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ABSTRACT 

 
The accurate diagnosis of disorders of consciousness presents substantial 

difficulty because of the reliance on behaviour-based assessment tools. A patient may be 

covertly aware but unable to indicate their state due to physical impairments. 

Neuroimaging researchers have begun to seek alternate methods of assessment that rely 

on brain responses rather than behavioural ones. To this end, mental imagery has been 

employed as a voluntary cognitive activity that can be measured with fMRI or EEG to 

indicate awareness. In this dissertation I examine the advantages and limitations of 

these two imaging techniques and argue that EEG is more suitable for this patient 

population. I expand upon existing mental imagery research by exploring additional 

tasks that have not been applied to this problem, in order to address three previously 

unanswered questions that are central to the development of imagery-based diagnostic 

tools. First, do individuals differ on which imagery tasks produce the most reliable 

activation? Second, can the robustness of brain activation during imagery be predicted 

from familiarity with the imagined activity? Third, do fMRI and EEG provide 

converging evidence about individual imagery performance? In order to answer these 

questions, 6 mental imagery tasks were examined using simultaneous EEG and fMRI 

recordings, in combination with participant ratings.  The findings revealed that, of the 

mental imagery tasks studied, mental arithmetic consistently produced the most robust 

activation at the single subject level. Additionally, there was no relationship between 

participants’ familiarity with an activity and the level of brain activation during 

performance. The key finding demonstrated that EEG and fMRI were in agreement on 
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both of these questions, lending support to the increasing use of EEG over fMRI in 

disorders of consciousness.   
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PREFACE 

 This dissertation includes three original scholarly works: one review article and 

two empirical studies.  The pages have been renumbered for continuity within this 

thesis but the notation and reference style of the journals have been retained. The 

review article provides an introduction to disorders of consciousness (DOC) and a 

thorough review of the use of electroencephalography (EEG) and functional magnetic 

resonance imaging (fMRI) for the detection of awareness and the assessment of 

cognitive function in this patient group – the main themes of the dissertation. As such, it 

will form the first, introductory chapter. The second article is a technical paper that 

deals with the correction of artifact in EEG data acquired simultaneously with fMRI. 

The learning of this technique formed a substantial and integral part of my doctoral 

research. This article elaborates on the methodology used in the core study, and adds to 

the discussion surrounding the choice of imaging modality for patients with disorders of 

consciousness. The third article is a normative empirical study of the agreement 

between fMRI and EEG measures of the effectiveness of various mental imagery 

paradigms for the elicitation of reliable, individual brain activation. This study provides 

evidence to guide the implementation of mental imagery paradigms using EEG and/or 

fMRI for the detection of awareness in patients with DOC, and a critical, but heretofore 

unverified, demonstration of the concordance between EEG and fMRI indices of mental 

imagery performance. The simultaneous EEG/fMRI recording and data processing 

methods, as well as the machine learning-based EEG analysis approach used in this 

study were technically advanced and the design, acquisition, data processing and 

analysis phases of this study required a substantial amount of time to complete. As a 
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result, this single study contains the bulk of my doctoral research and therefore forms 

the core of the dissertation.  The three articles are followed by a general discussion of 

the contributions, limitations, and future directions of the research presented herein.   
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CHAPTER 1: FINDING A WAY IN: A REVIEW AND PRACTICAL EVALUATION OF 

FMRI AND EEG FOR DETECTION AND ASSESSMENT IN DISORDERS OF 

CONSCIOUSNESS. 

 

   

Harrison, A.H., & Connolly, J.F. (2013). Neuroscience and Biobehavioral Reviews, 37, 

1403-1419. doi: 10.1016/j.neubiorev.2013.05.004. 

 

Copyright © Elsevier. Reprinted with permission. 
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Abstract 

Diagnoses and assessments of cognitive function in disorders of consciousness 

(DOC) are notoriously prone to error due to their reliance on behavioural measures. As 

a result, researchers have turned to functional neuroimaging and electrophysiological 

techniques with the goal of developing more effective methods of detecting awareness 

and assessing cognition in these patients. This article reviews functional magnetic 

resonance imaging (fMRI) and electroenchphalography (EEG)-based studies of 

cognition and consciousness in DOC, including assessment of basic sensory, perceptual, 

language, and emotional processing; studies for detection of conscious awareness; 

paradigms for the establishment of communication in the absence of behaviour; and 

functional connectivity studies. The advantages and limitations of fMRI and EEG-based 

measures are examined as research and clinical tools in this population and an 

explanation offered for the rediscovery of the unique advantages of EEG in the study of 

DOC. 
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1. Introduction: Disorders of Consciousness, Diagnostic Difficulties, and the Importance 

of Accurate Assessment 

Over the past few decades, improvements in emergency and intensive care 

medicine have resulted in an increasing number of patients who survive severe brain 

injury. While some patients recover well once they emerge from coma, others may 

remain in a vegetative or minimally conscious state. Together, coma, vegetative state 

(VS)1

                                                           
1 Recently, the term “unresponsive wakefulness syndrome” has been proposed as an updated alternative name for vegetative state 
(Bruno et al. 2011; Gosseries et al. 2011; Laureys et al., 2010) We do not disagree with the adoption of an alternative to 
“vegetative state”,  which has unintentionally acquired a pejorative connotation, however, in this review we will use VS for the 
sake of consistency with the majority of the studies cited here, which were published before the term UWS was proposed. 

, and minimally conscious state (MCS) are known as ‘disorders of consciousness’ 

(DOC). These are not to be confused with brain death, which is a complete and 

irreversible loss of all brain function (Medical Consultants on the Diagnosis of Death, 

1981). Coma is a state of profound unresponsiveness in which the patient has their eyes 

closed and cannot be aroused with any amount of stimulation. Coma rarely lasts more 

than 10-30 days, after which time it is replaced by vegetative behaviour (Posner et al., 

2007). The vegetative state (Jennett and Plum, 1972) is defined by a state of 

“wakefulness without awareness”, meaning that patients have some form of sleep-wake 

cycling, but exhibit no evidence of awareness of self or the environment (Royal College 

of Physicians Working Group, 2003; The Multi-Society Task Force on PVS, 1994). 

Diagnosis is upgraded to minimally conscious state when a patient demonstrates 

inconsistent, but reproducible, evidence of purposeful behavior, usually in the form of 

command following (Giacino et al., 2002). Another diagnosis that is frequently included 

with DOC is locked-in syndrome (LIS). Patients with locked-in syndrome are conscious 

and have near-normal cognition, but are completely unable to move or speak (American 
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Congress of Rehabilitation Medicine, 1995). LIS is often misdiagnosed as VS because, in 

its complete form, the behavioural presentation is exactly the same. The current 

taxonomy does not include LIS as a DOC, since consciousness is not impaired in LIS. 

However, the distinction between LIS and DOC is not always clear, since LIS can be a 

stage in recovery from DOC (Formisano et al., 2011). Locked-in syndrome presents a 

unique and fascinating set of issues for discussion, but the present paper focuses on 

diagnostic issues surrounding disorders of consciousness, specifically the vegetative and 

minimally conscious states. Table 1 contains a summary of the key diagnostic 

distinctions between DOC, brain death, and coma. 

Diagnosis Eye opening Brainstem 
reflexes 

Autonomic 
function 

Behaviour Communication Cognition Awareness 

Brain death Absent Absent Absent None None None No 

Coma Absent Impaired Impaired None None Low-level No 
Vegetative state Spontaneous or 

stimulus- induced 
Preserved Preserved Non-purposeful None Low-level No 

Minimally 
conscious state 

Present Preserved Preserved Fluctuating but 
reproducible 
purposeful 

Unreliable but 
intentional 

Understand 
commands, 
environmentally 
contingent 
emotion 

Partial 

Locked-in 
syndrome 

Present Preserved Preserved Vertical eye gaze Vertical eye gaze Normal Yes 

 

Table 1.  Diagnostic features of brain death, disorders of consciousness, and locked-in 

syndrome.  Adapted from Giacino et al. (2009). 

The fundamental distinction between VS and MCS lies in the assumptions about 

the underlying level of mental function in each case. A diagnosis of MCS implies that a 

patient has some level of conscious awareness – albeit fluctuating and inconsistent – 

but a diagnosis of VS carries with it the assumption that the patient is not conscious and 

therefore has no mental life. The definition of consciousness is a contentious, 

philosophical issue that has been debated for centuries. For our purposes, we make use 
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of the ‘two-component’ definition widely accepted in medicine in which consciousness is 

composed of arousal (i.e., wakefulness) and of awareness (i.e., subjective experiences of 

self and environment) (Posner et al., 2007). Arousal is easily measured by the presence 

of eye opening, but awareness is fundamentally a subjective experience; therefore we 

can unequivocally establish that a person is conscious only if they can indicate, by some 

verbal or behavioural sign, that this is the case (see Connolly, 2012; Stins, 2009; Stins 

and Laureys, 2009). This becomes complicated when a person loses the ability to 

produce behavioural output, as in the case of DOC. A number of assessment scales exist 

for disorders of consciousness, some more precise than others (Seel et al., 2010), but all 

currently accepted methods have in common their reliance on bedside observations of 

behavioural signs of consciousness: a diagnosis of MCS depends on a patient’s ability to 

generate verbal or motor responses to commands, whereas a diagnosis of VS depends on 

the absence of such evidence (Royal College of Physicians Working Group, 1996). In this 

case, the absence of evidence is necessarily taken as evidence of absence – a logic that is 

fundamentally flawed. A person may be conscious but unable to produce any verbal or 

behavioural signals (e.g., Connolly et al. 1999; Owen et al. 2006), as is the case in 

complete locked-in syndrome and advanced neuromuscular diseases such as 

amyotrophic lateral sclerosis (ALS; Hayashi & Kato, 1989; Hayashi, et al., 1991). A 

patient with a DOC may have some conscious awareness, but be unable to respond due 

to sensory or perceptual impairments, aphasia, motor impairments, subclinical seizure 

activity, pain, fluctuating arousal, fatigue, and a range of other problems (Giacino et al. 

2009). With conventional assessment tools such a patient would receive an inaccurate 

diagnosis of VS. This scenario is far from uncommon; in fact, misdiagnosis rates for VS 
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are consistently estimated at about 40% (Andrews et al. 1996; Childs et al. 1993; 

Schnakers et al. 2009).  

The importance of accurately making the diagnostic distinction between VS and 

MCS is thrown into sharp relief when one considers the many decisions about patient 

care that are made based on the diagnosis. MCS typically carries a better prognosis than 

VS (e.g., Giacino and Kalmar, 2005); long-term care support is funded partly on the 

basis of diagnosis, and referrals for rehabilitation are often not made if it is believed that 

the patient does not have the mental function necessary to benefit from it. Additionally, 

diagnosis has ethical and legal implications for end-of-life decisions concerning 

withdrawal of nutrition and hydration (Bressman and Reidler, 2010; Fins and Shapiro, 

2007; Wilkinson et al., 2009), and pain management (Boly et al., 2008; Schnakers et al., 

2010; 2012, Schnakers and Zasler, 2007). Not least of all is the potential emotional 

harm inflicted upon a covertly aware patient by careless bedside discussions of the 

patient’s condition and prognosis.  

New assessment tools that circumvent the reliance on behavioural output are 

necessary. A growing body of research seeks to address this issue by examining a 

patient’s brain activity under various conditions, using functional neuroimaging and 

electrophysiological measures. These studies can be divided into three types, based on 

the experimental paradigms they employ: passive stimulation paradigms, active 

paradigms, and resting state or connectivity studies. In passive stimulation paradigms, 

subjects are presented with various stimuli and their brain responses are monitored for 

characteristic patterns indicative of normal cognitive processing. These paradigms do 

not require any intentional interaction—physical or mental—on the part of the patient. 

The question that inevitably arises from studies that employ passive paradigms in 
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patients with DOC is whether the presence of typical patterns of activation to sensory 

and cognitive stimuli necessarily implies that they reflect conscious awareness. While 

normal brain responses to semantic ambiguity, for example, in a patient diagnosed as 

vegetative is an encouraging finding (Coleman et al. 2009), it is not sufficient evidence 

to conclude that a patient is consciously aware (Stins, 2009; Stins and Laureys, 2009). 

Many brain responses to stimuli are automatic, meaning that a person need not willfully 

process the information in order for a typical brain response to occur. For example, one 

cannot choose not to recognize a familiar face, or not to understand speech in one’s 

native language. Indeed we know from studies of priming (Dehaene et al., 1998), sleep 

(Perrin et al., 1999; Portas et al., 2000) and anaesthesia (Davis et al., 2007) that some 

cognitive functions do occur in the absence of full conscious awareness. Therefore, in 

order to demonstrate that a patient is truly aware of self and environment, one must 

demonstrate willful modulation of brain activity; activation that would not appear 

unless the patient were intentionally performing the cognitive task in question. This is 

where active paradigms become relevant. Active paradigms involve some sort of 

instruction to the subject, either with or without accompanying stimulation. Brain 

responses are monitored for patterns of activation that could only occur if the subject 

has understood the instruction and has actively engaged in the mental task. Thus, 

mental imagery paradigms - for example imagination of physical activity or navigation - 

requiring the active involvement of participants have become a common method of 

tapping into consciousness in the absence of behaviour.  

Very recently, a third avenue of investigation into neural correlates of 

consciousness has expanded rapidly, in part due to concerns over the high cognitive 

demands that active paradigms place on severely injured patients. In the same way as a 
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patient may not be able to produce behavioural output as a result of their injury, a 

variety of factors may also prevent them from performing or sustaining the complex 

coordination of cognitive systems required to generate differential patterns of brain 

activity in an active paradigm such as a mental imagery task. Several groups have 

recently begun to use fMRI to investigate functional and effective connectivity between 

brain regions as a measure of consciousness, based on earlier positron emission 

tomographic (PET) findings that while ‘islands’ of cognitive function may be preserved, 

DOC are characterized by widespread functional network disconnection (Boly et al., 

2004; Laureys et al., 1999; Laureys et al., 2000; Schiff et al., 2002). 

In this article, we will review fMRI and EEG-based findings relating to the 

assessment of mental status in patients with disorders of consciousness, beginning with 

passive stimulation paradigms for the assessment of specific cognitive functions 

followed by active paradigms for the detection of awareness and the establishment of 

communication, and connectivity studies for the classification of DOCs. Note that we 

have included sample sizes for each study discussed for the information of the reader. A 

large majority of published studies in the field of DOC have very small sample sizes, and 

as a result cannot be generalized to larger patient populations. However, much can still 

be gained by examining small samples at the individual subject level. It quickly becomes 

apparent that current diagnostic criteria leave much to be desired. General patterns of 

performance emerge within diagnostic categories, but there are invariably exceptions – 

be it a VS patient who shows neuroimaging evidence of command following, or an MCS 

patient who can communicate at bedside but does not show corresponding 

neuroimaging markers of cognitive function. Thus, it is important to consider not only 

statistically powerful large group studies, but also individual patient results. 
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  The literature review will be followed by a discussion of the relative advantages 

and limitations of fMRI and EEG as assessment tools in patients with DOC in the 

context of future research directions and the development of practical clinical tools. 

2. Literature Review: Assessing Cognition and Consciousness with fMRI and EEG 

 The literature review in the following sections is summarized in Table 2. 

2.1 Passive Stimulation Paradigms 

Many cognitive functions are associated with reliable event-related potentials 

(ERP) and oscillatory patterns in EEG recordings, and with blood-oxygen level 

dependent (BOLD) activation patterns in fMRI studies. If these responses can be elicited 

in patients with DOC under the same conditions as in healthy controls, then inferences 

might be drawn reasonably about the cognitive functions that remain intact. The 

abundance of basic fMRI and EEG-based research on cognitive processes has enabled 

brain-injury researchers to select cognitive tasks that have robust activation patterns 

associated with them and adapt them for the purpose of assessing these specific 

processes in patients, from low-level sensory and perceptual processing, to emotion-

modulated responses, to speech recognition and semantic comprehension. The 

following sections provide an overview of the use of fMRI and EEG-based measures in 

the assessment of cognitive functions in patients with disorders of consciousness. 
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Reference Modality Patient 
sample 

Behavioral 
assessment Task/Stimulus Finding 

Sensory/perceptual      
Cavinato et al. 2009 ERP 34 VS DRS SON oddball (SON 

deviant, sine tone 
standard) 

P300 present in 23 VS 

Cavinato et al. 2011 ERP 11 VS, 6 
MCS 

DRS Auditory oddballs (sine 
tones, SON vs. tones, 
SON vs. other names) 

P300 present in 6 VS and all 
MCS 

Fischer et al. 2010  ERP 16 VS; 11 
MCS 

Repeated 
bedside exam  

Duration deviant tones 
(MMN) and SON (P3) 

MMN present in 2 VS and 3 
MCS; P3 present in 3 VS and 
4 MCS 

Hinterberger et al. 2005 ERP 5 VS Not reported Auditory oddball 
(tones) 

P300 absent in all patients 

Holler et al. 2011 ERP 16 VS; 6 
MCS 

CRS-R Complex tones with 
frequency deviants 
(MMN) 

MMN present (delayed) in 2 
VS; absent in MCS; present 
in only 11/15 HC 

Kotchoubey et al. 2005 ERP 50 VS; 38 
MCS 

DRS Auditory oddball and 
MMN with 3 levels of 
complexity  

MMN present in 26 VS, 13 
MCS; P3 present in 12 VS, 
14 MCS;  

Kotchoubey, 2005 ERP 50 VS  Not reported Auditory oddballs 
(chords and vowel 
sounds) 

P300 present in 13 VS for 
chords and 12 VS for vowels 

Moritz et al. 2001 fMRI 1 VS Not reported Flashing light, speech, 
and hand touch, each 
vs. rest 

Appropriate to all stimuli 

Perrin et al. 2006 ERP 5 VS, 6 MCS, 
4 LIS 

GLS, CRS-R SON oddball (SON 
deviant, other names 
standard) 

P300 present in 3 VS, all 
MCS and LIS. 

Qin et al. 2008 ERP 4 coma; 6 
VS; 2 MCS 

CRS-R SON oddball (SON 
deviant, sine tone 
standard) 

MMN present in 2 coma, 3 
VS, 2 MCS 

Rousseau et al. 2008 fMRI 4 VS; 5 HC GCS, WHIM Flashing light, tones, 
passive hand movement 

1 VS - absent; 1 VS 
appropriate to all; 1 VS 
appropriate to tactile, absent 
to visual and auditory; 1 VS 
low activation to tactile and 
visual, absent to auditory 

Speech/language      
Coleman et al. 2009 fMRI 22 VS, 19 

MCS 
CRS-R Ambiguous sentences 

(with homophones/ 
homonyms) 

Temporal activation to 
sound vs. silence only in 2 
VS, 4 MCS; temporal 
activation to speech vs. 
noise in 7 VS, 12 MCS; 
temporal/frontal activation 
to semantic ambiguity in 2 
VS, 2 MCS. Response absent 
in 13 VS, 3 MCS. 

Connolly et al. 1999 ERP 1 MCS Bedside exam Sentences N400 present  
Fernández-Espejo et al. 
2008 

fMRI 3 VS, 4 MCS DRS, Rancho 
Los Amigos 

Narrative, reversed 
narrative 

Temporal activation in 3 VS 
and 2 MCS to sound vs. 
silence, Temporal and 
inferior frontal activation to 
forward vs. reversed 
narrative in 1 VS and 1 MCS. 

Hinterberger et al. 2005 ERP 5 VS Not reported Word pairs, sentences N400 in 1 VS to sentences 
Kotchoubey et al. 2005 ERP 50 VS; 38 

MCS 
DRS Semantic oddball, word 

pairs, sentences 
Semantic response present 
in 8 VS, 10 MCS 

Kotchoubey, 2005 ERP 50 VS  Not reported Word pairs, sentences N400 present in 10 VS for 
word pairs and 9 VS for 
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sentences 
Schabus et al. 2011 ERS/D 10 VS, 4 

MCS 
CRS-R Antonym pairs in 

sentences 
No ERS/D in VS group, 
upper alpha ERS to 
unrelated word and ERD to 
antonym in MCS group, 
upper alpha ERD to 
unrelated and ERS to 
antonym in HC. 

Schiff et al. 2005 fMRI 2 MCS Repeated 
bedside exam 

Narrative, reversed 
narrative 

Temporal activation in both 
MCS similar to HCs for 
narrative vs. silence; 
reduced activation in MCS 
but not HCs for reversed 
narrative vs. silence. 

Schoenle & Witzke 2004 ERP 43 VS, 23 
MCS(-) 

Not reported Sentences N400 present in 38% of VS, 
77% of MCS 

Familiarity/emotion      
Bekinschtein et al. 2004 fMRI 1 MCS Bedside exam Mother's voice and 

unfamiliar voice 
reading story 

Appropriate auditory 
activation to unfamiliar 
voice vs. silence; amygdala, 
insula, and inferior frontal 
gyrus activation to mother's 
voice vs. unfamiliar voice. 

Eickhoff et al. 2008 fMRI 1 coma GCS Light flicker, auditory 
words, tactile 
stimulation,familiar 
voices speaking SON or 
non-emotional words 

Appropriate activation to 
visual, tactile, and word, 
with additional amygdala 
activation modulated by 
degree of familiarity of 
speaker and content. 

Kothcoubey et al. 2009 ERP 15 VS, 12 
MCS 

Not reported Emotional oddball 
(woeful exclamations 
vs. joyful) 

Broadly distributed 
negativity ~150 ms in 4 VS, 
2 MCS. 

Laureys et al. 2004 ERP 1 MCS WHIM, 
WNSSP, CRS-
R 

SON oddball (SON 
deviant, other names 
standard) 

P300 to SON 

Machado et al. 2008 EEG 1 VS Not reported Mother's voice vs. 
unknown female voice 

Differences in gamma band 
for mother vs. silence; no 
difference for unknown 
women vs. silence. 

