
GRAMMATICAL MANIPULATION PACKAGE

EXPLORATORY STEPS TOWARDS

A

GRAMMATICAL MANIPULATION PACKAGE (GRAMPA)

By

KEITH ROGER BARNES, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

November 1972

MASTER OF SCIENCE
(Computation)

McMASTER UNIVERSITY
Hamilton, Ontario.

TITLE: Exploratory Steps Towards a Grammatical
Manipulation Package (GRAMPA)

AUTHOR: Keith Roger Barnes, B.Sc. (Birmingham
Un i ve rs i ty)

SUPERVISOR: Dr~'Derick Wood

NUMBER OF PAGES: viii, 81, Al(7), A2(5), A3(3),
A4(2}, A5(37}

(i i)

ACKNOWLEDGMENTS

The author gratefully acknowledges the guidance of his

supervisor, Dp. Depick Wood.

The author also expresses his gratitude to his wife,

Mapyke, for her encouragement and understanding.

Special thanks go to Mps. Joanne Stpaughan, for her

patience in typing this project.

(iii)

TABLE OF CONTENTS

INTRODUCTION 1

CHAPTER 1: DEFINITIONS AND TERMINOLOGY

1.1 Introduction 4

1.2 Context Free Grammars 5

1.3 Admissible Grammars 7

1.4 Left and Right sets 9

1.5 Simple Precedence Grammars 10

1.6 Removing Precedence Conflicts 13

1.7 Precedence Functions 15

1.8 Extended Precedence 16

CHAPTER 2: THE ALGORITHMS AND PROCEDURES IN GRAMPA

2.1 Introduction 18

PART I GRAMMAR INPUT

2.2

2.3

2.4

2.5

2.6

2.7

Table Construction

The Syntax Graph

Symbol Tables

Procedure INGRAMMAR

Procedure PRINT TABLES

Procedure PRINT GRAMMAR

(iv)

19

19

19

27

29

42

42

TABLE OF CONTENTS CONTID

PART II GRAMMAR ANALYSES

2.8 Admissability of Grammars

2.9 Algorithms and Procedures fer
Simple Precedence Analysis

2.10 Checks for Recursion

CHAPTER 3: USE OF GRAMPA WITH EXAMPLES

3.1

3.2

Programming Considerations

Example 1: S!mple Phrase Structure
Language

3.3 Example 2: Admissable Test

3.4 Example 3: Euler

CHAPTER 4: FUTURE DIRECTIONS

43

43

47

58

60

64

72

75

77

REFERENCES 80

APPENDIX 1: OUTPUT FROM GRAMPA FOR SIMPLE
PHRASE STRUCTURE LANGUAGE

APPENDIX 2: FIRST PART OF GRAMPA OUTPUT FOR
EULER

APPENDIX 3: HASH CODING TECHNIQUE OF MORRIS

APPENDIX 4: CENTRAL PROCESSOR TIME MODEL

APPENDIX 5: PROGRAN LISTING

(v)

Figure

2.1

Text

2.2

2.4

2.5

TABLE OF DIAGRAMS

Expression Tree for the nonterminal
Simple Arithmetic Expression, SAE

Representation of SAE in the syntax graph

Outline of the Hashing Procedure for
Terminal Symbols

Procedures Used by INGRAMMAR

Operation of INGRAMMAR
Entry State
State 2
State 3

Illustration of the backward list kept
in the Syntax Graph

Text Illustration of the use of RHSTABLE in the
procedure TRANSPOSE SYNTAX GRAPH

3.1 Overall Structure of GRAMPA

Exhibits

3.1

3.2

3.3

3.4

First page of GRAMPA output for the Simple
Phrase Structure Language of Wirth-Weber

Modified Simple Phrase Language to
Introduce Conflicts

Output from GRAMPA for Modified Simple
Phrase Language

Modified Simple Phrase Language After - "

Removal of Conflicts

(vi)

Page

23

25

26

30

34
35
36

40

61

68

69

70

TABLE OF DIAGRAMS CONT'D

3.5

3.6

Tables

1

Symbols and Syntax Graph for Example
Grammar to Test ADMISSABLE

Output from ADMISSABLE

Allowable Symbols and Their GRAMPA
Values

(vii)

73

74

32

PREFACE

Very often, grammars constructed for computer

languages are not in a concise form for simple parsing.

For example some symbols may be unreachable or useless.

If a simple precedence grammar is required, artificial

symbols may have to be introduced to remove conflicts.

This report describes exploratory steps taken

towards the development of an Algol program to automatically

manipulate grammars. Procedures are described which read

and set up a grammar in a list structure form suitable for

analysis and manipulation. The procedures manipulate the

grammar to remove useless and unreachable symbols, and

precedence conflicts, and they analyse the grammar for

recursion, precedence etc.

(viii)

INTRODUCTION

Modern science is expanding rapidly in all

disciplines with a subsequent increasing demand on the

computer for data analysis and manipulation. However, the

computer user still has to translate his problem into

computer terms via programming languages. The most common

general purpose languages are often cumbersome to adapt

and use in specialized problem areas, hence a need exists

for special purpose languages with which the user can

"talk" to the computer in his own terms. These special

purpose languages, often called Problem Oriented

Languages (POLs), may be very particular to a discipline,

needed quickly, and needed only for a relatively short

period of time. It is essential, therefore, that automatic

techniques are developed for producing compilers or

translators for these languages. It should only be

necessary for the specialist or analyst to specify the

syntax and semantics of the language in some standard form

to the computer to obtain the translator.

Most POLs are generated using context-free grammars.

However, very often the grammar developed is ambiguous

or unsuitable for straightforward parsing. It may have

- I -

•

2

to be changed or manipulated several times before it is

in a concise, acceptable form.

This report describes exploratory steps taken

towards the development of an automatic grammatical

manipulation system. An Algol program, nicknamed GRAMPA

(GRAmmatical Manipulation PAckage), which comprises various

analysis and manipulation procedures for context-free

grammars, is described in detail.

The procedures in GRAMPA accept a grammar specified

in an "inverse" Backus-Naur Form on cards, and analyze it

for such things as recursion, precedence, the usefulness and

reachability of productions, etc.;and manipulate the grammar

to remove useless productions and precedence conflicts.

Many tables are produced in the course of the analysis which

can be used in the syntax analysis section of compiler

for the language generated by the grammar. Specifically,

the procedures will produce:

i) a neat, readible listing of the. grammar

ii) a syntax graph of the grammar,

iii) tables of the terminal and nonterminal symbols

with cross reference hash tables,

iv) lists of the left, right and embedded recursive

symbols,

v) the left and right sets of the grammar (Wirth

Weber(14»,

vi) a simple precedence matrix (Wirth-Weber(14»

with an explanation of conflicts,

vii) the precedence functions,

viii) lookup tables for use in a syntax analyser;

and will manipulate the grammar to remove:

(i) useless productions,

(ii) unreachable nonterminals

(iii) precedence conflicts.

3

The body of this report is divided into three

chapters. The first chapter introduces the terminology and

notation used in relation to context-f.ree grammars. The

second chapter describes the algorithms and procedures

themselves, while the third chapter describes the use of

the system with examples. A fourth chapter on possible

future directions is included.

CHAPTER I

DEFINITIONS ~ND TERMINOLOGY

1.1 Introduction

The development of Algol' 60 12 led to the development

of a meta-language called Backus-Naur Form or BNF, named

after two of the developers of the language. This meta

language was used to define the syntactic structure of

Algol 60 programs irrespective of their meaning; where,

informally, we consider syntax to be a specification of

the well-formed statements of a language, usually

incorporating a mechanism for structural descriptions.

(Se,mantics, on the other hand, can be thought of as the

specification of how these statements are to be executed

by a real or abstract computer)(S). BNF can in fact be

used to describe the structure of any context-free grammar(17).

It is this kind of grammar which is used most often in

practical language development, or for Problem Oriented

Languages. Therefor~, ,the GRAMPA system is designed to

handle only context-free grammars.

This chapter of the report serves to introduce some

definitions and notations used in relation to grammars.

The definitions will be restricted to the family of

- 4 -

5

context-free grammars. The symbols and terminology used

are those of Graham(S). A good list of alternative

notations used by other authors can be found in

McKeeman(lO).

1.2 Context Free Grammars (CFGs)

1.2.1 A context-free phrase structure grammar G

is a 4-tuple G=(VN, VT, P, S), where VN is a finite

nonempty set of symbols, VT is a finite set of symbols,

P is a finite nonempty se~ of productions (rules) and S

is a distinguished (initial or sentence) symbol. Now

VN(\VT = " the empty set, and V= VNLJVT is the vocabulary

of the grammar. V* is the set of all strings over V,

and £ denotes the empty string. V+ denotes the set of

nonempty strings over V. Thus V+ = V* -{£}. Elements

of V are denoted by capital roman letters; elements of

V* are denoted by small Greek letters and elements of

V+ are denoted by small roman letters. A production is

of the form A+a, where A is called the left part or

left hand side of the production and G is the right part

or right hand side. VN is the set of symbols which occur

as left parts of productions--nonterminal symbols. VT

is the set of terminal symbols which do not occur as

left parts. S is the unique nonterminal symbol which

does not occur in a right part.

6

1.2.2 With respect to a grammar G, we say a~b

if there exist a,w in V*, U in VN and U+~ in P such that

a = aUw and b = a~w. If aO~l~ ••••• =9an, where ai is

in V+ for O~iSn, then aO *~n if n~O (reflexive transitive

closure of~),and ao~an if we require n>o (transitive

closure of ~). The sequence aO~al~ ••••• ~an is called

the derivat10n of an from a O of length n.

1.2.3 A string u is a U-derivat~ve if U +~u. It

is an immediate U-derivative if U~u (i.e. there is a

production U+u).

1.2.4 A string u is a sentential form if u is an

S-derivative (where S is the distinguished symbol). A

sentence is a sentential form consisting only of terminals.

The language defined (or generated) by G is denoted L(G)

and .is the set of sentences of G. Thus L(G) = {uIS~u

and u £ Vt}.

1.2.5 If a~b where a =aUw, b=auw and U +)u, then

u is a phrase in b. If a~b (and U+u) then u is an

immediate or simple phrase (of U) in b. The process of

constructing a derivation of a sentence st~rting from the

sentence and working back to the distinguished symbol is

called parsing, and the derivation so obtained is called

a parse of the sentence. If ~b and u is an immediate

phrase of U in b, then the parsing step from b to a is

called a reduction of u to U.

1.2.6 Given a derivation a=x1~x2 ••.•• ~xn=b,

7

the derivation is a right-most derivation if, for i~i<n,

xii = aiUi~i' xi+l = aiui~i where Ui+ui is a production and
I

~i£ Vf· We take the right-most derivation to be the

canonical derivation of the set of derivations that differ

only in the order of application of productions. A parse

which represents a canonical derivation is a canonical

(or left-to-right) parse; reduction of a left-most

immediate phrase of a sentential form is a canonical

reduction.

A grammar G is ambiguous if some sentence of G

has more than one canonical derivation.

1.3 Admissable Grammars (17)

A grammar is an admissable or reduced grammar if:

(i) for all X in V, there is a sentential derivation,

S~UXv, for some u,v in V* i.e. X is reachable, and

(ii) for all X in VN, there is at least one derivation

~x, where x is a terminal word i.e. X is useful

(otherwise X is useless).

If a symbol in a grammar is unreachable, then

it clearly plays no part in the language generated by the

8

grammar. Similarly, if a nonterminal is reachable but

it is useless, then it cannot participate in the generation

of terminal words, by definition.

Example:

let G= (VN, VT , P, S), where

VN= {S,X,Y,Z}

VT= {a,b}

P: S+ aXlaYb

X+ aX I aaX

Y+ aYQle

Z+ aZlb,

trivially Z is unreachable as it appears nowhere on the

right hand side of a nonterminal other than itself, and

X is useless. We can, therefore, replace G by:

Gl=({S,Y},{a,b},{S+aYb,Y+aYble},S).

If a nonterminal had no rules associated with it, then it

would be useless under the definition given above. This

implies that each nonterminal, apart from the sentence

or distinguished symbol, must have at least one rule

associated with it.

The algorithms for determining reachability and

usefulness will be presented with the Algol procedures in

section 2.8.

9

1.4 Left and Right Sets

1.4.1 With respect to a grammar G, we define the

left set or left part of a nonterminal X, denoted by~eX),

to be the set of all symbols which can occur as the left-·

most symbol of an X-derivative. Thus~eX)={Alx~A •••• }.

Analogously, we define the right set ~r right part of X:

~eX) =,{AIX +~ •••• A}. We can extend this notation to all

symbols of a vocabulary by defining~eX) = OGeX) = , for

every terminal symbol, X.

Example eWirth-Weber)

G=eVN, VT, P, S),

where VN={S,H}

VT={).']}

P: S-+>H]

H-+>]

H-+>H)'

H-+>HS

Then the left and right sets of the nonterminals, Sand H

are as follows:

u ;(eU) /('eU)

S

H

]H

]H

]

]).S

The computer alogorithm used for finding the left and right

sets is given in the second part of chapter 2.

10

1.4.2 A nonterminal X is left (right) recursive

if X£~(X) (X£6C(X»; it is self-imbedding if X~aXb.

If X+x and x *>X •••• (x~ •••• X, x *)aXb) then X+x is

a left recursive (right recursive, self-imbedding) rule.

X+x is directly left recursive (directly right recursive,

directly self-imbedding) if x=X •••• (x= •••• X, x=aXb).

1.5 Simple Precedence Grammars

The notion of simple precedenc~ grammars (and

simple precedence languages) introduced by Wirth and

Weber(14) is the following.:

Let G= (VN, VT, P, S) be a context free grammar.

For any A, B, £ V, we define the following simple precedence

relations:

SPl) A = B iff P contains 'a rule of the form

X + ••• AB ••• for some X £ VN

SP2) A <. B iff P contains a rule of the form

X + ••• AY •• for some X,Y £ VN and

Y~B (that . B ';:;lon)
G

... 1.S, £

SP3) A .> B iff P contains a rule of the form

X + ••• YZ ••. for some X,Y £ VN' Z £ V

+ * and Y G,> ••• A and ~B •••

(that is, Z = B or B £~(Z) and A £ 6G(y».

The relations have the following interpretation

(with respect to sentential forms of G).

11

II) The relation ! holds between all (left-to-right)

adjacent symbols in an immediate phrase.

12)
~

The relation <. holds between the symbol

immediately preceding a phrase and the leftmost

symbol of the phrase.

13) The relation .> holds between the rightmost symbol

of a phrase and the symbol immediately following it.

If A <t B or A = B or A ·>B then A~B (that is,

at least one simple precedence relation holds between A

and B). Given any CF grammar, it is possible to determine

which relations hold between any two symbols(14).

If a grammar has two (or more) rules of the form

x ~ a, Y + a where X ~ Y, we say that the grammar has

common right parts a or common right part rules X+a and

A grammar G = (VN,VT,P,S) is a simple precedence

grammar if both the following conditions are satisfied:

1. for every (ordered) pair A,B £ V, at most one

simple precedence relation holds between A and

B. (If this condition holds, we say that G has

unique simple precedence relations.)

2. G has no common right part rules.

12

If more than one simple precedence relation holds

between some A,B £ V, we say that there is a precedence

conflict between A and 8. It is a right conflict for A

and a left conflict for B. A grammar G = (VN,VT,P,S) is

said to have a precedence conflict if there is a prec~dence

conflict between two of its symbols.

If A <. B or A = B we say that A s· B. If A .> B

and A = B, we say there is a "!-conf1ict between A and B.

If A <. B and A = B then there is a ~·~conf1ict between

A and B.

Example (from Wirth and Weber(14»

V = {A,B,[,],;,X}

1) S+ A

2) A+ B; B

3) B+ [A]

4) B+ [X]

5) B+ X

[= X (rule 4) X =]

[<. X (rule 3) X·>]

(rule 4)

(rule 3)

There is a ~. «.,;) conflict between [and X; it

is a left conflict for X and a right conflict for [.

There is a .> conflict between X and].

The precedence relations which exist between the

symbols of a grammar are best expressed by a precedence

13

matrix. For example, consider the following grammar from

Wirth-Weber(14):

Applying

G=(VN,VT'P,S)

VN= {S,H}

VT= {>',[,]}

P: S+H]

H+[

H+H>'

H+HS

the rules to determine

relations, we arrive at:

S H >. []

S -> -> -> -> ->

H - <- :: <- -=

A -> -> -> -> ->

[->. -> -> -> ->

] -> -> -> -> ->

the precedence

The derivation of this matrix and its representation

in GRAMPA will be discussed later in chapter 2_

1_6 Removing Precedence Conflicts
I

Precedence conflicts can be removed by several

means_ One such method is to treat the grammar as a more

general case of a precedence grammar called extended

14

precedence. This is described in section 1.8. The method

described here will be restricted such that it does not

cause a change in the terminal language that in turn

requires a change in the associated semantics of any

production of the grammar. The following definitions are

gi,ven(7):
,

(1) An artificial production is a production with no

associated semantics and only one element on the right

side (also called an intermediate production).

(2) A left restricted expansi.on (LRE) of the nonterminal A,.

replaces A on the right sides of all productions, except

where it is the left-most symbol, by a new

nonterminal Ai, and adds the artificial production Ai~A

to the grammar.

(3) A right restricted expansion (RRE) of A replaces A

in the right sides of all productions, except where it is

the right-most symbol, by a new nonterminal Ai'

and adds the artificial production Ai~A to the grammar.

The following rules (proven in George(7» now

hold for context free grammars:

(1) The precedence relation ~ between two symbols A and B

can be changed to <. by an LRE of B.

i.e. a production of the form U~xABy becomes U~xABlY'

15

.
and Bl~B is added to the grammar - then A Bl and A <- B.

(2) The precedence relation = between two symbols A and B

can be changed to -> by an RRE of A.

(3) The precedence relation <- between A and B can be

changed to .> by an RRE of A.

The precedence conflicts which can occur between

any two symbols are (:!:, < •), (::,' », « - , t » and (=, <. , • >).

The precedence conflict (::,<.) between A and B can be

removed by an LRE of B. The precedence violation (=,'»

between two symbols A and B can be removed by an RRE of A.

The violation «.,.» can be removed by an RRE of A, and

the violation (=,<.,~» can also be removed by an RRE of A.

With all of these transformations, new violations can be

introduced, thus the procedure is recursive.

1.7 Precedence Functions

A precedence matrix to be used in a syntax analyser

would have n2 elements where n is the number of symbols

in the vocabulary_ This often requires a large amount

of storage for practical compilers. Often the precedence

relations are such that two numeric functions (f,g)

ranging over the set of symbols, can be found such that

for all ordered pairs (Xi,Xj):

(a) f(Xi)= g(Xj) - Xi=Xj

(b) f(Xi)< g(Xj) - Xi<·Xj

(c) f(Xi» g(Xj) - X' • >X·
~ J

16

We now only require 2n locations to store these

functions (if they exist).

The precedence relationships for the example grammar

in section 1.5 can be represented by the two functions f

and g, where:

X=

f(X)

g(X)

s

3

1

H

1

2

3

1

[

3

2

]

3

1

The procedure for p~oducing precedence functions

is described in section 2.9.5.

1.8 Extended Precedence

Wirth and Weber(14) point out that sometimes

precedence conflicts between symbols in a grammar can be

resolved by looking to the left or to the right of the

pair in conflict; that is, by extending the definitions

of the precedence relations to strings of symbols. For

instance, in the previous conflict example, [;X] and

[<·X;, also [X~] and ;X >]. Wirth a~d Weber present

same informal discussion and then formal definitions for

the extended relations. However, the defi~itions they

give do not correspond to the interpretations of the

relations with respect to phrase detection.

17

Graham(S) defines the extended precedence relations

with respect to canonical derivations, since these are the

derivations which the parsing method Wirth and Weber

present is intended to construct. Since the extensions

are intended to resolve conflicts by looking at preceding

and succeeding symbols, Graham extends the relations to

strings which are adjacent in canonical sentential forms

(rather than restricting the definitions to strings

generated from the same rule, as Wirth and Weber do).

The definitions of the extended precedence relations

will not be given here (see [8]), since they have not

been incorporated into GRAMPA.

CHAPTER 2

THE ALGORITHMS AND PROCEDURES IN GRAMPA

2.1 Introduction

The procedures which comprise GRAMPA are written

in Algol 60 for the CDC 6400 computer. The package (from

now on called the program) is divided into two main sections:

READ GRAMMAR
AND SETUP
REQUIRED
TABLES

PERFORM
DESIRED
ANALYSES

PART 1

PART 2

The structure and format of the tables will be

discussed first, followed by explanation of the mechanisms

used for reading in the grammar. Finally, each of the

analysis and manipulation procedures will be described

in detail.

- 18 -

19

PART I: GRAMMAR INPUT

2.2 Table Construction

The first section of the program reads the

productions from cards and sets up the following tables:

l)la'syntax graph,
I

2) a table of the terminal symbols and a corresponding

cross-reference lookup ~able,

,3) a table of the nonterminal symbols and a corresponding

cross-reference lookup table,

4) tables to enable the left-hand symbol of a production

to be obtained starting with the first symbol of the

right hand side (for use in parsing).

The reader is referred to a listing of this first

section of GRAMPA given in appendix 5.

2.3 The Syntax Graph

2.3.1 Description

Backus-Naur form (BNF) is a very useful way of

displaying a grammar for human comprehension. However,

other forms are needed to represent the grammar in the

computer, which can be used for analyzing the structure

of the grammar or for parsing. Cheatham and Sattley(3)

have shown how to represent a grammar by a pair of tables

20

which yields a simple top-down parsing algorithm. The

syntax graph used in GRAMPA represents a grammar by a

graph which is a slight modification of Cohen and

Gotlieb's(4) (which in turn is the equivalent of

Cheatham's tables in list structure form). The syntax

graph is not only a means whereby the structure of a

grammar can be checked and manipulated, but it can be

used for top-down parsing of the grammar, and in a

reversed form for bottom-up parsing.

The following paragraph describing the construction

of the syntax graph is taken from Cohen and Gotlieb(4).

"To construct the syntax graph for a context-free

language, all productions starting with the same nonterminal

are combined into one string, called "the expression for

the nonterminal; in this the OR symbol, I ,separates the

different alternatives. For example, the expression for

the nonterminal Simple Arithmetic Expression (SAE) of

Algol is written: SAE + TRMIAOP TRMlsAE AOP TRM, where

AOP is the abbreviation of Addition Operator and TRM is

the abbreviation for Term. Each expression is represented

in the syntax graph by a tree, called the expression tree

of the nonterminal. The set of all the expression trees

forms a disjoint set of sub-graphs of the syntax graph.

21

These expression trees, together with connecting links,

constitute the syntax graph."

Each node of the syntax graph is described by

a quintuplet: its value, or name, which is the internal

representation of the element in the vocabulary set of

the grammar (either a terminal or nonterminal), and four

pointers, pointing away from the node, and labeled

DEFinition, ALTernative, SUCcessor and Left-Hand Symbol.

The nodes within an expression tree are linked internally

through the ALT and SUC links, and the complete syntax

graph is formed by interconnecting the expression trees

through the DEF links.

The rules for constructing the expression tree

for the expression are as follows:

1) A node is created for each element on the right-hand

side of the expression. The VALue of the node is the

name or some internal representation of the element.

2) The elements of each production are linked through

their SUC links in the order of occurrence in the

production, from left to right. The last component

of each production contains a special end-of-production

symbol, a, in its SUC link.

22

3) The different alternative productions in each

expression, assumed to be in arbitrary order, are

linked by means of the ALT link of the first element

of each production in the expression.

lj.)\ A flag, bearing the name of the element on the left

hand side of the expression, is attached to the root

(first node) of the tree.

