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Abstract 

Under what circumstances does knowledge of causal asymmetry and temporal delay influence 
causal judgements? We begin a series of thirteen experiments. by providing evidence that both 
high-level (causal reasoning) processes, and low-level (associative) processes influence causal 
assessment depending on what is asked about the events. Specifically, participants were more 
sensitive to causal structure in their ratings than in their prediction responses, on earlier 
rather than later trials, and when asked to provide an integrative causal rating. Emphasising 
the direction and nature of the causal relationship and the wording of the test question had 
no influence on participants' sensitivity to causal asymmetry. Next, we provide evidence that 
participants' ratings track conditional rather than uncondtional contingencies as predicted by 
the conditional AP account as well as the Rescorla-Wagner model at asymptote. Our results 
suggest that participants tend to rate the influence of each cause conditional on the absence 
of the other cause. This tendency is not reflected by the Rescorla-Wagner model. Finally, we 
examine the role of temporal contiguity on judgments of contingency using a human analogue 
of the Pavlovian task. Our results suggest that knowledge of temporal delay modulates causal 
judgements. 
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Preface 

This dissertation is divided into four main sections. Each section represents either published 
material (Tangen & Allan, 2003; Allan, Tangen, Wood, & Shah, in press), material submitted 
for publication (Tangen & Allan, submitted) or to be submitted (Tangen, Allan, & Sadeghi, 
invited). Because these articles have multiple authorship, my contribution to each is explained 
here. 

Tangen and Allan (submitted) report four experiments. All four experiments represent 
my contributions to the paper, and thus are all relevant to this dissertation. We provide 
evidence that both high and low-level processing influence causal assessment depending on 
what is being asked about the events, and participants' experience with those events. These 
data provide a novel contribution to the literature. Experiments 1-4 were conducted between 
January 2001 and October 2002. 

Tangen et al. (invited) is an invited chapter stemming from the 2003 Associative Learn­
ing Symposium in Gregynog, Wales, UK. I was the first author on the presented paper, and 
therefore the first author on the published paper. All three experiments represent my con­
tribution to the paper. Experiments 1 and 3 were conducted as part of an undergraduate 
research project by the latter author. The data provide an extension of the work presented 
in Tangen and Allan (submitted) by investigating the predictions made by our dual-process 
model. The work provides a novel contribution. The data from Experiment 1 was collected 
in January 2002, and Experiments 2 and 3 were conducted in November 2002 and January 
2003 respectively. 

Tangen and Allan (2003) report one experiment and simulation data pertaining to the three 
conditions examined in the paper. Both the experiment and simulation represent my contribu­
tion to the paper, and thus are relevant for this dissertation. We compare the Rescorla-Wagner 
model to conditional b..P and derive an algebraic derivation equating the two models. As such, 
this paper constitutes an original contribution to the literature. The data from Experiment 1 
were collected in January 2002. 

The three experiments presented in the postscript of Chapter 4 were conducted as part 
of an undergraduate research project by Erin Wilson. The results from these experiments 
suggest that participants tend to rate the influence of each cause conditional on the absence 
of the other cause. The data were collected in October 2002. 

Allan et al. (in press) is an invited paper resulting from the 2002 meeting of the Pavlovian 
Society in Westwood, California. Dr. Lorraine Allan was the first author on the presented 
paper, and therefore the first author on the published paper. Both experiments represent 

xii 



my contribution to the paper. This research was conducted as part of two undergraduate 
research projects by the two latter authors. The two experiments examine the role of temporal 
contiguity on judgments of contingency. Unlike previous investigations that used instrumental 
conditioning procedures, we used a human analogue of the Pavlovian task. The data show that 
the effect of the actual delay on contingency judgment depends on the observer's expectation 
regarding the delay. This work provides an original contribution to the literature. The data 
from Experiment 1 and 2 of this paper were collected in November 2001 and October 2002 
respectively. 
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Chapter 1 

Introduction 

Our minds can shape the way a thing will be because we act according to our 
expectations. 

Federico Fellini 

When confronted with a number of novel event relationships, under what circumstances 
does our general knowledge of causal direction and temporal delay guide judgements of causal­
ity? For example, if we asked Ruth to assess how predictive two viruses are in causing a 
disease, would her assessment of each virus differ from that of the two symptoms that Arthur 
is assessing as diagnostic of a particular illness? Does the fact that "Ruth is predicting" and 
"Arthur is diagnosing" influence how they regard each virus/symptom? If Ruth expects a 
long delay between the exposure to the virus and the onset of a symptom, when in fact, they 
occur simult~eously, how will her assessment compare to Arthur's who expects a short delay 
and observes a long delay? Will their assessments differ as the causal strength of each event 
changes? In this dissertation, I will focus primarily on the direction of the causal arrow. How 
knowledge of causal asymmetry affects judgements of causality. 

I begin by describing the primary research and methodology behind the question of causal 
asymmetry. Chapter 2 describes four experiments that investigate the extent to which the 
causal structure of events influences causal judgements. As described below, sensitivity to 
causal asymmetry is measured by cue-interaction: the extent to which participants judge one 
event in light of another. The data from these experiments provide evidence that participants 
are sensitive to both the causal and temporal structure of the events depending on what and 
when they are asked about the events. Chapter 3 presents three experiments that test various 
hypotheses which makes predictions about the circumstances under which causal asymmetry 
affects judgements of causality. Chapter 4 provides a detailed investigation of the mechanism 
of cue-interaction. Specifically, in assessing the influence of two cues and one outcome, how 
do judgements differ between cues that vary according to their unconditional or conditional 
contingencies. Three related experiments are presented in the postscript of Chapter 4. Finally, 
Chapter 5 examines the role of temporal knowledge on judgements of causality. In particular, 
the congruity between observed and expected temporal delays is investigated. The results 

1 



PHD THESIS - TANGEN, J. M., McMASTER UNIVERSITY 

Table 1.1: Experimental Design by Kamin (1968) 

Phase 1 
Group 1 A ~ 0 
Group 2 

Phase 2 
AB~O 

AB~O 

Test 
Bt 
Bi 

2 

from each of the thirteen experiments in this dissertation are discussed in relation to one 
another under the broad scope of knowledge-based judgements of causality. 

1.1 Blocking Effects and Associations 

Contiguity or the pairing of events has long been recognised by learning theorists as insuf­
ficient to explain basic associative processes. In 1968, Leon Kamin described the blocking 
phenomenon as a demonstration of this insufficiency (Kamin, 1968). Using a two-phase de­
sign, as shown in Table 1.1, Kamin conditioned a group of animals to associate a single cue 
with an outcome (Le., A ~ 0). In Phase 2, a second cue was paired alongside the first (Le., 
AB ~ 0). A second group of animals were only exposed to the latter phase. Despite the 
extensive pairing of Cue B and the outcome, Group 1 learned very little about B compared to 
Group 2 (and other relevant control groups). The initial training with A blocks conditioning 
to the superimposed cue resulted in an attenuated response to B at test. 

At the same time, Wagner, Logan, Haberlandt, and Price (1968) demonstrated a related 
phenomenon they labelled relative validity to demonstrate the same insufficiency of contiguity. 
Table 1.2 illustrates the design used by Wagner and his colleagues. They exposed animals to 
two compounds containing a common A cue that was paired either with Cue B or C. The 
animals were assigned to one of two groups: In Group 1, the AB compound was always paired 
with the outcome (100%) while the AC compound was never paired with the outcome (0%). 
In Group 2, each compound was paired with the outcome on 50% of the trials. During the test 
phase, the animals responded less to Cue A in Group 1 than in Group 2, even though it was 
paired with the outcome on 50% of the trials in both groups. These results demonstrate that 
the animals were not sensitive to the absolute validity of each cue, but rather were sensitive 
to the validity of each cue relative to one another. 

The blocking and relative validity effects initiated the development of associative learning 
models such as that proposed by Rescorla and Wagner (1972). Following Kamin's suggestion 
that the "surprisingness" of an outcome determines the extent that events become associated 
(Kamin, 1969a, 1969b), Rescorla and Wagner developed a model of Pavlovian conditioning 
based on the difference between the expected status of an outcome and its actual status 
(see Allan, 1993, for reView). The more unexpected or surprising an outcome, the more 
conditioning will occur. According to the model, the strength of association between a cue 
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Table 1.2: Experimental Design by Wagner et al. (1968) 

Learning Phase Test 
Group 1 AB - 0 (100%) A t 

AC - 0 (0%) 
Group 2 AB - 0 (50%) A T 

AC - 0 (50%) 

and outcome changes as a function of the equation 

AV = a{3 (-X - LV) , 

3 

(1.1) 

where D. V represents the change in associative strength of the cue. a is the learning rate 
parameter that is unique to each cue and represents its salience; it is positive when the cue 
is present, and zero when it is absent. (3 is the learning rate parameter associated with the 
outcome. -X is the upper limit of associative strength that the outcome will support. Finally, 
~ V is the sum of associative strengths for all of the cues present on a given trial. Because the 
outcome can support only a limited amount of associative strength, each cue that is presented 
must compete to be associated with the outcome. 

In Group 1 of Kamin's blocking experiment, the associative strength between Cue A 
and the outcome quickly approaches asymptote (-X) in the first phase. In the second phase, 
when the redundant B cue is presented with A, because A has already acquired most of 
the associative strength available, the sum of associative strength for A and B (~V) is 
already near -X. Therefore, the level of surprise (-X - ~ V) is nearly zero and very little 
associative strength would accrue to B. 1 At test, Rescorla and Wagner's model predicts very 
little responding to Cue B. . 

In the relative validity experiment by Wagner et al. (1968), the individual cues compete to 
be associated with the outcome just as they did in the blocking paradigm. In Group 1, Cues B 
and C perfectly predict the presence and absence of the outcome respectively, the sum of the 
associative strength (~V) will quickly approach asymptote and little will be learned about 
Cue A . In Group 2, because B and C predict the outcome only 50% of the time, they require 
more trials to reach asymptote. As a result, A can accrue more associative strength. Therefore, 
the animals will respond more at test to A in Group 2 compared to Group 1. Because B quickly 
approaches -X in Group 1, thereby reducing the associative strength available to A, some 

lThe number of trials in Phase 1, the learning rate parameters for the Cues A and B, and the asymptotic 
value of the outcome determines the magnitude of ~ V. If the associative strength between A and the outcome 
reaches asymptote, then there is no discrepancy between the actual and expected status of the outcome (i.e., 
>. - ~ V = 0) and B will acquire no associative strength. If the associative strength between A and the outcome 
does not reach asymptote in Phase 1, then there will be a slight discrepancy between>. and ~ V resulting in 
a small amount of associative strength accrued to Cue B. 
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would say that Cue B "blocks" conditioning to A (e.g., Baker, Mercier, Vallee-Tourangeau, 
Frank, & Pan, 1993; Vallee-Tourangeau, Baker, & Mercier, 1994; Baker, Murphy, & Vallee­
Tourangeau, 1996; Mehta, 2000). In addition to blocking and relative validity, the competitive 
learning process has been successful in predicting several counterintuitive phenomena such as 
overshadowing (Mackintosh, 1975), conditioned inhibition (Williams, 1996), among others 
(see Siegel & Allan, 1996, for review). 

1.2 Blocking Effects in Human Learning 

Wasserman (1990) extended the relative validity paradigm to human participants by asking 
them to judge the efficacy of certain foods in causing an allergic reaction. As in the original 
relative validity experiment, a common A cue (e.g., Shrimp) was paired with either Cue B (e.g., 
Strawberries) or C (e.g., Peanuts). The "differential correlation" of the AB and AC compounds 
with the allergic reaction (0) was varied across five conditions maintaining the original10()"'0% 
and 50-50% manipulation, as well as three intermediate conditions, i.e., 87.5-12.5%, 75-25%, 
and 62.5-37.5%. Participants' ratings of the redundant A cue increased as a function of the 
differential correlation between the AB and AC compounds. That is, judgements of A were 
lowest in the 100-0% condition and highest in the 5()"'50% condition, and gradually increased 
among the three intermediate conditions. 

Blocking was first demonstrated in humans by Shanks and his colleagues (Dickinson, 
Shanks, & Evendon, 1984; Dickinson & Shanks, 1985; Shanks, 1985) using a computer game. 
The experiment followed the two-phase blocking paradigm described earlier. During the first 
phase of the experiment, participants watched a series of trials where a tank successfully or 
unsuccessfully traversed a minefield (A -+ 0). In the second phase, they were instructed to 
shoot down the tank. The participants were unable to determine whether the tank was de­
stroyed by a mine or their own gunfire (AB -+ 0). During the test phase, they were asked 
to rate both the influence of their shooting and the effectiveness of the mines in destroying 
the tank. Those who were exposed to the initial phase of the experiment rated the their own 
gunfire as being less effective compared to those not exposed to Phase 1. Learning that the 
minefield was effective in the destruction of the tank seemed to have blocked learning about 
the influence of their own gunfire in the latter phase of the experiment. 

Subsequently, Chapman and Robbins (1990) investigated blocking by presenting partici­
pants with information about a fictitious stock market and individual stocks. Over a series of 
trials, participants were told whether the price of individual stocks increased or not, followed 
by information about the rise or fall of the entire stock market. The objective was to indicate 
how predictive each stock was in the fluctuation of the stock market. In the first phase of 
the experiment, a rise in Stock P (predictive) always resulted in a rise in the market, whereas 
a rise in Stock N (nonpredictive) resulted in no change in the market. In the second phase, 
two novel stocks were presented alongside Stocks P and N: Stock B (blocking) was paired 
with P resulting in a rise in the market; and the pairing of Stock C (control) and N also 
resulted in a rise in the stock market. During the test phase, participants provided higher 
predictiveness ratings for C than for B, even though the two stocks were equally predictive. As 
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in the previous blocking demonstrations, learning about the predictive cue in the first phase 
blocks learning about the cue it is paired with in the subsequent phase. P blocked the equally 
predictive association between B and the stock market. 

1.2.1 Causal-Model Theory 

As researchers started applying the principles of associative learning theories to humans, 
Waldmann and Holyoak (1992) argued that humans are capable of more sophisticated forms 
of causal learning than simply reacting to contingencies in their environment. According to 
Waldmann, people conceptualise the asymmetry of causal relationships. Causes influence 
effects, but effects do not influence causes. "In addition to using perceived or imagined causes 
to predict future events, people can use perceived or imagined effects as cues to diagnose 
their unseen causes." (Waldmann & Holyoak, 1997, p. 125). Our knowledge of causal 
asymmetry provides us with the capacity to ignore the order that events are presented thereby 
transforming them into causal-model representations that reflect their asymmetry (Waldmann, 
2000). The Rescorla-Wagner model (which embodies the essential and salient characteristics of 
associative models) neglects the causal status among events by simply encoding their temporal 
order. Events that occur first are encoded as cues, and subsequent events are encoded as 
outcomes. It follows from causal-model theory that causes interact and effects do not. That 
is, we judge one cause in light of another, but judge two effects independently. According to 
the Rescorla-Wagner model, cues compete and outcomes do not. The term cue-interaction 
refers broadly to the relative assessment of two events without reference to the mechanism 
of interaction. While according to associative models, cues "compete" to be associated with 
an outcome, according to causal-model theory, people "conditionalise" only among causes. 
Cue-interaction refers generically to both phenomena. 



Chapter 2 

Cue-interaction and Judgments of 
Qausality: Contributions of Causal 
and Associative Processes 

One cannot make causes wiggle in any definite way by manipulating their effects. 
Hausman (1993) 

2.1 Preface 

This chapter is reproduced from Tangen and Allan (submitted). The paper was first submit­
ted on December 18, 2002, and the revision was resubmitted on May 20, 2003 and is currently 
under review. We wrote this paper in response to the debate between causal-model and asso­
ciative theorists who have been trying to show that their explanation is the right explanation 
- and that the other is wrong. We provide evidence that both theoretical camps are correct 
under different circumstances. Our data highlight the intersection between basic associative 
processes and our abstract knowledge about causal asymmetry. 

2.2 Abstract 

In four experiments, the predictions made by causal-model theory and the Rescorla-Wagner 
model are tested by using a cue-interaction paradigm that measures the relative response to 
a given event based on the influence or salience of an alternative event. Experiments 1 and 2 
uncorrelate two variables that have typically been confounded in the literature (causal order 
and the number of cues and outcomes) and demonstrate that overall contingency judgments 
are influenced by the causal structure of the events. Experiment 3 shows that trial-by-trial 
prediction responses, a second measure of causal assessment, are not influenced by the causal 
structure of the described events. Experiment 4 revealed that participants became less sen­
sitive to the influence of the causal structure in both their ratings and their predictions as 

6 
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trials progressed. Thus, two experiments provide evidence for high-level (causal reasoning) 
processes, and two experiments provide evidence for low-level (associative) processes. We 
argue that both factors influence causal assessment depending on what is being asked about 
the events, and participants' experience with those events. 

2.3 Introduction 

In the past decade, the debate between causal-model and associative learning theorists has 
centered on whether or not human inferences are sensitive to the causal structure of contingent 
events (see Waldmann, 2000, for review). While causal models code events in terms of causes 
and effects, associative models disregard the causal description of the events, instead coding 
them solely in terms of their temporal order in which antecedent events are referred to as cues 
and subsequent events as outcomes. The disagreement has been with regard to the nature 
of the processes involved in making causal inferences. According to causal-model theory, 
expectations of causal structure guide learning about the relevant causal events in a top-down 
fashion. In contrast, an associative account maintains that causal learning is modelled by 
the bottom-up acquisition of associative weights guided by simple event pairings. This article 
examines the extent and circumstances in which these two factors influence causal assessments 
and describes the conditions under which they operate. 

As researchers started applying the principles of associative learning theories to humans 
(e.g., Shanks & Dickinson, 1987), Waldmann and Holyoak (1992) argued that humans are 
capable of more sophisticated forms of causal learning than simply reacting to contingencies 
in their environment. They argued that people conceptualise the asymmetry of causal rela­
tionships. Causes influence effects, but effects do not influence causes. "In addition to using 
perceived or imagined causes to predict future events, people can use perceived or imagined 
effects as cues to diagnose their unseen causes." (Waldmann & Holyoak, 1997, p. 125). Our 
knowledge of causal asymmetry provides us with the capacity to ignore the order that events 
are presented thereby transforming them into causal-model representations that reflect their 
asymmetry (Waldmann, 2000). The Rescorla-Wagner model (which embodies the essential 
and salient characteristics of associative models) neglects the causal status among events by 
simply encoding their temporal order. Events that occur first are encoded as cues, and sub­
sequent events are encoded as outcomes. It follows from causal-model theory that causes 
interact and effects do not. That is, we judge one cause in light of another, but judge two 
effects independently. According to the Rescorla-Wagner model, cues compete and outcomes 
do not. The term cue-interaction refers broadly to the relative assessment of two events 
without reference to the mechanism of interaction. 

Causal-model and associative theories have often been pitted against one another in the 
context of cue-interaction paradigms such as blocking (e.g., Waldmann & Holyoak, 1992; 
Waldmann, 2000), relative cue validity (e.g., Van Hamme, Kao, & Wasserman, 1993; Matute, 
Arcediano, & Miller, 1996), and overshadowing (e.g., Waldmann, 2001). Of interest in each of 
these paradigms is the extent to which participants regard one cue in light of another, or con­
sider each cue independently. In the present series of experiments, the one-phase simultaneous 
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blocking task (Baker et al., 1993) was used to provide a novel test of causal-model theory by 
means of the conditional b:.P account (Spellman, 1996a, 1996b). According to causal-model 
theory, when two causes produce one effect, one should consider each cause conditional upon 
the other because causes interact. When one cause produces two effects, one should consider 
each effect independent of the other because effects do not interact. The one-phase simul­
taneous blocking design enables the use of two differentially predictive causes in which the 
participant is free to conditionalize on one another thereby providing an strong test of the 
model's predictions. When two causes produce one effect, a conditional b:.P account applied 
to causal-model theory predicts that participants should rate the influence of each cause in 
accordance with conditional b:.P. When one cause produces two effects participants should 
rate the influence of the cause on each effect in accordance with unconditional b:.P. 

In a task involving two cues and a single outcome, one of four cue combinations are 
possible on a given trial: both cues may be present (AB), one cue may be present and the 
other absent (A"",B or "",AB), or both cues may be absent ("",A"",B). For each cue combination, 
the outcome either occurs (0) or does not occur ("",0) resulting in eight possible cue-outcome 
combinations as illustrated in Figure 2.1. Thus, each cue can be expressed in terms of its 
respective unconditional b:.P value defined as: 

a+c 
b:.PA = P(OIA) - P(OI "'" A) = -a-+-=-b-+-c-+---:d 

a+e 
b:.PB = P(OIB) - P(OI "'" B) = -a-+-=-b-+-e-+---:J 

e+g 
(2.1) 

e+J+g+h 

c+g 
(2.2) 

c+d+g+h 

where each equation corresponds to the difference petween the proportion of times the outcome 
occurs given the cue and the proportion of times the outcome occurs not given the cue (Allan, 
1980). Alternatively, Cues A and B can be expressed in terms of their respective conditional 
b:.P values defined as: 

a e 
b:.PAIB = P(OIAB) - P(OI "'" AB) = - - -

a+b e+J 
(2.3) 

c 9 
b:.PA1_B = P(OIA '" B) - P(OI '" A '" B) = - --

c+d g+h 
(2.4) 

a c 
b:.PBIA = P(OIBA) - P(OI '" BA) = - --

a+b c+d 
(2.5) 

e 9 
b:.PB1_A = P(OIB '" A) - P(OI '" B "'" A) = - --

e+J g+h 
(2.6) 

The conditional b:.P values in Equations 2.3 - 2.6 allow one to assess the influence of each 
cue both in the presence and absence of the other cue. For example, to assess the influence 
of Cue A, Equation 2.3 describes only the cases in which Cue B is present by taking the 
difference between the proportion of times the outcome occurs given A and the proportion 
of times the outcome occurs not given A. Moreover, Equation 2.4 describes only the cases in 



PHD THESIS - TANGEN, J. M., McMASTER UNIVERSITY 

o 

AB a 

A-B c 

-AB e 

9 

-0 

b 

d 

f 

h 

.s:::. 
+ -+ 
'0 
+ .c 

a+b 

c+d 

e+f 

g+h 

9 

Figure 2.1: Summary 4x2 contingency matrix illustrating each of the possible cause-effect 
combinations for two cues. Each cell represents the frequency of each event type. 

which Cue B is absent by taking the difference between the proportion of times the outcome 
occurs given A and the proportion of times the outcome occurs not given A. 

Therefore, when two causes produce one effect, a conditional D..P account applied to 
causal-model theory predicts that, because each cause should be assessed in light of the other, 
participants should rate the influence of each cause in accordance with conditional D..P (Equa­
tions 2.3 - 2.6). When one cause produces two effects, because each effect should be assessed 
independently, participants should rate the influence of the cause on each effect in accordance 
with unconditional D..P (Equations 2.1 and 2.2). Under these circumstances, with only one 
cause and two effects, one must rotate the 4x2 contingency matrix shown in Figure 2.1 to 
form a 2x4 matrix in which the two rows represent the presence and absence of the cause, and 
the columns represent the four combinations of the two effects. By doing so, it is impossible 
to calculate the conditional contingencies for A and B defined in Equations 2.3 - 2.6. 

Experiments designed to test causal-model theory have typically compared two causal 
scenarios in which two (or more) causes precede a single effect or in which two (or more) 
effects precede a single cause thereby confounding causal order (CE vs. EC) and the number of 
causes and effects (2-1 vs. 1-2) (e.g., Waldmann & Holyoak, 1992; Van Hamme & Wasserman, 
1993; Matute et al., 1996; Waldmann, 2000). As illustrated in Figure 2.2, four cause-effect 
scenarios are possible by crossing the two variables: two cues can be followed by one outcome 
and be described as two causes producing an effect (2C-1E) or as two effects resulting from 
a cause (2E-1C), and one cue can be followed by two outcomes and be described as a cause 
producing two effects (1C-2E) or as an effect resulting from two causes (1E-2C). According to 
causal-model theory, participants should be sensitive to the interaction between causal order 
and the number of the causes and effects, which together define the structure of the causal 
relationship (Waldmann & Holyoak, 1992, 1997; Waldmann, 2000, 2001). The model predicts 
that pairs of causes will interact in the 2C-1E and 1E-2C scenarios (Le., the negative diagonal 
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2-1 1-2 

CE 

EC 

Figure 2.2: Four possible causal scenarios generated by crossing causal order (CE vs. EC) 
with the number of cues and outcomes (2-1 vs. 1-2). 

of Figure 2.2) and predicts that pairs of effects will not interact in the 2E-IC and lC-2E 
scenarios (i.e., the positive diagonal of Figure 2.2). In contrast, according to the Rescorla­
Wagner model, participants should be sensitive only to the number of the cues and outcomes 
in which cues interact regardless of their causal order. The model therefore predicts that pairs 
of cues will interact in the 2C-IE and 2E-IC scenarios (i.e., the left column of Figure 2.2) ~d 
predicts that pairs of outcomes will not interact in the lC-2E and lE-2C scenarios (i.e., the 
right column of Figure 2.2). 

To summarize, a conditional 6.P account applied to causal-model theory predicts that 
judgments of a pair of differentially predictive causes should elicit a cue-interaction effect, 
while judgments of a pair of differentially diagnostic effects should not. In contrast, the 
Rescorla-Wagner model predicts that judgments of a pair of differentially contingent cues 
should elicit a cue-interaction effect, while judgments of a pair of differentially contingent 
outcomes should not. 

2.4 Experiment 1 

Experiment 1 was designed to test the predictions made by causal-model theory and the 
Rescorla-Wagner model by independently manipulating causal order and the number of cues 
and outcomes. Thus, four causal scenarios were presented to participants using the one-phase 
simultaneous blocking task described above. Two cues were described either as causes of an 
effect (2C-IE) or as effects of a cause (2E-IC)i or one cue was described either as a cause of 
two effects (1C-2E) or as an effect of two causes (1E-2C) as shown in Figure 2.2. In each of 
the four scenarios, the two events that were presented simultaneously were either differentially 
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Table 2.1: Frequency of events in Experiment 1. The unconditionaltlP values were calculated 
using Equations 2.1 and 2.2. The conditionaltlP values were calculated using Equations 2.3-
2.6. 

Trial Type 0.5/0 0.5/1 
ABO 9 18 
ArwBO 9 0 
rwABO 3 6 
rwArwBO 3 0 
ABrwO 3 0 
ArwBrwO 3 6 
rwABrwO 9 0 
",ArwBrwO 9 18 

# of Trials 48 48 
tlPA 0.5 0.5 
LlPAIB 0.5 0 
LlPAI~B 0.5 0 
LlPB 0 1 
LlPB1A 0 1 
LlPBI~A 0 1 

predictive or diagnostic of the single event. Event A had a moderately positive unconditional 
LlP of 0.5, and was paired with B which had an unconditional LlP of 0 or 1. Causal-model 
theory predicts that participants will demonstrate a cue-interaction effect in the 2C-IE and 
lE-2C scenarios (and not in the other two), and the Rescorla-Wagner'model predicts that 
participants will demonstrate a cue-interaction effect in the 2C-IE and 2E-IC scenarios (and 
not in the other two). 

2.4.1 Method 

Participants and Design 

Forty-eight undergraduate students at McMaster University participated for course credit. 
The experiment was designed to test how ratings of a moderately positive contingency varied 
in the presence of a zero or a perfect contingency as a function of causal order and the number 
of cues and outcomes. A four-factor mixed design was used with causal order as a between 
factor with two levels (CE and EC); and the number of cues and outcomes as a within factor 
with two levels (2-1 and 1-2). Thus, half of the participants were assigned to the CE group 
and presented with the 2C-IE and lC-2E scenarios, and half were assigned to the EC group 
and received the 2E-IC and lE-2C scenarios. Within each group, the order that the scenarios 
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were presented was counterbalanced. A third within factor was the contingency of Event B 
(tl.PB = 0 and tl.PB = 1), in which the order of presentation was also counterbalanced. The 
fourth factor was a within factor representing the number of trials prior to the participants' 
ratings (32 and 48). Table 2.1 illustrates the trial frequencies obtained by combining an 
unconditional contingency for A (tl.PA = 0.5) with one of two unconditional contingencies for 
B: a zero contingency (tl.PB = 0) or a perfect contingency (tl.PB = 1). We use the notation 
introduced by Baker et al. (1993) to represent the unconditional contingencies of the two 
events, tl.PA/ tl.PB. The designation for the two examples in Table 2.1 are 0.5/0 and 0.5/1, in 
which the value on the left of the solidus represents tl.P A and the value on the right represents 
tl.PB· 

Procedure and Materials 

The design and procedure for Experiment 1 were adapted from Mehta (2000). Participants 
received instructions on a computer screen where they were informed about four strains of 
bacteria that have been discovered in the mammalian digestive system. In the 2C-1E and 1E-
2C scenarios, they were told that scientists were testing whether a pair of chemicals affected 
the strain's survival, whereas, in the 2E-1C and 1C-2E scenarios, the scientists were testing 
whether the bacteria affected the production of a pair of chemicals. 

Up to four participants at a time performed the experiment on Power Macintosh computers 
located in separate rooms. The entire experiment was programmed in MetaCard 2.3.1. In the 
instructions, the four causal scenarios were identified as separate "experiments" designed to 
test the influence of the chemicals on the bacterial strain, or vice versa. Within each scenario, 
forty-eight trials were presented in random order according to the frequencies presented in 
Table 2.1. The addition or production of a chemical was indicated by a computer rendered 
movie of a colored three-dimensional chemical spinning along its axis, and actual footage 
of moving bacteria was displayed when the bacterial strain survived or was added. Faded, 
unmoving greyscale images of the same chemicals and bacteria were displayed to indicate their 
absence on a given trial. The names of the chemicals and bacteria were·displayed only when 
the events occurred. Each of the movies and images were randomly assigned fictitious names 
from a set of eight chemicals and four bacteria. Chemical A was always presented on the left 
hand side of the display, and Chemical B was always presented on the right. The observer 
initiated a condition by clicking the "Begin" button on the computer screen and initiated each 
subsequent trial by clicking the "Next Trial" button. 

The materials for the four causal scenarios are described as follows: 
2C-1E: Participants were instructed that each of the two chemicals would either be added 

to the bacterial strain or not, resulting in the survival or death of the bacterial strain. They 
were then presented with a series of trials in which one, both, or neither chemical was added, 
followed by the survival or death of the bacterial strain. 

