
Modelling Risk Dependencies and Propagation in Supply Chains



MODELLING RISK DEPENDENCIES AND PROPAGATION IN

SUPPLY CHAINS

By

LEILA MORTEZA BEIGI, B.Sc.

A Thesis

Submitted to the School of Computational Science & Engineering

and to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science

McMaster University

c� Copyright by Leila Morteza Beigi, December 2013



MASTER OF APPLIED SCIENCE (2013) MCMASTER UNIVERSITY

(School of Computational Science & Engineering) Hamilton, Ontario

TITLE: Modelling Risk Dependencies and Propagation in

Supply Chains

AUTHOR: Leila Morteza Beigi

B.Sc. (Applied Mathematics)

University of Damghan Basic Sciences, Damghan, Iran

SUPERVISOR: Dr. Elkafi Hassini, Associate Professor

NUMBER OF PAGES: xii, 83

ii



To my husband Ahmad

to my son Daniel

and to my parents and siblings



Abstract

Today’s highly integrated supply chains are exposed to various types of risks which

disrupt the normal flow of goods or services within a supply chain network. Since

most of these individual risks are interconnected, a mitigation strategy to tackle one

risk may result in the exacerbation of another.

Risk dependencies have been modelled using two approaches in the financial in-

surance literature : (i) random variables, and (ii) copulas. In this dissertation these

studies are reviewed and extended. Also, applications for these models for di↵erent

supply chain network configurations are presented. Then, a Poisson process model

for risk propagation is proposed. Unlike the existing models, the transition rate of

the proposed model not only expresses the time dependency, but also captures other

possible dependencies in the network. Finally, the thesis is summarized and general

directions and suggestions for future research on risk dependency and propagation

modelling are provided.
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Chapter 1

Introduction

1.1 Motivation

As the supply chain networks are becoming more connected and interdependent,

a failure at any point of the network can result in major disruptions to the flow of

products or services in the network. Furthermore, the increase in complexity and

o↵shoring of products and services has increased the risk diversity within the supply

networks (Harland et al., 2003). The fact that supply chain operational models had

traditionally emphasized economic e�ciency, leading to supply chains operating on

minimum inventories and facilities, is likely to delay the recovery from disruption

(Jones, 2013). In addition, the use of just–in–time systems had meant that supply

chains reduced their suppliers pool and in turn competing supply chains often share

the same supplier (Jones, 2013). Thus a disruption in one supply point can lead

to simultaneous disruptions in several supply chains. After the 2011 earthquake in

Japan, the major auto manufacturers have started questioning the way they operate

their supply chains and in particular how to incorporate risk e↵ects in their design

and operation. For example Aston Martin and Jaguar Land Rover have partnered

with Toyota to share information about their supply chain network in the hope that

1
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they can anticipate risky events before they occur (Jones, 2013). This trend for

collaboration was mostly driven by the realization that their supply networks are in-

terconnected. As Guillaume Jacques, a purchasing manager at Toyota Motor Europe,

said (Jones, 2013):

Our supply chains are so interdependent that there is no point in Toyota

trying to secure its supply chain on its own. Any manufacturer stopping

production on a big scale would impact others within a very short time.

Thus most of the individual risks are interconnected, so a mitigation strategy to tackle

one risk may result in exacerbation of another. Furthermore, the existing models in

the literature, mainly from the finance and insurance fields, mostly focus on single

risk events and when they consider multiple events they often assume that they are

independent.

Since supply chain disruptions are unplanned and unanticipated, all supply chains

are subject to various risks. Therefore, applying an appropriate mitigation tactic

is so crucial to manage the risk of disruptions. To take some actions in advance

of a disruption, it is necessary to predict the expected number of events and the

probabilities of their occurrence to plan accordingly. By better understanding the

mechanisms of risk propagation through the supply chain, we would be able to prevent

the undesired e↵ects of these events. Some existing models in the literature, from the

social sciences, model the initiation and spread of some behaviours using a Poisson

process. Using a time dependent transition rate for a Poisson process, social scientist

would be able to describe a process where the probability first increases and then

after reaching a maximum value decreases. We adopt a similar modelling framework

to model risk propagation in supply networks by using a non-homogeneous Poisson

process where the transition rate depends both on time and the number of events

that occurred previously.

2
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1.2 Contribution

We review the finance and insurance models on risk management with a focus

on dependency modelling and show, when possible, how they can be applied in a

supply chain context. We also outline the limitations of these models and present an

extension that is relevant for supply chains’ risk analysis.

As should be clear from the discussion in Chapter 3, the Poisson process is a

proper model for risk propagation. We argue that the probability of a major supply

chain risk event depends on the number of events already in existence and use a

time and state dependent transition rate. We present the distribution functions of

events’ arrival time, total number of events observed during a period of time and

cohort arrival counts; the chances of having a subset of the supply chain entities

being a↵ected by the major risk events.

1.3 Organization of this thesis

The remainder of this thesis is organized as follows:

In Chapter 2 we summarize the major modelling approaches for risk dependencies.

Then we discuss risk in supply chains. We review the literature on risk dependency

modelling, extend it, and outline how these models can be applied in a supply chain

context.

In Chapter 3 we propose a model for risk propagation. Then we investigate

the e↵ect of the March 11, 2011 earthquake on Toyota and Honda supply chains in

Chapter 4. We analyze the collected data in relation with the models reviewed in

Chapter 2. At the end of this chapter we use the collected data as an empirical

example for the proposed propagation model of Chapter 3.

Finally, we provide conclusions and suggestions for future research in Chapter 5.

3
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Chapter 2

Risk Dependency Modelling and

Supply Chain Applications

The outline of this chapter is as follows: First, we describe the required mathemat-

ical concepts in Section 1. Prevalent terms in the insurance context is also defined

in this section. Types of supply chain risks as well as events and conditions that

drive them are summarized in Section 2. We talk about the source of dependencies

in supply chains at the end of Section 2. Risk dependencies have been modelled in

the remainder of this chapter using two approaches: random variables and copulas.

In each category (random variables and copulas) individual risks are either in a sin-

gle class or divided in di↵erent classes. Furthermore, we outline the limitations of

these models and present the applications of dependency models, when possible, in

a supply chain context. In the last section of Chapter 2, we relax one of the critical

assumptions of the existing models, that of individual risk independency, and present

an extension, considering dependency among individual risk factors.

4
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2.1 Risk dependency modelling terms and approaches

In this section, we define several terms and concepts that we will need later in this

chapter. These definitions are taken from (Bauerle and Muller, 1998) and (Shaked

and Shanthikumar, 1997).

Supermodular function: A function f : Rn ! R is said to be supermodular, if

f(x
1

, . . . , xi + ✏, . . . , xj + �, . . . , xn)� f(x
1

, . . . , xi + ✏, . . . , xj, . . . , xn) �

f(x
1

, . . . , xi, . . . , xj+�, . . . , xn)�f(x
1

, . . . , xi, . . . , xj, . . . , xn) holds for all x 2 Rn, 1 

i < j  n and all ✏, � > 0 .

Symmetric function: A function f : Rn ! R is called symmetric, if f(x) =

f(⇡x) for all permutations ⇡x of x.

Supermodular ordering: A random vector X = (X
1

, . . . , Xn) is said to be

smaller than random vector Y = (Y
1

, . . . , Yn) in the supermodular ordering, written

X sm Y , if E[f(X)]  E[f(Y )] for all supermodular functions f assuming that the

expectations exist.

Symmetric supermodular ordering: A random vector X = (X
1

, . . . , Xn) is

said to be smaller than the random vector Y = (Y
1

, . . . , Yn) in the symmetric su-

permodular ordering, written X symsm Y , if E[f(X)]  E[f(Y )] for all symmetric

supermodular functions f assuming that expectations exist.

Stop-loss transform: For arbitrary univariate random variables Y we denote

the stop-loss transform ⇡Y (t) = E(Y � t)+ =
R1
t

F̄Y (x)dx, t 2 R.

Stop-loss ordering: X precedes Y in stop-loss order, written X sl Y , if

5
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⇡X(t)  ⇡Y (t) for all t 2 R.

Portfolio (in insurance): Is a collection of di↵erent risks caused by policy hold-

ers (insured). For example, risks like illnesses or accidents which threat individual

life in life insurance.

Contract (in insurance): A legally binding agreement between insurer and in-

sured that must be in writing to be enforceable.

Policy (in insurance): The formal contract issued by an insurer that contains

terms and conditions of the insurance coverage and serves as its legal evidence.

Insurance premium: Insurance premium is the financial cost of an insurance

policy, paid by policy holder either as a lump sum or in several instalments during the

period covered by the policy. In case that the insurance premium is not paid when

due, the insurance policy usually gets automatically cancelled.

Latent random variable: In statistics, latent variables are random variables

that are not directly observed. Their properties must thus be inferred indirectly us-

ing a statistical model (latent variable model) connecting the latent (unobserved)

variables to observed variables.

Mixture distribution: Any convex combination of probability density functions

gi defined as density function f is called a mixture distribution:

f(x) =
n
P

i=1

pigi(x),
n
P

i=1

pi = 1, n > 1.

In cases where each of the underlying distribution functions is continuous, the

6
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outcome mixture distribution function would be continuous as well. When gi’s are

from a parametric family with unknown parameters ✓i’s, the parametric mixture dis-

tribution is defined as
n
P

i=1

pig(x|✓i).

Copula function: A copula function is a joint distribution function with marginal

distribution functions as parameters. Therefore, properties of copulas are similar to

those of joint distributions.

Frechet-Hoe↵ding copula bounds: The Frechet-Hoe↵ding Theorem states

that for any copula C : [0, 1]d ! [0, 1] and any (u
1

, . . . , ud) 2 [0, 1]d the following

bounds hold:

W (u
1

, . . . , ud)  C(u
1

, . . . , ud)  M(u
1

, . . . , ud).

The function W is called lower Frechet-Hoe↵ding bound and is defined as

W (u
1

, . . . , ud) = max

⇢

1� d+
d
P

i=1

ui, 0

�

.

The function M is called upper Frechet-Hoe↵ding bound and is defined as

M(u
1

, . . . , ud) = min{u
1

, . . . , ud}.

Dependence models based on copula: Models which use copula to describe

the dependency between risks.

Single-class risk models: In these models, all risks of insurance portfolio are

considered to belong to a single class.

Multi-class risk models: Models in which an insurance portfolio is generally

divided into several classes. The insureds are classified according to the risk they

represent for the insurer.

7
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Prior: In Bayesian statistical inference, a prior probability distribution, often

called simply the prior, of an uncertain quantity p is the probability distribution that

would express one’s uncertainty about p before the “data” is taken into account. It

is meant to attribute uncertainty rather than randomness to the uncertain quantity.

The unknown quantity may be a parameter or latent variable.

De Finettie’s Theorem: To every infinite sequence of exchangeable random

variables {Xn} having values in {0, 1}, there corresponds a probability F over [0, 1],

such that:

pk,n = P (X
1

= 1, . . . , Xk = 1, . . . , Xk+1

= 0, Xn = 0) =

Z

1

0

✓k(1� ✓)(n�k)F (d✓).

Two point distribution : If there are two possible values ↵
1

and ↵
2

in an

experiment, then the probability distribution is:

Pr(X = ↵
1

) = p and Pr(X = ↵
2

) = 1� p = q p, q � 0, p+ q = 1.

Quasi- homogeneous portfolio: The portfolio is homogeneous with respect

to claim amounts where all claim amounts have the same distribution for all the

policyholders.

2.2 Risk in supply chains

2.2.1 Types of risks

As the vulnerability of a supply chain to disruption increases, it is important to

identify and manage various types of risks to avoid any supply chain break down.

8
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Supply chain risks can penetrate in every stage, not just the final stage of prod-

uct/service delivery to customers. On the other hand, dependence within di↵erent

business partners in each stage of production can worsen the impact of risk on supply

chain. So, a way of reducing damages driven by risks is to determine factors which

cause dependencies in a supply chain.

Supply chain risks can be divided into di↵erent types based on their realization

impact on a business and its environment. A summary of the most important risks

and their definitions can be found in Table 2.1. Some of these risks are mentioned by

Chopra and Sodhi (2004) and Harland et al. (2003).

