
 

 

 

 

 

 

 

 

RESONANT CURVED CANTILEVER WINGS FOR MICROROBOTIC FLIGHT



 

 

 

RESONANT CURVED PIEZOELECTRIC CANTILEVER FLUID DIODE WINGS 

FOR MASS-PRODUCIBLE FLYING MICROROBOTS 

 

 

 

 

 

By MATTHEW DANIEL MINNICK, B.Eng., P.Eng. 

 

 

 

 

 

 

 

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the 

Requirements for the Degree Doctor of Philosophy 

 

 

 

 

 

McMaster University © Copyright by Matthew Daniel Minnick, December 2013 

  



ii 

 

 

McMaster University DOCTOR OF PHILOSOPHY (2013) Hamilton, Ontario 

(Engineering Physics) 

 

TITLE: RESONANT CURVED PIEZOELECTRIC CANTILEVER FLUID DIODE 

WINGS FOR MASS-PRODUCIBLE FLYING MICROROBOTS 

AUTHOR: Matthew Daniel Minnick, B.Eng. (McMaster University), P.Eng. (Ontario) 

m.d.minnick@gmail.com, minnick@mcmaster.ca  

SUPERVISOR: Professor R.N. Kleiman 

Number of pages: xxxi, 234, 187 

  

mailto:m.d.minnick@gmail.com
mailto:minnick@mcmaster.ca


iii 

 

Abstract: 

This work explores a new method of force generation for flying robots on the sub-cm 

wingspan scale: resonant curved piezoelectric cantilevers created using completely 

parallel MEMS fabrication.  It theorizes that because a resonating curved beam has a 

different drag coefficient on the upstroke than the downstroke, it should act as a fluid 

diode: a partial one-way gate for fluids, and thereby generate an asymmetric force over a 

symmetric one-degree-of-freedom flapping cycle.  It develops a simplified model for the 

large-amplitude resonant mode of thin circular arcs by analytically extending the resonant 

mode shape of straight cantilevers, shows that this shape is a better fit to experimental 

data than previous models, and shows that it accurately predicts the resonant frequency.  

It uses this resonant mode to compute the force on flapping curved arcs under a wide 

range of amplitudes, Reynolds numbers, and arc angles using computational fluid 

dynamics (CFD) simulations, and extends the concept of a drag coefficient from steady-

flow fluid mechanics to steady-state oscillatory fluid mechanics both for net force 

generation and power dissipation.  It develops a framework to analyze the CFD results in 

the broader context of a complete robot, and uses this framework to determine priorities 

for material selection, robot size, and flapping shape, depending on desired robot 

application.  It tests these theoretical predictions by creating prototype 7.6 mm wings out 

of 7.5 m thick x-cut quartz and SU-8, after developing and implementing a method to 

smoothly thin x-cut quartz leaving the surface free of dielectric-compromising pits using 

reactive ion etching (RIE).  Finally, it constructs a test chamber to measure the force, 

amplitude, and electrical parameters of the flapping wings under a variety of air pressures 

and demonstrates that the results are consistent with the theoretical predictions, indicating 

that this approach can in fact lead to successful flying microrobots.  
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List of Abbreviations and Symbols 

Glossary of Abbreviations, Acronyms, and Terms 

ANSYS: Suite of computer simulation programs developed by ANSYS, Inc. 

BvD: Butterworth-van Dyke; an electrical model for piezoelectric resonators which views 

them as an RLC branch in parallel with a capacitance 

Cantilever: Beam which is longer than it is wide or thick, and is rigidly supported on one 

end of its length 

CFD: Computational Fluid Dynamics (in general) 

CFX (ANSYS CFX): A commercial CFD program; part of ANSYS 

COMSOL: COMSOL Multiphysics: commercial software physics simulation 

environment 

DARPA: Defense Advanced Research Projects Agency, major funding agency in the 

United States with an annual budget for R&D in excess of 3 billion USD 

EDS: Energy-dispersive X-ray spectroscopy 

FEM: Finite element method; popular technique for numerically solving differential 

equations using computers 

Fluid Diode: Shape or structure which allows fluid to flow by (or through) it more easily 

in one direction than the other 

MATLAB: A commercial computer algebra system 

MAV: Micro Aerial Vehicle 

MEMS: MicroElectro Mechanical Systems 

NAV: Nano Aerial Vehicle - DARPA defines this as a flying vehicle with wingspan 

smaller than 15 cm and mass lower than 20 g [1] 