1 C-2E: Participants were instructed that the bacterial strain would either be added to a 
human digestive environment or not, resulting in the production of each of a pair chemicals or 
not. They were then presented with a series of trials in which the bacterial strain was either 
added or not, followed by the production of one, both, or neither chemical. 
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2E-1C: Participants were instructed that the bacterial strain would either be added to a 
human digestive environment or not, resulting in the production of each of a pair chemicals or 
not. They were then presented with a series of trials in which one, both, or neither chemical 
was produced, followed by the addition of the bacterial strain or not. 

lE-2C: Participants were instructed that each of the two chemicals would either be added 
to the bacterial strain or not, resulting in the survival or death of the bacterial strain. They 
were then presented with a series of trials in which the bacterial strain survived or not, followed 
by the addition of one, both, or neither chemical. 

After passively viewing a series of thirty-two trials; participants in the 2C-1E and 1E-2C 
scenarios were asked to rate how strongly each chemical affected the survival of the bacteria, 
and those in the 2E-1C and 1C-2E scenarios were asked to rate how strongly the bacteria 
affected the production of each chemical. Ratings were made on a scale ranging from -100 to 
100 by moving a horizontal scrollbar with a mouse ranging from -100 at the leftmost position 
to 100 at the rightmost position, anchored at a at the center. After rating A, they were 
prompted to rate B, followed by another sixteen trials in which they would repeat the rating 
process. After observing two "experiments" in which l:l.PB was either a or 1, a second set 
of instructions was presented, nearly identical to the first differing only in the number of 
cues and outcomes as described previously. Again, l:l.PB was either a or 1 for the latter two 
"experiments" comprising a total of four conditions. 

Results and Discussion 

Mean ratings of Event A after 48 trials are illustrated in Figure 2.3a (error-bars represent 
standard errors of the means). Ratings for each of the four scenarios are plotted as a function 
of the two l:l.PB values. According to causal-model theory, when two causes produce a single 
effect (2C-1E and 1E-2C) ratings of A, which were always moderately positive, should remain 
moderately positive in the presence of a zero contingency and should be much less positive in 
the presence of a perfect contingency (tracking the conditionall:l.P values in Table 2.1). When 
two effects result from a single cause (2E-1C and 1C-2E), A should be'rated as moderately 
positive both in the presence of a zero or perfect contingency (tracking the unconditional 
l:l.P values in Table 2.1). According to the Rescorla-Wagner model, cue-interaction should be 
present only in the 2C-1E and 2E-1 C scenarios. The pattern of results presented in Figure 2.3a 
are consistent with causal-model theory. Only in the 2C-1E and 1E-2C scenarios are ratings of 
the moderately positive contingency noticeably lower in the presence of a perfect contingency 
(l:l.PB = 1) than in the presence of a zero contingency (l:l.PB = 0). Although "noticeably 
lower" here refers to a sizeable negative rating of A, what is relevant is that the trend in 
participants' ratings of A demonstrate conditionalization (see also Spellman, 1996a). 

A four-way mixed ANOVA (effects were assessed for significance at the a = .05 level), 
with ratings of A as the dependent variable, revealed significant main effects of contingency 
for Event B (l:l.PB = a vs. l:l.PB = 1), F(l, 46) = 40.12, MSe = 3112.23, and the number 
of cues and outcomes (2-1 vs. 1-2), F(1, 46) = 4.55, MSe = 1388.45. The trial main effect 
(rating after 32 vs. 48 trials) was not significant, F(1, 46) = .28, MSe = 609.23, nor did it 
interact with any of the other factors. The main effect of causal order (CE vs. EC), while not 
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Figure 2.3: Mean ratings in Experiment 1 after 48 trials of Event A (Figure 2.3a) and of 
Event B (Figure 2.3b). For each event, the ratings are shown as a function of ll.PB separately 
for each of the four scenarios. Error-bars represent standard errors of the means. 
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significant, F(l, 46) = .04, MSe = 2573.04, did interact with the number of cues and outcomes 
and the contingency for Event B, F(l, 46) = 17.78, MSe = 2635.78. This significant three-way 
interaction was further examined using the Tukey test. When aPB = 0, the ratings were not 
significantly different among the four scenarios. Moreover, these ratings did not differ from 
the ratings in the two scenarios in which one cause produced two effects (1C-2E and 2E-1C) 
when aPB = 1. In contrast, ratings in the two scenarios in which two causes produced one 
effect (2C-1E and 1E-2C) when aPB = 1 were significantly lower than the other ratings and 
did not differ from each other. 

Mean ratings of Event B are shown in Figure 2.3b. Table 2.1 indicates that for both 
0.5/0 and 0.5/1, the conditional probabilities are the same as the unconditional probabilities. 
Therefore, ratings of B should be the same for the four scenarios, and should be lower for 
0.5/0 than for 0.5/1. It is clear from Figure 2.3b that the ratings for B are consistent with 
causal-model theory. With ratings of Event B as the dependent variable, a four-way ANOVA 
revealed that the only main effect that was significant was tlPB, F(l, 46) = 628.13, MSe = 

.1394.64. None of the interactions involving aPB were significant confirming that ratings for 
a constant aPB did not differ across causal order or number of cue and outcomes. The only 
other significant outcome was the interaction between causal order and trial, F(l, 46) = 4.14, 
MSe = 474.94. The Tukey test revealed that this interaction reflected higher ratings for the 
CE order than for the EC order after 32 trials but not after 48 trials. 

In summary, Experiment 1 resulted in a significant interaction between causal order and 
the number of cues and outcomes. When two causes resulted in one effect (2C-1E and 1E-2C), 
participants rated the moderately contingent Cause A as less predictive when it was paired 
with a perfect predictor (tlPB = 1) than when it was paired with a non-predictor (tlPB = 0). 
When one cause resulted in two effects (2E-1C and 1C-2E), participants rated the moderately 
contingent Effect A as equally diagnostic, both when the effect it had been paired with was 
perfectly diagnostic (tlPB = 1) or was non-diagnostic (aPB = 0). These results indicate that 
cue-interaction occurs when two causes produce one effect regardless of whether the causes 
are presented before or after the effect, thus providing clear support for causal-model theory. 
Participants' overall ratings seem to be sensitive to the causal structure 'of contingent events. 

Both causal-model theory and the Rescorla-Wagner model predict a cue-interaction effect 
when two causes precede a single effect (2C-1E) and no cue-interaction when one cause pre­
cedes two effects (1C-2E). However, only causal-model theory predicts the pattern of results 
obtained in Experiment 1 in which a cue-interaction effect occurs when one effect precedes 
two causes (1E-2C) and no cue-interaction occurs when two effects precede one cause (2E-
1 C). Notice, however, that ratings of A in the presence of a perfect predictor are lower in the 
2E-1C scenario compared to the 1C-2E scenario. Similarly, ratings of A in the presence of a 
perfect predictor are lower in the 2C-1E scenario compared to the 1E-2C scenario.· According 
to causal-model theory, when two effects precede a single cause (2E-1C), there should be no 
difference between ratings of A when B is perfectly predictive or non-predictive and these 
ratings should not differ from the 1C-2E scenario. In contrast, when one effect precedes two 
causes (1E-2C), there should be a difference between ratings of A when B is perfectly predic­
tive or non-predictive and these ratings should not differ from the 2C-1E scenario. The data 
indicate, however, that when the effects come first, the influence of the causal model seems 
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Table 2.2: Frequency of events in Experiments 2 and 3. Unconditional ~p values were 
calculated using Equations 2.1 and 2.2. Conditional ~p values were calculated using Equa-
tions 2.3-2.6. 

Trial Type 0.5/0 0.5/0.25 0.5/0.5 0.5/0.75 0.5/1 
ABO 6 8 10 11 12 
A---BO 6 4 2 1 0 
---ABO 2 2 2 3 4 
---A---BO 2 2 2 1 0 
AB---O 2 2 -2 1 0 
A---B---O 2 2 2 3 4 
---AB---O 6 4 2 1 0 
"'A---B"'O 6 8 10 11 12 

# of Trials 32 32 32 32 32 
~PA 0.5 0.5 0.5 0.5 0.5 
~PAIB 0.5 0.47 0.33 0.17 0 

~PAI"'B 0.5 0.47 0.33 0.17 0 
~PB 0 0.25 0.5 0.75 1 
~PBIA 0 0.13 0.33 0.67 1 
~PBI"'A 0 0.13 0.33 0.67 1 

to lessen, or perhaps, the influence of an associative mechanism may increase. We will revisit 
this point in the discussion of Experiment 2. 

2.5 Experiment 2 

The data provided in Experiment 1 indicate that participants' overall ratings are sensitive to 
the causal structure of the events. Following the suggestion that causal order and the number 
of cues and outcomes had been confounded in previous investigations of cue-interaction, four 
causal scenarios were tested in Experiment 1 in which a moderately positive contingency (~PA 
= 0.5) was paired either with a zero contingency (~PB = 0) or a perfect contingency (~PB 
= 1). Experiment 2 was designed to replicate the results from Experiment 1 and to generalize 
from the extreme contingencies used to less extreme values by including three intermediate 
~PB values (0.25, 0.5, 0.75). The ~PB values chosen for the three intermediate contingency 
pairs were selected to best contrast the predictions made by the Rescorla-Wagner model and 
causal-model theory through participants' ratings of A, and were not chosen for their intrinsic 
value. To clarify, several different frequencies can be selected to fill the eight cells of the 4x2 
matrix each resulting in various combinations of unconditional and conditional ~P values. 
The frequencies for Experiment 2 (shown in Table 2.2) were selected to produce a descending 
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pattern of conditional 6.PA values while maintaining identical unconditionall:::.PA values. As 
well, they were selected so the unconditional and conditionall:::.PB values would be as closely 
matched as possible. The 6.PB values were therefore selected only for their influence on 
the conditional l:::.P A values. The frequencies were also selected so the respective conditional 
contingencies for A and B would be identical where l:::.PAIB = l:::.PAI",B and l:::.PBIA = l:::.PBI",A 
resulting in the symmetry observed in the two columns of the 4x2 contingency matrix for 
each of the five conditions (see Spellman, 1996b, Property 4). 

In addition, Experiment 2 was designed to independently test each of the four causal 
scenarios. In Experiment 1, half of the participants were presented with both the 2C-1E 
and 1C-2E scenarios and the other half were presented with the 2E-1C and 1E-2C scenarios. 
In Experiment 2, however, each group was presented with only one causal scenario (2C-1E, 
2E-1C, 1C-2E, or 1E-2E). 

2.5.1 Method 

Participants and Design 

Sixty undergraduate students at McMaster University participated for course credit. The 
experiment was designed as a replication of Experiment 1 using five contingency pairs rather 
than two, casual scenario as a between factor, and a total of 32 rather than 48 trials with a 
single overall rating. The 60 participants were randomly assigned to one of the four causal 
scenarios (i.e., 2C-1E, 1C-2E, 2E-1C, or 1E-2C). Within each group, the presentation order 
of the five l:::.PB values was randomized. Table 2.2 illustrates the trial frequencies obtained by 
combining l:::.P A = 0.5 with each of the five 6.PB values. 

Procedure and Materials 

The procedure and materials in Experiment 2 were very similar to those in Experiment 1. The 
difference was in the total number trials and the number of l:::.PB values. Participants were 
presented with 32 trials before rating Events A and B, where they would repeat the process 
after observing each of the five "experiments". Two more fictitious chemicals and one more 
bacterial strain was added among those to be presented. 

Results and Discussion 

Mean ratings of Event A are illustrated in Figure 2.4a. Ratings for each of the four causal 
scenarios are plotted as a function of the five 6.PB values. According to causal-model theory, 
ratings of A in the 2C-1E and 1E-2C scenarios should track the pattern of conditional 6.PA 
values presented in Table 2.2. The conditional 6.PA values decrease as 6.PB increases, and 
therefore ratings of A should also decrease. Causal-model theory also predicts that the ratings 
of A in the 1C-2E and 2E-1C scenarios should track the pattern of unconditionall:::.PA values 
presented in Table 2.2. The unconditional 6.PA values are constant, and therefore the ratings 
of A should not change across the five 6.PB values. The Rescorla-Wagner model makes similar 
predictions but for different scenarios: ratings of A should be a decreasing function of l:::.PB 
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Figure 2.4: Mean ratings in Experiment 2 after 32 trials of Event A (Figure 2.4a) and of 
Event B (Figure 2.4b). For each event, the ratings are shown as a function of 6.PB (0, 0.25, 
0.5, 0.75, 1) separately for each of the four scenarios. Error-bars represent standard errors of 
the means. 
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for the 2C-1E and 2E-1C scenarios, and should be independent of IlPB for the 1C-2E and 
1E-2C scenarios . .AJ:, we noted earlier, the predictions for both models are ordinal. Thus, we 
are examining not only the presence or absence of cue-interaction, but also the ordinal level 
of cue-interaction among the four causal scenarios. 

The ratings of A appear to support the predictions made by causal-model theory. In the 
2C-1E and 1E-2C scenarios, ratings of A decline as IlPB increases, tracking the pattern of 
conditionalllPA values presented in Table 2.2. In the 2E-1C and 1C-2E scenarios, ratings of 
A remain relatively constant regardless of the contingency for Event B, tracking the pattern 
of unconditional IlP A values presented in Table 2.2. 

With four causal scenarios (2C-1E, 1C-2E, 2E-1C, 1E-2C) as a between factor and five 
IlPB values (0, 0.25, 0.5, 0.75, 1) as a within factor, a mixed ANaVA was conducted on the 
ratings of A . .AJ:, expected, the analysis revealed main effects of causal scenario, F(3, 56) = 
14.83, MSe = 2098.34, and IlPB, F(4, 224) = 13.32, MSe = 1348.32, as well as a significant 
interaction between them, F(12, 224) = 3.98, MSe = 1348.32. The Tukey test was used 
to examine this significant interaction to see whether the results replicated those found in 
Experiment 1. The ratings of A for the two IlPB values used in Experiment 1 (IlPB = 0 and 
b:..PB = 1) were compared and ratings were not significantly different among the four causal 
scenarios when IlPB = O. Also, these ratings did not differ from the ratings when IlPB = 1 
if one cause produced two effects (1C-2E and 2E-1C). In contrast, when two causes produced 
a single effect (2C-IE and 1E-2C) and IlPB = 1, ratings were significantly lower than the 
other ratings and did not differ from each other. Thus, ratings of A in Experiment 2 provide 
a replication of the Experiment 1 results. Cue-interaction occurs when two causes result in 
one effect, regardless of whether the causes precede or follow the effect, and cue-interaction 
does not occur when a single cause results in two effects, regardless of their causal order. 

According to causal-model theory, ratings of A should decrease as IlPB increases when 
two causes produce one effect (2C-1E and 1E-2C), and should remain constant when one 
cause produces two effects (1C-2E and 2E-1C). A linear trend analysis was conducted on the 
A ratings, separately for each scenario, across the five b:..PB valuesl . .AJ:, predicted by causal­
model theory, the linear trend was significant for the 2C-1E, F(l, 56) ;", 40.10, and 1E-2C, 
F(l, 56) = 29.60, scenarios, and was not significant for the 1C-2E, F(l, 56) = .09, and 2E-1C, 
F(l, 56) = .74, scenarios (MSe = 1751.69 for each comparison). 

Mean ratings of Event B are illustrated in Figure 2.4b. The ratings of B clearly increase 
with IlPB. Table 2.2 indicates that for 0.5/0.25,0.5/0.5, and 0.5/0.75, the conditional values 
of b:..PB are less than the unconditional values. Thus, according to causal-model theory, 
ratings of B if two causes produce one effect (2C-1E and 1E-2C) should be less than if one 
cause produces two effects (1C-2E and 2E-1C). While the data tend in that direction, the 
statistical analysis indicated that the scenario effect was not significant. With ratings of B as 
the dependent measure, a mixed ANaVA revealed only a significant main effect of IlPB, F(4, 
224) = 107.84, MSe = 1047.12. The main effect of causal scenario was not significant, F(3, 

1 We are interested in whether there is a significant linear trend among the A ratings across the five levels 
of I).PB, tracking the conditional I).P values for Event A. The interval between the levels of the independent 
variable are unequal (i.e., 0.5, 0.47, 0.33, 0.17, O) whereby the following coefficients were derived: 21, 17, 4, 
-13, -29 (see Howell, 1997, for derivation). 
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56) = 1.16, MSe = 2296.1, nor was the interaction between causal scenario and 6.PB, F(12, 
224) = .89, MSe = 1047.13. To evaluate whether the absence of a significant scenario effect 
was attributable to the cases where the conditional and unconditional values of 6.PB were 
the same (0.5/0 and 0.5/1), the ANOVA was conducted on the three other pairings (0.5/0.25, 
0.5/0.5, and 0.5/.75). Again, only the main effect of 6.PB was significant, F(2, 112) = 50.51, 
MSe = 1223.04. 

In summary, the ratings of A in Experiment 2 provide a direct replication of the ratings 
in Experiment 1 and generalize the results to less extreme 6.PB values. When two causes 
produce one effect, participants rated the moderately positive cause as less predictive when it 
was paired with a strong predictor than when it was paired with a weak predictor. When a 
single cause produced two effects, participants rated the moderately positive effect as equally 
diagnostic regardless of the diagnosticity of the effect that it was paired with. This interaction 
between causal order and the number of cues and outcomes is consistent with the predictions 
of causal-model theory. Although not statistically significant, the ratings of B were also 
consistent with causal-model theory. It must be emphasized that the B ratings do not provide 
a strong assessment of the models because the 6.PB values were selected only for their influence 
on the conditional 6.PA values. 

As in Experiment 1, the causal-model effect is not as strong when the effect(s) precede 
the cause(s). In Experiment 2, we see that ratings of A are consistently lower in the 2E-1C 
scenario compared to the 1C-2E scenario. Similarly, ratings of A tend to be lower in the 2C-
1E scenario compared to the 1E-2C scenario. Again, while the differences are not significant, 
when the effect(s) precede the cause(s), participants' ratings seem be influenced less by the 
causal description of the events and more by their associative strength. Although the data 
from Experiments 1 and 2 pro.vide conclusive evidence that participants' judgments are driven 
primarily by the structure of the causal relationship, we will demonstrate the significant role 
of associative processes in the following two experiments. 

2.6 Experiment 3 

A conditional6.P account applied to causal-model theory allows one to generate dichotomous 
predictions in which cue-interaction should occur or not (as has been done in previous inves­
tigations), but in addition, it allows for ordinal predictions where the relative effectiveness 
of each event determines the degree to which they interact. The data from Experiments 1 
and 2 provide solid evidence for the influence of causal expectation on human inference. In 
Experiment 3 we demonstrate that these high level processes may not occur independently of 
basic, low-level (associative) processes by exploring a different measure of causal assessment. 

In Experiments 1 and 2, participants passively viewed a series of trials before providing 
an overall rating of the relationship between the events. Our methodology differs from that 
reported by others (e.g., Shanks & Lopez, 1996; Price & Yates, 1995; Cobos, Lopez, Caiio, 
Almaraz, & Shanks, 2002; Waldmann & Holyoak, 1992) who required participants to predict 
the outcome of each trial, and were provided corrective feedback on their prediction. For 
example, on each trial, participants in E~periment 1 of Waldmann and Holyoak (1992) would 
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see descriptions of people on a computer screen and were to use those descriptions to predict 
whether they thought a person had the described disease (by pressing a Yes key) or did not 
have the disease (by pressing a No key). After indicating their response, they received Correct 
or Incorrect as feedback. If participants are presented with four types of event combinations 
(AB, A,....,B, ,....,AB, ,....,A,....,B) and are asked to predict the outcome of each trial (Yes, No), then 
a 4x2 matrix, like the one presented in Figure 2.1, can be constructed where the columns 
represent the two prediction responses (Yes, No) rather than the actual outcomes. These 
predictions can then be used as an indirect measure of their conditional AP estimates (Lopez, 
Shanks, Almaraz, & Fernandez, 1998; Tangen & Allan, 2003). 

We have shown in Experiments 1 and 2 that participants demonstrate a sensitivity to 
the structure of causal relationships which is consistent with the predictions made by causal­
model theory. To further investigate participants' sensitivity to causal structure, we required 
participants in Experiment 3 to predict the outcome of each trial in addition to providing 
an overall rating of the relationship between the events. Thus, we obtained both a measure 
of causal assessment derived from prediction responses, as well as explicit overall judgments 
between the events to determine whether the two measures were congruent as we varied the 
structure of the causal relationship. 

Among the four causal scenarios described earlier (2C-1E, 1C-2E, 2E-1C, and 1E-2C) , 
the results from Experiments 1 and 2 reveal that neither causal order or the number of cues 
and outcomes were significant factors independently. Instead, the important variable was the 
interaction between the two factors, i.e., the structure of the causal relationship. Therefore, to 
avoid the potential confound of the number of predictions participants were making on each 
trial, we eliminated the right hand column of Figure 2.2 and presented them with only two 
cues and one outcome (2C-1E and 2E-1C). Each group was shown identical stimuli, but the 
causal description of the stimuli differed between the two groups. According to causal-model 
theory, judgments should vary depending on whether the events are described as two causes 
resulting in an effect, or as two effects resulting from one cause. In contrast, the Rescorla­
Wagner model does not make a distinction between the causal description of the events, and 
codes the two scenarios identically as two cues followed by one outcome. On each trial, a 
participant was presented with one of four event combinations (AB, A,....,B, ,....,AB, ,....,A,....,B) and 
then predicted whether the effect/cause occurred given the information from the preceding 
pair of events and from previous trials. Corrective feedback (Correct, Incorrect) was provided 
immediately after making their decision. After 32 trials, they were asked to provide an overall 
rating of the relationship between the events as in the previous experiments. The same five 
contingency pairs were used as in Experiment 2. 

2.6.1 Method 

Participants and Design 

Thirty undergraduate students at McMaster University took part in this experiment for course 
credit. The design of Experiment 3 was identical to that used in Experiment 2 except the 
1C-2E and 1E-2C causal scenarios were eliminated, and participants were asked to predict the 
outcome of each trial and were provided feedback on their decision. The frequency of events 
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in Experiment 3 are shown in Table 2.2. 

Procedure and Materials 

The same procedure and materials as Experiment 2 were used with the addition of predictions 
on each trial. Participants were presented with two cues consisting of the presence or absence 
of two chemicals (2C or 2E) and were then asked to predict whether they thought the bacterial 
strain survived/was added or not by clicking one of two buttons on the computer screen. Once 
they made their selection, they were presented with the outcome (IE or 1C) along with Correct 
or Incorrect as feedback. The prediction responses for each event combination were recorded 
and used to calculate estimated conditional t:::.P values by counting the number of Yes and 
No responses for each event combination (AB, A""B, ",AB, ""A""B) after 16, 32, 48, and 64 
trials and substituting these frequencies into Equations 2.3 - 2.6. 

Results 

In this experiment there were two dependent measures, ratings and predictions. 

Ratings Figures 2.5a and 2.5b depict the mean ratings for Cues A and B respectively. The 
pattern of results for both cues is similar to that observed in Experiment 2. Ratings of A, 
in the 2C-1E scenario, decline as t:::..PB increases, tracking the pattern of conditional t:::..PA 
values presented in Table 2.2. Ratings of A, in the 2E-1C scenario, remain relatively constant 
as t:::.PB increases, tracking the pattern of unconditional t:::..P A values presented in Table 2.2. 
With ratings of A as the dependent variable, a mixed ANOVA, with causal scenario (2C-1E 
vs. 2E-1C) as a between factor and t:::.PB (0, 0.25, 0.5, 0.75, 1) as a within factor, revealed 
significant main effects for scenario, F(l, 28) = 8.03, MSe = 4048.77, and t:::..PB, F(4, 112) = 
5.21, MSe = 1845.58, as well as a significant interaction, F(4, 112) = 2.95, MSe = 1845.58. 
As in Experiment 2, the linear trend was significant for the 2C-1E scenario, F(l, 28) = 23.80, 
but not for the 2E-1C scenario, F(l, 28) = .66 (MSe = 2338.93 for both comparisons). 

Figure 2.5b indicates that the ratings of B increase with t:::..PB and do not appear to depend 
on causal scenario. With ratings of B as the dependent measure, a mixed ANOVA revealed a 
significant main effect of t:::.PB, F(4, 112) = 18.59, MSe = 2069.06. The main effect of causal 
scenario was not significant, F(l, 28) = .001, MSe = 3001.04, nor was the interaction between 
contingency and causal scenario, F(4, 112) = 1.26, MSe = 2069.06. 

Predictions Figures 2.6a and 2.6b plot the estimated t:::..P values for Cue A conditional 
on the presence and absence of B respectively. It is clear from these two figures that the 
participants' prediction responses are at variance with their ratings. A comparison of the 
two figures also indicates that the estimates of t:::.P AlB are different from the estimates of 
t:::..PAI""B. A 2 (scenario: 2C-1E, 2E-1C) x 2 (Cue B status: present, absent) x 5 (t:::.PB: 0, 
0.25,0.5,0.75,1) mixed ANOVA on the estimated conditional t:::..P values for A confirms these 
observations. The main effect of causal scenario was not significant, F(l, 28) = 1.25, MSe = 
1201.76, nor did it interact with t:::..PB, F(4, 112) = 1.00, MSe = 1088.09, Cue B status, F(l, 
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Figure 2.5: Mean ratings in Experiment 3 after 32 trials of Cue A (Figure 2.5a) and of Cue B 
(Figure 2.5b). For each cue, the ratings are shown as a function of l:::..PB (0,0.25,0.5,0.75, 1) 
separately for each of the two scenarios. Error-bars represent standard errors of the means. 
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28) = 2.54, MSe = 1357.18, or with both, F(4, 112) = .9, MSe = 603.56. The main effect of 
f:).PB was significant, F(4, 112) = 3.46, MSe = 1088.09. The main effect of Cue B status was 
also significant, F(l, 28) = 9.91, MSe = 1357.18, indicating that estimated conditional f:).P 
for A was lower when B was present (estf:).PAIB = .24) than when it was absent (estf:).PAI",B 
= .38). The interaction between f:).PB and Cue B status was not significant, F(4, 112} = .54, 
MSe = 603.56. 

Figures 2.6c and 2.6d illustrate the estimated f:).P values for B conditional on the presence 
and absence of A respectively. A 2 (scenario: 2C-1E, 2E-1C) x 2 (Cue A status: present, 
absent) x 5 (f:).PB: 0, 0.25, 0.5, 0.75, 1) mixed ANOVA on the estimated conditional f:).P 
values for B revealed a main effect of f:).PB, F(4, 112} = 31.26, MSe = 1137.41. The main 
effect of Cue A status was also significant, F(l, 28} = 10.06, MSe = 1349.84, indicating that 
estimated conditional f:).P for B was lower when A was present (estf:).PBIA = .31) than when 
it was absent (estf:).PBI",A = .44). No other effects or interactions reached significance. 

Discussion 

The results from Experiment 3 provide a direct replication of the rating data obtained in 
Experiments 1 and 2. Participants rated identical contingencies quite differently depending on 
whether the events had been described as causes or effects. In the 2C-1E scenario, participants 
gave lower ratings to the moderately predictive Cause A when it was paired with a highly 
predictive Cause B than when it was paired with a less predictive Cause B, indicating that 
causes interact. In contrast, in the 2E-1C scenario, the ratings of Effect A did not depend on 
the contingency of Effect B, indicating that effects do not interact. 

In contrast to the ratings, a causal scenario effect was not seen with the prediction re­
sponses. For both 2C-1E and 2E-1C, the estimated conditional f:).P values for A decreased 
as unconditional f:).PB increased, indicating that cue-interaction occurred in both scenarios. 
There appears to be a dissociation between the ratings and the prediction responses. Table 2.2 
shows that for each cue, the two conditional f:).P values were always the same. That is, f:).P AlB 
= f:).PAI",B and f:).PBIA = f:).PBI",A' This was not the case, however, for the estimates based 
on the participants predictions, where estf:).P AlB < estf:).P AI",B and estf:).PBIA < estf:).PBI",A' 
That is, the estimated conditional f:).P value was smaller when the cue conditionalized upon 
was present than when it was absent. This pattern of results was also found by Tangen and 
Allan (2003). 

In summary, identical stimuli were presented to participants that were described either 
as two causes of an effect (2C-1E) or as two effects of a cause (2E-1C). Participants' overall 
judgments of these relationships varied systematically depending on their causal labels. In 
addition to making an overall judgment of the relationship, they were asked to make a pre­
diction as to the whether the outcome would occur or not on each trial. Their prediction 
responses did not vary according to the causal description of the events. 

We have revealed a dissociation between two means of assessing judgments of causality. 
Trial-by-trial prediction responses require participants to estimate the presence or absence 
of the outcome. The results suggest that participants manage this task by simply basing 
their judgment on the current level of associative strength, identifying cues as generic events 
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without any deeper recognition of their causal status. Overall ratings, on the other hand, 
require participants to not only consider the status of a single outcome, but also take into 
account the causal relationship among the events presented. 

Thus, it seems that participants can report either the current level of associative strength 
in their predictions by basing their causal assessments on the number of cues and outcomes 
rather than on the causal structure of the events; or their assessments can reflect the causal 
status of the events by considering how they are structured. It depends on the nature of the 
question being asked. 

2.7 Experiment 4 

The results from Experiment 3 reveal that participants were sensitive to the causal description 
of the cues and outcome in rating the overall relationship, but the effect was absent in their 
trial-by-trial predictions. Experiment 4 was designed to further investigate this dissociation 
between ratings and prediction responses by increasing the total number of trials in each 
condition from 32 to 64, and having participants provide an overall rating after 16, 32, 48, 
and 64 t~ials. By increasing the number of ratings, we can compare each measure across trials 
as a function of causal scenario. Perhaps a greater number of trials would result in a greater 
sensitivity to the associative processes at work and less sensitivity to the causal description 
of the events. Increasing the total number of trials resulted in the elimination of the 0.5/0.5 
contingency pair to maintain a one-hour experimental session. 

2.7.1 Method 

Participants and Design 

Forty undergraduate students at McMaster University took part in this experiment for course 
credit. The design of Experiment 4 was similar to Experiment 3, but the total number of trials 
was increased to 64, participants were asked to rate each cue after 16, 32, 48, and 64 trials, 
and the 0.5/0.5 contingency pair was eliminated. The event frequencies in Experiment 4 are 
shown in Table 2.3. 

Procedure and Materials 

The procedure and materials for Experiment 4 were similar to those used in Experiment 3 
apart from the total number of trials presented and the number of ratings provided by par­
ticipants. Four contingency pairs were presented to participants as separate "experiments". 