In summary, the elements of productions are

linked through their sue links, with the symbol a

signalling the end of each production. A production is

referenced by its first element, so that the different

productions of an expression are connected through the

ALT link of the first element of each. The end of any

chain or list is signaled by a ~ in the appropriate box.

Figure 2.1 illustrates the expression tree for SAE.

I

Figure 2.1 Expression tree
for the nonterminal Simple
Arithmetic Expression, SAE
SAE~TRM/AOP TRM/SAEAOP TRM

~
TRM

a

,~

AOP

• r

,~

SAE AOP

~
y

t

TRM

t

23

DEF ALT sue
Node E lements

"

~ a

,

TRM

~
y

To complete the construction of the syntax graph,

t

the expression trees are connected by means of the DEF

links. For a terminal node the symbol ~ is inserted in

the DEF field. For a nonterminal node the DEF link points

to the root of the expression tree representing the

a

24

definition of the nonterminal. The construction of the

syntax graph is comFleted by creating the root node of the

graph. This node contains the grammar initial symbol, S,

and it is linked to the expression tree defining it by

its DEF link, while a and ~ are entered into its sue
and ALT fields.

All the information about the syntax of the language

is now contained in the syntax graph. This syntax graph

can, in general, be simplified. The form described so far

is called the nonreduced form.

2.3.2 Representation

The syntax graph is represented in the program

by the array SYNG (dimensioned [1:500, 1:5]). Each node

of the graph is a row entry in SYNGe The first element

of the row is a value for the symbol (assigned by GRAMPA),

the second element is a pointer to the DEF row, the third

is'a pointer to the ALT row, and the fourth is a pointer

to the sue row. A fifth element exists which holds the

value of the nonterminal symbol which is the left-hand

side of the production. The meta-symbols, , and a, are

both represented by O. The end of a production is signalled

when both SYNG [row, 3] and SYNG [row, 4] are zero.

For example, suppose the values 300, 301, and

302 had been assigned to the nonterminals SAE, TRM and
J

AOP respectively, then the expression tree for Simple

25

Arithmetic Expression would look as follows in the array

SYNG:
SAE~TRMIAOP TRMlsAE AOP TRM

Row VAL DEF AlT sue lHS

1

.TRM 2 301 3 0 300

AOP 3 302 S' 4 300

TRM 4 301 0 0 0

SAE 5 300 2 0 6 300

AOP 6 302 0 7 0

TRM 7 301 0 0 0

8

The blank boxes, holding the DEFinitions of AOP

and TRM would be filled in later when those nonterminals

are defined by expressions.

Before the programming mechanism is described for

creating this table, it is necessary to describe how

symbols are represented in the system.

26

2.4 Symbol Tables

Two tables are associated with both the terminal

and nonterminal symbols of the grammar being processed.

One table is used to store a copy of the symbol while the

other is a cross-reference (hash) table to check whether

the symbol has been met before while reading in, and to

point to its position in the first table.

2.4.1 Terminal Symbols

TERMINALS [0:256,1:3] ••.• store copy of symbol, and
Tables:

TERMTABLE [1:256, 1:2] •.•. pointer taple

As a terminal is read from cards, a· copy of it is

constructed in a three word array, WORD. The three words

are then arithmetically added to form a hash key, WSUM,

to check for previous occurrences of the symbol. The

hash procedure used is the random probing technique of

Morris(ll) , outlined in figure 2.2, (see also Appendix 3).

A pointer, POINTER, into the array TERMTABLE is

first generated from the hash key. The contents of

TERMTABLE [POINTER, 1] are compared to the key. If they

are equal, then the symbol has been met before and'is

already stored at position TERMTABLE [POINTER,2] in the

array TERMINALS. If the contents of TERMTABLE [POINTER, 1]

F1~ure 2.2 Outline of the Hashinq Procedure
for Terminal Symbols

Procedure Hash (WSUM,N.)

27

t~------------------~

YES

Generate a
Pointer

From the Hash
Key 'WSUM' by

Morris'
Alqorithm

Obtain the
Contents

of tTERMTABLE
(Pointer. 1)'

put into 'IKEY'

New

r---..!
Symbol

NO

Put Hash Key
'WSUM' into
'TERMTABLE
(POINTER. 1)'

JL
Assign A
Symbol
Number

'Termno.
Termno+l'

. NO-Termno
J~

Store Number
in t TERMTABlE
(Pointer. 2)'

Put a copy of
Symbol in
TERMINALS (NO.

NO"

TERMTABLE
(POINTER,2)

1~3)
END '\

./

before

Create a
Random

Offset by
Morris'
A190rithm

28

are zero, then we have met the symbol for the first time.

The hash key is stored in TERMTABLE [POINTER, 1] and a

copy of the symbol is stored in TERMINALS with a pointer

to it in TERMTABLE [POINTER, 2]. If the contents of

TERMTABLE [POINTER, 1] are not zero and are not equal

to the hash key, then we have a collision, and a random

offset is created and added to POINTER <refer to figure

2.2). The procedure for checking is then repeated.

The terminal symbols of a grammar are numbered from

1 to 256 in GRAMPA. The value -1 is reserved for the

empty word.

2.4.2 Nonterminal Symbols

Nonterminal symbols are handled in exactly the

same way as terminals in GRAMPA. The two arrays uS.ed

are:

NONTERMINALS [300~55l, 1:4] for copies of the symbols, and

NONTERMTABLE [1:256, 1:2] for pointers and hash keys.

A fourth column is included in the array

NONTERMINALS which is used during the construction of the

syntax graph.

The system can easily determine whether a terminal

or nonterminal symbol has been met by its position in

context in a BNF expression.

2.S Procedure INGRAMMAR

2.S.1 Introduction

29

The productions of a grammar are read into'the

program by the procedure INGRAMMAR. This single procedure

also sets up all the tables described previously. The

pr9cedures called by INGRAMMAR are shown in figure 2.3.

The reader is referred to the program listing for the

detailed workings of these procedures. A brief summary is

,given below:

1) GETTERM: reads a termina1'symbo1, and puts it into

the terminal tables.

2) GETNONTERM: Similar to GETTERM for the nontermina1s,

3) EMPTYPROD: processes the empty statement when met by

making appropriate flags in the syntax

graph.

4) PRINTSYMBOL: prints a symbol, given its value.

S) HASH: Hashing routine to check for previous

occurrence of a symbol or to put it into tables.

6) GETLINE: Reads an input card.

7) OUTCHAR: prints a character, given its internal value.

Before describing the logic used in the

procedure INGRAMMAR, the characters and input conventions

used with relation to 'inverse' BNF notation will be

described.

30

Figure 2.3 Procedures Used by 'INGRAMMAR'

INGRAMMAR

I
\

GETNONTERM

r
EMPTYPROD PRINTSYMBOL

t
OUTCHAR

GETTERM

N"TCHAR NX~HAR HA~H
~

GETLINE GEfLINE

31

2.5.2 Characters Used and Their Internal Values

The characters allowed in a GRAMPA input deck

are found in Table 1 together with their internal integer

values assigned by the Algol system procedure IN CHARACTER.

2.5.3 'Inverse' BNF Notation

The inverse BNF notation20 is essentially the same

as BNF notation except that delimiters are placed around

the terminal symbols instead of the nonterminals. For

example, consider the following production for 'case

sequence' in PL360(13). <case seq>:= case< k reg> of

begin I <case seq> <statement>

In GRAMPA this would be entered as:

case-seq+<case> k-reg <of> <begin>/case-seq statement; i.e.

the terminals are delimited by the meta symbols <,>, and

nonterminals are delimited by blanks - thus no blanks may

occur within nonterminals. All nonterminal names longer

than one word must. be separated by a -(dash) symbol or

concatenated, their total length should not exceed 13

characters. The meta symbols used in GRAMPA are listed

below:

Symbols

<~>

/

blank(s)

delimit terminal symbols·

delimit alternative right hand sides,

delimit nonterminals,

32

Table 1: Allowable Symbols and Their GRAMPA Values

Symbol Value Symbol Value Symbol Value

0 1 L 22 43

1 2 M 23 44

2 3 N 24 rio 45

3 4 0 25 (blank) 46

4 5 P 26 * 47

5 6 Q 27 (48

6 7 R 28) 49

7 8 S 29 50

8 9 T 30 = 51

9 10 U 31 52

A 11 V 32 '" 53

.... 12 W 33 54 ZJ Y

C 13 X 34 ~ 55

D 14 Y 35 ~ 56

E 15 Z 36 , 57

F 16 37 - 58

G 17 < 38 $ 59

H 18 > 39 [60

I 19 / 40] 61

J 20 , 41 t 62

K 21 + 42
'"

63

33

::= := or -+ "is defined by" -separator for left and right

parts of a production.

; end of production

• end of grammar definition

used for concatenating nontermina1 words.

When producing an input deck for GRAMPA,

expressions may begin anywhere on a card and extend over

any number of cards. However, terminal and nontermina1

symbols may not be split over two cards. Examples of

grammars punched on cards are given in chapter 3.

2.5.4 Logic of Procedure INGRAMMAR

The procedure INGRAMMAR is basically divided into

three parts:

1) initialize tables, counters, syntax graph,

2) read in grammar and set up tables, and

3) check for undefined nontermina1s.

The first part of the procedure is fairly simple

and involves mainly initialization of variables. The

explanation of the working of the procedure will concentrate

on the second part -- reading the grammar an~ constructing

the tables.

The grammar is read in from cards using a very

simple form of transition matrix. Three basic states are

used:

•

F19ure 2.4: Operation of 'IH~RAMMAR'

", • Entry' State

Entry *
Scan input for ,
first non-blank
charcter

Assume it iR
the 'sentence'
symbol. Put it
into the first
row of the
syntax graph
with appropri
ate pointers

Put pointer to
next rO"l of
syntax p;raph
in column 4 0
nonterminals

ut LHS pointer
= to symbol
umber in LHS

_olumn of next
ow in syntax

p:raph

no

Met
before

n.Qt ye

34

no

<1ef1ned?

Trace back
through syntax
graph for
previous
occurrences of
symbol, putting
the definition
column eoual to
the next -row in
the syntax
graph as we go.

Assume we have
an alternate
expression.
Trace for· end .
of previous
definition and
fill in al ter
nate column
equal to next
!x)w in syntax
graph

*Entry, State 2 and State 3 are label identifiers in the program .

Figure 2.4 Continued

State 2

next non
blank
character

(State 2

35

Operation of 'INGRAMMAR'

State 2

State 3

ut flag in DEF
ox of current
ow in syntax
raph. Put
ointer plus

flag to current
ow in syntax
~raph into
column 4 of
NONTERMINALS

no

~)

Put pointer
minus flag from
column 4 of
NONTERMINALS
into DEF box of
current row in
syntax graph.
Put pointer
plus flag to
current row in
syntax graph
back into 4th
colum of
NONTERMINALS .

pdate pointer
o next row in
yntax graph

Fill in sue box
of previous row of

F-----~syntax graph if not
first symbol in
expression

Set DEF Box
equal to the
pointer in 4th
column of
NONTERMINALS

Figure 2.4 continued ODeration of 'INGRAMMAR ' State 3

State 3

yes

Scan for first
non-blank
character
after the I

no

Call procedure
>-~""""'...:.I EMPTY PROD, and

no

connect alternate
pointer in the
DEF box

State 2

MPTY PROD,
onnect
lternate
ointes

•
(Entry)

I GET NONTE~ J

Go through checks
described in
state 2 for
previous
occurrence etc.

EMPTY
PROD

36

p
a~

any ~Y;;;b6'l
et in t])e
~p~~ion

yet?

Put pointer to
------------------------------~~----------------·~current row in

alternate column
of row DEF box

State 2

es

37

1) an ENTRY state for reading and processing the left

hand side of a production,

2) STATE 2 for handling the first complete expression,

and any symbols after the first symbol after a I

(alternate), and
I

3) STATE 3 for handling the first symbol after a I.

Flowcharts describing the operation of the three

states are give~ in figure 2.4. The reader is also

referred to the program listings. Key identifiers used in.

this portion of the program are explained below:

NO: value assigned to current symbol,

NXTBOX: next free row in syntax graph,

DEFBOX: row which contains the first symbol of

current expression,

LHSBOX: value of nonterminal which is the left hand

side of the current expression being processed,

RHSNO: counter for position of current symbol in

expression,

PRODUCTIONS:count of the number of production met so far.

The detailed workings in each state will not be

described, however, the pointer system maintained in the

fourth column of the array NONTERMINALS is of interest.

This pointer is used to tell us whether a nonterminal has

been met before; if so, then whether it has been defined

38

or not. It must be remembered that the sentence symbol is

the only nonterminal that goes straight into the syntax

graph as a left-hand side, all the other nonterminals met

as left-hand sides are not put into the syntax graph since

they have occurred or will occur'somewhere in a right-hand

side.

If a nonterminal (not the sentence symbol) is met

for the first time as a left hand side, then the position

of the next free row in the syntax graph is put into

NONTERMINALS [NO, 4], since this row will hold the first

symbol of the first right-hand side expression. However,

it is more likely that we meet a nonterminal within an

expression and it has not been defined before. When this

occurs, the position of the current row in the syntax

graph holding the nonterminal (now in an expression) is

stored in NONTERMINALS [NO,4]_.added to the number 10,000

which serves as a flag. A flag of -1 is put into the

definition box of the nonterminal's entry in the syntax

graph. We may continue to meet the same nonterminal symbol

in subsequent expressions until it is defined. In these

cases, the pointer in NONTERMINALS [NO,4] is updated to

the current row in the syntax graph, while the definition

box in the current row is set to the row holding the previous

entry of the nonterminal. Thus a linked list is formed

backwards through the syntax graph joining all occurrences

39

of the nonterminal. The head of the list is given in

NONTERMINALS [NO, 4] and the tail is signified by -1 in

the definition box of the row in the syntax graph holding

the first occurrence of the nonterminal. When the symbol
.

is finally met as a left-hand side, this list is traced

through, and a pointer is inserted to the current row in

the syntax graph holding the first symbol of the

nonterminal's right-hand side. Figure 2.5 illustrates

this mechanism for an arbitrary nonterminal, X.

The third way we can encounter a nonterminal is

when it is a left-hand side but it has already been defined.

In this case we have an alternate expression. The pointer

to the head of the first right hand side for the

nonterminal is retrieved from NONTERMINALS [NO,4]. Then

the list of alternates (if any) for the nonterminal are

traced through via the alternate painters until a zero

alternate pointer is met. The value of the next free

row in the syntax graph is then inserted here and the

right-hand side for the current occurrence of the

nonterminal is processed as normal.

When all of the productions in the grammar have

been processed, a scan is made of NONTERMINALS [NO, 4]

to check for any values over 10,000 i.e. undefined

nonterminals. If these are encountered, an appropriate

Figure 2.5: Illustration of Backward list Kept
in the Syntax Graph

a) Nonterminal X met within expressions but not yet on a
left hand side.

NONTERMINALS

x IDOl(I-

v """"'

Syntax Graph
alue DEF ALT sue LHSYM

(X) -1

(X) j ~

(X) 8

L..--h.........-- ___ ___.r-"

1
2
3

5
6
7

8
9

10

11

40

(Symbol) =value
of symbol

b) Nonterminal X now met as the left hand side of an expression
X +u.

NONTERMINALS

X 11 I--

I'-\~_f'. , ' /.'\.

.... ,

Syntax Graph
VAL DEI' ALT

(X) 11

(X) 11

(X 11

(u' ~\ \'

~V""~

'>lIe LHSYM

(X)
--~ -

, .

~

1
2

3

1+

5

6
7

8

9

10
11
12

41

message is printed and the list through the syntax graph

is cleared.

This list procedure was set up to enable the

productions in the grammar to be entered in any order.

However, the GRAMPA system expects the sentence or

distinguished symbol to be the first "nonterminal

encountered.

2.5.5 The EMPTY Statement: (Procedure EMPTYPROD)

The empty statement is handled as if it were a

terminal symbol, however, several flags are set to denote

its occurrence. A value of -1 is assigned'the symbol and

is placed in the value box of the current row in the

syntax graph, also the number 1 is put in TERMINALS [0,1]

to signify its occurrence for printing purposes. Finally,

the pointer in NONTERMINALS to the beginning of the

expression containing the empty statement is negated.

2.5.6 Procedures GETTERM and GETNONTERM

These procedures read in a terminal or nonterminal

symbol, form the hash key and call the procedure HASH to

insert the symbol into tables. The operation of the

procedures can be understood with reference tO,the program

listing. The procedure GETTERM makes a special check for

42

the case when the meta symbol > is in fact a terminal

symbol of the grammar, i.e~ when the symbols <» occur on

a card.

2.6 Procedure PRINT TABLES

This procedure prints a neat popy of the symbols

with their GRAMPA values, and prints the syntax graph.

It can be called anywhere in GRAMPA after INGRAMMAR.

2.7 Procedure PRINTGRAMMAR

The procedure PRINTGRAMMAR is used to print a tidy

version of the grammar after processing by INGRAMMAR. This

is accomplished by stepping through the pointers in

NONTERMINALS [NO, 4], and tracing the ensuing productions.

If a nonterminal is undefined, an appropriate message is

printed. This procedure is separate from INGRAMMAR and

is very useful for locating input errors since the

procedure prints th~ grammar as it was understood by

INGRAMMAR. The procedure can be called anywhere in the

GRAMPA system after INGRAMMAR.

43

PART II: GRAMMAR ANALYSIS AND MANIPULATION PROCEDURES

The second part of this chapter will describe the

algorithms and procedures developed so far for GRAMPA

which can be used for analyzing and manipUlating context

free grammars.

2.8 Admissibility of Grammars

The algorithms and examples given below which

provide mechanical tests for the admissibility of a grammar

are taken directly from Wood.(17)

2.8.1 Reachability Test

Let G = (VN, VT, S, P) be a grammar

Step 1: Let R={S} = L be two sets.

Step 2 : Choose an X in L. Let L = L-{X} • For all Y in

such that X+uYv in P, for some u, v in V*, if Y

not in R then (let R=RU{Y} and if Y in VN then

L= L U {Y}).

Step 3 : If L ~ ~ repeat steps 2 and 3, otherwise R holds

the reachable symbols of G.

Now R is best represented as a table and L as a

list. Consider the example grammar in section 1.3:

S+ aXlaYb

X+ aXlaaX

Y+ aYbl£

Z+ aZlb

V

let

Now:

R = S

X

Y

Z

a

b

Step 2

R = S

X

Y

Z

a

b

as L ~

R = S

X

Y

Z

a

b

Y

N

N

N

N

N

gives

Y

Y

Y

N

Y

Y

44

and L = [S] initially. Y(=Yes) indicates

that the adjoining symbol wou1d'be in the

set R in Algorithm 1.

and L = [X~Y] since S aX and S aYb.

, repeat steps 2 and 3 obtaining

Y and L = [Y], where X in L is chosen.

Y

Y

N

Y

Y

Again as L ~ , we repeat steps 2 and' 3, which give

R = S ,Y and L = [] .
X Y

Y Y

Z N

a Y

b Y

Thus L = ~ and R = (S,X,Y,a,b) is the set of

reachable symbols of G, i.e. Z is unreachable.

We now turn to our second algorithm.

2.8.2 Usefulness Test

Let G = (VN, VT, S, P) be a grammar.

Step 1: Let Uo = ~ and i=O.

Step 2: Let Ui+l ={X: X-+x in P, x in (UiU VT*}'

Step 3: Let i = i+l. If Ui ¢'Ui-l then repeat steps

2 and 3 otherwise Ui contains the useful

nonterminals.

45

The first time .step 2 is obeyed Ul contains those

nonterminals which have at least one associated rule

whose right side is a terminal word. Therefore, for all

X in Ul, X is useful. The second time step 2 is obeyed

U2 will consist of those nonterminals which have at least

one associated rule whose right side is a word from

(VTLJul)*. Again such a nonterminal will be useful since

46

all members of Ul are useful. The algorithm must halt

since VN is finite.

Step 1:

Step 2 :

Step 3:

Step 2 :

Step 3 :

Step 2 :

Step 3 :

Using the example grammar (section 1.8):

Ua. = ~, i = a.

Ul = {Y,Z}

i = 1, as Ul~Uo repeat steps 2 and 3.

U2 = {S, Y, Z}

i = 2, as U2~Ul repeat step 2 and 3.

U3 = {S, Y, Z}

i = 3, as U3=U2 then U3 is the set of useful

nonterminals, therefore, X is a· useless

nonterminal.

Given any CFG,G, and using algorithms 2.8.1 and

2.8.2, there in fact exists an equivalent CFG Gl such

that Gl is admissable.

2.8.3 Procedure ADMISSABLE

Tests for admissability are performed by the

procedure ADMISSABLE in GRAMPA. This procedure first

calls a procedure TERMINATE which constructs a Boolean

table T to indicate which nonterminals lead to a terminal

symbol. There is an entry in T for each nonterminal;

T(nonterminal) is TRUE if the symbol is useful otherwise

it is FALSE. The procedure TERMINATE uses the usefulness

47

algorithm of section 2.8.2.

When the useless nonterminals have been found,
"'-,

a procedure DELETE is called which deletes the productions

containing the nonterminal from the grammar. Also the

pointer in NONTERMINALS [useless nonterm, 4] is set to

zero. The grammar is printed.

The checks for reachability are then performed

within ADMISSABLE itself. The algorithm of section

2.8.1 is used. The Boolean array T represents the table

R of section 2.8.1, and the array PD represents the set L.

After the reachability test, the unreachable nonterminals

are deleted and the grammar is printed. Symbols deleted

for uselessness by the procedure TERMINATE also become

unreachable because of the deletions. The admissibility

procedures were initially written by Dr. D. Wood and

modified slightly by the author.

2.9 Algorithms and Procedures for Simple Precedence Analvsis

2.9.1 Check for the Empty Statement

Before any analysis for precedence is performed,

a check is made by the procedure ENPTYCHECK for the

existence of the empty statement. This is accomplished

qui te simply by scanning ·the 4th column of the array

NONTERMINALS discussed in section 2.5.5. If any element

48

in the 4th column of this ar~ay is negative, then this is

flag for the existence of the empty statement in the

right hand side of the production. If this is encountered,

an appropriate message is printed, and control jumps over

all precedence procedures.

2.9.2 Left and Right Sets

The definition of the sets ~ (U) and £ (U) in

section 1.4 is such that an algorithm. for generating

the sets is evident. A symbol Y is a member of;t:.. (U) ,

if (i) there exists a syntactic rule p : U~Yx, for some

x, or (ii) there exists a syntactic rule p : U~Ulx and

Y€ ~(Ul); i.e. ~(U) =
{Y 13 p :u~Yxv3 P·:U~Ulx/\ Y€ ~(Ul)}.

Analogously:

!<-(U) = {Y 13p :u~xYV3 p :U~XU1/\Y€ ~(Ul)}.

The algorithm for finding ;;t:.(U) and R (U) for all

symbols U€VN involves searching the list of productions pep)

for appropriate syntactic rules.

In GRAMPA, the left and right sets are found

by the procedure LEFTRIGHT, which in turn uses the

procedures LDEF, RDEF, and PATHCHK.

In the case of the left sets the procedure scans

each nonterminal successively. The production generated

~9

by a nonterminal starts at the row given in NONTERMINALS

[i,~]. The recursive procedure LDEF is then called.

This procedure traces through all the right-sides

for the nonterminal and puts the left-most symbols of

the productions into row i of a two-dimensional array

LR. If a nonterminal is one of these symbols, then

LDEF recursively calls itself to trace through all

of its productions. The procedure PATHCHK is used to

ensure that we do not cycle. For example consider the

productions:

The left part of X is H and b. While checking

H we could continually cycle as H is in its own left

set. The right sets are generated in a similar way

using the recursive proced~re RDEF.