Supply chain risks can also be classified based on whether or not they impact

strategic or operational supply chain decision making. In this context we define

strategic supply chain risks as those the impact of which will be long-term causing the

supply chain decision makers to change their strategics. For example, the earthquake

in Japan has led major auto manufacturers, such as Toyota, to rethink their risk

management strategies. On the other hand, an operational supply chain risk has

a short-term impact on the supply chain operations. An example is a temporary

machine breakdown or a limited disruption that may occur due to an employee leaving

a company. In addition, supply chain risks can be classified based on their source,

upstream, internal, or downstream . In Figure 2.1 we propose a strategy-source matrix

for classifying the di↵erent supply chain risks.

The matrix in Figure 2.1 can be used to help in prioritizing risk planning and

mitigation strategies. For example, we can see that Legal, IT, Quality and Reputation

may involve all links in a supply chain. We would then expect these risks to be more

dependent and their occurrence may cause a chain reaction. This then raises the

important question of how to model risk dependencies in a supply chain and what

factors are relevant in measuring supply chain dependencies. In the following section

some factors which have an e↵ect on the amount of dependence between supply chain

9
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Table 2.1: Supply chain risks

Type of risk Examples

Disruption Natural disaster, labor strike, fires, and terrorism are examples of
disruptions which can interrupt the flow of the material in a supplier
or a manufacturer. Based on the e↵ect, disruptions can be
operational or strategic.

Quality Poor quality in a supply source or in a manufacturer product or even
any failure arising from customers can harm the quality of supply chain’s
products and/or services. Based on the duration of the impact, a quality
risk can be operational or strategic.

Forecast Long lead times, seasonality, product variety, short life cycles, small
customer base, information falsification due to promotion, intensive,
lack of supply-chain visibility and exaggeration of demand in times of
product shortage, can cause an inaccurate forecast.

Legal Any action arising from suppliers, customers, shareholders or employees
which expose a firm to judicial process.

Reputation This strategic risk is one of the most critical ones. Loss of confidence can
destroy the whole value of a business financial.

Receivables When a company is not able to collect the receivables, its performance
will be a↵ected.

IT Any breakdown of information basis can destroy the highly networked
environment of a company.

Capacity Increasing or decreasing the capacity can be a strategic decision for the
companies. Having too much of excess capacity can negatively a↵ect a
company’s financial performance.

Market Changes in demand of customers, sticking to a single marketing strategy,
exchange rate risk and interest rate risk are examples of market risks.

Financial Failure of debtors to meet their financial obligation and changes in
financial markets can cause a financial loss for a company.

Competitive risk An example is when a firm is not able to di↵er its products/services form
the other competitors.

Human Resources Businesses face a strategic risk when a key executive leaves the company.

10
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Figure 2.1: Strategy-source matrix for classifying risk.

links will be examined.

2.2.2 Types of supply chain dependencies

Dependence between links in a supply chain can be a function of di↵erent factors

such as the type of relationship (transactional, preferential or strategic), the critical-

ity of the item in the final product, spend value, number of suppliers, and location

of suppliers. In Table 2.2 we list di↵erent factors that may cause supply chain de-

pendencies together with their sources. Understanding these dependency factors and

their sources would help us in building models for predicting and mitigating supply

chain risks under such dependencies.

In the next section we focus on mathematical models for representing risk depen-

dencies and indicate how they apply to supply chains.
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Table 2.2: Sources of dependence in a supply chain.

Source of dependence Examples

Sourcing ⌅ Number of suppliers
⌅ Location of supplier
⌅ Local or global sourcing
⌅ Supplier dependence
⌅ Supplier commitment to buyer
⌅ Supplier power
⌅ Financial strength
⌅ Type of contract

Distribution ⌅ Distribution network
⌅ Transportation network
⌅ Transportation modes
⌅ Rely on technologically advanced (key) suppliers

Customer ⌅ Volume
⌅ Loyalty
⌅ Customer-driven supply-chain

Information ⌅ Shared information
⌅ Push vs. pull
⌅ Information Technology service capabilities

2.3 Random variable-based dependent single-group

risk models

In this section we look at two models that employ random variables to represent

risk dependencies within a single group. The first model used a compound Poisson

random variable and the second used a two point random variable.

2.3.1 Compound Poisson approximation model (Goovaerts

and Dhaene, 1996)

Consider a portfolio consisting of n dependent risks. With risk k we associate a

claim amount Xk represented as Xk = JkBk, where Jk is a Bernoulli random variable

which is equal to 1 if risk k causes at least one claim during the reference period

with probability qk, i.e., Pr(Jk = 1) = qk = 1 � Pr(Jk = 0), and Bk is the total

claim amount produced by risk k. Dependence in this model is represented by the

12
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dependent indicators Jk. However, the conditional claim amounts Bk such that Jk = 1

(denoted by Bk | Jk = 1) are mutually independent.

The total claim of the portfolio during a fixed period of time is S = X
1

+X
2

+ ...+

Xn and its cumulative distribution function is F (s) = Pr(S  s). If we assume that

all conditional claim amounts Bk | Jk = 1 have the same cumulative distribution F ,

the portfolio is quasi-homogeneous and thus F can be approximated with a compound

Poisson with cumulative distribution function F cp as follows:

F cp(s) =
s

X

n=0

Pr(K = n)F n(s) (s = 0, 1, ...)

where K is a poisson distribution random variable with parameter � given by � =
Pn

k=1

qk and F (s) is the distribution given by

F (s) =
1

�

n
X

k=1

qkPr(Bk  s | Jk = 1).

It is worth noting that the above approximation does not hold when all conditional

claim amounts Bk | Jk = 1’s are dependent.

Application of Model 2.3.1 in Supply Chains:

One possible application of this model is in serial supply chains (see Figure 2.2).

Here we assume that Jk = 1 if risk k a↵ects at least one of the supplier, manufacturer,

distributer or retailer. The random variable Bk represents the total loss produced by

risk k. Since in a serial supply chain each partner has at most one predecessor and one

successor, the risk dependency is limited to such interactions. These supply chains

exist where a business is dealing with simple products that do not require much value

adding, except from inventory and distribution. An example can be found in produce

supply chains where a farmer produces and packages fruits or vegetables and sells

13
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Figure 2.2: A serial supply chain.

them directly to consumers (pick your own) or through a distributor and/or retailer.

2.3.2 Two-point distribution model (Dhaene and Goovaerts,

1997)

Assume that the n risks X
1

, X
2

, ..., Xn form a portfolio. In this model each risk

Xk(k = 1, ..., n) follows a two-point distribution in 0 and ↵k � 0:

Pr(Xk = 0) = pk and Pr(Xk = ↵k) = 1� pk = qk. (2.1)

If random variables X
1

, ..., Xn are assumed mutually independent, cumulative dis-

tribution function of the total claims S = X
1

+X
2

+ ...+Xn is uniquely determined

by the distributions Eq. (2.1) of the Xi’s (using convolution of n probability mass

functions). But, in this model we will not have the assumption of independency.

The expected aggregate claim will not be a↵ected by the type of dependence

between the individual risks because for each S 2 < ( set < is consisting of all

random variables S that cab be written as S = X
1

+X
2

+ ... +Xn) the mean value

is calculated by:

E(S) =
n

X

k=1

qk↵k.

We will suppose that the individual risks are arranged in an increasing order

p
1

 p
2

 ...  pn, i.e., the risk with a lower subscript has a lower probability. The

dependence between the individual risks is given by the following relation:

14
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Pr(Xk+1

= 0|Xk = 0) = 1, k = 1, 2, ..., n� 1. (2.2)

It follows from Eq. (2.2) that:

Pr(Xk+1

= 0) = Pr(Xk+1

= 0|Xk = 0)Pr(Xk = 0) + P (Xk+1

= 0|Xk = ↵k)Pr(Xk = ↵k)

pk+1

= 1⇥ pk + Pr(Xk+1

= 0|Xk = ↵k)⇥ (1� pk)

=) Pr(Xk+1

= 0|Xk = ↵k) =
pk+1

� pk
1� pk

Pr(Xk+1

= ↵k+1

|Xk = 0) = 0, (2.3)

Pr(Xk+1

= ↵k+1

|Xk = ↵k) =
1� pk+1

1� pk

This model has been developed for the analysis of life insurance claims. From

(2.2) it follows that if person k stays alive then person k+1 stays alive, but if person

k + 1 stays alive then person k + 2 stays alive, and so on. So we can conclude:

Pr(Xk+j = 0|Xk = 0) = 1, k = 1, 2, ..., n� 1; j = 1, ..., n� k.

This means that “if a person survives the exposure period, then all persons with

greater survival probabilities will also survive.” (Dhaene and Goovaerts, 1997)

Considering all former relations, possible outcome for S will be: 0,↵
1

,↵
1

+↵
2

,↵
1

+
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↵
2

+ ↵
3

, ...,↵
1

+ ...+ ↵n, and we will have:

Pr(S = 0) = Pr(X
1

= 0;X
2

= 0, ..., Xn = 0) = Pr(X
1

= 0) = p
1

,

P r(S = ↵
1

+ ↵
2

+ ...+ ↵k) = Pr(X
1

= ↵
1

;X
2

= ↵
2

; ...;Xk = ↵k;Xk+1

= 0; ...;Xn = 0)

= Pr(Xk = ↵k;Xk+1

= 0)

= Pr(Xk = ↵k).P r(Xk+1

= 0|Xk = ↵k)

= pk+1

� pk, k = 1, 2, ..., n� 1,

P r(S = ↵
1

+ ...+ ↵n) = Pr(X
1

= ↵
1

, ..., Xn = ↵n) = Pr(Xn = ↵n) = 1� pn.

Finally, the distribution function of S will be as follows:

FS(s) =

8

>

>

>

>

>

<

>

>

>

>

>

:

p
1

, 0  s  ↵
1

pk+1

, ↵
1

+ ...+ ↵k  s  ↵
1

+ ...+ ↵k+1

, k = 1, 2, ..., n� 1.

1, s � ↵
1

+ ...+ ↵n.

Model 2.3.2 does not seem very practical compared to Model 2.3.1, since depen-

dency between risksXk (k = 1, . . . , n), as expressed by (2.2), leads to the riskiest port-

folio in the sense that it has the largest stop-loss premium. (Dhaene and Goovaerts,

1997).

Application of Model 2.3.2 in Supply Chains:

An assembly network would be a possible application of Model 2.3.2. In Figure

2.3 the outside supplier is a single source to the two downstream transmission plants.

If a disruption happens in the outside supplier, even if partial, all downstream plants,

including the assembly plants may be influenced to di↵erent degrees. The latter

reflects the condition Pr(Xk+1

= 0 | Xk = 0) = 1 in model 2.3.2.
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Figure 2.3: Schematic representation of Model 2.3.2 in supply-chain, (Deleris et al.,
2004).

2.4 Random variable-based dependent multi-group

risk models

In this section we continue to discuss random variable-based models but for multi-

group situations. We describe six models that incorporate risks due to di↵erent group

factors.

2.4.1 Risk as a function of three risk factors

In the first model of Bauerle and Muller (1998), there is a strong dependence

between members of one group of a portfolio, but the dependence between members

of di↵erent groups is weaker.

Consider portfolio X = (X
1

, ..., Xn), consisting of n risks X
1

, ..., Xn. Moreover,

we assume that there exists an increasing function g : R3 ! R such that the k-th risk

is given by Xk = g (Zk, Gr, V) where k is in group r, V is an overall risk factor, Gr

is a group-specific risk factor which impacts only the risks in group r and Zk is an

individual risk factor which indicates the individual share of risk Xk, 1  k  n. In

general, comparing two risky portfolios with di↵erent sizes and number of groups is

di�cult. However, using Theorem 2.4.1.2 (that will be described later in this section)

makes the comparison possible in some cases. In order to state the theorem, let L

and L0 be two n-dimensional vectors with
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L = (L
1

, ..., Lr, 0, ..., 0), L0 = (L0
1

, ..., L0
l, 0, ..., 0)

1  r, l  n, Lk, L
0
k 2 N for all k and

Pn
k=1

Lk =
Pn

k=1

L0
k = n . Then, we consider

two n-dimensional risky portfolios X and Y given by

X
1

= g(Z
1

, G
1

, V ) Y
1

= g(U
1

, G
1

, V )

. .

. .

. .