Results 

As in Experiment 3, there were two dependent measures, ratings and predictions. 
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Table 2.3: Frequency of events in Experiment 4. Unconditional /:)'P values were calculated 
using Equations 2.1 and 2.2. Conditional /:)'P values were calculated using Equations 2.3-2.6. 

Trial Type 0.5/0 0.5/0.25 0.5/0.75 0.5/1 
ABO 12 16 22 24 
A",BO 12 8 2 0 
",ABO 4 4 6 8 
",A",BO 4 4 2 0 
AB",O 4 4 2 0 
A",B",O 4 4 6 8 
",AB", ° 12 8 2 0 
",A",B",O 12 16 22 24 

# of Trials 64 64 64 64 
APA 0.5 0.5 0.5 0.5 
APA1B 0.5 0.47 0.17 0 
APAI~B 0.5 0.47 0.17 0 
APB 0 0.25 0.75 1 
APB1A 0 0.13 0.67 1 
APBI~A 0 0.13 0.67 1 
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Figure 2.7: Mean ratings in Experiment 4 after 64 trials of Event A (Figure 2.7a) and of 
Event B (Figure 2.7b). For each cue, the ratings are shown as a function of f).PB (0, 0.25, 
0.75, 1) separately for each of the two conditions. Error-bars represent standard errors of the 
means. 
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Table 2.4: Experiment 4 overall ratings and estimated conditional ap values for Cue A after 
32,48, and 64 trials. 

2C-1E 
0.5/0 0.5/0.25 0.5/0.75 0.5/1 

32 Rating 37.7 (7.6) 14.8 (8.4) 30.7 (13.2) -38 (11) 
estaPA1B 0.41 (0.07) 0.27 (0.06) 0.17 (0.07) 0.18 (0.07) 
estaPAI~B 0.44 (0.1) 0.52 (0.06) 0.31 (0.08) 0.24 (0.06) 

48 Rating 29.1 (9.6) 24 (8.6) -10.8 (10.7) -32.9 (12.3) 
estaPA1B 0.49 (0.06) 0.32 (0.07) 0.16 (0.06) 0.1 (0.04) 
estaPAI~B 0.47 (0.09) 0.51 (0.07) 0.26 (0.05) 0.11 (0.04) 

64 Rating 44 (5.1) 33.3 (7.1) -25.4 (ILl) -35.3 (11.9) 
estaPA1B 0.51 (0.06) 0.35 (0.07) 0.17 (0.05) 0.08 (0.03) 
estaPAI~B 0.51 (0.07) 0.47 (0.06) 0.23 (0.04) 0.08 (0.02) 

2E-1C 
0.5/0 0.5/0.25 0.5/0.75 0.5/1 

32 Rating 33.6 (9.5) 26 (10.3) 5.7 (11. 7) 11.3 (14) 
estaPA1B 0.46 (0.06) 0.38 (0.07) 0.17 (0.09) 0.11 (0.05) 
estaPAI~B 0.55 (0.08) 0.56 (0.08) 0.35 (0.07) 0.3 (0.08) 

48 Rating 32.4 (8.8) 36.7 (9) -12.4 (10.1) -3.15 (13) 
estaPA1B 0.47 (0.06) 0.45 (0.06) 0.14 (0.07) 0.09 (0.04) 
estaPAI~B 0.6 (0.07) 0.57 (0.06) 0.3 (0.06) 0.19 (0.05) 

64 Rating 37.7 (8.4) 12.1 (10.7) 6.8 (10.3) -1.5 (12.9) 
estaPA1B 0.5 (0.05) 0.46 (0.06) 0.15 (0.06) 0.08 (0.04) 
estaPAI~B 0.58 (0.07) 0.59 (0.06) 0.31 (0.05) 0.17 (0.04) 

Note. Standard errors of the means are given in parentheses. 
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Ratings Figures 2.7a and 2.7b depict the mean ratings after 64 trials for Cues A and B 
respectively, and Table 2.4 depicts the mean and standard error of the ratings for Cue A after 
32, 48, and 64 trials. The ratings and estimated D..P values after 16 trials are not reported 
as participants' prediction responses of the randomly presented events occasionally resulted 
in 4x2 matrices with row frequencies of zero. The pattern of results after 32 trials is similar 
to that of Experiments 1, 2, and 3. In the 2C-1E scenario, ratings of A roughly approximate 
the conditional D..P values presented in Table 2.3, whereas in the 2E-1C scenario the ratings 
are consistent with the unconditional D..P values. After 48 and 64 trials, however, a different 
pattern of results emerges. As illustrated in Figure 2.7a, ratings of A decline as D..PB increases, 
regardless of the causal scenario. The effect of the causal-model seems to have dissipated over 
trials, and cue-interaction occurs for both scenarios. A 2 (scenario: 2C-1E,2E-1C) x 4 (D..PB: 
0, 0.25, 0.75, 1) x 3 (trial: 32, 48, 64) mixed ANOVA on the ratings of A revealed only a 
significant main effect for tl.PB, F(3, 114) = 21.27, MSe = 3189.24, which contributed to 
significant interactions with scenario, F(3, 114) = 3.33, MSe = 3189.24, trial, F(6, 228) = 
2.60, MSe = 1397.89, and a three-way interaction with trial and scenario, F(6, 228) = 3.13, 
MSe = 1397.89. A linear trend analysis2 was conducted on the A ratings, separately for each 
scenario after 32, 48, and 64 trials. For the 2C-1E scenario, the linear trend was significant 
after 32 trials, F(l, 38) = 13.59, MSe = 2715.31, 48 trials, F(l, 38) = 19.22, MSe = 2703.87, 
and 64 trials, F(l, 38) = 37.95, MSe = 2482.45. For the 2E-1C scenario, the linear trend 
was not significant after 32 trials, F(l, 38) = 2.87, MSe = 2715.31, but was significant after 
48 trials, F(l, 38) = 11.05, MSe = 2703.87, and 64 trials, F(l, 38) = 4.70, MSe = 2482.45. 
Thus, by 48 trials, cue-interaction is seen in both scenarios. 

Figure 2.7b presents the mean and standard error of the ratings for Cue B after 64 trials, 
and Table 2.5 presents the mean and standard error of the ratings ,for Cue B after 32, 48, and 
64 trials. Ratings of B seem fairly typical of the results obtained in Experiments 1-3. Mean 
ratings increase for both scenarios as a function of D..PB. A 2 (scenario: 2C-1E, 2E-1C) x 4 
(D..PB: 0, 0.25, 0.75, 1) x 3 (trial: 32, 48, 64) mixed ANOVA on the ratings of B confirms 
this observation. The only significant main effect was for tl.PB, F(3, 114) = 77.99, MSe = 
2760.85. The only other significant effect was a three-way interaction 'between D..PB, trial, 
and scenario, F(6, 228) = 3.55, MSe = 747.98, resulting primarily from an exceptionally low 
mean rating in the 2C-1E scenario, 0.5/0.25 condition, after 64 trials. 

Predictions Figures 2.8a and 2.8b plot the estimated tl.P values for Cue A conditional on 
the presence and absence of B respectively computed after 64 trials. Table 2.4 also presents the 
estimated tl.P values for Cue A conditional on the presence and absence of B, and Table 2.5 
also presents the estimated tl.P values for Cue B conditional on the presence and absence of 
A. The data are presented for each of the four contingency pairs after 32, 48, and 64 trials. 
The estimated D..P data reported in Tables 2.4 and 2.5 correspond to the cumulative values 
recorded after a given number of trials in that the 32 trial values are based on the first 32 
trials, the 48 trial values are based on the first 48 trials, and the 64 trial values are based on 

2With only four levels of APB in Experiment 4, the following coefficients were derived to test for a linear 
trend tracking the ordinal pattern of the conditional AP values for A: 22, 18, -12, -28. 
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Table 2.5: Experiment 4 overall ratings and estimated conditional ~p values for Cue B after 
32, 48, and 64 trials. 

2C-1E 
0.570 0.5/0.25 0.5/0.75 0.571 

32 Rating -22.1 (7.5) -0.7 (8.8) 61.5 (6.3) 84.3 (5.7) 
est~PBIA 0.12 (0.06) 0.08 (0.05) 0.44 (0.08) 0.68 (0.05) 
est~PBI~A 0.15 (0.07) 0.33 (0.08) 0.58 (0.09) 0.75 (0.07) 

48 Rating -10.5 (11.2) 9.3 (9.5) 46.1 (10.7) 90.7 (4) 
est~PBIA 0.15 (0.04) 0.11 (0.04) 0.5 (0.06) 0.79 (0.02) 
estAPBI~A 0.12 (0.06) 0.3 (0.09) 0.6 (0.07) 0.8 (0.06) 

64 Rating 5.6 (10.4) -14.6 (7.9) 62.1 (5.3) 87.8 (5.2) 
est~PBIA 0.12 (0.03) 0.14 (0.04) 0.56 (0.05) 0.83 (0.03) 
est~PBI~A 0.12 (0.05) 0.26 (0.07) 0.61 (0.07) 0.83 (0.05) 

2E-1C 
0.5/0 0.5/0.25 0.5/0.75 0.5/1 

32 Rating -5.6 (9.2) -3.8 (10.2) 49.9 (11.1) 81.1 (8.6) 
est~PBIA 0.03 (0.06) 0.1 (0.06) 0.46 (0.08) 0.61 (0.07) 
est~PBI~A 0.12 (0.08) 0.28 (0.07) 0.63 (0.08) 0.8 (0.07) 

48 Rating -2.1 (8.5) 15 (8.9) 62.8 (8) 69.4 (11.9) 
estAPB1A 0.01 (0.05) 0.1 (0.06) 0.54 (0.07) 0.73 (0.04) 
estAPBI~A 0.14 (0.07) 0.22 (0.06) 0.7 (0.06) 0.83 (0.07) 

64 Rating -8.8 (9.5) 13.6 (9.4) 58.9 (8.1) 73 (10.9) 
estAPB1A 0.03 (0.04) 0.09 (0.05) 0.54 (0.06) 0.77 (0.04) 
est~PBI~A 0.11 (0.05) 0.22 (0.05) 0.7 (0.06) 0.85 (0.06) 

Note. Standard errors of the means are given in parentheses. 
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Figure 2.8: Mean estimated conditional t::.P values in Experiment 4 for Events A and B as 
a function of t::.PB separately for the two causal scenarios after 64 trials. estt::.P AlB is shown 
in Figure 2.8a, estt::.P AI~B is shown in Figure 2.8b, estt::.PBIA is shown in Figure 2.8c, and 
estt::.PBI~A is shown in Figure 2.8d. Error-bars represent standard errors of the means. 
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all of the trials. 
The mean estimated conditional 6.P values for A calculated after 32, 48 and 64 trials 

closely track the conditional 6.P values presented in Table 2.3 for both causal scenarios. Also, 
the estimated 6.P values conditional on the presence of B (est6.P AlB) are lower than the 
estimated 6.P values conditional on the absence of B (est6.PAI",B)' 

A 2 (scenario: 2C-1E, 2E-1C) x 4 (6.PB: 0, 0.25, 0.75, 1) x 3 (trial: 32, 48, 64) x 2 
(Cue B status: present, absent) mixed ANOVA on the estimated values for A verifies these 
observations. The 6.PB main effect was significant, F(3, 114) = 33.71, MSe = .21, and 
contributed to a significant interaction with trial, F(6, 228) = 9.39, MSe = .01. The status of 
Cue B main effect was also significant, F(l, 38) = 19.57, MSe = .14, indicating that estimated 
conditional6.P for A was lower when B was present (.28) than when it was absent (.38), and 
the significant Cue B status x trial interaction, F(2, 76) = 5.76, MSe = .14, indicates that this 
difference became less evident across trials. A linear trend analysis was conducted separately 
for the 2C-IE and 2E-IC causal scenarios after 32, 48, and 64 trials, both on the estimated 
6.P values conditional on the presence and absence of B. These analyses reveal a significant 
linear trend for the prediction responses in both causal scenarios, after each of the three trial 
intervals (32, 48, 64), regardless of the status of Cue B. Cue-interaction is evident in the 
prediction responses regardless of the circumstances. 

Figures 2.6c and 2.6d illustrate the estimated 6.P values for B conditional on the presence 
and absence of A respectively computed after 64 trials. An identical ANOVA was performed 
on the prediction response data for B, substituting Cue A status: (present, absent) for Cue B 
status. Resembling the data reported in Experiment 3, significant main effects were obtained 
for 6.PB, F(3, 114) = 110.28, MSe = .22, and Cue A status, F(l, 38) = 19.57, MSe = .15. 
In addition, the trial factor introduced 41 Experiment 4 was significant, F(2, 76) = 9.66, 
MSe = .02, and led to significant interactions with 6.PB, F(6, 228) = 6.93, MSe = .01, and 
Cue A status, F(2, 76) = 5.76, MSe = .02. As indicated by the Cue A data, the estimated 
conditional 6.P values for B were lower when A was present (.36) than when it was absent 
(.46), and this difference became less evident across trials. 

Discussion 

The rating' data from Experiment 4 are similar to those obtained in each of the previous 
experiments, and have extended these findings to reveal an interesting scenario x trial inter­
action. Experiment 4 has shown that cue-interaction is evident across the entire span of 64 
trials when A and B are described as two causes of a single effect (2C-1E). When the causal 
labels are reversed, however, and A and B are described as two effects resulting from a single 
cause (2E-1C), then we see a very different pattern of results across trials. As in each of the 
previous experiments, ratings of A reveal that cue-interaction is not evident in the 2E-1C 
scenario at 32 trials. After 48 and 64 trials, the cue-interaction effect becomes increasingly 
evident. After 64 trials, ratings of A in the 2E-1C scenario are clearly attenuated, as indicated 
in Figure 2.7a. While the trial by scenario data in Experiment 1 tended in the same direction 
as Experiment 4, the effect was not significant. This trial by scenario interaction may not have 
been evident in Experiment 1 between 32 and 48 trials as we compared the trend between 
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two trial points (32 and 48) as opposed to three (32, 48, and 64) in Experiment 4. Other data 
collected in our lab suggest that the trial by scenario interaction is indeed robust (Sadeghi, 
2003). 

The prediction response values are estimated by separately calculating l:!.P conditional on 
the presence and absence of the other cue. In both Experiment 3 and 4, estimated l:!.P condi­
tional on the present cue was significantly lower than estimated l:!.P conditional on the absent 
cue, i.e., estl:!.PAIB < estl:!.PAI",B and estl:!.PB1A < estl:!.PB1",A. Although the conditional l:!.P 
account has not explicitly addressed the relationship between estimated conditional l:!.P and 
actual l:!.P, one would expect them to be congruent as indicated by the identical conditional 
l:!.P values presented in Table 2.3. Our data indicating that the estimated values are not 
congruent with the actual values might be problematic for the conditional l:!.P account (see 
also Tangen & Allan, 2003). 

In summary, Experiment 4 provides similar results as Experiments 1-3. Overall ratings 
were influenced by the causal description of the events after 32 trials. Trial-by-trial prediction 
responses, however, were not influenced by the causal description of the events. In addition, 
Experiment 4 demonstrates that on later trials, participants become less sensitive to the 
difference in description of the two causal scenarios. These data support the argument that 
causal assessments are not driven solely by associative or causal-model processes, but instead 
seem be sensitive to both depending on how and when they are obtained. After repeatedly 
making trial-by-trial predictions, participants may be disregarding the causal order of the 
events which may be reflected in their overall causal ratings. By continually predicting the 
presence or absence of the outcome, it is likely that participants are treating the events less 
like causes and effects, and more like cues and outcomes. As a consequence, on later trials, 
their causal assessments are based on the same associative strength as their trial-by-trial 
predictions are based on. 

2.8 General Discussion 

Price and Yates (1995) were among the first to suggest that both high and low-level processes 
are used in causal assessments (see also Hagmayer & Waldmann, 2000, for a similar two­
process position). There has been little work since then to explain the conditions under which 
these two processes are likely to be operating. Instead, there has been considerable debate 
between causal-model and associative learning theorists as to which of the two theoretical 
interpretations is correct. The results from our experiments revisit the arguments made 
by Price and Yates (1995) as to the joint contribution of associative and causal factors in 
judgments of causality. 

A similar approach has been taken recently by Collins and Shanks (2002) to account for 
primacy and recency effects. They describe two strategies involved in judgments of causality: 
the momentary strategy where judgments simply reflect the current associative strength of 
the cue, and the integrative strategy where participants do not constrain their judgments on 
the current perception of the relationship, but instead integrate information across a number 
of trials. Although Collins and Shanks were describing judgment strategies in primacy and 
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recency effects, we believe the same tactics are being used in judgments of causally asymmetric 
events. Participants are required to estimate the presence or absence of the outcome in their 
trial-by-trial prediction responses. They likely manage this task by identifying cues as generic 
events without any deeper recognition of their causal status, thereby basing their judgment 
on the current level of associative strength. Overall ratings, on the other hand, require a 
more global (integrative) strategy where participants not only consider the status of a single 
outcome, but also take into account the causal structure of the events presented. 

We have demonstrated that the contribution of causal and associative processes depends 
on what the participant is being asked about the events, and on their experience with those 
events. Participants recognize that in order to assess the influence of a given cause, they must 
hold constant (conditionalize on) any alternative causes (2C-1E). Conversely, they understand 
that a single cause can independently influence a number of effects (1C-2E). In associative 
terms, two cues compete to be associated with a single outcome. Conversely, one cue can 
be associated with a number of outcomes. These results are not surprising to anyone. In 
fact, both causal-model theory and the Rescorla-Wagner model make these predictions. The 
question, then, is whether the events continue to interact or not when the order of the causal 
labels are reversed (2E-1C and 1E-2C respectively). The Rescorla-Wagner model predicts that 
the events should be treated identically in either instance, and causal-model theory predicts 
that the presence of a cue-interaction effect should reverse along with the causal labels. 

Experiments 1 and 2 provide evidence that contingency ratings are influenced by the 
interaction between causal order (CE vs. EC) and the number of cues and outcomes (2-1 vs. 
1-2) indicating that participants are sensitive to the structure of the causal relationship. In 
Experiment 3, we see that predictions, a second measure of causal assessment, are not so easily 
swayed by the causal structure of the stimuli. Even though participants assess the s~e causal 
relationship in either case, they account for the causal description of the events in one instance 
(i.e., ratings), but not the other (Le., predictions). Finally, in Experiment 4, we see that the 
relative weighting of causal and associative factors are not only influenced by the means of 
assessing causal inference (ratings and predictions), but also by the repeated exposure to 
the events. We cannot argue whether the repeated exposure to trial-by-trial predictions is 
influencing their causal judgments, or whether it is simply the result of additional trials, as 
these two factors were not tested independently. Regardless, most experiments that support 
an associative account use both a large number of trials and trial-by-trial predictions which 
may explain the discrepant results. The relative contribution of each of these factors remains 
an open question. 

We would expect that if participants were asked to describe how the causal events were 
interconnected, or were required to use the causal model for some particular purpose, then 
they would likely be more sensitive to the structure of the causal relationship then if they were 
asked to report the probability, covariation, or frequency of the events. Similarly, we might 
expect participants to consider the causal nature of the events more carefully if several types 
of causal relationships were presented rather than repeatedly presenting just one. As indicated 
by the results from Experiment 4, participants become less sensitive to the influence of the 
causal-model in both their ratings and predictions as trials progress. One might expect that 
participants would disregard the causal order of the events if they were presented with a large 
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number of trials. In fact, several experiments supporting an associative interpretation have 
shown just that. For example, Cobos et al. (2002) required participants to provide a single 
rating of each event after a learning phase that consisted of as many as 240 trials. Our data 
from Experiment 4 indicate that any causal-model effect would be largely eliminated by then. 
While there is no reason to expect the effect of the causal-model to diminish over trials, it may 
be a step forward in understanding the circumstances under which we use them. We suggest 
that the number of trials presented to the participant is an important factor in determining 
their sensitivity to the structure of the causal relationship. In fact, many experiments that 
have provided support for causal-model theory have used a smaller number of trials (e.g., 
Waldmann, 2000, 2001) compared to those supporting an associative account (e.g., Shanks & 
LOpez, 1996; Cobos et al., 2002). This finding may help explain much of the contradictory 
data in the literature. 

Over the past decade, associative and causal-model theorists have continued to debate 
whether or not human inferences are guided by causal interpretation. We have described 
specific circumstances that allow one to find one pattern of results or the other, and we 
provide evidence for an account in which the two processes operate in conjunction rather than 
independently. 



Chapter 3 

Assessing (in)sensitivity to causal 
asymmetry: A matter of degree 

And now remains 
That we find out the cause of this effect, 
Or rather say, the cause of this defect, 
For this effect defective comes by cause. 

3.1 Preface 

Shakespeare (Hamlet II.ii.l00-4) 

On April 25, 2003, I gave a conference presentation at the 2003 Associative Learning Sym­
posium in Gregynog, Wales, UK. Following the conference, I was notified that Erlbaum pub­
lishers were putting together an edited volume based on the Gregynog, conference, and the 
2003 meeting of the Experimental Psychology Society at Exeter. We were invited to submit 
a chapter for the volume. The third chapter of this dissertation is reproduced from Tangen 
et al. (invited) and will be submitted as part of the edited volume. This chapter was written 
as an extension of the work presented in Tangen and Allan (submitted) (Chapter 2). 

3.2 Abstract 

In assessing the predictiveness of two causes that result in a common effect (2C-IE), human 
participants judge one cause in light of the other. However, when asked to rate the diag­
nosticity of two effects that result from a common cause (2E-IC), they have been shown to 
conditionalise between the effects in some instances, but not in others. While the debate as to 
whether human inferences are guided by causal description of the events has continued, few 
researchers have investigated the specific circumstances under which participants condition­
alise between events or not. We report three experiments designed to investigate potential 

37 
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factors suggested to explain participants' change in sensitivity to causally asymmetric events. 
Experiment 1 examined whether consistently reminding participants of the direction of the 
causal relationship would influence their causal assessments. We designed Experiment 2 to 
investigate whether the wording of the test question used to request participants' ratings is an 
important variable. Finally, Experiment 3 examined whether asking participants to provide 
an integrative rating would influence their sensitivity to causal directionality. The results 
suggest that assessments of causally asymmetric events are best explained by the joint con­
tribution of high and low-level processing whereby causal judgements are influenced both by 
the causal description and by the associative nature of the events. 

3.3 Introduction 

As humans became the subject of associationist paradigms, Waldmann and Holyoak (1992) 
noted the shortcoming of associative models to encode the asymmetry of causal relationships. 
Causes influence effects, but effects do not influence causes. According to Waldmann (Wald­
mann & Holyoak, 1990, 1992, 1997; Waldmann, 2000, 2001), associative models neglect the 
causal status among events by simply encoding the antecedent events as cues and subsequent 
events as outcomes. For example, in Figure 3.1, the generic events A1, A2, and A3 can be 
interpreted either as causes or effects. Waldmann argues that humans will rate the influence 
of each cue differently depending on their causal interpretation and how the cues are inter­
connected. Specifically, if Al and A2 are interpreted as two causes that jointly influence a 
common effect (A3), then according to a common-effect model (2C-IE), one should consider 
each cause conditional upon the other resulting in an interaction between A1 and A2. On 
the other hand, if the causal arrows are reversed, and A3 is interpreted as a common cause of 
two effects (A1 and A2), then according to a common-cause model (2E-1C), the two effects 
should be considered independently while assessing the causal strength of A3. Both effects 
are the product of the common cause. Therefore, when one is asked to rate the effectiveness 
of the cause, because A1 and A2 are effects, they have no causal influence on A3. One should, 
therefore, estimate the unconditional influence on each effect resulting in no cue-interaction. 
Waldmann maintains that associationist learning theories! predict cue-interaction between 
cues regardless of their causal status, while causal-model theory predicts cue-interaction only 
between causes. 

The data reported by Waldmann and Holyoak (1992) prompted a response among several 
associative learning theorists who questioned the results and disputed the necessity of causal­
models in explaining the presence and absence of cue-interaction. The contentious result was 
the absence of cue-interaction when two effects preceded a single cause (2E-IC). Because 
identical cues were used in both the 2C-IE and 2E-IC scenarios, associative models predict 
an attenuated response in both conditions. In support of associative models, Shanks and 
Lopez (1996), Matute et al. (1996), and Price and Yates (1995) using different cue-interaction 
paradigms with various materials, reported a cue-interaction effect regardless of whether two 
causes preceded a single effect or whether two effects preceded a single cause. Van Hamme 

lThis chapter will focus on the Rescorla-Wagner model as an example of associative mod~Is. 
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Figure 3.1: Generic casual structure among three interconnected events. A1, A2, and A3 each 
represent a cause or an effect. 

et al. (1993), however, obtained results that were consistent with causal-model theory in 
which causes interact and effects do not. The authors, however, did not consider their results 
to be inconsistent with associative theories (see Waldmann, 2000, for review). Waldmann 
(2000) responded to the criticisms made by the associative theorists by replicating no cue­
interaction in the 2E-1 C scenario using a novel design to address the criticisms raised against 
the experiments in Waldmann and Holyoak's (1992) article. He also demonstrated the same 
sensitivity to causal asymmetry using a one-phase overshadowing design (Waldmann, 2001), 
Simpson's paradox (Waldmann & Hagmayer, 2001), and he generalised causal-model theory 
to human categorisation (Waldmann, Holyoak, & Fratianne, 1995; Waldmann & Hagmayer, 
1999). In response, Cobos et al. (2002) improved upon the methodology used by Shanks 
and Lopez (1996) and presented a series of experiments in an attempt to address each of the 
criticisms proposed by Waldmann (2000, 2001). The results from their analyses reaffirm their 
previous findings (Shanks & Lopez, 1996) of cue-interaction in the 2E-1C scenario in which 
multiple effects indicate the presence of a common cause. Cobos et al. (2002) argue that 
causal asymmetry does not influence the acquisition and use of inferential knowledge. 

Recently, however, Tangen and Allan (submitted) provided evidence for both high-level 
(causal reasoning) processes, and low-level (associative) processes. They argued that both fac­
tors influence causal assessment depending on what is being asked about the events, and par­
ticipants' experience with those events. In particular, in two experiments, they demonstrated 
how expectations of the structure of causal relationships influence overall causal ratings. In 
two other experiments, they showed that participants are insensitive to causal structure in 
their trial-by-trial prediction responses in contrast to their overall ratings, and that the ef­
fect of expectation on overall ratings are attenuated by including prediction responses and 
increasing the total number of trials presented. Tangen and Allan (submitted) concluded that 
people engage in both causal reasoning and associative learning. 

Several potential factors have been suggested to explain the presence or absence of a causal 
model effect. The present chapter will examine the influence of three such factors in the one­
phase simultaneous blocking design used by Tangen and Allan (submitted). The following 
experiments were not designed to set associative and causal-model theories in opposition (see 
Tangen & Allan, submitted, for contrast), but rather to examine three circumstances under 
which a causal model effect occurs or not, and to further examine the role of conditionalisation 
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Figure 3.2: 4x2 contingency matrix illustrating the eight possible cue-outcome combinations 
for two cues. Each cell represents the frequency of each event type. 

in causal-model theory. 

3.4 Causal-Model Theory and Conditional ~p 

The one-phase simultaneous blocking design initially proposed by Baker et al. (1993) makes 
use of all possible event combinations for two cues (A and B) and a common outcome (0): 
both cues may be present (AB), one may be present and the other absent (AI"VB or I"VAB), 
or both may be absent (I"VAI"VB) as illustrated in Figure 3.2. For each cue combination, the 
outcome either occurs (0) or not (I"VO). In such a task, after being presented with a cue 
combination, participants are typically asked to predict whether the outcome will occur or 
not (Yes, No), which is also represented in Figure 3.2. By calculating the frequency that each 
event combination occurred, Cues A and B can be expressed in terms of their unconditional 
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or conditional AP values respectively: 
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(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

in which the two unconditional AP values (Equations 3.1 and 3.2) correspond to the difference 
between the proportion of times the outcome occurs given the cue and the proportion of times 
the outcome occurs not given the cue. The conditional AP values in Equations 3.3 - 3.6 allow 
one to assess the influence of each cue both in the presence and absence of the other cue. 

Cue-interaction by means of conditionalisation occurs if participants' ratings better corre­
spond with conditional, rather than ~conditional, AP. When two cues described as causes 
precede a single outcome described as an effect (2C-1E), a causal-model account predicts that 
participants should conditionalise by rating the influence of each cause relative to the other. 
Associative models also predict that the cues should interact but by means of cue competition 
as opposed to conditionalisation. Alternatively, if the two cues are described as effects while 
the outcome is described as a cause (2E-1C), a causal-model account predicts that participants 
should rate each effect independently coinciding with unconditional AP described above. Be­
cause associative accounts disregard the causal description of the events, they would again 
predict that the cues would interact by means of cue competition. 

Each of the experiments described in Tangen and Allan (submitted) were designed to 
set apart the two accounts of cue-interaction. In each case, two cues were paired with a 
single outcome where Cue A was always moderately contingent (APA = 0.5), and was paired 
with Cue B which ranged from being non-contingent (APB = 0) to perfectly contingent 
(APB = 1). If participants' ratings or predictions of A changed as the contingency of B 
increased, then they were judging A relative to B. In contrast, if their judgement of A did not 
change as B increased, then they were judging A independently of B. Throughout each of the 
four experiments, Tangen and Allan found that on early trials there was a significant causal 
model effect in participants' ratings where the causal scenario (2C-1E and 2E-1C) significantly 
interacted with Cue B contingency. In Experiment 4, they showed that the causal model effect 
dissipated as the trials progressed. Furthermore, they revealed a dissociation between ratings 
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and prediction responses where participants' ratings were sensitive to the causal scenario (at 
least on early trials), while their prediction responses were insensitive to the causal scenario 
instead reflecting what seems to be the current level of associative strength. 

