. 

A "TEST" input is available on the 4004, and this can be used to 

allow external events to control the program execution. Since input/output 

is not a major consideration, an interrupt is not necessary. 

The 4004 is provided with a three level hardware stack. Thus, as 

with index registers, the main memory need not be accessed during 

1. The Intel 4040 microprocessor, which is not included in Torrero's 
compariso~, does have a larger number of index registers. 
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subroutine calls, resulting in program simplicity and saving in execution 

time. Further, no software is needed to manage the stack. 

The 4004 can, through the interfacing chips, be used with standard 

read-only memory (ROM) chips. This is particularly important, because often 

the cost of the memory is the largest component of the total system cost. 

Finally, the 4004 is one of the cheapest microprocessors avail­

able on the market. 

One disadvantage of the 4004 is that it is a 4-bit processor. As 

a compromise between accuracy and cost, it was decided to work with 8-bit 

coefficients. This implies the use of multiple precision arithmetic, which 

slows down the conversion. Nevertheless, the entire conversion is executed 

in less than two seconds, which is quite acceptable in this application. 

3.3 Architecture of the Intel 4004 

The 4004 is available in a 16-pin dual in line (DIP) package. The 

pin configuration and a description of the pin functions is given in 

Appendix I. 

The instruction set of the 4004 is listed in Appendix II. 

The block diagram of the 4004 (Fig. 3.1) consists of the following 

functional blocks [6] : 

a). Address Register and Incrementer 

The address register is a dynamic RAM cell array of 4x12 bits. It 

contains one level used to store the instruction address (program counter) 

and three levels used as a stack for subroutine calls. The address incre­

menter is 4-bit carry look ahead circuit which increments the address 
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after each instruction. The contents of the stack are multiplexed onto 

the 4-bit internal bus. 

b). Adder and Accumulator 

The 4-bit adder is of the ripple-through carry type. One term of 

addition comes from a buffer, while the other term comes from the accu­

mulator and carry flip-flop. The output of the adder is transferred to 

the accumulator and carry flip-flop. The accumulator is provided with a 

shifter to implement rotate right and rotate left commands. The accumu­

lator also communicates with special ROMs which perform a code conversion 

to implement the DAA and KBP instructions, and with condition logic which 

is used in implementing the ISZ and JCN instructions. 

c). Index Register 

The index register is a dynamic RAM cell array of l6x4 bits and 

has two modes of operation. In one mode of operation the index register 

provides 16 directly addressable storage locations for intermediate com­

putation and control. In the second mode, the index register provides 8 

pairs of addressable storage locations for addressing RAH and ROM, as well 

as for storing data fetched from ROM. The index register, too, is multi­

plexed onto 'the internal bus. 

d). Instruction Register, Decoder and Control 

The instruction register is loaded with the contents of the inter­

nal bus through a multiplexer and holds the instruction fetched from ROM. 

The instructions are decoded in the instruction decoder and appropriately 

gated with timing signals to provide the control signals for the various 

functional blocks. 
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3.4 The PLS-40l Card 

The PLS-40l system incorporates the Intel 4004 CPU, together with 

other necessary system components, such as ROM and RAM, and input/output 

ports, on a single card. A block diagram of the card is shown in Fig. 3.2, 

while a detailed schematic is given in Fig. 3.3. 

The RAMs are Intel 4002-1 and 4002-2, and they interface directly 

to the CPU. Each RAM is provided with one 4-bit output port. Only one of 

these ports, however, has been wired out, owing to pin limitations. 

Upto four ROMs, each containing 256 8-bit words, can be plugged 

into the sockets provided on the card. The ROMs used are Intel's l702A. 

These do not interface directly with the CPU, and hence the two interface 

chips, 4008 and 4009, are used. In addition, a 74155 two line to four line 

decoder is used to select the designated ROM from a 2-bit address. 

74175 latches are used as output ports, while 8234 buffers serve 

as input ports. Again, the 4008 and 4009 chips are used for interfacing, 

and the 74155 is used for selecting the port. 

The clock is an astable multi vibrator. The output at each of the 

collectors is taken to provide the two phases. The levels at this stage 

are +5 and 0 volts, and therefore a level shifting circuit is used to 

obtain the required levels of +5 and -10 volts. The clock operates at a 

frequency of 750 KHz. 

The reset circuit, similarly, has a level shifter to obtain levels 

of +5 and -10 volts. 

The card plugs into a 56 pin edge connector, to which all external 

connections can be made. 
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Power supplies required for the card are +5 and -10 volts. The 

power supply is mounted externally, and is connected to the card through 

the connector. 

Except for the "TEST" input, all inputs and outputs have logic 

levels of "I" = a volts and "a" = +5 volts. The "TEST" input has logic 

levels of "I" = -10 volts and "a" = +5 volts. 

All input ports are TTL compatible. The RAM output port is aMOS 

port, and requires a 12K pull down resistor to -10 volts for TTL compat­

ibility. The other output ports are TTL compatible. 

3.5 Display, Reset and Test Circuits 

To utilize the PLS-40l, some amount of external circuitry is 

required. This is described below. 

3.5.1 Display and Input/Output 

To display the states of the output ports, an LED matrix was 

added on a separate card. Each bit of the output ports is connected to 

an LED. If the bit is "I", the corresponding LED lights up. If the bit 

is "0", the LED is off. Since the output ports do not have sufficient 

current sinking capacity, 7407 buffers are used. The circuit is shown in 

Fig. 3.4 and the layout is shown in Fig. 3.5. The 12K pull down resistor 

is required only for the RAM output port. 

The output ports are also brought to an output connector, through 

which other circuits can be connected to the microprocessor. Similarly, 

the input ports and the "TEST" input are brought out to an input connector. 

The power supplies are also available on the connectors. The scheme of 

input and output connections is shown in Fig. 3.6. 
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3.5.2 Reset Circuit 

A RESET push button is included on the LED matrix card, and is 

used to switch the levels at the reset input between a and +5 volts. The 

circuit used is shown in Fig. 3.7 

3.5.3 TEST Circuit 

This circuit produces a single pulse, having levels +5 and -10 

volts, and is used in reading out the Fourier coefficients. The circuit, 

shown in Fig. 3.8, consists of two parts. The cross-connected NAND gates 

form an R-S flip-flop which eliminates switch bounce, because the output 

of the flip-flop changes only when the input switches between "1" and "0", 

~nd not when the switch bounces. The output of the flip-flop is fed to a 

level shifter, which changes the levels of the output to +5 and -10 volts. 

The push button, which is of the momentary contact type, serves to invert 

the logic level of the output, as set by the switch. The flip-flop elim-

inates bounce in the push button, too. 

The circuit is built on a card which plugs into the inp~t connector. 

The power supply for the circuit is picked up from the connector, and the 

output is connected to the "TEST" input through the connector. 

--~--------------~--+ 5 volts 

4.7 K!J 220 !J 

To Reset Input 

Fig. 3. 7 The Reset Circuit 
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CHAPTER IV 

THE CONVERSION PROGRAM 

4.1 Introduction 

The conversion program calculates the first 16 cosine and 16 sine 

coefficients of the Fourier spectrum of a frequency limited signal from 

the first 16 cal and 16 sal coefficients of the Walsh spectrum. A brief 

description of the major steps involved in the conversion is given below, 

while a detailed explanation of the program is given in later sections. A 

flow chart for the process is shown in Fig. 4.1. 

4.1.1 Inputting the Walsh coefficients 

The known Walsh coefficients are presented to the instrument, in 

Hexadecimal code, by entering them in a read only memory (ROM), using a 

ROM programmer. These coefficients are then read into the random access 

memory (RAM), from which they will be fetched during the conversion. 

4.1.2 The Walsh-Fourier Conversion 

The cosine functions are evaluated first, and then the sines. A 

counter is set up to keep track of the number of the coefficient being 

evaluated, and from this the first set of Walsh coefficient and conversion 

element to be multiplied is selected. The signs of these numbers are read 

into the index registers, and the resultant sign decides whether the pro­

duct will be added or subtracted during accumulation. The Walsh coefficient 

and the conversion element are then read into the index registers, multi­

plied, and the product accumulated. The next set of Walsh coefficient and 

(3S} 



Fig. 4.1 Flow Chart for the Conversion Program 

SET CAL/SAL = SAL 

CONVERT 

SET CAL/SAL=CAL 

Set RF, Walsh coeff address = 0 

READ WALSH COEFF.SSIGN 

FROM ROM 

STORE WALSH COEFF. S SIGN 

IN RAM 

INCREMENT RF, 

WALSH COEFF. ADDRESS 

NO 

NO 

cos/ sin = cos 

f Register RF=O 

Set Product Register P
1 
SP

2
=O 

Set X Regist. RC=O 

" II RD=O 

II Sign II RA ,RB=O 

CALCULATE 0 S X 

0' = 80+X 

CALCULATE 2 x 

Accumulated Product Sign 

from RB to R7 

36. 

lJ.J 
Z -t-
::> 
o 
0:: 

t­
::> 
a.. 
z 

-c::: 
Q) 

o 
'+-
'+­
Q) 
o 
o 

i.. 
Q) 

i.. 
::J 
o 

'+-

'to­
o 
c::: 
o -o -::J 
a. 
E 
o 

U 

I 



YES 

GET 2X+1 

I ncrement X 

GET S = 2 x (2 x +1)-1 

YES 

Determine sign of 

Product in R 9 

Read in Walsh coeff. + i element 

a save product sign in RA 

a accumulated product sign in RB 

Multiply .f element by Walsh­

coeff.,accumulate in P1 a P2 

a set sign in RB 

A12 Store sign of 

Fourier coefficient 

Complement Fourier coeff. 

if necessary 

Multiply by K 

Round off to 8 bits 

a store in RAM 

Increment f 

Go to SVAL 

37. 

~ .... 
CD 
o 
o 

.... 
o 
c 
o 

4= 
C -::::J 
Cl. 
E 
o 
u 

T 
c 
0 -C 
0 
C 
::J ... 
t-... 
0 .... 
c 
0 

+= c 
II) 

c 
CD 
0. 

E 
0 

U 
I 
I 



Go to CONVERT 

NO 

'-t---I Set cos/sin NO 

Register=sin only cos 

WAIT for 

cos/ sin = cos 

RF=O 

r-----II~ 

TEST=I,I Output coefficient a sign 

WAIT for TEST = 10
1 

Increment RF 

NO 

Set cos/sin NO 

=sin 

HALT 

38. : 

.. o 

I 
I 

I 

...... c 
en 0 
c -Q) C 
Q. 0 
E c: 
o 2 
ut-

I.LJ 
Z 
t­
::> 
o 
a:: 

t­
::> 
0-
t­
:::> 
o 



39. 

conversion element is then selected, and the above procedure repeated. 

When all the products required to form one Fourier coefficient have been 

accumulated, the result is multiplied by the ~ matrix element, and stored 

in the RAM. The counter is now incremented, and the whole procedure repeated 

for the other Fourier coefficients. 

4.1. 3 Outputting the Fourier Coefficients 

The Fourier coefficients are read from the RAM and displayed on 

the LED matrix, by writing on the output ports. Each coefficient is main-

tained at the port till a pulse is given to the "TEST" input, when the 

next coefficient is displayed. When all the the coefficients have been 

displayed, the program halts. 

4.2 Storage of Walsh and Fourier Coefficients 

The Walsh coefficients are entered into ROM # 3, with locations 

o to 15 storing the cals and locations 16 to 31 the sals. Locations 32 to 

47 hold the signs of the cals and 48 to 63 store the signs of the sals. 

