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SCOPE AND CONTENTS: A transient method of measuring the thermal
conductivity of homogeneous low conductivity

materials, especially suitable for polymeric solids, has been
investigated. The method, based on transiéent conduction with
spherical geometry, consists essentially of measuring the
transient temperature in a test sphere placed in a highly con-
vective field provided by a mixing bath or a jet flow. The
measured temperature-time curve is matched with the corresponding
dimensionless series solution to determine the diffusivity and
the conductivity-temperature relationship from a single eiﬁer-
iment.

This method is adequate in the case of polymeric mat-
erials, but is limited to the determination of a reliable
average value 1n the temperature range considered, when the
temperature coefficients of conductivity and specific heat are
of opposite signsas is the case for most crystalline materials.
This limitation can be overcome by using a finite-difference
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model to predict the dimensionless temperature~time curve.

The model, considers varlable physical properties, is com-
pletely general, and allows the determination of the con-
ductivity-temperature curve from a single experiment. However,
a lengthy trial-and-error procedure is required with this more
general model.,

Naphthalene, naphthol/ , paraffin wax, bismuth, ice
ammonium nitrate and Lucite were the materials tested. These
materials have conductivity values in the range 5.0 to 0.08
B.T. U/(hr.-ft.~°F.). The percent standard deviations of

thermal conductivity were never larger than ¥12% and as low as

1.5%. The measured values are comparable to the most reliable
ones found in the literature. For example, the values deter-
mined for naphthalene, naphthol 2 and ice differ from litera-
ture values by 2.5%, 3.5% and 1.5%, respectively.

In the application of the proposed transient method with
spherical geometry, the equipment used to measure thermal con-
ductivity 1is very simple. The measurements are extremely fast

and conductivity values can be determined to within fS%.
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1. INTRODUCTION -

The present method of measuring thermal conductivity
of solids evolved from a preliminary investigation of the
prilling process. The prilling process'involves the spraying
of molten droplets 1nto a cold gas stream. As the droplets
fall, freezing occurs and the solid particles are collected at
the base of the prilling tower. Heat is transferred in the gas
phase by forced and natural convection. For the design of a
prilling tower it would be desirable to have a mathematical
model for predicting the rate of heat transfer and solidification.
Such a mathematical model would predict local temperatures and
the position of the freezing front as a function of time.

Preliminary attempts to develop such a model would require
periodic experimental measurements to test its accuracy. A
critical test would be the measurement and prediction of local
temperature with time. It was therefore apparent that a tech-
nique would be required to measure local temperatures as a
function of time in sollids of low conductivity.

A literature search indicated that there 1s no infor-
mation available concerning the error involved in measuring a
local temperature in a spherical solid of low conductivity.
It was therefore decided to experimentally determine the errors
involved in such measurements.

To this end, a search of the literature was made to

find a suitable standard whose thermal conductivity and other

-1-
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properties were well established. Naphthalene met these
requirements and was chosen. An exact mathematical model for
heat conduction with spherical symmetry and known Biot number
was used to interpret the experimental data. The experimental
approach was to fix a thermocouple at a known position in a
naphthalene sphere. At time zero, the sphere was immersed in a
stirred liquid and the temperature response was recorded. The
heat transfer coefficient for the stirred liquid was measured
by repeating the above experiment with a copper sphere. The
accuracy of the temperature measurement in the naphthalene
sphere was estimated by comparing the measured temperature with
the predicted temperature using the exact model. Initial ex-
periments with naphthalene indicated that the error could be
kept to a reasonable level by suitably locating the thermocouple.
The literature search for conductivity data revealed
that very little data were available and many of these were in-
consistent. With this in mind and the success of the naphthalene
experiments, it became apparent that a useful method for the
measurement of the conductivity of such materials might be
developed using a transient method with spherical geometry. It
was decided to pursue this idea further and make the development

of this method the subject of this thesis.



2. LITERATURE SURVEY

2.1 Sources of Information

In the search for physlical properties and detalils about

the existing methods for measuring the thermal conductivity, the

following reference books were used extensively:

(a)
(b)

(e)

(d)

(e)
(£)

(g)
(h)

(1)

International Critical Tables

Comprehensive Treatise on Inorganic and Theoretical
Chemistry, Mellor

Retrieval Guide to Thermophysical Properties
Research Literature, Y. S. Touloukian, Purdue Univ.
Handbook of Thermophysical Properties of Solid
Materials (5 volumes), McMillan Company, N. Y. 1961
A. Goldsmith, T. E. Waterman and H. J. Hirschorn,
Armour Research Foﬁndation

Chemical Abstracts

Properties of Materials at Low Temperature (Phase 1).
A Compendium, General Editor, Victor J. Johnson,
National Bureau of Standards, Cryogenic Engineering
Laboratory, Pergamon Press 1961

Encyclopedia of Chemical Technology, Thorpe
Handbook of Chemistry and Physics, 36th. edition,
1954-1955, Chemical Rubber Publishing Co.

Chemical Engineers Handbook, Perry, 4th edition.

2.2 Physical Properties of the Solids"

The following is a list of materials studied in this

-3
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investigation followed by a brief outline of their interesting
properties. Property details can be found in the Appendices.

(a) Naphthalene - Naphthalene is a crystalline solid

with isotropic and homogeneous structure. Many data for specific
heat and thermal conductivity exist in the literature. These
properties vary linearly with temperature; the specific heat
values 1lncrease with temperature while the conductivity decreases.
The data for naphthalene are numerous and appear reliable.

(b) Naphthol/® - Naphthol is a crystalline material
slightly soluble in water (0.074% part per 100 parts). A re-
liable relationship exists for the variation of the specific
heat in the temperature range 60°C. to 122°C. No values can be
found for temperatures below 60°C. For an extensive temperature
range, consistent conductivity values are available. The avail-
able data indicate that the conductivity decreases with temperature
and specific heat increases with temperature.

(¢) Paraffin Wax - A great number of different paraffin

waxes are avallable and the density and conductivity values are
necessarily a little scattered. However, a linear relationship
exists for the conductivity variation with temperature in the
case of amorphous paraffin wax. The conductivity decreases 1if
the temperature increases. Only one value for the specific heat
could be found.

(d) Bismuth -~ Bismuth has often a coarse crystalline
structure and the conductivity is dependent upon the direction

of heat conduction with respect to the crystal trigonal axis.



Among the metals, bismuth is one with very low conductivity.
However, its value is still much larger than the ones for in-
sulating materials or plastics. The density and specific heat
properties are well known. The specific heat varies very little
with temperature. The conductivity values are relatively
scattered and reliable data for conductivity versus temperature
does not seem to exist. Indications are that the conductivity
decreases with an increase of temperature.

(e) Ammonium nitrate - It 1s a crystalline material

very soluble in water and which undergoes five crystal structure
transformations in the temperature range 169.6°C. to -16°C.
The specific gravity changes at the same time by a noticeable
amount. Density and linear specific heat variation with temper-
ature are well known and values are consistent. Only one value
of thermal conductivity has been proposed in the literature and
this value is not representative and certainly much in error.
This point of error will be discussed in detail in Section 5.4.7.
(f) Ice - Ice is crystalline, has a very compact
structure and is usually isotropic. Density and specific heat
values of good reliability exist. On the other hand, the avail-
able conductivity values are scattered but a few sources in-
dicgte more consistent values. The specific heat increases
linearly with temperature but the conductivity decreases when the
temperature increases.

(g) Poly (Methyl Methacrylate) - One of the commercial

names 1s Lucite. This polymer 1is amorphous (or glassy) and its



properties are representative of the ones for this class of

~ materials. Its molecular weight 1s in the order of 100,000

and 1t 1s a low conductivity material. Relatively, the density
and specific heat data are consistent. As for many such
materials, the fabrication of the samples affect the physical
properties and consequently the conductivity values are
scattered. The specific heat and the conductivity increases

linearly in the temperature range studied (0°%C. to 75°%C.).

2.3 . Heat Conduction in Solids

Jakob (J1) reports that heat conduction is due to
longitudinal oscillations in solid. non-conductors of electricity,
and to the motion of electrons in metals. From a phenomeno-
logical point of view, it means the exchange of heat between
contiguous bodies or parts of a body which are at different
temperatures. The heat may be thought of as the kinetic energy
of motion (translational, rotational or vibrational) of ions or

molecules.

2.4 Fundamental Equation of Heat Conduction

The basic law of heat conduction originates from Biot

and 1is generally called Fourier's Law (J1). It is expressed as

q=- ka2 - (L)

where q 1s the heat flow rate, A the heat transfer area and

4T

P the gradient of temperature in the body. The proportionality

constant k is the thermal conductivity. For isotropic materials
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k is independent of direction. Carslaw and Jaeger (C2) explain
that strictly speaking, the conductivity depends upon temperature.
However, when the range of temperature is small, the change in

k may be neglected, and in the ordinary mathematical theory 1t

is assumed that the conductivity does not vary with temperature.
This assumption is also used in mathematical models which are
employed to determine thermal conductivity from measured temp-

erature variations in some test specimen.

2.5 Principles of Conductivity Measurement Methods

To keep the variation of the physical properties with
temperature negligible, the temperature differentials used 1n
the methods have to be as low as possible. Two types of heat
flow situations are generally used for estimating the conductivity:

(a) steady-state heat flow

(b) unsteady-state heat conduction
The most popular geometries are:

(a) rectangular (slab or block)

(b) ecylindrical

(c) spherical
Kingery and McQuarrie (K6) have summarized the concepts:

(a) Steady-state heat conduction - In static methods,

the sample is allowed to come to a steady state and the temperature
distribution measured to determine the thermal conductivity k
by an integrated form of equation (1).

(b) Unsteady-state heat conduction - In dynamic methods

the temperature is varied suddenly or periodically for one
/



portion of the sample and the temperature change with time 1s
measured to determine the diffusivity k/Cpf9 by a form of the
energy equation

w2 =% d (14)

k at

To derive equation (LA), k must be assumed constant.

In both types of methods, various specimen shapes may
be used but the Initial and boundary conditions necessary to
solve the mathematical relationships have to exist. In general,
the greatest difficulty in thermal conductivity measurement is
obtalning heat flow which coincides with that assumed in the

mathematical model.

2.5.1 Heat flow with rectangular and cyvlindrical geometries

(Steady and unsteady methods)

Rectangular geometry - For the case of a rectangular

sample, the heat flow through the sample must be in one direction
from one plane to the other, the temperature of each plane

being known. The guarded-hot-plate apparatus is the most
popular, though expensive, and it is used for all sort of mat-
erials. This method will be discussed in more detail in
Appendix 1 (Section Al.3.1).

Cylindrical geometry - The cylinder is used in two ways.

In a first method, heat is conducted radially and in the second

one the heat conduction is unidimensional and longitudinal.

2.5.2 Problems due to thq\geometries

Guard methods = In the rectangular and the cylindrical
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samples, the heat conduction can exist in more than one direction.
A method generally employed to insure that heat flows in a desired
path is to provide heat guards to maintain the isothermals in

the specimen and prevent extraneous heat flow. Different tech-
niques for doing it and methods used for particular cases are
reported in Appendix 1 (Section A.1.3.1). However, these guard
methods are never perfect and can only hope to reduce extraneous
heat flow to negligible proportion. Very careful design and

measurements are necessary.

Infinite sample - A method of insuring correct heat
flow without the use of heat guards is to employ a specimen
which completely surrounds the heat source. This may consist
of an infinite cylinder or slab, surrounding an infinite heat
source. Shapes approximating an infinite cylinder or slab are
satisfactory, if only the center section is employed (in a
manner equivalent to heat guards). But they are sometimes
difficult to fabricate.

Advantage of the spherical geometry - A method for

avoiding guards is the use of a hollow sphere with internal
heat generation. The sphere arrangement has two special ad=-
vantages (J1):
(1) The heat is conducted through the material to be
tested in the required direction (radially), without any loss.
(2) The thermal conductivity at different temperatures
can be found by a single experiment, 1f thermocouples are

arranged at more than two radial positions. This last point

™~
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applies to the case of steady state.
The symmetry of heat conduction is easily obtained in a

spherical body.

2.5.3 Problems associated with steady-state methods

A few particular problems exist with the use of steady-
state methods, specially for the case of low conductivity mat-
erials as plastic and other solid polymers, etc.

(a) Tt is necessary to evaluate the heat flux and two
temperatures. Usually elaborate techniques and apparatus are
required.

(b) With low conductivity materials, samples large
enough to permit direct measurement of the internal temperature
gradient have a thermal resistance so large that the heat flow
1s small, thus involving a lengthy measurement or the temperature
drop is excessive (J2).

(¢) If the required sample is too big, it may be
difficult to get homogeneity.

(d) With an apparatus such as the guarded-hot-plate,
reliable data are difficult to obtain with & small sample. Thin
samples which are normally used tend to warp (J2). It is often
difficult to get smooth and regular surfaces over a large area.
Good thermal contact is then difficult to achieve.

(e) The time to reach steady state can be very long and

is usually of the order of hours.

2.5.4 Advantage of the unsteady-state methods

Generally, thelr advantage is that a short time is
N
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sufficient for an experiment. Further, heat losses and gains
have less influence on the result the faster the temperature
changes. It should also be noted that the temperature change
at only one point in the tested body has to be recorded. The
major problems are:

(i) the accurate measurement of local temperature as a
function of time

(ii) the satisfaction experimentally of sultable bound-

ary conditions

2.5.5 ‘Unstezdy-state technigues with spherical geometry

Without extraneous heat loss, the heat conduction in a
sphere is radial if the boundary conditions have radial symmetry.

It has been mentioned that transient methods are re-
commended as rapid methods for determining the thermal conduc-
tivity of low conductivity material. It appears that Ayrton
and Perry (A2) were the only workers to use a transilent method
with spherical geometry to measure the thermal conductivity of
a low conductivity materials. They measured the temperature
at the center of a stone sphere as a function of time. The
mathematical solution used is discussed in Carslaw and Jaeger
(C2). The sphere is allowed to cool down by convection in a
medium at constant temperature. The measurements are taken only
after a certain time. The series converges rapidly and then,
only the first term remnains important thus giving a simple
mathematical form. Ayrton and Perry investigated only stone.

Carslaw and Jaeger (C2) suggebted that theoretically the measure-



ment of heat transferred from a sphere suddenly introduced in a
well-stirred fluid (assuming the temperature of the fluid con-
teined in a calorimeter being the same as the surface temperature
of the sphere) could be used to determine the diffusivity and

the conductivity. The variation of the fluid temperature would
be the measured value. Experimentally, with relatively small
spheres, the change could be difficult to measure. HMethods

using the temperature change in the sphere are preferable.

2.5.6 Prediction of thermal conductivity variation with temp-=

erature by a single transient heat conduction experiment

and using the aporopriate mathematical model

In the methods discussed above, assumptions of constant
conductivity and specific heat are made. Small temperature
ranges must be used and the whole range of temperatures of in-
terest 1s covered by carrying out a series of experiments at
different temperature levels. Recently, Dowty (D3) proposed
solutions to the translent heat conduction equation with variable
thermal conductivity. A finite-difference method was used to
generate solutions for problems of one and two dimenstions. The
one-dimensional solution was verified experimentally using a slab.

In thelr proposed transient technique for estimating the
diffusivity and thermal conductivity of low conductivity mat-
erials, Chung and Jackson (C5) used a cylinder and from measured
curves of log temperature versus time they calculated conductivity
values. If the conductivity 1s constant with temperature, the

curve should be a straight lige. However, there was a slight
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curvature and they assumed it was caused by a temperature effect.
They suggest that the calculations could be refined by taking

the slope of the tangent to the curve at a glven point to
evaluate the diffusivity. Thus the conductivity variation with
temperature could be predicted by doing a single experiment.

Nagler (N1) tried to measure conductivity variation
with temperature from a single experiment. His mathematical
model predicts the time-temperature curves for one-dimensional
heat conduction. For the finite-difference solution, linear
relationships for conductivity and specific heat must be pro-
vided. A two-constant iteration procedure is used until the
right conductivity relationship is determined. A least-squares
technique is used for matching the time-temperature curves with
linear thermal Qonductivities. The computer time used was con-
sidered excessive.

The literature survey has shown that there has been
only one investigation of the transient method with spherical
geometry to determine the thermal conductivity of a low con-
ductivity material. It has been mentioned in the Introduction
and 1t will now be reiterated that preliminary experiments have
indicated that the error in measuring the local temperature in
a sphere of low conductivity as a function of time 1is not ex-
cessive. It was felt that the transient method with spherical
geometry deserved further investigation. The further development
of thils method is the subject of this thesis.

In the following section the theory which is used to

develop the transient method with spherical geometry is presented.



3. THEORY AND DEVELOPMENT Or METHOD

The method proposed for measuring conductivity of low
conductivity solids is based on the prediction and measurement
of local temperatures in a sphere for transient conduction with
radial symmetry. TIwo methods are available for predicting local
temperatures under these conditions. These include a solution
for constant properties (G7) and a finite-difference solution
which was developed in this investigation. The solution for the
constant-property case and a brief development of the finite-

difference model follow.

3.1 Constant-Property Solution

Grdber (G7) presénts a solution to the heat conduction
in a solid sphere of radius.a , lnitially at uniform temperature

Ti which cools in a medium whose teuperature T, 1is constant and

uniform. Both the heat transfer coefficlent h at the surface
of the sphere and the properties of the material of the sphere
k, Cp, and/ , are constant. The series solution predicts the
temperature distribution within the sphere as a function of
time. For every Biot number, particular temperature profiles

can be predicted. When the Biot number hr becomes large enough,

k
a unique solution exists and this corresponds physically to the
case of constant surface temperature. More detezlils are ziven

in Appendix 2.

-1ll-
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3.2 Variable-Property Solution

The model assumes radial symmetry, constant density,
uniform initial temperature of the sphere and uniform constant
temperature of the fluid cooling or heating the solid. Linear
relationships express the variation of conductivity and specific
heat with temperature. However relationships of higher order
can also be used without any particular difficulty. The equation

to be solved is

pep s =2 ex? 21 (2)
dt r dr . or

Since k is temperature dependent it cannot be taken out of the

partial derivative term. ©No analytical solution to equation (2)

was found in the literature and a finite-difference model was

therefore developed. Bquation (2) is made dimensionless to ob-

taln more general solutions. Time is made dimensionless using

the relationship expressed by equation (3)

k0 t
r. 2 (3
CpO 7ﬂza
where k and Cp are expressed as:

K

kO + k1 T (%)

Cp

Cp0 + CplT (5)

The dimensionless radius and temperature are respectively

Ty - T
T, - Tw

R =

ol B ]
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Introducing the following symbols

4 = (T, - T,) (6)
Cpl T.
Cp2 = P- 1 (7)
CpO
Cpl Ta
Cp3 = 2=~ (8)
CpO
k1 T
k2 = = (9)
kO
3 = KL Td (10)
kO

equation (2) becomes:

O 6 (L+k+k3o) Dos

X (1 +Cp2 + Cp3 8) OR°
2 (1 + k2 + k3 ©) d ©
+
R (1 +Cp2 +Cp3 © OR
. i 28 (11)

(1 +Cp2 +Cp3 8) |OR

An explicit finite-difference technique can be used to
solve equation (11). The derivatives in equation (11l) were re-
placed by finite-difference expressions using Taylor's series
expansions up to the second order. The differentialsd¥, 8,

QR become the differencesAT, A6 and AR. The resulting
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finite-difference equation takes the form

0(I,2) = &1 (I) x® (I,L)
+ 42 (I) x6 (I +1,1)
+ 43 (I) x8 {I -1, 1)
+ Ak (I) x 024 v o+ 92(1 - i, 1)
-26(I+1,1) xo6(I-1,1) (12)
with
5
A1 (D) = 1.0 - AT (1 + k2 + k3 6(I, 1) (13)
(AR)® (1 + Cp2 + Cp3 (I, 1)
a2 (1) = (L + k2 + k3 (I, 1)) AT 1 . 1 (1l)
(L +Cp2 + Cp3 (I, 1)) AR L R(I) AR/
(1 + k2 + k3 6(I, 1)) (1 1 )
A3 (D) = > L~ Ax - (15)
(1 +Cp2 +Cp3 ©(I, 1)) AR | AR R(I) J
k3
A (1) = AT (16)

L (£>R)2 (1 + Cp2 + Cp3 o(I, 1))

I stands for the radial mesh points and 1 and 2 for the time in-
crement. The method computation is straight forward. If .the
temperatures are known at time 1 for zll mesh points along the
radius, the temperature can be estimated at time 2 (time 1 +AT
and for all points, by using equation (12) and the appropriate

coefficients (13 to 16).
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The accuracy of the finite-difference solution was
tested by varylng the appropriate step sizes and by comparing
predicted temperatures with those from an analytical solutlon
for constant properties. A summary of these tests are tabulated
in Tables 1 and 2.

TABLE 1
DIMONSIONLESS TEMPERATURE O - TIME  CURVES

WITH VARIATION OF THE TIME STEP

From finite-difference model with:

* k = 0.1388 - 0.0022T (°C) (B.T.U./hr.-ft.-°F.)
Cp = 0.6939 B.T.U./(1b.-°F.) or (cal./gr.-°C)
a = 0.021 ft.
h = 2100 B.T.U./(hr.—sq.ft.-oF)
T = 48.2°C. ‘
Tee = 7.0
AR = 0.05
A Y= 0.00001 A% = 0.000005
T R = 0.8 R = 0.9 R = 0.8 R = 0.9
o o e 0
0.010 0.040 0.438 0.040 0.438
0.020 0.231 0.641 0.231 0.641
0.030 0.396 0.729 0.396 0.729
0.040 0. 504 0.779 0. 504 0.779
0.050 0.579 0.813 0.579 0.813
0.060 0.635 0.838 0.635 0.838

%% The British system of units was adopted except for temperature
which is in ©C. The consistent units ft., 1b., hr., are always used
unless otherwise specified (see Nomenclature). ‘
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TABLE 2
CQMPARISON F THE SERIRS SOLUTION WITH FINITE-DIFFERINCE SOLUTIONS

FOR RADIAL MESH OF 21 AND 41 POINTS RESPICTIVELY WHEN RADIAL

SYMIETRY EXISTS

AT = 0.00001, 10

Constant physical propert.co
R = 0.0 R =0.8
Series | A K=.05 AR=,025 | Series AR=.05 AR=,025

T 6 6 o 6 & o
0.10 0 0 0 0.194% | 0.198 0.169
0.020 0 0 0 0.308 0.309 0.308
0.030| 0.002 0.002 0.002 0.515 0.512 0.515
0.0k 0.011 0.012 0.011 0.597 0.594% 0.597
0.045| 0.020 0.021 .| 0.629 0.629
0.050| 0.033 | 0.037 - 0.657 | 0.654

These tests indicate that the finite-difference model is
sufficiently accurate for the purpose of interpreting experimental
data using the transient method with spherical geometry. A

time increment equal to 0.00001 and a radial increment of 0.05
have been used for all further calculations using the finite-

difference method.

3.3 Transient Heat Flow with Negligible Internzal Resistance

For the application of the constant-property and variable-
nroperty models a Knowledge of the heat transfer coefficient for

the continuous phase 1s required. The development which follows



will lead to a sultable method for experimentally determining
this heat transfer coefficilent.

4Lecording to Kreith (X7), when the thermal conductivity
of a system 1s very high, the internal resistance 1s so small
that the temperature within the system is substantially uniform
at any instant. This simplification is justified when the ex-
ternal thermal resistance controls the heat transfer process.

The error introduced by the simplification can be neglected

when the Biot number (Bi EE) is < 0.3. Assuming that the
kK

physical properties are constant, the heat transfer coefficient
h 1s uniform around the sphere and the temperature is uniform

in the sphere, a simple energy balance gives:

-Cp/VdT=hA(T-Tw)-dt (17)
Solving equation (17) with boundary condition that at t = 0,

T = T,, equation (18) is obtained:

T-T, h A
in = t (18)

Ty - To Cp7ﬂV

T - To . .
& plot of ————Z_. VvVersus time on semi~log graph paper gives

T, - T,

i
. . . h A )
a straight line with a slope equal t0 e « If an experiment
Cp70'V

can be set up to meet the prescribed conditions for the derivation
of equation (17), an easy method of measuring the heat transfer
coefficlent around a sphere is obvious. The transient temperature

1s measured during cooling or heating of a high conductivity
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sphere (of copper for example) 1n a convective medium. These
data permit the construction of the type of curve mentioned
above. The slope of the expected straight line is measured

and from it the heat transfer coefficient is calculated.

