*

GRAMMATICAL MANIPULATION PACKAGE

EXPLORATORY STEPS TOWARDS
A
GRAMMATICAL MANIPULATION PACKAGE (GRAMPA)

By
KEITH ROGER BARNES, B.Sc.

A Project
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree .

Master of Science

McMaster University
November 1972

MASTER OF SCIENCE McMASTER UNIVERSITY
(Computation) Hamilton, Ontario.

TITLE: Exploratory Steps Towards a Grammatical
Manipulation Package (GRAMPA)

AUTHOR: Keith Roger Barnes, B.Sc. (Birmingham
University)

SUPERVISOR: Dr.-Derick Wood

NUMBER OF PAGES: viii, 81, A1(7), A2(5), A3(3),
A4(2), A5(37)

(11)

ACKNOWLEDGMENTS

The author gratefully acknowledges the guidance of his
supervisor, Dr. Derick Wood.
The author also expresses his gratitude to his wife,

Maryke, for her encouragement and understanding.

Special thanks go to Mrs. Joanne Straughan, for her

patience in typing this project.

(iii)

INTRODUCTION

CHAPTER 1:
1.1
1.2
1.3
l.4
1.5
1.6
1.7
1.8

CHAPTER 2:
2.1

TABLE OF CONTENTS

DEFINITIONS AND TERMINOLOGY
Introduction

Context Free Grammars
Admissible Grammars

Left and Right sets

Simple Precedence Grammars
Removing Precedence Conflicts
Precedence Functions

Extended Precedence

THE ALGORITHMS AND PROCEDURES IN GRAMPA

Introduction

PART I GRAMMAR INPUT

2.2
2.3

Table Construction

The Syntax Graph
Symbol Tables
Procedure INGRAMMAR
Procedure PRINT TABLES

Procedure PRINT GRAMMAR

(iv)

10
13
15
16

18
19
19
19
27

29-
42

42

TABLE OF CONTENTS CONT'D

PART II GRAMMAR ANALYSES

2.8

2.9
2.10

CHAPTER 3:
3.1
3.2

3.3
3.4

CHAPTER 4:
REFERENCES

APPENDIX 1:
APPENDIX 2:

APPENDIX 3:

APPENDIX 4:
APPENDIX 5:

Admissagbility of Grammars

Algorithms and Procedures for
Simple Precedence Analysis

Checks for Recursion

USE OF GRAMPA WITH EXAMPLES
Programming Considerations

Example 1: Simple Phrase Structure
Language

Example 2: Admissable Test

Example 3: Euler

FUTURE DIRECTIONS

OQUTPUT FROM GRAMPA FOR SIMPLE
PHRASE STRUCTURE LANGUAGE

FIRST PART OF GRAMPA OUTPUT FOR
EULER

HASH CODING TECHNIQUE OF MORRIS

CENTRAL PROCESSOR TIME MODEL -

PROGRAM LISTING

(v)

43

43

47
58

60
64
72
75

77
80

TABLE OF DIAGRAMS
Figure
2.1 Expression Tree for the nonterminal
| Simple Arithmetic Expression, SAE

Text Representation of SAE in the syntax graph

2.2 Outline of the Hashing Procedure for
Terminal Symbols

2.3 Procedures Used by INGRAMMAR
2.4 Operation of INGRAMMAR
Entry State
State 2
State 3
2.5 Illustration of the backward list kept

in the Syntax Graph

Text Illustration of the use of RHSTABLE in the
procedure TRANSPOSE SYNTAX GRAPH

3.1 Overall Structure of GRAMPA
Exhibits
3.1 First page of GRAMPA output for the Simple

Phrase Structure Language of Wirth-Weber

3.2 Modified Simple Phrase Language to
Introduce Conflicts

3.3 Output from GRAMPA for Modified Simple
Phrase Language

3.4 Modified Simple Phrase Language After =
Removal of Conflicts

(vi)

Page

23

25

26
30

34
35
36

Lo

61

68

69

70

TABLE OF DIAGRAMS CONT'D

3.5 Symbols and Syntax Graph for Example
Grammar to Test ADMISSABLE

3.6 Output from ADMISSABLE

Tables

1 Allowable Symbols and Their GRAMPA
Values

(vii)

73

74

32

PREFACE

Very often, grammars constructed for computer
languages are not in a concise form for simple parsing.
Fo; example some symbols may be unreachable or useless.
If a simple precedence grammar is required, artificial

symbols may have to be introduced to remove conflicts.

This report describes exploratory steps taken
towards the development of an Algol program to automatically
" manipulate grammars. Procedures are described which read
and set up a grammar in a list structure form suitable for
analysis and manipulation. The procedures manipulate the
grammar to remove useless and unreachable symbols, and
precedence conflicts, and they analyse the grammar for

recursion, precedence etc.

(viii)

INTRODUCTION

Modern science is expanding rapidly in all
disciplines with a subsequent increasing demand on the
computer for data analysis and manipulation. However, the
computer user still has to translate his problem into
computer terms via programming languages. The most common
general purpose languages are often cumbersome to adapt
and use in specialized problem areas, hence a need exists
for special purpose 1anguaées with which the user can
"talk" to the computer in his own terms. These special
purpose languages, often called Problem Oriented
Languages (POLs), may be very particular to a discipline,
needed quickly, and needed only for a relatively short
period of time. It is essential, therefore, that automatic
techniques are developed for producing compilers or
translators for these languages. It should only be
necessary for the specialist or analyst to specify the
syntax and semantics of the language in some standard form

to the computer to obtain the translator.

Most POLs are generated using context-free grammars.
However, very often the grammar developed is ambiguous

or unsuitable for straightforward parsing. It may have

-1 -

to be changed or manipulated several times before it is

in a concise, acceptable form.

This report describes exploratory steps taken
towards the development of an automatic grammatical
manipulation system. An Algol program, nicknamed GRAMPA
(GRAmmatical Manipulation PAckage), which comprises various
analysis and manipulation procedures for context-free

grammars, is described in detail.

The procedures in GRAMPA accept a grammar specified
in an "inverse" Backus-Naur Form on cards, and analyze it
for such things as recursion, precedence, the usefulness and
reachability of productions, etc.j;and maniﬁulate the grammar
to remove useless productions and precedence conflicts.

Many tables are produced in the course of the analysis which
can be used in the syntax analysis section of compiler
for the language generated by the grammar. Specifically,
the procedures will produce:
i) a neat, readible listing of the grammar
ii) a syntax graph of the grammar,
iii) tables of the terminal and nonterminal symbols
with cross reference hash tables,
iv) lists of the left, right and embedded recursive

symbols,

v) the left and right sets of the grammar (Wirth-
Weber(14))

vi) a simple precedence matrix (Wirth-Weber(1%))
with an explanation of conflicts,

vii) the precedence functions,

viii) lookup tables for use in a syntax analyser;

and will manipulate the grammar to remove:
(i) useless productions,
(ii) unreachable nonterminals

(iii) precedence conflicts.

The body of this report is divided into three
chapters. The first chapter introduces the terminology and
notation used in relation to context-free grammars. The
second chapter describes the algorithms and procedures
themselves, while the third éhapter describes the use of
the system with examples. A fourth chapter on possible

future directions is included.

CHAPTER I

DEFINITIONS AND TERMINOLOGY

1.1 Introduction

The development of Algol‘BO12 led to the development
of‘a meta-language called Backus-Naur Form or BNF, named
after two of the developers of the language. This meta-
language was used to define the syntactic structure of
Algol 60 programs irrespective of their meaning; where,
informally, we consider syntax to be a specification of
the well-formed statements of a language, usually
incorporating a mechanism for structural descriptions.
(Semantics, on the other hand, can be thought of as the
specification of how these statements are to be executed
by a real or abstract computer)(5). BNF can in fact be
used to describe the structure of any context-free grammar(17).
It is this kind of grammar which is used most often in
practical language development, or for Problem Oriented
Languages. Therefore, the GRAMPA system is designed to

handle only context-free grammars.

This chapter of the report serves to introduce some
definitions and notations used in relation to grammars.

The definitions will be restricted to the family of

context-free grammars. The symbols and terminology used
are those of Graham(8). A good list of alternative
notations used by other authors can be found in

McKeeman(10),

1.2 Context Free Grammars (CFGs)

1.2.1 A context-free phrase structure grammar G

is a 4-tuple G=(Vy, VT, P, S), where Vy is a finite
nonempty set of symbols, Vgp is a finite set of symbols,
P is a finite nonempty set of productions (rules) and S
is a distinguished (initial or sentence) symbol. Now
VN(\VT = ¢, the empty set, and V= VNLJVT is the vocabulary
of the grammar. V* is the set of all strings over V,
and ¢ denotes the empty string. V' denotes the set of
nonempty strings over V. Thus Vt = V& -{¢}. Elements
of V are denoted by capital roman letters; elements of
V% are denoted by small Greek letters and elements of
vt are denoted by small roman letters. A production is
of the form A+a, where A is called the left part or

left hand side of the production and ¢ is the right part

or right hand side. Vy is the set of symbols which occur

as left parts of productions--nonterminal symbols. Vg

is the set of terminal symbols which do not occur as
left parts. S is the unique nonterminal symbol which

does not occur in a right part.

1.2.2 With respect to a grammar G, we say a=y»
if there exist o,n in V#, U in Vy and U»y in P such that
a = oUr and b = our. If ag=Ha;=y.....=3an, where aj is
in v* for 0£isn, then a0=§%nn if n20 (reflexive transitive
closure of=3) ,and a0=£$an if we require n>0 (transitive
closure of—>)). The sequence ag=ra;=x.....=7an is called

the derivation of a, from a, of length n.

0

1.2.3 A string u is a U-derivative if U=tyu. It
is an immediate U-derivative if U=u (i.e. there is a

production U»u).

1.2.4 A string u is a sentential form if u is an

S-derivative (where S is the distinguished symbol). A
sentence is a sentential form consisting only of terminals.
The language defined (or generated) by G is denoted L(G)
and is the set of sentences of G. Thus L(G) = {u]|s=Hu

and u ¢ Vf}.

1.2.5 If aziéb where a =oUr, b=zour and U=t)u, then
u is a phrase in b. If a=>b (and U»u) then u is an

immediate or simple phrase (of U) in b. The process of

constructing a derivation of a sentence starting from the
sentence and working back to the distinguished symbol is
called parsing, and the derivation so obtained is called

a parse of the sentence. If a=>»b and u is an immediate

phrase of U in b, then the parsing step from b to a is

called a reduction of u to U.

1.2.6 Given a derivation AT =D, e xn=b,

the derivation is a right-most derivation if, for 15i<n,

X4 = ojUimy, X447 = ojuinj where Uj+uj is a production and

mije VE. We take the right-most derivation to be the
canonical derivation of the set of derivations that differ
. only in the order of application of productions. A parse
which represents a canonical derivation is a canonical

(or left-to-right) parse; reduction of a left-most
immediate phrase of a sentential form is a canonical

reduction.

A grammar G is ambiguous if some sentence of G

has more than one canonical derivation.

1.3 Admissable Grammars €(17)

A grammar is an admissable or reduced grammar if:

(i) for all X in V, there is a sentential derivation,
S=§§uXv, for some u,v in V®* i.e. X &s reachable, and
(ii) for all X in Vy» there is at least one derivation
X=$>x, where x is a terminal word i.e. ¥ is useful
(otherwise X is useless).
If a symbol in a grammar is unreachable, then

it clearly plays no part in the language generated by the

grammar. Similarly, if a nonterminal is reachable but

it is useless, then it cannot participate in the generation
of terminal words, by definition.

Example:

let G= (Vy, V P, S), where

7o
Vy= {S,X,Y,Z}
Vp= {a,b}
P: S+ aX]|a¥Yb

X+ aX]|aaX

Y+ aYble

Z+ aZ|b,
trivially Z is unreachable as it appears nowhere on the
right hand side of a nonterminal other than itself, and
X is useless. We can, therefore, replace G by:
Gl=({s,Y},{a,b},{S+a¥b,Y+a¥b|e},S).
If a nonterminal had no rules associated with it, then it
would be useless under the definition given above. This
implies that each nonterminal, apart from the sentence

or distinguished symbol, must have at least one rule

associated with it.

The algorithms for determining reachability and
usefulness will be presented with the Algol procedures in

section 2.8.

1.4 Left and Right Sets

l1.4.1 With respect to a grammar G, we define the
left set or left part of a nonterminal X, denoted byZ(X),
to be the set of all symbols which can occur as the left--
most symbol of an X-derivative. Thus3(X)={A|X=(A....}.
Analogously, we define the right set or right part of X:
(&A(X) =, {A]X=....A}. We can extend this notation to all
symbols of a vocabulary by defining £(X) = R(xX) = ¢ for

every terminal symbol, X.

Exanple (Wirth-Weber)
G=(Vy, VT’ P, S),
where Vy={S,H}
Vp={1,]1}

P: S-+HI]

H~+]

H-HA

H->HS
Then the left and right sets of the nonterminals, S and H

are as follows:

U L) £
S JH]

H JH]as
The computer alogorithm used for finding the left and right

sets is given in the second part of chapter 2.

10

1.4.2 A nonterminal X is left (right) recursive

if XeX(X) (Xe&(X)); it is self-imbedding if X=tyaXxb.
If X+x and x=§$X cees (x=§%.... X, x=§éaXb) then X+x is

a left recursive (right recursive, self-imbedding) rule.

X+x is directly left recursive (directly right recursive,

directly self-imbedding) if x=X.... (x=....X, x=aXb).

1.5 Simple Precedence Grammars

The notion of simple precedence grammars (and
simple precedence languages) introduced by Wirth and
Weber(1%) is the following:
Let G= (Vy, Vp, P, S) be a context free grammar.
For any A, B, ¢ V, we define the folléwing simple precedence

relations:

SP1) A = B iff P contains'a rule of the form
X +...AB... for some X ¢ Vy
SP2) A <+ B iff P contains a rule of the form
X > ...AY.. for some X,Y ¢ Vy and
¥=15B ... (that is, B ¢ W(¥))
SP3) A -> B iff P contains a rule of the form
X+ ...YZ... for some X,Y ¢ Vy, Z € V

%
and Y=é)...A and Z=g3B...
(that is, Z = B or B €5£(Z) and A ¢ &(Y)).

The relations have the following interpretation

(with respect to sentential forms of G).

11

I1) The relation & holds between all (left-to-right)
adjacent symbols in an immediate phrase.

I12) The relation <- holds between the symbol
immediately preceding a phrase and the leftmost
symbol of the phrase.

I3) The relation +> holds between the rightmost symbol

of a phrase and the symbol immediately following it.

If A<+ Bor A2 Bor A +>B then A B (that is,
at least one simple precedence relation holds between A
and B). Given any CF grammar, it is possible to determine

which relations hold between any two symbols(l“).

If a grammar has two (or more) rules of the form
X+ a, Y>> avwhere X # Y, we say that the grammar has

common right parts a or common right part rules X-+a and

Y-»a.

A grammar G = (Vy,Vp,P,S8) is a simple precedence

grammar if both the following conditions are satisfied:

1. for every (ordered) pair A,B ¢ V, at most one
simple precedence relation holds between A and
B. (If this condition holds, we say that G has

unique simple precedence relations.)

2, G has no common right part rules.

12

If more than one simple precedence relation holds
between some A,B ¢ V, we say that there is a precedence

conflict between A and B. It is a right conflict for A

and a left conflict for B. A grammar G = (Vy,Vp,P,S) is
said to have a precedence conflict if there is a precédence

conflict between two of its symbols.

If A< Bor Az B we say that A <- B. If A > B

and A £ B, we say there is a *2-conflict between A and B.

If A <+ B and A = B then there is a X{’-conflict between

A and B.
Example (from Wirth and Weber(1%))
v = {A,B,[,],;,X}

1) S+ A

2) A+ B; B
3) B+ [A]
4) B> [X]
5) B» X

[2 X (rule u) X 2] (rule 4)
[«< X (rule 3) X] (rule 3)

There is a £°' (<:,z) conflict between [and X; it
is a left conflict for X and a right conflict for L.

There is a *> conflict between X and 1.

The precedence relations which exist between the

symbols of a grammar are best expressed by a precedence

13

matrix. For example, consider the following grammar from

Wirth-Weber(1%):

G=(Vy,Vp,P,S)
Vy= {S,H}
Vo= {2,[,1}
P: S-H]
H~[
H-+HA
H-HS

Applying the rules to determine the precedence

relations, we arrive at:

S H A []
S |> > o> o> o>
H 2 < 2 <. =
A > > > > >
L (o> -> > > >
1 |e> o> o> o> o>

The derivation of this matrix and its representation

in GRAMPA will be discussed later in chapter 2.

1.6 Removing Precedence Conflicts
H
Precedence conflicts can be removed by several

means. One such method is to treat the grammar as a more

general case of a precedence grammar called extended

14

precedence. This is described in section 1.8. The method
described here will be restricted such that it does not
cause a change in the terminal language that in turn
requires a change in the associated semantics of any
production of the grammar. The following definitions are
given(7):

(1) An artificial production is a production with no

associated semantics and only one element on the right
side (also called an intermediate production).

(2) A left restricted expansion (LRE) of the nonterminal A,

replaces A on the right sides of all productions, except
where it is the left-most symbol, by a new

nonterminal Aj, and adds the artificial production Aj-A
to the grammar.

(3) A right restricted expansion (RRE) of A replaces A

in the right sides of all productions, except where it is
the right-most symbol, by a new nonterminal A;,

and adds the artificial production Aj+A to the grammar.

The following rules (proven in George(7)) now
hold for context free grammars:
(1) The precedence relation = between two symbols A and B
can be changed to <. by an LRE of B.

i.e. a production of the form U+xABy becomes U+xAB,y,

15

and By+B is added to the grammar - then A = B, and A <- B.
(2) The precedence relation = between two symbols A and B
can be changed to +> by an RRE of A.

(3) The precedence relation <+ between A and B can be
changed to *> by an RRE of A.

The precedence conflicts which can occur between
any two symbols are (2,<+), (2,¢>), (<+,¢>) and (=,<+,:>).
The precedence conflict (2,<+) between A and B can be
removed by an LRE of B. The precedence violation (=,+>)
between two symbecls A and B can be removed by an RRE of A.
The violation (<-,->) can be removed by an RRE of A, and
the violation (z,<<,»>) can also be removed by an RRE of A.
With all of these transformations, new violations can be

introduced, thus the procedure is recursive.

1.7 Precedence Functions

A precedence matrix to be used in a syntax analyser
would have n? elements where n is the number of symbols
in the vocabulary. This often requires a large amount
of storage for practical compilers. Often the precedence
relations are such that two numeric functions (f,g)
ranging over the set of symbols, can be found such that

for all ordered pairs (Xi,Xj):

(a) f(Xi)= g(Xj) T Xj2Xg
(b) £(Xi)< g(Xj) = Xj<-Xj
(c) £(X1)> g(Xj) = Xje>Xy

16

We now only require 2n locations to store these

functions (if they exist).

The precedence relationships for the example grammar
in section 1.5 can be represented by the two functions f

and g, where:

£(X) 3 1 3 3 3
g(X) 1 2 1 2 1

The procedure for producing precedence functions

is described in section 2.9.5.

1.8 Extended Precedence

Wirth and Weber(l!%) point out that sometimes
precedence conflicts between symbols in a grammar can be
resolved by looking to the left or to the right of the
pair in conflict; that is, by extending the definitions
of.the precedence relations to strings of symbols.. For
instance, in the previous conflict example, [=X] and
[<-X3;, also [X=] and ;X >1]. Wirth and Weber presént
same informal discussion and then formal definitions for
the extended relations. However, the definitions they
give do not correspond to the interpretations of the

relations with respect to phrase detection.

17

Graham(8) defines the extended precedence relations
with respect to canonical derivations, since these are the
derivations which the parsing method Wirth and Weber
present is intended to construct. Since the extensions
are intended to resolve conflicts by looking at preceding
and succeeding symbols, Graham extengs the relations to
strings which are adjacent in canonical sentential forms
(rather than restricting the definitions to strings

generated from the same rule, as Wirth and Weber do).

The definitions of the extended precedence relations
will not be given here (see [8]), since they have not

been incorporated into GRAMPA.

CHAPTER 2
THE ALGORITHMS AND PROCEDURES IN GRAMPA

2.1 Introduction

The procedures which comprise GRAMPA are written
in Algol 60 for the CDC 6400 computer. The package (from

now on called the program) is divided into two main sections:

READ GRAMMAR
AND SETUP

REQUIRED .
TABLES PART 1

PERFORM
DESIRED PART 2
ANALYSES

The structure and format of the tables will be
discussed first, followed by explanation of the mechanisms
used for reading in the grammar. Finally, each of the
analysis and mamipulation procedures will be described

in detail.

- 18 -

19

PART I: GRAMMAR INPUT

2.2 Table Construction

The first section of the program reads the
productions from cards and sets up the following tables:
l)%a‘syntax graph,

2) a table of the terminal symbols and a corresponding
cross-reference lookup table,
3) a table of the nonterminal symbols and a corresponding
cross-reference lookup table,
4) tables to enable the left-hand symbol of a production
" to be obtained starting with the first symbol of the

right hand side (for use in parsing).

The reader is referred to a listing of this first
section of GRAMPA given in appendix 5.

3

2.3 The Syntax Graph

2.3.1 Description

Backus~Naur form (BNF) is a very useful way of
displaying a grammar for human comprehension. However,
other forms are needed to represent the grammar in the
computer, which can be used for analyzing the structure
of the grammar or for parsing. Cheatham and Sattley(3)

have shown how to represent a grammar by a pair of tables

20

which yields a simple top~down parsing algorithm. The
syntax graph used in GRAMPA represents a grammar by a
graph which is a slight modification of Cohen and
Gotlieb's(%) (which in turn is the equivalent of
Cheatham's tables in list structure form). The syntax
graph is not only a means whereby the structure of a
grammar can be checked and manipulated, but it can be
used for top-down parsing of the grammar, and in a

reversed form for bottom-up parsing.

The following paragraph describing the construction

of the syntax graph is taken from Cohen and Gotlieb(¥),

"To construct the syntax graph for a context-free
language, all productions starting with the same nonterminal
are combined into one string, called the expression for
the nonterminal; in this the OR symbol, |,separates the
different alternatives. For example, the expression for
the nonterminal Simple Arithmetic Expression (SAE) of
Algol is written: SAE + TRM|AOP TRM|SAE AOP TRM, where
AOP is the abbreviation of Addition Operator and TRM is
the abbreviation for Term. Each expression is represented
in the syntax graph by a tree, called the expression tree
of the nonterminal. The set of all the expression trees

forms a disjoint set of sub-graphs of the syntax graph.

21

These expression trees, together with connecting links,

constitute the syntax graph."

Each node of the syntax graph is described by

a quintuplet: its value, or name, which is the internal
representation of the element in the vocabulary set of
the grammar (either a terminal or nonterminal), and four
pointers, pointing away from the node, and labeled
DEFinition, ALTernative, SUCcessor and Left-Hand Symbol.
The nodes within an expression tree afe linked internally
through the ALT and SUC 1§nks, and the complete syntax
graph is formed by interconnecting the expression trees

through the DEF links.

The rules for constructing the expression tree
for the expression are as follows:
1) A node is created for each element on the right;hand
side of the expression. The VALue of the node is the

. name or some internal representation of the element.

2) The elements of each production are linked through
their SUC links in the order of occurrence in the

production, from left to right. The last component

of each production contains a special end-of-production

symbol, o, in its SUC link.

22

3) The different alternative productions in each
expression, assumed to be in arbitrary order, are
linked by means of the ALT link of the first element

of each production in the expression.

4) A flag, bearing the name of the element on the left-

hand side of the expression, is attached to the root

(first node) of the tree.