3.5 Alleged Causal Model Influences 

The debate between associative and causal-model theorists prompted a number of experiments 
examining the influence of causal asymmetry on judgements of contingency, and has resulted 
in a number of positive and negative results (Waldmann & Holyoak, 1992; Van Hamme et al., 
1993; Price & Yates, 1995; Shanks & L6pez, 1996; Waldmann, 2001; Cobos et al., 2002; 
Tangen & Allan, submitted). Several potential factors have been suggested to explain the 
presence or absence of a causal model effect. We will examine the influence of three such 
factors using the one-phase blocking design described above. Recall that in Tangen and Allan 
(submitted, Experiment 4), participants became less sensitive to the causal direction of the 
events as trials progressed. The purpose of the present series of experiments is to examine the 
specific circumstances under which we can alter participants' sensitivity to the direction of the 
causal relationship. In order to determine whether each of the alleged causal model influences 
was effective in bringing about a causal model effect, we will compare each experiment in turn 
with the results obtained in Experiment 4 of Tangen and Allan (submitted). Therefore, using 
those data as a template, we will compare them with the data obtained from each experiment 
in sequence by including both in an analysis of variance (ANOVA), and we will report any 
significant differences between them. However, we are interested primarily in whether there is 
any change in participants' sensitivity to the causal model for each of the following experiments 
as measured by a significant experiment x scenario x 6.PB interaction. 

3.5.1 General Method 

Participants and Design 

A total of 160 undergraduate students at McMaster University volunteered for course credit 
(40 participants in Experiments 1 and 3, and 80 participants in Experiment 2). All of the 
experiments used the same one-phase blocking design described in Tangen and Allan (sub­
mitted, Experiment 4). Sixty-four trials were presented to each participant. On each trial, 
one of four possible cue-combinations was presented (AB, A",B, "'AB, ",A",B) at which point 
participants were asked to predict whether the outcome on that particular trial would occur 
or not (Yes, No). The actual outcome of the trial (0, ",0) followed along with corrective 
feedback on their decision (Correct, Incorrect). Eight trial types were therefore possible and 
are presented in Table 3.1. The number of times that each trial type was presented was de­
termined by pairing moderately contingent Cue A (6.PA = 0.5) with Cue B which varied in 
contingency (6.PB: 0, 0.25, 0.75, 1). The particular event frequencies were selected so that 
the conditional 6.PA values would gradually diverge from the unconditional 6.P A values as 
6.PB increased. 

Cue-interaction was measured by the pattern of data obtained from ratings of Cue A: 
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Table 3.1: Frequency of events in Experiment 1-3. Unconditional!:l.P values were calculated 
using Equations 3.1 and 3.2. Conditional!:l.P values were calculated using Equations 3.3-3.6. 

Trial Type 0.5/0 0.5/0.25 0.5/0.75 0.5/1 
ABO 12 16 22 24 
A",BO 12 8 2 0 
",ABO 4 4 6 8 
",A",BO 4 4 2 0 
AB",O 4 4 2 0 
A",B",O 4 4 6 8 
",AB",O 12 8 2 0 
",A",B",O 12 16 22 24 

# of Trials 64 64 64 64 
!:l.PA 0.5 0.5 0.5 0.5 
APAIB 0.5 0.47 0.17 0 
APAI~B 0.5 0.47 0.17 0 
APB 0 0.25 0.75 1 
APBIA 0 0.13 0.67 1 
APB/~A 0 0.13 0.67 1 
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if ratings of A changed as a function of IlPB, then the cues interacted, if ratings of A did 
not vary, then the cues did not interact. According to causal-model theory, by means of 
conditional IlP, participants in the 2C-1E scenario should rate A conditional on B thereby 
tracking the pattern of conditional IlPA values across the four contingency pairs (0.5, 0.47, 
0.17,0). Participants in the 2E-1C scenario should rate A independently ofB thereby tracking 
the pattern of unconditionalllPA values across the four contingency pairs (0.5, 0.5, 0.5, 0.5). 
Half of the participants were therefore assigned to the 2C-1E scenario and half were assigned 
to the 2E-l C scenario, and the four contingency pairs were presented to each participant in 
random order. 

Throughout each set of 64 trials, participants were asked to rate Cues A and B after 16, 
32, 48, and 64 trials. When participants were asked to predict the outcome of each trial, the 
cue combinations and their corresponding predictions (Yes, No) were mapped onto the 4x2 
matrix presented in Figure 3.2 and used as an indirect measure of participants' conditional 
IlP estimates (Lopez et al., 1998; Tangen & Allan, 2003). 

Procedure and Materials 

Participants received instructions on a computer screen where they were informed about four 
strains of bacteria that have been discovered in the mammalian digestive system. In the 2C­
IE scenario, they were told that scientists were testing whether a pair of chemicals affected 
the strain's survival, whereas, in the 2E-IC scenario, the scientists were testing whether the 
bacteria affected the production of a pair of chemicals. 

Up to four participants at a time performed the experiment on Power Macintosh com­
puters. Each experiment was programmed in MetaCard 2.4.3. In the instructions, the four 
contingency pairs were identified as separate "experiments" to test the influence of the chemi­
cals on the bacteria, or vice versa. Within each causal scenario, the 64 trials were presented in 
random order according to the frequencies presented in Table 3.1. The addition or production 
of a chemical was indicated by a computer rendered movie of a coloured three-dimensional 
chemical spinning along its axis, and actual footage of moving bacteria: was displayed when 
the bacteria survived or were added. Faded, unmoving greyscale images of the same chemi­
cals and bacteria were displayed to indicate their absence on a given trial. The names of the 
chemicals and bacteria were displayed only when the events occurred. Each of the movies 
and images were randomly assigned fictitious names from a set of eight chemicals and four 
bacteria, and were randomly assigned to appear on the left or right-hand side of the screen 
for each of the 64 trials. 

Participants were presented with one of four cue combinations consisting of the presence or 
absence of two chemicals and were then asked to indicate whether they thought the bacterial 
strain survived/was added or not by clicking one of two buttons on the computer screen. 
Once they made their selection, they were presented with the outcome along with Correct or 
Incorrect as feedback. After viewing and predicting the outcome for 16 trials, participants 
in the 2C-IE causal scenario were asked to rate how strongly each chemical (Cues A and B) 
affected the bacteria, and those in the 2E-l C scenario were asked to rate how strongly the 
bacteria affected the production of each chemical (Cues A and B). Ratings were made on a 
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scale ranging from -100 to 100 by moving a horizontal scrollbar with a mouse ranging from 
-100 at the leftmost position to 100 at the rightmost position, anchored at a at the centre. 
The trials resumed and participants were asked to repeat the rating process after 32, 48, and 
64 trials. 

3.6 Experiment 1: Clarity of the Causal Model 

Waldmann and Holyoak (1997) presented a list of methodological requirements for investigat­
ing causal directionality, the first of which is to "ensure that participants consistently interpret 
the learning situation in terms of directed cause-effect relations" (p. 127). In criticising the 
methodology used by Shanks and L6pez (1996), Waldmann and Holyoak insisted on the neces­
sity of making the causal relationship in the instructions and materials unmistakable. They 
argued that if there is any ambiguity in participants' interpretation of the event relations, 
then one cannot accurately measure the influence of their causal interpretation on learning. 
While Shanks and L6pez used a cover story in which various symptoms (effects) were diagnos­
tic of a disease (cause), Waldmann and Holyoak argued that the directionality of the causal 
relationship could be misinterpreted. 

Tangen and Allan (submitted) used materials that could also be interpreted as causally 
ambiguous. Participants were told that scientists have recently discovered several strains of 
bacteria that exist in the mammalian digestive system. In the 2C-1E scenario, they were 
told that the scientists were testing whether certain pairs of chemicals (causes) affect the 
survival of the bacteria (effects). In the 2E-1C scenario, they were told that the scientists 
were testing whether certain pairs of chemicals (effects) were produced as a result of the 
addition of the bacteria (cause). Tangen and Allan selected materials particularly for the 
potential to reverse causal direction, in which the chemicals could be described as causes 
just as easily as effects. In their final experiment, Tangen and Allan demonstrated that the 
influence of the causal model decreased as the number of trials increased. It is possible that 
over time, the causal relationship between the events became less clear where participants 
misinterpreted the cues as causes and the outcome as an effect in the 2E-1C scenario. In 
their methodological requirements, Waldmann and Holyoak (1997) made a point of noting 
that participants must consistently interpret the learning situation in terms of directed cause­
effect relations. Experiment 1 was designed to serve this purpose by consistently reminding 
participants about the direction of the causal relationship at hand. 

3.6.1 Method 

Participants in Experiment 1 were asked to provide contingency ratings for Cues A and B 
after 16, 32, 48, and 64 trials. Between ratings, they were exposed to the sixteen causal model 
prompts given in the Appendix to consistently remind them about the direction and nature of 
the causal relationship. Those in the 2C-1E condition were given 2C-1E prompts while those 
in the 2E-1C condition were given 2E-IC prompts. Each participant was therefore presented 
with each of the 16 prompts two times, in random order, after Trials 8, 16, 24, 32, 40, 48, 56, 
and 64 for each of the four contingency pairs shown in Table 3.1. 
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Figure 3.3: Mean ratings in Experiment 1 after 64 trials of Cue A (Figure 3.3). The ratings 
are shown as a function of D.PB (0, 0.25, 0.75, 1) separately for each of the two conditions. 
Error-bars represent standard errors of the means. 

3.6.2 Results2 

Ratings 

Figure 3.3 illustrates the mean ratings of Cue A after 64 trials, and Table 3.2 provides the 
mean ratings of Cue A after 32, 48, and 64 trials.3 The data are presented for each of the 
four contingency pairs. The pattern of data for ratings of Cue A is virtually identical to the 
results obtained in Tangen and Allan (submitted, Experiment 4). Ratings of Cue A decrease 
as D.PB increases closely tracking the pattern of conditional D.P values presented in Table 3.1 
regardless of whether the two cues were described as causes (2C-1E) or effects (2E-1C). 

The data from Tangen and Allan (submitted, Experiment 4) was used as a template 

2Several different frequencies can be selected to fill the eight cells of the 4x2 matrix each resulting in various 
combinations of unconditional and conditional IlP values. The frequencies shown in Table 1 were selected to 
produce a descending pattern of conditional IlP A values while maintaining identical unconditional IlP A values. 
As well, they were selected so the unconditional and conditional IlPB values would be as closely matched as 
possible. The IlPB values were therefore selected only for their influence on the conditional IlP A values. The 
data for Cue B are virtually identical in each of the three experiments reported here, and do not differ from 
Experiments 1-4 in Tangen & Allan (under review). Therefore, the data for Cue B will not be reported in this 
chapter. 

3The ratings and estimated IlP values after 16 trials are not reported as participants' prediction responses 
of the randomly presented events occasionally resulted in 4x2 matrices with row frequencies of zero. 
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Table 3.2: Experiment 1 mean ratings and estimated t::..P values of Cue A conditional on the 
presence of Cue B (estt::..PA1B) and the absence of Cue B (estt::..PAI",B) after 32, 48, and 64 
trials. 

2C-1E 
0.5/0 0.5/0.25 0.5/0.75 0.5/1 

32 Rating 39.7 (8.6) 29.5 (11.5) -16 (12.6) -39.7 (9.7) 
estt::..PAIB 0.39 (0.08) 0.3 (0.09) 0.19 (0.07) 0.09 (0.06) 
estt::..PA1",B 0.46 (0.08) 0.38 (0.09) 0.37 (0.05) 0.16 (0.04) 

48 Rating 25.3 (9.8) 26.6 (9.8) 0.2 (12) -45.7 (10.4) 
estt::..PA1B 0.38 (0.07) 0.36 (0.08) 0.16 (0.05) 0.07 (0.03) 
estt::..PA1",B 0.5 (0.07) 0.44 (0.07) 0.29 (0.05) 0.09 (0.03) 

64 Rating 32.5 (9) 35.6 (9.4) -3.7 (12.4) -38.5 (9.6) 
estt::..PA1B 0.39 (0.07) 0.42 (0.07) 0.13 (0.04) 0.06 (0.02) 
estt::..PA1",B 0.51 (0.07) 0.48 (0.06) 0.27 (0.05) 0.08 (0.02) 

2E-1C 
0.5/0 0.5/0.25 0.5/0.75 0.5/1 

32 Rating 35.4 (11.1) 45.6 (10.1) 11.4 (10.8) 0.1 (13.9) 
estt::..PA1B 0.39 (0.08) 0.59 (0.05) 0.3 (0.07) 0.15 (0.06) 
estt::..PA1",B 0.61 (0.05) 0.61 (0.08) 0.44 (0.08) 0.23 (0.07) 

48 Rating 27.4 (11.9) 50.8 (5.8) 28.1 (10.3) -1.6 (14.1) 
estt::..PA1B 0.46 (0.07) 0.54 (0.05) 0.32 (0.06) 0.09 (0.04) 
estt::..PA1",B 0.62 (0.06) 0.6 (0.08) 0.38 (0.07) 0.16 (0.06) 

64 Rating 33.9 (9.5) 38 (9.5) 23.2 (13.3) -9.4 (11.6) 
est6.PA1B 0.48 (0.07) 0.54 (0.06) 0.27 (0.05) 0.07 (0.03) 
estt::..PA1",B 0.64 (0.05) 0.59 (0.07) 0.37 (0.06) 0.11 (0.04) 

Note. Standard errors of the means are given in parentheses. 
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to compare the results from the present experiment and two subsequent experiments. In 
Tangen and Allan (submitted, Experiment 4), at 32 trials, the pattern ofresults was similar 
to that of the previous three experiments. In the 2C-1E scenario, ratings of A tracked the 
pattern of conditional 6.P values presented in Table 3.1, whereas in the 2E-1C scenario the 
ratings tracked the pattern of unconditional l:::.P values. After 48 and 64 trials, however, a 
different pattern of results emerged. Ratings of A declined as l:::.PB increased, regardless of 
the causal scenario. The effect of the causal-model seemed to have dissipated over trials, and 
cue-interaction occurred for both scenarios. A 2 (scenario: 2C-1E, 2E-1C) x 4 (l:::.PB: 0, 0.25, 
0.75, 1) x 3 (trial: 32, 48, 64) mixed ANOVA on the ratings of A revealed only a significant 
main effect for l:::.PB, F(3, 114) = 21.27, p < .001, which contributed to significant interactions 
with scenario, F(3, 114) = 3.33, p < .05, trial, F(6, 228) = 2.60, p < .05, and a three-way 
interaction with scenario and trial, F(6, 228) = 3.13, p < .01. The two-way interaction of 
l:::.PB with scenario indicates that cue-interaction was greater for 2C-1E than for 2E-1C, and 
the three-way interaction with trial indicates that this difference decreased over trials. 

Using these results as a template, a 2 (experiment: Exp 4, Exp 1) x 2 (scenario: 2C-1E, 
2E-1C) x 4 (l:::.PB: 0, 0.25, 0.75, 1) x 3 (trial: 32, 48, 64) mixed ANOVA was conducted on 
the ratings of Cue A. Participants' sensitivity to causal direction did not differ between the 
two experiments as indicated by the experiment x scenario x l:::.PB interaction which was not 
significant, F(3, 228) = .62, p > .05, and the experiment x scenario x l:::.PB x trial interaction 
which also was not significant, F(6, 456) = 1.34, p > .05. The only effect (that interacted 
with experiment) to reach significance was a three-way interaction between experiment, trial, 
and 6.PB, F(6, 456) = 3.05, p < .01. 

Predictions 

Table 3.2 also provides the mean estimated 6.P values conditional on the presence and absence 
of Cue B after 32, 48, and 64 trials. The prediction response data is similar to the rating data 
in that the estimated 6.P A values decrease as 6.PB increases regardless of whether the two 
cues were described as causes (2C-1E) or effects (2E-1C). 

In Tangen and Allan (submitted, Experiment 4), the mean estimated conditional 6.P 
values for A calculated after 32, 48 and 64 trials closely tracked the conditional 6.P values 
presented in Table 3.1 for both causal scenarios. Also, the estimated l:::.P values conditional 
on the presence of B (est6.PA1B) were lower than the estimated l:::.P values conditional on the 
absence of B (estl:::.PAI""B). A 2 (scenario: 2C-1E, 2E-1C) x 4 (l:::.PB: 0, 0.25, 0.75, 1) x 3 
(trial: 32,48, 64) x 2 (Cue B status: present, absent) mixed ANOVA on the estimated values 
for A revealed a significant main effect of 6.PB, F(3, 114) = 33.71, p < .001, and contributed 
to a significant interaction with trial, F(6, 228) = 9.39, p < .001. The status of Cue B main 
effect was also significant, F(l, 38) = 19.57, p < .001, and interacted with trial, F(2, 76) = 
5.76, p < .01. 

Again, using these data as a template, a 2 (experiment: Exp 4, Exp 1) x 2 (scenario: 
2C-IE,2E-IC) x 4 (l:::.PB: 0,0.25,0.75, 1) x 3 (trial: 32,48,64) x 2 (Cue B status: present, 
absent) mixed ANOVA was conducted on the estimated conditional l:::.P values for Cue A. 
As in the rating data, participants' sensitivity to causal direction did not differ between the 
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two experiments as indicated by the experiment x scenario x APB interaction which was 
not significant, F(3, 228) = .15, p > .05. The only effect (that interacted with experiment) 
to reach significance in the prediction data was a four-way interaction between experiment, 
scenario, APB, and trial, F(6, 456) = 2.97, p < .01. 

3.6.3 Discussion 

Experiment 1 tested the methodological requirement proposed by Waldmann and Holyoak 
(1997) for clarity of the causal model by consistently reminding participants about the di­
rection and nature of the causal relationship for two causal scenarios. The results indicate 
that the frequent presentation of causal prompts did not influence their sensitivity to causal 
directionality.4 Neither participants' ratings or predictions differed between the data obtained 
from the present experiment and Tangen and Allan (submitted, Experiment 4). Therefore, 
the first alleged causal model influence of emphasising the clarity of the causal model was 
ineffective. 

3.7 Experiment 2: Test Question 

Cue-interaction, according to Matute et al. (1996), depends on the nature of the test question. 
Specifically, when presented with two cues that share a common outcome (as illustrated in 
Figure 3.1), Matute et al. argue that asking about the contiguity of events will result in no cue­
interaction regardless of whether the events are described as causes or effects. The contiguous 
test question is thought to discourage comparisons between cues resulting in judgements 
that are based on unconditionaJ AP (Equations 3.1 and 3.2) rather than conditional AP 
(Equations 3.3 - 3.6). In contrast, asking about the causality of events will result in cue­
interaction. The causal test question is thought to encourage comparisons between causes 
when potential alternative causes are present, but not when only one potential cause is present. 
Therefore, judgements should be based on conditional AP rather than unconditional t::.P in 
the 2C-IE scenario, but not the 2E-IC scenario.5 Experiment 2 was 'designed to examine 
the predictions made by Matute et al. (1996) by crossing the two causal scenarios tested in 
Experiment 1 (2C-IE and 2E-IC) with causal and contiguous test questions. 

3.7.1 Method 

The design, procedure, and materials for Experiment 2 was identical to that of Experiment 1 
without the presentation of the causal model prompts introduced in the first experiment. 

4Reminding participants about the direction and nature of the causal relationship after every 8 trials was 
actually our second attempt to produce a causal model effect. The first attempt presented the same causal­
model prompts after every 16 trials. The results from the two experiments were virtually identical. 

5Matute et al. (1996) also tested the "directionality" of the test question, i.e., cause-to-effect (CE) or effect­
to-cause (EC) questions, though ratings did not seem to be influenced by whether the questions were worded 
one way or the other when asked questions about causality. Therefore, we will limit our discussion to causal 
vs. contiguous test questions. 
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After observing a series of 16 trials, participants in both the 2C-1E and 2E-1C groups were 
asked either a causal or contiguous test question. Both "test question" and "causal scenario" 
were between factors resulting in four groups of subjects who were asked one of the following 
questions: 

2C-1E Causal: To what degree do you think placing the chemical in the petri dish caused 
the bacterial strain to survive? 

2C-1E Contiguous: To what degree do you think placing the chemical in the petri dish 
was related, even by mere chance, to the survival of the bacterial strain? 

2E-1C Causal: To what degree do you think placing the bacterial strain in the digestive 
system caused each chemical to be produced? 

2E-1C Contiguous: To what degree do you think placing the bacterial strain in the diges­
tive system was related, even by mere chance, to the production of each chemical? 

Matute et al. (1996) asked participants whether "C is the cause of E?" in the causal test 
question or ''when C is present, does E co-occur?" in the contiguous test question. It is not 
obvious how these questions might map on to a rating scale that ranges from -100 to 100. 
Therefore, the wording of the causal and contiguous test questions was adapted from Matute, 
Vegas, and De Marez (2002) to better correspond to the rating scale used in the present series 
of experiments. 

3.7.2 Results 

As in Experiment 1, there were two dependent measures, ratings and predictions. 

Ratings 

Figures 3.4a and 3.4b illustrate the mean ratings of Cue A after 64 trials for the causal and 
contiguous conditions respectively. Tables 3.3 and 3.4 depict the mean ratings of Cue A for 
the causal and contiguous groups respectively. The data are presented for each of the four 
contingency pairs after 32, 48, and 64 trials. The pattern of data is very .similar to the results 
obtained in both Experiment 1 and Tangen and Allan (submitted, Experiment 4) for both the 
causal and contiguous groups. Ratings of Cue A decrease as f).PB increases closely tracking 
the pattern of conditional f).P values presented in Table 3.1 regardless of whether the two cues 
were described as causes (2C-1E) or effects (2E-1C) or whether the participants were asked a 
causal or contiguous test question. 

Again, using the data from Tangen and Allan (submitted, Experiment 4) as a template, 
a 2 (experiment: Exp 4, Exp 2) x 2 (scenario: 2C-1E, 2E-IC) x 4 (tl.PB: 0, 0.25, 0.75, 1) x 
3 (trial: 32,48, 64) mixed ANOVA was conducted on the ratings of Cue A separately for the 
two test question conditions (causal, contiguous). As in the previous experiment, there was no 
effect of the causal model as indicated by the experiment x scenario x tl.PB interaction which 
was not significant for the group of participants given the causal test question, F(3, 228) = .01, 
p > .05, or those given the contiguous test question, F(3, 228) = .18, P > .05. The only effect 
to reach significance that interacted with experiment, was a three-way interaction between 
experiment, trial, and f).PB, F(6, 456) = 3.05, p < .01, for the causal test question group, in 
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Figure 3.4: Mean ratings in Experiment 2 after 64 trials of Cue A for participants given the 
Causal test question (Figure 3.4a) and the Contiguous test question (Figure 3.4b). The ratings 
are shown as a function of !:l.PB (0, 0.25, 0.75, 1) separately for each of the two conditions. 
Error-bars represent standard errors of the means. 
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Table 3.3: Experiment 2 mean ratings and estimated ~p values of Cue A conditional on the 
presence of Cue B (est~PAIB) and the absence of Cue B (est~PAI"'B) after 32, 48, and 64 
trials for the Causal test question. 

2C-1E 
0.5/0 0.5/0.25 0.5/0.75 0.5/1 

32 Rating 45.4 (9.9) 33.6 (11) 8.7 (14.8) -41.4 (13.7) 
est~PAIB 0.39 (0.09) 0.25 (0.08) 0.11 (0.07) 0.04 (0.04) 
est~P AI",B 0.52 (0.09) 0.45 (0.09) 0.39 (0.08) 0.21 (0.05) 

48 Rating 44.1 (10.3) 32.5 (9.3) 26.7 (11.4) -33.9 (12.5) 
est~PAIB 0.44 (0.07) 0.33 (0.07) 0.15 (0.06) 0.03 (0.04) 
est~PAI"'B 0.52 (0.08) 0.49 (0.07) 0.4 (0.08) 0.15 (0.05) 

64 Rating 34.8 (10.3) 42.7 (8.1) 3.7 (13) -29.3 (15.2) 
est~PAIB 0.46 (0.08) 0.42 (0.06) 0.14 (0.05) 0.01 (0.03) 
est~PAI"'B 0.53 (0.08) 0.56 (0.07) 0.38 (0.07) 0.1 (0.04) 

2E-1C 
0.5/0 0.5/0.25 0.570.75 0.5/1 

32 Rating 38.2 (6.5) 33.5 (12.1) 10.5 (13.1) -7.6 (11.5) 
est~PAIB 0.49 (0.08) 0.43 (0.06) 0.19 (0.05) 0.18 (0.07) 
est~PAI"'B 0.71 (0.05) 0.6 (0.06) 0.51 (0.07) 0.2 (0.04) 

48 Rating 22 (8.6) 29.4 (7.9) 2.4 (10.3) -16.5 (12.2) 
est~PAIB 0.47 (0.07) 0.46 (0.06) 0.17 (0.05) 0.11 (0.04) 
est~PAI"'B 0.73 (0.04) 0.63 (0.06) 0.39 (0.04) 0.2 (0.03) 

64 Rating 24.6 (8.4) 24.2 (9.7) 3.9 (13) -25.7 (11.9) 
est~PAIB 0.51 (0.06) 0.42 (0.06) 0.16 (0.04) 0.1 (0.04) 
est~PAI"'B 0.73 (0.04) 0.63 (0.05) 0.34 (0.04) 0.16 (0.03) 

Note. Standard errors of the means are given in parentheses. 
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Table 3.4: Experiment 2 mean ratings and estimated t::.P values of Cue A conditional on the 
presence of Cue B (estt::.PAIB) and the absence of Cue B (estt::.PAI",B) after 32, 48, and 64 
trials for the Contiguous test question. 

2C-1E 
0.5/0 0.5/0.25 0.5/0.75 0.5/1 

32 Rating 30.1 (11.3) 33.8 (10.4) 11.7 (8.2) -25.3 (13.9) 
estt::.P AlB 0.45 (0.06) 0.34 (0.08) 0.12 (0.04) 0.02 (0.03) 
estt::.P AI",B 0.55 (0.08) 0.44 (0.08) 0.47 (0.09) 0.24 (0.08) 

48 Rating 46 (8.3) 38.6 (9.8) 2.4 (7.7) -33.7 (11.1) 
estt::.PAIB 0.54 (0.06) 0.41 (0.08) 0.15 (0.04) 0.03 (0.02) 
estt::.P AI",B 0.66 (0.08) 0.6 (0.06) 0.43 (0.08) 0.14 (0.06) 

64 Rating 52.8 (6.7) 40 (9.5) 2.7 (7.5) -35.6 (10.6) 
estt::.PAIB 0.63 (0.04) 0.45 (0.07) 0.12 (0.03) 0.02 (0.02) 
estt::.PAI",B 0.7 (0.07) 0.63 (0.06) 0.37 (0.07) 0.11 (0.05) 

2E-1C 
0.5/0 0.5/0.25 0.5/0.75 0.5/1 

32 Rating 29.3 (9.1) 26.3 (11.2) 6.6 (12.4) -4.7 (13.3) 
estt::.PAIB 0.5;3 (0.06) 0.53 (0.06) 0.28 (0.08) 0.15 (0.05) 
estt::.PAI",B 0.71 (0.07) 0.62 (0.08) 0.51 (0.08) 0.33 (0.07) 

48 Rating 33.3 (9.1) 16.8 (11.4) -4.7 (12) -18.6 (12.9) 
estt::.PAIB 0.55 (0.06) 0.57 (0.05) 0.25 (0.06) 0.08 (0.03) 
estt::.PAI",B 0.72 (0.06) 0.63 (0.07) 0.49 (0.08) 0.24 (0.05) 

64 Rating 34.4 (10.7) 34.1 (9.4) -1.1 (11.9) -25.5 (13.9) 
estt::.P AlB 0.58 (0.06) 0.59 (0.05) 0.18 (0.05) 0.06 (0.02) 
estt::.PA1",B 0.73 (0.05) 0.66 (0.06) 0.47 (0.08) 0.19 (0.05) 

Note. Standard errors of the means are given in parentheses. 
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which ratings in the present experiment were slightly higher when l::J.PB = 0.75 during later 
trials than in Experiment 4. There were no significant interactions with experiment for the 
contiguous group. 

Predictions 

Tables 3.3 and 3.4 also depict the mean estimated conditionall::J.P values of Cue A conditional 
on the presence and absence of Cue B for the causal and contiguous groups respectively. The 
data are presented for each of the four contingency pairs after 32, 48, and 64 trials. The 
prediction responses are similar to the rating data in that Cue A decreases as l::J.PB increases 
regardless of whether the two cues were described as causes or effects, or whether participants 
were asked a causal or contiguous test question. 

Again, using the data from Tangen and Allan (submitted, Experiment 4) as a template, 
a 2 (experiment: Exp 4, Exp 1) x 2 (scenario: 2C-1E, 2E-1C) x 4 (l::J.PB: 0, 0.25, 0.75, 1) 
x 3 (trial: 32,48,64) x 2 (Cue B status: present, absent) mixed ANOVA was conducted on 
the estimated conditional l::J.P values for Cue A separately for the two test questions (causal, 
contiguous). As in the rating data, there was no significant effect of the causal model between 
the two experiments as indicated by the experiment x scenario x l::J.PB interaction which 
was not significant either for participants in the causal group, F(3, 228) = .11, p > .05, or 
the contiguous group, F(3, 228) = .13, p > .05. For those given the causal test question, 
the only effects to interact with experiment was a significant three-way interaction between 
experiment, scenario, and trial, F(2, 152) = 3.52, p < .05. For those given the contiguous test 
question, the only significant effects to interact with experiment were trial, F(2, 152) = 3.22, 
p < .05, and trial x scenario, F(2, 152) = 6.83, p < .01. The experiment main effect was 
also significant for the contiguous group indicating that the prediction reponses were generally 
lower in Experiment 4. 

3.7.3 Discussion 

Matute et al. (1996, 2002) proposed that the wording of the test question used to request 
participants' ratings is an important variable in modulating cue-interaction. Specifically, they 
argued that if participants were asked to judge the contiguity between a pair of cues and an 
outcome, or between a pair of effects and a cause, then the cues should not interact. On the 
other hand, if asked to judge the causality between a pair of causes and an effect, then the 
causes should interact. The results from Experiment 2 indicate that participants' sensitivity to 
causal asymmetry was not influenced by whether they were asked a causal or contiguous test 
question. Therefore, the second alleged causal model influence of the causal versus contiguous 
wording of the test question was ineffective. 

3.8 Experiment 3: Integration 

In discussing the results from their four experiments, Tangen and Allan (submitted) drew 
an analogy between their findings and the primacy-recency effect obtained by Collins and 
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Shanks (in press). In the primacy-recency effect, Collins and Shanks described the "momen­
tary" strategy where judgments reflect the current associative strength of the cue, and the 
"integrative" strategy where participants do not constrain their judgments on the current 
perception of the relationship, but instead integrate information across a number of trials. 
Tangen and Allan proposed that similar strategies may be operating in assessing causally 
asymmetric events. Participants' sensitivity to causal structure can vary in degree according 
to what they are asked about the events and according to their experience with them. They 
argued that if participants were asked to use the causal model for some particular purpose, 
then they would likely be more sensitive to the causal structure. Similarly, if participants were 
asked an integrative rating question that reflected the general relationship of the events, then 
their assessments would better coincide with the predictions made by causal-model theory. 

