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Abstract

This study focuses mainly on situations of time-based competition. Three prob-
lems in this context will be studied in three di¤erent parts.
In the �rst part, we will examine the promised delivery time (PDT) competition

for �rms whose production processes consist of more than one stage. We study three
games; a) when each �rm consists of two stages and has identical production rates in
both stages, b) when each �rm consists of k stages and has identical production rate
in all stages and, c) when each �rm consists of two stages and has di¤erent production
rates in each stage.
In the second part, we focus on a duopolistic market where the �rms compete

against each other by determining their PDT. The �rms try to win the business of
a single customer who is sensitive to PDT but will also penalize the winning �rm
through tardiness costs. This situation may emerge when the production duration is
too long and the product is expensive as in the aviation industry.
The third part of this study deals with situations of investment competition in

the presence of incomplete information in the market. The investment decision will
a¤ect the time to production (speed) and determines the probability of winning the
business. The notion of incompleteness in information is projected when �rms are not
fully certain about each other�s objective function.
In each chapter, we will �nd the equilibrium of the game and determine the players�

optimal strategies. At the end of each chapter, a numerical analysis is presented,
where numerous numerical examples are solved. Based on the numerical examples, a
sensitivity analysis is also presented for each model that would capture the sensitivity
of the Nash equilibria and the �rms�optimal strategies towards changes in parameters
in the market or the competitor�s operations.
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Chapter 1

Introduction

This thesis studies time-based competition. As the nature of the word �competi-
tion�suggests, time-based competition analyzes situations of con�ict, where players
compete with each other based on time. Therefore, game theory will be the natural
methodology for this study. We will present cases and literature reviews to exhibit the
attention given to time-based competition by both practitioners as well as academi-
cians. However, there is still considerable room and opportunity for further research
in the context of game theory for studying of situations of time-based competition.
We believe that this thesis will contribute to the body of literature in this context.
Following this short introduction, we will introduce time-based competition fol-

lowed by a section explaining the importance of time-based competition in the litera-
ture. After that, we will discuss the relationship between time-based competition and
supply chain management. This chapter will conclude by introducing the structural
organization of this study.

1.1 Time-Based Competition

Today, time is known to be an important factor in determining the success of busi-
nesses. The notion of time that is important to businesses and will be referred to in
the rest of this text has been de�ned by Kumar and Motwani [41] as the �totality
of time required to perform all activities on a critical path that commences with the
identi�cation of a market need and terminates with the delivery of a matching prod-
uct to the customer�. In the 21st century, it is universally accepted that time plays
an important role in the advancement of businesses and is an indispensable part of
every operation. Every day we see companies that try to compete and win a greater
share of the market by focusing on the time aspect of their operations. Numerous
examples are at hand. For instance, e-retailers (online retailers) such as Bestbuy.com
and Amazon.com use time as a means of competition and promise delivery times that
are competitive with that of their rivals and the market rewards them by giving them
more demand as explained in Maltz et al. [48]. Other examples of companies that

1
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compete based on the time aspect of their business includes UPS, Federal Express,
etc.
Although a clear competitive advantage today, time has been enjoying the atten-

tion only in the last couple of decades. The notion of time as a competitive advantage
was explicitly introduced in the literature at the end of the �80s by Stalk [38]. In this
work, he explained how the competitive advantages of companies have been evolving
through time and how time has become important in shaping companies�competitive
advantages. According to Stalk [38], �As a strategic weapon, time is the equivalent of
money, productivity, quality, even innovation�. In this work, he explains the evolution
that led to the identi�cation of time and speed as competitive advantages. He argues
that companies always used low-cost labour as a competitive advantage up to the
early years of 1960s, when the wages started to increase. Industries responded to the
rising wages by investing in technology and shifting production to an era of large scale
manufacturing taking advantage of large volumes in order to bring the unit cost of
production down. By the mid 1970s, industries sought competitive advantage by fo-
cusing on speci�c operations involved in production and splitting the manufacturing
processes into smaller factories. This led to focused factories. The focused facto-
ries provided companies with competitive advantage by keeping the cost per unit of
production down but they limited companies�ability to capture the ever-growing de-
mand for variety. Industries responded to the growing awareness in the variety-seeking
consumers by the introduction of �exible factories. With �exible manufacturing, com-
panies produced low-cost products with greater variability. With the majority of the
market focusing on producing lower cost products with a great degree of variability,
companies that did so faster certainly stood out from the rest of the players. This
gave rise to the concept of time-based competition and time-based manufacturing.
Stalk [38] argues that companies started incorporating time competition in every

process from production, service delivery and new product development to sales, lo-
gistics and transportation, etc. According to him, some companies that took active
part in time-based competition include Sony, Sharp, Toyota, Hitachi, Toshiba, The
Limited (women�s clothing manufacturer), Federal Express, Domino�s Pizza, Wilson
Art and McDonald�s. Stalk and Hout [60] studied the issue of time-based competi-
tion more thoroughly and presented many examples of time-based competitors and
provided insights to businesses on how to become time-based competitive and how it
will help customers.
Time-based competition today is a strategical and managerial approach that ad-

dresses all units and sections across the organization and seeks to shrink time in every
step of the production/service delivery throughout the organization or across the sup-
ply chain (see Bozarth and Chapman [10], Hum and Sim [37], Rich and Hines [51],
and Sapkauskiene and Leitoniene [52])

2
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1.2 Bene�ts of Time-Based Competition

Time-based practices will not only help the companies involved in time-based compe-
tition serve more customers and create more satisfaction and better reputation, they
will also help the organizations internally in making their processes more e¢ cient,
reducing their costs and creating and sharing more information. Kumar and Motwani
[41] identify three main sources, from which the strategic value of time originates.
These three sources include; (a) the price premium as a result of faster response, (b)
brand loyalty and higher market share as a result of faster delivery and customized
products, (c) lower production and logistical costs resulting in higher pro�tability.
Bozarth and Chapman [10] argue that a number of bene�ts of the application of time-
based competition in a company includes; (a) the bene�ts to the customer (shorter
delivery time, improved customer support, higher-quality goods and services, etc.),
(b) bene�ts to the organization (lower development costs, simpli�ed production con-
trol, higher e¢ ciencies, etc.), and (c) tactics (system-wide measure of time, continuous
improvement e¤orts, integrated information systems, etc.). Hum and Sim [37] gener-
alized the bene�ts of time-based competition as �They [bene�ts] include increase in
productivity, ability to command a price premium, market share gain, customer loy-
alty and the ability to shut out competition through planned obsolescence-a process of
planning one�s own products to become obsolete by introducing new products rapidly
to replace them.�
Sapkauskiene and Leitoniene [52] take a holistic view of time-based competition

and look at it from a management theory perspective. They argue that various
concepts, methods and tools should be involved in making the organization time-based
competitive. They propose the concept of time-based management, that is required to
manage and integrate all these processes in order for the organization to achieve time-
based competition. According to them, implementing time-based management will
help the organization enjoy greater pro�tability through other advantages like higher
e¢ ciency, higher productivity, lower cost, higher price premiums, etc. The diagram
presented in [52] explaining the advantages provided by time-based competition can
be seen in Figure 1.1.
Sim and Curatola [55] do an empirical study on the bene�ts of time-based com-

petition. They study the performance of 83 electronic plants (such as semiconductor
producers) in the United States in dealing with time-based performance and report
that companies that manage their time-based performances e¤ectively, usually have
a greater market share and can reduce their manufacturing and warranty costs. For
a thorough review on the bene�ts of time-based competition, see Blackburn [9], Stalk
[38], and Stalk and Hout [60].
This chapter brie�y describes game theory and supply chain management (SCM),

and explains the organizational structure of this thesis. Our brief description indi-
cates that the theory of games has broad applications in diverse �elds, and especially
plays an increasingly important role in analyzing various game-related SCM problems.

3
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Figure 1.1: The basic advantages provided by time-based competition presented in
Sapkauskiene and Leitoniene [52].

We also show that both academics and practitioners have paid growing attention to
SCM in the recent years. Therefore, it is worthwhile for us to propose this study
concerned with game theoretical concepts and their applications, especially in SCM.
The structure of this thesis is introduced at the end of this chapter.

1.3 Time-Based Competition and Supply ChainMan-
agement

Globalization and new trade laws in the past decade have had important impacts
on the nature of business environment. This has contributed to the �eld of supply
chain management in di¤erent ways. With companies now operating through the co-
operation of various previously individual business entities, the knowledge of supply
chain management has become richer in the past decade. The competing or coop-
erating entities in the business world are no longer individual companies, but chains
of interrelated companies who are all geared towards a mutual goal, which is de�ned
for the whole chain. The move towards chain-based business entities (supply chains
hereafter) has had numerous merits and has also contributed to the emergence of new
complications and problems that never existed before. Moreover, the evaluation of
the performance of supply chains has opened up doors to new research opportunities

4



Ph.D. Thesis �Behrouz Bakhtiari McMaster University �Management Science

and managerial decision making challenges. It is an interesting issue for researchers
and practitioners to evaluate the performance of supply chains.
The Supply Chain Council has published a number of reports by the name Supply

Chain Operations Reference model (SCOR model), in which a number of performance
metrics have been introduced as performance attributes. Through these performance
attributes, the performance of supply chains can be evaluated and compared against
di¤erent benchmarks. Performance attributes are measured by indicators called key
performance indicators (KPI). One of these performance attributes is responsiveness.
The SCOR model 10 published by the supply chain council [19] de�nes responsiveness
as follows; �The responsiveness attribute describes the speed at which tasks are per-
formed. Examples include cycle-time metrics. The SCOR KPI is Order Ful�llment
Cycle Time. Responsiveness is a customer-focused attribute.�
As introduced in the statement, the key performance indicator of this attribute is

order ful�llment cycle time, which measures responsiveness from the customer�s point
of view. As mentioned before, �rms seek competitive advantage by quoting delivery
times to customers. It is important for businesses to �nd out what is the optimal
delivery time to quote to the customer. This problem is mostly relevant in Make-to-
Order (MTO) and Assemble-to-Order (ATO) environments, where the goods are not
purchased o¤ the shelf. In these environments, the production or the preparation for
the good/service delivery is triggered by the customer�s order.
It should be noted that deriving a conclusion about an optimal or close to optimal

delivery time quote could sometimes be quite di¢ cult. This is due to the fact that
the completion time at each stage of the supply chain is usually a random variable
and involves uncertainties. Therefore, the uncertainty resulting from each stage will
further increase the uncertainties involved in the delivery time of the whole chain. As
a result, any valid statement of a quoted delivery time should always be coupled with
the probability of achieving that time by the supply chain. In other words, the rate
of satis�ed demand or reliability should also be considered in determining the market
share gained by the �rm. The satis�ed demand in this context refers to customers
whose orders are delivered at or before the promised delivery time.

1.4 Organization and Overview

This thesis is organized as follows. Chapter 2 presents a brief introduction to the
application of game theory in time-based competition. Later in that chapter, a survey
of the literature in the �eld of game theory and time-based competition is presented.
This section is categorized into three parts based on the decision variables, according
to which the �rms compete in the context of time. In Section 2.2 of this chapter,
we will present the building blocks of modelling for studying time-based competition
using game theory. The demand models are being discussed and the notion of quality
of service is introduced and presented. Next we discuss supply chain design and
explain how the quality of service is a¤ected by the design of the supply chain.
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In Chapter 3 we will present and solve three models of time-based competition
between �rms that have more than one stage of production (supply chains). First,
a model of duopoly with supply chains that are competing based on their PDT is
presented. In this section, it is assumed that each �rm has two serial stages of pro-
duction with identical production rates in both stages. The next section deals with
a problem with the same structure but with �rms that have k serial stages of pro-
duction with identical production rates at all stages. Next, we will study a similar
problem of a duopolistic market, where each �rm has two serial stages of production
but the production rate at each stage is di¤erent. The Nash equilibrium and optimal
strategies for the �rms are derived in each section. Following each section, we present
numerical examples based on the analytical results of that section. Using the numer-
ical examples, we construct a sensitivity analysis for each game and study the e¤ect
of changing parameter values on the outcome of the game as well as players�optimal
strategies. The chapter ends with a conclusion and suggestions for future research in
that context.
In Chapter 4, we will study a game in a duopolistic market with two players that

are competing for the business of one customer. The �rms compete by quoting a
promised delivery time to the customer. Only one �rm will win the business of the
customer. Once the business is won by a �rm, the other �rm is out of the game and
the winning �rm will be rewarded for selling the product. In addition to that, the
winning �rm will now incur production and tardiness costs. Quoting smaller PDTs
will increase the chance of winning the business but will increase expected tardiness
costs. On the other hand, quoting larger PDTs will decrease the chance of winning
the business but will also decrease tardiness costs if the business is won. This trade-o¤
situation, along with the uncertainty involved in determining the winning �rm creates
an interesting model that will be discussed in this chapter. We will characterize the
best-response curves of the �rms and will present the Nash equilibrium of the game.
This chapter concludes with a numerical sensitivity analysis as well as conclusions
based on the chapter �ndings.
The games introduced in all the chapters so far were games with complete infor-

mation. In Chapter 5, however we will study a game with incomplete information. In
this chapter, we build upon a model that was introduced by Gerchak and Parlar [24].
However, here we assume that one of the players has incomplete information about
the objective function of its opponent. Games with complete and incomplete infor-
mation will be explained in more detail in this chapter. This chapter will also include
the presentation of the best-response curves as well as the Nash equilibrium of the
game. It will conclude with numerical examples, sensitivity analysis and conclusions
and suggestions for future research topics in this regard.
Finally, in Chapter 6, we will summarize all the work and �ndings of the thesis

and will present the future research opportunities for all the three problems that will
be studied in this work.
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Chapter 2

Time-Based Competition and
Game Theory

This chapter consists of a literature review for models of time-based competition stud-
ied with game theoretical tools and methodologies. In this chapter we will study mar-
kets, where �rms compete by deciding upon di¤erent attributes including promised
delivery time, performance, capacity (rate of production), price, etc. In Section 2.1
we will explore the body of literature in the areas of time-based competition and game
theory and the results are presented.
This chapter also prepares the ground work for the following chapters by focusing

on the introduction of issues and ideas that will be useful in model building in those
chapters. In Section 2.2, we will discuss issues such as order completion rules and
supply chain design, the relationship between promised delivery time and quality of
service as well as the demand model. In this section, two examples of modelling the
market demand from the literature will be presented and explained.

2.1 Introduction and Literature Review

Game theory is de�ned by Stra¢ n [61, p. 1] as the �logical analysis of situations of
con�ict and cooperation�. He de�nes a game as a situation, in which,

� There are at least two players. A player may be an individual, a company, a
supply chain, or a nation

� Each player has a set of actions or strategies to choose from

� The strategies chosen by all players will determine the outcome of the game

� Each outcome is associated with a set of payo¤s to each player in the game

Game theory then determines how players should rationally play the games con-
sidering their strategies, payo¤ and game outcomes. For complete reviews of the
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application of game theory in supply chain management we would refer the reader to
the reviews performed by Cachon and Netessine [13] and Leng and Parlar [44].
In the concept of time-based competition, the players could be individual produc-

tion facilities, service providers, an entire supply chain or a stage in a supply chain,
o¤ering a product/service to a time-sensitive market. It is important to note that the
market may be sensitive to other factors as well (like price or quality), but in this
study we will focus on markets that are time-sensitive. We will refer to this market as
a time-based market. Based on the nature of the �rm, it may use di¤erent strategies
to position itself in the time-based market. It may concentrate on capacity allocation
(like in Kalai et al. [39] and Shang and Liu [53]), price (like in Armony and Haviv [4]),
on a combination of capacity and price (like in Allon and Federgruen [1] and Cachon
and Harker [12]), on their inventory management (like in Li [45]), or any other tool
that would serve as their strategy in the time-based market. The outcome of the game
will be determined by the fraction of demand or the market share that each server or
�rm serves. Each market share translates into a level of pro�tability for the �rm that
is considered to be the �rm�s payo¤ in that outcome.
There is a rich body of literature that studies the strategies and outcomes of games

played between two or more �rms in a time-sensitive market. This stream of research
seeks to �nd the optimal strategies (price, capacity, inventory, etc.) for the �rms
that are competing against each other for a greater market share in a market that is
sensitive to time.

2.1.1 Competing with Capacity Decisions

One of the earliest papers that studied the problem of capacity decisions for compet-
ing �rms/servers in a market, where time is a competitive advantage, was the work
of Kalai et al. [39]. In this paper, the authors introduce the two new concepts of
competitive game of servers and the market share. They study a situation with two
servers serving customers who are sensitive to the speed of service. The servers have
control over their service rates at a cost with a convex cost function. The authors give
a closed-form expression for the market share of each server depending on the ser-
vice rates of both servers and prove the conditions for three types of Nash equilibria.
They show that symmetric and non-symmetric Nash equilibria may exist depending
on the revenue for serving each customer as well as the cost of maintaining the service
rates. From this paper, a stream of research originates that looks at the competition
of servers/�rms in markets with time-sensitive customers.
Ching et al. [15] extend the work of Kalai et al. [39] by studying the same model

but allowing for multiple servers competing in the system. They only look at the
situation where the queueing system is stable or the total service capacity is greater
than the mean rate of demand into the system. They show that when the marginal cost
of serving the 1=n fraction of the customers is low enough, then there is a unique and
symmetric Nash equilibrium (��; ��; :::; ��), where �� is the service rate of each server.
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They also present a numerical example for a system with three competing servers and
derive the value of �� as a function of the Poisson customer arriving rate. Gilbert and
Weng [26] build upon Kalai et al. [39] by studying a case, where two independent
servers compete for pro�t under the coordination of an agent. The servers decide upon
their service rate and the coordinating agent determines the amount to pay to each
server for serving each customer, as well as the rule for allocating customers to the
servers. The coordinating agent is interested in minimizing its cost while keeping the
service time below an exogenously de�ned level. The rules for customer allocation is
either to have a common queue for the whole system or to have two separate queues for
each server. The authors �nd the equilibrium service rates for each case and compare
them against each other. They �nd that the rates in equilibrium for the case with
separate queues are higher than that of the common queue system. They argue that
this is due to an intensi�ed competition between servers to increase their service rates
in the case of separate queues, which is weakened when there is one common queue
for both servers. By coordinating the customer allocation in the system, the agent
ensures that the waiting time for customers is within an exogenously given bound.
Christ and Avi-Itzhak [16] extend the work of Kalai et al. [39] by studying the

same model and assuming that the customers may not enter the waiting line with
probability 1� �n, when there are n customers in the system. The term �n depends
on the number of customers in the system waiting or getting served. The authors
show that the proportion of arrivals to each server is strictly increasing and concave
in the server�s own rate and also is decreasing in the other server�s rate. They also
show that there is a unique Nash equilibrium in the system which is symmetric under
the assumption that the cost function is convex and increasing. In other words, they
show that when the cost function c is convex and increasing on [0;1), there exists
a �� such that (��; ��) is the unique Nash equilibrium for the game (rates for both
servers are equal in equilibrium). Avi-Itzhak et al. [5] extend the work of Christ
and Avi-Itzhak [16] by showing that a globally optimal solution is strictly superior
to the Nash equilibrium found in their model. They use a linear penalty term for
each server to force the Nash equilibrium to move to a new symmetric point yielding
smaller service rates for each server. They show that the whole system will incur losses
due to a longer waiting line and leaving customers. However, this loss is compensated
by the servers maintaining a smaller service rate. Although their model produces
smaller revenues for each server, the overall system is better o¤ and generates higher
pro�ts. They also show that when the service rates are not observable by an external
entity, it is still possible to force them into a Nash equilibrium that is globally optimal.
This is done by imposing a linear penalty (or reward) on observable random signals
received from the servers. For examples of using linear reward/penalty functions in
decentralized supply chains to make a global optimal become a Nash equilibrium see
Golany and Rothblum [27].
Other studies of competition with service rates (capacity level) include the works

of Ho and Zheng [36] and the recent paper of Shang and Liu [53]. In both of these
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works, the authors assume that �rms compete by determining their performance level
or their service rates. Other than that, �rms announce their promised delivery time.
Therefore, we will discuss these two papers in more detail later in this study.
Some �rms may also manipulate their inventory design in order to become time

competitive. For example Li [45] studies an oligopolistic game, in which customers
react to early delivery. In his model, customers can place orders with multiple �rms
and then complete the purchase with the �rm that delivers the products at the ear-
liest time. This model compares the make-to-order (MTO) and the make-to-stock
(MTS) design in their e¤ect on the response time in duopolistic markets, monop-
olistic markets and demand sharing markets. In the demand sharing market, the
placing of multiple orders is not allowed and customers cannot di¤erentiate between
the delivery performances of the �rms. They �nd formulas similar to the newsvendor
model formulas and show that companies have large incentives to produce in make-
to-stock fashion in oligopolistic time-sensitive markets. This incentive decreases in
monopolistic and demand sharing markets, in the same order.

2.1.2 Competition with a Combination of Price, Performance
and Other Attributes

Some authors include the price of the services or goods as a decision variable taken
by the �rms. Sometimes price is the only decision variable, and sometimes it is
combined with other factors that can be controlled by the �rms. Li and Lee [46] show
the importance of having a more responsive system in achieving higher pro�ts and
a greater market share. They study a system with customers that react to delivery
speed as well as price and quality. They study a two-�rm system and assume that
customers join a �rm that would maximize their utility value function that takes
into account the price, quality as well as the delivery speed provided by that �rm.
This utility function is referred to in the literature as the full price, incorporating
price and other factors into a single value full price (see the two papers by Allon and
Federgruen [1] and [3]). They �nd the demand rate (throughput rate) of each �rm
and �nd conditions for the existence of Nash equilibria. They report that if a �rm
has a faster delivery speed, in equilibrium the �rm will serve a greater share of the
market and will also charge higher prices than its competitor. This translates into
higher pro�tability for the faster �rm.
Lederer and Li [42] study a system of �rms that compete in a market with delay

sensitive customers. The �rms are modeled as M=G=1 queues and have control over
their prices, production rates as well as their scheduling policies to specify how the jobs
are sequenced. They study the e¤ects of time-based competition on prices, demands
and companies�pro�tability, and report that a unique equilibrium exists. They show
that �rms with faster delivery and lower variability and costs always enjoy a larger
market share, higher utilization of capacity and higher pro�ts. They also study the
behavior of di¤erent types of customers with regard to their delay sensitivity and show
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that in equilibrium, customers that are more delay sensitive receive faster services but
will also pay higher prices.
Many researchers combine price with other attributes and present the term full

price, that aggregates all those attributes into one. Cachon and Harker [12] study a
duopolistic market with demand that is sensitive to a full price. The full price of the
�rms are determined by their price (explicit fee) and expected operational performance
(here measured by total time in system). Also, the �rms face scale economies, where
each �rm�s cost per unit of demand will decrease as demand increases. In other words,
the cost function of the �rms is concave. The �rms determine their prices and their
expected operational performance as their decision variables. Considering the �rms
as M=M=1 queueing entities, the authors �nd the equilibrium full price for the game.
They also �nd that in the equilibrium full price, the �rm that has lower costs may
serve a greater share of the market and also charge higher prices. They also consider
the case, where �rms will seek opportunities to weaken the price competition. They
suggest that one of these strategies is outsourcing their operations to a supplier. They
add a supplier to the model that can take responsibility for the operations at each
�rm (with dedicated resources for each �rm) and charge a price for each customer
that is served. They de�ne a two-stage game with outsourcing allowed and show that
when scale economies exists, �rms have strong incentives to outsource.
Ha et al. [29] consider delivery frequency decisions as a competitive advantage

in time-based competition, similar to delivery speed (e.g., see, Kalai et al. [39]).
They highlight two important roles of delivery frequency in time-based competition.
By delivering more frequently to the customers, the suppliers can �nd competitive
advantage in their business. Also, since a more frequent delivery by the suppliers
reduces the inventory of the customer, the suppliers will be able to o¤er complemen-
tary services to the customers and improve their pro�tability. The authors de�ne
two three-stage non-cooperative games between two suppliers and a customer. Based
on their models, the customer could be sensitive to price or delivery frequency. In
their �rst game, they assume that the suppliers handle logistics and compete only on
delivery frequencies. In their second model, they assume that the customer handles
logistics (e.g., comodity-like goods) and thus the suppliers compete only on price. The
authors compare their results in their models and show that high frequency delivery is
a source of competitive advantage in time-based competition. Based on their model,
the customer is better o¤ when the suppliers handle logistics and the suppliers are
better o¤ when the customer takes that role.
Armony and Haviv [4] study a duopolistic market, where customers are only sen-

sitive to the full price. Full price in their model includes the service cost plus the
expected waiting costs. They assume two �rms that o¤er a homogenous service to a
market of customers that belong to one of two groups based on their patience level
in receiving service (time-sensitivity). Upon arrival, customers can join the queue at
one of the two servers, or alternatively leave and avoid getting served (balk). The
authors de�ne a two-stage game for studying this model. In the �rst stage, the cus-
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tomers compete by observing the prices (and not the queue lengths) and join one of
the queues, or leave. The decision made by every customer to join each queue has
an e¤ect on the service experience all other customers receive. In the next stage, the
�rms observe the allocation of customers and decide on the prices to charge. The
authors study Nash equilibria in the model and �nd that the �rst level of the game
(played between customers) has mixed strategies but the game played between the
�rms has pure strategies. For a review on the de�nition of pure and mixed strategies
we refer the reader to Stra¢ n [61, pp. 3�21]. In the game between the customers,
their �ndings show that the full price equilibrium paid by the less time-sensitive (more
patient) customers is less than or equal to that paid by impatient customers. In the
game played between the �rms, the authors cannot predict what prices the �rms will
charge because of the existence of multiple equilibria or occasionally continuous asym-
metric equilibria. When �nding multiple Nash equilibria, the optimal equilibrium is
one that is Pareto optimal. This concept is thoroughly explained and discussed in
Stra¢ n [61, pp. 65�71].
Allon and Federgruen [1] study the situation where N �rms are competing in the

same market, where customers are sensitive to the price level of the industry and
the steady-state waiting time standard. The waiting time standard is announced
by the �rm and committed to by adjusting the capacity level at each �rm. The
�rms position themselves in the market by choosing their prices and service levels.
Service level is de�ned as the di¤erence between a given upper-bound benchmark for
waiting-time standard and the actual waiting time that customers experience. They
model the �rms as M=M=1 queueing facilities and study three types of competition
between �rms. In the �rst type (service-level �rst or SF), they de�ne a two-stage
game, where the �rms select their waiting-time standards and announce them and
then will select their prices in the second stage. In the second type (price �rst or
PF), the �rms will reverse these decisions in the two stages. Finally, the third type
(simultaneous competition or SC) studies the situation, where the �rms select their
waiting time standards and prices simultaneously. Their research is di¤erent from
other non-cooperative models before in that, they do not assume a full price that
is an aggregate of price and waiting time the customers experience. They �nd the
equilibrium in each type and compare them against each other. They show that (PF)
and (SC) games have the same set of equilibria. Therefore, announcing the prices
�rst does not have an e¤ect on their selection of waiting time standard in equilibrium.
They also show that the (SF) model results in higher prices, lower waiting times and
higher demand for all �rms. This shows that the �rms can enjoy better pro�tability
in equilibrium if they announce their waiting time standards and then choose their
prices at a later stage.
The work of Allon and Federgruen [1] is generalized upon by Allon and Federgruen

[3]. In their model, the customers are sensitive to the prices as well as the waiting
times. However, the customers are assigned to di¤erent classes. Di¤erent classes
are o¤ered di¤erent prices and waiting times by the �rms. The �rms choose their
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prices and waiting times for all customer classes as well as their capacity levels and
priority discipline, which will enable them to meet their promised waiting time. They
assume �rms are M=M=1 queueing facilities and the demand streams according to a
Poisson process. They de�ne three games of competition based on price only, waiting
time standard only and price and waiting time together. They show that in each
game a Nash equilibrium exists under minor conditions regarding demand volumes
and minimum waiting time standards and show how the equilibria vary as a function
of cost and other given parameters. Finally, they compare the equilibria with the
situation, where the �rms service each customer class with dedicated service facilities
as opposed to pooling services. Based on their model, the �rms will always bene�t
from service pooling in equilibrium.
In her recent paper, Parra-Frutos [50] studies the problem of �rms that are time

competitors and compete in a perfect competition market o¤ering a homogeneous
service to customers who are sensitive to price and waiting time. She models a �rm
as an M=M=1 queue and assumes that customer arrivals react to a combination of
waiting time and price (a full price). Based on this reaction, in equilibrium, the
pro�t-maximizing �rms will reach a full price that is dictated by the market and is
equal for all �rms in the perfect competition market. She argues that �rms may then
use di¤erent combinations of price and waiting time to assume the full price dictated
by the market. She concludes that in case of a convex service capacity cost function,
an equilibrium may exist. But an equilibrium does not exist if the cost function is
concave. Other papers that study the e¤ect of a combination of price, service rate and
other attributes include the papers of So [56] and Allon and Federgruen [2]. These
studies also consider price in addition to other service attributes in determining the
outcome of the game. Since a promised delivery time is also involved in these studies,
we will discuss them in more detail later in this chapter.