Perrin et al. 2006 ERP 5 VS, 6 MCS, 
4 LIS 

GLS, CRS-R SON oddball (SON 
deviant, other names 
standard) 

P300 to SON in 3 VS, all 
MCS, all LIS 

Qin et al. 2010 fMRI 7 VS, 4 MCS CRS-R SON spoken by familiar 
voice vs. silence 

6 VS and all MCS showed 
activation in self-relatedness 
ROIs  

Staffen et al. 2006 fMRI 1 VS Not reported Phrases containing SON 
or other name 

Prefrontal activation to SON 

Zhu et al. 2009 fMRI 9 MCS Bedside exam Familiar and unfamiliar 
photos 

Greater volume of activation 
in visual networks to 
familiar photos than 
unfamiliar ones in MCS as a 
group. 

Command 
following/awareness 

     

Owen et al. 2006 fMRI 1 VS WHIM Tennis and navigation 
imagery 

SMA activation to tennis 
imagery and PHG, PPC, and 
PMC activation to 
navigation 

Bekinschtein et al. 2009 ERP 4 VS, 4 MCS CRS-R MMN with local and 
global deviants, passive 

3 VS, all MCS showed local 
MMN; 3 MCS showed global 
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vs. counting MMN in counting condition 
Bekinschtein et al.2011 fMRI 5 VS CRS-R Hand movement 

command 
Left premotor activation to 
right hand command in 2 VS 

Cruse et al. 2011 ERS/D 16 VS CRS-R Right hand vs. toe 
imagery 

Accurate machine learning 
classification of EEG in 3 
VS. 

Faugeras et al. 2012 ERP 24 VS, 28 
MCS 

CRS-R MMN with local and 
global deviants, passive 
vs. counting 

6 VS, 9 MCS showed local 
MMN; 2 VS, 4 MCS showed 
global MMN in counting 
condition 

Goldfine et al. 2011 EEG 2 MCS, 1 LIS Not reported Swimming and 
navigation imagery 

Consistent power spectral 
differences to imagery in LIS 
and 1 MCS. 

Hinterberger et al. 2005 ERP 5 VS Not reported Hand motor imagery LRP observed in 1 patient 
due to actual hand 
movement* 

Monti et al. 2009 fMRI 1 MCS CRS Passive word listening 
vs. word counting 

Activation of frontal, 
temporal, parietal and 
cerbellar regions similar to 
controls. 

Monti et al. 2010 fMRI 23 VS, 31 
MCS 

Not reported Tennis and navigation 
imagery 

Appropriate activation in 4 
VS and 1 MCS 

Rodriguez-Moreno et al. 
2010 

fMRI 3 VS, 5 MCS, 
1 EMCS, 1 
LIS 

CRS-R Silent picture naming LIS, EMCS, 2 MCS and 1 VS 
activated complete object-
naming network in addition 
to visual cortex; 3 MCS and 
1 VS activated partial 
network. 

Schnakers et al. 2008 ERP 8 VS, 14 
MCS 

CRS-R Passive SON vs. 
counting SON 

Larger P300 to counted 
SON than passive SON in 9 
MCS, 0 VS. 

Schnakers et al. 2009 ERP 1 VS/TLIS CRS-R Passive SON vs. 
counting SON 

Larger P300 to counted 
SON than passive SON 

Communication      
Bardin et al. 2011 fMRI 5 MCS, 1 LIS CRS-R Swimming/tennis 

imagery vs. rest as 
command following and 
binary and multiple-
choice communication 

LIS, 2 MCS showed 
command-following; 1 MCS 
showed activation in 
multiple choice, but none in 
binary choice task. 

Lulé et al. 2013 ERP 3 VS, 13 
MCS, 2 LIS 

CRS-R 4-choice auditory 
oddball 

Command following in 1 
MCS, 1 LIS; communication 
in 1 LIS only 

Monti et al. 2010 fMRI 1 VS Not reported Autobiographical 
questions with 
tennis/navigation 
imagery for yes/no 
response 

5/6 answers correctly 
determined 

Resting 
state/functional 
connectivity 

     

Boly et al. 2009 fMRI 1 VS, 1 BD CRS-R, 
SMART, 
WHIM, 
WNSSP, GLS 

Resting-state BOLD Reduced default-mode 
connectivity and absent 
cortico-thalamic 
connectivity in VS; absent 
connectivity in BD 

Boly et al. 2011 EEG 8 VS, 13 
MCS 

CRS-R Roving oddball MMN 
with dynamic causal 
modeling 

MMN present in VS and 
MCS, but top-down 
connections present only in 
MCS. 

Cauda et al. 2009 fMRI 3 VS DRS Resting-state BOLD Reduced right hemisphere 
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DMN connectivity, 
increased left hemisphere 
DMN connectivity in VS 
patients. 

Fingelkurts et al. 2012 EEG 14 VS, 7 
MCS 

Bedside 
assessment, 
LCF 

Resting state 
microstates 

VS and MCS has fewer 
microstates; fast alpha 
microstates were correlated 
to diagnosis; delta, theta, 
slow alpha were negatively 
correlated to diagnosis. 

Lehembre et al. 2012 EEG 10 VS, 18 
MCS 

CRS-R Resting-state power 
spectra, and coherence 

Increased delta and 
decreased alpha power in VS 
compared to MCS; lower 
connectivity in alpha and 
theta in VS vs. MCS. 

León-Carrión et al. 2012 EEG 7 MCS, 9 
SND 

Coma/Near 
Coma Scale, 
Rancho Los 
Amigos, 
FIM+FAM 

Resting state coherence Reduced connectivity in 
MCS vs. SND, particularly of 
frontal regions from other 
regions. 

Ovadia-Caro et al. 2012 fMRI 1 BD, 1 
coma, 2 VS, 
2 MCS, 1 LIS 

CRS-R Resting-state BOLD Reduced interhemispheric 
connectivity in task-positive 
network, correlated with 
clinical level of 
consciousness 

Soddu et al. 2011 fMRI 8 VS, 1 MCS, 
2 LIS 

CRS-R, GLS Resting-state BOLD Reduced DMN connectivity 
in VS and MCS patients, 
near-normal DMN 
connectivity in LIS patients. 

Vanhaudenhuyse et al. 
2010 

fMRI 5 coma, 4 
VS, 4 MCS, 1 
LIS 

CRS-R, GLS Resting-state BOLD Negative correlation 
between clinical level of 
consciousness and DMN 
connectivity 

 

Table 2: Literature review summary. 

Abbreviations: CRS-R = Coma Recovery Scale – Revised; DMN = default mode network; DRS 

= Disability Rating Scale; EMCS = emerged from minimally conscious state; ERS/D = event 

related synchronization/desynchronization; FIM+FAM = Functional Independence Measure 

+ Functional Assessment Measure; GCS = Glasgow Coma Scale; GLS = Glasgow-Liège Scale; 

HC = healthy control; LIS = locked-in syndrome; MCS = minimally conscious state; MMN = 

mismatch negativity; SMART = Sensory Modality Assessment and Rehabilitation Technique; 

SND = severe neurocognitive disorder; SON = subject’s own name; TLIS = total locked-in 

syndrome; VS = vegetative state; WHIM = Wessex Head Injury Matrix; WNSSP = Western 

NeuroSensory Stimulation Profile  

* motor response to command suggests that this patient was incorrectly diagnosed as VS 
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2.1.1 Sensory, Perceptual and Pre-Attentive Processing 

Many functional neuroimaging studies in vegetative and minimally conscious 

patients have focused on basic sensory and perceptual processing. These studies do not, 

in and of themselves, allow inferences to be made about a patient’s level of awareness or 

cognitive ability, but they are crucial in the interpretation of findings from tasks that 

require higher-order cognitive processing, particularly negative findings. For example, 

in order to assess whether a patient can discriminate speech sounds from other auditory 

signals, we must first establish that the auditory cortex is intact functionally and shows 

activation to sound. Establishing this level of functioning provides some reassurance 

that a lack of activation to speech sounds is not simply due to a damaged auditory 

system that is equally unresponsive to all acoustic stimuli. Likewise, there is little to be 

gained by searching for responses to images of familiar faces without establishing that 

there is a functioning visual system. The pivotal role of establishing the integrity of a key 

element of the communication system is central to any assessment of cognitive function 

in the circumstances being discussed (see Connolly, 2012). Establishing the integrity of 

sensory systems with EEG is a well-established practice and has been performed as a 

routine part of brain injury assessments for decades (Chiappa, 1997). Evoked potentials 

are short-latency, time-locked EEG responses to sensory stimuli. Brainstem auditory 

evoked potentials (BAEPs) and middle-latency auditory evoked potentials (MLAEPs) 

are elicited by the presentation of auditory stimuli, and reflect the integrity of the 

auditory pathways and primary auditory cortex, respectively. Somatosensory evoked 

potentials (SEP) are elicited by electrical stimulation of the median nerve, and reflect 

integrity of the ascending somatosensory tracts and primary somatosensory cortex. 
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Visual evoked potentials (VEP) are usually elicited by a rapidly reversing checkerboard 

or grating pattern and reflect the integrity of visual input pathways and primary visual 

cortex (Schomer and Lopes da Silva, 2010). 

One of the first studies to apply fMRI to DOC investigated BOLD responses to 

basic auditory, visual, and tactile stimulation in a single vegetative patient (Moritz et al., 

2001). The patient demonstrated activation in the superior temporal gyrus bilaterally, as 

well as in the angular gyrus and middle and inferior frontal gyri of the left hemisphere in 

response to narrated text versus rest; in the posterior occipital pole bilaterally in 

response to flashing light versus rest; and in the central sulcus bilaterally in response to 

tactile stimulation of both hands – all responses that are typical in healthy subjects. 

However, this was a single case study, and evidence from subsequent studies shows that 

“normal” activation in patients with DOC is certainly not typical of this group. Rousseau 

et al. (2008) used a similar tri-modal stimulation paradigm in 4 VS patients with 

variable results. One patient showed no observable activation to any of the stimuli; 

another showed extensive activation in expected locations to all stimuli; a third patient 

showed appropriate activation to tactile stimulation but not to auditory or visual 

stimuli; and, the fourth showed very slight activation to tactile and visual stimuli but not 

to auditory. This study illustrates the importance of multi-sensory paradigms in 

neuroimaging assessments of patients with DOC – a patient may show no response in 

one modality, but given a different type of stimulation may show normal responses (e.g., 

Connolly et al., 2000). However, most studies in this area are still conducted primarily 

in the auditory modality, for a number of reasons. Firstly, auditory stimuli are by their 

very nature relatively impossible for a patient/participant to avoid. Patients in VS and 

MCS frequently have difficulty maintaining eye-opening and fixation for visual 
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stimulation (e.g., Zhu et al., 2009); and tactile stimuli are generally more complex to 

deliver. Secondly, the integrity of the various components of the auditory system is 

easily established outside of the scanner using auditory evoked potentials. Absent or 

abnormal auditory evoked potentials can be used as exclusion criteria for auditory fMRI 

studies (e.g., Bekinschtein et al., 2011). Visual evoked potentials can also be measured in 

a similar fashion, but are less straightforward to interpret and can tell us very little 

about a patient’s visual acuity over and above the basic function of visual pathways 

(Evans and Boggs, 2010). And finally, perhaps the most intuitive reason that functional 

neuroimaging studies of DOC focus on auditory stimuli is that speech is our primary 

method of communication and most fundamental form of interaction.  

While auditory stimuli have advantages over other modalities in principle, using 

them in combination with fMRI presents several difficulties (see section 3.2.1) that limit 

the practicality of using fMRI in patients with DOC. ERPs do not suffer from these same 

limitations, making EEG a much more practical methodology for this purpose. The 

auditory ‘oddball’ is a very common paradigm widely used to investigate basic auditory 

discrimination and pre-attentive orienting responses. In its most basic form, a series of 

standard tones are presented, with the occasional deviant tone, which may differ from 

the standard tones in pitch, intensity, or duration. The deviant tone elicits a negativity at 

fronto-central electrode sites around 150-250 ms post stimulus called the mismatch 

negativity (MMN) (Näätänen et al., 2007). The MMN reflects pre-attentive auditory 

discrimination processes.  

The same type of stimulus sequence can elicit an entirely different response 

called the P300 if the subject is actively attending to the stimulus (Polich, 2010). 

However, the P300 has proved particularly interesting in response to more complex 
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stimulus environments than the simple oddball paradigm. One P300 variant (referred 

to as the P3a) is related to novelty detection and orienting behavior while another 

variant (the P3b) is widely regarded as a measure of memory function and active 

information processing. The P3a shows a more frontal topography and a more restricted 

temporal nature occurring between about 250-350 ms. In contrast, the P3b exhibits a 

parietal distribution and varies in time (typically between about 250-500 ms) depending 

on stimulus complexity. For example, one paradigm that will figure prominently in the 

discussion below involves the presentation (typically aurally) of lists of names (e.g., 

John, James, Amy) within which is also presented the subject’s name (unsurprisingly 

known as the Subject’s Own Name, SON, paradigm). The subject’s own name enhances 

the P300 amplitude compared to other names and delays its latency compared to less 

complex stimuli (e.g., deviant tones in an oddball sequence) (Holeckova et al., 2008). 

The MMN can be elicited in both VS and MCS patients, with a frequency ranging 

from about 13-50% with no significant difference in occurrence between patient groups 

(Fischer et al., 2010; Holler et al., 2011; Kotchoubey et al., 2005; Qin et al., 2008). 

Kotchoubey, (2003) demonstrated that the MMN is elicited more frequently and with 

greater amplitude by complex tones than by simple sine tones in patients with DOC – an 

important finding given that the MMN is one of the most useful components in 

predicting outcome in DOC (Daltrozzo et al., 2007; Fischer et al., 2000; 2010). Several 

studies have also investigated the P300 as an indicator of pre-attentional orienting and 

working memory updating on DOC patients, with equally variable results. Hinterberger 

et al. (2005) did not observe a P300 response to deviant tones in any of their 5 VS 

patients, while Cavinato et al. (2009) observed a P300 to the SON vs. tones in 68% of 

their VS sample (N = 34). Perrin et al. (2006) observed a P300 response in all members 
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of a sample of LIS (N = 4) and MCS (N = 6) patients and in 60% of VS patients (N = 5). 

Other studies lie in between these two extremes: Kotchoubey and colleagues 

consistently report a P300 in about 30% of their VS and MCS patients (Kotchoubey, 

2005, 50 VS patients; Kotchoubey et al., 2005, 50 VS patients and 38 MCS patients), 

with no differences between the two groups (Kotchoubey et al., 2005); Cavinato et al. 

(2011) observed P3 in all of their 6 MCS patients, and 6/11 VS patients. The variability in 

these results is attributable to many of the same factors as variability in fMRI results 

among patients with DOC, such as aetiology, diagnostic criteria, level of arousal – but 

also to the type of stimuli used to elicit the P3. Studies that used different levels of 

stimulus complexity to elicit the P3 (e.g., 3-component chords, vowel sounds 

(Kotchoubey et al., 2005), or SON (Cavinato et al., 2011)) found greater P300 responses, 

both in number and in amplitude, to the complex stimuli than to sine tones. 

2.1.2 Speech and Language Processing 

One of the most common questions regarding patients with DOC is “Can they 

understand us?”  The majority of ERP and fMRI studies in these patients seek to answer 

just that question, not only in individual cases but also at the level of diagnostic 

category. The clinical diagnosis of MCS implies some level of speech comprehension 

indicated by reproducible responses to command, whereas the diagnosis of VS is based 

on the absence of such evidence. Many fMRI and EEG studies of DOC have investigated 

whether neuroimaging markers of language processing support these assumptions. 

FMRI studies of spoken language function in VS and MCS patients typically focus 

on two main processes: speech recognition and semantic comprehension. The speech 

recognition paradigms have typically used narratives and signal-correlated noise or 
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narratives played in reverse along with stimulus free periods to determine whether a 

patient is processing speech as speech or merely as general auditory input. Schiff et al. 

(2005) were the first to publish findings using this type of paradigm in patients with 

DOC. The study reports fMRI results from 2 MCS cases and 7 healthy controls who 

listened to narratives of familiar events read by familiar voices, or heard those same 

narratives played in reverse. In the forward narrative condition, both patients showed 

activation patterns similar to controls in the superior and middle temporal gyri. 

Interestingly, in the reversed narrative condition, controls showed similar patterns of 

activation as to the forward narrative condition; results interpreted as indicating that 

they recognized the narrative as speech, but simply meaningless speech. However, both 

patients showed severely reduced activation in this condition reflecting reduced 

processing of linguistically meaningless stimuli. While the results of the patients differ 

from those of the control group for the reverse-narrative condition, the results are still 

suggestive that the patients are processing speech signal as distinct from acoustically 

identical non-linguistic sound. Fernández-Espejo et al. (2008) used a similar paradigm 

in a group of 3 VS and 3 MCS patients compared to 19 healthy controls, and 

subsequently in another single VS patient (Fernández-Espejo et al., 2010).  The results 

suggested that there is not a clear distinction between VS and MCS patients in terms of 

fMRI markers of speech recognition. When both narrative conditions (forward and 

backward combined) were contrasted with a silent baseline 3 VS and 2 MCS patients 

showed activation in superior temporal regions comparable to controls, reflecting intact 

auditory processing of complex sound. Of these 5 patients, 1 MCS and 1 VS patient also 

showed appropriate temporal and inferior frontal activation in the forward narrative 

condition compared to the backward narrative condition, reflecting language-specific 
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processing. The remaining 1 MCS and 1 VS patient showed no significant activation in 

either contrast.  

The studies reported above demonstrate that some patients with diagnoses of VS 

or MCS process speech as distinct from other auditory signals. However, these studies 

provide no indication of whether the speech stimuli are processed at a semantic level. A 

long history of ERP studies has provided a widely used and reliable marker of semantic 

processing, well-suited to this purpose. The N400 component is observed in response to 

a word that is incongruent with its semantic context and is indisputably linked to 

processes related to semantic comprehension (Kutas and Federmeier, 2011). 

Connolly et al. (1999) were the first to employ the N400 to investigate semantic 

processing in a patient with a DOC2

                                                           
2 Strictly speaking, Witzke and Schoenle (1996) were the first do so, however their identification of the 
presence/absence of the N400 component was questionable. Additionally, the findings were published in German. 
Since this review was restricted to English-language articles, we cite Connolly et al. (1999) as the first.   

. They used a series of simple sentences whose 

terminal word was either congruent (e.g., “Father carved the turkey with a knife.”) or 

incongruent (e.g., “The winter was harsh this allowance.”) with the context of the 

sentence. Sentences were presented aurally and visually, in separate sessions. The 

patient’s auditory N400 response demonstrated intact semantic processing, while the 

visual N400 did not, consistent with the patient’s injury-related deficits. Kotchoubey 

and colleagues (Kotchoubey, 2005; Kotchoubey et al., 2005) used two different N400 

paradigms to assess semantic processing in large samples of DOC patients: word pairs 

that were semantically related or unrelated, and sentences similar to those used by 

Connolly et al. (1999). Both studies observed evidence of semantic differentiation in the 

form of the N400 in approximately 25% of the 100 total VS and 38 MCS patients 

studied, with no significant differences between the groups in terms of the frequency of 
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an observed N400. Shoenle and Witzke (2004) observed higher rates of N400 response 

to semantically incongruent sentences – about 38% of VS patients (N = 43) and 77% of 

their “near VS” patient group (N = 23, who would fall in the MCS(-) category according 

to the Aspen Workgroup criteria). The differences in occurrence of the N400 between 

studies are attributable, at least in part, to the use of different criteria for identifying the 

component, illustrating the need for guidelines in quantifying ERPs in patient 

populations (Duncan et al., 2010). Schabus et al. (2011) took a different approach by 

examining oscillatory responses to semantic incongruity. They calculated event-related 

synchronization/desynchronizations (ERS/D) to antonym sentences (e.g., “The opposite 

of black is white/yellow/nice.”) in 10 VS patients and 4 MCS. They did not report 

individual-level results, but observed significant group-level differences in ERS/D 

between VS, MCS and healthy controls: VS patients showed no significant ERS/D, while 

MCS patients show an ERS to unrelated words and an ERD to antonyms in the upper 

alpha band, compared to the opposite response in controls (ERD to unrelated words and 

ERS to antonyms). The authors attribute this reversal to a difference in processing 

strategy in MCS patients vs. controls, wherein MCS patients do not anticipate the 

terminal word as controls do, but rather perform semantic integration in a post-hoc, 

bottom up manner. 

A slightly different paradigm has been used to investigate semantic processing 

with fMRI. Semantically ambiguous sentences containing words that have homonyms 

(same spelling, different meaning) or homophones (same pronunciation, different 

spelling and meaning) are compared to unambiguous sentences which contain no such 

words. In a large group study (which included patients reported separately in Owen et 

al. 2005; 2006; and Coleman et al. 2007), Coleman and colleagues (2009) investigated 
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semantic comprehension in a total of 22 VS and 19 MCS patients.  2 VS and 2 MCS 

patients showed some evidence of semantic processing in the form of temporal and/or 

frontal activation in the same areas as controls in response to semantically ambiguous 

vs. unambiguous sentences. 7 VS and 12 MCS showed temporal lobe responses to speech 

versus noise; 2 VS and 4 MCS patients showed activation to sounds vs. silence only; and 

13 VS and 3 MCS showed no significant activation to any of the conditions, although 

some showed activation in appropriate areas below the threshold for statistical 

significance. 