In summary, the elements of productions are
linked through their SUC links, with the symbol ¢
signalling the end of each production. A production is
referenced by its first element, so that the different
productions of an expression are connected through the
ALT link of the first element of each. The end of any
chain or list is signaled by a ¢ in the appropriate box.

Figure 2.1 illustrates the expression tree for SAE.

23

Figure 2.1 Expression tree
for the nonterminal Simple
Arithmetic Expression, SAE VAL
SAE-+TRM/AOP TRM/SAE -AOP TRM

@ DEF | ALT suc

Node Elements

TRM
o
J;
AOP) TRM
¢ >
! ¢ o
SAE AOP ’ TRM
> B
s ¢ ¢

To complete the construction of the syntax graph,
the expression trees are connected by means of the DEF
links. For a terminal node the symbol ¢ is inserted in
the DEF field. For a nonterminal node the DEF link points

to the root of the expression tree representing the

24

definition of the nonterminal. The construction of the
syntax graph is completed by creating the root node of the
graph. This node contains the grammar initial symbol, S,
and it is linked to the expression tree defining it by

its DEF link,while ¢ and ¢ are entered into its SUC

and ALT fields.

All the information about the syntax of the language
is now contained in the syntax graph. This syntax graph
can, in general, be simplified. The form described so far

is called the nonreduced form.

2.3.2 Representation

The syntax graph is represented in the program
by the array SYNG (dimensioned [1:500, 1:5]). Each node
of the graph is a row entry in SYNG. The first element
of the row is a value for the symbol (assigned by GRAMPA),
the second element is a pointer to the DEF row, the third
is 'a pointer to the ALT row, and the fourth is a pointer
to the SUC row. A fifth element exists which holds the
value of the nonterminal symbol which is the left-hand
side of the production. The meta-symbolé, ¢ and o, are
both represented by 0. The end of a production is signalled

when both SYNG [row, 3] and SYNG [row, 4] are zero.

25

For example, suppose the values 300, 301, and

302 had been assigned to the nonterminals SAE, TRM and
4

AOP respectively, then the expression tree for Simple

Arithmetic Expression would look as follows in the array

SYNG: SAE-TRM|AOP TRM|SAE AOP TRM
Row VAL DEF ALT SUC LHS
1

. TRM 2 301 - 3 0 300

AOP 3 302 - 5 4 300

TRM 4 301 - 0 0 0

SAE 5 300 2 0 6 300

AOP 6 302 - 0 7 0

TRM 7 301 - 0 0 0
8

The blank boxes, holding the DEFinitions of AOP
and TRM would be filled in later when those nonterminals

are defined by expressions.

Before the programming mechanism is described for
creating this table, it is necessary to describe how

symbols are represented in the system.

26

2.4 Symbol Tables

Two tables are associated with both the terminal
and nonterminal symbols of the grammar being processed.
One table is used to store a copy of the symbol while the °
other is a cross-reference (hash) table to check whether
the symbol has been met before while reading in, and to

point to its position in the first table.

2.4.1 Terminal Symbols

TERMINALS [0:256, 1:3]store copy of symbol, and
Tables:
TERMTABLE [1:256, 1:2]pointer table

As a terminal is read from cards, a copy of it is
constructed in a three word array, WORD. The three words
are then arithmetically added to form a hash key, WSUM,
to check for previous occurrences of the symbol. The
hash procedure used is the random probing technique of

Morris(11), outlined in figure 2.2, (see also Appendix 3).

A pointer, POINTER, into the array TERMTABLE is
first generated from the hash key. The contents of
TERMTABLE [POINTER, 1] are compared to the key. If they
are equal, then the symbol has been met before and is
already stored at position TERMTABLE [POINTER,2] in the

array TERMINALS. If the contents of TERMTABLE [POINTER, 1]

Fiaure 2.2 Outline of the Hashing Procedure

YES

for Terminal Symbols

Procedure Hash (WSUM,ND)

Generate a
Pointer

From the Hash

Key 'WSUM' by
Morris'
Aqgorithm

i

Obtain the
Contents

of 'TERMTABLE
(Pointer, 1)'

put into °‘IKEY'

New Siﬁ%ol

Put Hash Key
'WSUM' into
'TERMTABLE

(POINTER, 1)°
J

Assign A
Symbol
Number
‘Termno=
Termno+1'
.NO=Termno

U

Store Number
in " TERMTABLE

(Pointer, 2)°'

-

Put a copy of
Symbol in

TERMINALS (NO, 143)

END

N .
\y

YES 7

[~——- KEY=WSUM

Symbol met before
U
NO=

TERMTABLE
(POINTER,2)

NO

Create a
Random
Offset by

Morris'
Algorithm

!
|

RJEE—— 4

28

are zero, then we have met the symbol for the first time.
The hash key is stored in TERMTABLE [POINTER, 1] and a
copy of the symbol is stored in TERMINALS with a pointer
to it in TERMTABLE [POINTER, 2]. If the contents of
TERMTABLE [POINTER, 1] are not zerd and are not equal.

to the hash key, then we have a collision, and a random

offset is created and added to POINTER (refer to figure

2.2). The procedure for checking is then repeated.

The terminal symbols of a gramﬁar are numbered from
1 to 256 in GRAMPA. The value -1 is reserved for the

empty word.

2.4,.2 Nonterminal Symbols

Nonterminal symbols are handled in exactly the
same way as terminals in GRAMPA. The two arrays used
are:
NONTERMINALS [300:551, 1:4] for copies of the symbols, and
NONTERMTABLE [1:256, 1:2] for pointers and hash keys.

A fourth column is included in the array
NONTERMINALS which is used during the construction of the

syntax graph.

The system can easily determine whether a terminal
or nonterminal symbol has been met by its position in

context in a BNF expression.

29

2.5 Procedure INGRAMMAR

2.5.1 Introduction

The productions of a grammar are read into' the
program by the procedure INGRAMMAR. This single procedure
also sets up all the tables described previously. The
procedures called by INGRAMMAR are shown in figure 2.3.
The reader is referred to the program listing for the
detailed workings of thesg procedures. A brief summary is
given below:

1) GETTERM: reads a terminal-symbol, and puts it into

the terminal tables.

' 2) GETNONTERM: Similar to GETTERM for the nonterminals,

3) EMPTYPROD: processes the empty statement when met by
making appropriate flags in the syntax
graph.

4) PRINTSYMBOL: prints a symbol, given its value.

5) HASH: Hashing routine to check for previous

occurrence of a symbol or to put it into tables.
6) GETLINE: Reads an input card.

7) OUTCHAR: prints a character, given its internal value.

Before describing the logic used in the
procedure INGRAMMAR, the characters and input conventions
used with relation to 'inverse' BNF notation will be

described.

30

Figure 2.3 Procedures Used by 'INGRAMMAR'

INGRAMMAR
b »
GETTERM GETNONTERM EMPTYPROD PRINTSYMBOL
N ' ¥ ' OUTCHAR
NXTCHAR HASH NX#EHAR HA*H

¥

GETLINE GE#LINE

31

2.5.2 Characters Used and Their Internal Values

The characters allowed in a GRAMPA input deck
are found in Table 1 together with their internal integer

values assigned by the Algol system procedure IN CHARACTER.

2.5.3 '"Inverse' BNF Notation

The inverse BNF notation?? is essentially the same
as BNF notation except that delimiters are placed around
the terminal symbols instead of the nonterminals. For
example, consider the following production for 'case
sequence' in PL360(13). <case seq>:= case< k reg> of

begin| <case seq> <statement>

In GRAMPA this would be entered as:
case-seqg+<case> k-reg <of> <begin>/case-seq statement; i.e.
the terminals are delimited b& the meta symbols <,>, and
nonterminals are delimited by blanks - thus no blanks may
occur within nonterminals. All nonterminal names longer
than one word must be separated by a -(dash) symbol or
concatenated, their total length should not exceed 13

characters. The meta symbols used in GRAMPA are listed

below:

Symbols

<> delimit terminal symbols -

/ delimit alternative right hand sides,

blank(s) delimit nonterminals,

32

Table 1: Allowable Symbols and Their GRAMPA Values

Symbol Value Symbol Value Symbol Value
0 1 L 22 . 43
1 2 M 23 ' by

2 3 N 24 r 45
| 3 4 0 25 (blank) 46
Y 5 P 26 * 47
5 6 Q 27 (48
6 7 R 28) 49
7 8 S 29 H 59
8 9 T 30 = .
9 10 U 31 : 592
A 11 v 32 A 53
3 12 W 33 v 5y
C 13 X 3y < 55
D 14 Y 35 > 56
E 15 Z 36 3 57
F 16 - 37 = 58
G 17 < 38 8 59
H 18 > 39 [60
I 19 / 4o] 61
J 20 s 41 4 62
K 21 + 42 ¥ 63

33

:= or » "is defined by" -separator for left and right

parts of a production.
3 end of production
. end of grammar definition

- used for concatenating nonterminal words.

When producing an input deck for GRAMPA,
expressions may begin anywhere on a card and extend over
any number of cards. However, terminal and nonterminal
symbols may not be split over two cards. Examples of

grammars punched on cards are given in chapter 3.

2.5.4 Logic of Procedure INGRAMMAR

The procedure INGRAMMAR is basicaliy divided into
three parts:
1) initialize tables, counters, syntax graph,
2) read in grammar and set up tables; and

3) check for undefined nonterminals.

The first part of the procedure is fairly simple
and involves mainly initialization of variables. The
explanation of the working of the procedure will concentrate
on the second part -- reading the grammar and constructing

the tables.

The grammar is read in from cards using a very
simple form of transition matrix. Three basic states are

used:

34

Fiaure 2.4: oOperation of 'INGRAMMAR'

‘Entry' State

Scan input for
first non-blank
charcter

kD

If ®

then go to

end; if not letter
r digit then
error.

Read in non-
terminal

Is it
the first
symbo

~

Assume it is
the 'sentence’
symbol. Put it
into the first
row of the
syntax graph
with appropri-
ate pointers

first tige”
“as

e\
for the no

eft
hand side

Put pointer to
next row of
syntax graph
in column 4 o
nonterminals

y

Put LHS pointer
= to symbol
mumber in LHS
column of next
Tow in syntax
graph

N

Trace back
through syntax
graph for
previous
occurrences of

symbol, putting
the definition
column equal to
the next row in
the syntax

graph as we go.

Assume we have
an alternate
expression.
Trace for. end
of previous
definition and
£fill in alter-
nate column
equal to next
pow in syntax
graph

i

*Entry, State 2 and State 3 are label identifiers in the program.

Fiqure 2.4 Continued

Scan’ for

blank

GET TERM

next non-

character

GET NONTERM

State 2

Operation of

' INGRAMMAR'

A3

for first

ut flag in DEF
ox of current
ow in syntax
raph. Put
ointer plus
flag to current
ow in syntax
graph into
column 4 of
NONTERMINALS

35

¥e54<:g;fore bu

Put pointer
minus flag from
column 4 of
NONTERMINALS
into DEF box of
current row in
syntax graph.
Put pointer
plus flag to
current row in
syntax graph
back into 4th
colum of
NONTERMINALS

%

Set DEF Box
equal to the
pointer in uth
column of
NONTERMINALS

Gef

pdate pointer
o next row in
syntax graph

~/

Fill in SUC box

syntax graph if
first symbol in
expression

of previous row of

not

Figure 2.4 contfnued Operation of 'INGRAMMAR'

State 3

State 3

et

yes

GET TERM

Scan for first
non=-blank
character
after the /
Call procedure
s EMPTY PROD, and
connect alternate
pointer in the
o DEF box
ves
FMPTY PROD,
connect
tlternate
ointes

H
<ﬁ
no

|eEr qulggnl

1iiiiiiiiiii

A4

Go through checks
described in
state 2 for
previous
occurrence etc.

3

EMPTY
PROD

av:
L@ﬂmyﬂ_

been~met in t

expression

3

yet?

Put pointer to
current row in
alternate column
of row DEF box

37

1) an ENTRY state for reading and processing the left-
hand side of a production,

2) STATE 2 for handling the first complete expreséion,
and any symbols after the first symbol after a /
(alternate), and

3) STATE 3 for handling the first symbol after a /.

Flowcharts describing the operation of the three
states are given in figure 2.4. The reader is also
referred to the program listings. KXey identifiers used in.

this portion of the program are explained below:

NO: value assigned to current symbol,
NXTBOX: next free row in syntax graph,
DEFBOX: row which contains the first symbol of

current expression,
LHSBOX: value of nonterminal which is the left hand
side of the current expression being processed,
RHSNO: counter for position of current symbol in
expression,

PRODUCTIONS:count of the number of production met so far.

The detailed workings in each state will not be
described, however, the pointer system maintained in the
fourth column of the array NONTERMINALS is of interest.
This pointer is used to tell us whether a nonterminal has

been met before; if so, then whether it has been defined

38
or not. It must be remembered that the sentence symbol is
the only nonterminal that goes straight into the syntax
graph as a left-hand side, all the other nonterminals met
as left-hand sides are not put into the syntax graph since
they have occurred or will occur- somewhere in a right-hand

side.

If a nonterminal (not the sentence symbol) is met
for the first time as a left hand side, then the position
of the next free row in the syntax graph is put into
NONTERMINALS [NO, 4], sincg this row will hold the first
symbol of the first right-hand side expression. However,
it is meore likely that we meet a nonterminal within an
expression and it has not been defined before. When this
occurs, the position of the current row in the syntax
graph holding the nonterminal (now in an expression) is
stored in NONTERMINALS [NO,4]..added to the number 10,000
which serves as a flag. A flag of -1 is put into the
definition box of the nonterminal's entry in the syntax
graph. We may continue to meet the same nonterminal symbol
in subsequent expressions until it is defined. 1In these
cases, the pointer in NONTERMINALS [NO,t] is updated to
the current row in the syntax graph, while the definition
box in the current row is set to the row holding the previous
entry of the nonterminal. Thus a linked list is formed

backwards through the syntax graph joining all occurrences

39

of the nonterminal. The head of the list is given in
NONTERMINALS [NO, 4] and the tail is signified by -1 in
the definition box of the row in the syntgx graph holding
the first occurrence of the nonterminal. When the symbol
is finally met as a left-hand side, this list is traced
through, and a pointer is inserted to the current row in
the syntax graph holding the first symbol of the
nonterminal's right-hand side. Figure 2.5 illustrates

this mechanism for an arbitrary nonterminal, X.

The third way we can encounter a nonterminal is
when it is a left-hand side but it has already been defined.
In this case we have an alternate expression. The pointer
to the head of the first right hand side for the
nonterminal is retrieved from NONTERMINALS [NO,4]. Then
the list of alternates (if any) for the nonterminal are
traced through via the alternate pointers until a zero
alternate pointer is met. The value of the next free
row in the syntax graph is then inserted here and the
right-hand side for the current occurrence of the

nonterminal is processed as normal.

When all of the productions in the grammar have
been processed, a scan is made of NONTERMINALS [NO, 4]
to check for any values over 10,000 i.e. undefined

nonterminals. If these are encountered, an appropriate

40

Figure 2.5: Illustration of Backward List Kept
in the Syntax Graph

a) Nonterminal X met within expressions but not yet on a
left hand side.

Syntax Graph

: NONTERMINALS VYalue DEF ALT SUC LHSYM
1
2
3
X 1001 (X) -1 y
5 (Symbol) :=value
6 of symbol
X) |4 u 8
9
(X)| 8 10
11
/——-‘\/"&—‘—/\ﬂ\

b) Nonterminal X now met as the left hand side of an expression

X »u.

Svntax Graph
NONTERMINALS VAL DEF ALT SlC I.HSYM 1
2
3
X 11 (X) 11 4
5
6
11/\/’“\‘ RS /‘l\‘ 7
(X) 11 8
9
)L (X} 11 10
| . (U) \L\rh (x) 11
112

41

message is printed and the list through the syntax graph

is cleared.

This list procedure was set up to enable the
productions in the grammar to be entered in any order.
However, the GRAMPA system expects the sentence or
distinguished symbol to be the first ‘nonterminal

encountered.

2.5.5 The EMPTY Statement: (Procedure EMPTYPROD)

The empty statement is handled as if it were a
terminal symbol, however, several flags are set to denote
its occurrence. A value of -1 is assigned the symbol and
is placed in the value box of the current row in the
syntax graph, also the number 1 is put in TERMINALS [0,1]
to signify its occurrence for printing purposes. Finally,
the pointer in NONTERMINALS to the beginning of the

expression containing the empty statement is negated.

2.5.6 Procedures GETTERM and GETNONTERM

These procedures read in a terminal or nonterminal
symbol, form the hash key and call the procedure HASH to
insert the symbol into tables. The operation of the
procedures can be understood with reference to. the program

listing. The procedure GETTERM makes a'special check for

42

the case when the meta symbol > is in fact a terminal
symbol of the grammar, i.e. when the symbols <>> occur on

a card.

2.6 Procedure PRINT TABLES

This procedure prints a neat popy of the symbols
with their GRAMPA values, and prints the syntax graph.
It can be called anywhere in GRAMPA after INGRAMMAR.

2.7 Procedure PRINTGRAMMAR

The procedure PRINTGRAMMAR is used to print a tidy
version of the grammar after processing by INGRAMMAR. This
is accomplished by stepping through the pointers in
NONTERMINALS [NO, 4], and tracing the ensuing productions.
If a nonterminal is undefined, an appropriate message is
printed. This procedure is separate.from INGRAMMAR and
is very useful for locating input errors since the
procedure prints the grammar as it was understood by
INGRAMMAR. The procedure can be called anywhere in the
GRAMPA system after INGRAMMAR.

43

PART II: GRAMMAR ANALYSIS AND MANTPULATION PROCEDURES

The second part of this chapter will describe the
algorithms and procedures developed so far for GRAMPA

which can be used for analyzing and manipulating context

free grammars.

2.8 Admissibility of Grammars

The algorithms and examples given below which
provide mechanical tests for the admissibility of a grammar

are taken directly from Wood.(17)

2.8.1 Reachability Test

Let G = (Vy, Vp, S, P) be a gfammar
Step 1: Let R={S} = L be two sets.
Step 2: Choose an X in L. Let L = L-{X}. For all Y in V
such that X»uYv in P, for some u, v in V#, if Y
not in R then (let R=RU{Y} and if Y in Vy then let
| L= LJ{Y}).
Step 3: If L # ¢ repeat steps 2 and 3, otherwise ﬁ holds

the reachable symbols of G.

Now R is best represented as a table and L as a
list. Consider the example grammar in section 1.3:
S+ aX]|a¥Yb
X+ aX|aaX
Y+ aYb]e
Z» aZ|b

4y

Now:

R=1]S Y and L = [S] initially. Y(=Yes) indicates
X N that the adjoining symbol would be in the
Y N set R in Algorithm 1.
Z N
a N
b N

Step 2 gives

R=|[S Y and L = [X,Y] since S+aX and S+aYb.
X Y
Y Y
Z N
a Y
b Y
as L # ¢ repeat steps 2 and 3 obtaining
R=|S Y and L = [Y], where X in L is chosen.
X Y
Y Y
Z N
a Y
b Y

Again as L # ¢ we repeat steps 2 and 3, which give

45

R=]S .Y and L = [1].
X Y
Y Y
Z N
a Y
b Y

Thus L = ¢ and R = (S,X,Y,a,b) is the set of

reachable symbols of G, i.e. Z is unreachable.

We now turn to our second algorithm.

2.8.2 Usefulness Test

Let G = (Vy, V7, S, P) be a grammar.
Step 1: Let Uy = ¢ and i=0.
Step 2: Let Uj+1 ={X: X»x in P, x in (UiL)VT*}.
Step 3: Let i = i+l. If U; # 'Uj_3 then repeat steps
- 2 and 3 otherwise Uj contains the useful

nonterminals.

The first time step 2 is obeyed Uj contains those
nonterminals which have at least one associated rule
whose right side is a terminal word. Therefore, for all
X in U1, X is useful. The second time step é is obeyed
U2 will consist of those nonterminals which have at least
one associated rule whose right side is a word from

(VT\)Ul)*. Again such a nonterminal will be useful since

46

all members of U; are useful. The algorithm must halt

since Vy is finite.

Using the example grammar (section 1.8):

Step 1: Up = ¢, i = 0.

Step 2: Up = {Y,Z}

Step 3: i =1, as Uj#Uy repeat steps 2 and 3.

Step 2:‘ Up = {S, ¥, Z}

Step 3: i = 2, as Up#U; repeat step 2 and 3.

Step 2: Uz = {S, Y, 2}

Step 3: i = 3, as Uyz=U, then Uz is the set of useful
nonterminals, therefore, X is a useless

nonterminal.

Given any CFG,G, and using algorithms 2.8.1 and
2.8.2, there in fact exists an equivalent CFG G! such
that G! is admissable.

2.8.3 Procedure ADMISSABLE

Tests for admissability are performed by the
procedure ADMISSABLE in GRAMPA. This procedure first
calls a procedure TERMINATE which constructs a Boolean
table T to indicate which nonterminals lead to a terminal
symbol. There is an entry in T for each nonterminal;
T(nonterminal) is TRUE if the symbol is useful otherwise

it is FALSE. The procedure TERMINATE uses the usefulness

47

algorithm of section 2.8.2.

When fhe useless anterminals have been foynd,
a procedure DELETE is called which deletes the productions
containing the nonterminal from the grammar. Also the
pointer in NONTERMINALS [useless nonterm, 4] is set to

zero. The grammar is printed.

The checks for reachability are then performed
within ADMISSABLE itself. The algorithm of section
2.8.1 is used. The Boolean array T represents the table
R of section 2.8.1, and the array PD represents the set L.
After the reachability test, the unreachable nonterminals
are deleted and the grammar is printed. Symbols deleted
for uselessness by the procedure TERMINATE also becoOme
unreachable because of the deletions. The admissibility
procedures were initially written by Dr. D. Wood and

modified slightly by the author.

2.9 Algorithms and Procedures for Simple Precedence Analysis

2.9.1 Check for the Empty Statement

Before any analysis for precedence is performed,
a check is made by the procedure EMPTYCHECK for the
existence of the empty statement. This is accomplished
quite simply by scanning the u4th column of the array

NONTERMINALS discussed in section 2.5.5. If any element

48

in the 4th column of this array is negative, then this is
flag for the existence of the empty statement in the

right hand side of the production. If this is encountered,
an appropriate message is printed, and control jumps over

all precedence procedures.

2.9.2 Left and Right Sets

The definition of the sets ¥ (U) and /2 (U) in
section 1.4 is such that an algorithm_ for generating
the sets is evident. A symbol Y is a member ontT(U),
if (i) there exists a syntactic rule p : U-»Yx, for some
x, or (ii) there exists a syntactic rule p : U»Uix and
ve £ (UD); i.e. (W) =

{Y| 3 p:Us¥xV I p:UsUyxN\Ye £ (U }.

Analogously:
oQ(U)= {Y|Ap:UsxY VT p:UsxU1AYe i (U }.

The algorithm for finding £(U) and (& (U) for all
symbols UeVy involves searching the list of productions P(p)

for appropriate syntactic rules.

In GRAMPA, the left and right sets are found
by the procedure LEFTRIGHT, which in turn uses the

procedures LDEF, RDEF, and PATHCHK.

In the case of the left sets the procedure scans

each nonterminal successively. The production generated

49

by a nonterminal starts at the row given in NONTERMINALS
[i,4]. The recursive procedure LDEF is then called.
This procedure traces through all the right.sides

for the nonterminal and puts the left-most symbols of
the productions into row i of a two-dimensional array
LR. If a nonterminal is one of these symbols, then

LDEF recursively calls itself to trace through all

of its productions. The procedure PATHCHK is used to
ensure that we do not cycle. For example consider the

productions:

X-H

H+Ha|b

The 1left part of X is H and b. While chetking
H we could continually cycle as H is in its own left
set. The right sets are generated in a similar way

using the recursive procedure RDEF.