PCB: Printed circuit board 

QSU8_17a: The name of this work's most extensively tested pair of multimorph wings 

made of an x-cut quartz and SU-8 stack 

Quartz: Single crystal SiO2 (by this definition, "fused quartz" is not quartz at all), in its 

alpha phase (which is the stable phase at STP) 
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RS: This work’s assumed fundamental resonant mode shape for a curved cantilever 

presented in Section 2.2.6; RS stands for “Resonant Shape” 

SEM: Scanning electron microscope 

SHARCNET:  The Shared Hierarchical Academic Research Computing Network 

(SHARCNET) is a consortium of colleges, universities and research institutes operating a 

network of high-performance computer clusters across south western, central and 

northern Ontario; www.sharcnet.ca  

SU-8: UV-cured epoxy developed by MicroChem.  SU-8 comes in a variety of forms; 

specifically, this work used SU-8 2007 

 

List of Symbols: Variable Dictionary 

Alphabetical Listing (with Greek letters after the letters that type them 

in Symbol font): 

A = wing area = LB 

A4 = total area of all 4 wings = 4LB 

Ar0 = Wing relative bending amplitude (relative to wing length so that tip amplitude = 

0rLA ; for details, see the RS bending mode section) 

Ar0DCPerV = Transduction of voltage signals to wing amplitudes, without resonance 

effects.   This is the wing's low-frequency (“DC” compared to the resonant frequency) 

amplitude per applied volt 

B = wing width (AKA chord length).  B = L/4 is fixed to simplify the design.  This ratio 

of chord-to-wing length is found in most insects. 

c = wing curvature = 1/radius of curvature 

c0 = built-in wing curvature from strain mismatch in fabrication 

CDC = wing curvature amplitude 

dpiezo = piezoelectric coupling coefficient [m/V] 

maxdist  = maximum travel range of robot between recharges. 

http://www.sharcnet.ca/
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AvailE  = Total energy capacity of battery (or supercapacitor) 

0,free i  = latent strain in each layer of the wings after processing (but not bending to their 

natural bending angle) 

r = relative electrical permittivity

FN  = net force output per wing; average force it produces over many flapping cycles. 

f = frequency 

fres = resonant frequency 

fresCor = correction factor to retrieve resonant frequency of a curved cantilever using the 

flat cantilever formula 

DC = DC bending angle amplitude 

 built-in wing bending angle (steady-state angle with no external force or voltage on 

the wing, due to built-in strain)

h = total wing thickness 

Solar = Solar cell efficiency 

2.5

2 1.5

0

m
stack

c YE





 : stack-based parameter to minimize in order to allow maximum Re 

2

0

3

0

shape

rA


  : shape-based parameter to minimize in order to allow maximum Re

Solar = ambient solar power density 

L = wing length

mbattpower supply mass 

mcore = mass of the core of the robot, including the control circuitry but not the power 

supply or wings 

mwings = mass of the wings

mlinear mass density = hB*m

air = kinematic viscosity of air

AP  = average power consumed by flapping a wing 

2AP  = average power consumed by flapping 2 wings 
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4AP  = average power consumed by flapping 4 wings 

, ,Avail Avail Solar Avail BattP P P   = Total power available 

,Avail BattP  = Power available from payload battery (or supercapacitor) 

2

, 4Avail Solar Solar SolarP A L    = Power available from solar cells 

ElecP  = extra electrical power losses 

excessP  = excess power = total power available minus total power required 

requiredP  = total required power for flight including electrical losses 

Q = quality factor 

Rc = contact resistance (i.e., the electrical resistance of the electrical contacts) 