XL1 = g(ZL1 , G1

, V ) YL0
1
= g(UL0

1
, G

1

, V )

XL1+1

= g(ZL1+1

, G
2

, V ) YL0
1+1

= g(UL0
1+1

, G
2

, V )

. .

. .

. .

XL1+L2 = g(ZL1+L2 , G2

, V ) YL0
1+L0

2
= g(UL0

1+L0
2
, G

2

, V )

. .

. .

. .

Xn = g(Zn, Gr, V ) Yn = g(Un, Gl, V )

where the individual risk factors Z
1

, ..., Zn, U1

, ..., Un are i.i.d. random variables, the

group specific risk factors G
1

, ..., Gmax(r,l) are i.i.d. random variables and the environ-

mental risk factor V is a random variable independent of Zk, Uk and Gmax(r,l). Let

S =
Pn

k=1

Xk and S 0 =
Pn

k=1

Yk.

The theorem uses majorization (Marshall and Olkin, 1979) for comparing the

structure of vectors L and L0. The definition of majorization is as follows:

Definition 2.4.1.1 let X,Y 2 N
0

n and denote by X
[1]

� ... � X
[n] the decreasing

rearrangement of X, and similarly for Y . We say that Y majorizes X (X � Y ) if
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and only if

Pr
k=1

X
[k] 

Pr
k=1

Y
[k] , r = 1, ..., n� 1, and

Pn
k=1

X
[k] =

Pn
k=1

Y
[k].

Intuitively speaking X � Y means that in Y the groups are larger and/or more

unequal.

The following theorem of Bauerle and Muller (1998) states the main result for this

model:

Theorem 2.4.1.2 [ Bauerle and Muller (1998)] If L � L0, we get under the assump-

tions of Model 2.4.1:

a) X symsm Y

b) S sl S
0

where symsm denotes symmetric supermodular ordering, and sl denotes stop-loss

ordering, as defined at the beginning of this chapter.

In this model we assume that all individual risk factors Z
1

, . . . , Zn, U1

, . . . , Un and

all group risk factors are i.i.d.. In practice it is possible to have dependent individual

risk factors or dependent group risk factors.

Application of Model 2.4.1 in Supply Chains

This model applies to supply chain networks that have unequal number of partners

at each echelon and where one has a more extensive network than the other. In Figure

2.4 network 2 has larger and more unequal groups. So, based on the result of Model

2.4.1 network 2 is more risky than network 1. The situation in Figure 2.4 can result

when looking at an alternative of a local manufacturing supply chain that is more
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Figure 2.4: Schematic representation of an application of Model 2.4.1 in supply chain.
Each circle represents a company/facility.

streamlined (e.g., Tesla electric cars) and comparing it to a global manufacturing

supply chain that has a wide distribution network (e.g., Toyota).

2.4.2 Risk dependency through global system shocks (Gen-

est et al., 2003)

Consider a portfolio of m � 1 classes including n
1

, ..., nm contracts, and Xjk is

the risk related to the kth contract in the jth class. Therefore, the aggregate claim

amount is given by:

S =
m
X

j=1

nj
X

k=1

Xjk.

A global shock, represented by an indicator random variable J
0

, can impact whole

parts of the portfolio. Risk in class j occurs with a probability that whether the

overall (such as a disaster or catastrophe) has occurred (J
0

= 1) or not (J
0

= 0). Let

J
(↵)
j imply the presence or absence of a global shock in class j, given J

0

= ↵, (↵ = 1

or 0). The risk related to the kth contract in the jth class for a fixed value of ↵ and

� = J
(↵)
j 2 [0, 1] is given by:
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X
(↵�)
jk = J

(↵�)
jk B

(↵�)
jk

where occurrence Bernoulli random variables Jjk is one when at least one claim is

filed, and the amount of total claim associated to the kth contract in the jth class is

indicated by strictly positive random variable Bjk.

Let Ī = 1� I for any probability or indicator function I. The risk Xjk may then

be indicated in the form:

Xjk = J
0

⇣

J
(1)

j X
(11)

jk + J̄
(1)

j X
(10)

jk

⌘

+ J̄
0

⇣

J
(0)

j X
(01)

jk + J̄
(0)

j X
(00)

jk

⌘

. (2.4)

It sounds reasonable to assume that:

(a) J
0

, the J
(↵)
j ’s and the J

(↵�)
jk ’s are mutually independent.

(b) B
(↵�)
jk ’s are independent of each other and of all indicator random variables.

Genest et al. (2003) proposed the following method to find the distribution func-

tion FXjk
of Xjk from those of X(↵�)

jk ’s and B
(↵�)
jk ’s. Define

E(J
0

) = r, E(J (↵)
j ) = r

(↵)
j and E(J (↵�)

jk ) = r
(↵�)
jk and similarly r̄, r̄

(↵)
j and r̄(↵�)jk .

Using conditions (a) and (b), for every choice of 1  k  nj and 1  j  m we have:

FXjk
(x) = r

n

r
(1)

j F
X

(11)
jk

(x) + r̄
(1)

j F
X

(10)
jk

(x)
o

+ r̄
n

r
(0)

j F
X

(01)
jk

(x) + r̄
(0)

j F
X

(00)
jk

(x)
o

= r
h

r
(1)

j

n

r̄
(11)

jk + r
(11)

jk F
B

(11)
jk

(x)
o

+ r̄
(1)

j

n

r̄
(10)

jk + r
(10)

jk F
B

(10)
jk

(x)
oi

+ r̄
h

r
(0)

j

n

r̄
(01)

jk + r
(01)

jk F
B

(01)
jk

(x)
o

+ r̄
(0)

j

n

r̄
(00)

jk + r
(00)

jk F
B

(00)
jk

(x)
oi

, x � 0

After a rearrangement of the terms we get:

FXjk
(x) = q̄jk + rr

(1)

j r
(11)

jk F
B

(11)
jk

(x) + rr̄
(1)

j r
(10)

jk F
B

(10)
jk

(x)

+ r̄r
(0)

j r
(01)

jk F
B

(01)
jk

(x) + r̄r̄
(0)

j r
(00)

jk F
B

(00)
jk

(x), x � 0 (2.5)
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where

qjk = rr
(1)

j r
(11)

jk + rr̄
(1)

j r
(10)

jk + r̄r
(0)

j r
(01)

jk + r̄r̄
(0)

j r
(00)

jk = P (Xjk 6= 0). (2.6)

Accordingly, each risk Xjk = JjkBjk may be denoted as it follows:

Xjk =

8

>

<

>

:

Bjk, Jjk = 1

0, Jjk = 0

Based on the definition of indicator random variable Jjk with P (Jjk = 1) = qjk in

Eq.(2.6),

FXjk
(x) = Pr(Xjk  x) = Pr(BjkJjk  x) = Pr{BjkJjk  x|Jjk = 0}Pr(Jjk = 0)

+ Pr{BjkJjk  x|Jjk = 1}Pr(Jjk = 1)

= (1� qjk)Pr{x � 0}+ qjkPr{Bjk  x}

= q̄jk + qjkFBjk
(x) (2.7)

From (2.5) and (2.7), the distribution of the strictly positive random variable Bjk

is a mixture distribution

FBjk
=

rr
(1)

j r
(11)

jk

qjk
FBjk

(11) +
rr̄

(1)

j r
(10)

jk

qjk
FBjk

(10)

+
r̄r

(0)

j r
(01)

jk

qjk
FBjk

(01) +
r̄r̄

(0)

j r
(00)

jk

qjk
FBjk

(00)

As Xjk’s are dependent in this model, it is hard to calculate directly the distribu-

tion FS of the total claim amount S of the portfolio. But, there is a handy way to

avoid this problem. We can consider a mixture structure for S under conditions (a),
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(b) and (2.4). FS can then be formulated in the following form, where ⇥ is a latent

random vector with distribution M :

FS(x) =

Z

FS(✓)(x)dM(✓), (2.8)

where S(✓) is distributed as S given ⇥ = ✓. To be clear, let ⇥ = (⇥
0

, ...,⇥m) have

values in {0, 1}m+1 such that:

P (⇥
0

= ↵) = P (J
0

= ↵) = r↵r̄(1�↵)

and

P (⇥
1

= �
1

, ...,⇥m = �m

�

�⇥
0

= ↵) = P (J (↵)
1

= �
1

, ..., J (↵)
m = �m)

=
m
Y

j=1

(rj
(↵))

�j
(r̄(↵)j )

1��j

for all ↵, �
1

, ..., �m 2 {0, 1}. For ⇥ = ✓, write X
(✓)
jk = X

(↵�j)

jk and let:

S
(✓)
j =

nj
X

k=1

X
(✓)
jk and S(✓) =

m
X

j=1

S
(✓)
j (2.9)
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So, based on Eq. (2.4) we will have:

Fs(x) = P
�

m
X

j=1

nj
X

k=1

Xjk  x
�

=
1

X

↵=0

1

X

�1=0

...

1

X

�m=0

P
�

m
X

j=1

nj
X

k=1

X
(↵�j)

jk  x
�

P{⇥ = (↵, �
1

, ..., �m)}

=
X

✓2{0,1}m+1

P
�

m
X

j=1

S
(✓)
j  x

�

P (⇥ = ✓)

=
X

✓2{0,1}m+1

FS(✓)(x)P (⇥ = ✓),

which is the same as Eq. (2.8) for ⇥ discrete.

As S(✓)
j ’s are mutually independent and each of them is a finite sum of mutually

independent random variables, we can take advantage of the former representation

for finding the distribution function FS for a given ✓.

In this model using a mixture structure for S is a useful way to express Fs when

the Xjk are dependent. But, we still do not know how to deal with cases in which

the class and group risk factors and the Bjk’s are dependent.

Application of Model 2.4.2 in Supply Chains:

Figure 2.5 can be an example of Toyota’s supply chain which operates its business

worldwide. As explained in this model, companies (individual risk factors) that are

in di↵erent regions (group risk factors) do not have any contribution with each other

as they are assumed to be independent. But, a consequence of Toyota’s excessive

expansion was that it became increasingly dependent on suppliers outside Japan, or

Toyota branches in other countries became dependent on suppliers in Japan. For

example, Toyota gets only 15 percent of its parts including electronic and rubber

components from Japan for cars and trucks built in North America. But, still it has
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Figure 2.5: Schematic representation of Model 2.4.2 in supply chains. Each circle
represents a company/facility.

to have all of them to build a vehicle. It means that a shut down of a part supplier

in Japan can result in a shut down of an assembly plant in North America. If the

model 2.4.2 is applied to a supply chain network, then we are able to figure out the

distribution function of the total loss caused by risks on companies involved in the

network.

2.4.3 Dependence via occurrence random variables

The Model proposed by Cossette et al. (2002) is a special case of Models 2.4.1 and

2.4.2. In this model dependence via occurrence random variables Ijk, j = 1, ...,m

and k = 1, ..., nj, causes dependence between risks Xjk, j = 1, ...,m and k = 1, ..., nj,

represented as Xjk = IjkBjk. We suppose that the occurrence of a claim for the kth

policy in the jth class is a function of the individual, the class, and the global risk

factors. Independent random variables Jjk, Jj and J
0

refer to these three risk factors,

respectively. Random variable Ijk, j = 1, ...,m, and k = 1, ..., nj is defined as:

Ijk = min(Jjk + Jj + J
0

, 1) (2.10)
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where Jjk, Jj, and J
0

are independent Bernoulli random variables with

P (Jjk = 1) = q̃jk, and P (Jjk = 0) = p̃jk = 1� q̃jk, P (Jj = 1) = q̃j, P (Jj = 0) =

p̃j = 1� q̃j, P (J
0

= 1) = q̃
0

, and P (J
0

= 0) = p̃
0

= 1� q̃
0

.

Based on Eq. (2.10) random variables Ijk are Bernoulli distributed and as a

result the random vector I = (I
11

, . . . , I
1n1 , . . . , Im1

, . . . , Imnm) would have dependent

components. The probability generation function (pgf) of Ijk is defined as follows:

PIjk(t) =
1

X

Ijk=0

P (Ijk) t
Ijk

= pjk + qjk t,

where pjk = p̃
0

p̃j p̃jk and qjk = 1�(1� q̃
0

)(1� q̃j)(1� q̃jk). If q̃j = q̃
0

= 0, j = 1, ...,m,

then qjk = q̃jk which is a special case of the individual risk model. If q̃j = 0 then

the portfolio will get only one class in this case. So, based on Eq. (2.10) of Ijk,

the random vector X = (X
11

, ..., X
1n1 , ..., Xm1

, ..., Xmnm) has dependent components.