Experiment 3 was designed to investigate whether participants' ratings would better reflect 
the causal structure of the events if asked to provide an integrative rating, i.e., in contrast 
to the prediction responses required on every trial, and the four ratings requested every 16 
trials. Participants were told that a pharmaceutical company was interested in manufacturing 
the two chemicals (2C-1E) or the bacterial strain (2E-1C) based on their observations. They 
were asked to assess the effectiveness of each chemical on the survival of the bacteria (2C-1E) 
or assess the effectiveness of the bacterial strain on the production of each chemical (2E-1C) 
based on the entire set of 64 trials. The wording of this "integration" question was intended to 
suggest that they should consider the causal description of the events rather than identifying 
them as generic cues and outcomes. 

3.8.1 Method 

The design of Experiment 3 was similar to the previous two experiments. Participants were 
asked to provide prediction responses on each trial and rate the relationship every 16 tri­
als based on the contingencies presented in Table 3.1. After rating each chemical following 
Trial 64, participants were presented with the following dialogue: 

2C-1E: You have just observed a series of 64 experimental trials .. DrugCorp - a large 
pharmaceutical company - is interested in your assessment of each chemical on the survival 
of the bacteria and they intend to allocate funds to manufacture the chemicals on the basis 
of your observations. It is important that your estimate best reflects the effectiveness of each 
chemical across the entire set of 64 trials. Please use the scrollbar below each chemical to 
make a rating on a scale from -100 to +100. 

2E-1C: You have just observed a series of 64 experimental trials. DrugCorp - a large 
pharmaceutical company - is interested in your assessment of the bacteria on the production 
of each chemical and they intend to allocate funds to manufacture the bacteria on the basis 
of your observations. It is important that your estimate best reflects the effectiveness of the 
bacteria across the entire set of 64 trials. Please use the scrollbar below each chemical to make 
a rating on a scale from -100 to +100. 

After providing a rating for each chemical, another series of trials would begin based on 
one of the four contingency pairs listed in Table 3.1. 
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Figure 3.5: Mean ratings in Experiment 3 after 64 trials of Cue A (Figure 3.5). The ratings 
are shown as a function of t:J..PB (0, 0.25, 0.75, 1) separately for each of the two conditions. 
Error-bars represent standard errors of the means. 

3.8.2 Results 

In Experiment 3, there were three dependent measures, ratings, integrative ratings, and pre­
dictions. 

Ratings 

Figure 3.5 illustrates the mean ratings of Cue A after 64 trials and Table 3.5 provides the 
mean ratings of Cue A after 32, 48, and 64 trials. The data are presented for each of the 
four contingency pairs. The rating data from Experiment 3 seem to deviate slightly relative 
to the previous two experiments and the results obtained in Tangen and Allan (submitted, 
Experiment 4). Cue-interaction seems to be less evident in the overall ratings for the 2E-IC 
scenario than in the previous two experiments. 

As in the previous experiments, the data from Tangen and Allan (submitted, Experi­
ment 4) was used as a template, and a 2 (experiment: Exp 4, Exp 3) x 2 (scenario: 2C-IE, 
2E-IC) x 4 (tl.PB: 0, 0.25, 0.75, 1) x 3 (trial: 32, 48, 64) mixed ANOVA was conducted. 
Unlike the previous experiments, there was a significant effect of the causal model as indi­
cated by the experiment x scenario x tl.PB interaction, F(3, 228) = 3.04, p < .05. The only 
other effect (that interacted with experiment) to reach significance was a four-way interaction 
between experiment, scenario, tl.PB, and trial, F(6, 456) = 2.65, P < .05 indicating that the 
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Table 3.5: Experiment 3 mean ratings and estimated t::.P values of Cue A conditional on the 
presence of Cue B (estt::.PAIB) and the absence of Cue B (estt::.PAI"",B) after 32, 48, and 64 
trials. 

2C-1E 
0.5/0 0.5/0.25 0.5/0.75 0.5/1 

32 Rating 31.4 (8) 42.1 (9.8) 6.2 (10.7) -13.3 (9.3) 
estt::.P AlB 0.44 (0.07) 0.45 (0.08) 0.26 (0.06) 0.12 (0.06) 
estt::.PAI"",B 0.52 (0.07) 0.56 (0.06) 0.33 (0.07) 0.32 (0.08) 

48 Rating 39.9 (9.1) 36.9 (8.7) -4.6 (10.6) -23.6 (8.9) 
estt::.PAIB 0.52 (0.06) 0.44 (0.06) 0.17 (0.04) 0.05 (0.03) 
estt::.PAI"",B 0.58 (0.06) 0.57 (0.05) 0.27 (0.06) 0.21 (0.07) 

64 Rating 39.1 (10) 37.8 (8.9) -9.8 (10.5) -35.3 (9.2) 
estt::.P AlB 0.53 (0.07) 0.42 (0.06) 0.1 (0.04) 0.04 (0.03) 
estt::.PAI"",B 0.59 (0.06) 0.56 (0.05) 0.27 (0.06) 0.13 (0.04) 

2E-1C 
0.5/0 0.5/0.25 0.5/0.75 0.5/1 

32 Rating 27.2 (10.2) 19.7 (11) 50.9 (9.3) 4 (13.2) 
estt::.P AlB 0.29 (0.07) 0.36 (0.07) 0.16 (0.04) 0.18 (0.07) 
estt::.PAI"",B 0.51 (0.08) 0.48 (0.06) 0.44 (0.08) 0.21 (0.06) 

48 Rating 29.7 (7.8) 24.3 (10.8) 34 (9.7) -1.4 (11.6) 
estt::.P AlB 0.36 (0.07) 0.38 (0.06) 0.17 (0.06) 0.14 (0.05) 
estt::.PAI"",B 0.55 (0.07) 0.47 (0.05) 0.47 (0.07) 0.2 (0.06) 

64 Rating 24.9 (8.7) 31.6 (7.5) 31.9 (10.6) 8.5 (12.4) 
estt::.PAIB 0.4 (0.07) 0.42 (0.06) 0.17 (0.06) 0.12 (0.05) 
estt::.PAI "",B 0.58 (0.06) 0.53 (0.06) 0.45 (0.06) 0.19 (0.05) 

Note. Standard errors of the means are given in parentheses. 
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Table 3.6: Experiment 3 integrative ratings of Cue A. 

0.5/0 
Rating 41.3 

(7.9) 

0.5/0 
Rating 37.8 

(7.1) 

2C-1E 
0.5/0.25 0.5/0.75 

33.6 -4.4 
(8.8) (9.3) 

2E-1C 
0.5/0.25 0.5/0.75 

46.4 45.1 
(8) (8.9) 

0.5/1 
-27.9 
(10) 

0.5/1 
-3.9 

(11.6) 

Note. Standard errors of the means are given in parentheses. 
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influence of the causal model did not dissipate over trials in the present experiment as it did 
in Experiment 4. 

Integrative Ratings 

Table 3.6 presents the mean integrative ratings of Cue A for each of the four contingency 
pairs after 64 trials. As in the ratings data, there seems to be an effect of the causal model. 
A 2 (scenario: 2C-1E,2E-1C) x 4 (LlPB: 0,0.25,0.75, 1) mixed ANOVA conducted on the 
integrative judgments of Cue A confirms these observations. The ANOVA revealed significant 
main effects of scenario, F(l, 38) = 6.66, p < .05, and LlPB, F(3, 114) = 20.79, p < .001, as 
well as a significant interaction between them, F(3, 114) = 3.73, p < .05. 

Predictions 

Table 3.5 also depicts the estimated LlP values conditional on the presence and absence of 
Cue B. The data are presented for each of the four contingency pairs after 32, 48, and 64 trials. 
The prediction response data do not seem to differ from those in the previous two experiments. 
Again, using the data from Tangen and Allan (submitted, Experiment 4) as a template, a 2 
(experiment: Exp 4, Exp 3) x 2 (scenario: 2C-lE, 2E-1C) x 4 (APB: 0, 0.25, 0.75, 1) x 3 
(trial: 32, 48, 64) x 2 (Cue B status: present, absent) mixed ANOVA was conducted on the 
estimated conditional AP values for Cue A. Unlike the rating data, there was no significant 
influence of the causal model as indicated by the experiment x scenario x APB interaction 
which was not significant, F(3, 228) = 1.5, p > .05. The only effect (that interacted with 
experiment) to reach significance in the prediction data was a three-way interaction between 
experiment, trial, and Cue B status, F(2, 152) = 3.3, p < .05. 



PHD THESIS - TANGEN, J. M., McMASTER UNIVERSITY 59 

3.8.3 Discussion 

Overall, we see that participants are more sensitive to the structure of the causal relationship 
when asked to provide an integrative judgment than in the previous two experiments and 
in Tangen and Allan (submitted, Experiment 4). Therefore, the third alleged causal model 
influence of an integrative test question was effective. However, the dissociation between 
ratings and trial-by-trial predictions remains. Participants conditionalise in then: prediction 
responses despite the circumstances. The effect of the integration question on ratings is not 
large by any means, but it nicely demonstrates how the relative weighting of causal and 
associative factors vary in a matter of degree depending on what is being asked about the 
events. 

3.9 General Discussion 

Tangen and Allan (submitted) have demonstrated that the contribution of causal and as­
sociative processes depends on what the participant is being asked about the events, and 
on their experience with those events. They presented two experiments providing evidence 
for high-level (causal reasoning) processes, and two experiments providing evidence for low­
level (associative) processes. They argued that both factors influence causal assessment. The 
present series of experiments provides additional evidence for this dual-process argument. 

Experiment 1 was designed to investigate whether emphasizing the direction of the causal 
relationship would influence assessments of that relationship as suggested by Waldmann and 
Holyoak (1997). Participants were presented with causal model ''prompts'' every 8 trials de­
signed to remind them about the direction of t~e causal relationship. Even though they were 
presented with information signalling the direction of the relationship immediately prior to 
rating that relationship, it did not influence their sensitivity to causal directionality. Experi­
ment 2 investigated the claim by Matute et al. (1996) that the wording of the test question 
used to request participants' ratings is an important variable in modulating participants' sen­
sitivity to causal structure. Participants were presented either with a causal or contiguous 
test question prior to rating the contingency between the events. The data suggest that the 
wording of the test question results in cue-interaction for both scenarios. Following a predic­
tion made by Tangen and Allan (submitted), Experiment 3 required participants to respond 
to an integrative test question designed so they would weight the causal description of the 
events more heavily than their associative nature by regarding the causal description of the 
events rather than identifying them as generic cues and outcomes. The manipulation was 
successful, in that the influence of the causal model was evident both in participants' ratings 
and integrative ratings. 

According to causal-model theory, our knowledge of causal asymmetry provides us with 
the capacity to ignore the order in which events are presented thereby transforming them 
into causal-model representations that reflect their asymmetry (Waldmann, 2000). However, 
the extent and circumstances of our disregard for temporal order has not been specified. A 
conditional t:..P account of causal-model theory suggests that participants will conditionalise 
between causes, but not effects. Thus, causal assessments should coincide with conditional 6.P 
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when two causes produce a common effect (2C-1E), and unconditional l:l.P when two effects 
result from a common cause (2E-1C). The pattern of results obtained in Experiments 1-3 
are not consistent with causal-model theory in the strictest sense. Causal assessments of the 
moderately contingent Cue A (l:l.PA = 0.5) should be identical in the 2E-1C scenario regardless 
of the contingency for Cue B. This is not the case. We see that cues interact in both scenarios. 
However, according to an associative account, the two cues should interact the same amount 
regardless of their causal description. This is not the case. We see a larger cue-interaction 
effect for the 2C-1E scenario than for 2E-1C scenario. We also see from Experiment 3 that 
this sensitivity to causal asymmetry can change depending on what participants are asked 
about the events. 

The results from Experiments 1-3 indicate that causal assessments are influenced both 
by the causal description and the associative nature of the events. Throughout the three 
experiments, participants' A ratings seem to be higher in the 2E-1C scenario when it is paired 
with a stronger Cue B (indicating their sensitivity to the causal structure of the events). This 
difference is especially pronounced in both the rating and integration data from Experiment 3 
when participants are provided with an integrative question. On the other hand, the analyses 
reveal significant cue-interaction effects for both scenarios in Experiments 1 and 2. As well, 
participants' prediction response data indicate no sensitivity whatsoever to causal asymmetry 
(indicating their sensitivity to the associative structure of the events). This mixture of high 
and low-level processing is consistent with the results from Tangen and Allan (submitted) and 
Price and Yates (1995) who argue for the joint contribution of associative and causal factors 
in judgments of contingency. 

Furthermore, as predicted by Tangen and Allan (submitted), the balance of sensitivity to 
the associative and causal structure of, the events can be shifted depending on what partici­
pants are asked about the events as indicated by the results from Experiment 3. Indeed, it 
seems as though assessing (in)sensitivity to causal asymmetry cannot be explained solely by 
an associative account or causal-model theory, but may be better explained in terms of their 
joint contribution. 



Chapter 4 

The Relative Effect of 
Cue-interaction 

Having given the number of instances respectively in which things are both thus 
and so, in which they are thus but not so, in which they are so but not thus, and 
in which they are neither thus nor so, it is required to eliminate the general quan­
titative relativity inhering in the mere thingness of the things, and to determine 
the special quantitative relativity subsisting between the thusness and the soness 
of the things. 

Doolittle (1888) 

4.1 Preface 

This chapter is reproduced from Tangen and Allan (2003) that was submitted to the Quarterly 
Journal of Experimental Psychology. B, Comparative and Physiological Psychology on June 
4, 2002 and accepted for publication on September 3, 2002. The data presented in this paper 
represents a section of my research designed to examine the role of conditionalisation on 
judgments of contingency. In particular, we investigate how human reasoners evaluate the 
causal strength of a given cause while controlling for alternative causes. The experiments 
were designed to test several predictions derived from Spellman's conditional AP account. 
For example, the model predicts that under certain conditions, judgments of the effectiveness 
of a moderately positive predictor of an outcome will not be attenuated when training includes 
a more valid positive predictor. Participants, therefore, tend to judge the effectiveness of each 
cue relative to the other cue(s) that are presented simultaneously. The results are consistent 
with the conditional AP account. A competing account of cue-interaction is provided by 
the Rescorla-Wagner (RW) model. We present an algebraic derivation of the predictions of 
the RW model for the conditions specified by Spellman, and show that at asymptote the 
predictions of the RW model are identical to those of the conditional l:::.P account. 

61 
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4.2 Abstract 

It is well established that two predictor cues (A and B) of a common outcome interact in 
that the judgment of the relationship between each cue and the outcome is influenced by 
the pairing history of the other cue with the common outcome. For example, when the 
contingency of A with the common outcome is weaker than the contingency of B with the 
common outcome, the rating of the predictiveness of A is reduced relative to a situation where 
only A is paired with the outcome. One explanation of such cue interaction effects is provided 
by the conditional t:::.P account. Spellman (1996b) derived a counterintuitive prediction of the 
conditional t:::.P account where cue interaction should not occur under certain conditions even 
though a relatively poor predictor of an outcome is paired with a relatively good predictor of 
that outcome. However, Spellman (1996b) did not provide data to evaluate this prediction. 
In the present paper, we report the relevant data and show that they are consistent with 
the conditional t:::.P account. A competing account of cue interaction is provided by the 
Rescorla-Wagner (RW) model. We derive the predictions of the RW model for the conditions 
specified by Spellman (1996b), and show that at asymptote the predictions of the RW model 
are identical to those of the conditional t:::.P account. 

4.3 Introduction 

While everyone agrees that organisms must be able to appreciate the relationships among 
events in their environment in order to survive, there is less agreement about the mechanism 
that detects such relationships (see Allan, 1993; Shanks, 1993; Shanks, Holyoak, & Medin, 
1996). Figure 4.1 presents the standard 2x2 contingency matrix for the generic laboratory 
task used to study how human observers make judgements about the relationship between 
two binary variables (see Allan, 1980). In such tasks, a cue is either present (A) or absent 
(",A) and the outcome is either present (0) or absent ("'0)1. The four letters in the cells 
(a, b, c, d) represent the joint frequency of occurrence of the four possible cue-outcome 
combinations. After a series of trials on which each of the four cue-outcome combinations are 
presented with a pre-defined frequency, the observer is asked about the relationship between 
the cue and the outcome. Many statistical rules have been proposed to describe the manner 
in which observers combine the information in Figure 4.1 to inform their judgement about 
the relationship between the cue and the outcome (see Allan, 1993). One such rule is the 
covariation or contingency between the cue and the outcome, t:::.p, which is the difference 
between two independent conditional probabilities (Allan, 1980). Referring to Figure 4.1, 

a c 
t:::.P = P(OIA) - P(OI '" A) = - -­

a+b c+d 
(4.1) 

Figure 4.1 conceptualizes the judgment task for one cue and one outcome. Recent research 
has been concerned with judgments in situations involving multiple cues and a common out­
come. The data from such experiments indicate that multiple cues often interact in that the 

lWe use "cue" and "outcome" to refer to antecedent and subsequent event(s) respectiVely without any 
causal connotation. 
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Figure 4.1: Summary 2x2 contingency matrix illustrating each of the possible cause-effect 
combinations for one cue and one outcome. Each cell represents the frequency of each event 
type. 

judgment of the relationship between each cue and the common outcome is influenced by the 
pairing history of the other cues with the outcome. For example, consider two cues, A and 
B, where the contingency of A with the outcome is weaker than the contingency of B with 
the outcome. The usual finding is that the rating of the relationship of A with the outcome 
is reduced relative to a situation where only A is paired with the outcome. Depending on the 
task used and the theoretical framework of the experiment, this reduction in the rating of A 
has been referred to as discounting, blocking, or overshadowing. As many have reported (see 
Allan, 1993), b..P as defined in Equation 4.1 does not account for such cue interaction data. 

In fact, the calculation of b..P for A in Equation 4.1 ignores the presence of alternative cues 
in that P(OIA) is based on all A trials and P(OI '" A) is based on all ",A trials. A number 
of investigators (e.g., Cheng & Novick, 1990, 1992; Spellman, 1996a, 1996b) have argued that 
the t::.P rule should be applied across a "focal set" of trial types rather than across all trials: 

t::.P = P(OIAC) - P(OI '" AC) (4.2) 

where C represents all cues that are constant on A and ",A trials. That is, focal-set 6.P is 
based on trials that are identical except for the presence or the absence of A. For two cues, 
A and B, the determination of t::.P for A should be conditional on the presence of B (t::.PAIB) 
and on the absence of B b..PA1""B, where 

b..PA1B = P(OIAB) - P(OI '" AB) (4.3) 

t::.PA1""B = P(OIA '" B) - P(OI '" A '" B) (4.4) 

Spellman (1996b) derived a number of interesting, and often counterintuitive, predictions 
from the conditional t::.P account of cue-interaction. One purpose of the present chapter is to 
provide the data to evaluate one of these predictions. 

Studies concerned with a conditional t::.P account of cue-interaction have often used the 
single-phase simultaneous blocking task introduced into the human contingency judgement 
literature by Baker et al. (1993, see also, Price and Yates, 1993, 1995). In this task, there are 
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c+d 

e+f 

g+h 

Figure 4.2: Summary 4x2 contingency matrix for the single-phase simultaneous blocking task. 
The notation in Figure 4.2a is for the conditional l::.P account, and the notation in Figure 4.2b 
is for the Rescorla-Wagner model. 

two cues, A and B, followed by a common outcome (see Figure 4.2a). One of four possible 
cue combinations occurs on each trial: both cues present (AB), one cue present and the other 
absent (A",B or ",AB), and both cues absent (",A",B). For each cue combination, the outcome 
either occurs (0) or does not occur (",0). After a series of trials, where each of the eight cue­
outcome combinations is presented with a pre-defined frequency, the observer is asked about 
the relationship between each cue and the outcome. The usual finding in such studies is that 
observers rate A as less predictive of the outcome when B is a strong positive predictor of the 
outcome than when B is a poor predictor (e.g., Baker et al., 1993).2 That is, ratings of the 
predictive value of A depend on the predictive value of B. 

Table 4.1 presents example trial frequencies that result in a moderately positive contin­
gency for A (l::.P A = .5) in the presence of two different contingencies for B: a perfect positive 
contingency (t::.PB = 1) and a zero contingency (t::.PB = 0). We will use the notation intro­
duced by Baker et al. (1993) to represent the unconditional contingencies of the two cues, 
t::.PA/t::.PB. Thus, the designation for the two examples in Table 4.1 is .5/1 and .5/0, where 
the first number represents l::.P A and the second number represents t::.PB. Table 4.1 also pro­
vides the two conditional l::.P values for A (l::.PA1B and l::.PAI",B) and the two conditional l::.P 

2While typically the rating of a moderately positive predictor decreases when it is paired with a stronger 
positive predictor, there is evidence that the rating of a moderately positive predictor increases when it is 
paired with a stronger negative predictor (e.g., Baker et al., 1993; Vallee-Tourangeau, Murphy, & Baker, 1998). 
In the present experiment, only positive unconditional t:l.P values are used. 
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Table 4.1: Frequency matrices, and unconditional and conditional probabilities for the situ­
ation where a moderately predictive cue is paired with a perfect predictor (.5/1) and for the 
situation where a moderately predictive cue is paired with a non predictive cue (.5/0) . 

Trial Type .5/0 . 5/1 
ABO 6 12 
A",BO 6 0 
",ABO 2 4 
",A",BO 2 0 
AB",O 2 0 
A",B", 0 2 4 
",AB""O 6 0 
",A",B",O 6 12 

# of Trials 32 32 
tlPA .5 .5 
APA1B .5 0 
AP

A1
_B .5 0 

APB 0 1 
tlPBIA 0 1 
APBI_A 0 1 
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values for B (~PBIA and ~PBI"'A). For the 4 x 2 matrix, 

e+g a+c 
~PA = P(OIA) - P(OI '" A) = -a-+-:-b-+-c-+~d e+J+g+h 

a+e 
~PB = P(OIB) - P(OI '" B) = -a-+-=-b-+-e-+-=J 

a e 
~PAIB = P(OIAB) - P(OI '" AB) = - - -

a+b e+J 

c+g 

c 9 
~PAI"'B = P(OIA '" B) - P(OI '" A '" B) = - -­

c+d g+h 

a c 
~PBIA = P(OIBA) - P(OI '" BA) = - - -

a+b c+d 

~PBI"'A = P(OIB '" A) - P(OI '" B '" A) = e: J - g! h 
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(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

When ~PB = 0 in Table 4.1, the unconditional and conditional ~P values for A are the 
same; Le., ~PA = ~PAIB = ~PAI"'B = .5. However, when ~PB = 1, this is not the case; 
whereas ~PA = .5, ~PAIB = ~PAI"'B = o. Thus, if observers are basing their judgements of 
A conditional on B, they should indeed judge A as less predictive of the outcome when ~PB 
= 1 and ~PAIB = ~PAI"'B = 0, then when ~PB = 0 and ~PAIB = ~PAI"'B = .5. 

Spellman (1996b) showed that if the two conditional contingencies for A are equal, then 
the two conditional contingencies for B are also equal. 

(Property 1) 

She also showed that when Property 1 held and when the four row frequencies of the 4x2 
matrix in Figure 4.2a are identical [Le., (a + b) = (c + d) = (e + f) = (g + h)], then for each 
cue the unconditional and conditional probabilities are the same. 

(Property 4) 

Spellman (1996b, Figure 8) considered the three conditions illustrated in Table 4.2.3 In 
all three conditions ~PA = .33. In the two .33/.67 conditions, the row frequencies of the 4x2 
matrix are the same in the Equal condition but are not the same in the Unequal condition. 
In the Equal condition, for each cue the conditional contingencies are the same as the un­
conditional contingency, whereas in the Unequal condition they are not. Thus, according to 
the conditional ~P account, ratings in the two .33/.67 conditions should differ. Specifically, 

3Spellman (1996b) labelled her three conditions baseline, no discounting and discounting. We prefer the 
non theoretical and empirical labels baseline, equal and unequal respectively. Also, it should be noted that 
the Spellman (1996b) matrices are arranged differently than ours are, and therefore the letters a, b, ... , h 
frequently represent different cells. ' 
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Table 4.2: 4x2 matricies showing the frequencies suggested by Spellman (1996b, Figure 8) 
for three pairings of two cues. 

Trial Type .33/0 Baseline .33/.67 Equal .33/.67 Unequal 
ABO 3 9 12 
A""BO 3 3 0 
""ABO 0 6 3 
""A""BO 0 0 3 
AB""O 6 0 3 
A""B""O 6 6 3 
""AB""O 9 3 0 

""A""B"" ° 9 9 12 

# of Trials 36 36 36 
b..PA .33 .33 .33 
APA1B .33 .33 -.20 
APA1",B .33 .33 -.20 ' 
APB 0 .67 .67 
APB1A 0 .67 .80 

APB1",A 0 .67 .80 
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ratings of A should be the same in .33/.67 Equal as in .33/0 Baseline and should be higher 
than in .33/.67 Unequal. Also, ratings of B should be lower in .33/.67 Equal than in .33/.67 
Unequal.4 While Spellman (1996b) discussed these interesting predictions of the conditional 
6..P account, she did not provide the data to evaluate the predictions. One purpose of the 
present chapter is to provide these data. 

The 6..P rules (unconditional and conditional) stipulate that the frequency of the co­
occurrence of cues and outcomes are mathematically transformed into probabilities and that 
judgements are based on an arithmetic comparison of these probabilities. An alternative view 
is provided by associative models originally developed to account for Pavlovian conditioning 
in animal learning experiments. These models postulate that judgements are determined 
by associative links formed between contiguously presented cues and outcomes. One such 
associative model, proposed by Rescorla and Wagner (1972), has frequently been applied to 
human contingency judgements (see Allan, 1993). According to the Rescorla-Wagner model, 
a cue gains associative (predictive) strength only to the extent that it provides information 
about the occurrence of the outcome that is not available from another source. The change 
in the predictive strength of the outcome by the cue is proportional to the degree to which 
the outcome is unexpected or surprising given all the alternative cues present on that trial. 
More precisely, the predictive strength of A (VA) will change on each trial that it is presented 
according to the standard linear operator equation 

6.. V = af3 ( ,\ - LV) , (4.11) 

where 6.. VA is the change in predictive strength of A, a and f3 are learning rate parameters 
that depend on the salience of the cue and the effectiveness of the outcome respectively, ,\ is 
the maximum amount of predictive strength supported by the outcome, and L: V is the sum 
of the predictive strengths of all cues present on that trial. 

The essence of the Rescorla-Wagner model is cue competition: there is a limit (,\) to the 
amount of predictive strength that an outcome can support. This limited amount of predictive 
strength is allocated among all cues present on the trial. IT one cue acquires predictive strength, 
then all other cues that are present at the same time must get less. In the Rescorla-Wagner 
model, a cue never occurs in isolation but is always compounded with contextual (background) 
cues. The 4x2 matrix for the single-phase blocking design, as conceptualized by the Rescorla­
Wagner model, is shown in Figure 4.2b. In the Rescorla-Wagner model, the outcome is 
associated with the explicit cues (A and B) and also with non-explicit or contextual cues (X). 
These non-explicit cues compete with A and B for predictive strength. 

Chapman and Robbins (1990) derived the relationship between 6..P for the 2x2 matrix 
(Figure 4.1) and VA. They showed that at asymptote (i.e., 6..VA = 0), VA = 6..P if f30 
(outcome present) = f3",o (outcome absent)5. That is, the predictive strength of A as described 

4The predictions from the conditional tl.P account are ordinal in that only the relative rankings of conditions 
are specified. 

5The assumption that {3o (outcome present) = {3-o (outcome absent) is often made in the human judgement 
task. While there are situations where the {3s need to be unequal in order for the Rescorla-Wagner model to 
fit the data (see Lober & Shanks, 2000), there are other situations where equal {3s do the job (see Allan, 1993). 
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by the Rescorla-Wagner model is identical to the contingency between A and the outcome 
as described by tl.P. Thus, the Rescorla-Wagner model explains how a sensitivity to tl.P 
emerges from a process that does not explicitly calculate tl.P. Chapman and Robbins (1990) 
derived the relationship between asymptotic V and tl.P for one cue. Another purpose of this 
chapter is to derive the relationship for two cues of a common outcome under the conditions 
specified by Properties 1 and 4 of Spellman (1996b). 

4.4 Method 

4.4.1 Observers 

The observers were 20 undergraduate students enrolled in Psychology courses at McMaster 
University who participated for course credit. They had not participated in other experiments 
concerned with contingency judgements. 

4.4.2 Apparatus 

Up to four observers at a time performed the experiment on Power Macintosh computers 
located in separate rooms. The experiment was programmed in MetaCard 2.3.1. 

The cues were chemicals and the outcome was a bacterial strain. The presence of a 
cue was indicated by a coloured three-dimensional animation of a chemical spinning on its 
axis and the absence of a cue was indicated by a faded unmoving grayscale picture of the 
chemical. Similarly, the presence of the outcome was indicated by a coloured animation of 
moving bacteria and the absence of the outcome was indicated by a faded grayscale picture 
of stationary bacteria. There were eight chemicals and four bacterial strains. The names of 
the chemicals and bacteria were fictitious and were adapted from Mehta (2000), as were the 
instructions presented in Appendix B. The coloured moving images (indicating the presence 
of cues and outcomes) were accompanied by a name (e.g., Chorbine Present). In contrast, the 
faded nonmoving images (indicating the absence of cues and outcomes) were not accompanied 
by text. 

4.4.3 Procedure 

The instructions for the experiment were presented to the observer on the computer monitor 
(see Appendix B). In brief, the observer was told that scientists have recently discovered 
three strains of bacteria that exist in the mammalian digestive system. For each strain, the 
scientists were testing whether certain pairs of chemicals aid in, interfere with, or have no 
effect on a strain's survival. To do this, a strain of bacteria was first placed in culture (petri 
dishes). After that, one chemical, the other chemical, both chemicals, or neither chemical 
was added to the bacterial culture. The scientists then verified whether or not the bacterial 
sample survived. The observer was also shown the rating scale that they would use to rate the 
effectiveness of each chemical on the survival of the bacteria. After reading the instructions, 
the observer was shown a summary screen of the eight cue-outcome combinations. Eight 
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practice trials were then presented where each of the eight cue-outcome combinations was 
presented in random order. 

