THE EIGENVALUE PROBLEM OF TWO MATRICES

THE FIGENVALUE PROBLFM OF

TWO TYPES OF COMPOUND MATRICES

A THESIS

Presented to

The Faculty of Graduate Studies
by

Hans Ralph Bastel

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mathematics

McMaster University
June, 1966

ACKNOWLEDGMFNTS

The research reported in this thesis was done while the author was a graduate student of mathematics at McMaster University. It was directed by Professor S. Charmonman of the Mathematics Department.

The author acknowledges with deep gratitude his indebtedness to Professor Charmonman for suggesting this problem and for his invaluable advice, criticism and guidance throughout the entire period in which this research was carried out.

My sincere thanks are also due to Professor Kenworthy. Through his comments and criticisms, a number of significant improvements resulted in the computer programming part of this thesis.

At last, a vote of thanks to my wife, Erika, who unflinchingly typed pages of equations and uncomplainingly made revision after revision. Also, the author wishes to acknowledge the extensive help of Mrs. M. Hruboska in typing the final draft of the manuscript and carrying through the many arduous tasks necessary to the successful completion of this thesis.

ABSTRACT

B. Friedman proved in Figenvalues of compound matrices
(New York University, Mathematics Research Groun, Research Rept. No. TW-16 (1951)) that if A and B are real square matrices of order n and $S=\left[\begin{array}{ll}A & B \\ B & A\end{array}\right]$, then $\lambda(S)$, the eigenvalues of S, is the set of $2 n$ numbers $\lambda(P)$ and $\lambda(Q)$ where $P=A+B$, and $Q=A-B$. In the present paper we give a simple proof and three extensions: (I) An algorithm to find the eigenvectors of S in terms of the eigenvectors of P and Q. (II) If S is a cyclic permutation matrix of order $2^{i} n$, where i is a positive integer, then $\lambda(S)$ is the set of $2^{i} n$ eigenvalues of matrices of the type Q of orders $2^{i-1} n, 2^{i-2} n, 2 n, n$, and a matrix of the type P of order n. (III) If $T=\left[\begin{array}{ll}A & B \\ B^{T} & A\end{array}\right]$ then λ (T) is the set of $2 n$ numbers $\lambda(A+C)$ and $\lambda(A-C)$, where $C^{2}=B^{T} B$. For the coefficient matrix of the five-point difference equation approximating Laplace's equation in a rectangular domain, C is obtained by inspection. We found that the use of the smaller matrices P and Q is superior to the use of the original matrix in view of the effect of round-off error as well as the computer storage and the number of computational operations required.
SECTION PAGE

1) INTRODUCTION 1
2) DEFINITIONS AND THEOREMS 3
3) NUMERICAL METHODS 13
4) ERROR ANALYSIS 40
5) THE MATRIX $\left[\begin{array}{ll}A & B \\ B^{T} & A\end{array}\right]$ 58
6) COMPUTATIONAL RESULTS AND CONCLUSIONS 61
APPENDIX A - (ADDITIONAL THEOREMS) 68
APPENDIX B - (COMPUTER PROGRAMS AND RESULTS) 71

LIST OF TABLES

TABLE PAGE
1 COMPUTER TIME IN SYMMFTRIC CASES 64
2 COMPUTER TIME IN NON-SYMMETRIC CASES 65
3 COMPUTER TIME IN TRIDIAGONAL CASES 66
4 ACCURACY 67

SFCTION 1

INTRODUCTION
As Bernard Friedman has pointed out in [I], the problem of finding the eigenvalues of certain matrices can be simplified by taking into account the special patterns of submatrices of these matrices. He investigated matrices of the type

$$
\left[\begin{array}{ll}
A_{1} & A_{2} \tag{I.1}\\
A_{2} & A_{1}
\end{array}\right]
$$

and of a more general system as shown below:

$$
\left[\begin{array}{cccc}
A_{1} & A_{2} & -\cdots-\cdots A_{n} \tag{I.2}\\
A_{n} & A_{1} & A_{2} & -\cdots \\
A_{n-1} \\
A_{2} & -\cdots & -\cdots A_{n}- & A_{1}
\end{array}\right]
$$

where the $A_{i}(i=1,2, \ldots \ldots, n)$ are $n x n$ matrices.
In this paper, system (I.l) was investigated from the point of view of the complete eigenvalue problem (that is the determination of eigenvalues as well as eigenvectors).

The main purpose of the investigation was to find out whether it is possible to extend Friedman's result to the case of eigenvectors.

In Section (2) of this paper we define certain basic concepts and give proofs of relevant theorems. Various algorithms used for solving the eigenvalue problem are described in Section (3). In Section (4) we give an error analysis of Gaussian elimination and Householder's method. We look at a special compound matrix in Section (5) and show how we can facilitate the eigenvalue problem by means of a solution by
inspection. This particular matrix occurs in the numerical solution of partial differential equations. In Section (6) the methods discussed in Section (3) are utilized in the investigation of system (I.1). This section also sets forth our conclusions. In Appendix A we present a few more theorems, and the Fortran IV programs used in our investigations are exhibited in Appendix B.

This paper was presented as Srisakdi Charmonman and H. R. Bastel, "Eigenvalue problems of a $2 n x 2 n$ matrix", $632^{\text {nd }}$ Meeting, AMS, New York, N-Y April 4-7, 1966.

SFCTION ?

DFFINITTIONS AND THEORFMS

Preliminaries. In most of these definitions and theorems we shall follow closely the notation of Friedman [1] and MacDuffee [2]. DFFINTTIONS: A rectangular array containing m rows and n columns of elements of a field F is called a mxn matrix over F. A matrix whose elements are again matrices is called compound matrix. The function "det" whose domain is the set of all nxn matrices over F and whose range is a subset of F is called a determinant provided "det" satisfies the following three properties:
(1) det is a linear function of each column, that is, for any $k=1,2, \ldots, n$ and all $b, c \varepsilon F$, if
$A_{k}=b B_{k}+c C_{k}$, then
$\operatorname{det}\left(A_{1}, \ldots, b B_{k}+c C_{k}, \ldots A_{n}\right)$
$=b \operatorname{det}\left(A_{1}, \ldots, B_{k}, \ldots, A_{n}\right)+c \operatorname{det}\left(A_{1}, \ldots, C_{k}, \ldots A_{n}\right)$
(2) if two adjacent columns of A are equal, then $\operatorname{det} A=0$; and
(3) det $I=1$, where I is the identity matrix and n is the unity element of F.

The polynomial det $(A-\lambda I)$ is called the characteristic
polynomial of the matrix A. The equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A. The eigenvalues of a matrix A are the roots of the characteristic equation of A. To determine the eifenvectors associated with the eigenvalue λ_{i} we solve for the vector X_{i} from $\left(A-\lambda_{i} I\right) X_{i}=0$

$$
\text { or } A X_{i}=\lambda_{i} X_{i}
$$

An nxn matrix A is said to be non - singular if and only if $\operatorname{det}(A) \neq 0$, otherwise A is said to be singular. Two nxn matrices A and B are said to be similar if and only if

$$
A=P B P^{-1}
$$

for some non-singular matrix P.
If $A=\left(a_{i, j}\right) ; i=1, \ldots, m ; j=1, \ldots, m$ then A is the identity matrix I if $a_{i j}=1$ when $i=j$ and 0 otherwise. A is said to be a diagonal matrix if $a_{i j}=0$ when $i \neq j$.

A is said to be upper triangular if $a_{i j}=0$ when $i>j$. A
triangular matrix for which $a_{i i}=0$ is called strictly triangular.
Given $A=\left(a_{i j}\right)$, the transpose of A, denoted by A^{T} is defined by

$$
A^{T}=\left(b_{i, j}\right) ; \text { where } a_{i j}=b_{j i}
$$

An nxn matrix is said to be symmetric if and only if

$$
A=A^{T}
$$

B is the inverse of A if and only if

$$
\mathrm{AB}=\mathrm{I}=\mathrm{BA}
$$

Here we denote B by A^{-1}.
We define the left direct product by

where A is an nxn matrix and B is an rxS matrix.
A matrix will be called a permutation matrix if the elements of any row are a permutation of the elements of the first row. If the $k^{\text {th }}$ row of a matrix consists of the elements of the first row shifted cyclically ($k-1$) q places to the right, we call such a matrix a
q - cycle permutation matrix.
A ring A is an algebraic system having operations of additions $(+)$ and multiplication (.) and satisfying the following conditions:
(a) A is an abelian group under addition;
(b) multiplication is associative;
(c) multiplication is distributive relative to addition;

THEOREMS
THEOREM 1.' If A and B are square matrices of order r, and C is a nxm matrix, then

$$
(A+B) \cdot x C=A \cdot x C+B \cdot x C
$$

where " + " denotes ordinary matrix addition.
Proof: Let $A=\left(a_{i, j}\right), B=\left(b_{i j}\right) ; i, j=1,2, \cdots, r$ and $C=\left(c_{s t}\right)$;

$$
s, t=1,2, \ldots, n
$$

$(A+B) \cdot x C$

$=A \cdot x C+B \cdot x C$

THEOREM 2. If A is of order r and B is of order n and if $A \cdot x B=C=\left(c_{i, f}\right)$, then

$$
c_{i, j}=a_{i_{1}, j} b_{i_{2,1}}
$$

where

$$
\begin{aligned}
& i=r\left(i_{2}-1\right)+i_{1}, 1 \leqslant i_{1} \leqslant r, 1 \leqslant i_{2}<n \\
& j=r\left(j_{2}-1\right)+j_{1}, l \leqslant j_{1} \leqslant r, 1 \leqslant j_{2}<n
\end{aligned}
$$

and
The proof follows directly from the definition.
THFOREM 3. $(A C) \cdot x(B D)=(A \cdot x B)(C \cdot x D)$
Let $k=r\left(k_{2}-1\right)+k_{1} ; \quad l \leqslant k_{1}<r$
Proof: (A.xB)(C.xD)

$$
\begin{aligned}
& =\left(a_{i_{1} j_{1}} b_{i_{2} j_{2}}\right)\left(c_{i_{1} j} d_{i_{2} j_{2}}\right) \\
& =\sum_{k} a_{i_{1} k_{1}} b_{i_{2} k_{2}} c_{k_{1} j_{1}} d_{k_{2} j_{2}} \\
& =\sum^{k_{1}} a_{i_{1} k_{1}} c_{k_{1} j_{2}} \sum_{k_{2}} b_{i_{2} k_{2}} d_{k_{2} j_{2}} \\
& =(A C) \cdot x(B D)
\end{aligned}
$$

THEOREM 4. If λ is an eigenvalue of A and μ is an eigenvalue of B then $\lambda \mu$ is an eigenvalue of $A \cdot x B$.

Proof: Let $X[Y]$ be an eigenvector of $A[B]$ with respect to $\lambda[\mu]$ and let Z be the vector with components $X_{k} Y_{j}$. If $i=r\left(i_{2}-l\right)+i_{1}$, then the $i^{\text {th }}$ component of $(A \cdot x B) Z$ is

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(\sum_{k=1}^{r} a_{i_{1} k} b_{i_{2}} X_{k} Y_{j}\right) \\
= & \left(\sum_{k=1}^{r} a_{i_{1} k} X_{k}\right)\left(\sum_{j=1}^{n} b_{i_{2}} Y_{j}\right) \\
= & \left(\lambda X_{i_{1}}\right)\left(\mu Y_{i_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda \mu X_{i_{2}}{ }_{i_{2}} \\
& =\lambda \mu Z_{i}
\end{aligned}
$$

Hence $(A \cdot x B) Z=\lambda 1 Z$, and $\lambda \mu$ is an eigenvalue of $A \cdot x B$
THEOREM 5. Let $A_{1}, A_{2}, \ldots, A_{p}$ be $n-d i m e n s i o n a l$ square matrices and B_{1}, \ldots, B_{p} be r - dimensional square matrices. Suppose that B_{1}, \ldots, B_{p} have a common eigenvector, X, and that the corresponding eigenvalues are u_{1}, \ldots, u_{p} respectively, then the eigenvalues of (2.1)

$$
u_{1} A_{1}+\ldots+u_{p} A_{p}
$$

will be eigenvalues of

$$
\begin{equation*}
C=A_{1} \cdot x B_{1}+A_{2} \cdot x B_{2}+\cdots+A_{p} \cdot x B_{p} \tag{2.2}
\end{equation*}
$$

Proof: Let Y be an eigenvector of (2.1) corresponding to the eigenvalue v then
(2.3) $\quad\left(u_{1} A_{1}+u_{2} A_{2}+\cdots+u_{p} A_{p}\right) Y=V Y$

From the definition of X we have

$$
B_{1} X=u_{1} X, B_{2} X=u_{2} X, \ldots, B_{p} X=u_{p} X
$$

Then by (2.3) it follows that

$$
\begin{aligned}
& \left(A_{1} \cdot x B_{1}+A_{2} \cdot x B_{2}+\ldots+A_{p} \cdot x B_{p}\right)(Y \cdot x X) \\
& =\left(A_{1} \cdot x B_{1}\right)(Y \cdot x X)+\ldots+\left(A_{p} \cdot x B_{p}\right)(Y \cdot x X) \\
& =\left(A_{1} Y\right) \cdot x\left(B_{1} X\right)+\ldots+\left(A_{p} Y\right) \cdot x\left(B_{p} X\right) \\
& =\left(A_{1} Y\right) \cdot x\left(u_{1} X\right)+\ldots+\left(A_{p} Y\right) \cdot x\left(u_{p} X\right) \\
& =\left(u_{1} A_{1} Y+\ldots+u_{p} A_{p} Y\right) \cdot x X \\
& =v Y \cdot x X
\end{aligned}
$$

This proves that $Y \cdot x X$ is an eigenvector of (2.2) corresponding to the eigenvalue v.

THFOREM 6. Let C be the matrix considered in Theorem 5. Sunpose that the ring generated by the matrices B_{1}, \ldots, B_{p} has an m - dimensional representation ($m<r$) in which the matrix B_{k} is represented by M_{k}. Then every eigenvalue of the n m-dimensional matrix

$$
D=A_{1} \cdot x M_{1}+\ldots+A_{p} \cdot x M_{p}
$$

is an eigenvalue of the nr -dimensional matrix

$$
C=A_{1} \cdot x B_{1}+\ldots+A_{p} \cdot x B_{p}
$$

The proof is given in [1].
THEOREM 7. Let C be a p-cycle permutation matrix, then the eigenvalues of any of the following matrices will be eigenvalues of C.
$T_{0}=\left(S_{0}\right)$
$T_{1}=\left[\begin{array}{ccccccc}0 & 0 & 0 & \ldots & 0 & 0 & s_{p}^{t-1} \\ s_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & s_{p} & 0 & \ldots & 0 & 0 & 0 \\ " & & & & " & \\ " & & & & " & \\ " & & & & " 1 & \\ 0 & 0 & 0 & \ldots & s_{p}^{t-3} & 0 & 0 \\ 0 & 0 & 0 & \ldots & 0 & s_{p}^{t-2} & 0\end{array}\right]$
$T_{a_{1}}=\left[\begin{array}{cccccc}0 & 0 & \ldots & \ldots \ldots & s_{a_{1} p}{ }^{t-1} \\ s_{a_{1}} & 0 & \ldots \ldots \ldots . & 0 \\ 0 & s_{a_{1} p} & 0 & \ldots \ldots & 0 \\ 0 & 0 & \ldots & \ldots \ldots & 0 & 0 \\ 0 & \ldots & \ldots \ldots & s_{a_{1}} p^{t-2} & 0\end{array}\right]$
where

$$
\begin{aligned}
& S_{k}= A_{1}+e^{k} A_{2}+e^{2 k} A_{3}+\ldots+e^{k(r-1) A_{r}} \\
& k=0,1, \ldots r-1 ;(\bmod r)
\end{aligned}
$$

and ℓ is a primitive $r^{\text {th }}$ root of unity.
The proof follows [1].
COROLLARY. If we want to obtain the eigenvalues of $S=\left[\begin{array}{ll}A & B \\ B & A\end{array}\right]$
where A, B are square matrices of order n, we apply Theorem 7 and note that the eigenvalues of S are the eigenvalues of $A+B$ and $A-B$.

THFOREM 8. The eigenvalues of a matrix are invariant under a similarity transformation.

Proof: If x is the eigenvector of A belonging to the eigenvalue λ, then

$$
A x=\lambda x
$$

Premultiplication by H^{-1} gives

$$
H^{-1} A x=\lambda H^{-1} x
$$

then

$$
H^{-1} A\left(H^{-1}\right) x=\lambda H^{-1} x
$$

and

$$
\left(H^{-1} A H\right) H^{-1} x=\lambda_{H^{-1}} x
$$

The eigenvalues are therefore preserved and the eigenvectors are multiplied by H^{-1}.
THEOREM 9. Let $\lambda_{i} ; i=1, \ldots, 2 n$, be the eigenvalues of $S=\left[\begin{array}{ll}A & B \\ B & A\end{array}\right], \mu_{i}$, $i=1, \cdots, n_{1}$ the eigenvalues of $P=A+B$, and $\eta_{j}, 1=n+1, \cdots, 2 n$ the eigenvalues of $Q=A-B$. Then the eigenvectors $X_{i}=\left[\begin{array}{l}x_{1 i} \\ x_{2 i}\end{array}\right]$ corresponding to the μ_{i} are:
a) if any of the μ_{i} are equal to any of the η_{j}, then

$$
\begin{aligned}
& x_{l i}=z_{i}+Y_{i} \\
& x_{2 i}=-z_{i}+Y_{i}
\end{aligned}
$$

where

$$
\begin{aligned}
& \left(P-\mu_{i} I\right) Y_{i}=0 \\
& \left(Q-\mu_{i} I\right) z_{i}=0 \\
& \left(P-\eta_{j} I\right) Z_{j}=0
\end{aligned}
$$

b) if $\mu_{i} \neq \eta_{j}$, then

$$
X_{l i}=X_{2 i}=Y_{i}
$$

Similarly, the eigenvectors corresponding to the η_{η} are:
a) if $\eta_{j}=\mu_{i}$, then

$$
\begin{aligned}
& x_{1 i}=z_{j}+Y_{i} \\
& x_{2 i}=z_{j}-Y_{i}
\end{aligned}
$$

b) if $\eta_{j} \neq \mu_{i}$

$$
\text { then } x_{l i}=-x_{2 i}=z_{j}
$$

Proof: We consider the matrix equation

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\left[\begin{array}{l}
x_{1 i} \\
X_{2 i}
\end{array}\right] } & =\lambda_{i} \cdot\left[\begin{array}{l}
x_{1 i} \\
x_{2 i}
\end{array}\right] \\
i & =1, \ldots, 2 n
\end{aligned}
$$

Multiplying out and equating terms gives
(2.6) $A X_{l i}+B X_{2 i}=\lambda_{i} X_{l i}$
(2.7) $\mathrm{BXX}_{1 i}+\mathrm{AX} X_{2 i}=\lambda_{i} X_{2 i}$

We add (2.6) and (2.7) and get

$$
(A+B)\left(x_{l i}+x_{2 i}\right)=\lambda_{i}\left(x_{1 i}+x_{2 i}\right)
$$

hence
(2.8) $P Y_{i}=\mu_{i} Y_{i} ; i=1,2, \ldots, n$
where $Y_{i}=X_{l i}+X_{2 i}$
Similarly, by subtracting we get
(2.9) $\quad \mathrm{Y}_{j}=\eta_{i j} ; j=n+1, \cdots, 2 n$
where $Y_{j}=X_{1 i}-X_{2 i}$
We note that Y_{i} and Y_{g} may be obtained from (2.8) and (2.9), if the ${ }_{i}$ are known. Now we develop a method by means of which we can determine all eigenvectors (unique to a constant multiplier) correspondine to the μ_{i}. For this we go back to consider S.

$$
\left[\begin{array}{crr}
A-\mu_{i}^{I} & & B \\
B & A & -\mu_{i} I
\end{array}\right]\left[\begin{array}{l}
X_{I i} \\
X_{2 i}
\end{array}\right]=0
$$

Multiplying out the above matrix equation we get
(2.10) $\left(A-\mu_{i} I\right) X_{1 i}+B X_{2 i}=0$
(2.11) $B X_{1 i}+\left(A-\mu_{i} I\right) X_{2 i}=0$

We subtract (2.11) from (2.10) and get

$$
\left(A-B-\mu_{i} I\right)\left(X_{l i}-X_{2 i}\right)=0
$$

or
(2.12) $\left(Q-\mu_{i} I\right) z_{i}=0$
where

$$
z_{i}=x_{l i}-x_{2 i}
$$

First we note that if

$$
\left|Q-\mu_{i} I\right|=0 \text { then }
$$

μ_{i} is an eigenvalue of Q as well as of P.
Hence, if any of the ${ }_{i}$ are equal to any of the η_{j} then

$$
Z_{i}=k Y_{g}
$$

for any constant k.

Thus

$$
Z_{i}=\left(x_{1 i}-x_{2 i}\right)
$$

also $\quad Y_{i}=X_{1 i}+X_{2 i}$
Hence

$$
\begin{aligned}
& x_{l i}=1 / 2\left(z_{i}+Y_{i}\right) \\
& X_{l i}=1 / 2\left(Y_{i}-z_{i}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& X_{I i}=k Y_{j}+Y_{i} \\
& X_{2 i}=Y_{i}-k Y_{j}
\end{aligned}
$$

but if $\mu_{i} \neq \eta_{q}$, with $(i \quad i<n, i \varepsilon$ positive integers $)$ and $(j: n+1 \leq j \leq 2 n$, $j \varepsilon$ positive integers), then

$$
\left|Q-\mu_{i} I\right| \neq 0
$$

Thus (2.12) implies that $Z_{i}=0$, which by definition gives

$$
x_{1 i}=x_{2 i}
$$

But

$$
\begin{aligned}
& Y_{i}=X_{1 i}+X_{2 i} \\
& X_{l i}=X_{2 i}=Y_{i}
\end{aligned}
$$

Thus
The eigenvalues corresponding to η_{f} are obtained in the same manner.

SFITTION 3

NUMFRRICAL METHODS

HOUSFHOLDER'S METHOD FOR THE SOLUTION OF THF SYMMFTRIC EIGENVALUF PRORLEM

Preliminaries: Householder suggested the use of symmetric matrices P, defined by
(3.10) $\quad P=I-2 w^{T}$
where w is a column vector such that
$w^{T}{ }_{w}=1$
The matrix, P, is symmetric and we have

$$
\begin{align*}
P^{T} P & =\left(I-2 w w^{T}\right)\left(I-2 w w^{T}\right) \tag{3.3}\\
& =I-4 w w^{T}+4 w\left(w^{T} w\right) w^{T} \\
& =I-4 w w^{T}+4 w w^{T} \\
& =I
\end{align*}
$$

Hence P is also orthogonal.
We define w_{r} to be a vector with its first ($r-l$) components equal to zero, so that
(3.4) ${ }_{\mathrm{w}}^{\mathrm{T}}=\left(0,0, \ldots, 0, x_{r}, \ldots, x_{n}\right)$, and, P_{r}, to be a matrix of the form, P , with $\mathrm{w}=\mathrm{w}_{\mathrm{r}}$. From
(3.2) we get that

$$
\begin{equation*}
x_{r}^{2}+x_{r+1}^{2}+\ldots+x_{n}^{2}=1 \tag{3.5}
\end{equation*}
$$

The transformation to triple diagonal form, as shown later on in this section, is effected by ($n-2$) orthogonal similarity transformations with matrices $P_{2}, P_{3}, \ldots, P_{n-1}$ respectively.