The moment generating function (mgf) of each Xjk, j = 1, ...,m and k = 1, ..., nj,

is:

MXjk
(t) = PIjk(MBjk

(t)) = pjk + qjkMBjk
(t)

For finding moment generating function (mgf) of the aggregate claim amount S,

we need to obtain the multivariate mgf of the random vector X which in turn is a

function of the pgf of the random vector I. The pgf of I is given by:

PI(t) = p̃
0

"

m
Y

j=1

⇣

q̃j

nj
Y

k=1

tjk + p̃j

nj
Y

k=1

PJjk

�

tjk
�

⌘

#

+ q̃
0

m
Y

j=1

nj
Y

k=1

tjk (2.11)

where t = (t
11

, ..., t
1n1 , ..., tm1

, ..., tmnm). The multivariate mgf of X using Eq. (2.11)
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is

MX(t) = PI

�

MB11(t11), ...,MB1n1
(t

1n1), ...,MBm1(tm1

), ...,MBmnm
(tmnm)

�

(2.12)

Given Eq.(2.12) we can use the following Lemma to find the mgf of S.

Lemma 2.4.3.1 [Cossette et al. (2002)]: Let MY1,...,Yn(t1, ..., tn) be the multivariate

mgf of the vector (Y
1

, ..., Yn) given by

MY1,...,Yn(t1, ..., tn) = E
⇥

et1Y1 ...etnYn
⇤

Then, the mgf of Z = Y
1

+ ...+ Yn is

MZ(t) = MY1,...,Yn(t, ..., t). (2.13)

From Lemma 2.4.3.1 and Eq. (2.12), the mgf of S is:

MS(t) = p̃
0

"

m
Y

j=1

⇣

q̃j

nj
Y

k=1

MBjk
(t) + p̃j

nj
Y

k=1

PJjkMBjk
(t)

⌘

#

+ q̃
0

m
Y

j=1

nj
Y

k=1

MBjk
(t) (2.14)

From Eq. (2.14), we can see that Fs is a convex combination of two cumulative

distribution functions, FU and FV :

FS(x) = p̃
0

FU(x) + q̃
0

FV (x), x � 0, (2.15)
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where U and V are random variables with the following mgf :

MU(t) =
m
Y

j=1

⇣

q̃j

nj
Y

k=1

MBjk
(t) + p̃j

nj
Y

k=1

PJjk

�

MBjk
(t)

�

and MV (t) =
m
Y

j=1

nj
Y

k=1

MBjk
(t).

The cumulative distribution functions of U and V are:

FU = FC1 ⇤ ...FCm (2.16)

FV = FB11 ⇤ ... ⇤ FB1n1 ⇤ ... ⇤ FBm1 ⇤ ... ⇤ FBmnm
, (2.17)

where

FCj = q̃j(FBj1 ⇤ ... ⇤ FBjnj
) + p̃j(FDj1 ⇤ ... ⇤ FDjnj

), j = 1, ...,m,

FDjk
= p̃jk40

+ q̃jkFBjk
, k = 1, ..., nj

where symbol “⇤” denotes the convolution product between two cumulative distribu-

tion functions, and 4d is the Dirac function:

4d(x) =

8

>

<

>

:

1, if x � d,

0, otherwise

In most cases like Model 2.4.3 we cannot find an explicit form for FS. Therefore,

we need to apply numerical approximation. In this model, given Eq. (2.15), two steps

can be made to evaluate Fs numerically. First, with the appropriate formulas given

in (2.16 ) and (2.17) FU and FV are computed. Then, Fs is calculated with (2.15).

In this model dependence between the occurrence random variables Ijk, j =

1, . . . ,m, and k = 1, . . . , nj, leads to dependent risks Xjk, j = 1, . . . ,m, and k =
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Figure 2.6: Schematic representation of Model 2.4.3 or 2.4.2 in supply-chain. Each
circle represents a company/facility.

1, . . . , nj. But, Cossette et al. (2002) assumed that all three risk factors (Jjk, Jj, and J0)

used in the definition of Ijk are independent Bernoulli random variables which can

be considered as a restriction to this model. In addition, there isn’t any explicit form

for Fs and we have to use a numerical approximation to calculate Fs.

Application of Model 2.4.3 in Supply Chains

One possible example of this model is the supply chain of Toyota for car model

“Prius” in which the supplier, manufacturer, retailer, and distributor are all in Japan.

All four links considered as group risk factors in this model, must have a close rela-

tionship to manufacture a vehicle and send it to customers. So, dependence between

these business partners is required. In addition, collaboration and shared principles

within companies (individual risk factors) in each group, like suppliers, is necessary

to implement various activities.

2.4.4 Common mixture model

In a second model of Bauerle and Muller (1998) we compare the portfolios based

on the number of external mechanisms that influence them. Assume that there are
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two n dimensional random vectors X and Y with the structure:

(X
1

, ..., Xn) = (g
1

(Z
1

,W ), ..., gn(Zn,W ))

(Y
1

, ..., Yn) = (g̃
1

(U
1

, V,W ), ..., g̃n(Un, V,W ))

where Z
1

, ..., Zn, U1

, ..., Un are i.i.d. random variables and (V,W ) is a random vector

independent of Zk and Uk. Also, g : R2 ! R and g̃ : R3 ! R are such that for every

fixed W and all k = 1, ..., n, we have:

gk(Zk,W )
d
= g̃k(Uk, V,W ),

i.e., they have the same distribution.

Let S =
Pn

k=1

Xk and S 0 =
Pn

k=1

Yk. In the following theorem Bauerle and Muller

(1998) show that given some conditions on functions g̃i, the portfolio Y is more risky

that the portfolio X.

Theorem 2.4.4.1 [ Bauerle and Muller (1998)] If the functions g̃i is increasing in

the second argument, then:

a) X symsm Y (2.18)

b) S sl S
0.

There is more dependence in portfolio Y than in X due to the extra environmental

variable V . So, the external mechanism V , which has a common influence on all risks

in portfolio Y is an important risk factor.

As a special case if we assume that W is constant then Yk = g̃k(Uk, V ) and

Xk = gk(Zk). Then, Bauerle and Muller (1998) obtain the following corollary of the-

orem 2.4.4.1.
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Corollary 2.4.4.2 [Bauerle and Muller (1998)] Let V be any random variable and

let Y = Y
1

, . . . , Yn be a random vector such that Y
1

, . . . , Yn are conditionally inde-

pendent given V = v and such that the conditional distributions P (Yk | V = v) are

stochastically increasing in v for all k = 1, . . . , n. Moreover, let X = (X
1

, . . . , Xn) be

a random vector of independent random variables with the same marginal distribution

as Y . Then

X sm Y and S =
n

X

k=1

Xk sm S 0 =
n

X

k=1

Yk. (2.19)

In the following theorem Shaked and Shanthikumar (1997) consider the same

assumptions as Corollary 2.4.4.2.

Theorem 2.4.4.3 [ Shaked and Shanthikumar (1997)] Let X = (X
1

, X
2

, . . . , Xn) be

a conditionally increasing in sequence random vector and let Y = (Y
1

, Y
2

, . . . , Yn) be

a random vector of independent random variables such that Xk =st Yk, k = 1, . . . , n.

Then Y sm X.

In contrast to Model 2.4.1, in this model, the comparison of two portfolios is based

on the number of external mechanisms which a↵ect the portfolios. In this model we

assume that all individual random variables Z
1

, ..., Zn and U
1

, ..., Un are independent.

Also, (V,W ) is a random vector independent of Zi and Ui. But, the productivity

of a network is based on the contribution of individual factors in each group and

collaboration of business partners. Therefore, the assumption of independence can

be considered as a restriction for this model.

Application of Model 2.4.4 in Supply Chains:

In figure 2.7 Network 2 is a↵ected by external mechanisms. So, the dependence

between risks in Network 2 is more than that in Network 1. As a result we can
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Figure 2.7: Schematic representation of Model 2.4.4 in supply-chain. Each circle
represents a company/facility.

conclude that Network 2 is more risky than Network 1. If we assume the supply

chain of Toyota as Network 2 and the supply chain of Honda as Network 1. The

severe natural disaster that occurred in northeastern Japan on March 11, 2011 hit

both supply chains. But, the powerful tsunami triggered by earthquake had very bad

e↵ect on some plants of Toyota in Miyako. So, we can say that the supply chain of

Toyota is more risky than that of Honda because of the geographic location of its

plants.

2.4.5 Two-point distribution model

2.4.5.1 Indistinguishable individuals(Bauerle and Muller, 1998)

When permutation does not have any e↵ect on the joint distribution of the random

vector of n risks of a portfolio, we can say that these individual risks are indistinguish-

able individuals. This implies that the marginal distribution is the same for all risks,

i.e., there is a p 2 (0, 1) and some ↵ > 0 such that P (Xk = 0) = p = 1� P (Xk = ↵)

for all k = 1, ..., n. In probability theory a sequence of such random variables is said
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to be exchangeable (or interchangeable). Suppose that ↵ = 1 then random variables

X
1

, X
2

, ..., Xn establish a sequence of exchangeable Bernoulli variables.

Hence if we assume Sn to be the total amount of claims in a portfolio of n risks,

which occur from a sequence of exchangeable Bernoulli variables then based on De

Finetti theorem, Sn is a mixture of binomial distributions, i.e.,

P (Sn = K) =

Z

1

0

✓

n

k

◆

�k(1� �)n�kF (d�).

where � is a dependence parameter, which continuously varies between independence

and maximal dependence and F is the probability distribution of � over [0, 1]. In

fact, F is a prior for random vector � given � = �. Bauerle and Muller (1998) in the

following theorem show how the riskiness of the portfolio (Sn) is influenced by mixing

distribution F .

Theorem 2.4.5.1 [ Bauerle and Muller (1998)] Let Sn(S 0
n) be the total claim amount

of a portfolio of n risks, which stem from a sequence of exchangeable Bernoulli vari-

ables with mixing distribution F (F 0). Then F sl F
0 implies Sn sl S

0.

In contrast to Models 2.4.1 and 2.4.4 of Bauerle and Muller (1998), all risks should

have the same marginal distribution here. The total claim Sn in this case is a mix-

ture of binomial distributions. But, we did not talk about the distribution of S in

the former models.

Application of Model 2.4.5.1 in Supply Chains

Consider Figure 2.8 consisting of Network 1 and Network 2. In this model we

assume that individual risks (shown with circles in Network 1 and with diamonds

in Network 2) are a sequence of exchangeable Bernoulli variables. In Network 1

(Network 2) each risk factor is 1 if it produces any loss with probability of p (or p0 for

Network 2) otherwise is 0 with probability of 1�p (or 1�p0 for Network 2). But, the
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Figure 2.8: Schematic representation of Model 2.4.5.1 in a supply chain. Each circle
represents a company and each diamond indicates a facility. If we assume that the
prior probability of dependence factor in Network 2 is greater than Network 1, then
Network 2 becomes more risky.

quantities p and p0 are unknown. If F (F 0) expresses the probability distribution about

uncertainty of p(p0) then based on the result of Theorem 2.4.5.1 we can conclude that

Network 2 is more risky than Network 1 if the prior of p0 (i.e., F 0) is greater than the

prior of p (i.e., F) in stop-loss order.

2.4.5.2 Distinguishable individuals

The additive damage model proposed by Bauerle and Muller (1998) is a well

known model in probability theory. In this model we are dealing with two sources

which produce some normally distributed damage. One source has the same e↵ect on

all individuals, while the impact of the other one depends on the individual behaviour

of each individual. We will have the claim amount of �, if the sum of these two

damages surpasses some level zk.

The distribution function of the distinguishable individuals model which is con-

structed based on model 2.4.4 assumes only two values. Let N(µ, �2) denote a uni-

variate normal distribution with mean µ and variance �2 > 0. N(µ, 0) indicates a

one-point distribution in µ. If X ⇠ N(0, 1), then assuming P (X  zp) = p, zp would
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be the p-quantile of the standard normal distribution. Now we consider model 2.4.4

with W ⇠ N(0, �2), V ⇠ N(0, ⌧ 2 � �2), Zk ⇠ N(0, 1 � �2) and Uk ⇠ N(0, 1 � ⌧ 2)

when 0  �2 < ⌧ 2  1. All random variables should be independent in this model.