When all of the nonterminals have been scanned,

the left and right parts are printed by the procedure

LEFTRIGHT.

2.9.3 Generating the Precedence Matrix

The simple precedence matrix can be generated

after the left and right sets have been found using the

50

procedure WWPRECEDENCE. The algorithm used is that of

Wirth-Weber. (14)

The precedence relations can be represented by

matrix M with elements Mij representing the relation

between the ordered pair (Xi,Xj). The matrix has as many

rows and columns as there are symbols in the

vocabulary V=VN UVT.

Assuming that an arbitrary ordering of symbols

of V has been made (V= fiX 1 ,X2 ; ••• Xn}), the algorithm for

the determination of the precedence matrix M is as follows:

For every element PEP which is of the form

p: U + X1X2 •••• Xm,

and for every pair Xi,Xi +1 (i=l, •.• ,m-l) assign:

a) ~ to Mi,i+l,

b) <. to all Mi,k with column index k such that

Xk€~(Xi+I)'

c) .> to all Mk,i+l with row index k such that

Xk€r£ (Xi) ,
,I

d) .> to all Mk~t with indices k,t such that

Xk €6G(Xi) and Xl€~(Xi+I)'

Assignments under rule (b) occur only if

Xi +l € VN, under (c) only if Xi€VN, and under (d) only

if both :Xi' Xi+l £ VN, because;;t' (X) and OZ (X) are empty

51

sets for all X£VT'

The procedure WWPRECEDENCE simply follows these

four rules in order. For example in rule b, each entry

is checked in the syntax graph, if the symbol has a

successor that is a nonterminal symbol, then the relation

<. holds between the orginal symbol and each symbol from

the right part of the successor symbol.

The precedence matrix is stored in the array

PMATRIX, and the precedence relations are represented

by the following values:

Value Precedence Symbol Printed Symbol

1 no relation (blank)

2 <. <

3 .> >

4 .
===

5-9 conflict C

When the precedence matrix has been determined,

it is printed out with a maximum of 30 symbols across

the top of a page. Thus several pages may be needed to

print out the whole matrix.

52

2.9.4 Handling Precedence Conflicts

The procedure WWPRECEDENCE uses a procedure PUTM

to place the precedence symbols in the matrix, PMATRIX.

This procedure also checks for precedence conflicts,

and maintains a~list of these in the array CONFLICTABLE

(which is global to the second part of the program, i.e.

all precedence procedures), and a count in NCONFL. The

array CONFLICTABLE is dimensioned [1:20, 1:5] i.e.

there is room for 20 conflicts. The first column of the

array holds a code for the conflict:

CODE CONF.L I CT

5 <. , .>

6
.

<" , =
7 .

• > ,

9 .
<. ,= , .>

The code is simply the sum of the GRAMPA values

for the symbols given at the end of the preceeding section

2.7.3. The second column holds the left, symbol of the

conflict, and the third column holds the right symbol.

The fourth and fifth columns hold the indices of the

conflict in PMATRIX for bookkeeping purposes. This array

is printed at the end of WWPRECEDENCE if, it is nonempty.

53

After WWPRECEDENCE, the procedure REMOVE CONFLICTS

can be called to remove 'any conflicts using the rules

given in section 1.6, i.e. by using left and right

restricted expansions. The procedure REMOVE CONFLICTS

steps through the array CONFLICTABLE; if a type 6 conflict

isimet «,;) then a procedure LRE(CONFLICTABLE [I,3])

is called, otherwise a procedure RRE (CONFLICTABLE [I,2])

is called. These two procedures produce left (right)

restricted expansions according to the definitions in

section 1.6.

For example, for LRE's, a new nonterminal is

artificially produced named XXXXi (i=O-9) and is added

to NONTERMINALS. A production XXXXi+A, where A is

the argument of LRE, is added at the end of the syntax

graph. All productions are then scanned and all

occurrences of the old nonterminal A are replaced by

XXXXi except where A is the left-most symbol of a right

side. The procedure RRE is more or less the same except

it does not replace A when it is the right-most symbo~ of

·a right side.

After the initial scan of CONFLICTABLE and the

ensuing expansions, REMOVE CONFLICTS calls LEFTRIGHT

and WWPRECEDENCE again, and the cycle is repeated. The

procedure terminates when all conflicts have been removed

i.e. NCONFL=O.

2.9.5 Precedence Functions

Many algorithms exist in the literature for

calculating precedence functions(1)(2)(9)(15). GRAMPA

54

uses Wirth's algorithm(15), and the p~ocedure PFUNCTIONS

is a direct copy of the procedure given as Algorithm

265, C.ACM 8 (10), Oct. 1965 pp. 604-605. If the

precedence functions exist, the procedure will produce

a neat list of the symbols with the function values.

2.9.6 Parsing Using Simple Precedence

The process of parsing is very straightforward

using precedence relations. In accordance with the

definition of the canonical parse, a parsing algorithm

must first detect the leftmost phrase of the sentence to

which a reduction is applicable, i~e. the leftmost simple

phrase. The reduction is then performed and the same

principle is applied to the new sentence. The process

of detecting the leftmost reducible phrase, after precedence

relations have been determined, consists of scanning the

sentence from left to right.until the first symbol pair

is found so that Xi·>Xi+l' then to retreat back to the

last symbol pair for which Xj_l <. Xj h0lds. Xj ••••• Xi
is the sought substring or phrase; it is replaced by the

, .

55

symbol resulting from the reduction. The process is

then r~peated.

A description of an algorithm given in Wirth

Weber(14) is given below (in pseudo Pascal). The original

sentence is denoted by Pl ••••• Pn • k is the index of the

last symbol scanned. All scanned symbols are copied and

renamed XI ••••• Xi • The reducible substring therefore,

will always be Xj ••••• Xi for some j. Internal to the

algori thm, there exists a symbol J.. called an endmarker,

initializing and terminating the process. To any

symbol X£V it has the relations J.. <·XI and xn·>.L

Assume Po = Pn+l =.J...

Xo: = PO; j: = 0; k: = l;

7Jhi te Pk ~ J.. do

begin i:=j :=j+l; Xj :=Pk ; k:=k+l;

end

7Jhite X· 1.

begin 7Jhite Xj-l; Xj do j:=j-l;

Xj= Left part (Xj ••••• Xi); i:=j

end

A version of this algorithm allowing a

heuristic form of error recovery can be found in Wirth.(13)

56

The heart of this algorithm is the procedure

Left part (Xj ••• Xi) which has to identify the reducible

phrase to obtain the symbol resulting from the reduction.

(If furthermore the parsed sentence is to be translated,

then the semantic rule corresponding to the syntactic

rule U~Xj ••••• Xi should be identified and executed) .

A procedure TRANSPOSE SYNTAX GRAPH has been

written for GRAMPA which produces tables to facilitate

the writing of a procedure similar to Left part. The

procedure produces three tables - two pointer tables

which use the first symbol Xj of the phrase to be .

reduced as an index, and a "right-hand-side" table. The

index tables, called TRHSPTR (terminal right-hand-side

pointer) and NTRHSPTR are single arrays. The symbol

Xj is an index to a position in the table which contains

a pointer into a larger table, RHSTABLE, which holds the

rest of the production Xj+1 •••• Xi in a list structure

form (similar to the syntax graph). The table TRHSPTR is .
used if a terminal symbol starts the phrase (internal

GRAMPA value 1-256), and NTRSPTR is used if a nontermina1

symbol starts the phrase (value 300-557). The table,

RHSTABLE, has three columns. The first holds the symbol

value, the second an alternate pointer, and the third a

successor pointer.

Position
300

308

57

For example, consider the following productions

from Wirth.(14)

EXPR : : = EXPR-

EXPR- ::= EXPR- <+> TERM EXPR- <-> TERM I TERM,

and suppose the nonterminal EXPR has the value 307 and

E~PR- = 308 in GRAMPA, then the following entries might
I

be made in NTRHSPTR and RHSTABLE:

. NTRHSPTR
RHSTABLE Position

.. Symbol ALT

27 (EXPR) 28 ...
7

(+) 31

(TERM) 0

(EXPR-) 0

(-) 0
(TERM) 0

(EXPR-) 0

sue

~
-1

29

0

-1

32
0

-1

27 Left hand side 1

28

29

30 Left hand side 2

31
32

33 Left hand side 3

34
35

where (symbol) would be the GRAMPA value for the symbol.

If the symbol EXPR- is encountered as the left symbol of

a phrase, then the pointer is obtained from NTRHSPTR into

RHSTABLE. Any entry in RHSTABLE flagged with a -1 means

that it is a right hand side of a production. Thus

immediately, EXPR is a right hand side •. However, if

58

the phrase is longer than just EXPR-, then the alternate

list starting at row 28 is scanned - namely <+> TERM.

If this is matched, then the next row gives the right

hand side i.e. EXPR-. If it is not matched, then the

alternate starting at row 31 (indicated in the row <+»

is scanned etc. We thus have a list structure of .

alternates and successors very similar to the syntax

graph.

2.10 Checks for Recursion

The concept of left, right and imbedded recursion

was presented in section 1.4.2. The procedure

RECURSIVECHECK produces lists of all three types of

recursive symbols. The procedure uses three smaller

procedures, LEFTRECURSIVE, RIGHTRECURSIVE and IMBED to

locate the recursive symbols. The left and right

recursive symbols are found by checking for the occurrence

of a particular nonterminal within its own left or right

parts. The imbedded recursion checks are somewhat more

complicated and rely on recursive calls of the Boolean

procedure IMBED. This procedure first checks whether a

particular nonterminal, N, is imbedded in one of its own

productions. If not, then the nonterminal, ML, on the

left of the production is checked--N can be imbedded or

on the right of the production generated by ML. Similarly

59

for a nonterminal MR on the right of the production

generated by N, N can occur imbedded or on the left of

any production generated by MR. These checks can go for

many levels of recursion until a true value is returned

or the whole procedure exits because it is looping (an

array is maintained which holds the symbols checked by

IMBED to prevent looping).

CHAPTER" 3

USE OF GRAMPA WITH EXAMPLES

3.1 Programming Considerations

3.1.1 Overall Structure of GRAMPA

The overall structure of GRAMPA is shown in Figure

3.1. The first set of procedures reads in the grammar and

sets up the tables, therefore, they must be included in

any GRAMPA run. However, the procedures PRINTGRAMMAR and

PRINT TABLES are optional. The whole second block of

the program containing the precedence analysis procedures

is optional, and can be omitted until the ~ser is satisfied

that he has the grammar punched correctly. In the second

section, the procedures EMPTYCHECK and LEFTRIGHT must be

included before WWPRECEDENCE and RECURSIVE CHECK can be

used, because both of the procedures use the left and right

sets and assume an e-free grammar.

·The structure of any Algol program is flexible, the

user can insert his own procedures easily. However, before

attempting this, the user should familiarize himself with

the global variables - described in Appendix 5.

- 60 -

61

Figure 3.1: Overall Structure of GRAMPA

begin

end

-define tables and working variables for grammar input
-procedures: GET 4

PUT 4
GET 9
PUT 9
lABS
OUTCHAR
GETLINE
PRINTSYMBOL
NXCHAR
GETNONTERM
GETTERM
HASH
EMPTYPROD
PRINTABLES
INGRAMMAR
PRINTGRAMMAR
TERMINATE
DELETE
ADMISSiBLE

must always
be included

optional

(i) main program: INGRAMMAR; PRINTGRAMMAR; PRINT TABLES;
ADMISSIBLE;

begin
-define tables for left and right parts and precedence matrix
-procedures: EMPTYCHECK

lEFTRIGHT
proc: ROE F

LDEF
PATHCHK

WWPRECEDENCE
PUTM

REMOVECONFlICTS
RRE
LRE

PFUNCTIONS
TRANSPOSE SYNTAX GRAPH
RECURSIVECHECK

LEFTRECURSIVE
RIGHTRECURSIVE
IMBED

must be included if
WWPRECEDENCE and/or
RECURSIVECHECK are
used.

(ii) main program: EMPTYCHECK; LEFTRIGHT; WWPRECEDENCE;
REMOVECONFLICTS; PFUNCTIONS; TRANSPOSE
SYNTAX GRAPH; RECURSIVE CHECK

end

62

3.1.2 The Program Deck

GRAMPA at time of writing is not stored on disc or

tape on the CDC 6400 computer. Thus a user must obtain a

copy of the deck in card form, (2100 cards).

3.1.3 Storage Requirements

The first major program block requires 35.7 aK

words of storage to load,and the whole program requires

55 aK words to load. However, it must be remembered that

many of the arrays used in the second major block are

dynamic, and their size depends upon the grammar being

p,rocessed. The largest arrays are LR(for the left and

right sets), PMATRIX(for the precedence matrix) and

RHSTABLE (generated by TRANSEPOSE SYNTAX GRAPH for left

side lookup).

Compacting techniques are used in GRAMPA to

reduce the storage requirements for these arrays. In

the case of the array LR, five entries each of size nine

bits are made into each word. Upon entry to the second

block, the array is dimensioned:

[300:NTERMNO +20, 2x(SIZE~19)n 5+1)],

where SIZE is the size of the vocabulary, and NTERMNO-300

is the number of non-terminals. SIZE can be altered as

63

artificial nonterminals are created to remove precedence

conflicts, hence an allowance for 20 extra symbols.

Entries are made into the array by the procedure PUT9.

For example, to place an item x in row i, column j of

LR, the following statement is used:

PUT 9(LR,i,j,x).

Items are retrieved by the integer procedure GET 9.

e.g. x= GET 9(LR,i,j).

The precedence matrix, PMATRIX, is oompacted in

a similar way to LR. Upon entry to the second major

program block, the array is dimensioned:

[1:SIZE+20,1:(SIZE+19)H12+1J.

Twelve items o~ size four bits are packed into each word.

The procedures PUT 4 and GET 4 are used to place and

retrieve items.

The array RHSTABLE in TRANSPOSE SYNTAX GRAPH is

dimensioned [l:NGRAPH+10, 1:3J, where NGRAPH is the number

of entries in the syntax graph. Thus the array will never

exceed 1530 words in size.

When analyzing grammars, estimates should be

made of the size of the arrays before using the program.

In the case of small grammars (20 productions and symbols)

about 60aK of storage is sufficient. Larger grammars

64

of around 100 productions and 'symbols need over 100eK

of storage.

3.1.4 Run Time

Compilation time for the complete program is
i

about 29 seconds, and about 1 1/2 seconds are needed

for loading. A central processor time algorithm for

the first major program block is given in Appendix 4.

The execution time for the second block is difficult

to estimate because it depends on the structure as

well as the size of the grammar. Total run times

are given in the next sections for the example grammars,

and are summarized in table form in Appendix 4.

3.1.5 The Data Deck

The grammar to be analysed is punched in free

format using the meta-symbols described in section 2.5.3.

The first data card must be a title card for the grammar

(1 to 80 characters). The end of data is a • (period)

on the last card.

3.2 Example 1: Simple Phrase Structure Language

3.2.1 Correct Grammar

The first example is the simple phrase structure

language defined in Wirth-Weber(14) •. The punched deck

(as listed by the program) is given below.

65

"'It-iPUT.f.

BlOCI< rt <BEGIN> BODY <END>
BOey ,. BOey- • ,
BOCY- ,. DECl < ;> BOOY - I

STATlIST • ,
STJHlIST ,. S1 ATL I ST < > STATEI'1Et-.T I

ST ATEM[NT ;
STATEMENT rt V A R < I => EX PR I

BLCCK • ,
EXPR ,. EXPR- • ,
EXt=R- rt EXFR- <+ > T[R M I

EXFR- <- > TER~ I
<-> TERM I Tt: RM • ,

T[f<M ,. T t: P11- • ,
FACTCR FACTGR TEFM- rt TERf'.l- <'" > FAC TOR / TERM- <I> I

fACTGR ,. VAR /
< (> £ XPR <» I
NU~j8ER • ,

VAR ,. < L> •
NUt-'BER rt DIGIt I f-IUM8£R DIGIT • ,
DECL ,. < NEVI> <l> • .' DIGIl rt <0> •

The first part of the output is shown in Exhibit

3.1, the remainder is given in Appendix I. The total

computer run time, including compilation, was 46.3

seconds.

Exhibit 3.1 is a neat listing of the grammar as

understood by GRAMPA. If any nonterminals are found to

be undefined, the message "(NO RIGHT SIDE DEFINED IN

THE GRAMMAR)" is printed as the right side. Every

alternate right side of a production starts on a separate

line, and a line is skipped between productions.

66

The second section of output (shown in Appendix

I) is the symbol tables and syntax graph. The GRAMPA

value assigned to the symbol is also given. Seven

columns of output appear for the syntax graph. The

first is the row number, followed by the five columns

of the syntax graph itself, described in section 2.3.1,

then the name of the symbol in the row is given.

The output from the procedure LEFTRIGHT is next

shown. The symbol numbers only are given in the listings

of the sets. The precedence matrix comes next

(photoreduced), followed by the precedence functions.

Depending upon its size, the precedence matrix may be

printed out in blocks since only 30 symbols are allowed

across each page. The form of the precedence matrix

output is self-explanatory. The precedence functions

f and g (defined in section 1.7) are listed for each

nonterminal columnwise (if they exist).

Next the lookup tables for a parser are shown

(photoreduced). These tables are described in section

2.9.6. The recursive symbols €.ound by RECURSIVECHECK

come finally.

67

Exhibit 3.1 Output of Print Grammar

·-------------------SSrrIH-PLE PHRASE STRUCTURE LANGUAGE

BLOCK 11= <BEGIN> BODY <END>

BODY 11= BODY-
BODY- 11= DyCL <e>

S ATLISt
BODY-

DECL 11= <NEW> <L>

STATlIST 11= STATlIST <,> STATEMENT
STATEMENT

STATEMENT 11= VAR <1=> EXPR
BLOCK

VAR 11= <L>

EXPR 11= EXPR-
EXPR- 11= EXPR- <+> TERM

EXPR- <-> TERM
<-> TERM
TERM

TERM 11= TERM-
TERM- 11= TERM- <"'> FACTOR

TERM- <I> FACTOR
FACTOR

FACTOR 11= VAR
«> EXPR <»
NUMBER

NUMBER 11= DIGIT
NUMBER DIGIT

DIGIT 11= <0>

(refer also to Appendix I)

3.2.2 Precedence Conflicts

The simple phrase structure language described in

the previous sub-seotion was modified to introduce precedence

conflicts by removing the nonterminal EXPR- from the grammar.

The modified grammar is shown in exhibit 3.2 below; the arrow

indicates where the grammar has been modified.

68

Exhibit 3.2 Modified Grammar

BLOCK
BOCY

aoc)'''!" "" '" ," .' ""

OECL
STATL1ST

.Sl~JE~ENT

VAR
EXpR

11=

11=

Sl~PLE PHRASE STRUCTURE LANGU~GE
<BEGIN> BOCY <END>

BODY ..
OECL <,> BODY ..
STATLIST

11= <NEW> <L>

11= STAILI5T <,> STATE~ENT
STATE~ENT

1;= VAR <1=> EXPR
BLOCK

II = <L>
11= EXPR <+>

EXPR <->
", .. ,_",. ".,'"."" ". . ,_'" fE~M TERM

TER~ "~I-__
TERM

TERM
TERM-

__ .FACTOR.

NU~BER

Ol·G 1 T

11= TERM-
1:= TER~- <*> FACTOR

FACTOR

..... J 1= VAR
'«> EXPR <»
NUMBER

°OGIT N ~8ER DIGIT
II = <0>

Exhibit 3.3 shows the precedence matrix and

conflicts. The syntax graph and left and right parts were

essentially the same as before with the exception of

references to EXPR. The nonterrninal EXPR also became left

recursive.

Procedure REMOVECONFLICTS removed the precedence

conflicts, and the new grammar and matrix are shown in

exhibit 3.4. The total processor time was 51.3 seconds.

Exhibit 3.3 Precedence Matrix and Conflicts

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ 0 0 ~ ~ ~ ~ ~ 0 0 ~ ~ ~ ~ ~
~~o~~~,~.~~_o.~~_o~~~~~.w~_

•
v v •

•
• v

v

V A

v •

v

w v v v

v

v v v

I
I

A A A

v

v v V A A

v v v

v V'V

AAAAAA

v v v

• AAAAAAAA A

A

v AAAAAAI

A A

•
A

A

• A

AAAAAAAA

A A A A

A •• A A A

AAAAAA

AAAAA"

69

'V

11

III

n ,.,
o
III

Z'

n
III

-x

--AA
••
II n -

."
'D
1"'1
n
m
n
fT!

~
l'TIi

I

-- ni II 0:
'7

". l> I.
7~
07 n

o
(I)

70

Exhibit 3.4 Modified Grammar After Removal of Conflicts

SIMPLE PH~ASE STRUCTURE LANGUAGE

BLOCK : .-,- <fjEGIN> AODY <END>
BODy : : = 80DY-

BODv- : .-,- DECL <,> BOOY-
STAfLIST

DEC! · .-, ,- <NE~'d> <L>

STATL,IST ' ,-· ,- STArLtST <.> STATE~IENT
STATH1ENT

STATEMENT · .-· .- VAR <:=> x~xxo 04--

BLOCK
VAR · .-I .- <L>
EXPO : : = fXpR <+> TERM

f.XPR <-> TFR~
<-> TER~
TERP-1

TERr,p .. -
I .- TERM-

TERM- : : = TERM- <*> F'ACTnR
TEAt". <I> F'ACTnR

--- FACTOR
FACTOR : : = VAR

«> xxxxo <»
NUM8ER

NU~~ER : r = DIGIT
NUMI-JER DIGIT

OIGyT · .-· .- <0>

xxxxo : : = r::XPR

Exhibit 3.4 cont'd. Precedence Matrix After Removal
of Conflicts

~ y

w w w Col Col Col Col W W Col fool \01 W W 0 0 0 ..:;0 0 0 0 <;I 0 0,.
Col '" ...

1
.0 ~ '" III • ., '\J ... 0 • "" '" ... 0 .. ~ a- lii .- Col '" I

I
I A A

I , ., I
'If 'If 'If " 'If 'If 'If 'If " • 'If " 'If V 'If

I ,
j
I • 'If

I
" " v ~ v' -v ~ v • " " 'If V " i

! J 'If
'.

" 'If ~ " V • 'r v " " ,
I I
I ,
I

'If 'If " 'If " • 'If V V " !

'If 'If 'r • 'r 'If 'If 'If

'If 'If " • " 'If 'If 'If

" A A A

• "
• A A A A A A

A

" A 'If A A A A

" "

•
"
"

• A

+ " " A A A

" ~

• •
A A

t
• A , A

A " ." ., • ., • " " "
• •

71

,

...

A

'V

w

•
<II

-7'

...
~

,Q

-~
- 'tI - ~

A ... 191
'\a

:"t

A ... ~
t.I

~ ... "' .-
z

Col

" 0 n
::.

rw:
Col • 0

E

Col ~
A 0

'V ...
Col ~

" 0
4J ...
:.I we

A 0 •
Col

A 0
.I'

t.I
A c .,.

'-'
0 ...
t.I
0 ,.
Col
0
.0

Col ...
::.
Col ...
Col ...
'V

W -w

72

3.3 Example 2 Admissable Test

The grammar described in section 2.8.1 was used

to test the admissability algorithms. The symbols and

initial syntax graph for the grammar are given in exhibit

3.5, and the output from the admissability algorithms is

shown in exhibit 3.6.

It should be noted that the $ sign next to the

nonterminal Y is printed by PRINTGRAMMAR to indicate the

existence of the empty statement as a right side, ie.

Y+aYbIE.

The first grammar of exhibit 3.5 is the grammar

before ADMISSABLE. Procedure ADMISSABLE first checks

and deletes useless nonterminals. The symbol X is located

and all right sides containing X are deleted. It can be

seen that the production S+aX is deleted as well as the

right sides of X itself. X remains in NONTERMINALS:-but

becomes undefined. This in no way inhibits the operation

of the precedence procedures later in the program.