When all of the nonterminals have been scanned,
the left and right parts are printed by the procedure
LEFTRIGHT.

2.9.3 Generating the Precedence Matrix

The simple precedence matrix can be generated

after the left and right sets have been found using the

50

procedure WWPRECEDENCE. The algorithm used is that of

Wirth-Weber.(14)

The precedence relations can be represented by
matrix M with elements Mj4 representing the relation
between the ordered pair (Xi,Xj). The matrix has as many

rows and columns as there are symbols in the

vocabulary V=VN\)VT.

Assuming that an arbitrary ordering of symbols
of V has been made (V=FX1,X2;...Xn}), the algorithm for
the determination of the precedence matrix M is as follows:
For every element peP which is of the form

p: U » X)X, ««ceXm,
and for every pair XisXi41 (i=1,...,m-1) assign:
a) » to Mj 441,

b) <+ to all Mj) with column index k such that
X eZ (X417

c) > to all M with row index k such that

k,i+l
Xk€£ (Xi) 9
d) +> to all Mk,z with indices k,% such that

Xpe 6(X3) and X, e (X;,,).

Assignments under rule (b) occur only if

Xi+1° Vy» under (c) only if X;eVy, and under (d) only

if both Xj, Xj4i¢ Vy> because Z (X) and'(Q (X) are empty

51

sets for all XeVrp.

The procedure WWPRECEDENCE simply follows these
four rules in order. For example in rule b, each entry
is checked in the syntax graph, if the symbol has a
successor that is a nonterminal symbol, then the relation
<+ holds between the orginal symbol and each symbol from

the right part of the successor symbol.

The precedence matrix is stored in the array

PMATRIX, and the precedence relations are represented

by the following values:

Value Precedence Symbol Printed Symbol
1 no relation : (blank)
2 < <
3 > >
4 - = =
5-9 conflict c

When the precedence matrix has been determined,
it is printed out with a maximum of 30 symbols across
the top of a page. Thus several pages may be needed to

print out the whole matrix.

52

2.9.4 Handling Precedence Conflicts

The procedure WWPRECEDENCE uses a procedure PUTM
to place the precedence symbols in the matrix, PMATRIX.
This procedure also checks for precedence conflicts,
and maintains a.list of these in the array CONFLICTABLE
(which is global to the second part of the program, i-.e.
all precedence procedures), and a count in NCONFL. The
array CONFLICTABLE is dimensioned [1:20, 1:5] i.e.
there is room for 20 conflicts. The first column of the

array holds a code for the conflict:

CODE CONFLICT
5 <, o
6 <, &
7 >, 2
9 e i,

The code is simply the sum of the GRAMPA values
for the symbols given at the end of the preceeding section
2.7.3. The second column holds the left symbol of the
conflict, and the third column holds the right symbol.

The fourth and fifth columns hold the indiges of the

conflict in PMATRIX for bookkeeping purposes. This array

is printed at the end of WWPRECEDENCE if it is nonempty.

53

After WWPRECEDENCE, the procedure REMOVE CONFLICTS
can be called to remove any conflicts using the rules _
given in section 1.6, i.e. by using left and right‘
restricted expansions. The procedure REMOVE CONFLICTS
steps through the array CONFLICTABLE; if a type 6 conflict
is met (<,2) then a procedure LRE(CONFLICTABLE [I,3])
is called, otherwise a procedure RRE (CONFLICTABLE [I,2])
is called. These two procedures produce left (right)
restricted expansions according to the definitions in

section 1.6.

For example, for LRE's, a new nonterminal is

| artificially produced named XXXXi (i=0-9) and is added

to NONTERMINALS. A production XXXXi-+A, where A is

the argument of LRE, is added at the end of the syntax
graph. All productions are then scanned and all
occurrences of the old nonterminal A are replaced by
XXXXi except where A is the left-most symbol of a right
side. The procedure RRE is more or less the same except
it does not replace A when it is the right-most symbol of

-a right side.

After the initial scan of CONFLICTABLE and the
ensuing expansions, REMOVE CONFLICTS calls LEFTRIGHT
and WWPRECEDENCE again, and the cycle is repeated. The

procedure terminates when all conflicts have been removed

54

i.e. NCONFL=0.

2.9.5 Precedence Functions

Many algorithms exist in the literature for
calculating precedence functions(1)(2)(9)(15). GrAMPA
uses Wirth's algorithm(15), and the procedure PFUNCTIONS
is a direct copy of the procedure given as Algorithm
265, C.ACM 8 (10), Oct. 1965 pp. 604-605. If the
precedence functions exist, the procedure will produce

a neat list of the symbols with the function values.

2.9.6 Parsing Using Simple Precedence

The process of parsing is very straightforward
using precedence relations. In accordance with the
definition of the canonical parse, a parsing algorithm
must first detect the leftmost phrase of the sentence to
which a reduction is applicable, ise. the leftmost simple
phrase. The reduction is then performed and the same
principle is applied to the new sentence. The process
of detecting the leftmost reducible phrase, after precedence
relations have been determined, consista of scanning the
sentence from left to right until the first symbol pair
is found so that Xi'>xi+l’ then to retreat back to the
last symbol pair for which Xj-l <+ X3 holds. xj.....xi

is the sought substring or phrase; it is replaced by the

55

symbol resulting from the reduction. The process is

then repeated.

A description of an algorithm given in Wirth-
Weber(14) is given below (in pseudo Pascal). The original
sentence is denoted by Pj.....Pp. k is the index of the
last symbol scanned. All scanned syﬁbols are copied and
renamed Xj.....X;. The reducible substring therefore,
will always be Xj""‘Xi for some j. Internal to the
algorithm, there exists a symbol 1l called an endmarker,
initializing and terminat%ng the process. To any

symbol XeV it has the relations J-<'X1 and Xn->l- .

Assume Py = Ppyy =t

begin 1i:=j :=j+1; Xj:=Pk;.k:=k+l;

while X; +> Py do

begin while Xj_3 = X5 do jr=j-1;

Xj= Left part (Xj ceeesXy)s 1:3)

end

end

A version of this algorithm allowing a

heuristic form of error recovery can be found in Wirth.(13)

56

The heart of this algorithm is the procedure
Left part (Xj...Xi) which has to identify the reducible
phrase to obtain the symbol resulting from the reduction.
(If furthermore the parsed sentence is to be translated,
then the semantic rule corresponding to the syntactic

rule U*Xj.....xi should be identified and executed).

A procedure TRANSPOSE SYNTAX GRAPH has been
written for GRAMPA which produces tables to facilitate
the writing of a procedure similar to Left part. The
procedure produces three tables - two pointer tables
which use the first symboi X3 of the phrase to be °
reduced as an index, and a "right-hand-side" table. The
index tables, called TRHSPTR (terminal right-hand-side
pointer) and NTRHSPTR are single arrays. The symbol
Xj is an index to a position in the table which contains
a pointer into a larger table, RHSTABLE, which holds the
rest of the production X541 -+ Xj in a list structure
form (similar to the syntax graph). The table TRHSPTR is
used if a terminal symbol starts the phrase (internal
GRAMPA value 1-256), and NTRSPTR is used if a nonterminal
symbol starts the phrase (value 300-557). The table,
RHSTABLE, has three columns. The first holds the symbol

value, the second an alternate pointer, and the third a

successor pointer.

Position
300

308

57

For example, consider the following productions

from Wirth.(14)

EXPR~

EXPR H

EXPR-

::= EXPR- <+> TERM | EXPR-

<-> TERM | TERM,

and suppose the nonterminal EXPR has the value 307 and

EXPR- = 308 in GRAMPA, then the following entries might

be made in NTRHSPTR and RHSTABLE:

RHSTABLE

NTRHSPTR Symbol | ALT | SUC
2

271+ (EXPR) | 28 -1

(+) 31 29

(TERM) 0 0

(EXPR-)| O -1

(=) 0 32

(TERM) | 0 0

(EXPR=)| O -1

27
28

29
30

31
32

33

34
35

Position

Left hand side 1

Left hand side 2

Left hand side 3

where (symbol) would be the GRAMPA value for the symbol.

If the symbol EXPR- is encountered as the left symbol of

a phrase, then the pointer is obtained from NTRHSPTR into

RHSTABLE.

Any entry in RHSTABLE flagged with a -1 means

that it is a right hand side of a production.

Thus

immediately, EXPR is a right hard side. ' However, if

58

the phrase is longer than just EXPR-, then the alternate
list starting at row 28 is scanned - namely <+> TERM.

If this is matched, then the next row gives the right
hand side i.e. EXPR-. If it is not matched, then the
alternate starting at row 31 (indicated in the row <+>)
is scanned etc. We thus have a list_structure of
alternates and successors very similar to the syntax

graph.

2.10 Checks for Recursion

The concept of left, right and imbedded recursion
was presented in section 1.4.2. The procedure
RECURSIVECHECK produces lists of all three types of
recursive symbols. The procedure uses three smaller
procedures, LEFTRECURSIVE, RIGHTRECURSIVE and IMBED to
locate the recursive symbols. The left and right
recursive symbols are found by checking for the occurrence
of a particular nonterminal within its own left or right
parts. The imbedded recursion checks are somewhat more
complicated and rely on recursive calls of the Boolean
procedure IMBED. This procedure first checks whether a
particular nonterminal, N, is imbedded in one of its own
productions. If not, then the nonterminal, ML, on the

left of the production is checked-~N can be imbedded or

on the right of the production generated by ML. Similarily

59

for a nonterminal MR on the right of the production
generated by N, N can occur imbedded or on the left of
any production generated by MR, These checks can go for
many levels of recursion until a true value is returned
or the whole procedure exits because it is looping (an
array is maintained which holds the symbols checked by

IMBED to prevent looping).

CHAPTER 3
USE OF GRAMPA WITH EXAMPLES

3.1 Programming Considerations

3.1.1 Overall Structure of GRAMPA

The overall structure of GRAMPA is shown in Figure
3.1. The first set of procedures reads in the grammar and
sets up the tables, therefore, they must be included in
any GRAMPA run. However, the procedures PRINTGRAMMAR and
PRINT TABLES are optional. The whole second block of
the program containing tﬁe precedence analysis procedures
is optional, and can be omitted until the user is satisfied
that he has the grammar punched correctly. In the second
section, the procedures EMPTYCHECK and LEFTRIGHT must be
included before WWPRECEDENCE and RECURSIVECHECK can be
used, because both of the procedures use the left and right

sets and assume an e~free grammar.

-The structure of any Algol program is flexible, the
user can insert his own procedures easily. However, before
attempting this, the user should familiarize himself with

the global variables - described in Appendix 5.

- 60 -

61

Figure 3.1: Overall Structure of GRAMPA

begin

-procedures:

-define tables and working variables for grammar input

GET 4

PUT 4

GET 9

PUT 9

IABS

OUTCHAR

GETLINE

PRINTSYMBOL

NXCHAR must always
GETNONTERM be included
GETTERM

HASH

EMPTYPROD

PRINTABLES

INGRAMMAR

PRINTGRAMMAR

TERMINATE optional
DELETE

ADMISSIBLE

(i) main program: INGRAMMAR; PRINTGRAMMAR; PRINT TABLES;

begin

ADMISSIBLE;

-define tables for left and right parts and precedence matrix

-procedures:

EMPTYCHECK
LEFTRIGHT ‘
proc: RDEF must be included if
LDEF WWPRECEDENCE and/or
PATHCHK RECURSIVECHECK are
used.
WWPRECEDENCE
PUTM) ‘
REMOVECONFLICTS optional
RRE
LRE
PFUNCTIONS
TRANSPOSE SYNTAX GRAPH
RECURSIVECHECK
LEFTRECURSIVE
RIGHTRECURSIVE
IMBED

(i1) main program: EMPTYCHECK; LEFTRIGHT; WWPRECEDENCE;

REMOVECONFLICTSs PFUNCTIONS; TRANSPOSE
SYNTAX GRAPH; RECURSIVE CHECK

62

3.1.2 The Program Deck

GRAMPA at time of writing is not stored on disc or
tape on the CDC 6400 computer. Thus a user must obtain a

copy of the deck in card form, (2100 cards).

3.1.3 Storage Requirements

| The first major program block requires 35.74K
words of storage to load,and the whole program requires
558K words to load. Howe@er, it must be remembered that
.many of the arrays used in the second major block are
dynamic, and their size depends upon the grammar being
processed. The largest arrays are LR(for the left and
right sets), PMATRIX(for the precedence matrix) and
RHSTABLE (generated by TRANSEPOSE SYNTAX GRAPH for left

side lookup).

Compacting techniques are used in GRAMPA to
reduce the storage requirements for these arrays. In
the case of the array LR, five entries each of size nine
bits are made into each word. Upon entry to the second

block, the array is dimensioned:
[300:NTERMNO +20, 2x(SIZE+19)/ 5+1)1,

where SIZE is the size of the vocabulary, and NTERMNO-300

is the number of non-terminals. SIZE can be altered as

63

artificial nonterminals are cfeated to remove precedence
conflicts, hence an allowance for 20 extra symbols.
Entries are made into the array by the procedure PUTS.
For example, to place an item x in row i, column j of
LR, the following statement is used:

PUT 9(LR,i,j,x).
Items are retrieved by the integer procedure GET 9.

e.g. x= GET 9(LR,i,j).

The precedence matrix, PMATRIX, is compacted in
a similar way to LR. Upon entry to the second major
program block, the array is dimensioned:
[1:SIZE+20,1:(SIZE+19)// 12+1].
Twelve items of size four bits are packed into each word.
The procedures PUT 4 and GET.H are used to place and

retrieve items.

The array RHSTABLE in TRANSPOSE SYNTAX GRAPH is
dimensioned [1:NGRAPH+10, 1:3], where NGRAPH is the number
of entries in the syntax graph. Thus the array will never

exceed 1530 words in size.

When analyzing grammars, estimates should be
made of the size of the arrays before using the program.
In the case of small grammars (20 productions and symbols)

about 60gK of storage is sufficient. Larger grammars

64

of around 100 productions and symbols need over 100,K

of storage.

3.1.4 Run Time

Compilation time for the complete program is
agout 29 seconds, and about 1 1/2 seconds are needed
for loading. A central processor time algorithm for
the first major program bléck is given in Appendix 4.
'The execution time for the second block is difficult
to estimate because it depends on the structure as
wgll as the size of the grammar. Total run times

are given in the next sections for the example grammars,

and are summarized in table form in Appendix 4.

3.1.5 The Data Deck

The grammar to be analysed is punched in free
format using the meta-symbols described in section 2.5.3.

The first data card must be a title card for the grammar

(1 to 80 characters). The end of data is a . (period)

on the last card.

3.2 Example 1: Simple Phrase Structure Language

3.2.1 Correct Grammar

The first example is the simple phrase structure
language defined in Wirth-Weber(1%4), The punched deck

(as listed by the program) is given below.

65

*INPUTH
BLOCK » <BEGIN> BODY <END> 3§
BOCY # BCCY~- 3
BOLY~- » DECL <35> BODY=- /
STATLIST
STATLIST » STATLIST <> STATEMENT /
STATEMENT
STATEMENT P VAR <3=> EXPR /
BLCCK
EXFER # EXPR=- 3
EXFR- P EXFR- <+> TERM /
EXFR=~ <=> TERM /
<-> TERM / TERM 3
TERM » TEPM= 3
TEFM- » TERM= <*> FACTGCR 7/ TERM- </> FACTCR / FACTCR 3
FACTCR e VAR /
<{> £¢XPFR <)> /
AR NENBER ;
Vv P <L>
NUVMBER P DIGI* / MUMBER DICGIT 3
DECL » <NEW> <L>
BICI1 p <D> ,

=

The first part of the output is shown in Exhibit
3.1, the remainder is given in Appendix I. The total
computer run time, including compilation, was u46.3

seconds,

Exhibit 3.1 is a neat listing of the grammar as

understood by GRAMPA. If any nonterminals are found to

be undefined, the message "(NO RIGHT SIDE DEFINED IN
THE GRAMMAR)" is printed as the right side. Every
alternate right side of a production starts on a separate

line, and a line is skipped between productions.

66

The second section of output (shown in Appendix
I) is the symbol tables and syntax graph. The GRAMPA
value assigned to the symbol is also given. Seven
columns of output appear for the syntax graph. The
first is the row number, followed by the five columns
of the syntax graph itself, described in section 2.3.1,

then the name of the symbol in the row is given.

The output from the procedure LEFTRIGHT is next
shown. The symbol numbers only are given in the listings
of the sets. The precedence matrix comes next
(photoreduced), followed by the precedence functions.
Depending upon its size, the precedence matrix may be
printed out in blocks since only 30 symbols are allowed
across each page. The form of the precedence matrix
output is self-explanatory.. The precedence functions
f and g (defined in section 1.7) are listed for each

nonterminal columnwise (if they exist).

Next the lookup tables for a parser are shown
(photoreduced). These tables are described in section
2.9.6. The recursive symbols found by RECURSIVECHECK

come finally.

67

| Exhibit 3.1 Output of Print Grammar

————————————————————————— S IMPLE PHRASE-STRUCTURE LANGUAGE ——

BLOCK 38= <BEGIN> BODY <END>
BODY 1t= BODY~-
BODY -~ tt= DECL <3> BODY~-
Y 05 KFL1st
DECL 18= <NEW> «<L>
STATLIST tt= STATLIST <,> STATEMENT
STATEMENT
STATEMENT tt= VAR <«<t=> EXPR
E BLOCK
VAR 1= <>
EXPR t3= EXPR-
XPR~- tt= EXPR- <4+> TERM
EXPR EXPR=_ <=> TERM
;EﬁM,TERM
TERM 1t= TERM~-
T - t8= TERM- <¥> FACTOR
ERM TERM= <«</> FACTO:
FACTO
—FAGTOR————————— 3= VAR
<{> EXPR <)>
NUMBER
NUMBER 1= DIGIT
8) NUMBER DIGIT

DIGIT 18= <D>

(refer also to Appendix I)

3.2.2 Precedence Conflicts

The simple phrase structure language described in
the previous sub-seotion was modified to introduce precedence
conflicts by removing the nonterminal EXPR- from the grammar.
The modified grammar is shown in exhibit 3.2 below; the arrow

indicates where the grammar has been modified.

68

Exhibit 3.2 Modified Grammar

SIMPLE PHRASE STRUCTURE LANGUAGE

BLOCK 1t= <REGIN> BOLY <END>
BODY t1= BODY~
OCY= %= DECL <i1> BODY~
BOCY=. .. STATLIST
DECL 1i= <NEW> <L>
132 STATLIST <s> OSTATEMENT
STATLIST = STATEMENT
MEN . _ _ 83= VAR <ti=> EXPR
STATEMENT o Y B ek
VAR 1= «<L>
1= EXPR <+> TERWM 4 -
.EXPR EXPR <=> TERM
-y TER
e feAm
TERM 11= TERM=
- $18= TERM= <#> FACTOR
TERM ;ERM- </> FACTCR
ACTOR
t¢= VAR
“FA’CTOR\) T ‘¥(> EXPR <)>
NUMBE
t3= DIGIT
NUFGER NUMBER DIGIT
DIGIT tt= <D>

ExhibifLS.B sﬁowsvthe‘frecedence maérix and
conflicts. The syntax graph and left and right parts were
essentially the same as before with the exception of
references to EXPR. The nonterminal EXPR also became left

recursive.

Procedure REMOVECONFLICTS removed the precedence
confliects, and the new grammar and matrix are shown in

exhibit 3.4. The total processor time was 51.3 seconds.

Precedence Matrix and Conflicts

69

Exhibit 3.3

3 4

PRECECENCE CONFLICTS

(<o=) RETWFEN {= AND EXPR
(coe=) BETWFEN (ANC EXPR

PRECEDENCE MATRTI X

1
'

$ 1o 11 12 13 14 300 301 302 303 304 305 306 307 304 309 310 311 312
¢ ¢ ¢« ® ¢ <€ < < <

D N> B WN -

@

v

A A A A A A

A A A A A A A A

A A A A A A

A A A A A AA A
"
aA

A B I8 A A A

A A A A A A

A A A A A A

v & v ¥

¥V ¥V ¥V iV V v VvV v ¥

vV VY vwv vvivoae

VvV vV V v VvV 8 VvV

'VVIVVIV

v v v »

L]
v v ¥V v v A& v

70

Exhibit 3.4 Modified Grammar After Removal of Conflict;

SIMPLE PHRASE STRUCTURE LANGUAGE

BLOCK 1:= <HEGIN> RBODY <END>
BOBY— ++=—BODY-
BODvy~- t:= DECL «<3%> BnDY-
STATLIST
DEC) 112 <NEW> <>
STATLIST $s= STATLLIST <e> STATEMENT
STATEMENT
STATEMENT t31= VAR) XXXX0 -
BLLOCK
VAR 102 <>
EXpr t3= FAPR <¢> TERM
FAPR—<=>—TrRM
<=> TERM
TERM
TERw t3= TERMe
TERM= 1= TERM= <#> FACTNR
TERM= </> FACTOR
oRrR
FACTOR 1= VAR
<{> XXXX0 «<)> -
NUMBER
NUMRER 1= DIGIT
MUMBER DIGIT
DIGYT si= <D>
XXXX0 1= EXPR <+

71

Precedence Matrix After Removal

of Conflicts

Exhibit 3.4 cont'd.

} 2 3 & s & 7 & 9 1a

t - <€
2 > >
3 <
4 <
5 e e e - -
6 <
7 <
8 <
99— - - . - - - - - <
10
11 > > > > > >
12 > > > > > > > >
13- e e - -
1a > > > > > >
300 > > .
30 s
302 ————> - e -
303 =
304 > -
308 > >
306 - i - b e SRS bl R S -
307 = -
308 > > > >
309 > > > > = =
No————— > -
KD)| > > > > > >
312 > > > > > >

313 > >

PRECEDENCE

1 12

<

A

A A A A

13

<

16 300 301 302 307 204 395 306 307 300 309

A A A A

MATRITI Y

310 3117 312 N3

® < <« ¢ < <« -
- ¢« <« < <«
s <
- A¢
< . < <
< s < <
< - <
- - - --- ———— - — - &
<
»
P
»

72

3.3 Example 2 Admissable Test

The grammar described in section 2.8.1 was used
to test the admissability algorithms. The symbols and
initial syntax graph for the grammar are given in exhibit
3.5, and the output from the admissability algorithmé is

shown in exhibit 3.6.

It should be noted that the $ sign next to the
nonterminal Y is printed by PRINTGRAMMAR to indicate the
existence of the empty statement as a.right side, ie.

Y+a¥b|e.

The first grammar of exhibit 3.5 is the grammar
before ADMISSABLE. Procedure ADMISSABLE first checks
and deletes useless nonterminals. The symbol X is located
and all right sides containing X are deleted. It can be
seen that the production S+aX is deleted as well as the
right sides of X itself. X remains in NONTERMINALS r but
becomes undefined. This in no way inhibits the operation

of the precedence procedures later in the program.

ADMISSABLE next locates Z as being unreachable.
This is deleted in the same way as X. it can be seen that
because of the deletion of X previously, X also becomes
unreachable. Thus all symbols found useless will become

unreachable.