 = wing radius of curvature 

air = mass density of air 

e  = resistivity 

m = mass density of the stack (kg/m
3
); weighted average over all layers 

0,i = layer stresses during processing for layer i 

t,i, c,i = maximum layer tensile and compressive stresses at static bending for a layer i 

tres,i, cres,i = maximum layer tensile and compressive stresses at resonant bending for a 

layer i 

Tair = ambient temperature 

argch et  = Recharge time 

flightt  = Flight time; Maximum time length desired for a continuous flight 

ti = thickness of wing layer #i 

V = actuation voltage 

fwdv  = maximum forward velocity of flying robot 

VST = volume scan time; time it takes a swarm of robots made from a 4" wafer to travel 

500 m, then scan a volume of 500 m
3
 with a scan whose range is 1m / WExcessP . 
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Chapter 1 Introduction 

Section 1.1 Microrobotic Flight 

From the self-aware flying robot swarms of Prey by Michael Crichton to the in vitro 

nanoprobes of Star Trek, micro and nanoscale robotics is a staple future technology of 

science fiction.  Despite what these stories may suggest, disaster is not necessarily 

inevitable, and flying robots the size of fruit flies have numerous helpful potential 

applications in reconnaissance, search and rescue, chemical monitoring, and 3D 

visualization. 

 

The United States Defense Advanced Research Projects Agency (DARPA) program for 

nano air vehicles (NAVs) aims to develop "an extremely small, ultra lightweight air 

vehicle system", where "extremely small" means less than 15 cm wingspan and "ultra 

lightweight" means less than 20 grams of mass [1]
1
.  To date, very few technologies exist 

in this range and only on the very edge: DARPA's Hummingbird NAV, shown in Figure 

1-1, has a 16 cm wingspan and 19 g mass.  Still, robotic flight on this scale is sufficiently 

impressive that Time Magazine named DARPA's Hummingbird in its 2011 list of The 

Best 50 Inventions, one of only two DARPA-funded projects to make the list that year 

[3].  The Hummingbird is slightly more massive than the 16 g Black Hornet helicopter-

type unmanned aerial vehicle (UAV) operated by the British Army, shown in Figure 1-2.  

Compared to the 0.3 mg mass-scale of a fruit fly ([4], [5]), there is plenty of room left to 

innovate. 

 

                                                 

1
 15 cm wingspan may seem large for a "nano" aerial vehicle, but this distinguishes it from DARPA’s 

earlier “micro aerial vehicle” program, which included robots with 74 cm wingspans [2]. 
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Figure 1-1: DARPA's hummingbird NAV [6] 
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Figure 1-2: The 16 g Black Hornet UAV currently operated in Afghanistan by the British Army [7] 

 

In fact, we may run out of names to describe small flying robots before we reach the size of a fruit fly.  

In 2005, DARPA's definition of an NAV was about half the size of their current Hummingbird NAV: 

maximum takeoff mass less than 10 g and largest dimension less than 7.5 cm [8].  Using this 

definition, Wood et al. extended this in [8] to define a pico air vehicle (PAV) as a flying robot with a 

largest dimension less than 5 cm and a takeoff mass less than 500 mg, scaling length by a factor of 

two-thirds and mass by a factor of one-fourth.  This trend of naming is continued in  

 

Table 1-1.  To extend the table down to the 0.3 mg scale of a fruit fly requires a new SI 

prefix for 1000
-9

, which for present purposes I will call ‘xeno’, after the Tsou word ‘sio’, 

meaning 9, and the Greek mathematician Zeno, famous for infinitely dividing distances.
2
 

 

 

 

                                                 

2
 The matching metric prefix for 1000

+9
 would then be 'xena' 
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Table 1-1: Classifying UAVs by metric prefix 

 L L^3 m m/L^3 

 [m] [m^3] [kg] [kg/m^3] 