We define:

gk(z, w) =

8

>

<

>

:

�k, z + w � zpk

0, else

and

g̃k(u, v, w) =

8

>

<

>

:

�k, u+ v + w � zpk

0, else

Recall from model 2.4.4 that Xk = gk(Zk,W ) and Yk = g̃k(Uk, V,W ) for k =

1, ..., n. It would be easy to show that all conditions in Model 2.4.4 are held for this

model, so we can say that X sl Y and therefore X is less risky than Y . This model

is an extension of model 2.4.4. But, distributions and functions of all risks assume

only two values. Also, all random variables Z,U,W, V are normally distributed and

the e↵ect of additive damage depends on the behaviour of each individual.

Application of model 2.4.5.2 in supply chains

Assume that in Network 1 each risk is a function of an individual risk factor (com-

pany) and an overall risk factor (natural disaster). See Fig. 2.9. The first source of

damage (natural disaster) influences all companies in the same manner. But, occur-

rence of the second source of risk, like inventory decline depends on the individual

behaviour of each company, such as how fast it recovers from a disaster. So, the

loss amount of �k in company k occurs if the sum of these damages (natural disaster

and inventory decline) get larger than a specific amount. In Network 2 each risk is

a function of an individual risk factor (company), an external mechanism (demand

change) and an overall risk factor (natural disaster). The e↵ect of the natural disaster
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and the demand change are the same for all companies. But, each company faces an

inventory decline, if it cannot manage the crisis properly . If a total damages arising

from these sources exceed some level zpk , then company tolerates a loss of �k. Since,

the construction of this model is based on Model 2.4.4, we can apply the result of

Theorem 2.4.4.1 to conclude that Network 2 is more risky than Network 1 due to the

additive damage.

Figure 2.9: Schematic representation of Model 2.4.5.2 in a supply chain. Each circle
is a representation of a Bernoulli random variable that is associated with a com-
pany/facility.

2.5 Distribution function (copula) based depen-

dency models

In this section we consider two copula-based models; one for a single group and

the other for multiple groups.
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2.5.1 Copula based dependent single-group risks model (Gen-

est et al., 2003)

In the single-class portfolio problem, where each individual risk may be represented

in the form Xk = JkBk with indicator Bernoulli random variable Jk with expectation

qk, using copula is another way of modelling dependence among the components of

the vector J = (J
1

, ..., Jn). We can write the joint cumulative distribution function

of J as follows:

FJ(j1, ..., jn) = C{FJ1(j1), ..., FJn(jn)}, jk = 0 or 1, k = 1, ..., n (2.20)

Where, FJk(t) = P (Jk  t) is the marginal cumulative distribution function of

Jk with FJk = 0, for jk  0. C : [0, 1]n ! [0, 1] is a copula. All marginals FJk ’s

of a cumulative distribution function are uniformly distributed on the unit interval.

We can say that copula is the distribution function of a random vector with uniform

marginals. The advantage of writing FJ as in (2.20) is that it allows us to separate

the definition of the marginals FJ1 , FJ2 , ..., FJn and the definition of the dependence

which is constructed through the copula C(u
1

, ..., un). Various copulas can be found

in the literature. The simplest one is the independent copula:

CInd(u
1

, ..., un) = u
1

⇥ . . .⇥ un.

See Genest et al. (2003) and Cossette et al. (2002) for some examples of copulas.
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2.5.2 Copula based dependent multi-group risks model (Gen-

est et al., 2003)

This section is a multi-class extension of the Archimedean model of previous sec-

tion. Assume that the joint distribution function of (n
1

+ ...+nm)-dimensional vector

J = (J 0
1

, ..., J 0
m) of occurrence random variables is written as:

FJ(j
0
1

, ..., j0m) =

Z 1

0

...

Z 1

0

m
Y

j=1

nj
Y

k=1

{F ⇤
Jjk

(j0jk)}✓jdM(✓
1

, ..., ✓m),

Where M is the m-variate distribution function of the latent vector ⇥ = (✓
1

, ..., ✓m) 2

[0,1) and F ⇤
Jjk

= exp[��j{FJjk}] is the cumulative distribution function of Bernoulli

random variable Jjk with expectation 1 � exp{��j(1 � qjk)}, 1  k  nj and 1 

j  m. The Jjk’s are mutually independent Bernoulli random variables, conditioned

on the value of ⇥ with

E(Jjk|⇥ = ✓) = E(Jjk|⇥j = ✓j) = 1� exp{�✓j�j(1� qjk)} = qjk✓j .

We assume as before that the Bjk’s are independent among themselves and from

all indicators. Let J
(✓)
jk be mutually independent indicator random variables with

mean qjk✓j for all 1  k  nj and 1  j  m. Considering Eq. (2.21), the sums S(✓)
j

and S(✓) is defined as in Eq. (2.9).

X
(✓)
jk = X

(✓j)
jk = J

(✓j)
jk Bjk (Given⇥ = ✓)

As S✓ are composed of mutually independent terms, the total claim distribution FS

may again be calculated in the form, Eq.(2.8).

In this model as in model 2.4.3 we assume that occurrence random variables

Jjk, j = 1, ...,m and k = 1, ..., nj, are dependent. But, we use copula to separate the
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definition of the dependence between components of J = (J
11

, ..., J
1n1 , ..., Jmn1 , ..., Jmnm)

and definition of the marginals FJjk .

Even though the models reviewed in Chapter 2 provide valuable insight, some

assumptions they require do not necessarily fit with real life supply chains. One

of the most strongest assumptions may be the independence between the individual

risks. Therefore, in the next section we extended the existing models and remove the

assumption of individual risks independence.

2.6 Extension: Dependent individual risk factors

Lemma 2.6.0.1 [Tchen (1980)]: Suppose there are two n-dimensional random vec-

tors Z and U where the distribution function of U is Frechet upper bound. Then

Z sm U . (Proof is in Theorem 5.(a) of Tchen (1980))

Theorem 2.6.0.2 Consider n-dimensional random vectors Z and Frechet upper bound

distributed U such that Z sm U (Lemma 2.6.0.1) and let W be a m-dimensional vec-

tor, which is independent from Z and U . Then,

Z sm U

) (g
1

(Z
1

,W ), g
2

(Z
2

,W ), ..., gn(Zn,W )) sm (g
1

(U
1

,W ), g
2

(U
2

,W ), ..., gn(Un,W ))

where gk(z, w)0s, k = 1, 2, ..., n, are all monotone in z for every w.

If we suppose the following constructions for X and Y

X = (g
1

(Z
1

,W ), g
2

(Z
2

,W ), ..., gn(Zn,W ))

Y = (g
1

(U
1

,W ), g
2

(U
2

,W ), ..., gn(Un,W ))

Then X sm Y results in S sl S
0 (Theorem 2.6 of Bauerle and Muller (1998)).
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Proof : Since Z sm U and gk(z, w), k = 1, . . . , n are monotone functions in z for

every w, from Theorem 2.2(a) of Shaked and Shanthikumar (1997) it follows that

(Z
1

, . . . , Zn) sm (U
1

, . . . , Un)

) (g
1

(Z
1

,W |W = w), . . . , gn(Zn,W |W = w)) sm

(g
1

(U
1

,W |W = w), . . . , gn(Un,W |W = w))

The super modular stochastic order is closed under mixtures (Theorem 2.2(d) of

Shaked and Shanthikumar (1997)). Hence

(g
1

(Z
1

,W ), . . . , gn(Zn,W ))  (g
1

(U
1

,W ), . . . , gn(Un,W )) ) X sm Y.

Application of model 2.6 in supply chains

The most important aspect of Figure 2.10 compared to other figures is the connection

between companies (individual risks factors). It means that in this model we relax

the assumption of independence between individual risks. Since cycles in Networks

(1 and 2) of Figure 2.10 are not important we can call this structure a tree structure.

Considering all assumptions of the last model, we can conclude that Network 1 is

less risky than Network 2 due to the existence of less risky companies in Network 1

compared to Network 2.
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Figure 2.10: Schematic Representation of model 2.6 in a supply chain. Each circle
represents a company/facility, and connections denotes dependence.

2.7 Conclusion

In this chapter we have reviewed and extended the literature on risk dependency

modelling. All models of dependencies reviewed in this chapter are summarized in

Table 2.3.
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Table 2.3: Comparison of reviewed risk dependency models.

Type of dependence Reference

Multi-groups 2.4.1: Bauerle and Muller (1998),
Dependence between groups 2.4.3: Cossette et al. (2002), 2.4.2: Genest et al. (2003),

2.5.2: Genest et al. (2003),
2.4.4: Bauerle and Muller (1998),
2.4.5.2: Bauerle and Muller (1998)

Multi-groups Removing overall risk factor V in 2.4.1: Bauerle and Muller (1998),
Dependence within groups Let q̃ = 0 in 2.4.3: Cossette et al. (2002),

Let J = 0 in 2.4.2: Albers (1999)
Single-group Let q̃j = 0 in 2.4.3: Cossette et al. (2002),

Dependent risks 2.3.1: Goovaerts and Dhaene (1996),
2.3.2: Dhaene and Goovaerts (1997),
2.5.1: Genest et al. (2003)

Dependent individual risk factors 2.6: Leila M. Beigi (2013)

We have also showed how these models can be applied in a supply chain envi-

ronment. We have indicated the shortcomings of these models in relation to supply

chain environments. These present possible future research venues in this area.
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Chapter 3

A risk propagation model

In Chapter 3 we model risk propagation in supply chains that accounts for depen-

dencies in time and network structure.

3.1 Literature review

Since Chapter 2 includes a review on risk dependence modelling, the literature

review in this chapter focuses on risk propagation. Several mechanisms of risk propa-

gation or transmission have already been studied. Within the social science literature,

Diekmann and Mitter (1982) proposed a time dependent Poisson process to describe

the dynamic aspect of some social behaviours like occupational mobility and deviant

behaviour. A general contagion model was proposed by Hamilton and Hamilton

(1981). They modelled the intensity as a product of two functions. The first func-

tion expressed the contagion and the second one indicated the time dependency. We

borrowed some of our assumptions from these references. Coleman (1964) presented

a simple time-homogeneous contagion model in which the expected number of events

per period grows linearly with the cumulative number of events already observed.

Diekman (1979) modelled a contagion influence similar to that used by Coleman,
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adding an inhibiting mechanism through the time dependent function.

In the finance literature, Bardos and Stili (2007) identified patterns necessary for

risk contagion and bankruptcy to occur and found that risk transmission occurs when

receivables show a significant part of total assets.

In the supply chain literature, Serrano et al. (2010) built a supply chain model

based on empirical findings from the financial literature to show how the variability of

payments to suppliers propagates upstream, which has a major impact on risk. The

extended Petri net-based modelling presented by Wu et al. (2007) using a “Disruption

Analysis Network” (DA-NET) approach models how changes propagate through a

supply chain. The states that are reachable from a given initial marking in a supply

chain network are determined by this approach in order to calculate the impact of the

attributes. Bilsel (2009) used a Markov chain based approach and employed ‘mean

first passage time’ to model the probability that a risk will propagate from its place

of occurrence to another part in the network.

3.2 Model assumptions

In this section, the assumptions underlying the risk propagation model will be

examined. Since the probability of an event changes over time, a time dependent

stochastic process where the transition rate (or expected number of events during

a unit of time) is a function of time would be a suitable model. Also, models like

‘Weibull process’ (Mann et al., 1974) in which the probability of an event is a mono-

tone function of time would not be a realistic model. Because, this model cannot

explain a process where the probability initially increases, eventually reaches a max-

imum value, and finally decreases to zero asymptotically. The shape of time depen-

dent function of our transition rate is like a sickle (inverted U)(Diekmann and Mitter,

1982). Other than the time dependency, transition rate governing our model needs
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to take into account the contagion. So, an ordinary time dependent Poison process

will not be very applicable in modelling risk propagation. Once an event occurs for

an element like a country, then the probability of a second element being a↵ected will

be changed. Or when an element is a↵ected, its probability of getting a↵ected again

is changed. Therefore, we will present a simple time-inhomogeneous contagion model

in which the transition rate is a product of two functions, as follows.