2.1.3 Familiarity and Emotion 

An area of particular interest and importance for both clinician and families of 

DOC patients is emotion and sense of familiarity. Families of patients with DOC are 

frequently concerned about whether their loved one recognizes their voices, faces, or 

names. Familiar or emotional stimuli are especially salient and can evoke stronger 

responses than similar stimuli lacking the elements of familiarity or emotion (Holeckova 

et al., 2008). For this reason, such stimuli are well-suited to ERP and fMRI assessments, 

although few studies have employed them. Two common strategies to elicit responses 

related to familiarity are to compare responses to the subject’s own name (SON) 

compared to other names (see section 2.1.1); and responses to familiar voices (usually 

the mother’s) compared to unfamiliar voices. Laureys et al. (2004) report a single MCS 

patient who showed a P300 to his own name compared to other names. This finding was 

replicated by Perrin et al. (2006) in 3 out of 5 VS patients, all 6 MCS patients, 4 LIS 

patients, and 5 healthy controls. Machado et al. (2008) observed oscillatory changes in 

the gamma band in a boy in VS when he listened to his mother’s voice, but not when the 
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same words were spoken by unfamiliar women. In the only substantial group study of 

emotion in DOC, Kotchoubey et al. (2009) examined patients’ ERP responses to woeful 

exclamations as oddball stimuli in a series of joyful stimuli (single words in which only 

the prosody determined the emotion). They observed a broadly distributed negativity 

occurring at around 150 ms in response to the emotional oddball in all healthy controls, 

and in 6 of the 27 VS and MCS patients studied. Staffen et al. (2006) reported a single 

VS patient who showed selective BOLD activation in the medial prefrontal cortex 

(similar to controls) to his own first name compared to other first names. Qin et al. 

(2010) observed BOLD activation in regions of interest related to self-reference 

processing (based on a more complex manipulation of degree of self-relatedness of 

name stimuli in 17 healthy controls) in response to the subject’s own name spoken by a 

familiar voice in 6 of 7 VS patients and all 4 MCS patients. However, caution must be 

used in interpreting these findings. Although analyses were carried out in regions 

established in healthy controls to be relevant to self-referential processing, they did not 

employ an adequate control condition in the patient experiment: the self-referential 

stimuli were contrasted to a resting baseline only, and not to an equally complex, but 

non-self-referential stimulus. In an fMRI investigation of a rare long-term comatose 

patient (eyes remained closed at 35 months post-injury), Eickhoff et al. (2008) reported 

a particularly surprising finding. Not only did the patient show robust and appropriate 

activation to tactile and visual stimulation (with eyes taped open) but she also showed 

appropriate primary and associative auditory activation and left inferior frontal gyrus 

(Broca’s area) activation to spoken words. Moreover, when the speech was directed to 

the subject by name, additional activation was observed in the left amygdala and right 

anterior superior temporal sulcus, and this activation was modulated by the familiarity 
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of the speaker, i.e., the patient’s children evoked the strongest response, followed by 

friends, with significantly weaker responses to unknown voices. In a related finding, 

Bekinschtein et al. (2004) reported an MCS patient who showed appropriate auditory 

activation when listening to a story read by an unfamiliar voice, but showed additional 

activation in the amygdala and insula when the story was read by the patient’s mother. 

Although, as mentioned above, studies in the visual domain are rare in patients with 

disorders of consciousness, Zhu et al. (2009) have reported increased activation of 

visual association areas in MCS patients in response to historically familiar photos 

compared to unfamiliar ones.  

2.2 Active Paradigms 

2.2.1 Detection of Awareness 

While demonstrations of intact perceptual, language, and emotional processing 

are essential to a complete assessment of a patient’s cognitive status, they give us little 

insight into the patient’s level of conscious awareness. We cannot know, without some 

form of report from the individual, whether they have any conscious experience of the 

stimuli they are processing. In order to conclude, in the absence of behaviour, that an 

individual is consciously aware, we must observe patterns of brain activity that could 

only occur if this were the case. Take for example the case reported in 2006, and since 

widely publicized, by Owen and colleagues of a young woman who had been diagnosed 

as being in a vegetative state (although the patient may have been exhibiting visual 

fixation indicative of transition to MCS (Posner et al., 2007, Chapter 9; Schnakers et al., 

2008)). The authors employed an active mental imagery paradigm developed by Boly et 
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al. (2007). While undergoing fMRI scanning, the patient was instructed to perform two 

mental imagery tasks: to imagine playing tennis, and to imagine navigating from room 

to room around her home. These tasks had previously been shown to elicit different and 

robust patterns of activation in healthy volunteers, particularly in the supplementary 

motor area for tennis imagery and in the parahippocampal gyrus, posterior parietal 

cortex, and lateral premotor cortex for navigation imagery (Boly et al., 2007). The 

patient’s activation patterns were virtually indistinguishable from those of controls. This 

finding confirmed that she was able to understand the instructions given to her, and to 

respond to them by willfully performing the mental imagery task in the absence of any 

external stimulation, which in turn produced a typical pattern of fMRI activation, 

despite her inability to respond behaviourally. The authors therefore concluded that the 

patient was in fact consciously aware (see Greenberg, 2007; Nachev and Husain, 2007; 

Owen et al., 2007; Stins, 2009; Stins and Laureys, 2009 for further discussion of this 

case). 

Though rare, the patient described by Owen et al. (2006) is not a one-of-a-kind 

case; the results have since been replicated. In the largest fMRI study of patients with 

DOC published to date (Monti et al., 2010), 23 VS and 31 MCS patients underwent fMRI 

scanning while being instructed to imagine playing tennis or navigating a familiar 

environment. Of this sample, 5 patients (4 VS patients and 1 MCS patient) were 

identified whose brain activity indicated that they were successfully performing the 

mental imagery tasks. Goldfine et al. (2011) used a similar task while recording EEG 

from 5 healthy controls, 1 LIS patient, and 2 MCS patients. They compared power 

spectra during imagery of swimming or navigation to resting baseline. The LIS patient 

and 1 MCS patient showed evidence of motor imagery task performance, as measured by 
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the consistency of each patient’s signal pattern changes across runs, rather than in 

comparison to healthy subjects’ patterns. Similarly, Owen and colleagues (Cruse et al., 

2011) observed command-following in the form of appropriate event-related 

synchronizations/desynchronizations (ERS/D) to motor imagery instructions in 3 out of 

16 VS patients. The motor imagery task they employed, which the authors claim to have 

developed as ‘novel’, involves imagination of hand and foot movement and has in fact 

been used for over two decades in both basic research and in clinical research involving 

brain-computer interfaces in patients with motor and neuromuscular disorders (Kalcher 

et al., 1996; McFarland et al., 1997; McFarland et al., 2000;  Müller-Putz et al., 2005; 

Neuper et al., 2003; Penny et al., 2000; Pfurtscheller and Neuper, 1997; Pfurtscheller et 

al., 1993; Pfurtscheller et al., 1997; Pfurtsheller, et al., 2000; Scherer et al., 2004; 

Wolpaw et al., 1991; for reviews see e.g., Neuper and Pfurtscheller, 1999; Neuper et al., 

2006a,b; Wolpaw et al., 2002). Recently, a debate has arisen over the statistical 

methods employed by Cruse et al. in a re-analysis of the study’s data by Goldfine et al. 

(2013) which suggests that Cruse et al.’s methods violate statistical assumptions and are 

biased towards falsely identifying awareness in VS patients. However Cruse et al.'s 

(2013) rebuttal argues that Goldfine and colleagues’ methods are unsuitable for the data 

and equally error-prone in the opposite direction, making detection of awareness 

unlikely not only in patients, but also in a majority of healthy controls. They also point 

out that even with Goldfine et al.’s stringent statistical criteria two of the three patients 

in whom they detected awareness were pushed only slightly below accepted statistical 

thresholds, while the third remained significant. It is clear that the application of this 

technique for the detection of awareness is still in its infancy, and much further study is 

needed before its reliability as a clinical tool can be established. A cautious and critical 
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eye must be employed when evaluating findings, and an attitude of open data sharing 

and scientific debate such as that demonstrated by Cruse and Goldfine and their 

colleagues will be essential to the development of a useful and reliable method of 

detecting awareness in patients with DOC. 

The cognitive control required to generate statistically significant brain activation 

to complex mental imagery tasks is considerable. It must be noted that a subset of 

patients may be consciously aware, but unable to perform those specific tasks, for any 

number of reasons including impaired attention, fluctuating arousal, fatigue, selective 

damage to networks involved, misunderstood instructions, and so on. Other studies 

have attempted to compensate for some of these potential difficulties by using tasks that 

are somewhat less cognitively demanding, but still require willful processing on the part 

of the patient. Schnakers et al. (2008) developed an active ERP paradigm based on the 

commonly used “subject’s own name” (SON) paradigm (e.g., Perrin et al., 2006) with 

the modification that subjects were asked to count the instances of their own name. The 

SON in the active (counting) condition elicits a larger P300 than in the passive 

condition in healthy subjects. Schnakers et al. (2008) observed P300 responses similar 

to controls in 9 out of 14 MCS patients. Conversely, none of the 8 VS patients showed a 

P300 in either the passive or active conditions. The same group detected a case of total 

locked-in syndrome using the same paradigm in a patient who would have been 

behaviourally diagnosed as comatose (Schnakers et al., 2009). Following suit, Monti, 

Coleman, and Owen (2009) reported a single MCS patient who was asked to listen to a 

series of words passively, or to listen to the same series of words and count the 

occurrences of a target word while undergoing fMRI. In 20 healthy controls, the target-

counting task, compared to the passive listening task, elicited activation in a widespread 
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network involving frontal, temporal, parietal, and cerebellar regions. The MCS patient 

showed activation of the same network to an extent that fell within the range of normal 

subject variability, suggesting that the patient successfully performed the target-

counting task.  

Bekinschtein et al. (2009) developed a novel ERP task based on the classic 

mismatch negativity (MMN) to detect awareness. A series of tones were presented 

which included both local deviants (every fifth tone) and global deviants (every fifth 

group of five tones had the same or different structure than the preceding four). In 

healthy subjects, the local deviant elicited an MMN and a P3a, and the global deviant 

elicited an additional but later P3b. However, the global effect was only observed when 

the participants were actively counting the global deviants and disappeared when they 

were mind-wandering or engaged in a visual interference task. The authors concluded 

that the global ERP effect required conscious awareness of the stimuli, and this was 

upheld by participant reports. The paradigm was subsequently tested on a group of 4 VS 

and 4 MCS patients. Three of the VS patients showed the local effect, but none of them 

showed the global effect. In contrast, all MCS patients showed the local effect and 3 out 

of 4 showed the global effect. This finding was extended in 2 further publications, the 

second encompassing the findings of the first: Faugeras et al. (2012) tested the same 

paradigm on 100 patients (including those reported in Faugeras et al., 2011), some of 

which were tested on several occasions. Sixty-five datasets were retained from 49 

patients, the rest being excluded due to excessive artifact. Of these 49 patients, 24 were 

in VS, 28 in MCS, and 13 were conscious. The global effect was observed in all of the 8 

healthy controls that were included in the analysis, in 54% of the conscious patients, 

14% of the MCS patients, and in 8% of the VS patients. These patient results illustrate 
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both the utility of ERPs for detecting conscious processing in DOC patients, and also the 

caution that must be used in interpreting negative results, since only half of the patients 

who were clinically assessed as conscious showed the ERP results indicative of 

consciousness in this paradigm. 

Bekinschtein et al. (2011) used motor preparatory BOLD activity as a marker of 

purposeful behaviour in a sample of 5 VS patients who showed intact auditory evoked 

potentials and word-related fMRI activation, out of an original sample of 24 VS patients. 

Subjects simply received instructions to move their left or right hand. Only the control 

subjects were able to actually move their hands, but two of the 5 VS patients showed 

movement preparatory activity in the left premotor cortex to the right hand command. 

None showed activation to the left hand command, possibly due to lesions selectively 

affecting the right hemisphere.  

Only one study has investigated volitional cognition in the visual domain. 

Rodriguez-Moreno et al. (2010) used a picture-naming task to probe consciousness in 5 

MCS, 3 VS, 1 patient who had emerged from MCS (EMCS) and 1 LIS patient. Subjects 

were asked to silently name drawings of objects as they were presented. Control subjects 

activated a language-related network, outside of the visual network, known to be 

selectively activated by picture naming versus passive viewing. The locked-in, EMCS, 2 

MCS and 1 VS patient activated the complete network, 3 MCS patients and 1 VS 

activated a partial network, and 1 VS patient did not show activation in the naming 

network. 

The results of the studies reviewed so far illustrate the incongruity between 

clinical diagnoses and neuroimaging assessments of cognitive function. Some patients 

with a diagnosis of vegetative state showed evidence of high-level cognition and even 
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awareness; whereas some diagnosed MCS patients – who showed behavioural evidence 

of purposeful behaviour and therefore some level of conscious awareness – failed to 

show activation even at the level of primary auditory cortex (Coleman et al., 2009). The 

implication for vegetative patients is clear: some patients who have received a diagnosis 

of vegetative state may actually be misdiagnosed cases of MCS, or even locked-in 

syndrome. However, negative findings in MCS patients are somewhat more puzzling, 

but could be attributed to damage to auditory pathways (in cases where subjects have 

not been pre-screened with auditory evoked potentials), to fluctuating levels of arousal, 

to cortical responses too weak or variable to reach statistical significance, or to 

alterations in neurovascular coupling (see section 3.3.1). Add to this already complex 

issue the diagnostic disagreements between different behavioural assessment methods 

and there is little wonder that fMRI and EEG findings appear to be at odds with 

diagnosis on occasion, again underscoring the need for comprehensive, multimodal, 

hierarchical assessments to gather evidence about a patient’s true mental status.  

2.2.2 Communication 

Once it has been established that a patient who has been diagnosed as vegetative 

is indeed conscious despite outward appearances, the question becomes “What can be 

done for this patient?” Aside from intensifying rehabilitation efforts, all attempts must 

be made to establish some form of communication. When the patient does not have the 

physical capacity to make behavioural responses, we must again turn to their brain 

responses. A vast literature exists on the use of electrophysiological measures as means 

of communication with and control of devices (known as brain-computer interfaces, 

BCI) in physically disabled populations (see e.g., Birbaumer et al., 2006; Curran and 
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Stokes, 2003; Daly and Wolpaw, 2008; Neuper et al., 2006; Nicolas-Alonso et al., 2012; 

Wolpaw et al., 2002). These systems make use of various EEG signals, including slow 

cortical potentials (e.g., Birbaumer et al., 2000), the ‘oddball’ P300 ERP (e.g., Donchin 

et al., 2000), and sensorimotor ERS/D (e.g., Pfurtscheller et al., 1993; Wolpaw et al., 

1991), which are translated into various outputs like cursor movement, spelling, or 

prosthesis control. These devices have been developed primarily for application in ALS, 

but the potential application to DOC is obvious (Chatelle et al., 2012; Kübler & 

Kotchoubey, 2007; Kübler, 2009; Naci et al., 2012). This vast body of existing 

knowledge on EEG-based BCI had not been applied in DOC until very recently, and it 

had rarely been cited in the DOC literature, even when the techniques developed by BCI 

researchers were being employed directly, as in Cruse et al. (2011). Until very recently, 

the field has overwhelmingly remained focused on fMRI as the technique of choice for 

detecting awareness and establishing communication in patients with DOC.  

Using the same strategy as many BCIs, Monti et al. (2010) explored the use of 

mental imagery conditions in fMRI for basic communication (e.g., yes/no questions) in 

patients with disorders of consciousness. From the 5 patients who showed modulation 

of BOLD activation in the mental imagery tasks discussed in section 2.2.1 above, 1 VS 

patient with reliable responses was chosen to undergo the communication experiment.  

The patient was posed a series of autobiographical questions and asked to respond by 

using one of the imagery conditions (i.e., playing tennis or navigating) for “yes” and the 

other for “no”. In 16 healthy control subjects, a blinded experimenter was able to 

determine the answers to the questions based on activation patterns in individual 

subjects with 100% accuracy. In the patient the answers to 5 out of 6 questions were 
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correctly determined based on the mental imagery responses (the 6th question showed 

virtually no activation in the regions of interest for either imagery condition).  

Bardin et al. (2011) used a modified version of the Monti et al. (2010) paradigm 

to attempt simple communication with 5 MCS patients and 1 patient with locked-in 

syndrome. They simplified the imagery task slightly by using only one imagery condition 

(physical activity imagery, expanded to other activities like swimming) and a rest 

condition in place of the second imagery task. They first investigated whether the 

expected activations could be reliably elicited to command. Appropriate activation to the 

imagery task was observed in all 14 healthy controls, 2 MCS patients and the locked-in 

patient, with no activation observed in the other 3 MCS patients. Control subjects and 4 

patients then underwent 2 communication scans: a binary choice and a multiple choice. 

In the binary choice task, subjects were asked a yes/no question and asked to perform 

the physical activity imagery for “yes” and do nothing for “no”. In the multiple-choice 

task, subjects were shown a face card from a deck of playing cards and asked to 

remember it. During the scan the four possible suits and four possible faces were 

presented verbally and subjects were asked to respond using the imagery task when they 

heard the options that corresponded to their cards. In both the binary and multiple-

choice conditions, blinded experimenters were able to determine the healthy volunteers’ 

answers with 100% accuracy. However, only one patient (MCS) showed observable 

activation in the multiple choice condition, with no successful data in the binary 

condition, a result which is especially puzzling because 2 of the 3 patients who failed to 

produce BOLD responses were in fact able to communicate at the bedside. This result 

speaks directly to the preliminary nature of these methods and the need for much more 

research before this technique can be considered a reliable clinical tool. It also reiterates 
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the degree of caution required in interpreting negative BOLD findings (see section 3.3.1 

below).  

Lulé et al. (2013) attempted to apply an auditory oddball EEG-based BCI 

paradigm to probe command following and establish communication in 2 LIS, 13 MCS, 

and 3 VS patients. One LIS patient was able to demonstrate command following and use 

the BCI for communication. One MCS showed some evidence of command following, 

but none of the MCS or VS patients were able to use the BCI for communication. EEG-

based BCIs hold obvious potential for patients with DOC but clearly much work has yet 

to be done to optimize both the input and the classification algorithms for this 

population. 

2.3 Resting State Activity and Functional Connectivity 

Research into resting state activity and connectivity is arguably the fastest 

growing area in the field of neuroimaging in DOC. Part of the rationale for these studies 

is that the types of paradigms used in the studies reviewed above require at a minimum 

intact sensory pathways, and at a maximum highly coordinated cognitive function, and 

that these methods should be complemented by tools that do not depend on sensory 

integrity or a patient’s ability to understand instructions. Earlier PET studies provided 

evidence that islands of cognition may remain intact in patients with DOC, and that 

reduced cortico-cortical and thalamocortical connectivity may lie at the heart of 

impaired consciousness (see Schiff and Laureys, 2012 for discussion and an eloquent 

model of consciousness as an emergent property of frontoparietal connectivity). As a 

result, more and more studies are investigating the nature of resting-state activity and 

connectivity using both fMRI and EEG. 
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 The default mode network (DMN, Raichle et al., 2001) has been a particular area 

of focus for fMRI connectivity studies in DOC. The DMN encompasses the posterior 

cingulate cortex/precuneus, medial prefrontal cortex, and temporoparietal junctions 

and is particularly intriguing because it is more active at rest than during an attention-

demanding task (Raichle et al. 2001). Recent research in DOC suggests that an intact 

default mode network may be a prerequisite for consciousness, and may therefore serve 

as a potentially useful marker in diagnosis. Boly et al. (2009) found reduced functional 

connectivity in the DMN of a vegetative patient compared to 6 healthy controls; and 

absent DMN functional connectivity in a brain dead patient. Cauda et al. (2009) also 

found impaired default mode networks in 3 VS patients, and observed a qualitative 

correspondence between a behavioural measure of function and DMN impairment. 

Vanhaudenhuyse et al. (2010) studied DMN connectivity in 4 VS, 4 MCS, 1 locked-in, 

and 5 coma patients and observed an exponential correlation between DMN 

connectivity and clinical level of consciousness that was particularly pronounced in the 

precuneus/PCC region. Similarly, Soddu et al. (2011) observed fewer connections in 

their 8 VS patients than in controls; but connectivity comparable to controls in their 2 

locked-in patients. Ovadia-Caro et al. (2012) investigated interhemispheric functional 

connectivity between homologous regions, not in the DMN, but rather in the opposing, 

“extrinsic” task-positive network. They observed reduced connectivity in DOC patients 

compared with controls, and also a correlation between the clinical level of 

consciousness and the degree of interhemispheric connectivity. Several very recent 

studies have also investigated connectivity using EEG power spectra, with similar 

findings. Lehembre et al. (2012) analyzed power spectra in 10 VS and 18 MCS patients, 

and observed increased delta power and decreased alpha power in the VS group 
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compared to the MCS group. They also observed lower connectivity in the alpha and 

theta bands in the VS group than in the MCS group. León-Carrión et al. (2012) found 

stronger connectivity between anterior and posterior brain regions in a group of 9 

patients with severe neurocognitive disorders compared to a group of 7 MCS patients, 

who showed a disconnection particularly between frontal cortex and other brain 

regions. Fingelkurts et al., (2012) studied EEG microstates in 14 VS and 7 MCS patients 

compared to 5 healthy volunteers and observed that the DOC patients had fewer 

microstates than healthy controls. They also found that microstates characterized by fast 

alpha oscillations were positively related to the clinical level of consciousness, whereas 

microstates characterized by delta, theta, or slow alpha oscillations were negatively 

related to clinical level of consciousness.  

Resting state functional connectivity appears to have a relationship to level of 

consciousness, and holds the advantage of not relying on potentially damaged sensory, 

perceptual, and cognitive systems. However, even more insight could be gained by 

studying functional connectivity under task conditions. To our knowledge, only two 

studies have investigated functional connectivity under cognitive stimulation. Boly et al. 