73

Exhibit 3.5

ANUMBER OF PRODUCTIONS 8

NUMRER OF NON TERMINALS
NUMRER OF TFRNIhALé 2

4

THE SENTENCE SYMROL FOR THE GRAMMAR ISt S

——— . ___NON TERMINALS
| NUMBER SYMBOL
300 S
301 X
302 Y
303 y
e TERMINALS
NUMBER SYMBOL
-1 <EMPTY>
] A
2 8
.. gYNTAX GRAPH e
SYMACL DEFNe ALTs SUCe LHSSYM
1 300 2 0 0 0 S
2 1 0 4 3 390 A
3 301 T 0 DB X :
S R O
0
3 5 5 0 3 9 3
_1] 0 9 8 301 A
) 301 7 n 0 n X
S 1 10 301 A
ln i § 11 0 A
1 . 30 N S L g — g — ‘Wwww.mf\, .
{5 303 3 13 13 2
ERN SR B S S é
5 = T 393 ALMETy2
}g 305 lg 10 0 0n L
1 2 0 0 0 303 B

{
§
H
i
|
}

74

(
Exhibit 3.6
EXAMPLE GRAMMAR 1
S 1= ¢A> X
<A> Y B>
X 1= <A> X
. <A> _<A> X
$ Y tiz= <CA> Y
Z 1s= :a; 7
USELFSS NON=TEHRMINALS T
b
-
EXAMPLE GRAMMAR 1
S 18= ¢A> Y
X 1tz (NO RIGHT SICE OEFINED IN THE GRAMMAR)
Y 832 <A> Y <8B>
Z 1= <A> 2

UNREACKHARLF Ngw TFRMINALS
X7 T -
-

EXAMPLE GRAMMAR]

S $iz= ¢A> Y <AH>

X 3¢= (NO RIGHT SICE DEFINED IN THE GRAMMAR)
Y - b3 _<A> Y

Z ti= (NO RICHT SICE DEFINED IN THE GRAMMAR)

75

+ on cards is shown

The inpu

2.

Output from GRAMPA for the first part of EULER
INPUT

hown in Appendix

3.4 Example 2: Euler
is s

below.

L LY
n ~
qn [1%4
4 o <<
on >
- L ~ ~
(5] Q = - A
— [+4 v @ >=
~ o L -~ W (4
1 I ~ -t <<
(+'4 0 N VN =
o o A L o7 1
> ~) O g |
i SNw X v L x> |Q
A O D [TY - § .e
" . w= 1t ¥ >A|A .
o ' 0o = [T7] Qo A
v . T A D u AN < o
o/ o0 X 0 W Zk4 | Wen v
<) _ T < N\ & v | ~
>e ’ OA ¥ = N O H v >~ A e
~ ! n v o A VN o " o0
> AV w NN O | N\ oo v
o~ [+ 4 ’ v | onV NI | >F o ~
< : vl w A [XKH A A
Qe = . O O A >\ i I enA ©
<< tjon . we -+ MY _J>A | XA Ve oo v
w x on ‘ (PO O V TUID D> | Voen onN
T (2 9. V4 —HY T SO>TAN | VYA o A
¥ o) ZC00 O | IM<BI#PT QoA w =~
o AQ w) e~ OXTI N (2%} S<m U W » O MYV
| Od L HOPON =2 D Q. ZN\H m)I owy W O\
(aa -om faa] 2 hue IR 757 WV deey T o A
~ on ONen| N O <N N A=l YWY O Z 0O
on Wi > [Q = E <IOANIHO ALLNO (] v
A (o4 VYA | ¥ - WU A Y VOROASKLWNN X - RS
A e o NQZ | Con a OO Z W COZ Ok ~0.ly N A
ov > $>xu | T L) X b = e JOHHA | Z>HaaN\ Y Ltfee
ez W WX | =D WeeAIT OO X XA VHAHXY VW O W Ov on
(e ~ 0 Y= Z roxT v A & CNN NV T Aer O WNA (TS
AV X~V | 0O NAV I OA [} O b k>N\NNM O~ W A A
e (] Ly A O 1 < n 1 v b OUNE ST\ OV Ten = a0 A dow
v - IEUIANes DVNAAL W N O IHIAVYEDXD ZeriiV.d ww dV
< < A NOT 2 Z2VAvV O % q WLAEe QW yny H NN v A
¥ > - WX UZNA OZ0 |V N L N HVYNA\> NQHH<tdlen | AL A
ono e DDA > OOHWWHe~O U o> V¥ (¥ AQD Xaa> AYi—Myv AJdYV
o O o vov H~QOO I = A KO XIGgASITAWN KXY euiHVN ~<C
~4>-m WA VFA O <K | O OIIC> AD>DPTalUN ANWVYOONA W A
moxXY We N\ LEADIOD GQIJIGOOWN A OQUENAX =OT~0OA® [O W-HAW nyY=
COlerOV erIIHA ZIZoe LIOWITITTOT &ooITOHKIJUWAASHONI= V JUIK - COND <O Luf
A (4] ZUVvXWO ITwrdpOOHD Vv VieIH JDZ200vwyv —wzZ v N Z
XMV IITA I LD LN-TOIDZ o N OASIAVNNLONK T 2UZOHAENFenAVV Y
VOt e iY<Tt 2a™t™Z 22t T eeZFTOIT e e L BTN X R NTE(s T T AV
L >0d vOI 4WhONODZOCOZ C».RRAMF»»(<<4<<»DSDC# g N 0 o I JEVAE S S
TOOAF Lt XQONEK LHIOOICO LITilu et > LU <THIZ >NRR<ﬁRHLLL
<CLOWY W AtLDFIOWO LU WL D= L L0 O DHUSWIF NI LIW 2 I 2 O00
O TLt I Wt IHIAZAT 21 T Ot OO orexe inGTAVPEEE
GONYY QKLY JWH™DTI™™N™ HEA T b= OO RIDMV LW 2 100D
CcCoOOoOxIxanl QOIIRVNNZIZZO.J COEZTXK OOK COMNLE «aEFLVryoao
& o P I XX U L= OO O W IXIDDWYW «a<ch’ KE-LID WZZHO0IIIOT
PBB%SSLEE I4CDDCCCN (141717, 124 wu-Q PPLLRﬂ RIIDLVWLFV.
<«

* See note on next page

76

The execution time to compile and execute the
first major program block was 32.5 seconds. Compilation
and execution of the compléte program took 388 seconds.

Note: The production PRIMARY-+LOGVAL NUMBER should read
PRIMARY~LOGVAL|NUMBER. This error does not

invalidate the example or introduce precedence
conflicts.

CHAPTER 4
FUTURE DIRECTIONS

In this report, a set of Algol procedures has
been described which ean read a context-free grammar
from cards and set it up in such a way that it can be
easily studied and manipulated. Several procedufes
have been described which perform analyses of various
kinds on grammars. Most of these procedures are geared

to simple precedence.

The first improvement to the system would be a
better form of representation for thé large array holding the
left and right sets. A good representation would be to
use a binary table. Each nonterminal would have space
for every symbol to be in its left and right set. This
array would initially be set to zero; a binary 1 could
then be entered to flag those symbols that are in the
sets. This type of array would have 48 entries in one
word; thus a grammar with a vocabulary of 120 symbols
with 60 nonterminals would require only 360 words of
storage for the sets instead of the current 3000 words.
The array could be scanned and handled muph faster by
the precedence and recursion procedures than presently.

Also, the bit manipulation routines used to pack the

- 77 -

78

left and right sets and the ﬁrecedence matrix could be
written in assembly language to further reduce the

program execution time.

The first avenue of expansion for the system
would be the automatic production of a simple precedence
syntax analyser for the grammar. Most of the facilities
for doing this already exist in the system e.g.
precedence matrix (function) production, look-up tables.
However, facilities for handling semantic rules and
names should be included for producing a simple lexical
analyser. This in turn would probably involve an
extension of the meta language used in GRAMPA to handle
such things as zero and one repeats etc.(16)(18)(19),
This would allow manipulations to be performed on
grammars such as PASCAL(16) or BASIC(19) without altering

the meta language used in their definitions.

A straightforward extension to the present
GRAMPA system would be the inclusion of a procedure to
remove the empty statement from the grammar (Wood(17)).
Also procedures could be included to perform the more
complex analyses for extended precedence using the rules

of Graham(8).

79

The GRAMPA program will soon become excessively
large as more procedures are added. Therefore, an overlay
scheme should be devised to reduce storage, and a system
of control cards could be designed to enable the user
to select only those procedurses that he needs. The
control card system could in fact be‘designed as a
language for grammatical analysis and manipulation.

This would better serve the aims of developing a
compiler laboratory which would also include, for example,

routines for automatic compiler construction.

It is the opinion of the author that a fruitful
first step has been taken into automatic gfammar
manipulation, and it is. hoped that the program, even in
its present form, can be successfully applied as an
aid in programming language developmént, or for practical

studies in formal language theory.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

REFERENCES

Y .
Aho A.V., Ullman J.D.: Linear Precedence Functions
for Weak Precedence Grammars, to appear (1973) in
International Journal of Computer Mathematics.

Bell J.R.: A New Method for Determining Linear
Precedence Functions for Precedence Grammars, C.ACM
12, (10) October 1969, pp 567-569.

Cheatham T.E., Sattley K: Syntax Directed Compiling,
Proc. AFIPS 1964, Spring Joint Computer Conference,
Vol 25, pp 31-57.

Cohen D.J., Gotlieb C.C.: A List Structure Form of
Grammars for Syntactie Analysis, Computing Surveys,
Vol 2 (1), March 1970, pp 65-82.

Feldman J., Gries D.: Translator Writing Systems,
C.ACM 11 (2) February 1968, pp 77-113.

Floyd R.W.: Syntactie Analysis and Operator Precedence,
J.ACM 10, July 1963, pp 316-333. (Not referred to explicitly
in the report). :
George J.E.: "SIMPLE - A Simple Precedence Translator
Writing System, Stanford University, STAN-CS-71-226.

Graham S.: Precedence Languages and Bounded Right
Context Languages, Ph.D. Thesis, Stanford University,
1971.

Martin D.F.: A Boolean Matrix Method for the
Computation of Linear Precedence Functions, C.ACM
15 (6) June 1972, pp 4u8-us54,

McKeeman W.M.: An Abproach to Computer Language Design,
Stanford University Technical Report #CS48, August 31, 1966.

Morris R.: Secatter Storage Techniques, C.ACM 11 (1),
June 1968, pp 38-uu,

Naur P. (Ed.): Revised Report on the Algorithmic
Language Algol 60, C.ACM 6, June 1963, pp 1-17.

Wirth N.: PL360 - A Programming Language for the 360
Computers, J.ACM 15 (1), June 1968, pp 37-76.

- 80 -

81

1) —m—me- s, Weber H.: FULER - A Generalization of
Algol, and ites Formal Definition, Parts I and II
C.ACM 9 (1), June 1966, pp 13-23, C.ACM 9 (2),
Feb. 1966, pp 89-99.

15) —-=-ee- : Algorithm 265 - Find Precedence Functions,
C.ACM 8 (10), Oct. 1965, pp 604-605.

B I : The Programming Language PASCAL, Acta
Informatica, 1971 pp 36-63.

17) Wood D.: Introduction to Formal Language Theory,
Computer Science Technical Report 71/4, McMaster
University, 1971.

18) ~-~=---: Syntax Generated Interpretation of
Programming Languages, Revue Francaise d'Informatique
et de Recherche Operationelle, 4, B-2, 1970,
pp. 71-89.

19) Lee J.A.N.: The Formal Definition of the BASIC
Language, The Computer Journal, 15 (1) 1972,
pp 37-41.

20) Rohl J. S.: A Note on Backus - Naur Form, The
Computer Journal, 10, 1968 pp 336-337.

APPENDIX I

OUTPUT FROM GRAMPA FOR SIMPLE

PHRASE STRUCTURE LANGUAGE

SYNTAX GRAPH

NO.

¥Z ’

ObA> >
VDO
JSWoOZou
aaouiog

OO0+
[=~] oc
~m MmN

OMIOON

ooooa(

NEINONOLY

QvivituN
Q O o9
MM M

OIS LN

[
TSI =
b Da«
) Okl i
NeaDUNY ~NNS

VOONIOOIY
-] (=1] (=1~
o MM MM

O OOHHNOOU
vied -

POOOMOOON
- b

Adlelwl=T K K L

3 il wirld

BMNLT T IDNY
b OO0 Qodg
D MMM MM

DN HNM
Lalal ol o),

M 40
vy ETo
¥ o000 oq
F >33 LXK

NQ OIN/ADVOO
D o0
P MM

MO OO OOHD
Aal NN

FOOO0OONOO
.. [\V]

HEO O OO O
F o v

DO\ P2 X0 OO OO
P ocOOOW O
P MMM W

FUNON OOV w4
Hed et N

L
¥ XITT
o oo
[TURR TV TE TS T

000G
o oo
”m MmN

TOVODOO
N N el

oconooONg
o L]

QOO VONONG
N NN

o1 oo
- =r
or Lo
gl gL

OO O Qv i
bal wirdedt
~m MM~

HO M OO0 00
P MM eyt

PONOOON O
m M

JoJorleJUoVal 11 ¢
MmN MMNIT o

NOMNOOOOCDHON O OIN

O GO
M MMmMmm

vl wHHO G
MM MmN M

PiOIM F IO M
PN MG MM

o
L
[{208]
wUIXux
=D -4l

UMBER

pes LD LWL+ =it § b= § iR LN LW~W~AZ 10Z0Z J0

D ONNOMONM
Ao ©
MM M

31

10000000
? J <

.ououounnvo

yoONVNONAMO OO
i & S+

r =IO ONMN MM N
privivivivid vl
)y M MM

» NG HAM TN N
MNMITIITITITIT

Al-1

i

Al-2

. WY

NON TERMINALS

my
TO>>
>0 00
n.JOOu
BBBJ

[4R 2 [\N],
Lo ood
[eal Ll o)

= 0
-tts) J 1C
U~ KYsSITH
Dt /0.0 X QX
b= o <Y 2 O LSS
uSSVEETTJ

P VOM- OO D HOIM
POOOOOOvIvHyiv
DM MMMM MDY

TERMINALS

D
r "
U

e wes 4 | % /4#\)'—“0

A T IO N DO ONP NN
. 4.1111.

Al-3

LEFT PARTS
LEFT PART

SYMBOL

LAA~E]

(=1 2]
[}
[

NS
-«
L]

1

ON
Qv
M

no o
o0 o
MM ™
JU o

-

oo
M0

MmFr VO
- oo
m Mmowm

MM It
Ol ovt
m ~m

I ONMM SO0
QD00 Oy
MM MG

AN I NG
CoeoOGd
MIMMMMNCN

oog.y
Lalalal]

N M
Lalalal g
MM

WONN S
[=1=2adulal
MMM

Hoom
eivrivieivt

mm]

ooNNN
Hydvieiel
MM 2]

oMo wonN
[t =TT R R]
[T 1ol o T]

[l ok g [\VE- o
il
MM

N ODOWOM ST
HEOC v O v i

MMMIGMT

of . eToal BT o N1)
P OCOvivivivi
DMIMMONMMMNMM

RIGHT PART

RIGHT PARTS

SYyM3OoL
NO.
200

14

mx
vivd

11 312 313
4

L2
ivivd
mmMm

L laV]
Lalaly

Mmm

NN
vt

O
O rivd

oNS
HoOor
M8

309 310 311 306 12

NNONNNINMNNONOHOMS
QOHOOHOO O vivt
MM M MNNINN

PIOUM N O DO
POCCOC OGO vivivivd
DN MON MMNGIDNNMD NG

Al-Y

PRECEOENCE MATRI X

1 2 3 4 S 6 7 8 9 10 11 12 13 14 300 301 302 303 304 305 306 307 308 309 310 311 312 31I

1 e . ¢ <« ¢ 83 ¢ ¢ ¢ < <
2 > > .
3 < < < < [< < < <
4 < < < s « .
5 < < < < € 8 ¢ ¢ € ¢ < ¢
& < < < < s ¢ ¢ ¢ ¢«
7 < < < < s ¢ ¢ ¢ ¢
] < < < < s ¢ . ¢
9 B < < < s ¢ <
10 < < < < ¢€ ® ¢ ¢ ¢ ¢ ¢ ¢
1 > > > > > > >
1?7 > > > > > > > > >
13 ' s
14 > > > > > > > >) >
300 > > .
30 s
302 >
303 s
304 > -
3ns > >
304 > >] > >»' > >
0y > > s
30R > > a = > ¢
309 > > > > >
310 > > > > s = >
n > > > 3 > > >
32 > > > » » > > < s

13 > > > > > » » > »

Al-5

PRECEDENCE FUNCTIONS
SYMBOL

T T Yo
- Lid] %OF_T
(ol el 2]

X
O>= >
(=} T O00LVAIYA O XKOI O
O C
mod

< H w D Lif=— = <IT 2 IC L 24
e aee b I \NmaJZ0O DOV >wiuli-ru.Z20

&1126#455#3“37#1%333#122 M IO

Pl

a3231223%167k831212363h OO

Al-6

TRANSFOSE SYNTAX GRAPH FOR ANALYSER

- - -
z Zb= - 4
W wnn w
-4 r T~ b 4. 4 [4 [3 o oK
IS) =) -t 08 Was wo [) $ 0 Of Of | OFuw
» mn-.a\R | 4 wdt=it= 2 >3y jebmie Uty TV FTHVE = bE¥-=mno
QOoKal O OO 000 dda 49O Kl Xaawy o OXXOUVUEX
OZ J'UINX d Wit O OQO t=bops it X=X (X WNXY gW SWUI=DD
OWAF Wis e > 00N 0 SOOI NN LUNL W bW | WLl WS- WL02Z
Q
‘ D
b4
o
o
- 9 NOHO NNl D it ed O OHHD D A E D vl 04 40 v NO v el DO O e 94D vt ot
w (& L [] " [N o IN N I 1M I e™m e 20 2
- 0 D
muw w I wv
[o] wJa -
-m p ., |
- o< 'S
a- - o
[N 7] -0 . ¢ COOOODOOOOOOOD 000000V ONHODOOSOYINOOODD IO
=X Xz [- ~ am "™ &
F<% & OOHOOOOOIOCJONON T J
= MKV NMONS INNMY W vt & =
OO0« weieiUN MM P2 O . <
ar Zr- o
[[[T
»no ok
[) aw » e
Qe § b= g O
>z »xZ -
— Wi z
[=] Qo0 > b
ma Za V) O S#NOPOOM (e DONMMIN MNAUNTNS SN O O M DD T O MO HOO Mo
- { o D © COOCOHMOrIOHOD OO0 OO0 COO0OHO O OO0 v wvievigteel
< O & M MMM oM mnnm mmn mm ? MM M D M tLae o]
z 7] w =
- -t [7 2]
p) L [=
x o &0 [
i ~E (2]
-2 EDrOHMUML INON O ONM.S z
KZOANN TIVWOMOOOHNM) vl et gded <
0O COOOORCOOGHre W [3
Z AR P GMOMDNON o -
g g
X i I IO O M 3 DO OOC NN IUWMAE OO iMS IN Ot L O0VC VM S0
-W. -V\.u ieiviei ot 11111222222“22533333331345555““

A _/ — 3 - —_———

RECURSION CHECK

———tEFFRECURSIVE-SYMBOLS
STATLIST
EXPR-
TERM=
NUMBER
————RIGHT-RECURSIVE SYMBOLS ————————
BODY-

IMBEDDED RECURSIVE SYMBOLS

P

- =M N NDD D
MM XX A=~ 0O0r
D0V UBP>»>ODO
XX] KO

:

Al-7

APPENDIX 2

FIRST PART OF GRAMPA OUTPUT FOR EULER

THE GRAMMAR

EVULER
PROGRAY ttm <> BLOCK «¢4>
8L0CK $0w BLOKBODY STAT «FNO>
BLOKAVDY ”"a gtg{agga STAT <P
STAY s STATe 5
BLOKHEAD o s 4952 - o . ~ o
v WaEdt P
VARDECL 1= «NEN> <L>
LABDECL tim <L ABEL> <>
TAT- t aDEF TAT=
ST teeiagger smar e S
LABOEP tts <> <1>
EXPR 1= EXPR~
exP L1 TEN
"= = c‘u‘ EXPR=
- —_— o, _Rinsay . e —_——— e ——
RieS
t:USE TRUEPART EXPRe
CATENA 1= 8};5“ <AND> FRIMARY
——PRINARY ——— — —— o — - ———
VA LISY
EIIP NUMBER .
PERENCE
Hé‘t” PRIMARY
_ L - . . —
< EXPR 3>
>
: 8> vaR
4 viS
« »
< 1»
—_— - & —_—
:) P» v:&
« asz PRINARY
ARETR, “BRinaey

«REAL> PRINARY
SIS B RV

VAR 118 VAR~

TPOLAYSE————————$tmeIPr— EXPR - <THENS - -
TRUEPART 11a EXPR <ELSE>

o1s

189 tie O1SwEAD DISI

__DISNEAD si= CONJ «<v»

Cong 1= CONJ=
cons- e o

CoRJMMEAD 9= NEGATION «<a>

| MECATION — ——— ste-pguATION -
Ton <> LATION

— —<=> -GHO]
cHozce tis CHOTICE~
CHOICE= (X1 -
- CMAX:
- Hiise oy
s 118 SYN=
SUM= tis Y!Rl ;Es:
L i kRN
TERW 01 TERM- " —
TERN~ 1em FAGTOR
5 o
it Su
AAAAAA) TERM= <MOD» FiC
FACTOR = FACTOR- -
FACTOR- 118 PRINARY

FACTOR= «<o> PRIMARY

A2-1

THE GRAMMAR CONT'D

LIST

LOGVAL

REFERENCE
PROCOEF -
PROCHEAD

FOROECL
LISTHEAD

REAL

I INYVEGER
INTEGER=

[(44

F PQOD¥§710N5

gNA$é19hb

NUM
RURSER 8F an
NUMBEP OF TERMI

|
|
! THE SENTENCE SYHBOL FOR THE GRAMMAR ISt PROGRAM

-8is

L
L HEAD
<
R:

\4
A4
LEe
t
3

AR

1s
b &3
Ey
gt .
it
<g3> ’N
VAR
PROCHMEAD

<%>

itz <2

1is <

(2>
PROCHEAD
<FORMAL>»

»
LISTHEAD
INTEEER
INTEGER:

OIGIY
INTEGER~

((l

HEAD EXPR

<) >

2

’E

555
£xpr

FORN
o>

£xe]

<>

01631

EXPR

<}>

«#) 2>

ECL <3>

>
INTEGER

¥

NON TERMINALS
NUMBER

R -
X

AD
£t
L

F

mimm

A
&RY
Aus
PAR

T B 2 XK I = Bo Inf I
CI 04 = D mnmnxabog -<

LLmr ngno-noo

I
1

Fmnrd

MO

e DL

wnonzné:oao—on< VO A <O Iﬂg

m-o-ax‘f

MM
[-1-2.3
Z2Z0

o
XN

BBRE
zee

~O

EZMHO,

G- 0" 7

£EPY

 —

TERWINALS

NUMBER SynooL
‘ .