↵k(t) = ↵k w(t) (3.1)

The first term on the right, ↵k, describes contagion, while the second term, w(t),

expresses time dependence.

According to Hamilton and Hamilton (1981), and based on Diekman (1979) and

Coleman (1964), the following assumptions and modifications of the Poisson process

are used to model the system described above.

Assumption 1. The probability of exactly one event in a small time interval (t, t+�t)

is asymptotically proportional to the length of the interval.

Pr[1 event in (t, t+�t)] = [↵k w(t)].�t+O(�t)

where O(�t) is a function such that lim
�t!0

O(�t)
�t

= 0.

Assumption 2. The probability of more than one event in a small interval is insignif-

icant:
P

n>1

P [n events in (t, t+�t)] = O(�t)

Assumption 3. Once one has allowed for any contagious impact through the function

↵k, the occurrence of events in disjoint intervals of time are statistically independent.

The above three assumptions are in fact an extension of four properties of the non-

homogeneous Poisson process (Ross, 2010) but replacing the time-dependent Poisson

rate ↵(t) with ↵k w(t).

To describe the above assumptions in an example, here we consider the study on

Chapter 10, page 302 of the book by Coleman (1964). Let’s consider the number of
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phonograph records bought by girls in a specific period of time, i.e., a fixed t equal

to one month. The probability that one girl bought just one phonograph record was

proportional to the length of time under study. It would be more likely to buy one

phonograph record in one month rather than one week. The probability that a person

bought a record in just one second was almost insignificant. Every girl had only a

small likelihood of buying a record, but having bought one, she was more likely to

buy a second. Having bought the second, she was even more likely to buy a third,

and so on. Using a contagion model as ↵k = a + k b, the initial transition rate of

buying a record was considered to be a and each record she buys increases this rate

by an amount b. Coleman (1964) applied the contagion Poisson process model for the

data on one month only and obtained a better performance compared to a regular

Poisson process model, meaning that contagion Poisson is a good fit to this data.

All assumptions employed by Diekman (1979) and Coleman (1964) in developing

their respective models of contagion, are formalized by the above framework. But,

Hamilton and Hamilton (1981) claimed that Assumptions 1-3 also have an immedi-

ately useful implication. Let tk stands for the time of the kth event and define Yk to

be the length of time between kth and ( k + 1)th event:

Yk = tk+1

� tk.

Since the occurrence of the kth event is a random variable, Yk itself would be a

random variable, so, assumptions 1-3 are restated based on the probability law for

Yk, as follows.

Theorem 3.2.0.3 [ Hamilton and Hamilton (1981) ] Under Assumptions 1-3, the

length of time Yk separating the kth and k + 1th events has the density

fYk
(t� tk) = ↵k w(t) exp{�↵k

Z t

tk

w(s)ds}
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where exp(x) indicates the base for natural logarithms e raised to x power. For k 6= j,

Yk and Yj are independent.

Based on the Theorem 3.2.0.3 intervals between events have exponential densities

when the process is a time-homogeneous process (i.e., w(t) = 1).

fYk
(y) = ↵k e

�↵ky.

The reciprocal of the expected number of daily events, 1/↵k, is the expected waiting

time between events. Therefore, when ↵k is an increasing function of k then with

each new event the waiting time between events becomes shorter.

Another quantity of interest is length of Tn , elapsed time between the 0th and

n+ 1th events. It is easily seen that

Tn = Y
0

+ Y
1

+ . . .+ Yn.

If ↵k 6= ↵j for all k 6= j, then the sum of independent variables with individual

densities denoted in Theorem 3.2.0.3 would have a continuous Chiang distribution.

Theorem 3.2.0.4 [Chiang (1980)]: The length of time Tn separating the 0th and the

n+ 1th event has the density

fTn(t) = [(�1)n↵
0

↵
1

. . .↵nw(t)]

⇥
n

X

k=0

8

>

>

>

>

>

<

>

>

>

>

>

:

exp[�↵k

R t

0

w(s)ds]
n
Q

j=0

j 6=k

(↵k � ↵j)

9

>

>

>

>

>

=

>

>

>

>

>

;

. (3.2)
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A version of the Chiang’s proof is provided in Hamilton and Hamilton (1981). It is

almost straightforward to go from Theorem 3.2.0.4 (where the time interval between

events is taken as random variables and the occurrence of events are fixed) to Theorem

3.2.0.5, in which the number of events occurring during the time interval is considered

as a random variable and the time interval of interest is fixed.

Theorem 3.2.0.5 [Chiang (1980)]: The total number of events Xt observed during

(0, t) has a discrete Chiang distribution:

P [Xt = n] = [(�1)n↵
0

↵
1

. . .↵n�1

]

⇥
n

X

k=0

8

>

>

>

>

>

<

>

>

>

>

>

:

exp[�↵k

R t

0

w(s)ds]
n
Q

j=0

j 6=k

(↵k � ↵j)

9

>

>

>

>

>

=

>

>

>

>

>

;

. (3.3)

Proof of Theorem 3.2.0.5 can be found in Hamilton and Hamilton (1981).

3.3 A time-inhomogeneous contagion model of

risk propagation

As explained in the previous section, the transition rate of our model is a product

of two functions, the first function indicates the contagion e↵ect and the second one

would be a time-dependent function.

The simplest generalization of the poisson process to take into account contagion

is to assume a linear contagion as a first function of transition rate.

We set up the following model of contagion e↵ect:

1. Each element has a given transition rate a of becoming a↵ected.
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2. Each a↵ected element has an impact on each of those that are not, adding an

increment b to the transition rate of each element that is not a↵ected.

3. The number of a↵ected elements is k.

Given these assumptions, the transition rate for each element when there are already

k a↵ected elements is a linear format of k as follows, similar to that used by Coleman

(1964):

↵k = a+ k b (3.4)

If we assume sickle-type time dependency with w(t) = c t exp(�t/�), the transition

rate ↵k(t) takes the following form:

↵k(t) = ↵k w(t) = (a+ k b) (c t exp(�t/�)). (3.5)

Note that a � 0, b � 0, k � 0, t � 0, � > 0, c > 0 which results in ↵k(t) > 0.

Now that we have fully described our transition rate, we can use it to answer

questions such as: When are events expected to occur? How many events are expected

to happen in a given time interval? And, what are the chances that a certain group,

out of the population studied, will be a↵ected? The letter is referred to as the cohort

e↵ect in the literature (Diekmann and Mitter, 1982). There are important questions

for understanding and managing risk propagation in a supply chain. We will answer

them in the next three sections.
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3.3.1 Arrival times

Based on Assumption 1 (of Poisson process) the probability of no event within

time t would be (Diekmann and Mitter, 1982):

P
0

(t) = exp[�
Z t

0

↵k(⌧)d⌧ ] = exp[�↵k

Z t

0

w(⌧)d⌧ ] (3.6)

= exp[�(a+ k b)

Z t

0

c t exp(�t/�)]

= exp {�(a+ k b)� c [�� (t+ �) exp(�t/�)]}

The cumulative distribution function F (t) of the duration in the state of safety

(i.e. the arrival time t of an event) is simply the probability of an event’s occurrence

within time t:

F (t) = 1� P
0

(t) = 1� exp[�
Z t

0

↵k(⌧)d⌧ ] (3.7)

= 1� exp[�↵k

Z t

0

w(⌧)d⌧ ]

= 1� exp {�(a+ k b)� c[�� (t+ �) exp(�t/�)]}

The density of arrival time t is therefore

f(t) = ↵k(t) exp[�
Z t

0

↵k(⌧)d⌧ ] (3.8)

= (a+ k b) c t exp(�t/�) exp[�(a+ k b)

Z t

0

c t exp(�t/�)]

= (a+ k b) c t exp(�t/�) exp {�(a+ k b)� c [�� (t+ �) exp(�t/�)]}

Using 3.7 and 3.8, a simple expression for ↵k(t) would be obtained:

↵k(t) =
f(t)

1� F (t)
. (3.9)
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This is known as the failure rate. We note that unlike the exponential failure distri-

bution, ↵k(t) is not constant in time; it increase to a maximum and then decreases,

approaching zero in the limit.

3.3.2 Event count

Under our hypothesized transition rate, the density function for the total num-

ber of events occurring over (0, t) can be found by substituting functions ↵k =

a+ k b and w(t) = c t exp(�t/�) into Theorem 3.2.0.5, as follows.

P [Xt = n] = [(�1)na(a+ b) . . . (a+ (n� 1)b)]

⇥
n

X

k=0

exp[�(a+ k b)
R t

0

c ⌧ exp(�⌧/�)d⌧ ]

[(a+ k b)� (a+ 0 b)][(a+ k b)� (a+ 1 b)] . . . [(a+ k b)� (a+ n b)]

= [(�1)na(a+ b) . . . (a+ (n� 1)b)]

⇥ 1

bn

n
X

k=0

exp[�(a+ k b)� c[�� (t+ �) exp(�t/�)]]

(�1)(n�k)k!(n� k)!

= [(�1)na(a+ b) . . . (a+ (n� 1) b)]⇥ e�a� c[��(t+�) exp(�t/�)]

bn

⇥
n

X

k=0

e�k b� c[��(t+�) exp(�t/�)]

(�1)(n�k)k!(n� k)!
| {z }

B

we define �� c[�� (t+ �) exp(�t/�)] = � and e(�b) = z. We have

B =
n

X

k=0

zk

(�1)(n�k) k! (n� k)!

=
1

(�1)n

n
X

k=0

(�1)k zk

k! (n� k)!
=

(1� z)n

(�1)n n!

51



M.A.Sc. Thesis - Leila Morteza Beigi McMaster - School of Computational Science & Eng.

Therefore, we will have

P [Xt = n] = [a(a+ b)(a+ 2b) . . . (a+ (n� 1)b]
ea�(1� eb�)n

n!
(3.10)

The expected value of the random variable ‘number of events’ X(t) would be:

E[X(t)] =

Z t

0

↵k(⌧)d⌧ =

Z t

0

↵k w(⌧)d⌧ = ↵k

Z t

0

c ⌧ exp(�⌧/�)d⌧

= (a+ k b)� c[�� (t+ �) exp(�t/�)] (3.11)

3.3.3 Cohort arrival counts

According to the following reasons the probability of occurrence of n events out

of N events follows the binomial distribution with mean number of 1� P
0

(t).

1. Based on the Assumption 3 the occurrence of events in disjoint intervals of time

would be stochastically independent.

2. There are

✓

N

n

◆

combinations of arrivers with the arrival time probability of

1� P
0

(t) and survivors with the survival probability of P
0

(t).

P (n) =

✓

N

n

◆

[1� P
0

(t)]n[P
0

(t)](N�n)

=

✓

N

n

◆

[1� exp{�(a+ k b)� c[�� (t� �) exp(�t/�)]}]n

⇥[exp{�(a+ k b)� c[�� (t� �) exp(�t/�)]}](N�n)

3.4 Conclusion

We have presented a model for risk propagation in supply chains. In the next

chapter, as a support to the concepts proposed in Chapter 2 and 3, the propagation
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of risk in Toyota and Honda’s supply chains after the March 11, 2011 earthquake will

be analyzed.

Our model can be extended in di↵erent ways. For example, more complex de-

pendencies could be incorporated in W (t). Also, it would be interesting to include

explicit dependencies such as geographic correlations.
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Chapter 4

A case study

4.1 Discussion of the case study

A powerful earthquake of nine magnitude hit the North-eastern Japan on March

11, 2011. The earthquake triggered gigantic tsunami waves which shook Japan and

damaged the nearby coastline. This earthquake is said to be one of the five most

powerful earthquakes the world has ever witnessed. This earthquake was so powerful

that it moved the Japanese coast by 8 meters and shifted the Earth’s axis. It is well

known that Japan is situated on the Pacific ‘Ring of Fire’ which is prone to large scale

volcanic eruptions and earthquakes. March 11 earthquake left almost 15,883 deaths,

6,149 injured, and 2,652 people missing in Japan. Four blasts occurred in all four

reactors of the 40-years old Fukushima Daiichi nuclear plant, situated 240-km from

Tokyo. Due to probable radiation threat, twenty kilometres of area around the plant

has been evacuated. Many countries fearing contamination, stopped importing food

items from Japan. Since Japan itself is witness to the biggest ever nuclear disasters

of Hiroshima and Nagasaki, this radiation threat cannot be undermined.