(2011) employed dynamic causal modeling to ERP responses during an MMN task to 

examine not only functional connectivity but also effective connectivity, that is, 

directional, causal connections between brain regions. They found that while VS 

patients were still able to generate an MMN response, they lacked a top-down 

connection from frontal to superior temporal cortex. This connection was preserved in 

MCS patients, who did not differ significantly from controls. This finding lends further 

support to the notion that isolated cognitive processes may be preserved in VS, but that 

deficient connectivity is at the heart of decreased consciousness. Kotchoubey et al. 
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(2013) studied global functional connectivity under emotional load in 6 VS and 6 MCS 

patients who listened to recorded human pain cries compared to non-emotional 

vocalizations. While they observed no significant stimulus-related activation in either 

group in a typical GLM analysis, a whole brain functional connectivity analysis revealed 

stronger connectivity in the MCS than in VS patients, in emotion-related networks 

similar to those observed in healthy controls. 

The studies in this section support a link between functional connectivity and 

consciousness; however caution must be used when interpreting these findings at the 

individual subject level, as they are based on a tautology. The problem lies in the fact 

that these studies have used behavioural measures as the independent variable ‘level of 

consciousness’. While the level of functional connectivity appears to be related to the 

patient’s behaviour, we know from the body of research discussed in earlier sections of 

this review that behavioural measures are not always reliable indicators of conscious 

awareness. Developing and validating an objective neural marker of consciousness in 

non-communicating patients therefore presents a formidable task, since in this patient 

group we necessarily have no absolute reference to assess the accuracy of any 

determination of the presence or absence of consciousness. Consider the impact of a 

patient behaviourally diagnosed as vegetative, but who is in fact covertly conscious on 

the results of a group level connectivity study: if this patient showed intact functional 

connectivity, correctly indicating awareness, it would statistically weaken the link 

between consciousness (determined behaviourally) and functional connectivity, rather 

than highlighting the potential utility of the technique in detecting awareness. 

Connectivity studies undoubtedly do and will continue to be instrumental in our 

understanding of the neural substrates of disorders of consciousness, and they have the 
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unique advantage of not relying on the integrity of sensory pathways or a patient’s 

ability to understand instructions or actively participate in cognitively demanding tasks. 

However, their utility as diagnostic tools is currently limited by the circularity of their 

reference to behavioural measures. It is completely circular logic to develop tools aimed 

at reducing misdiagnosis while using the current diagnosis as a gauge for the accuracy of 

the new tools.  

3. Advantages and Limitations of fMRI and EEG for the Study of DOC 

Since fMRI was introduced in the early 1990’s, it has had an immense impact on 

cognitive neuroscience research, and its use has grown exponentially, from 4 peer-

reviewed fMRI publications in 1992, to about 13 per day in 2011 (using the same 

database and search terms as Logothetis, 2008). It has become a very “fashionable” 

technique and there are occasions when it appears to have been chosen as a research 

method for this reason, rather than for its suitability to a particular research question or 

population. This is not to minimize its importance or its contribution to cognitive 

neuroscience and other fields, but merely to point out that it is not the answer to every 

question (Logothetis, 2008). While fMRI has contributed immensely to our 

understanding of disorders of consciousness, and highlighted the need for brain-based 

tools to assess cognition and awareness in patients with DOC, it is itself clearly not the 

most practical solution to the problem. In order for an assessment technique to be 

readily adopted into standard clinical practice, it must be inexpensive, easily accessible, 

have few limitations in terms of patient compatibility, and be relatively simple to 

administer whether at the bedside, in the patient’s home or care facility or in a research 

laboratory. fMRI and patients with severe brain injuries rarely combine to meet these 



Ph.D. Thesis – A.H. Harrison, McMaster University – Neuroscience  
                                             

 

40 
 

criteria. Conversely, EEG is widely available, inexpensive, easy to administer at the 

bedside, is fairly robust to many artifacts that can cause fMRI data to be unusable, and 

has virtually no restrictions with regard to patient compatibility and safety. EEG is more 

easily validated on large groups of subjects and data acquisition times are generally 

shorter, making it not only more suited for clinical applications but also for the basic 

research required prior to applications in patients. 

The potential implications for patients with disorders of consciousness, their 

families, and care teams, of the fMRI research described above are profound. 

Unfortunately, there are many, significant logistical and methodological considerations 

that will prevent fMRI from becoming a part of routine diagnostic assessments in 

standard clinical practice. The following sections will review these issues and discuss the 

advantages and disadvantages of employing EEG as an alternative methodology (see 

Table 3 for a summary).  

3.1 Patient Safety and Monitoring 

Many of the limitations of performing fMRI in patients with DOC are safety 

issues that apply to any MRI procedure in any population, but require special 

consideration in patients. Of particular concern for brain injury patients are implanted 

devices such as neurostimulators, CSF shunts, aneurysm clips, and bone flap fixation 

wires and clamps. Many of these devices have now been tested and deemed MR-safe at 

specific fields, but many are still contra-indicated or restricted (see Shellock, 2011). 

Some aneurysm clips are ferromagnetic and may displace and cause serious injury or 

death. A number of shunt valves use magnetic components and exposure to the MRI’s 

magnetic field may change the valve settings and lead to increased intracranial CSF 
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pressure. Some neurostimulators may malfunction, overheat, or be displaced causing 

injury or death. Any implanted devices and any other surgical hardware must have 

documented evidence of MRI compatibility for the specific model and manufacturer at 

the field strength of the scanner to be employed. Also, as a routine part of general MRI 

screening, patient background regarding previous surgeries, implants, as well as 

possible embedded metal such as shrapnel or bullets is required. In the case of non-

communicative patients, this essential information may not be available and other, 

preliminary diagnostic procedures (e.g, computerized tomography, CT) may be required 

to rule out safety hazards prior to MRI scanning. Conversely, there are virtually no 

contraindications to recording EEG from the scalp surface. 

The Safety Committee of the Society for Magnetic Resonance Imaging 

recommends that all patients who are unable to communicate should be physiologically 

monitored while in the scanner (Kanal and Shellock, 1992). This requires that the MR 

unit be equipped with specialized, MR-compatible monitoring equipment. While 

clinical-use MRI facilities have such equipment available, research-dedicated MRI 

facilities are frequently not equipped for sophisticated physiological monitoring. 

Monitoring is required not only for the patient’s medical safety, but also for their 

emotional well-being. Up to 20% of patients undergoing MRI experience a  

claustrophobic or other distress reaction (Shellock, 2011), and may elect to terminate 

the scan as a result. Non-communicative patients, however, would be unable to signal 

such a reaction, and so should be monitored for physiological changes that might 

indicate distress (e.g., increased heart rate, respiration). EEG does not induce 

claustrophobic reactions, and requires no special monitoring.  
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 fMRI EEG 
Patient safety Many implanted devices are 

contraindicated and pose serious 
safety risks. 

Virtually no contraindications. 

 Existing metal in body (known or 
unknown) poses safety risks. 

No screening for metal required. 

 Difficult to monitor patients for 
low arousal. 

Low arousal easily identified on EEG. 

 MRI commonly induces 
claustrophobic reaction, but 
difficult to monitor for signs of 
distress. 

Distress from claustrophobia unlikely, 
but heart rate, electrodermal activity, 
respiration etc. can easily be monitored 
concurrently with EEG. 

Data 
acquisition 

Patient must be transported to 
specialized facility. 

Can be done at patient's bedside. 

 Expensive. Inexpensive. 
 Challenges in patient positioning. Positioning rarely an issue. 
 Inherent selection bias in sample 

due to safety, transport, and 
positioning issues. 

Can be performed on virtually any 
patient. 

Artifact Large motion artifacts make entire 
datasets unusable. 

Motion artifact can usually be corrected 
or rejected; exclusion of entire datasets 
only in severe cases.  

 Implanted devices can cause 
severe signal loss and image 
distortion. 

Prone to EMG artifact, but this can 
usually be filtered out or contaminated 
segments removed. 

Analysis Spatial normalization complicated 
by abnormal structure. 

Spatial transformation not required. 

 Comparison of spatial and 
temporal responses to normative 
data complicated by lesions and 
functional remapping. 

Comparison of spatial and temporal 
responses to normative data complicated 
by lesions and functional remapping. 

Interpretation BOLD signal affected by 
neurovascular coupling. 

Scalp EEG directly measures neural 
activity. 

General High levels of data loss due to 
safety, transport, positioning, and 
artifact. 

Relatively low levels of data loss; due 
mostly to severe motion artifact. 

Table 3. Summary of advantages and limitations of fMRI and EEG for the study of 

disorders of consciousness. 

Periods of low arousal and sleep are very common in patients with disorders of 

consciousness. As a quality control measure, arousal should be monitored, ideally with 

EEG, during fMRI scanning to avoid collecting data when the patient is least likely to 

show activation (Laureys et al., 2004). While simultaneous EEG and fMRI recording is 
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possible with specialized EEG equipment, it introduces a whole new set of safety 

concerns (see Allen, 2010 for a review), and extra analysis steps to remove gradient and 

ballistocardiogram artifact from the EEG data (Bénar et al., 2003). When recorded in 

isolation, EEG easily identifies periods of sleep, low arousal, or seizure activity, so that 

data can be recorded during periods of arousal, and contaminated data can easily be 

eliminated. 

3.2 Data Acquisition 

Once a patient has passed through all the necessary safety screening steps, there 

are still many hurdles to collecting fMRI data. Patients are often recruited from the 

hospital-based treatment or rehabilitation programs with which the researchers are 

affiliated, and scanned at the same facility. However, in cases where patients are not 

housed in the same facility as the scanner, specialized transport and accompanying 

support staff are required. Once at the scanning facility, many difficulties may be 

encountered in physically positioning the patient in the scanner due to muscle 

contractures or injuries that prevent them from lying flat and still. Though rarely 

mentioned in fMRI studies, data loss due to transport and positioning issues is high, 

which raises questions about validity of population data due to subject selection bias. 

EEG equipment, on the other hand, is highly portable, and patient positioning is rarely 

an issue making it applicable to a much wider sample of patients, even to those who are 

not medically stable enough to be transported or to undergo MRI scanning.  In either 

case, we believe that it is important for studies to report the original number of 

candidate patients from which the final sample were drawn, and details of the reasons 

for excluding patients – such as transportation issues, positioning difficulties, artifact, 
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MRI-incompatibility, etc. – so that readers can get a more accurate sense of the 

representativeness of the study’s final sample.                                                                                           

3.2.1 Stimulus Delivery 

Most fMRI studies in patients with DOC are conducted in the auditory modality 

since patients with DOC frequently have difficulty keeping their eyes open, and VS 

patients by definition cannot fixate on a visual stimulus. However, auditory stimulation 

in the very noisy scanner environment presents its own set of challenges. If data are 

sampled in a standard, continuous fashion, the scanner noise may interfere with the 

auditory stimuli, or even drown them out completely if they are not carefully titrated. 

The presence of scanner noise may also complicate the interpretation of results, 

particularly negative ones. For example, if basic auditory processing were investigated 

through a simple stimulus vs. rest comparison, but the stimulus generated only weak or 

no activation on top of the primary auditory activation elicited by the scanner noise, the 

resulting map (computed by subtracting the rest activation from the stimulus activation) 

would appear as though the primary auditory cortex was not functioning. For this 

reason, many investigators opt to employ a sparse sampling procedure (Hall et al., 1999) 

in which images are acquired immediately following (not during) stimulus delivery, in 

the period where the haemodynamic response is near its peak. Stimulus-related 

activation is still captured, but not contaminated by the noisy gradient switching. This 

technique yields better estimates of stimulus-related auditory activation but results in 

smaller datasets (and consequently lower statistical power) and/or considerably longer 

scan times, which are undesirable especially in patient groups. EEG, on the other hand, 

can easily be recorded during virtually any type of stimulus delivery. 
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3.2.2 Artifact 

Undoubtedly the most problematic source of artifact in patients with DOC is 

motion. In almost every published group study in DOC patients, subjects have been 

excluded from analyses due to excessive motion artifacts. Data loss due to motion in 

patients with DOC is estimated at more than 25% (Adrian Owen, personal 

communication, 2009). Large, involuntary movements of the head or body are common, 

and while cushioning and light restraint may be used, movements cannot be entirely 

prevented from occurring in the scanner. Very small movements can be corrected 

during preprocessing of fMRI data, but movements of even a few millimeters can make 

an entire dataset unusable. Another source of artifact in brain-injured patients comes 

from devices implanted in the head, such as the aforementioned aneurysm clips, shunts, 

and neurostimulators. Even when these devices have been deemed non-ferromagnetic 

and completely MRI-safe, they are still foreign, usually metallic objects with different 

magnetic susceptibility than the surrounding brain tissue. They can create significant 

artifacts, loss of signal, and/or distortion of the image surrounding the object (Shellock, 

2011).  

EEG is also prone to certain artifacts, however these are generally correctable 

with little difficulty. Like fMRI, EEG is sensitive to motion, but unlike fMRI, only data 

recorded during the actual motion are affected. If motion is constant it becomes 

problematic, but occasional movements of any magnitude can easily be removed from 

the data without having to discard the entire dataset. EEG is also prone to EMG artifacts 

generated by muscles in the face and neck, for example by squinting of the eyes, 

grimacing, teeth-clenching, swallowing, or chewing motions. However, EMG has 
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distinct characteristics particularly in the frequency domain and can be removed 

successfully, leaving the underlying EEG intact. 

3.3 Analysis 

Several issues arise when analyzing both structural and functional MRI data from 

patients with severe brain injuries. Most obvious is the issue of spatial normalization. 

Patients with DOC may have abnormal or deformed brain structures as a result of many 

factors including focal haemorrhages, hydrocephalus, shifting, craniotomy, swelling, 

dilated ventricles, and atrophy. This complicates transformation into stereotaxic space 

(e.g., Talairach space or MNI space) for group analyses or comparisons of individual 

patients to control subjects. The heterogeneity of injuries and their aetiologies also 

complicates any between-subjects comparisons. Even if normalization can be 

performed, it must be considered that, depending on the injury, an indeterminate 

amount of functional remapping may have taken place, so that functional areas may no 

longer correspond to the coordinates of the same functional areas in healthy controls or 

other patients. Given that most fMRI studies use a region-of-interest (ROI) approach to 

compare activations in patients to those observed in control subjects under the same 

conditions, the issues of normalization and functional remapping present a significant 

hurdle for the use of fMRI in DOC.  

While EEG circumvents nearly all of the safety and data acquisition issues of 

fMRI, it is also prone to some of the same analysis problems as fMRI. While EEG does 

not require spatial normalization, functional remapping will alter the spatial 

distribution of signals. Temporal characteristics of EEG are also affected, often resulting 

in significantly delayed ERP latencies. These ERP latency shifts and unusual 
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topographies can lead to problems in identification of ERP components. For example, 

the P3a and P3b components discussed in section 2.1.1 can overlap temporally, and 

therefore the identification of these two components relies heavily on their 

topographical distributions. Since both the latencies and topographies of ERPs can be 

altered in severe brain injury, the identification of relevant components becomes 

problematic. However, a set of guidelines for the recording and analysis of ERPs in 

clinical populations has been advanced with the goal of eliminating experimenter bias 

(Duncan et al., 2010). Additionally, brain injuries are often associated with marked 

changes in oscillatory activity, particularly in the delta and theta ranges (see Schomer 

and Lopes da Silva, 2010), which may complicate the interpretation of data in the 

frequency and time domains when comparing patients to healthy controls. 

3.3.1 Interpretation  

It is imperative to remember that the BOLD signal on which fMRI is based is a 

measure of haemodynamic response, and not a direct measure of neural activity. 

Neurovascular coupling is the relationship between neural activity and the 

haemodynamic response reflected by the BOLD signal. It is dependent upon intact 

signaling between neurons and blood vessels, and on the various components of 

vascular reactivity. Any changes to metabolic or neurotransmitter signaling, vascular 

tone, cerebral blood volume, blood flow, blood oxygenation, or oxygen consumption can 

affect the BOLD signal (Iannetti and Wise, 2007). A growing body of evidence shows 

that many diseases and pathologies – including brain injuries – alter neurovascular 

coupling and change BOLD signal without necessarily affecting neuronal function 

(Füchtemeier et al., 2010; Gsell et al., 2000; Krainik, et al., 2005; Lindauer et al., 2010;  
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Sakatani et al., 2003; 2007). In the same vein, we must also consider that patients with 

severe brain injuries are usually on several medications, which can also influence 

neurovascular coupling (Bruhn et al., 2001; Luchtmann et al., 2010; Pattinson et al., 

2007; Reinhard et al., 2010). We can attribute changes in BOLD signal to changes in 

neural activity if and only if signaling and vascular reactivity are not altered; and we can 

compare between groups (e.g., patients and controls) only if these properties are the 

same in both groups. Therefore, the utmost caution must be used when interpreting 

BOLD signal in brain-injured patients, and the potential confounds in the intermediate 

steps of neurovascular coupling must be considered.  

Conversely, EEG is a direct measure of neural activity. Currents generated by 

local field potentials must pass through, and are attenuated by the skull and scalp before 

reaching sensors on the scalp surface but the signal recorded directly reflects the brain’s 

electrical activity, and is not dependent upon the many components of neurovascular 

coupling. Therefore, the degree of inference required to interpret EEG-based measures 

is substantially reduced compared to fMRI. Naturally, the effects of medication must 

also be considered with EEG, however only drugs that act on the CNS are of major 

concern since neurovascular coupling is not a factor in EEG.  

3.4 Prognostic Value 

Findings from fMRI studies of cognition and consciousness all have one thing in 

common. There is enormous variability in the type and amount of activation that 

patients show under the same conditions, even within the same diagnostic category. The 

question becomes whether there is some significance to this variability in terms of the 

patients’ likely outcome. Clinically, this would be one of the most useful pieces of 
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information that could be extracted from fMRI. Most studies state prognosis as one of 

the main goals of brain research in disorders of consciousness, however only two fMRI 

studies have systematically examined it. In 2008, Di et al. systematically reviewed 15 

fMRI and PET studies that included a total of 48 VS patients. They classified the results 

from all patients according to whether they showed no activation; typical, low-level 

activation of primary sensory cortices; or higher-level activation of associative cortices 

that is ‘atypical’ for VS. They observed that atypical, higher-level associative cortex 

activation predicted recovery of consciousness in the cases they analyzed with 93% 

specificity and 69% sensitivity. Coleman et al. (2009) found an equally encouraging 

result when they examined the correspondence between level of auditory processing in 

their 22 VS and 19 MCS patients (study described above in section 2.1.2). They classified 

the level of activation observed in each patient as 1: no response to sound, 2: low-level 

response to sound only, 3: mid-level response to speech stimuli, and 4: high-level 

response to semantic aspects of speech. This score was compared to each patient’s score 

on the Coma Recovery Scale – Revised  (Giacino et al. 2004) that was measured at the 

time of testing and 6 months later. The analysis revealed a strong correlation (r = 0.81) 

between the level of auditory activation and the CRS-R score 6 months post-testing – 

despite a non-significant correlation between auditory activation and CRS-R at time of 

testing. These two studies provide strong evidence that fMRI could offer valuable 

prognostic information, however the selection bias inherent in fMRI studies of DOC (see 

section 3) limits the generalizability of such findings. 

A considerable body of literature exists on the predictive value of evoked 

potentials and ERPs in coma. A full review is beyond the scope of this paper, but a meta-

analysis found that the N100, the MMN, and the P300 are all significant predictors of 
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outcome following severe brain injury (Daltrozzo et al., 2007). The interested reader is 

referred to recent reviews (Duncan et al., 2011; Folmer et al., 2011; Guerit et al., 2009; 

Vanhaudenhuyse et al., 2008). However, only a few studies have produced preliminary 

prognostic data for VS and MCS.  Kotchoubey et al. (2005) found that the presence of an 

MMN was related to better outcome in VS patients, and Cavinato et al. (2009) observed 

a positive relationship between the P300 and outcome from VS. 

4. Conclusion 

Over the past decade or so, fMRI has lent new insight into disorders of 

consciousness, and together with EEG has revealed that a small proportion of patients 

diagnosed as vegetative or minimally conscious have a much greater conscious 

awareness than they are able to indicate through behaviour. fMRI has helped to 

highlight the inadequacies of current diagnostic tools, and set the stage for the further 

development of brain-based, behaviour-independent measures of cognition and 

consciousness. However, it is difficult to argue that fMRI is well suited for use in this 

population. The logistics of simply putting these patients in an MRI scanner are 

prohibitive, before even discussing issues of data quality and interpretation. Ultimately, 

the goal of using technology like fMRI in this context is to reliably detect those cases 

where the patient possesses conscious awareness that cannot be detected through 

behavioural measures, and to facilitate some form of communication. Identifying 

patients with signs of conscious awareness is critically important because it opens the 

door to existing and highly effective rehabilitation interventions for a group of people 

who historically have been judged as incapable of benefitting from such interventions. 

However, if the technology we have chosen to use can only be applied to a small subset 
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of MRI-compatible and cooperative patients, we are not much closer to having a 

practical clinical tool. While researchers should always carefully consider which 

methodology is best suited to address their specific research questions, EEG is overall a 

more widely applicable, less expensive, more readily available, and more practical 

technique for application in patients with DOC, and research in the field is quickly 

evolving away from fMRI and back to EEG-based measures.   
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Preface 

 Chapter 1 provided a comprehensive overview of the use of fMRI and EEG for the 

assessment of cognition and awareness in disorders of consciousness, and ended with a 

discussion of the relative merits and drawbacks of each method for this population. EEG 

is clearly a preferable method in this case and the current trend in DOC research reflects 

a shift from fMRI to EEG-based methods.  However, there has been an implicit 

assumption that EEG and fMRI would be equally able to detect awareness in an 

individual patient; that if a VS-diagnosed patient is covertly conscious, EEG and fMRI 

would be equally likely to spot the misdiagnosis. Each method in isolation has been able 

to detect awareness in otherwise non-responsive patients (Connolly et al., 1999; Cruse et 

al., 2011; A. M. Goldfine et al., 2011; Monti et al., 2010; Owen et al., 2006), but there has 

never been reported case where both methods were used in the same patient. The goal 

in shifting from fMRI to EEG is to be able to apply the method to a larger number of 

patients and thus possibly detect more cases of covert awareness in misdiagnosed VS.  