There were three conditions: .33/0 Baseline, .33/.67 Equal, and .33/.67 Unequal. The 
frequencies of the cue-outcome combinations (see Table 4.2) were those suggested by Spell­
man (1996b) except we doubled the total number of trials to 72. The three conditions were 
presented in a random order to each observer. The observer initiated a condition by clicking 
on the "Begin" button on the computer screen. The cue combination was presented, with A 
on the left and B on the right. The observer predicted whether or not the bacteria survived by 
clicking the appropriate button on the screen, and was then shown whether or not the bacteria 
survived and was provided feedback (Correct, Incorrect) on their choice. The next trial was 
initiated by a mouse click on the "Next Trial" button. Observers rated how strongly each 
chemical (Chemical A followed by Chemical B) affected the survival of the bacterial strain 
after trial 18, 36, 54, and 72. The ratings were made on a horizontal scrollbar that ranged 
from -100 at the left to 100 on the right, and was anchored at 0 in the middle. Observers 
made their ratings by moving a scrollbar left and right with the mouse. 

Each of the three conditions were clearly labeled as separate scientific experiments with 
different chemical and bacteria images and names. For each observer, two chemicals and one 
bacterial strain was randomly assigned to each of the three conditions. The remaining two 
chemicals and the remaining bacterial strain was used in the eight practice trials. 

4.5 Results 

The order of presentation of the eight cue-outcome combinations was randomized over the 
entire block of 72 trials. To determine whether consistent values of l::.P were generated at 
each of the four rating points, conditional l::.P values for A (l::.PAIB and l::.PA1""B) and for 
B (l::.PBIA and l::.PB1""A) were calculated for each observer at trials 18, 36, 54, and 72. The 
conditional 6.P values were cumulative in that the 18 trial value was based on the first 18 
trials, the 36 trial value was based on the first 36 trials, the 54 trial value was based on the 
first 54 trials and the 72 trial value was based on all the trials. The determination of l::.P was 
cumulative because with only 18 trials, row frequencies of zero occasionally occurred and l::.P 
values could not be calculated. With 36 (or more) trials, all row frequencies for all observers 
were greater than zero. Also, the instructions were designed to encourage observers to base 
their ratings on all of the previous trials, not just the previous block of trials. To ensure that 
the conditional l::.P values did not change as additional trials were added, a 3 (condition: .33/0 
Baseline, .33/.67 Equal, and .33/.67 Unequal) x 3 (trial: 36,54,72) within-subject ANOVAs 
was conducted on each of the four conditional 6.P values. For each of the four ANOVAs the 
trial factor was not significant (ps> .05). 

4.5.1 Rating Data 

Mean ratings for each condition are plotted as a function of trial (36, 54, and 72) in Figure 4.3. 
Figure 4.3a presents the ratings for Cue A and Figure 4.3b presents the ratings for Cue B. 
According to the conditional l::.P account, ratings in the two .33/.67 conditions (Equal and 
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Figure 4.3: Mean ratings for each condition (Baseline, Equal, and Unequal) are plotted as a 
function of trial (36, 54, and 72). Figure 4.3a presents the data for Cue A and Figure 4.3b 
presents the data for Cue B. 
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Unequal) should differ. Ratings of A should be the same in .33/.67 Equal as in .33/0 Baseline 
and should be higher than in .33/.67 Unequal. Ratings of B should be lowest in Baseline, and 
should be lower in Equal than in Unequal. The pattern of results illustrated in Figure 1 for 
both cues are consistent with the conditional AP account. Ratings for A are similar in the 
Baseline and Equal conditions and are noticeably lower in the Unequal condition. Ratings for 
B are lowest in Baseline and highest in .33/.67 Unequal. 

A 3 (condition: .33/0 Baseline, .33/.67 Equal, and .33/.67 Unequal) x 3 (trial: 36, 54, 
72) within-subject ANOVA conducted on the ratings of A revealed a significant main effect of 
condition, F(2, 38) = 4.77, p < .02. Consistent with the AP account, the Tukey test showed 
that the ratings in the Unequal condition were significantly lower than in the Baseline, p < .03, 
and Equal, p < .04, conditions, and that the ratings in the Baseline and Equal conditions did 
not differ, p > .05. The trial main effect was not significant, F(2, 38) = 2.10, p > .05, nor 
did it interact with condition, F(4, 76) = .54, p > .05, indicating that the A ratings did 
not change after 36 trials. A similar ANOVA, conducted on the ratings for B, also revealed 
a significant main effect of condition, F(2, 38) = 59.13, p < .001. Consistent with the AP 
account, the Tukey test showed that the ratings in the Baseline condition were significantly 
lower than in the Equal, p < .001, and Unequal, p < .001, conditions. Although the difference 
between the Equal and Unequal conditions was in the direction predicted by the AP account, 
the difference was not significant, p > .05. Again, the trial main effect was not significant, 
F(2, 38) = .24, p > .05, nor did it interact with condition, F(4, 76) = .24, p > .05, indicating 
that the B ratings did not change after 36 trials. 

Overall, the ratings of the two cues were in accord with a conditionalAP account. What is 
especially noteworthy is that the AP account predicts that there should be no cue-interaction 
when Properties 1 and 4 hold (condition .33/.67 Equal) and the data were in accord with this 
prediction. Observers' ratings of A were the same in the .33/.67 Equal condition as they were 
in the .33/0 Baseline condition. 

4.5.2 Prediction Data 

Ratings are not the only dependent measure in this experiment. On each trial, after seeing 
one of the four cue combinations, the observer predicted whether the bacterial strain would 
survive or not. These prediction responses can be used to provide estimates of conditional 
AP values (Lopez et al., 1998). A 4x2 matrix, like the one shown in Figure 4.2a, can be 
constructed where the columns are the two prediction responses (Yes, No) rather than the 
actual outcomes. Figure 4.4 plots the estimated conditional AP values for A; estAP AlB 

in Figure 4.4a and estAP AI ..... B in Figure 4.4b. Whereas the programmed values of the two 
conditionalAP values (AP AlB and AP AI ..... B) were the same, Figure 4.4 suggests that estimated 
AP conditional on a present cue (Figure 4.4a) was lower than estimated AP conditional on 
an absent cue (Figure 4.4b); that is, estAPAIB < estAPAI ..... B . 

A 2 (B status: present, absent) x 3 (condition: Baseline, Equal, Unequal) x 3 (trial: 
36, 54, 72) within-subject ANOVA was conducted on the estimated conditional AP values 
for A. All three main effects were significant, and none of the interactions were significant. 
The significant main effect of B status, F(l, 19) = 15.27, p < .001, indicates that estimated 
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Figure 4.4: Mean estimated conditional f).P values for Cue A are plotted as a function of trial 
(36, 54, and 72) for each condition (Baseline, Equal, and Unequal). estf).PAIB is shown in 
Figure 4.4a and est~PAI ..... B is shown in Figure 4.4b. 
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conditional!:J.P for A was lower when B was present (.18) than when it was absent (.32). The 
significant main effect of condition, F(2, 38) = 11.18, p < .001, was further analyzed using 
the Thkey test which showed that est!:J.P in the Unequal condition (.10) was significantly 
lower than in the Baseline (.37), p < .001, and Equal (.28), p < .01, conditions, and that the 
Baseline and Equal conditions did not differ, p > .05. The Tukey test following the significant 
main effect of trial, F(2, 38) = 6.22, P < .005, indicated that estimated !:J.P based on the first 
36 trials (.28) was significantly higher than the value based all 72 trials (.23), p < .004. 

Figure 4.5 plots the estimated conditional l:::.P values for B; est!:J.PBIA in Figure 4.5a 
and est!:J.PBI",A in Figure 4.5b. As with Cue A, estimated !:J.P conditional on a present cue 
(Figure 4.5a) was lower than estimated !:J.P conditional on an absent cue (Figure 4.5b); that 
is, est!:J.PBIA < est!:J.PB1",A. A 2 (A status: present, absent) x 3 (condition: Baseline, Equal, 
Unequal) x 3 (trial: 36, 54, 72) within-subject ANOVA was conducted on the estimated 
conditional !:J.P values for B. All three main effects were significant, as was the interaction 
between condition and trial. The significant main effect of A status, F(l, 19) = 15.27, p < .001, 
indicates that the estimated conditional !:J.P value for B was lower when A was present (.33) 
than when it was absent (.47). The significant main effect of condition, F(2, 38) = 53.46, 
P < .001, was followed by the Thkey test which showed that est!:J.P in the Baseline condition 
(-.01) was significantly lower than in the other two conditions, ps < .001, and that the Equal 
(.60) and Unequal (.61) conditions did not differ, p > .05. The Thkey test following the 
significant main effect of trial, F(2, 38) = 21.08, p < .001, indicated that estimated !:J.P 
based on the first 36 trials (.35) was significantly lower than the value based on the first 54 
trials (.42), p < .001 and the value based on all 72 trials (.43), p < .001. The Thkey test 
also revealed that the significant interaction between condition and trial, F(4, 76) = 2.50, 
p < .05, reflected that the trial effect was weakest in the Baseline condition and strongest in 
the Unequal condition. 

In summary, the estimated conditional !:J.P values provided a similar picture as the ratings 
for the three conditions. For Cue A, both estimated conditional l:::.P and ratings were similar 
in the Baseline and Equal conditions and were lower in the Unequal condition. For Cue B, 
both estimated conditional l:::.P and ratings were lowest in Baseline and highest in .33/.67 
Unequal. The estimated conditional !:J.P values differed from the ratings, however, in that 
they revealed trial effects for both cues. The greater variability in the ratings, in comparison 
to the estimated conditional l:::.P values, might have masked the trial effects in the ratings. 

Whereas the programmed values of the two conditional !:J.P values for each cue did not 
differ, estimated l:::.P conditional on a present cue was significantly lower than estimated l:::.P 
conditional on an absent cue; estl:::.PAIB < est!:J.PAI",B, and est!:J.PBIA < est!:J.PBI ...... A. While 
many experiments reported in the literature have required prediction responses on each trial, 
usually these responses are not reported. For example, Spellman (1996a), Spellman, Price, and 
Logan (2001) asked observers to predict the outcome on each trial, but the prediction responses 
were not included as part of the data analysis. Our analysis of the prediction responses to 
provide estimates of conditional l:::.P values indicates that these responses are informative. 
They provided confirming evidence for the prediction made by Spellman (1996b). They were 
less variable than the ratings, and showed trial effects that might have been masked in the 
ratings. Although the conditional l:::.P account has not explicitly addressed the relationship of 
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Figure 4.5: Mean estimated conditional 6.P values for Cue B are plotted as a function of trial 
(36, 54, and 72) for each condition (Baseline, Equal, and Unequal). est6.PB1A is shown in 
Figure 4.5a and est6.PB1 _ A is shown in Figure 4.5b. 
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estimated conditional I:::..P to actual I:::..P, one would expect them to be congruent. Our finding 
that the estimated values are not congruent with the actual values might be problematic for 
the conditional I:::..P account. 

4.5.3 The Rescorla-Wagner Model 

We noted earlier that Chapman and Robbins (1990) derived the relationship between VA and 
I:::..P for the 2x2 matrix (Figure 4.1). They showed that at asymptotel:::..VA = 0), VA = f):.,P if 
{30 = {3",0. In Appendix C, we show that at asymptote the Rescorla-Wagner model makes the 
same predictions as the conditional I:::..P account for the 4x2 matrix when Properties 1 and 4 
hold. Under these conditions, the Rescorla-Wagner model, like the I:::..P account, predicts no 
cue-interaction. Consider again the 4x2 matrix in Figure 4.2. Spellman (1996b) showed that 
when Properties 1 and 4 hold, 

(4.12) 

and 
(4.13) 

In Appendix C, we show that when {30 = {3",0 and Properties 1 and 4 hold, at asymptote, 

and 

a-d 
VA=--=I:::..PA a+b 

a-c 
VB = -- =I:::..PB 

a+b 

(4.14) 

(4.15) 

To our knowledge this prediction of the Rescorla-Wagner model has not been previously 
identified in the literature.6 Rather it is has been assumed (albeit implicitly) that at asymptote 
there will be always be cue-interaction when a poor positive predictor (Le., A) is paired with 
a better positive predictor (i.e., B). In the language of the Rescorla-Wagner model, B would 
block A. Appendix C identifies a set of conditions where this does not occur. 

6Spellman (1996b, Footnote 8) noted that her simulations of the Rescorla-Wagner model resulted in asymp­
totic V values that were congruent with conditional l:::..P values. These simulations, however, were not conducted 
for the frequency matrices used in the present experiment. Moreover, Spellman (1996b) did not provide an 
algebraic proof of the relationship between l:::..P and V. Danks (in press) provides a detailed derivation of the 
behavior of the Rescoda-Wagner model, but he did not specifically address the predictions of the model for 
the situations examined in the present chapter. That is, he did not identify that under some situations the 
Rescorla-Wagner model predicts no cue-interaction. 
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Figure 4.6: Rescorla-Wagner simulations for the three conditions (Baseline, Equal, and Unequal) are plotted in blocks of 
10 trials. The predictive strength of Cue A (VA) is shown in Figure 4.6a, of Cue B (VB) in Figure 4.6b, and of the context :::l 
(Vx) in Figure 4.6c. 



PHD THESIS - TANGEN, J. M., McMASTER UNIVERSITY 78 

Figure 4.6 presents Rescorla-Wagner simulations over 360 trials, in blocks of 10 trials, using 
an arbitrary set of parameter values for the three conditions used in the present experiment. 
The predictive strength of A (VA) is shown in Figure 4.6a, of B (VB) in Figure 4.6b, and of 
the context (Vx) in Figure 4.6c. The parameter values were those used by Allan (1993): aA 

= aB = .9, ax = .2, f30 = f3",0 = .2, .Ao = 1, .A",o = o. Each simulation was based on 100 
iterations. The simulations show that for the .33/.67 Equal condition the Rescorla-Wagner 
model predicts no cue-interaction at asymptote for A even though A is paired with a more 
predictive B. 
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Figure 4.7: Rescorla-Wagner simulations for the three conditions (Baseline, Equal, and Unequal) are plotted for the first 
72 trials. The predictive strength of Cue A (VA) is shown in Figure 4.7a, of Cue B (VB) in Figure 4.7b, and of the context ~ 
(Vx) in Figure 4.7c. 
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While at asymptote the predictions of the Rescorla-Wagner model are identical to the 
predictions of the conditional AP account, Figure 4.6 illustrates that pre-asymptotically there 
are differences. Only the first 72 trials of the Rescorla-Wagner simulations are presented in 
Figure 4.7. On early trials, VA is in fact the same for the two .33/ .67 conditions, and it is higher 
than for the baseline condition. AB the trials continue, VA for the baseline condition increases 
to that of the Equal condition, and VA for the Unequal condition gradually decreases. The 
course of predictive strength for A over trials is the result of the interaction of A not only with 
B but also with the context Cue X. In the Rescorla-Wagner model, the predictive strength of 
a cue only changes on trials that it is present. The context X has a special role, therefore, 
since it is present on all trials. Consider the two .33/.67 conditions. Early in training, Vx is 
similar for the two conditions. With extended training, Vx for the Unequal condition exceeds 
that for the Equal condition. Because A competes with X, as X gains predictive strength, A 
loses predictive strength. 

Our earlier analysis of the rating data was conducted within the framework of the condi­
tional AP account. Since it was not always possible to calculate a conditional AP value at 
18 trials, we did not include the 18 trial rating in our statistical analyses. However, zero row 
frequencies are not problematic for the RW model since it is not based on conditional APs. 
We reanalyzed the rating data for A and B including the 18 trial ratings. A 3 (condition: 
.33/0 Baseline, .33/.67 Equal, and .33/.67 Unequal) x 4 (trial: 18,36,54, 72) within-subject 
ANOVA conducted on the ratings of A revealed a significant main effect of trials, F(3, 57) = 
3.54, p < .02. A similar ANOVA on the B ratings revealed a significant interaction of trials 
with conditions, F(6, 114) = 2.86, p < .02. Thus, while trial was not a significant factor when 
the 18 trial ratings were omitted, it was when they were included. 

4.6 Discussion 

Our data support the prediction made by Spellman (1996b) that under certain circumstances 
cue-interaction should not occur even though a relatively poor predictor is paired with a 
relatively good predictor. Spellman (1996b) showed that the conditional AP account predicts 
this outcome. In the present chapter we show that the Rescorla-Wagner model also predicts 
this outcome at asymptote. 

While the conditional AP account predicts the main finding of the present experiment 
(the absence of cue-interaction), other aspects of the data are inconsistent with this account. 
Whereas the programmed values of the two conditional AP values for each cue did not dif­
fer, estimated AP conditional on a present cue was significantly lower than estimated AP 
conditional on an absent cue; estAPA1B < estAPAI~B' and estAPBIA < estAPBI~A. The 
conditional AP account, at least in its present form, does not predict these differences. 

Trial effects were present in our data. Accounts based on AP, unconditional or conditional, 
are unable to incorporate trial effects. While estimates of conditional probabilities, and there­
fore tl.P, become more accurate with increasing sample size (trials), the mean estimate is 
independent of sample size. 

The debate about the relative merits of a rule based model, such as conditional tl.P, or 
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an associative model, such as the Rescorla-Wagner model, has a long history (Allan, 1993; 
Shanks et al., 1996). Three major challenges for the unconditional f).P account of contingency 
judgements (Equation 4.1) were cue-interaction effects, trial effects and density effects. The 
formulation of the conditional f).P account was mainly in response to the cue-interaction 
challenge. While the unconditional f).P account is unable to encompass cue-interaction effects, 
the conditional f).P account has been more successful. The present data clearly show that 
at asymptote judgements are consistent with the predictions of the conditional f).P account. 
Associative models were developed specifically to account for cue-interaction data generated 
in animal learning tasks. Overall, associative models have also been successful in accounting 
for the human cue-interaction data. There have been some interesting deviations of the 
human data from the predictions of associative models such as retrospective revaluation. 
These deviations have led to modifications of the associative models (e.g., Van Hamme & 
Wasserman, 1994; Dickinson & Burke, 1996). 

Trial effects in contingency judgement tasks are ubiquitous. Many studies have shown 
that judgements change systematically over trials (see Allan, 1993). While trial effects are 
problematic for f).P accounts, they are easily encompassed by associative models. 

Many studies have shown that judgements are influenced not only by tl.P, but also by the 
frequency of cue present relative to the frequency of cue absent (a cue density effect) and by the 
frequency of outcome present relative to the frequency of outcome absent (an outcome density 
effect) (e.g., Allan & Jenkins, 1983). The Power PC model proposed by Cheng (1997) provides 
a conditionaltlP account which addresses density effects. However, a number of investigators 
have demonstrated that the Power PC model has a variety of difficulties and often does not 
provide an adequate account of the data (e.g., Allan, 2003; Lober & Shanks, 2000; Vallee­
Tourangeau, Murphy, & Drew, 1997; Vallee-Tourangeau, Murphy, Drew, & Baker, 1998). Cue 
and outcome density effects are not problematic for associative models (see Allan, 1993). 

In summary, the present chapter had two major purposes. One purpose was to provide 
data relevant to evaluating a prediction made by Spellman (1996b). Our data are consistent 
with the prediction made by Spellman (1996b). The second purpose was to show mathemat­
ically that under the conditions specified by Properties 1 and 4 made by Spellman (1996b), 
the Rescorla-Wagner model makes identical predictions at asymptote as the conditional tlP 
account. In addition, our analysis of the prediction responses to provide estimates of condi­
tional f).P indicates that these responses, which are usually ignored, are informative. While 
our research was not designed to provide a strong test to differentiate a conditional tlP ac­
count from an associative account, the dependence of the estimated values on the presence and 
absence of the other cue and the presence of trial effects are problematic for the conditional 
tl.P account. 

4.7 Postscript 

For each of the experiments in Chapters 2-4, the event frequencies were selected so the con­
ditional f).P values would be identical given the presence and absence of the alternate cue, 
where f).PAIB = f).PAI",B and f).PB1A = f).PB1",A' However, as indicated by the trial-by-trial 
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prediction response data, the estimated !::l.P values were not identical given the presence and 
absence of the alternate cue. That is, while actual !::l.P AlB = ~P AI~B and !::l.PBIA = ~PBI~A' 
participants estimated !::l.PAIB :f. !::l.PAI~B and !::l.PBIA :f. ~PBI~A' A conditional !::l.P ac­
count does not predict these differences. How would participants rate a causal relationship 
in which the contingency conditional on the presence of an alternative cause is different than 
the contingency conditional on the absence of an alternative cause? And, what does the 
Rescorla-Wagner model predict under these circumstances? 

4.8 Method 

The participants were 56 undergraduate students enrolled in Psychology courses at McMaster 
University who participated for course credit. 22 participants participated in Experiment 1, 
17 participated in Experiment 2, and 17 in Experiment 3. They had not participated in other 
experiments concerned with contingency judgements. The apparatus and procedure for these 
experiments were identical to those described in Chapter 4. 

4.8.1 Design 

In each of the three experiments, participants were presented with three conditions with 
various relationships between unconditional and conditional ~P. The event combinations for 
each condition are presented in Table 4.3. In Experiment 1, the three conditions had identical 
unconditional contingencies (!::l.PA = 0.5 and !::l.PB = 0), but were selected to produce an 
ascending pattern of !::l.PAIB and !::l.PBIA values and a descending pattern of !::l.PAI~B and 
~PBI~A' In Experiment 2, three conditions again had identical unconditional contingencies 
(~PA = 0.5 and ~PB = 0.72), but were selected in order for ~PAIB to equal !::l.PAI~B and 
~PBIA to equal ~PBI~A' The conditional contingencies for both A and B resulted in an 
ascending pattern, while the unconditional contingencies for both A and B remained constant. 
Finally, in Experiment 3, the three conditions again had identical unconditional contingencies 
(~PA = 0.5 and ~PB = 0.72), but were selected to produce an ascending pattern of ~PAIB 
and ~PBIA values and a descending pattern of !::l.PAI~B and ~PBI~A just as in Experiment 1, 
but with a stronger Cue B unconditional contingency in contrast to a non-contingent Cue B 
in Experiment 1. The Rescorla-Wagner model simulations were based on the same parameter 
values as indicated in Chapter 4, and based on 360 trials (rather than the 72 in Table 4.3) 
and 100 iterations. The nine conditions were simulated in turn and the resulting value for 
each cause after 360 trials is presented in Table 4.3. 

4.9 Results 

In order not to detract from the subject matter of this dissertation, the results from the three 
experiments are presented here simply for illustrative purposes to provide a brief sketch of 
how participants regard unequal conditional contingencies. Therefore, the summary statistics 
presented in Table 4.3 only report mean values after 72 trials. The noteworthy results include: 
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Table 4.3: Frequency of events in Experiment 1-3, mean ratings, actual and estimated 
(un)conditional f).P values after 72 trials. The Rescorla-Wagner simulations were based on 
the same parameter values as indicated in Chapter 4, 360 trials, and 100 iterations. 

Experiment 1 Experiment 2 Experiment 3 
ABO 9 13 17 26 24 22 26 24 22 
A",BO 18 14 10 1 3 5 1 3 5 
",ABO 9 5 1 5 7 9 5 7 9 
",A",BO 0 4 8 4 2 0 4 2 0 
AB",O 8 4 0 4 2 0 0 2 4 
A",B",O 1 5 9 5 7 9 9 7 5 
",AB",O 10 14 18 1 3 5 5 3 1 
",A",B",O 17 13 9 26 24 22 22 24 26 

# of Trials 72 72 72 72 72 72 72 72 72 
Cue A 

!::::.PA 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
!::::.PAIB 0.06 0.44 0.95 0.03 0.22 0.36 0.5 0.22 -0.05 

!::::.PA1""B 0.95 0.56 0.06 0.03 0.22 0.36 -0.05 0.22 0.5 

estf).PA 0.58 0.59 0.53 0.67 0.55 0.41 0.52 0.48 0.49 
estf).PA1B 0.4 0.6 0.74 0.26 0.19 0.23 0.31 0.18 0.04 
estf).PA1""B 0.76 0.59 0.31 0.32 0.33 0.32 0.17 0.28 0.38 

Ratings 77.6 46 30.2 -25.3 8.2 0.5 -10.6 6.4 2.1 
RW 0.5 0.52 0.49 0.02 0.22 0.36 0.23 0.21 0.21 

Cue B 
f).PB 0 0 0 0.72 0.72 0.72 0.72 0.72 0.72 
!::::.PBIA -0.42 -0.06 0.47 0.7 0.62 0.64 0.9 0.62 0.35 
f).PB1""A 0.47 0.06 -0.42 0.7 0.62 0.64 0.35 0.62 0.9 

estf).PB -0.02 -0.04 -0.08 0.77 0.76 0.67 0.73 0.67 0.73 
estf).PB1A -0.17 0 0.16 0.55 0.57 0.56 0.69 0.51 0.47 
estf).PB1""A 0.19 -0.01 -0.27 0.61 0.71 0.65 0.55 0.62 0.81 

Ratings -11 -25.5 -50.7 50.1 55.4 48.1 42.6 19.2 66 
RW 0.04 0.02 0.02 0.69 0.62 0.64 0.62 0.63 0.62 
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(1) the closer match between participants ratings and the contingencies conditional on the ab­
sence of the other cause (APAI~B and APBI~A) rather than on the presence of the other cause 
(APA1B and APBIA); (2) the corresponding data trends between the actual (un)conditional 
and estimated (un)conditional contingencies (AP ~ estAP); and (3) the intermediate posi­
tioning of the Rescorla-Wagner model simulation data, i.e., midway between the contingencies 
conditional on the absence of the alternative cause and the presence of the alternative cause. 

The results from these three experiments suggest that participants' tend to rate the influ­
ence of each cause conditional on the absence of the other cause. This tendency is not reflected 
by the Rescorla-Wagner model. When the conditional contingencies are not equal, then the 
conditional AP account and the Rescorla-Wagner model make different predictions. In its 
current form, the conditional AP account does not specify the circumstances under which 
one conditionalises on the presence or absence of another cause. Cheng and Holyoak (1995) 
speculate that tests based on the absence of other causes are more informative than those in 
which other causes are present. Citing a personal communication with Patricia Cheng, Spell­
man et al. (2001) speculate that " ... once subjects have reason to believe that both factors are 
potentially causal, they assess each cause only in the absence of the other cause" (p. 206). The 
results from the present experiments lend support to this conjecture. The Rescorla-Wagner 
model, on the other hand, seems to predict what is essentially the average of the conditional 
contingencies. However, an explanation for averaging conditional contingencies is not evident. 



Chapter 5 

Temporal Contiguity and 
Contingency Judgments: A 
Pavlovian Analogue 

A watched pot never boils. 

5.1 Preface 

Irish Proverb 

In October, 2002, Dr. Lorraine Allan was the first author on a paper presented at the 2002 
meeting of the Pavlovian Society in Westwood, California. Following the conference, we were 
asked to submit an article to the journal of the Pavlovian Society: Integrative Physiological 
and Behavioral Science. Since the work presented at the conference was based on Tangen and 
Allan (2003), we decided to submit a paper based on our research on temporal contiguity. The 
chapter is reproduced from Allan et al. (in press) which was accepted for publication on March 
25,2003. Unlike the three previous chapters which measured cue-interaction between the two 
cues and a common outcome, this chapter only uses one cue and one outcome. Furthermore, 
rather than examining how knowledge of causal asymmetry affects causal judgements, in this 
chapter, we investigate how knowledge of temporal contiguity influences causal judgements. 
The results indicate that causal ratings were higher when the observer's expectations were 
congruent with the experienced delay than when the observer's expectations were incongruent 
with the experienced delay. While these data provide evidence for high-level processes, we 
discuss the predictions of the temporal coding hypothesis, an associative model which seems 
to account for this (seemingly) high level processing using a basic associative mechanism. 

85 
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5.2 Abstract 

Two experiments are reported that examine the role of temporal contiguity on judgments of 
contingency in a human analogue of the Pavlovian task. The data show that the effect of the 
actual delay on contingency judgment depends on the observer's expectation regarding the 
delay. For a fixed contingency between the cue and the outcome, ratings of the contingency 
are higher when the actual delay is congruent with the observer's expectation than when it is 
incongruent. We argue that our data can be understood within the context of the temporal 
coding hypothesis. 

5.3 Introduction 

There is considerable evidence of similarities between the operations that modulate the strength 
of conditioning in nonhuman animals and those that modulate the rating of the contingency 
between events by humans (see Allan, 1993). One of these similarities is the effect of tem­
poral contiguity. It is well established in the animal literature that temporal contiguity is 
an important variable in both instrumental and Pavlovian conditioning (see Allan, Balsam, 
Church, & Terrace, 2002; Allan & Church, 2002). For example, increasing the delay between 
a response and reinforcement in an instrumental task decreases the rate of responding. Sim­
ilarly, increasing the delay between a conditioned stimulus and an unconditioned stimulus in 
a Pavlovian task retards the acquisition of the conditioned response. 

The studies that have examined the effect of temporal contiguity on ratings of contingency 
have used human analogues of the animal instrumental procedure (e.g., Buehner & May, 2002, 
in press; Reed, 1992, 1996; Shanks, 1989; Shanks & Dickinson, 1991; Shanks, Pearson, & 
Dickinson, 1989; Wasserman & Neunaber, 1986). In these instrumental studies, observers 
were required to perform an action, A, (e.g., tapping a key, pressing a button, pressing the 
space bar on a computer keyboard), and judge the extent to which the action was related 
to or caused the occurrence of an outcome, 0, (e.g., illumination of a light, illumination of 
a triangle on a computer monitor, an explosion). Overall, these experiments found that the 
judged contingency between the action and the outcome decreased as the temporal delay 
between the action and the outcome was increased. 