The Japanese economy was badly a↵ected by this deadly combo of earthquake

and tsunami. Economic impacts of the crisis felt across the globe. Asian stock
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markets dropped down in the aftermath of this disaster. Japan’s multinational auto

industry like Toyota, Honda and Nissan had to shut down many of their plants. After

Japan’s destructive earthquake and tsunami hit auto parts supply chains, Toyota

faced the biggest crisis ever. Toyota as the world’s largest auto-maker since 2008,

was threatened to fall to third place globally. Toyota’s production dropped by almost

two-thirds in March and its Japanese factories were expected to work at 50 per cent

of capacity in May and June.

In this chapter we focus on mapping out the propagation of risk in the supply chain

of Toyota. Since, some of reviewed models in Chapter 2 take advantage of statistical

tools to determine the riskiest network, other than that of Toyota, we needed to elect

another company to construct a relevant empirical example. Among all the other

auto-maker in Japan, the type of Honda’s supply chain (will be discussed in detail

later) made it the most suitable one for being the second network in our empirical

example.

4.1.1 Toyota Motor Corporation

The Toyota Motor corporation describes its production strategy as a ‘lean man-

ufacturing system’ or a ‘Just-in-Time’ (JIT) system. The goal is to deliver vehicles

as quickly and e�ciently as possible to the customer. The ‘Jidoka’ and JIT are two

foundations of the Toyota production system. ‘Jidoka’ means that the occurrence

of a problem causes the immediate stop of a production equipment to prevent the

production of a defective product. The second concept ‘Just in Time’ means that

in a consecutive production flow each process produces what is needed by the next

process.

Toyota reduced the number of its suppliers and awarded long-term contracts to

the remaining. In addition, in order to be able to control the lower tiers, Toyota

encouraged top-tier vendors. Toyota built a deep relationship with its suppliers and
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Table 4.4: Number of overseas manufacturing plants of Toyota (as of Dec. 2012)

Region Manufacturing companies

North America 11
Latin America 14

Europe 8
Africa 3

Asia(excluding Japan) 24
Oceania 1

Midddle east 1
Overseas total 52

adapted a partnership model. Toyota’s Japanese companies worked very close with

its suppliers in Canada, the United States, and Mexico. The main focus of Toyota was

on manufacturing while Honda was mostly a producer of vehicles (Akimova, 2011).

As of December 2012, Toyota had 52 overseas manufacturing companies (see Fig-

ure 4.1) in 27 countries and regions. It has 16 plants (4 of them are 100% subsidiaries

plants) in Japan. Toyota’s vehicles are sold in more than 160 countries and regions.

Table 4.4 shows the number of manufacturing plants of Toyota in 7 main regions.

Figure 4.1: Worldwide operations of Toyota. Source: Toyota Motor Corporation.
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Table 4.5: Number of overseas manufacturing plants of Honda

Region Automobile Manufacturing companies

North America 6
Asia / Oceania 8

Europe / middle east / Africa 2
South America 2

China 4
Overseas total 22

4.1.2 Honda Motor Corporation, Ltd.

Honda has a tiered approach to its supply chain. With a goal of building major

subsystems, to a few of key suppliers, Honda reduced the number of suppliers that

it directly supervised (Choi and Linton, 2011). Although, the initial selection of

second-tier suppliers was done by Honda, the top-tier suppliers have been delegated

too much power to manage the second-tier. In contrast to Toyota which built a

long-term contract with its suppliers, Honda kept a flexible working relationship with

its suppliers. ‘There is no other contract’ with the suppliers, Honda manager said.

Honda achieved the most supplier self reliance approaches. US-owned companies

which are identified as strong and component actors in Honda supply chain, tried to

reduce the dependence on Honda by adapting the new knowledge quickly (MacDu�e

and Helper, 1997).

‘Honda has approximately 400 core suppliers which do not include the indirect

suppliers (e.g. repair parts, operating tools, et cetera)’ (Choi and Hong, 2002). Honda

operates 22 automobile manufacturing plants (see the map in Fig. 4.2) in di↵erent

regions outside Japan and 6 automobile factories in Japan. Table 4.5 gives the number

of Honda’s plants in 5 main regions outside Japan.
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Figure 4.2: Overseas automobile manufacturing plants of Honda, (Source: Honda
worldwide).

4.1.3 Data collection

Since we needed a multi-disciplinary database that provided access to archived

news and comprehensive data for an in-depth analysis, we chose Factiva. Factiva

contained content from more than 31,000 sources from 200 countries in 26 languages.

This comprehensive data combined with robust search features made Factiva an ap-

propriate database for our study, specifically since we have no access to (possibly

classified) actual Toyota’s and Honda’s supply chain and production information to

analyze the e↵ect of March 11, 2011 earthquake.

In Factiva, for a targeted and relevant search we entered a date range in Data

option in its main search screen. Based on the news from the major news sources like

New York Times and Wall Street Journal, Toyota and Honda entered a production

recovery phase in September. So, we decided to limit our period of study from March

11, 2011 to September 30, 2011. Using the combination of keywords in the Free Text
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box we obtained our search results. Our search in Factiva was done in several steps.

Articles that contained keywords ‘shut down’, ‘closure’, ‘shutdown’ and ‘bankruptcy’

could indicate the most costly consequences of earthquake on supply chains of Toyota

and Honda. However, we noticed that lots of news resulted from entering ‘shutdown’

or ‘closure’ as keywords were repeted in news that contained the keyword ‘shut down’.

Also, news found from entering the search keyword ‘bankruptcy’ were not related to

Toyota or Honda, but majority of them were about the Chrysler and GM companies

which went through the bankruptcy in 2009.

Initially, we looked for full articles that contained all three terms ‘earthquake’

and ‘Toyota’ and ‘shut down’ (using ‘and’ to identify articles that contained all three

words) and we retrieved 1200 (287 duplicates) results for Toyota and using the same

keywords for Honda, we got 719 (193 duplicates) items. As reading this amount

of articles was quite time-consuming, we decided to use a search operator to limit

the search results. ‘Earthquake /N100/ Toyota /N100/ shut down’ found articles

containing earthquake within 100 words of Toyota and Toyota within 100 words from

shut down. Using the search operator of /N100/ limited the search to 504 (130

duplicates) articles for Toyota and 248 ( 69 duplicates) for Honda. In the second part

of news search I entered ‘earthquake /N100/ Toyota or Honda /N100/ closure not

shut down’ and Factiva provided us with the news that contained earthquake within

100 words from Toyota or Honda within 100 words from closure. Using ‘not’ allowed

us to exclude news having shut down. We retrieved 97 (29 duplicates) articles from

this search. We continued our news search by entering ‘earthquake /N100/ Toyota or

Honda /N100/ shutdown not shut down not closure’ and we got 213 (47 duplicates)

results. Totally, we found 594 news for Toyota (excluding the duplicates and those

that were related to Honda) and 379 news for Honda (excluding duplications and

those which were related to Toyota). When we went through the news details we

noticed that some of them were identical and talked about the same things. After
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subtracting these similar news we found 307 out of 594 news for Toyota and 82 out

of 379 news for Honda. This still contained a large number of news and there was

the possibility of having some identical items. So, we browsed and investigated all

collected news again. Finally, we obtained 210 news for Toyota and 68 news for

Honda.

To analyze the collected data from the previous steps we needed to classify them

into distinct groups. Based on what resulted from the news search, the impact of

earthquake could be shut down of a plant, halt production, production cut, financial

impact and so on. Words like ‘shut down’, ‘halt’ and ‘cut’ might be considered as

the same class. But, the news containing these words were not informative enough

to make such a decision, so for an easier analysis we decided to consider di↵erent

classes for each of these keywords. To achieve a consistency in data analysis we

used almost the same classifications of earthquake’s impact on both Toyota’ supply

chain and Honda’s supply chain. The e↵ect classes used for both Toyota and Honda

were: ‘shut down’, ‘cut’, ‘halt’, ‘suspension’, ‘financial’, ‘shortage’, ‘price increase’,

‘lost production’, ‘damage’, ‘cut down’, ‘delay’. Two additional classes were used for

Toyota including ‘reputation’ and ‘decline’.

For seven classes including ‘shut down’, ‘cut’, ‘cut down’, ‘halt’, ‘suspension’,

‘shortage’, ‘delay’ we tried to pick the exact word used in the news as a class. But,

for the following terms we made a decision based on our understanding:

• Decline: referring to a low inventory level.

• Shortage: referring to a deficiency in a quantity of something like pigment.

• Price increase: referring to a lost discount or a price increase.

• Financial: referring to a lost sale or a lost market share.
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• Reputation: referring to a downgrade title for Toyota from the largest to the

third car-maker in the world.

• Lost production: referring to a fewer production of vehicles.
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6%
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8%

16%

20%

21%

 

 

Suspension

Reputation

Damage

Price increase

Lost production

Decline

Delay

Cut

Halt

Shortage

Financial

Cut down

Shut down

Figure 4.3: Toyota: percentage of each event in all countries a↵ected by Japan’s 2011
earthquake.

4.1.4 Data analysis

After data cleaning and classification of e↵ects, I used Mathworks Matlab soft-

ware to perform the numerical analysis and to plot the pie charts. For simplicity,

Microsoft Powerpoint is used to present the maps and propagation of risk through

all countries from March 11, 2011 to September 30, 2011. See Figures 4.7 to 4.13.
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These presentations allow us to extract some useful information and to identify the

most vulnerable part of Toyota and Honda’s supply chains.
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Figure 4.4: Honda: Percentage of each event in all countries a↵ected by Japan’s 2011
earthquake.
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Figure 4.5: Toyota: Number of events in each country. NZ stands for New Zealand,
NA stands for North America, SA stands for South Africa, and Phil stands for Philip-
pine.

The piecharts for Figures 4.3 and 4.4 show the percentage of each class of event in

all a↵ected countries in which Toyota and Honda have facilities. Overall, it can be seen

that ‘shut down’, ‘cut down’ and ’financial’ accounted for three most important events

that a↵ected Toyota and Honda’s plants after March, 2011 earthquake in Japan. ‘Shut

down’ was the most frequent event a↵ecting Toyota’s plants accounting for 20%, while

‘cut down’ was the most important event influencing Honda’s plants accounting for

28% of cases. ’Cut down’ was the second largest event a↵ecting Toyota’s plants.

Similarly, with regard to Honda’s plants, ‘financial’ accounted for 22% of events.

Another major event influencing Toyota’s plants was ‘financial ’ with about 16% and
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Figure 4.6: Honda: Number of events in each country. NZ stands for New Zealand,
NA stands for North America, and Phil stands for Philippine.

’shut down’ with the same percentage was the third largest proportion event a↵ecting

Honda’s plants. The other categories were smaller. ‘shortage’ brought in 8% of overall

events for Toyota’s facilities, and this was followed by ‘halt’ at 7%. ‘Cut‘, ‘delay’,

‘decline’, ‘lost production’, ‘price increase’, ‘damage’, ‘reputation’, ‘suspension’ were

other small classes of major events accounting for 29% combined. ‘Suspension’ made

up approximately 7% of events influencing Honda’s plants, with ‘lost production’,

‘delay’, ‘cut’, ‘price increase’, ‘damage’, ‘shortage’, ‘halt’, making up the remaining

26%.
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Figure 4.7: Risk propagation in March 2011. Each circle represents a plant of Toyota
and each triangle represents a plant of Honda.
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Figure 4.8: Risk propagation in April 2011. Each circle represents a plant of Toyota
and each triangle represents a plant of Honda.
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Figure 4.9: Risk propagation in May 2011. Each circle represents a plant of Toyota
and each triangle represents a plant of Honda.
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Figure 4.10: Risk propagation in June 2011. Each circle represents a plant of Toyota
and each triangle represents a plant of Honda.
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Figure 4.11: Risk propagation in July 2011. Each circle represents a plant of Toyota
and each triangle represents a plant of Honda.
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Figure 4.12: Risk propagation in August 2011. Each circle represents a plant of
Toyota and each triangle represents a plant of Honda.
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Figure 4.13: Risk propagation in September 2011. Each circle represents a plant of
Toyota and each triangle represents a plant of Honda.