Micro air vehicle (MAV) [8] 1.50E-01 3.38E-03   

Nano air vehicle (NAV) [8] 7.50E-02 4.22E-04 1.00E-02 2.37E+01 

Pico air vehicle (PAV) [8] 5.00E-02 1.25E-04 5.00E-04 4.00E+00 

Femto air vehicle (FAV) 3.33E-02 3.70E-05 1.25E-04 3.38E+00 

Atto air vehicle (AAV) 2.22E-02 1.10E-05 3.13E-05 2.85E+00 

Zepto air vehicle (ZAV) 1.48E-02 3.25E-06 7.81E-06 2.40E+00 

Yocto air vehicle (YAV) 9.88E-03 9.63E-07 1.95E-06 2.03E+00 

"Xeno" air vehicle (XAV) 6.58E-03 2.85E-07 4.88E-07 1.71E+00 

 

Whether or not we can decide what to call them, fruit-fly sized robots are far removed 

from the fliers of today - but why is this?  Any non-tethered flying robot intended to work 

in the dark would need 1) an energy storage mechanism (i.e., a super capacitor or a 

battery).  The robot would also need 2) thrusters (e.g., wings) to turn this energy into a 

flight force.  In order to know where it is and be able to scout its environment, the robot 

would also need 3) sensors (e.g., cameras, accelerometers, gyroscopes, and specific job-

related sensors, such as chemical sensors).  It would likely also need 4) wireless 

communications capability to interact with its control centre (and possibly other robots).  

Finally, it would need 5) computer control circuitry to manage all of this.  Of these five 

areas, all except for the thrusters are already active fields of research for applications 

unrelated to micro flying robots.  Therefore, research on the thrusters, the physical 

mechanism causing flight, would have the biggest impact toward their realization. 

 

Many groups are currently researching flight mechanisms for extremely small 

microrobots.  Of these, most are pursuing copying insect flapping, including the 

incredibly small Harvard RoboBee, shown in Figure 1-3 with its 80 mg mass and 3 cm 

wingspan which, as of May 2013, can now hover and land with power provided by small 
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wires [9].  This is a huge accomplishment in the field - demonstrating hovering for a 

known mass determines the force output of the wings and thus their effectiveness with 

various power supplies attached. 

 

 

Figure 1-3: The biomimetic Harvard RoboBee has an 80 mg mass and can lift itself and land with 

power provided by wires [10] 

As design sizes scale down further and the number of robots manufactured from a single 

chip increases, every serial fabrication step becomes relatively more costly making 

parallel fabrication increasingly important.  Figure 1-4 shows the RoboBee's fuselage 

assembly structure which uses origami to facilitate mass-production and self-assembly, 

allowing parts to be manufactured in parallel processes, and individually snapped together 

afterwards [11].  A completely parallel MEMS fabrication approach would represent a 

large cost-savings for mass-produced microrobots. 
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Figure 1-4: The fuselage assembly structure of the Harvard RoboBee facilitates mass-production by 

using origami folding techniques [11] 

To date, self-powered autonomous flight on the scale of the RoboBee is unheard of, and 

even force measurement is very rare.  In fact, it is a publish-worthy achievement to build 

a structure on this scale that can produce similar frequencies and/or stroke amplitudes as 

insects, especially using MEMS fabrication [12], [13], [14]. 

 

But what if looking at how much better insects are than our current robots is exactly what 

is limiting us?  Sure, insects are great fliers - but is there another way to fly that, while not 

as optimal as nature's solution, is easier to build and nevertheless works?  Indeed, the 
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neurons of the human brain have a lot of advantages over transistors, but that certainly 

doesn't mean that computers based on transistor technology aren't useful. 

 

So then, what other ways could we generate force besides the way an insect does it?  For 

that matter, how does an insect fly? 

Section 1.1.1 Flight Mechanisms 

Across natural and man-made objects, there are two general approaches for flight, which I 

classify as "lift flight" and "thrust flight". 

 

Lift Flight 

Large scale fliers like most birds tend to use an approach similar to planes: having large 

wings and relying on a forward motion (provided by a thrust force) and complex wing 

shape to generate a lift force which opposes gravity, as shown in Figure 1-5.  Since the 

lift force relies on forward velocity rather than forward force, lift flight fliers can also 

glide: allow lift to balance weight for a time with no thrust force, as shown in Figure 1-6. 

