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CHAPTER I
INTRODUCTION

The concept of a potential has been very succesgsful
in explaining the behaviour and interaction of two charged
particles and also in the field of gravitation. This idea
was, therefore, carried forth to explain the interaction
between two nucleons when the interactions were specific-
ally of nuclear origin (i.e. not of the electric or gravi-
tational type or fof that matter, not the so-called "weak"
interaction). It seemed doubtful whether this idea would
work in the high energy region where the nucleons are moving
with relativistic velocities, but at low energies the concept
may be quite valid. The experimental basis on which one
constructs such a potential is the two-body scattering data.
In a typical experiment one shoots a proton beam at a target
containing neutrons or protons and looks for the deviation
of the projectile. These data could then be used to extract
phase shifts, which in turn can be fitted by a potential.
The two-nucleon potential turns out to be pretty complicated
and there could be more than one pofential which would fit
the known data. To make things worgse it was found that the
phase shifts from the state 180 changed sign around 250 MeV.

(1)

that to make the lS phase shift

It was shown by Jastrow 0



change sign one needs strong short-range repulsion e.gqg.
a hard core.

It is known that to calculate nuclear structure
or various other nuclear properties one ideally should solve
the N-hody Schrédinger equation with a potential acting
between the various pairs of nucleons. This is mathema-
tically unmanageable and also, this procedure does not give
too much physical insight. On the other hand, one might
use a well known procedure. One assumes that the various
pairs of nucleons in a nucleus interact amongst themsclves
in such a way that the interactionsaverage out to form a
one~-body potential. This one~-body potential resembles a
harmonic oscillator potential at short distances. Ilowever,
it is clear that some "residual" interaction will also be
left. One cenerally considers this residual interaction
only between the "valence" particles. This procedure can
give a good description of the nucleus and is, in fact,
the sheli model of the nucleus. The residual interaction
that ore uses is, however, a well behaved potential and
generally one constructs these in such a way that a good
fit to energy levels and other experimental data can be
obhtained.

At the basis of the shell model is the Hartree-
Fock method of nuclear structure calculations. This method
is well known and is given in many places(z). In this method

the particles move in a "self consistent"” field generated



by the interaction of other neighbouring particles on it.
Here also one must use a two-body force through which the
particles would interact. But we have seen that the sca-
ttering data seem to indicate infinite repulsion at short
distances. In the shell model and so also in the Hartree-
Fock method the particles move independently of each other
except for the fact that they have to obey the Pauli
principle. This means that at times one nucleon may find
itself at a very close distance from another. This sort of
uncorrelated motion would make the matrix elements involved
in the calculation become infinite if oneouses two~body
interactions with hard core. Thus, it must be recognized
that at short distances the motion of the nucleons hecomes
highly correlated. This was first done by K. A. Brueckner

(3)

and his coworkers They started with a perturbation-theo-
retical approach and showed that if a certain class of
diagrams corresponding to the various terms in the per-
turbation series could be summed to all orders then this
would incorporate short-range correlations. One would then
be able to handle even singular potentials. If one uses

the technique of Feynmann diagram; then in this summation

one encounters the so-called "unlinked" diagrams in addition
to the linked ones. There appears a convergence problem

in the theory if one has to consider these unlinked diagrams.

Brueckner showed by explicit evaluation to fourth and sixth

order that these diagrams need not be considered. He could



not, however, generalise the result. This was done by

Goldstone(4)

who used the technique of second quantization
and showed that only the linked diagrams need be considered.
The details of the Brueckner theory has been given in

(5)

several places and we do not wish to repeat it here.
Essentially, this method is similar to the Bartree-Fock method
but the étrong short-range forces are taken care of by
allowing the two interacting particles to scatter any number
of times before they finally return to the sea of occupied
levels. The resulting effective interaction is a sum of
matrix elements of the interaction potentialov which alternate
in sign. This resultant effective interaction is called the

G matrix and its matrix elements between states of two

particles of initial momentum 2m and final momentum £'m'

are written as

<%'m'|G|em-me>

= <¢'m"}v]em-me>

- !—_ 1 [y | Wt W 1
3 <'m'v[etmt-mt et e =

Q,Hmll . 2'" mll Q/

<g"m" |G| Ln-mgL> (I-1)

where the prime on the summation indicates that 2" m"> must

be some unoccupied intermediate state so as to satisfy the

Pauli principle. More formally,



where Q is the Pauli operator which forbids scattering into
states which are occupied. The structure of the G matrix
is similar to that of the t or K matrix in the theory of
scattering of two free particles. It differs only through
the presence of the operator  and also the fact that the
enerqgy dencminator contains the binding effects of the
nuclear medium.

The G matrix is very haré to calculate in the case
of a finite nucleus bccause the system is finite and has
surface effects. In othér words one has to keep track not
only of the relative coordinate r of the interacting pair
but also of their centre of mass coordinate R. Furthermore
the operator ¢ will be very complicated in this case. So
the earliexr attempts were devoted to a hypothetical system
called nuclear matter. This system is infinite in extension
and contains an equal number of neutrons and protons. 2All
states up to a ce.tain monentun kF called the Fermi momentum
arce f£illed up. Morcover the Coulomh interaction between
protons is neglected. Such a system will have a binding
energy per particle ecqual to the first term in the semi-

(6)

empirical mass formula which may be written as follows

2/3 2. -1/3
1 5 + a3Z A

1 2,
+ 7 a4(N ZYO/A 4+ ...
L (T-3)
Also the system should saturate and the saturation density

should coxrrespond to the central density of a heavy nucleus.



Nuclear matter has a great advantage that as the system is
translationally invariant the wavefunctions are plane waves
and the Hartree~Fock self consistency problem is simple.

The first numerical calculation of the binding energy of

(7)

nuclear matter was done by Brueckner and Gammel who

directly solved the integral eguation. This procedure
was capable of greal accuracy but complicated to carry out
in practice. So there was a search for simpler methods.

An important step in this direction was made by Moszkowski

(8)

and Scott who showed that the theory is greatly simplified

if the nucleon—nucleon interaction is separated into a short-

range part v_ and a long-range part v They set up a cri-
Pl

9"

tefion for this separation and showed that the short-range
part could then be reprgsented by a reaction matrix Gs'
This reaction matrix GS is not very different for nuclear
matter from that for free nucleons. The long-range part

v could be treated by Born approximation in nuclear matter

but this is not possible for free nucleons and a very different
result is obtained. The criterion for separation mentioned

- .- do - 3 F Ragipl
above was thalt the short-range reaction matrix GS for freec

nucleons should vanish so that one has to treat v in the

Born approximation and also to calculate the difference

GN - GF. Moszkowski and Scoti showed how to do this but

S S
further studies hy K&hler(9) showed that their method of
calculation for CS - Cz might not be sufficiently accurate.

o

In 18963, Bethe, Brandow and Petschek came up with the



idea of reference spectrum method which provided a sinple
but quite accurate approximation to GN. This approximate
G, generally written as GR could be improved to the desired
degree of accuracy by adding correction terms which are
easy to calculate.

The application of Brueckner theory to finite nuclei
was first made by Brueckner, Gammel and Weitzner(ll). They
observed that the theory gets Highly complicated when one
directly uses it for finite nuclei. In a Hartree~Fock cal-
culation as one goes from one iteration to another, one is
faced with the self congistency problem because the wave-
functions used in producing the non--local H-T potentizl
shéuld be the same as one obtains after the calculation.

In other words, when the self consistency is achieved one
gets back the same wavefunction as one starts with. In
nuclear matter, this problem is trivial because one knows
before hand that these are plane waves. In finite nuélei,
however, as one goes from oune iteration ¢n > ¢n+l the

energy denominator in (I~2) gets changed. This is the
double gelf consistency problem encountered in finite nuclei.

Brueckner, Gammel and Weitzner circunvented this
difficulty by an approximation. They found that the short-
rangce correlation structures contained in G involve distances
of the order of 1 fm and made a prescription that if the
density density does not vary appreciably over this distance

one can take the G matrix from nuclear matter at that density



and treat this as the effective interaction for doing Hartree-

Fock calculations.

-]

Another approach is to start directly from the

oscillator basis and to do Brueckner theoretic calculations

(12) and ‘also

(13)

with them. This was done by Kohler and McCarthy
somewhat differently by Becker, MacKeller and Morris
One is thus left with two choices. Either one should derive
some effective interactions from a fundamental basis and
use them in Hartree-Fock calculations or use the Brueckner
theory in its full glory following the footsteps of Kohler
and McCarthy.

Side by side with the Brueckner Hartree-Fock theory
gther simple theories of the Thomas Fermi type have been

(14)

developed on similar ideas. Berg and Wilets developed

a phenomenological theory which used some fundamental ideas
of nuclear matter theory. They defined an energy density of
nuclear matter e{p) which is a function of the density p.
This function contained an attractive and a repulsive part
in addition to the kinetic energy. Each of these functions
were represented by suitable powers of density. These were
multiplied by some coefficients which were chosen to give
the correct binding and equilibrium density. In addition

to these a term was introduced to allow the variation of the
energy density as the nuclear density changed with position.

Thus an idea of the "local energy density" was introduced.

There were many other attempts made in this line by various



(15)

workers and mention may he made of the work by Hara
and of Kumar, LceCouteur and Roy(l6). Hara used nuclear matter
theory extensively. He used a long-range attractive potential
with a §-function repulsion at the surface of the core.

1/3

This repulsion was dependent on the density as p while
the attractive part was independent of density. He fixed
parameters to give correct binding energy and density for
nuclear matter. He determined'the surface thickness by a
variational calculation and obtained a value thch was
10 - 20% too large. He obtained the surface energy to be
about 23 - 28 MeV compared to the empirical value of 18
MeV. Rumar et al. used an exrression for energy density
gsimilar to that of Berg and Wilets but attenpted to connect
the parameters with the work of Brueckner, Gammel and
Weitzner. But they found that the attractive force used in
the work of Bruecckner's group did not have enough density
dependence and they fixced their own paramcters. They'found
good agreement with experimental data. Recently, Eethe(l7)
worked on the Thomas Fermi theory and made maximum use of
the information obtained from nuclcar matter calculations.
He fcund that the local density approximation would be good
even at the nuclecar surface with certain corrections.

Thus the current practice is to make extensive use
of nuclear matter results in calculating the properties of
finite nuclei. It will, therefore, not be out of place to

give a brief review of the present status of nuclear matter
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calculations. After the first calculation by Brueckner and

Gammel numerical calculations were made by Brueckner and

(18) (19)

Masterson and by Razavy . Brueckner and Masterson

used the inteyral equation method and used the Yale poten-

tial(zo). Razavy, on the other hand, used the reference

spectrum method and used the Hamada-Johnston potential(zl).

Both of these calculations yielded a value of about 8 MeV
per particle for binding energy of nuclear matter which
is half the'empirical value of about 16 MeV. Their saturation

density was also too low compared to observed data. Further

(22)

Brown, Schappert and Wong pcinted out corrections to

these calculations which reduced the binding energy further.

(23)

At this stage it was pointed out by Rajaraman that the

Brueckner-Goldstone series does not converge order by order

and that a rearrapgement in terms of the nuwher of hole-

(24)

lines was necesgsary. It was Bethe who succeeded in

summing three-body cluster diagrams to all orders in the

interaction and when the celculations were done by Bhargava

(25)

and Sprung a further gain of about 5 MeV in binding was

nt of three-body encrgy and also that

obtained. This treatme
(26)

o

in the work of Kirson were hot correct. It was later

found by Bethe(27)

that the three-body clusters had a rather
small contribution to the binding energy so that one could
put the potential energy of the intermediate states equal

to zero and later add the three-body contribution to that

from the two-body clusters. This method was advocated by
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(28)

Brown and used by Azziz but Azziz did not include the

p states in his calculations. A calculation using this

prescription of putting only kinetic energy in the intermed-

iate state was performed by Dahlblom(zg)

Banerjee(Bo). The reference spectrum method was used in these

and by Sprung and

calculations. The authors used both the Reid soft core and

hard core potentials(3l)

which are given state by state.

For higher partial waves (J > 2) they used OPEP. It was
found that some amount of attraction could be obtained from
some of the higher partial waves whereas OPEP gave repulsion.
So an improvement on this point was necessary. Finally

Kallio and Day(32)

put forward a method of solving the
Bethe~-Goldstone equation directly and calculated the binding
energy for Reid soft core and Reid hard core potentials.

But they worked only at normal density and used OPEP for
states with angular momentum J > 2. Their results were

very nearly self consistent and provided a good check on

the reference spectrum results of Sprung and Banerjee.

These results confirmed the convergence of the reference
spectrum method. Kallio and Day used an angle averaged
Pauli operator and used only the kinetic energy in the
intermediate states. The angle averaged Pauli operator is

a good approximation for the operator Q as observed by
Brown, Schappert and Wong and also investigated by thler(33).

Kbhler finds that the angle average approximation is quite

accurate and uses the matrix inversion method in his cal-
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culations. He also finds that the averaging of the centre
of mass momentum used in the Pauli operator is also quite
accurate and may give only an error of .1 MeV in binding.
The motivation for the present work was that although
a lot of information obtained from nuclear matter calcula-
tions is being used particularly in Thomas Fermi theory,
an effective interaction derived from such calculations has
not heen extensively used in Hartree-Fock calculations.
The aim is therefore to give a clear prescription of con-
structing such effective interacticn and to actually con-
struct one from the most accurate nuclear matier calcula-
tions. As there are still no nucléar matter results availa-
ble using the exact methods like those of Kallio and Day
for moderxrn phenomcnological potentials like Reid's over a
range of densities and &lso resolving somne of the ambig-
uities of the higher partial wave contributions there is a
need for onc morve calculation incorporating all these. Such
a calculation will algo enable one to know the binding encergy
of nuclear matter as exactly as possible under the present
state of the theory. In Chapter II we have described the
formalism and results of our nuclear matter calcuvlations
for the Reid soft core potential and for the potential of

4 .
B’XIn Chapter IIT, the idea of a

Bressel, Kerman and Roubeaen
density dependent effective interaction has been introduced
and a clear prescription of obtaining these has been given.

in Chapter IV we have discussed the results obtained from
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these calculations and a simple study of the density depen-
dence has been made. In Chapter V we have been led to the
conclusion that the tensor force is the main mechanism of
density dependence in thege effective forces. While dealing
with the remnant tensor force a qualitative agreement with
the Kuo-Brown prescription of using effective energy denom-

inators has also bheen found.



CHAPTER IT
NUCLEAR MATTER CALCULATIONS

The main obhjective of a nuclear matter calculation is

to obtain the reaction matrix defined by the equation

G =v - vg-G (I1-1)

N
where v is the potential, Q is the Pauli operator and ey is
the energy denominator which is chosen with a negative sign
so as to make it positive-definite. Equivalently, one can

interest oneself in calculating the correlated wavefuncltion

¥

N° An eguation for WN can be developed by noting that

Gd = v WN (ri-2)

where ¢ denotes an uncorrelated wavefunction which, in the
nuclear matter case, is a plane wave.