ADMISSABLE next locates Z as being unreachable.

This is deleted in the same way as X. It can be seen that

because of the deletion of X previously, X also becomes

unreachable. Thus all symbols found useless will become

unreachable.

Exhibit 3.5

"'Uj'v1RE~ OF PRODUCTIONS 8
~UMRE~ OF NON T~R~INALS 4
~~~BER OF TFH~I~ALS 2 
T~E SENTE~CE SY~80L FOR TrE GRAM~AR IS: S 

_~ 0 N T f: 

NUMBER 
300 
30] 
302 
303 

____ ", .. _______ '-____________________________________________ , ______ T E R M 

SYMACL 
NO. 

1 300 
2 1 
3 _ - ___ 301 
4 1 
5 302 
6 2 
7 ) 

8 301 
9 1 

l~ 301 

l§ 3'l~ 
l~ -i 
l~ 1 

1~ 303 
2 

-- - --.c; Y f\ T A X G RAP H ___ 
~---- .. -~-~ .. -

CEFh. ALT. sue. LHSS1M 

1
0 18 11 303 A 
600 n £ 
o 0 0 303 B 

NUMBER 
-1 

~ 

R 

73 

fJ 1 N A L S 
SYMBOL 

S , 
Z 

I f\ A l. 5 
SYMBOL 
<t.MPTY> 

A 
B 



74 

Exhibit 3.6 

F.XAMPLE GRA~MAR 1 
.0_ 
0 - <13> 

x 00_ <A> X 00-

<'A> _<A> X 

$ Y 00-.. - <A> V <8> 

x 

xz . 

z 

USELf.SS NO~-TEHMI~ALS 

x 
V 

z 

1:= <A> Z 
<8> 

.'= 
EXA~PLE GRA~MAR 1 

::= (NO RIGHT SICE OErINED I~ THE GRAM~AR) 

<8>. 

: : = <A> Z 

U~~EACHARlF NO~-TERMtNAL5 

---~-.--~----------------

EXA~PLE GRA~MAR 1 
s ::= <A> Y <R> 

11= (NO RIGHT SICE DEfINED I~ THE GRAM~AR) 

z 11= (NO R1GHT SlOE DEFINED I~ THE GRAM~AR) 



75 

3.4 Example 2: Euler 

Output from GRAMPA for the first part of EULER 

is shown in Appendix 2. The input on cards is shown 

below. 

PROG~AM~<.> BLOCK <.> ; 
BlOCK~BLOKBODY STAT <END> ; 
BlO~BODY~8LOKBOOY STAT <1> IOLOKHEAO ; 
~l-frK~EAB~<BEGIN>/8l)KHEAD VAROECL <;> I BLOKHEAO lABOECL <;> ; 
STAT~STAT- ; 
STAT- ~ LABDEF STAT- IEXPR ; 
lABOEF~<l> <I> ; 
EXPR,.EXPR- ; 
EXPR-,.CATENA/<OUT> EXPR-I<GOTO> PRIMARY/VAR<I=>EXPR-I 

IFCLAUSE TRUEPART EXPR-/BLOCK ; 
IFCLAUSE~ <IF> EXPR <THEN> ; 
-~~~EP~R~~PR <ElSf~>-+;---------------------------------------------
CATENA~CATENA <AND> P~IMA~Y/OISJ ; 
OISJ~DISJHEAD OISJ/CONJ ; 
OISJHEAO~CONJ <v> ; 
CONJ~CONJ- ; 
CONJ-~CONJHEAD CONJ-/NEGATION ; 
CONJHEAD~NEGATION <A> ; 
NEGATION~ RELATIONI <~> RELATION; 

-R£lJHION,. CHOICE <» CHOICEI CHOICE «> CHOICE/ 
CHOICE<~> CHOICE I CHOICE <~> CHOICE I 
CHOICE <.=> CHOICE I CHOICE <=> CHOICEI CHOICE; 

CHOICE,.CHOICE- ~ 
CHOICE-~ SUM/CHOICE- <MIN> SU~/C~OICE- <MAX> SUM ; 
SUM~SUM-; . 
SUM-~TERM/<t> TER~/<-> TERM/SUM- <t> TERM/SUM- <-> TERM ; 
TERM~TERM- ; 

--ft'R~-A-c:f-O~/TERM- <¥> FACTOR:/TE~M- <I> FACTORlTERM- <II> FACTORI 
TERM- <MOD> FACTOR ; 

FACTOR~FACTOR- ; 
FACTOR-~ PRIMARY/FACTOR- <~> PRIMARY; 

*P~IMARY,. VAR/VAR LIST/LOGVAL NUMBERI <S>/REFERENCE/lISTI 
<TAIL> PRIMA~Y/PROCOEFI <~ULL> I 
<[> EXPR <J> I <IN>I <IS8> VARI <ISN> VARI <ISR> VARI 
<ISL> VARI <1SLI> VAP.I <ISY> VARI <ISP> VARI 
<ISU> VARI <A8S> P~IMARYI 
<LENGTH> VARI <INTEGE9> P~IMARYI <REAL> PRIMARY I 
<LOGICAL> PRIMARY I <LIST> PRIMARY ; 

PROCOEF~PROCHEAO EXPR <t)t> ; 
P~OCHEAD,. <t(t> IPROCHEAD FOQOECL <;> ; 
LIST~lISTHEAD EXPR <» ILISTHEAD <» ; 
lISTHEAD,. «> ILISTHEAD EXPR <,> ; 
REFERENCE~ <$> VAR ; 

-NUMB~~RE-A-t-I--REAl <t> INTEGER! REAL <t:> INTEGER I <t> INTEGER I 
<t::> INTEGER ; 

REAL~INTEGE~ <.> INTEGERI INTEGE~ ; 
!NTEGER~ INTEGER- ; . 
INTEGER- ~ DIGIT II~TEGE~- DIGIT ; 
OIGIT~<1>1<2>1<3>1<4>1<5>1<6>1<7>1<8>1<9>I<O> ; 
LOGVAL~ <TRUE>I<FALSE> ; 
VAR,..VAR- ; 
~AR--~l~AR· <I> EXPR <]> IVAR- <.> ; 
LA80ECL~ <LABEL> <L> ; 
FORDECL~ <FORMAL> <L> ; 
VAPOECL~ <NEW> <L> ; 
• 
* See note on next page 



76 

The execution time to compile and execute the 

first major program block was 32.5 seconds. Compilation 

and execution of the compl~te program took 388 seconds. 

Note: The production PRIMARY+LOGVAL NUMBER should read 
PRIMARY+LQGVALINUMBER. This error does not 
invalidate the example or introduce precedence 
conflicts. 



CHAPTER 4 

FUTURE DIRECTIONS 

In this report, a set of Algol procedures ha~ 

been described which can read a context-free grammar 

from cards and set it up in such a way that it can be 

easily studied and manipulated. Several procedures 

have been described which perform analyses of various 

kinds on grammars. Most of these procedures are geared 

to simple precedence. 

The first improvement to the system would be a 

better form of representation for the large array holding the 

left and right sets. A good representation would be to 

use a binary table. Each nonterminal would have space 

for every symbol to be in its left and right set. This 

array would initially be set to zero; a binary I could 

then be entered to flag those symbols that are in the 

sets. This type of array would have 48 entries in one 

word; thus a grammar with a vocabulary of 120 symbols 

with 60 nonterminals would require only. 360 words of 

storage for the sets instead of the current 3000 words. 

The array could be scanned and handled much faster by 

the precedence and recursion procedures than presently. 

Also, the bit manipulation routines used to pack the 

- 77 -



78 

left and right sets and the precedence matrix could be 

written in assembly language to further reduce the 

program execution time. 

The first avenue of expansion for the system 

would be the automatic production o~ a simple precedence 

syntax analyser for the. grammar. Most of the facilities 

for doing this already exist in the system e.g. 

precedence matrix (function) production, look-up tables. 

However, facilities for handling semantic rules and 

names should be included for producing a simple lexical 

analyser. This in turn would probably involve an 

extension of the meta language used in GRAMPA to handle 

such things as zero and one repeats etc.(16)(lS)(19). 

This would allow manipulations to be performed on 

grammars such as PASCAL(16) or BASIC(19) without altering 

the meta language used in' their definitions. 

A straightforward extension to the present 

GRAMPA sy'stem would be the inclusion of a procedure to 

remove the empty statement from the grammar (Wood(17». 

Also procedures could be included to perform the more 

complex analyses for extended precedence using the rules 

of Graham ( s) • 



79 

The GRAMPA program will soon become excessively 

large as more procedures are added. Therefore, an overlay 

scheme should be devised to reduce storage, and a system 

of control cards could be designed to enable the user 

to select only those procedures that he needs. The 

control card- system could in fact be designed as a 

language for grammatical analysis and manipulation. 

This would better serve the aims of developing a 

compiler laboratory which would also include, for example, 

routines for automatic co~piler construction. 

It is the opinion of the author that a fruitful 

first step has been taken into automatic grammar 

manipulation, and it is, hoped that the program, even in 

its present form, can be successfully applied as an 

aid in programming language development, or for practical 

studies in formal language theory. 



REFERENCES 

1) Aho A.V., Ullman J.D.: Linear Precedence Functions 
for Weak Precedence Grammars~ to appear (1973) in 
International Journal of Computer Mathematics. 

2) Bell J.R.: A Ne~ Method for Determining Linear 
Precedence Functions for Precedence Grammars~ C.ACM 
12, (10) October 1969, pp 567-569. 

3) Cheatham T.E., Sattley K: Syntaz Directed CompiZing~ 
Proc. AFIPS 1964, Spring Joint -Computer Conference, 
Vol 25, pp 31-57. 

4) Cohen D.J., Got1ieb C.C.: A List Structure Form of 
Grammars for Syntactic AnaZysis~ Computing Surveys, 
Vo12 (1), March 1970, pp 65-82. 

5) Feldman J., Gries D.: TransZator Writing Systems~ 
C.ACM 11 (2) February 1968, pp 77-113. 

6) Floyd R.W.: Syntactic AnaZysis and Operator Precedence~ 
J.ACM 10, July 1963, pp 316-333. (Not referred to explicitly 
in the report). -

7) George J.E.: "SIMPLE - A SimpZe Precedence TransZator 
Writing System~ Stanford University, STAN-CS-71-226. 

8) Graham S.: Precedence Languages and Bounded Right 
Contezt Languages~ Ph.D. Thesis, Stanford University, 
1971. 

9) Martin D.F.: A BooZean Matriz Method for the 
Computation of Linear Precedence Functions~ C.ACM 
15 (6) June 1972, pp 448-454. 

10) McKeeman W.M.: An Approach to Computer Language Design, 
Stanford University Technical Report #CS48, August 31, 1966. 

11) Morris R.: Scatter Storage Techniques~ C.ACM 11 (1), 
June 1968, pp 38-44. 

12) Naur P. (Ed.): Revised Report on the AZgorithmic 
Language AZgoZ 60~ C.ACM 6, June 1963, pp 1-17. 

13) Wirth N.: PL360 --A Programming Language for the 360 
Computers~ J.ACM 15 (1), June 1968, pp 37-76. 

- 80 -



14) -------, Weber H.: EULER - A Generaalization of 
Algol, and its Foramal Definition, Parats I and II 
C.ACM 9 (1), June 1966, pp 13-23, C.ACM 9 (2), 
Feb. 1966, pp 89-99. 

81 

15) -------: Algoraithm 265 - Find Praecedence Functions, 
C.ACM 8 (10), Oct. 1965, pp 604-605. 

16) -------: The Praograamming Language PASCAL, Acta 
Informatica, 1971 pp 36-63. 

17) Wood D.: Intraoduction to Foramal Language Theoray, 
Computer Science Technical Report 71/4, McMaster 
University, 1971. 

18) -------: Syntax Generaated Interapraetation of 
Prograamming Languages, Revue Francaise d'Informatique 
et de Recherche Operatione11e, 4, B-2, 1970, 
pp. 71-89. 

19) Lee J.A.N.: The Foramal Definition of the BASIC 
Language, The Computer Journal, 15 (1), 1972, 
pp 37-41. 

20) Roh1 J. S.: A Note on Backus - Naura Foram, The 
Computer Journal, 10, 1968 pp 336-337. 



1 
2 
3 
4 
5 e 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4C 
41 
42 
43 
44 
1t5 

> 1t6 
47 

APPENDIX I 

OUTPUT FROM GRAMPA FOR SIMPLE 

PHRASE STRUCTURE LANGUAGE 

SYNTAX GRAPH 
----~-----~ 

NO. 

300 2 0 0 0 
1 0 0 3 300 

301 5 0 4 0 
2 0 0 0 0 

302 6 0 0 301 
~G3 It; 9 1- a02 

3 0 0 8 0 
302 6 0 0 0 
304 10 0 0 302 
304 10 13 11 301t 

4 0 0 12 0 
305 11t ·0 0 0 
305 14 0 0 304 
3(l6 41 11- 15 305 

5 0 0 16 0 
387 18 B 8 30~ 3 0 2 
308 19 0 0 307 
3te 19 22 20 308 

6 0 0 21 0 
309 28 0 0 0 
3ge 19 25 23 3ge 

7 0 0 24 0 
309 28 0 0 0 

7 0 27 26 308 
309 28 0 0 0 
309 28 0 0 308 
310 29 0 0 309 
310 29 32 30 310 

8 9 0 31 9 
311 36 0 0 0 
310 29 35 33 310 

9 0 0 34 0 
311 36 0 0 0 
311 36 

39 8 310 
306 41 311 

10 0 40 38 311 
301 18 0 39 0 

11 0 0 0 0 
312 42 0 0 311 

12 0 0 0 3~6 313 47 43 0 3 2 
312 1t2 0 44 312 
313 47 0 0 0 
13 0 0 46 303 
12 9 g 0 9 
14 0 0 0 313 

Al-l 

BLOCK 
BEGIN 
BODY 
END 
BODY-
9ESl; 
• 
~ODY-
STA TLIST 
STATLIST 

~TATEMENT 
STATEMENT 
VAR 
.= 
~~b~K 
EXPR-
EXPR-
+ 
TERM 
EXPR -TERM -
TERM 
TERM 
TERM-
TERM-
~ 

FACTOR 
TERM-
I 
FACTOR 
FAC TOR 
VAR 
( 
ExeR 
) 
NUMBER 

bIGIT 
NUM BER 
DIG IT 
NEW 
L-
D 



NUMBER OF PRODUCTIONS 25 
NUMBER OF NON TERMINALS 14 
NUMBER OF TERMINALS 14 

Al-2 

THE SENTENCE SYMBOL FOR THE GRAMMA~ lSI BLOCK 

NON TERMINALS 

NUMBER SYM BOL 
300 BLOCK 
301 BODY 
302 BODY-
383 OECL 
304 STATLIST 
305 STATEMENT 
306 VAR 
307 EXPR 
306 EXPR-
309 TERM 
310 TERM-
311 FACTOR 
312 NUMBER 
313 DIGIT 

T E R M I N A L S 
NUMBER SYMBOL 

1 BEGIN 
2 END 
3 • , ,. , 
5 1= 
6 + 
7 -8 • 
9 I 

18 ( 
i1 ) 
12 L 
13 NEW 
14 D 



Al-3 

l E F T PAR T S 

SVt-1F30l LEFT PART 

30n 1 
301 302 303 13 304 305 30G 12 300 1 
302 303 13 304 305 306 12 300 1 
303 13 
304 304 305 306 12 300 1 
305 306 12 300 1 
3('6 12 
307 308 7 309 310 311 30G 12 10 312 313 14 
308 308 7 309 310 311 306 12 10 312 313 14 
309 310 311 300 12 10 312 313 14 
310 310 311 3)0 12 10 312 313 14 
311 306 12 10 312 313 14 
312 313 14 312 
313 14 

RIG H T p. ART S 

SVf-4S0L RIGHT PART 
NO. 

300 2 
~O1 302 304 31)5 307 308 309 310 311 306 12 11 312 313 14 300 2 
302 302 304 305 307 308 309 310 311 306 12 11 312 313 14 300 2 
3(13 12 
304 305 307 30B 309 310 311 300 12 11 312 313 14 300 2 
305 307 308 309 310 311 30G '12 11 312 313 14 300 2 
3(16 12 
307 308 309 310 311 306 12 11 312 313 14 
3P~ 309 310 311 396 12 11 312 313 14 
3(19 ~10 311 306 12 11 312 313 14 
310 311 306 12 11 312 313 14 
311 306 12 11 312 313 14 
312 313 14 
313 14 



Al-~ 

~ w w w w ~ w w w w w w w w 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

w ~ - ~ ~ » ~ ~ ~ • w ~ - ~ • w ~ - , ~ » ~ ~ ~ • w ~ -

A A A 

-
V V V V V V V V V V V • V V V V V 

~ . 
• V 

W 

V V V V V V V V V • V V V V V . • 
• V 

~ 

V V V V V • V V V V 
~ 

V V V V V • V V V V A 
~ 

~ 

V V V • V V V V • 
V V V • V V V V 

~ 

A A A A A A -0 

V V V V V • V V V V - V - D 

• A A A A A A A A A - ~ 
N 

n 
A A - ~ 

W 
0 

V A V A A A A A A - ~ • Z 
W 

A A A 0 n 
0 

~ 
W • 0 

- Z 
w ~ • A 0 
N ~ 

W D 
A 'A 0 

W -
W • A A 0 • 
W • A A 0 
~ 

W 
A A A A A A A A A 0 

~ 

W • • 0 
~ 

W 
A A ~ • 

W 
A • • A 0 

~ 

W 
A A A A -0 

W 
A • • A A A --

W 
A A A A A A -N 

W 
V • A A A A A A -W 



Al-5 

PRECEDENCE FUNCTIONS 
F G SYMBOL 

1 it BEGIN 
~ 1 END 
2 1 • , 
:3 2 , 
1 6 1= 
2 4 • 2 4 -:3 5 • a 5 • , 
1 4 ( 
6 :3 ) 
7 4 L 
It 3 NEW 
8 7 D 
3 4 BLOCK 
1 1 BODY 
2 2 BODY-
1 :3 ~~x~LisT 2 3 
:3 :3 STATEMENT 
6 4 VAR 
3 1 EXPR 
It 2 EXPR-, 2 TERM 

3 Ti RM-6 3 F CTOR. 
6 4 NUMBER 
8 6 DIGIT 



Al-6 

TRANsrOSE SYNTAX GRAPH FO~ ANALVSn 

NONTfRHiNAL~ i~DE~-POINTS~ TABLE 
SYP'lPQL NUMH 0 NT R TO RH ABLE 

~O 0 13 
.sOl (I 
~02 1" 
:r8~ n ~ It 
3(15 U 306 
301 2~ 308 
3(19 3&. 
310 !i ~11 
312 
311 't6 

TERMUIALS INDEX-POINTER TABLE 
sy~eOL NUHEER POINTE'" TO RHSTABLE 

-1 8 
1 1 
2 'l 
f 8 
5 g 6 
7 .. 
8 a 
CJ 0 

10 a 11 
12 9 
13 10 
1 .. 12 

TRANSFOSED SYNTAl( GRAPH FOR LHS LOOI(UP 

SY~BOL NO. ALT. sue. 

~ 30i 8 5 BODY 
END 

3 300 0 -1 BlOCI( 
It 3DCJ 0 a T.;R't 
5 301 a -t EXP~-
6 307 • 7 PPR 

l 
7 11 a Q 
8 311 -0 -1 FlCTOR 
9 306 a -l VAR 

1t' 12 8 l 

U 303 -1 gi~h 313 a -1 
13 305 a -1 STATEMENT 
I'" 381 • -1 BODY 

r 15 3 0 16 J, 

I 
16 3D~ 8 a BODY-
17 3D -t BOoy-
18 3&2 11 -1 BODY-

i 19 4 20 
2(1 3a5 a 0 ITATEH§NT ! 21 nit 0 -1 TAlLIT I I§ 301t 0 -1 - STATl 1ST 

5 26 24 ,. 
Zit 307 a Q ~XPR 
"~ 305 0 -1 TATE"IENT 31J 0 -1 FACTOR 

~~ 30 6 51 2~ EX PI:( .. 
§1 IS: 8 -i TERM 

EXP~-n 7 g 32 -309 0 TER .. 
33 loa a -1 £l(P~-
~ .. 

38: 32 
-1 ;XP~-]Ii -1 ERM 

36 I) n 31 • ]7 311 8 0 FACTOR 
~~ 318 -1 TERM-
39 8 ItO I 
40 311 0 FACTOR 
It, i 10 3 -1 T~RM-It_ 10 -1 T RIf-
1t3 31l .... -1 FACTYR .... 31 II 0 DIGI 
ItS 312 0 -1 NUM3ER 
It6 312 0 -1 NUMBER 



R E CUR S ION C H E C K' 

LE FT RECURS IVE Svt1BOLS 

STATLIST 
EXPR
TERM
NUMBER 

RIGHT RECURSIVE SYMBOLS . 

BODY-

IMBEDDED RECURSIVE SYMBOLS 

BLOCK 
BODY 
BODY
STATLIST 
ST ATEMENT 
EXPR 
EXPR
TERM 
TERM
FACTOR 

Al-7 



r 
I 

1-

r 

APPENDIX 2 

FIRST PART OF GRAMPA OUTPUT FOR EULER 

STIl 

'LO~"'IID 

THE GRAMMAR 

• t. c... ..acl( c •• 

tt. III.ClUOOY STU _F.lIO> 

". Rtg~R~~ STAT -I> 

... STIl

t'_ cII!I"" 
1t3K::ttB r.m~t 

•••• 'EN. cLio 
, •• CL.Aa£L. cLa. 

! I~ ~U:aE' _ S.TIT-:-

... Cl,.Io c •• 

... £~P~-

. ". ~~'~A UP~-.-------- ~i;~E~:~iiiRT Em-

UTINA Il· 8U5* .. NDo PRIMAIt' 

-1t!!ALo I"""A~' 
~n,eaLJ.tI~m A", 

VAIt ... VIII

fHt. .... AV!~-----...... ·~_rH' .... -flfIIt_-~ -. 

YltUrPAItT ... £XP~ <lLSro 

DISJ I I. 8A~IIEAD D(SJ 

DIS_au II. CQNJ .w. 
COIY-- .,- caMJ-

COIIJ- ". ~=lmB CDNJ-

COIIJIIIAD I ,. NEGATION <CAl> -- ·----<· .. • .. ·-j'·~ITI~-·--
IlEUTlCIN 

~ _toc It -=I.. 8 ~:~ ~~~o I 
._---- -- ~- . ----

CHOICI! 
CHOICE-

--SU!!-

II. CIIorer-

". §lim: :=I~: I:: ------=== II. SUII-

II. T!~" ::: In= 
111=: ::: n:= 

----------_ ... -~- .- ---- ----_.-_ .. ---- -

------~- ---------------

T!"" 
---------------------_ ... 

~ 

'ACTOIl 
FlCTO,,", 

A2-1 



THE GRAMMAR CONT'D 

UST 

LOGVAL 

REFERlIICE 

PIIOGI)£F 

",",CHEIlI 

REAL 

!.TEGE~ 

I.TEG~· 

DIGIT 

aa. LISTH[AD f.P~ cl> 
USTHEAD - .. 

aa. :12m-
II· §In _,_ IIiTEGF" 

_iAL -'5- I~TrCEI! 
:.a~ I~~m~I! 

"" c$> VA!! 
. fl. ~8GM£'D EXPq c.t._ 
II ... ,,> 

PqOCHEAO FOq~ECL -,-

II. cFOR"AL. -v I._ cr. 
LISTM£AO EX~ -.> 

II. mun -.- I NTEGEI! 

aa. INTEG[q: 
II. DIGIT 

toIfEGP- 0161' ... :~: -s. C". -. J> 

--------- .... -----

VAR· 

Cf> 
- > 
- > 

~§~~ 8~ :~~D¥~~~~=iL~1'/o/o 
NUIIBb OF TE!!"IilaL <; 7/0 

fit! SE""EItC! S\'Ot8tlt. FflI!" THE 6_A" IS a PROG!!'" 

NON TEl!" I N A L 5 

A2-2 



SYMBOLS CONT'D 

! . 

I:IN 
\ 
Mo ,.' 
,"~N 
i~8E 
• · ~ · i. 

A2-3 

- ----- -- -- -- -- ---- - ----- -------- ---------



A2-4 

$YIITU GII,PM 

n:1~ M'fN. ALt. sue. L"SS'" 



A2-S 

----------~--- ---~---



APPENDIX 3 

HASH CODING TECHNIQUE OF MORRIS (11) 

The hash coding technique of Morris is as follows: 

1) Calculate an address 1 in the table by using some 

transformation on the key as an index, 

2) If the item is already at this address or if the place 

is empty, the job is done, 

3) If some other key is there, call a pseudorandom number 

generator for an integer offset p. Make the next 

probe at 1 + P and go to step 2. 

If KEY is the key, then the following coding 

(in FORTRAN) calculates an index into the table (assumed 

to be of size 2N): 

IHASH = 0 

KRAND = 1 

KEYA = lABS (KEY) 

DO 11 I = 1, WDSIZE, N 

IHASH = IHASH + KEYA/(2**(I - 1» 

11 CONTINUE 

KPLACE = MOD (IHASH + KRAND/4, 2**N) +1 

Where KPLACE is the index, and WDSIZE is the word 

A3-1 



A3-2 

size in bits. KRAND is the random offset. To create the 

random offset', the simplest form of psendorandom number 

generator is used: 

KRAND = MOD (5*KRAND, 2** (N + 2 ». 

The efficiency of this technique is best expressed 

in terms of the average number E of probes necessary to 

retrieve an item in the table. E depends on the fraction 

of the table that is full (if k items are in the table, 

size N, then a = kIN). 

The expected number of probes, A, to enter the 

(k +1) st. item, including the final probe is: 

A = 1/(1 - k ) . 
N + 1 

For large N, k/(N + 1) ~ kIN i.e. A = l/(l-a). 

If E is equal to,the average of A for k = 0 to k - 1, 

then E = N r dx = - 1 log (1 - a). 
KJ I-x a 

ego some-values of E are: 

Load Factor E 

0.1 1.05 

0.5 1.39 

0.75 1.83 

0.9 2.56 



A3-3 

The procedure HASH in GRAMPA is based directly on 

this technique. The hash key is calculated by arithmetically 

adding the contents of the three words containing' a symbol. 

During a test using the BNF of Algol 60 with 

118 nonterminals and 90 terminals, the following 
i 

statistics were obtained: 

Degree of table fill: 

, Nonterminals: 0.46 

Terminals: 0.35 

Average number of probes, E 

1.51 

1.55 

i.e. the observed behaviour was not quite as good as the 

theoretical predictions, but still acceptable. 



APPENDIX· 4 

CENTRAL PROCESSOR TIME MODEL 

For the first block of the program i.e. INGRAMMAR 

and PRINTGRAMMAR, the following regression equation was 

derived: 

T = CP time (sees.) = 13.12 + 0.1075 x P + 0.0492 x V •••••• (i) 

where P = number of productions in grammar, and V is 

the total number of symbols in the vocabulary. Index 

of determination was 0.999 and F - ratio = 384. T includes 

compilation and load times·which are of the order of 9 

seconds. 

Compilation and load times for the complete 

system (including all precedence analysis routines) are 

29.8 and about 1.4 seconds respectively. Total CP 

time for the whole system is difficult to estimate. 

Some values obtained are summarized below in table A4-l. 

A4-l 



A4-2 

Table A4-1: Some CP Times Obtained for Example Grammars 

Grammar . No. of No. of No. of Non- Compile, Load Compile, Load 
Productions Terminals Termi na 1 s Execute 1st Execute Whole 

Block System 
. (sees) (sees) 

Simple 25 14 14 18.7 46.3 
Phrase 

Euler 119 74 44 32.5 388.1 

PL/360 154 62 65 40.9 254.2 

Algol 300 90 117 56.9 -
60 

BNF 
of BNF .44 28 14 . 17.8 -



APPENDIX 5 

PROGRAM LISTING 
!" •• 1'4I'i '''''WI.'I '''''I 1"1'1''1 1'1''1 ''1'~ ,,,,,, ''11'1 f" ''I'" ". 'I "I '" '" ,,,, "'I ''11'1 '" ''11I'U'1 '''''II 1'1''1 1'1'" ''I "!I',' ,~,'1 '" 1'1''1 ''11'11'1 I~''I 1"''1 1'11'11'1''11'1''1 1'11'11'1''11'11'11'11'1 ''I l'lI'H'H'I''lI'lI' 

NNNN"'r-.II'INN4tll~k!~P,1 NW-Hl 'It I ~'tl~!t'\l i'IN ~!t\'~I!\'NN~nIN!\IN ~W 'It I fliNn" WHltl NNNtJ t,1 NN~.tmI\.!NNm~ N.l',!bJ-:"l-Uh. 
NNNNNNNNNNN NNNNN:.lNNNNNN ml ~NNtJN NN NNNNNNNNNN~ ~l~! NN NNNNNNNN NNNNN NNN NNN NNNN NNN NNNt\J N 1\ 

01/00/73 11 

tCDMMENTt ••••••••••••••••••••••••••••••••••••••••••••••••••••• 

G ~ A ~ MAT I CAL A N A L Y SIS PRO G RAM 

••••••••••••••••••••••••••••••••••••••••••••••••••••• 
10·· -------------------------

~ ____________ ~Alul~TnHvO~~----~K~9~9~AuR~t~!E~S~-------------------------------------------------
LANGUAGE ~LGOL 
COMPUTE~ CDC 6400 

DAT~ JAN 1972 
--~----~-----------~-----~ 

• • • '. 
THIS p~nG~AM COMPRISES A SET OF PROCEDURES WHICH 
CAN BE IIS~O TO ANAl vSE A GRAMMAR SIIBMITTED IN 
~EVERSE 9ACKUS NOTATION. 

• • 

THE FOLLOWItJG DECLARATIONS ARE GLOBAL, THEIR USAGE IS AS 
FOLLOWS, 

1. I6ENT~Fi'E~§;,-T2-,-T3-,-I4-,-N- ... GENERAI PIIRpoSE INTEGER 
2. -NGRAPH- ••• NUM9ER OF ENTRIES IN SYNTAX GRAPH, 
3. -NTE~M- ••• NUMBER OF TER~INAL SYMBOLS IN THf GRAMMAR, 

' ... _ " __ '" ....... , .... "" ... 4 •. -NNOI-.lTE::!M ••• NW19ER OF NONTERMINALS IN THE GRAMMAR, 
5. -TER~NO- ••• CUQ~ENT NU~BEP OF TERHINAL SYHBCLS MET WHILE 

PROCE~SING THE G~AM~AR, 
6, -NTE~MN!,)- ••• NW19E~ OF LATEST NONTERMINAL tiET WHILE 

POOCESSP'G THE GRAMMAR -STARTS AT 300 
7. -PRO'lUr.TION$- ... A COUNT OF THE NUM~ER OF PR~DUCTIONS 

PROCES SElJ 
8. -SENT':NCE- ••• TIiE VALUE OF THE SENTENCE SYMBOL, 

.. __ ., ___ .""_,,,,,3. ~DEF.BOX- ••• USED IN THE FORMATION OF THE SYNTAX GRAPH TO 
40··' STORE TIiE POW NU~9ER OF THE FIRST SYMBOL IN A fRODUCTION, 

10. -NXT90X- c •• POINTER TO THE' NEXT FREE ROW IN THE SYNTAX 
G~AP.H, 

11. -1 HSSOX- ... IJSE!) IN FOC)MATION DE SYNTAX GRAFH TO HOI D THE 

16. -J1-1-J~-t-J3- ••• HOLD THE' NUMBERS 64,2 t 4 RESPECTIVELY FOP 
USE HI HI fG::~-1JIVIOE A'UTW1ETIC EXPRESsIONS 

17. -IWNQ- ••• COUNTER USEO IN GETTING A SYMBOL ~ROM CARD, 
,,_._ .. _"",,,,,,,_ , ___ , .. 18 .... -NO- ••• RETURNED BY HASH PROCEDURE - VALUE OF SYMBOL JUST 

LOCATED IN TAALES OR JUST INSERTED IN TABLES. 
19. -SIZE- ••• NUM8E~ OF TE~MINALS AND NONTERMINALS, 

A5-1 



AS-2 

I\l GOl-60 GRAMPA 01/06/73 

60·· AP~AYS 
1. -SYN~- SYNTAX G~APH, 
2. -L IN!="- T t-'TE GER REP2ESENT AT IONS OF CH ARACTERS ON CIIRRENT 

tINTEG[Rt l~~~~¥~~~~d~~:~~t~~~I;~~~~~M~~~2~~~~~&S~Z~~NO IC 
p~oDucfIO~S,CHAR,J1,~2,J3,NfHAR,RHSNO,lH§BOX,§ENtENCE; 

,tINIEGERt CSI ZE, 0 ~IE FILl4. , 

tINTEGERt tA~RAYt SV~1r.(/1 •• 5rJO,1 •• 5/), 
lIN E (/ 1 • • 8(11 } , WOR!) ( 11 •• 3/) , T ITl E£ 11 8 In , 
~~~~~~Rf~~[~[ii~~~;ii~f!~6~i~~~t~~~~~3t~~~~t;1~'\'; 