The first transformation produces zeros in the $1^{\text {st }}$ row and the $1^{\text {st }}$ column, except those in the tridiaponal section. The second transformation produces zeros in the $2^{\text {nd }}$ column and the $2^{\text {nd }}$ row, except those in the tridiafonal section, and so on.
We denote the orifinal matrix by $A^{(1)}$ and define $A^{(r)}$ by the relation

$$
\begin{equation*}
A^{(r)}=P_{r} A^{(r-1)} P_{r} \tag{3.6}
\end{equation*}
$$

where $A^{(r-1)}$ contains ($n-r$) elements in row ($r-1$) which are to be reduced to zero by the transformation with P_{r}. This gives us (n-r) equations to be satisfied by the $(n-r+1)$ elements of w_{r}. These equations, in addition to equation (3.5) above, determine the elements, but not quite uniquely. We are free to make that choice which will give the preatest numerical convenience.

Householder Method. The transformation with the matrices P_{2}, \ldots, P_{n-1} are performed successively. A typical stage may be illustrated on hand of a 5×5 matrix after applying P_{2} and P_{3}, the matrix $A^{(3)}$ is

$$
A^{(3)}=\left[\begin{array}{lllll}
\alpha_{1} & \beta_{2} & 0 & 0 & 0 \\
\beta_{2} & a_{2} & \beta_{3} & 0 & 0 \\
0 & R_{3} & Y & Y & \bar{Y} \\
0 & 0 & Y & Y & Y \\
0 & 0 & \bar{Y} & Y & Y
\end{array}\right]
$$

In the transformation with P_{4} only the elements of the 3×3 matrix, denoted by Y's are modified. The barred Y's are to be reduced to zeros. It is not hard to show that the general step in the Householder method is typified by the first. Thus the whole process may be illustrated by considering the first step in the reduction of a 4×4 matrix.

We let

$$
A=\left[\begin{array}{llll}
a_{1} & b_{1} & c_{1} & d_{1} \\
b_{1} & h_{2} & c_{2} & d_{2} \\
c_{1} & c_{2} & c_{3} & d_{3} \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right]
$$

Now we want to determine P_{2} such that the transformation $P_{2} A P_{2}$ will introduce zeros into positions (1,3), (1,4) and thus in (3.1) and(4.1). We define w_{2} by

$$
\begin{equation*}
w_{2}^{T}=\left(0, x_{2}, x_{3}, x_{4}\right) \tag{3.7}
\end{equation*}
$$

By (3.5) we get

$$
\begin{equation*}
x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1 \tag{3.8}
\end{equation*}
$$

The first row of any matrix is unaltered by multiplication on the left by P_{2}, so that $P_{2} A P_{2}$ will have zeros in positions (1.3) and 1.4) if and only if AP_{2} has zeros in these positions. Thus we must choose w_{2} so that this condition is satisfied. Now we have

$$
\begin{equation*}
A P_{2}=A-2 A W_{2} W_{2}^{T} \tag{3.9}
\end{equation*}
$$

If we write

$$
\begin{equation*}
A w_{2}=p \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
p^{T}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \tag{3.11}
\end{equation*}
$$

then the elements of the first row of AP_{2} are

$$
a_{1}, b_{1}-2 p_{1} x_{2}, c_{1}-2 p_{1} x_{3}, d_{1}-2 p_{1} x_{4}
$$

where

$$
\begin{equation*}
p_{1}=b_{1} x_{2}+c_{1} x_{3}+d_{1} x_{4} \tag{3.12}
\end{equation*}
$$

We must have

> (3.13)

$$
\begin{aligned}
& c_{1}-2 p_{1} x_{3}=0 \\
& d_{1}-2 n_{1} x_{4}=0
\end{aligned}
$$

if
(3.14)

$$
s=b_{1}^{2}+c_{1}^{2}+d_{1}^{2}
$$

we must also have

$$
\begin{equation*}
b_{1}-2 p_{1} x_{2}= \pm s^{1 / 2} \tag{3.15}
\end{equation*}
$$

since the sum of the squares of the elements in any row must be invariant.
Multiplying (3.15) by x_{2} and equations (3.13) by x_{3} and x_{4} we get

$$
p_{1}-2 p_{1}\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)= \pm x_{2} s 1 / 2
$$

Thus

$$
\begin{equation*}
p_{1}= \pm x_{2} S^{1 / 2} \tag{3.16}
\end{equation*}
$$

Equation (3.15) therefore gives

$$
\begin{align*}
& \mathrm{b}_{1} \pm 2 x_{2}^{2} \mathrm{~s}^{1 / 2}=\mathrm{s}^{1 / 2} \\
& \mathrm{x}_{2}^{2}=\frac{1}{2}\left\{1 \pm \mathrm{b}_{1} / \mathrm{s}^{1 / 2}\right\} \tag{3.17}
\end{align*}
$$

From equations (3.13) and (3.16) we get

$$
\begin{equation*}
x_{3}=\mp c_{1} / 2 x_{2} s^{1 / 2} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{4}=\mp d_{1} / 2 x_{2} s^{1 / 2} \tag{3.19}
\end{equation*}
$$

where the upper and lower signs in (3.15), (3.17), (3.18) and (3.19) go together. Wilkinson points out in [3] that it is advantageous to use the following sign conventions:

$$
\begin{aligned}
& x_{2}^{2}=\frac{1}{2}\left\{1+b_{1}\left(\operatorname{sign} b_{1}\right) / s^{1 / 2}\right\} \\
& x_{3}=c_{1}\left(\operatorname{sign} b_{1}\right) / 2 x_{2} s^{1 / 2} \\
& x_{4}=d_{1}\left(\operatorname{sign} b_{1}\right) / 2 x_{2} s^{1 / 2}
\end{aligned}
$$

We now obtain an explicit expression for $P_{2} A P_{2}$ in terms of w_{2} and p. In the following calculation we omit the subscript 2 in w_{2}.

$$
\begin{aligned}
\left(P_{2} A P_{2}\right)= & \left(I-2 w w^{T}\right)(A)\left(I-2 w w^{T}\right) \\
= & A-2 w w^{T} A-2 A w w^{T}+4 w\left(w^{T} A w\right) w^{T} \\
= & A-2 w\left(w^{T} A-\left(w^{T} A w\right) w^{T}\right) \\
& -2\left(A w-w\left(w^{T} A w\right)\right) w^{T} \\
= & A-2 w q^{T}-2 q w^{T}
\end{aligned}
$$

where

$$
q=A w-\left(w^{T} A w\right) w
$$

$$
=p-K w
$$

$K=\left(w^{T} A w\right)=\left(w^{T} p\right)$, is a scalar.
For the general case of order n there are $(n-1)^{2}$ multiplications in the calculation of (p_{2}, \ldots, p_{n}) and $n(n-1)$ multiplications in the calculation of ($-2 w q^{T}-2 q w^{T}$) if we take advantage of symmetry. The rest of the computation requires a number of multiplications which is of order n. The total number of multiplications in the reduction to tri-diagonal form is therefore

$$
2\left[n^{2}+(n-1)^{2}+\ldots+2^{2}\right] \approx 2 / 3 n^{3}
$$

The number required in the Givens transformation is $4 / 3 n^{3}$. Also, there are approximately $2 n$ square roots to be evaluated in Householder's method while there are $k_{2}{ }^{2}$ in Givens method.

THF OR TRANSFORMATION

Preliminaries. The $Q R$ algorithm is a modification of the well known LR method by Rutishauser [4]. It was developed by J. G. F. Francis [5] in 1959 in order to overcome the possible numerical instability of Rutishauser's algorithm. The transformations on which the oR method is based are orthogonal* and thus it can be expected that they are numerically stable. In this section we shall first state the $Q R$ alporithm and then prove the main theorems connected with it.
$Q R$ Algorithm. The method consists of forming a sequence of matrices $A(S)$ where $A^{(1)}=A$. The matrix $A^{(S)}$ is then decomposed into the product of an orthogonal matrix $Q^{(S)}$ and an upper triangular matrix $R^{(S)}$. This is achieved by pre-multiplying $A^{(S)}$ by an orthogonal matrix $0^{(S)^{T}}=\left(0^{(S)}\right)^{-1}$ chosen so as to reduce $A^{(S)}$ to an upper triangular matrix. $A^{(S+1)}$ is then formed by post-multiplying $R^{(S)}$ by $Q^{(S)}$. Thus

$$
\left\{\begin{array}{l}
A^{(I)}=A \tag{3.20}\\
A^{(S)}=Q^{(S)} R^{(S)}, A^{(S+1)}=R^{(S)} Q^{(S)},(S=1,2, \ldots)
\end{array}\right.
$$

The matrix $Q^{(S)}$ may be found explicitly or may only exist as a product of simple factors. We can also write the algorithm as a similarity transformation, e.g.
(3.21) $A^{(S+1)}=Q_{1}^{(S)^{T}} Q^{(S-1)^{T}} \ldots Q^{(1)^{T}} A Q^{(1)} Q^{(2)} \ldots Q^{(S)}$

In this discussion we make use of some special notational conventions as outlined below.

* In this discussion we assume that our matrices are real.

The results, however, can be generalized to apply to Hermitian matrices
as well. (e.g. see $[3],[4],[5],[6]$,)
(a) Lower case letters with bar underneath (e.g. x) denote column vectors or columns of matrices. They usually have a suffix giving, their position in the array.
(b) If we write a hat (e.g. N) over a square matrix we mean the rectangular matrix obtained by omitting its first column. Similarly a hat over a vector indicates that its first element has been omitted.
(c) The transpose of A is written as A^{T}. By \hat{A}^{T} we mean $(\hat{A})^{T}$. Row vectors always have a superscript T.
(d) The identity matrix I has columns $e_{1}, e_{2}, \ldots, e_{n}$ if I is of order n.
(e) If a matrix has a suffix in brackets the same affix usually appears in brackets with its columns and elements. For example

$$
\begin{aligned}
& A^{(S)}=\left[{\underset{a}{1}}^{(S)}, \underline{a}_{-2}^{(S)}, \ldots, a_{n}^{(S)}\right]=\left[a_{i j}^{(S)}\right] \\
& \text { or } \hat{\mathrm{B}}_{\mathrm{i}}=\left[\underline{b}(\mathrm{i})_{2} \cdots, \underline{b}(i)_{n}\right]
\end{aligned}
$$

Theorems: In the following discussion we shall show that the orthotriangular decomposition of any square matrix exists. The diagonal elements of the triangular matrix can always be made positive, and if this is so, and the matrix is non-singular, then the decomposition is unique. This will be shown in Theorem 3. We shall also show, that if certain conditions are satisfied, the matrix $A^{(S)}$ tends to an upper triangular matrix as stor the diagonal elements of which are the eigenvalues of A. But first we shall show that any matrix can be reduced to a triangular matrix by a similarity transformation using a suitable orthogonal matrix.

Theorem 1. For an arbitrary matrix A there exists an orthogonal transformation Q such that

$$
Q^{T} A Q=T
$$

where T is triangular.
Proof:* We shall prove this theorem by induction. If $n=1$, the theorem is true since a matrix of order 1 is triangular. Suppose the theorem is true for matrices of order $(n-1)$ and let A be a matrix of order n. Let v be an eigenvector of A with modulus 1 corresponding to any eigenvalue, say λ_{1}. Let $\underline{v}_{1}, \underline{u}_{1}, \ldots u_{n-1}$ be an orthonormal set of vectors.** If Q is the matrix whose columns are $\underline{v}_{1}, \underline{u}_{1}, \ldots, \underline{u}_{n-1}$ we have

$$
A_{1}=Q_{1}{ }^{T} A_{1}=\left[\begin{array}{ll}
\lambda_{1} & \underline{w}^{T} \tag{3.22}\\
\underline{0} & B
\end{array}\right]
$$

By the induction hypothesis there exists an orthogonal matrix P of order $(n-1)$ such that $\quad P^{T} B P=T_{n-1}$
Now let
(3.23)

$$
Q_{2}=\left[\begin{array}{ll}
1 & \underline{O}^{T} \\
\underline{0} & P
\end{array}\right]
$$

so that Q_{2} is orthogonal of order n. Then from (3.22) and (3.23)

$$
\begin{aligned}
Q_{2}^{T} Q_{1}^{T} A Q_{1} Q_{2} & =Q_{2}^{T}\left[\begin{array}{ll}
\lambda_{1} & \underline{w}^{T} \\
\underline{0} & B
\end{array}\right] Q_{2} \\
& =\left[\begin{array}{ll}
\lambda_{1} & W_{P}^{T} \\
\underline{0} & T \\
n-1
\end{array}\right] \\
& =T_{n}
\end{aligned}
$$

* This theorem in its more general form (e.g. matrices could be
complex) is due to Schur.
$* * \quad$ e.g. ${\underset{-}{1}}_{T}^{T} \underline{u}_{i}=0, \quad(i=1, \ldots, n-1) \quad \underline{u}_{i}^{T} \underline{u}_{j}=\delta_{i j},(i, f=1, \ldots, n-1)$

Where T_{n} is triangular of order n. Setting $Q_{1}=Q_{1} Q_{2}$ proves the thenrem. Theorem 2. For any vector \underline{b} with, say m elements, an orthoronal matrix M exists such that $M^{T} \underline{b}=\|\underline{b}\| e_{1}$. (This imnlies $\hat{M}^{T} \underline{b}=0$, and $\underline{m}_{1} \underline{T_{b}}=\|\underline{b}\|$) Proof:* When \underline{h} is zero, M can be any orthomonal matrix. We shall assume $\underline{b} \neq \underline{0}$, in which case the first column of M is uniquely determined.

By an elementary orthogonal matrix we mean a matrix which differs from the identity matrix by at most in one principal (2×2) submatrix. This submatrix (say of the matrix T) is of the form

$$
\left[\begin{array}{ll}
t_{i i} & t_{i j} \\
t_{j i} & t_{j j}
\end{array}\right]=\left[\begin{array}{ll}
\cos \theta & - \\
\sin 0 \\
\sin \theta & \cos \theta
\end{array}\right]
$$

where θ is real.
An orthogonal matrix M^{T}, such that $M^{T} \underline{b}=\| \underline{b}| | e_{1}$ can conveniently be constructed out of a series of elementary orthogonal matrices,

$$
M^{T}=T_{m} T_{m-1} \cdots T_{1}
$$

If \underline{b} is multiplied in turn by the $T_{i},(i=1, \ldots, m)$, then T_{1} makes the first element b_{1} of b non-negative, and the other transformations eliminate in turn the remaining elements $b_{i}(i=2,3, \ldots, m)$. We define $T_{r}=I$ if $b_{p}=0$ for all $p \leqslant r$. Otherwise the elements of T_{r} are given by $t_{i j}(r)=\delta_{i j}$, except for $t_{r l}(r), t_{l r}(r), t_{l l}(r)$, and $t_{r r}(r)$. For $r=1, t_{11}(r)=b_{1} /\left|b_{1}\right|$ (T_{1} is a diagonal matrix)

For $r=2,3, \ldots, m$

$$
\begin{aligned}
& t_{l 1}(r)=t_{r r}{ }^{(r)}=\left(1-\left|b_{r}{ }^{2}\right| / \sum_{p \leqslant r}\left|b_{p}\right|^{2}\right)^{1 / 2} \\
& t_{r l}(r)=-t_{l r}(r)=-b_{r} /\left(\sum_{p \leqslant r}\left|b_{p}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

This proof is due to Francis [5].

The first column ${\underset{-1}{2}}$ of M is uninue, for since

$$
M^{T} \underline{b}=\|\left. b\right|_{\underline{e}}
$$

we have

$$
\underline{M e}_{1}=\underline{m}_{1}=(1 / \| b| |) \underline{b}
$$

Theorem 3. For any Matrix A, of order n, there exists an orthoronal matrix Q such that $A=Q R$ where R is an upper trianoular matrix which has real, non-negntive diagonal elements. Moreover, Q is unique if A is non-singular.

Proof:*
(a) EXISTPNCE:

By Theorem 2 we can transform A so as to eliminate the elements below the main diagonal column by column startinf on the left. Thus we reduce it to a triangular matrix. We define $B_{1}=A$ and form $B_{i+1}=\hat{M}_{i} T_{B_{i}}, \quad(i=1,2, \ldots, n-1) . \quad M_{i}$ is determined for $i=1, \ldots, n$, such that $M_{i}{ }^{T} \underline{b}(i) 1=\| \underline{b}(i) 1 \mid \underline{e}_{i}$
where $\underline{b}_{(i)}$ is the first column of B_{i}.
Now if

$$
N_{i}=\left[\begin{array}{ll}
I_{i-1} & 0 \\
0 & M_{i}
\end{array}\right]
$$

where M_{i} is of order $n-i+1$, then $N_{n}{ }^{T} N_{n-1}{ }^{T} \ldots N_{1}{ }^{T} A=R$
where $r_{i i}=\left\|b_{(i) l}\right\|$ and $r_{i, j}=0$ for $i>j$.
Thus if $Q=N_{1} N_{2} \ldots N_{n}$ we hove $A=Q R$.
(b) UNIOUFNFSS:

Now supnose that we have two ortho-triangular decomnositions
$A=O_{1} R_{1}=Q_{2} R_{2}$. If A is non-sincular then so are R_{1} and R_{2}; we then have $R_{1} R_{2}^{-1}=O_{1} T_{Q_{2}}$ and, as $\left(O_{1}^{T} Q_{2}\right)$ is orthoronal, $\left(R_{1} R_{2}^{-1}\right)^{-1}=\left(R_{1} P_{2}^{-1}\right)^{T}$, * Proof due to Francis [5].
which shows that $R_{1} R_{2}^{-1}$ is diagonal, since the left-hand side is unvertridiagonal and the right-hand side is lower-tridiagonal. Furthermore, if we consider the diagonal,

$$
r_{\left.(2)_{i i} / r_{(1)}\right)_{i}}=\hat{r}_{(1)_{i i}} / \hat{r}_{(2)_{i i}} \text { and thus, as the }
$$

$r_{(1) \text { ii }}$ and $r_{(2) \text { ii }}$ are real and positive $r_{(1)_{\text {ii }}}=r_{(r) \text { ii }}$. Hence $R_{1} P_{2} r^{-1}=I$, so that $Q_{1}=Q_{2}$ and thus Q is unique.
Theorem 4. If A is non-singular the matrix $P^{(S)}=0^{(1)} \ldots 0^{(S)}$, such that $A^{(S+1)}=P^{(S)^{T}} A P(S)$ can be arrived at from the ortho-triangular decomposition of $A^{(S)} \operatorname{via} A^{(S)}=P^{(S)} S^{(S)}$ where $S^{(S)}=R^{(S)} R^{(S-1)} \ldots R^{(1)}$ and $P^{(S)}=Q^{(1)} \ldots Q^{(S)}$.
Proof:* Equation (3.21) gives $0^{(1)} \ldots 0^{(S-1)} A^{(S)}=A Q^{(1)} \ldots 0^{(S-1)}$ and, as $A^{(S)}=0^{(S)} R^{(S)}$, we get

$$
\begin{aligned}
& Q^{(1)} \ldots Q^{(S)} R^{(S)}=A Q^{(1)} \ldots Q^{(S-1)} \\
& Q^{(1)} \ldots Q^{(S-1)_{R}^{(S-1)}}=A Q^{(1)} \ldots Q^{(S-2)}
\end{aligned}
$$

and so on.
Now, if we write $P^{(S)}=Q^{(1)} \ldots Q^{(S)}$ and $S^{(S)}=R^{(S)} R^{(S-1)} \ldots R^{(1)}$
then $P^{(S)} S^{(S)}=0^{(1)} Q^{(2)} \ldots Q^{(S)} R^{(S)} R^{(S-1)} \ldots R^{(1)}$
$=Q^{(1)} Q^{(2)} \ldots Q^{(s-1)} A R^{(s-1)} \ldots R^{(1)}$
$=Q^{(1)} \theta^{(2)} \ldots Q^{(S-2)} A R^{(S-2)} \ldots R^{(1)}$
$=A^{(S)}$
Since $P^{(S)}$ is orthogonal and $S^{(S)}$ is triangular and, by Theorem 3 , the ortho-triangular decomposition of a non-singular matrix is uninue, the theorem is proved.

[^0]Theorem 5. If the eipenvalues of A are such that $\left|\lambda_{2}\right|>\left|\lambda_{2}\right|>\ldots>\left|\lambda_{n}\right|$ and if the $A^{k},(k=1, \ldots, n)$ are non-sincular then $A^{(S)}$ converges to an upper-triangular matrix.