Using (II-1) and (IT-2) one obtains
y =0 - 2 gy L (TT-3)

This is the Bethe-Coldstonc equation. Once ¥ is known it
can be used in various calculations. We have calculated
the reaction matrix € by two standarxd methods - the reference
speclrun method and the integro-differential method of Kallio

and Day. In principle the latter method is the same as that

14
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of Brueckner ‘and as such is of greater accuracy. It also
gives the true correlated nuclear wavefunction wN(r) which

we used in finding the effective interactions. These methods

will now be described.
A. REFERENCE SPECTRUM METHOD:

This method was developed in 1963 by Bethe, Brandow
and Petschek. The original paper and its authors are often
quoted in literature as BBP and we shall also use this. The

d(35’36) was simple. Although the

motivation for this metho
method of Brueckner and Gammel was, in principle, capable

of very great accuracy it did not give much physical insight.
It also did not provide any simple approximation where
the full accuracy of the method was not required. The ref-
erence spectrum method gives a first approximation which is
very easy to compute and guite accurate and also can be
improved upon to any desired degree of accuracy. Because of
this advantage it permits a quantitative study of higher

order diagrams(37)

so that the convergence of the Brueckner-
Goldstone series could be investigated.
We go back to equation (II-3). In terms of the co-

ordinates of the interacting pair of particles it can be

written as
Y(r,,r.) = &(r,,xr.) - g-v ¥Y{(r.,r.) (IT~a-1)
~17=2 ~17=2 e ~1'=2 :

The basic idea in the reference spectrum method is to replace
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o Lo

the operator = by a simpler one because it is the operator
% which presents the msin difficulty in calculating Y (r) -
the relative part of the wavefunction WN. THe operator e

has the property

elab> = [B(k,) + B(k - W) |ab>

-
where !ab> is the product of two plane waves. W is called

the starting energy and represents the enerqgy Em + En of

two interacting particles inside the Fermi sea. a, b represent
two particles above the Fermi sea. W is introduced as a
parameter so that for a fixed W the G matrix is hermitian(Bg).
The main approximations in the reference spectrum method are
(1) to approximate the encrgy denominator e by a quadratic
function of momentum k and (ii) to replace Q by 1. One can

now exawine the implications of these approximations. If

E(k) is repleced by ER(k) such that

E (k) = S + A (I1-a-2)

where A is a constant and also m is a constant called the
effective mass, then the energy denominator e will be

approximately

R = e ___!L-.. 3 -4 - - T Ty
e = Zm* (\7] i Vz ) F?A W .(]—I a 3)

This expression for e along with Q=1 allows one to writc a
differential equation for ¥ instead of an integral equation.

The solution of an integral cquation is definitely much morc
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difficult than this differential equation. Now whether this
approximation for E(k) is a good one or not depends on our
choice of the potential energy U(k). The choiée of U(k) is,
however, at our disposal and it should be chosen in such a
way as to make the convergence of Brueckner-Goldstone ex-
pansion as rapid as possible. At the time the Sprung--

(25)

Bhargava calculations were being done it was shown by

(24)

Bethe that a good choice of U(k) should cancel all the

three~body cluster diagrams. The procedure was reasonable

(23)

because it was shown by Rajaraman that the Brueckner-

Goldstone expansion does not converce order by order. (This
s

39 « 3
( )) Good convergence

was first pointed oult by Hugygenhcltz
can be obtained by surming diagiamsg with the same nunber of
hole lines, or in other words different many body clusters.

So the idea was to sum all two~-body diagrams, then all threc-
body diagrams and soon. An estimate of these showed that as

the number of whole lines increased i.c., the number of
particles in a particular type of cluster increceased the
contribution of that sum to the binding enevrgy fell off rapidly.
Bethe solved the three-body equations following the work of

Faddecv(40). Improved solutions to the Bethe-Faddecv

(41). Following his solution

equations were given by Day
of the three-body eqguations Bethe gave a prescription for
calculating U(k). It was secea that with a guadratic approxi-

mation the reference spectrum could be fitted well with

U(k) obtained by thec above nethod over a restricted momentum
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1 1

range of about 2.5 fm ~ to 5fm ~. Of course, when the BBP

paper came out these ideas were not known but arguments

were put forward which showed why in someohigh momentum
region the quadratic approximation should be good. It was
also argued by BBP that due to the presence of the hard core
in the nucleon-nucleon interaction the states of typical momenta to
which two nucleons in nuclear matter would scatter were also
in the above region. Another very important fact that should
be noted is that the energy spectrum of states in the Fermi
sea is completely irrelevant to the purpose of computing

the G matrix, once the choice for the starting energy W

is made. The reason for this fact will be found from the
equation for the correlated wavefunction. The presence of

the operator Q allows the operator g to act only on states
outside the Fermi sea. Thus, for a given value of W the
behaviour of g depends only on E(kb) such that kb>kF.
Brueckner's work showed that the energy of the states with-
in the Fermi sea could be represented by a quadratic function.
As a matter of fact, W should then be calculated from the

actual nuclear spectrum., For a given pair of particles W

is then just a number and should not be approximated in any
way. In our calculations we put in a gquadratic function
determined by two parameters A and m*, Of course, the self
consistency question will naturally arise and we will des-

cribe that later.

We now look into the question why putting Q=1 will
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not be a very bad approximetion. The number of states into
which the operator Q will forbid scattering, is a small
fraction of the total number of states of importance in
calculating the correlated wavefunction ¥. In other words,

Q prohibits scattering into st;tes of momentum up to

k = kg (v 1.36 1Y) whereas states up to 5 ot play an
important role in determining ¢¥. Thus, the important region
of phase space is about 40 times bigger than the Fermi sphere
which is affected by 0.

Secondly, if one applies the operatoxr iﬁ to states
forbidden by 0O, one generally gets a small resilt. The
reference energy denoninator eR gives the difference between
the reference energy of the forbidden state and the actual
enerqgy of the initial state. Typically this comes to about
100 ﬁev giving a small result. Even in the worst case of
k = kF this is of the order of 50 MeV. Thus, lﬁ is always
reasonably swmall and has the remarkable properiy of having
no singularity. Tt is well known that the correlated wave-
function in nuclear matter heals whereas in a free scattering
there is a non-zero phase shift. The reason for this may
be traced to the absence of any singularity in the operator
%. As there is no singularxity in the operator lw-the healing

R

o

=

property is retained. Counting all these advantages of the
. . R
reference approximation, we now see why G should be a good

first order approximation to G. We can write an equation
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for G as
1
G =v - v= G A(II-a~4)

Once GR has been calculated, it can be improved upon by
solving the exact equation
¢ = 6"+ "% - Yo . (II-a-5)
e
e
This is a special case of an equation given in Appendix A
of BBP. Note that GR is a first approximation in a system-
atic expansion of G. This expansion is very-.useful because
R

G is simple and accurate.

From (II-a-4) we can write

yR =g - L R (II-a-6)

If we write ZR = & - WR, then

e 7 = vY LA(II-a-7)

At this point it is useful to make the separation of
the centre-of-mass part and the relative part of the two-body

wavefunction. S0 we write

o ¢ (x)
yR Y = o7t explize.r) 4 R (IT-a~8)
z" R (x)

where @ is the volume. BBP in their paper used the symtol P as the

average momentum so that the centre-of-mass momentum was 2P.
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We have used the same convention ag theirs.

. . R
In view of the quadratic dependence of e on the

relative momentum k', in coordinate-space k'zcan be written
as - V?. So one introduces the abbreviation
2 2 ota
Y© = P74 m*(2A~W) . (IT-a-9)

Then one at once obtains the differential equation

(V2% ) = - mr va(g) .(I1-a-10)

The last equation is known as the reference wave equation.
The constant y? turns out to be positive and, therefore, as
r->e E falls off as e '*. Thus healing of the wavefuncticon
is ensured. ¢ is called the wave defect because it gives
the deviation of the correlated wavefunction from the plane
wave. To proceed further, one has to make the usual partial-
wave expansion so thal equation (TI-a-10) can he split into
several uncoupled differential equations, each for a parti-
cular angular momentuwi. This is true for central, spin
orbit and quadratic spin orbit forces only. Whenever a
tensor force jg prescnt, one will have to solve a coupled
differential eguation corresponding to a fixed value of

the total angular momentum J. We write

¢ (x) i

me = ¥ iL[4ﬁ(2L-l—1)]/? (kor)'l A(TI-a-11)
¥ L

ER(E) (¢

o1, }xo,r)
X ]q(}—olr) I ]'Xolr)

I O,r)



22

e,
Here we have introduced

§.(x) = x 3 (x) o .

Using equation (II-a-11l) we now get

2 o
& 5 - L(L;l) - v2] Xp, (¥) = - m*vu (x) . (II-a-12)

dr r

The modern phenomenological two-nucleon potentials are gen-
erally distinct for each partial wave. So one

starts with equation (II-a-12) as the first step in any
numerical work. If a hard core is present then the boundary

condition for X will be

1l

¢ Xy, (1) ?L(kor) for r<c

= 0 as r-w .

The differential equation (II-a-12) will give the reference
wave function which can be used to write GR in terms of

partial waves,

fe e}
— 1 -} —
<kO[G[k0> = 41 ¥ (2L+1) -i-j gLvuLdr .(II-a~13)

L k

0 o

If we are dealing with a potential with an infinite hard
core then in the core region v=» and u=0. So the product
vu=» x 0 is an indeterminate form. However, this can be made
tractable by comparing the following three equations

2
a L (L+1) 2 _ L
5 - 5 + ko) %L(kor) = 0 (IT-a-14)

dr r

{



2 .
as  _nL(L+1l) 2 o o
{a 5 5 T} X (kgox) = = wrvug (kg x) (I1-a-12)
I r
@ 214 = o (T1-a-15)
2 2 Y 1, - . a 2
dr r

34L is the solution for the case of a pure hard core. The
equation (II-a-15) is used only for values of r such that
r>c where ¢ = core radius of tbe potential. Multiplying
(IT-a-14) by XL, and (IT-a-12) by’%L we subtract onc from the

other to get

a¢ dy

d_ L g L 2, 2y ¢ = ot e

ar Xy &F I, az ) + Ok Tpxg, = Fpvag L (TI-as16)
This gives

+ 2 2
c v +k0 c I ?L(c) dézL dXL
J ?IyuLdr = e J JL dr + % (dr - T ) ATI-a-17)
r=c+
o o
dXL
From equations (II-a-12) and (II-a-15) a5 can
r=c+
be written as
A Y ©
m* ar m* dr L L cATT il
c+ c+
c+
Thus the reference G matrix can be written as
(2 2 <

R A ) 0 2

<kOlG ‘k0> = .};_'2 :E (2[1“}‘1) ”““”I—nik""" J%ZL dr
0 o
§r,(c) Qg i
tr e Gy oa) J (G, P )vupdrd . (I1-a-19)

0
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Cor ag (IT-a~12) and (IT-a-15) it could also be
written in form _
5 c
Ak, “+yT)
R 0 2
<k 1 = -
kit kg T kg
L m’ko
o
f ) R 3
+ J ?L(Lor) X1, (ko,l)dr] (IT-a-20)
o .
o () =9 o) v T vy s, ) (e
L L0 RL L
(=) _ .L+1,. (+) ,.
HL = i (ix) hL {(ix)
hI+(x) is the outgoing sgpherical Hankel function. The threc

terms in eguation (IT-a-1¢%) are known as the core volume,
the core surface and the outer contributions respectively.
The reason for introducing this separation is to show that
the complete ceffect of the outer potential can be isolated
in the integral term. The form is not very convenient

and is seldom ﬁsod in an actual calculation.

To calculate the binding energy of nuclear matter
one requires the diagonal G matrix averaged over sixteen
spin and isospin states of the interacting pair. When propcer
statistical weights and exchange contributions arc taken
into account one writes

M

: MR
g <bg,plG leg 0>

S,M,T,T3

=]
)
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2., 2 o
n (Y ) [ 2 (2L'1)j%(k ) ¥, (k,,r) (8=0, T=0)d
= = + r) x ' T =0, T= r

2 m*k 2 odd L L0 L0

0 Q
+3 T (2L+1) JgL(kOr) Xp (kgoT) (5=0, T=1)dr
even L
0
J - -

+ oz I (2041) | §, (kgr) xip(cg,r) (S=1, T=0)dr

even L J

+ 3 )X L (20+1)

J
(k.x) % . (k,,r) (S=1, T=1)dr] .(II-a-21)
0dd L J Gy, 0or) ¥y, (g

Q-8 O~———38

At this point we should interest ourselves as to how one goes

about determining y2?. BBP estimated °

Y2 = 2AkF2 - k 2 (occupied initial state)

The parameter A represents the gap in energy between an
average interacting pair in the Fermi sea and a pair of the
same relative momentum in the reference spectrum (figure 1).
In all the previous equations m* represented the curvature
of the particle spectrum in the reference spectrum. In his

recent studies, Bethe(27)

estimated the three-body energies
and found them gquite small. This has led to the conclusion
that it is best to put U(b)=0 when calculating the two-body
G matrix and add the three-body energy as a perturbation
at the end of the calculation. The above prescription leads
to tremendous simplification in calculations because eR

is now exact. So there will be no "spectral correction".

In this case, however, the expression for y will be a little
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complicated. m* will now be 1 but we can still introduce

a mﬁ for hole states where there will still be a guadratic

dependence. Defining a A' as shown in figure 2, we can now

write
e = Ea+Eb - Em-En
2,52y 1 2. .2 v 2
= (k'7+P7) 2mﬁ (k0 +P%) + 2A kp
= k242
k 2
2 _ 2 _ 1 2 _ 0 L
So vE = POl - ) o+ 28k - . (I1-a-22)
h h
A' = A+ .3(l/m*h - 1)

It may be recalled that P is the average momentum and is half
the centre-of-mass momentum. We made a further approximation

by replacing P by its average value for a given k

0:
P = .6 k 2(l—-x) [1 + —-§3—~] (IT-a-23)
av ‘ P 3(2+x)
where X = ko/kF .
We have now a definite prescription for calculating GR. It

may be seen that in calculating GR we are really calculating
the off-energy shell matrix elements of the free reaction
matrix. In particular we are calculating the K-matrix of
scattering theory with -y2 thus avoiding singularities and
ensuring healing. So these GR matrix elements can be cal-

culated .~ as a function of y? and ky- Later
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these can be used by choosing a suitable Y at a particular
density. The problem was attacked in this fashion by
thler(33).

In our approach and also in that of Bhargava, a
value for kF and also one value for ko was chosen. These
were then used to compute a vdlue of y and GR was then
calculated. But in Kbhler's approach one calculates GR
as a function of y at a small number of well spread out
values. As the variation of G with y is smooth one can get
G at other y values by interpolation. So all one needs to

do is to choose a value for kF and for k., to get the corre-

0
sponding vy and interpolate in the table of G matrices.
Obviously this saves much of computing time and is definitely

an improvement. The reference G matrix must be corrected

for Pauli principle and energy denominators. One recalls

N .R R ,1 Q N
G -G =G (——R_"—T\I—)G
e e
+ + +
R ,1 Q R, .R ,1 0 R |1 _ 9 R
¢ (R - TRIeHE - TRE Cx - Q6
e e e e e
+ .. .. .(IT-a-24)

As mentioned before, in our calculation eR=eN because
the intermediate states are plane waves. We have only the Pauli

correction given by

N_gR _ oR 10 (R
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Except in the case of 381—3D1 partial wave, the first term
in the correction was considered to be sufficient. 1In the
mentioned case, it was necessary to go to the second term.
This was done by Bhargava and Sprung and they called it
third order correction‘term

The matrix element of the second order correction

term can be written as

+ o0
M R 1-0 R M _ _ ny 2M Ly g —a-
<¢ST|G ® G gy > = j e(k )’}ST(k ) dk (IT-a-25)
0
, R )
where e(k") = (1-Q)e . (TI-a~-26)
The average value of?}MT over the spin and isospin states is
}av = %%‘ DX gT(k') = ( X + 3 ) } (2141) FLz(k')
S,M,T,T3 . odd I, even L
. J W 2 .-
+ { X + 3 b} ) I (2J3+1) FL'I(k ) (ITX-a-27)
even LIL' odd LL' J N
o0
J ' - ,]-____ ¢ PR N J ~ -
Frop (k') = - J(}L,u\ r) Xpiq (kg x)dr .(IT-a-28)
0

As bhefore, Xg.L(kO,r) is the wave function distortion in the
coupled state of total angular momentum J, taking the solution
with dominant orbital angular momentum L and looking at the
L' component.