A2-2

A2-3

SYMBCLS CONT'D

X T o 2
BT s ar avaws 2%

i
z |
e) . !
98 o S puze ~
CXL AN L1 = S A IN W AN

?gkcll.

yd
Conn !O”O’.mmnmm

e

SOOI D SN
PIAHVICINNN G 8 €8 8 88€ F SHDETU
i
1
i
|
I

A2-4

» » eo._ 0 - o B zx = = !
ti i Be, 2.0 B zii Eibhnmowemit . S EEEY
Gﬂ‘f g MW.KD] -.vﬁ..vl k... bﬂﬂ bu«w_b“ oZWW XY JJ-.'J..- l"""lmn!!wnl}g! W IZ T) X8 nm'r-u .lm Tm Yh._wn
m S 95908 SUSE OF S9=t GuSREDY,GOPRS.GWRLCREAUNEE BEE B o ¢f 99 ¥¢ 27 ¢9,.99 PRPEQIEQULTE & BF B9 9F Q9K UH8YY
D DY 00 T DT B 0T atodf) b/l W DI 300 U0~ i Tt~ s . EOOVO Y QOO | ZZ AP ADALVYOLAGOVLU! GO PLOLVLENCENN- o L NN 1--EF 8 Bt S Sh-Thi
,‘ ! :
F R A - Nt e~ - s | e A 1 0 A ,122?&220&!2%&83&?2322222?
PR M MM e P M M M m mm ¢ el e mmoom i m M M M m o pmmm B MM M M mem m M B »

OMFOLAONDOOOSNOR DCOHOD £ ODOVS D ol

1

(PR St v V2w i Sy N (2 St Rt N

|
)
o
| g | e
anne

SYNTAX GRAPH
0L OFFN, ALT. SUC. LHSSYR

se

et et A & §R RN e re p es P B W %ﬂunllt
viet vivd wted
I
o FOON P 2O
e £ (¥ S =3 3 - © : w © P~ Ih e oo bt 3t T S
| | i . | R)
3552001395105!0“892!&!!”50’0”’!19’!1 e | ' o & 3 VO COECOTODT OO W .S wie S HOS Wi S
iy ey NORN e «s (ot © ©©o ©©0 0 osTOe =1 e vt s etvd
halie - et o 2.019&, !66,”80! bt oo o0 EI- IR - i o~ e e =]
i ' ﬁ
) | '
T grd n b OE-08 NS OV 111 0500 WO 9) U 9 WP IR FINON I ORIV DIOP & P - O O
[R I . mm

mMmmE m W 9 mmmEne, momB mm MM M e B mEmmn e R B G mn meTm me B mm e
h

o G OeNI S I OR 0 O i O @ NI &

Phvtetptviotetgtotrety NOIAIN RMININ AP 18 8 4€ 4N EEC SN

L e [DGO PINM & Uéﬁ“‘cbgazg
2 ~ C-t-raer-t S OTTAOOOivieirive
tvieiotuivivietvintvivivivd

—— N R S

A2-5

'
o} e o o o a N Y
FA 4 o Ty XX pox re “<yl= = < _ @ o & o cod o o
83 LY e oF WS g3y ye'y ¥ 3 g ¥ ﬁﬂ.&ur w 9
TS E DD WeTo. HM WUE SENE TN c.u - = =3 - Wt W wnt |2 @) S
&8 PR bLoove 2BAFAE ARSI ARLOVTLEDS TR 2RK 18 © ;o B SFS ELE .__mm wmmm..m ; 2 X8 ¥R EE
QUSAID IR 0.0 VPG GO 20 0.0 N NG L tpadlhion abon Il e 1t v > e e X
“ ! A *, _
| ! _ v
i ! |
” ! _ |
&
WM et v vivtvie it ivd W W e o W oW - R g N " (<) " uu " mm [mim »m MIE? F22CLILIEIMM & 2 O MmO
mm mm m mmmm m 333313331.!3333“!3833 mm !m.vs...!! mHem mmmm
~ b ~ soon
- &N ~ ”.m SmbbkaQS 556%66 DO AA . AT Tor co el 0 on o e IR
e W o - el v e e YW el vtvl vt v tt«..t«.litﬁ:it - NN N Nl
|
COCDONCLONDAOCOWSISOMS Ot H O w LY
- NN N NUNN 33&666%6!5%5!6 o T~ ~ 0 o 6 o P OOODODHOOO w et
- T W e vl ot o W W o e e o - - %111]] NN &
. !
o ¢ o ! _,P ; o
- ' '
- ,) .

11
4
iﬂ
it
2
21
21
2
21
21
T
23
21
11
24
11
11
11
Y
8
——f
7
7

T DM SR B PGS U ODR PN
FII Tl I 37} NNN IS I el v vi 8 w18 V-8 Y8
mr mmEmmEr, Fm mEe mnmmm»

i
L ™ %51‘3‘;!;;‘33‘;“3; _
i“h.hlil§§36§527?’
SOV SIPITITH VIt Slut Tt vt Tt oty Ui et utui ot e tet o gt atudvd:

A — -

APPENDIX 3
HASH CODING TECHNIQUE OF MORRIS (11)

The hash coding technique of Morris is as follows:
1) Calculate an address % in the table by using some
transformation on the key as an index,
2) If the item is already at this address or if the place
is empty, the job is done,
3) If some other key is there, call a pseudorandom number
generator for an integer offset p. Make the next

probe at £ + p and go to step 2.

If XEY is the key, then the following coding
(in FORTRAN) calculates an index into the table (assumed
to be of size 2N):

THASH 0

KRAND 1

KEYA = IABS (KEY)
DO 11 T = i, WDSIZE, N
IHASH = THASH + KEYA/(244(I - 1))
11 CONTINUE

KPLACE = MOD (IHASH + KRAND/4, 2#xN) +1

Where KPLACE is the index, and WDSIZE is the word

A3-1

A3-2

size in bits. KRAND is the random offset. To create the
random offset, the simplest form of psendorandom number
%

generator is used:

KRAND = MOD (5&KRAND, 2%z (N + 2)).

The efficiency of this technique is best expressed
in terms of the average number E of probes necessary to
" retrieve an item in the table. E depends on the fraction
of the table that is full (if k items are in the table,

size N, then a = k/N).

The expected number of probes, A, to enter the

(k +1) st. item, including the final probe is:

A=1/(1 - k).

N+ 1
For large N, k/(N + 1) = k/N i.e. A = 1/(1-a).
If E is equal to.the average of A for k = 0 to k - 1,
then E = glJf‘ dx = - 1 log (1 - a).
K 1-x a

eg. some-values of E are:

L.oad Factor E
0.1 1.05
0.5 1.39

0.75 1.83

0.9 2.56

A3-3

The procedure HASH in GRAMPA is based directly on

this technique. The hash key is calculated by arithmetically

adding the contents of the three words containing a symbol.

During a test using the BNF of Algol 60 with
118 nonterminals and 90 terminals, the following

statistics were obtained:

Degree of table fill: Average number of probes, E
"Nonterminals: 0.46 1.51
Terminals: 0.35 1.55

i.e. the observed behaviour was not quite as good as the

theoretical predictions, but still acceptable.

APPENDIX- 4
CENTRAL PROCESSOR TIME MODEL

For the first block of the program i.e. INGRAMMAR'
and PRINTGRAMMAR, the following regression equation was
derived:
T = CP time (secs.) = 13.12 + 0.1075 x P + 0.0492 x V......(i)
where P = number of productions in grammar, and V is
the total number of symbols in the vocabulary. Index
of determination was 0.999 and F - ratio = 384. T includes
compilation and load time;'which are of the order of 9

seconds.

Compilation and load times for the complete
system (including all precedence analysis routines) are
29.8 and about 1.4 seconds respectively. Total CP
time for the whole system is difficult to estimate.

Some values obtained are summarized below in table Au-1l.

Al-]

Table A4-1: Some CP Times Obtained for Example Grammars

Ab-2

Grammar | . No. of No. of No. of Non-|Compile, Load Compile, Load
Productions | Terminals | Terminals Execute 1st Execute Whole

Block System
(secs) (secs)

Simple 25 1y 1y 18.7 46.3

Phrase }

Euler 1198 74 Ly 32.5 388.1

PL/360 184 62 65 40.9 254,.2

Algol 300 90 117 56.9 -

60

BNF

of BNF w4y 28 1u -17.8 -

APPENDIX 5
: PROGRAM LISTING

les,

- l‘lH'Vl‘l'JNN"JNN IN POV NI N N O PN DG N LN I ONT 1IN NN N PP O INON N TN MR DN NN NN IV NN NN N TN NN TN P NI N NN RN N Y
NN NANRIN TG MBMN M ABIMEIN b AR M AMAM AN bt I NN AN NN NN NN HNNMANN NNNANG
NNNNNNANNNNNNNNNINNNNNN N ANEEN NNNNRNNNNNNNA AN NNNN NNNNNN NN NN NNN NN NNN NN RN A
\LGOL=60 (3.M) : 01/06/73 11
00** GRAMPA T
#BEGINZ

Z0OMMENTZ ¥¥¥ FOF R AR XS ENE R RN ER S SN ENER PR SR SRR R ELRR RN R RRN ERL RRE

GRAMMATICAL ANALYSIS PROGRAM
LRRFRFENERIRENS FER AR LR RF RN BLRER R AR ER RN RRP BN RRR

f AUTHQR K 2 Q/ARMES
- LANGUAGE AL GOL
COMPUTER CDC 64CD
DATE JAN 1972
M THIS PINGRAM _COMPRISES A SET OF PROCEDURES WHICH ¥
X * CAN BE USEN TO ANALYSE A GRAMMAR SUBMITTED IN *
20%* M REVERSE BACKUS NOTATION, :

.
’

~ #COMMENT?# ;gfLSg%LOHINC DECLARATIONS ARE GLOBAL, THEIR USAGE IS AS

1, -T-.-J—.-"‘!-.-TZ-.-T'{- -Té-.-l\l- ss o GENFRP AL PURPQOSE INTEGER
IDENT IFTERS,
. 2, =NGRAPH= eos NUMBER OF ENTRIES TN SYNTAX GRAP H,
30%% 3. -NTERM= +se NUMBER OF TERMINAL SYMBOLS IN THE GRAMMAR,
e ke -NNONTERM +ee NMUYBER OF NONTERMINALS IN THE GRAMMAR,
5¢ =TERYNA=- CURRENT NUMBER OF TERMINAL SYMBCLS MET WHILE
PROCESSING THE GRAMMAR,
s =NTERMNAO= ... NUMBER OF LATEST NONTERMINAL MET WHILE
PROCFSSIMNG THE GRAMMAR -STARTS AT 3010,
7+ =PROJUCTIONS= ... A COUNT OF THE NUMBER OF PRGDUCTIONS
' PROCES SEN
. 8, -SENTENMGE- ... THE VALUE OF THE SENTENCE SYMBOL,
.. 0. -DEFBOX- s.s USED IN THE FORMATION OF THE SYNTAX GRAPH TO
ITELE STORE THF POW NUMBER OF THE FIRST SYMBOL IN A §RODUCTION,
10, ~NXT30X- ... POINTER TO THE NEXT FREE ROW IN THE SYNTAX
dal)
14, =1 HSROY = L.+ USEFD IN FOPMATION DF SYNTAX GRAEH
VALUE OF THE LHS SYMBOL OF THE PRODUCTION BEING PROCESSED,
. 12, -RHSFO- LUSSD TO KEEP A COUNT OF THE NUMBER OF ALTERNATES
NF A FRONUCTION,
43, =CHA- .o. CURRENT CHARACTER BEING SCANNED
14 =NCHAR-"si. NUMBER OF CHARACTERS IN A TerMINAL oOR
NONTERMINAL -CALGULATED IN -PRINTSYM3OL= ROUTINE
5¥e 15, =1C- ... POINTER 70 POSITION OF CHARACTER BEING 4cANNED ON
16s =Ji=,=J%>,-J3= +.+HOLD THE MUMBERS 64,2,% RESPECTIVELY FOR
. USE N TNTE5ER-ATVINE ARTTHMETIC EXPRESSTONS
17 =IWNO= 4. COUNTER USED IN GETTING A SYMBOL FROM CARD,
184 =NO= .es RETURNED BY HASH PROCEDURE - VALUE OF SYMBOL JUST
LOCATED IM TABLES OR JUST INSERTED IN TABLES.
19, =SIZE~ ... NUMBER OF TERMINALS ANC NONTERMINA

S
o
1
(W]
-
]
-

A5-2

ALGOL =60 (2,0) GRAMPA 01/06/73 11
AL ARRAYS
: : 1, -SYN3= SYNTAX GRAPH,
2. =L INF= TMNIEGER RFP’?FQFMTA'LTONQ OF CHARACTERS ON CURRENT
NATA CAPO,
3. =WOR0- USED IN FOOMATION OF HASH CODES
4o =TERMTARLE-_ HOLDS HASH KEY AND POINTER TO -TERMIALS-
' To PROCESS TERMINALS
5, ~TERMINALS~- HOLDS IMAGES OF TERMINAL SYMBOLS
' & =NONTERMTABLE=-,NONTERMINALS- SAME AS ABOVE FOR NONTERMINAL
70o%x
FINTEGERZ T,J,NGRAPH,T1,12,13,16,NTERM, NNONTERM,SIZE,
LCOONT, nEFdnX) NX Tenk, TERMNO ,NTERMNG ,NO, Ny THNO,IC
ponucfrowe CHAR,J1yd2,J3,NEHABR, RPHSKO, HEBOX, SENTENCE;S
#INTEGER? cs:zz,ONEFliLu., oy
, ZINTEGERZ #ARRAYZ SYNG(/14e570,10457) ,
LINE(/ 1..80/3 WORN()14437) , TITLEL1880],
TERMTA 2 b)y
sgen NONTEQMTABLEI1%25é,1izl,QONTERMINALSI3c035§%;1?41 :
4 :COHMENTi ¥¥§‘¥¥¥¥¥-¥¥’5¥4¥¥¥‘¥¥¥¥¥*4¥¥¥¥¥¥¥¥¥¥Q¥¥¥¥¥¥¥¥¥¥¥¥¥¥;
2COMMENT# THE PRICENUPES GET4 AND PUT4 ALLOW ITEMS OF LENGTH 4 BITS
TO BF ENTZRED AND RETPIEVED FROM AN ARRAY,T FEY FRE
_9p¥x _SPSCIFICALLY USED FOR PACKING THE PRECEDENCE MATRIXS
#PROCEDUREZ? PUTL(MAT,ROH ,COL, VAL) o,
ZVALUEZ ROW,COL, VAL, ZINTEGERY ROW,COL, VAL,
i 2INTEGERZ #A3RAYz MAY,,
ZBEGINZ #INTEGERZ I,Wii, WD2,P0S,WORD, ACOL .,
ACOLee=(COL=-1)/7712¢1.,
POSe.=COL=-(ACOL-1)*12., .
e Tae=16%¥(12-50%), T TR
WORD. .=MAT (/R 0W,Al0L /) 4,
10n*= ‘WOZ¢ s 2WORD//T oy
HDi..=N02//16.£
r JBZQJ=NODD-EOZ Int
MAT (/ROW, ACOL /) + s=HO 2+ (WD1¥16+VAL) * T,
ZENDZ. ,
#INTEGERY? #PROCEDURFEZ GETL (MAT,RON,COL) o,
ZVALUEZ POW,COLes ZINTEGERZ ROW,COLe, ZINTEGERZ ZARRAYZ MAT.,
#BEGINZ #INTEGER? T,ACOC, POS.,
11g%= ZINTEGERZ W0, ,
ACOLse=(COL=137742¢1.4,
POSe.=COL - (ACOL-1)%1 2],
Tea=16%%(12-20S),,
WD+ e =MAT(790W ,ACOL/) 7/ 10,
GEThs o= WD =HD/ 715%15, 5

~Ab5-3

LGOL=-60 (3.0)

CEENDZay .

7#COMMENTZ *xvaxw

GRAMPA 01/06/73

LR R R e R R R R R S R R R RS X

11

120%%
#COMMENT# THE PR
PUT 4,
THEY A

7
H

N® & & 0 (Nte @
Gl e pajle

LQZZZ NNOuI

NCENURES GET3 AND PUTSO ARE SIMILAR TO GET4L AND
THEY PACK ITEMS OF LEMGTH 9 BITS INTO AN ARRAY.
RE USED FOR PACKING THE LEFT AND RIGHT SETS!
AL) -
EGE

’

Pa
VAL).
TEGERZ ROW,COL, VAL

s
m
=z
o

140%*

T

LS
W<
Mp2Z
Orr—
MY 0N

OO
Wi ZZn

c
-0

we O
>
=

il e

o Xpr)
IN=~ID D0

O & O NMON0
EOUN A~ MO
QO1 &0 D0

{] DNOF
4 kO~ A—= TV

Qo® is

NOEM VPN

"ZEND
150%%

NE DO

e DO
GVAr~N =
PO IN v NN

2COMMENT *%*xxx

— 160%*

$4¥¥;¥4¢¥4444¢¥¥4444;¥4¥¥4n¥444444¥44¥¥4444;

mMcCo
G)?U

" #COMMENTZ #x&xxe¥x

FEEFFFCRL AR IILSLRNBRAR SR RGP RN R RIRR AL RS R RRLER S

e e FPROCEDUREZ . QUTCH AR L0 dt 5 e o e e et et emg oo ssai n e et o < oo s s et e e s

ZINTEGERZ .,
#COMMENTZ PRINTS

SYMBOL WITH INTEGER REPRESENTATION =C-3

OUT_CHARACTER (61
170%* AvE2~IS[1447) #,C

gf(10123456789ABCDEFGHIJKLMNdPQRSTUVWXYZ-<>/,+.¢ﬂ *QO)3=
’

A5-4

\LGOL-60

(3.0) GRAMPA 01/06/73 11

ZCOMMENTZ X35 2o St s i St SR R R R AR RPN AR AN RF AER R XEFRRIRR R RS 2N 9

#PROCEDURFZ GETLINE .,

180%*

#COMMENT# READS A DATA CARD INTO -LINE- AND ECHOES IT ON THE PRINTER}

£BFGINZ

2INTEGERZ JS

£FOR# Jt=1 #STED2 1 #UNTIL# 80 2D0#
#BEGIN#

IN CHARACTER (AN, 2 (#042345678AARCNEFGHTIIKI MMOPARSTUVHXYZ=<>/ & ,2p *{) 3=t
AVEEISZT[I04F) #,LINELJD) S
OUTCHARILINE(/J7)) oy
190%+ CoR TR
FENDZ S
OUTPUT (61,2(2/2)2) .,
IC.=001
‘ tEND# OF PRO"FHURE GETLINE,
" 200%%

ZCOMMENTZ SR X FRA R F RN SR AR PSR EFN LR SRR IRF P CRARRPRR B RERFT S

24n*x

’
#PROCEDUREZ PRINTSYMBOL(POS,COUNT)}
ZINTEGERZ POS,COUNT?

T#COMMENT# °°INTS A s;

RETURNS A
OUNT OF T

tBFGINZ

ZINTEGER#? JyN,T,12,133%

- FCOMMENTZ CHECK FOR EMPTY SYMBOLS ... e e o e e e
#IF# POS= O;POS—-i 2THE
EEE%NALS[O,i] >0 2THENZ OQUTPUT (61,2 (£2(2<EMPTY>2) 22) #)$

"ZRTm
L DOH&O
‘“ﬂ—lz

@
-4
zZ »
N

we (MG
we N 1

m

M
[[IR

[]

m

219}
-0
mo

LS
UNTILZ 3 #2DO%#

<
=z
H N NN

o]

230%*

Ne=0, ’

2COMMENTZ CHECY IF
. T¥=¢IFZ PO0S>299 «£T
ZELSEZ TERMINAL

AS5-5

LGOL-60 (3.0) GRAMPA 01706773 11

e e .. 2IF % .T=N #TH D% LLYS .
gg AT A TIME SCANNING FROM LEFT TO RIGHT}
b

L eLox** e ... ZEND

o=T=TI2%(

A
t
S O
4
£GOTN# £IFZ

-1,
Lid #ELSEZ LL}

LL1t ZENDZ#3
LLZ!#END# OF PROCEDURE PRINTSYWBOLo

250%%
ZCOMMENTZ ¥ ¥ p s n s S ruy AR GRS F RN RO R R FR RN AR AR RN R R RN RN RR NN S

ZINTEGER? 2PROCEDURE# NXTCHAR.,

#COMMENT# 0OBTAINS MEXT CHARACTER FROM =LINE=-,IF PAST 80 THEN GETS THE
cer e ... NEXT CARD AND RETURNS. FIRST SYMBOL 3

#BEGINZ
ped 21 Kkl Lt TC!:TC‘-L!
2IF¢ IN>80 #THENZ

BEGI N2
GETLINE
GOT0#
E k3

LI

i

1

!
HHON
Z0-hng
N NOH

G
L ;
T L
0 3 .

s N Cls

DURE NXTCHARS

NXTCHAR
ZENDZ OF PRO

O l"l“'*-

S
{
270%% e
““}EOHMEfo'i&###:##*i*##;i#44¥44¥44#1¥44#;*;;;;44;444#4;44#4;
#PROCEDUREZ GETNONTERM,
ZCOMMENTZ READS NONTERHMIMAL FROM INPUT,PACKS IT INTO 3 WORDSS

2B80%F

B T T I

e=0sy IWNOo=LCOUNT.=1.,
T CHARACTER INTO-WORD[1]-3

AN =N N ww

IO OO0 OO =W
HZT AZ A e

00 RNl WO Zm
X O O —A®

A4

NPUT UNTIL NON-ALLOWABLE CHARACTER MET;
EWHILEZ I < 200

Ab5-6

\LGOL=-61 (3.0) GRAMPA 01/06/73

29nxx
#BEGINZ

#COMMENTZ TMCPEMENT CHARACTER COUNTS
_ LCOUNT .=t COUMT#Y .o

#COMMENT 2 IMCPFWENT WORD COUNT TIF NECESSARYS
#IFZ LCOUNT > 7 #THENZ TWNN, =2
2ELSE#2IF 2 LCOCUNT > 14#THENZ IWNO.=3,4,
3n00** #COMMENT2 SHIFT CONTENTS OF CURPENT WORD 1 CHARACTER TO LEFT
AND ADD MEW CHARACTER?®
WORD(LIWNOL) o=HIRD (/T WNO/) ¥4 ¢T,,
ZEND#£ 3
.. #COMMENT # Fgﬁg gS§H CODE -SUM OF 3 WORDS INTO WHICH SYMBOL IS
CHAR,=T,, WSUM .=&0RD(/1/)+WORD(/2/)+HORD(/3/).,
31 0%% IC1=IC~-1,
#COMMENT2 CALL HASH PROCEDURE TO EITHER PUT SYMBOL IN TABLES OR
CHECK IF ITS ALDEADY THERE -RETURN SYMBOL VALUE IN =NO-j

HASHIWSUM,NO, 1) 4,
- 77 T U#END# OF PROCEDURE GETNONTERMS

ZCOMMENTZ SX XXX IX LR EXRILFEXTFENFFNNLNEFRFX XA RN RN XN R XSRS
320%*
2PROCEDUREZ GETTERM,,
- 2COMMENT# 2EADS A TSRMINAL FROM INPUT AND PACKS INTO 3 WORDS}

#BEGINZ
ZINTEGERZ T4 WSUM
#COMMENTZ INITIALISFS
—— WORD (/1/) 4 =WORD (/27) o =WORD (/3/) =L COUNT.=0,, IHNO.-i.,
T T T#COMMENTZ SCAN GHAPAG TERS UNTIL A > IS METS)
#FORZ I.=NXTCHAR #WHILEZ I 39 £D0O
ZBEGINZ
#COMMENT2 IMCPEFMENT CHARACTER COUNTS
LCOUNT.=LCOUNT+1 .,
o 7 "#£COMMENT?# IMCPEWPNT WORD COUNT IF NECESSARYS
340%% #IFZ LCOUNT > "7 "#THENZ IWNO, =2
. #ELSE#2IF £ LCOUNT > “142THENZ TWNO.=3.,
#COMMENT 2 SHIFT CONTENTS OF CURPENT WORD 1 CHARACTER TO LEFT
ADD NEW CHARACTEPRS
/THWNO/) *64+1.,

ZENDZ 3

A5-7

ALGOL =67 (3,0) GRAMPA 01/06/73
' £COMMENT 2 CHFCK FOR SPECIAL CASE OF > BEING THE TERMINALS
350%% JE=NXTCHARS
$IF# J=39 #THEMZ

ZBSGINZ

WORD(/IWNO/) 4 =WORD(/IHWNO/) *¥64 +Jey
. CHAR, =NXTCHAR 3

ICt=IC~-13
ZEND# 2FLSE?
360%% £RCGINZ
CHART=J% ICt=IC-13
ZENDZ§
, ZCOMMENTZ FORM HASH CODES
WSUMe=WORD (/1/) +HORI (727Y ¢WORD(/3/) oy
#COMMENT? CALL HASH PROCEDURE TO OBTAIN SYMBOL VALUE;
HASH(WSUM ¢NOy 0Y .
3705+ #END# OF PROCEDURE GETTERM}

ZOOMMENTZ ¥ ¥ ¥ 2R SR S XXSRRR RESFSA LU EFIRRRFL R RN FF RSB R DXL R XRE RT3

PROCEDNURESL HASH(WSUIM,NO,S),,

#VALUEZ S.y, 2INTEGERZ WSUM,NO,S.,

¢COMMENT¢ THIS PROCEDURE HASHES A KEY
380%* . BYTS SYMBgL %ng TABLES ORF
BOL VALUE IS RETURND

HEME 1IS€N GTVEN TN

3
c
MORRIS SCATTER STORAGE TECHNIOQUE
gM 11 (1) JAN,1968 PP 38=-44 RANDO

39n**

ZCOMMENT 2 HASH KEY FROM -WSUM=3}
IHASH, =4SUM+

zZ>

LOnx*

Z2COMMENT £

Lit T1t=THASH+K
e cI23=2%%N1 3
IPTR,=(I1~-(I1//

+ 0
RO
A
»Z
Z~-

LE
;

Qm

we)] weM
I

N0l =0

P L NP
N N SN
~ LID

(NI N

®¥12) l‘io" .