The program then reads these coefficients into the RAM. 

Each coefficient is 8 bits long. These coefficients, and the K 
\-:,0 

matrix and conversion elements, are floating point numbers. However, the 

position of the binary point is always fixed; hence it is ignored, and the 

number is treated as an integer. The Hexadecimal code which is entered in 

the ROM (as given in tables 2.1, 2.2, and 2.3) corresponds to the integer 

formed by ignoring the binary point. 

All the Walsh coefficients are scaled so that their magnitude is 

always less than 1. It will be noticed from table 2.1 that the most sig-

nificant bit of the Walsh coefficients is always zero, i.e. only 7 bits 
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are used. The reason for this is given in section 4.3. The position of the 

binary point in the computed Fourier coefficients is also calculated in 

section 4.3. 

Two RAM chips are required for storing the Walsh and Fourier coef-

ficients. Chip # 0 is used to store the cal and cosine coefficients, and 

chip # 1 is used for sals and sines. The advantages of this arrangement 

are: 

if only cals or only sals are involved in the conversion, then 

only one chip is required; 

the addressing logic for accessing the coefficients is simplified. 

The counter which keeps track of whether cals or sals are being 

processed also serves to select the RAM chip. 

The method of storing the coefficients in the RAM can be under-

stood with the help of Fig. 4.2. This shows the arrangement for chip # O. 

The arrangement for chip # 1 is identical. 

Word Status Character 
Register o 1 2· .. 13 14 150 1 2 3 

o cal coefficients 0 to 7 

cal coefficients 8 to 15 1 ~. f Slgn or even s 

2 cos coefficients 0 to 7 

3 
cos coefficients 8 to 15 sign for odd f 

-./ 
~ 

sign for even f 

Fig. 4.2 CaliCos Storage RAM (Chip # 0) 
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The 4002 RAM is organized into four registers, numbers 0 to 3. 

Each register contains 16 4-bit words, and 4 4-bit status characters. 

Registers 0 and 1 are used to store Walsh coefficients, and registers 2 

and 3 are used for Fourier coefficients. Two 4-bit words are required for 

each coefficient. Thus words 0 and 1 of register 0 store the cal 01 coef-

ficient, words 2 and 3 the cal 1 coefficient, and so on. 

The signs of the coefficients are stored in the status characters, 

with each character holding two signs. Thus, the least significant bit 

(LSB) of register 0 status character zero is used to store the sign of 

the cal 0 coefficient, and the next higher order bit is used to store the 

sign of the call coefficient. If the sign is positive, the bit is kept 

zero. If the sign is negative, it is set to one. 

4.3 Maximum Possible Size of a Computed Fourier Coefficient 

The Fourier coefficients are calculated from the relation: 

15 
= Kf f' 2: Ff .A 

, s=O ,s s 

To find the maximum value of af , we first take the worst case maximum for 

the summation, i.e. A = 1111111, for all s, the signs being such that all s 

terms add up. Therefore, we should sum up the elements in each row of ~, 

and multiply by 1111111, to get the maximum possible value of the sum 

for each value of f. 

The sum of the elements in each row of the ~4 matrix is shown in 

1. The arguments 0, 1 etc., correspond to values of s, as defined in 
section 2 .. 4.1.2, and represent sequency values of 1, 2, etc. 
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Fig. 4.3. It can be seen that this sum can require 9 bits. The Walsh coef-

ficients are, therefore, chosen to be 7 bits long, so that the product may 

fit within 16 bits, which is equivalent to four 4-bit registers in the 

microprocessor. 

Row No. 

o 
1 

2 

3 

Binary 

100101111 

110010011 

110101011 

101101001 

Fig. 4.3 

Decimal 

303 

403 

427 

361 

Row No. 

4 

5 

6 

7 

Binary 

101010111 

101101011 

100110011 

11001110 

Sum of Elements in Each Row of ~4 Matrix 

Decimal 

343 

363 

307 

205 

Each of these sums is now multiplied by the corresponding ~ e1e-

ment, and by A = 1111111, taking care that these sums are for alternate s 

values of f. Of course, for the intermediate values, the sums will be 

less, and need not be considered. The result of the multiplication of the 

sums by Kf f is shown in Fig. 4.4. , 

Row No. 

o 
1 

2 

3 

Kf,f'}:Ff,S (decimal) Row No. 

19392 4 

26598 5 

29463 6 

27075 7 

Kf,f' L Ff,s (decimal) 

28812 

34848 

34998 

2870 

Fig. 4.4 Kf,f·}:Ff,S for Each Row of ~4 Matrix 



43. 

The seventh row can, thus, produce the largest possible coefficient, 

and this corresponds to f = 14. Now, multiplying by As = 11111112 = 127
10

, 

we get the largest possible coefficient as 34998 x 127 = 4444746. In binary, 

this becomes: 

(23 bits) 

This number has been obtained by using integer values for A , F
f s ,s 

and Kf f' The effect of ignoring the binary point is one of multiplying , 
A 7 F by 27 and Kf,f by 26 Therefore, the computed Fourier coef-s by 2 , f,s 

ficient has to be divided by 220. In effect, the binary point has to be 

placed 20 positions from the right, as indicated by the arrow. The decimal 

equivalent of this number is, therefore, 4.2388. 

After each Fourier coefficient is computed to 23 bits, the 8 bits 

shown boxed will be picked out and rounded to the nearest bit. The largest 

possible value of any coefficient, correct to 8 bits, is 

100.01000 (decimal 4.25) 

4.4 Storage of ~4 and ~ Matrices 

The matrices of constants are stored in ROM # 2. Each ROM word is 

8 bits long, and only one word is needed to store each 8-bit constant. The 

~4 matrix is stored, one row at a time, in locations 0 to 63. Locations 

64 to 79 are used for storing the 16 diagonal elements of the K matrix. 

Locations 80 to 143 contain the signs for the cal-cos conversion 

matrix, while locations 144 to 207 contain the signs for the sal-sin con-

version matrix. Again, a zero represents a plus, and a one a minus. 
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4.5 The Conversion Program 

In the following description, numbers within parantheses refer to 

program addresses. The first number refers to the page (each ROM chip is 

one page of program memory) and the other two numbers refer to the loca­

tion within that page. The program is listed in Appendix III. 

4.5.1 The Input Routine 

The program begins at location zero of page zero. The first instruc­

tion is NOP (no operation), which avoids any power-on reset problems. 

The input routine starts at BEGIN (001). The program jumps to sub­

routine WALSH
l

, which reads the contents of the ROM location on page 3, 

specified by register pair PO, into register pair P5. Initially, PO is 0, 

so that ROM location 0, which contains cal coefficient 0, is read into PS. 

Register pair P6 is a counter which selects the RAM location into 

which the Walsh coefficient is to be written. It is initially at 0, thus 

selecting RAM chip # 0, register 0, word O. The SRC instruction (003) 

selects this location. The high order 4 bits, which are in register RA, 

are loaded into the accumulator (004) and then written into the selected 

memory location (005). P6 is then incremented to select the next location, 

and the above procedure is repeated for the low order 4 bits (006-009). 

Register RO is now incremented twice, thus adding 16 x 2 = 32 to 

PO. The sign of any Walsh coefficient is stored 32 locations below its 

magnitude, and thus adding 32 to PO selects the address of the sign of 

the Walsh coefficient. The program then jumps to subroutine WALSIGN, which 

reads the sign word into P3. PO is then restored to its earlier value, by 

1. All subroutines are described in section 4.6. 



twice decrementing RO (OOE-Oll). Subroutine SIGNIN then writes the sign 

into the correct RAM status character. 
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Register pair P6 is again incremented to select the next RAM loca­

tion, which will receive the high order 4 bits of the next Walsh coeffi­

cient. Similarly, PO is incremented to set the ROM address of the next 

Walsh coefficient (014-019). 

Register RF is a counter, taking values 0 to 15, which keeps track 

of the number of the current calor sal coefficient being transferred. It 

is incremented and tested for zero. If it is not zero it indicates that 

the transfer is not complete, and the program returns to BEGIN to read the 

next Walsh coefficient. 

If RF is zero, it indicates that either the first 16, or all 32, 

transfers have taken place. To determine which, we load the accumulator 

with register RC and decrement by two (OlC-OlE). If only the cals have 

been read in, RC is 0010, and the accumulator becomes zero. Therefore, on 

testing the accumulator for a non-zero, control transfers to location 021, 

which sets RC to 4, i.e. 0100 binary. The SRC instruction (003) then 

selects RAM chip # 1, so that all the sals are transferred to chip # 1. 

When 16 sal transfers are complete, RC is 0110, and decrementing by two 

(OlC-OlE) does not make the accumulator zero. Thus, on testing the accu­

mulator for non-zero (OlF), control transfers to CONVERT (025), which pro­

ceeds to compute the Fourier coefficients. 

4.5.2 The Conversion Routine 

At the start (location CONVERT), certain registers, which 

will hold information calculated by the routine, are cleared (025-02C). 
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These registers are: 

Register RC, which will hold X; 

Register RD, which will hold x' , 

Register RB, which will hold the sign of the accumulated products; 

Register RA, which will hold the sign of each product. 

Register RE is a flag register which indicated whether cosines or 

sines are being evaluated. Initially it is 0, for the cosine computation. 

After all cosines are calculated, it will be set to 2, for the sine com-

putation. 

Register RF, which takes values ° to 15, is a counter representing 

which cosine or sine coefficient is being evaluated. In other words, it 

gives the current value of f 

For each value of f, up to 8 sets of ~Valsh coefficients and con-

version elements will be selected, multiplied, and then accumulated, to 

form one Fourier coefficient. This will then be compensated for truncation 

and stored in the RAM 

After one Fourier coefficient has been stored in the RAM, the pro-

gram will return to CONVERT, to clear registers RA to RD, before calculat-

ing the next Fourier coefficient. 

4.5.2.1 Selecting the Walsh Coefficient (s value) and Conversion Element 

(Q value) 

Knowing f, the next step is to calculate Q and x, using equation 

2-21. Q will be stored in register Rl, and x in register RD. Owing to the 

limited number of index registers, PO will be used later in the program 

for multiplication, and therefore the value of Q cannot be saved. 
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Similarly, RD is used later in the program, and x, too, cannot be saved. 

Hence, after the multiplication of one Walsh coefficient by its corres-

ponding I element, Q and x have to be re-calculated for the next multi-

plication. This would not be necessary if more index registers were avail-

able, because Q and x could be saved, and calculated only for a new value 

of f. After each multiplication the program loops back to SVAL (02D) and 

clears PO and RD to receive Q and x. 

To find Q, f is loaded into the accumulator, which is rotated 

right. For every 1 in the LSB, as detected by a 1 in the carry after the 

right shift, RD is incremented. When a zero is detected in the carry, 

rotation stops, the accumulator contains Q, and RD has x. The value of Q 

is then stored in Rl (031-039). 

To illustrate this, consider the example of section 2.4.1.2, i.e. 

f = 1011. When this is loaded into the accumulator, and rotated right, the 

accumulator and RD will have the following values: 

Accumulator Carry RD 
(after rotation) 

Initial value 1011 0 
First rotation 0101 1 1 
Second rotation 0010 1 2 
Third rotation 0001 0 2 

(rotation stops) 

We can see that the accumulator contains 1, which is the value of Q, and 

RD is 2, which is the value of x. 