Proof:* Since an A, as defined above, has linear divisors we mav wate

$$
A^{k}=\operatorname{Xdiag}\left(\lambda_{i}{ }^{k}\right) X^{-1}=X D^{k} Y .
$$

We define matrices $0, R, L$, S by the relations

$$
(X=Q R),(Y=L S)
$$

where R and S are upper-triangular, L is unit lower-trianpular and 0 is orthogonal. We note that all four matrices thus defined are indenendent of k. Since X is non-singular it follnws that R is nonsingular, too. Furthermore, we note that the $Q R$ decomposition always exists (Theorem 1) but a triangular decomposition of Y exists only if all its leading principal minors are non-zero. We have

$$
\begin{equation*}
A^{k}=Q R D^{k} L S=Q R\left(D^{k} L D^{-k}\right) D^{k} S \tag{3.24}
\end{equation*}
$$

so that $D^{k} L D^{-k}$ is a unit lower-triangular matrix. Its $(i, j)^{\text {th }}$ element is given by $e_{i j}\left(\lambda_{i} / \lambda_{j}\right)^{k}$ when $i>j$ and thus we may write

$$
D^{k} L D^{-k}=I+E^{(S)} \text { where } E^{(S)} \rightarrow 0 \text { as } s \rightarrow \infty
$$

Equation (3.24) now gives

$$
\begin{aligned}
A^{k} & =Q R\left(I+E^{(S)}\right) D^{k} S \\
& =Q\left(I+R E^{(S)} R^{-l}\right) R D^{k} S \\
& =Q\left(I+F^{(S)}\right) R D^{k} S
\end{aligned}
$$

Where $F^{(S)} \rightarrow 0$ as $S \rightarrow \infty$. Now $\left(I+F^{(S)}\right.$) may be factorized into the product of an orthogonal matrix $\bar{Q}^{(S)}$ and an upper-triangular matrix $\vec{P}^{(S)}$ and since $F^{(S)} \rightarrow 0, \bar{Q}^{(S)}$ and $\bar{R}^{(S)}$ both tend to I. Hence we get

* Proof is due to Wilkinson [3]. But other more sophisticated proofs have been obtained by Kublanovskaya [7] and Householder [8].
(3.25) $A^{k}=\left(Q \bar{D}^{(S)}\right)\left(\bar{R}^{(S)} R D^{k} S\right)$

The first factor in (3.25) is orthogonal and the second is upper-triangular. Since A^{k} is non-singular its factorization into such an expression is unique and therefore $P^{(S)}$ in Theorem 4 is enual to $Q \bar{Q}^{-(S)}$ apart possibly from a post-multiplying diagonal orthogonal matrix. Hence $P^{(S)}$ converges to Q. If we insist that all $R^{(S)}$ have positive diagonal elements we can find the ortho-diagonal factor from (3.25) writing
(3.26) $D=|D| D_{1}, S=D_{2}\left(D_{2}^{-1} S\right)$
where D_{1} and D_{2} are orthogonal diagonal matrices and $D_{2}^{-1} S$ has positive diagonal elements, ($\overline{\mathrm{R}}^{(S)}$ and R already have positive diagonal elements), we obtain from (3.25)

$$
A^{k}=Q \bar{Q}^{(S)_{D_{2}} D_{1}^{k}}\left\{\left(D_{2} D_{1}^{k}\right)^{-1} \bar{R}^{\left.(S)_{R}\left(D_{2} D_{1}^{k}\right) D^{k}\left(D_{2}^{-l} S\right)\right\} . ~ . ~}\right.
$$

The matrix in braces is upper-triangular with positive diagonal elements and thus $\mathrm{P}^{(\mathrm{S})}$ approaches $\mathrm{QD}_{2} \mathrm{D}_{1}{ }^{\mathrm{k}}$ showing that ultimately $\mathrm{O}^{(\mathrm{S})}$ becomes D_{1}. ELEMENTARY TRANSFORMATION

The reduction of a matrix of general form to a condensed form such as Hessenberg or triangular, can be achieved by performing a sequence of simple similarity transformations. The matrices employed to nerform such transformations are called ELEMENTARY MATRICES. The transformations based on these matrices are referred to as ELEMENTARY TRANSFORMATIONS. Gaussian elimination can be looked upon as such an elementary transformation. As will be shown below, the transformation matrices in this particular case are a sequence of matrices P_{i} where the $i^{\text {th }}$ column written as a row vector is

$$
\left(0,0, \ldots, 0,1, p_{i+1}, i, \ldots, n_{n i}\right)
$$

Gaussian Flimination.

Consider a non-singular system of equations

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=a_{1, n+1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=a_{2, n+1} \tag{3.27}\\
& \ldots \ldots \ldots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=a_{n, n+1}
\end{align*}
$$

where for notational simplicity we have written the right hand side vector components as $a_{j}, n+1 ;(j=1, \ldots, n)$. Now suppose $a_{l l} \neq 0$. We subtract the multiple $a_{i l} / a_{11}$ of the first eauation from the $i^{\text {th }}$ equation ($i=2, \ldots, n$) to get

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=a_{1, n+1} \\
& n_{22}^{(1)} x_{2}+\ldots+a_{2 n}(1) x_{n}=a_{2, n+1} \tag{3.28}
\end{align*}
$$

$$
a_{n 2}^{(1)} x_{2}+\ldots+a_{n n}^{(1)} x_{n}=a_{n, n+1}^{(1)}
$$

The new coefficients $A_{i j}$ (l) are given by the following relation:

$$
\begin{equation*}
a_{i 1}(1)=a_{11}=\left(a_{11} / a_{11}\right) a_{i j} \tag{3.29}
\end{equation*}
$$

where $(i=2, \ldots, n)$ and $(j=2, \ldots, n+1)$.

$$
\text { Now if } a_{22}^{(1)} \text { in (3.28) is non-zero, we subtract } a_{i 2}^{(1)} / a_{22}(1)
$$

times the second equation from the $i^{\text {th }}$ equation in (3.28) ($i=3, \ldots, n$) and get

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=a_{1, n+1} \\
a_{22}{ }^{(1)} x_{2}+\ldots+a_{2 n}{ }^{(1)} x_{n}=a_{2, n+1}(1) \\
a_{33}{ }^{(2)} x_{3}+\ldots+a_{3 n}{ }^{(2)} x_{n}=a_{3, n+1}(2) \\
 \tag{2}\\
\cdots+\ldots+a_{n n}{ }^{(2)} x_{n}=a_{n, n+1}
\end{array}
$$

with

$$
\begin{equation*}
a_{i j}^{(2)}=a_{i j}^{(1)}-\frac{a_{i ?^{(1)}}^{a_{22}}(1)}{} a_{\partial_{j}} \tag{3.31}
\end{equation*}
$$

where $(i=3, \ldots, n)$ and $(j=3, \ldots, n+i)$.

$$
\text { Again, if } a_{33}(2) \neq 0 \text {, we may eliminate all elements } a_{13}
$$

($i=4, \ldots, n$). Continuing with this process throuph ($n-1$) steps we arrive at the final system (3.32).

$$
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=a_{1, n+1}
$$

$$
\begin{align*}
a_{22}^{(1)} x_{2}+\ldots+a_{2 n}{ }^{(1)} x_{n} & =a_{2 n+1}(1) \tag{3.32}\\
a_{33}{ }^{(2)} x_{3}+\ldots+a_{3 n}{ }^{(2)} x_{n} & =a_{3, n+1}(2) \tag{2}\\
\cdots \cdots \cdots & a_{n n}^{(n-1)} x_{n}
\end{align*}=a_{n, n+1}^{(n-1)} .
$$

$$
\begin{align*}
& a_{i j}^{(k)}=a_{i j}(k-1)-\frac{a_{i k}(k-1)}{a_{k k}}(k-1) \tag{3.33}\\
& a_{k j}(k-1) \\
& k=1, \ldots, n-1 \\
& j=k+1, \ldots n+1 \\
& 1=k+1, \ldots, n \\
&(0)=a_{i j}
\end{align*}
$$

From (3.32), the back substitution process is carried out by the use of

$$
\begin{equation*}
x_{i}=\frac{1}{a_{i i}(i-1)}\left\{a_{i, n+1}^{(i-1)}-\sum_{j=i+1}^{n} a_{i, 1}^{(i-1)} x_{j}\right\}(i=n, \ldots, 1) \tag{3.34}
\end{equation*}
$$

The process leading to (3.32) is called Forward Flimination while the calculation of the solution (3.34) is called Rack-substitution.

The diagonal elements $a_{11}, a_{22}^{(1)}, \ldots, a_{n n}^{(n-1)}$ are called
PIVOTS. If at any stage one of these pivots vanishes, we attempt to rearrange the remaing rows so as to obtain a non-vanishing pivot.

If this is impossible, then our system (3.27) is singular, and hence it has no solution.

For some systems, thouph a pivot is not zero, it may be small comnared to other elements in the column being eliminated at that stape. In such cases the multipliers (e.f. a_{12} / a_{1} etc.) will he larger than unity in magnitude. The use of larger multipliers will, as we shall see in the error analysis part, lead to a possible increase in errors both during the elimination and during the backsubstitution phase of the process. This magnification of errors can be reduced if we interchenge the rows such that the pivot at any stage is larger in magnitude than any remaining element in that column. Gaussian elimination when modified in this way is called PARTIAL PIVOTING or PIVOTAL CONDENSATION. Similarly at any stage, say the $r^{\text {th }}$ stage, we may select as pivot the element of largest magnitude in the whole of the remaining $n+1-r$ square array. This then is called COMPLETE PIVOTING.

Matrix Equivalent. It is possible to express Gaussian elimination in a more compact form by dealing with matrices rather than with individual elements.

We write:

$$
\begin{equation*}
A x=b \tag{3.35}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
" & " & & " \\
" & \prime & & " \\
" & \prime & & " \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

$$
\begin{aligned}
& x^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& b^{T}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
\end{aligned}
$$

Now, if we take nivots down the diagonal, it is easy to show (by straifht matrix multiplication) that the first condensed (reduced) set of equations (3.28) has the matrix representation

$$
\begin{equation*}
P_{1} A x=P_{1} b, \tag{3.36}
\end{equation*}
$$

where
(3.37)
and

$$
P_{1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
p_{21} & 1 & 0 & 0 & 0 \\
p_{31} & 0 & 1 & & 0
\end{array}\right) 0 \begin{gathered}
" \\
" \\
"
\end{gathered}
$$

The second reduction (3.29) has the matrix representation

$$
P_{2} P_{1} A x=P_{2} P_{1} b
$$

where
(3.38)

$$
P_{2}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 0 & & 0 & 0 \\
0 & p_{32} & 1 & 0 & & 0 & 0 \\
0 & p_{42} & 0 & 1 & & 0 & 0 \\
" & & & & & & \\
" 1 & & & & & & \\
" & & & & & & \\
0 & p_{n 2} & 0 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

The final set of equations is riven by

$$
\begin{equation*}
P_{n-1} P_{n-2} \cdots P_{1} A x=P_{n-1} \cdots P_{1} b \tag{3.39}
\end{equation*}
$$

where all P_{j} 's $(i=n-1, \ldots, 1)$ are lower triangular matrices. Arain it is easy to show by matrix multiplication that the oroduct of lower triancular matrices is itself a matrix of that tyne. Thus if we let,

$$
P_{n-1} P_{n-2} \cdots P_{1}=P
$$

(3.39) reduces to

$$
\begin{equation*}
\mathrm{PAx}=\mathrm{Pb} \tag{3.40}
\end{equation*}
$$

But now we note that the final matrix (3.32) operating on x is an upper triangular matrix, say U. Thus on the left hand side of (3.40) we have carried out a process equivalent to

$$
\begin{equation*}
P A=U \tag{3.41}
\end{equation*}
$$

which implies that $A=P^{-1} \mathrm{U}$ and since the inverse of a lower triangular matrix is again lower triangular we have obtained A in terms of the product of an upper and lower triangular matrix. The matrix P^{-1} is easily obtained by noting that

$$
P^{-1}=P_{1}^{-1} P_{2}^{-1} \ldots P_{n-1}^{-1}
$$

and that each $P_{i}^{-1},(i=1, \ldots, n-1)$ is identical with P_{i} except thet the sign of each element $\rho_{i j}$ is changed. Thus we get

$$
P^{-1}=\left[\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
-p_{21} & 1 & 0 & \ldots & 0 & 0 \\
-p_{31} & -n_{32} & 1 & \ldots & 0 & 0 \\
" & & & & & \\
" & & & & & \\
" & & & & & \\
-p_{n 1} & -p_{n 2} & -p_{n 3} & \cdots & -p_{n, n-1}
\end{array}\right]
$$

Number of Onerations. As e conclusion of this discussion we shell attompt to evaluate the number of simple nrithmetical nopations necessary for Gaussian elimination and backsubstitution. Since on most modern computers division and multiplication times are much rreater than addition times, we shall disrerpard the count of additions.

Forward Flimination. In forward elimination A is reduced to an upnertriangular matrix. If pivots are taken down the diagonal, the reduction from k to $k-1$ equations involves the following steps:
(i) we form the reciprocal of the pivot,
(ii) we multiply the rest of the pivotal column by this reciprocal. This involves k-l multiplications.
(iii) To obtain the new set of $k-1$ equations we have to perform one multiplication for each element. This will give us k-l multiplicationson the right and $k-1$ multiplications on the left.

For the full forward elimination, we form n reciprocals, and n $\sum_{1}\left\{(k-1)+(k-1)^{2}+(k-1)\right\}$ multiplications
Using formulae from [9], e.g.

we obtain the following total

$$
\begin{aligned}
& n\left\{\left(1 / 3 n^{2}-1 / 3\right)+1 / 2(n-1)\right\} \\
& \quad=n\left(1 / 3 n^{2}+1 / 2 n-5 / 6\right)
\end{aligned}
$$

Racksubstitution. In the bacrsubstitution nrocess, for each rioht hand side the comnutation of x_{n} involves one multiplication by the recinrocal of the final nivot, for x_{n-1} we have two multiplications, down to x_{1} which nceds n multiplications. The total number of multiplications is

$$
1+2+3+\ldots+n=1 / 2 n(n+1)
$$

n reciprocals and $n\left(1 / 3 n^{2}+n-1 / 3\right)$ multiplications.

FBFRRLEIN'S METHOD

Preliminaries. The Jacobi method for the calculation of eipenvalues of a symmetric matrix has been described by Ralston [6]. It consists of finding a sequence of two-dimensional orthogonal transformations U_{i} such that if $U=\Pi_{i} U_{i}$ then $U^{*} A U$ is approximately diaponal with the approximations to the eigenvalues annearing on the diagonal ${ }^{1}$. The U_{i} are determined at each step of the iteration by minimizing the function

$$
\begin{equation*}
\tau^{2}(A)=\sum_{i \neq j}\left|a_{i j}\right|^{2} \tag{3.42}
\end{equation*}
$$

Here we shall describe a generalization of Jacobi's method due to EBERLEIN [14]. We shall show that for an arbitrary complex matrix A, a matrix P may be generated from a seauence of two-diemensional transformations $P_{i}(k, m)$, where (k, m) is the pivot-pair, such that if $A_{T}=P^{-1} A P,\left(P=\pi_{i} P_{i}\right)$ then the absolute value of every element of $\left(A_{L} A^{*}{ }_{L}-A_{L}^{*} A_{L}\right)$ is arbitrarily small. Fach P_{i} is of the form (3.43)

$$
\begin{gathered}
p_{i j}=\delta_{i j} \\
p_{k k}=e^{-i \beta} \cos (Z), p_{k m}=-e^{i \alpha} \sin (Z) \\
p_{m k}=e^{-i \alpha} \sin (Z), p_{m m}=e^{i \beta} \cos \left(Z_{1}\right)
\end{gathered}
$$

1 We denote the complex conjugate of A by A^{*}. The real and complex parts of A are denoted by $Q(A)$ and $I_{m}(A)$ respectively.
where \propto and R are real and $z=x+i y$.
The theorem underlyine ERERLRTN'S method is due to MTRSKY [15], (3.44) infimum $P^{N^{2}}\left(P^{-1} \Lambda P\right)=\sum^{n}\left|\lambda_{i}\right|^{2}$
$i=1$
where P is non-singular, λ_{i} are the eigenvalues of the nxn matrix A and (3.45)

$$
\mathbb{N}^{2}(A)=\sum_{i, j}\left|a_{i, j}\right|^{2}
$$

Before proving some lemmas and a theorem we consider the effect of a transformation (3.43), $P_{i}(k, m)$ with pivot (k, m) on an arbitrary matrix. We let $A^{l}=P_{i}^{-1} A P_{i}$ be the transformed matrix. We find

$$
\begin{align*}
& a_{i j}^{1}=a_{i j}(i, j \neq k, m) \tag{3.46}\\
& a_{k i}^{1}=e^{i \beta} a_{k i} \cos (z)+e^{i \alpha} a_{m i} \sin (Z) \\
& a_{i k}{ }_{i k}=e^{-i \beta} a_{i k} \cos (z)+e^{-i \alpha} a_{i m} \sin (Z)(i \neq k, m) \\
& a_{m i}^{l}=e^{-i \beta} a_{m i} \cos (z)-e^{i \alpha} a_{k i} \sin \left(Z_{1}\right) \\
& a_{i m}^{I}=e^{i \beta} a_{i m} \cos (Z)-e^{i \alpha} a_{i k} \sin (Z) \\
& a_{k k}^{1}=1 / 2\left\{\left(a_{k k}+a_{m m}\right)+D_{k m} \cos (2 Z)+E_{k m} \sin (2 Z)\right\} \\
& a_{k m}^{I}=I / 2 e^{i(\alpha+B)}\left\{+\eta_{k m}-D_{k m} \sin (2 Z)+\xi_{k m} \cos (2 Z)\right\} \\
& a_{m k}^{1}=1 / 2 e^{-i(\alpha+\beta)}\left\{-\eta_{k m}-D_{k m} \sin (2 Z)+\xi_{k m} \cos (2 Z)\right\} \\
& a_{m m}^{l}=1 / 2\left\{\left(a_{k k}+a_{m m}\right)-D_{k m} \cos (2 Z)-\xi_{k m} \sin (2 Z)\right\}
\end{align*}
$$

where

$$
\begin{gather*}
D_{k m}=a_{k k}-a_{m m}, B_{k m}=a_{k m}+a_{m k} \tag{3.47}\\
E_{k m}=a_{k m}-a_{m k} \\
\xi_{k m}=B_{k m} \cos (\alpha-\beta)-i F_{k m} \sin (\alpha-\beta) \\
\eta_{k m}=F_{k m} \cos (\alpha-\beta)-i B_{k m} \sin (\alpha-\beta)
\end{gather*}
$$

Since we are considering the effect of a single transformetion, we shall omit the subscripts k and m unless they are needed to avoid ambiruity. The effect of $N^{2}(A)$ is found by straightforward but tedious calculations:

$$
\begin{gather*}
\Delta A N^{2}(y, \alpha-B) \equiv N^{2}(A)-N^{2}\left(A^{l}\right) \\
=G(1-\cosh (2 y))-H(\sinh (2 y)) \tag{3.48}\\
+1 / 2\left(|D|^{2}+|\xi|^{2}\right)(1-\cosh (4 y))+1 / 2 j\left(D \xi^{*}-D^{*} \xi\right) \sinh (4 y)
\end{gather*}
$$

where

$$
\begin{align*}
& G=G_{k m}=\sum_{i \neq k, m}\left\{\left|a_{k i}{ }^{2}\right|+\left|a_{i k}{ }^{2}\right|+\left|a_{m i}^{2}\right|+\left|a_{i m}^{2}\right|\right\} \tag{3.49}\\
& H=H_{k m}=-R(K) \sin (\alpha-B)+I_{m}(K) \cos (\alpha-B)
\end{align*}
$$

and

$$
K=2 \sum_{i \neq i, m}\left(a_{k i} a_{m i}^{*}-a_{i k}^{*} a_{i m}\right)
$$

In the following lemmas and theorem we assume that A has been normalized so that $N^{2}(A) \leqslant 1$. We also assume that $C=A A^{*}=A^{*} A$. Lemma 1. For fixed (k, m) and arbitrary x and B, let ${ }^{3} A^{l}=S^{-1} A S$ where S is defined by (3.43). Define \propto and y by
(3.50) $\quad \tan \left(\alpha_{-} \beta\right)=-\frac{R\left(C_{k m}\right)}{I_{m}\left(C_{k m}\right)}$

$$
\tanh (y)=\frac{\sin (\alpha-\beta) R\left(C_{k m}\right)-\cos (\alpha-\beta) I_{m}\left(C_{k m}\right)}{G+2\left(|\xi|^{2}+|D|^{2}\right)}
$$

Then

$$
\begin{align*}
\Delta N^{2}(A) & \geq \frac{4}{3} \frac{\left|C_{k m}\right|^{2}}{G+2\left(|\xi|^{2}+|D|^{2}\right)} \tag{3.51}\\
& \geq \frac{1}{3}\left|C_{k m}\right|
\end{align*}
$$

3
We use notation S in Lemma 1 and R in Lemma 2 instead of P to distinguish between different choices of the parameters in (3.43).

Proof: By (3.49) and (3.47) we have

$$
\begin{aligned}
& i\left(D F^{*}-D^{*} \xi\right)-H \\
&(3.52)= \sin (\alpha-B)\left(R(K)-\left(E D^{*}+E^{*} D\right)\right) \\
&-\cos (\alpha-\beta)\left(I_{m}(K)+i\left(B D^{*}-B^{*} D\right)\right) \\
&= 2\left(\sin (\alpha-\beta) R\left(C_{k m}\right)-\cos (\alpha-\beta) I_{m}\left(C_{k m}\right)\right)
\end{aligned}
$$

Thus we need to establish the renuired ineauality (3.51) for

$$
\begin{equation*}
\tanh (y)=1 / 2 \frac{i\left(D E_{2}^{*}-D^{*} E\right)-H}{G+2\left(|\xi|^{2}+|D|^{2}\right)} \tag{3.53}
\end{equation*}
$$

(we note that $|\tanh (y)| \leqslant 1 / 2$ since $|H| \leqslant G$ and

$$
\left.\left|i\left(D F *-D^{*} \xi\right)\right| \leq|\xi|^{2}+|D|^{2}\right)
$$

From (3.48) we have

$$
\begin{aligned}
& \Delta N^{2}(A)=-H \sinh (2 y) \\
& +(\sinh (2 y))(\cosh (2 y)) i\left(D \xi^{*}-D^{*} \xi\right) \\
& -G(\cosh (2 y)-1)-1 / 2(\cosh (4 y)-1)\left(|D|^{2}+|\xi|^{2}\right) \\
& \geq \sinh (2 y)\left\{i\left(D \xi^{*}-D^{*} \xi\right) \cosh (2 y)-H-1 / 2\left(G+2\left(|D|^{2}+|\xi|^{2}\right)\right) \sinh (2 y)\right\}
\end{aligned}
$$

since $\cosh (2 y)-1 \leqslant 1 / 4(\cosh (4 y)-1)$

$$
=1 / 2 \sinh ^{2}(2 y)
$$

Using $\sinh (2 y)=2 \tanh (y) \cosh ^{2}(y)$ and the definition of tanh(y) in (3.53)
we get. $\quad \Delta N^{2}(A) \geqslant(2 \tanh (y))\left(\cosh ^{2}(2 y)\right)\left\{i\left(D F^{*}-D^{*} E_{0}\right) \cosh (2 y)\right.$

$$
\left.-H-1 / 2\left(i\left(D \xi^{*}-D^{*} \xi\right)-H\right) \cosh ^{2}(y)\right\}
$$

Letting $2_{r}=i\left(D \xi^{*}-D^{*} \xi\right)$
(3.54)

$$
\begin{aligned}
& \Delta N^{2}(A) \geq \frac{(2 r-H)}{G+2\left(|\xi|^{2}+|D|^{2}\right)} \cosh ^{2}(y)\{2 r \cosh (2 y) \\
& \quad-H-1 / 4(\cosh (2 y)+1)(2 r-H)\} \\
& =\frac{(2 r-H)}{r+2\left(|\xi|^{2}+|D|^{2}\right)} \cosh ^{2}(y)\{2 r[1 / 2+3 / 4(\cosh (2 y)-1)] \\
& \quad-H[1 / 2-1 / 4(\cosh (2 y)-1)]\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1 / 2(2 r-H)^{2}}{\left(r+2\left(|E|^{2}+|D|^{2}\right)\right.} \cosh ^{2}(y)\left\{1+\sinh ^{2}(y) \frac{(6 r+H)}{(2 r-H)}\right\} \\
& \geqslant \frac{1 / 2(2 r-H)^{2}}{\left(r+2\left(|\varepsilon|^{2}+|D|^{2}\right)\right.} \cosh ^{2}(y)\left\{1-\sinh ^{2}(y)\left|\frac{6 r+H}{2 r-H}\right|\right\}
\end{aligned}
$$