3.% Development of the Method

The method for measuring the thermal conductivity of a
poor conductor using spherical geometry and a transient measure-
ment can be sumnarized in the following manner. The transient
temperature of a sphere placed suddenly in a highly convective
medium is measured and recorded continuously. For the same
physical conditions, the series or the finite-difference solution
predicvs the dimensionless temperature change with time. The
matching of the measured and predicted curves gives the

diffusivity and the conductivity values by applying the relation-
gt

) Cp7ﬂ a®

3.4.1 Convective medium

The solution to the conduction equation indicates that
wnen the heat transfer coefficient h and the Bilot number are
large enough, the predicted temperature becomes independent of
these parameters and there is uniform heat transfer around the
sphere. These condltions exist for spheres as small as 0.5"D.
and with conductivity less than 0.25 if h is 2000 or larger.
The measurement of the transient temperature of a high conductivity

sphere (copper for example) used in conjunction with the model

presented in Section 3.3 indicates the averzage h existing in the
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chosen convective medium. A well-stirred liquid in & bath or a
turbulent jet flow impinging on the sphere provides the required

h.

3.4%.2 Transient temperzture-time curve

A thermocouple is positioned accurately in the sphere
of material to be tested. At time zero, the sphere is placed
in the chosen highly convective field and the temperature change
is recorded. From these data, the dimensionless temperature-
actual time curve is estimated. The series or the finite-difference
solution 1s used to predict the dimensionless form of the temp-

erature-time curve.

3.%.3 Thermnal conductivitvy determinstion

The conductivity can be determined by assuming the con-
ductivity-temperature relationship and through a trial-and-error
procedure match the measured énd predicted curves (finite-
difference model). This method can determine accurately the
variation of conductivity with temperature from a single
transient measurement. However, a very simple approach exlsts
and it requires only the use of the unique temperature-time curve
predicted by the series solution for the case of high Biot
number (> 300).

I'rom the dimensionless predicted curves, time value
corresponding to different temperatures are estimated. The
measured curve gives the real time corresponding to the temp-

eratures. By matching dimensionless and actual time values and
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using at every point the physical properties corresponding to

dimensional temperatures, the conductivity data are determined.

The matching i1s done by using the relationship

k t cn(T) 2
e ET ey = 2 £
Cp7ﬂ al

The conductivity determination scheme is illustrated in

Figure 1.
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3.4.4 Workine range and discussion

The transient cooling or heating experiment gilves
dimensionless temperature-time curves which are asymptotic to
the temperature limits at ©® = 0 and 1.0 and have an "35" shape.

In the © value range O to 0.2 and 0.85 to 1.0, a small change

in temperature corresponds to a large change of ¥ . Consequently,
these portions of the curves are not suitable for determining
conductivity values (see Section 5.2.2). The method requires a
knowledge of specific heat data 1f the thermal conductivity is

to be measured. On the other hand, 1f the conductlvity 1s known
the method can be used to determine the specific heat. By this
metnod, varlation of conductivity with temperature is determined
but it is obvious that a more restricted approach of determining
conductivity at the average temperature is possible.

When the conductivity has been determined; a simple com=-
paerison of this vaiue with the one corresponding to the Biot
number (satlsfactory range: > 150) used to predict the dimension-
less temperature~time curve will 1ndicate whether or not the
conductivity value 1s in the assumed range. If not, a trial-and-
error procedure can still lead to the determination of conductivity
values within an accuracy limited only by experimental errors.
The conductivity is assumed and a Blot number estimated. Using
the corresponding series solutlon curve, k values are determined.
These new values are better and can be used for estimating a new
Biot number. Thus the trial~-and~error procedure is esteblished

(see Section 5.4.6.1 and ALppendix 13).



b, APPARATUS AND EXPERIMENTAL PROCEDURILS

%.1 ZEguipment

An enumeration of pleces of equipment used and their
main characteristics follows:
4.1.1 Spheres

The spheres used were:

- Bronze spheres 0.5" and 1.0"D. from commercial suppliers.

- Cast Lucite spheres 0.5 and 0.625"D. from commercilal
suppliers.

- Nephthalene, naphthol/® ., bismuth, ice, ammoniua
nitrate, paraffin wax and Poly (methyl methacrylate) or Lucite
molded 0.5YD. spheres.

~ 2"D. naphthalene hemisphere contained in a 0.015"
hemispherical copper plate.

Thermocouples were imbedded 1n these spheres which were
fixed to supports. The supports were either 0.245"D. glass or

0.097"D., stainless steel 20" longz tubes.

4,1.2 Thermocouples

Chromel~alumel thermocouples with fiberglass-teflon
insulation were imbedded in the test spheres. The junction was
spot-welded ( 0.010") and the wire diameter was 0.003" and in
one case 0.008",

%.1.3 Beih
Two baths were used, one for bringing the sphere to its

-25-
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initial uniform temperature and the other containing the highly
convective medium. The latter was a 4000 cc. insulated beaker
fitted with a laboratory stirrer. The former was either a

4000 cc. Dewer . lask for low temperatures or any large bath with

a Haake thermocontrol unit whea temperatures > lOoC. were required.
Heake units were used to control temperatures of fluids to with=-

in £0.1°C. The fluid used was normally water but pentane was

used at low temperature and hydrocarbon oil (Varsol) with test

spheres soluble in water.

4.1.4 Recorder

The transient temperatures in the test spheres were
measured by a thermocouple and continuously recorded. For very
fast temperature changes, a Honeywell 906 Visicorder was used.

This photographic type of oscillograph offers direct
writing convenlence combined with high sensitivity. The trace
velocity exceeds 10,000 inches per second (equivalent to 2000
cycles per second sine wave at 1.6 inch peak-to-peak amplitude).
Its scale is linear and so is the millivolt-temperature curve
for chromel-alumel thermocouples in the range -40 to +750C.
Therefore, a linear scale 1s determined by simply establishing
two points of the scale. 4n ordinary single point Honeywell re-

corder was &lsoO used occasionally.

4.1.5 Jet flow znd nozzle

Jet flow has been created by using a 0.25" D. nozzle

giving an outlet fluld velocity of 870 feet per minute and a
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total flow rate of 0.3 cu. ft./min. in an open atmosphere.

4.1.6 Diszgrsnm
Schematic dlagrams shown in Figures 2 and 3 show the

arrangezent ol tTne equipment.

4.2 BExperimental Procedures

L.2.1

Tais section will provide a brief description of the
experimental procedure used. The experimental lavestigation
consisted of three main parts. These are:

() c¢hoosing and evaluating a convective medium

(b) febricating spheres of the test material

(¢) aeasuring and recording the temperature response
when test speciments are placed in a convective medium and

interpreting the data to obtain thermal conductivity values.

4.2.2 Determinastion of the heat transfer coefficient h

Bath volume, type and speed of stirrer, fluld, sphere
dlsmeters, temperature control of fluid methods are not charac-
teristics of the method. However, the method requires that the
sphere be placed in a uniform and known convective medium. &s
mentlioned in the theory section, at high h values for a sphere
of low conductivity, the heat transfers with radial symmetry.
Hence, it is only necessary to determine, for the spheres to be
tested, physical conditions which provide the desired Biot
number. The three methods investigated were:

(a) DNucleate boiling
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FIGURE 2
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Fig. 2 (continued)
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(b) Mixing
(¢) Jet flow

(a) Nucleaste boiling - When nucleateboiling exists at

the surface of a body, the heat transfer coefficient can be very

o5

igh. ZIZIxperiments were made to produce bolling by plungingz hot
bronze spheres into cold baths of pentene or water. No nucleate
bolling occurred because the sphere heat content and temperaturse
were too low. Thils method showed no promise and further work
was discontinued.

(b) Hixing - A well-stirred fluid in a bath is the
second medium which has been ilnvestigated with 1"D. and 0.5"D.
comaercial bronze spheres. Heat transfer coefficlents were
measured and 1t was found that such a simple experimental set-
up provides the desired heat transfer. Because 1t 1s simple
and convenlent, a stirred fluid was used in all cases to create
the convective medium necessary in the determination of con-
ductivity with spheres.

(¢) Jet flow - 4 highly turbulent jet flow 1is another
medium which has been considered. Heat transfer experiments
were performed to determine whether a jet of water impinging on
a sphere of low conductlvity would provide a heatl transfer
coefficient of sultable magnitude. The results were compared
with those found using the stirred fluid and it was concluded

that a turbulent Jjet provicded an adequate Biot number.

L.,2.2.1 Temperature messuremnent

The bronze sphere with a thermocouple ilmbedded in and
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fixed to a sunport is first kept in a constant temperature bath
at T; until i{s temperzture becomes uniform and constant. The

other constant temperature bath 1s kept at temperature T, and

the fluid is continuously stirred. At time zero, the spaere is
quickly moved and placed over the impeller blades in the bath
at temperature T . Simultaneously, the motor driving the re-
cording chert papervis sturted. However, in the case of the
bronze sphere the temperature chenge 1ls so sudden and the heat
transfer takes place in such a short time (< 3 sec.), that it
is better to have the driving motor on before moving the sphere.
The point where there 1s a sudden change in the slope of the
recorded curve indicates zero time for the experiment. & typical
run with a 0.5"D. Lucite sphere requires approximately 150
seconds. The tTime necessary to move the sphere from one bath to
the other is less than 0.5 éeconds. The transient temperature
profile is recorded continuously until 90 to 95% of the possible
temperature change has taken place. When possible, the ex-
periment is repeated many times with the sphere to establish
average values.

Cooling or heating experiments can be done although the
cooling type 1s more convenient with the crude eqguipment used
in the present work.

Thus the temperature-time history is recorded.

L.2.2.2 Interpretztion of data

The temperature-time record is plotted on semi-log
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graph paper and the slope of the straight line obtained gives
the average heat transfer coefficilent as indicated in Section

ha e
. Heat transfer coefficients

3.3. The slope 1s equal to —
C‘p7ﬂV

o 1900 and more were measured ané this allowed the use of

spheres having a dizmeter of 0.4%5" and at least up to 0.625'"D.

4.2.3 Sphere fabrication

Two tyopes. of spheres were used:
(a) Cast spheres supplled commercially

(b) Molded spheres made for this investigation

4L.2.3.1 Cast spheres

If ready-made spheresare used, the thermocouples are
positioned carefully in a drilled hole and the empty space 1s
filled with an appropriate filler. With Lucite spheres for
example, the hole is first filled with the monomer (methyl
methacrylate) and a solution of benzoyl peroxide in dimethyl-
pathalate. The drilled hole passes through the center of the
sphere and 1s at least egquel in length to the sphere radius.
The first drilled hole has a diameter slightly larger than that
of the thermocouple Junction. A second hole of slightly larger
diameter than the insulated wires is drilled along the same
radius, but to a smaller depth. Thus the junction can be
positioned at the bottom of the smaller hole and the accuracy
of thils positioning is within the jJjunction size. The thermocouple
with z bare Jjunction 1s pushed carefully into the hole down to

the bottom. Care is teaken in filling the hole to avoid entrain-
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dent of air bubbles which might cause thermal resistecnce at the
junction and poor contact. Torborg and Janssen (J2) reported
that they had to take the same precaution while making epoxy
cylinders.

The tnermocouple Junction is placed at the center or
near the center of the test sphere (normally R < 0.5) because
the teumperature gradients are smaller than near the surface and
therefore, positioning errors are much less critical (see

Section 5.2.6).

L.2.3.2 Molded soheres

Two symaetrical molds were used to form 0.5"D. spheres.
One of these nad the particularity of forming a sphere with =
cylindrical neck of 0.25" x.25". The function of the neck was
to reduce heat conduction slong. the support from the sphere. It
avolds the direct contact between the support and the sphere.
The internal halves of the molds were grooved to reproduce one
nalf of the sphere and the support, and were allowing an easy
way of positioning the support and thermocouple. The matericzl
to be tested was poured into the mold cavity very slowly to
avold moving the junction. At that stage, the naterial was
liquid and 1t was Llmportent to make sure that the mold was com-
pletely filled.

Nephthalene, naphthol /& , ammonium nitrate, paraffin
wex and blsmuth liguild materials were allowed to cool down
siowly. & thin film of sprayed teflon or mineral oil on the

internal wall of the mold facilitated the liberation of spheres.
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Ice spheres were made by freezing water and Lucite ones by
polymerizing the monocmer directly in the mold.
After the test spheres are fabricated end the proper

onvective medium 1s chosen, the conductlviiy determination

(¢}

becomes the next step.

L,2.% Conductivity determination

Transient teaperature change in the sphere of materisal
to be tested is deasured continuously after having placed the
test sphere in a highly convectlve medlium. Stirring was used
to provide adequate mixing and the experimental procedure 1s
the same as described in Section 4.2.2.1. The recorded signals
are translated into temperature-time curves. Several repeats
are made to check reproducibllity and to provide an average
tenperature~time record for a particular sphere. I necessary,
the readings are corrected for the calibration deviation.

Dimensionless temperatures are calculated and then
interpreted in terms of & predicted temperature-time curve
corresponding to the position of the thermocouple junction. The
conductivity values at dlfferent temperatures are determined as
described in Section 3.4.3. Corresponding to temperatures in

ange studied, values of and t are determined and k cal-

2
(7 = Cp (T) \/ﬂ a
t

A linear regression of the date gives the conductivity-temperature

relationship for the material tested.
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4.3 Summerv of the Woric and Relsted Asvects Considered

a4 suamary 1s given herc of the work done, the reasons
o2 doing 1t ané of the investigatlions and aspects consicdered.
The results section which follows discusses these polnts.

(a) ZSxploratory work to determine a suitable convective

mnedium.

(1) XNucleate boiling - unsuccessful

(2)  Jet flow suitable

(3) iixing sultable and convenlent to use
(b) Transient conduction with spheres.

(1) Spheres of naphthalene, naphthol B2 , bismuth,
paraffin waxX and 1lce were used to determine the temperature
measureaent accuracy and to verify that 1t 1s possible to deter-
zine the conductivity of low conductivity materials by the pro-
posed transient method using spheres.

(2) Spheres of ammonium nitrate were tested be-
cause of their connection with the prilling operation.

(3) Spheres of Luclite were studied in the greatest
detail.

(¢) Varizbles considered.
In conjunction with the different conduction experiments, a few
aspects have been studied:

(1) Influence of the support and prediction of
its influence by using the finlte-difference solution with angular
conduction.

(2) Reproducibility of the measured profiles for

the same sphere.



-35-

(3) Differeance between results with cooling or
neating experiments and influence on the k values determined.
{4) 2Pcsitioning error.
(5) ... luence of the difference (Ti - T, ) and
of the temperature level on the Kk values determined.
(6) Influence of the thermocouple size. Comparison
between 0.008 and 0.003"D. thermocouples.
(@) Error introduced in deteraining k values by using
the series solution profile.
(e) Possibility of using a hemisphere instead of =

sphere zs the geometry for the tested body.



Preliminary experiments to produce boiling to obtain
‘ze h values were unsuccessful and further work was discon-
tinued. Results with mixing and jet flow were successful and

these are now reported.

N

5.1.1 Mixinz flow

The largest values for h were obtzined by positioning
the impeller & in. below the surface of the liquid and the sphere

laomediately sabove the impeller. Accurate positioning was not

]

important. leat transfer coefficients of 1900 or more were

(

Getermined for such a convective fileld with a bronze sphere of
0.5"0,., With a 1"D. svhere, the h value 1s only 2/3 of the

& 9
values obtained with the C.5"D. sphere. This indicated that zan

h

uoner limit existed to the size of sphere which could be used

ct

Zor such & study. The temperature-{time records when plotted on

-

m3 - o o
Seli-l1l0g Z

joy

]
©

ph paper gave stiralght lines except for a short

o

(o)

initial period. This deviation 1s negliglble. From 20 runs,

)

an zverage n of 2050 was obtained (see Lppendix ).

=
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]
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o
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@
ct

erninztion of heat transfer coefficlents
with jet flow have been made. However, experiments with the
same sphere wnd temperature conditions using both, mixing and
jet flow, indicated thet the heat transfer is the same and

-36-
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therefore h for Jjet flow must have been approxinmately egual to
2000. It might heve been zuch greater than 2000, but The heat
cransfer rate under these convective conditions 1s very in-
seasitive to the value of h. A4 unlgue curve Gescribes the

4+ 1 Y ad3 Ay 3 1\ — 6 %-51/3 s
temperature chanze. Thne relationship Nu = 0.0 Re® Pr pre-
dicts an approximative h value of 2750. Table 3 presents a
comparison between dzta obtained from alxing and jet flow. The

agrecuent 1s excellent.

m'f—‘,f YT ﬁ"';":_\‘: TN TI™ A Uy T :—\:’—\ ] 7z
TOM2oRATURS 2RIFPITDES FOR O, 5“D . LUCITE SPLmAE S-125

time, sec. O-Mixing Flow O-Jet Flow
o) 1.00 1.00
15 0.993 0.991
30 0.875 0.865
40 0.728 0.719
50 0.575 0.578
65 0.399 0.401
75 0.30% 0.312

5.2 Vearisbles znd Other LAsvects Considerad

5.2.1

Meny different conditions existed in the eXperiments
and sphere detalls which nave or mignt have had a certain in-
fluence on tne deteraination of conductivity coefficients. These
points will be reported and discussed briefly in this section.

They will help to answer some of the objections zad guestions
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[ m~ . - = - 3 A » —_ N FRRIN
same cpherce, neasurements are well resroduced. Lt 6 = 0, the
IS & 9

PR . 3 e R} T p -~ ~ 3 A [P - .
sample veriance is automallcally zero ana the saxne thing neppens

when © becon 1.0. The conficdence limits-time curve L1s in-~
creasing raoldly when temperature starts changing 1n the sjhere
ant the gradlent 1s high. 4 nigh velue 1s reached and then,
the values of ““e confidence limits decrease and finally level
ofT waen temperature gradient cecrezses.

5.2.4 Coolinz saé hesting exneriments

Most experliments consisted in coolingz the spheres buv
soa¢ heating ones were done with ice, naphthalene, Lucite and
nzphthol. No particular trend in measured conductivity values
iznt be attributed to the type of heat transfer experiments
was noticed. Furthermore, for the same sphere, coocling and
heatling produced comparable dimensionless prolilles andé con-
ductivity values. This is illustrated in Table 5 for a Lucite

sphere.

Eal
[

5.2.5 Infiuence of the (Ti - T, ) difference and the temperature

level

These two varilables seem to have no pariicular influence
on the dimensionless temperature prollles and on the determined
concuctivity values. As should be expected, when & small Temp-

s = T . ) exists, the variation of concuctivi
1 o0 ]

(@)
0]
—~

ercn

()

erature aif

values with temperature is small. The varlation of the specific
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71.9

Cooling

0.103
0.39%
0.722
0.796
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23.0 0.0901
30.h
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z%.0
30.8
%0.2

ivwnortant effect in thel respec
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)
CONDUCT: RMINLLIUUS FOR DIFFDRUNT (T, -
S A ‘L 353 nrii {v] _J:JIYVTZJTJS
(a) Sphere Lucite)
Thernoc 00sitil R =0.3
|Zxperiments| S 1 0-2-5, 8 0-2-1, 4 5-2G-G, 12
T, 34,7 26,8 26.5
Too 10.2 18.25 20.3
AT 24,5 8.6 6.3
ic T k T Kk T Kk
0.0962| 26.65 | 0.0934|26.2 | 0.0872{25.3 {0.0981
0.0988| 2%.28 | 0,0930| 24.11 | 0.0902|2%.17| 0.0538
22.0 |0.09%4| 22.55 | 0.0909(23.6 | 0.0940
20.3 10.0938/20.3 | 0.0908
19.% |0.0938/19.8 | 0.0893
(b) Sphere S-583 (Lucite)
R = 0.6
Experiments S-18-1, 6 S-23-1, 2 S-29-1, 4 $-29-5, 3
T4 71.8 36.1 26.6
Teo 12 8.7 18.8
AT 59.8 27 4 7.8
T k T k T k T K
0.0985 | 29.210.10% 29.2 10.109
27.610.0981 | 27.810.103 27.15{0.108
26.410,0967 | 26.2[0.103 25.4 10,106 | 25.6/0.102
24,6 ]0.094%8 | 24,7/0.103 22,8 10,105 | 23.8/0.0961
22.710.0595 22.35/0.10% | 22.3/0.0932
21.25/0.102 | 21.1/0.0525




43—

5.2.6 Positioninz error

Differences between temperature-time curves predicted
by series solution are much less 1lmportant for positions near
the center than o0 . sinions newr -~ surface. These profiles
are used to determine coaducv, - "nis means thet for
a similar error 1in the assumed position, the .. rors introduced
into the conductivity determinations are much larger if the
thermocouple junction 1s measuring temperasture changes near the
surface. Therefore, to minimize the positioning error 1t is
necessary to place the Jjunction zs close as possible to the
center of the sphere. In the present series of experimeants, the
positioning error is considered to be less then the junction
size that is to say, less than 0.012 to 0.015". Therefore,
the junction position is within R I 0.04. Table 7 presents the
different errors caused on the determination of k values for
same position error but at different level of R. The optimun

position is at R = 0.0.

5.2.7 Influence of the thermocouple size on tempersture

measurements

An attempt was made fo estimate the Iinfluence of the
thermocouple slze. Thermocouples, 0.003"D. and 0.008"D, were
tested in cast Luclte spheres of the same dilameter and the
temperature profiles compared. At a high temperature difference

(Ti - T, ) of zpproximately 6OOC., the sphere with the larger

thermocouple indicated a faster temperature change at the be-



o DITM oA AT T MIAT D70, TR AT
PLLRC}LI\ Lgll D.‘Ei1 h ijJA.L“,‘;A-\JAjJS W)

ThITMTLANI TN T
DETOHAMINGD

k VALUES

CLUSED 3BY 5350 " I'G THL JRONG POSITION
Sphere S-1c0 (Lucite)
Experiments D-18-1, 5
T i K %
R = 0.0 ] =0.1 difference
L7.2 0.0890 0.0863 4,2
27.3 0.0865 0.0848 2.0
16.9 0.0855 0.0850 0.6
K K
] =0.0 R = 0.2
47,2 0.0890 0.0832 6.5
27.3 0.0865 0.0830 L.0
16.9 0.0855 0.0846 1.0
Sphere S-585 (Lucite)
Experiments S-2k-1, L
K K
R = 0.3 R = 0.k
56.8 0.0926 0.0798 13.8
b1.b 0.0952 0.0845 11l.2
30.4 0.0915 0.0832 9.1
23.0 0.0901 0.0837 7.1
Sphere 5-583 (Lucite)
Zxperiments S-18-1, 6
k k
R =0.6 R =0.77
S5k 0.118% 0.0747 63
Ly, 0 0.1046 0.0574% 55
30.2 0.1001 0.04k6 Ly, 6
254 0.0955 0.034%9 36.6

lilm
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ginning and a slower one in the latter part of the experiments.

(Results are given in Appendix 7). When (T, - T, ) 1is less than

lOOC., the dimensionless teuperasture is always slightly greater
in the sphere with the larger thermocouple. This seems to in-
dlicate that heat is conducted out along the wire of larger
diameter at a faster rate. Perhaps the size difference of the
junctions and thermal contact varlation cause this difference.
On the other hand, this explanation does not hold for the be-

haviour at high (T; - T, ) values. An explanation of this be-

haviour is not available. Jeasured temperature-time curves

using thermocouples of 0.008"D. and 0.003"D. were insignificently
different. To ensure sultable accuracy, all experiments were
performed with a 0.003"D. thermocouple. Fine thermocouples have
small heat capacity which allows a better response. Also, the
possible conduction error is minimized and the small junction

allows more preclse polnt measurements.

5.2.8 Influence of the sphere support

The cross-sectional areas of the glass and stainless steel
supports used are respectively equivalent to 6 and 1% of a 0.5"D.
sphere surface. It might be expected that the prescence of a
support decreases the turbulence around the sphere and consequent-
ly the heat transfer coefficient, or that because of the missing
area for convective heat transfer, the measured curves are
affected. The use of glass and stainless steel supports and of

spheres with necks to prevent possible conduction along the
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supports did not seem to be responsible for any particular
difference. If any, it was within the experimental variations.

It is possible to predict thelr effects by mathematical
solutions. By using the finite-difference model presented 1n
Section 3.2, but assuming constant physical properties and
considering axial symmetry, temperature-time curves can be
precdicted for the case of angular variation of the heat transfer
coefficient. The computation was done using 21 radial and 31
angular mesh points. The details are given in Appendix 8.
Generally speaking, these computations with non-symmetrical
heat transfer coefficients indicate that because of the low con-
duction rates within spheres of low conductivity, the energy
conditions in one half of the sphere do not affect very much
The cnes in the other half. They also show that when the heat
transfer coefficients are high (> 1900), their variations around
the sphere surface do not affect the temperature conditions
inside.