tCOMMENTt ••••• ~ •• ~.~ •••••••••••••••••••••••••••••••••••••• ;

tCOMMENTt THE PRJCETJUPFS GET4 Ar-.JD PUT4 ALLOW ITEMS OF LENGTH 4 BITS
TO Bf ENT~REO ANO RETPIEVED FROM AN A~RAY.T~EY t~E

. ", ,gO··, """",,,SP::CIFICALLY USED FOR.. PACKING THE PRECEDENCE MATRIX;
tPROCEOUPEt PUT4(MAT,ROH,COL,.VAL).,
tVALUEt ~OW,COL,VAL.t tINTEGERt ROW,COL,VAl.,
tINTr=GEPt tA~RAYt HAl.,

tINTEGERt tP~OCEI)URr=t ~ET4(MAT,ROW COL)., "
tVALUEi ROWtCOLe, tHtT~GEPt ~OW,COL., tINTEGERt tARRAYt MAT.,
t9~GINt 1111.1 EGE~t I,ACOL, POS.,

tINTEGj:"qt WI1.

11

·-A5-3

lGOL-60 GRAMPA 01/06/73

,,- -- -- --" tENOt.,

tCOMMENTt THE PROCEnUPES GET9 AND PUT9 ARE SIMILAR TO GET4 AND
PUT 4. T HEY PAC K !TE~1S OF L E ~IGTH 9 B ITS INTO AN ARRAY.
THEY A~E USED FOR PACKING THE LEFT AND RIGHT SETS;

--.... - ,...~ ~~" "

130~·

tP~OCEOURE~ PUT9{MAT,ROH,COL,VAL).,
tVALUEf ROW,COL,VAL. t tINTEGERt ROH,COL,VAL.,
tI~TEGE~t tA~RQYt MAl.
tBEGINt tPlT£:'GERt r,wDi, WD2,PDS,WDRO, ACDI .,

ACOL •• =(COL-1)11 ?~1.,
POS •• =COL-(ACOL-1)~5.,
I •• =512.1H& (5- P OS) '1

__ " HOPD •• =MAT UQ..OW ,AcOL I) .,
W02 •• =WO~DIII. ,
W01 • • =11021/512. 1
W02 •• =WO~O-W~2~L.,
MATflR:JW,ACOI /) •• =WD?+(WD1~51?+VAJ).I.,

tENOt .. ,

14n·~ tINTEGERt tP~OC~OUREt GET9CMAT ~OW COL).
tVALUEf ROWtCOL., tH'TEGERt RDW,cbL., ~INTEGERt
tBEGINt tI~ EGE~t IjACOL, POS.,

tINTEG:::Rt W!).
ACOJ •• =rCOI-1II 1 5r1 .,
POS •• =COL-(QCOL-1)·5.,
I •• =512·~(5-POS).,
WD •• =MAT(/ROW,ACOl/)/II.,

" ____ -_ ___ _ GET9 •• =WO-WO/ 1512"'512. ,
tENOt.,

150··

tARRAYt MAT.,

tCOMMENTt "'~ •••••••••• ~ •••••••••••••••••••••••••••••••• "' ••• ;

tCOMMENTt THIS P~OC~OUPE RETURNS INTEGER ABSOLUTE VALUE;
- -_________ tINTEGE'Rt tPROCEDUR>='t !ABS (ARGl; __ __ ___ "_,, __

tVALUEf A~G; tINTEGE~t ARG;
JABS r=A BS (ARG) ;

- tCOMMENTt •••••••••••••••• ~ •••• "'''' •••••••••••••••••••••••••• ;

11

_____ "tPR OC ED UR Et - 0 UTCH AR _(C 1 .. , __ ~ ______ :... __________ .-_~ __ .,, ___________________ ._ . _____ y ___________ , "" __________ - ___ " _________ -. --___ ., _____ • __ __

tINTEGERt ~.,

tCOMMENTt PRINTS SYMBOL WITH !NTEGE~ REPRESENTATION -C-;

OUT CHARACTE~(611 t(t01234567a9ABCDEFGHIJKLMNOPQRSTUVWXYZ-<>I,+.t~ .(l;=1
170 •• AY~~~=$[]~+t)t,C};

AS-4

GRAMPA 01/05/73

tP~OCEnU~ft GETLINE.,

tCOMMENTt ~EADS A DATA CA~O 'INTO -LINE- AND ECHOES IT ON THE PRINTER;
18·O·~

"Y~~~=cr[Jut) t, L NE (J]);

OUTCHAR(LIN~(/J/».,

tENDt;

OUTPUT (61,t(tlt)t).,

IC.=O.,
tENDt o~ PROCEnURE GETLINE;

tCOMMENTt •••••••••••••••••••• ~ •••••••••••••••••••••••••••• ;

tP~OCEDUREt PRINTSY~BP.l(POS,COUNT);

tINTEGERt POS,COUNT;
~ .. ,"'----~"-~tCOMME'NTt DRINTS A Sy'MBOi~'-OF THE GR'AMMAP WITH VALUE -POS-tRETURNS A

. COUNT OF THE NUMBER OF CHARACTE~S IN THE SYMBOL;

tBFGINt

tINTEGERt J,N,T,12,I3;

__ "" ___ ~ __ " ___ ""._.,,.~.,,_._tCO'MMEf\JTt CHt::.CK FO~ EMPTY SYMBOL; '''_''''
tIFt POS=ovPOS=-1 tTHENt

tBEGI Nt
tIFt TER~INALS(~,1] >0 tTHENt OUTPUTCG1,t(tt(t<EMPTy>t)tt)t);
lGOTO t LL 2! .
tENDt;

COUNT 1=0;

tCOMMPHt D.ECODt:: SYMBOL;
tFORt J.=1 tSTEPt 1 tUNTILt 3 tOOt

tBEGI Nt

N. =6. ,

tCOM~ENTt CHECY IF T€RMIMAl OR NONTfRMINAL;
-" Tl=tIFt POS>29~ tTHENt NONTERMHlALS[POS,J]

tELSEt TER~INALS[POS,J];

11

llGOl-60

•

AS-S

(3.0) GRAMPA 01/06/73

-----,,- - - tIFt. T=O tTHENt tGOTOtll1;
tCOM~ENTtUNP4CK SYM80L AT A TIME SCANNING FROM LEFT TO RIGHT;

LLII31=Ji JH N; I21=TII13;

tIFt 12>0 tTHnlt
tBEGINt
OUTCHA!:) <I2) •
COUNTt=COUNf+1; -___________ .--_ tEND t; __ _

LL 11 tENDt;

lL21tENOt OF PROCEDURE PRINTSY~BOl;

tCOMMENTt ••••••••••••••••••••••••••••••••• ~ ••••••••••••••• ;

tINTEGERt tP~OCEOU~Ft NXTCHAR.,

tCOHMENTt OBTAIN~ N~XT CHARACTER FROM -LINE-,IF PAST 80 THEN GETS THE
_NEXT CARD AND RETURNS- FIRST SYMBOL;

tBEGINt

tENOt OF PROCEDURE NXTCHAR;

---- -- -------ic o'M M EN T t •••• .;. -•••••• .i ••••••••••••••••••••••••••••••••• ;

tP~OCEDUREt GETNONTERM.,

tCOMMENTt ~EADS NONTERflINAL FROM INPUT,PACKS IT INTO 3 WORDS;

tBEGINt

11

____ -_2_8 n .,. ___________ _ t IN T£ G.5: Rt __ I, W SUM; _ __ ___________________ , __________ '- _'-______ ,, ___ -______ . _______ , ______________ ,, __________ '- _________________________________ _

tCOMMENTt INITInLISE~
WOROU1/) • =Wf')Rl) (121) .=0., IWNO.=LCOUNT.=i.,

tCOMMENTt PUT F I~ST CH ARA CTER INT 0- WO RD m-; -
WOROUi/) .=CHAR.,

________________________ '-__ '- .. tCOMMPH;t seA N INPUT U NTI L NON-AL lOWA BLE CHARACTE R ~tET;
tFORt I. = NXTC HA~ tWH Il Et I < 38 tOOt

~lGOl-60

291)

(3.0) GRAMPA

t 8~GI Nt
tCQM~ENT~ I~CPEMENT CHARACTER COUNT;
'CO"NT.=LCO flt!I+1. ,

tCOMMENT~ II'ICP.EMENT WORD COUNT IF NECESSARY;
tIFt lCOUNT > 7 tTHENt IWN~.=2

. tfLSEttIFt LCCUNT > 14tTHENt IWNO.=3.,

A5-6

01/06/73

~COM~ENT~ SHIFT CONT~NTS OF CURPENT WORD 1 CHARACTER TO LEFT
AND ADn NEW CHARACTER:

WO~O (I IWN 01) .=lelJ RO (II WNon"'oi+ +1.,

tENOt ;

tCOMMENTt FORM HASH CODE -SUM OF 3 WORDS INTO WHICH SYMBOL IS
PACKEr);

CHAR. =I. I WSLJ M. =HORD (/1/) +WORO (/2 /) +W ORO (/3/) .,
ICI=IC-1,

tCOMMENTt CALL HASH PROCEDU~E TO EITHER PUT SYMBOL IN TABLES OR
CHECK IF ITS ALOEAOY THERE -RETURN SYMBOL VALUE IN -NO-;

HASH(W~U~,NO,1).,

··---------~ENOt OF- PROCEOUREGETNONTERM;

320· ...
tCOMMENTt ... ;

tP~OCEOUREt GETTE~M.,

- ,,---.- --- - 1COMMENTt ~EAOS A TC::RtHNAl FROM INPUT AND PACKS INTO 3 WORDS;

t8EGIN~
tINTEG~R~ I,J,WSUM:

tCOMMFNTt INITIAlI~r; .
WORD (Ii!). =WORD (/2/). =WORO C/3/l. =l COUN T .=0., IWNO. =1.,

____ 3.3 __ 0 ... •. -- -'''itc OMM'ENTt SCAN CHAPAC T~ RS UNTIL A - :>- -IS MET;
tFORt I.=NXTCI-iA~ tWHIlEt I '= 39 tOOt

tBt:'GINt

tCOMMENTt I~cprMENT CHARACTER COUNT;
lCr)UNT.=lCOUNT+1.,

tCOM~ENTt INCPEM~NT WORD COUNT IF NECESSARY;
tIFt lCOLJ NT > 7 tTHr::N t IWNO. =2
tELSEttIFt LCOIJNT > 14tTHENt INNO.=3.,

tCOM~ENTt SHIFT CONTENTS OF CURRENT WORD 1 CHARACTER TO LEFT
AND ADO NEW CHARACTEP;

WORDC/IWNO/).=WORDC/IWNO/)·64+I.,

tENot;

11

"'L GOl-6')

AS-7

GRAHPA 01/06/73

tCOMME~Tt C4FCK FO~ SPECIAL CASE OF > BEING THE TERMINAL;
JI=NXTCHAR;
tIFt J=3'3 tT4ENt

tSSGINt

WO~O(/IWNO/).=WORO(/IWNO/)·64+J.,

CHAR. =NXT CHAR ~
ICI=IC-1;
tEt"JDt t~L St:t
tBcGINt
CH~RI=J; ICI=IC-1;
tENOt;

tCOMMEMTt FORM HASH CODE;
WSUM.=WO~O(/1~)~WCP.~ (/2/) +WORD(/3/).,

tCOMMENTt CALL HASH PROCEOU~E TO OBTAIN SY~BOL VALUE;
HASH(WSIIM,NO,O).,

tENOt or PROCEDURE GETTERM;

tCOMMENTt •••••••••••••••••••• ~ •••••••••••••••••••••••••••• ;

tPROCEOllREt HASH (WSW1 ,NO, S) .6
tVALUEt ,S., tINTEGERt WSUM,N ,s.,
tCOMMENTt THIS p~oc~nup.~ HASHES A KEY STORED IN -WSUM- A~D EITHER

380·· . OUTS SYMBOL INTO TABLES OR LOCATES THE SYMBOL ALREADY IN
TABLES, -S- IS A FLAG 1 FOP NONTERMIALS, 0 FeR TERMINALS,
THE SY~BOL VALUE IS RETURND IN -NO-;

tCOMMENIt HASH SCHC"4t: IJS~D GIVEN IN

~ --~--.., -~ -,~~, -. -,_ .. ~ -~ ... -~---~~-t S"E G I ~ji ~----.. ~ ---.-- ~ -- ~~--. ~v " • -- - .-.-.... ---... - ... -~-- --,-.... - ,-'" -~ ... - ... ~,---,----..... - ----....... -..,.-- ,- .. - - - ... --

390·· tINTEGERt N1,N2,~PP.OBE,KRAND,IHASH,I1,I2,IPTR,IKEY;
tCOMMENIt SEI TAB'~ SIZE

tCOMME~Tt CALCULATE HASH KEY FROM -WSUM-;
IHASH.=WSUM.WQUHIIN2;

tCOMME~Tt C~LCULAT~ POI~TE~ INTO TABLE
='101) CIHASH.KRANO/4,Z· ... N) +1 t

l1l I1I=IH~SH+KR~NOIIJ3;
.I21=2·4 N1;
IPTR.=<I1-CI11IIZ)"'I2)t1.,

11

LGOL-60

As-a

G~AMPl\

tCOMMF~T~ CHtC~!F PROCESSING TERMINAL OR NONTER~INAL;
tIFt S = t tTHENt tGOTOt LABte,

tCOMMEi'tTt TfR~ INAL ;

1CO~ME~Tt OBTAIN KEY ALREADY STORED AT POSITION -IP~R-;
IKEY.=TE~MTA9L~(/IPT~,1/).,

tcnMME~Tt CO~PA~E WITH -WSUM-;
tIFt IK[Y = WS'1!1 tTH!:'Nt

18F.GI Nt

01/06/73

tCOM~EMTt ~NTPY ALREADY IB TABLE -RETURN SYMBOL VALUE;
NO.=TERMTA9LE(/IPTR,2/).,
tGr'lTOt ENL.,
tE~Dt tEL SE t

tIFt IK~Y=O tTHtNt

t Bi:GI Nt
·.tCOM~·1ENTt Et\llP.Y NOT IN TABL~!. UPDATE -TERMNO-tPUT KEY AND

pon'T=:R INTO -TE~'-1T A8LE-, PUT COpy OF SYMBOL INTO
-TE~tlINALS- ,FINISH;