One might now ask oneself as hocw to handle the
operator Q. This operator presents the main difficulty in

the reaction matrix calculation. It was, however, obscrved



29

by Brown, Schappert and Wong(zz)

that an angle average
approximation to Q is quite good. BBP, however, used Q as
a step function which is true only when P=0. The angle-

averaged Pauli operator is given as

1L
o(P,k') =0 k'<(kF2—P2)2

_ v2,.2 . 2 . 2 2% .

= (k'“+p kF )y/2k'P, (kF P4) 2 <k <kF+P

= 1 , k‘>kF+P .(II-a-29)

The same prescription has been used by other authors.
To carry out the third order corrections one goes
one step further. This has been discussed in detail by
(25)

Bhargava and Sprung . In this calculation the same

procedure was adopted.
B. KALLIO-DAY METHOD:

This is a more exact method than the one just de-
scribed. One great advantage of this method is that it gives
the true correlated wavefunction ¥ (rather than wR) which
we wish to use to get the effective interaction. The physical
insight into the method was definitely provided by the
reference spectrum method and by Bethe's treatment of three-

body clusters(27).

Briefly speaking, the method is a direct
solution of the Bethe-Goldstone equation under two approxi-
mations: (i) the Pauli operator is treated in the angle

average approximation and (ii) the intermediate states have
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zero potential energy which implies that the encrgy denom-

2,2

inator e can be written as e = k'"+y So one starts by

writing the Bethe-Goldstone equation

Y= ¢ - ng L(II-b-1)

The unperturbed wave ¢ can be written as

.X) yS o= <£]k S m > LA(TIT-b-2)

= expn(ik
¢ e & ( ,‘}; Lrﬂs

0

S . . . .
Here Xy 1S the spin part of the wavefunction, S is the
S :
total spin of the two nucleons and m is the projection on
the polar axis.

As nentioned, the assumption of zero potential energy

in the intermediate states will mean

= V7-y (XI-b~-3)
where v? will be given by (Ti~a-22).

Using (II-b-2)rand {(II-b--3) we get from (IT-h-1)

A R R G 2> b F R G o} (TT-b-4)

The procedure to solve this equation is by the method of
iteration. In the firsi iteration (1-Q)vy is neglected. The
egquation (II-b-4) then corresponds to the refercence wave

- - £ Z ~ ~ _ oy b R : — -
equation. But as the reference reaction maltrix G gilves a
good approximation to G cne can cxpect the iteration procedure

to converge fairly well. In the ccecond iteration, the wave-
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function ¥ obtained from the first iteration is used to cal-
culate (1-Q)vy and in the nth iteration, results from the
(n»l)St iteration are used. To proceed further one has to

use the usual method of decomposition into partial waves

. L L
= ¥ i7" [47(2L+1)17° <LSOm | Im >
JL .
m ~ A

N s

Iy, (ko1 UJLS('}EO’E)
X

-1 _JS ijs G ]

L'

The curly”ﬂ's are eigenfunctions of J I, S and JzzmS and
have been obtained by coupling Yio tO XZS- It can be seen
from equation (II~b~5),-whereas ¢ will have the quantum
nunbers LSJJZ, P will have the same JSJZ but different
values of L because of the presence of the tensor force.

Using the "lanqguage cof nuclear reaction theory", the cor-

o JS
related wavefunction U

LI, in channel L' comes from an unper-
1.

turbed wavefunction L. In order to treat the term (1-Q)vy

one necds a partial wave expansion for
. _ N S -
<35mé|G[§OSmS> = <eAp(1E.§)Xmé|v1w8m5(50,§)> (TT~b~6)

It should be noted that although the total spin S is con-

served the projection n, is not. The polar axis chosen for
) ~

defining m and wm! is in the direction of k.. The symbol

) L ad
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A on a vector is used here and also elsewhere to denote a

unit vector in that dircction. Now in the expansion of

exp(ik.r) there will occur the function YLO

~

has to be expressed as product of LM

A ~

(]Eol!;) L4

(X, L ) and Y

in order to carry out the integration over angles.

This

AN

Using the addition theorem for spherical harmonics

-7 ! 1
cexplik.r) | = ¢ i [awrn1? v, (k1) 3., (k1)
AR L L 0 L
an oy oz iV k 5 YOk
! L i Jp0 (k) YE g Gegr ) Yy g Ui k)
1 M
so that
<exp(ik.r) ¥ [= 4n % T g5 J. ., (kr) Y=* (f ;) Y ﬁ )
St At i LY L'M 20’ L'M =90
X Xi. . (IT-b-7)
S
Also
m m
JS S " . - JSs s .
VUL Jgpeg” = §" <ILUS|V(x) [Inrs> |ULTy Jypeg> - (T1-D-8)
L" can be different from I,' only when a tensor force is
present. SO one gets
L L .
v]wSm (ko,r)> = Z" 17 [4w (2L+1) 17 <LSOmSlJmS>
S JLT,
x vt <JL''rs|v]gnrs> (U 5o (%, T)
Llll ]‘ O
ijs A A
b JL"'S(EO’g) L(IT-b~9)
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We can rewrite equation (ITI-b-7) as

-1, M+m A A
4v ¥ % ¥ i jp» (kx) <L'smml |7 M4m! >U (kpyrx)
L' M g L J! L 9 -0
X YL,M(k,kO) ATI-b-10)
Using equaticné (IT-b-10) and (ILI-b-8) we have
<kSm‘|G|k Sm_> ) .
s 07 s
— ] /N N
= z TR <L‘SMm'IJ'M:u > Y o (kok )
L'MJ! S . LM « ()
*
1 Q,M+mé Y
X Y 4w (2L+1) 17 <LSOmSIqu> ) T‘I'F\jJL"'g an
JLL" = LI tr 42 *
x | <IL'U's|Vir) |JLSs 4w ri, (kv) U, (k. ,r)dr
A R L' Yo ttor
— 1 ~ N
= 3 3 po AT anrsimg [T v (k)
L'MJ' JLL" L' s s M==0
- L )
x [47 (214+1)] <LSOmSlJmS> Sqq1 Spapivs 6M+mé,mo
.2 TUE Tt JS 2
x 4 1jL,(kr) <JL S|V(x) |JL"S> U T”( O,_)Qr
.L"Ll i
= vooi 47 (2L+1)17° <L'qu~mémé[Jms>
JLL' -
i ) . A’ A JC; ) .
b%e <LSOmS[JmS) Yo —m'(h ,30) X LL (k, ko) (IT-bhb-11)
s s
where

Al

JS . . . . JS
GLL.(k,kO) 4 Z" J IJL,(hl) <IL'S |V r)|JL S> U}m”(PO,I)Ql

L '

© (IT-b~12)
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The operator (1-Q) may be abbreviated as P and its eigen-
values in the angle-averadge approximation may be written

as follows:

Pk, K) = 1 for k < /sz - 715 K?
- - 4. K ~=13)
=0 for k¥ > kF b3 . (II-b=-13)
2
= 1 ~ (k2 + §~ - kyz)/kK otherwise

Here K is the total momentum, and not the avcerage momentuw,
and k is the relative momentum. We have worked in momentun
space here because P’'is diagoral in that representation.
The above values follow trivially from equation (II-a-29).
We now sce how to handlg (1"Q)V¢Sm (ko,r). If we expand

s
vy in terms of the complete set of states };Sm > then we have

J &k ikex
1

(=) i (Koyx) = 2 {>\n.> P(k,K)

&ms n (2ﬁ)3 .
S
S ik.r .
X <Xmé e ~ VRIVIIJ}S}‘“S (}E-O,y')> . (II"b"‘_L/Jl)

We have now te use equations (IT-b--G) and (II-b-11)

in equation (IT-bh-14). Tf we then expand the remaining elk'r

(which is now a ket) in the fashion of equation (II-b-7)
then integration over the angle (k,k ) will eliminate the

corresponding Y. 's leaving Y

[ -1 -
.M (& 0,1) Also note that

L'
if L" is the symbol for angular momentum in the expansion of

ik.x . . . . ‘
Xt » Fhe abos -ear ic 4 c -
e , then the above integration will produce Op tq,u éM,msmmé
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which takes care of the suwn over L" and M. Carrying out the

algebra as used in obtaining equation (If-b-11) one finally

obtains
1 -
(1-0) o (k. ,r) = ¢ i" [4n (2L+1)]° <LSOm_|Jm_>r
sm_ ~0"+= Y s S
S JLL
where
Js ., _ 1 . /o® JS 2. L

We are now in a position to write down the equation (II-b-4)

in its partial wave form. We gubstitute (IT-b-5), (II-b-8)

and (II-b-15) in (II-b-4). To 011M1nate{3T1g part of the
wavefunction, we take scalar product with <JJ§,S(kO,r)] and

multiply throughout by <LSOmS(JmS> and sum over mg - It

then at once follows

a~ B Lt (Iﬂgf}Q, 2 JS o " - . JS
[d 5 5 Y1 UL () no<IL slv(x)|dL's> UL T (1)
r r L
2 JS )
— — " N S |
6LLI (Y + O )r]]—( T) FLL' (3") .(II b __7)

This equation is perfectly gencral; it applies in the case of coupled
states as well as uncoupled ones. If one is using a potential

with a hard core then the most obvious boundary conditions

are
JSs _ |
ULL,(r) =0 for r<c
(I1-b-18)
LL,(r) > SLL'“]I(k r) as roo
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where ¢ 1s the core radius.

It is clear that equation (II-b-12) can not be used

to get GLL,(k,kO) when the potential has a hard core. One
has to use the same method as BBP did. One manipulates the
following equation to get a practical form for Ggi.
a2 L'+l 2. .
[ 5 - 5 + k"] rj,.,(kr) =0 L(I1-b-19)
dr r L

We multiply equation (II-b-17) by er,(kr), equation (II-b-19)

by U gi,(r), and subtract one from the other to get

2 2
Q_f {er.(kr)} -4 (v

(x)
ar ar? Lb

LL. (r)} er(kr)

+ (KP+y?) rip, (ko) UPS(kp) ¢ B rjp, (kr) <IL'S|v(r) |JL"S>
L“

LL..(Jr)

Js

_ 2 2 . . .
= GLL'(Y +k0 ) er,(kr) er(kOr) + er(kOr) FLL,(r)

Integrating from 0 to c+0 and remembering that U (r)—

for r<c

c

(&
J rip . (kr) <JL" Slv(r)|JL"s> U L“(r)dr

Js ¢

dULL‘
dr

2

(Y2+ko )

= cJpr (ke) ] + | rip.(kr) 8

%
r=c LL

x rip(kor) + FYo, (r)ldr . (II-b-20)
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This integral in equatibn (I1-b-12) can be split into two
regions 0 to ¢ and ¢ to «. For the region 0 to ¢ (II-b-20)
can be used.

As mentioned, the equation (II-b-17) has to be solved
by the method of successive iterations. In a typical iter-
ii,(r) is obtained and the result is used to calculate
(k,ko) as a function of k. Gi

JS

LL,(r) which will be used in the next

iteration. When the numbers Ggi.(k,ko) do not differ

ation U

Js
LL'

(II-b-16) to get F

G i,(k,ko) can thenbe put into

appreciably from those obtained in the previous iteration
one has obtained the desired solution. )

To solve equation (II-b-17) one has to solve the
homogeneous equation as well as the inhomogeneous one. At
each iteration, the general solution of the full equation is
obtained by adding a particular solution to the general
solution of the homogeneous equation. This has to be done
numerically by starting with asymptotic solutions for large
r and integrating inwards. The asymptotic solution to the

homogeneous equation will be hL,(iyr) where h is the spherical

Hankel function and that for the full inhomogeneous equation

=]

will be
JS . . 1 .
ULL.(r) u OLL' er(kr) + ;;5 J er,(kr) P(k,K)
Js k2ak
X GLL, (k,ko) —-"2-——“:'2' . (II-—b—ZO)

Y +k
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The asymptotic solutions are valid for such large distances

of r so that v(r) can be neglected.
C. THE SELF CONSISTENCY PROBLEM AND NUMERICAI RESULTS:

It is obvious that in a numerical calculation of the
binding energy of nuclear matter, a self consistency question
is implied. The energy spectrum of the hole states is put
in the calculation through the starting energy W. At the
end of the calculation one should obtain the same spectrum
as one started with. Obviously one has to do this by trial

and error. However, it was shown in Brueckner's work that

the hole spectrum could be represented by a formula of the
type

2.2
- h™k o

In our notation this will be represented by two parameters

A and m* which are assumed to be dependent on k. As mentioned,
A will specify the depth of the potential below zero for the
average pair while m¥ will give the shape of the spectrum.

The use of A and mﬁ is simply a mgtter of convenience and
simplicity. One might read in a table of values for the
nuclear spectrum and attempt to recover those at the end of
the calculation.

In Lur work, we repeated the calculation until the

output value and input value of A were close to each other

within a desired limit. The same was true for the parameter
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Another problem associated with this study is to
observe the variation of the binding energy ver particle
with A. Let us illustrate this point. When one does a
binding energy calculation with plane waves in intermediate
states, one considers only the two-body clusters. A self
consistent calculation done in this manner assumes that
_other contributions, like those from higher order clusters,
three~-hbody forces etc., are zero. This can hardly be true.
If there is some contribution to the binding energy from
the latter sources, then the single particle spectrum
will be deeper than that obtained in a "pure two-body"
calculation. This means that the énergy denominators
will now be larcer and a self consistent calculation will
give a slightly lower value for the two-body contribution.
We illustrate this by an example. The binding energy per
particle at kF:l.36 using Reid's potential was found to be

11.08 MeV with no potertial energy in the intermediate
states. Then the input spectrum for a pair was made deeper
so that the output spectrum was shallower than the cor-
responding input by 5 MeV. The binding energy in this case
was 10.56 MeV. If one assumes that higher order clusters
and other sources gave an additional binding of 2.5 MeV,
then this value of 10.56 MeV would bhe the contribution of
the two-body clusters in a self consistent calculation. Ve

know that the binding energy per particle is given as sum



40

of the kinetic energy T and half of the potential energy U.
That is why we considerced 2.5 MeV as the contribution to
binding while the spectrum was made deeper by 5 MeV. We
see a contribution of 2.5 MeV in binding reduces the two-
body contribution by (11.08 - 10.56)=.52 MeV. Thus the total
binding energy instead of being (11.08 + 2.5) MeV is now

(10.56 + 2.5) MeV. Thus we can make a rule that instead
of adding the contribution of oﬁher terms to the pure two-
body contribution one must first subtract about 20% of this
additional contribution and later add it to the pure two-
body contribution. In our example, we subtract 20% of 2.5
MeV from it and then add it to 11.08 MeV. Of course, this
is a rough method of estimation but it should be good when
the contribution from higher order terms is small.