However, fMRI and EEG measure very different brain processes (haemodynamic 

response and electrical activity, respectively) so it is possible that they would not lead to 

the same diagnosis in an individual patient. In that case, switching from fMRI to EEG 

may forfeit valuable information.  Therefore it is imperative to establish the degree to 

which the two methodologies converge upon a conclusion about an individual’s state of 

awareness.  This was the central goal of the study presented in Chapter 3. The only way 

to perform such a comparison while ensuring that the underlying brain state is identical, 

and not influenced by factors such as the substantially different testing environments, 

arousal, attention, learning, or practice effects, is to record them simultaneously in the 
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same subjects. Thus, simultaneous EEG/fMRI is the only suitable methodology for this 

purpose. While simultaneous EEG/fMRI recordings have been performed and 

published for well over a decade, the two techniques are profoundly incompatible and 

many technical obstacles must be overcome in order to achieve reasonable data quality. 

Essentially, a sensitive system designed to detect and amplify minute, microvolt-level 

variations in electrical activity via metallic sensors and long, conductive cables is placed 

inside powerful magnetic fields, both static and  rapidly changing, with strengths about 

60,000 times stronger than the Earth’s magnetic force to which it is normally exposed. 

The electrodes and leads are also exposed to intense radio-frequency (RF) energy 

emitted during the scan sequence (Lemieux et al., 1997). Equipment and participant 

safety issues have mostly been resolved through the development of specialized MRI-

compatible EEG recording systems (see Gutberlet, 2010 for review). However, in 

accordance with Faraday’s Law, any change in the magnetic fields induces currents in 

the electrodes and leads. This includes switching of the magnetic gradients (Allen et al., 

2000), subject movement, cable movement/vibration (Masterton et al., 2007), and 

motion related to the cardiac cycle (Allen et al., 1998; Debener et al., 2008). The voltage 

potentials resulting from these currents are recorded along with the EEG and form 

artifacts that are orders of magnitude greater than the EEG in both amplitude and rate 

of change (Allen et al., 2000; Ritter et al., 2007). The result is a recorded signal in which 

the EEG is completely obscured by artifact. Subject and cable motion-related artifacts 

can be reduced by carefully stabilizing the subject and the equipment inside the scanner 

(Mullinger et al., 2013), and the RF artifact is effectively suppressed with a low pass 

filter since it has a much higher frequency range than the EEG. This leaves the artifacts 

caused by the gradient switching and by the cardiac cycle. As this chapter will discuss, 
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the gradient artifact can be effectively removed with the proper hardware configuration 

and acquisition parameters because of its technical origin (Mandelkow et al., 2006; 

Mullinger et al., 2013). However, the cardiac-related artifact, known as the 

ballistocardiogram (BCG), is endogenous to the subject and can fluctuate substantially 

over time (Debener et al., 2008). Its removal has been the subject of many 

investigations in the signal processing literature, with little consensus on the most 

effective method. The validity of the results of the simultaneous EEG/fMRI study 

presented in Chapter 3, which forms the core of this thesis, hinged upon effective 

removal of this artifact. Therefore, a great deal of preliminary analysis was performed to 

ensure the quality of the BCG removal. Of the many BCG removal procedures that have 

been proposed (e.g., Assecondi et al., 2009; Dyrholm et al., 2009; Ellingson et al., 2004; 

Masterton et al., 2007; Nakamura et al., 2006; Srivastava, et al., 2005; Vincent et al., 

2007; Wan et al., 2006), only two (Allen et al., 1998; Niazy et al., 2005) have been 

‘packaged’ and made available to other researchers. No direct comparison of the two 

software tools has previously been published, and so it was of vital importance to the 

integrity of the study presented in Chapter 3 that the performance of each method be 

established. The current chapter presents a detailed analysis of the performance of two 

popular and widely available algorithms for removal of BCG. 

 

  



Ph.D. Thesis – A.H. Harrison, McMaster University – Neuroscience  
                                             

 

81 
 

Abstract 

Electroencephalography (EEG) data recorded during functional magnetic 

resonance imaging (fMRI) acquisition are subject to large cardiac-related artifacts that 

must be corrected during post-processing. The present study compared two widely used 

ballistocardiogram (BCG) correction algorithms as implemented in two software 

programs. The algorithms were compared on reduction of BCG amplitude, correlation of 

corrected data with electrocardiogram (ECG) traces, correlation of independent 

components with ECG traces, and event-related potential (ERP) signal-to-noise ratio. 

Both algorithms effectively reduced the BCG artifact, with a slight advantage of average 

artifact subtraction (AAS) over the optimal basis set (OBS) method when the quality of 

the correction was examined at the individual subject level. This study provides users of 

these software tools with an important, practical and previously unavailable comparison 

of the performance of each method. 
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1. Introduction 

Functional magnetic resonance imaging (fMRI) and electroencephalography 

(EEG) are two of the most popular research methods for examining brain function. Each 

method has strengths and weaknesses for addressing particular empirical questions, 

and these are often complementary – for example, fMRI has high spatial resolution (on 

the order of millimeters) where EEG has much lower spatial resolution due to the 

distortion of the brain’s electrical signal as it passes through the tissue and bone 

between the neural generators and the electrodes that record the signal. Conversely, 

EEG has high temporal resolution (on the order of milliseconds) where the temporal 

resolution of fMRI is relatively low (on the order of seconds) due to the sluggish nature 

of the haemodynamic response that underlies the blood oxygen level dependent (BOLD) 

signal. As a result, the combination of these two techniques provides extremely valuable 

information that is not achievable with either method in isolation. Recent developments 

in EEG acquisition hardware and data processing methods have made the simultaneous 

recording of EEG and fMRI a safe and viable method for investigating brain processes at 

a spatially and temporally fine-grained level, and for investigating the relationships 

between electrophysiological and haemodynamic correlates of brain processes. 

Simultaneous EEG-fMRI has been applied in several domains including the localization 

of seizure foci in epilepsy (see Cunningham et al., 2008; Laufs & Duncan, 2007; Moeller 

et al., 2013 for reviews), investigations of the neural generators of spontaneous EEG 

oscillatory activity (e.g., Feige et al., 2005; Goldman et al., 2002; Gonçalves et al., 2006; 

Laufs et al., 2003; Moosmann et al., 2003; Omata et al., 2013), and studies of fMRI 

correlates of sleep stages (see Maquet, 2010 for review), among other applications. 
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There are, however, numerous obstacles to the collection of electrophysiological 

data inside a strong magnetic field with rapidly changing gradients. While most of the 

safety issues have been resolved with the advent of MRI-compatible EEG systems, 

substantial problems related to data quality and artifact remain a challenge for 

researchers. Many of these can be minimized by careful control of data collection 

procedures (Gutberlet, 2010; Mullinger et al., 2013), but there are two types of artifact 

that are unavoidable and must be corrected during post-processing. These are the 

scanner artifact caused by the magnetic gradient switching during fMRI acquisition, and 

the ballistocardiogram artifact related to the cardiac cycle. 

1.1 Gradient Artifact (GA) 

 Because EEG records electrical signals from the brain, the electrodes and leads 

are necessarily made of conductive materials. In accordance with Faraday’s law of 

induction, changes in the magnetic fields induce currents in the electrodes and leads. 

During echo-planar (EPI) fMRI acquisition, rapid switching of magnetic gradients 

occurs as each slice is imaged. This gradient switching is reflected in the EEG as a fast-

rising, transient signal with a slew rate that can be on the order of millivolts per 

millisecond, that completely obscures the underlying EEG (Figure 1). Therefore, in order 

to properly characterize the GA, the EEG must be sampled at significantly higher-than-

normal rates. The GA contains high-frequency components not fully covered even with a 

sampling rate of 5 kHz and so minimal deviations in the timing of the EEG and fMRI 

cause variability in the sampling of the artifact, making removal challenging. However, 

advances in hardware have enabled the synchronization of the clocks of the EEG and 

MRI devices, eliminating this technical challenge when the hardware is available. The 
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GA is present in the EEG over a broad spectrum, including typical EEG frequency 

ranges of interest (<100 Hz) and so cannot be removed by filtering alone (Felblinger et 

al., 1999). However, since the gradient artifact is a purely exogenous technical artifact 

which does not vary over time, it can be very successfully be removed using a simple 

average template subtraction approach with subsequent adaptive filtering, when the 

EEG and MRI clocks have been synchronized (Mandelkow et al., 2006). In this 

approach, a sliding average artifact is calculated over a fixed number of epochs – an 

epoch typically being either a volume or a slice acquisition – then subtracted from the 

EEG for each epoch. The artifact subtraction is followed by the implementation of an 

adaptive noise cancellation filter (Allen et al., 2000) to remove residual imaging artifact. 

The data are also typically low-pass filtered and downsampled for subsequent 

processing. The gradient artifact from a single slice of EPI can be seen, before and after 

GA correction, in Figure 2. 

1.2 Ballistocardiogram (BCG) Artifact 

 Once the gradient artifact has been removed, a second major source of artifact, 

the ballistocardiogram, can be observed in the EEG (Figure 3). The BCG is a periodic 

distortion in the EEG that is related to the cardiac cycle and is always present when the 

subject is within the scanner’s magnetic field. The artifact causes a peak in the frequency 

spectrum at the heart rate frequency (normal range 1-1.7 Hz) and several higher 

harmonics (Vanderperren et al., 2007). The BCG therefore also falls within the range of 

interest for EEG and so cannot be removed by filtering. While the exact origins of the 

BCG are not conclusively known, several possible mechanisms have been proposed. 



Ph.D. Thesis – A.H. Harrison, McMaster University – Neuroscience  
                                             

 

85 
 

 

Figure 1. A 6-second segment of raw EEG data collected during simultaneous fMRI, 

dominated by gradient artifact. 

 

Figure 2. Gradient artifact from a single slice of EPI. The top panel shows the artifact in 

all channels overlaid, and the bottom panel shows the same segment of data after GA 

correction. 
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Fundamentally, all of the proposed mechanisms are underpinned by the basic principles 

of electromagnetism that dictate that movement of conductive materials in a magnetic 

field causes electromagnetic induction. Head rotation caused by heartbeat, pulsatile 

motion of the scalp caused by expansion of blood vessels, and the flow of blood – itself a 

conductive medium – through vessels adjacent to the scalp have all been proposed as 

possible sources of the BCG (Debener et al., 2008). The BCG is much less 

straightforward to remove than the GA because it is influenced by both endogenous 

(cardiovascular system) and exogenous (scanner) variables that alter the temporal and 

spatial characteristics of the artifact. Heart rate and blood flow vary over time, affecting 

the temporal properties of the signal. Also, because the sources of the BCG are spatially 

non-stationary, the artifact has a moving, rotating, and polarity-inverting topography, 

and these effects as well as the magnitude of the BCG are increased at higher field 

strengths (i.e., 3T or 7T vs. 1.5T; Debener et al., 2008).  

Many methods have been proposed to remove the BCG(Allen et al., 1998; 

Assecondi et al., 2009; Benar et al., 2003; Bonmassar et al., 2002; Dyrholm et al., 2009; 

Ellingson et al., 2004; Mantini et al., 2007; Masterton et al., 2007; Nakamura et al., 

2006; Niazy et al., 2005; Sijbers et al., 2000; Srivastava et al., 2005; Vincent et al., 

2007; Wan et al., 2006) however two methods have become widely used and are 

implemented in popular software, accessible to a breadth of researchers with and 

without  extensive expertise in signal processing.  The average artifact subtraction (AAS) 

procedure based on Allen et al. (1998) builds an artifact template for each channel 

separately using a sliding average of cardiac events identified in concurrently recorded 

ECG. This template is then subtracted from the EEG.  This method is implemented in 

BrainVision Analyzer (BVA; Brain Products, GmbH, Germany). The optimal basis set  
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Figure 3. The same segment of data as Figure 1, following gradient artifact correction. 

The BCG is clearly visible in the EEG traces. 

(OBS) method of BCG removal (Niazy et al., 2005) uses temporal PCA on each channel 

in order construct a basis set which is then used to regress out the BCG artifact from the 

EEG. This method has the advantage of allowing for more variability between 

repetitions of the artifact to be accurately captured. OBS is implemented in the FMRIB 

plug-in (University of Oxford Centre for Functional MRI of the Brain) for the EEGLAB 

toolbox (Delorme & Makeig, 2004) in Matlab (The MathWorks, Inc., USA). These two 

methods use quite different approaches to deal with artifacts found in the EEG signal 

due to the MRI environment, but the only comparison of these two methods is 

contained in the paper introducing the OBS method (Niazy et al., 2005), and gives no 
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information about how the AAS procedure was implemented, making the comparison 

opaque to the reader. Additionally, Niazy et al. (2005) used combined adaptive 

thresholding with QRS peak correction to detect heart beats before BCG removal with 

OBS and AAS. However, the BrainVision Analyzer implementation of AAS uses a 

simpler method of detecting heart beats by thresholding correlation with a template 

heart beat. Presumably, the different detection algorithms also influence the accuracy of 

the OBS and AAS methods. The objective of the current study, therefore, was to 

compare the effectiveness of these two widely used BCG correction algorithms as 

implemented in BrainVision Analyzer and the FMRIB plugin. Such a comparison 

appears overdue particularly as more laboratories explore the utility and complexities of 

simultaneous EEG and fMRI recording for various applications and seek to make an 

informed choice of correction algorithm from those already available for general use. 

2. Methods 

2.1 Data Acquisition 

Data were acquired from 4 healthy volunteers (2 female), ages 21-30 years (mean 

= 24.25; SD = 4.03), who had normal or corrected-to-normal vision, and no history of 

audiological, neurological, or psychiatric disorder.  The protocol was approved by the 

local research ethics board and all participants provided written informed consent. 

EEG data were collected using a BrainAmp MR system (Brain Products, GmbH, 

Germany), including a 64-channel MR-compatible BrainCap (Brain Products, GmbH, 

Germany) containing sintered Ag/AgCl electrodes positioned according to the standard 

10/20 system, with the ground electrode at position AFz, and the reference at FCz – the 
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standard configuration of the BrainCap MR (Brain Products, GmbH, Germany). One 

additional channel was attached to the mid-back along the left paravertebral line to 

record the ECG. All electrode impedances were maintained below 10 kΩ with an 

abrasive electrolyte paste. EEG was sampled at 5 kHz and applied to a 0.1-250 Hz 

bandpass filter. Sampling was synchronized to MRI gradient onset by SyncBox 

(BrainProducts, GmbH, Germany) to facilitate removal of gradient artifact. 

FMRI data were acquired on a GE Signa Excite 3T MRI, with a 32-channel 

receive-only head coil. Functional images were acquired with a GRE EPI sequence with 

ASSET in 40 axial slices, 4 mm thick, no gap, 3200 ms TR, 35 ms TE, 90° flip angle, 240 

mm FOV, 64 x 64 matrix. 

The EEG/fMRI data were obtained from a mental imagery study during which 

subjects were presented with a single word in both auditory and visual modalities using 

Presentation software (Neurobehavioral Systems, USA), which served as a cue for the 

subject to perform a pre-defined mental imagery task. The visual words were presented 

in white text on a black background in the center of a projection screen mounted on the 

MRI head coil. Auditory stimuli were pre-recorded and presented through MR-

compatible, noise-attenuating headphones. Stimuli were presented every 16 seconds (5 

TR) and were synced to scan onset via a TTL pulse from the scanner. Auditory stimuli 

were presented 100-150 ms after the onset of the accompanying visual stimulus. For the 

present purpose, event-related analyses were calculated to the onset of the visual 

stimulus.  Two runs of 42 trials each were recorded inside the scanner.  

One additional 42-trial run was recorded outside the scanner. In order to keep 

recording conditions as similar as possible to those inside the scanner, patients lay 

supine on a bed with their head in a coil similar to the one used in the scanner. Stimuli 
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were presented with the same method used in the scanner, with the exception that 

subjects viewed the visual stimuli on a computer screen via a mirror attached to the 

head coil rather than projected onto a screen. The EEG were data recorded with 

identical parameters. The order of in/out recording was counterbalanced. In order to 

compare equal quantities of data for in vs. out, only the first run of the data acquired 

inside the scanner were analyzed for the present study.  

2.2 Data Analysis 

2.2.1 Gradient Artifact Removal 

 Gradient artifact removal was performed using the averaged artifact subtraction 

method (AAS; Allen, Josephs, & Turner, 2000) as implemented in BrainVision Analyzer 

2.0 (Brain Products, GmbH, Germany), with a sliding template averaged over 21 artifact 

periods.  Data were subsequently downsampled to 500 Hz. Data recorded outside the 

scanner underwent downsampling only. 

2.2.2 AAS Pulse Artifact Correction 

BrainVision Analyzer 2.0 (Brain Products, GmbH, Germany) was used to detect 

cardiac events and to remove the BCG artifact with the AAS method (Allen et al., 1998). 

R-peak detection results were manually inspected for accuracy and detection 

parameters readjusted until all R-peaks in the ECG trace had been accurately detected.  

AAS was subsequently performed using a sliding average of 21 artifacts. 
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2.2.3 OBS Pulse Artifact Correction 

 The FMRIB plug-in (University of Oxford Centre for Functional MRI of the 

Brain) for the EEGLAB toolbox (Delorme & Makeig, 2004) for Matlab (The MathWorks, 

Inc., USA) was used to detect cardiac events and remove pulse artifact with the OBS 

method (Niazy et al., 2005). The detection phase is not adjustable by the user. For the 

correction phase, an optimal basis set of 3 principal components was employed per 

Niazy et al. (2005). 

2.2.4 Evaluation 

 The performance of each pulse artifact correction method in each subject was 

compared on the following criteria: 

(1) Pulse artifact amplitude: EEG data were segmented from 100 ms before to 500 

ms after each cardiac event detected in the ECG by each method (R-peaks in the 

case of AAS, and QRS-complexes in OBS). These segments were then averaged 

and the peak-to-peak amplitude of artifact, averaged across channels, was 

compared before and after each correction method (Mantini et al., 2007). This 

analysis will provide an estimate of the reduction in artifact amplitude by each 

method. 

(2) Correlation between EEG and ECG traces: Pearson’s correlations were calculated 

for each EEG channel in relation to the ECG trace, before and after each 

correction method. This analysis will give an estimate of the amount of residual 

BCG signal in the individual channel traces with a linear relationship to the ECG. 
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(3) Correlation between independent components (ICs) and ECG trace: Extended 

infomax independent components analysis was carried out in BrainVision 

Analyzer 2.0 on the corrected data. Correlations between the resulting ICs and 

the ECG trace were calculated (Debener et al., 2007; Srivastava et al., 2005). This 

analysis will consider both spatial and temporal information to provide an 

estimate of the amount of independent activity related specifically to the residual 

BCG. 

(4) ERP signal-to-noise ratio (SNR): The SNR was calculated using BrainVision 

Analyzer’s built-in option. The SNR is estimated statistically by first calculating 

the total power as the mean squares of all data points. The noise power is then 

calculated as the square of the difference between each data point and its 

corresponding value in the averaged signal. The signal power is quantified as the 

difference between the total power and the noise power. Finally, the SNR is 

estimated as the average signal power over the average noise power. This analysis 

will give insight into the effect of each correction method on the detection of 

underlying EEG signal. 

3. Results 

3.1 Pulse Artifact Amplitude 

The pulse artifact amplitudes in the uncorrected individual subject data ranged 

from 32.35±14.37 μV (Subject D with FMRIB detection) to 94.44±41.14 μV (Subject B 

with BVA detection) (Table 1 and Figure 4a). The average amplitude of the artifacts 

detected by BrainVision Analyzer was consistently larger than of those detected by the 
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FMRIB plugin, but only by a small margin in 3 subjects. Subject C, however, showed a 

more substantial difference of 16.73 μV. This observation suggests that the BVA 

algorithm (aided by the user-adjustable detection parameters) was slightly more 

accurate at placing the markers, so that the amplitude of the artifact was preserved 

during averaging; an interpretation confirmed by visual inspection of the cardiac 

markers. However, since the FMRIB plugin does not include any user-adjustable 

parameters, it could not be improved upon.  

 The amplitude of the same average signal after correction, representing residual 

BCG, ranged from 0.05±0.02 μV (Subject D after AAS) to 1.91±0.99 μV (Subject C after 

OBS). Both the amplitude and the variability of the residual artifact were consistently 

higher after OBS correction with the FMRIB plugin than after AAS correction with BVA 

(range 0.04 to 1.2 μV higher in amplitude and 0.02 to 0.48 μV higer in SD; Figure 4b). 

This result suggests that the AAS algorithm left less residual BCG in the EEG. 

 Before correction After correction Percent  reduction (%) 

Subject BVA 
detection 

FMRIB 
detection BVA (AAS) FMRIB (OBS) BVA (AAS) FMRIB 

(OBS) 
A 52.16 ±29.70 50.47±28.93 0.07±0.04 0.25±0.11 99.87 99.50 
B 94.44±41.14 93.68±40.91 0.12±0.06 0.82±0.38 99.87 99.12 
C 78.73±36.87 62.00±27.30 0.71±0.51 1.91±0.99 99.10 96.91 
D 33.88±14.91 32.35±14.37 0.05±0.02 0.09±0.04 99.85 99.73 

Group 64.80±30.65 59.62±27.88 0.24±0.16 0.77±0.38 99.63 98.71 
 

Table 1. Pulse artifact amplitudes for cardiac events before and after correction, using 

each algorithm’s respective detection and correction procedures. BVA = BrainVision 

Analyzer; AAS = average artifact subtraction; OBS = optimal basis set. 
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Figure 4. BCG peak-to-peak amplitudes before and after correction. a) amplitudes of the 

averaged BCG as identified by each program’s pulse artifact detection procedure. b) 

amplitudes of the averaged BCG following correction with each program’s 

corresponding artifact removal procedure. Error bars represent standard deviation. 