Using a heat transfer coefficient of zero on the sphere
surrace in contact with the support and a variable coefficient
over the remaining surface (see Table 8), finite-difference
solutions indicated that the temperature variation with time i1n
the half portion of the sphere opposite to the support did not
change significantly from the case of heat transfer with radial
symmetry (h > 1900). This explains why the support influence 1is
negligible 1if the thermocouple junction is positioned in the half

of the sphere opposite to the sunport. Table 8 shows the heat



-47-

transfer coefficients used for the computation.

VARIABLE HPAT TRANSFIR COEBFFICIENTS AROUND THE SPHERE

USED TO SIMULATE THE INFLUNNCE OF SUPPORT
l

|
ANGLE h 523393:‘—'*11
degrees l | =18°
; - Pt
6 0 7
12 0 —7
18 0 )
2l 10
30 25
36 50
42 100
48 500
5kt 1000
60 to 180 2000

5.2.9 Temperzture measurement accuracy

The deteraination of temperature measurement accuracy
requires the comparison of measured profiles with predicted
solutions. This comparison assumes that the necessary physical
properties for predicting are known and that corresponding sim-
ilar conditions can be reproduced experimentally. In making
spheres many causes of error can be introduced. A few include
porosity, non-homogenelty, imperfect sphericity. They are such

that they can easily affect the sphere temperature history. Their
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importance is difficult to evaluate. Therefore, the measure-
ments might be accurate though different from the predicted
values. The actual temperature inaccuracies can be caused by,
among other things, thermal resistance at the thermocouple
Junction, by conduction in the wires and by the thermocouple
response to transient temperature changes. The above discussion
indicates why 1t has been impossible to determine exactly the
temperature mea;urement accuracy. But 1t is possible to esti-
mate the total temperature errors and to determine a maximum
tenperature error.

Temperature measureaments obtained from the naphthalene
sphere deviate less than 10% from the predicted values even at

15°¢. temperature level. A few data are presented in Table 9.

TABLE 9
TEMPERATURE ERRIOR IN NAPHTHALENE SPHERE
Measured temperature Predicted temperature % deviation

7. 7%,
49,2 50.1 1.9
43,2 46.0 6.5
36.2 139.0 7.1
31.1 32.5 bk
16.9 15.5 9.2

Although relatively important, the deviation from pre-
dicted values for naphthalene is still within an acceptable

engineering accuracy. This fact and the better accuracy obtained
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for the conductivity values were the prime movers to extend
the project of investigating the transient method proposed in
this work.

Results with spheres of other materials, naphthol and
ice for example, indicate comparable and even better accuracy
than the ones with naphthalene spheres. Afterwards, the numerous
data measured with Lucite spheres were used to assess the temp-
erature measuremnent accuracy. An average value of approximately
0.0972 for Lucite conductivity in the range O to 75°C. was ob-
tained. The conductivity values determined vary from this
average by less than 12%. The many data available, their re-
1iability and a comparison with the values proposed in the
literature give confidence in the results obtained (see Section
5.4.8).

If a conductivity value of 0.1165 is assumed as the
correct one for Lucite, temperature-time curves can be predicted.
By comparing the measured curves with the predicted ones, hypo-
thetical temperature errors can be calculated. The errors are
hypothetical because the correctness of 0.1165 is only an
assumption. Such a comparison was made (see Appendix 9). The
largest percentage temperature errors for each sphere were used
to evaluate the effect of conductivity errors on these temperature
errors. Also, the conductivity value for each sphere dilffering
most from 0.0972 was used to estimate the above conductivity
errors. These conductivity errors were expressed in percentages

based on 0.0972. The ratios of these percentages and the temp-
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erature percentage errors were then calculated. These ratios
are always larger than one and usually rather close to 2.0, A
ratio of one means that when the determined conductivity differs
from .1165 by 10%, the temperature error estimation is 103%.

However, the ratios are around 2 or more and the values
0.1165 differs from 0.0972 by 20%. Thus a temperature error of
approximately 10% exists when the conductivity error is 20%.

The determined conductivity values vary from 0.0972 by less than
12%. Therefore, using the above reasoning, the overall error

in temperature measurement with Lucite spheres 1s estimated to
be less than 6%.

It is clear from the above discussions that the temp-
erature measurements have an accuracy of at least 10% and most
probably 5%. This is acceptable for most engineering purposes.
This conclusion about the accuracy of temperature measurement is
substantiated by experiments with the four materials naphthalene,

naphthol/% , lce, and Lucite.

5.3 Solutions for Cases of Temperature Dependent Physical

Properties

5.3.1

By the appropriate finite-difference method, temperature
profiles can be predicted for the case of materials having con-
ductivity and specific heat varying with temperature. Predicted
profiles for naphthalene, naphthol or ice, when compared to the
actuazl ones allowed the determination of temperature measurement

errors. But hypothetical cases can be set up and used to deter=
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mine theoreticnlly how much error is introduced by the use of
series solution temperature-time curves for estimating con-
ductivity coefficients from experimental data. This 1s ex-

plained 1n the next section.

5¢3.2 Comparison between finite-difference and series solutions

Cases corrcesponding to real or hypothetical cases have
been investigated. Temperature-time curves were predicted by
using the finite-difference method and proposed conductivity and
specific heat-temperature relationships. From dimensionless time
values, actual time ones were estimated, through t = Cp07ﬂ az'Yf/kO.
Thus a hypothetical profile ©-actual time was determined and
could be used in the same way assimilar ones from experiments, to
determine the conductivity values using theseries solution
temperature-time curves (see Section 3.4.3). At that point, the
predicted and originally proposed values were compared and the
difference existing attributed to the use of series solution
curves. It also reflects the inaccuracies and the scatter in-
troduced by personal errors in the curve reading. From these
investigations it results that:

(a) When the ratio k/Cp remalns constant over the
temperature range, the use of series solution introduces no
error. It is normal because then, the diffusivity term 1is
essentially constant.

(b) When the ratio k/Cp varies but both, k and Cp in-

creases with temperature, the finite-difference and series
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solutions are very similar and the values predicted by the
series model are negligibly varying from actual ones. This
holds true for a good range since variations of %/Cp up to
30% introduced no significant deviation (see Table A.10.2 in
Lppendix 10).

(¢) When the ratio k/Cp varies with temperature but
the temperature coefficients of k and Cp are of opposite sign,
tne serilies solutlon dimensionless temperature-time curve is
different {rom the one predicted by the finite~difference model.
Usually, the spec.flc heat increases while the conductivity
decreases with temperature as 1t 1s the case for most crystalline
material (J1). Some computed cases are presented in Tables 10,
11, 12, 13, 14, 15. Conductivity values used in the finite-

difference model are the proposed ones (kp) and the ones deter-

mined by use of serles solution temperature-time curves (Biot
= 460 and & = 0.5") are called k,. Figure 2Bmakes the com-

parlson easier.

Discussion: - Cases 1, 2, 3 and 4 indicate that the deviations

are not significantly affected by the temperature level, the

temperature dilference (Ti - T, ), by the level of values k/Cp

and by the fact of considering cooling or heating. The varisation
of %/Cp in the range 50 to 20°C. is either 14} or 5%. These

ratios are of the order of 0.5 or 0.2 and absolute (Ti - T, )

valties range from 10 to 50°C. These observations do not differ

from what has been found experimentally.



TABLES 10 TO 15

COMPLRISON BETWEEN VALULS DLTERMINED BY USING SERIES

SQLUTION AND VALUES USED IN THE FINITE-DIFFERENCE MODEL

WITH VARIATION OF PHYSICAL PROPERTIES

TLBLE 10
CASE 1 (NAPHTHOL)

R = 0.0
T. = 66°C.
i
Tee = 27°C.
}::p = 0,147 - 0.000075 T
Cp = 0.252 + 0.00128 T
KC = 0.1288 + 0.00026 T
at 50°C, %/Cp = 0.455
o Variation of 14% based on the
at 20°C., k/Cp = 0.524 average value
T kp K, % difference
63.2 0.1422 0.1466 + 3.1
61.8 0.1424% 0.1460
56,7 0.1428 0.1%23
51.3 0.1432 0.1409
46.5 0.1435 0.1415
Lo 0.1438 0.1412 - 1.8




TABLE 11

CASE_2 (NAPHTHOL)

= (0]
T, =-307%C.
T, = + 20°C.
KC = 0.154%0 + 0.000184% T
T k k % difference
p c
24,8 C.1489 0.1515 + 1.8
21.5 0.1486 0.1480 - 0.4
12.8 0.1480 0.1508
7.6 0.1476 0.1534%
1.2 0.1471 0.1540 + 4,7
TABLE 12
CASE 3 (NAPHTHOL)
7. = + 20°C.
1
T, = + 30°C.
k= 0.14%53 + 0.00007% T

T Kp k, % difference
20.2 0.1455 0.1490 + 2.4
20.5 0.1456 0.1462 + 0.4
22.3 0.1453 0.1440 - 0.9
23.3 0.1452 0.1463
24,2 0.1452 0.1486 + 2.3
24,7 0.1451 0.1477




TABLE 1

L (SIMILAR TO PARAFFIN WAX)

R = 0.0
T, = L48.2
1
Tw = 7.0
< = 0.1388 - 0.00022 T
Cp = 0.6939 + 0.00001 T
k, = 0.137% - 0.000097 T
at 50°C., %/Cp = 0.18%
Variation of 5.25 %
at 20°C., k/Cp = 0.19% ’
T kp k., % difference
47,0 0.1285 0.1342 + bk
39.6 0.1301 0.1312
30.4 0.1321 0.1350 + 2.2
26.5 0.1330 0.1351 + 1.6
TABLE 1k
CASE 9 (SIMILAR TO NAPHTHALENE)
R = 0.5
T, = 50.2
T, = 8.7
k, =0.22 - 0.00073 T
Cp = 0.332 + 0.00111L T
k, = 0.2250 - 0.00061 T
at 50°C., k/Cp = 0.47
Variati £ 24%
at 209C., k/Cp = 0.60 ariation of 247
T ky ke, % difference
43.9 0.1836 .1925 + 4.8
48.6 0.1845 .1960 + 6.2
46.5 0.1860 .1968
bl 1 0.1878 .2020
S 0.1896 .2000
39.1 :),1_915 L3100 + 2.9 ]
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TABLE 15
CASE 6 (SEVERE CONDITIONS)

R = 0.9

Ti = 70

T, = 10

k, = 0.5 - 0.00065 T

Cp = 0.3 + 0.001L T

k, =0.39 + 0.0013 T

at 50°C., k/Cp = 1.32

St 20°C., %/Cp = 1.52 Variation of 14%

T k k % difference
P ¢

41.0 0.473 0.%50 - 5.0
31.0 0.480 0.438 - 8.9
26.2 0.483 0.433 - 10.4%
23.6 0.485 0.417 - 1%.0
21.2 0.486 o.)+3o - 1105

-«

In Case 5, the k/Cp variation 1s more important (24%)

and the deviations are slightly larger and range from 4% to 6%.

For the first four cases, the absolute deviations are zall smaller

than 4.8% and closer to 2%.
because position R = 0.9 1s considered.
determined conductivity values with proposed
to 14%, thus showing that more errors can be

measuring the transient temperature near the

Case 6 corresponds to a severe case

difference of
ones 1ls then up
expected when

surface. All
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cases, except Case 5, give determined conductivity-temperature
curves which are slightly concave. The general trend is to-
wards conductivity values increasing with temperature when
really the actual values are decreasing. These inversed slopes
were also obtained in experimental work as it will be seen later.
In Case 5, R = 0.5 and then the variation of determined k values
with temperature 1s similar to the actual one. A proposed
explanation for this better behaviour 1s the fact that position
R = 0.5 is more representative of the average of transient
Temperature and energy conditions within the sphere. It appears
that position 0.5 gives more accurate slopes for the conductivity-
temperature curves when the ratio k/Cp varies with temperature
and k and Cp vary in opposite directions.

The use of series solution temperature-time curves
gives a good average k value and errors in the whole range of
values can be kept below 6% when the measurements corresponding
to positions between R = O and 0.5 are considered. This was
tested for variations of k/Cp up to 30%. However, slopes of
deterained conductivity-temperature curves can be opposite to
actual ones and these determined curves also differ by their

non-perfect linearity. Figure 2 1llustrates these results.

5.4 Conductivity Determination - Results and Discussion

S5.4.1 Introduction

Seven different materials were used in the determination

of conductivity by the proposed method based on transient temp-
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erature measurenments and use of series solution temperature-
time curves. Naphthalene, naphthol 2 , ice, paraffin wax and
bismuth were more or less used to check experimentally the |
method. A good deal of reliable datsa exist in the literature
for these materials. Because no reliable conductivity data
were known for ammonium nitrate, it became interesting to in-
vestigate it. The bulk of the work was done with Lucite spheres
whose physical cogditions and detalls of construction varied
extensively. Therefore, Lucite data are very useful for deter-
mining the reproducibility of the method. Lucite is also in-
teresting because it 1s a representative solid polymer and has
the same thermal characteristics as many plastics, for example
epoxies, all being low conductivity materials. Measured con-
ductivity values will be presented for each sphere and compared
to reliable literature data. Only essential data will be pre=~

sented and more details can be found iIn the Appendices 11 to

4.

5.4.2 Naphthalene

There are many reliable data for the physical properties
of naphthalene in literature. These data and the measured
properties are presented in Table 15A and 15B. The measured
density indicates that the 0.5"D. sphere used was slightly
porous, but an examination of the structure revealed a rel-
atively homogeneous body. A linear regression of the eleven
points considered, which were always picked up in a relatively

random way along the temperature-time curves, gave the measured
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conductivity-temperature relationship (kc). The 95% confidence

limits for individual observation are f0.0078 or 3.8% of 0.2017,
the conductivity at the average temperature of the range con-
sidered. The deviations from a straight line are small and

the determined linear relationship gives values differing by
less than 2.5% from the literature data. Naphthalene provides
an interesting check. The agreement between determined and
available conductivity values is very good and 1t is illustrated

in Figure 3A.

TABLE 154
PHYSICAL PROPERTIES OF NAPHTHALENE

References
Specific gravity 1.145 P2, P3
1.065 T 0.005 * measured
Specific heat Cp = 0.281 + 0.00111 T| P2
Conductivity Kk = 0,22 - 0,00073 T Il
k/Cp at 50°C. 0.47 |
k/Cp at 20°C. 0.60

¥ The expression "measured" indicates values obtained ex~

perimentally during the present investigation.
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TABLE 15B

NAPHTHALENE CONDUCTIVITY DETERMINED BY USING

SERIES SOLUTION TEMPERATURE - TIME CUAVES

Experiments D-11-3, &

R = 0.0 specific gravity 1.065 ¥ 0.005
T, = 50.3

T, = 8.7

k. = 0.22 - 0.00073 T (IL)

k = 0.219 - 0.00066 T (linear regression)

6 T k |
0.092 46,1 0.192
0.264% 39.15 0.198
0.577 26,4 0.196
0.5669 22.4 0.203
0.745 19.4 0.208
0.805% 16.7 0.209
0.855 14.7 _ 0.208
0.891 13.35 0.212
0.916 12.5 0.212
0.936 11.5 0.21k
0.953 10.7 0.212




FIGURE 3A NAPHTHALENE
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54,3 Naphthol/é3

Naphtho%/ﬁ ls a crystalline material and the three
spheres tested had a structure which was slightly non-isotropic
and non-homogeneous. Radial orientation of crystals and a few
small pores were noticed. The physical properties for naphthols

are well known and given in Table 16.

TABLE 16
PHYSICAL PROPERTIES OF NAPHTHOLf£5

Specific gravity 1.217 X3 (ReF)
1.17 f 0.01 measured
Cp Cp = 0.252 + 0.00128 T P2
(60° to 122°C.)
< k = 0.1470 - 0.000075 T I1
(60° to 122°C.).
k/Cp at 50°C. 0.455
k/Cp at 20°C. 0.524

%5 variation of
ratio k/Cp 14%

The specific heat relationship is proposed for a
limited range (60O to 122°C.). It was impossible to operate
in that range because surface material started to be carried
away by stirred fluid or to dissolve at around 70°C. The linear
relationship for specific heat was assumed to hold in the lower
temperature range considered in the present work. The measured

conductivities are tabulgded in Table 17.
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HTHOL%2>CONDUCTIVITY VALUES DETERMINED BY

TABLE_17

USING THE SERIES SOLUTION CURVE

3 spheres of 0.5"D,

6l

R = 0.0
Experi-
ments F-22-5, 6, 7 F-23-2 F-25-1
Ty -32.7 80.0 66.65
T 21.6 22,15 23.0
2} T k 2] T k o T K
0.194% |-22.15{0.1%1 | 0.153]71.1 | 0.148 | 0.140|60.6 |0.137
0.333 |-1%.6 {0.144% | 0.268|64.45/ 0.145 [0.238156.3 [0.133
0.458 |- 7.8 |0.146 | 0.380(57.95 O0.14% {0.359(51.01(0.136
0.566 |- 1.9 |0.147 | 0.488(51.75/ 0.143 | 0.465 (46.4 (0.135
0.654% |+ 2.85/0.147 | 0.585{46.15/ 0.143 | 0.560 |{k2.2 |0.133
0.726| 6.75(0.152| 0.658{41.9 {0.139 | 0.63%]35.0|0.131
0.788| 10.1 |0.154% | 0.726(37.95 0.139 | 0.70%{35.9 |0.132
0.838] 12.8 |0.158 | 0.780(3%.95/ 0.139 | 0.756/33.7 0.131
0.871] 1%.6 |0.158 | 0.82%/32.3 | 0.139 | 0.805(31.5(0.132
0.853(30.6 | 0.138 | 0.844{29.8 {0,134
0.878(29.2 | 0.135 | 0.875|28.5(0.13k4
Table 18 gives the least-squares linear fit of these data.
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LEAST-SQUARES LINEAR RELATIONSHIP FOR CONDUCTIVITY-TIMPERATURE

LND COMPARISON WITH THEORETICAL CASES FROM FINITE-

The results

DIFFERENCE AND STRIES SOLUTION

for Cases 1 and 2 are given in Section 5.3.2.

Standard | 95% limits
Case Number Error of of Determined
or of estimate individual relatioaship

oxperinent [Points observation for k

F-22-5, 7 0.00213 | o.o043 0.149 + 00044 T
Case 2 5 0.00179 ¥0.0035 0.15% + 0.,00018 T
F-23-2 11 0.0009 +0.0018 0.129 + 0.00026 T
L

F-25-1 11 0.00172 $0.0034% 0.129 + 0.000096 T
Case 1 6 0.00145 %0.0029 0.129 + 0.00026 T
Combination

of all

experimental

points 31 0.00714% F0.01% 0.144% - 0.00012 T

Figure 4% illustrates the results.

The variation of k/Cp with

temperature is important (48%) because a range of =30 to +70°¢.

has been tested by using three different spheres.

Table 18 in-

dicates that the linear least+<squares regressions of data from in-

dividual experiments give

which have positive slopes.

linear conductivity-temperature curves

The standard errors of estimate

are similar to the ones determined for comparable theoretical




mu&z.&s.-_xxgaﬁmggém

Conductivity vs. Temperature

0.5"D. spheres

Literature relationship (I

O F-22-5,6,7 Ty = =-32.7 To =21.6
_— 1 data 1i ior
0 F-23-2 Tj_ = 80 T, = 22.15 Al ata linear regression
, _ _ - - Linear regression of
AF-25-1 Ti = 66.65 T, =23.0 single experiment data
k A
95% confidence limits
for individual observation
%o—/
o 5= 7 ———|—__
14 - _é""_-o~e ——e =y
_ — —Af 'Zs
13 F
| | | i 1 1 | I i
-30 -20 -10 0 10 20 30 40 50 60

Temperature °c.

-99—



-67-

cases. These cases, based on hypothetical predicted values and
finite-difference and series solutions, were presented in

Section 5.3.2. The similarity of behaviour indicates that using
series solution has the same effect 1n experimental cases as in
theoretical ones. It means also that the scatter caused by

error in reading graphs and dolng calculations is the same in
both cases. Theoretical and experimental cases give very similar
values; therefore, this is an indication that the measurements
are relatively accurate. The 95% confidence limits for all
availlable points considered together are reasonable and vary by
less than 105 from the average value. The linear regression
gives a curve with a negative slope. This curve is only slightly
different (<3.5%) from the one proposed by International Critical
Tables (Il). It happens because two ranges of temperature were
used and that values determined from experiments F-23 and F-25
are lower than expected. These lower.values are possibly caused
by the uniform loss of surface material at higher temperature

as mentioned before. Experiment F-22 results indicate that the
average value falls on the curve from literature and that many
such average values could be used to determine accurately the

complete conductivity-temperature curve.

S.4.4 Paraffin wax
504.“’-1

Many different types of paraffin waxes exlist and the
variation of their properties is relatively important. This makes

any comparison difficult. The literature indicates-much scatter
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though International Critical Tables propose a best curve fit

for data from many workers.

assess the generality of the method.

The material was investigated to

The spheres had an amorphous structure but the central

part seemed porous and 1t was observed that the thermal contact

wasS pooTr.

The avallable and measured physical properties except

conductivities, are presented in Table 19.

values can be found in Table 20.

The conductivity

TABLE 19
PHYSICAL, PROPERTIES OF PARAFFIN WAXES
Reference
Specific gravity | 0.92, 0.89, 0.87 to 0.94% I1
0.87 to 0.91 Kern K3
0.891 to 0.907 for 59°C.
M.P. paraffin wax spheres Measured

Adopted value: 0.9

Specific heat

0.6939

K3




TABLS 20

CONDUCTIVITY k OF PARAFFIN WAX FROM LITERATURE

.
1.p.%C. Specific gravity | Temperature K neferences
(Melting point) °c.
0 0.1662 1l
66 0.92 23 0.1547 I1
8l 21 to 57 0.1136 I1
0.87 to 0.9% 18 to 25 0.1503 | I1
0.89 30 0.1325 Il
Sk -56 0.1529 L3
-37 0.1482
-21 0.14656
-7 0.14%38
+10 0.1403
General survey ,
on amorphous -180 to 430 | 0.1388-~
paraffin wax 0.000227 I
k/Cp ratio: at 509C., k/Cp = 0.1845

at 09C., k/Cp = 0.2

variation of 8%

S.4.%.2 Conductivity determination results

Table 21 gives the results for the four different spheres

of paraffin wax tested.



TABLE 21
CONDUCTIVITY OF PARAFFIN WAX

Spheres diameter: 0.498" T 0.002
Melting point: 59°C.
Thermocouple position: R = 0.0

A new sphere was used in every experiment
Specific gravity: 0.9

Experlment duration: 22150 seconds

Exp. | F-15-1 F-15-3 F-15-4 F-15-5 )
T, 48,2 L48.2 48.2 48.2
Teo 7.0 8.6 11.3 12.7
AT 41,2 39.6 37.9 35.5
T K T k T k T K
43.1 |0.109 | 4%3.55/0.0928| 44.5 [0.0888 | L4k4.6 |0.0888
39.65]0.10% | 39.05(0.0978| 40.5 |0.0946 [ 41.1 [0.092k4
34,7 10.0982] 34.15|0.0968| 34.9 [0.0978 | 34.75/0.103
30.2 |0.0961| 30.25[0.0936| 30.4%50.091k | 30.75|0.0985
25.65[0.0962| 24.9 [0.0922| 25.65(0.0912 | 26.45]0.0962
22,65/0.0977| 21.35|0.0976| 21.4% |0.0983
19.60]/0.102 | 19.8 |0.101
15.1 {0.110 | 15.75/0.110
14,5 10.116

Table 22 gives the least-squares linear fits of the data.
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LEAST-SCUARES LINSAR RELATIONSHIPS FOR

CONDUCTIVITY-TEMPRRATURE DATA OF PARAFFIN WAX

Standard | 95% limits | Determined
Number | error of for relationsnip

of estimate | individual for
Experiment |Points observation k
F-15-1 8 0.0059% | Z0.012 0.100 + 0.00005 T
F-15-3 9 0.00609 $0.0122 0.115 - 0.00056 T
F-15-k% 6 0.0039 ¥0.0078 0.997 - 0.00018 T
F-15-5 g 0.0036 +0.0073 0.113 - 0.00048 T
Combination
of all
experimentall +
points 28 0.0059 t0.0102 0.109 - 0.00034 T

The variastion of k/Cp with temperature is indicated as

8% from O to

has been found and its accuracy is doubtful.