We have
$\sinh ^{2}(y)=\frac{\tanh ^{2}(y)}{1-\tanh ^{2}(y)}=\frac{1 / 4(2 r-H)^{2}}{\left[G+2\left(|\xi|^{2}+|D|^{2}\right)\right]^{2}-1 / 4(2 r-H)^{2}}$
and hence

$$
\begin{equation*}
\sinh ^{2}(y)\left|\frac{6 r+h}{2 r-H}\right| \tag{3.55}
\end{equation*}
$$

$$
=\frac{1 / 4|2 r-H||6 r+H|}{\left[G+2\left(|\xi|^{2}+|D|^{2}\right)\right]^{2}-1 / 4(2 r-H)^{2}}
$$

Now since $|2 r|=\left|i\left(D \xi^{*}-D^{*} \xi\right)\right| \leqslant|D|^{2}+|\xi|^{2}$
and

$$
|H| \leqslant G \text {, we have }
$$

$$
|2 r-H| \leqslant|D|^{2}+|\xi|^{2}+G
$$

and

$$
|6 r+H| \leqslant 3\left(|D|^{2}+|\xi|^{2}\right)+G
$$

Hence the numerator of (3.55)

$$
\begin{aligned}
& 1 / 4|r-H||6 r H| \\
\leqslant & 1 / 4\left[G+\left(|D|^{2}+|\xi|^{2}\right)\right]\left[G+3\left(|D|^{2}+|\xi|^{2}\right)\right] \\
\leqslant & 1 / 4\left[G+2\left(|\xi|^{2}+|D|^{2}\right)\right]^{2}
\end{aligned}
$$

and the denominator of (3.55) are

$$
\geqslant 3 / 4\left[G+2\left(|\xi|^{2}+|D|^{2}\right)\right]^{2}
$$

From these last two inequalities and from (3.55) we have

$$
\sinh ^{2}(y) \quad|(6 r+H) /(2 r-H)|<1 / 3
$$

Using this expression in (3.54) we obtain

$$
\begin{align*}
\Delta N^{2}(A) & 21 / 3 \frac{(2 r-H)^{2}}{G+2\left(|\xi|^{2}+|D|^{2}\right)} \tag{3.56}\\
& =\frac{4}{3} \frac{\left|c_{k m}\right|^{2}}{G+2\left(|\xi|^{2}+|D|^{2}\right)}
\end{align*}
$$

by (3.50), (3.52) and the definition of $2 r$. Since the denominator is less than $4 N^{2}(A)$ we have

$$
\Delta N^{2}(A) \geqslant 1 / 3 \frac{\left|c_{k m}\right|^{2}}{N^{2}(A)} \geqslant 1 / 3\left|c_{k m}\right|^{2}
$$

Lemma 2. Let R be a real rotation, obtained from (3.43) by setting $\alpha=B=y=0$. Let $A^{I}=R^{-1} A R$ and

$$
\begin{equation*}
\tan (2 x)=-\frac{c_{k k}-c_{m m}}{2 R\left(c_{k m}\right)} \tag{3.57}
\end{equation*}
$$

Then $\quad c_{k k}^{1}-c_{m m}^{1}=0$

$$
I_{m}\left(c_{k m}^{I}\right)=I_{m}\left(c_{k m}\right) \text { and }
$$

$$
2 R\left(c_{k m}^{I}\right)=\left(2 R\left(c_{k m}\right) \cos (2 x)-\left(c_{k k}-c_{m m}\right) \sin (2 x)\right.
$$

(we note that $c_{i i}$ is real since $C=A A^{*}-A^{*} A$ is Hermitian).
Proof: This lemma follows immediately upon computing, $c^{1} \mathrm{~km}$ and $c_{k k}^{1}-c_{m m}^{l}=\left(c_{k k}-c_{m m}\right) \cos (2 x)+\left(2 R\left(c_{k m}\right) \sin (2 x)\right.$.

Lemma 3. Let (k, m) be chosen so that $4\left|c_{k m}\right|^{2}+\left(c_{k k}-c_{m m}\right)^{2}$

$$
\begin{equation*}
\geqslant \frac{2}{n(n-1)} \sum_{i<i}\left\{4\left|c_{i, j}\right|^{2}+\left(c_{i i}-c_{d j}\right)^{2}\right\} \tag{3.58}
\end{equation*}
$$

Then

$$
4\left|c_{k m}\right|^{2}+\left(c_{k k}-c_{m m}\right)^{2} \geqslant \frac{4}{n(n-1)} N^{2}(c)
$$

Proof: We have $\sum_{i<j}\left(c_{i j}-c_{j j}\right)^{2}=(n-1) \sum_{i} c_{i i}^{2}-2 \sum_{i<j} c_{i j} c_{j j}$
But since trace $\left(A A^{*}-A^{*} A\right)=0$
e.g.

$$
\begin{gathered}
\sum_{i} c_{i i}=0 \\
\left(\sum_{i} c_{i j}\right)^{2}=\sum_{i} c_{i i}^{2}+2 \sum_{i<j} c_{i j} c_{j j}=0
\end{gathered}
$$

Thus

$$
\sum_{i<j}\left(c_{i i}-c_{j j}\right)^{2}=n \sum_{i} c_{i i}^{2} \geqslant 2 \sum_{i} c_{i i}^{2},(n \geqslant 2)
$$

Using (3.58) we have $4\left|c_{r m}\right|^{2}+\left(c_{k k}-c_{m m}\right)^{?}$

$$
\geqslant \frac{?}{n(n-1)} \sum_{i<j}\left\{4\left|c_{i j}\right|^{?}+2 c_{i j}{ }^{2}\right\}=\frac{2}{n(n-1)} N^{2}(c)
$$

Thenrem. Iet $A_{0}=A$ with $N^{2}(A)<I$. Teet $A_{i+1}=O_{i}^{-1} A_{j}$ where
$0_{i}\left(k_{i}, m_{i}\right)=R_{i} S_{i}$ and the pair $\left(k_{i}, m_{i}\right)$ is chosen so that
$4\left|c^{(i)} k_{i} m_{i}\right|^{2}+\left(c^{(i)} k_{i} k_{i}-c^{(i)} m_{j} m_{i}\right)^{2}$ is at least average in marnitude of all such quantities. The transformation R_{i} and S_{i} are each of the form (3.43) with parameters defined as follows: ${ }^{2}$

$$
\begin{gathered}
R: \tan (2 x)_{R}=-\frac{c_{k k}-c_{m m}}{2 R\left(c_{k m}\right)} \\
\alpha_{R}=R_{R}=y_{R}=0 \\
S: \tan \left(\alpha_{S}-\beta_{S}\right)\left(R c_{k m}\right) \cos (2 x)_{R}-\left(c_{k_{k}}-c_{m m}\right) \sin 2(x)_{R} \\
=-1 / 2 \frac{I_{m}\left(c_{k m}\right)}{I_{k m}+2\left(\left|\xi^{1}\right|^{2}+\left|D_{k m}^{1}\right|^{2}\right)}
\end{gathered}
$$

where

$$
\begin{aligned}
& \xi^{I}=\left(B_{k m} \cos (2 x)_{R}-D \sin (2 x)_{R}\right) \cos \left(\alpha_{S}-R_{S}\right)-i E_{k m} \sin \left(\alpha_{S}-\beta_{S}\right), \\
& D_{k m}^{I}=D_{k m} \cos (2 x)_{R}+B_{k m} \sin (2 x)_{R} ; \beta_{S} \text { aand } x_{R} \text { are arbitrary. Then } \lim _{i \rightarrow \infty}(
\end{aligned}
$$

$\left.\mathbb{N}^{2}\left(c_{i}\right)\right)=0 ; i . e$. for i sufficiently large, A_{i} is arbitrarily close to being normal.

$$
\text { Proof: } \quad \begin{aligned}
\text { Let } A_{i+1}^{l} & =R_{i}^{-1} A_{i} R_{i} \\
A_{i+1} & =S_{i}^{-1} A_{i} S_{i}
\end{aligned}
$$

Then by lemma?

$$
\begin{aligned}
2\left(G_{1}^{\prime}\left(c_{k m}^{1}\right)=\right. & \pm\left[4 G\left(c_{k m}^{2}\right)+\left(c_{k k}-c_{m m}\right)^{2}\right]^{1 / 2}, \\
& I_{m}\left(c_{k m}^{1}\right)=I_{m}\left(c_{k m}\right)
\end{aligned}
$$

we have

$$
\tan \left(\alpha_{S}-\beta_{S}\right)=-\frac{k\left(c^{I} k m\right)}{I_{m}\left(c_{k m}^{I}\right)}
$$

and

$$
\tanh (y)_{S}=\frac{S_{i n}\left({ }^{\alpha} S^{-R} S R\left(c^{1} k m\right)-\cos \left(\alpha S^{-\beta} S_{m}\right) I_{m}\left(c^{1} \mathrm{~km}\right)\right.}{G_{\mathrm{km}}+2\left(\left|\xi^{1} \mathrm{~km}^{2}+\left|D_{\mathrm{km}}^{1}\right|^{2}\right)\right.}
$$

By Lemma 1 and the invariance of N^{2} under rotations

$$
\begin{aligned}
\Delta N^{2}\left(A_{i}\right) & =\Delta N^{2}\left(A_{i}^{1}\right) \geqslant 1 / 3\left|c^{(1)} k\right|^{2} \\
& =\frac{1}{12}\left[4\left|c^{(i)} k m\right|^{2}+\left(c^{(i)} k k-c^{(i)}\right)^{2}\right]
\end{aligned}
$$

Hence $\Delta N^{2}\left(A_{i}\right) \geqslant 1 / 3(1 / n(n-1)) N^{2}\left(C_{i}\right)$ by Lemma 3 . But since $N^{2}\left(A_{i}\right)$ is a decreasing monotone function bounded below by $\int_{j}\left|\lambda_{j}\right|^{2}$

$$
\Delta N^{2}\left(A_{i}\right) \rightarrow 0 \text { as } i^{\rightarrow \infty} \text { and so does } N^{2}\left(C_{i}\right)
$$

AN ERROR ANALYSIS OF SOMF SPFCIAL NUMFRTCAT MENHOIS

Preliminaries: Considerable attention has been Eiven to the effect of rounding errors on the numerical solutions of problems in linear algebra. Some fundamental contributions in this field have been made by J. H. Wilkinson ([3], [11]). In this paper we shall give a short account of Wilkinson's work, including some apnlications pertaining to the eigenvalue problem. In particular, we shall give an error analysis of the Gaussian elimination and of Householder's method. The former method is of importance in the reduction of an unsymmetric matrix to the Hessenberg form. (Then in order to utilize this special form in the calculation of eirenvalues we may apply the $Q R$ method to it).

The basic idea behind Wilkinson's work is simple. He set out to show that the computed results of a problem may be obtained by exact calculations from a perturbed problem. Then (upper) bounds are obtained for the various perturbations. This type of analysis Wilkinson calls "backward" analysis in contradistinction to "forward" analysis.*

* We calculate a mathematical expression given by $y=f\left(x_{1}, \ldots, x_{n}\right)$. Then the "hackward" analysis shows that the computed y does not satisfy the equation above but another equation of the form $Y=f\left(x_{1}+e_{1}, \ldots, x_{n}+e_{n}\right)$ where the $e_{i},(i=1, \ldots, n)$ are perturbations for which bounds are usually given. "Forward" analysis attempts to trace the forward pronagation of individual rounding errors and then compares the computed answer to that of the exact answer.

It was found that in many apnlications a backward analysis is much easier to perform than a forward analysis. One way in which backward analysis can be anplied is to compare two numerical methods. If a method, A, say, has smaller bounds for the e_{i} than another method, B, then we should select A as the better method provided all other factors are equal.

VFCTOR AND MATRIX NORMS. The norm of a vector x is denoted by $||x||$ and has the following properties:
(4.1) $\quad||x||>0$

$$
\begin{aligned}
& ||k x||-|k|| | x| | ; k \text { is a complex constant } \\
& ||x+y|| \leqq||x||+||y||
\end{aligned}
$$

From (4.1)

$$
||x+y|| \leqslant||x||+||y||
$$

let $y=z-x$

$$
\begin{aligned}
& \rightarrow||x+z-x|| \leqslant||x||+||z-x|| \\
& \rightarrow||z|| \leqslant||x||+||z-x|| \\
& \rightarrow||z-x|| z||z||-||x||
\end{aligned}
$$

if we let $z=x$ and $x=y$ we have
(4.2) $\quad||x-y|| \geqslant||x||-||y||$

The three vector norms most commonly used are special cases of the HOELDER norm

$$
\left||x|_{k}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{k}\right]^{1 / k} ; k \geqslant 1\right.
$$

They are obtained by letting $k=1,2$ and ∞. Thus we get for
$k=1 \quad:\left.\quad| | x\right|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$
$k=2: \quad \|\left. x\right|_{2}=\left\{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|^{2}\right\}^{1 / 2}$
$k=\infty \quad: \quad| | x| |_{\infty}=\max \left|x_{i}\right| ; i=1, \ldots, n$

We note that when $k=2$ our norm is the Fuclidian lancth of the vector x. This is frequently written as $\|x\|_{E}$. In a similar way we denote the norm of a matrix A by $\|A\|$. The matrix norm satisfies pronerties (4.1) and (4.2) with vectors x and y replaced by matrices A and 3 . In addition it satisfies the multiplicative property (4.3). (4.3) $\quad\|A\| \leqslant\|A\| .||B||$ Since vectors and matrices often appear together we have to set un a relation between them.
(4.4) $\quad||A x|| \leq||A|| \cdot| | x| |$

Now we can show* that the following relations hold true:

$$
\begin{align*}
& \left|\left|A \|_{1}=\max \sum_{j=1}^{n}\right| a_{i j}\right| \tag{4.5}\\
& \|\left. A\right|_{2}=\left(\max \text { eigenvalue of } A^{H} A\right)^{1 / 2} \\
& \|\left. A\right|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{align*}
$$

where A^{H} denotes the Hermitian conjugate of A and ($a_{i, j}$) is the (i,j) th element of A. For error analysis a norm which is consistent with $||A||_{2}$ but easier to compute is the schur norm,

$$
||A||_{E}=\left(\sum_{i} \sum_{j}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

ARITHMETIC OPFRATIONS. We shall now briefly discuss some of the basic floating-point arithmetic operations. Any binary number x can be represented in the form

$$
x=a \cdot 2^{b}
$$

where a is called the mantissa and b the exponent. The exponent is a negative or positive integer while the mantissa is a fraction in binary machine where all numbers are normalized.

* Proof given in Appendix.

$$
\begin{equation*}
1 / 2 \leq|a|<1 \tag{4,6}
\end{equation*}
$$

We shall let t denote the number of binary digits allncated to the mantissa. In order to djfferentiate between (a) mathematical relations and (b) computation equations we use the equal sign for (a) and the equivalence sign (\equiv) for (b). Following Wilkinson's notation we use fl (x.v) to denote the computed result of multiplying together two floatinp point numbers.

If the mantissa is normalized to lie in the range (4.6) we get the following computational equations according to Wilkinson

$$
\begin{aligned}
& f l(x+y) \equiv(x+v)\left(1+\varepsilon_{1}\right) \\
& f I(x \cdot y) \equiv(x \cdot y)\left(1+\varepsilon_{2}\right) \\
& f l(x / y) \equiv(x / v)\left(1+\varepsilon_{3}\right)
\end{aligned}
$$

where $\left|\varepsilon_{j}\right| \leqslant 2^{-t}$.
For extended floating point operations we get:*
fl $\left(x_{1} \cdot x_{2} \ldots x_{n}\right) \equiv x_{1} x_{2} \ldots x_{n}(1+\varepsilon)$
$f 1\left(x_{1}+\ldots+x_{n}\right) \equiv x_{1}\left(1+\varepsilon_{1}\right)+\ldots+x_{n}\left(1+\varepsilon_{n}\right)$
$f 1\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right) \equiv x_{1} y_{1}\left(1+\eta_{1}\right)+\ldots+x_{n} y_{n}\left(1+\eta_{n}\right)$
where:

$$
\begin{aligned}
& \left(1-2^{-t}\right)^{n-1} \leqslant 1+\varepsilon \leqslant\left(1+2^{-t}\right)^{n-1} \\
& \left(1-2^{-t}\right)^{n-1} \leqslant 1+\varepsilon_{1} \leqslant\left(1+2^{-t}\right) n-1 \\
& \left(1-2^{-t}\right)^{n+1-r} \leqslant 1+\varepsilon_{r} \leqslant\left(1+2^{-t}\right)^{n+1-r} ;(r \geqslant 2) \\
& \left(1-2^{-t}\right)^{n} \leqslant 1+\eta_{1} \leqslant\left(1+2^{-t}\right)^{n} \\
& \left(1-2^{-t}\right)^{n-r+2} \leqslant 1+\eta_{r} \leqslant\left(1+2^{-t}\right)^{n-r+2} ;(r \geqslant 2)
\end{aligned}
$$

[^1]FRPOR ANATYSIS OF GAUSSTAN EIIMTMATION. Gaussian elimination has
already been discussed in Section (3) of this paner. For this reason
we shell refrain from roing into details regarding the method itself
in this section. We denote the original set of eauations by

$$
A^{(1)} x=b^{(1)}
$$

then ($n-1$) eauivalent sets of equations

$$
A^{(r)} x=b^{(r)},(r=2 ; \ldots, n)
$$

are produced. $A^{(n)}$ of the final equation is in an unper triangular form. The matrix $A^{(r+1)}$ is obtained from $A^{(r)}$ by subtractinc a multinle $m_{i r}$ of the $r^{\text {th }}$ row from the $i^{\text {th }}$ row for values of i from $(r+1)$ to n. The $m_{i r}$'s are defined by $m_{i r}=a^{(r)} \mathrm{ir}^{/ a^{(r)}} \mathrm{rr}$. Now we consider two cases (i and $i i$) denending on whether $i \leqslant j$ or $i>j$.

Case (i). (isf): The element is changed in each transformation until we reach $A^{(i)}$ after which it remains constant. Thus we get

$$
\begin{equation*}
e^{(2)} \equiv a^{(1)} i j-m_{i 1} a^{(1)} 1 j+\varepsilon^{(2)} i j \tag{4.7}
\end{equation*}
$$

$$
a_{i j}^{(3)} \equiv a_{i j}^{(2)}-m_{i 2^{(2)}}^{2 j}+\varepsilon^{(3)}
$$

$$
a_{i j}^{(i)} \equiv a^{(i-1)} i j-m_{i, i-1} a_{i-1, j}^{(i-1)}+\varepsilon^{(i)} i j
$$

where the $\varepsilon^{(k)}$ ij and $m_{i k}$ are computed values and $\varepsilon^{(k)}$ ij is the difference between the accepted and the exact values of $a^{(k)}$ ij. Summing (4.7) we get
where

Case (ii). (i>S): As in case i the element is changed until $A^{(i)}$ is obtained. $a^{(i)} i j$ is then used to compute $m_{i j}$. $a^{(j+1)}$ ij $u p$ to and
includine, a ${ }^{(n)}{ }_{i j}$ are considered to be exactly zero. The comntaf mis satisfy

$$
m_{i, j}=\left(a_{i, j}^{(j)}{ }^{(j, j)}, j, j\right)+\eta_{i, j}
$$

where $\eta_{i j}$ is the roundinf error incurred by the division. The enuations in this case are:
(4.10)

$$
\begin{aligned}
& a_{i j}^{(2)} \equiv a_{i j}^{(1)}-m_{i 1^{a}}^{(1)} i j+\varepsilon_{i j}^{(2)} \\
& a^{(3)}{ }_{i j} \equiv a^{(2)}{ }_{i j}-m_{i 2} a^{(2)} 2 j+\varepsilon^{(3)} i j \\
& a^{(j)}{ }_{i j} \equiv a^{(j-1)}{ }_{i, j} m_{i, j-1}^{a^{(j-1)}} \mathfrak{j - 1 , j}+\varepsilon^{(j)}{ }_{i, j} \\
& 0 \equiv a^{(j)}{ }_{i, j}-m_{i, j} a^{(j)} j g+\varepsilon^{(j+1)} i j \\
& \varepsilon^{(j+1)} i j=a^{(j)} j j^{\eta} \eta_{j}
\end{aligned}
$$

again summing we get

$$
0 \equiv a^{(1)} j^{-m_{i 1}}{ }^{(1)} i j-m_{i 2^{a}}^{(2)} 2 j-\ldots-m_{i j} a^{(j)} j j+e_{i j}
$$

where

$$
\begin{equation*}
e_{i j}=\varepsilon_{i j}^{(2)}+\varepsilon_{i j}^{(3)}+\ldots+\varepsilon^{(. j+1)} i j \tag{4.9}
\end{equation*}
$$

Now we note that the two gets of equations (4.7) and (4.10) are equivalent to the sinele matrix equation

$$
L U \equiv \Lambda^{(1)}+E
$$

where

Fis defined by relations (4.8) and (4.9).
Now we shall g.ttempt to establish bounds for E . In floatine, point arithmetic the computed ${ }^{(k)}$ if is defined by

$$
\begin{aligned}
a_{i, j}^{(k)} & \equiv f 1\left(a^{(k-1)} i\left\{-m_{i, k-1} a^{(k-1)} k-1,1\right)\right. \\
& =\left[a_{i j}^{(k-1)}-m_{i, k-1} a^{(k-1)}{ }_{k-1, j}^{\left.\left(1+\varepsilon_{1}\right)\right]\left(1+\varepsilon_{2}\right)}\right.
\end{aligned}
$$

Thus the difference between the exact and computed solutions are

$$
\begin{aligned}
\varepsilon_{i j}^{(k)_{i j}} & =a_{i j}^{(k)}-\left(a^{(k-1)} i j-m_{i, k-1} a^{(k-1)} k-1, j\right) \\
& =a^{(k)_{i j}-\left(\frac{a^{(k)}}{1+\varepsilon_{2}}+m_{i, k-1} a^{(k-1)} k-1, j_{1}\right)} \\
(4.11) \varepsilon^{(k)}{ }_{i j} & =\frac{a^{(k)} i j^{\varepsilon} 2}{l+\varepsilon_{2}}-m_{i, k-1} a^{(k-1)}{ }_{k-1, j} \varepsilon_{1}
\end{aligned}
$$

Thus in order to get satisfactory bounds for $\varepsilon^{(k)}$ ij, we shall need reasonable bounds for $m_{i k}$ and $a_{i j}^{(k)}$. In practice we shall attempt to get

$$
\left|m_{i j}\right| \leqslant I
$$

This can be done by either nartial or complete pivoting. Let us consider any kind of pivoting at the moment. Then we shall denote the maximum element of any $A^{(r)}$ by g. By taking into account scaling, let us assume that

$$
\left|a^{(i)}{ }_{i j}\right| \leqslant l
$$

From (4.11) we get

$$
\begin{equation*}
\left|\varepsilon_{i, j}^{(k)}\right| \leqslant \frac{\varepsilon 2^{-t}}{1-2^{-t}}+g 2^{-t}<(2.01)_{g} 2^{-t} \tag{4.12}
\end{equation*}
$$

This applies to all $\varepsilon^{(k)}$ if excent $\varepsilon^{(j+1)}$ ij for $i>j$. For these we use the relations established earlier, namely

$$
m_{i j}=\left(a_{i j}^{(j)} a_{j j}^{(j)}\right)+\eta_{i j}
$$

Thus we have

$$
\begin{aligned}
m_{i j} & \equiv f l\left(a^{(j)} j^{j} / a^{(j)} j j\right) \\
& =n^{(i)^{(j j} / a^{(j)} j j(1+\varepsilon)} \\
\eta_{i j} & =\left(a^{\left.(j)_{i j} / a^{(j)} j j\right) \varepsilon}\right.
\end{aligned}
$$

Thus

$$
\begin{align*}
\left|\varepsilon_{i j}^{(j+1)}\right| & \left.=\mid a^{(j)}{ }_{j j}^{\left(a^{(j)}\right.} i j / a^{(j)}, j\right) \varepsilon \mid \\
& =a_{i j}^{(j)} \quad \\
& \leqslant g 2^{-t} \tag{4.13}\\
& <(2.01) g 2^{-t}
\end{align*}
$$

Now combining (4.2), (4.13), (4.8) and (4.9) we get

According to Wilkinson, g is usually of order unity if we use pivoting.