3.2 Correlations Between EEG and ECG 

 The difference between the OBS and AAS correction that was visible in the 

residual BCG amplitudes was not apparent in the correlations between the EEG and 

ECG signals. The correlations were very nearly identical at both the individual channel 

(Figure 5) and the average levels (Figure 6) in all subjects.  
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Figure 5. Correlations between ECG and EEG before and after BCG correction. 

 

 

Figure 6. Correlations between EEG and ECG before and after BCG correction, averaged 

across channels. 
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3.3 Correlations Between Independent Components and ECG 

 Mantini et al. (2007) and Srivastava et al. (2005) observed a division in 

correlation values between ICs and ECG whereby components containing BCG artifact 

fell above a threshold of approximately r = 0.25, while components unrelated to BCG 

fell well below. Thus r < 0.25 was adopted as the threshold for the current evaluation. 

Correlations between independent components and ECG were reduced to sub-threshold 

levels in subjects A, C, and D by both the AAS and OBS corrections (Figure 7). In subject 

B, 3 components after AAS and one component after OBS exceeded the threshold, 

suggesting that the BCG had not been effectively removed by either algorithm. This is 

consistent with the higher values for the correlations between the EEG and ECG also 

observed in this subject (Figures 5 and 6). 

 

Figure 7. Correlations between independent components and ECG after correction with 

AAS and OBS.  * r > 0.25. 
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3.4 ERP Signal-to-Noise Ratio 

EEG channel Cz was chosen as the channel of interest for this analysis since the 

N1 ERP, a component of the typical response to visual stimulation that appears as a 

negative voltage peaking between 100-200 ms post-stimulus, was readily identified in 

all subjects at this site in the data from both inside and outside the scanner (Figure 8).  

 

Figure 8. N1 ERP waveforms at EEG site Cz recorded outside the scanner (OUT) and 

during simultaneous fMRI acquisition, corrected for BCG with AAS and OBS. 

In all subjects, the estimated SNR was lower in the ERPs recorded during simultaneous 

fMRI than in those from outside the scanner (mean reduction in SNR = 55%). When 

averaged across subjects, the SNR values for the two methods were within an absolute 

difference of 0.001 of each other. However, at the individual subject level, AAS resulted 

in higher ERP SNR in three out of four subjects, with only one subject showing higher 

SNR following OBS (Figure 9). 
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Figure 9. Signal-to-noise ratio (SNR) at channel Cz for ERPs calculated to visual 

stimulus onset from data collected outside the scanner (OUT), and from data collected 

inside the scanner and corrected for BCG with AAS and OBS. 

4. Discussion 

As simultaneous EEG-fMRI recording becomes more widely used by researchers 

from a variety of disciplines, it is important to assess the effectiveness of popular artifact 

correction algorithms that are accessible to users with no specialized skill in signal 

processing. The current study compared the BCG correction algorithms of two popular 

EEG processing software programs – one commercially available (BrainVision Analyzer, 

Brain Products GmbH, Germany) and the other a freely downloadable plugin (FMRIB; 

University of Oxford Centre for Functional MRI of the Brain) for the freely 

downloadable EEGLAB toolbox (Delorme & Makeig, 2004) for Matlab (The 

MathWorks, Inc., USA).   

Both methods reduced the amplitude of the BCG by >96%. AAS performed better 

than OBS in terms of artifact amplitude reduction, both overall and in a majority of 

subjects. There were no differences between the two methods with regards to the 

correlation between EEG and ECG following correction, indicating that differences 
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between the methods were not evident in the linear relationship between the recorded 

ECG and the individual EEG channels. When spatial information is taken into account 

in the ICA analysis, the correlation between BCG and the ICA components was reduced 

in three of four subjects by both methods to well below threshold levels. In a fourth 

subject, three components remained above threshold after AAS, while only one 

component was above threshold after OBS, suggesting that while neither method had 

successfully removed all of the artifact, the OBS did a better job of separating out more 

independent components related to the BCG. The ERP SNR in the data acquired 

simultaneously with fMRI was substantially lower than SNR of ERPs acquired outside 

the scanner. Reduced SNR inside the scanner could be attributable to a variety of factors 

including residual scanner artifact and BCG, and more general motion-related artifact. 

EEG recorded simultaneously with fMRI is extremely susceptible to motion artifact, and 

while data containing large movement artifacts can be manually removed from the data, 

subthreshold artifacts may still be present and contribute to overall noisier data. 

Additionally, since both the GA and the BCG lie within the frequency range of interest 

for EEG, it is possible that the correction algorithms remove some of the EEG signal in 

addition to the artifact, thereby reducing the signal in addition to the increased noise. 

No difference was observable in the averaged SNR between OBS and AAS corrected 

data, however, 3 out of four subjects showed higher SNR after AAS than OBS. 

This was a small sample and only a subset of the myriad possible data 

characteristics was examined. However, both methods performed approximately equally 

in the present context and effectively removed the vast majority of the BCG. AAS 

showed a slight advantage in terms of artifact amplitude reduction and ERP SNR. 
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Debener et al. (2007) propose an additional step in which ICA components containing 

residual BCG artifact following OBS are removed before data reconstruction. This could 

equally be applied following AAS. However, as with any ICA-based approach to artifact 

removal, a substantial amount of user knowledge about the characteristics of specific 

artifacts is required to ensure accurate performance, thereby introducing an element of 

subjectivity. 

An important question for applications in patient populations is how well each 

method can handle noise. Most pathological groups produce noisier data sets, for a 

variety of reasons. OBS would inherently seem to have an advantage over AAS in that it 

does not assume a temporal relationship between different instances of artifact. 

However the placement of cardiac peak markers is an important step in the removal of 

BCG and the BrainVision implementation of AAS has the advantage of a user-adjustable 

detection procedure to ensure accurate detection of cardiac peaks before the artifact 

removal stage. It remains an empirical question how well each of these methods 

perform in the presence of less than ideal data quality. For applications in healthy 

individuals, however, researchers can be confident in the application of either method 

for the removal of BCG, as long as the quality of the correction is monitored in each 

subject. 
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CHAPTER 3: EEG AND FMRI AGREE: MENTAL ARITHMETIC IS THE EASIEST 

FORM OF IMAGERY TO DETECT. 
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Preface 

Simultaneous EEG and fMRI recording is a technically intensive technique that is 

susceptible to many artifacts - the most problematic of which were discussed in Chapter 

2 - and requires substantial setup time. These factors, combined with the additional 

limitations on performing fMRI in DOC patients (see Chapter 1), made the use of DOC 

patients for this study of the convergence of fMRI and EEG measures of awareness 

prohibitive, if not impossible. An alternative approach to the question, which could be 

implemented in healthy volunteers, was required. Since these subjects would be aware, 

addressing the question of whether fMRI and EEG provide the same information about 

level of awareness became more challenging. Functional neuroimaging-based 

judgments about level of awareness in DOC are based on the detectability of brain 

activation during an intentional mental task, such as imagery. Individuals vary in both 

their subjective ability to perform imagery tasks and in the amount/consistency of 

activation that they generate during these tasks  (Cui et al., 2007; Herholz et al., 2012; 

Lorey et al., 2011; Olivetti Belardinelli et al., 2009). Therefore, the question was 

reformulated to investigate whether EEG and fMRI provide the same information about 

the relative amount of activation generated by a subject during a variety of mental 

imagery tasks.  This also provided the opportunity to examine whether the amount of 

activation was related to a person’s familiarity with the activity being imagined; 

knowledge that could guide the selection of appropriate imagery tasks for use in 

individual DOC patients. Chapter 3 presents the core findings of this thesis. 
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Abstract 

 The diagnosis of disorders of consciousness (DOC) by traditional behavioural 

methods is problematic because a patient may be aware but unable to produce the 

required behaviour to indicate their state. Researchers are developing methods of 

detecting voluntary mental activity using functional magnetic resonance imaging (fMRI) 

and electroencephalography (EEG) in order to eliminate the reliance on behaviour for 

diagnosis. Mental imagery has been a favoured means to this end, but only a small 

number of potential imagery tasks have been investigated. Additionally, because of the 

many difficulties in using fMRI in patients with DOC, an increasing number of studies 

are employing EEG. However, there has been no verification that these two modalities 

provide converging information at the individual subject or group level.  The present 

study used a variety of mental imagery paradigms during simultaneous EEG and fMRI 

recording to accomplish 3 main objectives: to determine whether one mental imagery 

task generates the most robust activation across subjects or whether this varies by 

individual; to investigate whether the robustness of activation can be predicted from 

familiarity with the imagined activity; and whether EEG and fMRI converge upon the 

same conclusions about individual imagery performance. Results indicated that mental 

arithmetic generates the most robust activation; that level of activation cannot be 

predicted from familiarity; and that fMRI and EEG do converge upon the same answers 

to these questions. 
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Introduction 

Severe brain injury, when survived, typically results in a period of coma – a state 

of total unresponsiveness in which the eyes remain closed. If the patient does not 

awaken and recover responsiveness, coma is replaced after 10-30 days by a vegetative 

state (VS; Jennett & Plum, 1972; Posner et al., 2007), also known as unresponsive 

wakefulness syndrome (UWS; Bruno et al., 2011; Gosseries et al., 2011; Laureys et al., 

2010).  In VS/UWS, patients exhibit periods of eye-opening resembling sleep-wake 

cycles but still show no evidence of conscious awareness (Royal College of Physicians 

Working Group, 2003; The Multi-Society Task Force on PVS., 1994). Alternatively (or 

subsequently) a diagnosis of minimally conscious state (MCS) may be accorded if the 

patient demonstrates reproducible signs of intentional behaviour (Giacino et al., 2002), 

implying some level of conscious awareness.  The distinction between VS/UWS and 

MCS is a critical one that has implications for treatment, rehabilitation, pain 

management, and end-of-life decisions (Boly et al., 2008; Bressman & Reidler, 2010; 

Fins & Shapiro, 2007; Schnakers et al., 2012; Schnakers & Zasler, 2007; Wilkinson et 

al., 2009). However the accurate diagnosis of disorders of consciousness (DOC) 

presents a unique set of challenges. Consciousness is a subjective experience and 

therefore can only be unequivocally established in an individual if they can indicate that 

this is indeed the case. Clinical assessments employ protocols designed to elicit these 

behavioural indications of consciousness by probing behaviours ranging from reflexive 

to intentional response to command. If a patient is unable to produce a level of response 

consistent with conscious awareness (i.e., purposeful behaviour) they are diagnosed as 

VS/UWS. However, this behaviour-based system of diagnosis is intrinsically flawed: a 
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patient may possess some level of awareness but be unable to produce a response or 

understand the instructions requesting them to do so, for any number of reasons such as 

motor impairment, sensory or perceptual impairment, aphasia, seizure activity, low 

arousal, and pain (Giacino et al., 2009). Locked-in syndrome (LIS) presents the most 

extreme example of this scenario. Patients with total LIS are fully conscious but are 

completely paralyzed and as a result not able to generate the behavioural responses 

necessary to indicate consciousness (American Congress of Rehabilitation Medicine, 

1995).  

A growing body of research has sought to circumvent the reliance on behavioural 

measures by instead observing brain activity using functional neuroimaging measures 

such as functional magnetic resonance imaging (fMRI) and electroencephalography 

(EEG). A variety of paradigms have been used to assess cognitive functions from basic 

sensation and perception to language comprehension in patients with disorders of 

consciousness (see Harrison & Connolly, 2013 for a full review). However, in order to 

argue that a particular brain response provides evidence for conscious awareness, it 

must be established that the activation is a result of the patient’s intentional 

performance of the task in question and cannot be attributable to automatic processes 

that may occur in the absence of conscious awareness. One method of achieving this 

end, that has gained traction for its simplicity and its demonstrated effectiveness at 

detecting covert awareness (e.g., Cruse et al., 2011; Goldfine et al., 2011; Monti et al., 

2010; Owen et al., 2006), is mental imagery. The subject is simply asked to imagine 

performing an activity such as playing tennis, navigating around their home, or moving 

a hand or foot. The brain activity during the imagery periods is then compared to a 

resting baseline or to another imagery condition, and if consistent, differential 
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activation is detected, it is concluded that the subject is willfully performing the 

requested imagery task.  

The application of mental imagery for the detection of awareness was initially 

developed with fMRI (Bardin et al., 2011; Boly et al., 2007; Monti et al., 2010; Owen et 

al., 2006). However the use of fMRI in patients with disorders of consciousness presents 

a number of practical obstacles which limit its use to a small subset of patients (see 

Harrison & Connolly, 2013 for a discussion). As a result, DOC researchers have followed 

the lead of researchers using mental imagery in brain-computer-interfaces for patients 

with severe motor and neuromuscular disorders (see e.g., Neuper et al., 2006; Wolpaw 

et al., 2002 for reviews) and adopted EEG as a more affordable, accessible, and widely 

applicable method (Cruse et al., 2011; Goldfine et al., 2011).  

Objectives and Research Questions 

The present study addresses two outstanding issues in the field. The first is that 

the imagery tasks employed with DOC have been limited to sport imagery (tennis or 

swimming), navigation imagery, and hand/foot movement imagery. The sport and 

navigation imagery conditions are based largely on a single study (Boly et al., 2007) 

which found that navigation imagery was more robust than subvocal rehearsal in one 

group of subjects, and that tennis imagery was more robust than face imagery in another 

group. The tennis and navigation paradigms were subsequently used to demonstrate 

awareness in a single VS/UWS patient (Owen et al., 2006) and became the standard for 

research in DOC. A recent application of hand and foot movement imagery in VS/UWS 

(Cruse et al., 2011) was based on the foundations of brain-computer interface research 

using these tasks for control of devices (see Neuper & Pfurtscheller, 1999; Neuper et al., 
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2006a; Neuper et al., 2006b; Wolpaw et al., 2002 for reviews). We believe that, while 

this small set of imagery tasks has proven effective in many cases, further investigation 

of alternative imagery tasks is merited. Pilot studies with both healthy and brain-injured 

participants have shown that individuals vary substantially in their subjective ability to 

perform specific mental imagery tasks (unpublished observations). Evidence from fMRI 

studies of vividness of mental imagery in various modalities suggest that there is a 

relationship between an individual’s subjective rating of imagery performance and the 

magnitude of the blood-oxygen level dependent (BOLD) response (Cui et al., 2007; 

Herholz et al., 2012; Olivetti Belardinelli et al., 2009). These findings suggest that while 

navigation, sport, or hand/foot imagery can successfully demonstrate awareness in 

patients who are easily able to perform them, there may be a subset of patients who have 

difficulty engaging in a particular imagery task and are not able to generate brain 

activation robust enough to be detected. Our study sought to broaden the search for 

useful mental imagery tasks in several ways. First, we added imagery conditions that 

have not been examined in this context previously. Second, we examined all of the 

imagery conditions in the same group of subjects so that the robustness of activation 

could be directly compared across all conditions within individuals. Third, and perhaps 

most significantly, we defined robustness of activation in a spatially agnostic fashion 

that is critical if the technique is to be applied in patients with brain injury (Goldfine et 

al., 2011). Previous fMRI studies (Boly et al., 2007; Monti et al., 2010; Owen et al., 

2006) have adopted a region-of-interest (ROI) approach based on previous imagery 

studies and on control group data. This type of analysis is legitimate and widely used to 

increase statistical power, but is insufficient for the present purpose of developing a 

method for direct application to brain injured patients. A catastrophically injured brain 



Ph.D. Thesis – A.H. Harrison, McMaster University – Neuroscience  
                                             

 

115 
 

cannot be expected to produce a pattern of activation comparable to that observed in 

healthy controls, even if the associated function remains. A great deal of functional 

remapping may take place as a result of brain injury, so activation is probed only in 

those locations where it occurs in healthy brains, evidence of intact function may go 

undetected (Carmichael, 2003; Kolb, 2003; Wittenberg, 2010). The current study 

examines instead the consistency of response within an individual, rather than 

comparing patterns of activation to a normative group. For EEG this took the form of a 

machine-learning based approach which finds the data features most relevant to the 

separation of imagery versus rest in an individual subject. For fMRI, a whole-brain 

conjunction analysis was employed to identify regions that are consistently active within 

an individual over repeated testing runs. Within the overarching goal of expanding the 

range of mental imagery paradigms, we sought to answer three specific questions: 

Research Question 1: Is There an Imagery Task that Provides the Most Robust 

Activation Regardless of Individual Differences? 

It is not sufficient to simply identify additional mental imagery tasks that may be 

useful for the detection of awareness. It is important to determine whether there are 

individual differences in response to imagery tasks that elicit the most robust brain 

activation, or whether one task consistently stands out as the most robust in all subjects. 

This information would guide the choice of imagery paradigms for the assessment of 

awareness. For example, if one paradigm is consistently the most robust in healthy 

subjects, it could be applied in DOC patients with some confidence that if the task is 

being actively performed, the resulting activation will be detectable. If, however, there is 

substantial individual variability in which task produces the most robust activation, then 
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we must either employ a variety of imagery paradigms, or somehow predict the task that 

will generate the most robust activation for that individual. The present study addresses 

this question by comparing a variety of imagery tasks, within individuals, on measures 

of electrophysiological and haemodynamic brain responses. 

Research Question 2: Can Robustness of Activation Be Predicted from Ratings of Task 

Familiarity? 

If individuals vary on which imagery condition produces the best activation, we 

must then ascertain whether, in order minimize the number of paradigms necessary, the 

best imagery task for a given patient can be chosen based on their individual abilities or 

interests. FMRI studies have shown a relationship between vividness of mental imagery 

and the magnitude of the BOLD response (Cui et al., 2007; Herholz, et al., 2012; Lorey 

et al., 2011; Olivetti Belardinelli et al., 2009). However, in patients with disorders of 

consciousness, these ratings are not available. The choice of imagery task for such a 

patient would therefore be based on what type of activity they are likely to be able to 

imagine most vividly. Logically, this would be an activity that they are familiar with 

performing. For example, an athlete might be asked to imagine playing their sport, 

whereas a musician might be asked to imagine a piece of music, or to imagine the finger 

movements associated with playing their favourite instrument. It is not known, 

however, whether a person’s familiarity with an activity increases the vividness of their 

imagery and/or the intensity of the brain response during imagery. The present study 

addresses this question by investigating the relationships between subjective ratings of 

imagery vividness and familiarity with the imagined activity. This relationship will be 

examined in relation to the fMRI and EEG responses recorded during imagery. 
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Research Question 3: Do fMRI and EEG Provide Converging Answers to Questions 1 

and 2? 

The third and most important goal of this study was to determine if EEG and 

fMRI produce the same answers to the above questions. There has been a shift in the 

field of disorders of consciousness from a focus on fMRI to an almost exclusive use of 

EEG for the detection of awareness. However, there has been an implicit assumption 

that if an individual patient is performing a mental imagery task, the brain activity will 

be equally detectable by EEG and fMRI and either of the two techniques would 

ultimately lead us to the same conclusion about a patient’s level of awareness. But fMRI 

and EEG measure two very different indices of brain activation (Logothetis, 2008) and 

so it is entirely possible that the two methodologies would lead us to different 

conclusions about an individual patient. It is also possible that the convergence or 

divergence of the two methods is different for various imagery paradigms. For example, 

a motor imagery paradigm may generate activation that is easily distinguishable from 

rest with both fMRI and EEG, while music imagery may be more easily detected by 

fMRI than EEG, or vice versa. Given the shift away from fMRI and toward EEG, it is 

imperative to verify that we are not losing anything ‘in translation’. The only way to test 

this empirically is to record both types of data and compare their ability to distinguish 

imagery from rest at the individual subject level. In order to directly compare fMRI and 

EEG data, we must be certain that the underlying brain states are identical during both 

recordings. The data must therefore be recorded simultaneously, and not sequentially, 

in the same subjects in order to rule out the influence of extraneous variables like 

arousal, attention, learning, etc. The present study examines the questions posed above 
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(individual variability in robustness of activation for various imagery tasks, and 

relationship of activation to task familiarity) in both EEG and fMRI, recorded 

simultaneously to determine the degree to which the two techniques converge.  

Methods 

Participants 

Data were collected from 17 healthy volunteers (11 female) aged 18-48 years (x̄ = 

26.5, SD = 8.7) who had no history of neurological, psychiatric, or audiological disorder. 

Data from 2 subjects were excluded due to excessive motion artifact, and one subject 

was excluded due to susceptibility artifact in the fMRI data caused by dental metal. 

Seven subjects were excluded due to an as yet undiagnosed technical problem with their 

fMRI data. The fMRI data exhibited a pattern such that the first seven subjects showed 

appropriate activation during the imagery tasks with expected amounts of within- and 

between-subject variability, but the last seven subjects showed virtually no activation 

after the conjunction analysis (see ‘fMRI Analysis’ section below) with individual runs 

exhibiting lack of activation or suspicious noise patterns. This resulted in a significant 

difference in the number of active voxels between the first half of the subjects and the 

second half, t(82) = 3.983, p < .001. As a result, we concluded that the data from the last 

7 subjects did not belong to the same distribution as the first 7 and were therefore not of 

sufficient quality to be included in the current study. The study protocol was approved 

by the local research ethics board and all participants provided written informed 

consent. 
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Experimental Design and Procedure 

Data were acquired in three (3) runs of simultaneous EEG/fMRI recording. Each run 

consisted of six (6) 16-second trials in each of 7 different conditions: 

1) Sport-related motor imagery. Participants were asked to choose the sport or full-

body activity (e.g., dancing, jumping jacks) that is most familiar to them, and to 

imagine performing that activity intensely, focusing on the kinesthetic and 

somatosensory aspects of that activity rather than on visual aspects.  