2.1.3 Competition with Promised Delivery Time

Some �rms seek to �nd competitive advantage in the competition in time-sensitive
markets by promising (quoting) delivery times (service completion times) to cus-
tomers. They usually promise to reward the customer or compensate her for the
delay if the delivery point is beyond their promised delivery time. Firms are also
aware of the fact that although an attractive promised delivery time could work as a
strong competitive advantage, it can as much hurt the reputation of the company if it
fails to commit to it. For example, Hanson [30] mentions in his paper that Domino�s
Pizza guaranteed that any order will be delivered within 30minutes or it will be free of
charge, and used this as a powerful marketing strategy for many years . Nevertheless,
the company had to drop the advertisement in 1993 for fear of reckless driving by its
delivery crew following an accident involving a delivery agent of the company. The
strategy, however, gave the company great competitive advantage over its competitors
when it was in e¤ect. Another example is the time guarantees made by the Federal
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Express. FedEx o¤ers promised delivery times including next-day-delivery or next-
�ight-delivery with a promise to refund the full payment in case of a late delivery. We
quote from the Federal Express website �If your FedEx Express package is delivered
even 60 seconds later than we promise, you get your money back. It�s that simple.1�.
The choice of delivery time commitment is a balance strategy between the mar-

keting related issues (customer�s perceived quality) and the operations related issues
(capacity and process variability). Zeithaml et al. [69] explain that customer�s ex-
pected delivery time can be determined by many factors. These factors include the
price of the product or service, the reputation of the company, the marketing and
communication between the �rm and the customer, other service experiences of the
customer from the �rm, word of mouth, etc.
Some authors limit the customer�s expected delivery time to the quoted delivery

time announced by the �rms (like in Ho and Zheng [36] and Shang and Liu [53]). They
assume that the only channel of communication between the �rm and the customer
is done through an expected maximal delivery time [53], or an expected delivery
time [36]. Ho and Zheng [36] argue that the customer�s perceived delivery time is
positively a¤ected by the customer�s actual delivery time, which is determined by
both the demand rate and the capacity of the �rm. Figure 2.1 depicts the diagram
presented in the paper by Ho and Zheng [36]. Based on this diagram, the demand
rate is also a¤ected by the expected delivery time, and the delivery (service) quality.
The perceived delivery time and the expected delivery time will mutually a¤ect the
quality of service.
Problems involving quoting delivery time (also referred to quoting leadtime or

planned leadtime) have been studied by many authors. For example, Yano [68] looks
at the problem of determining the optimal leadtime in serial production systems with
stochastic procurement and processing times. In her study, she minimizes holding
and tardiness costs, where a certain delivery time is quoted to the customer. In this
work, Yano does not include tardiness costs in intermediate levels in her study. With
a somehow di¤erent setting of costs, Yano [67] looks at the problem of �nding optimal
planned leadtimes in a serial production system where the leadtimes themselves are
stochastic. Yano minimizes the sum of holding costs as well as tardiness costs and
also rescheduling costs for intermediate stages in the production system that fall
behind schedule. Yano also comes up with an algorithm that �nds nearly closed form
functions for the planned leadtime at each stage as a function of the planned leadtime
at successor stages as well as the cost parameters. She also discusses the importance
of rescheduling costs and how they would a¤ect the models. For other examples
of single-�rm studies involving promised delivery time see Elhafsi [21], Hnaien [35],
Ould-Louly and Dolgui [49], Song et al. [58], Song and Yao [59] and the references
therein.
Several studies have been performed in the competitive environment, where two or

more �rms are competing in a time-sensitive market and use promised delivery time

1http://fedex.com/ca_english/services/moneyback.html
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Figure 2.1: The integrative framework presented by Ho and Zheng [36].
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as a competitive strategy.
So [56] studies the e¤ect of price as well as delivery time guarantees in time-based

competition in an oligopolistic situation. He assumes that customers are sensitive to
both the price and the delivery time guarantee that �rms o¤er. He extends the work
of So and Song [57], in which the authors study the e¤ect of delivery time guarantees
in a single �rm setting, into a multiple �rm setting. He studies the optimization
problem in the single �rm setting �rst and proves that a unique Nash equilibrium
exists in the multiple �rm setting. This Nash equilibrium can be computed using an
iterative procedure suggested by the author. Based on his work, the unique Nash
equilibrium in the multiple �rm setting behaves similarly to the optimal solution in
the optimization problem when all of the �rms are homogeneous. The pro�t of the
�rms in equilibrium, however, does not behave similarly to the optimal pro�t in the
single �rm setting and in the work of So and Song [57]. Finally, the author exploits
numerical experiments and derives managerial insights in situations, where the �rms
are not homogeneous and can di¤erentiate themselves by their capacity (size) and
unit operating cost (e¢ ciency). He shows that the higher capacity �rms can provide
lower time guarantees, whereas the �rms with lower unit operating costs are able to
o¤er lower prices to the customer.
In their paper, Ho and Zheng [36] look at a duopolistic market, where customers

are sensitive to both the expected maximal delivery time and service quality. Service
quality is de�ned as the conformance of the expected delivery time to the customer�s
perceived delivery time. The expected maximal delivery time is announced by the
�rms to attract customers into their service. Customers are assumed to be satis�ed
if their perceived delivery time is less than the expected maximal delivery time. The
authors develop a model to study the e¤ect of delivery time commitment and service
quality on the demand share of the �rm. They �nd a closed-form solution for the
optimal delivery time commitment when the �rms have ample capacity and congestion
does not exist. The model also captures the e¤ect of the demand share of the �rm
and its process variability on delivery quality in the existence of congestion for a
duopolistic market. The authors prove the existence of more than one Nash equilibria
and show that this game is similar to the well-known prisoners�dilemma game.
In a recent paper Shang and Liu [53] studied an oligopoly market with customers

sensitive to both the promised delivery time as well as the rate of on-time delivery
made by the �rms. They refer to the rate of on-time delivery as the quality of service
and study the trade-o¤ between the quality of service and the promised delivery time.
For allocation of demand, they use the multinomial logit (MNL) attraction model.
Basuroy and Nguyen [6] argue that the multinomial logit model is able to capture
customers�behavior for equilibrium analyses for marketing decisions. Shang and Liu
[53] assume that �rms position themselves in the market based on their promised
delivery time as well as their investment in capacity (their capacity). They assume
there are two kinds of competition; at the marketing level and at the strategic level.
Firms compete at the marketing level based on their promised delivery time in the
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existence of a quality of service that is exogenously determined. In another model,
the authors de�ne a two-stage game, in which the �rms compete in capacity in the
�rst stage and in promised delivery time in the second stage. They �nd a unique
Nash equilibrium in their �rst model and show the existence of two di¤erent types of
Nash equilibria in the second model. Another important contribution of this paper
is the introduction of an index of time-based competitive advantage (ITCA), which
is de�ned as the residual capacity at the marketing level competition or the ratio of
unit revenue to unit capacity cost at the strategic level game. They show that usually
�rms with higher ITCA have a larger share of the market. In terms of the customer�s
sensitivity to both the promised delivery time and the quality of service, their model
is very similar to that of Ho and Zheng [36].
Some authors assume that �rms may announce a price as well as a promised

delivery time. Allon and Federgruen [2] investigate the e¤ects of the servers�queue-
ing facility design on the service industry�s competitive behavior. They study an
oligopolistic market, where the customers are sensitive to the waiting time as well
as the price. The �rms position themselves in the market by announcing a price as
well as a service level (or the waiting time standard). They de�ne three games; (a)
�rm�s competing on price only when the service level is exogenously given, (b) �rms
competing on the service level only under exogenously given prices, and (c) �rms
competing on both price and service levels. They propose an approach to study dif-
ferent single-stage queueing service designs fromM=M=1 systems to the general form
G=GI=s servers. They show that the capacity cost function always exactly, or with a
good approximation, belongs to a four-parameter class of functions. They prove the
existence of a Nash equilibrium in these models when the cost functions are convex
under di¤erent settings for the demand function.
Some researchers have investigated the performance of supply chains in markets,

where time competition plays a role. For example Liu et al. [47] study a supply chain
with two players (a supplier and a retailer) performing in a market that is both price
and lead time sensitive. Both players in the supply chain are independent entities
and try to maximize their pro�t. The authors structure a Stackelberg game with the
supplier being the leader and the retailer being the follower. The promised delivery
time (PDT) and the price announced to the customer are determined by the supplier
and the retailer, respectively. They �nd the unique time-price equilibrium and provide
closed-form formulas that calculate the optimal PDT and price. They also show that
the supply chain performance when decentralized is usually poorer than that in a
centralized supply chain with similar market conditions.
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2.2 Time-Based Competition with Homogeneous
Firms

Consider a market with M �rms competing for customers�demand. The �rms o¤er
the same product or service to a homogenous market with random demand. A �rm
i is assumed to be a supply chain, where i denotes the index for the �rm. Let the
overall potential market size or the overall demand rate be denoted by �. Assume
that �i is the demand rate that is captured by �rm i. Therefore, �rm i�s long-run
market share is equal to �i=�. It is important to note that �i is actually the mean
arrival rate into the supply chain i.
We build upon the model introduced by Shang and Liu in [53] and Ho and Zheng

[36] by assuming that each player is a centralized serial supply chain instead of a single
�rm. By serial supply chain, we mean a supply chain whose stages are aligned in a
serial fashion and the �ow of goods passes through every single stage of the chain.

2.2.1 Order Completion and Supply Chain Design

As mentioned above, each �rm is a supply chain. For the sake of clarity, we emphasize
that the �rms are producers of a certain product and their products are assumed to be
completely substitutable. The process of order submission and order completion are
as follows. Orders are placed by the customers to the �rm. Once the order is placed,
the production is triggered and the order will traverse through the supply chain in
the form of work-in-process until it is ready to be delivered at the last stage of the
chain.
The production duration at each stage of the supply chain is assumed to be expo-

nential with rate �ij, where i is the index for the supply chain and j is the index for
the stage. For example, �24 refers to the rate of production at the fourth stage of the
second supply chain. Maintaining a production rate at each stage of the supply chain
is costly. We de�ne the cost function cij(�ij) as an increasing and convex function in
�ij. Also, the total cost for supply chain i will be de�ned as Ci =

P
j cij(�ij).

We are also assuming that the production rates for �rms are �xed and will not
change. The choice of production rates are strategical decisions and thus are part of
�rms�long term plans. This study focuses on decisions on time, which are made at
the operational level. Therefore, strategical choice of production rates are beyond the
scope of this study.

2.2.2 Quoted Leadtime and Quality of Service

Each supply chain quotes a delivery leadtime to the customer as the promised delivery
time (PDT). Let�s de�ne Ti as the PDT of the supply chain i. Also, suppose that
Wi is the random variable representing the actual waiting time that the supply chain
i�s customer experiences. This time period is actually the real time that elapses from
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the order submission until the order completion with �rm i. This random time is
denoted by the random variableWi with p.d.f. qi and c.d.f. Qi. The quality of service
(QoS) or the fraction of on-time delivery is de�ned as the probability that the actual
delivery time is less than or equal to the promised delivery time and is denoted by
the function Qi(Ti; �i) = PrfWi � Tig, where �i is the demand rate captured by �rm
i. Also, assume that Xi is the random variable representing the actual production
time of the supply chain with p.d.f. fXi(t) and c.d.f. FXi(t). Obviously, with the
presence of congestion at the system, we expect the total time spent in the system
to be at least equal to the total production time of the �rm. In addition to the total
production time, the total time spent in the system includes all the time spent in the
queue before entering the system, as well as all the time spent in the queues before
each stage at the supply chain. Therefore, we have,

E[Wi] � E[Xi].

Taking into account the congestion e¤ect, we assume that Q = Qi(Ti; �i) is non-
increasing in �i. We assume that Q is non-increasing in �i because in presence of
congestion, more customers in the system will never lead to a more responsive system
when capacity remains unchanged. In other words, the quality of service (Q) will
never increase when demand (�) increases when congestion exists and capacity (�)
is the same. If we assume that Q is independent of �, the service is de�ned as
uncongested. This means that the demand will not have an e¤ect on performance
and responsiveness of the system. For any given demand rate �i, the term Qi(�; �i) is
de�ned as the distribution function (c.d.f.) of the delivery time. This time duration
includes the time spent in the queue as well as the time spent in the service delivery
process itself.

2.2.3 The Demand Model

In their paper, Allon and Federgruen [2] propose two di¤erent types of demand into
their system as the mostly frequently used models. These demand types are the
separable demand functions and the demand functions given by an attraction model.
Here, we will brie�y introduce these two types.

The Separable Demand Functions

Referring to the work of Allon and Federgruen [1], the authors argue that a suitable
demand model should be able to incorporate the following attributes; (a) the price
of service, (b) the waiting-time standard, and (c) other attributes. For this to hap-
pen, the demand function will be a general system of functions that characterize the
behavior of demand towards any of these attributes. With each of these functions
representing an attribute in the demand model, the authors refer to this type as sep-
arable demand functions. The demand function presented in Allon and Federgruen
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[2] is as follows,

�i = ai(�i)�
X
i6=j

�ij(�j)� bipi +
X
i6=j

�ijpj, i = 1; :::;M , (2.1)

where �i is the demand rate of �rm i, pi is the price of �rm i, and �i is the service
level of �rm i. Also, ai(�i) and �ij(�j) are positive functions relating �rm i�s demand
to its own and the other �rms�service levels, respectively. Similarly, bi and �ij are
positive parameters relating �rm i�s demand rate to its own and the other �rms�
prices, respectively. It should be noted that the separable demand function in (2.1)
cannot be negative. We assume that it gets the value zero for parameters that result
in a negative demand value as follows,

�i =

�
�i(�i), i = 1; :::;M , if �i(�i) � 0,
0, otherwise,

where �i(�i) = ai(�i)�
P

i6=j �ij(�j)� bipi +
P

i6=j �ijpj, i = 1; :::;M .

Example 2.1 Assume we have two �rms in the market. The following is an example
of separable demand functions, when �1 and �2 are demand rates for companies one
and two,

�1 = 25 + 2�1 � 4�2 � 5p1 + 4p2
�2 = 25 + 4�2 � 2�1 � p2 + 2p1.

It is important to note that the demand rates will be zero for �1,�2 < 0.

The Demand Functions Based on Attraction Models

A very popular and frequently used type of demand models is the attraction models.
As explained in Bell et al. [7], an attraction model is based on a relationship that
has the structure (us)/(us+them). In this notion, �us� and �them� represent the
attractiveness of each �rm and that of all the other �rms in the market. As mentioned
by the authors, a common approach is to relate the attractiveness to the amount of
marketing e¤ort or the service level or quality. Bell et al. [7] present four assumptions
that should be satis�ed in order for the attraction model to be valid. Assuming
that a represents the attraction vector and there are M �rms in the market, these
assumptions introduced by Bell et al. [7] are as follows,

� The attraction vector is non-negative and non-zero

a � 0 and
MX
i=1

ai > 0,
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where the condition a � 0 ensures non-negativity and
PM

i=1 ai > 0 guarantees
that the vector is non-zero. The components of a non-negative vector are ei-
ther zero or positive. A non-zero vector is a vector with at least one non-zero
component.

� A �rm with zero attraction has no market share or demand rate

ai = 0) �i = 0,

where �i is the demand rate of the market of �rm i.

� Two �rms with equal attraction have equal market shares

ai = aj ) �i = �j.

� If the attraction of any �rm j is increased by a �xed amount, the attraction of
another �rm i, where i 6= j, will decrease.

Then according to Bell et al. [7], the market share (demand rate) that will satisfy
the four assumptions, is given as follows,

�i =
aiPM
j=1 aj

, i = 1; :::;M ,

where there are M �rms in the market.
For a more detailed analysis of varieties of market share models and their appli-

cations see Cooper and Nakanishi [17] and Lee�ang et al. [43].
A number of recent papers including the works of Shang and Liu [53] and Ho

and Zheng [36] use the multinomial logit (MNL) model. This model as presented in
Ho and Zheng [36] can be introduced for a market with M non-cooperative �rms as
follows,

Si =
eUiPM
j=1 e

Uj
,

where Si is the market share of �rm i and Ui is the customer�s utility for �rm i�s service.
Also using this model, we assume that the customer population is homogeneous in its
utility function.
In order for the customers to select between the �rms, we should devise a utility

function that assesses the attractiveness of the �rms to the customer. We assume
that PDT and QoS are two important factors in this process. Therefore, the utility
function should depend on both of them. We assume that price is not involved
in the decision making of the customer. Shang and Liu [53] argue that in many
industries, where the production or service provision contains routine processes and
the technology is mature, price is usually not the focus of competition. They assume
that price is exogenously given and is not determined by the �rms. In this model,
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we follow their reasoning and restrict our study to time-based markets, where price
is not a competitive factor. Similar to the model in [53], we will aggregate price with
other attributes of the product that may a¤ect the customer�s decision and call them
the passive attribute of the utility function. Similarly, we will de�ne the customer�s
utility function as follows,

Ui(Ti; �i) = �0i � �TTi + �QQi(Ti; �i), (2.2)

where �0i is the utility from the passive attributes of �rm i, �T measures the sensitivity
of the customer to the promised delivery time and �Q measures her sensitivity to
the quality of service of �rm i. Also, we assume that �T and �Q are positive and
independent parameter values. Therefore, the utility of the customer is monotone
decreasing in its promised delivery leadtime and monotone increasing in its quality of
service. Note that from the coe¢ cients of the utility function (�0i, �T and �Q), only
�0i changes from �rm to �rm. This is because the other attributes of the �rm (that are
represented by �0i) can be di¤erent from one �rm to another. This is thus, a �rm-based
attribute. The other two coe¢ cients, �T and �Q, represent the degree of customer
sensitivity towards the quoted leadtime and the quality of service, respectively. These
preferences will not be di¤erent from one �rm to another. Therefore, we would refer
to these preferences as customers-based attributes.
The utility function presented in (2.2) measures the attractiveness of a �rm for

customers. This function determines the market share of each �rm. The higher this
value is, the more attractive that �rm is for the market. As a result, �rms would desire
to have as high a utility function as possible. We are assuming that this function has
the range [0;1), where a utility function of zero means that the �rm attracts no
customers. We are also assuming that utility function cannot be negative, and that
negative values for the expression result in a utility function of zero. Therefore, we
have,

Ui(Ti; �i) =

�
�0i � �TTi + �QQi(Ti; �i), if �0i � �TTi + �QQi(Ti; �i) � 0,
0, otherwise.

Assume that � is the total demand rate of the market. Assuming that �i �
�i(T) is �rm i�s demand rate, then �rm i�s long-run market share is represented by
�i=�. Also, T is the vector containing the promised delivery times from all �rms.
The MNL model will allocate the following demand rate to �rm i when there are M
non-cooperating �rms in the market,

�i = �
eUi(Ti;�i)PM
j=1 e

Uj(Tj ;�j)
,
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yielding,

Si � Si(Ui) =
eUi(Ti;�i)PM
j=1 e

Uj(Tj ;�j)
,

where Si is the market share for �rm i. It is important to mention that since the
total demand rate of the market � is �xed, an increase in the demand rate of one
�rm translates into a decrease in the demand rate of at least one other �rm in the
market. So we have the following as the relationship between the market share and
the demand share,

�i = �Si(Ui).
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Chapter 3

Duopoly with Homogeneous
Supply Chains Competing with
Promised Delivery Time

In Chapter 2, we explained how the quality of service is calculated and showed how it
will be di¤erent for di¤erent designs of supply chains. In this chapter we will discuss
a duopolistic market with two �rms competing based on their promised delivery time
(PDT). Three di¤erent settings for the design of serial supply chains will be introduced
in Sections 3.2, 3.3 and 3.4. In Section 3.2, two serial supply chains with two stages
and identical production rates are studied. Section 3.3 looks at the design of the
supply chains by introducing k stages into each �rm. Finally, Section 3.4 considers
two supply chains with two stages, where each stage has a di¤erent production rate.
In each section, the outcome of the game, along with the closed-form optimal solutions
by each player and the payo¤s in equilibrium are presented. Each section is followed
by a section of numerical examples, where the �ndings of the previous sections will
be con�rmed through numerical examples. This section will also include sensitivity
analysis, where a number of numerical examples with di¤erent attributes are solved
using the model to construct a sensitivity analysis that will give us managerial insight
into the behavior of the systems.
Finally, Section 3.5 concludes the chapter by summarizing the �ndings and also

presenting areas for future research in this context.
The models studied in this chapter are based on the models introduced by Ho and

Zheng [36] and Shang and Liu [53]. In both mentioned works, the models study �rms
that have only one production (service) stage. This chapter contributes to the liter-
ature by extending their works and analyzing �rms with multiple production stages.
As mentioned above, models with two- and k-stage supply chains with the same pro-
duction rate and a model with a two-stage supply chain with di¤erent production
rates are explored in this chapter. This study is di¤erent from those of Ho and Zheng
[36] and Shang and Liu [53] in that the quality of service assumes more complicated
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forms when the �rms have more than one production stage. Regarding a constraint
for the quality of service in this chapter, we are taking an approach similar to the one
in Ho and Zheng [36] and include no external QoS constraint (no market entrance
requirement regarding the QoS). The more complicated expressions for the quality
of service result in more complicated expressions for the Nash equilibria and impose
new conditions on the problem for the existence of a unique Nash equilibrium. The
problems studied in this chapter are also a better re�ection of the reality than the
previous models as in reality, �rms rarely have only one stage of production. An
example for this system is the delivery of a package by UPS. The process of sending a
package includes multiple stages that are independent of each other and take di¤erent
amounts of time to complete. Therefore, for a company like UPS it would be more
bene�cial to have a model that studies such processes where the procedure of service
delivery (production) takes place through more than one stage with di¤erence rates
at each stage.
In addition to all of these contributions that we made from the previous works,

we will also perform numerical sensitivity analyses and report on the behavior of the
optimal strategies and Nash equilibria with respect to di¤erent parameter values in
the problem.

3.1 Model Building

In this chapter, we are assuming that each �rm is a supply chain producing a perfectly
substitutable product. Let�s assume each supply chain consists of two stages that are
aligned in a serial fashion. We also assume that for �rm i, the service time at each
of the stages is exponential with parameter �i. Each supply chain quotes a delivery
leadtime Ti to the customer as the promised delivery leadtime (PDT). Also, suppose
that Wi is the random variable representing the actual time that the supply chain
i�s customer experiences. This total time includes all the time products spend in
the queues as well as the time they spend in production. Also, assume that Xi

is the random variable representing the production time for the supply chain. Not
considering congestion, based on the assumption that the supply chain consists of two
serial stages with exponential service times, we conclude that the total production
time for the �rm is Erlangian with parameters (2; �) as explained in Kao [40, p. 21]
and thus, its p.d.f. can be written as fXi(t) = �

2te��t. Also, the expected duration
of production and its variance will be E[Xi] = 2=�i and var[Xi] = 2=�

2
i .

The quality of service or the fraction of on-time delivery is de�ned as the proba-
bility that the actual delivery time is less than or equal to the promised delivery time
and is denoted by the function Qi(Ti; �i) = PrfWi � Tig, where �i is the demand
rate captured by �rm i (Qi(Ti; �i) � Qi(Ti; �i(T))). For any given demand rate �i,
the term Qi(�; �i) is de�ned as the distribution function (c.d.f.) of the delivery time
in �rm i. This time duration includes the time spent in the queue as well as the time
spent in the service delivery process itself. Also, taking into account the congestion
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Figure 3.1: This picture shows the supply chain with boundaries depicted by the
dashed line. The queues form before each stage of the chain.

e¤ect, we know that Q = Qi(Ti; �i) is non-increasing in �. This is because as the
capacity is constant, a busier system will never become more responsive. In this case,
a busier system is one with a higher demand rate �.
To derive the expression for Q, we should emphasize that the total time spent in

the system will be the determining factor for Q. This total time is a¤ected by the
assumptions we make in our modelling including the production times distributions.
In our case, we are assuming that both stages have exponential production times with
a common parameter �. In addition to that, we are assuming that we are allowing
queues to form in between the stages. This assumption makes the model more realistic
as in reality, queues form before each stage of the supply chain. The queue before the
�rst stage is the orders that are entering the system. The queue before the second
stage is for the work-in-process (WIP hereafter) and has the un�nished products that
have �nished the process at the �rst stage and are waiting to enter the second stage
of production or service facility. This is shown in Figure 3.1. In this picture, the two
stages of the supply chain have a dashed line boundary. The two larger arrows on the
left and right of the supply chain represent the arrival of orders and the departure of
completed products, respectively. Each stage is a production facility of the chain and
the items before each stage represents queues waiting to be served by that stage.
The expression for Q, is basically the distribution function of the total time spent

in the system. In the supply chain under study, we may consider each stage separately
to derive Q.
Table 3.1 summarizes the notations and symbols de�nitions used in the following

chapters.

Lemma 3.1 The distribution of total time in an M=M=1 system is exponential with
parameter (�� �), where � and � are the exponential parameters for the service time
and interarrival times, respectively.

Proof. This has been shown in Gross and Harris [28, pp. 66�68] and Hillier and
Lieberman [34, pp. 779�780] and has been used in many papers. For example, Ho and
Zheng [36] introduce it in their paper as the distribution of total time in an M=M=1
queueing system.

Example 3.1 Assume that the supply chain has only one stage with exponential ser-
vice time with parameter �. The demand rate to the supply chain is according to a
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Notation Description
Ti : The promised delivery time quoted by �rm i
�i : The demand rate into �rm i
� : The total demand rate of the market
�i : Production rate at each stage of �rm i
�ij : Production rate at stage j of �rm i
Wi : Total time spent in �rm i with p.d.f. qi and c.d.f. Qi

Q(Ti; �i) : Quality of service at �rm i, equivalent to PrfWi � Tig
�0i : Customers�sensitivity to passive attributes of �rm i
�T : Customers�sensitivity to the promised delivery time of �rm i
�Q : Customers�sensitivity to the quality of service at �rm i

Ui(Ti; �i) : Customers�utility function for �rm i
` : The common allocation parameter between the �rms
k : Number of stages of production at each �rm

W (x) : The Lambert W function

Table 3.1: Summary of notations and symbols.

Poisson process with parameter �. Then the expression for the quality of service will
be readily computed as Q(T; �) = 1�exp f�(�� �)Tg as the c.d.f. of the total waiting
time in the system W according to Hillier and Lieberman [34, p. 780].
De�ning X as the total service time, we can see that the expression for FX(T ) =
PrfX � Tg will be equal to FX(T ) = 1� expf��Tg. Intuitively, we expect the proba-
bility FX(T ) to be greater than Q(T; �) as the random variable W includes waiting in
the queue in addition to the service time. This intuition is con�rmed in this example
as we have FX(T ) > Q(T; �) for � > 0.

Lemma 3.2 The steady-state distribution of interdeparture times in an M=M=1 sys-
tem is exponential with parameter �, with the condition that the system reaches the
steady-state or � > �. The interarrival times are exponential with parameter � and
the service times are exponential with parameter �.

Proof. The proof of this lemma appears in Gross and Harris [28, pp. 168�169]
and Burke [11]. This result was originally proven by Burke [11]. For a simple proof see
Gross and Harris [28, pp. 168�169]. Based on their proofs, the interdeparture times
in an M=M=1 system is also exponential with parameter �, with the condition that
the system reaches the steady-state or � > �, where � the parameter for interarrival
times and � is the parameter for service times. In other words, the interarrival times
and interdeparture times at steady-state in the M=M=1 queueing system are both
exponential with the mean time 1=�.
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Proposition 3.1 The c.d.f. for the total time spent in the system in the supply chain
under consideration is equal to Q(T; �), where it is de�ned as follows,

Q(T; �) = 1� e�(���)T � �Te�(���)T + �Te�(���)T . (3.1)

Proof. As explained before, the supply chain under study has two stages with the
same service time distributions. Based on Lemma 3.1, the distribution of total time
spent in the system at stage one of the supply chain is exponential with parameter
(� � �). Also, from Lemma 3.2 we know that the arrival rate into stage two of the
supply chain is exactly the same as the arrival rate into the �rst stage of the chain.
Therefore, the distribution of total time spent in both stages are the same, exponential
with parameter (� � �). Assume Y1 and Y2 are random variables for the total times
spent in stages one and two (including the queue times), respectively. Let fY1 and fY2
be the p.d.f. of Y1 and Y2, respectively. Now we have,

fY1(t) = fY2(t) = (�� �)e�(���)t.

Based on the assumption, if W represents the total time spent in the system, we
should have W = Y1 + Y2. To �nd the probability function of W we can use the
Laplace transform. Since W has the c.d.f. Q, using the Laplace transform we can
write, eQ(s) = 1

s
efY1(s) efY2(s),

where eQ(s), efY1(s) and efY2(s) are the Laplace transforms of Q, fY1 and fY2 , respec-
tively. We have, eQ(s) = 1

s

�
�� �

�� �+ s

�2
,

which after the inverse transformation will give,

Q(t) = 1 + (�1� t�+ t�)e�(���)t,

which is equivalent to Q(T; �) = 1 � expf�(� � �)Tg � �T expf�(� � �)Tg +
�T expf�(� � �)Tg. Note that since Q changes with �, we have brought it into
the brackets as well.

Example 3.2 Consider a supply chain with two stages with exponential service times
both with parameter � such that the mean time is 1=� = 1=3 days. Also, assume that
customers place orders at the �rm according to a Poisson process with mean rate
� = 2 order/day. The quality of service for a quoted leadtime T has the expression
Q(T ) = 1� Te�T � e�T . The graph of Q is depicted in Figure 3.2.

Lemma 3.3 For any given T , the quality of service Q(T; �) shown in (3.1) is strictly
decreasing in �.
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Figure 3.2: The graph for quality of service for a supply chain with two exponential
stages with � = 3 and � = 2.

Proof. Taking the derivative w.r.t. � from (3.1) we have,

@Q(T; �)

@�
= ��T 2e�(���)T + �T 2e�(���)T ,

which after simpli�cation is,

@Q(T; �)

@�
=
�
T 2e�(���)T

�
(�� �) .

Since we assume � > �, then @Q(T; �)=@� < 0 and for a given T , the quality of
service is strictly decreasing in �.
Having found the expression for the quality of service we have the demand rate of

�rm i as follows,
�i = �Si(Ui),

where the market share is,

Si(Ui) =
eUiP2
j=1 e

Uj
,

with the utility function,

Ui(Ti; �i) = �0i � �TTi + �QQi(Ti; �i),
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and the quality of service,

Qi(Ti; �i) = 1� e�(�i��i)Ti � �iTie�(�i��i)Ti + �iTie�(�i��i)Ti. (3.2)

Next, we will study the PDT competition between the two �rms.