Since each row of the ~4 matrix occupies 8 locations in the ROM, 

the value of Q is multiplied by 8, to get the ROM address of the first 
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element in that row. This is done by jumping to subroutine EIGHT. 

Register RC contains X, which represents the position along the 

~4 row of the current element to be multiplied. Initially it is zero, and 

it is incremented after each multiplication. RC is now added to Rl (03C-

03E), to gtve the ROM address of this matrix element. This address is 

called Q'. The element itself is not read into the registers, as this 

would block one register pair, which is needed for other calculations. The 

reading is done only after the sign of the product is evaluated, when the 

registers used to store the signs of the Walsh coefficient and the matrix 

element become free. 

Having found Q and x, we now have to find the value of s (that is 

to choose the Walsh coefficient) for the current 'value of X, from equation 

2-22. This is rewritten below as: 

s = 2x .(2X + 1) - 1 ( 4-1) 

x 
Therefore, 2 and 2X + 1 are calculated, multiplied, and the product 

decremented by 1. 

x 
To obtain 2 , the one's complement of x is obtained and stored in 

R7. Register R9 is set to 1, and R7 is incremented and tested for zero. 

If it is not zero, R8 and R9 are shifted left one place, and R7 is again 

incremented and tested for zero. When R7 becomes zero, R8 and R9 contain 
x 

2 , and the program exits from the loop (03F-047). Another way of doing 

this would be to take the two's complement of x, and to increment it after 

the left shift. The disadvantage of this method is that when x = 0 (i.e. 

for all even values of f) the two's complement of x is 0, and 16 left 
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shifts are required to obtain the result. With the one's complement method, 

no left shifts are required, since 20 
= 1, which is the starting value of 

R9. The one's complement method, however, requires more memory space. 

The sign of the accumulated products, which is held in RB, is 

transferred to R7 (050-051), because RB will be used to multiply 2x and 

2X + 1. 

Register RC is loaded into the accumulator and shifted left. If the 

carry is found to be 1, it indicates that X was 8. This means that all 

multiplications and accumulations necessary to form one Fourier coefficient 

are over, because the value of X for the last element in an Eu4 row is 7. 

The program then jumps to address A12, to multiply the Fourier coefficient 

by Kf,f' 

If the carry is not zero, the accumulator is incremented to obtain 

2X + 1, which is then stored in R6. RC, i.e. X, is then incremented for 

the next calculation of s (057-059). 

x P5 is now cleared (05A) to receive the product of 2 and 2X + 1, 

and the multiplication is performed by subroutine MULT. Register RB is 

loaded into the accumulator, decremented, and then exchanged with RA, which 

will now contain the value of s. We have to check if this value lies be-

tween 0 and IS. If the accumulator is 0, then obviously s must be less than 

16, and it can be used to select a Walsh coefficient. If the accumulator 

is not 0, then s + 1 must be 16 or more. However, if s + 1 is 16 (i.e. s = 

IS) then RB must have been 0, and decrementing the accumulator when it 

was loaded with RB would set the carry to zero. If s + 1 was 17 or more, 

then the carry would be set to 1. Therefore, if the accumulator, when load-

ed with RA is found to be non-zero, the carry is checked. If it is zero, 
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we have a valid s, which is used further (05E-064). If the carry is one, 

it implies that the matrix multiplication for the current value of f is 

complete, and the program exits from the loop to address A12 (091), to 

multiply the coefficient by K
f 

f' , 

If s < 15, it is multiplied by 2, and stored in register RB (065-

068). This is necessary because each Walsh coefficient occupies two add-

resses in the RAM. The contents of register RE are also shifted left one 

place (069-06B) and stored in register RA, thus putting the correct RAM 

chip number (depending on whether cosines or sines are being evaluated) 

in the most significant bits of RA. In addition, any overflow which oc-

curred on multiplying s by 2 is shifted into the LSB of RA, and this gives 

the register number within the chip. Thus P5 now has the complete address 

of the high order 4 bits of the current Walsh coefficient. 

For example, let us take s = 13 (1101 binary) during the compu-

tation of a sine, so that RE is 0010. Register RB, on shifting left, 

becomes 1010, and the carry is set to 1. When RE is shifted left, the 

accumulator becomes 0101, and this is stored in RA. The complete address 

of the Walsh coefficient is then 0101 1010, which specifies chip # 1, 

register 1, word 10. This indeed is the location where the 13th sal coef-

ficient is stored. 

The SRC instruction to select this RAM location is now executed. 

However, the coefficient is not read in immediately, for the same reason 

as in the case of the ~4 element. Rather, the sign of the product is first 

evaluated. 
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4.5.2.2 Determining the Sign of the Product 

The signs of the Walsh coefficient and the conversion element are 

now obtained and combined to form the sign of the product. 

The :',. of the conversion element is stored 80 or 144 locations 

below its magnitude, depending on whether the cal-cosine or sal-sine con-

version is involved. Therefore RE is checked to determine which conversion 

1S being executed, and then 80 or 144 is added to Q'. This is accomplished 

by adding 80/16 = 5 or 144/16 = 9 to the high order part of Q' (060-075). 

Subroutine SIGN is then used to read the sign into P4, and to restore Q' 

to its earlier value. 

Subroutine SIGNOUT reads the sign of the Walsh coefficient into R8, 

which is loaded into the accumulator. The carry, which is set to zero if 

s is even and to 1 if s is odd, by SIGNOUT, is checked for a zero. If it 

is 1, the accumulator is shifted right to bring the sign into the LSB. If 

the carry is zero, no shift is performed, because the sign for an even 

numbered Walsh coefficient is already in the LSB (refer section. 4.2). 

The accumulator and R9 are added together, and the LSB of the 

accumulator represents the sign of the product, as can be seen from the 

truth table below: 

Walsh Coeff. Accumulator Conversion R9 Contents Product Accumulator Sign Contents Element Sign Sign Contents 

+ 0000 + 0000 + 0000 
+ 0000 0001 0001 

0001 + 0000 0001 
0001 0001 + 0010 

+ 
LSB 



The product sign is stored in R9, and will be used during the 

multiplication-accumulation to decide whether to add or subtract. 

4.5.2.3 Formation and Accumulation of Products 
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The high order 4 bits are read from the RAM location selected by 

the SRC instruction at 06C, and are stored in R6. RB is then incremented 

to select the next RAM location, and an SRC instruction is executed. R7, 

which holds the sign of the accumulated products, is saved in RB, which 

no longer needs to be preserved. The low order 4 bits of the Walsh coeffi­

cient are then read into R7 (OSI-0SS). 

R9, which holds the product sign, is saved in RA, which too need 

not be saved any longer. Subroutine READF then read the conversion ele­

ment into RS and R9 (OS9-0SC). 

Subroutine MULTIPLY is now executed. Registers RS and R9 are mul­

tiplied by registers R6 and R7, and the product is either added into or 

subtracted from register pairs PI and P2, depen~ing on the sign of the 

product. The sign of the accumulated products is set in RB. PO is destroy­

ed during the multiplication. 

The program now loops back to SVAL to calculate new values of Q, 

x and s. If s > 16, or X > S, then the program exits from the loop to 

address A12, to multiply the Fourier coefficient by the compensation ele­

ment. The sign of the coefficient is in R7, at this stage. 

4.5.2.4 Compensation for Truncation and Storage of the Coefficient. 

The sign of the Fourier coefficient is stored first. Subroutine 

SELECT selects the RAM chip and register in which the sign is to be 

stored, and also the word in which the high order 4 bits of the Fourier 
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coefficient will be stored. The address of the word is stored in PO. 

Register Rl is transferred to RD, which serves as an argument 

for subroutine SIGNIN. This subroutine takes the sign from R7 and puts it 

into the correct status character of the RAM. 

Register R7 is then checked for a zero (097-099). If it is 1, then 

the Fourier coefficient is negative ( in two's complement form), and has 

to be recomplemented to obtain it in the true form (09A-OAC). 

The K matrix elements are stored from locations 64 to 79 in ROM 

# 2. Therefore, the address of the compensation element is generated in PO 

by adding 64 to the f value. Subroutine FETCHK is then used to read this 

element into P3 (OAD-OB2). 

Register pairs P4, PS, P6 are cleared to receive the final Fourier 

coefficient, and PO is also cleared to receive the bits shifted out of PI 

and P2, when they are shifted left during the multiplication. The multi­

plication is performed by subroutine MUL (OB3-0BC). 

Of the 24 bits the product occupies, we have to pick out the 3 

least significant bits of RC, which represent the integer portion, and all 

of RD and the MSB of RA. Therefore, RA is loaded into the accumulator and 

rotated left, so that the MSB comes into the carry. The accumulator is 

then exchanged with RD, and again rotated left. The carry comes into the 

LSB and the MSB goes into the carry. The accumulator now contains the low 

order 4 bits of the result. It is exchanged with RC and again rotated left. 

The 3 least significant bits of RC move up one place, and the carry moves 

into the LSB. Now, the accumulator contains the high order 4 bits of the 

result. It is exchanged with RD, which contains the remaining 3 bits of 
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the original RA. The MSB is shifted left into the carry, and tested for 

zero. If it is zero, the result does not have to be rounded up to the 

next higher number. If it is one, the result is incremented by 1. The 

high order 4 bits are now in RD and the low order 4 bits in RC (OBD-OC9). 

To store the results in the RAM, RD is loaded into the accumula­

tor and written into the memory location already selected (OCA-OCB). The 

address of this location is again generated in PO by subroutine SELECT. 

Rl is then incremented and an SRC instruction executed to select the next 

the next RAM location. RC is then written into this location (OCC-ODI). 

Finally, subroutine CHECK checks if all the Fourier coefficients 

have been calculated and stored. If not, it increments RF to the next 

value of f, ands sets the accumulator to zero. When all the cosines have 

been evaluated, it resets RF to zero and sets RE to 2 and the accumulator 

to zero. If all computation is over, it sets the accumulator to 1. The 

accumulator is then tested, and if found to be zero, the program returns 

to CONVERT, to repeat the whole process for finding the next Fourier coef­

ficient. If the accumulator is 1, the program proceeds to output the 

Fourier spectrum. 

4.5.3 Output Routine 

Register pair P7 is intiallized to zero, and serves as a counter 

for the Fourier coefficients, in the same way as in the conversion routine. 

Register pairs Pl. P2, P3, and P4 are set to (1,0), (2,0), (0,0) 

and (3,0) to select output ports 1, 2, a and 3 respectively. The accumula­

tor, which contains 1, is written on port 3. This serves as a flag to 

indicate that the computation is complete (OD6-0EI). 
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Subroutine SELECT then selects the RAM address of the high order 

4 bits of the Fourier coefficient, which is read in and written on port 

1 (OE2-0E6). The low order 4-bit address is then selected (OE7-0ES). How­

ever, these 4 bits are not read in or outputted at this point, because, in 

selecting the output port, the RAM chip selection would be lost. Then, to 

read the sign from the RAM would again require RAM selection. Therefore, 

the outputting of these bits is done after the sign is read in. RF is 

shifted left and placed in RB. This serves as an argument for subroutine 

SIGNOUT, which reads the sign of the Fourier coefficient into RS (OE9-0ED). 

Again, the sign is not written on an output port at this stage, as this 

would destroy the RAM selection. 

The low order 4 bits are then read in and written on port 2 (OEE-

OFO). 

The sign of the coefficient is then transferred to the accumulator. 