2) Navigation imagery. Participants were asked to imagine navigating around their 

home from room to room, paying attention to all aspects of the room (e.g., 

placement of furniture, decor, objects in room). 

3) Music imagery. Participants were asked to choose a song that was very familiar to 

them, and were asked to imagine listening to that song through headphones, 

concentrating on all aspects of the song, including the melody, the 

instrumentation, the rhythm, the lyrics, and the vocals (if present), etc. 

4) Mental arithmetic. Participants were asked to choose a different 3-digit number 

at random for each trial and count backwards by threes. 

5) Finger tapping imagery. Subjects were asked to imagine pushing a button with 

each of the fingers of the right hand in succession, repeatedly, focusing on the 

somatosensory and kinesthetic rather than visual aspects of the imagery. 

6) Running imagery. Similar to the sport imagery condition only in this case 

subjects were asked to imagine running. This task was chosen as a standard 

imagery condition of an activity with which all subjects would have some level of 

familiarity. 
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7) Rest. Participants were asked to clear their mind and think of nothing in 

particular. 

Each trial began with a single-word auditory cue, presented through headphones, 

consisting of a single pre-recorded word indicating which of the 7 conditions was to be 

performed for the duration of the trial. Participants were asked to keep their eyes open 

and fixate on a central target, in order to avoid excessive eye movements, alpha EEG 

associated eye closing, and sleepiness. Conditions were presented in pseudo-random 

order, with no condition occurring more than twice in a row. These conditions were 

explained in detail before subjects entered the scanner. 

fMRI Acquisition 

fMRI data were acquired on a GE Discovery MR750 3T MRI with an 8-channel 

receive-only head coil. Functional images were acquired with a GRE EPI sequence with 

ASSET in 40 axial slices, 4 mm thick; 3200 ms TR, 35 ms TE, 90° flip angle, 240 mm 

FOV, 64 x 64 matrix. 214 volumes were acquired per functional run and the first four 

volumes of each run were discarded to allow for T1 equilibration. 

Whole-brain high-resolution 3D anatomical images were acquired with an 

FSPGR sequence with ASSET in 1 mm-thick axial slices; 240 mm FOV, 512 x 248 

matrix. 

EEG Acquisition 

EEG was recorded with an MR-compatible 64-channel system (Brain Products 

GmbH, Munich, Germany) with electrodes at standard 10-20 sites, referenced to site 

FCz with ground electrode at AFz. EEG was sampled at 5 kHz with a 0.1-250 Hz 
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bandpass filter.  Electrode impedances were kept below 10 kΩ. EEG sampling was 

synchronized with the MRI system’s clock via SyncBox (Brain Products GmbH). 

Imagery Questionnaire 

Following testing, participants were asked to fill out a questionnaire about their 

subjective experiences performing each of the imagery tasks. The questionnaire was 

adapted from the Mental Imagery Questionnaire – Revised (MIQ-R; Hall & Martin, 

1997) and the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2; Roberts et al., 

2008). Subjects rated each condition on their familiarity with the actual activity 

involved and the vividness of their imagery of that activity. 

fMRI Analysis 

All fMRI analyses were carried out in Brain Voyager QX 2.6 (Maastricht, 

Netherlands). Functional image preprocessing included slice scan time correction, 3D 

motion correction, and high-pass temporal filtering. Statistical parametric maps were 

computed from the preprocessed data using a multi-run, single-subject general linear 

model (GLM) with the 6 mental imagery conditions as predictors, and the rest condition 

as baseline, with separate predictors for each run. A conjunction contrast was computed 

for each condition to identify only those voxels that were active for that condition across 

all three runs. The resulting map was thresholded at p < 0.01, and corrected for 

multiple comparisons to p < 0.05 using a cluster threshold estimation procedure 

(Forman et al., 1995). The total number of positive active voxels in the surviving clusters 

was tallied for each condition in each subject. 
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EEG Preprocessing 

EEG data were corrected for MRI gradient artifact using an average artifact 

subtraction procedure (Allen, Josephs, & Turner, 2000) as implemented in BrainVision 

Analyzer 2.0 (Brain Products, GmbH, Germany). Data were downsampled to 500 Hz. 

Cardiac events were detected in the concurrently recorded ECG using BrainVision 

Analyzer’s detection algorithm. Ballistocardiogram artifacts were corrected with the 

optimal basis set (OBS) approach (Niazy, Beckmann, Iannetti, Brady, & Smith, 2005) as 

implemented in EEGLAB (Delorme & Makeig, 2004) with the R-peak markers imported 

from BrainVision Analyzer. Ocular artifacts were corrected with ICA. A Butterworth 

zero-phase IIR filter was applied with bandpass 1-70 Hz, with a 60 Hz notch filter and 

data were digitally re-referenced to a common average. Each imagery trial was 

segmented into four 3.5-second epochs, beginning 2 seconds after the onset of the 

instruction, in order to avoid any responses specific to the auditory instruction stimulus. 

Segments were rejected if a) two adjoining data points differed by more than 50 μV, b) a 

difference of more than 200 μV was observed in a 200 ms interval, or c) the absolute 

amplitude exceeded 100 μV.  Brain region sources were estimated on the concatenated 

segments for each condition with BESA Research 6.0’s (BESA, GmbH, Germany) brain 

source montage which estimates, from the 64-channels of EEG, 3 orthogonal sources at 

each of 15 brain regions, for a total of 45 sources.  

Machine Learning Based Analysis 

If a paradigm is to be applied in severely brain-injured populations, it is crucial 

that the analysis method assesses differences in EEG activity conditions without relying 
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on criteria established on normative groups.  A severely injured brain may not produce 

the same patterns of activation as a healthy one, so the analysis method must be able to 

detect differences between conditions, when they exist, solely on the basis of their 

consistency within the individual. For this reason we chose a machine learning approach 

to classify each imagery condition versus rest in each subject. For each subject, the 

machine learning procedure was carried out 6 times – once for each imagery condition: 

sport, navigation, music, math, finger tapping, and running, each compared to rest. The 

training set in each case consisted of 72 EEG epochs from each of 2 conditions (imagery 

or rest) for a total of 144 epochs (minus any that were rejected for artifact). The training 

set also included the condition label corresponding to each epoch (type of imagery, rest). 

The machine learning procedure consists of the following phases: feature calculation, 

feature selection, classifier training and validation of the resulting model. Each of these 

phases is described briefly below. The reader is referred to Khodayari-Rostamabad et al. 

(2010), Khodayari-Rostamabad et al. (2013), and Ravan et al. (2011) for more detailed 

descriptions of the machine learning process.    

Feature Calculation 

The first phase of the machine learning process consists of the calculation of a set 

of candidate features from each epoch of EEG data. For this study, the set of candidate 

features consisted of power spectral density (PSD) parameters for each brain region, 

and magnitude coherence values between all possible pairs of brain regions. Both are 

calculated over a spectrum of 1-30 Hz in 1 Hz increments. These were calculated using 

Matlab’s (The MathWorks, Inc., USA) ‘mscohere’ and ‘cpsd’ functions, respectively. 

These functions use a modified Welch periodogram method (Welch, 1967) incorporating 
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a Hamming window for PSD and coherence estimation. Coherence values inherently 

range from -1 to 1, and PSD values were normalized to have zero mean and variance = 1. 

Feature Selection 

The feature calculation step results in an extremely large number of candidate 

features, most of which will have little or no relationship to the target variable (imagery 

vs. rest). We therefore select those features that have minimum mutual statistical 

dependence (redundancy), and simultaneously, maximum statistical dependence 

(relevance) with respect to the imagery condition, to yield a much smaller set of Nr  most 

discriminating features. To this end, we used the minimal-redundancy-maximal-

relevance (mRMR) algorithm proposed by Peng, Long, and Ding, (2005), which uses a 

mutual information criterion to quantify statistical dependence. In our case, Nr ranged 

between 1 and 10 features. The result of the feature selection process is a set of M 

vectors, where M is the number of training samples, each of length Nr.  The vectors each 

correspond to a point in Nr-dimensional feature space. Ideally the points would form 

two tight and non-overlapping clusters in the feature space, corresponding to the two 

conditions. In reality, however, the clusters overlap to varying degrees, creating 

classification error. 

Classifier Training and Validation  

The next phase of the machine learning process is the training of a classifier and 

evaluation of its performance. Normally, this is done by a training process followed by a 

testing process on a separately acquired dataset. However, because of the limited 

number of sample trials we could acquire, we used a cross-validation process to evaluate 
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the classification rate achievable with a machine learning method. In the cross 

validation process, training is coupled with testing; specifically, a leave-one out (L1O) 

cross-validation procedure was used. In the L1O procedure, one epoch at a time is 

removed from the training set and the feature selection and classifier specification 

algorithms are carried out on the remaining data. Then the resulting classifier is tested 

on the omitted epoch and its accuracy recorded. This process is repeated until all epochs 

have been omitted once, and the accuracy of the classifier over all iterations is tallied. 

The purpose of the classifier is to take the feature vector for a given epoch and 

predict whether that epoch belongs to the imagery condition or to the rest condition. We 

implemented this process with a support vector machine (SVM; Cortes & Vapnik, 1995) 

using Matlab’s ‘svmtrain’ and ‘svmclassify’. In order to find the optimal classification 

model (which is specified by a set of parameter values, such as the type of kernel 

function, and the value of the parameters C, σ), the L1O cross validation was run 

multiple times, in each of which a different set of parameter values was used. In the end, 

the best classification model is determined as that which corresponds to the lowest 

overall L1O error rate. First a linear kernel function was applied, and repeated with a 

range of values for C, which controls the soft margin, ranging from 0.25 to 8. The soft 

margin allows a degree of error in the division of the two classes, but chooses a 

hyperplane that divides the points in feature space as neatly as possible. The SVM L1O 

procedure was repeated with a radial-basis function (rbf) kernel, which has an 

additional parameter, σ. The rbf-SVM was applied iteratively with the same set of C 

values employed in the linear case, and with values of σ ranging from 0 to 8. This entire 

classification procedure was performed iteratively using 1 to 10 features to identify the 

combination of parameters that yielded optimal classifier performance. 
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Because the machine learning procedure is designed to find structure in the data 

under adverse conditions, classification accuracies above 50% can be achieved by 

chance on purely random data. In order to verify that the accuracy rates returned by the 

machine learning procedure were above a rate that could be achieved by chance, we 

employed a permutation-test (jack-knife) approach. For each subject and each imagery 

condition, half of the feature vectors from each of the two conditions entered into the 

classifier (one of the imagery conditions vs. rest) were chosen at random and assigned 

the label for the opposite condition, resulting in two groups of feature vectors each 

containing half imagery and half rest. These new groups were then entered into the 

machine learning algorithm with the same parameters that yielded the highest 

classification accuracy in the non-randomized analysis. This procedure was repeated 

100 times for each condition, for each subject yielding a distribution of output values 

that could be attributable to chance. The result of the non-randomized machine learning 

procedure was deemed to be above chance if it was greater than 95% of the values 

obtained with the randomized labels. 

Statistics 

In order to address Research Question 1 – whether one (or more) imagery 

conditions are consistently associated with stronger fMRI or EEG signal, or whether the 

strength of activation by condition varies between individuals, repeated measures 

analyses of variance (ANOVAs) were performed separately for fMRI and EEG data. 

Because our interest is in the relative ranking of each imagery condition within an 

individual, rather than differences between the group mean number of voxels activated 

or EEG classification accuracy for each condition, a non-parametric approach was 
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applied. Friedman’s ANOVA (Friedman, 1937, 1939) is based on ranked data: the 6 

imagery conditions for each individual are ranked from 1 (lowest) to 6 (highest) and the 

test statistic is calculated from the ranks rather than the original data. This approach 

also has the benefit of not relying on the satisfaction of parametric assumptions. If one 

(or more) of the imagery conditions consistently gives better imaging results across 

subjects, a significant result is expected. If subjects vary in terms of which imagery 

condition produces the best activation, a non-significant result is expected. 

In order to address Research Question 2 – whether robustness of activation to 

imagery can be predicted from a participant’s level of familiarity with the activity being 

imagined - linear regression analyses were performed with ratings of familiarity as 

predictors for EEG classification accuracy and number of active fMRI voxels, 

respectively, across all imagery conditions. To verify whether our data replicate previous 

findings of a relationship between vividness of imagery and strength of brain activation 

(Cui, et al., 2007; Herholz et al., 2012; Lorey et al., 2011; Olivetti Belardinelli et al., 

2009), a second linear regression was performed separately for fMRI and EEG with 

ratings of vividness as a predictor. Finally, to verify our assumption that ratings of 

familiarity would be related to ratings of imagery vividness and therefore, based on 

previous findings (Cui, et al., 2007; Herholz et al., 2012; Lorey et al., 2011; Olivetti 

Belardinelli et al., 2009) be predictive of brain activation, Pearson’s correlation was 

calculated between the two ratings across all imagery conditions. 

Research question 3 was addressed by qualitative comparison and evaluation of 

the EEG and fMRI results from questions 1 and 2. 
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Results 

Research Question 1: Is There an Imagery Task that Provides the Most Robust 

Activation Regardless of Individual Differences? 

fMRI 

The first question we sought to address was whether individuals vary in terms of 

which imagery conditions produce the most robust activation, or whether one (or more) 

task consistently and robustly differs from rest in all subjects.  

Subject Math Navigation Sport Fingers Music Running 
A 1557 746 16 335 81 0 
B 789 599 620 423 112 0 
C 551 108 11 373 35 0 
D 1156 758 37 137 75 0 
E 2563 374 1079 130 38 24 
F 585 681 339 277 294 60 
G 206 21 134 36 20 0 

Mean 1058 470 319 244 94 12 

Table 1. Number of positive voxels for each imagery condition vs. rest, in order of 

average number, in the statistical parametric map of the 3-run conjunction analysis. 

 Analysis of the fMRI data revealed that one condition stood out as consistently 

most robust. The results of the conjunction analysis showed the highest number of 

active voxels in the mental math condition in 6 out of 7 subjects as well as in the group 

mean. In the 7th subject, it produced the second highest number of active voxels. There 

was also a condition that produced the least activation across all subjects. Running 

imagery elicited the smallest number of active voxels in all 7 subjects, in fact failing to 

produce any reliable activation in all but 2 subjects. Statistical parametric maps for the 

three-run conjunction analysis in a sample subject are shown in Figure 1. The number of 
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active voxels for each condition is shown for each subject in Table 1 and Figure 2. The 

rank of each imagery condition is shown for each subject in Table 2.  

Figure 1. Statistical parametric maps of the three-run conjunction analysis for each 

imagery condition in a sample subject.  Running is not shown because there were no 
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active voxels in the map. SMA: supplementary motor area; SPL: superior parietal lobule; 

FEF: frontal eye fields; SOG: superior occipital gyrus; STG: superior temporal gyrus; 

IPL: inferior parietal lobule; MFG: middle frontal gyrus; IFG: inferior frontal gyrus; IFS: 

inferior frontal sulcus.

 

Figure 2. Number of positive fMRI voxels for each imagery condition vs. rest in the 

statistical parametric map of the 3-run conjunction analysis for each subject.  

Subject Math Navigation Sport Fingers Music Running 
A 6 5 2 4 3 1 
B 6 4 5 3 2 1 
C 6 4 2 5 3 1 
D 6 5 2 4 3 1 
E 6 4 5 3 2 1 
F 5 6 4 2 3 1 
G 6 3 5 4 2 1 

Mean 5.86 4.43 3.57 3.57 2.57 1.00 

Table 2. Rank of number of active fMRI voxels for each imagery condition in each 

subject. 6 = highest rank; 1 = lowest rank. 

Friedman’s ANOVA showed a significant effect of imagery condition, χ2(5) = 

27.08, p < .001. Since Math had the highest mean rank (5.86), post hoc Wilcoxon’s 

signed rank test was used to compare Math to each of the other imagery conditions. 
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After Bonferroni correction for multiple comparisons, the difference between Math and 

Navigation approached significance, z = -2.20, p = .08, and the differences between 

Math and all other conditions were significant, z = -2.37, p < .05.  

EEG 

The classification accuracies obtained from the machine learning procedure 

ranged from 59.6% to 93.0% (Table 3). Only 3 of these did not meet the criterion for 

better-than-chance performance: Subject C, Sport, Subject E, Running, and Subject G, 

Sport, fell below the 95th percentile on the distribution of accuracies returned by the 

permutation test. 

The pattern in the EEG classification rates was somewhat less clear than in the 

fMRI activation. When ranked by group mean classification accuracy, Fingers scored 

highest (80.6%) and Running scored lowest (69.7%; Table 3, Figure 3). However, when 

the individual ranks were examined, the Math condition again produced the highest 

classification accuracy rates in a majority of subjects (4 out of 7), and ranked in the top 

two in 6 out of 7 subjects.  

Subject Fingers Math Navigation Sport Music Running 
A 79.9 72.7 72.5 68.8 74.8 78.0 
B 72.2 77.8 72.9 73.6 69.0 69.2 
C 93.0 72.3 67.8 59.6* 60.6 68.1 
D 81.2 84.9 90.6 77.0 72.7 67.6 
E 83.1 83.8 76.8 80.0 72.5 61.7* 
F 85.0 90.6 90.0 89.9 81.4 77.9 
G 69.7 73.8 64.1 59.9* 61.6 65.0 

Mean 80.6 79.4 76.4 72.7 70.4 69.7 

Table 3. EEG classification accuracy (%) for each imagery condition vs. rest. * Failed to 

meet better-than-chance performance criterion. 
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Figure 3. EEG classification accuracy for each condition vs. rest in each subject. 

Subject Math Fingers Navigation Sport Running Music 
A 3 6 2 1 5 4 
B 6 3 4 5 2 1 
C 5 6 3 1 4 2 
D 5 4 6 3 1 2 
E 6 5 3 4 1 2 
F 6 3 5 4 1 2 
G 6 5 3 1 4 2 

Mean 5.29 4.57 3.71 2.71 2.57 2.14 

Table 4. Rank of EEG classification accuracy score for each imagery condition in each 

subject. 6 = highest rank; 1 = lowest rank. 

Friedman’s ANOVA showed a significant effect of imagery condition, χ2(5) = 

15.41, p < .005. Since Math had the highest mean rank (5.29), post hoc Wilcoxon’s 

signed rank tests were used to compare Math to each of the other imagery conditions. 

While differences between Math and all other conditions except for Fingers were 

significant (p < .05) when uncorrected for multiple comparisons, after Bonferroni 

correction, the difference between Math and Running approached significance, z = -
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2.03, p = .11, the difference between Math and Music approached significance, z = -2.20, 

p = .08, and the difference between Math and Sport remained significant, z = -2.37, p < 

.05.  

Research Question 2: Can Robustness of Activation be Predicted from Ratings of 

Familiarity? 

 The linear regression model predicting number of active fMRI voxels from 

ratings of familiarity with the activity being imagined did not fit the observed data, R2 = 

.005, p > .5, nor did the model predicting EEG classification accuracy from ratings of 

familiarity, R2 = .009, p > .5. 

 The linear regression model predicting number of active fMRI voxels from 

ratings of imagery vividness did not fit the data, R2 = .041, p = .20. However, the model 

predicting EEG classification accuracy from ratings of vividness did significantly fit the 

data, R2 = .182, p < .01. 

 Despite the different regression outcomes, familiarity and vividness were 

significantly correlated, r = .26, p = .05.  

Discussion 

Research Question 1: Is There an Imagery Task that Provides the Most Robust 

Activation Regardless of Individual Differences? 

In the case of fMRI, the mental arithmetic condition consistently provided the 

most robust activation in the vast majority of subjects and was also significantly more 

active than each of the other 5 imagery conditions at the group level. Navigation imagery 

also produced fairly robust results, rating in the top 3 in all but one subject (where it 
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ranked 4th). Sport, finger tapping, and music imagery were more variable, while running 

imagery produced the least activation in all 7 subjects, in fact failing to generate any 

significant activation in 5 subjects.  

For the classification of EEG data, the mental arithmetic condition also produced 

the strongest results in a majority of subjects, ranking highest in 4 subjects and in the 

top two in 6 out of 7 subjects, although the distinction from other imagery conditions at 

the group level was less pronounced than it was in the fMRI data, with only the 

comparison to Sport surviving correction for multiple comparisons. The classification 

rates for two subjects in the Sport condition failed to surpass the threshold for chance, 

and this was likely the reason this condition remained statistically lower than mental 

arithmetic. Finger tapping imagery was the second most successfully classified task, 

ranking in the top 3 in 5 subjects. As with the fMRI results, running and music imagery 

had the lowest average ranks.  

In both modalities, the mental arithmetic condition was the most differentiable 

from rest in the majority of subjects. The present findings were supported by a series of 

BCI studies published while the current study was underway. Friedrich et al. (2012; 

2013a; 2013b) tested several mental imagery tasks with the goal of identifying user-

specific combinations of tasks that would allow for the best control of binary or 4-class 

EEG-based BCI. They found mental arithmetic to be among the tasks that most 

frequently resulted in good classification, and also among the most stable over time. The 

success of mental arithmetic in the present study, as well as those of Friedrich et al., 

may be because of the clearly defined and procedural nature of the task. For most 

people, even simple mental arithmetic requires focused concentration, and it recruits 

many higher-order cognitive functions such as working memory and executive control. 
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Perhaps most importantly, it has a right-or-wrong outcome by which the participant can 

constantly evaluate their own performance. In contrast, all of the other mental imagery 

conditions are open-ended in terms of the exact procedure a subject may use to generate 

the imagery, with no defined outcome against which a participant can monitor their 

performance without some sort of neurofeedback.  