The reference spectrum calculations were done fol-

lowing the well-known method of Bhargava and Sprunq(ZS).
It is assumed that beyond a certain distance d, v(x) is

negligible so that one can write

(r) =%_(r) N for r>d )

L
i (r) is the decaying Hankel function and N is a constant.
I ying

Using the abbreviation

d
Iy, = = g7 loghy (=), To =¥

one can write down the boundary condition as

_a - NPT R .
XL(C) = dL(koc) for r=c=hard core radius



xl"(d) + T (d) =0 for r=4 .

X1,

o

41

In this work d was about 9.85 fm. The two point boundary

d(42). One

value problem is solved by the Ridley metho
introduces the auxiliary functions s and w to factorisé
the equation

d2

[—5 = v
dr2

2

- L(L+1) - m*v(r)] XL(r) = - m*v(r)g:L(kOr)

(IT~-c-2)

obtained by rewriting the equation (II-a-12). The three

equations obtained are

'd—'i_—-S(D=h
d
a%—+ SY = W
2 2
where g(r) = - v~ - m*vL(r) - L(L+l)/x
h(r) = - m*vL(r)?i}kor) .

<

Boundary conditions are satisfied if s(d)=T and w(d)=0.

(IT-c-3)

The mesh set up in r-space consisted of 5 blocks having 24

steps each. At each of these points x(r) was calculated.

The steplength is doﬁbléd betweeﬁ blocks as one moved out-

ward. For the auxiliary functions s and w, the steplength

was half that of x, making these available at midpoints
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for integration by Runge-Kutta-Gill method. For the potential,
the steplength was half of that used for s and w. The
smallest steplength for the potential was §=.0033 fm. The
hard core and soft core potentials of Reid were used. For

the soft core potential, a fictitious hard core of radius

.03 fm was put to start the integration. The Bessel-Fourier
(42)

transforms of x(r) were obtained by the method of Filon

The hard core potential of Reid had three different hard

cores: one for 180, one for 381—3Dl and one for other
states. Second order corrections were applied to all states
and to the 3Sl—3Dl states third orxrder corrections were also

applied. These results were sent in detail to B. D. Day
when he was debugging his programmes for the Kallio-Day method.
In his calculations, he found good agreement with our results.
For comparison, we show in Table 1 the G matrix
elements for the "average pair" at various densities and
for various states. The results from the Kallio-Day method
and the reference spectrum method have been collected in the
same table. The agreement is very good for the S states
where the divergences are within 1%. For the 3Dl state,
the improvement in agreement comes from our inclusion of
the third order correction.
The calculations by the Kallio-Day method were
performed by using programmes obtained from B. D. Day.
Kallio and Day calculated the binding energy only at normal

density. Their calculations are very nearly self consistent.
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-e

We have done self consistent calculations for densities

1 1 and also for

°

corresponding to ky=.7 fm~
1

to kF=l.6 fm

1

kF=1.8 fm — and kF=2.O fm ~. These were done for the Reid

potential. Also we have done a new calculation for the

(34)

Bressel potential which has a finite step core. Bﬁargava
and Sprung's calculation showed that this potentiél gave a
larger binding but the saturation density was also high.
Since this calculation was done, Bressel, Kerman and Rouben
changed the core heights and meson masses. Further the
calculations of Bhargava were based on the incorrect treat-
ment of three-body energy. So it was interesting to see
what information a new calculation would reveal.

) In the Kallio-Day method (also abbreviated as KD
method) a mesh is set up in the r-space. A fictitious hard
core of radius c¢=0.04 fm is used for starting the integration.
The region from ¢ to c¢c+6.0 fm is divided into three parts

of length 0.4 fm, 0.8 fm and 4.8 fm. One divides the entire
range into a number of points, the step lengths being

.01 fm, .025 fm, and .05 fm respectively in those three
regions. The potential is calculated at those points and
the integration is done by a fourth order Runge-Kutta
formula. The correlated wavefunctions are available at
steplengths of .02 fm, .05 fm, and .1 fm for those three
regions. From ¢ to §+6.0 fm, the wavefunction is calculated
at 85 points. These are integrated by Simpson's rule to

construct Gii,(k,ko). For construction of ng,(r) one uses
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the fact that (1-0)=P(k,K) is zero beyond k=kF+%K- The

centre of mass momentum K is set to its r.m.s. value. The
step size in k-space integration has a maximum allowable
value of .1 fm—l. This integration is also done by Simpson's
rule. The homogeneous equation is solved by starting with
an asymptotic value of hL(ier multiplied by a normalization
constant at r=c+6 fm and integrating inwards up to c+1.2 fm.
Also some small value of U' at r=c is put and outward
integration is carried up to r=c+1l.2 fm. The same thing is
repeated for the inhomogeneous equation by starting with
asymptotic solution (II-b-20). At the very beginning the
G's are set equal to zero so that in the first iteration one
is doing just the reference spectrum method. The slopes

and the values of this set of inward and outward solutions
are matched at r=c+1l.2 fm. For a hard core, the core volume
and core surface terms can be added. For region heyond
c+6.0 fm, the correlated wavefunction 1s assumed to be

N er(kOr) and corrections to G are calculated by evaluating
the integral (II-b-12) using er in place of U and integra-
ting up to a further distance of ~ 9.6 fm where v will be
definitely very very small. The G matrices calculated in
one iteration are compared with those from the previous

one. If the difference is more than the tolerance limit,
the new G's are stored in place of old ones and one goes

for a new cycle. When the desired accuracy is obtained,

the calculations are stopped. The convergence can be stepped
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up by assuming that at each iteration the error decreased
by a constant fraction. Using the results for previous
three iterations one can make an improved ;stimate to use
in the next iteration. This speeds up the convergence.

For the Bressel potential there are some additional
complications. First of all, the potential is soft having
a square core so that at the core edge the potential is
double-valued. This requires care in numerical integration.
Secondly, the core radius is not the same for T=0 states
and T=1 states. Again for T=1 states the meson mass for
pp or nn states is not the same as that for the np state.
It was decided that an average pion mass for T=1 state would
not be bad. This was justified by noting that the G matrix
elements obtained by using average pion mass were in good
agreement with the average of G matrix elements obtained by
using different pion masses. These are shown in Table 2.
The first difficulty was removed by setting a counter such
that as soon as the integration reached the core edge, the deep
attractive value was replaced by the core value. In the next
step the deep attraction was used to move outwards. The
same procedure was used by Bhargava and Sprung (hereafter
abbreviated as BS) in their calculations. The calculations
were done exactly for the following partial waves for both

potentials
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For higher partial waves we used a combination of phase
shift approximation and OPEP. The states treated in phase

shift approximation were

T=1, G
T =0, D

The rest of the higher partial waves were treated using
OPEP. The binding energies per particle for these two
potentials at different densities are shown in Table 3.

It is seen that Bressel potential gives more binding but
saturates at a higher density. The same characteristic was
found by BS. In figure 3 we show A at different densities.
It is seen that for Bressel potential A is always bigger
than that for Reid. This merely reflects the binding
energy results. In figure 4 we plotted m* against kF. Here,
however, there was no definite distinctive feature and, in
fact, the two curves cross each other. In figure 5 we show
the variation of the average potential energy U for various
states against density. The lS contribution goes on in-

0

creasiﬂg with kF but that from 3S +3D shows saturation as

1 1

the density increases. The mechanism of this saturation may
be traced to the presence of the tensor force. The con-
tribution from lPl always remains positive but is not large.

3

The “pP states together give a negligible contribution al-

though the individual states may contribute large values.
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This large cancellation was also noted by BS. 1In figure 6

we have plotted the same for Bressel potential. Here also

3Sl and 3Dl shows saturation while 3P states have negligible

contribution. The state lS0 gives a contribution which
increases very rapidly with kF' The 3Sl—3Dl states also
show a tendency of saturating at a higher density.

Another interesting quantity that comes out from
such a calculation is the wound integral J Xz(r) d3r. When
this quantity is multiplied by the density p it becomes a
dimensionless number «. This essentially gives the prob-
ability of two particles undergoing strong c;rrelations.

In a finite nucleus 1l-k gives the probability of finding a
particle in its shell model orbitai. In modern theories of

nuclear many body problem(44)

it appears as a natural
expansion parameter. A small value of k means that the
Brueckner-Goldstone series will converge faster. In our
earlier calculations, we calculated x using the reference
wave defect and subtracting the "in-sea" Fourier com-
ponents to account for the Pauli operator. Those results
are shown in figure 7. It is seen that a very large

©

contribution comes from the 3Sl state. The Reid New Core
potential has a bigger value for k at all densities shown.
This is expected because the presence of the hard core.

In figure 8 we show the variation k with kF as calculated by

using the exact wavefunctions. Here also the Bressel po-

tential has a lower value for « than Reid's. This reflects



the hardness of the Reid potential compared to Bressel's.

In fact, a calculationusing a "super soft" potential

(45)

developed by Sprung and Srivastava gives an extremely

value for «.
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CHAPTER III
FORMULATION OF AN EFFECTIVE INTERACTION

It has been the aim of nuclear physicists for a long
time to calculate the properties of finite nuclei from a
basic two-nucleon interaction. Although the meson theories
may predict the existence of "more-than-two-nucleon" forces
i.e., forces which come into play only when more than two
nucleons are close together, a complete derivation of such
forces is still not in a satisfactory state. 1In this work
we would like to use, therefore, only two-nucleon forces. The
main source of our knowledge of this force has been the sca-
ttering experiments and the data therefrom lend support to
the idea of existence of very strongly repulsive forces at short
distances or to the existence of hard cores. The extreme hard

)

core model has, sometimes, been relaxed(31 only to be re-

placed by a Yukawa type singularity. Recently, Sprung and
(45)

Srivastava have questioned the need for the assumption of
a hard core. However, their work is mainly connected with
the partial wave lS0 and in the absence of a potential like
theirs for other partial waves we are still forced to use
potentials %ith infinite repulsion at short distances.

The hard-core potentials or potentials with Yukawa
type of singularity do not lend themselves to be used direct-

ly in nuclear structure calculations by the highly successful

49



shell model or by Hartree-Fock methods. The shell model
assumes the particles in a nucleus to move almost indepen-
dently of one another but in actual fact, at short distances
their motion will be strongly correlated. This is again,
due to the presence of strong repulsion in the potential at
short distances. One therefore, asks whether it is possible
to derive or postulate some interaction which corrects for
these correlations at short distances and then do the usual
shell model or H-F calculations. One thus falls back on
some kind of "as if" interactions. Examples of such inter-
actions developed recently are those of Nestor et al.(46) and
of Volkov and Manning(47). These interactions are, however,
chosen empirically with certain criteria for their justi-
fication and naturally one becomes more interested in deriving
such interactions on a more fundamental basis. For instance,
the G matrix obtained from a nuclear matter calculation can
be treated as an effective interaction in nuclear matter
because its matrix elements with respect to the H-F wave-
functions for nuclear matter (plane waves) give the same
binding as obtained from a detailed calculation using Brueckner
theory.

The first attempt in this direction was made by

(11),(hereafter called BGW).

Brueckner, Gammel and Weitzner
They regarded the nuclear matter G matrix as the effective
interaction in finite nuclei and noted that the important

correlation structure in G matrix is contained within a
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R be the coordinate of the centre

of mass of the pair of particles then the density p(R) is

the density at which the G matrix is to be calculated.

Thus

the effcctive intecraction will be dependent on the position

coordinate through p(R).

This approximation should be valid

only when the density does not change appreciably over the

correlation distance. This

approximation. Making this
nost general non--local form
the scattering theory(48).
different components of the
spin-orbit force.

In a nuclear matter
only in the central part of
system is symuelric in spin
symmetry energy calculation

dependent parlt of the force.

reguire the gpin-orbit, the

is known as the local density
prescription BGW then write the
of the G matrix in analogy with
They then try to identify the
force like the central and the
calculation one is interested
the effective force because the
and isospin. However, for a
one will require the isospin-
one will

In a finite nucleus,

tensor and other terms 1if one

wishes to calculate properties other than the total binding

enerqgy of a closed-shell nucleus.

With this end in view,

one can write the most gencral non--local nucleon-—-nucleon

interaction as

G

<xr' Y>

i

. ., 2
a + ic(g™+¢g”).n + m(q}.gg2.g)

%)+ (g-h) (07.x0°
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where

rx '

I'I:E— T

= JEx L'
i

¥y =1xr+ ' ATITIT-2)
A/‘\A

2= E-x

~

"N
Here r and xr' are unit vectors in the incoming and out going
directions and the hat A indicates that n, X, and x are
normalised to unity. The angle between r and r' will be
denoted by 6. One often prefers to write G in the SMS
, . . g 1.2 ] —

representation instead of the above 9,0, representation.
From arguments purely geomeltrical in nature and using traces
over spins, one can show that the coefficients a, c etc.

can be written as follows

RN
a = 7 (G HGg+Gy)
c = ;% (el¢GlO—e 1¢G01)
g
1 L 2i¢ .
m o= 3 (GG, =26, je ) C(ITT-3)
L .
g =7 (Gll"Gss*e2l¢Gl—1)
1 24
h o= 7255775 (6117997 G1-7)

We remind ourselves thet we are in the singlet-triplet re-
presentation. The subscripts 1, 0, -1, s represent

SZ =1, 0, ~1 for the triplet case and s for the singlet case
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respectively. The object of putting two subscripts is to
specify the initial and final states. The formal structure
of the G matrix given by eguation (III-1) is the same as the
M matrix in scattering theory and one can at once use this
analogy to write doun expressions for a, c etc. using the

al.(49).

expressions given by Stapp et For T=1, the coeffi-~

cients are (interchange odd and even I for T=0):

a =% 5 {(2n-1) o¥TF 4 (2u1) oF + (2143) oy P (W)
2 L L L L
odd 1,
L% o (o) P
2 L L
even L
c=-1 v (D (21 N+ (2mel) oF - n2ne3) oFMh
2 . L L L
Odd 4L
X éin 6 Pi(u)
. l oY IJ“l - L L+l ,;-{‘LE_
m o= ) {mL oy + an + ST (2L+1) PL(U)
odd L
oow = ) oF v (2 o - oM 4 2nanyvy
L L L
odd L
R
x IJ(]._I']_) P.L(p)
1 . .
- b (21+1) o, P_ (W)
2 L L
even L
g = Lo {- oLy (21.+1) oF 4 oI - 2u} P (1)
2 L I L L
odd I,
+ ~l~ X { (141 oa.L"l - (21.+1) o L ocL+l ~ 2L(L+1) v}
2 5 L L I
odd 1
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M pr
SR NGRS IR ALY
ho=21 3y - (D) oF 4+ (2nt1) of - 1 oI sov L@y
2 L L L
odd L
1
Lt
T .

£~

This set of expressions will be denoted by eguation

(I11-4). In the above,

w = JOOET (05T o+ DTy ot

v = JEFD 7T o - Ty oMt .