TE~HNo.=rEoMNO+t.,
TFPMTA9l!:' UIFTP, 1/) .=WSIJM. ,
Tf~MTABL~(/IFTP,2/).=TE~MNO.,
NO.=TE~M'~O. !.
tFJ~t I.=1t~lEPt1tUNTILt 3 tOOt

, .. TERMINALS (/TEP~INO, III .=WORD<lI/).,
tGOTOt ENL; .

tENDt tEL S~ t

tBEGINt

tCOHMENTt COLLISION! CALCULATE RANDOM OFFSET
.... , .. , .. , , , .. ,' . . KqAND=MOO{S·KRAND,Z·· m+z» ;

Ii. :: 2 ... PJ 1 + '?) • ,
12. =5 ·KR~ NI) '1
KRANtJ.:: 12-<121/11>.11.,
tCflMMENT;t GCl TO ~;:,CALCULATf POItlTER;

tGOTOt L 1. ,
tENOt ;

tCOMME~T;t ~ONTEPHINAL,

GO IH':lQllr;H EXACTLY THE SA'1E PROCEDlJR;:' AS FOR TERMINAl s;

460·· LA91 •• IKEY.=NO~TE?~TA3lE(/IPTR,1/).,

. tIFt IKEY= . WSW1 tTHENt,

11

AS-IO

LGOl-6'J GRAMPA

t(1NUMB R SYM80Lt) tt) t).,
tFORt I.=3iJl) tSTEPt 1 tUNTILt NTERMNO tOOt

t9::GINt
OUTPUT (61, t (tl, 6DBZZZO, 58t) t, n .,
pprNTSYM~Ol(I,NCHAP);
tENDt;

tCOMMENTt PRINT OIlT TERMINALS;

OUTPUT (61,tttlt/,578Lt(tT E ~ MIN A l St)tl,I,S88,
t{tNU~9tR SYM80Lt)tt)t).,

tIFt TERMINALS[O,11>O tTHENt

540··
tB=:GINt
OUTPUT(61!t(tl,638 Lt(t-1t)t,58tlt);
PRINTSYM90L (C,r-!CHA~); .
tE!:.JDt;

tFORt I.=1 t~TEOt 1 tUNT1Lt NTERM tOOt
tBI:GINt

......... "'" OUTPUT (61,tCtl,60BZZZO,5Bt) t,I>;
PRINTSYM80L CI,!:.JCHAR); .
tENDt;

tCOMMENTt PRINT SYNTAX GRApH;

OUTPUT (n1,t(t~1nR,t(t SYNTAX GRAPHt)tt}t).1
OUTPUT(61,t(~/,178,t(t------------t)tl,lt)t),

.......... " OUJPUH61,t(t6B,t(t SYMBOL .. DEFN. ALT. sue. LHSSYMtlt,l,
613, t(t NJ.t)t,lt)t);

NGRAPH.=NXT80X-1.,
tEORt I.=1 tSTEPt 1 tUNTTLt NGRAPH tOOt

tB~GI Nt

01/06/73

560·· OUTPUTC61,t(tl,ZZO,3Bt)t,I);
OUTPUT(61,t(t 8-ZZZD,4B'-ZZO,8Z7Zo~8ZZZo,3B,ZZZDt)t,SYNG[I'1),

........ , ~ --.............. ,SYNG UIIZ/) ,SYNGUIL3/) LSYN C/l f4/) !S.YNGII 7 51); .
, O.UTPUT(61 ,t(t10Bt) t); PRINrSYMtlOL (SYNG 1,1J ,NCHARJ;

tENDt;

tENOt OF PRI.NT TABLES;

. 570··

tCOMMENTt ••• ;

tP~OCEoUREt ING~~~MA~;

11

.. tCm1MENTt THI S P~OC5::oURE READS IN THE G~AMMAR IN FREE FORMAT ,. REVERSE PNF
FROM CARD~, FORMS SYNTAX GRAPH AND SYMBOL TABLES AND PRINTS

L GOL-60

5~!l""

C~. 0) G~AMPA

~Y;"BOlS ANn SYNTAX GRAPH;

tBEGIN~

AS"'ll

01/06/73

tCOMt1E"NTt INTrA! ISS ALL SYMBOL TABLFS HID SYNTAX G~APH TO 0;
tFORt I.:1 t~TEPt 1 tUNTILt 256 tOOt

tFOR1 J.=1 tST~P~ 1 tUNTIlt 2 tOOt
NONTER~TABlE(/I,J/).=TER~TABL~(/I,J/).=O.,

TERMIN~LS(O~1]':O;

tFORt It=300 tSTEPt 1 tUNTILt 557 tQot
NONTER~INALS[I,4]t-O;

tFORt I.=1 tSTEOt 1 tUNTILt 500 tOOt
tFORt J.=1 tsn':°t 1 tUNTILt 5 tOOt
SYNG(/I,J/).=O.,

PRODUCTIONS.=O. ,
600.. #COMMENT# INTTIOI ISE POI~TERS AND crnlNTERSl

NXTBOX.=1.,NTER~NO.=299; TERMNOI=C;

OUTPUT(61,t(tln9,t(t·INPUT·t)t,I,I,lt)t);
-"~ - - ,~- ~ ,-~- -- ---~- . -, ~ - - -

tCOMMENTt GET FIRST LINE OF INPUT;
GETlINE., .

610··
". __ ENTRY I

tFORt 11=NXTCHA~ tWHIlEt 1=46 toot! CHARt=!;
tCOHMfNTt CH~CK FOP ENDING. OR ERROR;

~ tIFt 1=43 tIHEtlt tGOTOt FIN tEl SEt

GETNONTE~M :
PRODtICTIO NS I = PPfJOtlCT I a NSt 1; RHSNO 1= o·
tCOMME~Tt IF F1~ST PRODUCTION THEN Fill IN FIRST BOX OF GRAPH

ElS~ CH~C¥ BACK FDR PREVIOUS OCCURENCE OF LHS TO FILL IN
i)EFINITTON;

.... "._ ... _._. ___ .. ~lf.t .P~O:JUCTIONS=1 tTHEtJt __ _ ... " ... _ ... _-" .. ~ _ ... __
tBI3GINt
SENTi:: NCE' =~ "10 1
SY"IG[1,111=NO,
DE~90Xt:~XTOOXt=SYNGr1,2]1-2;
NO~TERMI~AlS[Nn,~] 1=2;
lHSBOXI=1fJn;

. tE~Dt tEL SEt
-.. --·--.. ------· .. -·-·-·-· .. ·~~---~~8~~~~Tt P~RFO~t1 CHECKS TO SEE WHETHER NONTERM

AS-12

AlGOL-60 (~. 0) GRAMPA 01/06/73

. -

_ H!\ 5 BE EN M~T BEFORE A t4D/OR OEFI NE 0 ;
tIFt NO~TrR'1H'AL S[NO, 41=0 tTHENt

640.... tl3E'G Itl t
1COt1MEt'!Tt '1ET FOR FIRST TIME AS A LHS;
NONTEo'1H'AI SO,IQ,41t=NXTBoX;
SYNGCNXT80X,S]I=NO;
tEND t tEL SE t
18EG TNt

-- tIFt NONTERMINALS[NO,4]>10100 tTHENt
t8FGIt,·t
tcnMMENTt MET 9EFORE IN A RHS BUT NOT DEFINED;
II=~ONTER~INALS(NO,41-1'OOO;

6&:;0...... NOttTEP~'INAI SCtJO,41 t-NXTROX;
TRACEBACKt J 1=<)YtJG[I, 21;

SVN'~[I,21 t=NXTBOX;
Ia=J; tIFt ~~=-1 tTHENt tGOTOt TRACEBACK;

____ , __ , _________ SYN';t~!YT90X,S] I=NO;_
tE'ND1 tELSEt
tBEGltJt
tCO~MrNTt MET AND D~FINED BEFORE,NOW MET AGAIN

AS AN ALTERNATE;
JI-IAeS{NONTERMINAL~[NO,4]);

660...... TRACEAtTI !I=J; Jt=SYNG[I,31:
tIFt .. ,,-'=0 tTHENt tGOTOt TRACEALT;

, _____ , _____ . __ ,, _____________ SVNG[I,3] I=NXTBOX;
SYNG[NXT80X,S]I=NO;
tE'Nl1t

tENOt
tENDt ;

LHSBOXI-NO:
OEFBOXI=NXT80X;
tCOMMENTt STATE2 TAKES IN FIRST CO~PLETE RHS AND ALL SYMBOLS

670"':Y:. ____ . __________________ AF_TER A_fIRST ALTERNATE·SY"1BOL;

STATE2t

tFORt Tt=NXTCHIP? tHHII Et 1=46 t1)ot: CHARI=!;
tGOTOt tIFt I=45vI=S2vI=Sl tTHENt STATE2

tELSEt t1Ft 1=40 tTHENt STATE3
tELSEt tIFt 1=50 tTHENt ENOCHECK ,, _______________ ' ___ .. ~ ___ ,, __ ... ",, ____ ., ______ tELSEt tIFt 1=43 tTHENt FIN
tELSEt GOON1;

GOON11 tIFt I=~-'3 tTHENt GETTERM tELSEt GETNONTERM;
RH~NOI=RHSNO .. 1!
tCOMME~Tt CHECK BACK FOR PREVIOUS O~CURENCES OF SYMBOL

A NON-Tr~~INAL TO FILL IN ITS DEF. POINTER;
tIFt NXT9CX>2ANO>299 tTHENt

_., " , " _ .. ,_." tBEGINt ,
tIFt NO~TfRrlINALS[NO,41=O tTHENt

tBEGI"'t
SYNG[NXTBOX,211=-1 ;
NONTfI?MIf\A1 S[NO,41 1=10nOOtNXTBOX;
tEWlt t~LSrt
tBEGINt
tIFt NONTEP~INALS[NO,4]>lCrlO tTHENt

... _ ____ ,, ___ .~ ~.... t 8 E GIN t
SYNG[NXT80X,2]I=NONTERMINALSrNO,4]-10DOO;

IF ITS

11

ALGOL-ol') n.o)

A5-13

GRAMPA

. NONTEPMI NALS(NO, 4) I=N XT 80 X+10 000;
tENl)t tEL SEt

5YNGfNXTgrX,2]I=IABSCNONTfPMINAlS£NO,4);
tJ:ND~;

tENOt;

~t~~~~~+~O~f[l'~~n~UCCESSOR PTR. OF PREVIOUS BOX:
tIFt NXT1'30X>flEF90X tTHENt SYNG[~XTBOX-1!4J1=NXTBOX;
tCOMMENTt UpnAT~ F?EE BOX NO. AND GET NtXT SYMBOL;
NXTBOXI=~XTBnX~1;
tGOTOt ST ATE2;

01/06/73

tCOMMENTt ENDCH~CK CHECKS FOR THE EMPTY STATEMENT ANt LINKS THE
RHS PTR. 'lOX;

ENOCHECKI
tIFt RHSNO=O tTHEt!t EMPTYPROO;
SYNG[OEF90X,511=LHSBOX;
tGOTOt ENTRY;

tCOMMENTt STATE3 PROCESSES SYMBOL AFTER A / ;

STATE3t
. .- ~ . ., -- - --- _ .. " .-"--- - . - -

SVNG[OEF~OX ,51t=l~SB~X;
tFORt TI=NXTCHA~ tWHILEt 1=46 tOOt; CHARI=I;
tCOMME~Tt CHECK FOP. E~PTY PROD / / ;
#IEt 1=4) tTHEN~

np TV PRO!) ;
SY~G[OEFBOX,3]I=NXTBOX-1;
tGOTO t !: NT~Y;

_______ ,, ___ .. ~ _________________ ~ _____tENDt tEL SEt _ .-
tIF t 1=38 tTHEN~ GETTER~ tELSEt GETNONTERM;

RHSNO 1=1;
PRODtICTIONSt=PP,OOIlCTYONStj;
tCOMME~Tt FILL TN O~F. 80X BV CHECKING BACK FOR PREVIOUS OCCURENCE;
tIFt NXTqOX>2ANn>2?9 tTHENt

t8!:GINt
~ ___ .. ____ --1IFt NONT EP"1 INAl S[NO~ 41 =0 tTH EN t __ _

"tBEGINt
SYNG(NXT~OX 2]'=-1 ;
NONTER~TNAL§(NO,4JI=11010+NXTBOX;
tENDt tI='l C:Et

11,

lGOL-60

AS-14

GRAMPA

'" tENnt tELSEt
SY~G(NXT80X, 2] t=IABS(N()~TERMINALS(NO,4]);
t ENOt ~

tENOt;
tCOMME~Tt FILL IN OTHER POINTERS;
SVNG£NXT30X,1]I=NO:
SYNG[D~F30X,']t=NXTBOX;
DEFBOX 1=~J XT8,) x;
NXTROXI=NXTBaX~1;
tGOTOt STATE2;

tCOMMENTt END OF If.JPIIT;

FIN ••

SYNGIOEF30X ,511=LHSBOX;

tCOMHE~Tt PRINT NUMBER OF SYMBOLS,PQODUCTIONS ETC;
QUTPllT(61 ,ttttt}tl;

01/06/73

tCOMMENTt CLE AR LISTS OF UNDEFINE 0 NONTERMINALS-SET TO ZERO;
tFORt II=~30 tSTFrt 1 tUNTILt NTERMtlO tOOt
tIFt NONTERMINALS(I,4]>1QOOO tTHENt

tBEGINt
OUTPUTC61,tCtl,5B,tttTHE FOLLOWING NONTERMINAL IS UNDEFINED

_ __ _ ____ -' _____ '' _____ ~}1.tJ t) ; . .." ... _". _ ..
PRINTSYM~OL(I,NCHAR);
JI=NONT~~MI~ALS[I,41-10000;
NO~TERMINALS[I,4]I=O;

TRACE'I11=SYNG[J,2J:

tENDt OF PROCEDURE INGRAMHAR;

11

,lGOl-6r)

A5-15
•

GRAMPA

tl3F"GINt
tINTEGERt I,~HSPTP,J,J1,JSPACE,NCHAR,K;

O~~~~~(~\~f(:;f~~~:l ~~~~~l~6~5t~~6~/~5'~~1~\fITlE[Il';
tFOPf TI=~~1) tSTEPt 1 tUNTILt NTERMNO tOOt

:tBt:"GINt

D1/06/73

OlJTPUT(61 1 :t.(tl,lt) 'I.);
RHSPTRI=~o"IT[~nI NALS(I ,4];
tIFt RHSPT~<n tTHt:Nt OUTPUT (61, f{ 129, 1 (1$t) 1, 29t) t) tELSEt
OUTPUT(61 t(t58t)1);
PRINT SVMg Ol <I ,tiC H A R) ;
JSPACEI=~1-NCHA~;
1FORt KI=1 tSTEPt 1 tUNTIlt JSPACE t001 OUTPUT(61,t(t91)1);
otlTP11T (61 • t (tt (t I 1= t) ttl 'I.) ;
Ja=IA9S(~HSPTPH J1I=J;
tIFt J=O tTHENt

tAEGINf

11

,~---_ DUTPUT(61,fCtt(t(NO RIGHT SIDE OEFINEO IN 7HE GRAMMAR)t)tt)1U
'I. GOTO t N EXTI ;
'I. ENOt ;

RHSPt

OUTPUT(S1,t(t2Bt)t ;
tENOt;

,_~, ___ " __ ,_,,,JRAC£L JI=SYNG[J,4l; ',. "'" __ ' '''''"" ""'" '"
tIFt J~=ry tTHENt tGOTOt RHSP;
J I =S Y N G (J 1 , ~]: J '1 I = J ;
,11Ft J~=I) tTHENt

tREGT Nt
OUTPUT(61 1 f(tl,3191)t);
'I. GOTO 1 ~H~P;
tEN.Ot;

-NE XT I .- - --- ... ,- ,_.- ~ -- ----~~- _'_~_"_~ __ ~_""~ __ """""" __ ~~"'''''N_~'_'_''''''' ~--,.. ,.- .~,-""',~..,. -~. "- '-,,

tfNOt OF MAIN LOOP;
tENDt OF PRINTGoAMMAQ;

AS-l6

(3.0) GRAMPA

, a70··teOMMENTt··················~·.··················· ••••••••• ;

tP~OCEDU~ft TE~MINATE(SYNG,NON,N,S):
tVAl"Et N1 tHJIEGERt tARRAYt SYNG,NON;
tBOOlEANt tARPAYt S; tINTEGERt N;
tBEGINt tBOOLEANt E: tINTEGERt I,J,K;

E t=tFAlSE t;
",~~,INITI AL t ' " ,

tFORt 1'=300 tSTEPt 1 tUNTILt N tOOt

tBEG~~~tJ~~~O~+~~~l;stI]t=Et=tTRUEt tELSEt S(I]I=tFALSEt
tENot;
tIFt f tTHENt

ITERATFt
tBEGINt EI=tFALSEt;

_, ", _,,_.,.'" ____ ,__ __,,7FDRt I t=3cn tSTEPt 1 tUNTILt N tOOt
tIFt "S[I] tTHENt
tBEGINt tCOMM~~Tt SEARCH RULES OF'THIS NT;

Kt=JI=NO~[I,41;
tIEt ,]<'1 tTHFNt EI=S[I] l=tTPIIEt tEl SEt

01/06/73

tBEGINt E'=S(I11=tTRUEt; tGOTOt FORFIN; tENDt;
tfND t;

tENDt tElSEt tGOTOt SUC1;
_________ ,_, __ " """ ____ ", _____ , ___________ ",,tCOt..1MHIT t MOVE _TO NEX T, AL TERNA TIVE;

I(t=JI=SYNG[J,.31; .

EORFINI
tIFt J~=O tTHENt tGOTOt sue;

tENDt;

tENOt FOR LOOP;
tIFt E tTHENt tGOTOt ITERATE;

tENOt·
, __ 9iO·!' _tENOt 0 f. t£Rti INAT £,; ,_,, _______ ,, ___ ~ __ ,~ ____ ",,' _____ ~,, __________ . _" ___ ,, ____ ,,_,, __ ,

11

l __ ___

tPROCEDURE~ OELETE(SYNr"NON,N,SYM);
, ______ ,,,fVAlUEt N,Syr-q tINTEGERt N,SYM;

tINTEGFRt tA~RAYt SYNG,NON;
920·· tBEGINt tINTEGERt I,J"K,L1Pt· tSOOLEANt FIRST;

tIFt SYM<300 tTHENt t~O Ot DEL;
PI=IARS{NON[SYH,4]);
t 1Ft P'" = OtT HEN t
tBEGINt NON[Sy~,4]I=Q;

tCOMMENTt NOW DELETE ALL RHSS THAT CONTAIN SYM;
____ " __ , ______ "JlELL,,~_,,tfORt I I = 3 a tl tST EP t 1 tUNTILt N tOOt

tBEGINt I(I=JI=IABS(NON[I,4]); FIRSTI=tTRUEt;

AS-17

~l GOL-GO (3.0) G~AMPA 01/0G/73

-- -- ~ 1Ft J~=O 1T HENt
SUCt tBEGINt tIFt SYNG£K,1]=SYM tTHENt (no·· tBEGINt tCOliMENTt IJELETE THIS AL T;

KI=Jt=SYNG£J1. 3J ;
tIFt FIRST t~HtNt
tBEG IN t

tIFt J=O tTHENt OELETECSYNG,NON,N,l) tELSEt
"'.' ," __ ,' "", __ """, "" __ ." ,,,,. __ tfNOt tE~~~~I~i~~ [t;jI1~j~ON£ I, ~l) ;

tGOTOt tIFt J~=O tTHENt SUC tELSEt FORFIN;
tFNDt tEL SEt
tBEGINt KI=SYNG£K,~];

940.. tIFt K"'"=Q tTHENt tGO!Ot sIIe;
tENOt T~Y NEXT ALT;
FI~STt=tFALSEt; LI=J;
K I=JI=SYNG[J, 3];

'''''--'',,''._'''''' '. "".,,_., , tIFt,J"'=O tTHE.Nt tGOTOt sue;
tENDt OF .J TEST;

FORFINI tENDt;
"tENOt P TEST;

tENOt OF DEI EIE;

950 ... • tPROCEOURF.t AOMISSA8lE(OCH SYNG NO~ N SENTENCE)·
"'-" __ '"'' tVAlUEt OCHtN1.SEIUP,ICE; tiNTEGERt ~C~,Nt SENTENCE;
, tINTEGERt tA~NAYt SYNG,NON;

tBEGINt tBOOLEANt tARRAYt T[30QIN1;
tINTEGF~t rtJIK,PDPTlS~1,M;
tINTEGERt tARRAyt pry 3GQINt11;

tBEGINt I[Ilt=tFALSEt; PO[I+1JI=O; tENOt;
T(SENT€NCt]l=tT~UEt;
tFORt MI=300 tSIEPt 1 tUNTILt PI)PT tOOt

_.","w __ .,, ____ ,_~,, __ tBEGINtI I=P D [Ii 1; K I =JI = lABS (NO N(1,4]) ; ,
tIFt K"'"=O tTHENt

SUC.
tBEGlNt tIFt SYNG[K,2]~=O tTHENt

t BE GIN t SKj 1= SYN G [K , 1] ;
tIFt"'"T[SK11 tTHENt
t8EGINt tCO~MENTt ADO THIS NONTERMINAL TO PO LIST;

PDPTI=POPT.1; T[SK111=tTRUEt;
• _ , ,, _______ ,_w''' _____ ,' -,,,,,-, __ , ___ ,, ________ , , __ ~ •• '" P Dr PO P T 11 = SK 1 ;

tENllt;

11

AS-IS

..
~lGOL-60 (3.0) GRAMPA 01/06/73

•

..

.. ,,,,,~END,t ;.
K t=SYNG[K, 41;
tIFt r~:o tTHENt tGOTOt SUC tELSEt
~BEGI~t KI=Jt=SYNG(J,31;

tIFt J"=O tTHENt tGOTOt slIe;
~ENl)t;

to.JOt •
tENOt OF tHIS NONTERMINAL;

........ -, .. ---- .,tCOMMENTt T CONTAINS THOSE NONTERMINALS THAT ARE REACHABLE.
OELETE T~E U~~E~CHABLE NONTERMI~ALS!
OUTPUTCOCHJtCtl,III,SS,tCtUNREACHABLE. NON-TERMINALSt)t,I,5B,
~€~k~tI;!~Oo/;~i~Pt 1 tllNTIlt N tOot
tIFt ~T(I] tTHENt tBEGINt

• 1000·· OUTPUT(OCH,t(t5Bt)t)1
....... " .. "_" , ' __ "'" _ ___ .. "." .. ____ " . b~ [~i~l~~~~! ~o~;~ ~~ ~ !

tENOt;

" tENDt OF ADM SS BLE!

"
, 1010.· tCOMMENTi-.·.· ••• ··.··.·~·~·.···~.····.·· •• • •• ••••••••• ••••• ;

NOW

11.

•... " , ·_-.. tC·oMME"rrt··· :·:· .. •·••·••·•••·• -•••

M A I N PRO G R A H
.......•.. ;

" .. ""_'_"."" ___ ,,. ,~COMMENTt PRI NT .TITLE; ___ ... " .. " .. _"_ ... " ______ " .. ___ ",,, __ ._._ ... ,_ ,,, __ .. ~ ..

tFORt 11=1 t5TEPt 1 tUNTILt 10 tOOt OUTPUTC61,tCtlt)t);
OUTPUT(61,t(t28Bt)t);
GETIINF; tEORt 1':1 tSTEPt1 tllNTTlt an toot TITlEfI1J:IINE£IH

~_ ... , .. _ ... " ... __ OUTPUT,(61, t (t 'tt) t) ; _, __ '""._,, ___ .. _____ ... ___ _ ... ,." __ . ___ "".,, _.~

tCOHMENTt SET CO~STANTS USED IN PROGRAM;
J1.=64: J2.=~: J3.=4;

ONF:FILL4. -0.1.
~ 1040.. tFORt 1.=1 t5T£Pt 1 tUNTILt 12 tOOt

ONEFILL4.=ONEFILl4·16+1.,
t __ .. ___ .. __ , _______ . "_" ".,, ... , --."_" _"''' ___ ' . __ .. ____ . ____ .. ___ .. " _ -,.