 

 

Figure 1-5: Force diagram for an airplane; a lift flight flier [15]  
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Figure 1-6: An eagle gliding using lift-flight [16] 

 

Thrust Flight 

In contrast, smaller scale fliers like hummingbirds and insects tend to use flapping to 

produce a thrust force directly opposing gravity, as shown in Figure 1-7.  These fliers are 

characterized by their ability to hover, but must constantly keep flapping to maintain 

altitude (Figure 1-8).  Helicopters and rockets use a similar flight approach by this 

definition. 
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Figure 1-7: Force diagram for a helicopter; a thrust flight flier (adapted from [17]).  

 

 

Figure 1-8: Hummingbird hovering; an example of thrust flight [18]. 
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So which strategy is best for a robot on the fruit fly scale?  Given that smaller species 

favour thrust flight, perhaps this motif is superior for smaller scales, but can we prove 

this?  In Appendix A, I calculate that the required power for flight scales with wing length 

L in different ways for both types of flight.  For thrust flight, required power scales with 

L
3.5 

for large sizes, and with L
2
 for small sizes.  For lift flight, required power scales with 

L
3.5

 on the largest sizes, L
1.25

 for intermediate sizes, and  L
0.5 

for the smallest sizes.  On the 

smallest sizes then, miniaturizing a flyer to 1/4
th

 its length results in 1/16
th

 the required 

power for thrust flight, but only half the required power for lift flight.  It is not surprising 

then that thrust flight dominates for nature's smallest fliers.  Figure 1-9 plots the ratio of 

available to required power vs. wing length for the two flight mechanisms.  Indeed, thrust 

flight dominates for sufficiently small sizes. 
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Figure 1-9: 0
th

-order model ratio of available to required power for thrust and lift flight for battery 

power alone (top) and battery power + solar power (bottom), length in meters 

 



1-12 

 

Section 1.1.2 Type of Thrust Mechanism 

Even within thrust flight there are several different strategies: 

1. Rotary motion,  

2. Rocket propulsion,  

3. 3 Degree of Freedom (DoF) flapping, and  

4. 1 DoF flapping. 

 

Rotary motion involves using propellers to generate a net force.  This is the thrust flight 

strategy of helicopters, but is not very suitable for small scales because of friction and 

very difficult fabrication (Figure 1-10). 

 

Figure 1-10: Complexities of a helicopter rotor [19] 

 

Some work on micro rocket propulsion has been done at MIT and Berkeley [20], but this 

is not suitable for the kind of continuous flight a robot would require. 
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3 DoF flapping means moving wings in a complicated shape in three dimensions.  Insects 

manage to do this passively ([21], [22]), but building an actuator like that on the same 

scale is extremely complicated and certainly beyond my abilities.  As mentioned before, 

there are several very talented teams working on this elsewhere. 

 

 

 

Figure 1-11: 3 DoF flapping motion of a fruit fly, from [23]. 
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1 DoF flapping means moving the wings up and down along the same path, generating a 

net force due to some asymmetry in the shape of the wings themselves.  For instance, 

consider the wings from Figure 1-12.  These wings have a rigid support structure that 

allows the flexible flap to release from the wings on the upstroke, but not on the 

downstroke.  Essentially, these wings are "fluid diodes" (analogous to electrical diodes): 

they allow fluids (i.e., air) to pass through them more easily in one direction than the 

other. 

 

Figure 1-12: Fluid diode wing using one large flap as envisioned by Kubo et. al. in 1993 [24]. 

 

Fluid diode wings have also been proposed using a single large flap on a rigid grid, as in 

Figure 1-13.  This approach makes it clear why the flap can only open in one direction. 
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Figure 1-13: Fluid diode wings proposed by Chan et. al. in 2004 [13]. 

 

Both Kubo in 1994 and Chan in 2004 managed to flap the structures but did not 

demonstrate a net force from them ([24], [13]).  Past studies on fluid diode wings have 

produced potentially functional wings and flapped them at frequencies close to the ones 

that insects use, but have not demonstrated any net force, let alone specifically measured 

it.  Managing to do so would be a significant contribution to the current field of flying 

microrobots. 