The superscript on o gives the total angular momentum J

while the subscript gives only the orbital ancular momentum

L. In the cases where there is no subscript, one gets terms
off~diagonal in L e.g., S-D mixture term and the superscript
gives the total angular momentum. Stapp et al. gave expressions

for the a's in terms of phase shifts. In fact, if S be the

scattering matrix

0

o = ;% P usually called the t-matrix.

|

N

For the uncoupled states, o should be just one number com-
pletely determined by phase shifts. In the presence of the

tensor force, it becomes a 2 X 2 matrix so that for the J=1 case

/ ] Nl
CLO a

o ==
L ]
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where the subscripts give the L value and the superscripts
the J valuc. Teruas ml give the S8-D coupling terms. Follow-

ing the notation we used for nuclear matter, one can write

OLl Ocl
00 02
(X =
OLl OLl
20 22 :

The second indew in the subscript gives the dominant wave
and the first one the subsidiary wave. The superscript,
as before, gives the total angular momentum. Because the

S-matrix is symwetric

In the case at hand one has to make a correspondence bhetween
the a's and the nuclear G matrix. It should he noted that

the o we have used here is not exactly the same as Stapp's.

The parameter o used here is §%E~for Stapp. The correspondence
we were talking about can be made by looking at the central

force term 'a' and its corresponding expression given by

BBP. It turns out that

a ] __4 R - d LT " \T .
o, = y 5 b2 J dL(kOr) VLL,(l) UL,L(kO,r)dl .

This correspondence bhetween the Mij's of Stapp and the nuclear

. . 50
G matrix was also discussed and used by Bhargava( ). BGW

were the first to examine the terms containing a and ¢ and
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use them in their theory which now goes by the name of
Brueckner-Hartree-Fock theory.

It was shown by BGW that whereas 'a' corresponded
to the central force in the effective interaction '¢'corre-
sponds to the spin-orbit part. Both BGW and Bhargava used
c to obtain the one-body spin-orbit force of the shell model.
It is of interest, therefore, to look at the other spin
dependent terms. In equation (III-4) the ot

L

to expressions diagonal in L whereas aJ}s corresponded to those off-

's correspond

diagonal in L. If the effective interaction corresponds to

the following form

v(r) = Vc(r) + VLS L.S + vT 812

+ possibly a quadratic spin-orbit force

then only the tensor force would have matrix elements off-
diagonal in L. Therefore it is best to separate terms into
diagonal and off-diagonal parts when seeking to identify
the various forces. Another point to note is that the

guadratic spin-orbit force which we define as

<

1.2 1 1 2.2 _
Q.EO*.E"'E“Q;.Q;L —le

has diagonal matrix elements which differ from those of
S19 by a constant multiplicative factor. Therefore it is
necessary to look at the off-diagonal terms to distinguish

these. In m, g, and h we denote the part containing diagonal
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diagonal in L. Therefore it is best to separate terms into
diagonal and off-diagonal parts when seeking to identify
the various forces. Another point to note is that the

quadratic spin-orbit force which we define as

ol.no%.1 -

PN L

ol.o%? = g

W]

12

has diagonal matrix elements which differ from those of
S12 by a constant multiplicative factor. Therefore it is
necessary to look at the off-diagonal terms to distinguish

- these. In m, g, and h we denote the part containing diagonal
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terms by primes as m', g', h' and off-diagonal ones by m",

g"[ h". SO,

l L"‘l I_u IJ+1 1
h' = & T {~ (L+1) « + (2L+1) o - L ol } o
2 odd T L L I L(L+1)
1
P ()
X e
V1-1
. P (W)
1 L-1 L +1 L
g' = = 7z {~ «a + (2L+1) o + o b}
2 odd L L L L 21k
- % 5 (20+1) ol P_(v)
L L
even L
1 'L+l ~ o 'L _ -1 I_s"l ,__,...;lf._.._-w- 1 N
) § {- 1 o + (2L+1) Gl (L+1) o } RGN PL(u).p
OdQ IJ .
m' = % )} {a%+l - ai + aiwl} (21+1) PL(u)
odd L '
+ % - 1o s 2nen) oF - @ oFTY b QT A —
L L L L L L+ )
odd L
1 L . o
o) % (27+1) ol P (W) L(1T1-5)
li ]_J
even 1,
Also
m' = 3 {20 P_(u) + 2V, cot 0 le(p)}
odd T, .
g" = b {~ u. P_(u) - V_ cot 8 P 1(u)} LATIT-6)
. L L L L
odd 1,
h" = p) VL PL(u)

odd 1T,
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With these egquations in hand let us try to construct a spin-
dependent central force and a dguadratic spin-orbit force.

We start with m', g' etc.

L1 2 vy Y2
m'ocT.no”.n + (g'+h') g -Xo©. X+ (g'-h') g7 .X0 7.

LI |
= g 0.0t (-2 - nn gl.gz + (m'-g'+h') gl.E62.9

w Lt 3 Laal

-+ 2h‘g\.§q\.§ ATIT-T)

The first term in equation (III-7) has the character of a

central force. Because

mit2g’ 2l oy w7 r 2 oM v (2nen) FTh
3 3 2 L L L
odd 1,
x P_{y) - 2 )3 (21+1) o, P_ ()] (ITI-8)
L 2 L L
even L

which we see involves only the statistical average of the
various partial waves.

We now denote

] ) A
D = o .80 + ol.g'a?.g‘
1 2
and E =0 .ﬁ'g?.f + Gl.§02.§'

A A . . » 3
Here r and r' are unit vectors in agreement with our previous

definition .
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ot .x0%.x = b - E
o RN -2 2(1 - cos 0)

1 2 1 2 D+ E D - E
¢ .ng”.n = g .g" - -

4 0052 6/2 4 sin2 0/2

1 2 D E cos ©
= g .0 - + 5 -

5 L(ITI-9)
sin” © sin” ©

We look at the last three terms of equation (ITI-7). We get

[ | )
(ﬂﬁgﬂﬁ - h'") gl,g2 + (n'-g'+h' cos 8) gl.gq?.g + (h'-h' cos 0)
X ol.goz.g + 2n' glixo?.x
g'-m' 1 2 2h' (D+E) sin2 6/2
= (Z—z—— - h' cos 8) g .g° + R + (m'-g'+h' cos 0)
gin® ©
1 2 2h! sin2 8/2 2h'! sjn2 6/2 cos 0
X ¢7.no".n - mwwwiwww~;l)+ - s - E
sin® 06 sin® ©
using (ITI-9)
This simplifies to
1!
(gwgmw - h' cog 6) 01.62 + h'E + (m'-g'+h' cos §) g}.gq?.g
1 (IT1T-10)
Po(u)
9mm v cos § o= - L 4 L
3 h' cos 6 3 A PL(u) + A cot 8 AP
where
A= % {0+ oFF - (2ne1) o o1 oot (TT1T-11)
] L L L
odd 1,
Also ,
A PI‘(U)
m'-g'+h' cos 6 = - - ATTIT-12)

LO+1)



It can be shown that (Appendix A)
61 LO2.L P_(y) = - ol.n02.n F 2(u) - ol.§'02.f Pot ()
o~ e - L A o had I_, e aAn A L% L
+ 01.02 cos O P! (n)
- e L
SO
o2 Lcl.L P_ () = -~ gt ngz.n P 2(u) - ol.%oz.f' P! (1)
R -t e T a0 7L
+ gl 02 cos 6 Pf(u)
We add and divide by 2 and call the average of L.H.S.
(Gl.LG2.L) to get
-~ "wL Tegym
1 2 2 o 1 2 1 ,
g.'Bq»'H PL (1) = (g-'&q-'é>sym PL(U) 2 EPL (1)
+ q}.o cot 0O PLl(u)
2
P_" (W)
_ 1 2 1 2, """
- (QA 'L‘Q; ';[—J) sym PL(U) + g« .9« ( 2
IiLLj_J.)_ - _l_ nyS
+ PL(u)) 5 BP (1)
_ 1.2 I I
= - Moo Dgyy - 5 e LR, ) - 5 BRy 00
15 - o 12 1 2 1 2
+Z IL(u) L(L+1) o7.0” 4 5 Pp (b) ¢ .0
Gl.ngz.g (m'-g'+th' cos 0)
2
A Q.. P_(w) AP (n)
fl 1 4 .<J+.4 4
_ 12 1 1 A L(I ll.P (1) + 1 MﬂwEWTWM} Gl.g?

L (T+1) 6 L(A+7) I
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L AP () E
+ 5 T (L+D) . (ITI1I-13)
A Pt {u)
We note that A0 T 2h' so that from (I1II-13) and
(ITI-10) the coefficient of E is -h'+h' = 0. Thus E drops

out from {(III-10). The coefficient of 01.02 from (III~-10),

(III-11) and (III-13) is

N .t LR B2
-3 AP (W) A cot O gy - F AP - S iy
1 2
_ 1 cot 6 P (W) 1 Py, (1) _
=R P W Ty T 2 ten) O o

So in the expression (III-10) we are left with

A PL(u)

BAE] le which equals the entire expression (III-10) now.

Thus the diagonal terms lead to a spin dependent central

force and a force. But the strength of the le force is

Q12

ambiguous because S has the same matrix elements as Q12

12
in diagonal terms (except for a factor). So we look at the

non-diagonal ones for the S force whose strength will then be

12
specified. It is well known that it is the S-D coupling

which is the strongest of all. So it is this one which
should receive most of our attention. For the off-diagonal

parts we have,

m"g_l-gz + (gu+hll__mn) 9,_ L Xo 'Z(, + (gu_hu_mn) 0,1.220_2.?5

.(ITI-14)



From (III-6) we see that

L 1] l "
g =-zm
" 11 — 3 "
so that g'-m" = - 5 m
Also,
m" = X 2[{/(1+1) (L+2) PL(p) +
odd L
+ {/L(L-1) PL(u) - Eil cot 8 P

1
F¥T cot 8 Pp (1) }a
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L+1

. (III-15)

Let us recall that summation over odd L indicates that we

are dealing with the T=1 case. For the T=0 case odd shauld be ex-

changed for even. A simplification of expression (ITII~14)

leads to a completely general expression with tensor-force-

like operators in it. However, as that is very complicated

we will deal only with the case J=1.

n" = V2 at
pe o L 3u L
2
gll_mll+hll - _3__ (l+u) o
V2
, g"_mn_hn = - _3___ (l_u) o
V2

In that case,

. (ITII-16)

Remembering that yu = cos 0, from (III-9) and the last two
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terms of (III-14) we have

g] 229.2 X((j" lnn_}hn) + g‘l.?ggz.g{‘(gn_mn_hn)
o[ 3(mw) DB 30-w) pem 1
/3 2 (1+p) /5 (1-u)
= -3 pot : (TTT-17)
V2

Using (ITIT-15) and (I1I-16) we get from the expression (ITI-14)

1 2

o lr\'2
/3 al(gl-gz - 3 9 L0 .

+26 NSRS )  (ITT-18)

1y >

Here again g and ' are unit vectors. The term in the
bracket strongly resembles the tensor force operator except
for a sign.

Now although the G matrix is a non-~local operator

it is convenient to make a furthexr approximation to a local

effective force. In other words, one tries to extract a
delta function ¢§(r-r'). It is also well known that this

delta function can be expanded as

ATE s (v -1 ]
§(x-x') = 7 (?Zﬁll-é(*ri,) P (cos 0 ) L (ITI-19)
L

Once the local approximastion is made, we cen replace r=r'
in (ITI-18) and the expressgion in the bracket becomes the
tensor operator (with a-ve sign).

From Stapp et al. we can write

V2 ag v 4 J go(kr) Vi gz(kr)dr (11

[
=
|

1
N
<

~—
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in the Born approximation. This shows that we are getting
in (ITII-18) just the matrix element of the tensor force

within a numerical factor. If we do not make the Born

approximation then (III-20) will be of the form

Jgo(kr) (VgaUsn + VgoUppldr .

The expansion (III-18) of the delta function throws a factor
(21.+1) which in the coupled case should be of the form (2J+1)
so that the coefficient of al seems to be in error. The above
analysis thus does not lead to a satisfactory extraction

of the tensor force.

. One, therefore, might fall back on a more unsophi-
sticated but realistic approach for the extraction of effect-
ive forces. We have already introduced the idea of a local
effective force; let us expand on this. This approach

(51) and has been studied by\

(53) (17)

was first proposed by Brandow

(52)

Donnelly ; Bhaduri and Warke We re-

and Bethe
call from nuclear matter theory that the basic relation

one uses to build correlations in the interaction is

<o

<¢p|Glo> = <o |V]y> L(III-21)

We therefore see that one way to define an effective local

force is to demand that

Vags (r) ¢(x) = V(x) ¥ (x) (I11-22)

where V(r) is the realistic phenomenological two-body
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interaction and ¥ (r) is the correlated wavefunction obtained
by solving the Bethe-Goldstone equation. We can at once

see that this definition of the effective force will give
the correct matrix element. But, in fact, the definition

is more restrictive than that. Here we are demanding that
at each point the integrands of the equation (III-21) will
be the same. If one uées nuclear matter wavefunctions, then
equation (III-21) reduces to

V(r) U(ko,r)

: (ITII-23)
JL(kOr)

Veff(r)

The effective force thus defined will, in general, be a
function of kO’ kF and r. So this will be density-dependent
through the presence of kF, somewhat momentum dependent

through the presence of k, while the dependence on r will

0
give the shape. The restriction that we have put by
defining equation (III-22) is now going to lead us into a
difficulty. Because the zeéoes of jL do not in general
coincide with those of U's we can not use the expression
(I1I-23) for all values of r. This difficulty posed by the
nodes can, however, be overcome in another way but only at
some sacrifice. We can multiply the numerator and the
denominator of the right hand side of (III-23) by jL(kOr)
and multiply each of them by the weighting function w(ko)

(which gives the probability of occurrence in the Fermi sea

of a pair with relative momentum kO) and integrate from
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0 to kF. w(ko) is given by
3
k k .
wik) =24 x 20 -2 .94 0 (TTT-24)
0 370 2 k 3
kF F 2kF

This averaging over the Fermi sea will guarantee that the
matrix element for the "average pair" will be coxrrect. This
means that the binding energy for nuclear matter will also
be given correctly hut the matrix elements for other values
of ko will be inaccurate. Siemens* has found that this error
is large only in the 381 state. Thus, for the uncoupled
states, the prescription is
F . 2
J v(x) jL(kOr) UL(kO,r) m(ko) ko dko
0

Veff(r) = J .(ITIT-25)

]ﬁﬁLz(kO ) wiky) kyldk,

0
It is evident that this effective potential is still density
dependent. To have a potential for the coupled states one
might note that similar arguments will hold. Because of the
presence of the tensor force in the coupled states, the two
States differ by 2 units of angular momentum. The solution
of the Bethe-Goldstone equation in this case is best re-
presented by a 2 x 2 matrix. To be specific we take the case
J=1 which has the important deuteron state in it. The other

state is a dominant D and small S state. The wavefunctions

* Private communication from Dr. D.W.IL. Sprung.
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and potential matrix elements we denote by two indices, the

second index giving the dominant state. So
v Voo Vo2
Voo Va2
v Yso Yoo
\
U Uz

So the analogue of equation (III-23) in the coupled case will

be
eff eff .
Voo 02 o 0 Voo Vo2 Y00 Up2
off eff
Va0 22 0 Jq Voo Va2 Us0 Uz
L(ITI-26)
So we will have
V..U + v _ .U
Vggf _ Yo0%0 * Vo220 (1TT-27)