A5-8

ZCOMMENT 2 NONTEPMINAL,
GO_THPAUGH FXACTLY THE SAYME PROCFEFDURFE AS FOR TFERMINALSS

LGOL~60 (z.0) GRAMPA 01/06/72 11
#COMMENTZ CHFCK TF PROCESSING TERMINAL OR NONTERMINALS
21F+ S = { 2THENZ 2GOTOZ LABLle,

Lin*s
#COMMENT 2 TERMINAL §
#COMMENTZ OBTAIN KEY ALREADY STORED AT POSITION -IP~R-}
IKEY =TEIMTABLE (/IPTR,1/) 4,
2COMMENTZ GCOMPARE WITH ~WSUM=}
2IFZ2 IKFEY = WSiMt 2THENZ
FBEGINZ
420%%
#COMMENTZ ENTPY ALREADY IB TABLE =-RETURN SYMBOL VALUES

. NO.=TERMT ASLE (/ZEPTR,2/) ey .

260T0# ENLe 5

ZENDZ 2ELSE#

ZIFZ IKEY=0 ZTHENZ
#BEGINZ
o &30%% - #COMMENT# ENTFY MOT IN TABLS, UPDATE -TERMNO-,PUT KEY AND
POTNTER INTO -TEG4YARLE-, PUT COPY OF SYMBOL INTO
-TERMINALS~ ,FINISH $

TEIMNO,=TEOMNO+L , ,

TEPMTABLF (/TETPy1/) a=WSUMay
TESMTABLE (/TFTP, 2/) o=TERMNO, y

NO.=TERMN O,

2FIR? T.=1#51EP£12UNTILZ 3 #D0%

o TERMINALS (/ TEPMNO, I/) s =HORD(ZI7) s
#GOTOZ ENL '
AN EE)

2END? #ELSE#

FBEGINZ ‘

#£COMMENTZ COLLISION, CALCULATE RANDOM OFFSET

N K2AND=MOD (5% KRAND,2%* (N+2)) } .

T1.=2%¥(N1+2) ,,

I2.=5*KRAND,

KRAND = 12=-(12//711)%11,

450%% COMMENTZ 6N T0 RECALCULATE POINTERS

7GOTOZ L.,

FENDZ §

LED** LABY,. IKEY,=NONTEPMTAILE (VIPTR,1/).,

. #IFZ IKEY = . WSUM. 2THENZ. .. e .

A5-10

(2,63 GRAMPA 04/06/73 11
#BEGINZ
ZCOMMENTZ PRINT OUT NON=TERMIMALS.,

? ;NU B SYMBOLZ) 22)) 4

MBER
£ 1 ZUNTILZ NTERMNO #DO#
<)BgZZD,SBt) ZyI) oy
’

540%+

A L S#)#/,/,58B,
22123 oy

55G¥*®

Pz 1 #UNTILZ NTERM #DO#

b 4
0
P
P

#FOR?
0 (£7 . 60BZZZD458B2) 2,1) 3
P NCHAR)S -

T SYMTAX GRAPHS

168,:(# SYNTAX GRAPH:)#:):)

78yt (fewmcmmac—ce- 3/ %) #)

(2 SYMBOL -DEFN. ALT. SUC.
Mo #)2,/78) %

-

*1
LHSSYM#2) 2,7,

-
[~hN—~ =

IO NN N

s >¢

1 ZUNTY!L 2 NGRAPH 2D0¢#

560%%

ZEN
e lleohg

?YNG[I,i],
b .

- e
oY WD
[t Yad pud
HONK M
—
e (D
O I N
NN
—~iND
e N
had ¢ Lo I H]
we-w
A~ W
N e
Z =N
—te N
VI Tee
< e
X~ J
e N
NN
lg'<N
P-dw]
NGYs
€ o (0
2NN
OHN
~e N
HSO
- e
o
e
- (Ne
Z<N
OZN
TN
>0
AN
- o
PYI IR Y
(W)

NnC QCHln Z
- Zwe e

OO0 YUeOr N
wo—f w4 Z

. 570%%

ZEND2 OF PRINT TABLESS

. #COMMENT# THIS PROCZDURE RgAg%

FCOMMENTZ F¥ ¥ RXRR AR ERLR SR URRRERRREL R AR RE R XN R RS LR AR ER R ERERE O

ZPROCEDURE# INGRAMMAR]

FROM CARDS, FORM

AS-11

LGOL=-60
580%*®

(2.0) GRAMPA 01/706/73
SYMBOLS AND SYNTAX GRAPH3

#BEGINZ
ZCOMMENTZ INTIALISE AL SYMBOL TABLES AND SYNTAX GRAPH YO

[=]
-e

ii.

> 59n%»

2FORZ T.=1 #STEPZ 1 ZUNTILZ 256 #00%
#FORZ J,=1 #STFP? 4 2UNTILZ 2 200%
NOMTERMTABLE(/I,J7) e =TERATABLE (/I 3J/) =04y
TERMINALS[0,118=03

F#FOR# T1=300 #STEPZ 1 fUNTIL# 557 #D0#

o

HON¥*

NOMTERMTINALSI T,438=0
ZFORZ T.=1 #STEPZ 1 #UNTIU
2FOR# Jo=1 #STEDZ 1 ZUNTILZ
SYNG(/TI3J/7)e=04
PRODUCTIONS =04,

ZCOMMENT2 TNTTTALTSE POTNTERS AND COUNTERSS

500 #£00¢#
5 #D0 ¢

NXTBOXs=14yNTERMNDO,=2393 TERMNOI=(}

OUTPUT(6L yZ2(£208,2(2*INPUT*£) 2,/ 4/ /2) %) }
""2COMMENTZ GET FIRST LINE OF INPUT:

GETLINE.,

610%*%

tCOMMENTZ T

x>m
-'lO

o)
[go L

HI
ST

Z
i

. H20%*

O RN OIX
M ~NHT -

Ze

GETNONT

PRODUCT PANUCTTONSH1 S RHQNOI:H!

M DSOS

CRL RS

e EIF 2

IRST PRODUCTION THEN FI

LL I I
fgg BACK FOR PREVIOUS OCCURENC

=1 2THENZ . . e

p
2COMMEN F N FIRST BOX OF
% RENCE OF LHS T
ot

.Z*II

N

~DOOD
Z DCorvee
D
- i1
£
g
-z
(X2
N
e pb

-

N

-y

=

0]

N

pe

M e et N Te
MNZ L Z—iee HZ

IDTPC oo ||
i -1 el ST RN

f

OOX~D OO0

AHNROMOD = OM DA WO = Ul I
MZ XIKRZZCMr T weNaAZV
Z N NosThew ONO N[N e

T
S
21
a
?

QMIZNZMIZ2ZiN

OXMIOM<<METO
3

HHNNTZONUN.

PERFOIM CHECKS TO SEE WHETHER NONTERM

por
™

A5-12

ALGOL-60 (2.0) GRAMPA 01/066/73

HAS BEEN MET BEFORE AND/OR DEFINED 3
tIF¢# NOMT%P”INALSINO y41=0 £THEN?Z

$COMMEMT 2 MET FOR FIRST TIMF AS A LHSS
NONTER*4IMAL S[NQ, 4)1¢=NXTBOX

640%x

SYNG[HXTRNX,5]8=NO?
#END 2 tELgti
#BEGTINZ
NIIF;8g0¥TfRMINALS[NO 941>410700 #£THEN#
tCOMMFMTt MET REFORE IN A RHS BUT NOT DEFINED 3
=NONTERM] (NOy4) =17 3
ITEPMTN $=NXTH

e
:)Q
we 3.3

0
AEN** X3

>
bt

TRACEBACK?®

pos
=
@
~
[N e

4
X

w2 DU)
L]

n=o

Ul JXee D>
=

Z
e) —4
O thee

THENZ #GOTO0# TRACEBACK]
3- .

DM€ 0o € ae Du
omzZzZizZi
IO OV

Z NN N

=

NED BEFORE,NON MET AGAIN
ATE

Z[Z

O,h]),
0# TRACEALT)S

SN

660** TRACEALT?

ZHG M M2

4N Il 0| =t [TI=dt=[\)
XiIHN<<ZP>X MX
‘Z—iZ-IU)l:} N (ZwinZ
Z2X wWZPed

[PYR TC) - pud

-e

Qe NO
WMXIOMm
Lol [0 Ean P20])
e DZ-IZ[Z P>
HONe

My eel> iy rteerm
e

OO Nl

ONUVUNHMG] SN NHGLEZH
ZZZTih

m
P-4
T} € o e 0w 00

N Ome W
7 Pt
5 D

IN FIRST COMPLETE RHS AND ALL SYMBOLS
ST ALTERNATE. SYMBOL

m»=0
i = K
MiTee
m=
=M
oAU

_eT0%E
STATE2?
ZFORZ Tt=N

Z\2

#6070z 21

HHNH
mmmm'n
[l auf uf el VY%
nuwu<er
ST
NG I N
U
N
) e |
TIT
mmmm-ip
ZZZX
HNITIN

680%%
GOON11? 1IF
RHSNO

o)
"

THEM#Z GETTERM ZELSE¥# GETNONTERMS

2

TN nnnn

BACK FOR PREVIOUS ONCURENCES OF SYMBOL IF ITS
-TEPMINAL TO FILL IN ITS DEF. POINTER}
0>299 zTHEN?Z

SRHINALSINO s 41=0 ZTHENZ

N TB0X4,2)0t==1
INALSINDO,411=10000 ¢NXTBOX S

> OO
ZZX"N-

tIFt MY
e e s e+ . #BE

z

=R
tCOMMENT

T >?

G

b 4

CLSFE2

N}g;%INALS[NO,4]>1FO“0 #THENZ
NGIMXTBOX,21 8=NONTERMINALSINO,41-100003

WNHALZUN WO NI
HIMODLDZZD
MAZZ ZMONXEPO

mDﬂ-ﬂZXH

<mZZ

A5-13

ALGOL~6N

700%%

(2.0) GRAMPA

NTEPMINALSINO,4)8=NXTBOX+10000}
In¢ #ELSE¥

XTACX, 21 t=TABS(NONTEPMINALSINO,41) 3

-

01/06/73

11,

SOR P
2 SYN
X NO,

mmm
oOZV
-
P2
Z Ze

EMPTYPROD
0] &+ -

.720%%

£COMMENT#2 STATEI PROCESSES SYMBOL AFTER A / 3
STATEB:

SYNG[DEFB0X
#FOR¥# T1=NX
ZCOMMENTZ C

s CHARS=T}
_ 2IF# I=LY ’

¢

~
[
TIHN mwy
o
ZO0mMZ omi
B
L]
£ NXOTVZ
e MANMN
CMNINITMO HT -
NI D ee
BUMECE B4

=iy
NNTLA M AN

31t=NXTBOX-1}
’

MO« IDWMG

Nuumn
—Z 0.2 uMm

=TI I| HFr 42230 TmO
TNZD=e

HO=O O~ WY
mm4x

NNOH<EMHOOH<
LU e

3y
2
N

[o]

GETTERM #ELSE# GETNONTERM3

T -
%2 B I

1=PROQUCTIONS+1 ¢

=<
IO W

40 ZFT) ee

ILL TN O=F, BOX BY CHECKING BACK FOR PREVIOUS
>2ANN>299 ZTHEN#

ERPMINAL SINO,L)=0 2THENZ

TROX, 21 t==1
11NAL§[N0,41: 13090 +NXT BOX 3

HNOO N
- /
=583 =
O
TUTIXZ [1
R]

o

>

OCCURENCE 3

MNANZUNN HRIOHN Dwe
Hmho<mzzo >

EPWINA'S[0y41>1000 ZTHEN#

IN
ENXTEOX+21 1=NONTERMINALS [NO 41-100003
ERMINALSENO, 41 8=NXT30X¢10000

»

AS5-14

LGOL =610

(3.0) GRAMPA 01/70€/73

Nz ZELSE?
BOXy 2] $=TABS (NONTERMINALS(INOy4]1) 3

#ENDt

i1

THD**

Z2COMMENTZ END QOF INPUTS

14

FIN.

T770%%

. SYNGIDFFROX. 451t=LHSBOX} -

NT

OMME M
TPUT (R
TPUT

O™
ceo
o~

PRINMT
2(£+¢
ol 2 (2

780%% £)#) 3

4+
(

Oy

E
.08, Z(ZNUMSER OF PRD
(ZNUMBER OF NON T

wn-Zm

MAR ISt
5RINTSYMBOL(SFNTENC:,NCHAR)y

2COM
_2FOR
ZIF#

H!‘TERHNO'
F?M.=NT°RMNO-2
=NT

GCS1z

gR
E

2

» 0
Hx
-’
Z
=
o
Z
—
m
)
NIXO
Ne w0

CLEAR LISTS OF UNDEFINED NONTERMINALS -SET TO ZERO;
230 £STFP# 1 ZUNTTL # NTFRMMO #DO

TRACFt T

e BLEE)

MINALS(I,41>13000 #THEN#

"R
£
(6
Y
T
M
G

i

8ON**

NN
i Z,00 0"'

?

cuHoquz VD Zjee -
o OPmRMO- CHAU N
wel_wel Z02ZW 4Zﬂﬂ

J
0
P
Lo
™

HEN 2 tGOTOi TRACE 5

~810%*

ZENDz OF PRNOCEDURE INGRAMMAR?

ZOOMMENT 2 S¥X FEXRSXRFXNIE XX IRX AN LRRF FXRRNFRFRXFREREX X FIRREX S

A5-15

LGOL=-6N (3.0) GRAMPA 04706/73 11

#PROCENUREZ PRINTGRAMMAR S

tBEGINZ
2INTEGEZRZ I4RHSPTP,J,J1,JSPACE,NCHARyK?
B20a%x OUTPUTIBL 4 2(202)2)2 OQUTPUT(A1,2(%/,/,28B2)%) }

A SRR AN AN AL 150 S-S I XS0 RIFITLEIIN S

#FOR7 T1=200 #STEPZ 1 ZUNTILZ NTERMNO 007
OUTPUT (61,2 27,7 2) £)3
RHSPTRE=NONTERIINALSET, 5613
ZYF# RHSPTP< #THENZ OUTPUT(61,7(#2B, 2 (28%) #, 2B2) #) Z2ELSEZ
OUTPUT(61, 2 (2582) 7) §
PRINTSYMBAL (I, NCHAR) $
, B830%® JSPACE1=21-NCHAR §
. #FNRZ Kt=1 #STEP# 1 #UNTILZ JSPACE #DO# OUTPUT (61,2 (£B8%2) %)}
QUTPUT(RY ,2(Z£(£ 3= Z2YZ2£#)£) S
J1=TABS(RHSPTP) Y J11=J}
FIFZ J=0 #THEMZ
#BEGI M#
R .. OUTPUT(641,#(##(2(NO RIGHT SIDE DEFINED IN THE GRAMMAR) #) ##) #}3
2GOTO# NEXTI®
. ZENDZ
RiLf¥e RHSP2t #2TF2 SYNGTJ).,11==1 #THENZ #GOTQf2 TRACE ZFL SE#
#IFZ SYNG[J,21=0 #ANDZ SYNG[J,11<300 #THENZ
£BEGIN?
OUTPUT(61,¢(¢¢(¢<¢)11)¢),
.. PRINTSYMEQL(SYNGIJ NCHAR) S
OUTPUT (A1, 7(22(2>2) % éat)t):
2END? ZELSE #
2BEGINZ ‘
N DRTNTQVWQO[(QVNGTJ.1],NCHAQ)!
QUTPUTI(51,72(228%) 2}
850%* 2ENDZ $
o __TRACEY JI=SYNGTJ,413 i N .
2IFZ J°=0 #THENZ #GOTO# RHSP}
JI=SYNG[J1,31¢ J1t=J}
2IFE Jo=0 FTHEMZ
v 2REGINZ
QUTPUT(A1,7(%/,3187)) ¢
260702 RHEPS
- ZEND#S

NEXTTS
#FNDZ OF MAIN LOOP:

r ZENDZ OF PRINTGOAMMADS

A5-16

11

01706/73

GRAMPA

(3.0)

LGOL=-61

L BTN®ER ZCOMMENTZ¥ ¥R AR RX SR XARRRRRFRL R FF R R R L XN SRR R FEEFFFRRRERRRN S

TEPZ2 1 2UNTILZ N 2D0%

E3=2TRUE# 2ELSE# SII)$=2FALSE?#

£S
ONET, 413
THENZ ST T 1=

[
n
Y .
[
(I8
u.
o
o |
[@]
2]
b
>
[72]
oo -
- N wm
Z W
V] tee W
[72 S B T -4
[Tt w
T N Ol T
N - -0
O . N -
0O L W n;mw
* O IO FHFwZe
0] Tl
Z U M MO
W W Oar =«
w® O I A WY
- D o —t
- XY ~ =IoU
- - OHZ
Z X - Z 7>
o 0 W be—Wn
NN DO
< o N
“ W oy N
w HNi—Le=N
b e NZZ0XOOU
0O HWeZwld Z+
WHE=$F T >N
=ZZ «X-F 0
Laa 21Tl ek N o “N
HHEHIZ—=N O N
W < [ow wH
o oceln L
- OZVIE N NW
<AMEN | TIDZ =D
b S TR T = QN e
Z Neww ONNO I3 v
W RN v O
I e [Zo i~ >
= WHN MHYNNN (7]
- N
N Ol
eall, ZuL.-0
N oL ;
CiN ooy ¢ i
(TR T TT R
Wi
NN ;
[+ 4 . :
W
[i
L) §
" ¢
; * {
i’ [.
i 0] j
; o)
a ! a

2GOTO¢ SUC £ZFLSE#

o
-
[an]
<
w
N
o
z
-
u.
(14
o
u
N
[w]
-
o
w o
~ w
-
on []
- -
w <
o } =z
o o e
- w O
H - 2
H e 7]
Lol
- O s
- DOk~ O
— NX -
7] uw O
I N2 O
() o L8
uw =0 -
Clheet
N O —~Z
Z Numy
[an) > oI
O NWODI-
W WIFeN
ety O
HH INZO
O L= > I
b - V] §
W wi=
NHTI e
OT™N
Z0
Wi o p=joo
HENYHNN
! o
Pz
i W
; T\
[
] P
j Z
=
; (7Y
: o]
H O
j u
:
» 5
% :
= 4
<«
o

®
?

#60T0# ITERATE

0
2

F
RMINATES. ...

Zu ul

°
H

L 1.
L]
=
> e
nxT
")
zn (@]
-~ 6 enp—
ZZ~0.O
© 2Z =0
ZHOIN
wfYZ o oo
Cld ("4, XN
ZUO0 a2 r
> Wz Ui
Vi > o1 =
~ Z N - T
Ltk W >
FHNN (N
w >Iow
- TuieZ
iergyOMO
oTrouv
> T b~
W UIH Z >
Ll o =1
KZHN o
po B+ R N
oNLwNL i
WO Z e

#800LEANZ FIRST
DEL S

F

#TRUE?

ONTAIN SYMS

T3

ONW

0
R

L3
*

RHSS THAT
NTILZ N #£D
Iy%]) FI

- D

TE AL
£ 17
S (NON

esili0 (O
[TR o
it L=
~OWnN
— Noe
S = S|
w e
T ZClee
w> ™My
TN I
bt | oo
NZZ N
ow 2
COZT N
N o
r HOOW
o.ZOou.o
HN NN
YL /
L L)
-0
LTS

DELA. .

A5-17

11

01/06/73

GRAMPA

(3.0)

\LGOL=-60

b,
[FY)
wn
-d
[FY]
N on
P-4
o~ -
] 'y
- o
P4 o
[[T
Zeon
O~ W
Z™~ W
ot W
on O e J
- < W
| Pets N
[~ (724 o
-0 O (&
7] WiZ eed 3
S] =W 7
ZzX wzZ N
Wik~ Do N by
X LS Z (&
- oMl [
H % oI q
[F1] W I- (L
ol Z i =N e
> Litee (D -
NQesX TeZO 3N
N ol -2 L=
MM W N b4 T
il o ~ T X
rZ™IH CweN (Gl
pr4 TN NZUWN ZH
=X O MO0 >
O ZUV Z A NG
HNZO>M N WHNNI U
2>0QUIHNL W llep
LINW I W2 NNV N
o 24 W NOJ
=N TINO QUi N
b AT TR Y] ZCNN L
—Z e i we 2
ONHYNN TN NN
it O . OO
r s r2ZW
N ;. NN
i o) i
L.l i
=0 /
HH
3 .
: f
b 4
C J—
=}
.n
" ; *
* ’ *
[~ H [~
» : <)
o i (o)

7

#G0T0# SUC3

g50%*

w

(L&)

~Z

Wi

Qb=

zZ

wd

-

Z =

Wz

(720K

L

ZQ

o0 o
z -~
oON Z
ZY e
oy ©
VO o
2w M es
>b= s
na +~
[L N LR
INZINRIT 2
O O> ae
0O ZgS
wee YV ()
WL Y ()]
- Z < oud
M= > M= O]
a0
Nk WO

HNNNNN

E NONTERMINALS AND RULES THAT CANNOT"
#USELESS NON-TERMINALS?) #5/,58,

o

-~

LS

Q -~

W

“ o

[Ty

Z N

~d

A

b .3 o

- X

[I &

- Qg

Noeonww Z N wd

e OON D Zh~

~IE s N2

=—0Om (G101

o U Al

Zul = m3

N NN GO
ZlWlel wen(y
CdZN~LIN
ZU' eW—2Z
OTEN~NW

LIN Ol
FULIOH s ws

FHOONHN

960%*% .