 

Section 1.2 Basic robot design for 1 DoF Flight 

Wings using 1 DoF flapping require simple fabrication compared to those using 3 DoF 

flapping.  However, 1 DoF flapping is not actually seen in nature, which suggests that it is 

inferior to 3 DoF flapping.  Further, 3 DoF flapping designs entail enough control to steer 

with only 2 wings, but 1 DoF flapping does not have this option because each wing can 

only control the magnitude but not the direction of its thrust.  Nevertheless, it may be 

possible to build robots that fly with 1 DoF flapping using at least 4 wings. 

 

Consider Chan et al.'s robot design, shown in Figure 1-14.  By reducing the force output 

of the front wings, the robot will tilt and part of its thrust force will resolve to accelerate 

the robot forward through the air. 
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Figure 1-14: Chan et al. 2004's robot design [13], labeled and displaying force vectors. 

 

This would also work with the wings in an H-pattern rather than an X-pattern, as shown 

in Figure 1-15.  This robot design consists of curved piezoelectric unimorph wings, a 

central fuselage for control, and a hanging power supply for pendulum-action stability.  

The H-pattern is necessary because the piezoelectric effect in quartz couples vertical 

electric fields (those in the crystal x-direction) to only one of the transverse directions (the 

crystal y-direction). 
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Figure 1-15: Robot Design using Curved Cantilever Wings, modelled in ANSYS 

 

In either design, the force output to any one wing can be adjusted by changing the voltage 

amplitude or duty cycle of the signal applied to that wing, and by changing the relative 

force output of the front vs. back wings, the robot can tilt and subsequently move 

forward. 

Section 1.3 Other Fluid Diode Wings 

A flexible flap on a static grid may not be the only way to build a fluid diode wing.  The 

concave side of a hemisphere has a significantly larger drag coefficient than its convex 

side Figure 1-16.  This means that if a hemisphere moves up and down in a fluid, on 

average, it will generate a net force. 
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Figure 1-16: Hemisphere moving down shows a higher drag coefficient in steady state (0.55) than 

when moving up (0.19) 

Now, consider a curved cantilever in its fundamental resonance, which causes it to open 

and close, as shown in Figure 1-17.  Since on average the shape is a curved hemisphere 

section, would it too generate a net force? 

 

 

Figure 1-17: An opening and closing curved cantilever with arc-angles labeled.  This is another 

example of a fluid diode wing. 
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After a series of simulations of opening and closing cantilevers the answer seems to be 

yes.  Even though a resonating curved cantilever sweeps back and forth along the same 

path, its fluid diode properties generate a net force in the process. 

 

But would the net force from a resonant curved cantilever be enough for flight?  There is 

a lot of information needed to answer this question.  For one, we need to know the large-

amplitude resonant shape of curved structures.  Next, we need the force generated by 

flapping in this manner, and the power dissipated in the process.  Furthermore, we need a 

way to evaluate whether the force generated and power dissipated would lead to a 

successful robot. 

 

To solve these problems, I fabricated thin curved cantilevers which I could resonate.  To 

find a model for the flapping shape, I analytically extended the resonant mode of a flat 

cantilever to curved cantilevers, and showed that it matched the resonant shape of the 

fabricated structure.  To determine the net force and dissipated power, I carried out tens 

of thousands of computational fluid dynamics (CFD) simulations and compared these to 

the measured net force and power amplitude of the fabricated structure.  To determine 

whether this would lead to a successful robot, I developed an analytical framework for 

evaluating resonant wings in the context of a complete robot, and demonstrated that this 

flapping actually can lead to successful flying robots. 