AV FRROR ANALYSIS OF HOUSEHOLDER'S MPTHOD FOR THE SYMMFTRTC EICENVALUE PROBLEM

Preliminaries: Again we describe in detail only the transformation from A_{1} to A_{2}. We partition A_{1} as follows:

$$
A=A_{1}=\left[\begin{array}{ll}
a_{11} & c^{T} \\
c & c
\end{array}\right]
$$

where $c^{T}=\left(a_{12}, a_{13}, \ldots, a_{1 N}\right)$
and

$$
C=\left[\begin{array}{ccc}
a_{22} & \cdots & a_{2 N} \\
" & & \\
" & & \\
{ }^{a_{N 2}} & & \cdots \\
a_{N N}
\end{array}\right]
$$

A_{2} is then obtained by the following computation:

$$
\begin{aligned}
& \mathrm{s}=\left(c^{\mathrm{T}} \mathrm{c}\right)^{1 / 2} \\
& x_{2}=\left[.5+.5\left(\left|\rho_{12}\right| / s\right)\right]^{1 / 2} \\
& \eta=\left(2 x_{2}\right) s \\
& w=\left\{\begin{array}{lll}
1 & \text { if } & a_{12} \geq 0 \\
-1 & \text { if } a_{12}<0
\end{array}\right. \\
& x_{i}=w a_{1 i} / \eta ;(i=3, \ldots, N) \\
& p=c u, u^{T}=\left(x_{2}, \ldots, x_{N}\right) \\
& \gamma=u^{T} p \\
& q=p-\gamma \mu \\
& B=C-2\left(q \mu^{T}+q \mu^{m}\right) \\
& b^{T}=(-w s, 0, \ldots, 0) \\
& A_{2}=\left[\begin{array}{ll}
a^{a} & b^{T} \\
\underline{b} & B
\end{array}\right]
\end{aligned}
$$

In this section we do not assume anything about the nature of floating point arithmetic other than the existence of a number m such that
$|R 1(x y)-x y| \leqslant m|x y|$
(4.16) $\quad|=(x / y)-x / y| \leq m|x| /|y|$
(4.17) $\quad \mid 0(x+y)-(x+y) / \leqslant m(|x|+|y|)$
(4.18)
$\left|\mathrm{rl}\left(\mathrm{x}^{1 / 2}\right)-\mathrm{x}^{1 / 2}\right| \leq 2 m x^{1 / 2}$

The number m will denend on the word leneth of the comruter, whether the results of the computer onerations are rounded or truncated and possibly other factors.

For the inner oroduct of vectors we assume that

$$
\begin{equation*}
\left|f I\left(v^{m} w\right)-v^{T} w\right| \leq m^{(n)}| | v| | \cdot| | w| | \tag{4.19}
\end{equation*}
$$

for all vectors v and w of length n. In order to simplify the handing of error terms we shall assume that

$$
\begin{align*}
& m \leq 10^{-6} \tag{4.20}\\
& m_{p}^{(n)} \leq 10^{-4} \quad(n=1,2, \ldots, N-1)
\end{align*}
$$

Then we shall need bounds for the errors in various matrix computations. Accoraing to Ortega [12], we have

$$
\begin{gather*}
\|f I(v+w)-(v+w)\|=\| \| f I(v+w)-(v+w)\| \| \tag{4.21}\\
\leqslant m(\|v\|+\|w\|)
\end{gather*}
$$

$$
\begin{equation*}
\|f l(\alpha v)-\alpha v\|=\|||f l(\alpha v)-\alpha v \|||\leqslant m| \alpha||| v \mid! \tag{4.22}
\end{equation*}
$$

$$
\begin{equation*}
\text { (4.26) } \quad\|f l(F v)-E v\| \leqslant\|f l(E v)-E v\|\left\|\leqslant m_{p^{(n)}}^{n^{1 / 2}}\right\| E\|\cdot\| v \| \tag{4.25}
\end{equation*}
$$ where a is a scalar, v and w are column vectors and E and F are nxn matrices.

ERROR BOUNDS FOR THE COMPUTED EIGENVALUES. Followin our exnesition of the Householder method in section 3 we base our analysis on the following observations. Let $\bar{A}_{1}=A_{1}, \bar{A}_{2}, \ldots \bar{A}_{N-1}$ be the secuence of matrices atuai, y machine computed by the Householder algorithm. Let $A^{(i+1)}$ be the matiix produced by exact aritnmetic when the $i^{\text {th }}$ sten of the reiuction
is annlien to \vec{A}_{i} and let $X_{i}=\Lambda^{(i+1)}-\vec{A}_{i+1},(i=1, ?, \ldots$, i-2). mron if $\lambda^{(i)} \geqslant \cdots \geqslant \lambda^{(i)}$ and $\bar{\lambda}^{(i)} \geqslant \cdots \sum^{-(i)}$ are the eirenvalues of $A^{(i)}$ and \bar{A}_{i} resoectively we have hy the nerturbation theorem that follows from the Courant-Fischer minimax representation [13]

$$
\max _{j}\left|\bar{\lambda}^{(i+1)}-\lambda^{(i+1)}, \leqslant!\right| x_{i}| |, \quad(i=1, \ldots, N-2)
$$

Therefore, since \bar{A}_{i} and $A^{(i+1)}$ are similar, we have
(4.27) $\left.\quad \max _{j}\right|^{(i+1)} j_{j}-\bar{\lambda}^{(i)}\left|\leqslant| | x_{i} \|,(i=1, \ldots, N-2)\right.$

If we now let

$$
\varepsilon=\max _{j} \mid \lambda^{-(1)},-\bar{\lambda}^{-(N-1)} ;
$$

then ε is the maximum error in the eigenvalues of the comouted tridiagonal matrix \bar{A}_{N-1} and we have by (4.27)

From , 4.28) it is clear now that our objective is to obtain counds for the $x_{i}!\cdot$

We begin by considerine $X_{1}=A^{(2)}-\bar{A}_{2}=A_{2}-\bar{A}_{2}$ and assume \because at the computation of \bar{A}_{2} is carried out according to (3.10) in saction(3). We let barred letters denote the computed intermeaiate riant ties. Thus if we let $\nabla=c^{T} c$, we have, from (4.19)
$\cdots \tilde{c}^{G} ; \quad|\nabla-\bar{\nabla}|=\left|c^{T} c-f\left(c^{T} c\right)\right| \leqslant m_{n}^{(N-I)}\|c \mid\|^{2}=m_{n} \nabla$
-er: for reasons of simplicity, we shall omit the superscrir of m).
C. nsequently from (4.18) we set

and since from (4.29) we ret

$$
\nabla\left(1-m_{n}\right) \leqslant \bar{\nabla} \leqslant \nabla\left(1+m_{n}\right)
$$

then by (4.20) we have

$$
\begin{align*}
\nabla^{1 / 2}\left(1-1 / 2 m_{p}^{-1 / 2 m_{n}^{2}}\right) & \leqslant \nabla^{1 / 2}\left(1-m_{p}\right)^{1 / 2} \tag{4.31}\\
& \leqslant \bar{\nabla}^{1 / 2} \\
& \leqslant \nabla^{1 / 2}\left(1+m_{n}\right)^{1 / 2} \\
& \leqslant \nabla^{1 / 2}\left(1+1 / 2 m_{p}\right)
\end{align*}
$$

Therefore, we ret
(4.32) $\left.\left|\nabla^{1 / 2}-\nabla^{1 / 2}\right|_{\leqslant\left(1 / 2 m_{力}\right.}+1 / 2 m_{p}^{2}\right) \nabla^{1 / 2}$

$$
\leqslant .50005 m_{p} \nabla^{1 / 2}
$$

Now combining $(4.30),(4.31)$ and (4.32) we obtain (4.33) $|s-\bar{s}| \leqslant .50005 m_{p} \nabla^{1 / 2}+2 m\left(1+1 / 2 m_{p}\right) \nabla^{1 / 2}$

$$
\leqslant\left(.50005 m_{p}+2.00005 m\right) \mathrm{s} .
$$

We next need a bound for $\left|x_{2}-\bar{x}_{2}\right|$. We let

$$
\alpha=\left|a_{12}\right| / s, \beta=.5 \alpha
$$

and $\mu=.5+\beta$ and obtain by straight forward computation, using (4.15), (4.15), (4.17), (4.18), (4.33) and the inequality

$$
\begin{aligned}
& 1 /\left(1-.50005 m_{p}-2.00005 m\right) \leqslant 1+.75 m_{p}+3 m \\
& |\alpha-\bar{\alpha}| \leqslant\left(.50009 m_{p}+3.0002 m\right)_{\alpha} \\
& |\beta-\bar{B}| \leqslant\left(.50009 m_{p}+4.0003 m\right) \beta \\
& |\mu-\bar{\mu}| \leqslant\left(5.0009 m_{p}+4.0004 m\right)_{\mu}
\end{aligned}
$$

and

$$
\left|x_{2}-\bar{x}_{2}\right| \leqslant\left|\mu^{1 / 2}-\mu^{-1 / 2}\right|+2 m \mu^{-1 / 2}
$$

Ey tr.- same analysis that led to (4.32) we obtain here

$$
\left|\mu^{1 / 2}-\bar{\mu}^{1 / 2}\right| \leqslant\left(2.501 m_{p}+2.0003 m\right) \mu^{1 / 2}
$$

and therefore

$$
\begin{equation*}
\left|x_{2}-\bar{x}_{2}\right| \leqslant\left(2.501 m_{\eta}+4.0005 m\right) x_{2} \tag{4.34}
\end{equation*}
$$

To obtain hounds for the errors in the other \bar{x}_{i} we let

$$
\xi=2 x_{2} \text { and } \eta=\xi, s
$$

Then using (4.15), (4.33) and (4.34) we obtain

$$
|\xi-\bar{\xi}| \leqslant\left(.2501 m_{n}+5.0006 m\right) \xi
$$

and $|\eta-\bar{\eta}| \leqslant\left(.7502 m_{n}+8.0008 m\right) \eta$
Therefore we get, using (4.16) and the inequality

$$
\begin{align*}
& 1 /\left(1-.7502 m_{p}-8.0008 m\right)<1+1.37 m_{p}+12 m \\
& \left|x_{i}-\bar{x}_{i}\right| \leqslant\left(.7504 m_{p}+9.0009 m\right)\left|x_{i}\right| \tag{4.35}\\
& \quad(i=3, \ldots, N)
\end{align*}
$$

Thus recalling that $u^{T}=\left(x_{2}, \ldots, x_{N}\right)$ and letting $u^{T}=\left(\bar{x}_{2}, \ldots, \bar{x}_{N}\right)$, we have

$$
\text { (4.36) } \quad \begin{aligned}
||u-\bar{u}|| & \leqslant\left(.7504 m_{p}+9.0009 m\right)| | u| | \\
& =\left(.7504 m_{p}+9.0009 m\right)
\end{aligned}
$$

since $\|u\|=1$.
How we continue with the matrix portion of the calculation and since from (4.36)
(4.37)

$$
||\bar{u}|| \leqslant 1+.7504 m_{n}+9.0009 m
$$

we have from $(4.26),(4.36)$ and (4.37)
(4.38) $\quad\|p-\bar{p}\|=\|C u-c \bar{u}+C \bar{u}-f l(C \bar{u})\|$

$$
\leqslant\|c\| \cdot\|u-\bar{u}\|+m_{p}(N-1)^{1 / 2}\|c\| \cdot\|\bar{u}\|
$$

$$
\leqslant\left\{\left(.7504 m_{p}+9.0000 m\right)+m_{p}(N-1)^{1 / 2}\left(1+.7504 m_{p}+9.0009 m\right)\right\}\|C\|
$$

$$
\leqslant\left\{1.0001(N-1)^{1 / 2} m_{p}+.7504 m_{n}+9.0009 m\right\}| | A_{1} \mid!
$$

since $\|c\| \leqslant\left\|A_{1}\right\|$. Now $\|p\| \leqslant\|c\|\|u\| \leqslant\left\|A_{1}\right\|$ and hance from (h.19), (4.36) and (4.38) we obtain after a calculation similar to that of (4.38) (4.39) $|\gamma-\gamma| \leqslant\left\{1.0003(N-1)^{1 / 2} m_{n}+2.5011 m_{n}+18001 m\right\}\left\|A_{1}\right\|$. We next need a bound for $\|9-\dot{\overline{9}}\|$ and as an intermediate ster we let $r=$ ru. Then since $|\gamma| \leqslant\|r\| \mid\|u\| \leqslant\left\|A_{1}\right\|$ we obtain, usine (4.22), (4.36) and (4.39)

$$
|r-\bar{r}| \leqslant\left\{1.0004(N-1)^{1 / 2} m_{n}+3.2518 m_{p}+28.003 m\right\}\left\|A_{1}\right\|
$$

Usinf this result and the fact that $\|r\| \leqslant|\gamma|\|u\| \leqslant\left\|A_{1}\right\|$ we then obtain from (4.21) and (4.38)
(4.40)

$$
\|q-\bar{q}\| \leqslant\left\{2.0006(N-1)^{1 / 2} m_{p}+4.0023 m_{p}+39.004 m\right\}\left\|A_{1}\right\|
$$

We now want a bound for $\|B-\bar{B}\|$ and as a first steb we let $G_{T}=a u^{2}$. Then since $\|q\| \leqslant\|p\|+\|y u\| \leqslant 2\left\|A_{1}\right\|$ we have from $\||F|\| \leqslant$ $n^{1 / 2}\|E\|,\left\|\left|v_{w}{ }^{T}\right|\right\|=\|v\| \cdot\|w\|,(4.23),(4.36)$ and (4.40) (4.41)

$$
\leqslant\|q-\bar{a}\| \cdot\|u\|+\|a\| \mid\|u-\bar{u}\|+m\|\bar{a}\|\|\bar{u}\|
$$

$$
\leqslant\left\{2.0008(\mathrm{~N}-1)^{1 / 2} m_{p}+5.5035 m_{p}+59.007 m\right\}\left\|A_{1}\right\|
$$

and consequently from $\||E|\| \leqslant \||E-F|+|F|| |$

$$
\leqslant\||E-F|\|+\||F|\|
$$

we get
(4.42) $\quad\||\bar{G}|\| \leqslant\left\|||\bar{G}|-|G||+|G|| || | G-\bar{G}\left|\|+\left|\left|\left|q u^{\mathrm{T}}\right|\right|\right.\right.\right.$
$\leqslant\left\{2+2.0008(n-1)^{1 / 2} m_{p}+5.5035 m_{p}+59.007 m\right\}\left\|A_{1}\right\|$

Then, if we let $H=G_{i}+G^{T}$ we obtain from (4.24), (4.41) and (4.42)
and since $\||H|\| \leqslant 2\||G|\| \leqslant 2\|a\| \cdot\|u\| \leqslant 4\left\|A_{2}\right\|$ we ret
(4.44) $\quad\||\bar{H}|\|<\||H|\|+\||H-\bar{H}|\|$

$$
\leqslant\left\{4+4.002(N-1)^{1 / ?_{p}} m_{p}+11.008 m_{p}+122.015 m\right\}| | A_{1}| |
$$

Next we let $Q=2 \mathrm{H}$ and obtain from (4.25), (4.43) and (4.44)
(4.45) $\quad||\rho-\bar{O}|| \leqslant \||\theta-\bar{Q}|| | \leqslant|||2 H-2 \bar{H}|+|2 \bar{H}-f 1(2 \bar{H})|||$

$$
\begin{aligned}
& \leqslant 2\||\mathrm{H}-\overline{\mathrm{H}}|\|+2 \mathrm{~m}\|| | \overline{\mathrm{H}} \mid\| \\
& \leqslant\left\{8.005(\mathrm{~N}-1)^{1 / 2} m_{p}+22.02 m_{\mathrm{D}}+252.04 \mathrm{~m}\right\}\left\|A_{1}\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
(4.46) \||\bar{Q}| & \|\leqslant\||0|\|+|||0-\bar{n}| \| \\
& \leqslant\left\{8+8.005(N-1)^{1 / 2} m_{p}+22.02 m_{p}+252.04 m\right\}\left\|A_{1}\right\|
\end{aligned}
$$

Therefore, since $\||C|\| \leqslant(N-1)^{1 / 2}\|C\|$ we have from (4.24), (4.45) and (4.46)
(4.47) $\quad\|B-\bar{B}\|=\|(C-Q)+(C-\bar{Q})-f I(C-\bar{Q})-(C-\bar{Q})\|$

$$
\begin{aligned}
& \leqslant \| 0-\bar{Q}| |+m(\||C|\|+\||\bar{D}|\|) \\
& \leqslant\left\{8.006(N-1)^{1 / 2} m_{p}+22.02 m_{p}+(N-1)^{1 / 2} m+260.05 m\right\}\left\|A_{1}\right\|
\end{aligned}
$$

Finally

$$
\begin{aligned}
A_{2}-\bar{A}_{2} & =\left[\begin{array}{cc}
a_{11} & b^{T} \\
n & B
\end{array}\right]-\left[\begin{array}{cc}
a_{11} & \bar{b}^{T} \\
\bar{b} & \bar{B}
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & (b-\bar{b})^{T} \\
b-\bar{b} & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & B-\bar{B}
\end{array}\right]
\end{aligned}
$$

and since $(h-\bar{n})^{T}=(-w(s-\bar{s}), 0, \ldots, 0)$ and $: \therefore\left\|\wedge_{1}\right\|$ we have from
(4.33) and (4.47)
(4.48)

$$
\begin{aligned}
\| x_{1}| | & =\left\|A_{1}-\bar{A}_{2}\right\| \leqslant ?^{1 / 2}|s-\bar{s}|+||B-\bar{B}|| \\
& \leqslant\left\{8.006(N-1)^{1 / 2_{m}}(N-1)+22.75 m_{\mathrm{p}}(N-1)+(N-1)^{1 / 2_{m}}\right. \\
& +262.9 m\}\left\|A_{1}\right\|
\end{aligned}
$$

In order to obtain bounds for the remaining $\left|!x_{i}!\right|$ we recall that the $i^{\text {th }}$ sten of the Householder reduction performs the same operations on the lower principal submatrix of order $N-i+1$ of \bar{A}_{i} as the first step performs on A_{1}. The bound for $\left\|X_{i}\right\|$ will then have the same form as the bound for $\left\|X_{1}\right\|$; we need only replace \mathbb{M} by $\mathbb{N}-i+1$ and ||A $A_{1}| |$ by $\left\|\bar{A}_{i}\right\|$. Therefore, we have

$$
\begin{align*}
\left\|X_{i}\right\| & \leq\left\{8.006(N-i)^{I / 2} m_{p}(N-i)+22.75 m_{p}(N-i)+(N-i)^{1 / 2} m\right. \tag{4.49}\\
& +262.9 \mathrm{~m}\}\left\|\bar{A}_{i}\right\|(i=1, \ldots, N-2)
\end{align*}
$$

Now let

$$
\begin{equation*}
r_{i}=\left\{8.006(\mathrm{~N}-\mathrm{i})^{1 / 2_{m}}(\mathrm{~N}-\mathrm{i})+22.75 \mathrm{~m}_{\mathrm{p}}(\mathrm{~N}-\mathrm{i})+(\mathrm{N}-\mathrm{i})^{I / 2} \mathrm{~m}+262.9 \mathrm{~m}\right\} \tag{4.50}
\end{equation*}
$$ and

$$
\begin{equation*}
\Gamma=\sum_{j=1}^{M-2} \Gamma_{i} \tag{4.51}
\end{equation*}
$$

Then since A_{2} is orthogonally congruent to A_{1}, we have

$$
\begin{gathered}
\left\|\bar{A}_{2}\right\| \leqslant\left\|A_{2}-\bar{A}_{2}\right\|+\left\|A_{2}\right\| \\
=\left\|x_{1}\right\|+\left\|A_{1}\right\| \\
\leqslant\left(\Gamma_{1}+1\right)\left\|A_{1}\right\| ; \\
\text { similariy, since } A^{(3)} \text { is orthoronally congruent to } \bar{A}_{2} \\
\left\|\bar{A}_{3}\right\| \leqslant\left\|A^{(3)}-\bar{A}_{3}\right\|+\left\|A^{(3)}\right\|=\left\|x_{2}\right\|+\left\|\bar{A}_{2}\right\| \\
\leqslant\left(\Gamma_{2}+1\right)\left\|\bar{A}_{2}\right\| \leqslant\left(\Gamma_{2}+1\right)\left(\Gamma_{1}+1\right)\left\|A_{1}\right\|
\end{gathered}
$$

gni in reneral

$$
\left\|\vec{A}_{i}\right\| \leqslant\left(r_{i-1}+1\right) \ldots\left(\Gamma_{1}+1\right)\left\|A_{1}\right\|,(i=2, \ldots!-1)
$$

If we nut this in (4.49) we get

$$
\sum_{i=1}^{N-?}\left\|x_{i}\right\| \leqslant\left\{r_{1}+\Gamma_{2}\left(\Gamma_{1}+1\right)+\ldots+\Gamma_{N-2} \prod_{i=1}^{N-3}\left(r_{i}+1\right)\right\}\left\|A_{1}\right\|
$$

and since

$$
\begin{gathered}
r_{1}+r_{2}\left(r_{1}+1\right)+\ldots+r_{N-2} \prod_{j=1}^{N-3}\left(r_{i}+1\right) \\
\leqslant r+r^{2}+\ldots+r^{N-2}
\end{gathered}
$$

we have from (4.28) the bound for the maximum error ε :
(4.52) $\quad \varepsilon \leqslant \sum_{i=1}^{N-2}\left\|X_{i}\right\| \leqslant\left(\Gamma+\ldots+r^{N-2}\right)\left\|A_{1}\right\| \leqslant r\left\|A_{1}\right\| /(1-\Gamma)$,
provided that $\Gamma<1$
This inequality is our basic result. Once m and the $m_{n}^{(N-i)}$ are known Γ may be evaluated and (4.52) then gives the bound relative to the spectral norm e.g. $\||F||=\max \||\mathrm{Fv} \| . \quad||v| \mid=1$ We now evaluate Γ in terms of m for an important choice of the $m_{p}{ }^{(N-i)}$. We assume that

$$
\begin{equation*}
m_{p}^{(N-i)}=(N-i+1) m, \quad(i=1, \ldots, N-2) \tag{4.53}
\end{equation*}
$$

This corresponds to what Ortega calls the STANDARD INNFR PRODUCT ROUTHNE; that is, the inner product is formed in the usual way with no attemnt to accumulate it exactly. We have then from (4.50) and (4.51)

$$
\begin{aligned}
& \text { (4.54) } \quad \Gamma=\sum_{i=1}^{N-2} \Gamma_{i} \leqslant\left\{8.006 \sum_{i=1}^{N-2}(N-i)^{I / 2}(N-i+1)+22.75 \sum_{i=1}^{N-2}(N-i+1)\right. \\
& \left.+\sum_{i=1}^{N-2}(N-i)^{1 / 2}+262.9(N-2)\right\} m \\
& \leqslant\left(3.21 N^{5 / 2}+11.4 N^{2}+6.01 N^{3 / 2}+275 N-628\right) m
\end{aligned}
$$

where we have used

$$
\sum_{i=3}^{N-?}(N-i)^{1 / 2}<\int_{?}^{N} x^{1 / 2} d x=\frac{2}{3}\left(N^{3 / 2}-?^{3 / 2}\right)
$$

and

$$
\begin{array}{r}
\sum_{i=1}^{N-?}(N-i)^{1 / 2}(N-i+1)<\int_{2}^{N} x^{1 / 2}(x+1) d x \\
=\frac{2}{5} N^{5 / 2}+\frac{2}{3} N^{3 / 2}-(44.2)^{1 / 2} / 15
\end{array}
$$

Therefore putting (4.54) in (4.52) we obtain the followinr bound (4.55)

$$
\frac{\varepsilon}{\left\|A_{1}\right\|} \leqslant \frac{\left(3.21 N^{5 / 2}+11.4 N^{2}+6.01 N^{3 / 2}+275 N-628\right) m}{1-\left(3.21 N^{5 / 2}+11.4 N^{2}+6.01 N^{3 / 2}+275 N-628\right) m}
$$

In Section (1) we have referred to the eigenvalue problem of a matrix of type S. In this section we shall consider a similar matrix T, namely

$$
T=\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]
$$

where T is $2 n x 2 n$ and A and B are both (nxn). Problems of this type arise in the field of numerical solutions of elliptic partial differential equations, where the largest eigenvalues have to be found in order to apply Young's overrelaxation method.