A5-19

..
•
~GOL-60 (3.0) GRAMPA 01/06/73 11.

tCOMMENTt •••••••••••• CALL PROCEDURES TO 8E USED •••••••••••••••••• ;

"

•
• 1050··

106DJJ.·

tCOMMENTt

tCOMMENTt

tCOM~ENTt

tCOMMENTt

....................... ;
I~GRAMMAR;

....................... ;
PRINT TABLES;

....................... ;
PRINTGRAMMAR; •••••••••••••••••••••••• ADMISSABLE (61, SYNG ,NONtERMINAL S, NT ERMNO, 300) ;

tCOMMENTt --.. - ''"---- -" .•. ;,: :
tCOMMENTt ;.

____ . .1-COMMENTt .. •• ;
tCOMMENTt THIS IS THE SECOND MAIN BLOCK OF GRAMPA CONTAINING

THJ:' PQOCr:-DURFS FOR PRJ:'CFOFNCF ANAl YSIS ETC;

tCOMMENTt··· ••••••••••••• ... ;

tBEGINt
tCOHHENTt IDENTIFIERS USED

- PMAT~IX - SQUARE ARRAY HOLDING THE P~ECEDENCE MATRIX,
- L R - A RRAY FOR THE LEFT AND RIGHT SE TS

r . - CONFLICTA8LE - HOLDS THE TYPE AND SYMBOLS I~VOLVEO IN
-- ------- - .. --- .--------> ·----------------:---N--C-(fNF C---: -- ----A---C OU~ ~Eg f Of ~ ~ E N 5~ ~ t~ I g ~ S ~ ON F L I CT~ ;

,.

tINTEGJ:'Rt tARRAYt PHATRIX f11 • • SI7E+20, 1 •• (SI7E+19) 111 2+11l ,
LR(/30~ •• NTE~MNO+20,1 •• 2·«SIZE+19)115+1)/),

CONFLICTABLE(lI20,1151;
tINTEGERt NCONFL;

tLABELt EXITL ABtL;
tCOMMENTt THIS °POCEDU~E SCANS THE 4TH COLUMN OF THE ARRAY

tCOMMENTt···.;
tPPOCEDuoEt E~PTYCHECK (EXIT! ABEl) ;

~ -NONT~RMINALS- TO CHECK FOR -VE VALUES INDICATING
_ . .tiOO~_!' __ . ____ .,. ________ .. _______ .IHAL.TH£ EMPTY. .S_TATEMENT EXISTS IN THE LHS;

AS-20

~---

.f.L GOL -60 01/06/73

"' BE COMPUTE t ttl t) ~
tGOTOt €XITLABEL;
tENDt OF CHECK AND PROCEDURE EMPTY CHECK;

1110·· , . .,, .. ,." ,., _ _ .. ,_"'''.,_ _.~._,,,.

i
tCOMMENTt···.;
tPROCEOU~Et LEFTRIGHT.,
tCOMMENTt THIS PRrCEDURE FINDS THE LEFT AND RIGHT SETS OF THE

.............. "'''''' , ,., __ .,NON.TERMINAL SYMBOLS;
1120.. tBEGINt

tDITEGERt tAQRAyt PATH(1 ... 2,1 .. NGRAPH1,INO(1 •• 2J;
tINTEGERt I,J,O~F,NL,N~,PC,LC.,

tPROCfDU~Et LOEFCDEF>., tINTEGERt DEF.,
tCOMMENTt THI~ PROCEDURE FINDS THE I EFT SFI OF A NON-TERM

WHOSE RHS STARTS AT ROW -DEF-;
tBEGINt

.,w,,· "", .. __ .. ,,, • .,,,,", " " --.... ''if'Nlt GE~t't~ "OEF1; ._. ' ,, .. ,

; 1140··

tCOM~[NTt GET VALUE OF SYMBOL AT ROW -OEF- ;
I c.=snJ(j([1rF,11:
tCOMr~ ENTt IF THE SET L IS E~1P TY I THEN INSE RT SYMB OL;
tCOMMENTt IF THE SYMBOL IS t\LREADY IN l,THEN CARRY ON

CHECK ITS RHS~
~ .. _".,_ .. _ .. ,_",_ .. _ .. _ __ , ... ____ .. ", .. _, __ .. tFORt .1.=1. tSTEPt 1 tUNTIlt NLtDOt
. tIFt GET9(L~LPCtI)=LC tTHENt tGOTOt l3.,

tCOMMENTt IN~ER SYMBOL INTO l;
NL. =NL .1. I
PUT9ClR,PC,NL,IC).,

AND

~ .. .1150··
tCOMMEHTt CHECK THAT SYM80L AT ROW -DEF- IS A NON-TERM;

.. 13 .• , .. ~,IF.~ .. SYNG(DEF, 2J~= 0 .tTHEN t .

t BEGIt!t
tCOHMENTt GET FIRST SYMBOL OF RHS OF NON-TERM IN

ROW -OFF-;
OEF1.=SYNGC/~EF,2/).~
tCOMMENTt CHECK IF THIS SYMBOL HAS AlREDY BEEN

SCANNED WHILE FINDING THE lEFT SET OF THE
............. , , _,_ ... _ __ ,_ .. ____ , __ ,_" , .. ," ORIGINAL SYMBOL; , '"'' ..

PATHCHK(OEF1,l4,1).,

1~

..

..
~LGOL-60

1160.·· ,

AS-21

(3.0) GRAMPA 01/06/73

""",,,-,,,,,-,,-,,,tCOMt1ENTt ADO SYMBOL TO PATH;
INO(/1/).=INO(/1/)~1.~ PATH(/1,INO(/1/)/).=DEF1.~
tCOt-1MnlTt FIND ITS LEFT SET TO AOD TO THE LEFT StT OF

THE SYMBOL THAT ORIGINALLY CALLED L~EF;
lO(FCOEF1l.,
tENOt;

11.

""""""""""" .. "",,, ",-----,,,tCOMMENTt,CHECK IF THE ORIGINAL SYMBOL HAS AN ALTERNATE RHS;
L41 tIFt SYNGIOEF,3r=0 tTHENt

t BEGINt
tCOMMENT t GO THRolIGH A SIMIL AR PROCEOIIRE TO THE ABOVE

LOOP TO FIND THE LEFT SET OF THE FIRST
SYMBOL OF THE ALTERNATE RHS;

DEF1.=SYNG(/DEF,3/).,
, """ '"'' ",,"'''''' , "--""''''',,. ______ ._ .PATHCHK (DEF1, L5, 1) • ,

I NO <IiI> • = INO (111) +1., PA TH (11, INO (111) I) • =0 EF 1. ,
LDEF(OEF1) .,
t ENnt;

LSI tENDt OF P~OCEOURE· LOEF;
,,, .. ,, ______ ''' ___ , __ , .. __ ,tCOMMENTt·:l''····· ;

1190··

,1ZU.D,!'· .,. ,_

1210··

tP~OCEDU~Et ROEF(DEF)., tINTEGERt OEF.,.

tCOMMENTt THIS PROCEDIIRE FINDS THE RIGHT SET OF A SYMBOL

Ltl

WHOSE LHS STARTS AT ROW -DEF-;
t BEGI Nt

tCOM~ENTt STORE -DEF- IN -OEF1-;
°EE1.=OI='E;
tCOMMENTt CHECK FOR A SUCCE~SOR SYMBOL,IF NON THEN WE

, AR~ AT THE RIGHT HAND END OF THE EXPRESSION;
tIFt SYNG[OEF1,41=0 tTHENt

•

t ENOt tEl SEt

tBEGINt
tCO~MFNTt UPDATE SUCCESSOR POINTER AND REPEAT CHECK; __ ''''_, __ .. _,_. ________ ... _______ ~, __ ,nEF1.=SYNG (lOEF1,41)., tGOTOt LL

. tENDt;

AS-22

..

..
AlGOl-60 (3.0) GRAMPA 01/06/73

..

l21

tCOM~ENTt SEE IF THE LAST SYMBOL SCANNED IS A NON-TERM,
IF SO THEN FI~D ITS RIGHT SET AND ADD TO THE SET
OF THE ORIGINAL SYMBOL;

tIFt SY~G(OEF1,2]~=O tTHENt
tBEGINt

tENDt;

-__ -' ________ ~_COMMENTt CHECK IF THE ORIGINAL CALLING SYMBOL HAS AN
ALTERNATE RHS,IF SO THEN FIND ALL THE RIGHT SETS:

L31 tIFt SYNG[OEF,3]~=O tTHENt
tB~GTNt

.. OEF1.=SYNGC/OEF,3/).,
12~D·· PATHCHKCOEF1 ~4 2).,

INOC/21> .=IN& (I~/)+1., PATHC/2,INO(l2/)1).=DEF1., ____ " ___ , __________ _. ________________ ,. ___________________ RDEF (OEF 1) .,

tENlJt;

l41 tENOt OF PROCEDURE RDEE;

tCOMMENTt············.··· ••• •• ••• • ••• • ••••••• • ••••• ;
_125 O~! __ ----- ---------------i-PROC EOUP,."Et PATHC H-j((K, L-,J) ;; t VALU E1 J., tINTEG ERt K, J. ,

tlABElt L;

tBEGINt
tINTEGE~t p.
tCOMMENTt THIS P~OCEOURE CHECKS THE PATH TRACED THROUGH ______________ , _____ ~ __________________________________ ~ _____ THE_ SYNTAX GRAPH BY ·LDEF· AND ·RDEF. TO CHECK

FOR ~YCLING.,
tFORt P.=1 tSTEPt 1 tUNTILt INO(/J/)tDOt

t -t = P p

tENDt OF PROCEDU~E PATHCHECK;
tINTEGfRt SIZES: t .. -...... , S IZE51= (S IZE", 11/ LSt1; .' ~ ' - " .. .

. ~127D.. tCOM~§~6~ OF ·LFFTRlr,riT •• ,

tCOMMENTt I~ITIALISE THE SETS;
___________ ~ ____ , _____________________ ._tFORt I'=~Q~ fSTEPt 1 tUNTILt NTERMNO tOOt

tFORt J.=1 tSTEPt 1 tUNTIlt 2·SIZE5 tOOt

11

..
AlGOl-60

..

.-,
I

A5-23

GRAMPA

,,-, -- -- ----- ------ --l R (I, JH =0-;
tFORt I.=300 tST~Pt 1 tUNTILt NTERMNO tOOt

tBEGINt
NL.=NR.=O'l INO(/1/).=INO(/2/).=1.~
tCOMMENTt CHECK IF SYMBOL ALREADY ~CANNEO.,

PCI=I;
--------~ ----- ----~IF~ GET9 (l~lPC, 1) tNOTEOUAL~ 0 tTHEN~ tGOTOt

tCOMME~Tt btT POINTER TO START OF LHS;
~Eb~M~~~~{~~~!~R~6~Ab~~~Ft~~6 NON TERM;

Lil

tIFt DEF='l :tTHENt tGOTOt l1;
PATH(1, 11 t=PATH[2t 11 I=OEF;
tCOMHE~Tt GET LEF AND RIGHT SETS;
LOEF(OEF).,ROEF(OEF).,
,-.. "; -, " "" -

tENDt OF LOOP TO OBTAIN LAND R; .

tCOMMENTt PRINT OUT THE SETS;
OUTPUT(61,t{t.t)t);

... -- ' - -,~ .~, - , ,~ - - ...

Li.,

01/06/73

OUTPU~~~1~~~~5r~J~!~~B;t~tlEF~ ~~~T~)~~}:~~~/'NO.t)t"t)t);
tFORt 11=300 t~TEPt 1 tUNTILt NTERMNO tOut

tBEGTNt

•

tFORt J.=J .. t tW'iILEt J< SIZE AGET9(LRfI~J+SIZE)"=O tOOt
OUTPUT(6i~t(tBZZOt)t,GET9(LR,I,J+S Z~».,

tENOt 0 F RI GHT ~ET PRINT;
---{ --- ,,--,----- ---- ------ --- " .. -------- ---' -----,,------ --,--- ,,------- -- ----,,--- --------------~----- -- --~------- -- ,--

l
\ tENOt OF PROCEDURE LEFTRIGHTl

11

~~----------------~---
tCOMMENTt···;

,
A5-24

..
l-LGOL-60 GRAMPA 01/06/73

,,- -- - ---- ---- -tPROCEOUREt WWPRECEOENCE;

tCOM~E~Tt THIS PRO~EDURE CALCULATES THE PRECEDENCE MATRIX BY THE
RULES OF WIRTH AND WE8ER!
SEe: C.ACM 9 (1), II1NE 196b;

~ 1340.4 t~EGINt
tI"TEGERt SUc;

, .. '"--,~ .. ~-~- -"-.-~-" .. ",- "'.~- '" ~" ~- - -- -,. ,-.,

tCOMMENTt -----PROCEDURE .PUTM. -----;

tPROCEDUREt PUTM (111,112,13) ;
tVALIiEt 13;tItUEGERt 13,111,1!2;

tBEG INt
tINTEG~Rt 11,I2,~1,S2,CLASH,I;

__1350·· -- --- ------------------.0-- ------------tfl;; I r {e I2 1 ~ TI2 ; --
tCO:-1MF.:t-.Jtt CALCULATE I~DICES INTO -PMATRIX-;
tI~t 11>299 tTHENt I1.=I1+NTERM-299 ;
tIFt 12>299 tIHFNt T21=T2tNIERM-299;

tCOMME~Tt CHECK IF WE NEED TO INSERT SYMBOL;
__ t 1Ft GET4 (~MA T PIX, 11

f
I2) = 1 to Rt GET4 (PMAT RIX, 11,12) = 13

- tlHENt PUT4(PHATRIX, 1,12,13)
1360·· -

tELS EttBEGI Nt
tCQ"~ENTt PROCFSS COlLISION;

tCOM~ENT;t CALCULATE COLLISION TYPE;
S1 •• =GET4(PMATRIX,I1,I2)., S2 •• =I3.,

.. -------- _______ .. _________ " ____ .. _.,,,~ ________________________ tI Ft 51 =9 tTHENt t GOTO t C H KENO;
CLASH I=S1 .. S2;
tCOtfMENTt CHECK IF WE ALREADY HAVE A DIFFERENT

TYPE OF COLLISION BETWEEN THESE TWO
~ 1370.. SYMBOl S;

~ ~fb~tN~~~~Lt~T~~~E~t tG~~i~~ ~g6~~L tOOt
I tIFt CONFLICTABLE[I,21=II1tANOt -- .. _____________ --___ ~ _______________ .. __________________________________ CONFLICTA9L E[I, 31= 1 12

tTHEN t tBEGINt
tIFt CO~FLICTABLE[I~1]=CLASH
tTHENt tGOTOt CHKENu tELSEt

tBEGI Nt
CONFLICTABLE[1 t 1]'=9;

PUT4(PMATRIX,I1, I21 Y).'
tGOTOt CHKENu; __ ~ ________ -- _____ , ____________ "' ____________________ "' ________________ .. _____ ~ __________ tENOt:

~ENDt;

tCOr-1MENTt UPOATE NO. OF CONFLICTS;
~ • = •

II=NCO~FU
tCOMMENTt INSE~T CONFLICT INFORMATION INTO

-CONFL I CTA BL E- ;
\ i3_904_~ __ ----------.. ---------------------------gg~~tig+~~t~~i:~~: ~~i~iH;,

11

loGOL-oO GRAMPA

,,,,,,, '" ,,, .. , . "'---- '-- ,-CONFL IC TA8L E[1,31' =112 ;
C CNFL I C TAB L HI, 4] 1=11;
CCNFLICTABLE[I,S]I=I2;

CHKENOI

1ENOt PROCESS CONFLICT;

, ... , .. '" ~ENO t OF .PU Ttl; ""-' "'-

tCO~HENTt tNITIALISE P~ECEOENCE MATRIX.,
tFORt I •• =1tSTEPt 1t.uNTILt SIZE tOOt

_, ___ ''_,,tFORt J.=i tST£Pt 1 tUNTILt CSIZE tOOt
PMAT~IX(/I,J/).=ONEFILL4.,

NCONFL 1= 0;

tCOI'<1MENT t
----- ~UlE 1 CHECK FOR = ;

~ ~ ~ ~ -- ~ - ---''''--~-- ... -.. ~.....,., . --" "'~.- '-- - ~" - - - - _ .. - - --

AS-2S

01/00/73

tCOMMENTt THI~ RULE INVOLVES SCANNING DOWN THE SYNTAX
GRAPH FOR SYMBOLS LINKED BY A SUCCESSOR POINTER;

tEaRt I.=1 t~T~Pt 1 tlltnILt "'GRAPH toot
tBEGINt
tIFt SYNGClI,4/) = 0 tTHENttGOTOt L10., ,,_ -...... --.~'~~~ ,_ .. ~~~~!I~~ 1~~ ft~~~~; 12. =SY NG (/ SVNG (11,4/), ill .,

tCOM MENT t
----- RULE 2 CHECK FOR < ;

__ ."- ,, ,, __ .. __ _#F.ORtI.:;L tSTEPt.1. tUNT.Ilt NGRAPH tOOt

tBEGINt
tIFt SVNG(/1,4/) = 0 tTHEN1 tGOTOt L11.,
~¥~t=§y~g:1~~~~~il = 0 tTHE Nt ;tGOTO t l11

tIFt I2>S ZEyGET9(lR t J t 12)=O tTHENt
tGoTot L11 tELSEt tGOTOt

tENOt;
L12. ,

11.

ALGOL-GO

11+50·"

A5-26

(3.0) GRAMPA

-tCOMMENT t
----- RULE 3 CHECK FOR > ;

t~O~t 1.=1 tSTEPt 1 tUNTILt NGRAPH tOOt

_______ +--------------------~BEG IN t_ -- ----
i 1fIF t SYNG (/ 1,41) = 0 tT HENt tGOTOt L 13. ,

tIFt SYNGC/I,2/) = 0 tTHENt tGOTOt L13.,
SUC.=SYNG(/SYNG(/I,4/),1/).,
I2.=1. ,

L141 I1t=GETq(L~,SYNGrI,1],I2+SIZE).,
PU PH I 1 , SUC , 3) ;

12'=I2~1; .
"--"- -- ----,--------- ______ tIFt"I2>S I lEy GET9 (LR 1. S Y NG [1,1] 112 +SIl E) = 0 tTHENt

. 1G OTOt L1 j tEL SEt tGOT Ot L 14. ,
L 13' tEND t r"lF RU LE THREE ;

tCOMMENT t
----- RU LE 4 FURTH E~ CHECK FOR > ;

__ ., ________ .,, ____________ ~~,, _____ tE.QRt __ I._=_L_tSTEP1 ___ 1 __ tUNTIlt NGRAPH tOOt

t8EGINt

01/06/73 11

tIFt SYNGe/I,I+/) = 0 tTHENt tGOTOt L1S.,
~ __ --------------------~t~T~F~t~S~Y~N~r,~(~/~T~,~2~/~)~=~~O~~v--~S~Y~N~G~e~/~S~y~N~G~e~/~I~,~4~/~)~,~2~/~)~=~~o~ ____ _

tTHENt tGOTOt L1S.,

I

SUC.=SYNG(/I,4/)., , -, __ ,, ________ ~________ . ____ ____ _ --" --, 11. = 1. , ' - _ -
L16II1r=GET9(LR,SYNG£I,1],I1+SIZE);

12.=1. ,
L17a I41=GET9(LO,~YNG(SUc,1],12).,

PLUM (13,T 4, ~l;
I2'=! 2+1;
tIFt I2>SIZ~ vGET9(LR,SYNG(SUC,11 1 I2)=O

tTHEt-.!t tGOTOt L16 tELSEt tGOTOt L17.,
, ________ 14,,9n·_ .. ________ ~_.Li8 L,I!-I;: 11 .. 1 ; , ',_ - ' __ __ ___ " _ _

tIFt 11>5IZ~ vG~T9(L~,SYNG[I,1],11+S!ZE)=O tTHENt
tGOTOt L1S tEL SEt tGOTOt L1G.,

tEND t OF RULE FOUR ; L1S1

tCOMMENTt T~IS BLOCK PRINTS THE PRECEDENCE MATRIX NEATLY;

PRECEDENCE CONFLICTS"t)tt)t)

AlGOL-6!)

t) ttl t)

t) ttl t)

GRAMPA

,tF)Rt 11= 1 ~STEPt 1 tUNTILt NCONFL tOOt
tBEGI Nt

AS-27

111=CONFlICTABlE[I,41; 121=CONFLICTABLE[I,51;
PUT4(PMATPIX 1 11,I2,CONFLICTA8LEC/I,1/».,

01/06/73

, I = CO'" F L I CT 0 !;j L E L I , 1 J ;
tIFt J=5 tTHENt OUTPUTC61tt(tI15B,t(~«1» BETWEEN t)tt);t)
tfLSEt tIFt J=6 tTHENt OU PUT(b1,t(tl,5~,t(t«,=) BETWEEN

,tE'LSEttIFt J=7 tTHENt OUTPLJT(61,tCtl,5B,tC;t(>,=) BETWEEN

tElSEt f)UTPJTC61,tCtl,53 1 tCtC'<,=,.» BETWEEN
PRINTSy~eOl(CONFLICTA9LELI,?),NCHAR);
OIlTPtlT(51 t(tt(t AND t)tt)t)·
PRINTSY~B~lCCONFLICTA8LE{I,31,NCHAR);
tfNOt:

tEND t :

;t) tt)t);

PRINTIT I
Ll'=1; Ull=tIF;t SIZE>30 tTHENt 30 tELSE;t SIZE;
OUTPUT(61,tCtl,89t)t);

-~ -~, -~ - -" .' -- '-' -.. ,~,-~-- -'" --... --. ,. "

tFO~t II=lL tSTEPt 1 tUN TILt UL tOOt
tBEGINt
JI =tI Ft I>NTER~ tT HfNt I-NTERM+299 tELSEt I;
otITPIITC61, t Ct-ZZ D t 1t ,.I);
tENOt;

tFO~t 11=1 ;tSTEPt 1 tUNTILt SIZE tOOt
'1540 , ""," ,_,,~_,' __ , ____ "" _"" ____ ,_tBEGI Nt

••

JI=tIFt I>NTERM tTHFNt I-NTERM+299 tELSEt I;
OUTPUT (61, t (;t/t,,·ZZD, 68t) t,J);
tFORt JI=Ll tS EPt 1 tUNTILt UL tOOt

t BEGIN ~

tIFt SIZF>Ul tTHENt

tEf\lDt;

1

A5-28

-ALGOL-60 (3.0) GRAMPA

tEND.t. OF PROCEO URE WW PRECED ENCE ;

tCOMMENTt~···.;

tPROCEOU~Et ~EMnVE CONFLICTS;
~, -.,,~-,~,- .. --..,.~ ~ " "

tCOMMENTt THIS P~OCEOURE REMOVES PRECEDENCE CONFLICTS BY
LEFT ANn ~IGHT RESTRIr.TEO EXPANSIONSL SEE GEORGE J.E SIMPLE - A SIMPLE PRtCEDENCE

01/06/73

TRANSLAToR WRITING SYSTEM, STANFoRD II STIlN-CS-71-226 ;
• 1580·· tBEGINt

__ " _____ '' ______________________ < _il~t~~~~; ~~~~!~~M lRETABL E(11201, RRE TABLE (11201;

tPROCEDU~Et RR~(OLD);
tVA! !JE~ OLD.,

OR L RE ;
SIZE' =SIZE+1;

~ __________ .. _____________________________ W SU~ I =WORD[111 =WSUM...+1 ;
~CO~MENTt rXTEND SYNTAX GRAPH AND GET POINTER ;
NXTBOXI=NGPAPHI=NGRAPH+1;

tCOMMENTt TNSERT NEW ARTIFICIAL PRODUCTION INTO SYNTAX
GRAPH AND UPDATE NO. OF PRODUCTIONS;

, NONTEPMINALS[NEW,41t=NXTBOX;
, . SYNG(NXT90X,211=IA8S(NONTE~MINALS{OLDL4)); _ -_____________________________________ SYNG£ NXTOOX, 11 I=OLO; SYNG (NXT BOX, ~ 11=NEW;

f

PROOUCTIONSI=PROOUCTIONS+1;

_ 1610.. tCOMMENTt SCAN THE PROOLJCTIONS,REPlACING ALL OCClJRENCES
OF -OLO- BY OUM~Y SYMBOL EXCEPT WHERE -OLO
IS THE RIGHT-MOST SYMBOL;

tFORt It=~OO tSTEPt 1 tUN TILt NTERMNO tOOt . __________ . _____ . ____ ,, _ ______________________________ t BEG! Nt .