50°¢c.

However, only one value of specific heat

Its variation

with temperature is not known and if it was so, the slope of

linear relationships might be affected one way or the other

2
Cp(T
because k(T) = pe )’?ﬂ 2
t

is used.

The central portion of the spheres, where the junctions

were positioned, was softer than the remaining body.

The O0.01"

long end of the supports imbedded in the spheres had a tendency

to sllde out after the second or third experiment was completed
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with the same sphere. These facts indicate that the contact
between wax and metal was poor. The poor thermzal contact ex-
plains to a large extent the low conductivity vealues obtained.
The difference with the bulk of literature values could not be
explained only on the basis of difference in the properties of
the compared materials.

The points were linearly regressed to remove any human
blas. But the polnts are very scattered and the data for ex-
periments F-15-4 and F-15-5 have a student T values smaller than
the ones proposed by distribution of T tables. This means that
the probabllity of getting 95% of the points within the limits
proposed 15 not really exlsting for these data. The determined
slope of the conductivity-temperature curve for all points com-
bined together 1s similar to the ones from curves proposed in
the literature. But 1t 1s impossible to conclude from these
data which ones are reliable.

This partial success does not mean that it is impossible
to get good data with paraffin wax spheres. At least, these
experiments indicate that the reproducibility 1s possible as
shown by the standard error estimates, the 95% confildence limits
and the determined k values. They also point out how essential

good thermal contact is. FPFigure 5 illustrates the results.

5.%.5 Bismuth
5.4.5.1

This metal has a low conductivity and can give a crystalline
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structure as ﬁas observed by crystallographic examination.

This structure had a certain amount of non-1isotropy which could
be held responsible for part of the deviation measured in the
data. Also, the junction position could not be checked after
the experiments were finished and the positioning had to be
assumed perfect.

Although a low conductivity metal, bismuth has & high
conductivity if compared to Lucite ( >forty fold) and the heat
transfer in the 0.5"D. sphere took place in less than 2.5 sec-
onds. Time end-effects (moving the sphere, starting the recorder,

etc.) become important and the possible time variation (= 0.2

sec.) can affect very much the determined data in the early
period of the heat transfer experiments. Therefore, bismuth
results will indicate the experimental performance when severe
conditions are used.

In the temperature range 0 to 7500., the Biot number
veries from 10.0 to 8.53 that is to say, by 8%, if based on the
average value. These figures assume that the conductivity data
proposed by Xern (K3) are the most reliable and vary linearly
with temperature. The varlation does not affect the conductivity
determination at the average temperature 1f the series solution
curve corresponding to the average Blot number is used. Table
23 shows the variation introduced in the determination of con-
ductivity by using different Biot numbers. The figures indicate
that the variation is larger if R = 0.8. Because the junction

is at R = 0.5 and that only data between © = 0.2 and 0.85 are
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normally used, the relative error introduced by using the

average value Bi =

This error is negligible.

TABLE 23

VARIATION OF THn DETERMINED CONUDUCTIVITY

VALUES

JITH BIOT NUMBER

0.5"D. bismuth sphere

Heat transfer coefficient:
From (K3):

2000

st 17°C., x = 4.7

at 3.9°C., k = 3.9

Biot number variation:

at 0°C., Bi

= 10.0

at 75°C., Bi = 8.53

9.25 is small and always less than ¥1.5%.

Average value = 9.25
R = 0.0 R =0.8
% %
variations variations
Bi=9.25} Bi=10.0 of Bi=9.25 | Bi=10.0 of
deteramined determined
k <
0.0%0 |0.0608 0.060 1.32
0.082 0.01028 | 0.010 2.8
0.20% |0.101 0.100 1.0
0.283 0.0259 0.025 3.65
0.545 {0.18215| 0.180 1.2 0.0623 0.060 3.7
0.695 |0.23385| 0.231 1.22 0.1045% | 0.100 k.35
Table 24 contains some of the most representative data for bis-

nuthe.

It is worth noticing that the general trend for con-
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ductivity values is towards having them decreasing with temp-

erature increase.

TABLE 24

PHYSICAL PROPERTI®S OF BISMUTH

(a) Specific gravity (£3): 9.8

(b) Specific heat (K3): at 09C., Cp = 0.029%
at 100°C., Cp = 0.0304

(Linearity of Cp is assumed for the
calculations)

(¢) Conductivity:¥ | or 11 indicates that the heat transfer

1s perpendicular or parallel to the trigonal
axls of a bilsmuth single crystal. P indicates a polycrystalline

structure.

ref. K1 Bl K2 PL (T2 ws %3 |1&
#Condd P | _L | 11 Pl L |11 L | 11 P P P P | P
T°¢.
-173 4,05
0
17 3.845 L,7
20 | 3.829
25 4,71 4.563.51
27 %.05
30 3.87
80 3.77
100 - 3,631 %.35 3.9,
Not
specified L.eh 5.4k 4,07
h.1 4,11




s o
%/Cp variation: at 75 C., k/Cp

138.4

5 Variation of 18%
at 0°C., k/Cp = 166

5.4%.5.2 Conductivity determinstion results

Two series of experiments were done with the bismuth

sphere. Results are presented in Table 25.

TABLE 29
CONDUCTIVITY OF BISMUTH

Sphere diameter: 0.501"
Biot number used for the series solution: 9.25
Junction position: R = 0.5

P

Experiments 0-8-1, 5 JA-24-1, 5

T, 71 73.6

Too 10.4% 3.9
9 T°C. | k ) T k
0.2 58.9 %.39 0.187 60.6 L.21
0.3 52.8 4,23 0.321 51.3 3.96
O.% 46.75 4.03 0.446 k2.6 .01
0.5 40.65 4.03 0.556 34.85 4,06
0.6 34,6 4.08 0.646 28.55 4,01
0.7 28.5 4,05 0.717 23.7 3.97
0.8 224 4,10 0.77% 19.7 4,01
0.9 16.% 4.12 0.822 16.35 4.08
0.857 13.9 4.06
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Table 26 gives the linear regressions of the points.

TABLE 26

A

SAST-S7 " RES FITS Of THE I° ™ AND DETIRMINED

t-(

CONDUCTIVITY-TEMPEZRATURT RELATIOQONSHIPS FOR BISMUTH

Standard | 95% limits
Nuaber | error of for
of estimate | individual | k=T
Experiments | Polnts observation| relationship
0-8-1, 5 8 0.109 $0.22 3.95 + 0.0048 T
Jh=24-1, 5 9 0.075 +0.15 3.92 + 0.0015 T
AlLl data ’
combined 17 0.097 ¥0.185 3,96 + 0.0033 T

The results are illustrated in Figure 6.

Indeterminate errors caused for'example by curve
readings, initial time and dimensionless time determination or
other operator's bias are always existing in the determinsation
of conductivity values. They would be more important in the
case of bismuth. However, the standard error of estimate
values are quite similar for the two sets of experiments. The
values obtained give a conductivity-temperature linear relation-
ship with a positive slope and they are distributed along a
concave shape'curve. Because k and Cp vary oppositely with
temperature, these behaviours can be caused .by the use of
series solution for determining k as demonstrated in Section 5.3.2.

The average value of k determined is lower than the
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values from Kern (K3) but some other authors propose values
in the same range. Moreover, this average value (R 4.1) is
only 9% different from Kern's value. Thus, even in severe ex-
perimental conditions, everything indicates that satisfactory

values were obtained for the conductivity of bismuth.

5.4.6 Ice
5.4.6.1

There are few available conductivity values for ice
and they are scattered. However, the value 1.3 seems the most
widely adopted one. The temperature-time curve predicted by
the series solution and corresponding to the Biot number deter-
mined from k = 1.3, waé used to estimate the conductivity values.
As in the case of bismuth, the Biot number is smaller than 150
and actually for the 0.5"D. ice sphere, it 1s 32 when h = 2000
and k adopted is 1l.3. OStrictly speaking, the Biot number varies
and so are the predicted temperature-time curves, but again as
in the case of bismuth, the effect of the variation on the
determined k values has to be considered negligible. This
assumption is justified by calculations which are presented in
Appendix 13.

These calculations indicate that the determined values
of k are consistent with the assumed values only when a k
value of 1.3 1s used to calculate the Biot number. For example,
when the assumed value of k 1s 1.21, the determined values of

k range from 1.29 to 1.25. On the other hand, when 1.3 1is
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assumed and used to estimate the Biot number, the determined
values are between 1.32 and 1.29.

The comparison between the assumed k value used for
determining the Biot number and the values determined by using
the predicted temperature-time curve corresponding to that Blot
number, gives a method of determining the conductivity range of
an unknown material. Also, it allows the determination of an
average conductiyity value when the Biot number 1s such that

the predicted temperature-time curve is dependent upon it.

5.4.6.2 Physical properties of ice

Table 28 preseﬁts the available data on physical
properties of ice. Figure 7 gives the speciflic-heat temperature

curve used.

TABLE 28
PHYSICAL PROPERTIES OF ICE

(a) Density: Kern (XK3), 57.5 at 0°C.
Kreith (X7), 57.0
Perry (P2), 57.2
(P3), 57.2

Adopted value (not measured), 57.3

(b) Specific heat: Kreith (K7), Cp = 0.46

Reference (P3)



°c, Cp °c, Cp
-100 0.329 -14.8 0.4668
- 78 0.463 -14.6 0.4782
- 60 0.392 -11.0 0.4861
- 38.3 0.4346 - 8.1 0.4896
- 34.3 0.4411 - 4.3 0.4989
- 30.6 0.4488 - 4.5 0.498k4
- 31.8 0.k 54 - 4,9 0.4932
- 23.7 0.4599 - 2.6 0.5003
- 24,5 0.4605 - 2.2 0.5018
- 20.8 0.4668
From (J3)

°c. Cp
- 73.16 0.3755
- 53.16 0.4110
- 33.16 0.5
- 13.16 0.481
- 3.16 0.498

0 0.5025

(¢) Conductivity: Newman (N2), 1.372
Mitchell (M8), 1l.21
Kreith (X7), 8 at 0°C.

Perry (P2),

Xern (K3),

Lees (L3),

1.2
1.3
1.3
0.9

at 0°C.
43 and 0.532




T°C. k T°C. k
-197 1.828 -90 1.380
-189 1.701 -82 1.368
-187 1.624 -69 1.360
-183 1.58 -59 1.336
-180 1.56 -50 1.320
-179 1.558 -4l 1.287
-170 .+ 1.522 -27 1.242
-133 1.432 -16 1.260
-109 1.419
-100 1.393

5.4.6.,3 Conductivity determination results

Only one sphere of ice was tested. The results are
given in Table 29 and also are 1llustrated for comparison with
literature data in Figure 8.

The linear regression of the 10 péints gave a standard
error of estimate g~ of 0.0097 and 95% confidence limits of
¥0.019 for individual observation. The conductivity-temperature
relationship is: k = 1.293 - 0.00057 T. The value of 0.019 is
only 1.5% of 1.3. The slope-obtained is similar to the one ex-

pected for ice but the fact of calculating more points in one

temperature range or a different curve reading accuracy might
have changed slightly the slope, because the variation of the
values 1s small.

The sphere seemed homogeneous, and the contact between
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the thermocouple and the material appeared very good. The
average conductivity value determined is very similar to the
ones proposed by other authors and therefore, experiments with

ice were very satisfactory.

TABLE 29
CONDUCTIVITY OF ICE

Densitys:s 57.3 ‘
Sphere diameter: 0.5"
Actual length of one transient temperature measurement: 215 sec.

Thermocouple position: R = 0.0

Experiments JA-29-13, 21

Ti -43.8

T, - 5.85

AT -37.95

6 | 7°¢C. k

0.117 -39.35 1.30°
0.288 -32.85 1.32
0.443 -27.0 1.33
0.568 22 1.31
0.666 -18.5 1.31
0. 740 -15.7 1.30
0.798 -13.5 1.29
0.845 -11.7 1.29
0.880 -10.k% 1.30
0.907 - 9.k 1.30
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5.4,7 Ammonium nitrate (NHqNoa)

5.4.7.1

Ammonium nitrate has many crystalline forms and
corresponding densities. A specific heat-temperature relation-
ship has been proposed. It appears that only one value of con-
ductivity has been determined by Golubev (G6). By mentioning
that the specific gravity of Golubev's specimen was between
0.68 and 0.76 inst ead of being in the order of 1.66, Mellor (M6)
claims that a considerabie volume of air must have been trapped
within the material. This means that the proposed conductivity
value 1s not reliable.

In spite of the fact that the material has some of 1its
properties varying widely with temperature and that consequently,
the molded spheres had a tendency, under internal stresses
developing during the fabrication and experiments, to crack
severely, it was attempted to determine a more reliable value
of k. Ammonium nitrate is a widely used material and often is

prilled.

Selke7.2 thsical properties

Physical properties of ammonium nitrate are listed in
reference (E2).

Table 30 presents the pertinent ones.
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TABLE 30
PHYSICAL PROPERTIES OF AMMONIUM NITRATE

(a) Crystalline characteristics and specific gravity.

Temperature
Form Crystal system Specific gravity| range °C.
Liguid above 169.6
Epsilon | Regular (cubic) 1.59% at 130 ¥5°| 125.2 to 169.6
(isometric)
Delta Rhombohedral or 1.666 at 93 X5° 84,2 to 125.2
tetragonal
Gamna Orthorhombic 1.661 at 40 ¥1° | 32.1 to 8.2
Beta Orthorhombic 1.725 at 25° -16 to 32.1
Alpha Tetragonal 1.710 at =25 ¥5 | -18 to -16

(b) Measured specific gravity: from molded 0.5"D. spherss at
2500. and without thermocouples
imbedded 1.66 % 0.0l

(c) Specific heat relationship: Cp = 0.40 + 0.00028T

(d) Thermal conductivity: Golubev(G6) proposes 0.1375 for the

temperature range 0O to 100°%C.

5.4.7.3 Conductivity determination results

Unfortunately, because of the experimental difficulties
encountered, only one sphere could be tested satighctorily.
The results are presented in Table 31 and illustrated in

Figure 9.
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TABLE 31
CONDUCTIVITY OF AMMONIUM NITRATE

Specific gravitys 1.66 X 0.01

Thermocouple position: R = 0.0
Melting point of the material: 169.6°%C.
Approximative length of one transient temperature measurement:

65 seconds

Experiment F-8-k4

Ty 65.75

Too 5.0

AT 60.75

2 7°C K
0.078 61. 0.409
0.257 50.1 0.413
0.454% 38.2 0.435
0.608 28.8 0.432
0.680 24 .45 0.407
0.726 21.6 0.379
0.773 18.8 0.364%
0.812 6.4 0.351
0.861 13.5 0.356

By linear regression, it was determined that: k = 0.355 + 0.0013T
Based on seven degrees of freedom, the 95% limits for individual

observation are 10.026.
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The points are relatively scattered along the curve
determined by linear least-squares fit. Two points fall out-
side the 95% confidence limits. More care in curve reading
might remove some of the scatter but the experimental con-
ditions were severe and very reliable results can hardly be
expected. However the absolute value 0.026 for the limits is
only 6.5% of the average k value 0.40. It is felt that the
conductivity value 0.40 ¥ 0.03 in the temperature range 5 to
65°C. is much better than the value proposed by Golubev. More
experiments would be necessary to assess the actual accuracy

of the determined wvalues.

5.4.8 Poly (methyl methacrylate) or Lucite
5.4.8.1

Lucite has been investigated extensively because it has
the typical characteristics of solid polymers, the plastics for
example, which are low conductivity materlals. These materials
are widely used and present many difficulties for their con-
ductivity measurement by the standard methods. This was dis-
cussed in Section 2.5. Cherkasova (C3) concluded that the con-
ductivity of amorphous polymers generally increases with temp-
erature as a result of segmental mobility. Jakob (J1) also
says that the amorphous or so-called glassy substances have the
behaviour just mentioned above. They are therefore ideal for
the method proposed in this work (see Section 5.3.2).

The molecular weight of Lucite (C3) reported is in
the order of 100,000. Lucite is one of the polymers for which



it is easler to get conductivity values because more workers
used 1t for testing the measurement methods they had developed
for low conductivity materials and because it is a popular con-
struction material. A few reiatively consistent series of data
were found in the lite ~ture. But Nagios (1) claims that care
must be taken in using literature u. -, =iuce differences in
processing techniques may vary the thermal conductivity of a
particular polymer by as muci, . 10%. Chung (C5) reports that
the deviation of data from the mean was in the order of 1%. He
also mentioned that a comparison with the values reported in
the literature was inconclusive, because properties of mill-
run materials vary considerably. Experimental results and a
range of values are reported by manufacturers (Tl). The con-
ductivity values vary from 0.0919 to 0.138.

Many variables existed within the tested Lucite spheres.
Among them are the type of supports, the sphere diameter, the
method of fabrication, the thermocouple position and size, the
occaslonal presence of bubbles and the quality of the thermal
contact between the material and the junction, the homogeneity
of the material and the surface uniformity. As a matter of
fact, some spheres had some scratches, flat spots and other im-
perfection at the surface. It was particularly true for the
molded spheres. Therefore, the results should give an idea of
the reproducibility of the proposed method because all possible
cases and sources of error are considered. Thus the method will

be tested for severe conditions. The results will also be com=-



pared with the ones existing in the literature to determine
their overall accuracy. They also permitted an answer to be
given to many poilnts as the effect of cooling or heating, etc.
Because of the too great number of Lucite spheres
tested and the detalls of these upiv . e experimental con-
ditions and the determined conductivity valw are only shown
in Appendix 1%. In this section, there will be presented only

the relationships obtained by linesr regression and graphs.

5.4.8.2 Physical properties of Lucite

The specific gravity was measured and when possible,
wilth a sphere without support and thermocouple. A value was
adopted and used for all calculations.

The specific heat-temperature data are reliable and the
ones from Reference G5 give a smooth non-linear curve which
was used in the calculations.

The specific gravity and specific heat values are given
in Table 3.2. The conductivity values are presented in Table
33. Also are indicated the determination methods and the
accuracy of the values when known. It should help to compare

the proposed method with the ones investigated in the literature.



TABLE 32

PHYSICAL PROPERTIES OF LUCITE

(a) Specific gravity

Specific
Case gravity Reference
1.1835 G5
1.19 G5
1.18-1.19 DL
Samples measured by NBS 1.175 Cc5
Molded sphere S-123 (thermocouple
and support being positionedg 1.205 mesasured
Molded sphere S-126 (in same
condition as S-123) 1.178 measured
Cast sphere of 0.625"D. from the
lot received from supplilers 1.163 measured
1.1"D. cast sphere 1.18 measured
Value adopted for the calculations 1.18 ¥ 0.02
(b) Specific heat:
Reference (D4): Cp = 0.35 o
N.B.S. (C5): Cp = 0.33% (10.5 to 89 C.)
(average, 33.3°C.)
(G5
7%. Cp
2 0.29
13 0.30
27 0.314
L2 0.328
52 0.3k42
62 0.358
7h 0.375
77 0.380
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5.4.8.3 Conductivity determination results

Table 33Agives the results of the linear regressions

of values determined for every sphere and a least-squares fit

of all the points combined together.

TABLE 334

LINEAR REGRESSION RESULTS AND CORRESPONDING

CONDUCT IVITY-TEMPERATURE RELATIONSHIPS

Thermo- |Total {Variance of [95% limits |Linear conductivity
couple number |estimate for temperature
positionjof individual |relatlonships
Sphere R points observation|for k
s-122 | 0.6 5  |0.57728x1077| 0.0048 | 0.0931+0.000000694T
S-123 0.5 7 0.2951x10~% 0.0108 0.0822+0 . 000444 T
S-124 | 0.4 5 10.12464x10"7| 0.0022  {0.0949+0.00009% 5T
S-126 0.0 L 0.98331x10~6| 0.0020 0.0821+0.000168T
S-581 0.3 11 0.63229%x1075%| 0.0050 0.1015+0.0000276T
S-582 0.3 5 0.78737x10-6| 0.0018 0.0993-0.00007T
S-583 0.6 10 0.62694x10"0| 0.0016 0.0844+0,00046T
S-585 0.3 5 0.34639x10"%| 0.0038 0.0882+0.000112T
5-586 | 0.4 4+ 0.13082x10~%| 0.0007 | 0.0940+0.0000788T
A1l
values
com= -4
bined 56 0.33928x10 0.0116 0.0911+0.00018T

Figure 10 1llustrates the curve obtained by doing =

linear

regression of all the points considered together and also the

points themselves.

Figure 11 contains the determined curve, the

limits of the experimental values and the available literaturc
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values.

Results for nine spheres were obtained. Linear re-
gressions of the results for every sphere were made. As pre-
dicted by Jakob (J1) and Cherkasova (C3), the determined relation-
ships indicate that conductivity increases with temperature.

Only results of sphere S-582 give a negative slope. This be-
haviour can be attributed to the material structure or other
physical conditions which might have been peculiar in sphere
S5-582, It can also have been caused by experimental errors.
Reference (B6) reports values decreasing with temperature. Re-
ferences S1 and L6 propose values almost constant but decreasing
very slightly with temperature. The 95% confidence limits for
all cases except one, are less than fS% of the mean values and
down to less than 1% in a few cases. The results for sphere
S5-123 are such that the variance of estimated? 1is important.

The slope is much steeper than in other cases. There is no
particular reason of discarding results from spheres 5-123

and the same applies to S-582, because there is no way of ex-
plaining the actual cause of these more important deviations

from a straight line. The experimental errors, the interpretation
of curves and the behaviour of the material of the sphere are
probably all responsible to a certain degree for the scatter.
However these values are still within the general confidence
limits (see Figure 10). The concept of general confidence limits
will be presented below.

There 1s scatter in data and the values from the re-
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gressions vary. It 1s normal considering that they come from
many different spheres which were fabricated differently. It
is in line with the 40% variation reported in References N1, C5
and Tl. They indicate that the variation between samples can
be important and Figure 11 showing the literature values for
Lucite illustrates this point very well. In view of the dis-
cussion presented above, it seemed that it was impossible to
conclude that one set of points was more representative of
Lucite than the next one. Therefore, it was decided to consider
all sets of values together and to make a general regression.
Thus the most severe way of considering the data is adopted and
it will indicate the overall reproducibility and accuracy of
the fabricating and experimental methods and of measurements.
When considered together, the polnts correspond to
random conditions. The general regression gives for Lucite
k = 0.0911 + 0.0018T and the 95% confidence limits for in-

dividual experimental observation are *0.0116. It is 12% of

the mean value. Figure 11 shows that the determined curve is
well passing through the values available from the literature.
Some authors as Nagler (N1) just claim they feel the
values they have determined are comparable with other authors.
In some cases accuracy of 2 or 3% is claimed and substantiated
by comparison with literature values. However, often only the
favourable ones are presented. Figure 11 indicates that the
scatter is rather important among the literature values. If

considered as a whole, they show more variation than the data

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY.
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obtained from Lucite spheres.

By using the guarded-hot-plate method, the National
Bureau of Standards determined a value of 0.0992 at 33.3°C.
and estimated the error as 3%. The present work proposes
0.0972 which is 2% different from the N.B.S. value. The
measured values have a variation of le% while most curves
from individual Lucite spheres have points varying from the
mean value by less than 5%. The determined data show less
scatter than the literature ones. This means that the method
used is sultable to determine conductivity-temperature curves
in the case of low conductivity solid materials such as plastics.
Keeping 1n mind what has been said above about the difficulty
of getting reproducible samples, 1t can be said that the re-
sults compare well with literature values and are satisfactory.

The *12% deviation is acceptable for many engineering purposes.

A consistent fabrication method and the use of the same physical
conditions for all spheres would probably keep the deviations
at a 5% level.

5.5 Hemisphere Geometry for Determining Conductivity

In discussing the finite-difference solution for con-
duction in spheres, it was mentioned (see Section 5.2.8) that
computation indicated that for low conductivity materials and
high h values, what happens in one part of the sphere does not
affect much what happens in the opposite portion. If the heat

transfer is radially symmetrical in the sphere, there is no heat
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conducted angularly. If hemispheres are considered and by
imagination are taken apart from each other, and if the heat
losses along the flat surfaces are assumed negligible, theore-
tically the heat transfer occurring at the surface and within
these hemispheres is the same as in the complete sphere. This
is true if the convective field is the same in both cases.