3.2 Duopolistic PDT Competition with Two-Stage
Centralized Supply Chains with Identical Pro-
duction Rates

As mentioned before the only works in the literature that deal with determining the
optimal promised delivery time in the existence of competition between multiple �rms
are the works of Ho and Zheng [36] and Shang and Liu [53]. Ho and Zheng [36] study
a duopolistic market and �nd the su¢ cient conditions for the existence of a Nash
equilibrium in promised delivery time (PDT). Shang and Liu [53] build upon their
work by extending the scope of their study into an oligopolistic market and also �nding
the closed-form solution for the Nash equilibrium. In this section, we will build upon
those works by extending the model of Shang and Liu [53] and Ho and Zheng [36]
into serial supply chains instead of single �rms. At this stage, we are considering a
duopolistic market, where each �rm is a centralized supply chain of two stages. This
can be interpreted as a centralized supply chain with two players (e.g., a manufacturer
and a wholesaler) that has to quote a certain PDT to its customers (the retailers). In
this part of the study, we are assuming that the service time at both stages of each
supply chain is exponential with a common parameter (service rate). But the service
rate from one supply chain to the other is di¤erent. Later in this study, we will relax
these assumption to allow more stages at each �rm as well as di¤erent production
rates at stages of a �rm.
As mentioned before, we are considering a market with two players that compete

based on their promised delivery time (PDT).We know that the �rms manipulate their
PDT in competing against each other. At this stage, we assume that the capacities of
the �rms are �xed and they compete solely on their promised delivery time. Since the
capacities are �xed, the pro�tability of the �rms are an increasing function of their
market share. It is important to note that in equilibrium, the following should hold,

�i = �Si(Ui). (3.3)

Ho and Zheng [36] argue that before any analysis, the existence of a market equi-
librium should be established. A market equilibrium is reached when equation (3.3)
holds. It is important to note that �i is endogenous and appears at both sides of equa-
tion (3.3). Ho and Zheng [36] refer to �i as �today�s demand rate�and to �Si(Ui) as
�tomorrow�s demand rate�, which is the result of a demand rate of �i, �today�. They
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argue that a market equilibrium is reached only when �today�s� and �tomorrow�s�
demand rates become equal. In other words, in equilibrium, the demand rate into
each �rm does not �uctuate anymore and has reached a stable state. In this state of
market equilibrium, equation (3.3) holds.
Since we are not taking into account the capacity cost and other production costs

of the �rms, maximizing the demand rate into the �rm is the desired outcome of the
game for each �rm. After the market equilibrium is reached and the stable state is
established, we can formulate the optimization problem of �rm i in order to maximize
its market share (demand rate) as follows,

max
Ti
�i(T) (3.4)

subject to �i = �Si(Ui),

where Si(Ui) = eUi=
P2

j=1 e
Uj and � is �xed such that

� = �1 + �2, (3.5)

and thus, we are assuming that potential customers do not balk, i.e., they cannot
refuse to get service. Also the term �i = �Si(Ui) ensures that the analysis is being
done when the market has reached the equilibrium state in its demand rate into �rms.
We are also assuming that customers do not renege or jockey in the system. The act
of reneging refers to the behavior of leaving the queue as the waiting time grows and
customer becomes so impatient that she leaves the queue. Also jockeying between the
queues refers to the behavior of switching between the queues (of di¤erent �rms).
We are interested in �nding the Nash equilibrium of the game played between the

two �rms (supply chains). The Nash equilibrium has the property that, given the
decision by the other �rm, the �rm under consideration cannot increase its demand
rate by deviating from the Nash equilibrium point. We are speci�cally interested in
proving the existence of the Nash equilibrium, or to derive conditions for the existence
of it. As shown in the optimization problem (3.4), the strategies that �rms employ is
their promised delivery time, PDT. Firm i�s strategy set is then equal to fTi j Ti � 0g.
Here, we will follow the arguments presented in Shang and Liu [53] for their

oligopolistic case with M �rms with M=M=1 queueing settings and adapt it to our
supply chain setting.
Shang and Liu [53] propose an alternate way to express the demand equation by

introducing the function Li(Ti; �i) as follows.
We know that

�i = �
eUi(Ti;�i)P2
j=1 e

Uj(Tj ;�j)
,

and thus we have,
�i
�j
=
eUi(Ti;�i)

eUj(Tj ;�j)
.
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After some algebraic manipulation we have,

ln�i � Ui(Ti; �i) = ln�j � Uj(Tj; �j).

We de�ne the demand function Li(Ti; �i) = ln�i � Ui(Ti; �i) and we have,

Li(Ti; �i) = Lj(Tj; �j). (3.6)

Shang and Liu [53] introduce the function `(T) as the common allocation parameter
and de�ne it as follows,

Li(Ti; �i) = `(T), (3.7)

where T = fTi; Tjg. Below, we will show that for any set of decision variables T,
there is always a unique �i that would satisfy the equation (3.7).

Lemma 3.4 For any given Ti, the function Li(Ti; �i) is increasing in �i.

Proof. Taking the derivative of Li(Ti; �i) w.r.t. �i we have,

@Li(Ti; �i)

@�i
=
1

�i
� @Ui(Ti; �i)

@�i

=
1

�i
� �Q

@Qi(Ti; �i)

@�i
,

From Lemma 3.3 we know @Qi(Ti; �i)=@�i < 0. Therefore, we will have @Li(Ti; �i)=@�i >
0 and it proves the lemma.

For a given set of decision variables T, at �i = 0+ we have,

lim
�i!0+

Li(Ti; �i) = lim
�i!0+

(ln�i � Ui(Ti; �i)) = �1, (3.8)

as when the demand rate into �rm i goes to zero, the customers�utility function for
that �rm will be a positive value. Also, when the demand rate into �rm i, �i goes to
in�nity we have,

lim
�i!1

Li(Ti; �i) = lim
�i!1

(ln�i � Ui(Ti; �i)) =1, (3.9)

as practically, when the demand rate into �rm i goes to in�nity, the customers�utility
function for that �rm should tend to zero.
Based on (3.8) and (3.9), as well as Lemma 3.4, we can conclude that for any set

of decision variables T, Li(Ti; �i) is increasing in �i going from �1 to 1 and thus,
there is always a unique �i that would satisfy the equation (3.7).
In fact, since we have Li(Ti; �i) = Lj(Tj; �j) from equation (3.6), for a given set

of decision variables T, we can be certain that there are unique �i and �j such that
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the following holds,
Li(Ti; �i) = Lj(Tj; �j) = `(T).

The function `(T) has been introduced by Shang and Liu [53] and we will use it
again here. To explain the reason behind using this function we would like to refer
the reader to the optimization problem in (3.4). Notice how �i is present in both sides
of the equation in the constraint �i = �Si(Ui). This is because Si(Ui) depends on �i
as well. As a result, taking the derivative from the objective function (�i) w.r.t. Ti
becomes di¢ cult. Therefore, Shang and Liu [53] introduced the intermediary function
`(T) to �nd relationships between the derivatives of the objective function as well as
this function w.r.t. Ti. This relationship helps us to �nd a closed-form solution for
the optimal decision variable. Lemma 3.5, along with similar lemmas in the following
sections of this chapter illustrate this relationship in more detail.
Shang and Liu [53] introduce a number of lemmas in order to prove the exis-

tence and uniqueness of the Nash equilibrium in their case. We will follow the same
procedure to �nd the results in our own supply chain setting.

Lemma 3.5 For any given PDT Tj quoted by �rm j, the following holds,

@�i(T)=@Ti

8<:
>
<
=
0, () @`(T)=@Ti

8<:
<
>
=
0, () Qi

8<:
<
>
=
!i(Ti; �i),

where

!i(Ti; �i) = 1�
�T [1 + (�i � �i)Ti]
�QTi(�i � �i)2

.

Lemma 3.6 The �rst-order condition for the demand rate into company i (�i(T)) is
satis�ed at the point bTi where,

bTi = � 1

(�i � �i)
W

�
� �T
�Q(�i � �i)

�
, (3.10)

that would impose the condition �T=�Q � e�1(�i� �i) on the parameter values. Also,
the function W in (3.10) is the Lambert W function.

The proof of the above two lemmas (Lemmas 3.5 and 3.6) can be found in Appendix
A. Now we will prove the existence of a unique interior Nash equilibrium in the
following proposition.

Proposition 3.2 An interior unique Nash equilibrium exists for the promised delivery
time (PDT) when we have two symmetric supply chains, each with two stages with
M=M=1 queueing settings and a common parameter and queues forming before each
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stage and when the quality of service is greater than 26:4%. Also, the parameters
should satisfy the condition,

�T
�Q

� e�1(�i � �i). (3.11)

The proof of Proposition 3.2 can be found in Appendix A.
It should be noted that if the conditions of the above theorem are not satis�ed,

the game under study will not have a unique interior Nash equilibrium.

3.2.1 Numerical Examples and Sensitivity Analysis

In this section we will solve a number of numerical examples to get better insights
into the results of this model. First, we will con�rm the results derived by the closed-
form solution in equation (A.7) through a numerical example. Later, we will use the
results from the analytical study and solve a numerical example. We will conclude
this section by presenting a sensitivity analysis based on the numerical results.

Example 3.3 In this example we are trying to con�rm the validity of the closed-form
solution, bTi = � 1

�i � �i
W

�
�1;� �T

�Q(�i � �i)

�
.

This solution is the result of the following equation that is based on the values of
the quality of service Q,

!i(Ti; �i) = 1�
�T [1 + (�i � �i)Ti]
�QTi(�i � �i)2

= 1� e�(�i��i)Ti (1 + (�i � �i)Ti) = Qi(Ti; �i),

(3.12)
where the left-hand side of the equation is the value that Qi assumes when the �rst-
order condition is satis�ed (!i(Ti; �i)) and the right-hand side of it is the expression
for the quality of service in the proposed system in this section.
To con�rm the results from the analytical solution, we will calculate and plot the

best-response curve by both �rms and observe their point of intersection. Assuming
that we do not have the analytical closed-form solution given by (A.7), given any T2,
we would also have to look for the T1, for which equation (3.12) would hold. The
resulting T1 would be the best response for that speci�c T2. In other words, what
follows is a two-stage analysis that will determine the best response to any given T2 in
its �rst stage. In the second stage, it will plot the best-response curve by changing T2
and �nding the best-response T1 accordingly. Stage one of this process should con�rm
the closed-form solution given by (A.7). As an example, we are assuming that T2 is
chosen by company 2 to be 1:229. The closed-form solution (A.7) suggests the value
1:482 for T1. Now by changing T1 we observe the two sides of equation (3.12) to �nd
the T1, for which the equation would hold. The resulting T1 should match (A.7). We
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T1 �1 �2 !1(T1; �1) Q1(T1; �1)
0:2 0:2025 0:7975 0:9389 0:1767
0:4 0:2898 0:7102 0:9548 0:4368
0:6 0:3694 0:6306 0:9598 0:6401
0:8 0:4254 0:5746 0:9622 0:7788
1:0 0:4592 0:5408 0:9637 0:8683
1:2 0:4766 0:5234 0:9649 0:9237
1:4 0:4830 0:5170 0:9657 0:9569
1:482 0:4835 0:5165 0:9661 0:9661
1:5 0:4835 0:5165 0:9661 0:9678
1:8 0:4782 0:5218 0:9671 0:9870

Table 3.2: Summary of results for the numerical analysis for changing T1, where
�1 = 4 and �2 = 5 and T2 is �xed at 1:229.

demonstrate the results for T2 = 1:229 in Table 3.2. We assume the parameter values
�1 = 4, �2 = 5, �oi = 0, �T = 0:2, �Q = 2 and � = 1.
As it is shown on Table 3.2, the di¤erence between the values for !1(Ti; �i) and

Q1(Ti; �i) starts to shrink as T1 grows, with !1(Ti; �i) being strictly below Q1(Ti; �i)
until T1 reaches 1:482. At T1 = 1:482, the left-hand side and right-hand side of
equation (3.12) match and the solution derived from the closed-form result given by
(A.7) indicating T1 = 1:482 is con�rmed as !1(1:482; �1) = Q1(1:482; �1).Therefore,
T1 = 1:482 is �rm one�s best response to the decision T2 = 1:229 taken by the second
�rm. From Table 3.2 we can also see that at this point the value of the demand rate
for the �rst �rm reaches a local maximum and this in turn con�rms the analytical
results of this section.
Figure (3.3) shows the intersection of the two lines with the parameter values

presented in the example. The curves are the result of 20 points for each function.
The dotted line represents !1(T1; �1) and the solid line is Q1(T1; �1).
Now, by changing T2, we will �nd the best response of �rm 1 (T1) and show them

in Table 3.3.
To �nd the best response of �rm 2 towards the choice of �rm 1, T1, we will do the

same process as above. Table 3.4 summarizes the best response of �rm 2, T �2 , for a
given decision by �rm 1, T1.
Now, plotting the best-response curves from both companies together, we can see

that they intersect each other at the point T1 = 1:48 and T2 = 1:22. This is the point,
where both companies are on their best-response curve and thus their market share is
maximized. The best-response curves are shown in Figure 3.4. This �gure con�rms
the points derived by the analytical solution.
The analytical results for the Nash equilibrium of the game would also suggest that

the equilibrium is at T = f1:482; 1:229g.
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Figure 3.3: The functions !1(T1; �1) (with the dotted line) and Q1(T1; �1) (with the
solid line) intersect around the point T1 = 1:48.

T �1 T2 �1 �2
1:518 0:5 0:5959 0:4041
1:491 0:8 0:5108 0:4892
1:483 1 0:4896 0:5104
1:481 1:2 0:4836 0:5163
1:483 1:5 0:4884 0:5116
1:487 1:8 0:4999 0:5001
1:490 2 0:5090 0:4910
1:493 2:2 0:5184 0:4816
1:496 2:4 0:5280 0:4720
1:505 3 0:5571 0:4429
1:513 3:5 0:5811 0:4189
1:521 4 0:6047 0:3953
1:529 4:5 0:6279 0:3721

Table 3.3: Summary of results for the best response of �rm 1, T �1 , given the decision
taken by �rm 2, T2.
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T �2 T1 �1 �2
1:262 0:5 0:3321 0:6679
1:241 0:8 0:4254 0:5746
1:234 1 0:4592 0:5408
1:230 1:2 0:4766 0:5234
1:228 1:5 0:4835 0:5165
1:229 1:8 0:4782 0:5218
1:231 2 0:4713 0:5287
1:233 2:2 0:4631 0:5369
1:235 2:4 0:4541 0:5459
1:241 3 0:4258 0:5742
1:246 3:5 0:4020 0:5980
1:251 4 0:3785 0:5215
1:256 4:5 0:3556 0:6444

Table 3.4: Summary of results for the best response of �rm 2, T �2 , given the decision
taken by �rm 1, T1.

T2

1 2 3 4

T1

1

2

3

4

Figure 3.4: The best-response curves of both �rms plotted implicitly. The intersection
point is the only point in the decision set, where both �rms are on their best-response
curve. The dashed line is the best response of �rm 1 and the solid line represents best
response of �rm 2.
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In the following section, we will present a numerical example and solve for the
optimal PDT values.

Example 3.4 Assume we let �oi = 0, i = 1; 2, �T = 0:2, �Q = 2 and � = 1. Also,
assume that the production rate at the stages of the �rst supply chain is �1 = 2 and the
production rate at stages for the second supply chain is �2 = 6. Solving the problem
for each supply chain we will get the following optimal demand rates at equilibrium
for each supply chain. First we present the demand rates as the market equilibrium
should hold �rst,

�N1
�= 0:39,

which means that the �rst �rm serves 39% of the market. Also, for the second �rm
we have,

�N2
�= 0:61,

which is equivalent to the second �rm serving 61% of the market. Also, the optimal
promised delivery times for both supply chains at the equilibrium point are as follows,

TN1
�= 2:63,

and,
TN2

�= 1:1.
Also, we calculated the supply chains�quality of service or the probability of meeting

the demand at or before the promised delivery time at the equilibrium point. These
are as follows,

QN1
�= 92%,

and,
QN2

�= 98%.

As it can be seen from the solutions, the second supply chain that has a higher pro-
duction rate enjoys a greater demand rate and a greater market share. The �rm with
the higher production rate (second �rm) also does better at marketing level by promis-
ing a shorter delivery time to the customers. Finally, the second �rm has a better
probability of sticking to its promised delivery time and thus has a better quality of
service.

We have calculated the optimal demand rate as well as the optimal promised
delivery times and quality of service expressions for values of �1 ranging from 2 to 6
with increments of 0:5 when the production rate of the second �rm is �xed at �2 = 6.
The results are presented in Table 3.5.

As it is shown in Table 3.5, when the processing capabilities of the �rms di¤er,
their market shares will be always on both sides of 0:5. Their market shares will
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�1 �N1 �N2 TN1 TN2 QN1 QN2
2 0:3957 0:6043 2:6264 1:0628 0:9229 0:9782
2:5 0:4253 0:5747 2:1915 1:0583 0:9412 0:9784
3 0:4459 0:5541 1:8838 1:0551 0:9527 0:9784
3:5 0:4610 0:5390 1:6550 1:0528 0:9606 0:9785
4 0:4725 0:5275 1:4783 1:0511 0:9662 0:9785
4:5 0:4816 0:5184 1:3377 1:0497 0:9705 0:9785
5 0:4889 0:5111 1:2230 1:0486 0:9738 0:9786
5:5 0:4949 0:5051 1:1275 1:0477 0:9765 0:9786
6 0:5000 0:5000 1:0469 1:0469 0:9787 0:9787

Table 3.5: Summary of results for the numerical analysis for changing the production
rate �1, where �2 is �xed at 6.

�N1 �N2 TN1 TN2 QN1 QN2
�1 " and �2 �xed and �1 < �2 " # # # " "

Table 3.6: Direction of change in system performance with changing production rate
�1.

become 0:5 when they have similar production rates. When �2 is �xed, by increasing
�1, the values for �N1 will increase towards 0:5 and thus �N2 will decrease towards
0:5. This is because the �rst �rm is becoming better capable of processing orders
faster and thus will capture a larger market share as its capabilities increase. Also, by
increasing �1, both TN1 and TN2 show a decrease but the decrease is more noticeable in
TN1 . When the �rms have similar production rates, they will both promise a common
time to the customers. However, when the processing capabilities of the �rms di¤er,
both will quote a greater leadtime than that common promised delivery time. When
both �rms have similar production rates, their quality of service will be the same.
If their production rates di¤er, both �rms will su¤er from a lower quality of service
but this decrease is more noticeable for the �rm, whose production capacity is lower.
Fixing �2, as we increase �1 from a value less than �2, the quality of service of both
�rms will increase towards the common QoS until when their production capabilities
become similar. This is summarized with direction arrows in Table 3.6 for a �xed �2
and an increasing �1.
Next we will examine the e¤ect of changing the parameters �T and �Q. We will

hold �0 at zero as it depends on other parameters that are out of the scope of this
work. We �nd the values for �N1 , �

N
2 , T

N
1 , T

N
2 , Q

N
1 and Q

N
2 for the case where �1 = 4

and �2 = 6 and present the results in Table 3.7.
From Table 3.7, we can see that when the �rst �rm has a lower production rate

than the second �rm, with an increase in �T and all other factors held constant, the
values for �N1 decreases while �N2 increases. Therefore, as customers become more
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�T �Q �N1 �N2 TN1 TN2 QN1 QN2
0:01 2 0:4977 0:5023 2:4889 1:6779 0:9984 0:9990
0:06 2 0:4894 0:5106 1:8966 1:3081 0:9902 0:9938
0:11 2 0:4827 0:5173 1:6888 1:1799 0:9817 0:9884
0:17 2 0:4757 0:5243 1:5361 1:0863 0:9714 0:9819
0:20 2 0:4725 0:5275 1:4783 1:0511 0:9662 0:9785
0:2 3 0:4701 0:5299 1:6181 1:1404 0:9779 0:9859
0:2 4 0:4684 0:5316 1:7157 1:2030 0:9835 0:9895
0:2 5 0:4672 0:5328 1:7905 1:2512 0:9869 0:9916
0:2 6 0:4661 0:5339 1:8512 1:2904 0:9891 0:9930
0:2 7 0:4653 0:5347 1:9022 1:3233 0:9907 0:9940

Table 3.7: Summary of results for the numerical analysis with changing parameter
values �T and �Q, where �1 = 4 and �2 = 6.

�N1 �N2 TN1 TN2 QN1 QN2
�T " and �Q �xed and �1 < �2 # " # # # #
�Q " and �T �xed and �1 < �2 # " " " " "

Table 3.8: Direction of change in system performance with changing parameter values
�T and �Q with �1 = 4 and �2 = 6 where the conditions of the problem are satis�ed.

sensitive to the exact promised delivery time, the market share of the �rm with lower
processing capability will decrease, while the �rm with the higher processing capability
will enjoy a greater market share. Also, when customers become more aware of the
exact promised delivery time, the optimal promised delivery time for both �rms (lower
and higher production capacity) will decrease. Since the production rates of the �rms
are held constant, it is expected to observe a decline in the quality of service of both
�rms when they promise shorter times to customers. This is indeed obvious from the
results in the Table 3.7.
By changing the parameter �Q with all other factors held constant, we observe a

decrease in �N1 and an increase in �
N
2 . In other words, when customers become more

sensitive to the quality of service, the market share of the �rm with lower production
rate will decrease, while the �rm with the higher production rate will enjoy a higher
market share. Intuitively, when customers become more aware of the degree to which,
�rms can stick to their promised delivery time, �rms should tend to quote longer
leadtimes in order to move to a safer zone. In fact, this can be seen in the results
of the table as both TN1 and TN2 will be larger as �Q increases. As expected, with
an increase in customers�sensitivity to the quality of service of �rms, their values for
quality of service will increase. This is shown in the table, where both QN1 and Q

N
2

increase as �Q increases. The direction of change in system performance indicators
with changing parameters is depicted in Table 3.8.
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3.3 Duopolistic PDTCompetition with k-Stage Cen-
tralized Supply Chains with Identical Produc-
tion Rates

As mentioned in the chapter introduction, the contribution of this section is again
another extension on the work done by Ho and Zheng [36] and Shang and Liu [53].
In the previous section, we built upon their model by extending each player into a
supply chain. We assumed that each supply chain had two stages and the production
rates of both stages at each �rm are the same. In this section, we relax the constraint
on the number of stages at the �rms and allow for the general case of k stages at each
supply chain. It should be noted that both �rms have the same number of stages k.
Also, the production rate at all k stages of each �rm is the same. We are assuming
that all stages of the supply chain i have exponential service times with an identical
parameter �i. We are also assuming that the service provided by the supply chain is
continuous and therefore, as soon as a stage becomes idle, a new customer (order) may
enter that stage. We are also allowing queues to form before each stage. Obviously,
for the system to reach the steady state, we are assuming that �i > �i, where �i is
the demand rate for �rm i.
We are interested in �nding the Nash equilibrium of the game played by the two

�rms. We are speci�cally interested in the optimal promised delivery time of each
�rm in equilibrium. Again, because of symmetry we focus on one �rm only. Also, we
know that at equilibrium, the following should hold,

�i = �Si(Ui). (3.13)

As in the previous section, we would like to establish market equilibrium before
starting the analysis. Market equilibrium is reached when �today�s�demand rate (�i)
is equal to �tomorrow�s�demand rate (�Si(Ui)) and equation (3.13) holds and the
demand rates do not �uctuate over time.
After market equilibrium is reached, �rm i is interested in solving the following

optimization problem,

max
Ti
�i(T) (3.14)

subject to �i = �Si(Ui),

where Si(Ui) = eUi=
P2

j=1 e
Uj and � is �xed such that

� = �i + �j,

and
Ui(Ti; �i) = �0i � �TTi + �QQi(Ti; �i). (3.15)
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where the term �i = �Si(Ui) ensures that the market has reached the equilibrium
state. Also, T is the vector containing the decision variables of both �rms.
As in the previous section, the strategy set of �rm i as shown in optimization

problem (3.14) is fTi j Ti � 0g. What is di¤erent between the analysis in this section
and Section 3.2 is the function for the quality of service.

Proposition 3.3 The expression for the quality of service, where the supply chain
has k stages with exponential stage durations with the common parameter k is equal
to

Q
(k)
i (Ti; �i) = Qi(Ti; �i) = 1�

"
1 +

k�1X
n=1

1

n!
T ni (�i � �i)n

#
e�(�i��i)Ti, (3.16)

where k is integer and k � 2.

Proof. The proof for Proposition 3.3 is done similarly to the proof of Proposition
3.1. We use the Laplace transform to �nd the probability distribution of the total
time spent in the system. It is easily veri�ed that this expression is equal to,

Qi(Ti; �i) = 1 +
1

(k � 1)! [
(k � 1)!
1!

(�1� T (�� �))� (k � 1)!
2!

T 2i (�i � �i)2

� (k � 1)!
3!

T 3i (�i � �i)3 � � � � �
(k � 1)!
(k � 1)!T

k�1
i (�i � �i)k�1]e�(�i��i)Ti

which after simpli�cation becomes

Qi(Ti; �i) = 1 + [� 1�
1

1!
Ti(�i � �i)�

1

2!
T 2i (�i � �i)2

� 1

3!
T 3i (�i � �i)3 � � � � �

1

(k � 1)!T
k�1
i (�i � �i)k�1]e�(�i��i)Ti

or

Qi(Ti; �i) = 1�
"
1 +

k�1X
n=1

1

n!
T ni (�i � �i)n

#
e�(�i��i)Ti.

Example 3.5 Consider a supply chain with 5 stages that have exponential service
times with mean 1=3. Also assume that customers place orders at the supply chain
according to a Poisson process with at rate 2. Then the expression for the quality of
service at this supply chain will be equal to

Q(t) = 1� 1

24
e�t(24 + 24t+ 4t3 + 12t2 + t4).
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Lemma 3.7 For any given T , the quality of service is strictly decreasing in the �rm�s
demand rate �.

Proof. Taking the derivative w.r.t. � from the quality of service in (3.16) we
have,

@Qi(Ti; �i)

@�i
= � 1

(k � 1)!T
k
i e

�(�i��i)Ti(�i � �i)k�1.

Now, since we know from the assumptions that �i > �i, then the expression
@Qi(Ti; �i)=@�i is negative and therefore, quality of service is strictly decreasing in
the demand rate.
The demand function L(Ti; �i) and the common allocation parameter `(T) are

de�ned similarly to the Section 3.2 as introduced in Shang and Liu [53] as follows,

Li(Ti; �i) = ln�i � Ui(Ti; �i).

Also, we have Li(Ti; �i) = Lj(Tj; �j) as in equation (3.6). And from equation (3.7)
we have,

Li(Ti; �i) = `(T). (3.17)

Lemma 3.8 For any given Ti, the function Li(Ti; �i) is increasing in �i.

Proof. Taking the derivative w.r.t. �i from Li(Ti; �i) we have,

@Li(Ti; �i)

@�i
=
1

�i
� @Ui(Ti; �i)

@�i
(3.18)

We know from (3.15) that Ui(Ti; �i) = �0i � �TTi + �QQi(Ti; �i). Therefore, 3.18
becomes,

@Li(Ti; �i)

@�i
=
1

�i
� �Q

@Qi(Ti; �i)

@�i
.

We already know from Lemma 3.7 that @Qi(Ti; �i)=@�i < 0. Therefore, we will
have,

@Li(Ti; �i)

@�i
> 0,

or for any given Ti, Li(Ti; �i) is strictly increasing in �i.
For a given set of decision variables T, at �i = 0+ we have,

lim
�i!0+

Li(Ti; �i) = lim
�i!0+

(ln�i � Ui(Ti; �i)) = �1, (3.19)

because with the demand rate into �rm i approaching zero, the market�s utility func-
tion for that �rm will be a positive value. Also, at �i =1 we have,

lim
�i!1

Li(Ti; �i) = lim
�i!1

(ln�i � Ui(Ti; �i)) =1, (3.20)
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as with the demand rate into �rm i approaching in�nity, the market�s utility function
for that �rm tends to zero.
Based on (3.19) and (3.20), as well as Lemma 3.8, we can conclude that for any set

of decision variables T, there is always a unique �i that will satisfy equation (3.17).
In Section 3.2 we presented Lemma 3.5 that led to the proof of the existence of a

Nash equilibrium in the PDT competition for two-stage supply chain. As mentioned
before, this method was originally used in Shang and Liu [53] in order to prove the
existence of an equilibrium in their study. We will follow the same procedure here as
well but will use the expressions corresponding to our own supply chain setting.

Lemma 3.9 For any given promised delivery time for the other �rm Tj, the following
holds,

@�i(T)=@Ti

8<:
>
<
=
0, () @`(T)=@Ti

8<:
<
>
=
0, () Qi

8<:
<
>
=
!k(Ti; �i) (3.21)

where,

!k(Ti; �i) = 1�
�T

h
1 +

Pk�1
n=1

1
n!
T ni (�i � �i)n

i
�Q

1
(k�1)!T

k�1
i (�i � �i)k

.

Lemma 3.10 The �rst-order condition for the demand rate into �rm i (�i(T)) is
satis�ed at the point bTi where,

bTi = � k � 1
�i � �i

W

(
� 1

k � 1

�
�T (k � 1)!
�Q (�i � �i)

� 1
k�1
)
,

that would impose the condition on the parameter values,

�T
�Q

� (�i � �i) [e�1(k � 1)]k�1

(k � 1)! .

The proofs of the above two lemmas (Lemmas 3.9 and 3.10) can be found in
Appendix A.

Proposition 3.4 A unique interior Nash equilibrium exists for the promised delivery
time (PDT) when we have two symmetric supply chains, each with k stages with
M=M=1 queueing settings and a common parameter and queues forming before each
stage and the quality of service is greater than the quality of service threshold �(k),
where this threshold is de�ned as follows,

�(k) = 1� e�(k�1)
"
1 +

k�1X
n=1

(k � 1)n
n!

#
,
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T �1 T2 �1 �2
5:418 0:5 0:6106 0:3894
5:125 0:8 0:4998 0:5002
4:958 1 0:4303 0:5697
4:844 1:2 0:3801 0:6199
4:756 1:5 0:3397 0:6603
4:731 1:8 0:3274 0:6726
4:731 2 0:3278 0:6722
4:740 2:2 0:3318 0:6682
4:752 2:4 0:3378 0:6622
4:801 3 0:3603 0:6397
4:845 3:5 0:3807 0:6193
4:892 4 0:4014 0:5986

T �2 T1 �1 �2
1:856 2 0:4075 0:5925
1:854 2:2 0:4151 0:5849
1:852 2:4 0:4195 0:5805
1:853 3 0:4186 0:5813
1:854 3:2 0:4147 0:5153
1:856 3:5 0:4067 0:5933
1:861 4 0:3892 0:6108
1:863 4:2 0:3813 0:6187
1:871 4:8 0:3562 0:6438
1:873 5 0:3477 0:6523
1:879 5:5 0:3262 0:6738
1:886 6 0:3052 0:6748

Table 3.9: Summary of results for the best response of each �rm based on the decision
made by the other �rm.

and we should have,
�T
�Q

<
(�i � �i) [e�1(k � 1)]k�1

(k � 1)! .

It is interesting to note that the quality of service threshold for k = 2 is found to
be %26 based on the expression in (A.28) is the same threshold that were found in
Section 3.2, where there were two stages with the same production rate. It should
be noted that if condition Qi(Ti; �i) > �(k) is not satis�ed, a unique interior Nash
equilibrium will not exist.

3.3.1 Numerical Examples and Sensitivity Analysis

In this section we will solve a number of numerical examples to get better insights into
the results of this model. First we will �nd the best-response curve of each company
in a pointwise manner and plot the curves. Then we will solve a numerical example
and �nally we will perform a numerical sensitivity analysis.