Subroutine SIGNOUT sets the carry to zero for an even numbered coefficient 

and to 1 for an odd numbered coefficient. The carry is therefore checked, 

and if it is one, the accumulator is shifted right to bring the sign into 

the LSB. If the carry is zero, the sign is already in the LSB, but the 

next most significant bit contains the sign of the next higher order (odd 

numbered) coefficient, and we do not want this to appear on the output 

port. Therefore, the accumulator is shifted right, so that the sign goes 

into the carry, the accumulator is cleared by loading it with R3 (which 

contains zero), and then the sign is shifted left back into the accumula­

tor LSB (OFl-OFA). Output port 0 is then selected, and the sign written 

on it. 

The "TEST" input is checked for a zero, which is the sign for the 
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program to proceed. If "TEST" is "1", the program goes into a waiting loop 

till "TEST" becomes "0". The reason for this is explained below. 

If "TEST" is "0", the program executes subroutine CHECK, which, as 

in the conversion routine, checks if all coefficients have been outputted. 

If so, the accumulator is set to 1, and the program enters an infinite 

loop, i.e. in effect it halts. If the accumulator is zero, the program 

must return to address STAR to output the next coefficient. However, if 

there were no control over this looping, the program would output the 

coefficients so fast that the operator would not be able to see any of 

them. Therefore, the program is not allowed to return to STAR unless the 

operator sets "TEST" to "1" by pushing the TEST button. Now, if the first 

check of the "TEST" input were not present, and "TEST" remained at "1", 

again all coefficients would be outputted at a very high speed. By insert­

ing two checks for "TEST", we ensure that the program will step from one 

coefficient to another only when the "TEST" input is set to "1" and then 

again reset to "0". 

4.6 

4.6.1 

The Subroutines 

WALSH, WALSIGN, REAOF, FETCHK, SIGN 

These subroutines (located at 340, 342, 20B, 20F, and 200, respec­

tively) are used to read data from a ROM into a specified index register. 

They all use the FIN (fetch indirect) instruction, and have to be on the 

same page of memory as the data to be read. Subroutine SIGN also restores 

the value of Q', by subtracting 80 or 144, to that necessary for reading 

the corresponding ~4 matrix element. Subroutine REAOF clears register 

pair PO, after the read operation, to prepare it for the multiplication 
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subroutine. 

4.6.2 EIGHT 

This subroutine (location 10F) multiplies the value of Q by eight, 

and places the result in PO. The multiplication is effected by shifting 

Q left three times. 

4.6.3 MULT, MULTIPLY, MUL 

These three subroutines (locations llC, lCA, and 146, respectively) 

perform multiplication. If more index registers were available, it would 

be possible to reserve certain registers in which arguments for multipli­

cation could be passed, and only one subroutine would be required. How­

ever, as this is not possible, three subroutines are necessary to handle 

the different registers in which the arguments occur. 

On entering the multiplication subroutine, the program jumps to 

another subroutine, such as 6+ (location 344) or 67+ (location l2E), which 

shifts the LSB of the multiplier into the carry. If the carry is 1, the 

multiplicand is added to the product registers; if it is zero, the addition 

is skipped. The right shifted multiplier is tested for zero. If it is, the 

multiplication is complete; if it is not, the multiplicand is shifted left 

one place by another subroutine, such as 8~ (location 107) or 018~ (loca­

tion 136) or 01452~ (location 349), and the procedure of testing the LSB 

of the multiplier is repeated. 

One feature of this technique of multiplication is the testing of 

the multiplier, after each right shift, for zero. This procedure can save 

a lot of time, compared to one where a counter is set up to shift the mul­

tiplier right as many times as there are bits in the multiplier. It is 
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particularly useful when one of the numbers to be multiplied can be expec­

ted to be zero, and can be made the multiplier, rather than the multipli­

cand. For example, a number of the Walsh coefficients will be zero, while 

none of the ~4 elements is zero. Therefore, the matrix element is made the 

multiplicand, while the Walsh coefficient is made the multiplier. An excep­

tion to this arrangement is the multiplication of the uncompensated Fourier 

coefficient by the ~ factor. Many of the Fourier coefficients can be expec­

ted to be zero; and by the above logic one should make the Fourier coeffi­

cient the multiplier. However, this is a 16-bit number, .and in the worst 

case it could involve 16 right shifts and additions. The K element is 8 

bits long, and if it is made the multiplier a maximum of 8 right shifts 

and additions need to be performed. Since addition is a relatively slow 

process, it is preferable to make the ~ element the multiplier. Further, 

using the Fourier coefficient as the multiplier would require another sub­

routine for shifting it right, whereas the ~ element can use the same sub­

routine used for shifting the 8-bit Walsh coefficient. 

Subroutine MULTIPLY is slightly different from the other two in 

that it checks register RA for the sign of the product, and then either 

adds (using subroutine ADD2, location IDF) or subtracts (using subroutine 

SUB2, location 2EI) from the product registers. In ADD2, if, after the 

addition is complete, an overflow occurs, then the number must have been 

negative and has changed to positive owing to the addition. The sign reg­

ister RB is therefore set to zero. Similarly, in SUB2 if no overflow oc­

curs, the number must have been positive, and has changed to negative owing 

to the subtraction. RB is therefore set to 1. All negative numbers are in 

two's complement form. 
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An alternative method for performing the multiplication would be 

to shift the product registers right after each addition, rather than 

shifting the multiplicand left. This would eliminate the need of registers 

to take the bits shifted out of the multiplicand. However, this method 

would require a counter to keep track of the number of right shifts; sec­

ondly, it cannot be used when the products have to be accumulated. 

4.6.4 SELECT 

This subroutine (location 153) uses the value of f in register RF, 

and the cosine/sine flag register RE, to select a RAM location for reading 

from or writing in. The address of the RAM word to hold the cosine or sine 

is generated in PO by shifting P7 left one place, incrementing it by 32, 

and storing in PO. For example, if the address for the seventh sine is 

required, then P7 is 0010 0111. On shifting left it becomes 0100 1110, and 

on adding 32 (i.e. adding 2 to the higher 4 bits) the final result in PO 

is 01 10 1110. This selects chip # 1 (first two bits), register 2 (next 

two bits), word 14 (last four bits), which is where the seventh sine coef­

ficient is stored. 

4.6.5 SIGNIN 

This subroutine (location 182) writes a sign, available in R7, 

into one of the status characters in the RAM register which holds the 

corresponding coefficient. The actual status character and bit are selected 

by the subroutine from the coefficient number. The logic is best illus­

trated by an example. 

Suppose we want to write the sign for a coefficient numbered 0101. 

The calling program will already have selected the RAM chip and register, 

and will have placed the coefficient number, shifted left by one place, 



60. 

in RD, i. e. RD is 10101 . Similarly, if the coefficient number were 0100, 

RD would be 1000. RD is now shifted right twice in the accumulator, so 

that it is left with 0010 for both the above cases. This is the status 

character number which holds the sign for both coefficient number 0100 

and 0101. 

The accumulator is now tested for zero. If it is zero, the selected 

status character is number zero; if not the accumulator is again decremen-

ted and tested for zero. If it is now zero, status character 1 is selected; 

if not, the accumulator is again decremented, and so on. 

Knowing which status character has to be written into, we now have 

to decide whether to write into the LSB or the next most significant bit. 

To do this, RF, which is a counter for the coefficient number, is rotated 

right in the accumulator to check for an even or odd nUmbered coefficient. 

If the carry is zero, the coefficient is even numbered, and the sign is 

directly written into the status character. If the carry is 1, the coeffi-

cient is odd numbered, and the sign cannot be directly stored, as it would 

erase the sign of the even numbered coefficient previously stored in the 

same status character. Therefore, we first read the status character into 

the accumulator, rotate it right to save the previous sign in the carry, 

load the new sign word into the accumulator, and rotate it back left. Now 

the accumulator can be written into the status character, with the sign of 

the even numbered coefficient in the LSB and that of the odd numbered 

1. When the sign of the Walsh coefficient is being stored (location 
012), RD is incremented before the sign storage, so that it is, for exam­
ple, 1011 and not 1010. However, by clearing the carry between right 
shifts, this I can be eliminated. 
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icoefficient in the next most significant bit. t 
/ 4.6.6 

I SIGNOUT 
! 

/ This subroutine (location 167) reads the sign of a coefficient 

I 

/ from a status character. The number of the coefficient must be in RB. _ 

The method of selecting the status character and reading the sign is iden-

tical to that in subroutine SIGNIN. In addition, before returning to the 

main program, RB is rotated right twice, so that the carry is set to 0 or 

1 depending on whether the coefficient is even or odd numbered. This will 

be used by the main program to decide which bit of the status character 

has the sign. 

4.6.7 CHECK 

This subroutine (location 15E) is used to increment the Fourier 

coefficient counter RF. If the counter goes to zero, it indicates that 16 

coefficients have been evaluated, and we have to decide if these were the 

cosines or sines. RE is checked, and if it is zero the sines are yet to be 

processed. RE is set to 2, and the subroutine returns with the accumulator 

set to zero. If RF does not become zero on incrementing, the program returns 

with the accumulator set to zero. If RE is not zero, then the sines have 

been processed, and the subroutine returns with the accumulator set to 1. 



CHAPTER V 

DISCUSSION 

5.1 Test Results 

The signal which was chosen to test the program was: 

f(t) = cost + 0.25sint - 1.25sin2t + sin3t 

The form of this function was chosen for two reasons: 

- Both sines and cosines are present, and thus both sections of 

the conversion program, and the logic which signals the completion of each 

conversion, are tested; 

Both positive and negative signs are involved, and therefore 

the logic for keeping track of the signs is tested. 

The Walsh spectrum of this signal has already been given in section 

2.3.3. This spectrum was entered into ROM # 3, using a ROM programmer. The 

entire conversion was executed in about 900 msec. Owing to the drift in 

the microprocessor's clock frequency, a more accurate timing was not 

possible. The Fourier spectrum obtained at the output ports is listed in 

table 5.1. 

5.2 Accuracy 

The accuracy of the Fourier coefficients depends on the number of 

bits used to represent the conversion elements and the coefficients. Thus, 

the only errors to be considered are the truncation errors, which occur as 

follows: 
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TABLE 5.1 Results of the Test Program 

Cosine Coefficients 

Coefficient No. Magnitude 

a 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Sine Coefficients 

Binary Decimal 

001.00000 
000.00000 
000.00000 
000.00000 

-000.00000 
000.00000 

-000.00000 
000.00000 

-000.00000 
000.00000 
000.00000 
000.00000 
000.00000 
000.00000 

-000.00000 
000.00000 

1.00 
0.00 
0.00 
0.00 

-0.00 
0.00 

-0.00 
0.00 

-0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

-0.00 
0.00 

Coefficient No. Magnitude 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Binary Decimal 

000.01000 
-001.01000 

001.00000 
000.00000 
000.00000 
000.00000 
000.00000 
000.00000 

-000.00000 
000.00000 
000.00000 
000.00001 

-000.00000 
000.00001 
000.00000 
000.00000 

0.25 
-1. 25 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 

-0.00 
0.00 
0.00 
0.03 
0.00 
0.03 
0.00 
0.00 
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a). Truncation of Walsh Coefficients 

Seven bits are used to represent the Walsh coefficients, and the 

1 -7 -8 maximum possible error is ± 2" of 2 ,i.e. ±2 . 

b). Truncation of Conversion Elements 

Again, seven bits are used to represent the fractional part, and 

the maximum possible error is ±2-8 . 

c). Truncation of the Compensation Element 

Six bits are used to represent the fractional part, and the maxi-

·bl . 2- 7 mum POSS1 e error 1S ± 

At each multiplication of a Walsh coefficient by a conversion ele-

ment the errors are added. Thus each product can have an error of -8 2.±2 
-7 = ±2 . Up to 8 products are needed to form one Fourier coefficient, so 

the error in the uncompensated coefficient can be 8.±2- 7 

On multiplying the Fourier coefficient by the compensation ele­

ment, the error can increase to ±(2- 7 + 8.2- 7) = ±9.2- 7 

Finally, the Fourier coefficient is truncated to 5 binary bits, 

and this introduces a further error of -6 
2 . The total absolute maximum 

-7 -6 -7 error is, therefore, ±(9.2 + 2 ) = ±11.2 = ±0.0859. Expressed as a 

percentage of the maximum possible coefficient, this becomes: 

± 0.0859 
4.2388 x 100 = ±2.03% 

This absolute error can, of course, form a larger percentage in a 

coefficient of lower magnitude. On the other hand, there may be no error 

at all in some cases. For example, the test signal coefficients were ob-

tained without any error, because the various errors cancel each other. 
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5.3 Execution Time 

To compute the execution time the number of instructions have to 

be count·ed, since the time for each ins truction, 10.8 jlsec., is fixed. Of 

course, care has to be taken that the number of times a loop is executed 

is accounted for. 