It 1s not always easy to make spherical test samples.
But 1t is certainly easy in most cases to put the material to
be tested in a thin metal hemisphere. If the thermal con-
tact between the material and the metal plate is good, the
latter should not affect the heat transfer in the low conductivity
hemisphere. The 1dea of using an hemisphere to obtaln temp-
erature-time curve and to match it with the same type of curve
as predicted for a sphere, has been checked experimentally
with naphthalene. The characteristics of the hemisphere and
of the jet flow used to create the convective field have been
given in Sections Y%.1l.1 and 4.1.5 respectively. The schematic
diagram of the experimental set-up can be found in Figure 3.
A good listing of naphthalene properties is given in Section
5.4.2. The experimental data are presented in Appendix 11

(Section A.11.2) and a summary of the results appear in Table
3k,



TABLE 34

DETERMINATION OF NAPHTHALENE CONDUCTIVITY

USING AN HEMISPHERICAL TEST SAMPLE

Specific gravity 1.13 (l.145, P2)

kp = 0.22 - 0.00073 T (TL1)

R =0.5

T, = 25.9

T, =53
T k k

c p

28.9 0.234% 0.1984%
31.55 0.237 0.1965
35.6 0.24k4 0.1938
37.8 0.252 0.1918

Linear relationship obtained by regression of 15 values:

k, = 0.195 + 0.0014 T

The 954 confidence limits for individual values are 10.003
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The data give a very good linear relationship and the

deviation 0,003 1s in any case less than 1.6% of the mean value.

The determined curve has a positive slope.

Recause of the crude

experiment made, no formal discussion about this error 1s really

justified. Only a consideration of the values themselves 1is

necessary. The difference between the literature and determined

values goes from 18% to 30%.

It might be mentioned that the too
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high values can be explained by the fact that the flat face of
the hemisphere was not insulated at all, although it was pro-
tected against the fluid running over. The copper plate was
very poorly insulated and heat could be conducted along the
metallic support. The extranecous heat transfer affected the
recorded temperature history and the result is an indication of
more heat transfer than it should be.

The determined values show a large error, but they are
good enough to indicate that it 1s possible to use an hemisphere
instead of a sphere. It would certainly be interesting to ex-
plore more the hemisphere geometry.

It is felt that this geometry used with the transient
method developed for spheres is promising and would probably
give a satisfactory engineering accuracy in the determination

of low conductivity materials conductivity.



6. GENERAL DISCUSSION

An experimental method based on transient conduction
with spherical geometry has been proposed for the measurement
of thermal conductivity of low conductivity solids. An analy-
tlcal series solution for transient conduction with radial
symmetry and constant properties has been used to interpret
temperature-time measurements. The method is direct but the
use of series solutions introduces deviations when the con-
ductivity and the specific heat are varying oppositely with
temperature. This has been checked by doing a theoretical
investigation using a finite-difference model for variable-
property materials. Thls model accounted for linear variations
in thermal and specific heat with temperature. It cén be used
to determine the conductivity-temperature curve from a single
experiment. However, a trial-and-error procedure 1s required.
A linear relationship is first assumed and then a temperature-
time curve 1is calculated using the model. The data are com-
pared with experimental results to determine a new conductivity-
temperature curve. The procedure is repeated until the assumed
and determined curves are matched. The use of the finite-
difference model has not been investigated very much because
it requires long computer time. Restrictions exist in the use
of the series solution, but it is satisfactory for determining
the conductivity-temperature curve from a single experiment,

when the diffusivity is constant and when k and Cp vary

~105-
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similarly with temperature. When the temperature coefficients -
of conductivity and specific heat are opposite in sign, at
least a good average value for the temperature range considered
can be obtained. These observations are substantiated by the
results obtained for the measurement of the conductivities of
seven materials including, naphthalene, naphthol/ES, paraffin
wax, lce, bismuth, ammonium nitrate and Lucite.

For both, the series and the finite-difference model,
radial symmetry has been assumed. Such a situation has been
obtained in practice by using a highly convective field created
either by mixing in a bath or by jet flow. The mixing which
requires the easlest experimental set-up was chosen. The
high h values obtained also provide a situation where the pre-
dicted temperature-time curves are independent of Biot number.

It should be emphasized that the transient temperature
measurement is very fast (< 150 seconds) and that the apparatus
used during this investigation is very simple. The advantages
of transient methods have been noted by several investigators.
However, only Ayrton and Perry (A2) have actually attempted to
use a transient method with spherical geometry. They studied
only one material, stone. They noted that most probably radial
symmetry did not exist. The experience obtained in the present
investigation allows one to express the opinion that inadequate
mixing in the continuous phase was responsible for this diffi-
culty. The method proposed in the present investigation pro-

vides adequate mixing and overcomes the difficulty mentioned
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above. The present method has also one further advantage in
that the variation of conductivity with temperature can be
estimated easily from a single experiment.

An assessment of the error involved in measuring a
local temperature in a rigid sphere of low conductivity under
transient conduction has been made. The temperature level,

the temperature difference (T, - T the support size, the use
i ’ ’

of cooling or heating experiments, and the thermocouple size
were some of the variables considered. Various diameters of
spherical test specimens were used. The experimental set-up
allowed the use of spheres having dlameters of 0.45 to 0.625
inch. A preliminary study using hemispherical geometry has
also been made.

The results were comparéd with literature data and in
many cases are very similar. The largest variations (%12%)
from the mean values were obtained by considering all data for
Lucite spheres in a general linear regression. However, by using
a transient method with cylindrical geometry, Janssen and Tor-
borg (J2) obtained an accuracy of 6 to 13% for their results
for epoxy plastics. It appears that the results obtained in
the present.investigation are as aécurate as the ones obtalned
with more elaborate methods. It might therefore be concluded
that the proposed method of determining conductivity might find

many engineering épplications.



7. CONCLUSIONS

An experimental method for measuring the thermal con-
ductivity of homogeneous low-conductivity solids has been de-
veloped. The method 1s based on transient conduction with
spherical geometry and is very appropriate for polymeric ma-
terials. Conductivities of naphthalenc, naphtholffS, paraffin
wax, bismuth, ice, ammonium nitrate, and Lucite have been
measured to evaluate the prOposéd method. The conductivity-
temperature data were linearly regressed and compared with
literature data. The results obtained gave 95% confidence
limits for individual observation which, when expressed in %
of the mean value (value corresponding to the average temperature
over the temperature range considered), are: naphthalene - ¥3.8%
naphthol /> - ¥10%4, paraffin wax - Y10%, bismuth - *4.6%,
ice - ¥1.5%, ammonium nitrate - ¥6.5% and Lucite - X12%.

The largest differences between the linear regression values
and the ones proposed by International Critical Tables ares
2.5%, 3.5%, and 1.5% for naphthalenc, naphthol /3, and ice,
respectively. The values for paraffin wax are 30% lower than
values reported in the literature. This deviation is attri-
buted to poor thermal contact. IMeasured conductivities for
bismuth differ by 8% frow those given by Kern, but are very
similar to values measured by some other authars. No reliable

conductivity value could be found in the literature for ammonium
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nitrate to compare with the values determined in the present
investigation. The measured conductivity for Lucite differs
by only 2% from the value determined by the National Bureau of
Standards using the guarded-hot-plate method.

The temperature accuracy has been evaluated and it 1s
concluded that the temperature messurements are in error by
less than 5%.

The proposed transient method 1s satlsfactory for the
determination of thermal conductivity of low conductivity
materials. The applicability of the method has been established
for the conductivity range 5.0 - 0.08 B.T.U./(hr.-ft.-°F.). %

standard deviations not larger than ¥12% were observed for the

measured values and normally, deviatlons of fS% can be expected.
Some 1nteresting conclusions concerning the details of
the proposed method will now be given. A finite-difference
model has been developed to account for property variations
with temperature. Because of the long computer time required
with this method, the series solution was used to interpret
most of the experimental data. There are no restrictions on the
use of the series solution when the thermal diffusivity 1s con-
stant or when conductivity and specific heat vary similarly
with temperature (variation of diffusivity of up to 30% is tol-
erable): It should be emphasized that the conductivity-temperature
relationship is thus measured from a single temperature-time
measurement at one polnt in the test specimen.

When the temperature coefficlents of conductivity and
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speciflc heat are of opposite sign, a reliable average con-
ductivity 1is obtained using the series solution. Working at a
number of temperature levels will provide the conductivity-
temperature relationship. A very general, but probably more
costly alternative is to use the finite-difference model.

The temperature measurement method is very fast (< 150
seconds) and the equipment is very simple. High h values were
required for the convective field to establish radial symmetry
of heat conduction in the spheres. Heat transfer coefficlents
of 1900 and larger were obtained with the mixing bath used.

The average h value determined was 2045. The Biot numbers were
greater than 300 except for the case of bismuth and ice; where
they were 9.25 and 32, respectively. Biot numbers greater than
300 insured that the predicted temperature-time curves were

independent of the variation of these Biot numbers.



8. RIZCOMMENDATIONS

(1) The investigation on the influence of the use of
the serles solution for determining conductivity-temperature
curves in the cases where k and Cp vary inversely with temp-
erature should be extended.

(2) Consistent experiments with Lucite should be made.
More care in fabrication and the use of similar conditions
should give a better accuracy.

(3) More polymeric materials should be tested and
specially ones having conductivity values lower than those for
Lucite.

(4) The use of a jet flow would allow bigger sphere
diameters. This and the use of a hemispherical geometry are

promising and worthy of more investigation.
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9. NOMENCLATURE

A Area normal to heat flow sq. ft.

a solid sphere outside radius foot

Bi Biot number h r/k

Cp specific heat (also cal./gr.-°C) B.T.U./(1b.-°F)
CpO, Cpl,

Cp2, Cp3 coefficients used in specific
heat-temperature relationships
and for finite-difference

solutions
D diameter foot
Fo Fourier modulus ~t/a®
h heat transfer coefficient for  B.T.U./hr.-sq.ft.-C°F)
) the liquid phase
I indicates grid radial positions (
J indicates grid angular positions
k thermal conductivity B.T.U./(hr.-ft.~°F)

kO, k1, coefficients used in conductivity-
k2, k3 temperature relationships and for
finite~difference solutions

Nu Nusselt number h D/kf
Pr Prandtl number Cp /L/kf
q rate of heat flow B.T.U./hr.
Re Reynolds number v D / /
r radius ' ft.
R dimensionless radius r/a

time hour
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temperature Ce
temperature difference CEO - Ti)

fluid velocity ft./hr.
volume cu. ft.
distance in rectangular ft.
coordinates

thermal diffusivity K/Cp7ﬂ sq.ft./hr.

temperature difference (T; - T )

radial increment in finite-
difference models

angular increment in finite-
difference models

time increment in finite-
difference models

absolute viscosity 1b,/ft.-hr.

{

standard error of estimate

density 1b./cu.ft.
dimensionless time k/Cp70 a2
dimensionless temperature Ti - T/Ti - T

finite temperature difference

Superscripts

"

inch

feet

Subscripts

c

f

determined wvalue

fluid
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initial
proposed value

fluid in bath at a distance far
removed from the solid body



REFERENCES

Al Development of a Thermal Conductivity Expression for the

A2

Bl

B2

Special Case of Prolate Spheroids

Adams, Milton and Loeb, Arthur L.

J. Am. Ceram. Soc.

37 73-4 1954

Experiments on the Heat Conductivity of Stone, Based on
Fourier's "Theorie de la Chaleur".

W. E. Ayrton and John Perry

The London, Edinburgh and Dublin Philosophical Magazine
and Journal of Science

5 5 241 1878

Oscillatory Thermomagnetic Properties of a Bismuth Single
Crystal at Liquid-Helium Temperatures.

M. C. Steel and J. Babiskin (U. S. Naval Research Lab.,
Washington, D. C.)

Phys. Rev.

98 359-67 1955

Experimental Determination of the Coefficient of Thermal
Conductivity for Solids at Temperatures 200 to 1000°cC.
A. M. Banaev and V. Ya. Chekhovskoi

Teplofiz, Vysokikh Temperatur

Akad. Nauk. SSSR

3(1) 57-63 1965 (Russian)

-115-



B3

Bl

B5

B6

B?

B8

-116-

Measurement of Thermal Properties of Nonmetallic Materials
at Elevated Temperatures.

K. O. Beatty, Jr. and A. A. Armstrong

U. S. Atomic Energy Commission

ORO-170 62 1956

Conductivity; Determination by an Unsteady-State Method
Beatty, K. 0. Jr., Armstrong, A. A., Jr., Schoenborn, E. M.
Ind. and Eng. Chen.

42 1527-32 1950

The Optimum Analytical Design of Transient Experiments

for Simultaneous Determinations of Thermal Conductivity
and Specific Heat.

James Vere Beck, Ph.D.

Michigan State University, 1964
Dissertation Abstracts, Vol. 25 5192
Processing of Thermoplastic Materials
Bernhardt, E. C. Ed.

Reinhold, N. Y., 1959

Temperature Dependence of Thermal Conductivity and Thermal
Diffusivity for some Polymeric Materials

V. S. Bil and N. D. Avtokratova

Plasticheskie Massey

10 37-39 1965

Transport Phenomena

Bird, Stewart and Lightfoot

John Wiley and Sons, Inc., 1960



B9

B1O

Bll

Cl

c2

C3

-117-

Measurement of the Thermal Diffusivities of Polymers

M. Braden (Un. London)

Plastics Inst. (London), Trans. J.

33(103) 17-19 1965

Contribution to the Study of Heat Conduction in Composite
Systems and to Heat Potential Theory

Sylvan Duane Burgstahler, Ph.D.

University of Minnesota, 1963

Diss. Abstracts

A Radial Heat Flow Apparatus for The Determination of
Thermal Conductivity

Burr, A. C.

Canadian Journal of Technology

29 W51-457 1951 |

An Apparatus to Measure the Thermal Conductivities of
Solids under Constant Flow Conditions by Use of the Peltier
and Joule Effects

Calvet Edouard, J. P. Bros and Helene Pinellil

(Inst. Microcalorimetrie Thermogenese, Marseilles, France) )
Comptes Rendus

260(4+) 1164-7 1965

Conduction of Heat in Solids, 2nd Ed. 1959

H. S. Carslaw and J. C. Jaeger

Oxford at the Clarendon Press

Cherkasova, L. M.

J. Phys. Chem. (U.S.S.R.)

33 224 1959



ch

C5

Cé6

D1

D2

D3

-118-

Thermal Conductivity Determinations. A New Apparatus and
Procedure

Chubb, W. F.

Met. Ind. (London)

52 21 545-548 1938

Thermal Diffusivity of Low Conductivity Materials

Chung, P. K. and Melbourne L. Jackson

Ind. and Eng. Chem.

46 2563-6 1954

Measurement of Thermal Conduction by the Thermal Comparator
We T, Clark and R. W. Powell

(Natl. Phys. Lab., Teddington, Engl.)

J. Sci. Instr.

39 545-51 1962

Thermal Conductivity Measurements

Davidson, J. M.

HW# AEC GE OTS

HW 47063 1-18 1956

On the Cylindrical Probe of Measuring Thermal Conductivity
With Special Reference to Soils. Extension of Theory and
Discussion of Probe Characteristics

De Vries, D. A., Peck, A. J.

Austral. J. Phys.

11 2 255-271 1958

Solutions to the Transient Heat Conduction Equation wilth
Variable Thermal Conductivity

Earl Leonard Dowty, Ph.D., Oklahoma State University, 1964



Db

Bl

E2

E3

Gl

G2

G3

-119-

Properties of Methacrylate Plastics

Dupont Technical Bulletin No. 7

Thermal Conductivity of High Polymers from -180°C. to 90°C.
Eirmann K., and X. H. Hellwege

J. Polymer Sci.

57 99 1962

Encyclopedia of Explosives and Related Items

Vol. 1, A 311

Uber Die Temperaturabhangigkeit Der Warmdeit Fahigkeit
Fester Nichtmetalle

Bucken, A.

Ann Physik

34 2 185-221 1911

Thermal Conductivity Apparatus for Operation near Room
Temperatures

Gier, J. T., Dunkle, R. V., Bevans, J. T.

Refrigerafing Engineering

66 39-42 1958

Accurate Determination of Thermal Conductivities

Gillam, D. G., Romben, Lars, Nissen, Hans Erik and Lam M.
Ole

Acta Chem. Scand.

9 641-56 1955

Analysis and Experimental Verification of a Probe Method
for the Thermal Conducitivity of Small Speciments

Samuel Turner Goforth, Jr., Ph.D.
North Carolina State College, 1963

Diss. Abstracts (Order No. 63-4489)



G4

G5

G6

G7

Hl

H2

-120-

Apparatus for Determining the Thermal Conductivity of
Insulation Materials

S. Goldfein and J. Calderon (U.S. Army Eng. Res. Labs.,
Fort Belvoir, Va.)

J. Appl. Polymer Sci.

9(9) 2985-91 1965

Handbook of Thermophysical Properties of Solid Materials
(5 Volumes)

A. Goldsmith, T. E. Waterman and H. J. Hirschorn

Armour Research Foundation

MacMillan Company, N. Y., 1961

Determination of the Thermal Conductivity of Ammonium Salts
I. F. Golubev and A. V. Lavrent'eva

J. Chem. Ind. (U. S. S. R.)

1+ 906-907 1937

Fundamentgls of Heat Transfer, 3rd ed.

H. Grober

McGraw-Hill Book Company, Inc.,

N. Y. 1961

The Measurement of Thermal Conductivity of Nonmetalllc Solids

Hall, G. L., Prettyman, I. B.

India Rubber World

113 222-235 1945

Measurement of Thermal Conductivity by Utilization of the

Peltier Effect.
Harman, T. C., Cahn, J. H. and Logan, M. J.
J. Appl. Phys.

30 9 1351-1359 1959



H3

HY

H5

H6

H7

H8

-121-

Variable-State Methods of Measuring the Thermal Properties
of Solids

T. Z. Harmathy (Natl. Res. Council of Canada)

J. Appl. Phys.

35 1190-1200 1964

Heat Conduction with Change of Phase

Hadi Tafreshi Hashemi, Ph.D.

The University of Oklahoma, 1965

Diss. Abstracts, Vol. 26, No. 3

Thermal Conductivity of High Polymers. Thermal Conductivity
of Poly (Methyl Methacrylate) and Polyester Resins
Makoto Hattori (Univ. Osaka, Prefect. Sakail)

Kobunski Kagaku

19 32-4 1962 ,
Hot-Wire Method for Rapld Determination of Thermal Con-
ductivity

We. E. Haupin

Am. Ceram. Soc. Bull.

39 139-141 1960

Conductivity of Polyacrylate

W. Holzmueller and M. Mueux

Kolloid-2

159 25-8 1958

Transient Heat Flow Apparatus for the Determination of
Thermal Conductivities

Hooper, F. C. and Lepper F. R.

Heating, Piping and Air Conditioning, ASHVE J. Section
22 8 129-34 1950



I1
Jl

Kl

K3

-122-

International Critical Tables

Heat Transfer, Vol. 1

Max Jakob

John Wiley and Sons, Inc., London, 1949

Thermal Conductivity of Some Epoxy Plastics

J. BE. Janssen and R. H. Torborg

Thermodynamics and Transport Properties of Gases, Liquids
and Solids. Symposium on Thermal Properties

Page 284, 1959

The Thermal and Electrical Resistance of Bismuth Single
Crystals. The Effects of Temperature.

Kaye, G. W. C.

Proc. Royal Society (London)

170A 561-583 1939

The Thermal Conductivities of Metal Crystals. I. Bismuth
Kaye, G. W. C. and Roberts, J. Kreith

Proc. Royal Society (London)

1044 98-114+ 1923

Process Heat Transfer

Kern, D. Q.

McGraw-H1i1ll Book Company, 1950

Determination of A12O3 by Spherical Envelope and Cylinder
Methods

Kingery, W. C.

J. Am. Ceram. Soc.

37 88-90 1954



K5

K6

X7

K8

K9

-123-

Apparatus for Determining Thermal Conductivity by a
Comparative Method. Data for Pb, Al203, BeO and MgO.
Kingery, W. D., Francl, J.

J. Am. Ceram. Soc.

37 80-4 1954

Concepts of Measurement and Factors Affecting Thermal
Conductivity of Ceramic Materials.

W. D. Kingery and M. McQuarrie

J. Am. Ceram. Soc.

37 67-72 1954

Principles of Heat Transfer

Kreith Frank

International Textbook Company, 1958

New Methods for Measuring the Thermal Diffusivity and
Thermal Conductivity of Materials

Julius Krgmpasky, Valeria Mackova, Eva Skockova

(Slov. Vys. Skoka. tech., Bratislava, Czech.)

Mat-Fyz Cosopis

11 146-58 1961

Determination of the Thermal Conductivity of Paraffin Wax
at Low Temperatures

I. N. Krupskii, D. G. Dolgopolov, V. G. Manzbelll and L. A.
Koloska

(Phys.-Tech. Inst. Low temps., Acad. Sci. Ukr. SSR, Kharkov)
Inzk.~-Fiz. Zh., Akad. Nauk Belorussk. SSR

8(1) 11-15 1965 (Russian)



Ll

L3

L3A

L4

L5

L6

Measurement on Anisotropy of Thermal Conductivity of Ice
Landauer, J. K. and Plum, H.

Sipre Corp. of Engr., ASTIA

Sipre Res. paper 16 AD 99686 _

A Quick Thermal Conductivity Test on Insulating Materials
David L. Lang

ASTM Bull. No. 216 58-60 1956

The Effect of Temperature on the Thermal Conductivities of
Some Electrical Insulators

C. H. Lees

Phil. Trans. Royal Soc.

2044 433-466 1905

Thermal and Electric Properties of Armco Iron at High
Temperatures

M. J. Laubitz

Can. J. Phys.

38 887-907 1960

Leeg C. H.

Phil. Trans. Royal Soc., 1892

Method for Determining Thermal Conductivity at High
Temperatures

Longmire, C. L.

Rev. Sci. Instrum.

28 11 904-906 1957

Measurement of Thermal Conductivities, Specific Heats and

Densities of Metallic, Transparent, and Protective

Materials



L7

M1

M3

-125-

Lucks, C. F. and G. F. Bing

A F Technical Report No. 6145, Part 11

An Industrial Laboratory Method of Determining the Thermal
Conductivity of Materlals and Composite Structures

Lynam, F. C., Cook, C. H.

Mod. Refrig.

52 156-8 1949

Thermal Conductivities of Pressed Powders

Manwitz, R.

U. S. AEC Publication Mont-164

Thermal Conduction of Macromolecular Substances. Method
of Measurement and Apparatus used
Matano Chujiro

J. Soc. Chem. Ind., Japan

46 30-2 1943

Rapid Detgrmination of Relative Thermal Conductivities
McLaren, Malcolm G.

Am. Ceram. Soc. Bull.

29 252 1950

The Thermal Conductivity of Dry and Partially Saturated
Fiber Beds

McMaster David Gerald, Ph.D.

Institute of Paper Chemicstry affiliated with Lawrence
College, 1963

Order No. 63-6702

Dissertation Abstracts

.University Microfilm Inc., 313 N. First St., Ann Arbor, Mich.



M5

M6

M8

M9

N1

High-Temperature Method and Results for Alumina, Magnesia
and Beryllia from 1000 to 1800 degrees

McQuarrie, Malcolm

J. Am. Ceram. Soc.

37 84-8 1994

Comprehensive Treatise on Inorganic and Theoretical
Chemistry

Mellor

Vol. 8, Supplement IN (Part 1), page 533

An Accurate Method for the Determination of the Thermal
Conductivity of Insulating Solids

Mischke, C. R., and E. A. Farber

Wisconsin Univ. Eng. Expt. Sta. Rept. No. 5, 1-9, 1956
J. Iron Steel Inst., London

185 288 1957

Mitchell

Proc. Royal Soc. Edin.

86 592 1885 }

Measurement of Thermal Conductivity of Solids at Low
Temperatures by Periodic Temperature Change

F.X. BEder Monatsber

deut. Akad, Wiss. Berlin

2 86-91 1960

Transient Techniques for Determining the Thermal Con-
Ductivity of Homogeneous Polymeric Materials at Elevated

Temperztures.



N2

Pl

P2

P3

Rl

R2
Sl

-127-

Nagler, Robert G. (California Inst. of Technol., Pasadena)
J. Appl. Polymer Sci.

9(3) 801-19 1965

Neumann

Ann. Chem. Phys.

3 66 1862

Changes in the Thermal Conductivity of Tin, Bismuth and
Gallium on Melting

B. P. Paskaev, Dagestan State University

Fizika Tverdoga Tela

3 2 416-419

Chemical Engineers Handbook

Perry John

Handbook of Chemistry and Physics, 36th ed.

Chemical Rubber Publishing Co., Cleveland, Ohio.

The Thermal Conductivity of Ice. New Data on the Temperature
Coefficient.

Ratcliffe, E. H. (Natl. Phys. Lab., Teddington, Engl.)
Phil. Mag.