Example 3.6 Assume we let �oi = 0, i = 1; 2, �T = 0:2, �Q = 2, k = 5 and � = 1.
Also, assume that the production rate at the stages of the �rst supply chain is �1 = 2
and the production rate at stages for the second supply chain is �2 = 6. Now using
the closed-form solution given by equation (A.20) we will �nd the best-response curves
of both �rms. Like in the previous section, the best-response curves are only available
in a pointwise manner. The points of the best-response curves for both companies are
summarized in Table 3.9.
Plotting the results we illustrate the best-response curves of both �rms plotted im-

plicitly in the same graph. The intersection of the best-response curves is a Nash
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Figure 3.5: The best-response curves of both �rms shown together. The point of their
intersection is a Nash equilibrium for the game.

equilibrium for the game. The best-response curves are shown in Figure 3.5. It is in-
teresting to mention that the reason why the second �rm�s best-reponse curve is almost
a vertical line is because its production rate is three times the production rate of the
�rst �rm and therefore, it does not get changed considerably based on decisions made
by the �rst �rm.
The best-response curves intersect once and this point is around TN1 = 4:8 and

TN2 = 1:8. In fact, in the next example we show that this point is the Nash equilibrium
derived by the analytical results of the section.

Example 3.7 This problem is de�ned with the parameter values assumed in the pre-
vious example. We namely assume �oi = 0, i = 1; 2, �T = 0:2, �Q = 2, k = 5 and
� = 1. We also assume �1 = 2 and �2 = 6. Solving the problem for each supply chain
we will get the following optimal demand rates at equilibrium for each supply chain,

�N1
�= 0:327,

which means that the �rst �rm serves 32:7% of the market. Also for the second �rm
we have,

�N2
�= 0:673,

which is equivalent to the second �rm serving 67:3% of the market. Also, the optimal
promised delivery times (quoted leadtimes) for both supply chains at the equilibrium
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k �N1 �N2 TN1 TN2 QN1 QN2
2 0:3956 0:6044 2:6264 1:0628 0:9228 0:9782
3 0:3699 0:6301 3:3812 1:3507 0:9123 0:9755
4 0:3473 0:6527 4:0755 1:6204 0:9033 0:9731
5 0:3270 0:6730 4:7304 1:8796 0:8953 0:9709
6 0:3085 0:6915 5:3560 2:1315 0:8878 0:9689
7 0:2914 0:7086 5:9603 2:3782 0:8810 0:9670
8 0:2755 0:7245 6:5465 2:6208 0:8745 0:9652
9 0:2607 0:7393 7:1182 2:8604 0:8683 0:9634
10 0:2469 0:7531 7:6780 3:0976 0:8624 0:9618

Table 3.10: Summary of results for the numerical analysis for changing the number
of stages at each �rm k, where �1 = 2 and �2 = 6.

point are as follows,
TN1

�= 4:73,
and,

TN2
�= 1:88.

The reason the PDTs are so di¤erent is because of the di¤erence in the production
rate of the two �rms. In the next step, we calculate the �rms�quality of service or
the probability of meeting the demand at or before the promised delivery time at the
equilibrium point. These are as follows,

QN1
�= 89%,

and,
QN2

�= 97%.

As it can be seen from the solutions, when each supply chain has 5 stages, the
second supply chain that has a higher production rate enjoys a greater demand rate
and a greater market share. The �rm with the higher production rate (second �rm) also
does better at marketing level by promising a shorter delivery time to the customers.
Finally, the second �rm has a better probability of sticking to its promised delivery
time and thus has a better quality of service.

We have calculated the optimal demand rate as well as the optimal promised
delivery times and quality of service expressions for values of k ranging from 2 to 10
when the production rate of the �rst �rm is �xed at �1 = 2 and that of the second
�rm is �xed at �2 = 6. The results are presented in Table 3.10.
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�N1 �N2 TN1 TN2 QN1 QN2
k ", �1 and �2 �xed and �1 < �2 # " " " # #

Table 3.11: Direction of change in system performance with changing the number of
stages at both �rms k, where �1 and �2 are �xed.

�T �Q �N1 �N2 TN1 TN2 QN1 QN2
0:01 2 0:4839 0:5161 8:3796 2:6488 0:9953 0:9987
0:06 2 0:4274 0:5726 6:3504 2:1998 0:9704 0:9920
0:11 2 0:3850 0:6150 5:5624 2:0419 0:9444 0:9848
0:17 2 0:3444 0:6556 4:9620 1:9247 0:9120 0:9757
0:20 2 0:3270 0:6730 4:7304 1:8796 0:8953 0:9709
0:2 3 0:3159 0:6841 5:1708 2:0073 0:9343 0:9811
0:2 4 0:3084 0:6915 5:4596 2:0954 0:9524 0:9861
0:2 5 0:3030 0:6970 5:6736 2:1624 0:9628 0:9890
0:2 6 0:2987 0:7013 5:8440 2:2164 0:9696 0:9909
0:2 7 0:2952 0:7048 5:9832 2:2616 0:9743 0:9922

Table 3.12: Summary of results for the numerical analysis with changing parameter
values �T and �Q, where �1 = 2 and �2 = 6 and k = 5.

As it is shown in Table 3.10, as the number of stages in both �rms increase, the
�rm with the lower production capacity will su¤er from a decline in its market share,
which translates directly into a higher market share for the �rm with the higher
production capacity. As the number of stages increases, we observe that the promised
delivery time of both �rms increase. This is intuitive because with more stages, the
products have to travel through a higher number of stages and thus, the PDT should
be greater. Also, as we increase the number of stages in the �rms, both �rms su¤er
from a decline in their quality of service. It should be noted, however that the increase
in PDT and decline in quality of service of the lower capacity �rm is more remarkable
than those in the �rm with the higher production capacity. This is summarized with
direction arrows in Table 3.11 for a �xed �2 and an increasing �1.
Next we will examine the e¤ect of changing the parameters �T and �Q. We will

hold �0 at zero as it depends on other parameters that are out of the scope of this
work. We �nd the values for �N1 , �

N
2 , T

N
1 , T

N
2 , Q

N
1 and Q

N
2 for the case where �1 = 2,

�2 = 6 and k = 5, and present the results in Table 3.12.
Similar to the results derived from Table 3.7, we can see from Table 3.12 that

when customers�sensitivity to the announced PDT increases, the market share for
the lower capacity �rm will increase and that of the higher capacity �rm increases. In
this case, both �rms will quote shorter delivery times in an attempt to capture higher
market shares. Doing so, they will both assume the risk of unresponsiveness and show
a decline in their quality of service. The decrease in PDT and quality of service is

48



Ph.D. Thesis �Behrouz Bakhtiari McMaster University �Management Science

�N1 �N2 TN1 TN2 QN1 QN2
�T " and �Q �xed and �1 < �2 # " # # # #
�Q " and �T �xed and �1 < �2 # " " " " "

Table 3.13: Direction of change in system performance with changing parameter values
�T and �Q, where �1, �2 and k are �xed.

again more remarkable for the �rm with the lower capacity compared to those from
the higher capacity �rm.
With �T held constant and increasing customers�sensitivity to quality of service,

the market share of the lower capacity �rm decreases again, while that of the higher
capacity �rm will increase. Also, both �rms will quote longer PDTs in order to be in
the safe side when customers are more sensitive to how well the �rms keep to their
commitment. Longer PDTs will translate into better quality of service for both �rms.
The direction of change in system performance indicators with changing parameters
is depicted in Table 3.13. These results are identical to the results in Table 3.8.

3.4 Duopolistic PDT Competition with Two-Stage
Centralized Supply Chains with Non-Identical
Production Rates

The contribution of this section is yet another extension on the model proposed by
Shang and Liu [53]. Consider the duopolistic system with identical production rates
introduced in Section 3.2. Now we generalize that system by assuming that the
production rates at each �rm could be di¤erent. This makes the model more general
as production rates at di¤erent stages of a supply chain are usually di¤erent in reality.
Similar to the models presented in previous sections, we are again assuming that the
service provided by the supply chain is continuous and therefore, as soon as a stage
becomes idle, a new customer (order) may enter that stage. We are also allowing
queues to form before each stage. This is shown in Figure 3.6. Obviously, for the
system to reach the steady state, we are assuming that �ij > �i, where �i is the
demand rate for �rm i and �ij is the production rate at stage j of the �rm i. A
realistic example for the model proposed in this section could be a centralized supply
chain consisting of a manufacturer and a third party shipping company, where a single
PDT is quoted to the customer by the manufacturer. The times for the manufacturer
to produce the product and for the shipping company to ship it are both random
variables with di¤erent parameters. In an MTO environment and such settings, the
time that spans from the point when the order is placed until it is shipped to the
customer (including all the queue times) will be the total wait time that the customer
experiences. An example for this system could be a supplier (as stage one) that
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Figure 3.6: A supply chain consisting of two stage, where each stage has a di¤erent
production rate.

supplies the material to the manufacturer (stage two) that will produce the product.
These two stages work in a serial fashion and have di¤erent production (delivery)
rates.
Next we will present the expression for the quality of service in the new system.

Proposition 3.5 The expression for the quality of service, where the supply chain
has two stages with exponential stage durations with di¤erent parameters is equal to

Qi(Ti; �i) = 1 +
1

�i1 � �i2
�
(�i2 � �i)e�(�i1��i)Ti � (�i1 � �i)e�(�i2��i)Ti

�
, (3.22)

where �i1 and �i2 are the production rates of the �rst and second stages of �rm i.

Proof. Based on Lemmas 3.1 and 3.2, the distribution of total time in the system
for stage one is exponential with parameter (�i1 � �i) and is (�i2 � �i) for stage two.
Assume that Y1 represents the total time spent in stage one of the supply chain and
has the p.d.f. fY1 and c.d.f. FY1. Similarly, let Y2 be the random variable representing
the time spent in the second stage of the supply chain and has the p.d.f. fY2 and c.d.f.
FY2. Then we have,

fY1(t) = (�i1 � �i)e�(�i1��i)t,
fY2(t) = (�i2 � �i)e�(�i2��i)t.

Based on the assumptions, if W represents the total time spent in the system, we
should have W = Y1 + Y2. If W has the c.d.f. QW = Q, then using the Laplace
transform we can write, eQ(s) = 1

s
efY1(s) efY1(s),

where eQ(s) is the Laplace transform of Q and efY1(s) and efY1(s) are the Laplace
transforms of fY1(t) and fY2(t), respectively. Therefore, we have,

eQ(s) = (�i1 � �i)(�i2 � �i)
s(�i1 � �i + s)(�i1 � �i + s)

. (3.23)
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Using the inverse of the Laplace transform in equation (3.23) to �nd Q(t) we will
have,

Q(ti) = 1 +
1

�i1 � �i2
�
(�i2 � �i)e�(�i1��i)ti � (�i1 � �i)e�(�i2��i)ti

�
. (3.24)

But since the demand rate also determines the quality of service, we can write
(3.24) as follows,

Qi(Ti; �i) = 1 +
1

�i1 � �i2
�
(�i2 � �i)e�(�i1��i)Ti � (�i1 � �i)e�(�i2��i)Ti

�
.

Since Q is the c.d.f. of the random variable W , the following should hold,

0 � Q < 1. (3.25)

or,

0 � 1 + 1

�i1 � �i2
�
(�i2 � �i)e�(�i1��i)Ti � (�i1 � �i)e�(�i2��i)Ti

�
< 1.

The right-hand side of inequality (3.25) simpli�es to,

1

�i1 � �i2
�
(�i2 � �i)e�(�i1��i)Ti � (�i1 � �i)e�(�i2��i)Ti

�
< 0. (3.26)

Assuming �i1 > �i2, based on inequality (3.26), we should have,

(�i2 � �i)e�(�i1��i)Ti � (�i1 � �i)e�(�i2��i)Ti < 0,

which results in the condition,

Ti >
1

�i2 � �i1
ln

�
�i1 � �i
�i2 � �i

�
, (3.27)

which is always satis�ed as �i2��i1 < 0 and ln ((�i1 � �i)=(�i2 � �i)) > 0, resulting in
the right-hand side of inequality (3.27) assuming the negative sign. Therefore, when
�i1 > �i2, any positive T will satisfy condition (3.27).
Now assuming �i1 < �i2, based on inequality (3.26), we should have,

(�i2 � �i)e�(�i1��i)Ti � (�i1 � �i)e�(�i2��i)Ti > 0,

which results in the same condition (3.27). Assuming �i1 < �i2, this condition is
always satis�ed again as the denominator is always positive and the numerator is
always negative. Therefore, any positive T will satisfy that condition for the case
�i1 < �i2. As a result, the right-hand side of the condition (3.25) is always satis�ed.
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Focusing our attention to the left-hand side of condition (3.25) we get,

1

�i2 � �i1
�
(�i2 � �i)e�(�i1��i)Ti � (�i1 � �i)e�(�i2��i)Ti

�
� 1.

This condition is equivalent to the following,�
(�i2 � �i)e�(�i1��i)Ti � (�i1 � �i)e�(�i2��i)Ti � �i2 � �i1, if �i1 > �i2
(�i2 � �i)e�(�i1��i)Ti � (�i1 � �i)e�(�i2��i)Ti � �i2 � �i1, if �i1 < �i2

.

Here we will follow the same procedure as was used by Shang and Liu [53] but
with the di¤erence that we will apply them to our own supply chain settings and will
introduce new conditions on the problem.

Lemma 3.11 For any given T , the quality of service is strictly decreasing in the
demand rate into the �rm, �, as long as we have T (minf�1; �2g � �) > 1.

Proof. For the sake of simplicity, we drop the index i and take the derivative of
Q w.r.t. �. We have,

@Q(T; �)

@�
=
e�(�1��)T ((�2 � �)T � 1)� e�(�2��)T ((�1 � �)T � 1)

�1 � �2
. (3.28)

Now let�s assume that �1 > �2. Then we have 0 < expf�(�1��)Tg < expf�(�2�
�)Tg. Also, we have ((�2 � �)T � 1) < ((�1 � �)T � 1). We know that as long as
(�1 � �)T � 1 > 0, the following will hold,

e�(�1��)T ((�2 � �)T � 1)� e�(�2��)T ((�1 � �)T � 1) < 0

and thus,
@Q(T; �)

@�
< 0.

Obviously, the above results are always valid if we have

0 < ((�2 � �)T � 1) < ((�1 � �)T � 1).

Also, the condition ((�2 � �)T � 1) < 0 < ((�1 � �)T � 1) will also ensure its
validity. For the case ((�2 � �)T � 1) < ((�1 � �)T � 1) < 0, the condition holds
as long as

��e�(�1��)T ((�2 � �)T � 1)�� > ��e�(�2��)T ((�1 � �)T � 1)��. Now, in order
to avoid this cumbersome condition, we sacri�ce a small part of the solution set and
apply the su¢ cient condition ((�1 � �)T � 1) > 0.
Now if we have �1 < �2 we get 0 < expf�(�2��)Tg < expf�(�1��)Tg and also

((�1 � �)T � 1) < ((�2 � �)T � 1). Therefore, for the numerator of (3.28) we have,

e�(�1��)T ((�2 � �)T � 1)� e�(�2��)T ((�1 � �)T � 1) > 0
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but since �1 < �2, we have,
@Q(T; �)

@�
< 0.

Similarly, here we apply the su¢ cient condition (�2 � �)T�1 > 0 for the condition
to hold.
This proves that as long as T (minf�1; �2g � �) > 1 holds, the quality of service

is strictly decreasing in the demand rate in the �rm.
We are again interested in �nding the optimal promised delivery time in equilib-

rium in a duopolistic market with two �rms with both having two stages but di¤erent
production rates at each stage. Again, because of symmetry we focus on one �rm
only. Firm i solves the following optimization problem,

max
Ti
�i(T)

subject to �i = �Si(Ui),

where Si(Ui) = eUiP2
j=1 e

Uj
and � is �xed such that

� = �i + �j,

and
Ui(Ti; �i) = �0i � �TTi + �QQi(Ti; �i).

Again, the demand function L(Ti; �i) and the common allocation parameter ` are
de�ned similarly to the Section 3.2 as introduced in Shang and Liu [53] as follows,

Li(Ti; �i) = ln�i � Ui(Ti; �i). (3.29)

Also, we have Li(Ti; �i) = Lj(Tj; �j) as in equation (3.6). And from equation (3.7)
we have,

Li(Ti; �i) = `(T). (3.30)

Lemma 3.12 For any given Ti, the function Li(Ti; �i) is always increasing in �i as
long as T (minf�1; �2g � �) > 1 holds.

Proof. Taking the derivative w.r.t. �i from both sides of equation (3.29) we have,

@Li(Ti; �i)

@�i
=
1

�i
� @Ui(Ti; �i)

@�i

=
1

�i
� �Q

@Qi(Ti; �i)

@�i

but since we know from Lemma (3.11) that as long as T (minf�1; �2g � �) > 1 we
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have @Qi(Ti; �i)=@�i < 0, then we have,

@Li(Ti; �i)

@�i
> 0

For any given set of decision variables T, at �i = 0+ we have,

lim
�i!0+

Li(Ti; �i) = lim
�i!0+

fln�i � Ui(Ti; �i)g = �1, (3.31)

as at a demand rate of �i = 0+, customers will have a positive utility function for
�rm i. Also, at �i =1 we have,

lim
�i!1

Li(Ti; �i) = lim
�i!1

fln�i � Ui(Ti; �i)g =1, (3.32)

as with �i =1, the customers�utility function for �rm i approaches zero.
Therefore, under the minor condition T (minf�1; �2g � �) > 1, based on (3.31)

and (3.32) as well as Lemma 3.12, for any given set of decision variables T, there is
always a unique demand rate �i that would satisfy equation (3.30).
As in previous sections, and also used by Shang and Liu [53], we proceed with

�nding the relationship between @�i=@Ti, @`(T)=@Ti and Qi. This is dealt with in
Lemma 3.13.

Lemma 3.13 For any given promised delivery time for the other �rm Tj, as long as
we have T (minf�1; �2g � �) > 1, the following holds,

@�i(T)=@Ti

8<:
>
<
=
0, () @`(T)=@Ti

8<:
<
>
=
0, () Qi

8<:
<
>
=
!i(Ti; �i) (3.33)

where,

!i(Ti; �i) = 1�
�T
�
e�(�i1��i)Ti (�i2 � �i)� e�(�i2��i)Ti (�i1 � �i)

�
�Q (�i1 � �i) (�i2 � �i) (e�(�i1��i)Ti � e�(�i2��i)Ti)

. (3.34)

The proof of Lemma 3.13 can be found in Appendix A.
From Lemma (3.13) we can see that su¢ cient conditions for the existence of one

or multiple points that satisfy the �rst-order condition @�i=@Ti = 0 is when Q =
!i(Ti; �i) as well as T (minf�1; �2g � �) > 1 where,

!i(Ti; �i) = 1�
�T
�
e�(�i1��i)Ti (�i2 � �i)� e�(�i2��i)Ti (�i1 � �i)

�
�Q (�i1 � �i) (�i2 � �i) (e�(�i1��i)Ti � e�(�i2��i)Ti)

,

Now we will proceed with presenting the next proposition that will �nd su¢ cient
conditions for the second-order conditions to be satis�ed.
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Proposition 3.6 At least one interior Nash equilibrium exists for the promised de-
livery time (PDT) when we have two symmetric supply chains, each with two stages
with M=M=1 queueing settings and di¤erent production rates. For the existence of
the interior Nash equilibria we need to have the following conditions,

T (minf�1; �2g � �) > 1, (3.35)

and,

Ti >
ln [(�i2 � �i) = (�i1 � �i)]

(�i2 � �i1)
. (3.36)

The proof of Proposition 3.6 can be found in Appendix A.
Unfortunately, a closed-form solution for this part could not be found. As a result,

we conclude our analysis for this part with the su¢ cient conditions that were found
in Proposition 3.6. Remember in the previous sections, the point T = fT1; T2g that
satis�ed the �rst-order condition was the point that satis�ed the following equation,

!i(Ti; �i) = Qi(Ti; �i), (3.37)

where from (3.34) we have,

!i(Ti; �i) = 1�
�T
�
e�(�i1��i)Ti (�i2 � �i)� e�(�i2��i)Ti (�i1 � �i)

�
�Q (�i1 � �i) (�i2 � �i) (e�(�i1��i)Ti � e�(�i2��i)Ti)

,

and from (3.22) we have,

Qi(Ti; �i) = 1 +
1

�i1 � �i2
�
(�i2 � �i)e�(�i1��i)Ti � (�i1 � �i)e�(�i2��i)Ti

�
.

Equation (3.37) does not produce any closed-form solution for T. However, we
can always try to �nd the Nash equilibrium of the game numerically for a speci�c
setting of the problem. This is done in the next part of this section.

3.4.1 Numerical Example

In this section we will de�ne a speci�c setting for the problem and try to �nd the
Nash equilibrium of the game by enumeration and also by using the best-response
curves. Since no closed-form solution is in hand, to �nd every best-response point we
have to try all the possibilities until the left-hand side and right-hand side of equation
(3.37) are equal. This has also been explained brie�y in Section 3.2.1. We will show
the process in more depth in the next example.

Example 3.8 Let �oi = 0, i = 1; 2, �T = 0:2, �Q = 2 and � = 1. Also, assume the
following production rates for the �rms �11 = 2, �12 = 4, �21 = 3 and �22 = 5. Now to
�nd the best-response of �rm 1 (T �1 ) to any decision made by �rm 2 (T2), we have to
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T1 �1 �2 !1(T1; �1) Q1(T1; �1)
1:000 0:5388 0:4611 0:9253 0:6214
2:000 0:6168 0:3832 0:9269 0:8944
2:200 0:6190 0:3810 0:9270 0:9193
2:250 0:6192 0:3808 0:9270 0:9247
2:260 0:6192 0:3808 0:9271 0:9257
2:270 0:6192 0:3808 0:9271 0:9267
2:274 0:6192 0:3808 0:9271 0:9271
2:280 0:6192 0:3808 0:9271 0:9277
2:300 0:6192 0:3808 0:9271 0:9297
2:400 0:6187 0:3813 0:9272 0:9387

Table 3.14: Summary of results for the numerical analysis for changing T1, where
�1;1 = 2, �1;2 = 4, �2;1 = 3, �2;2 = 5 and T2 is �xed at 0:5. The row that is
highlighted is the point where !1 and Q1 are equal, and thus the best response of �rm
1, T �1 = 2:274.

change T1 until both sides of equation (3.37) are equal. Let�s assume the second �rm
has chosen T2 = 0:5. To �nd the best response of �rm 1 (T �1 ), we should change T1
and �nd the corresponding values for the expressions !1(T1; �1) and Q1(T1; �1) until
the two become equal. Once the two expressions are equal, then the equation (3.37) is
satis�ed and the T1 chosen is the best response of �rm 1 (T �1 ) to the choice of �rm 2
(0:5). In Table 3.14, we show di¤erent values of T1 in response to the decision made
by �rm 2 (T2 = 0:5) as well as the values for !1(T1; �1) and Q1(T1; �1).
The values of !1(T1; �1) and Q1(T1; �1) are shown in Figure 3.7.
Doing this process for di¤erent values of T2, we can �nd the best responses of �rm

1 to �rm 2. The same procedure can be also done for �rm 2 to �nd its best response
to a decision made by �rm 1. The results are summarized in Table 3.15.
Based on the points found, we will plot the best-response curves of the �rms. The

best-response curves are shown in Figure 3.8.
We can observe from Figure 3.8 that the Nash equilibrium should be around the

point (2:2; 1:6). Working with the functions around that area and using trial and error,
we found the Nash equilibrium of the game. This information is summarized in Table
3.16.
Therefore, the Nash equilibrium of the game occurs at the point T = f2:138; 1:611g.

3.5 Conclusion and Suggestions for Future Research

In this chapter we investigated the solution to a single problem using three settings
for the supply chains. We built upon the models introduced by Ho and Zheng [36]
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Figure 3.7: The values for the functions !1 and Q1 when T1 changes and T2 = 0:5.
The function !1 is shown in dots and Q1 is the shown with the solid line. The point
of intersection is T1 = 2:274.

T �1 T2 �1 �2
2:274 0:5 0:6192 0:3808
2:194 0:8 0:5288 0:4712
2:164 1 0:4941 0:5059
2:143 1:2 0:4741 0:5259
2:139 1:5 0:4623 0:5377
2:140 1:8 0:4633 0:5367
2:144 2 0:4679 0:5321
2:149 2:2 0:4743 0:5257
2:155 2:4 0:4819 0:5181
2:176 3 0:5080 0:4920
2:196 3:5 0:5310 0:4690
2:216 4 0:5542 0:4457

T �2 T1 �1 �2
1:692 0:5 0:2736 0:7264
1:659 0:8 0:3482 0:6518
1:642 1 0:3864 0:6136
1:630 1:2 0:4150 0:5850
1:619 1:5 0:4428 0:5572
1:613 1:8 0:4570 0:5430
1:611 2 0:4609 0:5391
1:611 2:2 0:4614 0:5386
1:611 2:4 0:4595 0:5405
1:618 3 0:4436 0:5564
1:627 3:5 0:4243 0:5757
1:636 4 0:4027 0:5973

Table 3.15: Summary of results for the best response of each �rm based on the decision
made by the other �rm.
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Figure 3.8: The best-response curves of the two �rms. The dashed line is the best-
response curve of �rm 1 and that of the second �rm is shown with a solid line. The
intersect at around T1 = 2:2 and T2 = 1:6.

T �1 T2 �1 �2
2:138 1:611 0:5288 0:4712

T �2 T1 �1 �2
1:611 2:138 0:5288 0:4712

Table 3.16: Summary of results for the Nash equilibrium of the game. Notice that
the response of �rms result in the same solution. Also notice that no matter which
�rm is responding to the other player�s decision, the demand rates into �rms stays
the same.
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and Shang and Liu [53] by changing the settings of their models from a single stage
�rm to multiple stage �rms with the same or di¤erent production rates. We followed
the same procedures that were used by Shang and Liu [53] and used our own supply
chain settings. These settings included the following cases; (a) when each �rm consists
of two stages and has identical production rates in both stages, (b) when each �rm
consists of k stages and has identical production rates in all stages and, (c) when each
�rm consists of two stages and has di¤erent production rates in each stage. The �rst
two settings were studied in Sections 3.2 and 3.3, where we found closed-form solutions
for the optimal strategies (PDTs) for �rms at the Nash equilibrium of the game. We
proved that under mild conditions, there is a unique interior Nash equilibrium in this
game. The last setting was studied in Section 3.4, where a closed-form solution for the
optimal strategies for the �rms could not be derived. We derived su¢ cient conditions
for the existence of at least one interior Nash equilibrium. In this section, we came up
with an equation that under the su¢ cient conditions will yield the optimal strategies
and the interior Nash equilibrium of the game.
This work has improved the results of Ho and Zheng [36] and Shang and Liu [53]

because it has expanded the scope of the problem to a wider range of situations. This
is because the process of delivering a product to the customers rarely depends on
production at only one stage. Usually �rms (supply chains) consist of di¤erent stages
where the production or service delivery rates at each stage are di¤erent. The model
presented in this chapter aims to represent these kinds of processes where serial stages
have to be used for delivering a product or a service to the ultimate customer. As an
example, the process of delivering a package at the UPS consists of more than one
stage with di¤erent production (service delivery) rates. The models presented by Ho
and Zheng [36] and Shang and Liu [53] cannot be used there because they only study
�rms with one stage of production (service delivery). The results from this chapter
help companies like the UPS to determine the optimal PDT in competition with their
rivals.
At the end of each section, we con�rmed our analytical results using di¤erent

numerical examples. Using the numerical examples, we also performed numerical
sensitivity analyses. These analyses provided insight into the behavior of the objective
functions as well as the optimal strategies in reaction to changes in parameter values
of the problems.
For future research opportunities in this context, other settings of supply chain

design may be explored. For instance, we have assumed that supply chains are both
serial. In other words, the product needed to travel through all stages of the supply
chain in order to be deemed completed. In reality, many processes do not require
the product to go through all stages. Occasionally, products may be sent back to a
previous stage for rework or correction as well. Studying the problem with a general
phase-type distribution that captures these characteristics will be a great addition to
the literature. As another area for future research, we suggest adding other decision
variables to the problem. Price for instance, may serve as a good candidate to be
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used as a decision variable in addition to promised delivery time. In this kind of
competition, �rms will be quoting their determined promised delivery time as well as
a suggested price to the customers. The customers�utility function will capture the
behavior of the customers towards the quoted price and PDT and will determine the
market share for each �rm.
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Chapter 4

A Duopolistic Competition Based
on Promised Delivery Times with
Tardiness Costs

The duopoly game studied in the previous chapter was a competition game based
on promised delivery time. Firms tried to attract as many customers as possible by
manipulating their promised delivery time. Based on a utility function that took into
account the promised delivery time as well as congestion level at each �rm, the market
share of each �rm was determined. In this chapter, we will look at another duopolistic
game that is played based on the promised delivery time. In this game, �rms compete
for the business of a single customer. They try to win the business of the customer
and earn a pro�t by manipulating their promised delivery time.
The structure of this chapter is as follows. In Section 4.1 we will introduce the

problem by giving an overview on the nature of the competition. We will also mention
relevant papers from the literature. In Section 4.2, we will introduce the notation used
in the model and will build the model. In Section 4.3 we will �nd the Nash equilibrium
of the game. Based on the results from the analysis we will solve multiple numerical
examples and will perform a sensitivity analysis whose results will be presented in
Section 4.4. Finally, in Section 4.5 we will give a conclusion to the �ndings in the
chapter and will present some managerial insights into the problem.