H
o
>
-
-
-l
-
2 1]
<I
x
(&)
<
kbl (1Y)
”~~ R
g v W
IZ (=] (@
[N . q
zZZ W
[=] vy e
—-Z - WA
~ -~ g O
had LD < ZN
[a}-4 - W
Q> E -
b 7] o 2Zr
b —ut w WA
Nles ‘= N3
N Z NN
ZWo O e
MoZ Z e
[V 41 TT] -
OON X 0O
@ Ooq
W aty
I e
Q owv
[« 1
e
YO (=
aZ [
P 4 [2N
=N o
T h= o
YZ M
o it
= oW
Z¥ i
-O Q.Q
“O Ou
P.i,lpj
[
N
P &
N
[
; »
A]
P~
A <)
FY —

PDII+113=03 #END#}

ALSE#3S

~=0 £THEN#

[Ky2]
SYNGIK,41%

Z o

Sy
K1

SucCs

g8f**

MINAL TO PD LISTS

A5-18

»

\LGOL=60 (3.0) GRAMPA 04/06/73 11,
ZEND2#$. ~
KE=SYNGL K, 413
A £IF? ¥~=p #THENZ #GOTO? SUC #ELSE?
: 2BEGINZ K1=JL=SYNG(J, 31}
gan*s £IF% J~=0 ZTHENZ 2GOTO2 QHQ!
ZENDZS
. ZEND# 3
ZENDZ OF THIS MONTERMINALS
_2COMMENT# T GCONTAINS THOSE NONTERMINALS THAT ARE REACHABLE., NOW
DELETE THE UNREACHABLE NONTERMINALS
, QUTPUT(QCH, #(#/,/ 4/ 58, #{ #UNREACH ABLE. NON-TERMINALS®) #,/,58,
25 (2(#=2)#),/2) 2) }
. ZF0OR Y I!:?ﬂ’l 2STEPZ 4 ZUNTTLZ N £2DDZ
2IFZ ~TUI] #THENZ #BEGINZ
, 1000%% OUTPUT(OCH, 7 (#5B#)#) §
PRINTSYMBOL (I,NCHAR) §
et e e DELE TE CSYNGy NON ,N,I) §
2END#3
, PRINTGRAMMAR}
21F# STISENTENCE1 #THENZ OUTPUT (OCH,
v 2(t*, /2 (277777 SENTENCFE DEVETED//Z//772Y22) %)
ZENDZ OF AOMISSABLES

v ’ . -
1010%% ZCOMMENTZ* XXX ¥R ¥R XX FRRNEXFREREREREENPR XX IXSER X RRRRELER ¥¥¥¥¥;

’*Nw““”WWEEQMMEthiiéiiiiti:i#%iiibih;tii;#i&t;t#;;&;;*;;;;;;#;&4;#;;;;444;;;44;;

1020%%
MAIN PROGRAM

L Y I T T S R R R Ry Y X

v oo FGOMMENT 2 PRINT TITLESZ i o o
#FORZ _Tt1=1 #STEPZ 4 #UNTIL# 10 #D0# OUTPUT(61,2(2/#)%) 3

OUTPUT(61,£(228B%£) %)}
1030** GETIT E, L2EORE Tt=41 2STEP 2 4 ZUNTILZ 80 2D0Z TITLEIT 1=t INFIT]}
OUTPUT(61,2(£2288%) %)}
> #FORZ It i #STEPZ 1 ZUNTILZ 80 #00# OUTPUT(61,2(2#(£=%)22)7%) 3
b s e QUTPUTABL g 2(22£) 2) 5 et + = e s e+ e+ o e e e e
#COMMENT2 SET CONSTANTQ USED IN PROGRAM?
: Ji.=642 J2.=23%
ONEFILLG4, =0,
v 104Ln%¥* #FORZ I.,=1 §TF°¢ 1 ZUNTILZ 12 #00#
ONEF ILL4.=0NEFILL4*16+1-,

Bt t s s e [EOTTR

> ‘ Ab5-19

»

-

LGOL-60 (3.0) GRAMPA 01/06/73 11.

"#COMMENTZ #*sxxxxxx¥xxx CALL PROCEDURES TO BE USED “#¥¥¥¥nssnxsssyxsssys

2COMMENT 2 RS L L AL TSI SIS L Ll
»
> 1050%% IMNGRAMMARS
ZCOMMENTZ REEFTRNFERRFIDEFFRL RN}
: T TTRRINT TABLESS
2COMMENT 2 FARRIRERNRERFERRBFE SN TN S
> PRINTGRAMMARS
#COMMENT 2 REAFUR R REARAENEE N XY 2
’ ADMISSABLE (61,SYNG, NON%ERMINALS,NTERMNO,300) ’
. 1060%% e e e e ..
ZCOMMENT ERX I IR R SRS RS RS RS R S
" 2COMMENT 2 #4¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥&¥g\

ICOMMEMTt*‘*****‘**“'***‘*‘*’*"****"'***‘*‘**‘*‘**‘*********‘***
BEERFERF LA LRI SR AR R RN R ERLE R A RR KRR R R RER LR RE R FEN XE R KRR BRE ¢

?
:COMMENT¢ THIS IS THE SECOND MAIN BLOCK OF GRAMPA CONTAINING
HE PROCFNURES FOR PRECFEDENCE ANALYSIS FT

> ZOOMMENTZ** ¥ ¥ ¥ XXX LI XX FLE R X XNB XA FE XN XN SR BAR SRR RS DA SR KRN RR R SRR RER R
BENERBRDARFRNRR R R AR EFREFER RS SRR X SRR EREF R RN AN R XX SR S

" 4070%*

2BEGINZ

" 4paqQx* ZCOMMFENTZ IDENTIFIFRS USED

; - PMATRIX - SQUARE ARRAY WOLDING THE PRECEDENCE MATRIX,
- LR ARRAY FOR THE LEFT AND RIGHT SETS

] . = GONFLICTABLE - HOLDS THE TYPE AND SYMBOLS INVOLVED IN

Y . o PRECEDENCE CONFLICTS o
< NGCONFL = ~A COUNT OF THE NUMBER OF 60NFLICTs:

2INTFGFRZ 2ZARRAYZ PHATRTX(Ii..ST7F+?ﬂ.1.-(SIZE+1911112§1IJL
i LR(/300, e NTERMNO+20,14s 2* ((STZE+19) //75+1) /)y
1090%* CONFLICTABLEL1820,1151

¢INTEGER¢ NCONFL,

H
;
;
5
i
$

ZCOMMENT 2% #55 FX SR SRR SR FARRRRNNAE R AR LA SRR X RRRNRR R ERENKE

) ZPPOCFNUCFZ FMPTYCHECOK(FXTTIL ABFLY §
y ZLABELZz EXITLABEL }

#COMMENTZ THIS DPOC:DUDE SCANS THE 4TH COLUMN OF THE _ARRAY
, =NONTERMINAL S~ TO CHECK FOR -VE VALUES INDICATING
-.1100%* e JTHAT . THE EMPTY STATEMENT EXISTS IN THE LHS} S -

g A\‘-

ALGOL~-61 (3,03 GRAMPA 01/06/73 1

ZFORZ I:1=300 #STEFZ 1 #UNTILZ NTERMNO #DO¢%
ﬂiég ggmcpw INALSTI,L)1<0 £THENZ
’ OUTPUT(Bi,t(tl L y/y/ t(t THE EMPTY PRODUCTION EXISTS IN THE GR

C1110%* \WUN,¢~N,M“Q“ww“wﬁmmwﬁiwm5*%ww

ZCOMMENT 2 ¥ XX 2 X R XS RXR S ¥ SRR EFERRRFF AR KR BRR XA RRRE RS R XREES S

#PROCENDUREZ LEFTRIGHT,.,

tCOMMENT! THIS PRCCEDURE FIND
et o n e vt i wem = o -NONTERMINAL SYMBOLS

. 1120%* . #BEGINZ

> ZINTEGERZ #ARPAYZ PATHI4,4.241 ., NGRAPHI,TNOT41,,21}$
2INTEGERZ I,JyNEFyNLyNRyPCyLCauy

S THE LEFT AND RIGHf SETS OF THE
, - < . N . - . - - -

ZCOMMENTZ ¥ SRR RRE X R SRR SRR RR NN AR AR KRR E RN RE RS RR FERERE S

WUV 3 ’

. #PROCEDURE# LDEF (DEF),.y ZINTEGERZ DEF.,
1130¥%* ZCOMMENTZ THTS PROCFNOURFE FTINDS THE LFFT SFT OF A NON-TERM

WHOSE RHS STARTS AT ROW <=DEF-}
’ 2BEGINZ

* S s e v e s e Saws A o N e

#INTEGER? T,DEF1:
:conwsnrfncsr VALUE OF SYMBOL AT ROW =DEF=- }

b L Ca=SYNG 1138
ZCOMAENTZ Te THE SET L TS EWPTY, THEN INSERT SYHBOL
, 1140%% 2COMMENTZ TF THE SYMROL TS ALREADY IN L,THEN CARRY ON AND
CHECK ITS RHS3
" £FORZ T.=1 #STEPZ 1 ZUNTILZ NLZDO L
IIrF GETIfLRPE T Lo FTHEN. 60702 L3es
£COMMENTZ INSERT SYMBOL INTO L}
NL.=NL#*+1,
PUTI(IR,PE,NLLIC) oy
ZCOMMENTZ CHECK THAT SYMBOL AT ROW -DEF- IS A NON-TERM;
» 4450%% 13t 2IFZ SYNGIDEF,21°=0 #THEN SRR
£BEGINZ
#COMMENT # GET FIRST SYMBOL OF RHS OF NON-TERM IN
DEF1.=SYNG (/DEF2/) s
£COMMENT # CHECK IF THIS SYMBOL HAS ALREDY BEEN
SCANNED WHILE FINDING THE LEFT SET OF THE
e L CORIGINAL SYMBoL$ - T
P ATHCHK(DEF1yLbyd) oy

AS-21

»
ALGOL~60 (3.0) GRAMPA 01/06/73

»

»

1160%* U U

A
/)PioéTPAE

11,

>

1170%+
MT2 GO _THROUGH A SIMILAR PROCENURE 10 THE ABOVE

ﬁiGINAL SYMBOL HAS AN AL TERNATE RHS3

LOOP TO FIND THE LEFT_SET OF THE FIRST
BOL_OF THE ALTERNATE RHS}

NN

e
1y PATH(/1,INO(/1/)7)¢=DEF1e,

W00
mMoOZr»m
& +d TN}

1180%%

L5t ZENDZ OF PROCEDURE LDEF$
“NWM“NM“WNMWM¢CQMMENT¢‘§¥¥¥§¥¥§¥!¥!{¥¥¥¥¥¥444¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥4¥¥';

#PROCEDUREZ RDEF (DEF) ey Z2INTEGERZ DEF .,

ZCOMMENTZ THTIS PROCEDURE FINDS THE RIGHT SET OF A SyYyMmMAa0l

WHOSE LHS STARTS AT ROW =DEF-}
2BEGINZ

" #INTEGER# I,DEF1}

COMMENTZ STORE =DEF- IN ~DEF1-3

1190%*

Cteomw T T e e

NON THEN
S

tCOMMENT# CHECK FOR A SUGCESSOR SYMBOL,IF HE
END OF THE EXPRESSION;

ARE “AT_THE RIGHT HAND
LLt 2IF# SYNGIDEF1,41=0 #THEN?Z

EGINZ

OMMENT 2 S ? UE OF SUCCESSOR SYMBOL}
’
4

MENMT £ T Y THEM TNSERT SYMBOL S}

T
SYNG(IDE
H

YMBOL ALREADY IN R}
ZNR#D02

)
IL
Lg tTHENi £G0OTO? LZ.,

ol

M
z
'
NR
PC

-u—h*ozxu

oreN
Ce2 0

1210%+
MNz #F| SFZ

GINZ

I
TM T# UPDATE SUCCESSOR POINTER AND REPEAT CHECK,
0% - ‘

EN
=SYNG(/DEF1,4/) 4, #0T0% LL
?

%8
#C
LC
ZC
2C
2F
#1
OMME
NR
(L
ZF
8
#C
DE
£33

E
0
F
N

»

A5-22

‘ALGOL-60 (3.0) GRAMPA 01706773 11
12204+ 2COMMENTZ SEE IF THE LAST SYMBOL SCANNED IS A NON=
. IF SO THEN FIND ITS RIGHT SET AND ADD TO
OF _THE ORTGINAL SYMBOL $
; L2t #£IF# SYNGINEF1,21°=0 ZTHENZ
£BEGINZ
e DEF1,=SYNG (/DEF1,2/) o 5 ‘
PATHEHK(DEF1,L392) o -
INO(/2/) o=INO(/27) 414, PATH(/2,INO(/2/)7) e =DEF1.,
> RDEF(DEF1) «y
1230%*
> ZENDZS
e . .. #COMMENTZ CHECK IF THE ORIGINAL CALLING SYMBOL HAS
ALTERNATE RHS,IF SO THEN FIND ALL THE RT
L3t #IFZ SYNGIDEF,31°=0 #THENZ
»
Z2BFGINZ
; DEF1e=SYNG (/DEF;3/) oy
qoupes PATHCHK(DEF1,Lhy2) oy
INO(/2/) =IND €/727)¢1., PATH(/2,INO(/27)/) =DEF1,,
e e RDEF(DEF1) ., Joo e Rt
ZENDZS
148 ZFENDZ2 OF PROCEDURE RDFFE!
, ZCOMMENTZ ¥ S ¥R R2R X B A RXS R SXRN X R R SN SR RRERFFRX KR RE R NRERR S
4250%%

"TT#PROCEDUREZ PATHCHK(KyL3J) oy 2VALUEZ Jo, 2ZINTEGERZ KyJa,
#LABELZ L § '

ZBEGINZ

P
Q-

1260%*

1 ZUNTIL# INO
PATH(/JsP/) #THF

RACED THROUGH
EF* TO CHECK

p1270%*

FRZ
ZES3=(S S DR Y -1 5 B R

£COMMENTZ

: HE SETS
e < e e EFORE T 4=2019 #STEPZ 1 ZUNTILZ
1 #UNTI

S0DY OF ®LEFTRIGHT®*,,
#COMMENT# INITIALISE T
£FOR% J.=1 2STEP#

11

01706773

A5-23

GRAMPA
P#£ 1 #UNTILZ NTERMNO #DO2

c
-

300 £ST

~LRIIyJ18=0%

#FOR# I
ZBEGINZ

(3.0)

1280%%

ALGOL=-60

»

’

L]
i
o
« N
e O
0
w o
< U o
Z Hee ¥
< " «
Q NI w
N Za
. w
wi> T =Z
no +~=0 o
o<t N =z
o~ L) | ol

o> 4D G
~ OlWwea U
~ Z-Zo/N
wi WNZ-HO
~ -4 HITUWN
had ~OY 2
O 0Ny

= L N7]
- ~FCHU
<z OZTaZUu
W —WwHd
ZEeUT I T
HNEHOIT =N
«Cll Ol OUu
O e HOLIOH
IZROW ROH N
%

H

3

EF}
RIG

HT SETSS

DEF
I

nec »

:
N

<~

1
F

{2
EFT
{DE

#ENDZ# OF LOOP TO OBTAIN L AND R} .

pupu N

AT
T
DE

[« TR] < 4
HO =«
Lol []
N~
Ll ol TR
«Z L
-uo
(S
IIxu ’
~Ow
IO0
[a N

1290%*

.
?

ooty 2,721 2)

J¢SIZE)™=0 20D0%

20797
22’
230,

S
2007

R T
)

[
?

LRyIyJ) ey

A

E(AGETQ(LR,I,J)‘=0 #0002
JGHT PART

P

BRBBZ) £,1) o
T

H
R
I

L4

BB3B#£) £, 1)

£) .
D,
G
(
N

I
s 2 (2 2
. #UNTILZ NTERMNO

7

ng,2(#R
L2)2, 208
STEPZ 1

QUTPUT(R, 2/ g/, /4/,2)2) %

¢COMMENT¢¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥l¥¥¥¥¥¥¥¥¥¥¥¥#¥¥¥¥¥¥¥;

#COMMENT 2 PRINT OUT THE SETS})

OUTPUT(61,2(2¢%) %)
ZEND# OF PROCEDURE LEFTRIGHTS

LeT

1310%+
1320%%
1330%*

~1300%%

B T .

11

01/06/73

.
1

Ab5-24

°
?

THE PRECEDENCE MATRIX BY THE
-PMATRIX-

ES_INTO
+NTEPM=299
¢ NTERM=29493

GRAMPA

£
c

#BEG IN
#INTEG"R? 11,12,S4,S2,CLASH, I}

#COMMENT # =~====PROCEDURE *PUTM* e;ae=j

#PROCEDUREZ PUTM
FVALUEZ T3$ZIMTE

|

(2.0)
.. #PROCENDUREZ WWPRECEDENCES - ..

Z#COMMENT 2

1340%*
1350%* .

M GOL-60

=13

SERT SYMBOL}S
ET4(PMATRIXyI1,1I2)

zZ0

$COMMENTZ PROCFSS COLLTYSTIONS

ZELSEZZBEGINZ

1360%*

-

on 2
[T Y W
0 e >ul
>m ax
e T
no w
Z o Z >
QO el O
HONY <2
nunIT wo
~ O e
-t ~ 0D
- N <
QO «C -t
Qb= it
NO XO
i—D [&]
P N WL e
(=& o] a1 TH 7y
-t C
DeZ ¥ O
Oxw O
di T enliQ. 37
I O = O > >

1370%*

N
o
o] X
w NN
<
-l I
sl N O
—~HZO w
—-CZ ™~
20 i
aZN 0
N HZ

NN wl)
Ot WY
=N X

O <TINO L
R =ZONWM
FOOH ZW

r
b
.

;
H
{
i
j
4
3

T INFORMATICN INTO

C
H

tCOMMENT# UPDATE NOe. OF CONFLICTS?

_PUTL &t NCOMF| s =NCONFI 413

1330%¥

1390%% .
\

AS5-25

LGOL-60 (2.0) GRAMPA , 01/06/73

-e

vlole!
(nlgle]
ZZZ
e
[L L]
[lely]
)t =
[vefos o]
-rr
mmm
~rtr—y
Lae Lo h o]
- - %
(U B oY
(S Ty
e oo oo
LN
e d
N>
wesao\)

CHKEND S

11.

ZENDZ PROCESS CONFLICT}
1400%% e . ZENDZE OF PUTMS . o e

e o 2FOR
141 0%+ '

#COMMENT #
e===="RULE 1 CHECK FOR = }

" #COMMENT# THIS RULE INVOLVES SCANNING DOWN T
GRAPH FOR SYMBOLS LINKED BY A SuccC

_1420%> - ZFOR 2 T,=1 Z<TEPZ 4 ZUNTILZ NGRAPH 2D0OZ

mX
wnm

NG(/TI,4/) = 0 2THENZ£ZGOTOZ L
G(/T,1/)ey I2.=SYNG(/SYNG(/I,
12,09
ERdLE

#COMMENT #
1430%* =-=== RULE 2 CHECK FOR < 3}

o e e FFOR# T =1 #STEP# .1 #UNTIL#. NGRAPH #D0% e e

#BEGINZ
#IFZ SYNG(/

= 0 #THEN# #GOTO# L11.,
SUC,=SYNG(

- NN
Nvu
~¢
e J

ZIFZ SYNG = 0 2THEN# #GOTOZ Li1i

14 4L0%% e e
L1244 I1.=GE
I2.=T2¢1,,

UCy1/) 4

HF WO NN
NAOR <4 UNHH

(
E
) {

in., PUTM(I3,11,2).,

QO <Xe e ZZ Coe
M| Z&e ON OFE»
_—

S
2
/
(

Cre
Of =i N

#2IF¢ I2>SIZEv
2ZEND#3

"Li1t ZEND# OF PULE TWO 3

)e

I
TO (LR 12)=0 #£THENZ#
Leots

2 L11 ZELSE# #60T0%# L12.,

" A5-26

>

»

ALGOL=-60 (3.0) GRAMPA ' 01/06/73
CUABGORE e e
. #COMMENT #

-=-== RULE 3 CHECK FOR > 3

11

3

ZFORZ T.=1 2STEPZ 1 #UNTIL# NGRAPH #DO#

e ZBEGINZ .
T 2IFZ SYNG(/I,4/) = 0 2THENZ #GOTO% L13e
 1460%% £IFZ SYNG(/T,2/) = 0 2THENZ 2GOTOZ L1i3e,
SUC, =SYNG(/ SYNG(/Ty4/)51/) 4y
: L148 T11=GETO (LR,SYNGLI,11,I2+SIZE) ey
PUTM(I1,SUC,3)} |
I28=12¢13
o #IF# T25SIZEVGETO(LR,SYNG[I,11,I2+SIZE)=0 #THENZ
: #G0T02 L13 2ELSEZ 280T07 Libe s
, L131 #END# OF RULE THREE 3
14 7q%
ZCOMMENT 7
—-e-= RULE & FURTHER CHECK FOR >
#EORZ.T.=1 2STEPZ 4 #UNTILZ NGRAPH #00% 3
#BEG INZ
2IFZ SYNGU/T,4/) = 0 £THENZ #G0TOZ L15,
2IFZ SYNG(/T,2/) = v _SYNG(/SYNG(/T Q/),Z/) = 1]
tangen ZTHENZ 2G0TOZ LiSe, .
" %gC.ZSYNG(/I AV TN
T L16i“1§:5%5%§{LQ SYNG{ I,11,I1+SIZE)S
L4178 I4t=GET9 (L2 SYNGISUC,11,12) 4
. PUTM (T3,T 6,353
T2t=T2+18
y #IF2 I12>3175 vGETQ(LR,SYNGISUC,1],12)=0
#THENZ #GOTO# L18 #ELSEZ? 2850T0% L17.,
_4690%% [418% I4t=Tie¢d13 .. . T
#IF2 I1>STZF vGET9 (LR, SYNGLT,17,I1+SIZE)=0 #THENZ
7GOTOZ L15 #2ELSE? #GOTOZ L16.,
, L15t ?ENDZ OF RULE FOUR 3
[£COMMENT# THIS BLOCK PRINTS THE PRECEDENCE MATRIX NEATLYS
e e o o s
1500% #INTEGERZ LL,ULS
ZCOMMENT# PRINT PPECENENGE CONFLICTSS
#IF# NCONFL=0 #THENZ
#ELSggTPUT(61’ (2747 3/ 479108, 2(2¥N0 PRECEDENCE CONFLICTS*#)#%) %)
T TIBEGINZ
OUTPUT (64 32 (#7497 5731082 (2PRECEDENCE CONFLICTS#) #5/2) %)}

AS5-27

ALGOL=-61

1510%*

(3,
#FIR

0) GRAMPA 01/06/73 1
2STEP# 1 #UNTIL# NCONFL #DOz

28-CONFLICTABLE[I,5],
CTABLE(/I,1/)),

v

1520%+

2)2#) 2)

Tayea))

NHNDE N Qe
NMIZH-

=T M M D~

I
1,2(2/,5B,2(2(<,>) BETHEEN D ZH D)
UtPuT181,21#27,58, 2(2(<,=) BETWEEN

Z J=7 2THENZ OUTPUT (E1,2(#/,5By2(2(>,=) BETHWEEN

61,2 (2/,53) 2(2(< 2y 2) BETNEEN £) 22)2) 3
NFLICTABLFEI,2),) chiAR

1% 1
ONFL
UT (6
Nz 0U

»
m
m
n

QUTPUT (61, £(2

(
0
Z(Z2Y22) £
ONFLICTABLELTI, 3], NcHAR),

Z0Z0ZV

O N~

NeeN=IN u wéZvoz
<~

OUTPUT (¢(t’¢>:)'
63 Z(ZFP RECEDE NCE MATRIXAE /72124,

hy

1530%*

LLt=13 ULS=#2IF# SIZE>30 #THENZ 30 #ELSE# SIZES

PRINTIT!?

OUTPUT (61,2 (%£/,852) %)}
" #FOR# It=LL #STEP# 1 #UNTILZ UL #D0%#
#BEGINZ
J1=21F# I>NTERM_#THENZ I-NTERM+299 Z#ELSEZ I3
QUTPYT (A, 2(2=7702)2,4) 3

.A540%%

ZENDZ#$ ’

#FOR? Ti=t 1 ZUNTIL# SIZE 2DO#

TERM 2THEN: T-NTERMt299 #ELSEZ I3
7y =720, 682) 24 J)
AT DL R L FEA RO

Q
c..
-1 1
"Uﬂ-C\
™ Nt =t

~

RECTER (61,7 (# <>=CCCCC#) #,GE] & (PHATRIX, T,
61,#(#384)2) 3 !