First, the worst case number of instructions for execution of 

each subroutine were counted. These are listed in table 5.2. 

Subroutine No. of instructions Subroutine ·No. of instructions 

WALSH 2 ADD 20 
SIGN 11 ADDl 8 
READF 4 ADD2 18 
FETCHK 2 SELECT 11 
SUB2 21 CHECK 8 
WALSIGN 2 SIGNOUT 27 
6+ 5 SIGNIN 25 
67+ 8 EIGHT 27 
89+ 8 MULT 119 
0189+ 14 MUL 475 
014523+ 20 MULTIPLY 489 

TABLE 5.2 Number of Instructions in each Subroutine 

Next, the number of instructions in each section of the program 

are computed. The number of instructions in each subroutine are accounted 

for here. Table 5.3 lists the number of instructions in each section of 

the program. 
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TABLE 5.3 Number of Instructions in each Section of Conversion Program 

Section Number 
of Instructions 

NOP 1 
Inputting Walsh coefficients 54 

Checking for completion 17 

Initialization for conversion 8 

Computation of each product 833 
and accumulation 

Checking for formation of 126 
eight products 

Checking for s ~ 16 259 

Compensation for trucation 601 
and storage in RAM 

Outputting first coefficient 88 

Number of 
times executed 

1 

32 

1 

32 

172 

16 

16 

32 

1 

Total 

1 

1728 

17 

256 

143276 

2016 

4144 

19232 

88 

Total = 170,758. 

The execution time for the program is therefore 170,758 x 10.8 ~sec 

= 1.81 sec. This represents the maximum possible time for the first Fourier 

coefficient to be displayed at the output port. 

5.4 Cost 

The approximate cost of the system can be split in the following 

way: 

Programmer $ 2,000 

Debugger $ 300 

PLS-40l card $ 170 

LEOs & accessories $ 50 

In this cost analysis, however, it must be realized that the cost of the 
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programmer and debugger should certainly not be allotted to this one sys-

tern alone, since they are used for a variety of purposes. Even the cost of 

the card need be allotted solely to this system only if it is to be used 

purely for Walsh-Fourier conversion. Otherwise, by merely replacing the 

ROMS the system can be used in many different applications, and the great 

flexibility of a microprocessor system adds to its economy in use. 

5.5 Power Requirements 

The power requirements of the system are estimated as follows: 

PLS-40l card +5 volts, 550 rnA; -10 volts, 350 rnA. 

7407 buffers +5 volts, 164 rnA. 
(4 nos., 41 rnA. each) 

Total +5 volts, 714 rnA; -10 volts, 350 rnA. 

5.6 Size 

The system which was constructed has dimensions of approximately 

325 mm. wide x 145 mm. deep x 120 mm. high. The layout, however, was such 

as to permit easy access to all parts. All the components can be packaged 

into a much smaller volume. 

It is instructive to compare the cost, power requirements and size 

of this converter with those for the design using standard IC gates 

proposed by Doran [2]. The figures for that design are: 

Cost 

Power 
requirement 

Size 

$ 1,359 

+ 5 volts, 7.031 A. 
- 9 volts, 50 rnA. 
-12 volts, 52 rnA. 

305 mm. wide x 127 mm. high x 254 mm. deep 
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5.7 Extensions and Improvements 

5.7.1 Accuracy, Speed and Number of Coefficients 

To process a larger number of coefficients, the program would have 

to manage a counter of more than 4 bits. The logical next higher size is 

8 bits, and an 8-bit microprocessor could be used to process up to 28 = 

256 coefficients. Using an 8-bit microprocessor would also allow using a 

larger number of bits for each coefficient, thus improving the accuracy. 

The number of fetches and instruction steps could also be reduced, and this, 

coupled with the faster instruction cycle time of some 8-bit microprocessors, 

could improve the speed of execution. 

5.7.2 Input and Output 

To demonstrate the working of the program, known Walsh spectra were 

programmed into a ROM. In a practical case this would not be a very suitable 

way of inputting coefficients. However, the program can be very easily 

modified to read the coefficients from the input ports. The coefficients 

could then be presented at the input ports through switches or a keyboard, 

or the outputs of a Walsh spectral analyzer could be directly interfaced 

at these ports. 

For outputting the coefficients, the output ports could be inter­

faced to a seven segment display, so as to have a decimal output. The con­

version from binary may be accomplished either by using external hardware 

decoders, or by modifying the program itself. While the program has been 

written to allow sequential read-out of the coefficients, it can be very 

simply altered to allow read-out only of selected coefficients. The coeffi­

cient to be read out can be set on a rotary switch connected to an input 

port through an encoder. The program would interrogate the port and then 
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display the coefficient specified. 

5.7.3 Conversion from Fourier to Walsh Spectra 

The dual function of converting from the Fourier spectrum of a 

.I sequency limited signal to its Walsh spectrum can be readily accomplished. 
/ 

I The entire procedure is the same as for the Walsh-Fourier conversion, and 

only the matrices of constants need to be changed. In effect, only ROM # 2 

need be reprogrammed with the matrix values for Fourier-Walsh conversion. 



./ 

i 
/ 

! 

I 
I 

APPENDICES 



APPENDIX I 

PIN FUNCTIONS OF THE 4004 CHIP 

The 4004 is packaged in a 16 pin DIP. The pin configuration is 

shown in the following figure. A brief functional description of each pin 

is given below: 

Data Bus IloH 
Y.ss 

Clock phase I ¢, 
Clock phase 2 ¢R 

or-:RAMol 
CM -RAMI 

eM -TlA"'~J Memory control output 

CM-RAM3 

V.DD 

eM - ;QO,"! Memory control outputs 
TE5T 

1?fser Sync output sytl!! g 
~_....J 

Pin No. 

1-4 

5 

6-7 

8 

9 

Designation 

'V ss 

SYNC 

RESET 

Description of Function 

Bidirectional data bus. All address and 

data communication between the processor 

and the RAM and ROM chips is handled by 

way of these four lines. 

Most positive supply voltage. 

Non-overlapping clock signals which 

determine processor timing. 

SYNC output. Synchronization signal sent 

by processor to indicate beginning of 

each cycle. 

RESET input. A "1" level applied to this 
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Pin No. 

10 

11 

12 

13-16 

Designation 

TEST 

CM-ROM 

CM-RAMO to 

CM-RAM3 

72. 

Description of Function 

pin clears all flag and status flip-flops 

and forces the program counter to zero. 

TEST input. The logical state of this 

input can be examined by the JCN instruc­

tion. 

This pin enables a bank of upto 4K ROM. 

Main supply voltage to the processor. 

Value must be V - 15.0 volts ±5%. ss 

CM-RAM outputs. These outputs act as bank 

select signals for the 4002 RAM chips in 

the system. 



APPENDIX II 

INSTRUCTION SET OF THE 4004 

-. 
· HEX ~ 

MNEMONIC 

· CODING aPR OPA DESCRIPTION OF OPERATION ~ 

~ 0 

~ 1 
· AZ 

2 
D:! 

~ 2 
n 
l 3 
~ 

~ 3 
~ 
\4 
ij A2 

~ 5 . AZ 

· S 

7 
A2 

S 

9 

A 
B 

C 

D 

E 
~ F 
· 

0 Nap No o;;>eration. 

Cx JCN Cx Jump on condition ex to the program memorY address AI. 
Al LABEL AZ. otherwise continue in sequence. (see back cover). 

pxo F1M P Fetch immediate from program memory data Dl. Dz to x 
Dl D:! Dl index register pair Px 

~ 

Pxl SRC Px 
Send register control. Send the contents of index register 
pair Px to I/o ports and RA.'>1 register as chip select and 
RAM character address. r 

.1': 
PxO FIN P Fetch indirect. Send contents of register pair 0 Ollt as a J! x program memory address. Data fetched is placed into register 

~ pair Px 

Pxl JIN Px 
Jump indirect. Jump to the program memory address deSibl12te1 
by contents of register pair Px ~ 

A3 JUN Jump unconditional to prograz:l memory address AI. A2• A3' ~ Al LABEL 

A3 JMS Jump to sllbroutine located at program memory address AI, 
j 
:l 

Al LABEL A2. AS' Save previous address (push down in stack). j 
Rx ll>C P-x Increment contents of register Rx' ~ 
Rx ISZ Rx Increment and step on zero. Increment contents of register I A1 LABEL Rx. if reslllt is not 0 go to program memory address AI. A2, 

otherwise step to the next instruction in sequence. 

Rx ADD Rx Add contents of register Rx to accumwator. ~ 
Rx SUB Rx Subtract contents of register Rx to accumlllator with borrow. tj 

fi 

Rx LD Rx Load contents of register Rx to accumulator. 

Rx XCH Rx Exchange contents of index regist.er Rx and accumulator. J 
Dx BBL Ox Branch back one level in stack to the program memory address r 

stored by a prior JMS instruction. Load data Dx to accumulator_ ~ 

Dx LD~\t Dx LOad data Ox to accumulator. 

X I/o and RAM register instructions 

X Accumulator instructions 

At Low order address bits 
A2 High order address bits 
A3 Chip select 

Px1 Regi'ster pairs Po through P7 designated by odd characters 1, 3, 5, 7, 9, B, D. F 

PxO Register pairs Po through P7 deSignated by even characters 0, 2, 4, 6. 8, A. C, E 

Rx Register 0 --- F 

Ox Data 

Dl Data for odd register 

~ Data for even register 

Cx J\lmp conditions 
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I/o AND RAM Hf:GrSTER r:-;~,RUCTIO:-lS 

m:x ~!~r:~IO"1C 

COO1;'G OPR 01'.\ D~:SC;P.I?rlO~ OF OPf.flATIO~ 

E 0 WR)'I \\o-ritt' thta contents o! t>~ lcc:J::lui:ttor into ti'-? pr~viously st!'\t!'<:ted 
, 

RA~.( ret.tst~r C'h.l.J.c:~;". 