Piecharts 4.5 and 4.6 show all the countries where Toyota and Honda have pro-

duction facilities and were a↵ected by the massive earthquake and its aftermath. The

key information that stood out from the comparison of the two piecharts was that

both companies of Toyota and Honda in ‘Japan’ and ’North America‘ were a↵ected

significantly. As Toyota and Honda had the greatest number of manufacturing plants

in these regions, it seemed reasonable that they tolerated the most significant im-

pact. Toyota had 9 plants in China and after ‘Japan’ and ‘North America’, ‘China’

was the the most vulnerable country to earthquake while 4 automobile factories of

Honda were in China and it has encountered just one event. The reason could be the

availability of stored parts for a few months to meet the production needs on time.

The company of Honda in UK was the third susceptible company being a↵ected. The

amount of destruction caused by earthquake in the other countries could be justified

in terms of the number of plants in them.
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4.2 Risk assessment

Based on the data we collected, the supply chain of Toyota seems to be more

risky than Honda, as the total number of risk events occurred in Toyota’s plants

(and particularly in Japanese plants) was much more than that of Honda. Based

on models discussed in Chapter 2, the factors that could be used as justifications of

excess number of events a↵ecting Toyota’s supply chain are denoted as follows:

1. The number of manufacturing plants of Toyota was more than Honda’s plants,

so the exposer of Toyota’s supply chain to risk was more.

2. Looking at the map of Toyota and Honda manufacturing plants in Japan

(see Fig. 4.14) shows that unequal number of plants were located at each echelon of

Toyota supply chain and one of the echelons has a large number of plants. A total

of 12 plants were located in and around Toyota city and other areas of the Aichi

prefecture. Toyota has established three other domestic manufacturing companies

outside of Aichi, in Kyush, Hokkaide and Tohoku. So, based on the result of Model

2.4.1 of chapter 2, Toyota’ supply chain would be more risky than Honda’ supply

supply chain.

3. The type of Toyota’s supply chain (explained in 4.1.1) implies that the supply

chain network was more dependent in Toyota. Toyota took care of all its suppliers

and each supplier was regarded as a ‘member of a family’. But, Honda picked up some

key suppliers and had a good relationship with them. Therefore, Toyota encountered

more di�culties after the earthquake.

4. Model 2.4.4 of Chapter 2 could be applied to Toyota’s supply chain network

where the shut down of two nuclear power plants would be considered as an external

mechanism. Temporary shutdown (starting May 9 for 2 years) of three reactors of

Hamaoka nuclear power plants run by Chubu Electric Power, which powered the bulk

of Toyota motor group factories in central Japan, hurt the production of Toyota. Also,
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Figure 4.14: Automobile manufacturing plants of Toyota and Honda in Japan. Each
circle represents a plant of Toyota and each triangle represents a plant of Honda.
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a meltdown at the Fukushima-Daiichi nuclear plant that supplied power to Toyota’s

headquarter forced Toyota to shut down its Japanese production facilities. However,

Honda was a↵ected by the shut down of Hamaoka plant too, but the impact of closure

on Honda’s supply chain was not as significant as that on Toyota. Hence, because

of the e↵ect of the external mechanism, Toyota’s supply chain would be more risky

than Honda’s supply chain.

4.3 Numerical results

We assumed that the number of events a↵ecting Toyota and Honda supply chains

after March 11, 2011 earthquake in Japan follows a time-inhomogeneous contagion

Poisson process model. The probability that exactly one event occurred was propor-

tional to the length of time. Also, the probability of having more than one event

in a very small period of time like one second is almost negligible. Once a country

is a↵ected, the probability of getting a↵ected again will be increased. An a↵ected

country influences other countries due to the contagion impact. For a fixed t, using a

contagion model as ↵k = a+ k b, the initial transition rate (i.e., for k = 0) of getting

a↵ected is considered to be aw(t) and when a country becomes a↵ected the transition

rate will increase by an amount b w(t). Since the contagion e↵ect is considered within

a fixed period of time the number of events happening in non-overlapping intervals

(i.e., two di↵erent months) is assumed to be independent.

4.3.1 Contagion Poisson process

Based on the data we gathered so far, for the whole six-month period following

the earthquake, we fitted the contagion part, (↵k = a + k b), of our Poisson process

model to the collected data. Using the estimation method in Coleman (1964), we

found the estimates for a and b. We also compared the results with the estimates
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Table 4.6: Honda: Number of countries having k events in the period of six months.
RMSE stands for root mean square error.

Contagion Poisson Poisson

k nk a = 1.73, b = 0.29 a = 2

1 10 8.92 5.68
2 9 11.21 11.37
3 7 9.81 11.37
4 7 6.54 7.58
5 5 3.68 3.79
6 or more 4 1.84 1.52
RMSE 1.85 2.92

Table 4.7: Toyota: Number of countries having k events in the period of six months.
RMSE stands for root mean square error.

Contagion Poisson Poisson

k nk a = 1.73, b = 0.29 a = 2.97

1 17 14.4 5.13
2 16 18.32 15.24
3 14 19.95 22.63
4 13 17.15 22.4
5 11 12.79 16.63
6 11 8.66 9.88
7 11 5.46 4.89
8 ore more 7 3.27 2.08
RMSE 3.84 7.06

using a simple Poisson process model without contagion. The estimation results of

contagion model are shown in Table 4.6 for Honda’s events, and in Table 4.7 for

Toyota’s events along with the actual distributions. On the last row of each table the

root mean square error (RMSE) for each estimation is written. To be a more fair, in

the numerical analysis in this section, an event that lasted for M months in a country,

was considered as M events. For both Honda and Toyota data, the RMSE for the

contagious model fitting are lower than the RMSE for the simple Poisson model.
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4.3.2 A time-inhomogeneous contagion model

A non-linear least-squares (LS) estimation method in Mathworks Matlab soft-

ware (function: lsqnonlin.m) was used to find the unknown parameters in time-

inhomogeneous contagion (TIC) model of Eq. (3.10). The LS estimation algorithm

in Matlab function lsqnonlin.m performs an optimization procedure to start from the

initial guess and then finds the sub-optimum solution using an iterative large-scale

trust-region reflective Newton method, (Boyd and Vandenberghe, 2004; Coleman and

Li, 1996, 1994). The unknown parameters in model (3.10) are: a, b, c, �. We used

the initial guess of [1, 1, 1, 1] for these four parameters, and used the lower bound of

zero for all four parameters in the optimization procedure.

To implement this procedure in our case study, the time t corresponds to the

month number (t = 1, 2, . . . , 6) and we count the number of events, k, in the interval

(0, t), where k = 1, 2, . . . , 6 for the Honda case and k = 1, 2, . . . , 8 for the Toyota case.

The results for the Honda data are shown in Table 4.8. The unknown parameters

were estimated using the collection of data in all the six months, resulting in a = 1.17,

b = 1.22, c = 6.76, and � = 0.37. On the last row of the table the root mean square

error (RMSE) of the TIC estimation for each month is written. Similarly the results

for the Toyota case are shown in Table 4.9 and the LS estimate for the unknown

parameters are a = 1.34, b = 1.11 c = 4.55, � = 0.54. The actual data, Poisson,

contagion Poisson and TIC model estimates are compared in Figures 4.15 and 4.16.

As can be seen in both figures, the RMSE for TIC model is the lowest, meaning that

TIC is the best model to fit the data.
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Table 4.8: Honda: Number of countries having k events in each month. (a = 1.17, b
= 1.22, c = 6.76, � = 0.37). TIC denotes the ‘time-inhomogeneous contagion model’
estimate. RMSE stands for root mean square error.

month, t 1 2 3 4 5 6
k nk TIC nk TIC nk TIC nk TIC nk TIC nk TIC
1 8 5.91 9 8.63 10 9.57 10 10.35 10 10.88 10 11.15
2 4 4.06 7 6.91 8 7.77 9 8.42 9 8.85 9 9.07
3 2 2.80 5 5.56 5 6.35 6 6.89 7 7.25 7 7.42
4 2 1.94 4 4.5 5 5.21 5 5.66 6 5.95 7 6.1
5 2 1.35 4 3.64 5 4.28 5 4.66 5 4.90 5 5.02
6 or more 2 0.94 3 2.95 3 3.53 4 3.84 4 4.04 4 4.14
RMSE 1.04 0.37 0.7 0.55 0.38 0.62
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Figure 4.15: Honda case: comparison of actual data, Poisson, contagion Poisson and
‘time-inhomogeneous contagion’ (TIC) model estimates.

74



M.A.Sc. Thesis - Leila Morteza Beigi McMaster - School of Computational Science & Eng.

Table 4.9: Toyota: Number of countries having k events in each month. (a = 1.34, b
= 1.11 c = 4.55, � = 0.54). TIC denotes the ‘time-inhomogeneous contagion model’
estimate.

month, t 1 2 3 4 5 6
k nk TIC nk TIC nk TIC nk TIC nk TIC nk TIC
1 14 10.57 17 15.82 17 17.24 17 17.28 17 17.18 17 17.16
2 6 7.20 15 14.12 16 16.11 16 16.3 16 16.24 16 16.22
3 5 4.76 12 12.21 14 14.59 14 14.9 14 14.87 14 14.86
4 4 3.09 10 10.39 13 13 13 13.4 13 13.39 13 13.39
5 3 1.99 8 8.75 11 11.47 11 11.93 11 11.95 11 11.95
6 2 1.27 6 7.32 11 10.05 11 10.55 11 10.59 11 10.6
7 2 0.81 6 6.1 10 8.76 11 9.29 11 9.34 11 9.35
8 ore more 2 0.51 5 5.06 5 7.62 7 8.15 7 8.21 7 8.22
RMSE 1.56 0.77 1.11 0.9 0.89 0.88
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Figure 4.16: Toyota case: comparison of actual data, Poisson, contagion Poisson and
‘time-inhomogeneous contagion’ (TIC) model estimates.
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4.4 Conclusion

We have studied the catastrophic earthquake that hit Japan in March 2011 and

how it has impacted two well known automobile supply chains: Toyota and Honda.

Based on models from Chapter 2 and 3 we tried to analyse the risk dependencies and

how they have impacted both companies di↵erently.

In addition to applying the model to a more rich set of data, it will be worth-

while applying our model on a real-time bases to validate its ability to predict event

occurrences and dependencies in a supply chain after a major catastrophic events.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we have reviewed risk dependency models in Chapter 2. We then

extended the existing models by relaxing one of the assumptions and presented a

multi-class dependency model where there could be a dependency between individ-

ual risks. In addition, applications of these models in a supply chain context were

outlined.

In Chapter 3 we proposed a Poisson process model for risk propagation. One

of the most important findings to emerge from this study is to show that the time

dependent intensity rate of the Poisson process can take into account the contagion

factor.

In Chapter 4 we have looked at a case study of two global auto manufacturing. We

used results from Chapter 2 and 3 to analyze how these two companies are impacted

by the major earthquake that hit Japan in 2011.
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5.2 Future work

For future research, this study identified several new opportunities. Specifically,

opportunities exist to study the modelling of risk dependencies where group specific

risk factors in a multi-class dependency model are dependent. Also, development of

our risk propagation model that follow our requirements in this study is an oppor-

tunity to present a new model. Other than dependence on time and state k, the

transition rate can be a function of other factors like distance from the source of

risk. It would be worthwhile to observe the propagation of risk through the time and

geographic location, incorporating correlation factors.

Another potential research area related to this work and particularly to our case

studies and numerical example is to investigate the robustness as well as the sen-

sitivity of the contagion risk dependency models. This means measuring how the

modelling error changes by perturbations and random changes in input data. In our

case study of the impact of Japan’s March 2011 earthquake on Honda and Toyota

supply chain networks, we estimated the parameters for contagion Poisson models

and then measured the modelling performance by RMSE, comparing it with input

real data (the event count data). We need to investigate how sensitive these param-

eter estimates (and as a result the modelling performance) are when the event count

data changes slightly.

In our case study, we collected data on the number of events (like shut down, cut

down, price increase, damage, lost production, etc.) occurring in each country for a

period of six months. A particular event could be more important and critical than

the other ones based on the scale of the damage, the e↵ect and the importance of the

manufacturing facility on the Toyota and Honda companies worldwide. For example,

a lost production at a very large manufacturing facility could be more important than

a shut down of a small facility. We did not consider the severity or importance of each
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event because we did not have access to such detailed information. An extension of

our work could be to add the severity information and then construct a revised risk

propagation model.
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