4.1 Introduction and Problem Overview

The issue of selecting a manufacturer (supplier) has been discussed in the operations
management literature for decades. The notion of time has always been present as
a criterion for selecting the best manufacturer. According to a review of 74 articles
discussing the issue of supplier selection, Weber et al. [64] have concluded that delivery
performance ranks in the top three most important criteria for supplier selection in
the literature along with cost and quality. These criteria were chosen as the top three
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out of 23 criteria �rst introduced by Dickson [20] in his article discussing supplier
selection. Time-based activities of the manufacturers can be captured in the delivery
performance criterion in this list. These studies show the importance of delivery
performance (time-based) in the body of literature.
A more recent study captures the importance of time-based performance of the

suppliers from the perspective of practitioners. Verma and Pullman [62] showed that
based on the 58 completed surveys that they received from managers, they ranked
�quality�as the most important criterion evaluated by managers in their process of
choosing a supplier. Quality was followed by �on-time delivery�(quality of service)
as the second most important factor for selecting a supplier. �Leadtime�(promised
delivery time) came up as the fourth most important criterion after �unit cost�. The
results of this study show how important time-based activities of manufacturers are
to ensure their success in the market.
In this chapter, we will also focus on the e¤ect of time on the selection of a

manufacturer by a customer. We will consider a duopolistic market with two �rms
(manufacturers) and only one customer. The �rms are competing against each other
to win the business of the customer. In other words, the customer will choose one of
the �rms based on certain criteria that are re�ected in her utility function. Only one
of the two �rms will win the business of the customer and the other one will be out
of the game. An example of such market can be found in businesses, where a usually
expensive product with a long production time is manufactured, where the market
size is very small and the suppliers are not plentiful. An instance of this market is the
aircraft purchasing market, where the size of the market is limited and the number of
products sold are very few compared to other markets like the auto industry.
In this chapter, we are assuming that the two �rms will announce their promised

delivery time (PDT hereafter) to the customer simultaneously. Based on that, the
customer will choose the winning �rm. The losing �rm will leave the game and the
winning �rm will have to start production to deliver the product to the customer.
The customer gives the business to the �rm that announces the shorter PDT. The
trade-o¤ situation that appears in this situation leads to an interesting problem that
we intend to analyze in this study. On the one hand, �rms would prefer to quote a
short leadtime to win the business. On the other hand, they are leaning towards a
longer quoted leadtime to minimize tardiness costs.
We are aware that in similar situations in real life, customers tend to pay attention

to a greater variety of criteria in making their decisions (for a review see, Weber et
al. [64]). However, for the sake of simplicity and ease of analysis, this model assumes
that the only criterion observed by the customer is the promised delivery time.
It may be tempting to suggest that the best strategy for any �rm playing this

game would be to quote as short a PDT as possible. However, it is important to note
that winning the business of the customer is not the ultimate goal of the �rms. The
�rms are trying to maximize their pro�t. Since the production of the product involves
procedures that are costly, it becomes important for �rms to quote a PDT that, if
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won, will yield as big a pro�t for them as possible. For instance, if a �rm quotes an
unrealistically short PDT, it will increase its chances of winning the business. How-
ever, once the business is won, the company is committed to delivering the product
and that is when other costs involved in the model kick in. One of these costs will
be tardiness cost. This type of cost will be incurred by the �rm in proportion to the
time interval between the realized delivery time and the PDT if the delivery was late.
This cost is designed as a penalty to discourage the �rms from quoting unrealistically
short PDTs with the mere purpose of winning customer�s business. Tardiness cost
and penalties have been used in many articles in the literature that discuss the issue
of setting quoted leadtimes to maximize expected pro�t, e.g., see, Bertrand and van
Ooijen [8], Chatterjee et al. [14] and Wu et al. [66].
This chapter contributes to the literature by studying a model, where the customer

will choose between suppliers taking use of PDTs that are quoted to her. The suppliers
will have to consider the selecting process as well as their internal production and
tardiness costs. The contribution of the results to the literature will be in the context
of supplier selection and maximization of pro�t in the presence of tardiness costs for
suppliers in the context of time-based competition where the competition is based on
promised delivery times.
In the following section, we will introduce the sources of revenue and cost for the

�rms and demonstrate the behavior of their pro�t functions in this game.

4.2 The Model

In this section, we will introduce the notations used in the model and present the
model to capture the �rms� expected pro�t functions. To incorporate customer�s
choice (the winning �rm), we are de�ning a binary variable Ii, i = 1; 2 as follows,

Ii(T) =

�
0, if Ti > Tj +�,
1, otherwise,

where T = fTi; Tjg and Ti and Tj are the PDT values quoted by the �rst and the
second �rms, respectively. The value � is assumed to be customer�s threshold with
regards to her sensitivity to time. This value is assumed to be relatively small to the
values of the PDTs. For instance, for a product that has a leadtime of two years, this
� can be assumed to be one week. Any two PDTs that are closer to each other than
one week, will be the same in the eyes of the customer. This value is the di¤erence
in time that is visible to the customer. The customer is basically unable to see the
di¤erence between any two PDTs that have a di¤erence less than �. It should also
be noted that the value � is exogenously determined and may be di¤erent for each
single customer. It is not in any ways related to any other parameters in the model.
This value will be determined in consultation with the customer and varies from one
customer to another.
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The customer pays �rm i the value Ri(T) based on the following condition,

Ri(T) =

�
Pe�
Ti, if Ii(T) = 1,
0, if Ii(T) = 0,

where P is the full price that will be paid to the �rm that quotes an immediate de-
livery (T = 0). In this problem, we are assuming that the full price P is exogenously
determined by the forces of the market. Also, the positive parameter 
 is the depre-
ciation rate for the full price and is the rate at which the full price is depreciated.
Obviously, if Ii(T) = 0 (�rm i loses the business), the �rm does not get paid anything.
Also note, assuming �rm i wins the business, for Ti = 0 the �rm will be paid the full
price P . Also note that the reward to the winning �rm (here �rm i) goes to zero as
Ti goes to in�nity.
Let�s assume that Xi, i = 1; 2 is the random variable representing time to comple-

tion for �rm i with c.d.f. Fi. In this part, we are assuming that the time to completion
is exponential with parameter �i for �rm i. The parameter �i can be interpreted as
the production rate for the �rm. Therefore, the c.d.f. of �rm i will be de�ned as,

Fi(Ti) = 1� e��iTi, �i > 0 and Ti � 0.

Although the assumption for exponential manufacturing times has been made to
make the analysis more tractable, this assumption is not completely without empirical
support. Shanthikumar and Sumita [54] show that the time spent in a large class of
dynamic job shops can be approximated using an exponential random variable. They
also claim that their results are applicable to other manufacturing models like some
�exible manufacturing systems.
It should be noted that the winning �rm will be announced right after the PDT

values are quoted and the winning �rm should start the production right away to
deliver the product. There are two costs associated with production and delivery, the
production cost Ci(�i) and the delay cost Ki(Ti). The production cost for �rm i is
assumed to be quadratic based on the production rate and can be de�ned as follows,

Ci(�i) = ai�
2
i , ai,�i > 0.

where ai is a parameter value to adjust the e¤ect of production rate on the produc-
tion cost. A quadratic cost function has been used by many authors. For example,
Eliashberg and Steinberg [23] and [22] discuss various justi�cations for quadratic cost
functions. However, any other form of production cost, that depends on the produc-
tion rate only, can replace it in this study. The reason is that since the production cost
is not a function of the promised delivery time (T ), it does not a¤ect the characteris-
tics of the best-response functions and the Nash equilibrium of the game. Therefore,
wherever the production cost ai�2i appears in the conditions, it can be replaced by any
other production cost Ci(�i). It is important to mention that in this model, we do not
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Parameter Values Description
P : Full price for the item
Ti : Promised delivery time quoted by �rm i

 : Depreciation rate for the full price
�i : Production rate for �rm i
ai : Production cost rate for �rm i
� : Rate of penalization for delayed delivery
� : Customer�s threshold w.r.t. sensitivity to time

Ci(�i) : Production cost of �rm i
Ki(Ti) : Delay cost of �rm i
Ii(T) : Binary variable indicating the winning status
Ji(T) : Expected pro�t function for �rm i

Table 4.1: Summary of notations and symbols.

study the case, where a higher PDT quoted by the �rm would trigger an increase in
capacity. We believe that a change in capacity falls under the category of strategical
decisions made by �rms, whereas the competition based on PDT is performed more
at the marketing level. As a result, changing the capacity based on PDT will be out
of the scope of this chapter.
The other cost for the winning �rm is the cost of delay. If the �rm delivers the

product after the promised delivery time, it will incur a cost of delay and has to pay
the customer the �ne. This cost denoted by Ki(Ti) is de�ned as follows,

Ki(Ti) = �

Z 1

Ti

(t� Ti)dFi(t) = �
1

�i
e��iTi, i = 1; 2, (4.1)

where � is the rate at which the �rm is penalized for the duration of delay in delivering
the product. This cost is decreasing and convex in Ti.
The objective function of �rm i is de�ned as its expected pro�t function and is

shown in equation (4.2).

Ji(T) = Ri(T)� Ii(T) [Ci(�i) +Ki(Ti)] , i = 1; 2. (4.2)

Substituting the values for each function in (4.2), we get the following,

Ji(T) = Ii(T)

�
Pe�
Ti � ai�2i � �

1

�i
e��iTi

�
, i = 1; 2. (4.3)

Table 4.1 summarizes all the parameter values for this model.
Depending on the parameter values, the expected pro�t functions for the �rms

may take di¤erent forms. For instance, it may start with a negative value at T = 0
and never become positive for any chosen value of T . Or alternatively, it may start
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with a positive value and drop from the point T = 0 instantly.
We believe that for this game to be meaningful in business terms, it should have

two criteria. These criteria for both �rms are as follows,

1. The pro�t function should be strictly increasing at T = 0.

2. The pro�t function should become positive in at least one region.

In the next section, we will present justi�cations for the above criteria and intro-
duce mathematical conditions that will address these criteria for the problem.

4.2.1 ProblemConditions, Unimodality and Concavity Analy-
sis at the Mode

In this section we will introduce the problem conditions (PC hereafter) that will satisfy
the criteria introduced above. We will also prove the unimodality of the pro�t function
and prove the concavity at its mode. We believe that none of these two conditions are
restrictive. The �rst condition assures that the �rms are discouraged from quoting the
time T = 0 or unrealistically small PDTs. This condition is not restrictive because in
the context of the problem in hand, we are usually talking about one-time purchases
that involve big and costly products (ships, aeroplanes etc.). Quoting a promised
delivery time of zero does not make any practical sense in these type of business
environments. For this to happen, we would like our pro�t function to increase from
the point T = 0. In Lemma 4.1 we �nd the mathematical condition that will address
the �rst condition.

Lemma 4.1 To address the �rst criterion for the problem introduced in Section 4.2,
the following should hold,

P
 < �. (4.4)

Proof. Assuming only �rm i is bidding in the game, we take the �rst derivative
from the pro�t function in (4.3). We get,

@Ji(Ti)

@Ti
= �P
e�
Ti + �e��iTi.

By substituting the value zero for Ti we get,

@Ji(Ti)

@Ti

����
Ti=0

= � � P
 .

For the pro�t function to be increasing from the point T = 0, we need this ex-
pression to be positive. Therefore, we will have the following as the condition that
ensures criterion number 1.

P
 < �.
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Lemma 4.2 The pro�t function (for the winning �rm) has the negative sign when T
goes to in�nity.

Proof. Assuming that only �rm i is bidding at the game, we take the limit from
equation 4.3 when Ti goes to in�nity. We will have,

lim
Ti!1

Ji(Ti) = �ai�2i < 0.

The pro�t function for the losing �rm is equal to zero in in�nity.
Next, we will prove the unimodality of the pro�t function in Lemma 4.3.

Lemma 4.3 Assuming that only �rm i is bidding to the customer, the pro�t function
for this �rm is unimodal and the mode is at the point bTi > 0.
Proof. Let�s assume that �rm i is the only �rm bidding to the customer. Taking

the �rst derivative from the expression in (4.3) and solving for Ti we get,

bTi = 1


 � �i
ln

�
P


�

�
. (4.5)

Also, since the function has only one internal mode, we conclude that the function
is unimodal. We already know from Lemma 4.1 that the pro�t function is increasing
at the beginning and from Lemma 4.2 that it is negative in Ti =1. Based on these
results and the above equation for bTi, we can conclude that the pro�t function has
only one mode bTi and it is greater than zero. This results shows that 
 < �i should
also always hold as we have bTi > 0.
Apart from proving Lemma 4.3, the proof also presented us with a condition on �i

and 
. Based on the proof, the condition 
 < �i should always hold in this problem
so that the PDT is greater than zero.
From Lemma In the next proposition, we will prove that the expected pro�t func-

tion is concave at its mode.

Proposition 4.1 Assuming that only one �rm is bidding to the customer, the ex-
pected pro�t function reaches its maximum value at its internal mode and not at a
boundary point.

Proof. Let�s assume that �rm i is the only �rm bidding to the customer. We
already know from Lemma 4.3 that the pro�t function is at its mode at the pointbTi = ln (P
=�) =(
��i). Taking the second derivative of the function in (4.3) we get,

@2Ji(T)

@T 2i
= P
2e�
Ti � ��ie��iTi. (4.6)
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Substituting the mode from (4.5) for Ti in (4.6) we get,

@2Ji(T)

@T 2i
= P
2 exp

�
� 



 � �i
ln

�
P


�

��
� ��i exp

�
� �i

 � �i

ln

�
P


�

��
. (4.7)

Now in order to derive a contradiction, let�s assume that the RHS of equation (4.7)
is positive and thus the function is not reaching its maximum at its mode. Therefore,
we will have,

P
2 exp

�
� 



 � �i
ln

�
P


�

��
� ��i exp

�
� �i

 � �i

ln

�
P


�

��
> 0,

which gives,
P
2

��i
>
exp

�
��i ln

�
P

�

�
= (
 � �i)

�
exp

�
�
 ln

�
P

�

�
= (
 � �i)

� . (4.8)

From (4.8) and after some simpli�cations we get,

ln

�
P
2

��i

�
> ln

�
P


�

�
,

which simpli�es to,



�i
> 1. (4.9)

We already know from Lemma 4.3 that 
 < �i should hold. This is a contradiction
and thus proves that under the PC, the pro�t function is concave at its mode and
also reaches its maximum at that point. This completes the proof.
Now we are ready to introduce the condition that satis�es criterion number 2

introduced in the previous section. Criterion number 2 is not restrictive either. The
reason is, if there is no such region with a positive pro�t for the �rm, there will be no
incentive for that �rm to take part in the game and place a bid to win the business.
Therefore, we would naturally assume that we want the second criterion to hold as
well. In Lemma 4.4, we will �nd the condition that should hold to satisfy criterion
number 2.

Lemma 4.4 To address the second criterion for the problem introduced at the end of
Section 4.2, the following should hold for �rm i,

if P < ai�2i +
�

�i
, then we should have

P�i
�
<
1� e��i�i
1� e�
�i , (4.10)

where �i =
1


 � �i
ln

�
P


�

�
.

Proof. We assume that only �rm i is bidding for the business of the customer. For
criterion number 2 to hold we would consider two cases; (a) when the pro�t function
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starts with a positive value at Ti = 0, and (b) when the pro�t function starts with a
negative value at Ti = 0. For case (a), we already have criterion number 2 satis�ed.
Therefore, we focus our attention on case (b). In case (b), we know that the function
value is negative at Ti = 0. Therefore, we will have the following,

Ji(0) < 0,

which results in,

P < ai�
2
i +

�

�i
. (4.11)

We know from Lemma 4.3 and Proposition 4.1 that the function reaches its maxi-
mum value at the point bTi = ln (P
=�) =(
��i). For criterion number 2 to hold, it is
su¢ cient for us to introduce a condition that ensures that the function has a positive
value at point bTi. Replacing the value of this point into the pro�t function we get,

Ji(bT ) = Pe�
�i � a�2i � �

�i
e��i�i,

where,

�i =
1


 � �i
ln

�
P


�

�
.

We also know from Lemmas 4.1 and 4.3 that �i is always positive.
Imposing the condition Ji(bT ) > 0 we get,

Pe�
�i � ai�2i �
�

�i
e��i�i > 0,

or,

Pe�
�i > ai�
2
i +

�

�i
e��i�i. (4.12)

By combining conditions (4.11) and (4.12) we get,

Pe�
�i + ai�
2
i +

�

�i
> P + ai�

2
i +

�

�i
e��i�i,

which simpli�es to,
P�i
�
<
1� e��i�i
1� e�
�i ,

where,

�i =
1


 � �i
ln

�
P


�

�
.

This completes the proof.
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So far, we have proven unimodality of the pro�t function. We have also introduced
the two PC in (4.4) and (4.10) that will ensure that the criteria we have de�ned for
the problem hold. From conditions in (4.4) and (4.10), we can conclude that the �rst
condition is determined by the market/customer and is the same for both �rms. The
reason is that the parameter value price P is assumed to be exogenously determined
by the market. Also, the two parameters 
 and � are determined by the customer
and the �rms have no in�uence on them. The second condition de�ned in (4.10),
however involves factors that are related to the structure of the �rms. The existence
of the parameter � in the second condition, makes it a structure-related condition
that captures the capacity of the �rm and is di¤erent for each �rm.
It is important to note that in the presence of competition, the expected pro�t

functions for the �rms will not always be continuous. This is due to the fact that for
each �rm, the decision taken by the opponent �rm will a¤ect the form and structure
of its expected pro�t function.
Next, we will observe how the pro�t function will look like in the presence of a

competitor in the game. We will demonstrate this through an example. In Example
4.1, we will solve a numerical problem with some parameter values and show how the
pro�t function for �rm i can be truncated at some point based on the decision taken
by �rm j.

Example 4.1 Assume �rm j has quoted a PDT of 30. Now with parameter values
P = 25, 
 = 0:1, �i = 0:2, ai = 2 and � = 8, the expected pro�t function for �rm i
will be shown in Figure 4.1. Note that the PC apply here.
Before we start any analysis, let us make sure that the PC hold in this problem

and the criteria are satis�ed. According to the �rst condition of the PC in (4.4), we
should have P
 < �. Since P
 = 2:5 and � = 8, the �rst condition is satis�ed.
For the second condition introduced in (4.10), note that we have P < ai�2i + �=�i

or 25 < 0:4+40. Therefore, the pro�t function starts at Ti = 0 in the negative region.
Now we investigate if the condition holds. In other words, we need to make sure that
the following holds,

P�i
�
<
1� e��i�i
1� e�
�i , where �i =

1


 � �i
ln

�
P


�

�
.

Based on the parameter values, we will have �i = 11:63. Since P�i=� = 0:63 and
1� e��i�i=1� e�
�i = 1:33, we conclude that both the PC apply in this example.
In this example, the point where the expected pro�t reaches its maximum is Ti =

11:6 and at that point an expected pro�t equal to Ji(11:6; 30) = 3:8 will be generated
for �rm i. Also, note that the pro�t function is in the negative area in the beginning.
It intersects with the Ti axis at point Ti = 4:8.

In this example, we can see that the pro�t function is truncated at point Ti = 30.
This is because whether each �rm wins or loses the business of the customer is also a
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Figure 4.1: The pro�t function for �rm i is shown in this picture, where �rm j has
quoted a PDT equal to 30. Note that after the function reaches the point T = 30,
�rm i will lose the business. After this point, there will be no production triggered at
�rm i and therefore, its pro�t function will be zero.
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function of the decision taken by the other �rm. In this example, it can be observed
that for any PDT quoted by �rm i that is greater than that of �rm j (30), �rm i will
lose the business and therefore, its pro�t function becomes zero.
In the next section we will prove the existence and uniqueness of a Nash equilibrium

in this game.

4.3 Analysis of the Nash Equilibrium

In this section we will introduce propositions that will capture the best-response
functions as well as the Nash equilibrium of the game. We will also prove uniqueness
of the Nash equilibrium found. Before we start with the best-response functions, we
need to de�ne the point TEi for �rm i. It should be noted that all the results that
have been found for �rm i are interchangeably valid for �rm j as well.

De�nition 4.1 In order to �nd the Nash equilibrium, we will �rst �nd the best re-
sponse functions. In order to do that let us de�ne TEi as follows,

TEi =

(
0, if T c(1)i = T

c(2)
i

minfT c(1)i ; T
c(2)
i g, otherwise

, (4.13)

where T c(1)i > 0 and T c(2)i > 0 are the points where the pro�t function assumes the
value zero. In other words, based on the conditions introduced in (4.13), if the pro�t
function assumes zero only once, then TEi is the point zero. If the pro�t function
becomes zero for two positive values T c(1)i and T c(2)i , then TEi is the �rst point, for
which the pro�t function is zero (minfT c(1)i ; T

c(2)
i g).

Having de�ned TEi , we can now introduce the best-response function in Proposition
4.2.

Proposition 4.2 For any given Tj = T j > 0, the best response for �rm i is T �i and
can be de�ned as follows,

T �i =

8<:
TEi , if T j � TEi ,
T j ��, if TEi < T j � bTi,bTi, if bTi < T j, (4.14)

where bTi is calculated in (4.5) and � is the customer�s sensitivity to time.

Proof. To prove the �rst line in (4.14) we can argue that if TEi = 0 (from (4.13))
then T j has to be zero and in this case, both companies are quoting a zero leadtime and
the customer will randomly choose one. Note that quoting any other leadtime by �rm
i will only lead to his loss of business. On the other hand, if TEi = minfT

c(1)
i ; T

c(2)
i g
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(from (4.13)), then based on PC conditions in (4.4) and (4.10), we can say that the
pro�t function for �rm i is negative before TEi . Therefore, quoting anything below
TEi will yield a negative pro�t for �rm i. The only value that �rm i can quote and
still hope that it may win the business is TEi itself. Also note that if �rm i quotes any
values above TEi , there is no chance for it to win the business as the other �rm has
quoted a value below TEi .
To prove the second line in (4.14) we can argue that if �rm j quotes a leadtime

between TEi and bTi (�rm i�s pro�t maximizer), then it is in �rm i�s best interests to
always quote a leadtime only slightly lower than T j in an e¤ort to win the business
and still yield the highest possible pro�t. This is due to the fact that in this region
the pro�t function is increasing in Ti according to PC conditions in (4.4) and (4.10).
Therefore, it�s optimal for �rm i to quote T j ��.
To prove the third line in (4.14) we can argue that after the point bTi, the pro�t

function for �rm i is decreasing according to Proposition 4.1. Therefore, as long as
�rm j is quoting a leadtime greater than the maximizer leadtime for �rm i, it is in
�rm i�s best interest to keep quoting bTi that will not only win it the business, but it
will also yield the highest possible pro�t for it. This completes the proof.
It is important to mention that the value of� has not been speci�ed in Proposition

4.2 and has been left to be decided by the user. The reason for this is that the value
of � depends very much on the sensitivity of the customer to time. Remember that
in the absence of any other factors for the customer to decide upon (including brand
name, company reputation etc.), the only point of interaction between the �rms and
the customer will be their PDT. Therefore, the customer makes her choice solely
based on the PDTs quoted to her. In this case, any positive value for � will a¤ect
customer�s choice as long as it makes one PDT smaller than the other. In the real
life, however this may not always be the case. Even if we eliminate all other factors
a¤ecting customer�s choice (like brand name etc.), the customer may still be insensitive
towards very small values for �. Therefore, customer�s sensitivity to time should also
be a factor in determining the value of �. It should be noted again that in (4.14),

�rm i wants � to be as small as possible. The reason is that in the region
h
TEi ;

bTii,
the pro�t function is increasing in Ti and the smaller the � is, the higher the pro�t
for �rm i will be. We would like to suggest to the reader to determine a small positive
value for � in the beginning and use that value throughout the study.
In Figure 4.3 you can see the best-response function for �rm i with respect to the

decision made by �rm j. The parameter values for this function have been chosen
based on the values chosen for Example 4.1, albeit without a �xed Tj. Figure 4.2
shows the pro�t function for �rm i without considering �rm j. The value for � in
this example has been chosen as 0:3.
As it is shown in Figure 4.3, Firm i will quote a PDT equal to 4:75 for all the

PDTs chosen by �rm j that are below 4:75 (remember TEi = 4:75 and bTi = 11:63). For
PDTs quoted by �rm j that are between 4:75 and 11:63, �rm i will quote a leadtime
equal to Tj��. In this example, we have given the value 0:3 to �. For PDTs quoted
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Figure 4.2: The pro�t function for �rm i without considering the choice for �rm j.
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Figure 4.3: The best-response curve for �rm i based on the decision taken by �rm
j. In this picture break points for the line occur at the two points Ti = 4:75 and
Ti = 11:63. Also, we have assumed that � = 0:3. The dotted line represents the line
Ti = Tj.
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by �rm j that are greater than 11:63, �rm i will quote a PDT equal to 11:63 (its bTi).
Having introduced the best-response function, we can now �nd the Nash equilib-

rium of the game. This is introduced in Proposition 4.3.

Proposition 4.3 Under PC conditions introduced in (4.4) and (4.10), the game has
a unique Nash equilibrium (TNi ; T

N
j ) that is calculated as follows,

(TNi ; T
N
j ) =

8>>>>><>>>>>:

(TEi ;
bTj), if bTj < TEi ,

(TEi ; T
E
i ��), if TEj < TEi � bTj,

(TEi ; T
E
j ), if T

E
j = T

E
i ,

(TEj ��; TEj ), if TEi < TEj � bTi,
(bTi; TEj ), if TEj > bTi,

. (4.15)

Proof. To prove the �rst line in (4.15), we argue that for �rm j it is not optimal
to quote anything greater than bTj because the pro�t function will be decreasing after
that point. Also, based on the best-response function for �rm i introduced in (4.14),
it should quote TEi if the opponent is quoting a smaller PDT. Note that �rm i will
not quote anything smaller than TEi .
To prove the second line in (4.15), we argue that based on the best-response

function for �rm i introduced in (4.14), as long as �rm j is quoting a PDT smaller
than its TEi , it should quote its T

E
i . For �rm j, since it has TEj < TEi and since its

pro�t function is increasing in Tj, it will quote a PDT that is as big as possible and
is still smaller than TEi by � to win the business.
To prove the third line in (4.15), we argue that since both �rms have TEj = TEi ,

each �rm knows that the other �rm will at least quote its TE and thus both �rms will
quote the same thing.
To prove the fourth line in (4.15), we can say that based on the best-response

function for �rm i introduced in (4.14), since the pro�t function is still increasing in
Ti for �rm i, it will quote a PDT that is as big as possible but still smaller than the
PDT �rm j is quoting by �, which is TEj ��. For �rm j, since what �rm i is quoting
(TEj ��) is still less than its TEj , based on its best-response function, it should still
quote TEj .
To prove the last line in (4.15), we argue that for �rm j it is not optimal to quote

anything bigger than its TEj because �rm i�s pro�t maximizer is still greater than T
E
j

and that is what �rm i will be quoting. Based on �rm i�s best-response function in
(4.14), as long as �rm j is quoting a PDT greater than its bTi, it should quote its pro�t
maximizer, which is bTi.
To prove the uniqueness of the Nash equilibrium, note that we are dealing with

two best-response functions that consist of three straight lines. Studying the best-
response functions in the same coordinate that has its horizontal axis labeled as Ti
and its vertical one labeled as Tj we can use line slopes to prove uniqueness for the
Nash equilibrium. For �rm i, the slopes for this curve are in�nity, slope equal to 1,
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Parameter Values Description
P = 25 Full price

 = 0:1 Depreciation rate for the full price
�1 = 0:2 Production rate for the �rst �rm
�2 = 0:18 Production rate for the second �rm
a1 = 1 Production cost rate �rst �rm
a2 = 2 Production cost rate second �rm
� = 8 Rate of penalization for delayed delivery

� = 0:3 Customer�s threshold w.r.t. sensitivity to time

Table 4.2: Parameter values for the example.

and in�nity again. For �rm j, this curve has the slopes zero, slope equal to 1, and
zero again. Based on these facts, there will only be one and only one point, where
these two functions can intersect. Therefore, there will be only one Nash equilibrium
in this game. This completes the proof.
It is worth mentioning that the value of � is �xed and determined for each cus-

tomer separately. The results we presented here for the Nash equilibrium of the game
will only produce a unique Nash equilibrium if the value of � is �xed and is positive.
In the next section, we will present an example with two �rms with di¤erent

parameter values and �nd their Nash equilibrium based on the �ndings in Proposition
4.3. We will then plot the best-response functions for both �rms based on the rules
in (4.14) to con�rm the results of the proposition. We will also present a sensitivity
analysis based on the numerical examples presented.

4.3.1 Numerical Example

In this section, we will solve a numerical example and present the results both numer-
ically and with pictures. In Example 4.2, we will de�ne parameter values for two �rms
and based on the best-response functions and the Nash equilibrium rules introduced
in the previous section, we will �nd the Nash equilibrium of the game. This will also
be illustrated graphically for clarity.

Example 4.2 We solve a small numerical example to observe the behavior of the
function. We are assuming that there are two players and they are competing to win
the business of a single customer. Both �rms are assumed to have exponential delivery
times. Let�s assume the values shown in Table 4.2 for the parameters.
Based on the parameter values de�ned above, we can plot the expected pro�t curves

for both �rms, regardless of the choice taken by their opponent. The expected pro�t
functions for �rms 1 and 2 are depicted in Figures 4.4 and 4.5, respectively.
Note that the parameter values de�ned for �rm 1 are exactly the same as those

de�ned for �rm i in Example 4.1. The PC conditions for this �rm have been examined
and approved in that example. Therefore, we will just examine the PC conditions for
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Figure 4.4: The pro�t function for �rm i based on the parameter values given in
Example 4.2 without considering the choice of �rm j.
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Figure 4.5: The pro�t function for �rm j based on the parameter values given in
Example 4.2 without considering the choice of �rm i.
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�rm 2. The �rst PC condition de�ned in (4.4) is the same for both �rms (de�ned by
the market/customer) and has already been approved. The second PC condition for
�rm 2 requires us to �rst examine whether the pro�t function for this �rm is negative
at T2 = 0. Since we have P = 25 and a�22 + �=�2 = 3:6 + 44:5, the second �rm�s
pro�t function starts with a negative value (this can also be observed in Figure 4.5).
Therefore, we need to �nd out whether the following condition holds,

P�2
�
<
1� e��2�2
1� e�
�2 , where �2 =

1


 � �2
ln(
P


�
).

For this example �2 = 14:54. Since P�2=� = 0:56 and 1� e��2�2=1� e�
�2 = 1:21,
the second condition in (4.10) is also approved and the PC conditions for the problem
are satis�ed. Now, we will proceed with the analysis of the example.
Based on the parameter values determined in Table 4.2, we can �nd the values for

TEi , bTi, TEj and bTj. These values are shown below,
TE1 = 4:73 and bT1 = 11:61,

and,
TE2 = 7:25 and bT2 = 14:53.

According to the rules presented in (4.15), we can see that TE1 < TE2 < bT1 and
therefore, the Nash equilibrium should be (TE2 ��; TE2 ) or (7:25� 0:3; 7:25), which is
equal to (6:95; 7:25). The Nash equilibrium (TNi ; T

N
j ) = (6:95; 7:25) will yield pro�ts

equal to 2:47 and 0 for �rms 1 and 2, respectively. Obviously, �rm 1 is the winner in
this example.
Now we will plot the best-response curves to observe if the realized Nash equilibrium

will be con�rmed by the curves. The best-response curves for both �rms are plotted
implicitly together in Figure 4.6.
As it is obvious in Figure 4.6, the only Nash equilibrium for the game occurs at

the point (TN1 ; T
N
2 ) = (6:95; 7:25). As a matter of fact, the Nash equilibrium shown

in this �gure con�rms the Nash equilibrium that was calculated numerically in this
example using the rules in (4.15).