Regardless of the reason behind mental arithmetic’s ability to produce consistent 

and reliable activation at the individual level, the implication is clear: it has excellent 

potential as a tool for the detection of awareness. If a subject is performing mental 

arithmetic, we can expect with a fair degree of confidence that the underlying brain 

activation will be observable. By no means do we suggest that this is the only tool 

necessary to assess conscious awareness – we advocate a hierarchical assessment in 

multiple cognitive modalities (Harrison & Connolly, 2013) – but rather that mental 

arithmetic should be added to existing batteries of EEG- or fMRI-based assessments, 

perhaps replacing some of the other commonly-used mental imagery conditions that 

performed less consistently in the current study. 

Research Question 2: Can Robustness of Activation be Predicted from Ratings of 

Familiarity? 

In both EEG and fMRI, ratings of familiarity failed to predict robustness of 

activation. The implication of this finding for the choice of mental imagery task for the 

assessment of awareness in disorders of consciousness is that the most suitable imagery 

task cannot be chosen based on a patient’s personal history. With only 7 subjects, there 

may have been insufficient power to detect such an effect. However, ratings of vividness 

were able to predict EEG classification accuracy, and exhibited a trend toward 



Ph.D. Thesis – A.H. Harrison, McMaster University – Neuroscience  
                                             

 

136 
 

prediction of fMRI activation. Meanwhile, despite a significant correlation with 

vividness, ratings of familiarity showed near-zero R2 values. Unfortunately, the analysis 

of vividness ratings was only for validation purposes, and their predictive value is of 

little or no benefit for practical application to the assessment of awareness. Patients on 

whom mental imagery would be used to assess awareness are by definition unable to 

report subjective experiences. Luckily the ability to choose an imagery task based on a 

person’s familiarity with the activity being imagined becomes less important when we 

consider the answer to research question 1: that mental arithmetic produced robust 

activation in all subjects in both EEG and fMRI, and was the most robust condition in a 

majority of subjects in both modalities. Therefore, mental arithmetic seems to be a 

suitable task for detection of awareness. 

Research Question 3: Do fMRI and EEG Provide the Same Answers to Research 

Questions 1 and 2? 

With the shift in focus of the field of disorders of consciousness from fMRI-based 

assessments to EEG-based ones, it is extremely important to be aware of the extent to 

which they are redundant. That is to say, can we choose to use EEG over fMRI for 

practical reasons (Harrison & Connolly, 2013) and be confident that we will ultimately 

draw the same conclusions about a patient’s level of awareness? Ultimately, this 

question cannot be fully answered without extensive testing on patients with disorders 

of consciousness, but the present study provides some preliminary evidence that EEG 

and fMRI do give the same answers to certain questions about mental imagery. Both 

techniques identified mental arithmetic as the most effective imagery task for 

generating reliable single-subject activation, and running and music imagery as the two 
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least effective. Neither technique’s outcome appeared to be related to familiarity with 

the activity being imagined. In no subject do the rankings of all conditions match exactly 

for fMRI and EEG, however in Subject B, only the positions of lowest-ranking 2 

conditions were reversed, and in over 80% of cases (34 out of 42), individual condition 

rankings were identical to, or within 1 position of, their rank in the other modality 

(Table 5).  

Subject Fingers Math Navigation Sport Music Running 
A-EEG 6 3 2 1 4 5 
A-fMRI 4 6 5 2 3 1 
B-EEG 3 6 4 5 1 2 
B-fMRI 3 6 4 5 2 1 
C-EEG 6 5 3 1 2 4 
C-fMRI 5 6 4 2 3 1 
D-EEG 4 5 6 3 2 1 
D-fMRI 4 6 5 2 3 1 
E-EEG 5 6 3 4 2 1 
E-fMRI 3 6 4 5 2 1 
F-EEG 3 6 5 4 2 1 
F-fMRI 2 5 6 4 3 1 
G-EEG 5 6 3 1 2 4 
G-fMRI 4 6 3 5 2 1 

Table 5. Comparison of rankings for fMRI and EEG. Exact matches are highlighted in 

dark grey, rankings within 1 position are highlighted in light grey. 

While the correspondence between EEG and fMRI is not perfect, the degree to 

which the two measures agree is remarkable, considering the vastly different brain 

processes being measured (EEG directly measures electrical activity while fMRI 

measures the haemodynamic response) and the considerably divergent analyses 

employed (machine learning-based classification with linear and non-linear models 

versus classic univariate general linear model statistics). Further study with a larger 
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sample, and validation on the target patient group are required before firm conclusions 

can be drawn. However, the current, preliminary results suggest that EEG can be used 

in place of fMRI in conjunction with a mental arithmetic paradigm as a method of 

detecting voluntary mental activity without loss of information.  
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CHAPTER 4: GENERAL DISCUSSION 

In this dissertation I have examined the application of functional magnetic 

resonance imaging and electroencephalographic assessments of mental imagery 

performance for the detection of awareness in disorders of consciousness. In Chapter 1 I 

presented a comprehensive review of the application of fMRI and EEG for the 

assessment of consciousness and cognition in disorders of consciousness. I critically 

evaluated the advantages and limitations of each of the two imaging modalities for 

investigations of disorders of consciousness. I concluded that while fMRI has 

contributed, and continues to contribute, greatly to our understanding of disorders of 

consciousness, EEG is a more practical, accessible, affordable, and safer method of 

assessment for these patients, and that functional imaging-based protocols should be 

adapted for use with EEG rather than fMRI. Chapter 2 was a technical report 

comparing, for the first time, two popular methods of correcting ballistocardiogram 

artifact in EEG data acquired simultaneously with fMRI. Simultaneous EEG/fMRI 

recording was the only appropriate method to address the core issue of this thesis: the 

concordance between EEG and fMRI on assessments of mental imagery performance. 

Chapter 2 was therefore an essential study to ensure the integrity of the data presented 

in Chapter 3. I concluded that the two methods performed approximately equally, and 

that with careful quality monitoring, either could be used with confidence in normal 

data.  In Chapter 3, I investigated the concordance of fMRI and EEG measures of mental 

imagery performance in healthy volunteers for the purpose of guiding applications in 

patients with disorders of consciousness. I observed that mental arithmetic produced 

the most robust and reliable activation at the individual subject level. I also observed 



Ph.D. Thesis – A.H. Harrison, McMaster University – Neuroscience  
                                             

 

148 
 

that brain activation during mental imagery was not related to the subject’s familiarity 

with the imagined activity. Importantly, fMRI and EEG were congruent on these two 

findings. In the following chapter, I will discuss the significance and implications of the 

findings presented in this dissertation, identify limitations, and propose future research 

directions. 

Contributions and Significance 

 The review presented in Chapter 1 made a significant contribution to the 

literature on neuroimaging studies of DOC, as reflected by its publication in an 

influential, high impact journal. It examined a broad field of research within a clearly 

defined structure of hierarchically organized cognitive functions, and synthesized 

findings from both EEG and fMRI – methodologies that are typically dealt with in 

separate literatures. Most importantly, it provided a critical evaluation of the two most 

frequently employed neuroimaging techniques in DOC and highlighted the difficulties 

inherent in performing fMRI in this patient group. The problems discussed are 

ubiquitous in the field, however they are rarely, if ever, mentioned in publications. It is 

critical to illustrate the shortcomings of a method that, on the surface, holds a great deal 

of promise for detecting awareness in DOC and as a result has received considerable 

attention in both scientific and popular media. Sensationalizing a technique without an 

accompanying discussion of its pitfalls may lead to an intensification of research efforts 

on an impractical technique, rather than focusing them on finding feasible alternatives. 

After all, the ultimate goal of neuroimaging research on disorders of consciousness is to 

be able to identify all cases in which an inaccurate diagnosis of VS has been made. But if 

research efforts focus on a technique that can only be applied to a small subset of the 
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patients in question, the issue has not been far advanced and the majority of 

misdiagnoses will remain undetected. The arguments presented in Chapter 1 illustrate 

that the theoretical potential of a technique can be cancelled out by the practical 

considerations necessary to translate research into clinical practice, an issue that is far 

too often ignored. Chapter 1 therefore provides a solid, practical argument for a 

transition from the development of fMRI-based assessments in DOC to a focus on EEG-

based methods.  

 Chapter 2 provided, for the first time, an evaluation of the two most widely used 

BCG correction algorithms as they are implemented in two popular EEG processing 

software tools. Much research in the signal processing field has focused on the 

development of novel BCG correction algorithms, but few of these have been made 

available to researchers who are recording simultaneous EEG and fMRI for purposes 

other than the development of artifact correction algorithms. No previous studies have 

directly compared the two algorithms discussed in Chapter 2, and as such it provides a 

practical and concrete guide for the selection of a BCG correction algorithm in the case 

that novel methods of artifact correction are not a primary goal of a study. Certainly, 

much time and many resources would have been saved in the case of the current 

dissertation had this study been previously available. Importantly, the study also served 

as a quality assurance step in the analysis of the data for Chapter 3. The validity of EEG 

data acquired simultaneously with fMRI is heavily contingent upon proper correction of 

artifact, and Chapter 2 verified that the algorithms applied were effective. 

 Chapter 3 made several significant contributions. First was the finding that 

mental arithmetic elicits the most robust and reliable activation at the individual subject 

level. This has a clear implication for the detection of awareness in DOC.  It provides a 
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simple, straightforward paradigm that is highly likely to generate detectable activation 

in DOC patients if they are, in fact, covertly aware and able to perform the task. Previous 

studies that have used tennis, swimming, navigation, or hand/foot imagery (e.g., Bardin 

et al., 2011; Cruse et al., 2011; Goldfine et al., 2011; Monti et al., 2010) – conditions 

which produced less robust activation in the current study – may have been able to 

identify further cases of covert awareness had they employed the mental arithmetic task 

instead of, or in addition to, the other tasks.  The second important finding from 

Chapter 2 was that robustness of activation cannot be predicted from the subject’s 

familiarity with the imagined activity. This also has important implications for the 

selection of imagery tasks for detecting awareness. If the hypothesized relationship 

between familiarity and brain activation had held, the imagery task most likely to 

generate detectable activation could have been selected based on a patient’s personal 

history, interests, and abilities. However, the finding that mental arithmetic was the 

most robust in nearly every subject removes the need to predict activation from 

familiarity, and so the lack of relationship between the two measures becomes irrelevant 

for the selection of an appropriate imagery task.  Mental arithmetic can be used with 

confidence that if the subject is performing the task, the activation will be detectable. 

The third significant contribution from Chapter 3 is the confirmation that EEG and 

fMRI provide the same information about mental imagery performance. This is critical 

to the field of disorders of consciousness at this particular juncture.  Researchers are 

adopting EEG instead of fMRI as the method of choice for detecting awareness in DOC. 

However there has been no verification of the convergence of the two methods in terms 

of the conclusions that would be drawn about an individual patient’s state of 

consciousness.  This study supported the shift from fMRI to EEG by showing that the 
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two methods converge on several important variables.   EEG can therefore be used to 

assess mental imagery performance with confidence that the information gained will be 

redundant with fMRI. Of course, validation of this finding in patients with DOC is 

necessary, and EEG of mental imagery shouldn’t be used in isolation, but rather as a 

part of a hierarchical assessment battery. In the case of a negative finding, fMRI would 

provide a useful alternative method to verify the finding, when it is possible in a given 

patient.  A new diagnostic category, functional locked-in syndrome, has been proposed 

for those patients who receive a diagnosis of VS based on traditional bedside 

assessments, but who show evidence of awareness when brain-based measures such as 

fMRI or EEG are employed (Bruno et al., 2011).  Taken together, the findings from 

Chapter 3 suggest that a machine-learning based classification approach using EEG 

recorded during mental arithmetic and rest should provide a reliable tool to detect 

awareness in DOC and thus a potential diagnostic marker for this new category. 

Limitations 

 The studies presented in this dissertation have several limitations that must be 

considered along with their contributions. The first of these is the small sample sizes 

employed. In Chapter 3 the reduced sample size was due to the discarding of half of the 

collected data for technical reasons that could not be diagnosed at the time of writing. 

The fMRI data exhibited a pattern such that the first seven subjects showed appropriate 

activation during the imagery tasks with expected amounts of within- and between-

subject variability, but the last seven subjects showed virtually no activation after the 

conjunction analysis with individual runs exhibiting lack of activation or suspicious 

noise patterns. This overall pattern was deemed too coincidental to be due purely to 



Ph.D. Thesis – A.H. Harrison, McMaster University – Neuroscience  
                                             

 

152 
 

subject variables, and statistical analysis confirmed that the two halves of the data 

belonged to different distributions. However, no scanner specific variables could be 

identified to coincide with the pattern in the data, including SNR and significant 

changes to scanner hardware that occurred between the testing of the first seven 

subjects and the second set of seven. It was decided that the data were not of sufficient 

quality to be included in the analysis. The majority of analyses in both studies took place 

at the individual subject level, so large groups were not required for statistical power in 

those cases. However, a larger number of subjects would give a more accurate picture of 

individual variability and allow for broader generalization of the findings in Chapters 1 

and 2. Additionally, in Chapter 3, confidence in the results of the ANOVAs for 

differences between imagery conditions and the regressions of activation onto 

familiarity would have benefitted from the additional statistical power afforded by a 

larger sample. Small sample sizes were also an issue in Chapter 1. A large number of the 

studies reviewed reported findings from either a single patient, or a very small group of 

patients. The problem of small samples is inherent in research on DOC as there are few 

centres where these patients appear in large numbers, so caution must be used when 

interpreting and generalizing findings.  

 Chapter 3 is also limited by the exclusive use of healthy volunteers. Ideally, the 

test groups would have been comprised of a group of patients diagnosed with DOC, a 

group of patients with locked-in syndrome to serve as conscious, brain-injured controls, 

as well as the healthy volunteers. However, for the host of reasons discussed in chapters 

1-3, it was not possible to perform the simultaneous EEG/fMRI recordings on patients.  

Follow-up studies on DOC patients are imperative before the findings can be translated 

for clinical use (see Future Directions, below).  
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 An important limitation of the use of mental arithmetic for diagnostic purposes is 

the considerable cognitive demand it places on the subject, which may be too high for 

some brain-injured patients. The intensive concentration and coordinated mental 

function required to successfully perform the task may be unachievable or unsustainable 

for a severely brain-injured patient despite the presence of conscious awareness.  If any 

one of the component cognitive functions required to perform mental imagery, such as 

executive function, language (to comprehend instructions and trial cues), or working 

memory is impaired, the patient may not be able to generate brain responses reflective 

of awareness. This applies equally to all imagery-based paradigms. Therefore, mental 

imagery of any kind can never be used in isolation for diagnostic purposes. It must form 

part of a hierarchical and multi-modal battery of tests to assess all levels of cognitive 

function. It should also be noted that it may be valuable to use more than one form of 

imagery when possible. A patient’s specific injury may prevent performance of a 

particular type of imagery (e.g., a stroke affecting the motor cortex may impair motor 

imagery) and so a second imagery task in a different cognitive modality may increase 

the chance of detecting awareness. 

 Direct comparison of the results of the imagery study in Chapter 3 to previously 

published work may be limited by some of the modifications made to the paradigm. The 

‘Running’ condition has not previously been employed, but was meant to be comparable 

to the tennis and swimming imagery conditions employed in other studies (e.g., Boly et 

al., 2007; Monti et al., 2010; Owen et al., 2006), in that it is a full-body physical activity. 

Running was chosen rather than tennis or swimming because an activity was desired 

with which every subject would certainly be familiar. In Canada, tennis is not a very 

widely played sport, and while swimming is certainly more familiar, it is still an activity 
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with which some subjects may not have experience. Running, on other hand, is 

something that all healthy volunteers will have had some experience. Ultimately, the 

hypothesized relationship between familiarity and activation was not supported, but it is 

possible that there are still inherent differences in the activation generated by running 

imagery compared to swimming or tennis imagery.  Also, the finger tapping imagery 

condition, which was meant to be analogous to the hand movement imagery in other 

studies (Curran et al., 2004; Neuper et al., 2006; Pfurtscheller & Neuper, 1997; Wolpaw 

et al., 2002), used slightly different instructions (imagine pressing a button with each 

finger in succession) than other studies (e.g., imagine squeezing and relaxing hand). 

These differences should be taken into account as possible sources of variability when 

comparing the present results to other studies. 

 A possible limitation of the comparison between the fMRI and EEG results in 

Chapter 3 is the different analysis methods used in each case. For the fMRI data, a 

traditional, univariate GLM approach was applied to model the changes in BOLD for 

each imagery condition versus rest. For the EEG data, on the other hand, a complex, 

multivariate, machine learning procedure was applied to find a structure in the data 

which allowed maximal separation between each imagery condition and rest. A similar, 

machine learning-based approach could be applied to the fMRI data. A multivariate 

pattern analysis (MVPA) would take into account spatial patterns of activation in 

addition to voxel-wise increases or decreases in BOLD in the same way that the EEG 

machine learning analysis considers both coherence between brain regions as well as 

PSD.  MVPA would potentially provide additional evidence of mental imagery 

performance that is not revealed with traditional univariate techniques (Bardin, Schiff, 
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& Voss, 2012), and could add a layer of information to the fMRI findings presented in 

Chapter 3 as well as their relationship to the EEG outcomes. 

Future Directions 

 The findings presented in this dissertation open several avenues for future 

research. The most immediate of these would be to verify the generalizability of the 

findings from Chapter 3 by testing mental arithmetic against standard imagery tasks 

such as tennis/swimming, navigation, and hand/foot imagery in patients with DOC. 

Based on the findings from Chapter 3, performance of mental arithmetic should result 

in the identification of a greater number of covertly aware patients than the other 

paradigms. The evidence from Chapter 3 suggesting concordance between EEG and 

fMRI would also support the hypothesis that EEG and fMRI would identify the same 

individuals as being covertly aware. Ideally, the recordings would be done 

simultaneously, but again, this is not feasible in DOC patients and so the recordings 

would likely have to be done separately. Separate testing sessions would introduce an 

additional set of session-dependent variables (e.g., arousal, attention, learning, 

positioning) whose influence on the concordance between EEG and fMRI would have to 

be carefully considered.  

 The current findings also support recent investigations of mental arithmetic as a 

control mechanism for brain-computer interfaces (BCI; Friedrich, Neuper, & Scherer, 

2013; Friedrich, Scherer, & Neuper, 2012, 2013). The vast majority of studies of mental 

imagery for BCI control use hand or foot motor imagery. While this type of imagery may 

be more intuitive and directly translatable to the desired outcome (e.g., left hand 

imagery to move a cursor to the left, and right hand imagery to move it to the right),  the 
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success rates of these types of BCIs are far from perfect, particularly for end users with 

disabilities (Leeb et al., 2013). Mental arithmetic may provide a useful control 

mechanism that would provide increased success for some users and the recent studies 

from Friedrich and colleagues cited above provide preliminary support for this claim. 

The finding that activation related to mental arithmetic was easier to detect than other 

imagery conditions suggests that there is some aspect of the task that facilitates 

engagement and sustained concentration. It was proposed in the discussion of Chapter 3 

that this may be due to the well-defined nature of the task and the right-or-wrong 

outcome against which the participant can evaluate their ongoing performance, in 

contrast to the dynamic and non-specific nature of the other imagery tasks. By this logic, 

other well-defined mental “work” tasks may also produce robust and reliable activation. 

Future studies could investigate the relative performance of tasks like word generation, 

mental rotation, subvocal recitation of, for example, reverse alphabet, as additional 

potentially useful tasks for the detection of awareness. BCI researchers have recently 

investigated a number of such tasks in addition to mental arithmetic (Friedrich et al., 

2013a; Friedrich et al., 2012; Friedrich et al., 2011; Friedrich et al., 2013b) and have 

found their EEG signatures to be distinctive from other classes of mental imagery, 

making them useful as potential control mechanisms for BCI, and thus also likely 

candidates for detection of awareness.  A necessary element of studies of these tasks for 

the detection of awareness, that has been absent from DOC research to date, is the 

estimation of sensitivity and specificity. There is frequently a dissociation between 

diagnoses and imaging findings, in both directions – patients diagnosed as VS/UWS 

who exhibit imaging evidence of awareness, but also patients who can communicate at 
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bedside who do not show corresponding imaging evidence of awareness (Bardin et al., 

2011; Coleman et al., 2009; Faugeras et al., 2011; Faugeras et al., 2012). 

 A useful follow-up study to the evaluation of BCG correction algorithms in 

Chapter 2 would be a similar comparison of the same algorithms on data of suboptimal 

quality. EEG data from many patient populations is prone to artifact from motion, EMG, 

excessive eye movement such as eye rolling or nystagmus, and slow potentials due to 

sweating or oily scalp, all of which are absent or easy to control in healthy subjects. The 

ability of each algorithm to deal with noise from these sources is of critical importance 

for any simultaneous EEG/fMRI studies on patient populations. 

Conclusions 

 In this dissertation I have explored the use of fMRI and EEG to detect 

performance of various mental imagery tasks within the framework of the assessment of 

awareness in disorders of consciousness. I have also provided an evaluation of the 

effectiveness of artifact removal methods for simultaneous EEG/fMRI recordings. I have 

demonstrated that mental arithmetic produces the most robust and consistent 

activation compared to navigation imagery, music imagery, physical activity imagery, 

finger movement imagery, and running imagery, at the individual level in a strong 

majority of subjects. Furthermore, I have demonstrated clear agreement between fMRI 

and EEG on these measures.  Taken together, these findings provide a solid foundation 

for the further development of EEG-based assessments for disorders of consciousness.  
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