SUC' ~j}~R~~~~lJ!~~;~~g~~~~~1~!~I!~b4}tAENt SYNG£J,111=NEW;
tCO~ME~Tt T~ACE THROUGH SUCCESSORS ; .= .
tIFt J~=O SUC tELSEt

tBEG IN t
,..~, __ ~_ __ ~ _____ -......~ ... «-~.~, __ ~-..-.-. ... _________ ~tCOl1M::NTt TRACE ALTERNATE PRODUCTIONS ; ~

JSTARTI=JI=SYNG[JSTART,31;

11

lLGOL-60 (~. t') GRAMPA

"'"'''''''''''''' "",. ~IFt J"'"=O ~THEN~ ~GOTO~ SUC;
tEND t;

tENlJt· '
tENOt OF RP.~;

A5-29

tCOMMENTt THIS PROCEDURE PERFOPt,'S LEFT RESTRICTED
"~, •.. -,-."+".,,... EXFANSION OF -OLD- ;

I tP~OCEDU~Et LRfCOLD);
tVALUEt OLO.,

tINTE Gt:Rt OLD;
tBEGINt
tINT~GE~t I,J,M,JSTART,NEW;

01/06/73

tCOMMENTt SIMILA~ 'OPERATION TO RRE FOR CREATING OUMMY
SYMBOL AND NEW ARTIFICIAL PRODUCTION ;

HASH(WSUM LNEW,1);
SIZE'=STZt+1 :
WSUMt=WORD(1JI=WSUM+11
NXTBOXI-~GPAPHI=NGRAPHt1;
PROOUCTIONSI=PROOUCTION~+1;
NONTERMI~AlS{~EW 411=NXT90X:
SYNGCNXTBOX,111=OLO; SYNG[NXTBOX,Sll=NEW;

, " ~, ~., ., ... ,~,.., ... ~ ,- ,~,....... ,".~ .. ,.... ,~ . - ,

tCOHMENTt SCAN THROUGH PRODUCTIONSLREPLACING -OLD- BY
DU~MY SYNBOL EX CEPT WHEPt - OLD- IS THE LEFT
MOST SYMBOL. COUNTER -M- IS USED TO SEE WHERE
-Q LO- LIES IN THE PRODIICTION •

tFORt II=3t'fJ tSTEPt 1 tUNTILt NTERMNO tOOt
t BEGIN~
MI=1; JSTARTI=JI=IA8SCNONTERMINAlS[I,4]);

".-, "'~' __ '. __ '."_"._'" ., __ "._''",SUCI. tIFt N"'=1 A SYNG[J t 11=OlD tTHENt SYNG[J,1l1=NEW;
tCO~MENTt TRACE SUCCESSORS;
MI=M+1; JI=SYNGeJ 411
tIFt J"'"=O tTHENt ~GOTOt SUC tElSEt

tREG IN t

1&70·· ~FORt 11=1 tSTEPt 1 tUNTILt 20 tOOt
lRETABl~[Ill=RRETABLf[I]I=01

, _____ _"w', _____ . ___ ., __ '"~ .. _ ,~COMM ENTt, IN ITIAlISE DUMM Y SY MBOl TO XXXX 0 ;,
WORO[?]I=WO~O(31t=O:
WORDr 111=«(34·64+34).64+314'.64+34).64+1;

WSUMI= WaR!) (11;

tCOMMENTt IF NO CONFLICTS THEN SKIP PROCEDURE ;

MAINI
.. 1.680·'! ,,,,, ___ .. __ ." .. __ .~.IEt_NCONfL=D tTHEN.t .. tGOTOt ENORC; __ ... ' --.. -' , _

1:

AS-30

lLGOL-60 GRAMPA 01/06/73

,,- " ,," ~COH:iENTt TRAer THROUGH THE CONFL ICTS CALLING EITHER LEFT
O~ RIGHT RESTRICTED EXPANSIONS ACCOROI~G TO CONFLICT

~FOR~ II=lT~~fE!t 1 ~UNTILt NCONFL ~OO~
t8EGINt
JI=CONFLICTA8LE[I,11;
~ IFf J=6 tTH EN t

~BEGIN~
,'-,'''' """,,,,,,,,--SYIU=CCNFLICTABLE[I,31;

~FORt 111=1 tSTEPt 1 tUNTIL1 1-1 ~DOt
~IFt LRETABLE(I11=SYM tTHENt tGOTOt ENDRL;
lRETA8LE£I11=SYM;
LRE fSyH)
tENDt tELSEt
tBE GINt
SY~t=CCNFLICTA8LE(I,21;

,, _____ "''''''', ___ '' ___ , ______ tFOR~ 111=1 tSTEPt 1 tUNTIL ~ 1-1 ~OOt
tIFt P.RETABLE£I1]=SY~ tTHENt tGOTOt ENDRL;
RRETA9L~f£I] I=SYM;
RRECSYH
tEN D t:

ENORLI ~ENDt OF REMOVE LOOP;

__ ,_, __ ,, _____ ,, ___ '''' , __ ,,,,tCOMMENTt P~INT THE GRAMMAR AFTER MODIFICATION ; .
OUTPUT(61,tt(t-tt) t); OUTPUT(61,t(tl,58,~(~MODIFIEO GRAMMAR AFTER

REMOVAL OF CONFLIcTS ~ltt)t>; .

PRINT GRAM MA 0;

~COHMENTt C~ll PRECEDENCE PROCEOURES AGAIN TO SEE IF NEW
CONFLICTS HAVE BEEN INTRODUCED ;

',,,, ,, ___ ,, __ ,,_~ _______ ,,,_,_C SIZE. = (S! ZE - 1) 1112+ 1. , _ ,,_
LEFT~IGHT ;
WwoRE CEDE Net:;
~GOTOt HAIN:

1720·· ENDRCI
r --- ----- ______ =:.N~~_~~_ R:'~~~:'_~~L ::TS ; __________ _ ____

l
tCOMMENTt·················.· ••• •••••••••• •• • ••• ··.···.;

/,1130··,_" __ ~PP.OCEI)U~Ef PFUNCTIONS eM, N);
~COMME~Tt THIS P~OCEDURE CALCULATES THE PRECEOENCE FUNCTIONS

BY WI~THS ALGORITHM 265 C.ACH ;
~VALUEt N; ~INT~GER~ N; tINTEGERt ~ARRAYt M;

of
~INTEGER~ I,J,K,K1,FMIN!GMIN,LS 1EQ,GR,NIL;
tIMTEGEQt tA~PAYt F[1INJ,G[ltN],
tPROCEDU~tt FIX~OW(I,L,XJ; tVALUEt I,L,X; ~INTEGER~ I,L,X;

_____ "," ___ , "'. __ "_"' ___ ". ___ " _____ , __ ,_,,,,,~B£GINt _ .. '" ",,_, ,', ______ ,. __ ,,,.,,,, .. _, "",, ''' __ ~ __ ,, __ ,, ___ ..
tINTEGE~;t J;

1:

. 174D.·. .,,- .. -.F(!lI=G£Ll+X;
~!F~ K=K1 ~THEN~
~BEGI N~

GRAMPA

AS-31

01/06/73

~IF~ GET4(M,I,K)=LSAF(Il~G[Kl ~THEN~ ~GOTO~ FAIL ~ELSEt
~IFt G[T'+P1,I,K)==E'QAFtIl"'=GtKl tTHENt tGOTCt FAIL

tEND~; .
tFOR~ JI=K1 tSTEPt -1 tUNTILt 1 tOOt
tIF~ GET4(N,I,J)=LSAF(Il~G£J) tTHENt FIXCOLU t J,1> tELSEt

." "" .. --_."., " tIF~"GET4(M,I~J)=EQAF[I)"=G{J) tTHENt FIXCOLCr,J,O)
tE~Ot FIXROW· .

1750·· tP~OCEDU~Et FixCOLCL,J,X); ~VAlUEt L,J,X;tINTEGERt L,J,X;
~BEGI"'t

tINTEGERt I;
G [J] I =F{L]+X;
~IFt K~=K1 tTHENt

t BEGINt
'"'' ""._._ " ""_ ... _ .. , ... _,, tIFt GET4(111,K,J)=G~AF[KHG[J] tTHEN~ tGOTOt FAIL tELSEt

"11Ft GET4(M,K,J)=EQAF{K)~=G{J) tTHENt tGOTOt FAIL
~ENOt ;
tFOR.t II=K ~STEPt -1 tU~T1Lt 1 ~OOt

j 760·'" tIFt GEI4 (tA, I, .1)= GRAE [I 1 < GT ,I] -1I.HENt FIXR ow CI r" 1) tEl SEt
tIFt GET4Ct1,I,J)=EQAF[I)-'=G(Jl tTHENt FIXROW(,J,O)

tENO't FIxcnL" , ,
LS1=Z; GQ,I=3 ; EQI=4; NIL'=1 ;

" ""_'''_'''_'''_' ,,, ____ .K1. =0;. .,. "
tFORt KI=1 1SIEPt 1 tUNTIL~ N tDO~

tBEGIN~
FMINI=1:
tFORt .11=1 ~ SlEPt 1 tllNlI J 't Kj tOOt

~FOR.t 11=1 tSTEPt 1 ~UNTILt K tOOt
. tIFt GET4CM,I,K)=LSAF£I]~GMI"'1 ~THENt GM1NI=F.{11+1 tELSEt

tIFt GET4(M,I,K)=EQAF(Il>GM1N ~THENt GMINI=F[Il;
.. 1.78 O"'!: ____ .,,_ __ . ___ ... G ! K 11 =G I'll N ; .

tFORt II=K tSTEPt -1 tUNlILt 1 tOOt
tIFt GET4CM,I,K)=GRAF[I15GMIN tTHENt FIXROW(I,K,1) tELSEt
"11Ft GET4CM,I,K)=EQAF[I]<GMIN tTHENt FIXROWCI,K,O)
tENOt K:

tCOMMENTt PRINT THE FUNCTIONS ;
_"" .. __ . _______ " .. _._ 0 UTPUT (61, t (t I, -'! 1,208.! t (tP~ECEOE NeE FUNC lION St) t t) t) ;

OUTPUT(61,t(tl,1u8,t(t~t)t,58,tCtGt)~,10B,t(tSYMBOLt)tt)~);
I 1790.. 0 U T PU T (61 , t (~ I It) t:, ;

tFO~t 11=1 tSTEPt 1 tUNTILt N tOOt
tB='Glf\Jt
OUTPUT(61,t(t/t78~-ZZO.!28,-ZZOL108t'tLF[I),G[Il);
J.=Ite tIFt: J>~ ER"'! tTHt:.Nt JI=2~'3+I-NTtRM;

, PRIN SYM90LeJ NCHAR);
___ " ___ ." .. ___ " ___ ''' ____ ,,.,, .. __ tENOt OFPRI Nt F UNCII ONS;

tGOTOt ENOP;

l'

I

~ .. GOL-60

1ft --

..

AS-32

(3.0) GRAMPA 01/06/73 11

fAIlIOUTPUT(6.1ft(tl,I,I,1SB,t(~CAN NOT fIND PRECEDENCE FUNCTIONSt)t
t) t) ;

ENDP I tENI) t OF PFUNCT IONS;

l tCOMMENTt··· ••••• ;
fi' -.. ,..""'"... -- .- . '" -.............. '"_ ~. . -....

~ tPROCEDUREt TRA~SPOSESYNTAX GRAPH;
I

~I 1810.·

tCOM~~NTt S~T FIPST SYMBOL NO. TO BE SCANNED;
SYMBOLNOI=-!; NXTBOXI=i;

LOOPi1
". 1.,630 .. • , ... JSCAN 1=1;. '" .. ,,' ... _ ~ _._ .. _ _ _..... -. --,. .

~ SYMBOlCHECKI

I

,

~TI='~ ~YNr,r .Jc::r.At..1 11=C:;YMROI NO ~THI='N~
t'3EGINt
II =J SCAf\! :
tIFt SYNG[JSCAN,Sl=O tTHEN~ tGOTOt UPDATEJ;

.. _ _.~ ... _tIF~. SY~~ BOLNO~3 C a tTHENt.
tBEGIN:t

1~40·· tIFt NTR~SPTR[SYMBnLN01~=O tTHENt
~~STABLE(ST~RTBOX,2]I=NXTBOX

·tEL$Ft NTPHSPTR[SYMBOLN011=NXTBOX;
;tE~D t tE LSE: t

tBEGINt
._ .. _ .. _ _ : ____ .. __ _ _ .. _~.IFt . .T~HSPT R (SYM BOL NO]"'= C tT HEN t

1850··

R~STABLF[START90X 2]I=NXTBOX
tELSEt TRHSPTR[SYMBOlN011=NXTBOX;
tEND t;

STARTBOXI=NXT80X;

SUCCHECKI

.GOL-60 (3. (11 GRAHPA

............... tBEGIN1.
RHSTABLE[NXTqOX,31t=-1;
RH S TAB L Err' x T 8 0 X, 1 1 1 = S Y N G [J SC AN, 5] ;
NXTqOXt=NXTBOX+1;
tGOT Ot "PCA IE I:
tENOt tELSEt

tBEGINt
..... --, : ... " -- ... " --. ~~sf l~r~I'J~ ~~OX, 11 I =SYNG n,1] ;

tIFt ~IXT80X>STA~TBOX tTHENt
RHSTA8LE[NXT80X-1,311=NXTBOX;

NXIgox l=t!XTBOXU;

A5-33

01/06/73

tGOT 0 t SUCC HE CK;
1870·· tENOt;

.... ~ __ . __ ... __ ,, ___ ... tEND.t. OF SYMBQL. CHECK ;

UPOATEJI

JS CAN I = J S C 1\ N + 1 ;
tIFt JSCAN~NGRAPH tTHENt tGOTOt SYHBOLCHECK;
SYMBOLN~t=SYM80LNO+1;

.tIFt SY~BOLNO>~TERMNO tTHENt tGOTOt ENOLABEL;
tIFt SY"80UIO>NTERHASYMBOLNO<310 .tTHENt SYMBOLNOI=300;
tGOTOt LOOPi;

tCOM~~NTt P~INT OUT TABLES;
ENOLABELI

'''--'''-~-- ---,...~~-,..~---........ ---~ - - -- ~-- -'~~--- ,.,. -- -----.--- _. ~ <- - •

OUTPUT(61,t(t~,I,I,20B,t(t TRANSPOSE SYNTAX GRAPH FOR ANALYSERt)t,
It) t) ;
OUTPUT(61,f(tl,~B,t(tNO~TERMINALS INDEX-POINTER TABLEt)t,l,
tftSY'1goL NIJIwI9C"R POINTER TO ~HSTABI Etl t,lt) t);
tFORf II=3~~ tSTFPt 1 tUNTILt NTERMNO tOOt

. OUTPUT(oi,t(t58,ZZD,1oB,ZZD,I-t)t,I,NTRHSPTR[I]).;

-·---· .. ··· .. ····--···-···oliiptj'f(f, i;'t'('ti ~5 8',t'(t TERMINALS '1 NOEX -POINTER TASL Et) t, I ,
t(tSY~BOl NUM9ER POINTER TO RHSTABLEt)t,lt)t);
tFOR# 11=-1 fSTEPt 1 tUNTILt NTERM tOOt

1900.. OllTPlITl6j, ttt58,-ZZD,H)B,ZZD,lt> t,T,IRHSPTRrT)l;

OUTPUT(61,t(tl,I,I,;9,t(tTRANSPOSED SYNTAX GRAPH FOR LHS LOOKUPt)t,1

l t) f) ; . .
____ . ______ ,,,, .. ,_.QU IPUl (o1, t.t fl., 9a, t,U. _. __ ... SY M80l NO. t) t, 48,.t (tAL T. t) t ,48 ,t (tSUC. t) t, I

t) t) ; ..
f tFORt 1&=1 tSTEPt 1 tUNTIlt NXTBOX-1 tOOt

t8EGINt

1910··
t __ .. · ___ ,_ _ ... ", __ , _ _ _ __ ._ ... _~ _ _ _,_ ... _ , " , _, __ " .. __ ... __ __

I

~

11

AS-34

v Al GOl-60 GRAMPA 01/06/73

-- ~- -- - " -
tENOt OF TRANSPOSE SYNTAX GRAPH;

.. - ,--- .. ~--.. --.. ~------ ~~ROCEOURE 1. RE CU~SIVE CH EGI(;
I

tCOMMENTt THIS °RCCEOURE FINDS THE LEFT1RIGHT AND IMBEDDED
RECURSIVE SYMBOLS OF THE GRAMMAR;

tqEGINt

~_' t'9_30~· ' ..

tINTEGt~t ~ARPAYt PATH[112,1INGRAPH1,INO[1121;
tINTEGE~t I,IPTR,PC;NCHAR;

[tBOOLEANt tPROCEOUREt LEFT~ECURSIVE(I,J);
tVALU~t I,J; tINTEGERt ·I,J:
#r.O~MENTt THIS PROCEDURE CHECKS WHETHER THE SYMBOL -J- IS

~

I ..

IS IN THE LEFT SET OF -1- ;
tBEG INt

__ ... _ ... ________ . ___ ,"_, "~' __ ","_"" tINT EGERt 1(;
tCO~MENTt INITIALISE;

1940·· LEFTRECURSIVEI=tFALSEt; K t= 0;

tCOMMENTt SCAN THROUGH THE I EET SET OF -T- ;
tFO~t I(t=K~1 tWHILEt I«SIZE+1 A GET9(LR,I,I()-'=O
tIFt GET9(LR,I,K)=J tTHENt .

t8fGI Nt
.. " _ .. _",,, -,, __ - .. ___ ,,'" __ . ____ .. __ ,, ____ .l EFT~EC URS I VE 1 = tTR UE t; t GOTD t ENOL;

tENOt OF CHECK ;

ENOll tENDt OF L::FTRECURSIVE;

t~EG HIt
1960·· tINTt:G~~t K;

tCO~M[NTt INITIALISE ;
_______ . _____________ . _., -... _____ _______ ... _ .. RIGH TRECU~S I V E 1= tFAlSEt; I(I =0 ;

tBfGI Nt
RIr,HTRECU~SIVEI=tTRUEt; tGOTOf ENOL;
tENOt OF C HECI(;

_____ .. :.1_970·~ _____ .. __ ___ _ _ "_'" _ .. _____ .. ___ .. _ __ _ ._
ENOL I tENOt OF RI.G HT RECURSIVE;

I

tOOt

1

tOOt

LGOL-60 (~. 0) GRAMPA

~qOOlEANt tPROCEDUREt IM8EO(1PTR);
1'!AlUEt IPTR; tI~TEGERt IPTR;

AS-3S

01/06/73

tCO~MENTt THIS PROCEDURE FINDS IF NON-TERMINAL X IS IMBEDDED
RECURSIVE, WHERE THE LHS OF X STARTS AT ROW -IPTR- IN

--- " ... "" ---..... . .. " .. TH£S YNTAX GRAPH;. . -

tBEG INt
t1NTEG~Rt JIJK~K1SUCIOEF; tBOOLEANt 1M;
tCOMMI='NTt INl,THI l,SE ,
IMB~OI=IMf=tFAlSEt;

tCOMMENTt CHECK PATH T~ACEO THRO GRAPH FOR CYCLING;
INO_! 111=INO [1].1; PATH[1,INO[1]] I=IPTRi
tFO~t KI=1 tSTEPt 1 tUNTILt 1NO[11-1 tOut

tIFt PATH[1,K]=IPTR tTHEN1 tGOTOt ENOL;

tCOMMENTt SET POINTERS;
KI=1; JI=IPTR; .JKI=J;

L1 •• SUCt=SYNG£J,41;
.................. " " _1IFt . .K>1tANOt SYNG£J,11=PC tTHENt

1!3EGIN t
1M .=tTRUEt; 1GOTOt ENOL;

2noo.. tCNOt ;

DEFt=SYNf,[J,2];

.... _ " _. ___ --._tIF:t. .. DFF>!LtANDt SUC>O tTHENt 1M I=IHBEO(CEF> tORt
RIGHTRECURSI VE(SYNG[J, 1], PC)

11

tELSEt tIFt OEF>O tANDt SUC=O tTHENt 1M I=IHBEO (OEF> tORt
I EFTRECIJRSIVE (SYNGf.J,1 1, PC)

tELSEt 11Ft OEF=OtANOtSUC=O tTHENt tGOT01 UPDATEJ;

, . .2nzo·~ ... _ UPDATEJI __ .tIFt ... ::'Hi .. ______ t.THENt. ""_ __ .. " ... "w" _~ _ .. " ,_"

tI3EGI~ t
JI=SYNG{JK~3]; JKI=J~ KI=1;
tIFt .1>0 tIHENt tGOTOt 11;
tENOt ;

AS-36

~lGOl-60 (3.0) GRAMPA 01/06/73 11 ...

tENl)t OF IMBED;

p~nlTs YM BOl (I, NCHAR) ;
tENDt OF FI NO lEFT RE CURSI VE ;

.. ,."" .. _-,,-- "","'''''-'''-''''-- i'COMMENTt FINn ~I GHT R::C UPSI VE SYMBOLS·
OUTPUT(61!t(tl,/~/!5Blt(tQIGHT RFCURSIVE SYMBOlSt)t,lt)t);

tFo~;t II=,3!)u tsTEPt 1 tUNTllt NTERMNO tOOt

SYMBOLS
•

r 20,7_ O~, ... " .. ___ ,," __ "'''''''" --___ .. __ .. ____ ,, _____ ,, __ _, .. -_,, ____ .. __ ' .. "_" ,,_"",," ___ ._ ,.",,,,, .. __ .,,,,,, '" ." , "" ,_ '" "" .,'

'ENOt OF ~ECURSIVE CHECK;

tCOMMENTt ••••• CAll THE PRECEDENCE PROCEDURES ••••• ;

E~PTYCHECK(EXIT);

;tCOM~ENTt GET l(NON-T) AND ReNON-T).,

t

..

IlGOl-6fl

1

(3.0) GRAMPA

. REMOVE CONF l rCTS = "
PFUNCTIONS(PMATPIX~SIZE) ;
TRANSPOSE SYNTAX G~APH;
RECU~SIVE CHECK;

EXITa tENQt OF SECOND MAJOR PROGRAM

tEOPt
fINIS

AS-37

01/06/73 11

P-l OC K ;