7 1197-1203 1962

Rohm and Haas catalog.

Thermal Conductivity of Poly (Methyl Methacrylate)
Robert H. Shoulberg and John A. Shetter

(Rohm and Haas Co., Bristol)

J. Appl. Polymer Sci.

6 S32-833 1963



52

S3

St

S5

Tl

T2

T3

-128-

The Adiabatic Calorimeter. An Instrument for the Simul-
taneous Determination of Heat Capacity and Thermal Con-
ductivity

Sinelnikov, N. N. and Filipovitch, V. N.

Zhur. Tekhn. Fiziki

28 1 218-221 1958

Prilling of Ammonium Nitrate

Leonard A. Stengel (To Commercial Solvents Corp.)

U. S. 2 934+ 412 April 26, 1960

Heat Capacity of Ammonium Nitrate from 15 to 315°K

C. C. Stephenson, D. R. Bentz and D. A. Stevenson

J. Am. Chem. Soc.

77 2161-4 1955

Theory of the A. F. Joffe Method for Rapid Measurement of
the Thermal Conductivity of Solids

Swann, W. F. G.

J. Franklin Inst.

267 5 363-380 1959

Technical Data on Plastics

Manufacturing Chemists Association, Washington, D. C.
Pages 73 and 112, 1952

Encyclopedia of Chem. Technology

Thorpes

Retrieval Guide to Thermophysical Properties
Research Literature
U. S. Touloukian

Purdue University, 1960



V1l

)

Wl

w3

Wl

YNE

-129-

Correction of Lateral Losses in the Wall Method (of
Determining Thermal Conductivity)

Vernotte, P.

Compt. Rend.

217 291-3 1943

Determination of the Temperature Function for the Co-
efficient of Thermal Conductivity

Vulis, L. A. and Potseluiko, V. A.

Soviet Phys., Tech. Phys.

1 1 70-7 1956

Apparatus for the Measurement of the Thermal Conductivity
of Solids

Weeks, James L., and Seifert, Ralph, L.

ASTIA, (ANL 4938), AD 1929, 1-14% 1952

Thermal and Electrical Conductivities of Solids at Low
Temperatures

White, Guy K. and Woods, S. B.

Can. J. Phys.

33 58-73 1955

The Thermal and Electrical Reslstivity of Bismut® and
Antimony at Low Temperatures

White, G. X. and Woods, S. B.

Philosophical Magazine

3 28 342-359 1958

Probe for Thermal Conductivity Measurement of Dry and Moist
Materials

Woodside, W.



W6

w7

Z1

Heating, Piping and Air Conditioning

30 163-170 1958

Analysis of Errors Due to Edge Heat Loss in Guarded-Hot-
Plates

From Symposium on Thermal Conductivity Measurements and
Applications of Thermal Insulations

Woodside, William

ASTM Special Tech. Publ.

217 49-62 1957

Unbalance Errors in Guarded-Hot-Plate Measurements
Woodside, William, Wilson, A. G.

ASTM Spec. Tech. Publ.

217 32-46 1957

Apparatus for the Rapid Determination of the Heat Con-
ductivity of Poor Conductors

H. Zierfuss (Koninklijke/Shell, Rijswijk, Neth.)

J. Sci. Instr.

40 69-71 1963

=130~



APPENDIX 1

A.1 LITERATURE SURVEY

A.l1.1 Introduction

The thermal conductivity of materials is an important
characteristic and much work has been done to find accurate
methods of determining it. Usually, the methods are different
for solids, liquids or gases. The present work deals only with
solids and particularly low conductivity or ilnsulating materials.
Indeed, the problems can be quite different depending upon
whether a high or low conductivity material is tested.

The general concepts of the most important methods will
be presented. Also will be discussed some of the experimental
work and investigatiods on methods of determining thermal con-
ductivity. It will become obvious that the transient method
with spherical geometry investigated in this work is the sim-
plest and that 1ts reproducibility is comparable to the most
sophisticated metho& for determining conductivity of low con-

ductivity materials.

A.1l.2 Concepts of the experimental methods for the determination

of thermal conductivity

Carslaw and Jaeger (C2) give a general discussion about
the type of methods available. They mention first that: "“The
thermal properties of any material occur in various combinations

which may be regarded as characteristic of, and measured by,
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different experimental situations". "These are: (a) the con-
ductivity k which 1is measured by steady-state experiments; (Db)
the heat capacity per unit volume Cp7ﬂ which is measured by
calorimetry; (c) the quantity (k7/<3p)% which is measured by
some simple steady periodic experiments; (d) the diffusivity
which is measured by the simplest variable state experiments.
In fact, most variable state experiments, in principle, allow
both k and o¢ to be determined". The method investigated in
this work falls in the latter section.

They classify the commoner methods as steady-state,
periodic heating, and variable-state methods. They subdivide
them again into methods suitable for poor conductors and for
metals.

Jakob (J1) discusses also extensively many methods of

measuring conductivities.

A.1l.2.1 Steady-state methods: Metsls

Jaeger (C2) also says that: “Metal is usually in the
form of a rod whose ends are kept at different temperatures.

The semi-infinite rod and the rod of finite length can be used".

A.1.2.2 Steady~state methods: Poor conductors

Kingery (K6) states that: "In static methods, the sample
is allowed to come to a steady state and the temperatufe dis=-
tribution measured to determine the thermal conductivity, k, by

an integrated form of the equation® q = - Kk A ar (L)
dx
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Jaeger (C2) mentions that: "The usual method consists of
keeping the two faces of a slab at different tcmperature and
of measuring the heat flow". "Alternatively the material may

be used in the form of a hollow cylinder or a hollow sphere".

A.l.2.3 Periodic~heating methods

According to Jaeger (C2): "In these methods the con-
ditions at the ends of a rod or slab are varied with period Tj
when steady conditlons have been established the temperatures
at certain points are studied. A similar method 1s used to find
the diffusivity of soil from the temperature fluctuations caused

by solar heating".

A.1.2.% Variable~state methods

Quoting Kingery (£6): "In dynamic methods the temperature
is varied suddenly for one position of the sample and the temp=-
erature change with time is measured to determine the thermal
diffusivity k/Cp¢0 by a form of the energy equation"

v'r = 222 41 (14)

k dt

Naturally, various specimen shapes may be used.

A.l1.2.5 Problems associated with szmple geometry

Lingery (K6) 1in his discussion considers different
aspects assoclated with the sample geometry. He says that:
"The greatest difficulty 1n thermal conductivity measurement is
obtaining heat flow which coincides exactly with that assumed

in deriving the mathematical relationship. In electrical con-
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ductors, the difference between the best and the worst con-
ductors is a factor of about 1015, and essentially all the
flow can be obtained through the better conductor". "“In the
case of thermal conductors, the differcnce between the best
and the poorest conductors is only a factor of about 103, and
it becomes extremely difficult to get all the heat to flow
through the test specimen as desired".

"A method generally employed to insure that heat flows
in a desired path is to provide heat guards to maintain the
isothermals in the specimen and prevent extraneous heat flow".
"These guard methods are never perfect and can only hope to
reduce extraneous heat flow to negligible proportions". Jakob
(J1) reports that: "The plane-plate method is the simplest and
therefore most frequently applied method; however, it meets
with some remarkable difficulties". "One of them is the loss of
heat at the edzes of the plate which of course is relatively
larger than the loss at the ends of cylindric deviceg'. "With
cylindrical geometry, the radial method is better because the
diameter, being much smaller than the length of the cylinder,
much smaller temperature differences may be used than with the
longitudinal method".

Kingery (X6) continues by saying that: "Equivalent re-
sults obtained by various lnvestigators for the same materials
indicate that guard methods can be successfully apnlied if the
apparatus is carefully designed and measurements are made with

great care". "However, errors introduced can be considerable
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and have been considerable for much of the materials reported
in the literature". "“Some references are given and these
authors conclude that the differences reported are due to the
methods, even though any one method has fairly good reproduci-
bility". '"To obtain satisfactory guarding for absolute measure-
ments, qulte large samples are required". "“This proposes a
difficulty in the study of high purity essentially nonpornus
ceramic materials, since large specimens may be difficult to
fabricate to desired specifications". The difficulty of fab-
ricating large homogeneous samples eXists also in the case of
many other low conductivity materials.

From Kingery (K6): "A method of insuring correct heat
flow without the use of heat guards 1is to employ a specimen
which completely surrounds the heat source'". "This may con-
sist of an infinite cylinder or slab, surrounding an infinite
heat source, or it may consist of a hollow sphere or spheroid.
Shapes approximating an infinite cylinder or slab are satis-
factory, if only the center section is employed (in a manner
equivalent to heat guards), but they can be difficult to fab~-
ricate". Janssen and Torborg (J2) mention for example, that:
"The epoxies are hard and it is very difficult to maintain a
smooth, flat surface over a large area". '"Also, thin samples
tend to warp when exposed to temperature gradlents and these
effects produce very unpredictable conditions at the surface
of samples". Kingery (K6) also mentions that a spherical shape

ls satisfactory. But, he concludes that the temperature measure-
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ments are more difficult because of the highly curved iso-
thermals existing in a sphere. He proposes rather a prolate
spheroid shape and claims 1t me%Xes possible the development of
a conductivity measurement method being very advantageous for
ceramic samples of small size (2 cm.).

However, Jakob (J1) mentions that theoretically the
spherical form is the best. The heat from a heater located at
the center is conducted through the material in the radial
direction without any losses. Jakob discusses the advantages
and disadvantages of different geometry. No real general rule
can be established. The type of material tested imposes

limitations and each situation has to be considered differcntly.

A.1.3 Methods of Determining Thermal Conductivity of Solids

A.1.3.1 Steady-state methods

The guarded-plate method is the most frequently used
one for determining thermal conductivity. One face of the
sample 1s heated and the other one 1s kept at a lower temperature.
Thus, the sample is submitted to a heat source and a heat sink.
The guarding on the lateral faces is obtained by a ring heater
or simply by insulating material. Jakob (J1) gives a discussion
of the method. He mentions the difficulty of obtaining uniform
thermal contact between the heating plate and the surface of
the sample. Methods of overcoming the problem as spreading
powder between the plates to fill gaps are also discussed. The
difficulty of meesuring the temperature at the surfaces of the

sample is another problem he reports. Jakob mentions many
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variations of the single-plate system and their use in parti-
cular situations. It becomes clear from his discussion that
the experimental approach can vary widely depending on what
type of material and what range of temperature 1s considered
For example, when large rectangular samples are not available,
samples having a cylindrical geometry are used. At low temp-
erature, the apparatus is placed in a Dewar vessel. But in
any case, the heat transfer rate and two temperatures have to
be measured and steady state has to be established. Also the
samples have to be relatively large. Jakob mentions for example
discs of 4 to 5 in. dizmeter, and Lang (L2) proposes test speci-
mens of 18 in. square for his method.

The guarded-plate method is the standard one adopted
by ASTM. It is called the ASTM Method Cl77. Lang (L2) considers
that the method 1s expensive, requiress<illed operators for
conducting the tests and maintaining the equipment. Jakob (J1)
presents a few diagrams of the devices he discusses. They
indicate the complexity of the equipment required. Lang (L2)
proposes the use of a simple heat flow meter placed at the
center of a large square plate. He claims that by the use of
a constant temperature heat source and sink, stable readings
are obtained quickly. In determining conductivity of bismuth,
Paskaev (Pl) obtained an accuracy of 5%. Recently McMaster (M+)
measured the thermal conductivity of dry and partially saturated
fiber beds. His guarded-hot-plate apparatus had the hot plate

above and the cold plate below. A "standard" Plexiglass disc
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positioned below the fiber bed was used to measure the heat flux
In the test sample. The sample and the Plexiglass disc were
sandwiched between the hot and cold plates. This method of
measuring the heat flux is relatively easy, but still requires
the standardization of the Piexiglass disc.

To avoid the problem of large sample and guarding,
Krempasky (K8) developed a mcthod based on the concept of a
point-like source. The source 1s placed inside the sample which
has to have dimensions only 3-5 tlimes greater than the distance
between the heat source and the thermoelement. The accuracy of
the method depends only upon the accuracy of the distance
measurement, according to the author. However, he assumes no
heat loss to the surroundings. In developing a method for
measuring the thermal conductivity of nonmetallic solids, Hall
(H1) gives much care to the fabrication of the heating unit to
get a good thermal contact and uniform heat flux. White (W3)
has a complicated apparatus for low temperature determination.
He pays much attention to the control of temperature by the use
of a differential thermocouple. For asbestos, paper wood,
leaves, Fiberglass and other laminates, Gler (Gl) used an
apparatus consisting of a cooled upper plate, a thin nichrome
ribbon heater, a null-heat meter and a lower platen which can
be either heated or cooled. Because of the dual purpose lower
plate, the apparatus is very convenient for operation near room
temperature,

Woodside William (W6) and Wilson (W?7) make an analysis
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of errors due to edge heat loss in guarded-hot-plates.

Laubitz (L3A) gives a method which can be used at high temp-
eratures. The apparatus has guards and is cylindrical. A
maximumn error of 3% is claimed. In the determlnation of thermal
conductivity of poly (methyl methacrylate) by a guarded-hot-
plate apparatus, Shoulberg (S1) obtained points within 2%

from the mean values.

£.1.3.1.1 Internsl heat generation

The steady-state methods mentloned above, but Krempasky's
(X8), had external heat sources. But as mentioned in Jakob (J1)
the heat source can be placed at the interior of the sample.
Again the heat flux and two temperatures have to be measured
and the steady state can be very long to reach, often a question
of hours and even days when low conductivity materiais are
tested. Jakob discusses the use of spherical, cylindrical and
wilde hot-plate arrangemcnts for thermal conductivity tests.

4 method proposed by Banaev (B2) and using radial heat
flow gives error estimated as ¥3-5%. In Davidson's (Dl) apparatus,
heat flow 1s provided by current through a rod-shaped sample
and is measured by a flow calorimeter. The Cenco-Fitch method
also uses a flow calorimeter to measure the heat flow through

the test sample. For the determination of A1203 conductivity,

Kingery (K4) used spherical and cylindrical envelope methads.
Manwitz (M1l) used radial heat flow in cylinder to predict the

conductivity of poly (methyl methacrylate). Radial heat flow
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in a cylinder was also used by Janssen (J2) to determine the
conductivity of epoxy plastics. The over-all error in the
steady-state measurements was estimated as being about 5%.

This last method is similar to the onc proposed by Burr (B1ll)
for measuring the conductivity of coke. The estimated error in
this case is ¥5%.

A heat source in an infinite medium can he used to
measure conductivity. De Vries (D2) extended the theory and
discussed the characteristics of the cylindrical probe he
developed. The apparatus 1is speclally designed to test soils.
Prolate spheroid geometry can also be used. The development
of an expression for this special case and experiments using a
prolate spheroidal envelope method have becn made by Milton
and Loeb and proposed by Kingery (X6). The shape allows the
fabrication of small samples and easy temperature measurements

because there are flat isothermals 1n the central portion.

A.l.3.1.2 Other steady-state methods

A few more steady-state methods exist. The most in-
teresting are probably the so-called comparative methods and
the methods with a test rod sandwiched between two rods.

Weeks (W1l) used a constant heat flow method. The test
specimens can be elther squure or cylindrical. They are small
and only 1.75 inch. long. Two Armco Fe rods of known conduc-
tivity are used as heat source and sink. Thelr temperature is
measured. The apparatus is first calibrated with Armco Fe sam-

ple of known conductivity being sandwiched between the two other
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rods. A very good accuracy is claimed. Knowing that surface
temperature is difficult to measure, 1t is surprising that the
sample surface temperature accuracy is estimated as *o0.1%.

A comparative method used by Francl (X5) allowed an
easy determination of thermal conductivities. This silmple
method consists of comparlng known and unknown conductivity
samples placed in the same condition. However this method 1is
dangerous because the diffusivity values of various samples
can vary and cause much error. The comparative method de-
veloped by Clark (C6) is simple and consists of bringing two
spheres into contact with the sample.

For poor conductors, Zierfuss (Z1) suggests to use a
small sample (about 10 cu. cm.) and to bring it into contact
with a hot copper bar. The temperature at the interface is
measured and allows the determination of the thermal conduc-
tivity of the sample. Poor thermal contact and heat losses

should be expected for such a case. The claimed accuracy is

S5k

A.1.3.2 Appraisal of steady and unsteady-state methods

With steady~state methods, the equipment is elaborated
because the heat flux, and two temperatures have to be measured
and controlled. Complicated methods are necessary to avoid
the heat losses in apparatus. Usually the sample are relatively
large and the time to reach steady state can be extremely long

if low conductivity materials are tested. As mentioned by
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Janssen (J2), the samples large enough to permit direct
measuremnent of the lnternal temperature gradient have a large
thermal resistance. Therefore, the heat flow is small and
difficult to measure or a large temperature drop has to be
used. A large temperature drop is a disadvantage. The conduc-
tivity may vary with temperature and it is better to have an
average temperature really representative of the temperature
range considered. This is obtained by using small temperature
differences. The tested material might be heat sensitive and
then, small temperature drop has to be used.

The unsteady-state methods overcome most of the
difficulties reported for the steady-state methods. As men-
tioned by Jakob (J1), o is a kinematic quantity and therefore
no heat-energy measurements are required. Generally a short
time 1s sufficient for doing an experiment. Thus, heat losses
and gzins have less importance. The thermal disturbance in
the sample is miniﬁized and usually small temperature changes
are sufficient. Also the equipment is usually simpler than the
one used in steady-state methods. It can be extremely simple
as in the case of the method proposed in this work. Small test
samples can often be used and 1in most cases, the deviations
obtained with transient methods are comparable with the ones
in steady-state methods. Jaeger (C2) also mentions that some
methods may be used "in situ" and allow determination of con-
ductivity without bringing the sample to the laboratory. It

is most desirable for soils and rocks. Many methods also allow
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the determination of ¢ and k from the same experiment.

The disadvantages most frequently mentioned in literature
are for example, the difficulty of measuring with sufficient
accuracy the temperature which varies with time and the
necessity of defining and satisfying the boundary conditions
such that the experimental conditions agree with the ones used
for developing the mathematical cexpressions. Jaeger (C2)
points out that the contact resistance at a boundary is more
difficult to evaluate and to correct, and that 1t may have more

influence on the results than in steady-state methods.

A.l.3.3 Unsteady-state methods

Jakob (J1) reviews some of the early works on un-
steady-state methods. Jaeger (C2) mentions the method de-
veloped by Ayrton (A2) who used a spherical geometryi His
work will be discussed in more detail later. Only relatively
recent works will be mentioned in this section.

To overcome the problems of measuring heat flux and
the need for specimens of appreciable size and thickness,
Chung and Jackson (C5) developed a method using radial heat
flow. The speciments are rods of 1"D. and 8 inches long. The
specimen 1s first heated by steam and then, suddenly cooled by
circulating cold fluid in the jacket surrounding it. The log~
arithm of temperature 1s plotted against time. The mathematical
solution predicts a straight line. The slope of the curve is
a measure of the diffusivity and indirectly the conductivity

can be determined. The experiment 1s taking place in approxi-
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mately 30 minutes. The greatest variation from the mean re-
ported 1s 1%. They assume that a large heat transfer coefficient
exists. One advantage of the method is that it i1s not necessary
to know the exact location of the thermocouple. The cooling
lines for various positions in the specimen are parallel and
thus, only the slope of the log temperature-time curve is

needed. However, they noticed a curvature in that curve. They
think it is caused by a temperature effect. Indeed, the equation
ls based on the assumption of constant physical properties,
whereas actually they are a function of the temperature. They
suggest to refine the calculations by taklng the slope of the
tangent to the curve at a given point to evaluate the diffusivity
for a more limited average temperature. A similar approach

was used 1n the present work.

Two variable-state methods have been developed by
Harmathy (H3). He claims that they offer the advantage of
producing negligible thermal disturbance in the specimen dﬁring
measurement, and that the preparation of specimens is easy.

The first method is based on the fact that the initial temp-
erature rise, when a sample is brought into contact with a
constant flux plane heat source, 1ln a certaln region of a
finite solid is similar to the temperature rise in an infinite
solid. Thus the measured temperature records are compared to
the predicted values and a curve-fitting method allows the
determination of all thermal properties of the solid. In the

second method, a hot or cold pulse is applied to a plane surface
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of the specimen. At some distance in the specimen, a maximum
temperature change is obtained. This can be predicted by a
mathematical solution. Such a solution is used in conjunction
with the experimental measurements to determine the diffusivity.
This method is not so easy to use because a steady heat flux
has to be provided. The authors mention that the heating foil
resistivity 1s not really constant and they indicate that it 1is
a main source of error.

Two recent references deal with some analytical aspects
of the transient heat conduction. Beck (B5) proposes a way of
optimizing the design of transient experiments for determinations
of thermal conductivity. Aspects as the relative dimensions of
the test specimen and the location of the measuring device are
considered. A general analytical procedure for describing the
transient temperature distribution within materials whose
thermal conductivity vary with temperature has been developed
by Hadi (B4%). Many interesting types of boundary conditions
were investigated. Experimental verifications were carried out
only with a wall geometry. Burgstahler (B1l0) has studied the
transient heat conduction in composite systems for n dimensions.
Nagler (N1) has also developed a solution for transient heat
conduction with variable physical properties. By a curve-
fitting technique and doing a single experiment for each mat-
erial, he determined the linear thermal conductivity relations
for many low conductivity materials including poly (methyl

methacrylate). It seems that there is now an increasing interest
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in the literature to consider the variation of physical properties
with temperature in the development of solutions for transient
heat conduction. This has been investigated in the present

workK.

The apparatus developed by Goldfein (G4) has a heat
source placed on the top of the specimen. The specimen rests
on a heat sink. The transient temperature is measured and from
the slope of the temperature-time curve, the conductivlity can
be determined. Transient conduction in slabs anéd hollow cy-
linder i1s the base for Betty's method (B3). HMonatsber (M9I)
used transient conduction in plates and periodic temperature
change. Beatty (B4%) proposed a method for laminates. A
copper plate is sandwiched between two layers of the materials
and 1ts temperature history is related to the conductivity of
the test material. The test samples are heated by steam. They
report higher values than the ones obtained with the guarded-~
plate method and they estimated the accuracy to be 8%. Beatty
and co-authors mention that nobody has reported unsteady-state
methods prior to 1950. It is a rather surprising statement.

A fast method has been proposed by MeLaren (M3). The
method 1s crude and gives only a relative thermal conductivity
value. Temperature indicating crayons are put into contact with
samples of known and unknown conductivity. The same heat flux
is applied to all samples. The heat 1s conducted through the
samples and the time when the crayons start to melt is an in-

dication of the conductivity values.
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A transient heat flow apparatus using a cylinder method
is proposed by Hooper (H8). It consists of an electrically
heated probe. The model is based on the concept of a linear
heat source in an infinite body. The experiments take place
in 10 minutes and specimens such as soils can be tested without
disturbing the natural conditions. But it is mentioned else-
where that temperature changes before introducing the probe
into the sample should be avoided. Temperature changes affect
the molsture conditions in wet samples. The problem exists but
1s consldered less important in this case than in the case of
the hot~plate method. The instrument 1s very precilse and a re-
producibility of 0.5% is reported for dry samples. Woodside
(W95) and Goforth (G3) developed also probe methods and claim
respectively an accuracy of 1 and 4%. Woodside considers his
apparatus as ideal for umeasurement of thermal conductivity of
dry and molst materials. Goforth is more interested in small
samples.

For determining the conductivity of epoxy plastics,
Janssen (J2) proposed a translent technique which consists of
exposing a semi-infinite slab to a sudden temperature change and
observing the temperature rise at a point in the slab with re-
spect to time. The specimen has to be insulated and the heating
is insured by a steam box in contact with one end of the sample.
As the other apparatus mentioned above, Janssen's apparatus is
relatively more elaborate than the one used for the present in-

vestigation. Janssen estimated his conductivity values to be
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within 10% of the true value.

A.l.3.3.1 Unsteady-state method with spherical geometry

Ayrton and Perry (A2) used a spherical geometry in the
development of a transient method for measuring the thermal
conductivity of low conductivity stones. This is the only
work which has been found on the use of a spherical geometry
without internal heat source in transient methods. Their method
consists of bringing the sphere with a thermocouple imbedded at
the center to a uniform temperature. At time zero, a rapild
cold water stream starts flowing around the sphere which is in
a bath. The temperature is recorded continuously.