Jo

from the diagonal element. The off-diagonal element should

lead to the tensor force. However, the off-diagonal element

contains a factor of V8 which is the matrix element of S

so that

12

veff v

U
yeff _ 120 _ 720700

T /8 /8 3,

T VaoUsp

. (IT1-20)
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The subsidiary wave U is extremely important because it

20
. L i 3 . . _eff .
gives about 65% of the total Sl attraction in VOO , Whereas
in V?fi we find it makes only a small contribution. In the

coupled case alsc we will be faced with the problem of nodes
but it can be avoided in a similar fashion as in the un-
coupled case. Remembering that the Born approximation of the
etfective force would give the same result as <¢|V|y> we

nmultiply both sides of equation (ITIX-2€¢) by

from left and

then tale the average over the Permi sea. This leads to the

formulae
kF ,
J jo(kor) Uoo(ko,r) w(ko) kO dko
eff, , _ o B ) N
Vo () = Vg (r) 1
P 2.
J 3o  egr) wiky) k,Tdk,
o
kF ,
J ]O(kor) Uzo(ko,r) m(ko) ko dko
0
+ Voz(r) =
P 2
J 3o 7 (kgr) w(k,) k,"dk,
o
kF ,
Vzo(r) J 32(k0r) UZO(kO,r) w(ko) ko dko
eff, 1 0 e
Ve T(r) = e [ . -

k

(r . . ) 26

J jz(kor) jO(LOr) m(ko) ko LO
0
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k
e (¥ . 2
J jz(kor) U20(k0r) w(ko) ko dk0
o)
+ V22(r) kF - ] .{(III-30)
. . 2
J Jz(kor) jo(kor) w(ko) ko dko
0

BEquation (II1-29) would give us the effective central inter-
action which would include the central contribution of the
tensor force. This was also done by Kuo and Brown. But
whereas their procedure could include oﬁly the second order
tensor contribution, this method would do it to all orders\
because we are dealing with a G matrix. The second advantage
is that equation (III-30) gives us the non-central contri-
bution of the tensor force to all orders. This can be
looked upon as a residual tensor force.

A word about a useful check on numerical calculations

may not be irrelevant. The G matrix is known to be hermitian

for a given starting energy W. So one should have

0
2. J J
J dr r JL.(kr) i" VL.Ln(r) UL"L(r,kO)
(o]
= | ar r%i (k.r) ¥ V... (r) U9, (k,r)
I Lo LL" LU Vet .
(0]

In our expansion for ¢ a factor r-l occurs so that instead
of r2 we need r. In the nuclear matter programme we looked
for this hermiticity and quite good agreement between the

two off-diagonal elements was oObtained. A typical result

is shown in Table 4.



CHAPTER IV
RESULTS

The aim of the present work and the methods have
been outlined in Chapters II and ITI. In nuclear matter
calculations one has to do the computation at several den-
sities. The reason for this is to see whether the systemn
really saturates i.e., whether it really gives maximumn
binding at a particular density or not. A second result
to be checked is whether this particular density is really
the density in the interior of a héavy nuclcus. The next
thing to enguire is whether the colculation with that par-
ticular potential yields the empirical valve for binding
energy per particle. It is well known that the enpirical
value for binding energy per particle is about 16 MeV and
the saturation density corresponds to kF=1.36 fmml. Cal-
culations have been done for the Reid Soft Core and Bressel-
RKerman-Rouben potential. Both thgse potentials f£it the
scattering data well. The Bressel potential also shows
that for fitting the scattering data the postulate of a
hard core is not necessary. Our nuclear matter calculation,
however, gives completely different results for these poten-
tials. The range of densities used in cur calculation is
from kF=.7 fm"l to kF:l.G fm*l. The calculations had to

-1 -1 . .
be done for kF:l.B fm and kF:Z.O fm also to investigate

70
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the high density behaviour. For the Bressel potential, the
calculation was also done for the case kF=l.7 fm_l to esta-
blish saturation. Table 3 shows that whereas the two-body
calculation for Reid potential indicates saturation around
1.43 fm™ 1 giving a value of +11.31 MeV for binding energy
per particle,the Bressel potential saturates at kF=1.6

fm giving value of +14.98 MeV per particle. We repeat
that these numbers come from a two-body calculation. The
trend of saturating at a higher density in the case of
Bressel potential was also noted by Bhargava. However, his

©

calculations are not very meaningful now because of the

(27)

revision of the three-body cluster energy by Bethe . Thus
although the Bressel potential gives a value for binding
energy, which is closer to the empirical value, its saturation
density is unrealistic. On the other hand, the Reid potential
gives a smaller binding but the two-body calculations seem
to put the saturation density in the correct region. However,
the minimum of the binding energy curve for this potential
is very flat and the compressibility is about 174 MeV. Thus
the correct saturation density can not be determined accur-
ately without a knowledge of highér order clusters.

It has been shown by Bethe* that certain higher order
clusters and diagram can yield another 1.70 MeV of binding

energy. This may arise in the following way. In this

Private communication from Dr. D. W. L. Sprung.
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calculation we have neglected the three-body cluster energy.

(54)

It has been shown in Dahlblom that the three-body

clusters can contribute 1.1 MeV to the binéing energy.

This number was obtained by direct solution of the Bethe-
Faddeev equations and not by using a suppression factor

'f' as was done in the older calculations. However, Dahlblom
used (see figure 8a) central or tensor force in the first
or the last G-interaction and central force in all the
intermediate ones. An additional contribution of .60 MeV |
to the binding energy comes from a third order diagram
(figure 8b) which uses tensor force in all the three inter-
actions. This was first done by Dahlblom, Fogel, Qvist

and T5rn(55). Recently, Day(SG)

has estimated the contri-
bution of all four hole line diagrams. His results showed
that the‘four body contribution is not as small as had

been anticipated. The four hole line contribution is

about .6 - 1.6 MeV. The dominant part of this contribution
comes from the ground state correlations (figure 8c) and
the hole-hole interaction (figure 8d). Thus a total con-
tribution of 2.8 t 1 MeV are obtained from higher order
diagrams. The binding energy for the Reid potential will
then be 13.5 * 1.5 MeV. We have assumed that the errors

in our calculation and in Bethe's estimate have the same
magnitude as those in Day's estimate. The estimates of
Bethe and thoseof Day are valid for k. =1.36 fm L,

The density dependence of these contributions
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may well push the saturation point to higher density. We
discuss more about this point in the last Chapter.

We would like to discuss a little more about our
nuclear matter calculation. We have used a combination of
PSA and OPEP for higher partial waves. It has been already
described in Chapter II which ‘states are used for PSA and
which for OPEP. (In fact, the states which are not done
by G matrix calculation or by PSA are all done by using OPEP.)

A check on this approximation can be made. A method for

N

calculation for higher partial waves developed by Srivastava(57)

(58) shows

and used by Sprung, Banerjee, Jopko and Srivastava
that in a typical case this method gives .7 % .3 MeV whereas
our method gives .6 MeV. This thus checks out alright. To
look for more binding so as to get the empirical value one
method will be to use one of the soft potentials developed

1

by Sprung and Srivastava in S This would lead to an

0°
increase of about .9 MeV in binding. However, the 'k's' from
these potentials are very small and so no further gain can
be had by further softening the potential. One might use
a similar potential for 3S—-3D states. But such a potential
is yet to be developed.

Before finishing the discussion of nuclear matter we try
to see why the Bressel potential saturates at a higher
density. From figures 5 and 6 one might see that the

coupled state 38—3D which contains the tensor force as the

main mechanism of saturation shows the tendency of saturating
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at a higher dénsity. Also the potential energy from the lSO

state increases more rapidly with density than in the Reid
case. )

Using our nuclear matter results we have also cal-
culated the effective interactions for various states at
different densities and have studied their density dependence.
To calculate these effective interactions we need the cor-
related wavefunctions as a function of r and the relative
momentum kO. From our programs for the Kallio-Day method .

we get the radial part of ¢ (the correlated wavefunction)

at 85 points in r space and for seven values of

o ko/kF = ,125 (.125) .875 .

Our programme could thus choose one fixed r-value and in-

tegrate over k, from 0 to kF. We used an 8 point Gaussian

0
quadrature formula. For the values of the wavefunction at
the ordinates for Gaussian quadrature we used our subroutine
TAINT which uses an Aitken-Lagrange type interpolation.

We had to take special care to locate the zeroes of jL(kr)
and had. to cut the integral ?F jLz(kr) w(k)dk into sub-
intervals to avoid the cuspsoparticularly in jo(kr). This
was also checked against the exact analytical method. The
effective potential was thus obtained as a table of values
at the predetermined.set of 'r' values rather than as an

analytical function. As expected, the potential showed the

effect of correlation and was no longer singular. In
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figure 9, we have plotted the effective 180 potential
derived from the two-nucleon potentials of Reid and Bressel.
It is at once secn that the suppression from the highly
repulsive values for small radii is very large. The Bressel
potential has a discontinuity at the core edge and that
characteristic has bheen retained by the effective potential.
Both these potentials become small at large radii and attain
the values corresponding to the original potential. This is
however to be expcected because as we go away from the origins
the rapid healing of the correlated wavefunction would bring
it back to its unperturbed form so that veff(r) will be
equal to v(r). In the Bressel potential, one can note that
the suppression of the square core near the origin is very
considerable to give it a spiky shape. It is evident that
the two potentials do not give the same effective interaction
leaving an element of non-uniqueness in it. To investigate
this point we used some of the soft potentials of Sprung

and Srivastava. The effective interaction deduced from
these lSO potentials are shown in figure 10. The effective
interactions are found to retain the shape of the original
potentials and although there is a suppression in the
magnitude by about 40%, this is not so considerable as in
the previous case. To investigate the mechanism of this we
plotted the wave defect y = ¢ -~ Y for all these three types
of potentials namely, Reid, Bressel and one of the soft

potentials NP-2. This is shown in figure 11. Whereas in
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the case of the Reid and the Bressel potential the positive
peak of x is very high, it is not so in NP-2. In the case
of the Bressel potential it is also a littie pushed out.
The negative peaks of all the three potentials are almost
the same in order of magnitude but the peaks do not ocdéur
at the same radius.

Another interesting point that comes out from this
is the following. For Reid potential the two-body G matrix
gives only +11.3 MeV of binding per particle so that the
potential energy is about -34.2 MeV. Comparing this with
the empirical value of -39 MeV we see that we get about
87.7% of the required value. Most of the remaining binding
comes from ground state correlations, three-body and four-
body clusters etc. It is therefore tempting to increase the
effective interaction proportionately to give correct binding
in finite nuclei. This approach was adopted by Nemeth and

(59) in their Thomas-Fermi calculations. The overall

Bethe
factor by which one multiplies turns out in this case to

be 1.12. The three-body and four-body clusters may behave
differently in finite nuclei. But in absence of

precise knowledge of their behaviour our procedure

seems to be good. The overall multi-

plicative constant will have the added merit of preserving
the exchange mixture because all states are affected equally.
The effective potential for the state 18 seems to have a

0
very weak density dependence. 1In the case of the Reid
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potential, the repulsive peak changes by only about 8% and

the attractive one by 17% as we go from kF:l.BG fm—l to

1

kF=.7 fm ~. 1In figure %9a we have plotted V(ka/VO as a

function of kF” VO is the potential at kF=l.36 fm~1. We

have computed thig ratio at a fixed value of the radius r

(in fm) for different values of k It is seen that there

e

is some density dependence but it is really small considering

the fact that kF:'7 fm—l one goes to ahout %th of normal

density. The effective lSO potential, therefore, may be

treated as roughly independent of density.

The next important state that we consider is the

3 . .
Sl state. Here one expects considerabhle density dependence

through the presence of the tensor force in the coupled
381—3D1 state of the original interaction. The calculations
were done by a cinple extension of the computer programme
used in the uncoupled case. The effective interaction
derived for Reid Soft Core potential is shown in figure 12.
We have plotted the effective potential for k. =1.36 Fn L
and for kF=.7 fm_l. The potential for kF:'7 fm"l comes
out to be stronger than that for kF=l.36 fmﬂl. We looked
at the density dependence of these potentials. For this
purpose, the ratio of the potential-at some kF to that at
1.36 fmgl was plotted against kF holding r fixed. The un-
fortunate situation is that the repulsive part is seen to

have a different density dependence than the attractive part.

Even within the repulsive or attractive peak, the density
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dependence is not simple. Figure 13 shows V(kF)/V0 plotted
against kF for varicus radii within the repulsive peak.

VO is the effective potential at kF=1.36 fm—l. It is seen
that the curves pass through a minimum and rise again.

For different radii, the curves are different although they
all look to be gquadratic. A simple formula for a curve

which passes through this band wasg attempted and can be

written as

— . 2
V(kF) = Vo[a ! b(LF c) 7]
We found
a = .984
b= .9
c = 1.17 .

Here, and also in other formulae to follow, kF is in units
of fmﬁl. Obviously this formula is an oversimplification
of the actual situation but will give a reasonable average
fit and simplify calculations. Figure 14 shows the density

dependence at certain radii within the attractive peak.

Here the curves, however, do not show a tendency of going

through-a minimum. The simplest reasonable fit is a linear
formula
V = Vo[a + bkF] .
where
a = 1.69%

b = - 514 .
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The same procedure has been adopted to study the
density dependence of the effective potentials in other
states. Figure 15 shows the remnant tensor force derived
from Reid potential at two different densities and figure
16 shows the variation of V(kF)/VO with kF atudifferent
radii. The attractive and repulsive parts have different
dengity dependence and simple fits to these have been ob-
tained. In figure 17 we show the effective 1Pl potential
at the densities of kF=.7 fm-l and kF=l.36 fm_l. The
density dependence of this potential has been shown in figure
18. A simple fit for this density dependence has also been
obtained. This study has been repcated for effective
poﬁentials derived from the Bressel potential also. The
effective potentials are scen to retain the discontinuity at
the core boundary. The lSO potential at normal density
has been shown in figure 9. The 3S] potential at two den-
sities and its density dependence have been shown in figures
19 and 20. In this case, the strongest density dependence
comes from radii around the core cdge. Figure 21 gives the
residual tensor (multiplied by v8) force at two densities
and figure 22 gives its density dependence. To complete
the comparison, we show in figure 23, the lPl potential and
its density dependence in figure 24. TFor all these states
we have simple fits for the density dependence and they

are collected together in Appendix B. 1In cases where the

atlractive and repulsive parts have different density
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dependence we have given different formulae.

One interesting point to check is the "Kuo-Brown"

(60)

prescription. Kuo and Brown considered the second order

term VT % V,, and showed that the "renormalization" and density

T
dependence in the central force in S-D case comes to a great
extent through the tensor force. They claimed that one

could use an approximation

0 1 2
<V = V. > > - <Y > o
Te T eeff T
I+ can be shown that
2 _ t _
812 = 8T 2512

where ﬂt is an operator which chooses the triplet state.
Therefore,

2 2
9y o 8Vpp, (X)) 2Vgy (X)) 54,
—e- N + .