E 1 WMP WrH~ the- co.Ater.t3 of thd 2ccumulator into the prevtoullty 8~11f<:ted 
RA."I out~"1 porI. (O:tpul line •• ) 

E 2 WRn. Write the contents 01 the accumulator Into the previously seleete<! 
output port. (I/o lin ... ) 

E 3 WPM \\o"rit(! the cont~r.~s of :h:? accumulator Into th" pr!'Yiously seleeted 
RA.\\ p:-o,;ram n: '::lory. , 

.f 4 WRO Write tho conlents 01 the accumulator into the previously seleete<! 
RA.'.! stat"" charact .. o. 

E 5 WRl Writa t,e contents 01 the accumulator Into the previously seleeted 
RAM stat' ... cha'ncter 1. 

E 6 WR2 Write the cont~nt3 01 t:,e accumulator Into the previously seleete<! 
RAM stat"" character 2. 

f 7 WR3 Write the content3 of the accumulator Into the p..,vlously seleete<! 
RA~I Sta!U3 character 3. 

E 8 SBM Subtract th" previously seleeted RA.'oI register character from I 
accumulator wlth borrow. 

f 9 RDM Re~d th8 pn>vi0U3ly se{""te<! RAM rogt3ter char:>ct" .. Into the I 

acc"",ulatol'. 

f A RDR Read th .. cMtents of the previous,y selected input port lato th8 
accumulator. (I/O lines.) 

E B ADM Add the previously ."I<'Ct.-d RA.'oI rogtster characte,. to accuCJulator 
, 

wit:' carry. 

f C ROO P."!ld th .. p1"9vioualy 8<Kecte<! RA.'oI statWl cha.. ... ct .. P 0 Into 
accumulator. 

E D RDl Read the previously seleele<! R..'-"" statWl charneler 1 Into 
accumulator. 

E E RD2 Read the previously sel..ete<! RA..'01 status charneter 2 Into 
accumulator. 

E F RD3 R""d the previously sel""ted RA."" status character 3 Into 
accumul J.tor. 

ACCmlULATOR r;S!"?UCTIO:'lS 

HEX M!'iZ~ONlC 

CODDIG OPR OPA DE,CRrPTION OF OPERATI01f 

F 0 CLB Clear both. (Accumulator and carry.) 

F 1 CLC Clear carry. 

f 2 HC Increment aceumu.l:1tor. 

f 3 CMC Comp"lem"nt carry. 

F 4 CMA Compl.ment accumulator. 

f 5 RAL Rotate l~lt. (Accumulator and carry.) 

F 6 RAB. Rot,t .. right. (Accumulator and carry.) 

f 7 TCC Transmit carry to accumulator and clear carry. 

F 3 DAC Decrement aceumul:ltor. 

F 9 TCS Transfer carry aubtnct and de3.r carry. 

F A STC s.t carry. . 
F B DAA Decimal adjl.1.5t accum·.J.lator. 

F C KHP Keyboa cd proce.s. Con.v~:ts the contents of the accumulator 

,I 
from a one out DC four' cc<!e to a binary code. 

F D DCL Designate comm3.nd Hne. 

F E 

F F 
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THE CONVERSION PROGRAM 
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~-.~ -1...-1 It . 
~-. ... ,-~ 1IIl~>- ~ ~.~ r : ~ ! ) ~ ~ ~RdGRAM;AS§ENfBL~ FORlI ~ ....; ..-

~ ~ 

HEXADECIMAL MNEMONIC 
rAGE I LINE 

TITLE OATE 
INSTRUCTION 

INSTR LABEL ADR I ADR OPERATION I OPERAND COMMENTS 

o o 0 00 INDEX REGISTERSd 
1 53 8£ IN E P7co F'~"~F' 
2 40 WALS C ?'\ ~ • P6 A,bt\~'§,Ss.-ID 
3 2. 5 RC 6 A A. ~ P5 ~€.,f~, & 
4 AA L A 8 ... P41 , . , I 9 I 

: I ~~ L I ~Z I 1) II I ! IW:":L~H I ~~I ~I(~~ 
I I 7 2. b S RoC. <0 2 PI I I I ~l 
I I 8 _A B L D . B 0 W~U;'H CoG>'. PO At:>'I:>iI..~! I ! 
: 9 £0 ~WR.M' ==l 

A "0 INC 0 r- ! 
- ! 

I B 60 1 NCO W SI...\'T\ N 1"'& 5\ t'_N ! 
C 53 .J"MS IN R..A\'I\ 

o 142. WALS/~~N 
E I AO I I LD o 

11 ~-t :!"I ~f.!::.~~~~'------+'+'------------------------i o 
2 I 5"1 I I .:r M S 
3 1&2 SlejNIN If 

4 17 b ~ S Z. D 
... 

5 I 17 Ai 
6 I b c. 1 N C. c.. 
7 I 71 Ai 152. 1 
8 1 1 A A2. 
~-~Q 
~ A2. 

IN C I 0 II 
, S1... F' 

B I 01 8£§t/N 

C I A C I I Lb c. 
o 1 f'g I I1>AC 

t ..... c 4t£. MEN "TlN 6 CO,",N ~e:..1t.S 

A.N ~ eM g C"-, N C ..... . ~ .. \=o R C.~M ~L6\ \ 0 N 
I 

'-.] 

0\ 

D~l~_.L,~_,~l.. 1,,£.cit=~.1--1 J _.~ _~J 



HEXADECIMAL MNEMONIC 
TITLE DATE 

PAGE LINE INSTRUCTION 
ADR ADR .INSTR LABEL OPERATION OPERAND COMMENTS 

0 2..0 2.S CONVE~T INDEX REGISTERS 
1 2..C 1=\ M <b E CA'-;//,AI.-

Cq, U "Tc:.c" 
P71 caE."'",. 

'CC! \J1'1I·n~.R. F 
2 40 4 0 C X P6 x" D 
3 40 SUN A P5 B 
4 01\ 6£~/N t 8 P4 91 
5 2.C C.ONVGR., T c:' 1 N\ 6 

.. ~ 6 P3 7 
6 00 0 0 \NnIPlI t_\"~ 4 P2 5 
7 24 I=' I M 2- STOR. At:. E RtGt$\E.~S 2 PI 3 
8 00 0 . 

0 0 -- t;2,,'- PO I 
9 ~ F'IM 1 
A 00 0 0 j B 2A s:'\M 5' 
C 00 0 0 
D 2..0 SVAL F'IM 0 

-. p;; 
C'-E.A ~ Q I... ;;(. RE.~\.$\E~S 

E 00 0 0 
F Ao Lb 0 

3 0 e,D XC.H 1::> -1 
1 A~ L.D F' 

-,.-

2 f1 A3 CoLe. CA L<"_\.l L-At:b ~ x.. , e; 
3 ~b RAR.. 
4 1A ::SC.N c.o 
5 3q A4 
6 61'> IN C 1) 

7 40 . .:nJN 

8 32- • A3 
9 l?>1 A4 XC.H '\ 

A 51 :rMS 

B o~ EIt.jHT 

C Ac Ll> C I"r- '-J 
'-J 

D S''\ Ab:D 1 
E e,1 xc..\-\ 1 I 

-i 
F A1> Lb .D ! 

~ .. ~-"", ........... " _ .... ~",..,." ... /t.-,~, "'-'~,",~-
~ _____ ~L"t:""-T_':<>. __ ~ . - 19l1OIIStII "IW .~ _ tr.~,.~r.....:....· 



P'ROGRAM ASSEMBl V FORM - ---
--

HEXADECIMAL MNEMONIC 
TITLE DATE 

PAGE LINE 
LABEL 

INSTRUCTION 
ADR ADR INSTR OPERATION OPERAND COMMENTS 

0 4 0 ~4 CMI\ INDEX REGISTERS 
1 e,7 7 E P7 If. Xc..\-\ I ; 
2 2.S ~ \ 1'-\ 4 C A\- GUl.A.,.'::;' 5 C P6 0 
3 01 0 1 A P5 :$ IBI 
4 77 AS" .:>z 7 8 P4 19 
5 4& A6 6 P3 71 
6 40 .:rUN 4 P2 5: 
7 so A7 2 PI 31 
8 Aq A6 l-J:> -q 0 PO I I ! 
9 F'S' RAt-
A ~q Xc...\-\ q 
B As Ll> l5 
C FS" RA L.. 
0 e,8 X c.l-\ g 
E 40 SUN 
F ~4 AS" 

50 Ai) A7 Lb e> T_ SA"E. 'SI_~N Of 
1 fl:>7 X C.H 7 t Ace \JMV L..ATe ~ pfU) :bOL-'T 5 

2 Ac L!) C 

3 F'1 C L-c. 
4 f'S RAL -,. 

C l-\ E <:'1'-1 N c.. 
5 12 .:rc..N CI\ ~o It 
6 '11 A 42- ~ ~ >/ g 
7 f"2 :r AC 
8 &, X c,\-\ (0 

9 ~c. IN C. C 

A 'LA t=" \ tv\ 5 
B 00 0 0 
c 51 ::>MS ~ .' 

.~ 

0 '\C MUl-T 
E AB Lj) e:> 
F (:' S ':pAc.. ~ ---.--.. -- ,-....on ... __ !!I'; __ ' . ... ~.g 



HEXADECIMAL MNEMONIC 
TITLE DATE 

PAGE LINE 
.INSTR LABEL 

INSTRUCTION 
ADR ADR OPERATION OPERAND COMMENTS 

0 bO '&A XCH A INDEX REGISTERS 
1 '14 JCf'J AO -.... E P7 F 
2 6,S AS C~~CKtN Go. fo«.. C P6 ~ 
3 12. JC-t-.! C.1 S /'/ If:, A /-l- s'- P5 - .. B 
4 '11 A -12 ~ 8 P4 9 
5 1="1 Ag- e:. L c. J.,... 6 P3 7 
6 AA L!) A 4 P2 5 
7 f'S ~AL CALc-vl.,ATE: 2 PI 13 
8 && XC-\-\ .~ ~I :: .sx2.. 0 PO I 
9 At:. Lb E -
A ~S RAL 
B ~A XC-r\ A 
C 2~ SRC S-
O PrE L!) E -,.. 