In an instrumental task, the observer is free to choose whether and when to respond. If an 
action occurs, then the outcome is presented with probability P(OIA); if an action does not 
occur then the outcome is presented with probability P(Olrv A). The contingency between 
the action and the outcome, l:::..P, is defined as the difference between these two independent 
conditional probabilities: 

l:::..P = P(OIA) - P(Olrv A) (5.1) 

Temporal contiguity is varied by inserting a delay between the action and the outcome. 
This design has a number of difficulties, however. The overall probability of an action, P(A), 
is determined by the observer, rather than by the experimenter, and has been shown to vary 
among observers and more importantly between delay conditions. Generally, P(A) decreased 
as the temporal delay between the action and the outcome was increased (see Buehner & 
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Table 5.1: Standard 2 x 2 contingency matrix for the human analogue of the Pavlovian task 

Outcome 
0 ",0 

Cue 
C a b a+b 

",C c d c+d 
a+c b+d 

May, in press). Also, although the observer is allowed to respond during the delay, in many 
of the human studies these extra responses did not result in an outcome. As Buehner and 
May showed, these extra responses during the delay can result in the actual values of P(OIA) 
and P(Olrv A) differing from the intended values. Thus, actual D..P can change as a function 
of delay, and the variation in rating with delay might reflect a change in D..P rather than 
a change in temporal contiguity. While control groups were often included in the design of 
the experiments using the instrumental analogue, an alternative approach would be to use 
a task where such confounds are removed. This could be accomplished by varying temporal 
contiguity in a human analogue of the Pavlovian task. 

Although many of the early studies of human contingency judgments used the human 
analogue of the instrumental task, later studies did switch to the human analogue of the 
Pavlovian task (see Dickinson, 2001). Surprisingly however, the effect of temporal contiguity 
on contingency judgments has not been investigated in a Pavlovian situation where the cue­
outcome combinations are experience by the observer. While Hagmayer and Waldmann (2003) 
were interested in the influence of temporal assumptions about cue-outcome relationships, 
they used a described format rather than an experienced format. In their experiments, the 
cue-outcome combinations on each trial were listed on a sheet of paper. In this type of 
presentation, the actual delay between the cue and the outcome can oruy be described and 
is not experienced in real time. In the experiments reported in the present paper, we vary 
temporal contiguity in real time in the human analogue of the Pavlovian task. 

Table 5.1 presents the standard 2 x 2 contingency matrix for the human analogue of the 
Pavlovian task. In such tasks, the cue is either present (C) or absent (rvC) and the outcome 
is either present (0) or absent (",0). The four cells (a, b, c, d) represent the joint frequency 
of occurrence of the four possible cue-outcome combinations. The contingency between the 
cue and the outcome, D..P, is the difference between two independent conditional probabilities 
(Allan, 1980). Referring to Table 5.1, 

a c 
l:::.P = P(OIA) - P(OI '" A '" B) = - -­

a+b c+d 
(5.2) 

The effect of temporal contiguity could be investigated by manipulating the cue-outcome 
interval or delay. 
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Table 5.2: Cell frequencies and conditional probabilities for Experiments 1 and 2 

CO 
C",O 
",CO 
",C",O 

# of Trials 
P(OIC) 
P(OI '" C) 
AP 

5.4 Experiment 1 

5.4.1 Method 

Observers 

3 
17 
17 
3 

40 
0.15 
0.85 
-0.7 

Experiment 1 
7 13 
13 7 
13 7 
7 13 

40 40 
0.35 0.65 
0.65 0.35 
-0.3 0.3 

Experiment 2 
17 12 8 
3 4 8 
3 4 8 
17 12 8 

40 32 32 
0.85 0.75 0.5 
0.15 0.25 0.5 
0.7 0.75 0 
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The observers were 30 undergraduate students enrolled in Psychology courses at McMaster 
University who participated for course credit. They had not participated in other experiments 
concerned with contingency judgments. An equal number (n = 15) were randomly assigned 
to each of two delay groups (0.4 and 2 sec). 

Apparatus 

Observers performed the experiment on Power Macintosh computers. located in separate 
rooms. The experiment was programmed in MetaCard 2.3.1. The stimuli were identical 
to those used in Tangen and Allan (2003). The cue was a chemical and the outcome was a 
bacterial strain. The presence of a cue was indicated by a colored three-dimensional animation 
of a chemical spinning on its axis and the absence of a cue was indicated by a faded unmoving 
grayscale picture of the chemical. Similarly, the presence of the outcome was indicated by 
a colored animation of moving bacteria and the absence of the outcome was indicated by a 
faded grayscale picture of stationary bacteria. There were five chemicals and five bacterial 
strains. Each of the chemicals and strains were randomly assigned fictitious names from a 
set of five chemicals and five bacteria. The colored moving images (indicating the presence of 
cues and outcomes) were accompanied by a name (e.g., Chorbine Present). In contrast, the 
faded unmoving images (indicating the absence of cues and outcomes) were not accompanied 
by text. 
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Procedure 

The instructions for the experiment were presented to the observer on the computer monitor 
(see Appendix D for the full instructions). In brief, the observer was told that scientists have 
recently discovered four strains of bacteria that exist in the mammalian digestive system. 
For each strain, the scientists were testing whether a chemical aids in, interferes with, or has 
no effect on a strain's survival. To do this, a strain of bacteria was first placed in culture 
(petri dishes). After that, a chemical might be added to the bacterial culture. The scientists 
then verified whether or not the bacterial sample survived. The observer was also shown the 
rating scale that they would use to rate the effectiveness of the chemical on the survival of 
the bacteria. After reading the instructions, the observer was shown a summary screen of the 
four cue-outcome combinations. Eight practice trials were then presented where each of the 
four cue-outcome combinations was presented twice in random order. 

The two cue-outcome delays (0.4 sec and 2.0 sec) were varied between subjects, and the four 
values of l::..P (-.7, -.3, .3, .7) were varied within subjects. The frequencies and conditional 
probabilities for each l::..P are shown in Table 5.2. An experimental session consisted of four 
blocks of 40 trials each. The order of the four l::..P values was randomly determined for each 
observer over the four blocks. 

The observer initiated a block of trials by clicking on the Begin button on the computer 
screen. A trial consisted of one of the four cue-outcome combinations: chemical added and 
bacteria survived (CO), chemical added and bacteria did not survive (C",O), chemical not 
added and bacteria survived (",CO), and chemical not added and bacteria did not survive 
(",C",O). The next trial was initiated by a mouse click on the Next Trial button. 

During each block of trials, the observer rated how strongly the chemical affected the 
survival of the bacterial strain after trial 20 and again after trial 40. The ratings were made 
on a horizontal scrollbar that ranged from -100 (chemical has a very strong negative effect 
on the bacteria's survival) on the left to +100 (chemical has a strong positive effect on the 
bacteria's survival) on the right, and was anchored at 0 in the middle. Observers made their 
ratings by moving a horizontal scrollbar left and right with the mouse. 

Each block of 40 trials was clearly labeled as separate scientific experiments with different 
chemical and bacteria images and names. For each observer, one chemical and one bacterial 
strain was randomly assigned to each of the four l::..P values. The remaining chemical and the 
remaining bacterial strain were used in the practice trials. 

5.4.2 Results and Discussion 

Figure 5.1 shows the mean ratings as a function of l::..P for each delay. The ratings at trial 20 
are seen in Figure 5.1a and the ratings at trial 40 are seen in Figure 5.1b. For both delays 
and at both trials, ratings are an orderly function of l::..P, being negative for the negative 
contingencies and positive for the positive contingencies. At neither trial, do the ratings 
appear to differ for the two delays. A 2 x 2 x 4 mixed-design ANOVA was conducted on 
the ratings with delay (0.4 and 2.0) as a between-subject variable, and trial (20 and 40) 
and contingency (-.7, -.3, .3, .7) as within-subject variables. The only main effect that was 
significant was contingency, F(3, 84) = 72.86, p < .001. The only other significant result was 
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Figure 5.1: Mean ratings in Experiment 1 as a function of ~p for each delay (unfilled bars 
for .4 sec and filled bars for 2.0 sec). The ratings at trial 20 are seen in Figure 5.1a and the 
ratings for trial 40 are seen in Figure 5.1b. 
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the interaction between trial and delay, F(1, 28) = 4.63, p < .05. At trial 20, the ratings were 
higher for the 0.4 sec delay than for the 2.0 sec delay, whereas at trial 40 the reverse was the 
case. The Tukey test indicated, however, that at neither trial were the ratings significantly 
different for the two delays, ps < .05. 

Our manipulation of delay in Experiment 1 was without effect. Recent research reported 
by Buehner and May (2002, in press) suggests a plausible explanation for our null result. 
They showed that the effect of delay in the instrumental task depended on the cover story 
describing the action and the outcome. If the cover story indicated that the action produced an 
immediate outcome, then ratings were higher for a short delay than for a long delay. However, 
if the cover story indicated that the action produced a delayed outcome, then ratings did not 
differ as a function of delay. Such data suggest that the observer's expectation about the 
delay might be an important variable. 

Our cover story in Experiment 1 was equally compatible with both the short and the long 
delay. There was no information in the cover story that would lead the subject to think that 
the effect of the chemical on the survival of the bacteria should occur immediately or should be 
delayed. Thus it is plausible that the observers who experienced the .4 sec delay interpreted 
the cover story to expect a short delay and the observers who experienced the 2.0 sec delay 
interpreted the cover story to expect a long delay. In Experiment 2, we look at the effect of 
cover story in the Pavlovian task. We use two different cover stories, one designed to induce 
an immediate expectation of the outcome and the other to induce a delayed expectation of the 
outcome. We cross the delay described in the two cover stories with the actual delay between 
the cue and the outcome presented to the observer. 

5.5 Experiment 2 

As we noted earlier, Buehner and May (2002, in press) showed that the effect of delay in 
the instrumental task depended on the cover story describing the action and the outcome. 
In Experiment 2, we adapted the cover stories used by Buehner and May (2002, Experiment 
3) to the Pavlovian task. In the Buehner and May experiment, the observer's task was to 
determine whether triggering a "FIRE" button produced an explosion in a training range. In 
the immediate cover story, the observer was told that the FIRE button was a remote control 
detonator which, when fired, set off a mine in the training range immediately upon bring 
fired. In the delay cover story, the observer was told that the FIRE button was a grenade 
launcher which, when fired, sent shells into the training range. Since these shells had to 
travel, there would be a delay between pressing the FIRE button and the resulting explosion. 
In addition to varying the cover story (immediate and delay), Buehner and May varied the 
actual delay between the pressing of the FIRE button and the explosion (0 sec and 5 sec). 
They found a significant interaction between cover story and delay. At the 5 sec delay, ratings 
were significantly higher in the delay cover story than in the immediate cover story. That 
is, when there was an actual delay between the action and the outcome, ratings were higher 
when observers expected a delay than when they did not. 

In the Buehner and May (2002) instrumental task, the observer decided whether and when 
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to press the FIRE button. In our experiment, we used discrete trials and whether the FIRE 
button was pressed on a trial was preprogrammed. We varied the actual delay between the 
cue and the outcome (0 sec and 5 sec) presented. We examined the interaction between cover 
story and cue-outcome delay for two values of tlP (0 and 0.5). 

5.5.1 Method 

Observers 

The observers were 52 undergraduate students enrolled in Introductory Psychology at McMas­
ter University who received course credit and who had not participated in other experiments 
concerned with contingency judgments. An equal number (n = 13) were randomly assigned 
to each of four groups. 

Apparatus 

The apparatus was the same as in Experiment 1, and the experiment was again programmed 
in MetaCard 2.3.1. There were four movie clips corresponding to the four trial types presented 
in Table 5.1. For each of the four clips, a computer rendered animation (created in Poser 4.0.1) 
of a military officer is presented. The officer either presses the FIRE button (C) or not (I'VC), 
resulting in an explosion on the horizon (0) or not (I'VO). 

Procedure 

The instructions for the experiment were presented to the observer on the computer monitor 
(see Appendix D for the full instructions). There were two instruction sets, one for the 
immediate cover (IC) story and one for the delay cover (DC) story. In the IC story, the FIRE 
button was described in the context of a remote-control detonator and the observer was told 
that the mine explosion was immediate. In the DC story, the FIRE button was described in 
the context of a grenade launcher and the observer was told that there was a delay of a few 
seconds between the pressing of the FIRE button and the resulting mine explosion. Both sets 
of instructions explained that the device was still in the experimental phase, and therefore 
pressing the FIRE button did not always result in an explosion and also that an explosion 
might occur even when the button was not pressed. The instructions also described the scale 
that they would use to rate the relationship between the FIRE button being pressed and the 
mine exploding. After reading the instructions, the observer was shown a summary screen of 
the four cue-outcome combinations. 

Half the observers received the IC story and half received the DC story. Two cue-outcome 
delays were used, 0 sec and 5 sec. Each observer experienced both delays. In each cover-story 
group, half the observers experienced the 0 sec delay first, followed by the 5 sec delay (0/5 
order). The order was reversed for the remaining observers (5/0 order). There were two values 
of tlP, 0 and 0.5. The frequencies and conditional probabilities for each tlP value are shown 
in Table 5.2. The order of the two tlP values at each delay was randomly determined. In 
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summary, there were two between variables (cover story and order) with two levels each, and 
two within variables (delay and LlP) with two levels each. 

An experimental session began with eight practice trials where each of the four cue-outcome 
combinations was presented twice in random order. On these practice trials, LlP = .5, and 
the delay was the same as that programmed for the first delay to be experienced. The practice 
trials were followed by four experimental blocks of 32 trials each. The observer initiated a 
block of trials by clicking on the "Begin" button on the computer screen. A trial consisted of 
one of the four cue-outcome movie clips: button pressed and explosion, button pressed and no 
explosion, button not pressed and explosion, button not pressed and no explosion. The next 
trial was initiated by a mouse click on the "Next Trial" button. At the end of each block, 
the observer rated the relationship between pressing the FIRE button and the explosion of a 
mine. The ratings were made on a horizontal scrollbar that ranged from 0 (the FIRE button 
had no effect on causing the explosion) to +100 (the FIRE button was a perfect cause of the 
explosion). Observers made their ratings by moving a horizontal scrollbar left and right with 
the mouse. 

5.5.2 Results and Discussion 

Figure 5.2 shows mean ratings as a function of delay (0 and 5 sec) for the two cover stories (IC 
and DC) at each of the two LlP values (0 and 0.5). Figure 5.2a presents the data for the 0/5 
order and Figure 5.2b presents the data for the 5/0 order. Both figures indicate that for each 
LlP value, there is an interaction between cover story and delay. Ratings are higher when the 
cover story and the delay were congruent (IC with 0 sec delay and DC with 5 sec delay) than 
when the cover story and the delay were incongruent (IC with 5 sec delay and DC with 0 sec 
delay). A 2 x 2 x 2 x 2 mixed-design ANOVA was conducted on the ratings, with cover story 
(IC and DC) and order (0/5 and 5/0) as between-subject variables, and delay (0 sec and 5 
sec) and LlP (0 and 0.5) as within-subject variables. The main effect of LlP was significant, 
F(l, 48) = 120.08, p < .001. There was a significant interaction between cover story and 
delay, F(1, 48) = 34.59, P < .001. The Tukey test indicated that at the 0 sec delay ratings for 
IC (55.65) were higher than for DC (42.46), p < .01 and that at the 5 sec delay ratings for IC 
(36.73) were lower than for DC (54.87), p < .001. The Tukey test also indicated that for IC, 
the ratings were higher at the 0 sec delay (55.65) than at the 5 sec delay (36.73), p < .001 and 
that for DC, the ratings were lower at the 0 sec delay (42.46) than at the 5 sec delay (54.87), 
p < .01. The Tukey test also confirmed that the two congruent combinations (IC with 0 sec 
and DC with 5 sec) did not differ, p > .05, and that the two incongruent combinations (IC 
with 5 sec and DC with 0 sec) did not differ, p > .05. 

The ANOVA also revealed a significant three-way interaction between cover story, delay, 
and LlP, F(1, 48) = 13.57, p < .001. The interaction of cover story and delay was more 
pronounced for LlP = 0.5 than for 6.P = o. The three-way interaction between cover story, 
delay, and order was also significant, F(l, 48) = 4.37, p < .05. The interaction of cover story 
and delay was more pronounced for the 0/5 order than for the 5/0 order. 

Our data extend the findings of Buehner and May (2002), which showed an interaction of 
cover story and delay on contingency ratings in the instrumental task, to the Pavlovian task. 
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Figure 5.2: Mean ratings in Experiment 2 as a function of delay for the two cover stories 
(triangles for IC and squares for DC) at each 6:.P value (filled symbols for 6:.P = 0 and 
unfilled symbols for 6:.P = .5). The ratings for the 0/5 order are in Figure 5.2a and the 
ratings for the 5/0 order are in Figure 5.2b. 
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Buehner and May demonstrated an effect of cover story at 5 sec but not at 0 sec. Specifically, 
ratings were higher for the DC cover story than for the IC cover story at the 5 sec delay, 
but did not differ at the 0 sec delay. Our data provide even stronger evidence for the role of 
cover story. We find an effect of cover story at both delays, and the direction of the effect is 
different at the two delays. It should be emphasized that the stimulus events were identical 
for the two cover stories and that the instructions were similar with only a few crucial words 
being changed. We also show that the interaction between cover story and delay occurs not 
only when there is a relationship between the cue and the outcome (6.P = 0.5) but also when 
there is no relationship (6.P = 0). 

5.5.3 Discussion 

The data from Experiment 1 suggested that increasing the delay between the cue and the 
outcome is ineffective if the delay is consistent with the observer's expectations. The data 
from Experiment 2 confirmed that this was the case. These data demonstrated that when the 
delay is congruent with the observer's expectation, ratings at a 5 sec delay do not differ from 
ratings at 0 sec delay. The data also indicate that ratings are higher when the cover story and 
the delay are congruent (IC with 0 sec delay and DC with 5 sec delay) than when the cover 
story and the delay are incongruent (IC with 5 sec delay and DC with 0 sec delay). 

Buehner and May (2002, in press) argued that an interaction between cover story and 
delay is not consistent with associative accounts of contingency judgments. Associative models 
postulate that judgments are determined by associative links or connections which are formed 
between contiguously-presented cues and outcomes. The associative model most frequently 
used to account for human contingency judgments is the Rescorla-Wagner model (Rescorla & 
Wagner, 1972), although recently the Pearce generalization model (Pearce, 1987) has gained 
popularity. In these associative models, temporal contiguity contributes to the strength of 
the association but does not become part of that association. That is, temporal factors serve 
only a facilitative role in the formation of associations. The closer the cue and the outcome 
are in time during training, the more robust the resulting association is assumed to be. The 
organism, however, acquires no representational knowledge about the temporal relationship 
between the cue and the outcome. 

While temporal factors serve only a facilitative role in the formation of associations in 
some associative models (e.g., Rescorla & Wagner, 1972), this is not the case for all associative 
models (e.g., Wagner, 1981; Miller & Barnet, 1993). In fact, a prime motivating factor for the 
development of more recent associative models was to directly encompass the role of temporal 
factors in the learning process. For example, the temporal coding hypothesis (e.g., Miller & 
Barnet, 1993) questioned the assumption that organisms do not learn about the temporal 
properties of the stimulus events. According to the temporal coding hypothesis, the temporal 
relationship between the cue and the outcome is automatically encoded as part of the content 
of an association and plays a critical role in determining the response. Recently, Savastano and 
Miller (1998) provided an overview of the accumulating evidence indicating that organisms 
do acquire temporal information in a wide variety of Pavlovian paradigms. Organisms can 
superimpose temporal maps when elements common to these maps are presented together, 
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even when the elements were trained separately. That is, temporal information from different 
training situations can be integrated. 

The evidence summarized by Savastano and Miller (1998) in support of the temporal 
coding hypothesis stems mainly from the animal learning literature. An animal learning 
experiment analogous to our Experiment 2 would cross delay in Phase 1 (0 sec or 5 sec) with 
delay in Phase 2 (0 sec or 5 sec). In their review, Savastano and Miller do not report animal 
data from this design, but they do discuss similar designs. For example, Savastano, Yin, 
Barnet, and Miller (1998) described an experiment modeled on the Hall and Pearce (1979) 
CS-preexposure effect. In the usual CS-preexposure experiment, the CS is presented alone 
(Le., without the US) first. Following this preexposure phase, the CS and the US are paired. 
CS-preexposure weakens the strength of the CR compared to appropriate control groups. In 
the preexposure phase of the Hall and Pearce situation, the CS was paired with a low intensity 
version of the US (CS -+ USweak ). This was followed with the same CS being paired with a 
high intensity version of the US (CS -+ USstrong). Hall and Pearce found that preexposure 
to the weak version of the US also resulted in an attenuated CR. Using the Hall and Pearce 
preexposure design, Savastano et al. (1998) varied the delay between the CS and the US in 
both phases. They showed that the size of the CS-preexposure effect did not depend on the 
absolute values of the CS-US delays, but rather on whether the temporal relationship between 
the CS and the US in the two phases was congruent or incongruent. 

The prediction of the temporal coding hypothesis for an experiment that crossed Phase 1 
delay (0 sec or 5 sec) with Phase 2 delay (0 sec or 5 sec) is clear - the conditioned response 
should be stronger when the cue in the two phases shares the same temporal relationship 
with the outcome (the two congruent conditions) than when they share different temporal 
relationships (the two noncongruent conditions). The cover story in our Experiment 2 would 
be analogous to Phase 1 in the animal learning experiment. Rather than actually experiencing 
the delay, the observer "learns" the delay by reading the cover story (IC or DC). This initial 
learning phase is followed by a second phase where the observer actually experiences a delay 
that is congruent or incongruent with the temporal relationship described in the cover story. 
The temporal coding hypothesis, applied to our Experiment 2, would predict that, because 
ratings are influenced by temporal relationships, the ratings should be higher in the two 
congruent conditions than in the two noncongruent conditions. Thus the temporal coding 
hypothesis, which falls into the category of associative models, can encompass our results. 

Our experiments were not designed as a test of the temporal coding hypothesis. Rather, 
their purpose was to examine the role of temporal contiguity in the human analogue of the 
Pavlovian task. What we wish to emphasize, however, is that the interaction between cover 
story and delay that we observed, and that was also reported by Buehner and May (2002, 
in press), is compatible with an associative account of human contingency judgments. Re­
searchers who argue against an associative account of contingency judgments tend to base their 
evaluation on a particular associative account and then generalize to all associative accounts 
(see Allan, 2003). Buehner and May (in press) argued that " ... assumptions [of associative 
models] are too rigid in that they clearly state that delays should always hinder performance; 
instructional effects of the kind we found in our experiments cannot be accounted for under 
such a theory". This is not the case. 



Chapter 6 

General Discussion 

The belief that we can start with pure observations alone, without anything in the 
nature of a theory, is absurd. 

Popper (1972) 

The objective of this dissertation has been to assess the circumstances in which our general 
knowledge of causal direction and temporal delay guides judgements of causality. The results 
reported in Chapters 2 and 3 suggest that knowledge of causal direction modulates judgements 
depending on the nature of task, and the results reported in Chapter 5 suggest that knowledge 
of temporal delay modulates causal judgements in each of the conditions tested. The results 
from each chapter will be discussed in turn. 

In Chapter 2, Experiments 1 and 2 demonstrate that knowledge of causal structure inter­
acts with the level of cue-interaction by uncorrelating causal order and the number of cues 
and outcomes that have typically been confounded in the literature. The results from Experi­
ment 3 suggest that causal knowledge only influences cue-interaction in causal ratings, but not 
trial-by-trial prediction responses. Lastly, in Experiment 4, the causal model effect dissipated 
as the trials progressed. We propose in Chapter 2 that both low-level (associative) factors 
and high-level (causal model) factors influence causal assessment depending on what is being 
asked about the events, and participants' experience with those events. We provided several 
predictions as to the circumstances under which we would expect each of the two factors to 
be more heavily weighted. 

The three experiments in Chapter 3 demonstrate that, in general, knowledge of causal 
direction influences causal ratings, but not trial-by-trial predictions. We note that while the 
causal description of the events influence ratings when comparing the common-effect (2C-IE) 
and common-cause (2E-IC) scenarios, the results do not exactly track the predictions made 
by causal-model theory. It is evident that causal knowledge had an influence, but not to the 
extent assumed by causal-model theory. The influence of the causal model was particularly 
evident in Experiment 3 in which participants were asked to provide an integrative causal 
rating. We derived this manipulation from one of our predictions in the previous chapter. 
Experiments 1 and 2, however, examined the clarity of the causal model and the wording 
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of the test question respectively, resulting in less sensitivity to the causal model. In each 
experiment, sensitivity to the causal model was not evident in the trial-by-trial prediction 
responses. 

Overall, when one examines the data from the seven experiments presented in Chapters 2 
and 3, it is evident that participants are sensitive to the causal description of the events. 
According to an associative model, when two cues precede a common outcome, the cues will 
compete to be associated with the outcome despite their causal description. Conversely, when 
one cue precedes two outcomes, the outcomes will not compete. Therefore, an associative 
account would predict an identical pattern of results for the 2C-1E and 2E-1C scenarios, 
and an identical pattern of results for the 1C-2E and 1E-2C scenarios. The results from 
Experiments 1 and 2 in Chapter 2 indicate that participants' do not judge them to be the 
same. Their ratings interact with the direction of the causal relationship. Ratings for 2E-
1C tend to be higher than for 2C-1E, and 1E-2C ratings tend to be lower than for 1C-2E. 
Furthermore, in Experiments 3 and 4 of Chapter 2, and Experiments 1-3 of Chapter 3, even 
though assessments of the 2C-1E and 2E-1C scenarios are more similar, judgements of 2E-1C 
are consistently higher than for 2C-1E. An associative account alone cannot account for this 
difference. 

On the other hand, when one examines the data from the seven experiments presented 
in Chapters 2 and 3, participants also seem to be sensitive to the associative nature of the 
events. According to causal-model theory, when two causes produce a common effect, the 
causes will interact, and when two effects result from a common cause, the effects will not 
interact. Causes will interact and effects will not despite the order that they are presented. 
Therefore, causal-model theory would predict an identical pattern of results for the 2C-1E 
and 1E-2C scenarios, and an identical pattern of results for the 2E-1C and 1C-2E scenarios. 
The results from Experiments 1 and 2 in Chapter 2 indicate that while participants' rate 
them similarly, their ratings for 1C-2E tend to be higher than for 2E-1C, and 2C-1E ratings 
tend to be lower than for 1E-2C. Furthermore, in Experiments 3 and 4 of Chapter 2, and 
Experiments 1-3 of Chapter 3, assessments of the 2C-1E and 2E-1C scenarios tend to be very 
similar. A causal-model account alone cannot account for this difference. 

The results from Chapters 2 and 3 suggest that our causal assessments are best explained 
by the joint contribution of high and low-level processing whereby causal judgements are 
influenced both by causal knowledge and by the associative nature of the events. The debate 
in the literature implies that causal judgements are either concept-driven or data-driven, but 
not both. For example, Cobos et al. (2002) conclude that " ... the circumstances under which 
a [causal-model theory]-like influence is observed are quite restricted and, correspondingly, 
that the circumstances under which causal inferences may be mediated by the operation of 
an associative learning mechanism are quite broad." (p. 344). In contrast, Waldmann and 
Holyoak (1992) conclude by inquiring whether "lower-order associative learning should be 
reduced to higher order causal induction" (p. 235). Given the results from Chapters 2 and 
3, it may more productive to consider causal assessment as driven by the interaction between 
data-driven (associative) and concept-driven (causal-model) processes. It can be argued that 
positing a completely associative or causal knowledge-based processing model will fail to 
capture the complex interactive nature of causal judgement. Alternatively, an interactive 
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approach to causal judgement appears to offer a better explanation of the cognitive processes 
which seems to be at work here. 

In Chapters 2 and 3, participants rated a moderately positive cause as less predictive 
when it was paired with a strong predictor than to when it was paired with a weak predictor. 
Specifically, when two causes preceded a common effect (2C-IE), and the contingency of 
Cause A with the common effect was moderately contingent (6.PA = 0.5), then causal ratings 
of A decreased as the contingency of Cause B with the common effect increased (e.g., 6.PB 
= 0, 0.25, 0.5, 0.75, 1). However, the strength of contingency referred to throughout this 
thesis (e.g., "strong", "moderate", and ''weak'' contingencies) and in the literature refer to 
the unconditional contingencies. In Chapters 2 and 3, we indicated that "several different 
frequencies can be selected to fill the eight cells of the 4x2 matrix each resulting in various 
combinations of unconditional and conditional 6.P values. The frequencies for Experiment 2 
[Chapter 2] (shown in Table 2.2) were selected to produce a descending pattern of conditional 
6.P A values while maintaining identical unconditional 6.PA values. As well, they were selected 
so the unconditional and conditional 6.PB values would be as closely matched as possible. The 
6.PB values were therefore selected only for their influence on the conditional 6.P A values. 
The frequencies were also selected so the respective conditional contingencies for A and B 
would be identical where 6.P AlB = 6.P AI",B and 6.PBIA = 6.PBI",A resulting in the symmetry 
observed in the two columns of the 4x2 contingency matrix for each of the five conditions 
(see Spellman, 1996b, Property 4)." 

In Chapter 4, we demonstrate that when two causes result in one effect, the relative 
"strength of contingency" in cue-interaction effects, is based on conditional rather than un­
conditional contingencies. That is, participants' ratings tracked the conditional rather than 
uncondtional contingencies as predicted by the conditional 6.P account (Spellman, 1996b). 
We also demonstrated that the Rescorla-Wagner model makes the same predictions as condi­
tional 6.P at asymptote given Properties 1 and 4 made by Spellman (1996b). 

Again, while the two models make identical predictions about cue-interaction given the 
assumptions above, they make very different predictions about how these judgements are 
formed. In particular, the Rescorla-Wagner model updates the associative strength accrued 
to each cue on each trial. Therefore, the model makes specific predictions about the ac­
quisition function for each cue that varies depending on the ordering of the events. When 
researchers simulate the event frequencies for certain experimental conditions, they generally 
input random event sequences for a number of iterations. What they are essentially doing is 
collapsing over the order that the events were presented thereby disregarding the individual 
trial sequences. Under these circumstances (and given the assumptions above), the Rescorla­
Wagner model and conditional 6.P make identical predictions. In computing conditional 6.P, 
one simply "counts up" the number of each event type and computes each of the probabilities. 
Basing these statistics on frequency information disregards the order that those frequencies 
were obtained. Furthermore, the Rescorla-Wagner model allows one to make pre-asymptotic 
predictions while conditional 6.P does not. For example, 6.P is computed identically whether 
it is based on 10 trials or 1000 trials. Because the Rescorla-Wagner model divvies up ..\ (the 
sum of associative strength) among the events over a number of trials, the associative strength 
accumulated pre-asymptotically can vary greatly from the associative strength accumulated 
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at asymptote. Therefore, the Rescorla-Wagner model predicts trial effects, while conditional 
~p does not. As discussed in Chapters 2 and 4, participants' judgements varied across trials 
which cannot be accounted for by conditional ~P. 