In this thesis we investigate a special type of T where A is tridiagonal and

$$
B=\left[\begin{array}{ll}
0_{1} & 0_{2} \\
x & 0_{3}
\end{array}\right]
$$

with O_{i} being zero-submatrices and x the only non-zero element in position $(n, 1)$.

By ohservation we have found that the eigenvalues of T are the same as those of Y together with Z where

$$
\begin{equation*}
Y=A+C, Z=A-C \text { and } \tag{5.1}
\end{equation*}
$$

$C=\left[\begin{array}{ll}0_{2} & 0_{1} \\ 0_{3} & x\end{array}\right]$
with O_{i} arain beine zero-submatrices and x the non-zero elemont of B in nosition (n, n)
FUTURE PROSPFCTS. We note that $C=R B^{T}$. Keeping this in mind we can generalize the problem somewhat. Tiet

$$
B=\left[\begin{array}{ll}
0_{1} & 0_{2} \\
D & 0_{3}
\end{array}\right]
$$

where D is a $k x$ symmetric submatrix, $k<n$ and O_{i} are zero-submatrices. By observation we find that

$$
C^{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & D^{2}
\end{array}\right]=B B^{T}
$$

and

$$
C=\left[\begin{array}{ll}
0 & 0 \\
0 & D
\end{array}\right]
$$

Unfortunately C is not unique and the problem is to find the particular C which will assure that the eigenvalues of T are the same a.s those of Y and those of Z. The author has experimented with the fivediagonal matrix occurring when the 5-point formula is applied to Laplace's partial differential equation. In this case

$$
B=\left[\begin{array}{lllll}
0 & 0 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & & & \\
" & " & & & \\
" & " & & & \\
" & " & & & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

He found that (5.1) can be applied when C is taken as

$$
C=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 1 \\
" 1 & " & & 1 & " 1 \\
" & " 1 & & & " \\
" & " & & & " \\
0 & 1 & \ldots & 0 & 0
\end{array}\right]
$$

> We note here arain $\quad C^{2}=B B^{T}$
> Some more research will have to he done with rospect, to this
> nroblem. For example, a formal proof that the rolationship $C^{?}=B B^{T}$ hos to hold does not yet exist.

section 6

COMPUTATIONAL RESULTS AND CONCTUSIONS
In Section (2) we have shown that the $2 n$ eifenvalues of two ($n \times n$) matrices P and D are the $2 n$ eifenvalues of $a(2 n \times 2 n)$ matrix S, where

$$
S=\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right], P=A+B, Q=A-B
$$

This tyne of matrix occurs in the theory of dircctional counlers of wave guides, the theory of overlapping polymer chains and the Ising model of ferromarnetic materials [1].

It was found that the matrix S can easily be generated when we permute a a-cycle permutation matrix, provided we let $0=1$ or $a=2 n-1$.

It was the objective of the computation part of this thesis to show, that the calculation of eigenvalues and eigenvectors of the (2n $x 2 n$) matrix S by use of two ($n \times n$) matrices P and θ is sunerior to the direct calculation. Superior, that is, with respect to comnuter time, accuracy and storage space utilization of the computer. Two types of matrices, symmetric and non-symmetric were used in these computations. For the symmetric matrices we employed three numerical methods, namely Householder's, $Q R$ and Fberlein's. For non-symmetric matrices the latter two were used. The dimensions of the matrices under investigation ranged from $n=4$ to $n=30$. While the storage requirements for the direct solution of S were of the order of $2 n \times 2 n=4 n^{2}$ those for the "nartitioned" method were of the order of $2(n \times n)=2 n^{2}$, an effective
savine of storare snace of 50%.
Thus, matrices of types S and T which formerly could ent, he handied by computers, due to lack of storage snace, may now be processed by means of the "nartitioned" method.

Tt was shown in Section (4) for the Houscholder method that the accuracy of the eigenvalue solution is fanction of the dimension of the matrix. Formula (4.55) indicates that the error incroases as tre dimension of the matrix increases. Thus the eigenvalues obtained by use of P and 0 will be, in general, more accurate than those calculated from S and T directly. This observation is borne out by calculations summerized in Table 4 for the $Q R$ method. In that case we investigated a symmetric tridiaronal matrix of type T for which an analytical solution* had been found. For a 60×60 matrix the direct method was accurate to 5 decimal places while the "nartitioned" method was accurate to 6 decimal places. Since a tridiagonal matrix involves fewer calculations with respect to the eigenvalue problem than one with no zero elements, it can reasonably be assumed that the difference in accuracy between the two types of solutions is even more pronounced in problems summerized in Tables 1 and 2.

Now we come to the third asnect of our investigation, computer time. We note from Tables 1,2 and 3 that in the case of 8×8 matrices there is no significant difference in time between the direct and "partitioned methods". In the case of the 28×28 matrix the difference a.lready becomes apparent, but when dealing with the 60×60 matrices it is signifjcant. It takes about twice as long to evaluate the eigenvalues hy

* The analytical solution is $\lambda_{k}=a-2 b \cos (k \pi / n+1)$ where a are the diagonal and b the off-diagonal elements.
the $O R$ method directly than it does hy the "nart,itioned" alonritim, and more than four times as lone when Fberlein's method is emploved. Thus the time difference becomes more pronounced as the dimension of the matrices incrense.

Thus we have succeeded in showing that for a matrix of types S or T the "partitioned" method of solving the eimenvalue problem is superior to the direct solution. In the course of our investirations, we have observed that of the three numerical methods emploved, the Householder aiporithm is inferior to Eberlein's, at least as far as computer time is concerned. From our tables we note that it is imnossible to obtain a solution for a $28 x 28$ matrix by Householder's method in less then ten minutes, while we obtain it by Eberlein's within that neriod of time. Similarly, we observe from Table 4 that the $O R$ method is more accurate than Fberlein's method. The difference amounts to one decimal nlace for a. 60×60 matrix. As far qs storape space requirements are concerned no sienjeicant differences exist between the three methods. We note that Theorem 9 presents us with a method of calculating the ejgenvectors of S utilizing the eigenvalues of P and Q. A similar algorithm for a matrix of type T will have to be found yet.

COMPUTFR TIME IN SYMMFTRIC CASFS

DIMFRSION OF MATRIX	HOUSFHOLDER		EBERLEIN		0	
	COMPLFETE	$\begin{gathered} \text { SUB- } \\ \text { DIVIDFD } \end{gathered}$	COMPLETE	$\begin{gathered} \text { SUB- } \\ \text { DIVIDED } \end{gathered}$	COMPLETE	$\begin{gathered} \text { STJB- } \\ \text { DIVIDFD } \end{gathered}$
$N=8$	1:23*	1:28	1:15	1:23	1:14	1:15
$\mathbb{N}=16$	2:48	1:26		\bigcirc	,	
$N=28$	> 10:00	>10:00	3:20	2:59	1:36	1:22
$\mathrm{N}=60$	> 10:00	>10:00	> 24:00	6:18	4:49	2:22

*

Time in minutes and seconds renuiren to obtain all the eigenvalues and eigenvectors of the matrices.

COMPUTER TIMF IN NONSYMMETRIC CASFS

DIMENSION OF MATRIX	FBFRLFIT		OR	
	COMPIETFI	$\begin{gathered} \text { SUB- } \\ \text { DTVTDED } \end{gathered}$	COMPLFTE	$\begin{gathered} \text { SUR- } \\ \text { DIVIDED } \end{gathered}$
$N=60$	> 10:00*	> $10: 00$	$4: 58$	2:36

MABT, 3
COMPUTER TTMF, IN TRIDIAGONAL SYMMFTRIC CASES

* Time in minutes and seconds to obtain all the eigenvalues and eipenvectors of the matrices.
TADIF

ACCIRACY

* The number of significant digits of the comnuted solution. The matrices tested are symmetric tridiagonal and therefore analvtical solutions are available. For actual numerical results see Appendix B.

APPENDIX A

The proofs to the thoorems siven in this section are by Faddeev [16], Wilkinson [18] and Fox [17].

Theorem. $\quad\|A\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i, j}\right|$
Proof: Let $||x||_{\infty}=1$. Then

$$
\begin{aligned}
||A X||_{\infty}=\max _{i}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| & \leq \max _{i} \sum_{j=1}^{n}\left|a_{i j}\right| \cdot\left|x_{j}\right| \\
& \leq \max _{i} \sum_{j=1}^{n}\left|a_{i, j}\right|
\end{aligned}
$$

Conseauently

$$
\max _{\|x\|=1}\left|A x \| \leq \max _{i} \sum_{j=1}^{n}\right| a_{i j} \mid
$$

We shall now orove that $\max _{\|\mathrm{x}\|=1}\|\mathrm{AX}\|$ is equal to $\max _{i} \sum_{i=1}^{n}\left|a_{i, i}\right|$ we construct a vector x_{0} such that $\left\|x_{0}\right\|_{\infty}=1$ and $\left\|A x_{0}\right\|=\max _{i} \sum_{i=1}^{n}\left|a_{i, j}\right|$. Namely, let $\sum_{j=1}^{n}\left|a_{i j}\right|$ attain the greatest value for $i=k$ then as the component $x_{j}{ }^{(0)}$ of x_{0} we take $x_{j}{ }^{(0)}=\left|a_{k j}\right| / a_{k, j}$, if $a_{k j} \neq 0$ and $x_{i}{ }^{(0)}=1$, if $a_{i j}=0$. Thus, $\left\|x_{0}\right\|=1$

Morcover, $\left|\sum_{j=1}^{n} a_{i j} x_{j}^{(0)}\right| \leq \sum_{j=1}^{n}\left|a_{i j}\right| \leq \sum_{j=1}^{n}\left|a_{k j}\right|$
for $\mathrm{i} \neq\{$ and

$$
\left|\sum_{j=1}^{n} a_{k j} x_{j}^{(0)}\right|=\sum_{j=1}^{n}\left|a_{k j}\right|
$$

Fence

$$
\max _{i}\left|\sum_{j=1}^{n} a_{i j} x_{j}(0)=\sum_{j=1}^{n}\right| a_{k, j}\left|=\max _{i} \sum_{j=1}^{n}\right| a_{i j} \mid
$$

Thus
and

$$
\left|\left|A X_{o}\right|\right|_{\infty}=\max _{i} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

$$
||A||_{\infty}=\max _{i} \sum_{j=]}^{n}\left|a_{i, f}\right|
$$

Theorem.

$$
||A||_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i, j}\right|
$$

Proof: $\quad \| A| |_{1}=\max \quad \sum_{||x||=1}^{n}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \leqslant \sum_{j=1}^{n} \sum_{i=1}^{n}\left|a_{i j}\right| \cdot\left|x_{j}\right|$

$$
\leqslant \max _{i} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

since $\sum\left|x_{j}\right|=1$, we can reach equality by choosine, X to be zero excent in the element corresponding to the value j for which $\sum \mid$ ai. \mid is larsest, and to have unity in this component. Then $\|X\|=1$ and

$$
||A||_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

Theorem.

$$
\|A\|_{2}=\sqrt{\lambda_{1}}
$$

if λ_{I} is the greatest eigenvalue of the Matrix $A^{H} A$.
Proof: Let $|x|^{2}=\sum_{j=1}^{n}\left|x_{j}\right|^{2}=(X X)$ and $||A||=\max _{|x|=1}|A X|$.
But $|A X|^{2}=(A X, A X)=\left(X, A^{H} A X\right)$
The matrix $A^{H} A$ is Hermitian. Hence its eigenvalues are real.
Let λ_{1} be its greatest eigenvalue. Then for $|X|=1 \max (X, A, A X)=\lambda_{1}$. Consequently $\left||A|_{2}=\sqrt{\lambda_{1}}\right.$

Theorem.
fI $\left(x_{1} x_{2} \ldots, x_{n}\right) \equiv x_{1} x_{2} \ldots x_{n}(1+E)$
if $\left(1-2^{-t}\right)^{n-1} \leqslant 1+F<\left(1+2^{-t}\right)^{n-1}$

Proof: We consider $n_{n}=f I\left(x_{1} \ldots x_{n}\right)$. The quantities n_{r} are defined recursively by

$$
\begin{aligned}
& p_{1}=x_{1} \\
& p_{r}=f 1\left(p_{r-1} x_{r}\right) \equiv p_{r-1} x_{r}\left(1+\varepsilon_{r}\right) \\
& \text { (1) }\left|\varepsilon_{r}\right| \leqslant 2^{-t}
\end{aligned}
$$

Hence, we have

$$
\text { (2) } p_{n} \equiv x_{1} x_{2} \ldots x_{n}\left(1+\varepsilon_{2}\right)\left(1+\varepsilon_{3}\right) \ldots\left(1+\varepsilon_{n}\right)
$$

each ε_{r} satisfies (1). Equation (2) implies that

$$
f 1\left(x_{1} x_{2} \ldots x_{n}\right) \equiv x_{1} x_{2} \ldots x_{n}(1+\varepsilon)
$$

where

$$
\left(1-2^{-t}\right)^{n-1} \leq 1+\varepsilon \leqslant\left(1+2^{-t}\right)^{n-1}
$$

COMPUTER PROGRAMS

Not all the results obtained and programs used by the author are exhibited in this section. Usually only a few sample answers are given where the presentation of all results would have taken up too much space. The results are compiled so as to facilitate comparisons. An answer obtained by different methods is written out in inis only the first time it appears. At all other times, only the Last two digits are written. If an answer differs by more than two Gigits from its first version, all differing digits are written out.

The Letter I is written in place of answers toosmall in magnitude for accurate comparisons
\$JOB OUOTU2HANS BASTEL 100010030
\$IBFTC

C PROGRAM TO CALCULATE EIGENVALUES AND EIGENVECTORS OF AN (2N*2N)
C MATRIX SUBDIVIDED INTO (N*N) MATRICES BY HOUSEHOLDER'S METHOD
DIMENSION A(62,62$), B(62,62), E(30,30), A 1(30,30), A 2(30,30)$
DIMENSION D1(1000),D2(1000),X(30),Y(500),Z(30)
$\operatorname{READ}(5,1) \mathrm{N}$
$\operatorname{READ}(5,2)(A(1, J), J=1, N)$

C

C WE GENERATE REMAINDER OF MATRIX

C

CALL GENI(A,N)
WRITE(6,9)
WRITE(6,3) (A(1,J), J=1,N)
c

C WE START CALCULATIONS
c

$$
N=N / 2
$$

DO $30 \mathrm{I}=1, \mathrm{~N}$
DO $30 \mathrm{~J}=1, \mathrm{~N}$
$J P=J+N$
$B(I, J)=A(I, J)+A(I, J P)$
$30 E(I, J)=A(I, J)-A(I, J P)$
REWIND 0

```
    N2=0
    DO4U I=I,N
    DO 40 J=I,N
    N2=N2+1
    DI(N2)=B(I,J)
40 D2(N2)=E(I,J)
    CALL HOUSE2(N,N,I.E-UG,DI,X,Y,N)
    REWIND O
    DO 50 J=1,N
50 READ(0) (A1(I,J),I=1,N)
    CALL HOUSE2(N,N,1.E-06,D2,Z,Y,N)
    REWIND O
    DO 60 J=1,N
OO READ(O) (AZ(I,J),I=I,N)
C
C WE CALCULATE ORIGINAL EIGENVECTORS
c
ERR=.000001
DO 70 I=I,N
II=I+N
    DO }80\textrm{J}=1,
    IF(ABS(X(I)-Z(J)).GE.ERR) GO TO 80
    DO 90 K=1,N
    Kl=K+N
    A(K,I)=A1(K,I)+A2(K,J)
    A(KI,I)=AI(K,I)-A2(K,J)
```

```
    A(K,II)=A1(K,I)-A2(K,J)
    90A(KI,II)=A1(K,I)+A2(K,J)
    8U CONTINUE
    DO 100 K=1,N
    KI=K+N
    A(K,I)=AI(K,I)KU.5
100 A(KI,I)=A(K,I)
    00 110 J=1,N
    IF(ABS(X(J)-Z(I)).LE.ERR) GO TO 70
110 CONTINUE
    DO 120 K=1,N
    Ki=K+N
    A(K,Il)=A2(K,I)*0.5
120 A(KI,II)=-A2(K,I)*0.5
    7O CONTINUE
    DO 71 I=1,N
    II=I+N
    B(I,I)=X(I)
    7`B(II,II)=Z(I)
    N=2*N
    DO 130 J=1,N
    SUM=U.
    DO 140 I= 1,N
140 SUM=SUM+A(I,J)*A(I,J)
    SUM=1.0/(SQRT(SUM))
```

```
        00 150 I=1,N
    15( A(I,J)=A(I,J)*SUM
    i30 CONTINUE
        WRITE(6,77)
        00 888 I=1,N
        WRITE(6,8) B(I,I)
    888 WRITE(6,7) (A(J,I), J=1,N)
    i FORMAT(I4)
    2 FORMAT(8F5.1)
    3 FORMAT( 8F16.8/)
    7 FORMAT(2X, 8E16.8/)
    8 FORMAT( luX, E2U.10//)
    9 FORMAT(30X, 17H THE FIRST ROW IS ///)
    77 FORMAT( 25X,34H EIGENVALUES AND EIGENVECTORS ARE
        STOP
        END
SIbFTC HANS
    SUBROUTINE GENI(A,N)
    DIMENSION A(62,62)
    NH=N/2
    N2=NH+1
    DO 1O I=2,NH
    IM=I-I
    IP=I INH
    A(I,I)= A(1,I)
```

$$
\begin{gathered}
A(I, N I)=A(I, I P) \\
D O I O J=2, N H \\
J M=J-1 \\
J P=J+N H \\
J I=J M+N H \\
A(I, J)=A(I M, J M) \\
10 \text { A(I,JP)=A(IM,JI)} \\
D O 2 O I=I, N H \\
I P=I+N H \\
D O \quad 20 \quad J=I, N H \\
J P=J+N H \\
A(I P, J I=A(I, J P) \\
2 O \\
A(I P, J P)=A(I, J) \\
R E T U R N \\
E N D
\end{gathered}
$$

```
SJOj UUUTU2HANS BASTEL lOC 010 0ミ0
SIEvCB NODECK
SIGFTC
C PROGRAM TO CALCULATE EIGENVALUES AND EIGENVECTOKS OF A
C SYMMETRIC MATRIX BY HOUSEHOLDER'S METHOU
    DIMENSION A(60,60),D(2000),X(60),Y(500),A1(60,60)
    READ(5,1) N
    READ(5,2) (A(1,J), J=1,N)
C
C WE GENERATE REMAINDER OF MATRIX
c
    CALL GENI(A,N)
    WRITE (6,9)
    WRITE(ó,3) (A(1,J), J=1,N)
    REWIND U
    N2=u
    DO 4U I=I,N
    OO 4O J=I,N
    N2=N2+1
    40 D(N2)=A(I,J)
    CALL HOUSE2(N,N,1.E-OG,D,X,Y,N)
    REWINDO
    DO 5u J=2,N
    50 READ(O) (AI(I,J),I=1,N)
    WRITE(6,77)
```

```
        DO 888 I=1,N
        WRITE(6,8) X(I)
    8&\Omega WRITE(ó,7) (Al(J,I), J=1,N)
    I FORMAT (I4)
    2 FORMAT(8F5.1)
    3 FORMAT( 8F16.8/)
    7 FORMAT(2X, 8E16.8/)
    8 \text { FORMAT( IUX, E2U.IU//)}
    9 FORMAT(30X, 17H THE FIRST ROW IS ///)
77 FORMAT( 25X,34H EIGENVALUES AND EIGENVECTORS ARE
        STOP
        END
SENTRY
SIBSYS
```

SuCE UUU7UZHANS BASTEL luO ClO 630
GI3JOB NODECK
SISFTC
C program to calculate eigenvalues and eigenvectors
C OF A SYMMETRIC MATRIX BY THE QR METHOD
DIMENSION A(62,62),C(62), X(62), Y(62)
READ(5,1) N
READ(5,2) (A(1,J), J=1,N)
c
C wE GENERATE REMAINDER OF MATRIX
c
CALL GENI(A,N)
WRITE (6,9)
WRITE(6,3) (A(1,J), J=1,N)
c
C WE START CALCULATIONS
c
CALL HESSEN(A,N,62,C)
CALL QREIG(A,N,X,Y,62)
WRITE(6,66)
DO 3u J=1,N
WRITE(ó,4) J,X(J)
30 CONTINUE
2 FORMAT(I4)
2 FORNAT(8F5.1)

```
```