-V
TL © Corf Coff

TL

It is the second term which is responsible for the "re-

normalization" of the tensor force. The first term is

absorbed in the effective central force and is responsible

(60)

for the density dependence. Kuo and Brown gave an
estimate for Caff using the oscillator parameter hw=14 MeV

and kp=1.3 fn L. They found e . =~ 220 MeV. However, it

(61)

was pointed out by Law and Bhaduri that Kuo and Brown

had an error of factor 2 and so e should be about 440 MeV.

eff

We checked this relation and found a qualitative agreement.
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In fact €urf is a strong funcltion of r as shown in Table 13.
The energy denominator Coff has been calculated in Fermi
units in Table 13 and in the important region of r=1 fm
to r=2 fm, one can roughly usc a value of 16 ( ~ 650 MeV).
Coming back to the effective potentials, it is seen
that if these are left in the form of numerical tables,
they will not be very useful for doing actual calculations
in finite nuclei. It is good to-try and fit some analytic
forms to these. At this department, there is a centre for
producing and using effective forces given in the form of
gaussians. So a fit of these effective potentials with a
sum of gaussians was attempted. Progremmes were developed
using a least square method. One ériterion was to fit the
potential at twenty points. FEach piece of datum was given
an arbitrary error of .1% and a least square fit was alttempted
reducing the sum of the squares of the deviation. Although
these numbers do not really mean anything they give us a
handle to distinguish one fit from another. Another criterion
for the fit was to see whether the volume and the higher
moments of the potentials could be fitted. TFor these we
calculated the first seven Talmi integrals as these are the
most important ones in a shell model calculation. The
gaussian fit was now nade in such a way that the errors
were now distributed over both the Talmi integrals and the
points of the potential table. The agreement obtained was

excellent for the effective interactions obtained from the
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Reid potential. For the Bressel potential case, however, it

was evident that the spike could not he fitted with a finite

number of gaussians. So in the region of the discontinuity

a smooth interpolation was obtained. The agreement of the

Talmi integrals thus calculated and the fit of the curve

in other regions was reasonable. We used a five
fit. However, this choice was purely accidental.

do just as well with three or six gaussians. The

gaussian
One might -

gaussian

potentials thus obtained have the very desirable feature

of retaining all the characteristics of the original po-

tential. So one can use them with the prescribed
factors. However, one can also study the density
of each of the gaussians involved in the sum. We
in Tables 5 -- 12 the strengths of the gaussians
of kF' The state for which this fit is valid and

ranges of the gaussians have been indicated.

2

density
dependence
have given

as a function

also the



CHAPTER V °

SUMMARY AND CONCLUSIONS

In the preceeding chapters the aim and the results
of the present work have been described. Nuclear matter
calculations have been done for two modern phenomenological
potentials - the soft core potential of Reid and that of
Bressel, Kerman and Rouben. Both these potentials fit
scattering data and both saturate nuclear matter. But
one important difference is at once clear from two-body
calculations. The Bressel potential gives a binding of

1

14.98 MeV at k;=1.6 fm ~ while the Reid potential gives

11.31 MeV at kF=l.43 fm_l. We reiterate that these values
for binding energy and apparent saturation densities come
from two-body clusters. Higher order clusters may well

alter the saturation density. It is seen from estimates

of Bethe and of Day that higher order clusters may contribute
about 2.8 + 1 MeV to binding energy at the normal density

l). (One must not forget to subtract about

(kp=1.36 fm
20% of this contribution before adding to the two-body
contribution, because of self consistency condition.) This
comes from three-body clusters, ground state correlations

and four-body clusters, one of which is the hole hole inter-

action. The higher order clusters will thus not only

83
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increase the binding which is a welcome result especially

in the Reid case. But, in the case of the Reid potential,
the binding energy curve from two-body calgulations, is

so flat near the minimum that the higher order clusters

will critically determine the saturation density. The®
contribution from higher order clusters will also affect

the results from Bressel potential by about the same amount
as Reid's. As the higher order clusters involve more

hole linesthey will be strongly density dependent. This is
because a sum over a hole line throws in

a factor of kFB. Another way of looking at it would be

to recognise that arranging tﬁe Brueckner-Goldstone series
in terms of number of hole lines means an expansion in
powers of density. As the net effect is attractive, one
expects physically that this would push the saturation to
higher densities. However, there are also repulsive terms
in higher order clusters. Day in his four-body paper has
made a classification of these diagrams. He also made a
careful estimate of these. He arrived at rough analytical
formulag for such estimates. These formulae involve «k
(which is the product of the wound integral and the density),
and the potential energy U. Using the values for these
parameters, as obtained from our nuclear matter calculations
the net effect is really found to be strongly density

dependent. It is therefore difficult to put a definite

value for the saturation density for Reid Soft Core potential.
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However, it is definitely bhetter than Bressel's where even
the two-body calctlation shows saturation at too high a
dengity. To investigate the cause for this, one can look
at the contributicns of the various partial waves to the
potential energy as the density varies. The coupled 38—3D
states which contain the tensor force are mainly responsible
for saturation mechanism. They tend to saturate at a higher
density than in the case of the ﬁeid potential. Also the
variation of the lSO state contribution to the potential
energy is faster with chaﬁge of density in the case of the
Bressel potential. This reflects the softer core. These
two together put the saturation at a higher density.

Using the wavefunctions obtained from these nuclear
matter calculations effective potentials have been calcula-
ted for both these basic interactions. The effective poten-
tial has been defined in such a way as to give the correct
matrix element when uncorrelated wavefunctions are used.

In terms of finite nuclei, this meant that one could do

shell model or Hartree-Fock calculations. This was made

more restrictive by demanding that the integrand in the
expression for matrix elements agree at each point of
r-space. This led to the problem of zeroes so that a
compronise had to be made as to give the average matrix
element correctly. The effective interaction was expected

to be density deperdent. We can see physically why it should

be so.
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From the perturbation-—-theoretic approach we see
that second and higher order terms involve energy denomin-
ators and the Pauli operator . As the density is increased,
kF increases so thal the available phase space decreases.
Although theoretically the phase space is almost infinite,
the matrix elements <k'|V|k> decrease as one goes further
away in k'. Secondly, the energy denominator increases. In
the case of the central forces, there is a large contri-
bution from the first order bhut there will also be some
contribution from second order and higher orders. So in
this case the density dependence will not be very strong.

In the case of tensor forces, however, the first contri-
bution comes from the second order term so that the density
dependence will be strong. From these considerations, one
expeéts the potential at lower density to be stronger than
that at higher density.

The cffective interactions calculated were actually
found to be density dependent. To check the numerical work
the matrix elements of these were computed and found to
agree with original ones at the "average"” relative momentum.
The effective interactions were calculated for two singlet
states %SO and lPl. The density dependence of the lSO state
was so small that one could make the rough approximation
that it was independent of dengity. The lPl state had

small but some density dependence. The main density depen-

dent state was the 381 state. Its density dependence at



87

certain value of radius was as much as 50% as one goes from
normal density to %th density. The 3$Leffective interactions
from bhoth the Reid and the Bressel potentials exhibited
such stronyg density dependences. It was found that, in
fact, the density dependence is a complex phenomenon. It
varied from one point in r-space to another and that also
the average value differed in the attractive region from
that in the repulsive reglon. Aﬁproximate and simple for-
mulae were tried to describe the average behaviour in all
these states. These are collected in Appendix B.

The very weak density dependence in lS compared

0

to that in leads us to believe that it is the tensor

3
"1
force which is the main source of density depeundence. If

the hard core were egurally effective then lSO should have
exhibited a fair amounl of density dependence too.

We have also calculated the remnant effective tensor
force for both the Reid and the Bressel potential. These
effective potentials show a fair amount of density dependence
although not guite as strong as the 381 state does. As
before, we found the density dependence to be pretty complex
varying with various points in r-space. In the case of
Reid potential, the density dependence of the attractive
part was approximated by a guadratic and that of the re-
pulsive part by a straight line. Formulae have been collected

in Appendix B. For the Bressel case, however, the density

dependence was almost the same in repulsive and attractive
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regions and a lincar approximation (given in Appendix B)
was made. We also looked at the Kuo~Brown prescription
for the effective central and tensor force which indicated
that the chance ir those forces would be given by the
right hand side of the following relation

2 2
8V 2V,
Vo o o TL TTML .

-V
Th Caff Cofs 12

TL

0
e

The effective energy denominator was found to be a gstrong
function of r (Table 13) but one can claim qualitative
agreemcent. The effective interactions for the lPl state

for both the Reid and the Bressel potentials showed scme
density dependence bhut not large. In these cases the
density dependences at various radii were almost linear

with kF but different and so linear approximations were
made. To make all these effective potentials readily usable

we fitted them as a sum of gaussians

The strengths of these gaussians have been given as a
function of density in Tables 5 -~ . 12. One can use these
gaussians together with our density factors, or can fit
simple formulae to the strengths at various densities if

one so desires.



APPENDIX A

We want tc derive a relation between (glﬂéqz.&)PL(u)

and (gl.ng.g)PLz(u). Recalling that L=-irX¥Y, we have

1.L02.;)PL(p) = - (Ol.rXZ) (g?.gXY)PL(u)

-

(

e

Py -

Using the identity (31) of B.G.W. (see also Goldberger and

Watson(62)) we have

1 2
(07.La". L) Py (1)
a p_(u)
1 ) 2 x xr' L
- . kY = N e e mamn
(07.2X7) (7.3 X 29—
2
' ., a’r_ ()
_ . (Gl gx_l_" (O? —l‘g-X]':) R
r r r r 2
du
d p_(u)
L 2 ., r'
- g (07.IXD) (0% & X

We use our convention of putting A on a vector to denote
unit vector in thait direction and use the summation con-
vention of tensor algebra that a repeated index neans a

sum over that index. Then

(67.2%7) (o
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APPENDIX B

We collect all the simple formulae for density de-
pendence of the effective interaction for various states.
' These formulae are fitted with the motivation to simplify
actual calculatiors. The real density dependence is a much
more complex phencmenon. In the following, VO will indicate
the effective force at kF=l.36 fm—l. For using the formulae
kF must be taken in units of fmnl. The basic two-nucleon
interactions from which these effective forces have been

derived are also indicated.

Reid Soft Core Potential:

STATE FORMULMA

S Repulsive part: V(kF):VO(.984+.9(kF—l.l7)2

Attractive part: V(kF):VO(l.699~.514kF)

Residual Tensor Repulsive part: V(kF)=VO(1.99—.73kF)

Attractive part: V(kF):VO[.99+.83(kF—l.25)2]
O 11 = - N .
P vera V(kF) VO(.3814.455]F)

Bressel Potential:

91



STATE

Residual Tensor

FPORMULA

Repulsive part: V=V0(1.33—.243kF)

)

Attractive part: V:VO(1.68—.5k
Overall: V=VO(1.259~.19kF)

Overall: V=V0(.483+.38kF)
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TABLE 1
Comparison of the G matrix elements obtained by ‘Kallio-Day methed with those from reference
spectrum method. For each valuve of kF, the numbers in the first line axe from the KD method,
and those in the second line are from the RS method. The Fermi momentun kF is in units of

-1
=

fm ~ and the G matrix elements are in fm.

STATE
ko l*’o e o, 3Po ’2) D, ’sy 3D1 ’», ’r,

1.00 -5.712  .373 -.513  =1.118 2.399 - .923 -7.080  .321 ~1.482 - .077
-5.662  .369 -.513 -1.119  2.393 - .923 -7.122 .318 -1.483 -0.075

1.10 ~5.201  .427 ~-.596 -1.144 2.610 -1.077 -6.087 .376 -1.701 - .10l
_5.164  .423  -.596 -1.144 2.601 -1.078 -6.128  .373 -1.703 - .100 -

1.20 ~4.723  .502 -.677 ~-1.148 2.810 =-1.222 =-5.204 .427 -1.915 - .126
~4.699  .497 ~-.676 ~-1.148 2.800 -1.221 =-5.260  .433 =1.917 - .126

1.20 -4.271  .595 -.756 -1.131 3.002 -1.354 -4.416  .473 =-2.119 - .153
~4.255  .589 -.754 -1.132 2.991 -1.353 -4.465 .470 =-2.122 - .153

1.40 ~3.841 .706 -.832 -1.096 3.186 ~-1.474 =-3.702 .512 -2.314 - .181
~3.828  .699 -.831 -1.096 3.173 -1.474 -3.737  .509 -2.316 - .180

€6



TABLE 1 - CONTINUED

.430 .831 -.907 -1.045 3.363 -1.580 -3.049 .545 -2.496 - .208

L4177 .822 -.906 -1.045 3.346 -1.580 -3.077 .542 -2.498 - .208
.040 .967 -.979 - .979 3.530 -1.671 -2.463 .570 -2.664 - .236
.022 .955 -.979 - .277 3.510 -1.672 -2.470 .568 -2.666 - .235

7o
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TABLE 2

Test of the accuracy of the average pion mass approximation.
Column (a) gives the G matrix in fm using different pion
masses for T=1(nn) and T=1(np) states and then averaging.
Column (b) gives that using average pion mass. These matrix-

elements are not multiplied by statistical weights.

kF = .7 A = .93 m* = ,884
State = S0 °
X, (a) (b)
.0875 -27.65 -27.63
.1750 -26.40 -26.38
.2625 -24.71 -24.70
.3500 -22.83 -22.82
.4375 -20.93 -20.92
.5250 -19.08 -19.08

.6125 -17.36 -17.36
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TABLE 3

Sunmmary of Binding Energy Results (MaV)

kF(fm—l) Reid Bressel
7 - 3.35 - 3.75
.8 - 4,47 -
9 - 5.78 - 6.43
0 - 7.19 -
1.1 ~ 8.57 - 9.67
2 - 9.80 --
.3 -10.72 -12.75
.36 ~11.08 -13.51
.4 -11.19 -13.97
.43 -11.31 -
.5 -11.05 ~-14.77
.6 -10.21 -14.98
.7 - -14.50

.8 - 5.46 -13.04




TABLE 4
Check on the hermiticity of the G matrix in the coupled

S~D case

k.. = 1.36, Yo o= 2, m* = .6

X kg o lesm)> sy (6] p >
.250000 .000000 ~2.7531 ~2.7530
.250000 .250000 ~2.1422 ~2.1422
.250000 500000 ~1.1371 ~1.1370
.250000 . 750000 — .5207 - .5205
250000  1.000000 - .2389 - .2387
250000  1.320434 - .0941 - .0940
250000  1.640869 ~ .0393 - .0393
.250000  1.961303 ~ .0l61 - 0160
.250000  2.281737 - L0047 - 0046
500000  0.000000 ~8.0423 ~8.0428
500000  0.250000 ~6.7819 ~6.7823
| 500000  0.500000 ~4.1922 ~4.1926
i 500000 . 750000 ~2.1152 ~2.1155
500000  1.000000 ~1.0025 ~1.0026
.500000  1.320434 -~ .3966 - .3966
500000  1.640869 - .1648 — L1647
500000  1.961303 - .0667 - .0663
f 500000  2.281737 - .0l91 - .0186




TABLE 5

Parameters of the Gaussianszfitted to the effective interactions by the formula

5
= I c;(k.) e
i=1 * F

Vore (Kp)

-0.X

1

the gaussians while ci's give the strength in MeV.

has been used in deriving the effective force.