E '\C .::rC-N A,\ 

F 73 A9 
1 0 .1)5 Lt:>M S 

1 40 .::ruN REA,!) $, ~N5 ""-IS) 

2 74 A -f0 G...bNcRI\'£ St4N Of f'fl...(l bt.OL. T 

3 bq A9 L!:>t1. q 
4 ~O A ~o Al>D 0 

5 &0 XC-H 0 
6 5"2.. ~MS 

7 .\)0 ..s/~N 

8 51 ::J"M5 
9 b7 :;i/ ~NO U7 
A Ag L"!) 8 
B 1 A ..:reN c.o 
c 7F /I -14 

'-J 
<.0 

D F, R#\~ 
E F1 CLC ,,-
F ~9 A 11 1~ __ ~'D_,-- 9 --- -.---... -•. ~-., .. ,.-~ .. -~ _. -- -~~.---



HEXADECIMAL MNEMONIC 
TITLE DATE 

PAGE LINE INSTRUCTION 
ADR ADR INSTR LABEL OPERATION OPERAND f COMMENTS 

0 go Bq XCH q t INDEX REGISTERS 
1 E~ R!>tJl 

.. -
R6.Ab WBLSH Ca£~. E P7 F· 

2 ~b XC" <0 AN'h Co "'IV 6'RS.1 0 N C P6 D 
3 ,~ lNC & 6L{;.1'I\€~'" A'Nl) MUL"T1Pl:V A P5 B 

~ 

4 2~ SR..c. S 8 W 1\ .I-s,l-\ P4 Co €. f" (!' • 91 
5 A7 LJ) 7 ~ SAVE. $, "'''' O~ 6 f "4 P3 Co£. ff". 71 
6 ~f> XC\; & t\CC\JM ULA'"T€.b ~~Ob\J'-"S 4 PR.q- P2 bOc...:",( 51 
7 Eq Rob"" 2 f'R.Q- PI .t>~ '-, :3 
a e,7 Xc..H . 7 0 PO I 

I 

9 Aq 9 
-... 

Of' Lb SII\\I& S\G.N 
A ~A Xc..H A Pp-..~ .b \J c....,. 
B 52 .::r \'V\s 
c J)i?> /?€A.b r: I 
0 S-1 ::rtv\s 
E c.A MULTI PLy f 

F 40 .:rUN 
4.-

RE"t\)~'" \0 t:"o \to. "4\ 

<=to 2-D SVAI- N ~")(.,. PR..O b \lc..., 
1 5"1 A 12, .:IN\S 
2 53 ScL£CT 5 "TO 'P.. ~ 5\~N O~ 
3 A1 Lb 1 ~OOR'e.R C.O e:.f:~' c\ E.N' 
4 ~l> xc:..r\ l> 
5 5"1 .:J'1V\S 

6 82 $/6)"" IN ~ 

7 A1 Lb 7 ""ir-

a 14 .:rC.N Ao ()~TAtN z.!s COM ~'-E MbNi 
9 AD A 43 O~ f."o v,,, E-R ~ E~r'c:.., £N"" 
A A3 LD .3 {~ \, \$ NGGP\"'(\\T6 
B FA c."" A 
c 53 3 

00 
xc.\-{ a 

0 A2. Ll) 2.. 
E F~ eM A 

~ t F e,2- )(CH 2- .L..- __ ...... -~- .. -."""--..--..~ --,- lIIIe 



~ 

HEXADECIMAL MNEMONIC 
TITLE DATE 

PAGE LINE 
INSTR LABEL 

INSTRUCTION 
ADR ADR OPERATION OPERAND COMMENTS 

0 AO AS Ll> S INDEX REGISTERS 
1 F'~ CMA E P7 F 
2 P.lS XC\; S C CoM PEN- P6 SATe!'> D 
3 A1i Lb 4 A ~ 0 U R. '.e-J1- P5 8i 

I 

4 F~ CMA 8 Co £ f'~I- P4 C\ t..""""" . 91 
5 e>4 )<G~ 4 6 ~ MI\\~I,c P3 E\..£",,€WT i 7"1 
6 73 152 ~ 4 UNGo"1f1- P2 GNS"''T~ 5 ~I ! L 

7 A!) A 43 2 ~o "_~I f;i~ PI CoE~F. 3 
8 71- 152 '2 0 PO I 
9 A!) A .(3 
A 7S IS Z 5 i 
8 A) A 1'3 I 
C ~4 I", C 4 I 
0 2...0 A -13 F1M 0 -~ 

E 40 4 0 
F Af Lb ~ ; 

e,o &1 xc."" 1 
1 S2. JMS COMf'6NSA'\E +oc:t... 
2 l)F FE TCH I<. TRUNCo AT\O '" 
3 2.<:: F1M <0 
4 06 0 0 
5 2.. A ~\M S 
6 00 0 0 
7 28 ~ 1 t\J\ 4 
8 00 0 0 

9 2.0 ~ \ 1'-\ 0 

A 00 0 0 

B S'"1 ~tv\S 

c 1-,6 MVL , 00 ..... 
0 AA L~ A --
E Ps- R.t'tL 
F p..l) XC,"", ~ ~,)l ,",,_, 

1'1JiCM\1:!';;' _~"'_'l't<~~"'~_"'" ,-- .-x II'" . I"" 
--



"T " --. v -f~ ,..."""' ..... rD);;'Trvnwl , 

HEXADECIMAL MNEMONIC 
TITLE DATE 

PAGE LINE INSTRUCTION 
ADR ADR ,INSTR LABEL OPERATION OPERAND COMMENTS 

0 cO F5'" RAL INDEX REGISTERS 
1 ~C XCH C. E P7 F 
2 ~S R.PtL C I P6 D 
3 e,D Xc..H b S&LE.v'l <0 ~\"TS A -, P5 B 
4 ~S- R.AL LSHCWN & 0 ')( E." "'\ 8 P4 9 
5 1A ::teN CO ANI:) ROUNb O~f' 6 P3 7 
6 C-A A 44- 4 P2 5 
7 1G I SZ c 2 PI 3 
8 C-A A ~4 0 PO I 
9 <6!> INC j) 

A AJ:> A 14 Ll> 1:> 
r-

B EO WR.M 
c 51 .:J'TV\S 5,.oR..& (:'OOa..l F; Q. 

0 53 SEL-tCT CoE f:'F\ C\€. N"T IN RAM. 
E 01 iN c. 1 
F 2..1 ..s~c.. 0 

.DO AC LD c. 
1 EO WRM 1 

2 5"1 ~""s 
r-

3 S£ CH£CI( A\..\.. co E. f'~1 C\ £'1'1" S <:'0 M ~ \1\ E 1:> ? 
4 14 Jc..N AC 
5 2.S" c~"'V£P...7 NO 
6 26 ~ lfV\ 7 Tl'ES 
7 00 0 0 

8 2..2- ~ \ "1 1 
9 10 1 0 SEL.EC.' O\),,,\)\ POR.,\,S 

A 2..4 
&:' ''''' 

2-
B :1..0 2.. 0 

C z.~ 1= 1M 3 
(Xl 
N 

0 00 0 0 
E 2.~ ~ \fv\ 

'"' -II 
F 3D :3 0 , 

~ 
.~l!UalIg_;v_.,,! 



, , , • , 
" ,~~~~~~ ~~~"'~~, ~~~I 

HEXADECIMAL MNEMONIC 
TITLE DATE 

PAGE liNE 
INSTR 

INSTRUCTION 
ADR ADR LABEL OPERATION OPERAND COMMENTS 

0 eo 2.9 SRC. 4 -- se., FL..~ ~ INDEX REGISTERS 
1 E2. WRR ' "C.OMVUTI!\"t\O N CO""~t....ETE~ E P7 F 
2 S"1 STAR.. .:::rMS "'r0- C P6 D 
3 S~ SELEcT A P5 ~-l 4 61 RbM 8 P4 
5 .'43 '5~c 1 6 P3 17 
6 E2. w R.R.. 4 

--'-
P2 5, 

7 '1 IN~ 1 2 PI 31 
8 21 Sf\C '0 0 PO I 
9 At: L,!::> ~ GUT" U'T 
A F'S" RAL COt .f'F'\ GlE.N", S 1 B ~s xc.t-t ~ 
c 51 ~MS i 
D b7 51c;N OUT I 
E elf Rt>M 

J F Z!) ::;, f\.c. 2-
FO E2. W'RR i 

1 A8 l-b 8 
2 1A :SeN co 
3 F"8 A ,(::;-
4 F1 Ct...c.. 
5 f:G ~AR 
6 40 .:nJN 
7 F~ A .ft, 
8 f==G A ,fS RAR. 
9 A~ Lt:> :; 
A FS" R. A 1.-
B 2.7 A 46 '5 Il.,c 3. 
c E2. W~R. 

00 
V-l 

0 14 A 17 .::JC-N \',\ T WArt ~oR " ,E5, ., :: ., i ft 

E F'J) A 17 t 
F S"'\ ::fM.S T----.. _ ................ _'l . ..., ............ , .. _~ ............. ,,~_. _ .... "S .... "" ........ .- .. -. " -



HEXADECIMAL MNEMONIC 
TITLE DATE I PAGE LINE INSTRUCTION 

ADR ADR INSTR LABEL OPERATION OPERAND COMMENTS 

" 00 5:£ CH6Cl<. ALL C06~f'\C.\€N'" S INDEX REGISTERS 
1 1G A "I' ~CN A1 0\),. ~"\"Eb ? E P7 iF I 
2 01 A ,IS' YE<.. \-\ A L..i C P6 

:~ 3 11 A ~9 J'eN TO t NO. VVAfT Po~ A P5 
4 03 A .{1 '1 'Te ST I, " .. 8 P4 19 - :::. 0 

17 5 40 ~UN -,.. R~"'\)RN \() C\l"t~\ji 6 P3 
6 €2.. STAR NE~'" Co€: ~F\c:..\ E.NT 4 P2 51 
7 (:1 8q~ C.LC -I'" 2 PI 3 1 

I 
8 A9 L'b -9 0 PO I J 
9 ~S" R.AL I 

A 6Gf xc..\-\ 9 8'1"'" -
B Ai" Lb 8 (St·\\ ~T tl..~J ~<l .:5 U8RO UTIN£.s 
c - ~\T 1 

, 
P:: RAL L-Ef'1" "\ , 

0 88 xc..l-\ g 
E co ~_~L o· 
F .2.$? Eft; H7 F"lM 4 

_ .. 
1 0 01> 0 ..b 

1 A1 . EA1 L!> 1 E/~H7 
2 ~s- RAL (""\lL"\~L'I Q. ~-y 8) 
3 i!>1 XGH "\ 
4 A-o L!) 0 

5 F~- RAL 
6 fJC X c...l-\ 0 
7 7CJ \ S 2. ~ 
8 11 EA1 
9 CO &l!::.L 0 

A 5"1 NEX7 15171 JMS "I'" 

B ()7 ~9- MUL7 
c 5"3 MUL-T JM$ ( MULT' ~L'J R'- &'/ R"(l', R'l) 

00 ..,. 
-0 44 6~ 

E 1A .3'CrJ c.o 
L .... ___ ~~.~, ~f .. ~ z££o1 

'_~""","""""'''3'.!_''''''''''''' 
"""·.·.~_;T~..t.""'~ __ +t ___ I -- ---



__. 4% ~; ~' .~ 
- T ....- nnnJl'n •• J\~~."n. ~nol\. 'I 

HEXADECIMAL MNEMONIC 
TITLE DATE J PAGE LINE INSTRUCTION 

ADR ADR INSTR LABEL OPERATION OPERAND COMMENTS 

1 2 0 51 .:n'v\S INDEX REGISTERS i 

--
1 2' Abb1 E P7 F: 
2 A(; ZE/{O 1 Lb 6 C P6 D 
3 1C .:rc...N A'\ A P5 BJ 
4 1A NEx7 6111 8 P4 9] 
5 CO fl~L 0 6 P3 7: 
6 f1 Abb1 Col-Co 

... 4 P2 51 
7 Aq L-D 9 Ab/>1 2 PI 3: 
8 S~ _Ab'b -& (ADD P4 AN!> ~S) 0 PO I ! -- -9 e,~ X c.. t-\ ~ ~ 
A Af! Lt> g I 

I 

B %A ~~~ A ~ e &A )(C.\-i A I 

I 

0 GO ~~L 0 ! 
-

E 1=1 ~ 7--i'" <: Lc.. 
,.. 

67-""" i 
F A{;' Lt> G ( $\-\\r\ ~b ANb_ R,7 : 

30 f:{. "A P... R\~\-\T '\ f!l'" ') : 

1 ~b Xc.,,", 6 ! 

2 A.7 Lt> 7 
I 
! 

3 PG RAR 
4 ~7 )(c-\-\ 7 
5 C.O e:,~L 0 

6 ~1 01 KCJ'-'- <:1-c. ""',.... 