The mathematical expression for this case is a series
which converges rapidly (see Jaeger (C2), page 238). After a
sufficient time only the first term is important and a simple
solution is obtazined. In the case of Ayrton, the sphere dia-
meters were ranging usually from 5 cm. to 14 cm. and the time
required to justify the simplification mentioned above was
ranging from 600 to 1200 seconds. The mathematical expression
is such that the use of two different temperature readings
allows the determination of the conductivity. Then, the heat
transfer coefficient can be determined.

Ayrton and Perry show that for similar spheres, the
determined heat transfer coefficients are different by a factor
of 2. They consider that the considerable difference is due to
a certain extent to the difference ln the stone and in the

surface conditions, one being smoother than the other. They
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also discuss the fact that they feel the external temperature
1s not really constant as assumed for the model. They suggest
that better results would be obtzined by using greater pre-
caution to ensure perfect uniformity of the outside temperature.
The suggested methods are to make the water-bath larger and
the stream of cold water more rapid. An estimation of their
heat transfer coefficients and Biot numbers has been done. It
indicates that h ranges between 18 and 36 and the Biot numbers
between 2 and 4. It is obvious that in their experiments, the
uniformity of the fluid temperature around the sphere can be
suspected because the Biot numbers are so small.

In the present investigation, much higher heat transfer
coefficients and Biot numbers were used to insure constant and
uniform heat transfer at the surface of the sphere.  Thus, the

boundary conditions are reliable.



APPENDIX 2

A.2 SERIES SOLUTION FOR TRANSIENT CONDUCTION OF HEAT IN A

SOLID SPHERE

The differential equation (1A) in spherical coordinates,
for radial symmetry and constant physical properties, has the

following form:

2
T T 2 9T
= 2 + - — (19)

The boundary conditions are:

jif =- E (T - T_) (20)
e ‘p=g
ar r=a K f

The solution is given in Page 56 of Grober's text book (G7), and
will not be repeated here. However, in the course of the pre-
sent investigation, the series solutions were calculated for

the actual cases to avold interpolatlion of the values from the

graphs presented in the various textbooks.

A.2.1 Computation

The computation consists of two steps:
(a) The determination of the roots of equation
(L-Bi) sinV =~ VcosV=0 (21)

(b) Using the roots V., summation of serles (22) to

obtain the dimensionless temperatures as a function of time and
=150~
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for different radial positions and Biot numbers.,

T T < 2(sin V v v.) kT (V. R)
- sin - cos sin R
o=t =1.> kK € —k (22
e -
‘l‘i - T, k=1 Vk sin Vk cos Vk Vk R

The computation has been done by using a program written
for the McMaster University 7040 I. B. M. computer. The Reguli-
Falsl technique has been used for root finding and the specified
precision was 0.00005. Two hundred roots were calculated but
never more than 15 were used. Tables A.2.1 gives the roots of
equation 21. It is a more complete table than the one presented
by Grober.

Table A.2.2 gives dimensionless temperature-time curves
corresponding to different Biot numbers. It is important to
notice that the differences between values for Bi = 0.2 and 0.4
are large. The differences between curves when Bl is greater
than 50 are much smaller. The differences between values
corresponding to Bi = 462 and 108 are negligible. For one
particular location, the temperature-time curve 1s unique for

Biot numbers greater than 300.



(1 - Bi) sin V- Vecos V=20

IABLE A.2.1

ROQTS OF THE EQUATION

Biot
numnber | | L2 V3 W, V5 V6 V7 V8 V9 Vl 0
0 0.0 4,493 (7,725 [10.90% | 14.066 | 17.221 | 20.731 | 23.519 |26.666 | 29.812
0.001 | 0.055 |4.494 |7.725 [10.90% | 14.066 | 17.221 | 20.371 | 23.519 |26.666 | 29.812
0.002 | 0.077 |4.49% |7,726 [10.90% | 14.066 | 17.221 | 20.371 | 23.520 | 26.566 | 29.812
0.005 | 0.122 |L4.49% |7.726 |10.905 | L'+ 066 | 17.221 | 20.372 | 23.520 | 26.666 | 29.812
0.01 0.173 [4.496 |7.727 |10.905 | 14.067 | 17.221 | 20,372 | 23.520 | 26.666 | 29.812
0.02 0.2%% |4, 498 | 7,728 110.906 | 14.068 | 17.222 | 20.372 | 23.520 | 26.667 | 29.812
0.05 0.385 | %.50% |7.732 [10.909 | 14+.070 | 17.222 | 20,374 | 23.522 | 26.668 | 29.813
0.1 0.542 |4.516 | 7.738 [10.913 | 14.073 | 17.227 | 20.376 | 23.524 | 26.670 | 29.815
0.2 0.759 |4.538 | 7.751 |10.922 | 14.080 | 17.232 | 20.381 | 23.528 | 26.674 | 29.818
0.5 1.666 | 4.604 | 7.790 {10.950 | 14.102 | 17.250 | 20.396 | 23,541 | 26.685 | 29.828
1.0 /2 |3T/2 |5TW2 |711/2 | 9T/2 [ 1170/2 | 13 10/2 | 15 T/2 {17 TY2 | 19 TV/2
2.0 2.030 | %.913 | 7.979 {11.086 | 14.207 | 17.336 | 20.469 | 23.60% | 26.741 | 29.879
5.0 2,570 | 5.35% | 8.303 (11.335| 14.408 | 17.503 | 20.612 | 23.729 | 26.581 | 29.978
10.0 2.836 | 5.717 | 8.659 |11.658 | 14.687 | 17.748 | 20.828 | 23.922 | 27.025 | 30.135
20.0 2.986 | 5.978 | 8.983 [12.003 | 15.038 | 18.089 | 21.152 | 24.227 | 27.311 | 30.4O4
50.0 3.079 | 6.158 | 9.238 [12.320| 15.403 | 18.489 | 21,576 | 24.666 | 27.759 | 30.85k
o0 A 2TV 37v | b7 577 671 7 7% 87\ 971 1077

=241~



TABLE A.2.2

DIMENSIONLESS TEMPERATURE-TIME CURVES FOR

DIFFERENT BIOT NUMBER3 AT R = O

B1 0.2 0.k 1.0 9.25 50 172.6 462 10°

T o ® o S ® o S 8
0.005 0 0 0 0 0 0 0

0.040 | 0.0002 | ©0.0003 | 0.0008 | 0.0047 | 0.0088 | 0.0102 | 0.0106 | 0.0109
0.060 | 0.0017 | ©0.0033 | 0.0078 | 0.0387 | ©0.0621 | 0.0685 | 0.0703 | 0.0714
0.080 | 0.0055 | ©0.0108 | 0.0248 | 0.1088 | 0.1583 | 0.1701 | 0.1733 | 0.1753
0.10 0.0116 | 0.022% | 0.0507 | 0.1991 | 0.2707 | 0.2862 | 0.290% | 0.2929
0.20 0.0577 | 0.1083 | 0.2277 | 0.609% | 0.7012 | 0.7166 | 0.7206 | 0.7229
0.30 0.1093 | 0.1998 | 0.3932 | 0.8218 | 0.8838 | 0.8929 | 0.8951 | 0.8965
0.40 0.1590 | 0.2835 | 0.5255 | 0.9192 | 0.9548 | 0.9596 | 0.9607 | 0.961%
0.50 0.2061 | 0.3586 | 0.6292 | 0.963% | 0.9826 | 0.9847 | 0.9853 | 0.9856
0.60 0.2506 | 0.4259 | 0.7103 | 0.983% | 0.9932 | 0.9943 | 0.99%5 | 0.9946
0.80 0.3322 | 0.5400 | 0.8231 | 0.9966 | 0.9990 | 0.9992 | 0.9992 | 0.9993
1.00 0.4049 | 0.6315 | 0.8920 | 0.9993 | 0.9998 | 0.9999 | 0.9999 | 0.9999
1.50 0.5540 | 0.7883 | 0.9686 | 0.9999 | 1.0 1.0 1.0 1.0

-€ST-



APPENDIX 3

A.3 FINITE-DIFFERENCE SOLUTION FOR TRANSIENT CONDUCTION OF

HEAT IN A SOLID SPHERE

The sphere of radius a, is initially at a uniform

temperature Ti' It cools in a medium whose temperature T

is constant and uniform. The heat transfer coefficient at the
surface of the sphere is h. The temperature distribution with-
in the sphere as a function of time is required.

In spherical coordinates, equation 1A has the form of

equation (23) when there is axial symmetry:

Lo 2 2%, L )

r2 dr dr r2 sinCP a? (k SincF —B—EF)

T
=.PCp .é___ (23)
ot
The boundary condition is expressed by equation (20)
oT h
—_ = - - (20)
T - % )r=a
or k

r=a
The initial condition is:

T at time zero is uniform and equal to T, in the region

i
0 <r < a.
If the physical properties k, Cp and7p are constant,

equation (23) can be simplified. Two cases will be presented.

~15Y4-
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The first one deals with the solution of equation (23) when the
physical properties are constant. In the second case, the
physical properties vary with temperature, but radial symmetry
is assumed. The finite-difference method of solving applies

to both cases. However, they are considered individually to

avoid confusion of the detalils particular to each case.

A.3.1 Constant Physical Properties

After the appropriate simplifications and transformation

into a dimensionless form by using:

Ikt r Ty - T
T= —— ,R== ando= L

5 (24)
Cp.f a a Ty - To

the equation (23) becomes:

bY: 2 2 28 1 32e 1 Y
3T 2.2 Y r— o (25)
3R> R IR &% 992 j2 oP

o

A.3.1.1 Finite-difference form

To express equation (25) in finite-differences, Taylor's

series expansion must be used. The forward expansion is:

A 2 An? 3 (An)3
)ﬁ =J( + ‘536 + o4 + 9 Ji + -==
e Ji ony| 1l Sn? Sh; 3]

2|

The value h 1s the independent variable and 5: is the function

(jf = f (h)). The grid is shown in Figure A.3.1. The grid
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corresponding to spherical coordinates is also given. The

backward expansion gives:

> mm-

AV A S P4 UL AR UL

= - + -

SR EN I dn2 2l Su? 3]
(27}

The terms of third order and of higher order are neglected.
Thus, the first order derivative is for example:

/

fo— £ — ofA (28)
2/\h Dhy

or in spherical coordinates:

Df1 - F2-F£' (29)

5CP1 2

FIGURE A.3.1

GRID FOR_TAYLOR'S SERIES EXPANSION

Rectangular coordinates Spherical coordinates

yAN
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By using Taylor's series expanions and combining them
in the proper way, the terms of equation (25) can be expressed
in finite~-difference form as shown below.

The grid spacing used is such that I stands for radial
positions, J for the angular positions and 1 and 2 1indicates
the time increment.

36 _ o(I,7,2) - o(I,J,1) (30)
o A

Thens

The central differences gives

2 20 2 o(I+l,J,1) - 6(I-1,J,1)

222 (31)

R R R 2 AR

Also

%6 e(I+1.,7,1) - 2 6(I,7,1) + 6(I,J-1,1) (32)

or° (AR)®

Ch.p 20 _ o |e(1,0+1,1) - 8(1,5-1,1) (33)
2 °op g2 N

1 ¥ o 1 (e(1,541,1) - 2 6(I,7,1) + 6(I,J-1,1)

__5 — = (34)

2 (quﬂZ

=¥,

RS 0@°

The grid is illustrated in Figure A.3.2.
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FIGURE A.3.2

GRID SPACING FOR SPHERICAL COORDINATES

(I+1,J)

(1,5 >

(I,Jd+1)

Origin

The finite-difference form of equation (25) is:

e(1,J,2)

A1(I) o(I,J,1) + A2(I) o(I + 1,J,1)

+

A3(I) o(I-1,J,1) + A4(I) 6(I,J+1,1)

+

A5(I) o(1,J-1,1) (35)

The coefficients ares

AL(I) =

A2(I) =

2 AT 2 A%
1 - - (36)

R°(1) (ASD)‘? (AR)Z

AT LAY

(37)
(Aﬁf R(I) AR
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ANI) = AT . _AT (38)
(AR)?  R(I) AR

WD) = AT Ca. @, AT (39)
T2 g R(D (AP)°

as(n) = —2% — - . (394)
R2(I) (AQ) P2 r%

The boundary condition expressed by equation (20) becomes:

6(1,7,2) = h(J)*avrAR_*_ k+0(I-1,J,2)

h(J)easR+k h(J)+a«A R

(40)

I corresponds to the surface grid points. When there
is radlal symmetry, the terms introduced by the two last terms
of equation (25) disappear.

For computation, 31 angular points were used between O
and 180 degrees. For testing the accuracy of the finite-
difference technigue, 21 and 41 radial positions were used. For
testing, radial symmetry was assumed. A grid of 20 radial in-
crements is satisfactory as shown in Table 2 of Section 3.2.

Table 1 shows that a time increment of 0.00001 1s acceptable.

A.3.1.2 Computation technique

The finite-difference equation has been solved by an

explicit method which can be drawn directly from the form of
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equation (35). At time zero, all values 6(I,J,1) are equal to
O. However, the surface positlons have © values of 1. The
coefficients Al, A2, A3, A4 and A5 are known. The temperatures
at time 2 (time 1 +A% ) are calculated for each point of the
grid except the surface ones, by using equation (35) and the
appropriate temperatures for time 1. The surface temperatures
are calculated by using equation (40). Then the temperatures
at time 2 can be assigned with the time position 1. By re-
peating the procedure given above, the complete temperature
history is predicted.

The computation method is simple, accurate but time
consuming because only a small A% can be used. Instability
appeared when A% of 0.00005 was tried. For example, on the
I. B. M. 7040, approximately nine minutes were required to com-
pute the values from ¥ =0 to T = 0.4 with a time interval of
0.00001 and 40 radial increments or AR = 0.05.

A.3.2 Variable Physical Properties and Radial Symmetry

When there is radial symmetry, equation (1A) has the form:

Cﬂ:g:._..a__kz_ﬂ (2)
7P ? ot r2 or ( i dr >

Equation (21) is made dimensionless by using the relationships
expressed by equation (3,, and the expressions for dimension-

less radius and temperatures.

T=-2"_ W
CpO 79 a2
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6=Ti_T
T, - T
[s &)

I =

and R =

I\

i

The variation of the specific heat and conductivity with

temperature is given by equations (&%) and (5).
k = kO + k1T (%)
Cp = CpO + CplaT (5)

The symbols expressed by equations (6), (7), (8), (9) and (10)

are also used to simplify the developed form of equation (2).

a = (T, - Ty) (6)
cp =Pt T 7
CpO j

Cpl Td

Cp3 = & (8)

CpO

k1 T

kK2 = ——dh (9)
kO

3 = k1l Td (10)
kO

The dimensionless form of equation (2) becomes the equation (11)

after the appropriate sutstitutions are made.
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D6 (1L+k2+k3g) N0

o (L + Cp2 + Cp3 ©) 532

2 (1 + kK2 + k3 9) DO

—

R (1 +Cp2 +Cp3 ©) OR

2
+ k3 29 (11)

(1 + Cp2 + Cp3 ©) SR

As demonstrated in Section A.3.1.1 for equation (25)
a finite-difference form of equation (1ll) can be developed.

This is the equation:

e(1,2)

AL(I) o(I,1) + A2(I) ©(I+l, 1)

+ A3(I) o(I-1,1)

s(D) (63(T+1,1) + 02(1-1,1)

2 8(I+l,1) 9(1-1,1)] (12)

+

The coefficients are:

2 A (L + k2 + k3 6(I,1))

AL(I) = 1.0 - S (13)
(AR) (1L + Cp2 + Cp3 8(I1,1))
(1 + k2 I.1) ) (1 1
pa(y = | 2T LD AR ] (1)
\ 1 + Cp2 + Cp3 ©(I,1) AR . R(I) AEJ
/
"1 + k2 + k3 O(T,1) ) ! 1
A3(D) = 3 5th LT - (15)
K 1 + Cp2 + Cp3 e(I,l)) AR AR R(I)
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]
Al(I) = il (16)

L(AR)® (1 + Cp2 + Cp3 6(I,1))

The finite~difference expression for the boundary condition 1is:

<0 (k2 + &3 S(NRING,1)] e(NHINC-1, 2)

O(NRINC,2) =
ha AR + kO[KZ + k3 B(NRINC,l))

na AR
. (¥1)
h a AR + kO(k2 + k3 ©(NRINC,1))

The initial conditions are:

at time zero (W =0), 8 = 0 for 0 <R < 1.0
at R = 1.0, © = 1.0

The method of computation is essentially the same as the one
described in Section (A.3.1.2). The only difference is that

the coefficlents are temperature dependent and must be calculated
for each position and time considered. Table A.3.1 shows how

the finite-difference solution gives values similar to the

ones from series solution when constant properties and radial
symmetry are assumed. This 1s a good indication that the com-
putation should be satisfactory for the case of variable

properties.
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IABLE A.3.1

COMPARISON BZTWEEN SERXIES AND FINITE-DIFFERENCE SOLUTIONS

In series solution, the Biot number = 462

In the finite-difference model

kKO = 0.116% k1 =0
CpO = 0.332 Cpl =0
h = 2100 T, = 66
a = 0.0208 T, =27
R 0.0 0.5
S e S/ o
7j series finite=- series finite-
solution difference solution difference
0 0 0 0 0
0.02 0 0 0.024 0.026
0.0k 0.011 - 0,013 0.152 0.153
0.06 0.070 0.07k4 0.295 0.295
0.08 0.173 0.177 0.419 0.419
0.10 0.290 0.293 0.522 0.522
0.15 0.548 0.548 0.708 0.707
0.20 0.721 0.746 0.821 0.820




APPENDIX L4

A% DATERMINATION OF HEAT TRANSFER COBFFICIENTS

The heat transfer coefficlents were measured using the
method based on equations (17) and (1B8) presented in Section
(3.3) and described in Section (4%.2.2). Table A.4.1 gives some
of the curves which were plotted on semi-log graph paper to

measure the heat transfer coefficients in the mixing bath.

TABLE A 4.1

TEMPERATURE-TTIME CURVES FOR HEALT TRANSEE

COBFFICIENT DETHRMINATION

Sphere diameter: 0.5"D,

Experiment A-25-19 A-26-8 A-26-9
AT 59.8 55.1 55
time (minute) T - To T - Ty T~ Tp

T, - T, T, - To T, - To

0.0 1.00 1.00 1.00

0.1 0.959 0.883 0.853
0.2 0.848 0.735 0.705
0.3 0.725 0.604 0.605
Ol 0.623 0.515 0.515
0.5 0.519 0.399 0.427
0.6 0.436 0.341 0.369
0.7 0.356 0.281 0.310
0.8 0.301 0.238 0.251
0.9 0.259 0.208 0.222
1.0 0.218 0.178 0.178
1.1 0.178 0.150 0.156
1.2 0.150 0.120 0.13%
1.3 0.1 0.105 0.119
1.4 0.1 O.104%

~165-
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When plotted, the data give straight lines but with a slight

curvature at initial time. These deviations are negligible

even if they can change the h values by 100. The h values are

large enough, so that the existing variations cannot affect

the predicted temperature-time curves used in this investigation.
Table A.4.2 presents the h values measured. An average

value of 2045 was obtained for h and the average temperatures

T, and T, were respectively 72.7°C. and 12°cC.

TABLE A.4.2

HEAT TRANSFLR COEFFICIGNTS #OR THE CONVECTIVE MSDIUM

The h values were measured at the surface of a 0.5"D. sphere

Experiment h Experiment h
A-25-11 1892 h-25-21 2000
4-25-12 2064 A-26-1 " 2000
A-25-13 1880 A-26-2 2000
A-25-1k 2000 L-26-3 2073
£=25-15 1962 A-26-Y 2085
A-25-16 1925 h-26-5 2220
Lh-25-17 2064 A-26-6 2225
A-25-18 1923 A-26-7 2175
A-25-19 2040 A-26-8 2175
A-25-20 2020 A-26-9 2095




ALIBRATION OF THERMOCOUPLES

The supplier guarantees the chromel-alumel thermocouples
for a maximum deviation of 2 to 3OC. from the values proposed
ln the standard conversion tables. Actually, much less deviation
from the chromel-alumel standard conversion table values was
observed. The thermocouples were calibrated in position and
deviations not greater than 0.5°C. were measured.

The dimensionless temperatures were compared and used
' for calculations in this investigation. Therefore, the cali-
bration corrections did not affect much the temperature-time
curves and even less the determined conductivity values.

The calibrations were done with the thermocouples in
position in the spheres. The sphere and its thermocouple were
kept in a temperature controlled bath long enough to insure
uniform and constant temperature throughout the entire assembly.
The bath was controlled within £0.05°C. by a Haake unit and
the bath temperature was measured with precision Anschutz
thermometers allowing accurate readings (fO.OSOC.) through
0.2°C. smallest scale divisions.

When using the Visicorder, no calibrations were required.
In the temperature range -40 to +409C., the standard conversion
tables show that there is a linear relationship between the
electrical potential developing at the junction and the temp-

erature. In the range investigated, that is to say =40 to +75°C.

~167-
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the deviation from the linearity is negligible. Moreover, the
Visicorder has a linear scale. Therefore, with the Visicorder
there is only need for determining accurately two points of the
scale. Thus, a linear scale is set up and the temperature is

determined easily by a direct reading on the recording paper.



APPENDIX 6

A.6 LREPRODUCIBILITY OF THE TEMPERATIR B~-TIME CURVES FOR A

SAME SPHERE

In Section (5.2.3) a discussion was gilven and Figure
2Ashows that in the same conditions and with a same sphere,
the measured temperature-tine curves do not deviate appreciably
from the average curve. In the case chosen as example, the
maxinum deviation was in the order of 0.015 at © = 0.138. Table
Asb.1 glves the data used for calculating the results presented
in Figure 2. The data given in Table A.6.2 indicate that
there 1s also very good agreement between the average curves
for three different series of experiments made with sphere
s-582. ‘

TABLE A.6.1

TEMPERATURE-TIME CURVES FOR & SAME SPHERE

Sphere $5-582, 0.625"D., (Lucite)

ﬂ = 003
Bi = 370
BExperiments S-8-1, 10
Exgeriment 1 2 3 L 5 6 7 8 9 10
S=8-
time (sec) 0 16 C] 0 ) 2] 2] 2] 2] e
35 .087|.,080| .09%| .095| .090{.083/0.090/.089|0.091|0.089
L0 13714127 J144] .148) .140|.128 | .139(.132} 145 .138
50 24kt ,230] .250] .151] 249 |.240 | 245|243 247 | 248
70 0.463| 54| JL462] L469) 465|453 460|462 465 459
90 .627| .619| .631| .634| .638|.625| .628]|.628| .631{ .620
110 U9 J7U3| L7H8| L 736 L7550 S| L750 | J7W| .750| 748
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TABLE 4.6.2

COMPARISON OF AVERAGE TEMPERATURE-~TIME

CURVES FOR A SAME SPHERE
Sphere S-582, 0.625"D. (Lucite)

=170=

R = 0.3
Bi = 370
Experiments S-8-1, 10 | S-11-1, 6 S-13-1, 13
Ty 68.65 724 71.85
Too 7.6 5.25 10.7
AT 61.05 67.15 61.15
time (sec.) C) ! 8 ]
0 0 0 0
25 0.015
35 0.089
40 0.138 0.140 0.141
50 0.245 0.251 0.246
60 0.359 0.364 0.355
70 0.461 0.466 0.457
80 0.548 0.558 0.547
90 0.629 0.633 0.625
100 0.694 0.699 0.689
110 0.747 0.756 0.743
120 0.796 0.803 0.789




APPENDIX 7

A.7 INFLUENCE OF THERMOCQUPLE SIZE ON TEMPE RATURE MEASUREMENTS

The influence of the thermocouple size on temperature
measurements 1is discussed in Section (5.2.7). Two thermocouple
sizes were used and the experimental investigations did not
permit to evaluate with certainty if there is any actual difference
due to the thermocouple size. The data are given in Table A.7.1.