. The parameters oy (in fm—z) give the range of
Reid Soft Core potential

The Fermi momentum kF is in

units of fm *
State = lS0
ay = 4.0 a, = 2.56 a3 = 6.4 x 10 a, = 4.0 x 10 ag = 1.6 x 10
-3 -3 -1 2

kF cl x 10 c2 x 10 c3 x 10 c4 x 107 c5

.7 2.78603848 -1.3880526 -8.04985268 -1.43324171 -1.75478351

.9 2.59647841 ~1.28986101 -~7.43827972 -1.42889979 -1.83124995
1.1 2.55874304 -1.27083148 ~-7.10055152 ~1.40718883 -1.90538816
1.36 2.63463627 -1.31262774 ~6.8240139 -1.38250401 -1.97448823
1,40 2.65426473 -1.32342739 ~6.78759891 ~1.37886194 ~-1.98367688
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TABLE 6
SAME AS TABLE S

State = 78

= 4.0 a, = 3.6 x 107 ay = x 107 o, = 1.0 oy = 1.6 x 10”

kg oy x 1073 c, cy X 10t c, X 1072 cg X 10t

.7 1.69306276 -7.64189677 ~1.09576487 ~4.24064230 -7.6319631

.9 1.47348187 -5.30050549 -1.23409665 -3.60165609 -2.5681249
1.0 1.42668013 -3.66726921 -1.28919054 -3.44552054 -1.7073057
1.1 1.40091185 -1.72528595 -1.30590170 ~3.34336304 -2.05639657
1.2 1.38622227 0.30274847 -1.29027073 -3.26972050 -3.24808028
1.3 1.36951196 2.06108148 -1.26651573 -3.19848310 -4.64167726
1.36 1.34831179 2.77291840 -1.25987848 -3.13769487 -5.25591491
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TABLE 7
SAME AS TABLE 5

Residual tensor force from Reid potential for 3S—3D states

1uwuoH'KHSMEAWMWHBLSVW3W

@) =3.24 4y = 2.56 0 = 6.4 x 107" o, = 4.0 x 107% o, = 1.6 x 107}

Ky ¢y x 1073 ¢, x 1077 ¢y x 1070 c, x 107 c.

.7 1.50508475 ~1.21995237 ~7.46562360 ~2.34191268 ~5.06248089

.8 1.36574440 -1.10991387 ~6.76214538 ~2.44713877 -5.20225333

.9 1.27967308 ~1.04341821 ~6.30220964 ~2.50632911 ~5.38028264
1.0 1.22477976 ~1.00271993 -5.97910612 ~2.50776004 -5.58716025
1.1 1.18990384 - .978588982  ~-5.75696224 ~2.45642314 ~5.79926458
1.2 1.16621568 - .963345419  -5.63402174 ~2.39015644 ~5.97521187
1.3 1.15280387 - .956391243  -5.57389023 ~2.31721931 ~6.11573581
1.36 1.14132891 - .948368063  -5.60093774 ~2.24413611 ~6.16770444

00T



TABLE 8

SAME AS TABLE 5

State 1Pl
d, = 1.96 0, = 3.6 x 107 0, = 6.4 x 107 a, = 4.0 x 1072 a. = 1.6 x 10+
1 2 3 4 5
.7 3.11113730 ~4.68665069 1.59101631 3.01179913 6.23910522
.9 3.60083462 ~4.64759574 1.57708558 3.01774203 5.85523457
1.0 3.86977643 ~4.62106120 1.56811532 3.02284178 5,59621199
1.2 4.46589450 ~4.55447185 1.54586532 3.03969579 4.98335269
1.3 4.77300296 ~4.52079569 1.53420925 3.04674581 4.71990500
1.36 4.95193717 ~4.50164620 1.52750537 3.04982334 4.58613963
1.40 5.07596384 ~4.48735898 1.52251673 3.05193614 4.48986638

10T



TABLE 9

Same as Table 5 but Bressel potential has been used in place of Reid potential

state = S,
o = 3.24 a, = 2.56 a3 = 3.6 x 107" o, = 4.0 x 1072 o, = 1.6 x 107"

kF cq X 10’3 c, X 10-3 cy X lO_l c, X 101 Ce

.7 6.44387754 ~4.83640353  -1.61633621  -1.68497683 ~1.85853140
.9 5.94168730 ~4.45228486  -1.50698654  ~1.68134577 ~1.98443116
1.1 5.70463100 ~4.26646106  -1.46790201  -1.66557246 ~2.06194449
1.3 5.61739618 ~4.19221334  -1.45736006  -1.65717953 ~2.09588505
1.36 5.61076764 ~4.18457343  -1.45544106  -1.65512569 ~2.10276045
1.40 5.60955173 ~4.18198105  -1.45419301  -1.65379101 ~2.10690455

¢ot



TABLE 10

SAME AS TABLE 9

3

State = °S,
G, = 3.24 a. = 2.56 0. = 3.6 x 10+ o, = 4.0 x 1072 . = 1.6 x 1071
1 . 2 - 3 . A . 5 .
-3 -3 -1 1 1

kF cl x 10 c2 x 10 c3 x 10 c4 x 10 c5 x 10

.7 6.56169314 ~4.99689549 -3.46308365  -1.72534804 —7.48379615
.9 5.63339148 ~4:26547177 ~2.79582298 ~1.80011659 -5.714332073
1.1 5.22015836 ~3.93521316 -2.25039978 ~1.84435212 ~6.72518304
1.3 4.99012779 ~3.74518321  -1.76166103 ~1.78540955 ~10.2237017
1.36 4.92881054 ~3.69349518 ~1.63965810 ~1.76531797 -11.3037038

€0T



Residual Tensor force derived from Bressel potential for

TABLE 11

SAME AS TABLE 9

3S—3D states

_ _ _ -1 _ -2 _ -1
. a; = 4.0 a, = 1.96 ay = 3.6 x 10 a, = 4 x 10 ag = 1.6 x 10
-2 -2 -1 1
F cl x 10 C, X 10 c3 x 10 c4 x 10 c5
.7 10.9509999 -7.21904792 -1.85662963 ~-2.71850686 -4.39857826
.9 9.40229539 -6.16483135 -1.60812320 -2.88145759 -4.83497743
1 8.76144643 -5.71849344 -1.49441542 -2.81615864 -5.32784663
.3 8.4iéo4248 -5.46082066 -1.51061123 -2.67711328 -5.60916321
.36 8.36548860 ~-5.42126036 -1.52532900 -2.66224502 -5.64991732
.40 8.29289424 -5.36734856 ~-1.55456547 -2.63125928 -5.64447998
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TABLE 12

SAME AS TABLE 9
1

State = Pl
6. = -4.0 0. = 3.24 0. = 6.4 x 10 L o =4.0%x 10 %o =1.6x 1071
. 1 . 2 . 3 . 4 : 5 -0 s
. ey 3 1073 c, x 1073 cy X 1071 c, X 10t cg
.7 ~-6.69217753 6.73037597 ~4.37222406 4.36532326 5.08726025
.9 © -7.03585353 7.07464423 -4.43705939 4.34264561 5.14563504
.1 ~-7.37872492 7.41789471 ~-4.47685396 4.32991971 5.16576466
.3 ~7.75146528 7.79116712 -4.53054134 4.32579420 5.17099760
.36 -7.86907055 7.90900268 -4.55382452 4.3238869 5.17373262

.40 -7.94603870 7.98613045 -4.56997107 4.32259727 5.17570352

SOT
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ot TABLE 13

Study of the effective energy denominator for the residual

©

tensor force®. Reid Soft Core potential kf = 1.36 fm"l
2
2v
_ T . _ veff _
Ceff = AV’ Mg = Yy Vp .
Radius v, (fm~2) vert (£n2?) e .. (fm”?)
T T eff
(fm)
.24 -84.4585 .8100 167.31
.54 -12.0330 -1.3909 27.21
,1.04 - 1.4562 -1.4025 78.97
1.24 -  .8198 - .8882 - 23.07
1.34 - .6411 - .7007 - 16.48
1.54 -  .4165 - .4436 - 12.80
1.84 -  .2406 : - .2419 - 90.00
2.04 - 1737 - 1703 + 17.71
2.24 - .1278 - .1240 + 8.60
* eff

(r)

Near r=1 fm and r=f fm the curves for VT(r) and VT

cross each other resulting in a change of sign and large

energy denominators.
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FIGURE CAPTIONS

Figure 1. This is a schematic figure to illustrate
the gap A. R is the reference spectrum. E is
the spectrum of occupied states. A is an average
measure of the separation between the actual
energies of the occupied states and the reference
spectrum.

Figure 2. This figure illustrates A'. VU(k) is the
potential energy as a function of relative momen-
tum k. The intermediate states are assumed to
have zero potential energy. VU(k) for occupied
states is approximately a quadratic function.

Figﬁre 3. Variation of A with kF. The Fermi momentuin

kF is given in units of fm—l. The line indicated
by 'a' corresponds to the Bressel potential while
'b' corresponds to the Reid potential.

Figure 4. Variation of m* with kF. kF ig in units of
fmnl. The solid line corresponds to the Bressel
potential and the bhroken line to Reid's.

Figure 5. Average potential energy in MeV due to certain
two-body states as a function of Fermi momentumn

(in fm—l). Reid potential.

Figure 6. Same as figure 5. Bressel potential.

111
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Figure 7. Variation k with Fermi momentum kF (in fm"l)
calculated from reference wavefunctions but
correcting for the "in-sea" states. The solid
line corresponds to the Reid Soft Core and the
broken line to the Reid Hard Core (also called
new core) potential.

Figure 8. Veriation of k with kF (in fm“l) using exact
wavefurctions from KD method. The line 'a'
corresponds to the total value of k for Reid Soft
Core while 'b"corresponds to that for Bressel

' gives the contribution

potential. The line 'c

of the dominant § state in 38—3D for Reid potential

and 'd' gives that for éressel potential.
Figures 8a, 8b, 8c, 8d. Certain higher order diagrams

(described in text) which give some contribution

to the binding energy. Figure 8d is known as

the hole-hole interaction and is included in

Day's treatment of four-body diagrams.
Figure 9. Effective potential (in fm—z) for the state
150 is plotted against the radius r (in fm).
Curve (a) corresponds to the effective potential
derived from Reid potential while (b) corresponds
to that from Bressel potential. The right hand
scale (also in fm~2) is to be used for the
attractive part of (a). These curves correspond

to the Fermi momentum kF=1’36 fm—l.
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Figure 9a. Variation of %vaith Fermi momentum kF.

V corresponds to the effective potential at a
certain density (determined by kF) énd VO is

that at kF=1.36 fm"l. Curve 'a' corresponds to

a raditvs r=.24 fm, 'b' to r=.30 fnn, ‘'c¢' to

r=1.84 fm and 'd' to r=.89 fm. Curves 'a' and

'd' correspond to the repulsive and the attractive
peaks respectively. .

Figure 10. Effective interaction (in fm—z) from super
soft potentials of Sprung and Srivastava. r is
in units of fm. Curve (a) corresponds to the
effective force derived from the potential called
Pp-2, (L) from SSC, (¢) from PP-1 and (4) from
NP-2.

Figure 11. Plot of the wave defect y obtained from three
potentials against r (in fm). Curve (a) corre-
sponds to Reid potential, (b) to Bressel potential
and (c¢) to NP-2 of Sprung and Srivastava.

Figure 12. Effective potential (in fmuz) for the state

381 plotted against r (in fm). Curve (a) corre-

sponds to k,=1.36 fm - 1

and (b) to ky=.7 fm
The right hand scale (also in fm_z) is to be
used for the attractive part of the potential.
Reid potential has been used.

Figure 13. The ratio ¥E for the effective 381 potential

of figure 12 is plotted against kF (in fm_z) for



Figure 13.

Figure 14.

Figure 15.

Figure 16.
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cont'd.
different values of radius r. The values of r
chosen lie in the repulsive part of the potential.
Curve (a) corresponds to r=.4 fm, (b) to r=.3
fr, and (¢) to r=.2 fm. The broken line is
for r=.49 fm. Here again V corresponds to
potent:al at a certain density and Vo that at
kF=l.36 fm”l. The aﬁalytical formula given in
the terxt tries to fit curve (b).

Seme as figure 13, but for those values of
r which are in the attractive region. Curve

(a)y for r=.7% fm, (b) for r=.94 fm, (c) for 1.09

fm, (d) for r=1.19 fm and the broken line for

r=1.34 fm.

Effective residual tensor force (in fm_z)
is plotted against r (in fm). Curve (a) corre-~
sponds to kp=.7 fm~ L ana (b) to kp=1.36 F T,

Reid potential.

The ratio v for the residual tensoxr force

\
0
1
).

of figure 15 is plotted against kF (in fm
V and VO have the same meaning as before. The
upper 4 curves correspond to repulsive part of
the potential. (a) corresponds to r=.30 fm,
(b} to r=.28 fm, {(c) to r=.22 fm and (d) to

r=.16 fm. The broken line is the fitted curve.

The lower four lines correspond to the attractive



Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

17 is rlotted against kF (in fm

115

cont'd.
part of the potential. (e) to r=.99 fm, (f)
to r=.79 fm, (g} to r=.74 fm and (h) to .69 fmn.
The broken line is the fitted curve.

Effective 1Pl potential (in fm_z) from Reid
potential is plotted against r (in fm). Curve
{(a) is for kF=l.36 fm"1 and (b) for kF=.7 fm_l.

The ratio ¥E for the lPl potential of figure
1). Curve (a)
corresponds to r=.84 fm, (b) to r=.64 fm, (c)

to r=.3 fm and (d) to r=.22 fm. The broken line
is the fitted curve.

Effective 381 potential (in fm—z) from
Bressel potential is plotted against r (in fm).
The lowzar scale is for the attractive part only.
Curve (a) corresponds to kp=.7 fm™ L ana (h) to
kp=1.36 Fn L
The ratio %8 for the 3SL potential of figure
19 is plotted against kF (in fm_l). The lower
2 curves are for the repulsive peak and the upper
2 for attractive peak. Curve (a) corresponds to
r=,.7189 fm, (b) to r=.806 fm, (c) to r=.663 fm
and (d) to r=.5617 fm. The broken lines are
fitted curves for these two regions.

The effective residual tensor force (in fmnz)

from Bressel potential is plotted against r



Figure 21.

Figure 22.

Figure 23.

Figure 24.

116

cont'd.
(in fm). The curve (a) is for kF:.7 fm—l and
(b) for kF=lm36 fmnl. Tﬁe potentiél still
contains a factor of V8 which is the matrix
element of 512.
The ratio %5 for the effective tensor force
of figure 21 is plotted against kF (in fmnl).
Curve (a) is for r=.é632 fm, (b) for r=.5995 fm,
(¢} for r=1.155 fm. The broken line is the fitted
curve. |

Effective lP potential (in fm—z) from

1

Bressel potential is plotted against r (in fm).

Curve (a) is for kF=l.36 fm_l and (b) for

_ -1
kF~.7 fm ~.
. oV . 1 s -
The ratio T for the Pl potential of figure
0
23 is olotted against kF. Curve (a) is for

r=.784 fm, (b) for r=.7189 fm, (c) for r=.5278
fm and (d) for r=.3924 fm. The broken line is

the fitted st. line.
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