 

To summarize, this thesis is about resonant piezoelectric cantilever fluid-diode wings for 

monolithically-fabricated NAVs on the fruit fly scale, where: 

1. "monolithically fabricated" means built using parallel processing techniques (as in 

the integrated circuit industry) rather than assembly in a serial manner, 

2. "NAV on the fruit fly scale" means a flying robot with a wing span of 2 mm - 

2 cm, and a mass on the order of 1 mg, 

3. "resonant piezoelectric cantilever" means the wings are stacks of piezoelectric 

layers (and possibly passive layers) which move in response to an applied voltage, 
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and are operated at resonance (specifically, their fundamental transverse resonant 

mode), and 

4. "fluid diode wing" means a wing which allows air to pass by (or through) it more 

easily on the upstroke than the downstroke, and so generates an asymmetric force 

from a symmetric flap cycle. 

Section 1.4 Overview of Contribution 

This thesis project has made a number of contributions towards realizing this type of 

NAV: 

1. Determined the large-amplitude resonant shape of a curved cantilever. 

2. Used CFD simulations to determine the force output of wings flapping with this 

resonant shape of a curved cantilever (i.e., of the shape found in step 1), and the 

power they dissipate in the process, over a large range of three parameters: 

Reynolds number, flapping amplitude, and initial curvature. 

3. Created a complete big-picture framework to combine the force and power data 

from the CFD simulations with a piezoelectric stack design and determine useful 

information about the NAV each setup would lead to in order to determine both 

scaling rules for robot design and actual predicted robot specifications. 

4. Developed a method to selectively thin x-cut quartz wafers to < 10 m thickness 

using shadow masking and a standard parallel-plate (non-ICP) reactive ion etching 

(RIE) system, with a sufficiently smooth surface to be electrically insulating and 

usable as robot wing sections. 

5. Fabricated curved wing structures with x-cut quartz and SU8 for testing theory 

predictions. 

6. Tested quartz:SU8 wings and demonstrated that the curvature, resonant frequency, 

resonant shape, flapping amplitude, electrical characteristics, and net force they 

produce are consistent with the predictions from the CFD simulations and 

analytical framework, including the scaling across different gas pressure ranges. 
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7. Devised several other possible wing structures and calculated the qualities of the 

robots they would lead to in order to map out potential future directions for this 

field. 

 

This thesis will present these contributions in this order, explaining background 

information and theory as-needed. 
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Chapter 2 Curved Cantilever Resonance 

A cantilever is a beam with one dimension longer than the other two and one end of the 

long dimension rigidly clamped.  Resonant analysis of straight cantilevers is well 

established in literature (e.g. [25]), but descriptions of curved cantilever resonance are 

surprisingly sparse.  Curved cantilevers result whenever different layers have a strain 

mismatch after fabrication.  While this is usually undesirable in MEMS, in this project it 

is useful: curved cantilevers act as fluid diodes and so are potentially usable as microrobot 

wings.  To design these wings, we need information about cantilevers: 

1. What natural bending angle (i.e., bending angle without any externally-applied 

force or voltage) will a given cantilever have? 

2. What is the resonant frequency of a curved cantilever? 

3. What is the resonant shape of a curved cantilever? 

 

 

Figure 2-1: A cantilever with length L, width w, and thickness d supporting a weight W at its tip, from 

[26] 
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In this chapter, I collect and present important equations on cantilever curvature and 

extend the math of straight cantilevers to determine the resonant shape and frequency of 

curved cantilevers. 

Section 2.1 Introduction: Bimetal Strip Curvature 

Suppose you bond two flat thin metal strips with different thermal expansion coefficients 

and then change the temperature.  One layer wants to expand more than the other does, 

and the result is a curved structure, as shown in Figure 2-2. 

 

Figure 2-2: Variable numbering for layers in a bimorph; taken from [27] and modified to show L & 

B. 