In the next section, we will perform a sensitivity analysis based on the numerical
results we obtain from solving examples and changing parameter values to observe
the e¤ect of these changes on the �rms�optimal policies and the Nash equilibrium of
the game.

4.4 Numerical Sensitivity Analysis

In this part we will introduce a sensitivity analysis based on the numerical example
that we solved in the previous section. In the following sections we will change the
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Figure 4.6: The best-response curves for �rms 1 and 2 are depicted in this picture.
The Nash equilibrium of the game is pointed out with a circle around that point.

parameter values one by one and observe the e¤ect of changing these parameter values
on the optimal strategies as well as the values of the objective function. In this section,
we will assume that the customer�s sensitivity to time is set to � = 0:3.
In Table 4.3 we are studying the e¤ect of changing the parameter values for the

full price P and the depreciation rate for full price 
.
As it is obvious from the �gures in Table 4.3, when we increase the full price P ,

the optimal value for the PDT quoted by both �rms will decrease. As expected, by
increasing the full price, the expected pro�t for the winning �rm will also increase.
In Table 4.4, we will study the e¤ect of changing the parameter values for the

�rms�production rates �1 and �2.
From the information shown in Table 4.4, we can see the e¤ect of changing �1 and

�2 on the optimal value of the decision variables as well as the objective functions.
When we increase �1 and keep �2 constant, we observe that the values for the de-
cision variables for both �rms actually decrease. As expected, when we increase the
production rate for the �rst �rm �1 and keep production rate for the second �rm �2
constant, we see the pro�t value for the �rst �rm increase and that of the second �rm
decrease. By increasing the production rate for the second �rm �2 and keeping that
of the �rst �rm �1 constant, we can see that the optimal decision variables for both
�rms actually decrease. Also, we can see that the pro�t value for the �rst �rm will
decrease and that of the second �rm will increase.
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P 
 TE1
bT1 TE2

bT2 (TN1 ; T
N
2 ) (J1; J2)

5 0:1 21:5 27:7 32:2 34:6 (27:7; 32:2) (0:1; 0)
10 0:1 14 20:8 19:2 26 (18:9; 19:2) (0:6; 0)
20 0:1 7 13:9 10 17:3 (9:7; 10) (1:8; 0)
25 0:1 4:7 11:6 7:3 14:5 (7; 7:3) (2:5; 0)
30 0:1 2:9 9:8 4:9 12:3 (4:6; 4:9) (2:9; 0)
35 0:1 1:3 8:3 3 10:3 (2:7; 3) (3:4; 0)
25 0:07 3:6 11:7 5:3 13:8 (5; 5:3) (2:9; 0)
25 0:08 3:9 11:5 5:8 13:9 (5:5; 5:8) (2:7; 0)
25 0:09 4:3 11:5 6:4 14 (6:1; 6:4) (2:6; 0)
25 0:10 4:7 11:6 7:3 14:5 (7; 7:3) (2:5; 0)
25 0:11 5:3 11:9 8:3 15:2 (8; 8:3) (2:2; 0)
25 0:12 5:9 12:2 9:7 16:3 (9:4; 9:7) (1:9; 0)

Table 4.3: Sensitivity analysis capturing the e¤ect of changing the full price P and 

on the �rms�optimal policies and objective function values with parameters �1 = 0:2,
�2 = 0:18, a1 = 1, a2 = 2 and � = 8.

�1 �2 TE1
bT1 TE2

bT2 (TN1 ; T
N
2 ) (J1; J2)

0:15 0:18 15:2 23:2 7:6 14:5 (15:2; 14:5) (0; 2:5)
0:17 0:18 9 16:6 7:3 14:5 (9; 8:7) (0; 1:1)
0:18 0:18 7:2 14:5 7:3 14:5 (7:2; 7:3) (0; 0)
0:20 0:18 4:7 11:6 7:3 14:5 (7; 7:3) (2:5; 0)
0:21 0:18 3:8 10:6 7:3 14:5 (7; 7:3) (3:6; 0)
0:27 0:18 1 6:8 7:3 14:5 (6:8; 7:3) (7:9; 0)
0:2 0:14 4:7 11:6 21 29 (11:6; 21) (3:9; 0)
0:2 0:16 4:7 11:6 11:7 19:3 (11:6; 11:7) (3:9; 0)
0:2 0:18 4:7 11:6 7:3 14:5 (7; 7:03) (2:5; 0)
0:2 0:2 4:7 11:6 4:8 11:6 (4:7; 4:8) (0; 0)
0:2 0:25 4:7 11:6 1:7 7:8 (4:7; 4:4) (0; 5:3)
0:2 0:30 4:7 11:6 0:4 5:8 (4:7; 4:4) (0; 5:3)

Table 4.4: Sensitivity analysis capturing the e¤ect of changing �rms�production rates
�1 and �2 on the �rms�optimal policies and objective function values with parameters
P = 25, 
 = 0:1, a1 = 1, a2 = 2 and � = 8.
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a1 a2 TE1
bT1 TE2

bT2 (TN1 ; T
N
2 ) (J1; J2)

0:1 2 4:7 11:6 7:3 14:5 (7; 7:3) (2:5; 0)
1 2 4:7 11:6 7:3 14:5 (7; 7:3) (2:5; 0)
2 2 4:8 11:6 7:3 14:5 (7; 7:3) (2:5; 0)
20 2 5:3 11:6 7:3 14:5 (7; 7:3) (2:5; 0)
80 2 8 11:6 7:3 14:5 (8; 7:7) (0; 0:4)
1 2 1 6:8 7:3 14:5 (6:8; 7:3) (7:9; 0)
1 0:1 4:7 11:6 7:2 14:5 (7; 7:3) (2:5; 0)
1 2 4:7 11:6 7:3 14:5 (7; 7:3) (2:5; 0)
1 20 4:7 11:6 7:9 14:5 (7; 7:3) (2:5; 0)
1 30 4:7 11:6 8:4 14:5 (7; 7:3) (2:5; 0)
1 40 4:7 11:6 8:9 14:5 (7; 7:3) (2:5; 0)
1 50 4:7 11:6 9:5 14:5 (7; 7:3) (2:5; 0)

Table 4.5: Sensitivity analysis capturing the e¤ect of changing �rms�production cost
rates a1 and a2 on the �rms� optimal policies and objective function values with
parameters P = 25, 
 = 0:1, �1 = 0:2, �2 = 0:18 and � = 8.

In Table 4.5, we will change the values for production cost rates for both �rms
and observe the e¤ect of this change on the optimal values for the decision variables
of both �rms, as well as their objective function values.
From the �gures in Table 4.5, we saw that by increasing the production cost

rate for the �rst �rm a1 and keeping that of the second �rm a2 constant, we do not
see signi�cant changes in the optimal decision variables, as well as optimal objective
function values. The reason is that by increasing a �rm�s production cost rate, the only
value that changes is the point TE for that �rm, and the change will not be really
signi�cant. What we saw in this table was that by increasing the production cost
rate for the �rst �rm, the optimal decision variable increased and then the objective
function value for the pro�t function decreased (went from the winning �rm into the
losing �rm). The same e¤ect can be seen in the optimal decision variable values and
objective function values of the second �rm when we increase its production cost rate
a2 and keep that of the �rst �rm a1 constant.
Finally, in Table 4.6, we will be observing the e¤ect of changing customer�s sensi-

tivity to delay on the values of the optimal decision variables and optimal objective
function values.
Based on the �gures in Table 4.6, we can see that by increasing the customer�s

sensitivity to delay, the optimal value for the decision variables by both �rms increase.
The value for the objective function for the winning �rm will actually decrease as well.
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� TE1
bT1 TE2

bT2 (TN1 ; T
N
2 ) (J1; J2)

8 4:8 11:6 7:3 14:5 (7; 7:3) (2:5; 0)
10 7 13:9 10 17:3 (9:7; 10) (2:2; 0)
12 8:8 15:7 12:3 19:6 (12; 12:3) (2; 0)
14 10:3 17:2 14:3 21:5 (14; 14:3) (1:9; 0)
20 14 20:8 18:9 26 (18:6; 18:9) (1:4; 0)

Table 4.6: Sensitivity analysis capturing the e¤ect of changing customer�s sensitivity
to delay � on the �rms�optimal policies and objective function values with parameters
P = 25, 
 = 0:1, �1 = 0:2, �2 = 0:18, a1 = 1 and a2 = 2.

4.5 Conclusion and Managerial Insight

In this study, we analyzed a game played between two �rms under certain conditions.
The �rms compete by determining their promised delivery leadtime to win the business
of a customer, who gives the business to the �rm that quotes the shorter leadtime. The
losing �rm will be eliminated from the game and the winning �rm will be bound to
start production immediately and deliver the product. However, winning the business
is not the ultimate goal of �rms. Since the winning �rm will incur production costs
as well as delay costs (cost that the �rm incurs by delivering the product past its
promised delivery time), it may not always be pro�table for �rms to win the business
at any cost. Therefore, on one hand �rms prefer to quote as short a leadtime as
possible to increase their chance of winning the business and on the other hand, they
would like to quote as long a leadtime as possible to minimize their costs.
We studied the competition between the two �rms and introduced conditions,

based on which the study is meaningful in terms of its representativeness of the prob-
lems that surface in the real world. We then found the �rms�best-response functions
under these conditions. We also proved the existence and uniqueness of a Nash equi-
librium for this game. Finally, we solved a fair number of numerical examples and
performed a numerical sensitivity analysis to capture the e¤ect of changing parameter
values for the �rms and the customer on the �rms�optimal policies as well as the Nash
equilibrium of the game.
For managers, the model in this chapter will be bene�cial in their bidding wars

with their competitors. The instructions presented in the analysis will help managers
to make sure that their expected pro�t function will never become negative. In the
worst case scenario, if the instructions of this chapter are followed, will end up with
a pro�t of zero (never negative). As a result, managers can bene�t from the �ndings
in this chapter to maximize their expected pro�t in the long run.
We believe that the model and analysis in this chapter can be extended in a number

of directions. It will be worthwhile to investigate the changes in the model when the
number of players are increased from two to M . This will project a more realistic
re�ection of reality as we usually observe more than two competitors competing in
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the market. For instance, a relatively small market like the aircraft market usually
sees more than two manufacturers bidding to win the business of an airline customer
that requires more airplanes.
This model can also be extended by considering price to be a decision variable.

In the current model in hand, we have assumed that price is exogenously determined
by external forces (i.e. the market collectively). Therefore, this model eliminates the
cases, where each �rm can individually include its price along with its PDT in the
bid submitted to the customer. This additional extension to the model will present
a more complicated but more realistic case of the problem, where �rms compete not
only based on PDT but also on the price they charge to the customer.
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Chapter 5

A Duopolistic Competition with
Incomplete Information

In the models of time-based competition that we have reviewed so far in this study,
players were completely aware of each other�s payo¤ functions. In this chapter, how-
ever we are going to study a competitive model using game theory, where the objective
function of at least one player is not common knowledge to all other players. In the
following sections, we will observe how this asymmetry in access to information a¤ects
modelling and solving game theoretical models.
This chapter will focus on the application of games with incomplete information

in a model that has been previously studied by Gerchak and Parlar [24]. In this
model, �rms compete based on the amount of the investment in two markets. Their
decisions will impact the market delivery time by the �rms, which in turn will impact
the probability of a �rm capturing a market. This chapter follows the same line of
study that has been pursued throughout the thesis, which is time-based competition.
Although time is not the decision variable in this chapter, the decision variable of the
�rms (investment amount) will directly a¤ect time. Other decision variables (e.g.,
price) which do not directly a¤ect the time-based performance of �rms have not been
included in this chapter.
This chapter is structured as follows. In Section 5.1, we will give a brief overview

on games with incomplete information. Section 5.2.1 focuses on the introduction of
the original model presented in the paper by Gerchak and Parlar [24]. Then in Section
5.2.2, we will add assumptions to the model to change it into a game of incomplete
information. We will extend their model by assuming that one of the players does not
have full knowledge about the other player�s objective function. In Section 5.2.3, we
will introduce the best-response curves of both players and illustrate them. Section
5.2.4 introduces and analyzes the Nash equilibrium of the game and a numerical
sensitivity analysis is performed in Section 5.2.5. We will conclude the chapter with
a conclusion and managerial insights into the problem in Section 5.3.
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5.1 An Introduction to Games with Incomplete In-
formation

As stated in the previous section, game theoretic models can be divided into two
categories based on players�access to information; games of complete information and
games of incomplete information. Gibbons [25, p. 1] refers to games with complete
information as games, in which all players�payo¤ (objective) functions are common
knowledge to every player in the game. Game theory in its infancy dealt exclusively
with games of this type (e.g., see von Neumann and Morgenstern [63]).
Although extensively studied, games with complete information are rarely found

in reality. There are numerous occasions of con�ict and cooperation between players
in the real world (games) that do not follow the same pattern. Games played between
individuals, �rms, etc., usually involve some levels of uncertainty when it comes to
information. We usually encounter games, where players are either completely unsure
of their opponents�payo¤ functions, or have only partial information of them. An
example is the game played by �rms who are competing by introducing substitutable
products to the same market. Although �rms usually have some ideas about the
performance of their competitors, this knowledge is rarely accurate. Firms are usually
kept in the dark by their competitors on speci�c features in the performances of
their sales, production or other departments. In fact, the problem studied in this
chapter involves a �rm that conceals some information regarding its R&D department
from its competitor. Based on Gibbons [25, p. 143], games in which at least one
player is uncertain about another player�s objective function are called games with
incomplete information (also referred to as Bayesian games). Since its introduction
in the literature by Harsanyi ([31], [32], and [33]), games with incomplete information
have attracted the attention of operations researchers as well as mathematicians.
In this chapter, we will present a game of static incomplete information, where

players both make decisions simultaneously. We will try to �nd the Nash equilibrium
of this game. The Nash equilibrium derived from such game (a static game of incom-
plete information) is referred to as the Bayesian Nash equilibrium by Gibbons [25, p.
143]. Also, to learn more about static games of incomplete information, the reader
can consult Gibbons [25, pp. 143�173]. For a recent example of a study involving
static and dynamic games of incomplete information we can refer to the paper by Wu
and Parlar [65]. In this paper, the authors study a game of incomplete information
with two competing newsvendors and illustrate the Nash equilibria in the static and
dynamic game settings.
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5.2 A Duopolistic Game with Incomplete Informa-
tion

The game studied in Gerchak and Parlar [24] involves two �rms that are competing
to maximize their expected pro�t by investing in the same markets. The decision
variables of the �rms are the fraction of their budget that they are investing in each
of the two markets (R&D projects) available to both �rms. Each market (R&D
project) has di¤erent pro�tability for each �rm. Also �rms capture markets based on
a probability that depends on how much they invest in each market. Ultimately, each
�rm is interested in determining the optimal fraction of its budget to invest in each
market that will maximize its �nal expected pro�t. It is assumed that the �rst �rm
that delivers to market i will capture that whole market. This is therefore, a time-
based competition where �rms compete using their investment amount to shorten the
time to market.
The game studied by Gerchak and Parlar [24] is a game of complete information. In

other words, the objective function (expected pro�t function) of each �rm was known
to the other �rm. In this chapter, however we are investigating the result of the game
if one of the �rms did not have complete information about the objective function of
the other �rm. In the following sections, we will study the e¤ect of the uncertainty
added to the model on the optimal strategies of the �rms and the equilibrium of the
game.

5.2.1 The Model

In this section, we will present the original model that was initially introduced in
Gerchak and Parlar [24]. We will explain the notations and present the objective
functions of each �rm. We start with explaining the model that was used in the paper
by Gerchak and Parlar [24].
We assume there are two potential R&D projects and the budget allocated to

activity i by each of the two competitors is xi and yi, respectively, i = 1; 2.
The budget constraints are therefore,

P2
i=1 xi = B1 and

P2
i=1 yi = B2. Let

fi(xi; yi) be the probability that the �rst �rm will capture market i. This proba-
bility is increasing in xi and decreasing in yi. If we de�ne Ci as the event that the
�rst �rm captures market i, the binary variable Ii will be,

Ii =

�
1, if Ci,
0, otherwise.

Then E(Ii) = Pr(Ci) = fi(xi; yi) will be the probability that the �rst �rm captures
market i. Each �rm wants to maximize the pro�t that it draws from the markets that
it captures. For example, the �rst �rm wishes to maximize F (x;y) �

P2
i=1 rifi(xi; yi),

where x = (x1; x2) and y = (y1; y2) and the positive value ri is the relative importance
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Parameter Values Description
xi : Budget allocated to market i by the �rst �rm, i = 1; 2
yi : Budget allocated to market i by the second �rm, i = 1; 2
Bj : Total budget for �rm j, j = 1; 2

fi(xi; yi) : Probability that the �rst �rm captures market i, i = 1; 2
gi(xi; yi) : Probability that the second �rm captures market i, i = 1; 2
F (x; y) : Expected pro�t for the �rst �rm
G(x; y) : Expected pro�t for the second �rm

r : Relative importance of the �rst market for the �rst �rm
s : Relative importance of the �rst market for the second �rm

Table 5.1: Summary of notations and symbols in the complete information setting.

(pro�t) of capturing market i to the �rst �rm. The equivalent of the fi(xi; yi), ri and
F (x;y) to the �rst �rm are gi(xi; yi), si and G(x;y) to the second �rm, respectively.
Table 5.1 summarizes the notation used in the complete information model.
For now, we will assume that B1 = B2 . In this case, we can claim that without

loss of generality, we can say that B1 = B2 = 1. Even if we have B1 6= B2, we can still
adjust fi�s so that one of the �currencies�will be in di¤erent units such that its total
budget will sum to one. Therefore, we can simply say that without loss of generality
we have B1 = B2 = 1.
Let�s assume we de�ne random variablesXi and Yi to denote the time it takes �rms

one and two to complete their activities and deliver to market i. We have also assumed
that the �rst �rm that delivers to market i captures the whole market. As a result,
the �rst �rm captures market i with probability Pr(Xi < Yi). For instance, if Xi

and Yi are assumed to be exponential with parameters, �i(xi) and �i(yi), respectively,
then this probability becomes,

fi(xi; yi) = Pr(Xi < Yi) =
�i(xi)

�i(xi) + �i(yi)
.

The authors have replaced this probability with the following form, assuming
�i(xi) = x

ai
i and �i(yi) = y

bi
i ,

fi(xi; yi) =
xaii

xaii + y
bi
i

,

where ai and bi moderate the e¤ect of the relative budget allocation. They later
propose the values ai = bi = 1 to create a linear-fractional model for the �rms�pro�t
functions.
The authors de�ne the expected pro�t of the �rst �rm in the linear-fractional

87



Ph.D. Thesis �Behrouz Bakhtiari McMaster University �Management Science

model as follows,

F (x; y) =
rx

x+ y
+

1� x
(1� x) + (1� y) , (5.1)

over 0 � x � 1 for any y. In expression (5.1), x is the amount of expenditure
spent into the development for the �rst market by the �rst �rm. Since the budget is
assumed to be equal to one, the amount of expenditure spent into the development
for the second market by the �rst �rm will be equal to (1 � x). Also, r = r1 is the
relative importance (pro�t) to the �rst �rm for the �rst market and without loss of
generality, r2 is assumed to be equal to one. The second �rm�s objective function
(expected pro�t) is also structured the same way in that paper as follows,

G(x; y) =
sy

x+ y
+

1� y
(1� x) + (1� y) , (5.2)

over 0 � y � 1 for any x. Also, s = s1 is the relative importance (pro�t) of the �rst
market to the second �rm and s2 is assumed to be equal to one.

5.2.2 A Game of Incomplete Information

In this section, we add a new assumption that will change the game presented in
the previous section into a game of incomplete information. The incompleteness in
information is regarding the relative importance (pro�t) for the �rms for the markets,
namely r and s. In this case, we are assuming that the relative importance for the
�rst �rm is common knowledge between the two �rms, i.e., both �rms know the value
of r. The value of s, however, is not known to either �rms before the game starts.
Upon the start of the game, the value of s will be known to the second �rm only.
In other words, the second �rm will know what the value of its relative importance
towards the �rst market will be, but the �rst �rm will be barred from knowing that
information. However, the �rst �rm will not be completely kept in the dark as he
knows that s may be of two types only, s1 and s2. It also knows that this value will be
s1 with probability � and s2 with probability 1� �. An example for this model could
be two manufacturers of electronic devices that are engaged in R&D and production
of tablet computers as well as laptops (two projects). One of these manufacturers may
be more successful in keeping its R&D information from its rival. Therefore, the rival
will have access to incomplete information regarding the investments the company is
making in either of the projects (tablets vs. laptops).
Table 5.2 includes the new and additional notations used in this section for the

model in the incomplete information setting.
As stated above, upon the start of the game, the second �rm will know for sure

what its relative importance for the �rst market will be. Therefore, based on equation
(5.2) its two objective functions for the cases where s = s1 and s = s2 will be,

88



Ph.D. Thesis �Behrouz Bakhtiari McMaster University �Management Science

Parameter Values Description
x : Budget for the �rst market by the �rst �rm
yk : Budget for the �rst market by the second �rm type k, k = 1; 2
r : Relative importance of market 1 to �rm 1
sk : Relative importance of market 1 to �rm 2 type k, k = 1; 2
� : Probability that s = s1

F (x; y1; y2) : Expected pro�t for the �rst �rm
G(x; y1) : Expected pro�t for the second �rm of type 1
G(x; y2) : Expected pro�t for the second �rm of type 2

Table 5.2: Summary of notations and symbols in the incomplete information setting.

respectively,

G(x; y1) =
s1y1
x+ y1

+
1� y1

(1� x) + (1� y1)
, (5.3)

and,

G(x; y2) =
s2y2
x+ y2

+
1� y2

(1� x) + (1� y2)
, (5.4)

where y1 and y2 will be second �rm�s choice of expenditure in the �rst market for the
cases, where s = s1 and s = s2, respectively.
The �rst �rm will not know for sure which type the second �rm will be, therefore,

based on equation (5.1) its objective function will be as follows,

F (x; y1; y2) = �F (x; y1) + (1� �)F (x; y2),

or,

F (x; y1; y2) = �

�
rx

x+ y1
+

1� x
(1� x) + (1� y1)

�
+ (5.5)

(1� �)
�

rx

x+ y2
+

1� x
(1� x) + (1� y2)

�
.

In order to �nd the Nash equilibrium of the game, we will need to �nd the values
for x�, y�1 and y

�
2 that are the optimal expenditure values of the �rst �rm, and the

second �rm for its two cases, respectively. It is important to note that the �rst �rm
will solve the following optimization problem,

max
x
F (x; y�1; y

�
2) = �

�
rx

x+ y�1
+

1� x
(1� x) + (1� y�1)

�
+ (5.6)

(1� �)
�

rx

x+ y�2
+

1� x
(1� x) + (1� y�2)

�
.
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The second �rm will solve the following two optimization problems,

max
y1
G(x�; y1) =

s1y1
x� + y1

+
1� y1

(1� x�) + (1� y1)
, (5.7)

and,

max
y2
G(x�; y2) =

s2y2
x� + y2

+
1� y2

(1� x�) + (1� y2)
. (5.8)

5.2.3 Best-Response Curves

In this section we will develop the best-response functions for the �rms in this com-
petition. We will show the closed-form solution for a best-response rule whenever one
is available and if not, we will look at special numerical cases to give an overview on
each �rm�s optimal response.
Looking at the objective function of the second �rm of type 1, we take the �rst

and second derivatives to realize how the objective function looks like. This has been
done exactly in Gerchak and Parlar [24]. Di¤erentiating (5.3) with respect to y1 we
get,

@G(x; y1)

@y1
=

s1y1

(x+ y1)
2 +

y1 � 1
(2� x� y1)2

, (5.9)

and,
@2G(x; y1)

@y21
=

�2s1y1
(x+ y1)3

+
2(y1 � 1)

(2� x� y1)3
< 0. (5.10)

Therefore, G(x; y1) is strictly concave in y1 for any given value of x. The objective
function for the second �rm of type 2 has a similar behavior that follows,

@G(x; y2)

@y2
=

s2y2

(x+ y2)
2 +

y2 � 1
(2� x� y2)2

, (5.11)

and,
@2G(x; y2)

@y22
=

�2s2y2
(x+ y2)3

+
2(y2 � 1)

(2� x� y2)3
< 0, (5.12)

which shows that G(x; y2) is also concave in y2 for any given value of x.
Therefore, the two functions G(x; y1) and G(x; y2) reach their unique maximum

value at an interior point. Now we take the �rst and second derivatives from the
objective function of the �rst �rm in (5.5).

@F (x; y1; y2)

@x
= �

�
s2y2

(x+ y2)
2 +

y2 � 1
(2� x� y2)2

�
+ (5.13)

(1� �)
�

s1y1

(x+ y1)
2 +

y1 � 1
(2� x� y1)2

�
,
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and,

@2F (x; y1; y2)

@x2
= �

�
�2s2y2
(x+ y2)3

+
2(y2 � 1)

(2� x� y2)3

�
+ (5.14)

(1� �)
�
�2s1y1
(x+ y1)3

+
2(y1 � 1)

(2� x� y1)3

�
< 0,

which shows that F (x; y1; y2) is also concave in x for any given values of y1 and y2.
Based on the above analysis, we can now �nd the best-response functions for the

two �rms.
Both objective functions for the second �rm are similar to those studied in Gerchak

and Parlar [24]. Therefore, we will just present the best-response found in their work.
The best-response functions of the second �rm are found by making @G(x; y1)=@y1
and @G(x; y2)=@y2 equal to zero and solving for y1 and y2 for any given value of x.
Solving these equations, we will �nd,

y�1(x) =
(1 + 2s1)x� (1 + s1)x2 �

p
s1x(1� x)

(1 + s1)x� 1
.

Let�s call the two solutions y+1 (x) and y
�
1 (x). Using numerical investigations we

can show that y+1 (x) is not an accepted answer as it is always negative. Using the
same kind of investigation, we can show that y�1 (x) is actually an accepted solution.
Therefore, we have,

y�1(x) =
(1 + 2s1)x� (1 + s1)x2 �

p
s1x(1� x)

(1 + s1)x� 1
,

as the best-response function of the second �rm (of type 1) for any given value of
x. Similarly, the second �rm�s best-response function (of type 2) can be derived and
shown as follows,

y�2(x) =
(1 + 2s2)x� (1 + s2)x2 �

p
s2x(1� x)

(1 + s2)x� 1
,

for any given value of x.
In Gerchak and Parlar [24], the authors have illustrated the behavior of this best-

response function using di¤erent values of the relative importance (here s1 and s2)
and the value of the opponent�s decision variable (here x). We refer the reader to
Gerchak and Parlar [24] to observe the best-response curves for the second �rm.
The best-response surface for the �rst �rm can be derived by equating the ex-

pression in (5.13) to zero and solving for x. Since a closed-form solution for the
best-response surface of the �rst �rm could not be derived, we have used multiple
points across the axes for y1 and y2 and have found the value of x�(y1; y2) for each
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Figure 5.1: The best-response surface for the �rst player x�(y1; y2), for di¤erent values
of y1 and y2 where r = 3 and � = 0:7.

value. Figure 5.1 shows the values of x�(y1; y2) for di¤erent values of y1 and y2 and
for r = 3 and � = 0:7.
In Figure 5.1 the row and column axes correspond to the values of y1 and y2,

respectively, ranging from 0:05 to 0:95 with step sizes of 0:05. The vertical axis
corresponds to the value of x�(y1; y2).
Figure 5.2 shows the best-response surface for the �rst company for three di¤erent

values of r. This pictures shows how x�(y1; y2) is lowered as r decreases from a di¤erent
angle.
We have also looked at the �rst �rm�s best response for di¤erent values of its

parameters. Figure 5.3 shows the best-response curve x�(�) for y1 = 1=2 and y2 = 1=3
and di¤erent values of r. As it is shown in this �gure, the higher r is (the more
important the �rst market becomes to the �rst �rm), the higher the curve will be. A
higher x indicates that the �rst �rm will invest a higher fraction of its budget in this
market.
For y1 = 1=2 and y2 = 1=3 and di¤erent values of � the function moves very

insigni�cantly. Therefore, we have plotted the �rst �rm�s best-response curve for the
value of � = 0:9 only. Figure 5.4 shows this function with the above mentioned values
illustrated with respect to r.
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Figure 5.2: Three best-response surfaces for the �rst player for r = 1, r = 2 and r = 3
and � = 0:7.
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r=1/5

r=1/6

q
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Figure 5.3: The best-response curve x�(�; y1; y2) assuming y1 = 1=2 and y2 = 1=3 for
di¤erent values of r.
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Figure 5.4: The best-response curve x�(r; y1; y2) assuming y1 = 1=2 and y2 = 1=3 for
� = 0:9.

5.2.4 Nash Equilibrium

In a game that has a Nash equilibrium, we have to know that both �rms make their
decisions simultaneously. To �nd this equilibrium, we need to solve the following
system of three equations for the unknowns x, y1 and y2,

@F (x; y1; y2)

@x
=
@G(x; y1)

@y1
=
@G(x; y2)

@y2
= 0. (5.15)

The resulting values (xN , y1N , y2N) will be the interior Nash equilibrium of the
game.
We consider a special case where r = s1 = 1 and s2 = 2. We are also assuming

that there is a 50% chance that the second �rm will be of type 2. In this case, there
will be two Nash equilibria for the game. The equilibria are shown below,

x = 0:50, y1 = 0:50, y2 = 0:67, (5.16)

and,
x = 0:60, y1 = 10:30, y2 = 0:67.

However, only the �rst equilibrium is accepted as we know 0 � x � 1, 0 � y1 � 1,
and 0 � y2 � 1. Therefore, the only accepted Nash equilibrium for this game will be

94



Ph.D. Thesis �Behrouz Bakhtiari McMaster University �Management Science

the �rst one. The values of the objective functions at the equilibrium will be,

F (x; y1; y2) = 1:02,

G(x; y1) = 1:00,

G(x; y2) = 1:54.