In Chapter 5 we examined how assumptions of temporal delay influenced causal assess­
ments. Specifically, in Experiment 1, the same chemical and bacteria materials were used as 
in each of the other experiments. In this case, however, only one chemical affected a single 
strain of bacteria. The independent measure for this experiment was the delay between the 
offset of the chemical and the onset of the bacteria. Previous experiments that have used an 
operant procedure (in which participants initiate the cause), and animal learning experiments 
that have used a similar Pavlovian design, suggest that participants' causal assessments should 
decrease as the temporal delay between the events increase. However, the temporal delay in 
this case had no influence on participants' causal ratings. There was no significant difference 
between judgements of events with a short delay and events with a long delay. We argued that 
the materials we used were consistent with both a short and a long delay. Therefore, partici­
pants' expectations were congruent with the events presented to them, resulting in equivalent 
ratings in each delay condition. 

To further investigate the interaction between temporal knowledge and causal judgements, 
we designed a second experiment with a new set set of materials. In this case, participants 
were asked to rate how effective a button press was in producing an explosion some distance 
away. Given one of two cover stories, one group of participants expected the temporal delay 
between the events to be short, and another group expected the delay to be long. Participants 
were then presented with a series of trials that were either congruent with their expectations, 
or incongruent with their expectations. Causal ratings were higher if the observed events were 
congruent with their expectations then if the events were incongruent with their expectations. 
This interaction between expectation and observation was evident for both moderately con­
tingent (~P = 0.5) and non-contingent (~P = 0) relationships. 

According to the Rescorla-Wagner model, temporal contiguity serves only a facilitative 
role in the formation of associations. The closer events occur in time, the more robust the 
resulting association is assumed to be. However, the temporal coding hypothesis is unlike most 
associative models in that it encodes the temporal (in)congruity between different training 
situations. If the temporal interval of a learning phase is congruent with the temporal interval 
of another, then the conditioned response should be stronger than if the temporal intervals 
are incongruent between the learning phases. The role of temporal congruity according to the 
temporal coding hypothesis shares common utility with the role surmised by Hagmayer and 
Waldmann (2003). However, Hagmayer and Waldmann argue that knowledge of temporal 
intervals serves an identical role as knowledge of causal directionality, guiding the selection 
of statistical indicators of causal strength. Specifically, Hagmayer and Waldmann (2003) 
provide evidence that temporal assumptions influence the selection of relevant events that 
enter contingency estimates. In their second experiment, participants tended to base their 
contingency estimates only on events that were relevant to the particular temporal assumption. 
Events that occurred too long or too short before the effect were neglected as candidate causes. 
If they had no assumptions about temporal intervals, then all the events were considered. The 
results from Chapter 5 imply that if participants' expectations of the temporal delay were 
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incongruent with the actual delay, then they would likely disregard the button as a candidate 
cause of the explosion. Therefore, on trials in which the explosion occurred in isolation ('" AO) 
or when the button was pressed without an explosion (A",O) they may have attributed the 
causal influence to whatever else was causing the explosion, thereby over weighting cells band 
c in Figure 4.1 of Chapter 4, and under weighting cells a and d. In the congruent condition, 
the opposite would be true. However, in Experiment 1, our participants had no assumptions 
of temporal intervals, then perhaps they considered each event type equally by weighting cells 
a-d evenly. 

Hagmayer and Waldmann (2003) assert that knowledge of temporal intervals influence 
causal judgements in much the same way as knowledge of causal asymmetry, in that they 
guide the choice of appropriate statistical indicators for causality. Perhaps the constraint 
of the space of possible relationships is a simplification strategy (Jennings, Amabile, & Ross, 
1982bj Nisbett & Ross, 1980j Gigerenzer & Todd, 1999). For example, if we return to Ruth and 
Arthur introduced in Chapter 1, Ruth was faced with number of viruses and asked to predict 
the onset of a disease. Arthur was faced with a number of symptoms and asked to diagnose a 
particular illness. Given the data presented in Chapters 2 and 3, we know the fact that "Ruth 
is predicting" and "Arthur is diagnosing" influences how they regard each virus/symptom. 
Not only does causal asymmetry affect their judgements, but knowledge of causal direction 
significantly reduces the complexity of the learning situation. If Arthur's patient complains of 
a number of symptoms, he is justified in supposing that they originated from a common cause. 
In contrast, Ruth is justified in testing each virus separately to determine the likelihood of 
each resulting in the disease. 

As Reichenbach (1956) pointed out, if both lamps in a room go out suddenly, or if several 
actors in a stage play fall ill showing symptoms of food poisoning, then we look for a common 
cause. It is possible that the bulbs burned out simultaneously, or that the actors fell ill 
independently for different reasons, but it is more plausible to suggest a common cause. Our 
knowledge of causal direction allows us to explain coincidences by appealing to a common 
cause, and conditionalise by appealing to a common effect. These examples are simplistic, 
but confronted with a web of causally related events (e.g., epidemiology, economics, and 
experimentation), reducing the complexity of the event space would clearly be adaptive. 

Perhaps temporal expectation also serves as a simplification strategy. If Arthur knows that 
the spoiled fish his patient ate has an incubation period of two days, then he can discount 
the reported symptoms long before and long after the two day period as resulting from an 
unrelated cause. Faced with a large number of related events, Arthur's temporal assumptions 
constrain the event space to those that occur within a particular timeframe. 

Throughout this dissertation, I have examined the role of expectation on judgements of 
causality. In Chapter 5, we investigated the congruity between participants' temporal expec­
tations and observations. They observed events that were either congruent or incongruent 
with their temporal assumptions. However, the issue of congruity in expectations of causal 
direction has not been discussed. Expectation of causal asymmetry seems to be of a differ­
ent kind than expectation of temporal delay. Knowledge of causal asymmetry rests solely 
on the assumption that causes interact and effects do not. Identifying common cause and 
common effect causal structures will significantly reduce the complexity of the learning task. 
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However, these causal structures are dichotomous and, therefore, do not lend themselves well 
to the notion of congruity. The observed events have one causal structure or another which 
either confirm one's expectations or not. Temporal relationships, on the other hand, can be 
either qualitatively or quantitatively extreme. Arthur's expectation of the incubation time 
for spoiled fish can range from being identical to the actual events, or wildly incorrect. Our 
investigation of temporal congruity in Chapter 5 simply examined ratings by participants 
who expected either a short delay or a long delay and were presented with either a short 
or a long delay. However, this problem intersects an interesting line research in the covaria­
tion assessment literature that examines the influence of outliers on judgements of covariation 
(e.g., Jennings, Amabile, & Ross, 1982a). How are participants' judgements affected by events 
that are either extremely congruent or incongruent with their expectations? The problem of 
temporal congruity lends itself well to investigating this question. 

6.0.4 Shortcomings and Future Directions 

The seven experiments presented in Chapters 2 and 3 tested whether the fact that participants 
were ''predicting'' or "diagnosing" influenced the relative assessment of the events. While 
the manipulations presented in Chapter 3 demonstrated that we could ''push around" their 
sensitivity to the direction and nature of the causal relationship, the effects were not as large 
as I would have liked. In each of these experiments, participants seemed to regard one effect in 
light of another to some extent resulting in a considerable cue-interaction effect in the 2E-1C 
scenario. While the integrative test question had a moderate influence on reducing this cue­
interaction effect, the results did not reach the level of the predictions made by causal-model 
theory. It seems plausible that using a different type of cover story for the 2E-1C scenario 
would result in data that are more consistent with the predictions of causal-model theory. As 
indicated in Chapter 3, Waldmann and Holyoak (1997) insisted on the necessity of making the 
causal relationship in the instructions and materials unmistakable. They argued that if there is 
any ambiguity in participants' interpretation of the event relations, then one cannot accurately 
measure the influence of their causal interpretation on learning. In Experiment 1 of Chapter 3 
.we responded to this criticism by continually reminding participants about the nature and 
direction of the causal relationship after every 8 trials and immediately before making a 
causal judgement. The manipulation, however, did not influence participants' sensitivity to 
the causal relationship resulting in a substantial cue-interaction effect in both the 2C-1E 
and 2E-1C causal scenarios. One could argue, however, that the reversibility of chemical­
bacteria cover story may still be influencing their causal assessments. Therefore, one may 
wish to investigate the same experimental design, but use materials for the 2E-1C scenario 
that cannot possibly be interpreted any other way than two effects resulting from a common 
cause. For example, two symptoms (headache and stomach pains) may result from eating 
a particular food. It is unlikely that participants would regard the headache and stomach 
pains as causing the consumption of the food. Though I would speculate that if enough trials 
were presented, then the causal description of the events may eventually lose their significance 
resulting in associative-type behaviour (cue-interaction between effects). 

The integrative test question described in Chapter 3 was designed so participants would use 
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the causal model for some particular purpose and regard all of the causal information presented 
in the entire experiment. While this manipulation was moderately successful in influencing 
participants' sensitivity to the causal description of the events, future work in this area might 
consider other manipulations that influence the use of the events. For example, participants 
in the 2C-1E and 2E-IC conditions are presented with a series of four cue combinations: AB, 
A",B, ",AB, and ",A",B. One could tell the participants that scientists have since discovered 
a fifth bacterial strain in the human digestive system. They are interested in the extent 
to which Chemical Alpha and Chemical Beta influence this new bacterial strain (the extent 
to which this new strain influences the production of Chemical Alpha and Chemical Beta). 
However, unlike the previous strains, experimental trials on this new bacterial strain are 
extremely expensive. If you were given $100 to spend on the four trial types (AB, A",B, 
",AB, and ",A",B), how much of the $100 would you spend on each in order to best assess the 
influence of each chemical on the bacteria (the influence of the bacteria on each chemical). If 
participants are behaving in accord with causal-model theory, then they should allocate more 
funds to the A",B and ",AB trial types because they should conditionalise, or hold one cause 
constant while evaluating the other. Participants in the 2E-1C condition, on the other hand, 
should allocate funds equally to the four types (or at least allocate less funds to the A", B 
and ",AB trial types), because they should regard the influence of the cause on each effect 
independently. Other types of manipulations aimed at participants use of the causal models 
would likely result in data that are more consistent with causal-model theory. 

The work presented in this dissertation has reached an intersection where basic associative 
processes meet more cognitive phenomena. Each chapter has described circumstances in which 
expectations, or high-level cognitive phenomena influence basic formations of association. 
These investigations coincide nicely with the neighbouring field of covariation assessment. 

While continuing to investigate many of the topics presented in this dissertation, I hope 
to examine the role of expectations and the treatment of outliers in the area of covariation 
estimation. As indicated in the previous section, by extending the dichotomous variables that 
I used in the experiments presented here, to form continuous variables, I gain the possibility 
of investigating extreme observations. How is our ability to profit from data that we receive 
affected by expectations about what that relationship should be? For example, does a causal 
model reduce our sensitivity to data that contradicts that expectation? There are two under­
lying issues in examining people's attitudes toward data analysis and the treatment of outliers 
depending on whether they are congruent or incongruent with their expectations. They can 
be ignored and regarded as a different process to be rejected - noise to be seen through. This 
would likely be the case if one's expectations were incongruent with the events presented and, 
in particular, with the extreme events presented. Alternatively, one can focus on the outliers 
and regard them as entirely representative of the underlying process. Outliers are defined in 
terms of surprise, attention, memory, and theoretical expectations. It would be interesting to 
see whether one's interpretation of outliers varies according to one's expectations. 
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6.1 Conclusion 

The thirteen experiments in this dissertation were designed to assess the circumstances under 
which knowledge of causal direction and temporal delay influence judgements of causality. In 
Chapters 2 and 3 the extent that participants causal assessments were influenced by knowledge 
of causal asymmetry depended on how and when the judgements were obtained. Participants 
were more sensitive to the causal structure of the events in their ratings than their trial-by­
trial prediction responses, on earlier rather than later trials, and when asked to provide an 
integrative causal rating. Emphasising the direction and nature of the causal relationship, 
and the wording of the test question had no influence on participants' sensitivity to causal 
asymmetry. The results from the experiments in Chapters 2 and 3 are best explained by the 
joint contribution of high and low-level processing whereby causal judgements are influenced 
both by causal knowledge and by the associative nature of the events. The results from 
Chapter 4 suggest that participants' ratings track the conditional rather than uncondtional 
contingencies as predicted by the conditional tl.P account as well as the Rescorla-Wagner 
model at asymptote. The three related experiments in the postscript of Chapter 4 suggest 
that participants tend to rate the influence of each cause conditional on the absence of the 
other cause. Finally, Chapter 5 suggests that knowledge of temporal delay modulates causal 
judgements. 
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Appendix A 

Causal Model Prompts 

A.O.l 2C-lE 

1. You are assessing how well each chemical causes the strain of bacteria to survive. 

2. The two chemicals are causes and the bacteria is the effect. 

3. Each of the two chemicals may have a positive, negative, or no influence on the survival 
of the bacteria. 

4. Your job is to evaluate the extent to which each chemical aids in or interferes with the 
survival of the bacterial strain. 

5. Consider the causal influence of each chemical on the survival of the bacteria. 

6. The goal is to predict whether the bacterial strain will survive given the presence or 
absence of the chemicals. 

7. You are trying to determine the influence of each chemical on the survival of the bacteria. 

8. Think about the affect each chemical has on the bacterial strain. 

9. Consider the causal strength of each chemical. 

10. Try to judge the effectiveness of each chemical by its influence on the bacteria. 

11. Keep in mind that each chemical affects the bacterial strain. 

12. Decide the degree to which the bacterial strain depends on the addition of each chemical. 

13. Try to keep track of what happens to the bacterial strain when one, both, or neither 
chemical was added. 

14. Each chemical may cause the bacteria to survive more often, less often, or may have no 
influence on the strain's survival. 
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15. Evaluate the extent to which each chemical caused the strain of bacteria to survive. 

16. Try to ascertain the causal influence of each chemical on the bacteria. 

A.O.2 2E-IC 

1. You are assessing how well the bacterial strain causes each of the two chemicals to be 
produced. 

2. The bacteria is the cause and the two chemicals are the effects. 

3. The bacteria may have a positive, negative, or no influence on the production of each 
chemical. 

4. Your job is to evaluate the extent to which the bacterial strain aids in or interferes with 
the production of each chemical. 

5. Consider the causal influence of the bacteria on the production of each chemical. 

6. The goal is to diagnose whether the bacteria were added to the digestive system given 
the presence or absence of the chemicals. 

7. You are trying to determine the influence of of the bacteria on the production of the 
two chemicals. 

8. Think about the affect the bacterial strain has on each chemical. 

9. Consider the causal strength of the bacterial strain. 

10. Try to judge the effectiveness of the bacteria by its influence on each chemical. 

11. Keep in mind that the bacterial strain affects each chemical. 

12. Decide the degree to which each chemical depends on the addition of the bacterial strain. 

13. Try to keep track of whether one, both, or neither chemical was produced when the 
bacterial strain was added. 

14. The bacteria may cause the production of each chemical more often, less often, or may 
have no influence on whether the chemical is produced. 

15. Evaluate the extent to which the strain of bacteria caused each chemical to be produced. 

16. Try to ascertain the causal influence of the bacteria on each chemical. 



Appendix B 

Instructions for Chapter 4 

Imagine that scientists have recently discovered three strains of bacteria that exist in the 
mammalian digestive system. The scientists are studying whether certain pairs of chemicals 
affect the bacteria's survival. For each strain, the scientists are testing whether the chemicals 
aid in, interfere with, or have no effect on the strain's survival. 

To do this, a strain of bacteria was first placed in culture (petri dishes). After that, 

1. one chemical (e.g., chemical A) 

2. the other chemical (e.g., chemical B) 

3. both chemicals (e.g., chemicals A and B); or 

4. neither chemical 

was added to the bacterial culture. A few hours later, the scientists verified whether or not 
the bacterial sample survived. 

At the time of these experiments, it was not known what effect each chemical might have 
had on the bacteria. On one hand, a chemical might make the bacteria more likely to survive, 
therefore the sample would be less likely to survive without the chemical. This would be an 
example of a chemical having a positive effect on the bacteria's survival. 

Alternatively, a chemical might make it less likely that that bacteria will survive, therefore 
the sample would be more likely to survive without the chemical. This would be an example 
of a chemical having a negative effect on the bacteria's survival. 

Finally, a chemical might have no systematic effect on the bacteria's survival. That is, it 
could be that the chemical neither aids in, nor interferes with, the bacteria's survival. 

To assess these possibilities, the scientists investigated what happened when one or two 
chemicals were added to the bacteria sample. They also tested what happened on control 
trials in which no chemicals were added. A comparison of what happened on these trials 
allowed the scientists to assess whether a chemical had a positive effect, a negative effect or 
no effect on the bacteria's survival. 

To ensure that the results were reliable, the following measures were taken: - The sci­
entists verified that the chemicals used did not interact. That is, when mixed, they neither 
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neutralized each other nor formed a more potent compound. 
- Similar concentrations of chemicals were used in each experiment. 
- The age and concentration of the bacteria were similar in all conditions. 
- The optimal conditions for the bacteria's survival were first established. That is, each strain's 
optimal temperature, pH, lighting, and nutrients were verified prior to the beginning of the 
experiments and these conditions were consistently used. 
- The experiments were conducted under sterile conditions. That is, the cultures were first 
checked to ensure that they were not contaminated. AB well, the scientists ensured that the 
samples were not exposed to contaminants in the air. 
- The scientists verified that the test used to classify the bacteria as surviving or not was 
reliable. In previous studies, it was found to yield results equally reliable to those obtained 
from counting the bacteria before and after adding chemicals whose actions were known to 
bacterial samples. 

You will be presented with the results from this study. On each trial, you will be told 
whether one chemical, the other chemical, both chemicals, or no chemicals were added to the 
bacterial sample. You will then decide whether you think the bacterial sample will survive. 
Use the computer mouse to click the appropriate button. Click "Survived" if you think the 
bacteria survived, or "Did Not Survive" if you think the bacteria did not survive. After 
clicking the button, you will be told whether your guess is correct or incorrect. If a chemical 
was not added to the bacterial sample, then a picture of the chemical will appear in gray. 
Similarly, if the bacterial strain did not survive, then a picture of the bacteria will appear in 
gray. 

When doing the task, try to keep track of what happened when one or both chemicals 
were added, as well as what happened when neither chemical was added. However, do not 
write down this information. 

You will be presented with the results from three experiments. At the end of each experi­
ment, you will be asked to rate how strongly each chemical affects the bacteria's survival. You 
will rate the strength on a scale ranging from -100 to 100. Remember that a positive number 
means that you think that the chemical has a positive effect on the bacteria's survival. That 
is, the bacteria are more likely to survive if the chemical is added than if it is not added. A 
negative number means that you think that the chemical has a negative effect on the bacteria's 
survival. That is, the bacteria are less likely to survive if the chemical is added than if it is 
not added. And zero means that the chemical does not systematically aid in nor interfere 
with the bacteria's survival. 

The number you enter indicates how strongly positive or negative you think is the chem­
ical's effect on the bacteria. 100 means that the chemical has a very strong positive effect, 
while a rating such as 50 means that the chemical has a moderately positive effect on the 
bacteria's survival. Similarly, -100 means that the chemical has a strong negative effect on the 
bacteria's survival, while a rating such as -25 means that the chemical has a weak negative 
effect on the bacteria's survival. 



Appendix C 

Rescorla-Wagner Conditional ~p 

In the one-phase blocking task there are eight types of trials corresponding to the eight cells 
of the 4 x 2 matrix. On each trial there is an equation for each presented cue. The equations 
are shown below for each cell of the matrix. In the matrix, >. = 1 on outcome present trials 
and >. = 0 on outcome absent trials. As in Figure 4.2, the frequencies of the cue-outcome 
combinations are represented by the letters a, b, ... 

o ",0 
a b 

~Vx = O!x.6[l- (Vx + VA + VB)] ~Vx = O!x.6[O - (Vx + VA + VB)] 
~VA = O!A.6[l- (Vx + VA + VB)) ~VA = O!A.6[O - (Vx + VA + VB)) 
~VB = O!B.6[l- (Vx + VA + VB) ~VB = O!B.6[O - (Vx + VA + VB) 

ABX 

c d 

AX ~VX = O!x.6[l- (Vx + VA)] 
~VA = O!A.6[l- (Vx + VA)] 

~VX = O!x.6[O - (Vx + VA)] 
~VA = O!A.6[O - (Vx + VA)] 

e f 

BX ~VX = O!x.6[l- (Vx + VB)] 
~VB = O!B.6[l- (Vx + VB)] 

~VX = O!x.6[O - (Vx + VB)] 
~VB = O!B.6[O - (Vx + VB)] 

g h 
x 

~VX = O!x.6[l- (Vx)] ~VX = O!x.6[O - (Vx)] 
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_ BaB.8[l - (Vx + VA + VB)] + boB.8[O - (VX + VA + VB)] + eOB.8[l - (Vx + VB)] + fOB.8[O - (VX + VB)] 
meanLlVB - b f 

a+ +e+ 

Bax.8[l - (Vx + VA + VB)] + box.8[O - (Vx + VA + VB)] + cox.8[l- (Vx + VA)] + dox.8[O - (Vx + VA)] 
meanLlVx = + 

a+b+c+d+e+f+g+h 

eox.8[l- (Vx + VA + VB)] + box.8[O - (Vx + VB)] +gox.8[I- (Vx)] + hox.8[O - (Vx)] 

a+b+c+d+e+f+g+h 

Equations (C.l)-(C.3) simplify to 

LlV _ .8 a + c - VA (a+b+c+d)-VB(a+b)-Vx(a+b+c+d) 
mean A - BaA a + b + c + d 

LlVi _ .8a + e - VA (a+b)-VB(a+b+e+f)-Vx(a+b+e+f) 
mean B-BaB a+b+e+f 

LlV (.Ia+c+e+ g - VA(a+ b+ c+ d) - VB(a+ b +e+ f) - Vx(a+ b+c +d +e + f+ g+ h) 
mean x = Bax f' a + b + c + d + e + f + g + h 

At asymptote mean Ll VA = 0, mean Ll VB = 0, mean Ll Vx = 0, and Equations (C.4)-(C.6) simplify to 

a+e- VA (a + b) - VB(a+ b+e+ f) - Vx(a+ b+e+ f) = 0 

For Property 1, 

(C.1) 

(C.2) 

(C.3) 

(CA) 

(C.5) 

(C.6) 

(C.7) 

(C.8) 

(C.9) 
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b=g (C. lOa) 
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t-3 
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(C. lOb) 
tt:I 
UJ -d=e 
UJ 

I 
f=e (C.lOe) 

~ 
Z 

(C.IOd) 0 
tt:I 

h=a 
Z 

For Property 4, 
c..... 

~ 
(a + b) = (e + d) = (e + f) = (g + h) (0.11) 

~ 
0 
~ Substituting Equations (O.IOa), (O.lOb), and (0.11) in Equation (0.9), 
> 

(0 . .12) 
UJ 
>-3 
tt:I 
::0 
c::: 
Z 

Substituting Equation (0.11) in Equation (0.7), 

(0.13) < tt:I 

~ 
a+e - (e+d)(2VA + VB +2Vx) = 0 

:::3 
-< 

Substituting Equation (0.12) in Equation (0.13), 

a+e-e-d a-d 
VA = = -- =APA 

a+b a+b 
(C.14) 



Substituting Equation (C.Il) in Equation (C.B), 

Substituting Equation (C.12) in Equation (C.15), 

a + d - (c + d)(VA + 2VB + 2Vx) = 0 

VB = a+d 
a+b -1 

a + d - c - d _ a - c = llPB 
VB = a+b - a+b 

(C.15) 

(C.16) 
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Appendix D 

Instructions for Chapter 5 

D.1 Instructions for Experiment 1 

Imagine that scientists have recently discovered four strains of bacteria that exist in the 
mammalian digestive system. The scientists are studying whether certain chemicals affect the 
bacteria's survival. For each strain, the scientists are testing whether the chemicals aid in, 
interfere with, or have no effect on the strain's survival. 

To do this, a strain of bacteria was first placed in culture (petri dishes). After that, 
a chemical was either added or not added to the bacterial culture. A few hours later, the 
scientists verified whether or not the bacterial sample survived. 

At the time of these experiments, it was not known what effect each chemical might have 
had on the bacteria. On one hand, a chemical might make the bacteria MORE likely to 
survive, therefore the sample would be less likely to survive without the chemical. This would 
be an example of a chemical having a POSITIVE effect on the bacteria's survival. 

Alternatively, a chemical might make it LESS likely that that bacteria will survive, there­
fore the sample would be more likely to survive without the chemical. This would be an 
example of a chemical having a NEGATIVE effect on the bacteria's survival. 

Finally, a chemical might have NO systematic effect on the bacteria's survival. That is, it 
could be that the chemical neither aids in, nor interferes with, the bacteria's survival. 

To assess these possibilities, the scientists investigated what happened when a chemical 
added to the bacteria sample. They also tested what happened on control trials in which no 
chemical was added. A comparison of what happened on these trials allowed the scientists to 
assess whether a chemical had a POSITIVE effect, a NEGATIVE effect or NO effect on the 
bacteria's survival. 

To ensure that the results were reliable, the following measures were taken: - Similar con­
centrations of chemicals were used in each experiment. 
- The age and concentration of the bacteria were similar in all conditions. 
- The optimal conditions for the bacteria's survival were first established. That is, each strain's 
optimal temperature, pH, lighting, and nutrients were verified prior to the beginning of the 
experiments and these conditions were consistently used. 
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- The experiments were conducted under sterile conditions. That is, the cultures were first 
checked to ensure that they were not contaminated. As well, the scientists ensured that the 
samples were not exposed to contaminants in the air. 
- The scientists verified that the test used to classify the bacteria as surviving or not was 
reliable. In previous studies, it was found to yield results equally reliable to those obtained 
from counting the bacteria before and after adding chemicals whose actions were known to 
bacterial samples. 

You will be presented with the results from this study. On each trial, you will be told 
whether the chemical was added to the bacterial sample. You will then be told whether the 
bacteria survived or did not survive. If the chemical was not added to the bacterial sample, 
then a picture of the chemical will appear in gray. Similarly, if the bacterial strain did not 
survive, then a picture of the bacteria will appear in gray. 

When doing the task, try to keep track of what happened when the chemical was added, 
as well as what happened when the chemical was not added. However, do not write down this 
information. 

You will be presented with the results from four experiments. At the end of each experi­
ment, you will be asked to rate how strongly the chemical affects the bacteria's survival. You 
will rate the strength on a scale ranging from -100 to +100. Remember that a POSITNE 
number means that you think that the chemical has a postive effect on the bacteria's survival. 
That is, the bacteria are more likely to survive if the chemical is added than if it is not added. 
A NEGATNE number means that you think that the chemical has a negative effect on the 
bacteria's survival. That is, the bacteria are less likely to survive if the chemical is added 
than if it is not added. And zero means that the chemical does not systematically aid in nor 
interfere with the bacteria's survival. 

The number you enter indicates how strongly postive or negative you think is the chemical's 
effect on the bacteria. + 100 means that the chemical has a very strong positive effect, while a 
rating such as +50 means that the chemical has a moderately positive effect on the bacteria's 
survival. Similarly, -100 means that the chemical has a strong negative effect on the bacteria's 
survival, while a rating such as -25 means that the chemical has a weak negative effect on the 
bacteria's survival. 

D.2 Instructions for Experiment 2 

D.2.1 Immediate Instructions - Remote-Control Detonator 

The army is testing a number of new remote control detonators. Imagine that you are a 
military officer at an army training site, and that you are observing the results of a series 
of tests concerned with the effectiveness of these remote control detonators. Your task is to 
decide whether triggering the FIRE button on the remote control detonator is effective in 
setting off the explosion of a mine in the training range. The detonator, when fired, emits a 
radio signal, so that clicking of the FIRE button should produce an immediate explosion. 

The detonators are still in the experimental phase. You will see that triggering the FIRE 
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button does not always result in an explosion of the mine. You will also see that some of the 
mines explode spontaneously even when the FIRE button is not clicked. 

The test of a particular detonator consists on a number of trials. On each trial, you will 
see whether the FIRE button was activated or not, and then whether the mine exploded or 
not. Remember, that because of the radio signal, the mine should explode immediately after 
the clicking of the FIRE button. 

At the end of a series of trials you will be asked to rate the relationship between clicking 
the FIRE button and the explosion of a mine. You will rate the strength of the relationship 
on a scale ranging from 0 to 100. A rating of zero means that clicking the FIRE button had 
no effect on causing the explosion; that is, the explosion was just as likely to be spontaneous 
as caused by the FIRE button. A rating of 100 means that the FIRE button was a perfect 
cause of the explosion; that is, the explosion was never spontaneous and was always caused 
by the FIRE button. Between the extremes, your rating reflects the increase in explosions of 
the mine caused by the clicking of the FIRE button. 

During the course of the experiment, you will evaluate four different remote detonators. 
Some of these detonators might be more effective than others. 

D.2.2 Delay Instructions - Grenade Launcher 

The army is testing a number of new grenade launchers. Imagine that you are a military 
officer at an army training site, and that you are observing the results of a series of tests 
concerned with the effectiveness of these grenade launchers. Your task is to decide whether 
triggering the FIRE button on the launcher is effective in setting off the explosion of a mine 
in the training range. The grenade launcher, when fired, sends shells into the training range. 
The shells have to travel from the launcher to the mine site, so there should be a few seconds 
delay between the clicking of the FIRE button and the mine explosion. 

The launchers are still in the experimental phase. You will see that triggering the FIRE 
button does not always result in an explosion of the mine. You will also see that some of the 
mines explode spontaneously even when the FIRE button is not clicked. 

The test of a particular launcher consists on a number of trials. On each trial, you will see 
whether the FIRE button was activated or not, and then whether the mine exploded or not. 
Remember, that because of the distance of the launcher from the mine site, there should be 
a delay between clicking the FIRE button and the mine explosion. 

At the end of a series of trials you will be asked to rate the relationship between clicking 
the FIRE button and the explosion of a mine. You will rate the strength of the relationship 
on a scale ranging from a to 100. A rating of zero means that clicking the FIRE button had 
no effect on causing the explosion; that is, the explosion was just as likely to be spontaneous 
as caused by the FIRE button. A rating of 100 means that the FIRE button was a perfect 
cause of the explosion; that is, the explosion was never spontaneous and was always caused 
by the FIRE button. Between the extremes, your rating reflects the increase in explosions of 
the mine caused by the clicking of the FIRE button. 

During the course of the experiment, you will evaluate four different grenade launchers. 
Some of these launchers might be more effective than others. 