 3 FORMAT(8F16.8/)
 4 FORMAT(IOX,IIU,E2U.IU)
 9 FORMAT(3UX, 27H THE FIRST ROW IS ///)
 6 6 ~ F O R M A T (~ 3 0 X , ~ 2 I H ~ T H E ~ E I G E N V A L U E S ~ A R E ~ / / /)
CALL EXIT
END
\$ENTRY
SIESYS

```
```

SU0S 000702HANS BASTEL 100 010 030
SIEJOS NODECK
SIBFTC
C Program to calculate eigenvalues of a (2N*2N) matrix
C SUBDIVIDED INTO (N*N) MATRICES
C SY QR METHOD
DIMENSION A(62,62),C(30), X(30), Y(30), B(3C,30), E(30,30)
READ(う,1) N
READ(5,2) (A(1,J), j=1,N)
C
C WE GENERATE REMAINDER OF MATRIX
C
CALL GENI(A,N)
WRITE(6,9)
WRITE(6,3) (A(I,J), J=1,N)
N=N/2
DO 30 I= I,N
DO 30 J=1,N
JP=J+N
B(I,J)=A(I,J)+A(I,JP)
30 E(I,J)=A(I,J)-A(I,JP)
CALL HESSEN(B,N,3O,C)
CALL QREIG (E,N,X,Y,30)
WRITE (6,6)
DO 40 J=1,N

```
```

 40 WRITE(6,7) J,X(J)
 CALL HESSEN(E,N,3OOC,
 CALL QREIG (E,N,X,Y,3O)
 WRITE(6,8)
 DO 5u J=1,N
 5U WRITE(6,7) J,X(J)
 : FORMAT(I4)
 2 FORMAT(8F5.1)
 3 FORMAT(8F16.8/)
 o FORMAT(30X, 3UH THE EIGENVALUES OF A+B ARE
 7 FORMAT(40X,IIC, E20.10)
 3 FORMAT(30X, 3UH THE EIGENVALUES OF A-B ARE
 CALL EXIT
 END
 \$ENTRY
SIBSYS

```
```

SUOS UUUTUZHANS BASTEL 100 OLO U`うO
S:シuOE NODECK

```

```

C
C MATRIX BY EBERLEINIS METHOO
DIMENSION A(62,62), B(62,62)
READ(5,1) N
READ(5,2) (A(1,J), J=1,N)
C
C WE GENERATE REMAINDER OF MATRIX
C
CALL GENI(A,N)
WPITE(6,9)
WRITE(6,3) (A(I,J), J=1,N)
C
C WE START GALCULATIONS
C
DO 3u I=I,N
DO 30 J=1,N
B(I,J)=U.
IF(I.EQ.J) B(I,J)=1.0
30 CONTINUE
CALL EBERVC(A,N,2,2CO,.01,.001,1.EO3,62,B,1.)
WRITE(6,77)
DO 888 I= I,N

```
```

 WRITE(\sigma,8) A(I,I)
 80訁 WRITE(0,7) (B(J,I), J=1,N)
1 FORMAT(14)
2 FORMAT(8F5.1)
3 FORMAT(8F16.8/)
7 FORMAT(2X, 8E16.81)
8 FORMAT(IOX, EZU.10//)
9 FORMAT(30X, 17H THE FIRST ROW IS ///)
77 FORMAT(25X,34H EIGENVALUES AND EIGENVECTORS ARE
STOP
END

```
\begin{tabular}{lllll} 
\$JOB & OOO7O2HANS BASTEL & 100 & 010 & 030 \\
SIBJOB & NODECK & & &
\end{tabular}
\$IBFTC
\(C\)
PROGRAM TO CALCULATE EIGENVALUES AND EIGENVECTORS OF AN (2N*2N)

C
MATRIX SUBDIVIDED INTO (N*N) MATRICES BY EBERLEIN'S METHOD
DIMENSION \(A(60,60), B(60,60), E(30,30), A 1(60,60), A 2(30,30)\)
READ(5,1) N
\(\operatorname{READ}(5,2)(A(1, J), J=1, N)\)

C

C WE GENERATE REMAINDER OF MATRIX
C
CALL GENI(A,N)
WRITE 6,9\()\)
WRITE(6,3) (A(1,J), J=1,N)
c
C WE START CALCULATIONS
C
\(N=N / 2\)
DO \(30 \quad \mathrm{I}=1, \mathrm{~N}\)
DO \(30 \mathrm{~J}=1, \mathrm{~N}\)
\(J P=J+N\)
\(B(I, J)=A(I, J)+A(I, J P)\)
\(30 E(I, J)=A(I ; J)-A(I, J P)\)
DO \(40 \quad \mathrm{I}=1 \mathrm{I} \mathrm{N}\)
DO \(40 \mathrm{~J}=1 \mathrm{~N}\)
\(\operatorname{AI}(I, J)=0.0\)
IF (I.EQ.J) AI(I,J)=1.0
40 CONTINUE

DO \(50 \quad \mathrm{I}=1, \mathrm{~N}\)
DO \(5 \cup J=1, N\)

Su A2(I,J)=A1(I,J)

CALL EBERVC(B,N,2,200,.01,.001,1.EO3,60,A1,1.)

CALL EBERVCIE,N,2,20U,.01,.001,1.E03,30,A2,1.)
\(c\)
C WE CALCULATE ORIGINAL EIGENVECTORS
\(c\)
\(E R R=.000001\)
\(0070 I=1, N\)
\(I I=I+N\)
DO \(80 \mathrm{~J}=1\), \(N\)

IF (ABS(B(I,I)-E(J,J)).GE.ERR) GO TO 80

DO \(90 K=1, N\)
\(K 1=K+N\)
\(A(K, I)=A I(K, I)+A 2(K, J)\)
\(A(K I, I)=A I(K, I)-A 2(K, J)\)
\(A(K, I I)=A 1(K, I)-A 2(K, J)\)
\(90 A(K 1, I 1)=A 1(K, I)+A 2(K, J)\)
ou continue
DO \(100 K=1, N\)
```

 K1=K+N
 A(K,I)=Al(K,I)*U.5
 IUC A(KI,I)=A(K,I)
DO 110 J=1,N
IF(ABS(B(J,J)-E(I,I)).LE\&ERR) GO TO 70
110 CONTINUE
DO 120 K=1,N
Kl=K+N
A(K,II)=A2(K,I)*0.5
I20 A(KI,II)=-A2(K,I)*0.5
70 CONTINUE
0071 I=I,N
II=I +N
71 B(II,II)=E(I,I)
N=2*N
DO 130 J=1,N
SUM=0.
DO 14U I=1,N
240 SUM=SUM+A(I,J)*A(I,J)
SUM=1.U/(SQRT(SUM))
00 150 I=1,N
150 A(I,J)=A(I,J)*SUM
130 CONTINUE
WRITE(6,77)
DO 888 I=I,N

```
```

 WRITE(6,8) B(I,I)
 EQ wRITE(6,7) (A(J,I),N=1,N)
 I FORMAT(I4)
 2 FORMAT(8F5.1)
 3 FORNAT(8F16.8/)
 7 FORMAT(2X, 8E16.8/)
 8 FORMAT(lOX, EZU.10//)
 9 FORMAT(30X, 17H THE FIRST ROW IS ///)
 77 FORMAT(25X,34H EIGENVALUES AND EIGENVECTORS ARE
 STOP
 END
 SENTRY
SIBSYS

```

EIGENVALUES FOR ( \(8 \times 8\) ) SMMMETRIC MATRIX
ELEMENTS OF FIRST ROW: (1, 2, 3, 4, 5, 6, 7)
\begin{tabular}{|c|c|c|}
\hline 20. & HOUSEHOLDER & HOUSEHOLDER PARTITIONED \\
\hline 2 & . 34110767 E 02 & ... 69E 02 \\
\hline 2 & I & I \\
\hline 3 & I & I \\
\hline 4 & I & I \\
\hline 5 & -. \(21715726 \mathrm{E}^{01}\) & ... 27E 01 \\
\hline 6 & - .21107704E O1 & ... O2E 01 \\
\hline 7 & -. \(68284264 \pm 01\) & ... 66E O1 \\
\hline 8 & -. \(15999999 E 02\) & ... 99E 02 \\
\hline ro. & QR & QR PARTITIONED \\
\hline 1 & ... 55E 02 & ... 60E 02 \\
\hline 2 & I & I \\
\hline 3 & I & I \\
\hline 4 & I & I \\
\hline 5 & ... 23E 01 & ... 28E 01 \\
\hline 6 & ... 693E O1 & ... 695E 01 \\
\hline 7 & ... 34 E 01 & \[
\ldots \quad 63 E \quad 01
\] \\
\hline 8 & ... 93E 02 & -. 16000000 E 02 \\
\hline No. & EBERLETN & EBERLEIN PARTITIONED \\
\hline 2 & ... 36E 02 & ... 55E 02 \\
\hline 2 & I & I \\
\hline 3 & I & I \\
\hline 4 & I & I \\
\hline 5 & ... 17E O1 & ... 25E O1 \\
\hline 6 & ... 6812 01 & ... 696E 01 \\
\hline 7 & ... IlE Ol & ... 49E Ol \\
\hline 8 & ... 87E 02 & ... 98E 02 \\
\hline
\end{tabular}



EIGENVALUES FOR (16x16) SYMMETRIC MATRIX
\[
\text { ELEMENTS OF FIRST ROW: }(1,2, \ldots, 16)
\]
\begin{tabular}{|c|c|c|}
\hline 1\%. & HOUSEHOLDER & HOUSEHOLDER PARTITIONED \\
\hline \(\geq\) & .12265008E 03 & 08E 03 \\
\hline 2 & I & I \\
\hline 3 & I & I \\
\hline 4 & I & I \\
\hline 5 & I & I \\
\hline 6 & I & I \\
\hline \(?\) & I & I \\
\hline 8 & I & I \\
\hline 9 & I & I \\
\hline 10 & -. 10395662 E 01 & ... 66E O1 \\
\hline i & -. 11744020801 & - 23E 01 \\
\hline 2 & -. 14464627 E O1 & 36E 01 \\
\hline 23 & - .20285420E O1 & - 28E 01 \\
\hline 24 & -. \(32398278 \mathrm{E}^{01}\) & - 85E 01 \\
\hline 15 & -. 74471486 E 02 & .. 92E 01 \\
\hline 16 & -. 26274141 E 02 & .. 4IE 01 \\
\hline
\end{tabular}

EIGENVALUES FOR (60x60) SYMMETRIC MATRIX
ELEMENTS OF FIRST ROW: \((1,2, \ldots, 32,12,14,10,10,11,19,17,16,1,2, \ldots 16)\)
\begin{tabular}{|c|c|c|}
\hline no. & QR & QR PARTITIOAED \\
\hline 1 & - 0.74.010339E 00 & ...1767E 00 \\
\hline 2 & - 0.10394783 E 01 & ... 942e 01 \\
\hline 3 & - 0.15621691E 01 & ... 500E Oi \\
\hline 4 & -0.23406509E 01 & ... 42E 01 \\
\hline 5 & \(0.24752292 E 01\) & . 78E 01 \\
\hline 6 & - 0.40809060E 01 & ... 12E 01 \\
\hline 7 & 0.28229825 E 01 & ... 902E 01 \\
\hline 8 & 0.29623596801 & ... 70E O1 \\
\hline 9 & 0.30852689 E 01 & ... 707E O1 \\
\hline 30 & 0.31122335 E 01 & ... 85E 01 \\
\hline i1 & - 0.505632822 01 & ... 97E 01 \\
\hline 22 & - 0.55733818E 01 & ... 937E 01 \\
\hline 23 & - 0.57107912E OI & ...8016e 01 \\
\hline 14 & - 0.59185702 E O1 & ... 702E 01 \\
\hline \(\bigcirc 5\) & 0.55557301 E 01 & ... 98E O1 \\
\hline 26 & - 0.72569279E O1 & ... 342E 01 \\
\hline 27 & 0.57271207 E 01 & ... 207E 01 \\
\hline \(\geq 8\) & - 0.96647612 E 01 & ... 732E 01 \\
\hline -9 & - 0.10287984E 02 & ...8005E 02 \\
\hline 20 & \(0.81377675 \mathrm{E} \mathrm{O1}\) & ... 838E 01 \\
\hline 21 & - 0.10454824E 02 & ... 44 E 02 \\
\hline 22 & 0.93455066 E 01 & ... 192E OI \\
\hline 23 & 0.94106247 E OI & ... 491E 01 \\
\hline 24 & 0.13448830 E 02 & .. 32E 02 \\
\hline 25 & - 0.14586916E 02 & ... 916E 02 \\
\hline 26 & 0.13534069202 & ... 103E 02 \\
\hline 27 & -0.18088952E 02 & ... 85E 02 \\
\hline 28 & - 0.18874990E 02 & ...5043E 02 \\
\hline 29 & - 0.19463553E 02 & .. 93E 02 \\
\hline 30 & -0.19683034E 02 & ... 99E 02 \\
\hline 31 & - 0.20324141E 02 & - 76E 02 \\
\hline 32 & - 0.20470955E 02 & - 98E 02 \\
\hline
\end{tabular}
\begin{tabular}{lrr}
33 & 0.17706660 E & 02 \\
33 & 0.17778306 E & 02 \\
34 & 0.18014909 E & 02 \\
35 & 0.18565599 E & 02 \\
30 \\
37 & 0.28443414 E & 02 \\
38 & -0.29363776 E & 02 \\
39 & 0.3284577 E & 02 \\
40 & -0.34926480 E & 02 \\
41 & 0.34260713 E & 02 \\
42 & -0.35660363 E & 02 \\
43 & -0.40799458 E & 02 \\
44 & -0.44497778 E & 02 \\
45 & 0.43542106 E & 02 \\
46 & -0.51090260 E & 02 \\
47 & 0.46945260 E & 02 \\
43 & 0.49888831 E & 02 \\
49 & 0.52071063 E & 02 \\
50 & -0.6144471 E & 02 \\
5 O & 0.69762852 E & 02 \\
52 & -0.7019034 E & 02 \\
53 & 0.84972948 E & 02 \\
54 & 0.86891199 E & 02 \\
55 & -0.90884388 E & 02 \\
55 & -0.95245156 E & 02 \\
57 & -0.12312038 E & 03 \\
58 & -0.18870613 E & 03 \\
59 & -0.26456400 E & 03 \\
60 & 0.71036588 E & 03
\end{tabular}

\footnotetext{
... TOOE 02
... 60e 02
... 58E 02
... 656E 02
... 76E 02
... 828F 02
... 825E 02
... 523E 02
... 61E 02
... 412E 02
... 516E 02
... 884E 02
... 95E 02
... 375E 02
... 358E 02
... 910E 02
... 180E 02
... 8Ile 02
... 995E 02
... 900E 02
...3112E 02
... 413E 02
... 601E 02.
... 349E 02
... 42E 03
... 30E 03
... 15E 03
... 653E 03
}
```

SJOO UUU7UZHANS BASTEL 100 010 030
SiBNOB NOUECK
S:OFTC
C PROGRAM TO CALCULATE EIGENVALUES ANO EIGENVECIORS
C OF A NON:SYMMETRIC MATRIX BY THE QR METHCD
OIMENSION A(62,62),C(62),X(62),Y(62)
READ(5,1) N
READ(5,2) (A{1,J), J=1,N)
C
C WE GENERATE REMAINDER OF MATRIX
C
CALL GENI(A,N)
WRITE(6,9)
WRITE(6,3) (A(I,J), J=I,N)
C
C WE START CALCULATIONS
C
CALL HESSEN(A,N,G2,C)
CALL QREIG(A,N,X,Y,62)
WRITE(6,66)
DO 30 J=1,N
WRITE(6,4) J,X(J)
3O CONTINUE
1 FORMAT(I4)
2 FORMAT(8F5.1)

```
```

 3 FORMAT(8F16.8/)
 4 FORMAT(10X,I1C,E2O.10)
 9 FORMAT(30X, 17H THE FIRST ROW IS ///)
 66 FORMAT(3UX, 21H THE EIGENVALUES ARE ///)
 CALL EXIT
 END
 \$IBFTC HANS
SUBROUTINE GENI(A,N)
DIMENSION A(62,62)
00 10 I=2,N
IM=I-1
A(I,I)=A(IM,N)
DO 1U J=2,N
JM=J-1
10 A(I,J)=A(IM,JM)
RETURN
END
SENTRY
SIBSYS

```

SOME EIGENVALUES FOR ( \(60 \times 60\) ) NON-SYMMETRIC MATRIX
ELEMEMTS OF FIRST ROW: ( \(1,2, \ldots, 32,12,14,10,10,11,19,17,16,1,2, \ldots 16\) )
\begin{tabular}{|c|c|c|}
\hline No. & QR & QR PARTITIONED \\
\hline 2 & - 0.34999966801 & 35 E 01 \\
\hline 2 & - 0.34999966E Ol & 35E O1 \\
\hline 3 & - 0.46698596E 01 & 684501 \\
\hline 4 & - 0.46698596E O1 & 684E 01 \\
\hline 5 & - 0.91073592 E O1 & 705501 \\
\hline \(\bigcirc\) & - 0.91073592E 01 & 7058 01 \\
\hline ? & - 0.100240902 02 & 101E 02 \\
\hline 8 & - 0.10024090玉 02 & 101E 02 \\
\hline 9 & - 0.50000079E 00 & 83 E 00 \\
\hline 10 & -0.50000079E 00 & 83 E 00 \\
\hline 12 & 0.19431574 E 01 & 608 E 01 \\
\hline 22 & 0.19431574 E 01 & 608E 01 \\
\hline 13 & - 0.13330078E 02 & 106E 02 \\
\hline \(-2\) & - 0.13330078E 02 & 106E 02 \\
\hline \(\bigcirc 5\) & - 0.88804265E O1 & 410E 01 \\
\hline 26 & - 0.88804265E 01 & 410 EOL \\
\hline 27 & -0.13601749E 02 & 61 E 02 \\
\hline 13 & - 0.13601749E 02 & 61 E 02 \\
\hline -9 & - 0.13836123E 02 & 54 E 02 \\
\hline ¢ & - \(0.13836123 E 02\) & 65E 02 \\
\hline 2 & - 0.19488786 E 02 & 8699 02 \\
\hline 22 & - 0.19488786 E 02 & 869 E 02 \\
\hline 23 & - 0.20663009E 02 & 42E 02 \\
\hline 24 & - 0.20663009E 02 & 42 E 02 \\
\hline 25 & 0.17269850 E 00 & . 70252E 00 \\
\hline 26 & 0.17269850 E 00 & . 70252E 00 \\
\hline 27 & - 0.12836801F 02 & 33E 02 \\
\hline c3 & - 0.12836801E 02 & 33E 02 \\
\hline 29 & 0.10278338 E 02 & 65 E 02 \\
\hline 30 & 0.10278338 E 02 & 65E 02 \\
\hline 31 & 0.97297672 E OI & 8010e 01 \\
\hline 32 & 0.97297672 E O1 & ... 8010e ol \\
\hline
\end{tabular}
```

SJOF UUU7U2HANS BASTEL IUO U1C 030
SIPJCB NODECK
SISFTC
C PROGRAM TO CALCULATE EIGENVALUES OF A TRIDIAGCNAL MATRIX
C ANALYTICAL SOLUTION
DIMENSION EIV(GU)
READ(5,1) N
READ(5,2) AA,BB,CC
S=SQRT(BB*CC)
PI=3.141593/FLOAT(N+1)
DO 10 I= 1,N
FI=FLOAT(I)
IUE:V(I)=AA-2.0*S*COS(FI*PI)
WRITE(6,3)
DO 20 J=1,N
2C WRITE(6,4) J,EIV(J)
I FORMAT(I4)
2 FORMAT(3F5.1)
3 FORMAT(3OX, 22H THE EIGENVALUES ARE ///)
4 FORMAT(4OX, IIC, E2O.10)
STOP
END
SENTRY
SIBSYS

```
```

\$J0B OOOTUZHANS BASTEL IOO 010 630
S:EJOB NODECK
SIBFTC
C PROGRAM TO CALCULATE EIGENVALUES AND EIGENVECTORS
C OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE GR METHOD
DIMENSION A(62,62), ((62), X(62), Y(62)
READ(5,1) N
READ(5,2) AA,BB,CC
c
C WE GENERATE REMAINDER OF MATRIX
C
CALL GENI(A,N,AA,BB,CC)
WRITE(6,9)
WRITE(6,3) (A(1,J), J=1,N)
C
C WE START CALCULATIONS
C
CALL HESSEN(A,N,G2,C)
CALL QREIG(A,N,X,Y,62)
WRITE(6,66)
CO 3u J=1,N
WRITE(6,4) J,X(J)
3u contINUE
1 FORMAT(14)
2 FORMAT(8F5.1)

```
```

 3 FORMAT(8F16.8/)
 4 FORMAT(IOX,IIU,EZU.IU)
 9 FORMAT(30X, 17H THE FIRST RON IS ///1
 6% FORMAT(30X, 21H the EIGENVALUES ARE
 CALL EXIT
 END
 SIBFTC HANS
SIEFTC HANS
SUBROUTINE GENI(A,N,AA,BB,CC)
DIMENSION A(62,62)
DO 10 I=I,N
DO IU J=1,N
I\cupA(I,J)=0.U
DO 20 I=I,N
20 A(I,I)=AA
N1=N-1
DO 2l I=I,NI
21 A(I,I+1)=BB
DO 22 I=2,N
22A(I,I-I)=CC
RETURN
END
SENTRY
S:ESYS

```
```

3J0B O00702HANS BASTEL IOU 010 030
SIBJOB NODECK
SIBFTC
C PROGRAM TO CALCULATE EIGENVALUES OF A (2N*2N) MATRIX
C SUBDIVIDED INTO (N*N) NATRICES
C BY QR METHOD
C MATRIX IS TRIDIAGONAL
DIMENSION A(62,62),C(30), X(30),Y(30), B(30,30), E(30,30)
READ(5,1) N
REAO(5,2) AA,BB,CC
C
C WE GENERATE REMAINDER OF MATRIX
C
CALL GENI(A,N,AA,BB,CC)
WRITE(6,9)
WRITE(6,3) (A(1,J), J=1,N)
N=N/2
DO 30 1=1,N
DO 30 J=1,N
B(I,J)=A(I,J)
30 E(I,J)=B(I,J)
B(N,N)=B(N,N)+A(N,N+I)
E(N,N)=E(N,N)-A(N,N+1)
CALL HESSEN(B,N,30,C)
CALL QREIG (B,N,X,Y,30)

```
```