It is worth noting that because of the existence of additional parameters in this
model aimed at studying a situation of incomplete information, it is not easy to
compare the results of this chapter with those presented by Gerchak and Parlar [24].
However, a similar example to the above example has been also studied by them where
r = s1 = 1. Obviously, their models does not include information on s2 or � as it is
a model in complete information. Comparing the objective function values between
these two models indicate that in the current model with incomplete information, the
second �rm of type 2 improved its results from the objective function value in the
game in complete information. While we believe that the choice of the inclusion of
s2 and � may have a¤ected the results, it is interesting to notice that the second �rm
has actually bene�ted from keeping information from the �rst �rm. In fact, based on
our numerical investigations, increasing the value of s2 will result in yet higher pro�ts
for the second �rm of type 2.
Figure 5.5 shows the three best-response planes in this problem. The point where

these planes intersect will be the Nash equilibrium of the game. As we can see in the
�gure, the point is where the Nash equilibrium in (5.16) happens.
As we can see in Figure 5.5, there is only one Nash equilibrium for the game with

the given parameter values.

5.2.5 Sensitivity Analysis

In this section we will change the parameter values of the objective functions numeri-
cally and observe the Nash equilibria of the game as well as the value of the objective
functions at equilibria. We take the parameter values r = 3, s1 = 4, s2 = 5, and
� = 0:5 as the base model (shown as a row in bold numbers in tables) and will vary
the values from that point. Table 5.3 looks at the e¤ects of changing the relative
importance of the �rst market to the �rst �rm (r) on the Nash equilibrium of the
game as well as the objective functions, where F � F (xN ; y1N ; y2N), G1 � G(xN ; y1N)
and G2 � G(xN ; y2N).
In Table 5.3 we can see that by raising the value of r the importance of the

investment of the �rst market (compared to the second market) for the �rst �rm
increases and therefore, the fraction of the budget by the �rst �rm invested in the
�rst market also increases (xN). No consistent change was observed in the values
of y1N and y2N after varying the value of r. Also, no consistent change was seen in
the behavior of G(xN ; y1N) and G(xN ; y2N). However, the value of the �rst �rm�s
objective function F (xN ; y1N ; y2N) rose consistently as r grew larger.
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Figure 5.5: An illustration of the three best-response surfaces when r = s1 = 1 and
s2 = 2 with a 50% chance for player 2 to be of type 2.

r xN y1N y2N F G1 G2

0:1 0:01 0:37 0:41 0:62 4:24 5:21
1 0:56 0:83 0:87 1:14 2:67 3:27
1:5 0:63 0:82 0:86 1:34 2:59 3:15
2 0:69 0:81 0:85 1:55 2:54 3:09
2:5 0:72 0:80 0:84 1:78 2:52 3:05
3 0:75 0:80 0:84 2:02 2:51 3:03
3:5 0:78 0:80 0:84 2:26 2:50 3:01
4 0:80 0:80 0:83 2:50 2:50 3:00
4:5 0:82 0:80 0:84 2:75 2:50 3:00
5 0:83 0:80 0:83 3:00 2:50 3:00
10 0:92 0:82 0:85 5:57 2:58 3:05

Table 5.3: Sensitivity analysis based on varying the value of the parameter r with
s1 = 4, s2 = 5 and � = 0:5.

96



Ph.D. Thesis �Behrouz Bakhtiari McMaster University �Management Science

s1 xN y1N y2N F G1 G2

0:5 0:76 0:35 0:84 2:17 0:89 3:02
1 0:76 0:52 0:84 2:07 1:07 3:02
1:5 0:76 0:61 0:84 2:03 1:29 3:03
2 0:76 0:67 0:84 2:02 1:51 3:03
2:5 0:75 0:72 0:84 2:01 1:75 3:03
3 0:75 0:75 0:84 2:01 2:00 3:03
3:5 0:75 0:78 0:84 2:01 2:25 3:03
4 0:75 0:80 0:84 2:02 2:51 3:03
4:5 0:76 0:82 0:84 2:02 2:77 3:03
5 0:76 0:84 0:84 2:02 3:03 3:03
5:5 0:76 0:85 0:84 2:03 3:29 3:03
10 0:78 0:93 0:84 2:08 5:69 3:01

Table 5.4: Sensitivity analysis based on varying the value of the parameter s1 with
r = 3, s2 = 5 and � = 0:5.

Table 5.4 looks at the e¤ects of varying the parameter value s1 on the Nash
equilibrium of the game as well as the value of the objective functions.
Table 5.4 shows that increasing the value of the relative importance of the �rst

market to the second �rm of type 1 (s1) will indeed have an e¤ect on the fraction of
budget the second �rm of type 1 will invest in the �rst market. This value y1N rose
consistently as the value of s1 grew. The other consistent change in the table was the
value of the objective function of the second �rm of type 1 (G(xN ; y1N)), which rose
as we increased s1. Other values in the table did not show any consistent change.
In Table 5.5 we will investigate the e¤ect of changing the value of s2 on the Nash

equilibrium and the objective function values.
As shown in Table 5.5, increasing the relative importance of the �rst market to

the second �rm of type 2 will have an e¤ect on the fraction of the budget it invests
in the �rst market. As we would expect, increasing s2 will make the value of y2N also
increase. In addition to that, the value of the objective function for the second �rm
of type 2 (G(xN ; y2N)) also rises as we increase s2. Other values in the table do not
show any consistent change when varying s2.
Finally, Table 5.6 shows the e¤ects of changing the likelihood that the second �rm

will be of type 1 or 2 (�) on the Nash equilibrium of the game as well as the values of
the objective functions. To show the e¤ect of changing the �, we are showing other
parameter values with four decimal digits.
As � increases, the likelihood that the second �rm will be of type 1 also increases.

From the data in Table 5.6, we can see that an increase in � translates into a consistent
decrease in the value of xN . In other words, the more the likelihood that the second
�rm is of type 1, the smaller the fraction of budget that the �rst �rm invests in the
�rst market. This could be due to the fact that the second �rm of type 1 places less

97



Ph.D. Thesis �Behrouz Bakhtiari McMaster University �Management Science

s2 xN y1N y2N F G1 G2

0:5 0:76 0:80 0:35 2:16 2:51 0:89
2 0:75 0:80 0:67 2:01 2:51 1:51
2:5 0:75 0:80 0:72 2:01 2:51 1:75
3 0:75 0:80 0:75 2:00 2:51 2:00
3:5 0:75 0:80 0:78 2:00 2:51 2:25
4 0:75 0:80 0:80 2:01 2:51 2:51
4:5 0:75 0:80 0:82 2:01 2:51 2:77
5 0:75 0:80 0:84 2:02 2:51 3:03
5:5 0:76 0:80 0:85 2:02 2:51 3:29
6 0:76 0:80 0:87 2:03 2:51 3:56
6:5 0:76 0:80 0:88 2:03 2:51 3:82
10 0:78 0:80 0:93 2:07 2:50 5:69

Table 5.5: Sensitivity analysis based on varying the value of the parameter s2 with
r = 3, s1 = 4 and � = 0:5.

� xN y1N y2N F G1 G2

0:01 0:7572 0:8015 0:8387 2:0241 2:5067 3:0268
0:1 0:7567 0:8015 0:8387 2:0226 2:5068 3:0271
0:2 0:7562 0:8015 0:8388 2:0209 2:5069 3:0275
0:3 0:7558 0:8016 0:8388 2:0193 2:5071 3:0278
0:4 0:7553 0:8016 0:8389 2:0177 2:5072 3:0281
0:5 0:7548 0:8016 0:8390 2:0160 2:5074 3:0285
0:6 0:7543 0:8017 0:8390 2:0144 2:5076 3:0288
0:7 0:7537 0:8017 0:8391 2:0127 2:5077 3:0292
0:8 0:7532 0:8018 0:8392 2:0111 2:5079 3:0295
0:9 0:7527 0:8018 0:8392 2:0094 2:5081 3:0298
0:99 0:7523 0:8019 0:8392 2:0079 2:5082 3:0302

Table 5.6: Sensitivity analysis based on varying the value of the parameter � with
r = 3, s1 = 4 and s2 = 5.
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xN y1N y2N F G1 G2
r ", s1, s2 and � �xed and s1 < s2 " � � " � �

s1 ", r, s2 and � �xed � " � � " �
s2 ", r, s1 and � �xed � � " � � "

� ", s1, s2 and r �xed and s1 < s2 # " " # " "

Table 5.7: Direction of change in system performance with changing di¤erent para-
meter values.

relative importance on the �rst market than the second �rm of type 2 (i.e. invests less
in it). This could mean that the second �rm of type 1 places more relative importance
on the second market than the second �rm of type 2. As a result, the �rst �rm focuses
more on capturing the second market as the likelihood of the second �rm becoming of
type 1 increases. Therefore, the �rst �rm will divert more of its budget into investing
in the second market as � grows.
With increasing �, both types of the second �rm will see a rise in the fraction of

budget that they invest in the �rst market, y1N and y2N . This can be interpreted as
a result of less investment by the �rst �rm in the �rst market, which will increase
the second �rm�s chance of capturing that market. Therefore, both types of the
second �rm tend to invest more in the �rst market as the likelihood of the second �rm
becoming of type 1 increases.
By increasing �, we also observe a consistent decline in the objective function value

of the �rst �rm and a consistent gain in the objective function values of the two types
of the second �rm.
It is worth noting that xN , y1N and y2N are fractions of a total budget that could

be a large sum. Therefore, even a small change in them may result in signi�cant
changes in the amount invested by �rms in di¤erent markets. Table 5.7 summarizes
the results of the sensitivity analysis performed above, where F � F (xN ; y1N ; y2N),
G1 � G(xN ; y1N) and G2 � G(xN ; y2N).

5.3 Conclusion and Suggestions for Future Research

In this chapter we studied a model of game theory with two �rms competing by
investing in two markets. The �rm that reaches a market �rst will capture that whole
market. The speed at which a �rm reaches a market depends on the amount of budget
invested in that market by the �rm. This problem has been previously studied by
Gerchak and Parlar [24]. In their model, they assume that the game is played in the
complete information setting. This chapter relaxes this assumption and assumes that
the problem is an incomplete information game.
In this chapter we assumed that one of the �rms (the �rst �rm) does not have

complete information about the structure of the objective function of the other �rm
(second �rm). All the �rst �rm knows is that the second �rm may be of two types
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with respect to the relative importance that it places on capturing the �rst market.
The �rst �rm also knows the probability, based on which the second �rm will be of
either type. The second �rm, however knows the structure of the �rst �rm�s objective
function. Therefore, the incompleteness of information is asymmetrical in the game.
We proved the concavity of the objective functions and illustrated the best-response

planes of the �rms. We also demonstrated the Nash equilibrium of the game in di¤er-
ent special cases of the game. Finally, we performed a numerical sensitivity analysis
and studied the e¤ects of varying parameter values on the �rms�optimal strategies, the
Nash equilibrium of the game as well as the objective function values at equilibrium.
The results from this chapter extended the results derived by Gerchak and Parlar

[24] by allowing one of the �rms to have incomplete information. The new settings
created interesting results in terms of completely new forms of best-response planes
and Nash equilibria. Also, the sensitivity analysis presented at the end of the chapter
provided insight into the behavior of the pro�t functions as a reaction to changes in
parameter values.
For future studies, we suggest to look at the problem in situations, where both

�rms have incomplete information about their opponent�s objective function. In this
case, each �rm will have two or more types depending on a certain characteristic
of their objective function (e.g., the relative importance of the �rst market in this
chapter). We believe that this assumption will create even more realistic results as
in reality, �rms rarely have complete information regarding the objective function of
their opponents.
We have used linear pro�t functions for the �rms in this chapter. Studying the

problem in an incomplete information setting with nonlinear pro�t functions will be
another area that we suggest requires further research. Another area that could be
interesting to look at regarding this problem is the area of cooperative games. We
believe that analyzing the problem under the cooperative game assumption will result
in interesting �ndings.
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Chapter 6

Concluding Remarks

6.1 Thesis Summary and our Contributions

Time-based competition has become an important subject both in manufacturing
and service industries. We have presented examples of companies using time as a
competitive advantage in their businesses and we encounter more examples every
day. A very useful tool that is used in the �eld of management science to analyze
situations of competition is game theory. In this thesis we have made contributions to
the literature in using game theoretical models in situations where companies compete
based on the notion of time. In some situations, time has been the direct decision
variable (e.g. in Chapters 3 and 4) and in some other situations it has been the
determining factor in the problem that gets directly a¤ected by our decisions (e.g. in
Chapter 5).
In Chapter 1, we introduced the concept of time-based competition. We explained

the importance of time in today�s business world making references to di¤erent com-
panies bene�ting from time-based competition such as Sony, Sharp, Toyota, Hitachi,
Toshiba, The Limited (women�s clothing manufacturer), Federal Express, Domino�s
Pizza, Wilson Art and McDonald�s. All of these companies have one thing in com-
mon, they have improved their time-based performance in their competition against
their rivals and have bene�tted from this endeavor. In this chapter, we also made ref-
erences to works in the literature to present bene�ts of time-based competition that
were mentioned in the literature. We also touched upon the concept of time-based
competition in the study of supply chains and presented responsiveness as an impor-
tant factor in analyzing time-based competition. The term responsiveness surfaces in
later chapters of the thesis as the probability that a �rm delivers the product at or
before its promised delivery time.
In Chapter 2, we did a literature review on the subject of time-based competition

and game theory. In the �rst section of this chapter, we explored di¤erent settings
of time-based competition in the literature. We showed that the research in this area
can be divided into di¤erent categories based on the decision variable under study.
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All of the studies in this section deal with time-based competition but the decision
variables utilized by the �rms may be di¤erent. We looked at �rms that compete
based on capacity decisions only, �rms that compete based on a combination of price,
performance and other attributes, and �nally �rms that compete based on promised
delivery time. Promised delivery time, as the duration that is quoted to the customer,
within which a service or product will be delivered to him, is an important notion in
this thesis. The decision variable under study in two of the chapters of this thesis
(Chapters 3 and 4) is the promised delivery time.
The next section in Chapter 2 prepared the ground for Chapter 3, where time-

based competition with homogeneous �rms is studied. In this section, we presented
concepts that would be used in the next chapter. We introduced di¤erent supply chain
settings and explained how quality of service (responsiveness) changes based on the
supply chain design. We also introduced two di¤erent demand functions (separable
demand functions, and demand functions based on attraction models) that are used in
the literature and explained their properties. In doing so, we also demonstrated how
the utility function of the customers towards each �rm is a¤ected based on di¤erent
factors and how that determines the market share of �rms.
In this thesis, we studied three di¤erent problems that deal with time-based com-

petition and utilize game theory. These problems are presented in Chapters 3, 4 and
5. In Chapter 3 we built upon a model that was previously introduced by Ho and
Zheng [36] and Shang and Liu [53]. In this chapter, we build upon their problem
and introduce a model that would incorporate new settings for �rms. Ho and Zheng
[36] and Shang and Liu [53] study models that consist of two �rms that compete in
a market with homogeneous customers. The �rms o¤er substitutable products and
compete to maximize their total market share (demand rate) �. The decision vari-
ables used by the �rms are the leadtimes that they quote to the customers. We have
used their idea and developed a similar model that has the same characteristic with
the di¤erence that the �rms are not individual entities any more. The �rms in our
model are centralized supply chains consisting of two or more stages or entities of
production. The market share of each �rm depends on the utility function of the
market (customers) towards that �rm. The utility function of the customers depends
on the promised delivery time (quoted time) as well as the quality of service. The
quality of service is the probability that each �rm can deliver the product at or before
its promised delivery time. This probability depends on the production rate of each
stage at each �rm as well as the promised delivery time quoted by the �rm. Based
on this probability and the utility function of the customers, the total market share
(demand rate) of each �rm is determined. Each �rm tries to maximize its market
share by manipulating its promised delivery time. This problem is studied with game
theory as the decision taken by the �rms a¤ect each other�s objective function. Each
�rm�s promised delivery time a¤ects his own market share and therefore, a¤ects the
market share of the other �rm.
We looked at three settings for the �rms in this chapter. In the �rst section of
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the chapter, we assume that the �rms are like centralized supply chains consisting of
two stages. We assumed that these two stages have the same production rate. In the
second section of the chapter, we assumed that �rms are like supply chains consisting
of M stages and all the M stages have the same production rate. Finally, in the
last section of the chapter we assume that the �rms have only two production stages
but that the stages have di¤erent production rates. In the �rst two sections of this
chapter, we could solve the problems and derive a closed-form solution for the optimal
strategies of the �rms as well as the Nash equilibrium of the game. At the end of the
sections, we con�rmed our analytical results using numerical examples. In the last
section, however we could not derive a closed-form solution for the Nash equilibrium
of the game. But we developed su¢ cient conditions and an equation, through which
the optimal strategies of the �rms could be derived. We also con�rmed the conditions
as well as the equation using numerical examples. At the end of each section, we
also performed a numerical sensitivity analysis and observed the e¤ects of changing
di¤erent parameters of the problem on the optimal strategies of the �rms as well as
the Nash equilibrium of the game.
The solutions provided in this chapter have improved the results of Ho and Zheng

[36] and Shang and Liu [53]. This is because the process of delivering a product to
the customers rarely depends on production at only one stage. Usually �rms (supply
chains) consist of di¤erent stages where the production or service delivery rates at
each stage are di¤erent. The model presented in this chapter aims to represent these
kinds of processes where serial stages have to be used for delivering a product or a
service to the ultimate customer. As an example, the process of delivering a package
at the UPS consists of more than one stage with di¤erent production (service delivery)
rates. The models presented by Ho and Zheng [36] and Shang and Liu [53] can not
be used there because they only study �rms with one stage of production (service
delivery). The results from this chapter help companies like the UPS to determine
the optimal PDT in competition with their rivals.
Like in Chapter 3, the decision variable under study in Chapter 4 is the promised

delivery time. In this chapter, we studied a duopolistic market, where two �rms
compete for the business of a single customer by manipulating the promised delivery
time that they quote to the customer. We believe that this model is applicable in
situations, where the manufacturers and customers for a product are not plentiful
and the leadtime for the production is relatively long. An example for this kind of
market can be found in the aviation industry. In this chapter, the two manufacturers
simultaneously quote a leadtime to the single customer. The customer then decides to
give her business to only one of them. We have assumed that the customer has a simple
rule to choose between the �rms; she will give her business to the �rm that quotes the
shorter leadtime. The �rm that has lost the bid will exit the problem. The �rm that
has won the deal has to start production and deliver the product to the customer.
However, the winning �rm incurs production costs as well as delay costs. The delay
cost is incurred when the product is delivered later than the promised delivery time
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that was quoted previously to the customer. The production cost is �xed and will not
change based on the promised delivery time. The delay cost, however decreases in
the promised delivery time. For the winning �rm, the longer the leadtime is, the less
its delay cost would be. Therefore, a longer leadtime is desirable to the winning �rm.
However, �rms would also like to quote a leadtime as short as possible so that they
can win the business. This creates an interesting situation of trade-o¤between shorter
and longer leadtimes that we studied in this chapter. This problem is studied with
game theory because the decision taken be each �rm a¤ects the objective function of
the other �rm.
We developed the model for this problem and created two criteria that need to hold

for the problem to be meaningful. These criteria were enforced to make sure that the
objective functions of the �rms were similar to those of �rms in similar situations in
the real world. After that, we derived the best-response functions of each �rm. Using
the best-response functions, we came up with the Nash equilibrium of the game.
The Nash equilibrium was con�rmed using multiple numerical examples that were
solved at the end of the chapter. Finally, we concluded the chapter with a numerical
sensitivity analysis to study the e¤ects of changing di¤erent parameter values on the
optimal promised delivery times for the �rms as well as the Nash equilibrium of the
game.
The last problem of this thesis was studied in Chapter 5. In this chapter, we built

upon a model that was previously studied by Gerchak and Parlar [24]. In their paper,
the authors had studied a game theoretical model of competition between two �rms
that competed based on the budget that they invest in each of two markets that are
available to both �rms. Each market has di¤erent pro�tability for each �rm and the
�rms are maximizing their expected pro�t from their investments in these markets.
This is also a time-based competition as the amount that is invested in each market
determined the speed, at which the �rm will deliver to that market. This speed in
turn changes the probability that the �rm will capture that market, as the �rm that
delivers to a market faster will capture the whole market. Each �rm is interested in
knowing what fraction of its budget it should invest in each market to increase its
expected pro�t derived from its investments. The more a �rm invests in a market,
the shorter the time will be for it to deliver to that market and therefore, the higher
its probability of capturing that market will be. Based on these rules, the expected
pro�t for each �rm can be studied.
In Gerchak and Parlar [24], the authors study this problem and derive a number

of solutions for special cases of the problem. In these special situations, they derive
the optimal strategies for the �rms and present the Nash equilibrium of the game.
The authors in that paper have assumed that the �rms know about the structure
of the objective function of each other. This makes the game-theoretical model that
they study a model of complete information. In the real wold, however �rms rarely
know about the structure and parameter values of their rivals. We built upon the
model of Gerchak and Parlar [24] by studying this model in a situation of incomplete
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information games. We changed the model such that one of the �rms does not have a
clear knowledge about the objective function of the other �rm. We assumed that one of
the �rms does not know the relative importance of the markets to its rivals. However,
this �rm is not completely kept in the dark regarding this piece of information. It
knows that the importance of the markets to its rival could be of two types. Based on
the new settings for the problem, we modeled the problem and derived the objective
functions of both �rms. We considered special cases and found the best-response
functions of the �rms. We also found the optimal strategies for the �rms as well
as the Nash equilibrium of the game in these cases. Like the other chapters, we
solved many numerical examples of the problem and performed a sensitivity analysis
to observe the e¤ect of changing parameter values on the optimal strategies of the
�rms and the Nash equilibrium of the game.

6.2 Thoughts for Future Work

We have studied three di¤erent problems in the area of time-based competition in this
thesis. We believe that this the literature in this area can be furthered in a number
of directions. In the following, we will present our ideas for the possible opportunities
for future research in the context of each problem.
In Chapter 3, we studied new settings for the �rms. We changed the structure of

single-stage �rms into multiple-stage centralized supply chains. A possible direction
for furthering this study is to consider supply chains that consist of multiple stages,
where the product does not need to travel through all stages of the chain. A product
may jump back and forth between di¤erent stages of the chain based on certain
probabilities. This may happen due to re-processing or correction at any stage of
the production. This change will a¤ect the quality of service of the �rm and creates
an interesting problem to study. The natural methodology that comes to mind to
analyze the quality of service of �rms in this situation would be using the phase-type
distributions.
We have assumed that the only decision variable that �rms have in this prob-

lem is their promised delivery leadtime. Another possible extension to this model is
considering other decision variables as well as the promised delivery time. Price, for
instance is a possible decision variable that can be added to the model to create a
more realistic re�ection of the competition between �rms in the real world. In this
case, the promised delivery time and the price will both be quoted to the customer
and the utility function of the market will be a¤ected by both factors at the same
time. This will change the problem into a more interesting model to study.
In Chapter 4, we studied a duopolistic market with �rms competing based on their

promised delivery leadtime. We suggest to consider a market that consists ofM �rms
instead of only two �rms. A case that studies more than two �rms at the market
will present a better re�ection of the reality and will create interesting situations in
the optimal strategies of the �rms and the Nash equilibrium of the game. Like in the
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previous chapter, we would like to suggest to consider price as an additional decision
variable in this model. In the model in hand, we have assumed that the price is
exogenously determined by the market. This may be the fact in many industries, but
price still plays an important factor in determining the winner of business deals in
most of the industries. Therefore, we believe that adding the price as an addition
decision variable is an important extension to this model. Firms can quote their
promised delivery time as well as their price to the customer and the customer can
then choose the winning �rm based on both criteria. We believe, adding price to
the decision making process of the customer creates an interesting problem that is
valuable to study.
Extending the model studied in Chapter 4 by assuming asymmetric information

(incomplete information) is also another area for future research. To do this, we can
assume that one or both �rms do not have complete information regarding the TE orbT of the other �rm. This will make the model more realistic as complete information
is rarely present in the business world.
In Chapter 5, we have assumed that one of the �rms has incomplete information

regarding the objective function of its rival. In the real world, we usually observe
situations, where none of the �rms competing knows about the structure of the objec-
tive function from the other �rm. Therefore, to re�ect the reality better, we suggest
to study a model where both �rms have incomplete information regarding the objec-
tive function of their competitor. For this, we can assume that each �rm has two or
more types regarding a parameter in their objective function. This will create a more
complicated and yet more realistic problem and it will be interesting to analyze it.
In the model in hand, the pro�t function of the �rms have been assumed to be

linear. Studying the problem with non-linear objective function is another possible
extension to the model that will present a more realistic case of the problem. In
addition to that, we believe that this problem can be studied in a cooperative setting
as well. To study this problem with cooperating �rms will create an interesting
problem in the context of time-based competition.
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Appendix A

Proof of lemmas and propositions
in Chapter 3

In this appendix we present the proofs to lemmas and propositions from Chapter 3.

A.1 Proof of Lemma 3.5

Considering the equation Li(Ti; �i(T)) = ln�i(T)�Ui(Ti; �i(T)), taking the derivative
from both sides of equation (3.7) w.r.t. Ti we have,�

1

�i
+ �Q�iT

2
i expf�(�i � �i)Tig � �Q�iT 2i expf�(�i � �i)Tig

�
@�i(T)

@Ti

+ �T � �Q�2iTi expf�(�i � �i)Tig+ 2�Q�i�iTi expf�(�i � �i)Tig

� �Q�2iTi expf�(�i � �i)Tig =
@`(T)

@Ti
,

which can be rearranged to get the following,�
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After simpli�cation we have,�
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(A.1)

= ��T + [�QTi expf�(�i � �i)Tig] (�i � �i)2 +
@`(T)

@Ti
.
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Bringing the expression for the quality of service (Qi) from (3.2) into the equation
we have, �

1

�i
+
�
�QT

2
i expf�(�i � �i)Tig

�
(�i � �i)

�
@�i(T)

@Ti
(A.2)

= ��T +
�QTi (�i � �i)2 (1�Qi)

1 + (�i � �i)Ti
+
@`(T)

@Ti

Now from the assumption in equation (3.5), we know that
P2

i=1 �i = �. Therefore,
we have,

2X
j=1

@�j(T)

@Ti
=
@�

@Ti
= 0. (A.3)

To prove the �rst line of the lemma, we assume that @�i(T)=@Ti > 0. Then from
the equation (A.3), we know that @�j=@Ti < 0. We also know that Tj does not depend
on Ti. Taking these two into account and taking the derivative w.r.t. Ti from both
sides of equation (3.7) for the �rm j we have,

@Lj(Tj; �j)

@�j

@�j(T)

@Ti
=
@`(T)

@Ti
(A.4)

We already know from Lemma 3.4 that @Lj(Tj; �j)=@�j > 0. Also, based on
our assumption here we have @�j(T)=@Ti < 0. Therefore, from equation (A.4),
@`(T)=@Ti < 0 has to hold true. For the opposite direction, assume @`(T)=@Ti < 0,
then since based on Lemma 3.4, @Lj(Tj; �j)=@�j > 0, then from equation (A.4),
@�j(T)=@Ti should be negative. Then, from the equation (A.3), we will
have @�i(T)=@Ti > 0.
To prove the �rst row of the conditions regarding Qi, we again assume that

@�i(T)=@Ti > 0. We also know that the term in the big brackets in the left-hand
side of equation (A.2) is always positive. Also, we have @`(T)=@Ti < 0 from the
previous arguments here. Then, for equation (A.2) to hold true, we should have,

��T +
�QTi (�i � �i)2 (1�Qi)

1 + (�i � �i)Ti
> 0,

After some rearrangements, this becomes,

Qi < 1�
�T [1 + (�i � �i)Ti]
�QTi(�i � �i)2

, (A.5)

which is equivalent to Qi < !i(Ti; �i).
For the opposite direction, we can say if the equation (A.5) holds, then assuming

@`(T)=@Ti < 0, we should have @�i(T)=@Ti > 0. This is because the term in the big
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brackets in the left-hand side of equation (A.2) is always positive.
The second and third rows of the lemma will be proven similarly.

A.2 Proof of Lemma 3.6

At this point bTi, the �rst order condition @�i(T)=@Ti = 0 should hold. From Lemma
3.5 we know that this is equivalent to Qi = 1 � �T [1 + (�i � �i)Ti] =�QTi(�i � �i)2.
We also know from equation (3.2) that Qi = 1 � expf�(� � �)Tig (1 + (�i � �i)Ti).
Therefore, for the �rst-order conditions to exist, the following should have a solution
for Ti,

1� �T [1 + (�i � �i)Ti]
�QTi(�i � �i)2

= 1� e�(���)Ti (1 + (�i � �i)Ti) ,

which is equivalent to,
�T

�QTi(�i � �i)2
= e�(�i��i)Ti,

or,

� �T
�Q(�i � �i)

= �(�i � �i)bTie�(�i��i)bTi. (A.6)

where bTi is the Ti that solves the above equation.
According to Corless et al. [18], the product logarithm or the LambertW function

W (z) is the function satisfying z = W (z)eW (z). Then equation (A.6) has the following
solution,

�(�i � �i)bTi = W �
� �T
�Q(�i � �i)

�
,

which is equivalent to,

bTi = � 1

(�i � �i)
W

�
� �T
�Q(�i � �i)

�
, (A.7)

as the solution for @�i(T)=@Ti = 0. TheW function is the product logarithm function,
which is also referred to as the LambertW function. This function has two main real-
valued branches according to Corless et al. [18]. It is worth noting that bTi, if it exists,
cannot be unique. This is because the argument inside the curly brackets for the
W function has the negative sign and therefore, it is in the area where the Lambert
W function has two real-valued solutions. The reason for this is, in this range, the
LambertW function has two real-valued branches. This is shown in Figure A.1, where
the branches are identi�able by their line style. Since the term inside the brackets
in (A.7) is always negative, then for the Lambert W function to have a solution, the
term inside has to be between 0 and �e�1. According to Corless et al. [18], if x is real
and has the negative sign, it has to be between �e�1 � x < 0 to have a real-valued
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Figure A.1: The functionW (x) with two real-valued branches for �e�1 � x < 0. The
vertical dashed line represents the line x = �e�1.

solution for W (x). From this argument, it is obvious that for bTi to have a real-valued
solution, the following should hold,

�e�1 � � �T
�Q(�i � �i)

< 0,

or,

0 <
�T

�Q(�i � �i)
� e�1.

Since this term is always positive we can reduce the condition to,

�T
�Q

� e�1(�i � �i).