7 ACJ Lt> q e>-fS9 .0lil--

8 P,5" "A L ( S~tf:" ~o ~" , Q., og- AN~ R9 
9 e,9 'J<c.r\ '\ L£~1 '\ ~\\ ) 
A A& '-t:> go 

--
B FS" RAt.. 
e &~ )( c..\-\ S' 

00 
(J1 

0 Ai LD -1 
E FS- ~f\L .. , 
F ~1 'Xc\-\ " t:,...... ___ .. ~lIt .... '!.'I.<.,:"'-""'.,,~>, ... , ...... Jf··''"' •. ----~-.--.~~--'-- ,.~ ,,-. I:" ]Il ___ ~~~'" 

• ~ T __ 
al , • re~~~-.u 



• x J St " 4 ] 
! I P • .. "' ~ • . . < <I ~ • • • 

PROGRAM ASSEMBLY FORM 

HEXADECIMAL. MNEMONIC 
TITLE DATE 

PAGE LINE 
INSTR 

INSTRUCTION 
ADR AOR LABEL OPERATION OPERAND COMMENTS 

1 ito Ao '-1> 0 INDEX REGISTERS 
1 1=5 RAL E P7 F 
2 &0 Xc.l-\ 0 C P6 D 
3 co &&L 0 A P5 B 
4 S~ NEXT f>IT .:!M 5 

... ,.. 
8 P4 9 

5 49 o~ 4 S 23""'- 6 P3 7 
6 $"_1 MUL JMS N()L 4 _. P2 5 
7 :2E 67~ (""U L "H f' L 'Y f>3 ~y 2 PI 3 
8 '\A ::fCN -. GO P1 ANt) P'l..) 0 PO I 
9 hc:c. 2.£1\0 
A 53 3MS 
B 5"b A /)Jj 
c A7 ZE~O L-l) 7 
D 1C .:J<:'I'J A"\ 
E 4Lt IV£" XT /!)IT 
F A<9 L!;) G 

sO 1C :leN All 
1 4Lt NEXT .6IT 
2 CO C:> &L c 
3 F'1 :JELeCT c.L.<:" 

"':-0 

4 AF '-1':> ~ SELeC7 
5 f'S RAL ,t., SE L.ECJ RAM l-Oc..A,\01'.l -6 &1 X C.M 1 t='oR F'OOR,\ €.R.. GO E. r~' c.\ E N\) -7 A£ Lb £ 
8 FS" Rt\L 
9 F'l. 'LAc.. 
A F2.. l:. AC. 

B ~O X c.\-\ 0 

C .2..J\ 5R..<:" 0 ~ . 
D c.o ~~L 0 

E 7~ CrtfECK... \S 2- F t .. __ r-- \-----~--\ --~:;:::::-- --~------ !-----. 

c::-::/'-/ A " 



" , " , _ ~ ... r '(' 

PRodRAM ASSEMBt Y FORM~ > 
~ 

HEXADECIMAL 
PAGE LINE 

INSTR ADR ADR 

MNEMONIC DATE TITLE 
INSTRUCTION 

LABEL COMMENTS OPERATION I OPERAND 

1 60 AE LJ) £ INDEX REGISTERS 
1 1c. :lC.N A'\ CHECK.. E P7 F 
2 b~ 

3 2.€ 
4 ;to 

CHA ,Z r c.. "" E. c:..~ i=' 0 4t... C P6 0 
7 VR..O e.6 .ss\ \\oJ G. o~ A P5 ~ 

0 AL.L.. C-O €. f:~J C-\ € ""TS '\ 8 P4 9 
1=1M 

2.. 
5 GO 0 6 P3 7 

4 
- r--

P2 5 
- I CHA I I ~& L I I I 1 • I 1 _':'1 I • 

6 C1 
7 

-1 -
? PI 3 

C H A Z ~ ~ L 1 I ~___ I I I I! ! I 

F1 
8 AJ) 

----y-

& I I 101 I pol 
51'iN~J11 I C LC, I I I I - I I! I' 

Ll:> 
9 t=' 
A I PIb 
B 14 

~ o f'& 
E ,\q 
F '7<1 

J-.:--=--J--------+-I RM 
RAR. 

. I I j c:..N I A 0 I I 
$01 "::>/.52_ NO () r 

r R'E. A b $\ G. N· i=Q..o'tV\ ~P't ~") I>AC 

. I ~ __ c.N I A 0 I I 
SO 2.. 

70 Fg :t>AC 
1 1lt :SCN AO 
2 7ft, S03 
3 Ef" ~l)3 

4 41 .::tUN 

5 7b 504 
6 EE sa3 P...b 2 
7 41 .:t\J N 

8 7!> :5t:JJj 

9 £01) S02 R.l:>~ 

A 41 ::JON 

B 7[> .:s 04-
c ec ~01 Po. 1'> 0 

0 p':'<g .:50li Xc.14 I ~ 

i-\-~-i ~~-.-\ \- ~~ ~' .. \~.,_,. ,-.~~ __ t.J"' __ .,.~._. ____ ,_, ___ .. ,_,_~,, __ .. __ .~_, __ 
~ + ,; _ • ." '.' • ____ ... .., ....... ~ •• _ .,._.~_~ ... ,_,~,. _,"-",0". 

00 
'--J 

I I 

<>-~~ __ ""...n,) 



...... -- .- - • T ~~ . -~ 

" 
... ~ -{ - --- , , .. -L ~ p-.. • • , " PROG~RAM ASSEMBl Y FORM 

.. 'f • 

HEXADECIMAL MNEMONIC 
TITLE DATE 

PAGE LINE INSTRUCTION 
AOR ADR INSTR LABEL OPERATION OPERAND COMMENTS 

'\ gO fG RAR.. INDEX REGISTERS 
1 c...o ~~L 0 E P7 IF 
2 f"1 S/~NI'" CLC 

-r- e P6 D . 
3 A!> L-D J) A P5 B 
4 Fb RAil 8 P4 9 
5' F" GLC- 6 P3 7 
6 fG RAR 4 Ip2 5 
7 ,\4 .::Ic"" Ao 2 PI 3 
8 q£ -:S'x1 0 PO I -
9 F~ DAc 
A 1\4 Sc..N Ao S/<:;N IN 

--_.- ~~-.-.----

B A& :s.z 2. (' WR\T£ S\~N '~'TO ~At'-.'\:1 -C fg »Ac. 
0 '14 3C-N AO 
E &A S:Z 3 
F Af: L!) F -C\o Pb RA't 
1 -1A Sc...N C".o 

2 qA s.z4 
3 E.F Rb 3 
4 F6 fl..A '" 
5 A7 LJ:) I 7 
6 F'S" ~AL 

7 €7 WR..3 
8 q,\ .:rUN 

9 C7 I sIg-
A A7 524 Lb 1 7 
B E7 WR3 

~~~ 

I I c 4"\ JUN 00 
00 

0 c1 s.z 8' 

~ ___ 1~_ :s:z 1 .::JCN C-O 
-1--- -

S J £_ LL~~.-.""~,-.. --,,,.,-.... -.~,--~~,~ ___ " __ ._'_. ___ . ____ , ________ .,,,_,,.~_-\ F ! l\.r{ 



• ,., f ~ 
-.{ r '" r .,-'" .. .. 

PROGRAM ASSEMBi Y FORM • 
HEXADECIMAL MNEMONIC 

TITLE DATE 
PAGE LINE 

INSTR LABEL 
INSTRUCTION 

ADR ADR OPERATION OPERAND COMMENTS 

1 A 0 EC. Rn 0 INDEX REGISTERS 
1 f=b ~AR E P7 F 
2 A7 Lt> 7 C P6 0 
3 (:'S RAL A P5 B I 

- ".-
4 E4 tv 0 8 P4 9 
5 41 :.TO '" 6 P3 7 
6 (1 .sx 8 4 P2 5 
7 A1 s :t 5;.- Lb 7 2 PI 3 
8 E!t hltto . 0 PO ! 
9 41 ;joN S/&N / N 
A c.'1 SI g rCONT'J)'"\ 
B Af Sl:~ Lb F - ./ 

c F(O RA~ 
I 

0 1A .3c..N co 
E B' SZ b 
F E» ~'!> '\ 

&0 fG:. RAR 
1 A7 Lt> 7 
2 FS" RAL 
3 ES WR1 
4 4'\ ~o'" 

I 

5 c-, SI t?' 
6 A7 sz ~ L'b 7 
7 ES" W4l...1 
8 41 JUN 

9 C'1 ::; r ~ 
A Af S'I: 3 Lb ~ 

B f~ R~'" 
c 4A :SCN C-o 

co 
\0 

0 <:.S- S.I 7 
E 66 Rb 2-

- -, r: F (, R.~R... 
,_ ........... -_ ... _--'.-" -'-"'-"~ "---.'-_ ...... , .. ...---•.• ",,_ . ...-. -- -~~-,,~--,~~---,..... ..... ---.-~""""'-,,~ ....,-"-,,,,<",. q-' . ''''''. ~~>.,"'<.-_~,_"'_-<t,-...._._." _",..". .. ' - « .. ~. - .", .• 

"""''''~''''''''''-



~ ... • y " . .,- .. ~ .,. ., .. .,. .. ~ '" ~ ., 
PROGRAM ASSEMBLY FORM 

HEXADECIMAL MNEMONIC 
TITLE DATE 

PAGE LINE 
INSTR LABEL 

INSTRUCTION 
ADR ADR OPERATION OPERAND COMMENTS ., CO A7 Lt> 7 INDEX REGISTERS 

1 ~S RAL E P7 F 
2 EG W~'l.. C P6 D 
3 4-\ 30N A P5 8 
4 C7 s:Ia 8 P4 9 
5 A7 SI7 LJ) 7 6 P3 7 
6 E" W~2 4 

~ , P2 5 
7 CO :5Xg &&L 0 2 PI 3 

--~--

8 S1 NGX7 6/72- :nV\ S . -r- 0 PO I -L-

9 :'b 0189 ---
A $1 MULTI (J LY J'M$ 
B l£ 67~ #VL7/PLX 
c 1A .J'CN Co (MULTI ()L'I Jt.~, R7 l\')' R.&. RCf ) 
D ])S Z£,fo 2, -
E AA L"D A 
F FG RAR 

1>0 'aA ~C.N co 
1 l>b MUL1 
2 5"2- :JMS 

3 E1 SUe,tZ 
4 41 ..:rUN 

5 ])8 Z£l(tJ 2-
6 51 M{J[...1 .:Jtv\5 

7 l>f Abl>2. 
8 A7 Z£I\O 2. L..!) 7 
9 1C. .:!CN A" 
A Cg NGX7 1317 :L 
B Aro Ll;> ~ 

, 

c ic.. J"oJ A1 \.0 
0 

D C'8' NG)(7 I?>J7 2-

E c.. 0 ~~L 0 
r' I ,--- ~'F--\'-~'~~- " r\ bh 2- C .. L c.. ~, .. ,"I-.. ~-"-·-·, ...... ~ " ....... , ....... , .. , -'.'-''''''.''- .,.~ ...... -.'----, .. --.~~ .... " ,~.'.--.-.-,. o_·_~._·._ .. ,." " ~'"'<,"'I!O<= __ 



.----~ ..... 5 t ,7 ~ .'. ..... • '-' !II"'" t (" • • , • 4 ~I' , 
-, 

• f .. 

PROGRAM ASSEMBL Y FORM 

HEXADECIMAL MNEMONIC 
TITLE DATE 

PAGE LINE 
INSTR LABEL 

INSTRUCTION 
ADR ADR OPERATION OPERAND COMMENTS 
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