155q0%*

e omy DN.‘—NZ b,

> —

1560%*

2BEGI N
LL $=U
2IF2

-~ N

}

i

O
(o
-
°
[ang

wo N~

#END#3

A5-28

11

01/706/73

GRAMPA

#ENO 2 OF PROCEDURE WHW PRECEDENCE

(3.0)

ALGOL=-610

[}
k4

ZOOMMENTZ* XX SR SR UNE R X FUR X RS U A RN XX SR LR X SR RERA SR KRR LS

1570%*%

3

#PROCEDUREZ REMNVE CONFLICTSS

ZCOMMENT #

(]
N
L\V
[}
-
N
]
> U
[oe]
w
v O
- =Z
QO w
- O
- W
w O
Z =)
ony

EDENCE C
XPANSION
SIMPLE P

REC
DE
A

.
’

AYz LRETABLEL11201,RRETABLEL1820)

WSUM,SYM
2 ZARP

GINZ
TEGER
TEGER

1530%%

3

RE(OLD)S

R
0

ZCOMMENT#

-J
o
- [o4]
=
] >
o [72]
]
(] o] L
[FT) I
[et -
[&175]
sl]
[+ 4 w
—w ®
no -
wlJ , ™
oex B
> Q
- e}
X =
(LY 7] o
HO [72]
(27 [
= >0
L4 & o
wno o=
= m [an]
xx o (D
C > X
[T 7,] Wid<i+
o Zuo
wial oZ<I
[s 0 oy - J
- Yywa
Lt << Tl
[4TH =Y
O, »
o -Zwn
w L T]
oZ =
(o]e ; oL
o 170 ¢
awm o'
=z =T
i< on

HASH{WSUM,

QUMY SYMBOL NO. FOR NEXT CALL OF RRE
9

OATE
LRE

oo
20

2COMMENT#

X GRAPH AND GET POINTER 3

+1)

M+13
NTA
APH

U
S
G

Y
NGR
£COMMENTZ INSFRT NFEFW ARTTIFTICTAL PRODUCTION INTO SYNTAX

wn

0N

1=l _J

Lo T8 nd
sortp-0
L alak 44
w00
wa O
NEINZ
—HCk |
NEZ oo
[RTEP 4
o 0T O
wxTTram
NDOO-
=IO X
NINZ

ieno**

.
’

o

ez
~1
— e

5

[an Y
-l D€

[0}
-
[LD 4
X<l Z e
WOZ el
OO 4+
Tp-FTZWN
OoOxo>»Z
0. Zwno
DNk -
o 27 e
[l Jolals]
Z23Z2 4D
< a0
ZNNHoO
Tl =¥
0 ZaQ.
Lot I
BN I wee
O e XU
I~CZ
ZNOO
[BN ol o
T XX
a0Z0
LI =D
gt 2=
ZXZ0O
OZ>»
Zw— 0

OF PRODUCTIONS
E

NO,

. SYNG

QCCURENCES

ZCOMMFENTZ SCAN THF PRODUCTTONS,RFPLACTING ALL

1610%%

o
=
w
b4
L
[})
[an) ()
| !
(] S
' -
—
(] (G
o b4
L . >
e o [72]
=
w b, 8
- O Z
a o oo
Ul N eI
Q o~
XX O mNY
W Z ¢ O
LI >)
A =N
OO0OW wif W
[ealen] LB 7slold)
TIZ 30
> << oD
VU ZD0N
O a P
> FOI
Z0— 2O
TOZ uw-2d
2xD =00
OI1H Z<
- [@] o be =t
>XL Z
me - O
N it
1a meO
0O W <vi<T o
Sl - 0 ey
QITWV UM
N e -
TONT)
wLno uUZk+
OHC N> 2
MZe-v)l
e =4
o O N T V)
UL O)
QNI o=
HHTDOHN™
[«
O | e
L. (&)
LI
[72}
3
H

#IF% J =0 #THENZ ZGOTO0Z SUC ZELSEZ

1620%*

[]
| 3

PRODUCTIONS

[
9

ERNATE
ART 3]

LTERN
START

<

A5-29

L

1:

01/06/73

GRAMPA
0 £THENZz 2GOTO% SUC

(2.0)

ALGOL-60

[
’

£IF2 J°
ZEND 23

1630%%

EBURE PERFOPMS LEFT RESTRICTED
’

#COMMENT 2

2INTEGERZ I, JyMyJSTART,NEH?

>
=
x
=2
]
o
(&)
ZzZ
O
-
<
wo
oD
o0
o
Yo
oo
W
-t
[YEL- 4
[0]
[v 4 &)
(]
(] T
—
—
£
o<
- o
-= -
« L} Ls
(s 4 [Loa
w «iQ
Qo + <
oZ Z o
M- ¢ oU
Y ee N
L dews X
A0) e
- e llnm
FEXZeer~
A3 Ll
VUV Z 4+t
[P8 [m] &2
N INKA
= 2DFCI
Z NN v
w XN
E wee.Qq
T ITw¥ra
O UVINDIA
O <SX=iln2g
N TN
*
*
(=]
-3
9
i

°
b

TBOX,511=NEW

BY

REPLACING =OL D-

IS THE LEFT=-

-0LD=-

3
COUNTER =M= IS USED TO SEE

UGH PRODUCTIONS

30L
oL,

EXCEPT WHEP

1650*%%

WHE RE

S_IN THE PRONUCTION
9 #£STEP# 1 ZUNTIL# NTERMNO #00#

M
N
0# SUC #ELSE?

U LOC -
O o O o

HHUITNNEN

24 .

(e} L]

TR Q

- 3

1 2]

1660%%

LTS 4
o \
n N
X en w .
on X v '
~ >X o+ 2 !
~M % < o .
L . (Vo 1) j
snf—on - Q » (&) g
o N - o~ (@)
wnwad o & [+ 4 !
W= o J ™ o :
=W N O + :
<IN o & a ;
Zw0 [B >E Vo) [] o
O | N> L4 o
LuIzZzo | i} o~ v (24
>0 o l.- Q
T/ A M |Z2 Z
< i Hee T & (V3] w
eoN ——y & e of
woZ ZHD O |- %
O’ D3 % Q
<o I . A YTY -~ w -
o el e e ot - (]
—-0N «wouyem [&) (]
<X < Il + - b, Y
N0 N _joo t J .
(a2 1] Q Wisle=O w b
™ W Mm% = z
W es =Y bt o Lo
ee N on nnHOom (&) X
TN w H oo Z Y~ Lnd
ok o (gl [) g (@) b,)
Qe len, i X~ =<
HETHUNN TR NTRIELS =)
Ct oo li't—evae— L n
‘2O HJZ et -t
ad 00 IO\ v .
NN NI T [N =z
o] V-ZOOw |- o
zZ cuoxxyo |Z (&)
w LYoo |w =z
N HAaNZX|) (¥ ;
i oo = -
| T 1O e=l
: = 0 2k
A 7 B R et T
! = <
m x|
: w
) ; !
; ' :
. *
* ; *
[~ i =
: ~ ! o
’ o A0
i -« . 1
i o

1:

01/06/73

A5-30

GRAMPA
1 2UNTIL# NCONFL 2DO%

tFOR: I
ZREGT

(3.0)

\LGOL=-60

I-1 #D0%#
¢ £G0T0z ENDRL?

IL
EN

ON Zeildli~
HH N T
SOZC I
Wil N U]
ZO ea i’ N
Q wECLuWuu
OO HI Y
HUNONNN
-N

§

-1699%*

GOTOx ENDRLS

I-4 #D0%
z

2
£

—H

wh. ree
T
O ==~ >~
IV)
=N
O e
et

NHIN <<NN
QO »0 XN =~ ()
Zur Ou 2]
L300 D= b 1Y (Y L
HRNRNNOEN

W
!
4
j

1700%*

[}
b

N .
FIED GRAMMAR AFTER

#INTEGERZ I,L,yX3

[
’
[
’

o
’

GAIN TO SEE IF NEW
M3

EQyGRy NIL

EZ IyLyX

RECEDENCE FUNCTIONS

ES A
ODUCED
E P
M3

AY #

ROCENURES
EN INTROD

CE PRO
E BEEN

EDEN
HAV

EC
TS
L2

ZENDZ OF REMOVE LOOP}
TEGERE I8

PRINTGRAMMA®S

#COMMENT#
#ENDZ OF REMOVE CONFLICTSS

ZCOMMENTZ ¥ ¥ X SR FRTIF SRR SRR EFNE AR R FF S SXFRRNERRRRENE S

ENDORL1
ENORC?

REMOVAL

1710%#
1720%*

A5-31

}

1 .

01/06/73

GRAMPA

(3.0)

ALGOL~-60

LSAFCTI2GIK] #THENZ #GOTO# FAIL #ELSE?

1 #THEN?Z
GET4 (M, 1, K)

L1+X 3

[S¥D.54

. 1740%%

b, S
w
w
P |
w on
L S 4
P -
~e ™)
i & -
- -
e I
o W
-~
L I TY]
S0 O
o0 w
OX =
x4 Z
U
uw b3
" en
HHNZ X
oZw (o]
owx M
NTH =
[P |
i
-~ N
HmT W
M= D
D
| et So 2N TR~ §
ZAr >
D~y W
W=t
[o
il o~
1 << X
no ”
Naawl ™
oona -
Wi~
—" -~
N
NH-HH= O
o e (O ed
wHZE X
Nt @0y
N2
o - O 01
NDWLIN J
e OWXUL
NN s R T
COENRLD M
Zouwu oOwZ
[EVIVE] o N Te g
HHEHNNNORN
al=lb]
Z0oW
Q. @
(NN
;
$
P
.
[—
[Ts
~
-l

] #THEN# #6G0T0# FAIL Z#ELSEZ
J1 #THEN# 2GOTO# FAIL

“
(=]
o
b, S
— (D
O -«
vip
e N
XX J
[T]
i, =V
<< Z
ove oD
VOw W
nu
o~ <
e oo IR |
L N Y
N XY W
Z Lol
w IFE w-l
T W~ - o
b E (N
IOYCH b=t— N
<+ Nl =z
—eiZ U0 X
-t X [
— IO NN e
WP wub -y
X Orib-ies
o WHHNNWN
~N =] 4
b 1 T8 20
-
OKR ; HHY
i
H
4
4
§
H
! *
. »
<
[Xe
~
-

FQAFCTI1~=GlJ] ZTHENZ FIXROW(IydJ,0)
NIL$=1
"#STEPZ 1 #UNTILZ N #00%

[
y

Hy Iy J)
EQt=4
Z2STEPZ 1 2UNTTILZ K4 £D0OZ

!
H
’
b

i
o oo
Nl
.1N=J
, Hoe
Rl 24
MUl
[T T S s) N Ti
NHNORNNUL
onne
Zem D
W«
N OXN
;
]

-
w
- w
L -
(%] (1]
o | b,
1%}
b, § ~ o
i~
vion []
> — = e~
~) o)
e I3 X o
— ~
O -l
il oo (@)
Lad (S]]
=2Z xQ
== [o4
- a4 i
(MR TS [T
N
NN NZH
ZZ owZ
ww oIl
IX NI
= N
HH - N
-
Ll S Ll
DA™
—ttet D
OO AL
viv ZZA
ZZ D=Z
i N -
b2 wx
Ll i<l
< < 1 <
[+ 4= no
O Naw
"y ann
~ e Wi
D7) =TT
oo) na
YY WYY
" o Do e
T T errZ T

et T N e Nt
T ST
Lol a3l ol ol 2L
EEFJEEPJ
OO OO
L) N oo
HNYHENN |
LULYOlWl o
e L - e X
HNUL NNNY

H

i
m
i
]
J

1770%*

-
A3 (73]
W n
[72] -
-t w
[F1] N
b}
o~
« -
& oo LY
—— MY
Ll -"
et bt]l
wu N
nn XX
e oo [e]e]
Z2Z e
- o x
b2 g -
(LI [T TS
NN NN
ZZ NZ2Z
Nl Oww
OIXI OIX
JOP~ Wi~
NHN N
!
¥YZZ 2Z
i R
NES LLEX
L0 HOO
=HAIA VIV
e e
Zi D=
Dttt Nt
N Wi
€<¢ i< <
-nNC - 1Xo
Ty Ol
wu wun
Qe Lo~
WY WINM
o b an
Nt~ N

N oo N oan
T e T I
T TP N et
[[RS- g SNIR g
08 jo- o T 00 form - @
LI LN
VLYY VO

H - L.

HNHNN
ouwux¥ou
L bt et ot L o 4 L
HAENUONNNN
M
i
}

i

SArso*x

UNTILZ N #DO0 2

[P =Rl 20 8
(VA o
Ll & "Wy

LN~
— SOHWN
SeNQ
— % aiy
ZNN\F
e N)
[2 s » §
AHNNN W
LRl o P
N oxd v 1]
=0 ee)
N(('\IP—
W o
TIDDDOHN
Faoow
(o] odad ag ®]
W3Ol
HOOON

4
]
;
W
}
s
|
f
i

’1790#‘

1,6IIN)

A5-32

11

01/06/73

QUTPUTI(61,2(#/y/y/915B, #{2CAN NOT FIND PRECEDENCE FUNCTIONS?#)#

AIL?®
£)2)}
NDP 8

GRAMPA

(3.0)

L.GOL-60

#END # OF PFUNCT IONS;S

-F
E

1800%%

I
t

ZCOMMENT Z# 52X ¥R XX SR AR RAR R H SURL AR NAR SR SRR RXSIRERFF X R RN X XN EH 3

)

#PROCEDURE#Z TRANSPOSESYNTAX GRAPHS

L1810%%

ES FOR USE IN A PARSER

#COMMENT=2

ATRL=-1 INTERM],

t=0
RII
=03

LE[I,K])?

40 N0
gy
[l L X1 8
(ol 72 d ol 72
Y N
z [l ¥
Helo
[z X ol
Wil ltee
o @0 00 00 Y/
Z -
(TX] -
S HNNX
I XXNO
(e]alole]TN
(&I T TH
HHHNN

v 1820%*

J
Y.L

TO BF SCANNEDS

zCOMMFNTZ# SET FIPSY SYMBOL NO,

R

NXTBOX8=13%

SYNG[.ISCAM,11=SYMBOLNO £THF N2

L L]
-l
]
i .
L] o os
O ¥
Z n o
- o= L)
(=] i
[re] < O W
E e J U
> w1 O
" AT O WN
o x
(=} >
- "

}1830*‘

~=0 ZTHENZ
=NXTBOX
018=NXTBOXS

ZTHENZz 2G0TO0# UPDATEJS
LNO1]
92118
BOLN

b
Z CXxX]
w o>
I XoOowm
O > b=
s ol
~ e Y]
mne Q)
) N
ZM O~
gAl Ll
OO X -
3 nzZz ooz
VN T
—OZZ N
e (SMH (N
ZZTONTOV
H<I >0k O
ZOUNnor Y
=W HWE W
OHN :
[FUNTR TR VS
D o it~
N W
I
w
|
}
|
P
.
W [=]
I
[o]
-

£%

ZEND# ZELS

1850**

STARTBOXt=NXTBOX }

SUCCHECK?

0 #THENZ

2IF# SYNGILI,4]=

A5-33

.GOL=60 (2,00 | GRAMPA 01706/73 11
i} . #BEGINZ ‘ \ N
RHSTABLEIMXT30X,3)8==11
RHSTARLE[MXTBOX,111=SYNG [JSCAN, 513
NXT3OX f=NXTBOX+1}:
1BA0*% 1G0T 02 UPnATEl!
ZEND 7 ZELSE#
ZBEGINZ
. o T1=SYNGIT,413
RHSTABLETAXTBOX, 113=SYNGIT,11
#TF# NXTBOX>STARTBOX 2THENZ
RHSTABLEL NXTBOX=1,3]8=NXTBOX}
NXTROX t=MXTBOX+1 $
7G0T 0% SUCCHECKS
187 0%+ ZEND 2

« men e ZENDZ OF SYMBOL . CHECK 3 = ' .

UPDATEJS

ENZ #GOT0# SYMBOLCHECK

H ;
Q0 #THENZ #GOTO# ENDLABEL
SYMBOLNO <310 .2THENZ SYMB

.1880%* . .. #£IF ’
OLNOt=31003%

#COMM=NT 2 PRINT OUT TABLESS
ENDLABEL?

189;;;MMWNWN9¥;P9T(61,1(#*,/ 97y 20B,2(2 TRANSPOSE 'SYNTAX GRAPH FOR ANALYSER?) Z, -
OUTPUT (61,70 2/,58,2 (ZNONTERMINALS INDEX- POINTER TABLEt)t,/,
2(2SyMR01 MUMQTR, POTNTER TO [HSTABLE2)Z2,/2)7%

#FORZ I81=307 #£STEPZ 1 #UNTILZ NTERMNO #DOZ
- OUTPUT(61,2(25B,27ZDy16B42ZDy /2)29yI,NTRHSPTRII1) }

T T oUTPUT L6, 2 (CINTER TABLE#)#,/,
#(tSYMBOL ;)i,/#))3
1900%* QUIBLT (4 T, TRHSPTRIT])

0 0
-

LY

A

LY

-,

m

r OANZ
N ~D

EX
AB

£
2)

* OmMDO

L
D
2,

OUTPUT$61,¢(¢/ /7 qB,#(tTRANSPOSED SYNTAX GRAPH FOR LHS LOOKUPt)t /
meWWMMMWW QUI;UT) (27,93, 2(# . SYMBOL NO.i):,#B,?(tALI.#)#,QB,i(tSUC) 24/
f #FOR ; STEP# 1 #UNTIL# NXTBOX-1 #DO#
2(£/,7720, 108.-77018P 772720, 4R, -77D, 7B £, T,

-

t
61
Y AHSTABLFELT RHSTABLE(I,Z] RHSTABLEII, 3)
R MBOL(PNS TRBLELT i],Jscnn),

* F-PRINT TRANSPO§ED GRAPH;

i
)
I
E
T
1910%* T
N

OZ [0 e N

{
'
b 4
ou
P
P -

N
-

!

1

01706773

A5-3L

GRAMPA

[
A

"#END# OF TRANSPOSE SYNTAX GRAPH}
OCEDURE #. RE CURSIVE CHECK

(3.,0)
£COMMENT2 TH

i
|

ZCOMMENTZ ¥ ¥ XX KA FRNAE XA RRX X ANRFANE X R SRR RRFRENERRRF VS EN ¥ S

.#ZPR

1920**

" ALGOL=-60

IGHT AND IMBEDDED

.
?

EFT,R
AMMAR

L
GR
3EGINZ
INTEGE ZARPAY# PATHI[112,1 $NGRAPH],INC{1821];
INTEGE 5 NCHARS

=D

R? HI1t
R# I,IPTR,PC; NCHAR

1939%%

k-~

IS

.=

yJ) 3

RECURSIVE (I
HE CKS WHFTHFR THE SYMBOL

EF
Ty
£

IS IN THE LEFT SET OF =-I~-

o>
N W

I,K+SIZE) ~=0 #D0%

.
s

A GETS(LR,I,K)~=0 #DO%
yJ)

A GETO(LR,

.
?

#GOTO# ENDL
GHT SET _QF =I=-
#GOTO# ENDLS

TRUE #£3

:
K$=0}
RI
E¢d
tTHEN#

£TRUEZS

]
kJ

=
.
]
3
?

1
K

FTRECURSIVE
URE_CHECKS IF SYMBOL =J=- IS IN THE

RIGHTRECURSIVE (I
£ I,

2COMMPENTZ SCAN THROUGH THFE { FFT SET OF =T=

#ENDZ# OF L

ENDLt #ENNZ OF RIGHTRECURSIVE?

ENDL?S

1940%*%
1950%%*
1960%%

A5-35

LGOL-60 (2,0)

M N
i
Fo

GRAMPA 01/06/73 i1

CAGRAEX*

RiTI—4

DEF? #BOOLEANZ IM;

X

1990%*

f

™

(1N =]
N e
meEx

13¢%
£3

T} -ot"lG)Z
-

(Gl
)~
-

VT

JOMmI Ine-io
-t NweD

(=3

~ N>

TC—~
MZITA
Z i

OR CYCL ING}
2

=) >HG
0V O

o HO0O wpzm
sz
o]
"

-]
-
=z
]
ul
24
L)
pe

2000%*

N RN NN NN

Lies

D TIAMZO IN-HD
w[X OUWHRI O

e N TMNW
M AN I wWZ

OF ~4t=t NN Tilte
o
X
L _]
|
-0

MN=
we wel0 M X =X

mno
Noees |2
oY
LN
w2 Ple M e

=
Peill N 2w

SYNG{Jy1)=PC zTHEN?

M

£TRUEZ2Y #GOTOZ ENDLY
Z2CND2

~--RIFL. DFF>0. 2ANDz SUC>0 2
RIG

DEFI=SYNG[J,2],

N BED(LEF) #O0R?#
I 1,PC)

1=IMBED (DEF) #0RZ
,PC)

THE
HTREC URS
c

ZELSE# #IF# DEF>0 ZANDZ SU
LEFTRECURSTIVE (SYN G

£
VE
: 0

l"'l
a4

2010%*

ML.‘N- ~iee

2ELSEZ# 2IF#£ DEF=02AND#SUC=0 #THEN# #£GOTO# UPDATEJS

FIFESIN T ETHENE T T

#BEGIN #

JE=SYNGL J,04 Fz J>01 Z2THEN?Z iGDTOt L1

2020%% . __UPDATEJ1

2IFE DIM L #FTHENZ. e v o

13 KS;E;1: 2T
2FND# ZELSE# #GOTO# ENDL?

T Y T e

#BEGINZ
JI=SYNGT JK ’ J t=
_ZIFZ >0 ¢ FN: GO

Lo ceen e e ENDLR

.. IMBEDS=IM3 . NS B o e e

#END2 3§

A5-36

\LGOL=-60

11

01/706/73

GRAMPA

(3.0)

" #END# OF IMBED 3

, -203p**

OUTPUT(

 2040%%

61, 2(2/7,38B2£) £) 3

°
’

).
RE CURSTI VE

LS
DO

YMBOLS
E SYMBOLS2)2,/2)2)
ERMNO 200%

N>
HZ N
uwwn =
g4 NTY
IwLH
NC
¥
oz
O D~
Ll "N =

O -
-~
To sl

ONa > .

=~ L)

N U]
N

(Y] e
Zin O

wNe o

L[&
= oee (D

‘Z N

[T9) S <3

FwH
ENN
O Ol

H

Criu H
HONW
L4

OUTPUT

2050%*

gEEDDED RECURSIVE SYMBOLS

#STEP# 1 #UNTIL# NTERMNO #DO¢#

.
)

N o~
-~ NI
w omgQ
L I ™mg
o - L3R 3
NN
t(
~ -_l]
L -2 ¥ WG
— - [lea
WwH " a ¥
I o = WO
- Y N
L —or 22— b
DB 0 oD A
Z Y i OV -
= eON e T Ui Y
W N[Oy Zermi=~mMD0]
ai=it-v{ WO
NN O N —™
P~ oo lijee O,
Z N[C 2
LN NO N
= -iN i
> Nos i
© «O
Ov{a.
NAO ™
[
[|
= M
g w
=
O
»
»
[-]
0
e
N |
S ;

.
9

TABS(NONTERMINALSII,%41)
)
)

.
9

IND IMBEDDED;

ENDZ
OF F

P’

ZENDZ

#END# OF RECURSIVE CHECK

2070%* .

°
’

.
’

#COMMENT # *®*** CALL THE PRECEDENCE PROCEDURES **¥*»x

2080%*

EMPTYCHECK (EXIT) §

2COMMENTZ2 GET L(NON-T) AND R(NON-T).,

' ‘ A5-37
.

'S
b
ILGOL=-60 (3.0) GRAMPA 01/06/73 11
>REMOVE
TI
Y 2000%* TRANSPO

Vil QU~T
My T<0r
O MZXI4
Q| O=H>»O

EXITS #ENJ2 OF SECOND MAJOR PROGRAM RLOCK 3

e CBENDE L e i L i e e e e