If this condition is not satis�ed, the Lambert W function does not return any
values. But if the conditions imposed on the parameters is satis�ed, we will have two
real-valued results for bTi. Let�s call them bT (1)i and bT (2)i , where bT (2)i > bT (1)i . Since
�i(T) is continuous in Ti, having two points, for which @�i(T)=@Ti = 0 means that
the function �i(T) is convex in some range and concave in some other range in Ti.
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A.3 Proof of Proposition 3.2

In order for the game to have an interior Nash equilibrium, the �rst-order conditions
should hold and also the function �i(T) should be concave in Ti at that point. We
have the two points bT (1)i and bT (2)i , for which the �rst-order condition holds. To �nd
out about the behavior of �i(T) at its initial point we look at the sign of @�i(T)=@Ti
at Ti = 0. From equation (A.1), we can �nd the equation for Ti = 0. This is shown
below,

1

�i

@�i(T)

@Ti
= ��T +

@`(T)

@Ti
. (A.8)

Now if we assume that @�i(T)=@Ti > 0 at Ti = 0, then based on Lemma 3.5, we
should have @`(T)=@Ti < 0. But then the sign of the equation on the left hand-side will
be positive and it will be negative on the right hand-side, which is a contradiction and
thus @�i(T)=@Ti > 0 at Ti = 0 is not a possibility. Considering the fact that �T > 0,
then Assuming @�i(T)=@Ti < 0 at Ti = 0, which based on Lemma 3.5 will result in
@`(T)=@Ti > 0 is the only possibility. Therefore, at Ti = 0 we have @�i(T)=@Ti < 0
and the function �i(T) is strictly decreasing in Ti at Ti = 0. This means that the
�rst stationary point bT (1)i is not a local maximizer since bT (1)i = minfbT (1)i ; bT (2)i g. The
point bT (1)i is either a local minimum or a point of in�ection. In any case, we now
draw our attention to bT (2)i . In order to make sure that bT (2)i , which is derived from the
second branch of the W function, is our local maximizer we should study the second
derivative of �i(T) w.r.t. Ti. For the point bT (2)i to be the �rm i�s strategy in the Nash
equilibrium, the value of the expression @2�i(T)=@T 2i has to be negative at this point
so that the function �i(T) is concave at bT (2)i . Taking the derivative w.r.t. Ti from both
sides of equation (A.1) and writing the equation at bT (2)i , for which @�i(T)=@Ti = 0,
we get,�
1

�i
+ �Q�iT

2
i expf�(�i � �i)Tig � �Q�iT 2i expf�(�i � �i)Tig

�
@2�i(T)

@T 2i
(A.9)

= �Q�
2
i expf�(�i � �i)Tig � 2�Q�i�iTi expf�(�i � �i)Tig

+ �Q�
2
iTi expf�(�i � �i)Tig � �Q�3iTi expf�(�i � �i)Tig+ �Q�3iTi expf�(�i � �i)Tig

� 3�Q�2i�iTi expf�(�i � �i)Tig+ 3�Q�i�2iTi expf�(�i � �i)Tig+
@`(T)

@Ti
,

In equation (A.9) and what comes next in the proof, we are assuming Ti = bT (2)i ,
which has been used to avoid unnecessary complexity in writing. After simpli�cations,
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equation (A.9) becomes,�
1

�i
+ �QT

2
i expf�(�i � �i)Tig(�i � �i)

�
@2�i(T)

@T 2i
= (A.10)

�Q expf�(�i � �i)Tig(�i � �i)2 � �QTi expf�(�i � �i)Tig(�i � �i)3 +
@2`(T)

@T 2i
.

Now if we assume that @2�i(T)=@T 2i > 0, then the right-hand-side of the equation
should also be positive. This is because the term in the big brackets is always positive.
The term �Q expf�(�i � �i)Tig(�i � �i)2 + �QTi expf�(�i � �i)Tig(�i � �i)3 may be
negative or positive depending on the parameter values. In order for us to result in
the contradiction in this proof, we need this term to be negative. For this term to be
negative we have to have

�Q expf�(�i � �i)Tig
�
(�i � �i)2 + Ti(�i � �i)3

�
< 0, (A.11)

or,

�Q expf�(�i � �i)Tig(�i � �i)2 [1 + Ti(�i � �i)] < 0,
which results in 1 + Ti(�i � �i) < 0 or Ti(�i � �i) > 1. This inequality also appears
in Ho and Zheng [36] in their proof as a condition for concavity of �i(T) or to show
@2�i(T)=@T

2
i < 0. So if Ti(�i � �i) > 1 it means that the quality of service is greater

than 26:4%. This is because we have,

Ti(�i � �i) > 1, (A.12)

therefore,
�e�(�i��i)Ti < �e�1, (A.13)

multiplying the positive term 1 + (�i � �i)T by both sides of the inequality (A.13)
and because of the inequality (A.12) we have,

�e�(�i��i)Ti [1 + (�i � �i)T ] > �2e�1,

or,
1� e�(�i��i)Ti [1 + (�i � �i)T ] > 1� 2e�1.

The left hand-side of the inequality is the expression for the quality of service in
our system. The right hand-side of the equation is equal to 0:264. Therefore, for the
inequality (A.11) to hold, the quality of service in our system should be greater than
26:4%.
With the QoS being greater than 26:4%, for the right hand-side of equation (A.10)

to be positive, we should have @2`(T)=@T 2i > 0. Also, from equation (A.4) for �rm j
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we get,
@Lj(Tj; �j)

@�j

@2�j(T)

@T 2i
=
@2`(T)

@T 2i
.

So again knowing that @Lj(Tj; �j)=@�j > 0 and @2`(T)=@T 2i > 0, we should have
@2�j(T)=@T

2
i > 0. This will result in

@2�i(T)

@T 2i
+
@2�j(T)

@T 2i
> 0.

But from equation (A.3) we know that
P2

j=1 @
2�j(T)=@T

2
i = @

2�=@T 2i = 0. This

is a contradiction. Therefore, we should have @2�i(T)=@T 2i < 0 for Ti = bT (2)i . As a
result, the value of @2�i(T)=@T 2i is negative at bT (2)i and this shows that bT (2)i is indeed
the unique maximizer of �i(T) when the quality of service is greater than 26:4% and
the conditions 3.5 and 3.6 hold. Therefore, with the above mentioned conditions
holding, the point bT (2)i will be the local maximizer of the demand rate function and
from Lemma 3.6 we have,

TNi = bT (2)i = � 1

�i � �i
W

�
�1;� �T

�Q(�i � �i)

�
,

where the added �1 in the W function denotes the lower branch as suggested in
Corless et al. [18]. This branch is with dotted curve in Figure A.1. It should be noted
that this branch produces the greater Ti, which in our case is the desired bT (2)i . The
point TNi = bT (2)i is �rm i�s strategy at the unique interior Nash equilibrium.
Also, from Lemmas 3.5 and 3.6 we know that �T=�Q � e�1(�i � �i) should hold.

Since this condition is necessary for the existence of the �rst-oder conditions, it should
hold for an interior Nash equilibrium. This con�rms the condition (3.11).

A.4 Proof of Lemma 3.9

We start with taking the derivative w.r.t. Ti from both sides of equation (3.17). We
get,

1

�

@�i(T)

@Ti
+ �T � �Q

@Qi(Ti; �i)

@Ti
=
@`(T)

@Ti

then we have �
1

�i
+ �Q

1

(k � 1)!T
k
i (�i � �i)k�1e�(�i��i)Ti

�
@�i(T)

@Ti

= ��T + �Q
1

(k � 1)!T
k�1
i (�i � �i)ke�(�i��i)Ti +

@`(T)

@Ti
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Bringing in the term (1�Qi(Ti; �i)) we have,�
1

�i
+ �Q

1

(k � 1)!T
k
i (�i � �i)k�1e�(�i��i)Ti

�
@�i(T)

@Ti

= ��T +
�Q

1
(k�1)!T

k�1
i (�i � �i)k(1�Qi)h

1 +
Pk�1

n=1
1
n!
T ni (�i � �i)n

i +
@`(T)

@Ti

or, �
1

�i
+ �Q

1

(k � 1)!T
k
i (�i � �i)k�1e�(�i��i)Ti

�
@�i(T)

@Ti
(A.14)

=
��T � �T

Pk�1
n=1

1
n!
(Ti�i � Ti�i)n + �Q 1

(k�1)!T
k�1
i (�i � �i)k(1�Qi)h

1 +
Pk�1

n=1
1
n!
T ni (�i � �i)n

i +
@`(T)

@Ti

It should be noted that the �rst row for the relationship between @�i(T)=@Ti
and @`(T)=@Ti is proven exactly similarly to the proof of Lemma 3.5. To �nd the
relationship of the two with Qi, we �rst assume that @�i(T)=@Ti > 0. Knowing that
@�i(T)=@Ti > 0 implies @`(T)=@Ti < 0, for equation (A.14) to hold we should have
the following,

��T � �T
Pk�1

n=1
1
n!
(Ti�i � Ti�i)n + �Q 1

(k�1)!T
k�1
i (�i � �i)k(1�Qi)h

1 +
Pk�1

n=1
1
n!
T ni (�i � �i)n

i > 0,

which means,

Q <
��T � �T

Pk�1
n=1

1
n!
(Ti�i � Ti�i)n + �Q 1

(k�1)!T
k�1
i (�i � �i)k

�Q
1

(k�1)!T
k�1
i (�i � �i)k

,

or,

Q < 1�
�T

h
1 +

Pk�1
n=1

1
n!
(Ti�i � Ti�i)n

i
�Q

1
(k�1)!T

k�1
i (�i � �i)k

, (A.15)

where the right-hand side of the inequality is equal to !k(Ti; �i) as introduced in in
the lemma.
For the opposite direction we can say that if inequality (A.15) holds, assuming

that @`(T)=@Ti < 0, we should have @�i(T)=@Ti > 0 so that the equation (A.14)
holds. The reason is that the term in the brackets on the left-hand side of equation
(A.14) is always positive.
The second and third rows of the relationships in (3.21) can be proven similarly.
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A.5 Proof of Lemma 3.10

For the demand rate into �rm i (�i(T)) to have its �rst-order condition satis�ed,
we should solve the condition @�i(T)=@Ti = 0. From Lemma 3.9 we know that
@�i(T)=@Ti = 0 implies @`(T)=@Ti = 0. Also, in this case the quality of service will
be equal to the following,

Qi(Ti; �i) = 1�
�T

h
1 +

Pk�1
n=1

1
n!
(Ti�i � Ti�i)n

i
�Q

1
(k�1)!T

k�1(�i � �i)k
. (A.16)

We know from (3.16) that Qi(Ti; �i) is also equal to,

Qi(Ti; �i) = 1�
"
1 +

k�1X
n=1

1

n!
T ni (�i � �i)n

#
e�(�i��i)Ti. (A.17)

Setting (A.16) and (A.17) equal to each other we get bTi that would satisfy the
�rst-order condition @�i(T)=@Ti = 0,

1�
�T

h
1 +

Pk�1
n=1

1
n!
bT ni (�i � �i)ni

�Q
1

(k�1)!
bT k�1i (�i � �i)k

= 1�
"
1 +

k�1X
n=1

1

n!
bT ni (�i � �i)n

#
e�(�i��i)

bTi,

which after simpli�cation becomes,

�T

�Q
1

(k�1)!
bT k�1i (�i � �i)k

= e�(�i��i)
bTi. (A.18)

which is equivalent to,�
�T (k � 1)!
�Q(�i � �i)

� 1
k�1

= bTi(�i � �i)e� 1
k�1 (�i��i)bTi,

or,

� 1

k � 1

�
�T (k � 1)!
�Q(�i � �i)

� 1
k�1

= � 1

k � 1(�i � �i)
bTie� 1

k�1 (�i��i)bTi. (A.19)

The solution to equation (A.19) is the following,

� 1

k � 1(�i � �i)
bTi = W (

� 1

k � 1

�
�T (k � 1)!
�Q(�i � �i)

� 1
k�1
)
,

where according to Corless et al. [18], W is the Lambert W function. Therefore, the
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solution to equation (A.18) is the following,

bTi = � k � 1
�i � �i

W

(
� 1

k � 1

�
�T (k � 1)!
�Q (�i � �i)

� 1
k�1
)
. (A.20)

Since the term inside the braces is always negative, we are looking at the area,
where the LambertW function is de�ned over a negative set. In this area, the function
has two real-valued solutions.
For x < 0, the Lambert W function W (x) is de�ned only where � exp(�1) � x.

This implies that,

� 1

k � 1

�
�T (k � 1)!
�Q (�i � �i)

� 1
k�1

� �e�1,

which after algebraic simpli�cations becomes,

�T
�Q

� (�i � �i) [e�1(k � 1)]k�1

(k � 1)! .

A.6 Proof of Proposition 3.4

In order for the game to have an interior Nash equilibrium, a strategy TNi that satis�es
the �rst-order conditions, should also satisfy the second-order condition @2�i(T)=@T 2i �
0.
Now for the point bTi to be �rm i�s strategy at a Nash equilibrium, it should

satisfy the second-order condition @2�i(T)=@T 2i < 0 as well. Noting that the value
of @�i(T)=@Ti is zero at point bTi, we take the second derivative w.r.t. Ti from both
sides of equation (3.17). After some algebraic simpli�cation, we get the following,�
1

�i
+ �Q

1

(k � 1)!T
k
i (�i � �i)k�1e�(�i��i)Ti

�
@�2i (T)

@T 2i

= �Q
1

(k � 2)!T
k�2
i (�i � �i)ke�(�i��i)Ti � �Q

1

(k � 1)!T
k�1
i (�i � �i)k+1e�(�i��i)Ti +

@2`(T)

@T 2i
.

or, �
1

�i
+ �Q

1

(k � 1)!T
k
i (�i � �i)k�1e�(�i��i)Ti

�
@�2i (T)

@T 2i
(A.21)

= �Q
1

(k � 2)!T
k�2
i (�i � �i)ke�(�i��i)Ti

�
1� 1

k � 1Ti(�i � �i)
�
+
@2`(T)

@T 2i
.

In the above equations and those following in this proof, we replaced bTi by Ti for
the sake of simplicity in writing. In fact, by Ti we are referring to bTi that satis�es the
�rst-order condition.
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If we assume that @�2i (T)=@T
2
i is positive, the left-hand side of equation (A.21)

becomes positive. For that equation to hold, the right-hand side of it should also be
positive. The term [�Q=(k�2)!]T k�2i (�i��i)k expf�(�i��i)Tig [1� Ti(�i � �i)=k � 1]
may be positive or negative depending on its parameter values. In this proof, we are
interested in �nding the conditions for this term to be negative. In other words we
want,

�Q
1

(k � 2)!T
k�2
i (�i � �i)ke�(�i��i)Ti

�
1� 1

k � 1Ti(�i � �i)
�
< 0. (A.22)

Since the expression outside of the brackets is always positive, then from (A.22)
we have,

1� 1

k � 1Ti(�i � �i) < 0,
or,

1

k � 1Ti(�i � �i) > 1, (A.23)

which means,
1� e�(�i��i)Ti > 1� e�(k�1). (A.24)

From (A.23) we have,

(Ti�i � Ti�i)r > (k � 1)r, for any integer r � 1. (A.25)

Then from equations (A.23), (A.24) and (A.25) we can form the following inequal-
ity,

1� e�(�i��i)Ti � Ti(�i � �i)
1!

e�(�i��i)Ti � T
2
i (�i � �i)2

2!
e�(�i��i)Ti (A.26)

� T
3
i (�i � �i)3

3!
e�(�i��i)Ti � :::� T

k�1
i (�i � �i)k�1
(k � 1)! e�(�i��i)Ti

= 1� e�(�i��i)Ti � e�(�i��i)Ti
�
Ti(�i � �i)

1!
+
T 2i (�i � �i)2

2!
+ :::+

T k�1i (�i � �i)k�1
(k � 1)!

�
> 1� e�(k�1) � e�(k�1)

�
(k � 1)
1!

+
(k � 1)2
2!

+ :::+
(k � 1)k�1
(k � 1)!

�
.

But the left-hand side of inequality (A.26) is the equivalent of the quality of service
expression as introduced in (3.16). Therefore, for condition (A.22) to hold, the quality
of service should satisfy the following condition,

Qi(Ti; �i) > 1� e�(k�1) � e�(k�1)
k�1X
n=1

(k � 1)n
n!

. (A.27)
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k �(k)

2 0:264
3 0:323
4 0:352
5 0:371

Table A.1: Values for the quality of service threshold for di¤erent number of stages.

k
10 20 30 40 50

d k

0

0.1

0.2

0.3

0.4

Figure A.2: The threshold for the quality of service for values of k from 1 to 50.

We call the right-hand side of condition (A.27) the quality of service threshold as
follow,

�(k) = 1� e�(k�1)
"
1 +

k�1X
n=1

(k � 1)n
n!

#
, (A.28)

and present this value for di¤erent values of k in Table A.1. The quality of service
threshold for 1 � k � 50 is plotted in Figure A.2. It is important to note that
the function is only plotted continuously for the sake of illustration. Obviously, the
quality of service threshold is a discrete function of k.
Assuming that condition (A.22) is always satis�ed, with the assumption that

@�2i (T)=@T
2
i is positive, equation (A.21) is satis�ed only if @

2`(T)=@T 2i > 0.
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Also, from equation (3.17) for �rm j we get,

@Lj(Tj; �j)

@�j

@2�j(T)

@T 2i
=
@2`(T)

@T 2i
.

So again knowing that @Lj(Tj; �j)=@�j > 0 and @2`(T)=@T 2i > 0, we should have
@2�j(T)=@T

2
i > 0. This will result in

@2�i(T)

@T 2i
+
@2�j(T)

@T 2i
> 0,

or,
2X
j=1

@2�j(T)

@T 2i
> 0,

but since �i(T) + �j(T) = � and is �xed, we know that
P2

j=1 @
2�j(T)=@T

2
i =

@2�=@T 2i = 0. This is a contradiction. Therefore, we should have @
2�i(T)=@T

2
i < 0

for bTi. As a result, the value of @2�i(T)=@T 2i is negative at bTi and this shows that
TNi = bTi is indeed the unique maximizer of �i(T) and is �rm i�s strategy at the Nash
equilibrium.
But bTi that satis�es the �rst-order condition is not unique. According to Lemma

3.10, if the conditions imposed on the parameters is satis�ed, we will have two real-
valued results for bTi. Let�s call them bT (1)i and bT (2)i , where bT (2)i > bT (1)i . The point bT (2)i

is derived from the lower branch of the LambertW function and bT (1)i is derived by the
upper branch of that function making it a smaller value than bT (2)i . The two branches
of the Lambert W function can be seen in �gure A.1. Having two points, for which
@�i(T)=@Ti = 0 means that the function �i(T) is convex in some range and concave
in some other range in Ti.
To �nd out at which point the function �i(T) is concave in Ti, we look at the sign

of @�i(T)=@Ti at Ti = 0. From equation (A.14), we can �nd the equation for Ti = 0.
This is shown below,

1

�i

@�i(T)

@Ti
= ��T +

@`(T)

@Ti
. (A.29)

Now if we assume that @�i(T)=@Ti > 0 at Ti = 0, then based on Lemma 3.9, we
should have @`(T)=@Ti < 0. But then the sign of the equation on the left hand-side
will be positive and it will be negative on the right hand-side, which is a contradiction
and thus @�i(T)=@Ti > 0 at Ti = 0 is not a possibility. Assuming @�i(T)=@Ti < 0
at Ti = 0, based on Lemma 3.9 we will have @`(T)=@Ti < 0. Considering the sign of
��T , the sign on both sides of equation (A.29) will be negative and this is the only
possibility. Therefore, at Ti = 0 we have @�i(T)=@Ti < 0 and the function �i(T) is
strictly decreasing in Ti at Ti = 0. This means that the �rst stationary point bT (1)i is
a local minimum since bT (1)i = minfbT (1)i ; bT (2)i g. Therefore, bT (2)i which is derived from
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the second branch of the W function and is greater than bT (1)i is our unique strategy
in the Nash equilibrium and is denoted by TNi . Then from Lemma 3.10 and equation
(A.20) we have,

TNi = bT (2)i = � k � 1
�i � �i

W

(
�1;� 1

k � 1

�
�T (k � 1)!
�Q (�i � �i)

� 1
k�1
)
,

where as in the previous section, the added �1 in the W function denotes the lower
branch as suggested in Corless et al. [18]. This result is also con�rmed through our
numerical analysis, where bT (1)i results in a quality of service that is always less than
the required threshold and TNi = bT (2)i results in the quality of service that satis�es
equation (A.27) and is greater than the threshold.
There are two conditions for the point bT (2)i to produce the Nash equilibrium of the

game. We already know from Lemma 3.10 that the following condition should hold,

�T
�Q

� (�i � �i) [e�1(k � 1)]k�1

(k � 1)! .

Therefore, for Proposition 3.4 to be valid, this condition should still hold. In
addition to that, the quality of service should also be greater than �(k) or,

Qi(Ti; �i) > 1� e�(k�1)
"
1 +

k�1X
n=1

(k � 1)n
n!

#
.

A.7 Proof of Lemma 3.13

We take the derivative w.r.t. Ti from both sides of equation (3.30). Then we get,

1

�

@�i(T)

@Ti
+ �T � �Q

@Qi(Ti; �i)

@Ti
=
@`(T)

@Ti

By replacing Qi(Ti; �i) with its corresponding expression we get,�
1

�i
� �Q
�i1 � �i2

�
e�(�i1��i)Ti [(�i2 � �i)Ti � 1]� e�(�i2��i)Ti [(�i1 � �i)Ti � 1]

	� @�i(T)
@Ti

= ��T �
�Q

�i1 � �i2
fe�(�i1��i)Ti (�i1 � �i) (�i2 � �i)� e�(�i2��i)Ti (�i1 � �i) (�i2 � �i)g

+
@`(T)

@Ti
.
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which after simpli�cation becomes,�
1

�i
+

�Q
�i2 � �i1

�
e�(�i1��i)Ti [(�i2 � �i)Ti � 1]� e�(�i2��i)Ti [(�i1 � �i)Ti � 1]

	� @�i(T)
@Ti

= ��T +
�Q (�i1 � �i) (�i2 � �i)

�i2 � �i1
�
e�(�i1��i)Ti � e�(�i2��i)Ti

�
+
@`(T)

@Ti
. (A.30)

Bringing the term (1�Qi(Ti; �i)) = 1�Qi into the expression we will have,�
1

�i
+

�Q
�i2 � �i1

�
e�(�i1��i)Ti [(�i2 � �i)Ti � 1]� e�(�i2��i)Ti [(�i1 � �i)Ti � 1]

	� @�i(T)
@Ti

= ��T + �Q
(�i1 � �i) (�i2 � �i)

�
e�(�i1��i)Ti � e�(�i2��i)Ti

�
e�(�i1��i)Ti (�i2 � �i)� e�(�i2��i)Ti (�i1 � �i)

(1�Qi) +
@`(T)

@Ti
.

(A.31)

The part of the lemma that deals with the relationship between @�i=@Ti and
@`(T)=@Ti is proven exactly as in the proof of Lemma 3.5. Now to prove the part
dealing with Qi, assuming @�i=@Ti > 0, we will have @`(T)=@Ti < 0. Considering
T (minf�1; �2g � �) > 1, the left-hand side of equation (A.31) is always positive (see
the proof for Lemma (3.11)). For both sides of this equation to have the positive sign,
it is required that 
i(Ti; �i) > 0 where,


i(Ti; �i) = ��T + �Q
(�i1 � �i) (�i2 � �i)

�
e�(�i1��i)Ti � e�(�i2��i)Ti

�
e�(�i1��i)Ti (�i2 � �i)� e�(�i2��i)Ti (�i1 � �i)

(1�Qi) .

Now for 
i(Ti; �i) > 0 to hold after simpli�cations, we should have,

Qi <
1

��Q (�i1 � �i) (�i2 � �i) (e�(�i1��i)Ti � e�(�i2��i)Ti)
f�T

�
e�(�i1��i)Ti (�i2 � �i)� e�(�i2��i)Ti (�i1 � �i)

�
� �Q

�
e�(�i1��i)Ti � e�(�i2��i)Ti

�
(�i1 � �i) (�i2 � �i)g.

After simpli�cations, this becomes,

Qi < 1�
�T
�
e�(�i1��i)Ti (�i2 � �i)� e�(�i2��i)Ti (�i1 � �i)

�
�Q (�i1 � �i) (�i2 � �i) (e�(�i1��i)Ti � e�(�i2��i)Ti)

, (A.32)

whose right-hand side is equal to the term !i(Ti; �i) in (3.34) con�rming the condition
in (3.33). For the opposite direction, we can say that if inequality (A.32) holds, then
assuming that @`(T)=@Ti < 0 holds, we should have @�i=@Ti > 0. Therefore, for
the equation (A.31) to hold, we should have 
i(Ti; �i) > 0. This is because knowing
T (minf�1; �2g � �) > 1, the left-hand side of (A.31) is always positive, and so should
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be its right-hand side. This will result in inequality (A.32) con�rmed. The next two
rows of the set of relationships (3.33) are proven accordingly.

A.8 Proof of the Proposition 3.6

For the game to have an interior Nash equilibrium, �rst-order conditions should be
satis�ed. From Lemmas (3.11) and (3.13) we know that the su¢ cient condition for
�rst-order conditions to hold is the conditions (3.35). Now we proceed to �nd the
remaining conditions.
From Lemma (3.13) we can see that for both situations of T = 0 and T = +1,

we have,
1

�i

@�i(T)

@Ti
= ��T +

@`(T)

@Ti
. (A.33)

Now assuming @�i(T)=@Ti > 0, from Lemma (3.13) we know that this will imply
@`(T)=@Ti < 0. Therefore, the left-hand side of equation (A.33) will be positive and
its right-hand side will be negative. As a result, at both T = 0 and T = +1 we
cannot have @�i(T)=@Ti > 0. Also, from Lemma (3.13) @�i(T)=@Ti = @`(T)=@Ti = 0
is not also possible as equation (A.33) will not hold. Therefore, the only possibility
for @�i(T)=@Ti at T = 0 and T = +1 is to have the negative sign. In other words,
the demand rate into company i is decreasing at both T = 0 and T = +1. Now
remember equation (A.31) as shown below,�
1

�i
+

�Q
�i2 � �i1

�
e�(�i1��i)Ti [(�i2 � �i)Ti � 1]� e�(�i2��i)Ti [(�i1 � �i)Ti � 1]

	� @�i(T)
@Ti

= ��T + �Q
(�i1 � �i) (�i2 � �i)

�
e�(�i1��i)Ti � e�(�i2��i)Ti

�
e�(�i1��i)Ti (�i2 � �i)� e�(�i2��i)Ti (�i1 � �i)

(1�Qi) +
@`(T)

@Ti
.

Assuming �i2 > �i1, it can be easily veri�ed that there exist parameter values
�i1, �i2, �T , �Q as well as Ti, for which @�i(T)=@Ti > 0 holds. In other words, there
exists parameter values as well as Ti, where the demand rate into �rm i is increasing
in Ti. Based on this results and the fact that @�i(T)=@Ti is negative for T = 0 and
T = +1, we can conclude that at some point(s) Ti, we have @�i(T)=@Ti = 0. Also,
based on the sign of @�i(T)=@Ti at T = 0 and T = +1 and the continuity property
of @�i(T)=@Ti, we can be certain that there is at least one Ti, where the �rst-order
condition, as well as the second-order condition @2�i(T)=@T 2i < 0 is satis�ed.
To �nd conditions for the second-order conditions to be satis�ed, we take the

derivative w.r.t. Ti from both sides of equation (A.30). Also, since we are only looking
at the points, where the �rst-order condition is satis�ed, the expressions containing

122



Ph.D. Thesis �Behrouz Bakhtiari McMaster University �Management Science

@�i(T)=@Ti are set to zero. The result is shown below,�
1

�i
+

�Q
�i1��i2

�
e�(�i2��i)Ti ((�i1 � �i)Ti � 1)� e�(�i1��i)Ti ((�i2 � �i)Ti � 1)

�� @2�i(T)
@T 2i

=
�Q

�i1��i2

�
e�(�i2��i)Ti (�i � �i2)2 (�i � �i1)� e�(�i1��i)Ti (�i � �i1)2 (�i � �i2)

�
+
@2`(T)

@T 2i
.

(A.34)

We know that the expression in the brackets on the left-hand side of equation
(A.34) is always positive. This is because we have the condition T (minf�1; �2g � �) >
1. The positive sign of the expression inside the brackets can be veri�ed by looking
at the proof for Lemma (3.11).
Now, in order to derive a contradiction, let�s assume that at this point, where the

�rst-order condition is satis�ed, we have @2�i(T)=@T 2i > 0. As a result, the left-hand
side of equation (A.34) will always be positive. For the sake of the proof we also need
the following to hold true as a condition,

�Q
�i1��i2

�
e�(�i2��i)Ti (�i � �i2)2 (�i � �i1)� e�(�i1��i)Ti (�i � �i1)2 (�i � �i2)

�
< 0.

The above condition can be summarized as follows,�
e�(�i1��i)Ti (�i � �i1) < e�(�i2��i)Ti (�i � �i2) , if �i1 < �i2
e�(�i1��i)Ti (�i � �i1) > e�(�i2��i)Ti (�i � �i2) , Otherwise

,

which is equivalent to,

Ti >
ln [(�i2 � �i) = (�i1 � �i)]

(�i2 � �i1)
,

which is similar to the condition (3.36). With that condition satis�ed, we now focus
our attention on the sign of @2`(T)=@T 2i .
We already know that @2�i(T)=@T 2i +@

2�j(T)=@T
2
i = 0, as �i+�j = �. Therefore,

since we assumed that @2�i(T)=@T 2i > 0, we should have @2�j(T)=@T 2i < 0. Now,
taking two derivatives of the equation Lj(Tj; �j) = `(T) w.r.t. Ti we will have,

@Lj(Tj; �j)

@�j

@2�j(T)

@T 2i
=
@2`(T)

@T 2i
. (A.35)

We know already from Lemma (3.12) that @Lj(Tj; �j)=@�j > 0. Also, we are as-
suming that @2�i(T)=@T 2i is positive. This requires for @

2�j(T)=@T
2
i to be negative.

Now, based on equation (A.35), this will result in @2`(T)=@T 2i < 0. With a negative
@2`(T)=@T 2i , the right-hand side of equation (A.34) will be negative, which is a con-
tradiction. From this argument, we can conclude that based on the above generated
conditions, at the point, where the �rst-order condition of the problem is satis�ed,
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the second-order condition (@2�i(T)=@T 2i < 0) is guaranteed to be satis�ed with the
condition,

Ti >
ln [(�i2 � �i) = (�i1 � �i)]

(�i2 � �i1)
,

that proves the condition (3.36).
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