TABLE A.7.1

TEMPERATURE-TIME CURVES FOR DETERMINING THE INFLUENCE OF THE
THERMOCOUPLE SIZE ON THE TEMPERATURE MEASUREMENTS

Sphere S-582, (Lucite), R = 0.3, 0.003"D. thermocouple

Sphere S-585, (Lucite), R = 0.3, 0,008"D. thermocouple wire

Experiments | S-8-1, 10| s-24-1, 4! $-29-13, 16| 0-25-1, 8
Sphere 3-582 S-585 S-582 S-585
Ti | 68,7 71.8 26.85 26.6
T 7.6 9.0 18.25 21.2
AT 61.1 62.8 8.6 5.4
time (sec.) o e e )
30 0.0kL 0.058 0.076 0.08% i
40 0.138 0.141 0.159 0.193
50 0.191 0.240 0.260 0.301
60 : 0.303 0.337 0.367 0.399
70 0461 0.%436 0.452 0.482
80 0.548 0.523 0.54%0 0.571
90 0.629 0.597 0.607 0.647
100 0.694% 0.659 0.665 0.698
110 0.747 0.712 0.719
120 0.796 0.756
130 0.837 0.796

..]_7]7-



APPENDIX 8

A.8 INFLUENCE OF THE SUPPORT

The effect of the sphere support on the measured
temperature~time curves has been estimated by using the finite-
difference model and considering only axial symmetry. The heat
transfer coefficient on the sphere surface in contact with the
support was assumed to be zero and a variable coefficient was
assumed over the remaining surface. Table 8 gives the h values
profile used for the computation. The results indicate that
there are negligible differences, for the half portion of the
sphere opposite to the one in contact with the support, between
the temperature-time curves based on variable heat transfer
coefficients and the ones predicted for radial symmetry. The
data for one position in the sphere are given in Table (A.8.1)

to illustrate these results,
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TABLE A.8.1

COMPARISON OF TEMPERATURE-TIME CURVES FOR RADIAL

AND AXIAL SYMMETRY OF THE HEAT TRANSFER COEFFICIENTS-

INFLUENCE OF Tt SPHERE SUPPORT

Sphere radius, 0.0258 ft.
Thermal conductivity, 0.1165

Heat transfer coefficient for radial symmetry (series solution),
2100

Mesh for the finite-difference model, 21 radial points
31 angular points

Position, R = 0.3
Angle = 180°

— Varigble h - radial symmetry of h
T (finite-difference
soligion) (serigs solution)
0.03 0.015% 0.014
0.0% | 0.046 0.0k
0.05 0.090 0.088
0.06 0.143 0.142
0.07 0.201 0.201
0.08 0.260 0.261
0.09 0.317 0,320
0.10 0.372 0.377
0.15 0.597 0.609




APPENDIX 9

A.9 ESTIMATION OF TEMPERATURE MEASUREMENT ERRORS FOR THE

LUCITE SPHERE CASE

Because the exact values for the conductivity of Lucilte
are not known, there is no direct method of estimating the
error of the temperature measurements made with Lucite spheres.
An evaluation of the error is however possible and is given
in some detail below.,

For the sake of evaluating the error, a value of
k = 0.1165 was assumed as the correct one for Lucite. The
average conductivity value measured for Lucite is 0.0972 and
the values are deviating from this average by less than ¥12%.
Using the value k = 0.1165, the temperature-time curves pre-
dicted by series solution were compared to the measured ones.
However, the measured conductivity values for Lucite are different
from 0.1165. A comparison with the values available in the
literature (see Figure 11) indicates that the results obtained
are reliable. Therefore, it 1s obvious that the comparison
should show differences between the predicted and the measured
curves. ©Such differences existed and hypothetical percentage
errors of the measured temperature values were calculated for

each Lucite sphere. An cxample 1s given in Table - 9.1.

=174=
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TABLS A.9.1

TEMPERATURE ERROR FOR 4 LUCITE SPHERE

Sphere S-122 (Lucite)

R = 0.6
ft pregicted measired F teggegiggggtzgrgr pased

0.029 61.k 6.3 4.7
0.058 46.15 51.0 10.5
0.116 28.5 32.1 12.6
0.173 19.2 21.4 11.5
0.231 13.9 14.6 5.0
0.289 11.0 11l.k4 3.6

Maximum errors were considered for each sphere. It is
important to remémber that the conductivity values determined for
each sphere using the series solutions and the method presented
in Section (3.%.3) are varying within certain ranges. In the
case of each sphere, there is one k value deviating the most from
kK = 0.0972. These values were considered and the differences
between 0.1165 and these values were calculated. Then they

were expressed as percentage differences based on 0.0972. The

idea 1s to establish & relationship in the case of Lucite spheres,
between the percent conductivity differcnces and the maximum
temperature errors. So, ratios of these values were calculated.
Table A.9.2 gives for each sphere the range of conductivity

values, the maximum error and the largest conductivity deviation
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from k = 0.0972. Table A.9.3 presents the ratios mentioned above.

IABLE A.9.2

MaXIMUM TEMPERATURE ERRORS FOR LUCITE SPHERES

Maximum Largest deviation
temperature of k values from
Sphere | range of k error, % 0.0972
S-122 0.0906-0.0951 12,6 - 6.8%
S-12k 0.0967-0.1006 9.4 + 3.5%
S-126 0.0855-0.0936 18 -12 %
S-581 | 0.0971-0.106 It +9 %
S-582 0.0948-0.0988 12.6 + 2.5%
S-585 0.0901-0,0963 17.0 - 7.3
S-586 0.0960-0.0989 10 + 1.75

As shown in Table A.9.3, the ratios obtained are not
constant but they are all close to 2 or larger. This fact in-
dicates that, in the case of Lucite spheres, when the assumed
conductivity deviated from 0.0972 by 20%, temperature errors
of 10% or smaller were estimated. Actually, the measured
values deviate from 0.0972 by less than 12%. From the above
reasoning, it can be concluded that the errors for the temp-

erature measurements in Luclte spheres are smaller than 6%,



TABLE A.9.3
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RATIOS FOR ESTIMATING THE TEMPERATURE MEASUREMENT

ERRORS FOR_LUCITE SPHERES

Difference betwesn

Xk = 0.1165 and the

measured X value Maximum temperature

most different error assuming k of

from 0.0972, Lucite = 0.1165 Ratlos of the
Sphere | % (based on 0.0972) % percentages
S=122 26 12.6 2.1
S-124 16.5 9.4 1.76
S=126 32.0 18 1.8
S=-531 11.0 L 2.75
8‘582 2205 1206 108
8‘585 27.3 1700 106
S-586 18.0 10.0 1.8




APPENDIX 10

A.10 RESULTS FKOM THE FINITE-DIFFERENCE SOLUTION WITH VARIABLE

PHYSICAL PROPERTIES

A finite-difference model was used during the present
investigation. It has been presented in Section (3.2) and more
details can be found in Appendix (3). The model can give
solutions for heat conduction in spherical solids when the
physical properties are varying with temperature. The model
can be used as the series solution, for determining the con-
ductivity of solids. It 1s even more general than the series
solution because 1t considers the variation of the properties.
However, it requires long computer time and was not investigated
extensively. For the determination of conductivity-temperature
curves from a single experiment, the model has been used only
with naphthol /3.

The experimental errors were such that the use of the
finite-difference model did not give easily much better results
than the ones from the series solution (see Appendix 12)., How=
ever, the model has been used to predict the temperature-time
curves which were used in conjunction with the series solution
and the proposed method of determining conductivity (see Section
3.4.3 and 5.3.2), to determine the deviation introduced by the
use of a series solution for predicting conductivity-temperature
curves. The theoretical cases investigated are given in Section
(5.3). Table A.10.1l shows the complete calculations for Case 1.

-178-
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TABLE A.10.1

5N _THE CONDUCTIVITY-TEMPERATURE CURVE USED
IN THE FINITE~-DIFFERENCE MODEL AND THE ONE DETERMINED BY

THE SERIES SOLUTION

Data used in the finite-dlfference model

R = 0.0

Cpf9

a2 = 113.5

k, = 0.1%7 ~ 0.,000075 T

p

Cp = 0.252 + 0.00128 T

k =
C

CpO =

T, =

time (sec.) =

0.147
0.252
66°¢C.

k1l = -0.000075

Cpl = 0.00128
- o]
113.5 Cp0
ko
13.
For the series solution, Bi = 462 and k = 113.5 Cp Q§
t (sec.)

Curve predicted by the

finite-difference model

Values determined by the used of the
series solution (%)

) gég? T Cp g k, k
.071 15.6 63.2 333 .0605 <1466 .1&22
;107 17.5 61.8 331 .0680 . 1460 o 1424
.238 234 56.7 .32k .0905 1423 .1428
376 29.2 51.3 .318 11k .1409 <1432
. 501 35.0 46.5 .312 . 140 L1415 1435
.606 40.9 424 .306 .166 <1412 .1438

The finite-difference model indicated also that when the ratilo

k/Cp is constant, or when this ratio varies but k and Cp vary
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similarly with temperature, the series solution predicts temperature=

time curves being the same or very simllar to the ones predicted

with the finite-difference model.

This means that when these

conditions exist, the veariations of physical properties with

temperature have negligible effect on the serles solution which

is derived by assuming constant physical properties and there-

fore, the series solution allows the determination of reliable

conductivity-temperature curves from a single experiment. TFor

the conditions described above, curves predicted by the series

and the finite-difference models are compared and their good

agreement is 1llustrated by an example given in Teble A.10.2.

TABLE A.10.2

COMPARISON BETWEEN TEMPERATURE-TIME CURVES PREDICTED BY SERIES

SOLUTION AND BY FINITE-DIFFERENCE MODEL WITH VARIABLE PHYSICAL

PROPERTIES
a = 0.0208 kKO = 0.22 CpO = .332
T, = 66°C. k1l = 0.000073 Cpl = .0011ll
T, = 27°. h = 2100 Bi = 462
k/Cp = 0.765 at 50°C. k/Cp = 0.776 at 20°C.
R = 0.0 R = 0.5
series finite=- series finite-
solution differencell solution difference
9y S o ) e
0 0 0 0 0
0.04% 0.011 0.012 0.152 O.1h44
0.05 0.033 0.03% 0.225 0.21k%
0.06 0.070 0.069 0.295 0.281
0.07 0.118 0.115 0.360 0.34Y4
0.08 0.173 0.167 0.419 0.402
0.09 0.232 0,222 0.473 0.455
0.10 0.290 0.279 0.52 0.50%
0.15 0.547 0.531 0.70 0.692
0.20 0.720 0.706 0.821 0.809




APPENDIX 11

A.11 DATA FOR DETERMINING THEL CONDUCTIVITY OF NAPHTHALENE,

BISMUTH, PARAFT'IN WAX AND AMMONIUM NITRATE

The tables in Appendix 11 give the details of the data
obtained for the following materials: naphthalene, bismuth,

paraffin wax and ammonium nitrate.

TABLE A.11.1

CONDUCTIVITY OF NAPHTHALENE - MEASUREMENTS WITH A SPHERE
Sphere S-125, R=0, D=0.5"
Experiments D-11-3, 6

T; = 50.3

Teo = 8.7

time sec. 0 T k-
12.9 0.092 46 .k 0.192
18.4 0.26% 39.15 0.198
31l.2 0.577 26 .4 0.196
35.0 0.669 22,4 0.203
39.0 0.745 19.4 0.208
L2 0.805 16.7 0.209
50.1 0.85%5 1.7 0.208
53.8 0.891 13.35 0.212,
59.1 0.916 12.5 0.212
63.4 0.936 11.95 0.21%
69.0 0.953 10.7 0.212
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TABLE A.11.2

CONDUCTIVITY OF NAPHTHALENE - MEASUREMENTS WITH AN HEMISPHERE

R =0.5

Experiment M-7-1

Ty = 25.9

Tw = 53

time (sec.) ® °c. k
50 0.032 26.8 0.241 )
60 0.054 27 4 0.236
70 0.081 28.1 0.233
80 0.110 28.85 0.234
90 0.1k42 29.75 0.236
100 0.176 30.65 0.236
110 0.208 31.55 0.237
120 0.242 32.45 0.240
130 0.275 33.35 0.246
140 0.303 34.10 0.246
150 0.330 34.8 0.246
160 0.356 35.6 0.24Y%
170 0.385 36.3 0.246
180 0.410 37.05 0.250
190 0.439 37.80 0.252




TABLE A.11.3

CONDUCTIVITY OF BISMUTH

~183-

Bi = 9.25
R = 0.5
Experiments| 0-8-1, 5 JA-24-1, 5

T, 71.0 73.6

Ty 10.4 3.9
time time
(sec.) 8 T k (sec.) ) T k

N 1
0.35 0.2 58.9 4,39 0.4 0.187 | 60.6 4,21
0.55 0.3 52,8 4,23 0.6 0.321 | 51.3 3.96
0.76 0.4 46,8 4,03 0.8 0.446 | 42.6 4,01
0.88 | 0.5 40.65 | %.03|| 1.0 0.556 | 34.85 | 4,06
1.08 0.6 34,6 4.08 1.2 0.646 | 28.55 | 4+.01
1.33 0.7 28.5 4,05 1.4 0.717 | 23.7 3.97
1.72 0.8 224 4,10 1.6 0.77% | 19.7 4,01
2.3k 0.9 16.4 4,12 1.8 0.822 16.35 | 4.08
2.0 0.857 | 13.9 4,06




TABLE A.11.4

CONDUCTIVITY OF PARAFFIN WAX

R =0, A new sphere was used in every experiment

Exper- ' ~

iment F-15-1 F-15-3 F-15-4 F-15-5

Ti 48,2 48,2 48,2 48,2

T, 7.0 8.6 11.3 12.7

AT 41,2 39.6 37.9 35.5

. time

(sec.)| ® T k e T k 6 T k 8 T i

Lo 0,124 [43.1 [0.109 {|0.060[45. 4 (0.0872 [10.060|46 0.0873 10.060|46,1 {0.0873
45  0.161 (+1.6 [0.105 {|0.118[%3.55[0.0928{{0.100({44.5 .0888(0.101 |44.6 [0.0830
50 0.208(39.65]0.10% ||0.171|%1.% [0.0956(|0.152{42.6 (0.0920 |/ 0.132|43.5 |0.0855
55 0.255(37.7 |0.104% |{0.231]39.05(0.0978|/0.209|40.5 [0.0946 || 0.200({41.1 |0.092k
65 10.328(3%.7 |0.106 [|0.321]35.5 {0.0983]0.319{36.45 0.0978 || 0.325|36.7 [0.0993
70  [0.36%)33.2 10.106 {{0.355|3%.15]0.0968 | 0.360|3%.9 [0.0978 || 0.389/3%.75]|0.103
80 [0.437]30.2 [0.0961|[0.421[31.50 {0.0945]|0.423(32.6 {0.095% {{0.458{31.95{0.101
85 0.474]28.65]0.0961|[0.453{30.25({0.0936|{0.451{31.55 {0.0932 || 0.491|30.75/0.0985
90 [0.489(27.15(0.0962/{0.48%|29,0510.0922 }| 0.481]30.45 [0.0914 || 0.524|{29.6 {0.0975
95 10.548(25.6510.0962}|0.515|27.8 ]0.0911||0.510}/29.% |0.0904 || 0.554[28,.55[0.0968

105 [0.620122.65(0.0977({0.589{2%.9 [0.0922{|0.576]26.9 [0.0910|] 0.613[26.45[0.0962

115 0.695(19.6 |0.102 [{0.678[21.35[0.0976 || 0.64k4| 24 .45 [0.0926

120 [0.730/18.1 |0.10% {|0.718/19.8 |0.101 || 0.686(22.90 [0.0947

130 [0.80%(15.1 |0.110 {|0.788}{17.0 |[0.107

135 0.820/15.75/0.,110

140 0.850|14.5 [0.116

-+gT-



TABLE A.11.5

CONDUCTIVITY OF AMMONIUM NITRATE

One sphere, 0.5"D.

R = 0.0

Experiment F-8-k

Ty 65.75

T 5.0

AT 60.75°C.

time (sec.) <) T k
10 0.078 61 0.409
15 0.257 50.1 0.413
20 O.45k 38.2 0.435
25 0.608 28.8 0.431
30 0.680 24 .45 0.407
35 0.7265 21.60 0.379
40 0.7728 18.6 0.36k4
L5 0.8115 16.45 0.351
50 0.8607 13.45 0.3565
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APPENDIX 12

A.12 CONDUCTIVITY OF NAPHTHOLge’- DETERMINATION USING THE
SERIES _AND FINITE-DIFFERENCE METHODS

The Tables A.l2.1, A.12.2, and A.12.3 give the data
obtained experimentally from three spheres and the conductivity
results determined by using the series solutions. Also are
given the kO values determined by using'the finite-difference
model with the linear relationships proposed by International

Critical Tables (Il). The relationships are:

k = 0.147 - 0.000075 T
k = kO - k1.T
and Cp = 0.252 + 0.00128 T
Cp = CpO + CplT
2
a CpO
Theoretically, the determined kO values (kO = fQ P Qj)
t (sec.)

should be constant. However, the experimental errors are such
that they are varying, although very little. Thelr variation
pattern 1s very similar to the variation of the conductivity
values determined with the series solution. Measurements done
by using k = 0.142 - 0.000075 T in the finite-difference model
did not introduce any significant change in the kO values deter-
mined. The finite-difference model gives good results but for
the cases where the conductivity 1s not known, the computation

could be relatively long.
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TABLE A.12.1
CONDUCTIVITY OF NAPHTHOLffB - EXPERIMENTS F-22-5, 6, 7

R = 0.0

T; = -32.7

T, = 21.6

Model Series Finite-difference

time (sec.) ) T K KO
15 0.19% -22.15 b1 0.142
20 0.333 -14.6 o 1kl 0. 14k
25 0.458 - 7.8 <146 0.146
30 0.566 - 1.9 <147 0.147
35 0.654 + 2.85 .147
40 0.726 6.75 | 152
45 0.788 10.1 <154
50 0.838 12.8 .158
55 0.871 14.6 .158

TABLE 8.12,2
CONDUCTIVITY OF NAPHTHO%A5 - EXPERIMENT F-23-2

R =0.0

Ty = 80.0

T, = 22.19

Model Series Finite-difference

time (sec.) ) T k kO
20 0.153 71.1 0.148 146
25 0.268 64 5 0.145 146
30 0.380 57.95 0. 14k o 1hk
35 0.488 51.75 0.143 <144
40 0.585 46,15 0,142 o 1Lkl
L5 0.658 41.9 0.139
50 0.726 37.95 0.139
55 0.780 34+.95 0.139
60 0.824 | 32.3 0.139
65 0.853 + 30.6 0.138
70 0.87¢% 29.2 0.139




BXperiment F-25-1

IABLE A.12.3

CONDUCTIVITY OF NAPHTHOL /&

R = 0.0

T, = 66.65

T, = 23.0

Model

time Series Finite-difference

(sec. 2} T k kO
20 «140 60.6 137 .137
25 .238 56.3 133 .133
30 <359 51.0 .136 .136
35 465 46 Lt .135 135
40 « 560 42,2 .133 .13k
45 .63% | 39,0 131 |
50 « 70% 35.9 .132
55 756 33.7 <131
60 .805 3L.5 .132
65 .8kt 29.8 . 13%
70 .875 28.5 « 134
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APPENDIX 13

A.13 CONDUCTIVITY OF ICE - TRIAL-AND-ERROR PROCEDURE FOR LQOW
BIOT NUMBERS

The range of conductivity values for 1lce is such that
the Bilot numbers existing in the present investigations are
smaller than 50. This means that the temperature-time curves
predicted by the serles solution and used for determining the
concuctivity, are dependent on the Biot numbers. The data
presented in Table A.13.1 show that even if a single temperature-
time curve is used (Bi = 32.0), reliable conductivity values
are obtailned.

The table also gives values determined using temperature-
time curves corresponding to different Biot numbers. ' A con-
ductivity value is first assumed and a Biot number calculated.
Then, the conductivity values are determined. A comparison be-
tween the assumed and calculated values indicates whether or
not the assumption was right. As illustrated, a trial-and-error
procedure can be established and lead to the determination of
reliable values. This trial-and-error method should be most
useful when the conductivity value of the test material 1s com~-
pletely unknown. The conductivity range can be estimated first
and after, the determination of the conductivity values can be

done.
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TABLE

RESULTS FOR A TRIAL-AND-ERROR PROCEDURE USED

IN THE DETELMINATION OF ICE CONDUCTIVITY

Sphere, 0.498 I 0.001"D.
R = 0.0
Experiments  JA-29-13, 21

Heat transfer coefficient, 2000

T, =-43.8, T, = -5.85
trial 1 2 3 L
assumed k 4.5 0.833 1.21 1.30
Bi 9.25 50 3445 | 32.0
time (sec.) 6 T k k k k
2,2 0.117 | =39.35| 1.45 1.22 1.28 1.30
3.2 0.238 -32.85| 1.52 1.30 1.29 1.32
4.2 0443 | =27.0 | 1.5% 1.30 1.29 1.33
5.2 0.568 | =-22.% | 1.50 1.27 1.28 1.31
6.2 0.666 | -18.5 | 1.50 1.27 1.25 1.31
7.2 0.7%0 | -15.7 | 1.49 1.27 1.29 1.30
8.2 0.798 | -13.5 | 1.50 1.27 1.28 1.29
9.2 0.845 | -11.7 | 1.50 1.26 1.29 1.29
10.2 0.880 | -10.4 | 1.51 1.29 1.29 1.30
11.2 0.907 | = 9.4 | 1.50 1.26 1.28 1.30




APPENDIX 1k

A.1% EXPERIMENTAL CONDITIONS AND RESULTS FOR LUCITE SPHER&S

Table A.1l4.1 gives the construction details and other
characteristics of the Lucite spheres used in this investigation.
Table A.14.2 contalns the results obtained with the different
spheres and the experimental conditions.

TABLE A.14.1

CONSTRUCTION DETAILS OF LUCITE SPHERES

P indicates a sphere fabricated by polymerizing methyl metha~-
crylate in a mold.

C indicates a cast sphere from the supplier

ALl spheres have 0.003 inch chromel-alumel thermocouples except
sphere 5-585 with 0.008"D. wires.

S indicates a stainless steel support 0.097'"D.

G indicates a glass support 0.245"D,

N indicates a sphere with a 0.25" x.25" cylindrical neck.

Diameter Fabrication
Sphere (inchf0.003)| method Support Neck
S-122 0.498 P S -
S=123 0.499 P S -
S=124% 0.495 P S -
S-126 0.495 P S N
5-581 0.617 c S -
S-582 0.618 C S -
S-583 0.620 C G -
S-585 0.618 C G -
S-586 0.615 o S -
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TABLE A.14.2

RESULTS FROM LUCITE SPHERES

Sphere S-122

Experiments 0-22-1, 5

Ti 71

Teo 7.2

R 0.6

e T k

. 104 64,35 0.0951
<313 51.0 0.0917
.608 32.0 0.0906
.705 26.0 0.0920
.836 17.6 0.0931
912 12.9 0.0950

Sphere S=-123

Experiments N-4-1, 5

Ti 70.8

T 8.8

R 0.5

) T k

0655 66.7 .110
254 55.0 111
22 L4, 6 . 104
657 30.0 .0876
<736 25.2 .0883
. 848 18.2 0940
0909 1:* -)+ 00926
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Sphere S-12k4

Experiments N-13-1, 5

Ty 70.85

T, 9.7

R 0.k

e T k

o 1 62.1 .101
L65 42 4y . 100
.691 28.65 0965
.82k 20.45 .0970
.901 15.85 .0967

Sphere S-126

Experiments D-18-1, 5

Ty 70.8

T, 8.1

R 0.0

C) T k

.110 64 .0936
. 376 4L7.2 .0890
.695 27.3 .0865
.859 16.9 .0855
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Sphere S-581

Experiments A-25-1, 10

T, 71.8

T 13.8

R 0.3

S T k

.017 70.9 . 102
.083 67.1 .103
. 18% 60.3 .105
« 294 54.8 . 10%
405 48,k . 10k
. 501 42.9 0971
. 586 37.9 .103
663 334 . 104
<733 29.4 . 104
.783 26.5 .0993
.805 25.3 .106
. 845 22.9

Sphere S-582

Experiments S-8-1, 10

Tl 68.7

To 7.6

R 0.3

o T k

.057 65.0 .0948
359 46.7 0960
. 506 37.7 0970
694 26.3 .0962
.818 18.3 .0988
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Sphere S-583

Experiments S-18-1, 6

Ti 71.2

T 4.1

R 0.6

o T k

.128 63.9 J11k4
« 220 58.6 112
. 364 5l.2 . 107
122 L7.1 .106
1476 44,0 .105
565 38.9 .102
.638 34.7 .101
.696 31.4 . 100
. 740 29.0 .0985
.819 24,6 .0948

Sphere S-5835

Experiments S-24-1, 4

Ti 71.8

Too 9

R 0.3

o T k

.103 65 .1 .0962
.2L40 56 . 8 .0926
L85 H1.h .0952
.659 30.% .0915
c774 23.0 .0901
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Sphere S-586
Experiments N-20-1, 5
Ti 70.8
o 10.8
R 0.k
] T k
.122 63.5 0.0989
«337 50.6 0.0980
. 530 39.1 0.0975
.701 28.8 0.0960
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