 WRITE(6,6)
 DO 40 J=1,N
 40 WRITE(6,7) J,X(J)
 CALL HESSEN(E,N,BU,C)
 CALL QREIG (E,N,X,Y,3O)
 WRITE(6,8)
 DO 50 J=1,N
 50 WRITE(6,7) J,X(J)
 I FORMAT(I4)
 2 FORNAT(8F5.1)
 3 FORMAT(8F16.8/)
 6 FCRMAT(30X, 3OH THE EIGENVALUES OF A+B ARE ///)
 7 FORMAT(40X,I10, E20.10)
 8 FORMAT(30X, 3OH THE EIGENVALUES OF A-B ARE ///)
 9 FORMAT(30X, 17H THE FIRST ROW IS ///)
 CALL EXIT
 END
 SENTRY
\$IBSYS

```

SOME EIGENVALUES FOR ( \(60 \times 60\) )TRIDIAGONAL MATRIX
DIAGONAL ELEMENTS: 2
CO-DIAGONAL ELEMENTS: -1
\begin{tabular}{|c|c|c|c|}
\hline NO. & ANALYMIC SOLUTION & QR & QR PARTITIONED \\
\hline 1 & \(0.26518255 E-02\) & ... 108E-02 & ... 12E-02 \\
\hline 2 & \(0.10600254 \mathrm{E}-01\) & ... 15E-01 & ... 50E-01 \\
\hline 3 & \(0.23824215 \mathrm{E}-01\) & ... 133E-01 & ... 196E-01 \\
\hline 4 & \(0.42288646 \mathrm{E}-01\) & ... 531E-01 & ... 580E-01 \\
\hline 5 & \(0.65944567 \mathrm{E}-01\) & ... 356E-01 & ... 459P-01 \\
\hline 6 & 0.94729260E-01 & ...8954E-01 & ... 126E-02 \\
\hline 7 & 0.12856640 E 00 & ... 590E 00 & ... 13E 00 \\
\hline 3 & 0.26736624 E 00 & ... 564E 00 & ... 24E 00 \\
\hline 9 & 0.21102589 E 00 & ... 512E 00 & ... 49E 00 \\
\hline 20 & \(0.25942958 \pm 00\) & ... 858E 00 & ... OTE 00 \\
\hline 12 & \(0.31244895 E 00\) & ...767E 00 & ... 47E 00 \\
\hline \(\pm 2\) & \(0.36994341 E 00\) & ... 198E 00 & ... 403E 00 \\
\hline 23 & 0.43276049 E 00 & ..5885E 00 & ...5967E 00 \\
\hline 14 & \(0.49773625 E 00\) & ... 442E 00 & ... 522E 00 \\
\hline \(-3\) & 0.56769575 E 00 & ... 323E 00 & ... 575E 00 \\
\hline 26 & 0.64245344 E 00 & ... 125E 00 & ... 266E 00 \\
\hline \(=7\) & 0.71881379 E 00 & ... 379E 00 & ... 231E 00 \\
\hline \(2 \hat{0}\) & 0.79957160 E 00 & ..6913E 00 & ...6994E 00 \\
\hline 19 & \(0.88351274 \pm 00\) & ...0931E 00 & ... 429E 00 \\
\hline 20 & 0.97041459 E 00 & ... 111E 00 & ... 271E 00 \\
\hline
\end{tabular}
```

SJOB OUO7U2HANS BASTEL 100 010 030
SIBFTC
SIEJOB NODECK
SUBROUTINE GAUSI(A,B,C,X)
DIMENSION A(1U,10),B(1U,10),C(1C,10),X(10,10)
READ(5,41)((B)(I,J),I=1,8),J=1,8)
4I FORMAT(8F5.2)
READ(5,42)(A(K,K),K=1,5)
42 FORMAT(5F16.8)
DO43 I=1,3
II=I+5
43 A(II,II)=A(I,I)
N=8
N1=N-1
DO 49 I=1,N
DO49 J=I,N
49 X(I,J)=0.
DO 100 M=1,N
00 3u I=1,N
DO 4U J=I,N
40C(I,J)=B(I,J)
30 C(I,I)=C(I,I)-A(M,M)
DO 31 J=I,N1
Jl= J+l
N3=J

```
```

 S=0.
 DO 32 I=J,N1
 K=I +1
 S=AMAXI(ABS(C(I,J)),S)
 IF(S.LT.ABS(C(K,J))) N3=K
 32 CONTINUE
IF(N3.EQ.J) GO TO 33
DO 34 I=J,N
S=C(J,I)
C(J,I)=C(N3,I)
34 C(N3,I)=S
33 c(J,J)=1./c(J,J)
DO 35 I=J1,N
35C(J,I)=C(J,I)*C(J,J)
DO 36 I=JI,N
I 1 = I-1
IF(M.GT.2) GO TO 47
IF(J.GT.2) GO TO 47
WR:TE(6,45) (C(II,KI),KI=1,N)
WRITE(6,45)(C(I,KI),KI =1,N)
47 DO 46 K1=11,N
4ó C(I,KI)=C(I,KI)-C(J,KI)*C(I,J)
zo continue
31 continue
X(N,M)=1.

```
```

 DO 37 i=1,N1
 K=N-I
 X(K,M)=0.
 DO 37 J=K,NI
 J1=J+1
 37 X(K,M)=X(K,N)-C(K,J1)*X(J1,M)
 X(N,M)=1.
 S=0.
 DO 39 J=1,N
 39S}S=S+X(J,M)*X(J,M
 S=1./S**0.5
 DO 38 J=1,N
 38 X(J,M)=X(J,M)*S
 IF(M.GT.3) GO TO 48
 IUU CONTINUE
 48 WRITE(G,44) (A(J,J),(X(I,J),I=I,N),J=1,N)
 44 FORMAT (3(E20.8/8E16.8/))
 4 5 ~ F O R M A T (1 X , 8 E 1 6 . 8)
 STOP
 END
 SENTRY
SIBSYS

```
```

SIbFTC EGERVC
SUBROUTINE EGERVC(A,N,IN,NGMAX,EPS,EPSI,EF,AV,INO)
OIMENSION A(3v,30),AV(30,30)
00 16 II=1,IN
EPS=EPS/EF
EPSI=EPSI/EF
NB=0
18 DR=0.v
DI=0.0
DO 17 I=2,N
I J=I-1
DO 17 J=1,IJ
C=A(I,J)+A(J,I)
D=A(I,I)-A(J,J)
IF(EPS.LE.ABS(C)) GO TO 2O
2i CC=1.U
SS=0.0
GO TO 22
23 CC=D/C
SIG=SIGN(I.,CC)
COT=CC+SIG*SQRT(1.O+CC*CC)
SS=SIG/SQRT(1.U+COT*COT)
CC=SS*COT
DR=DR+1.0
22E=A(I,J)-A(J,I)

```
```

 IF(EPS.GT.ABS(E)) GO TO 31
 CO=CC*CC-SS*SS
 SI=2.0*SS*CC
 H=0.0
 G=0.0
 HJ=U.O
 DO 40 K=1,N
 IF(K.EQ.I) GO TO 40
 IF(K.EQ.J) GO TO 40
 H=H+A(I,K)*A(J,K)-A(K,I)*A(K,J)
 SI=A(I,K)*A(I,K)+A(K,J)*A(K,J)
 S2=A(J,K)*A(J,K)+A(K,I)*A(K,I)
 G=G+SI+S2
 HJ=HJ+SI-S2
 4U CONTINUE
D=D*CO+C*SI
H=2.O*H*CO-HJ*SI
F=(2.0*E*D-H)/(4.0*(E*E+D*D)+2.0*G)
IF(EPSI.GT.ABS(F)) GO TO 31
CH=1.U/SQRT(1.0-F*F)
SH=F*CH
DI=DI+I.0
GO TO 36
31CH=1.0
SH=0.0

```
```

30́Cl=CH*CC-SH*SS
C2=CH*CC+SH*SS
Si=CH*SS+SHiFCC
S2=SH*CC-CH*SS
IF((ABS(S1)+ABS(S2)).EQ.O.O) GO TO 17
DO 52 L=1,N
AI=A(L,I)
A2=A(L,J)
A(L,I)=C2*A1-S2*A2
A(L,J)=CI*A2-SI*AI
IF(IND.LT.O) GO TO 52
AI=AV(L,I)
A2=AVIL,J)
AV(L,I)=C2*A1-S2*A2
AV(L,J)=C1*A2-SI*AI
52 CONTINUE
DO 53 L=1,N
AI=A(I,L)
A2=A(J,L)
A(I,L)=CI*AI+SI*A2
A(J,L)=C2*A2+S2*A1
IF(INO.GT.0) GO TO 53
AI=AV(I,L)
A2=AV (J,L)
AV(I,L)=Cl*AI+SI*A2

```
```

 AV(J,L)=C2*A2+S2*A1
 53 CONTINUE
17 CONTINUE
IF((DR+DI).LT.U.5) GO TO 49
NB=NB+1
IF(NB.NE.NBMAX) GO TO 18
ló CONTINUE
EPS=EPS*EF**IN
EPSI=EPSI*EF**IN
IF(INO.LE.O) GO TO 70
DO BU I=I,N
SUM=0.
DO 81 J=1,N
81 SUM=SUN+AV(J,I)**2
SUM=SQRT(SUM)
DO 82 J=1,N
82 AV J,I I)=AV(J,I)/SUM
8O CONTINUE
RETURN
70 DO 90 I=I,N
SUM=0.
DO 91 J=1,N
91. SUM=SUM+AV(I,J)**2

```
```

 SUV:=SQRT (SUMM)
 DO 92 J=1,N
 92 AV(I,J)=AV(I,J)/SUM
go continue
RETURN
END

```
```

C SUBROUTINE to fut matrix in upper hesseneerg form.
SUbROUTINE HESSEN(A,M)
DINENSION A(50,5U),B(49)
DOUBLE PRECISION SUM
IF (M - 2) 30,30,32
3200 4U LC = 3,M
N=M-LC+3
Nl=N-1
N2 = N-2
NI=NI
DIV = ABS(A(N,N-I))
DO 2 J = I,N2
IF(ABS(A(N,J))- DIV) 2,2,1
:NI= J
DIV = ASS(A(N,J))
2 continue
IF(DIV) 3,40,3
3 IF(NI - NI) 4, 7,4
4 DO 5 J = 1,N
DIV = A(J,NI)
A(J,NI) = A(J,N1)
5A(J,N1) = DIV
006 J = 1,M
DIV = A(NI,J)
A(NI,J) = A(NI,N)

```
```

 6A(N1,J) = DIV
 7 DO 26 K=1,N1
 26 B(K) = A(N,K)/A(N,N-1)
 DO45 J = 1,M
 SUN=U.O
 IF (J - N2) 46,43,43
 40 IF(B(J)) 41,43,41
 41 A (N,J) = 0.0
 DO 42K=I,N1
 A(K,J) = A(K,J) - A(K,N1)*B(J)
 42SUM = SUM + A(K,J)*B(K)
 GO TO 45
 43 DO 44 K = 1,NI
 44 SUM = SUM + A (K,J)*B(K)
 45 A(N1,J)=SUN
 40 CONTINUE
 30 RETURN
 END
 SUBROUTINE QRT(A,N,R,SIG,D)
 DIMENSION A(50,50),PSI(2),G(3)
 NL=N-1
 IA=N-2
 IP=IA
 IF(N-3) 101,10,60
 60 DO 12J=3,NI

```
```

 ~L=N-N
 IF(MbS(A(J1+1,Jl))-0) iU,10,11
 12DEN=A(J1+1,JI+1)*(A(JI+1,JI+1)-5IG)+A(J1+1,Ji+2)*A(JI+2,J1+1)
 IF(DEN) 61,12,61
 61 IF(ABS(A(JI+1,J1)*A(J1+2,JI+1)*(ABS(A(J1+1,J1+2)+A(J1+2,J1+2)
1-SIG)+ABS(A(J1+3,J1+2)))/0EN)-D) 10,10,12
FP=\1
00 14 J=1,IP
J1=IP-J+1
IF(ABS(A(J1+1,J1))-D) 13,13,14
14 TQ=JI
13 DO 100 I=IP,NI
IF(I-IP) 16,15,16
ij G(I)=A(IP,IP)*(A(IP,IP)-SIG)+A(IP,IP+I)*A(IP+I,IP)+R
G(2)=A(IP+1,IP)*(A(IP,IP)+A(IP+I,IP+I)-SIG)
G(3)=A(IP+1,IP)*A(IP+2,IP+I)
A(IP+2,IP)=0.U
GOTO 19
IO G(1)=A(I,I-1)
G(2)=A(I+I,I-1)
IF(I-IA) 17,17,18
:7 G(3)=A(I+2,I-1)
GO TO 19
IE G(3)=U.0
Ig XK = SIGN(SQRT(G(I)**2 +G(2)**2 +G(3)**2),G(1))

```
```

22 IF(XK) 23,24,23
23 AL=G(i)/XK+1.0
PS:(i)=G(2)/(G(1)+XK)
PSI(2)=G(3)/(G(1)+XK)
GO 1O 25
24 AL=2.0
PSI(1)=0.0
PSI(2)=0.0
25 IF(I-IQ) 26,27,26
20 IF(I-IP) 29,28,29
2% A(I,I-1)=-A(I,I-1)
GO TO 27
29 A(I,I-I)=-XK
27 DO 30 J=I,N
IF(I-IA) 31,3I,32
32 C=PSI(2)*A(I+2,J)
GO TO 33
32c=0.c
33E=AL*(A(I,J)+PSI(I)*A(I+I,J)+C)
A(I,J)=A(I,J)-E
A(I+1,j)=A(I+1,J)-PSI(1)*E
IF(I-IA) 34,34,30
34 A(I+2,J)=A(I+2,J)-PSI(2)*E
30 CONTINUE
IF(I-IA) 35,35,36

```
```

 35 L=I+2
 GO TO 37
 36 L=N
 37 DO LU J=IQ,L
 IF(I-IA) 38,38,39
 30 C=PSI(2)*A(J,I+2)
 GO TO 41
 35 C=0.0
 41E=AL*(A(J,I)+PSI(1)*A(J,I+1)+C)
 A(J,I)=A(J,I)-E
 A(\nu,I+1)=A(J,I+1)-PSI(1)*E
 IF(I-IA) 42,42,40
 42 A(J,I+2)=A(J,I+2)-PSI(2)*E
 4O CONTINUE
 IF(i-N+3) 43,43,1000
 43 E=AL*PSI(2)*A(I+3,I+2)
 A(I+3,I)=-E
 A(I+3,I+1)=-PSI(1)*E
 A(I+3,I+2)=A(I+3,I+2)-PSI(2)*E
 IUOU CALL WRITE(A,N)
lou continue
101 RETURN
END
C PROGRAN TO CALL QR TRANSFORMATION, MAXIMUM ITER IS 5O.
SUBROUTINE QREIG(A,N,ROOTR,ROOTI,IPRNT)

```
```

 DIMENSION A(5U,5U),ROOTR(50),ROOTI(50)
 COMMON IP,IQ
 NCOUNT=O
 N=M
 IF(IPRNT) 80,81,80
 80 WRITE (6,104)
81 ZERO = 0.0
jJ=1
277 XNN=0.0
XN2=0.0
AA = U.0
B = 0.0
c=0.0
OO = U.v
R=U.U
SIG=0.0
ITER = 0
:7 IF(N-2) 13,14,12
13 IF(IPRNT) 82,83,82
\&2 WRITE (6,1U5)A(1,1)
83 ROOTR(I) = A(1,1)
ROOTI(I) = 0.0
2 RETURN
24 JJ=-1
12X=(A(N-1,N-1)-A(N,N))**2

```
```

 v=4.C*A(N,N-1)*A(N-1,N)
 ITER = ITER + 1
 IF(X .EQ. U.U .OR. ABS(S/人) .GT. 1.OE-8) GC TO IS
 10 IF(ABS(A(N-1,N-1))-ABS(A(N,N))) 32,32,31
 31E = A(N-1,N-1)
 G = A(N,N)
 GO TO 33
 32G = A(N-1,N-1)
 E = A(N,N)
 33 F = u.
 H=0.
 GO TO 24
 15 S = x + S
 X = A(N-1,N-1) + A(N,N
 IF(S) 18,19,19
 19 SQ=SQRT(S)
F=O.O
H=O.O
IF (X) 21,21,22
21E=(X-SQ)/2.0
G=(X+SQ)/2.0
GO TO 24
22G=(X-SQ)/2.0
E=(X+SQ)/2.0
GO TO 24

```
```

 18 F = SQRT(-S)/2.U
 E=x/2.0
 G=E
 H=-F
 24 IF(JJ) 28,70,70
70 D = 1.0E-1O*(ABS(G) + F)
IF(ABS(A(N-1,N-2)) .GT. D) GO 10 26
28 IF(IPRNT) 84,85,84
84 WRITE (6,IU5)E,F, ITER
WRITE (6,105)G,H
85 ROOTR(N)=E
ROOTI(N) = F
ROOTR(N-1)=G
ROOTI(N-1)=H
N=N-2
IF(JJ) 1,177,177
26 IF(ABS(A(N,N-1)) .GT\cdot 1.OE-1U*ABS(A(N,N))) GO 10 50
29 IF(IPRNT) 86,87,86
86 WRITE (6,1U5)A(N,N), ZERO, ITER
37 ROOTR(N) = A(N,N)
ROOTi(N) = 0.0
N=N-1
GO TO 177
50 IF(ABS(ABS(XNN/A(N,N-1))-1.0)-1.0E-6) 63,63,62
62 IF(ABS(ABS(XN2/A(N-1,N-2))-1.0)-1.UE-6) 63,63,7UU

```
```

 63 VQ=ABS(A(N,N-1))-ABS(A(N-1,N-2))
 IF (ITER-15) 53,164,64
 164 IF(VQ) 165,165,166
165R=A(N-1,N-2)**2
SIG=2.O*A(N-1,N-2)
GO TO 60
160 R=A(N,N-1)**2
SIG = 2.O*A(N,N-1)
GO TO 60
64 IF(VQ) 67,67,66
66 IF(IPRNT) 88,85,88
8% WRITE (6,IUT)A(N-1,N-2)
GO TO 84
67 IF(IPRNT) 89,87,89
89 WRITE (6,lU7)A(N,N-I)
GO TO 86
70U IF(ITER .GT. 50) GO TO 63
IF(ITER.GT. 5, GO TO 53
701 21=
((E-AA)**2+(F-B)**2)/(E*E+F*F)
Z2= ((G-C)**2+(H-DD)**2)/(G*G+H*H)
IF(Z1-0.25) 51,51,52
51 IF(Z2-0.25) 53,53,54
53 R=E*G-F*H
SIG=E+G
GO TO 60

```
```

54 R=E*E
SIG=E+E
GOTO60
52 IF(Z2-0.25) 55,55,601
55 R=G*G
SIG=G+G
GO TO 60
6ul R = U.0
SIG=0.0
60 XNN=A(N,N-1)
XN2=A(N-1,N-2)
CALL QRT(A,N,R,SIG,D)
NCOUNT = NCOUNT+1
IFINCOUNT.GT.8) RETURN
AA=E
B=F
C=G
D D = H
GO TO 12
204 FORMAT(////IX, YHREAL PART 6X 14HIMAGINARY PART, 26X
1 I3HTAKEN AS ZERO 6X 4HITER //1
I\cup5 FORMAT(1X,EI5.8,3X,EI5.8, 42X 13)
107 FORMAT(56X E13.8)
END

```

\section*{BIELZOCRAPHY}
(1) Friedman, Berhard; Eigenvalues of Compound Matrices, Research Report No. TN-16, New York University, New York, (2951).
(2) MacDuffee, C. C.; The Theory of Matrices. Chelsea Publishing Co., New York, (19l6).
(3) Wilkinson, J. H.; The Algebraic Eigenvalues Problem. Clarendon Press, Oxford, (1965).
(4) Rutishauser, H.; "Solution of Eigenvalue Problems with the LR - Transformation". Appl. Math. Ser. nat. Bur. Stand. (1958).
(5) Francis, J. G. F.; "The QR Transformation". Computer J. +1 (1961).
(6) Ralson, A.; A First Course in Numerical Analysis. NcGraw-Hill, New York, (1965).
(7) Kubianovskaya, V. N.; "On Some Algorithms for the Solution of the Complete Eigenvalue Problem". Zh. Vych. mat. l (1961).
(8) Fouseholder, A. S.; The Theory of Matrices in Numerical Analysis. Blaisdell, New York (1964).
(9) Killer, G. A.; Theory and Applications of Finite Groups. Wiley, New York, (1916).
(10) Conte, S. D.; Elementary Numerical Analysis. McGraw-Hill, New York, (1965).
(21) Wilkinson, J. H.; Rounding Errors in Algebraic Processes. Prentice-Hall, Inc., Englewooà Cliffs, N. J. (1963).
(12) Ortega, J. M.; "An Error Analysis of Householder's Method for the Symmetric Eigenvalue Problem". Numerische Math. 5, (1963).
(13) Forsythe, G. E., and Wasow, W. R.; Finite Difference Methods For Partial Differential Equations. Wiley, New York, (1960).
(14) Eberlein, P. J.; "A Jacobi-like Method for the Automatic Computation of Eigenvalues and Eigenvectors of an Arbitrary Katrix." J. Soc. Indust. Appl. Math. 10, (1962).
(:5) Uinsixy, L.; "On the Minimization of Matrix Norms". Amer. Yath. Monthly, 65, (1958).
(ió) Taddeev, D. K. and Faddeeva, V. N.; Computationai Metrods for Linear Alfebra. W. F. Freeman, San Francisco, (1963).
(a7) Fox, L.; An Introduction to Numerical Linear Algebra. Oxford University Press, Loncion, (1964).
(28) Wiakinson, J. H.; "Rigorous Error Bounds for Computed Eigensystems". Computer J. 4.2 (1961).

\section*{OTHER REFPRPNCES USFD}

Seinmain，R．，Introduction to Matrix Analysis．McGraw－Hill， New York（1960）．

Rain，\(亠 䒑\). B．，Errors in Digital Computation．Vol．l，Wiley， New York，（1965）．

Finibeiner，D．N．，Introduction to Matrices and Linear Transformations． V．H．Preeman，San Francisco，（1960）．

Wilkinson，J．H．＂Householder＇s Method for the Solution of the \(\therefore\) Aġoraic Eigenproblem＂．Computer J．3，（1960）．

Fieniici，P．，＂Bounds for Eigenvalues of Certain Tridiagonal Matrices＂． こ．Eoc．Indust．Appl．Math．5，（1963）．

Kpoai，Z．，Numerical Analysis．Wiley，New York，（1955）．
Mocice，J．，Survey of Numerical Analysis．McGraw－Hill，New York，（1962）．
Johnson，R．E．，First Course in Abstract Algebra．Prentice－Hall， Englewood Cliffs，N．J．（1961）．```


[^0]:    * 

    ```
 Proof due to Francis [5].
    ```

[^1]:    * Proof given in appendix.