In [27],  “Analysis of Bi-metal Thermostats”, 1925, Timoshenko shows that the curvature 

(c = 1/, where  is the radius of curvature) is related to the longitudinal thermal strains in 

its top (#1) and bottom (#2) layers via: 
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where 1

2

a
m

a
  is the ratio of thicknesses and 1

2

E
n

E
  is the ratio of Young’s moduli, and 

the strains are 1_ 2 1_1&  (the first subscript on the strains refers to the direction, in this 

case, 1 = x, while the second refers to the layer: 1 = top, 2 = bottom). 
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Strain is the change in length per unit length: 0

0

L L

L



 .  Where the strains are thermal, 

as in Timoshenko’s analysis, T    (where   is the linear thermal expansion 

coefficient and T  the change in temperature), and so: 
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The piezoelectric effect is another source of longitudinal strains.  For the popular 

piezoelectric material lead zirconium titanate (PZT) (or any material with a nonzero 31d  

coupling coefficient), a field E3 in the z-direction causes a proportional strain 1 31 3d E    

in the x-direction.  By replacing thermal strains with piezoelectric ones, Timoshenko’s 

formula can just as easily calculate the curvature of a piezoelectric bimorph: 
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Substituting applied voltages in place of electric fields, this becomes: 
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If the bimorph is symmetric and poled so that 31_1 31_ 2d d  then you should apply 

oppositely directed fields for maximum bending angle.  This is an advantage over thermal 

bimorph designs: with the piezoelectric effect, it is possible to have one layer compress 

while the other extends to enhance the resultant curvature. 

 

Because there are two active layers, the structure described above is commonly called a 

"bimorph".  For the piezoelectric cantilever, it also is possible to have only one active 



2-25 

 

layer, the other being nonpiezoelectric.  In that case, the stack is called a "unimorph", and 

the curvature is given by the same formula but with one of the voltages equal to 0: 
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In any case, the curvature is proportional to 31 /d E h , and the proportionality depends on 

the two layers' thickness ratio m and stiffness ratio n.  This proportionality, 
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, is plotted in Figure 2-3. 
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Figure 2-3: Timoshenko Curvature Coefficient 

The maximum occurs around the line log 2logn m    
2

1
m

n
 .  This formula is how 

to maximize curvature for a fixed pair of materials, electric field, and thickness.  E.g., if 

the top layer is made from a material that is twice stiff as the bottom layer (n = 2), then it 

should be only one quarter the thickness (
2

1 1

4
m

n
  ) in order to maximize curvature for 

a given strain. 
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Unfortunately, curvature is not the only thing that changes when changing materials and 

their relative thicknesses.  For instance, material choice has a big effect on the mass of the 

wing, which affects robot weight, energy stored per displacement, and a number of other 

important robot parameters in subtle ways.  This illustrates the need to consider the wings 

in the context of a complete robot when making wing design choices.  This formula is a 

good start, but the framework in Chapter 4 does a much better job of material and 

thickness selection when considering the big picture of the robot as a whole by 

considering the effects of more than two layers. 

Section 2.2 Theory of Cantilever Statics 

The Timoshenko formula works for a two-layer cantilever, but what about a cantilever 

with three or more layers?  Further, how does the cantilever's curvature translate into the 

angle the cantilever bends through, and the displacement of any point on the beam?  What 

stresses and strains manifest in various beam layers?  This section presents the answers to 

these more detailed cantilever statics questions. 

Section 2.2.1 Curvature (and Bending Angle) 

Curvature c is the inverse of the radius of curvature : 
1

c


 .  By definition, positive 

radii of curvature cause wings to bend up. 

 

Curvature is related to wing length L and bending angle  via the arclength formula:  

1
L c

L





     

 

In reality, radius of curvature (and hence curvature) varies through the thickness of the 

material, but for typical dimension ratios for microrobotic wings, this variance is small, 

and can be neglected in certain calculations.  For example, an L = 8 mm long wing with a 

thickness of h = 20 m and a bending angle of  = /2 will have a radius of curvature of 
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0 = L/ = 5.093 mm at the centre, while the wing bottom has bottom = 5.103 mm, and the 

wing top has top = 5.083 mm. 



Curvature of a beam depends on the layer materials and thicknesses, and the strains in the 

layers.  I distinguish between the static, DC "amplitude", and resonant amplitude 

curvature. 

1. c0, Static curvature (AKA precurvature): the curvature present with no voltage 

signal or external stress. 

2. CDC, DC "amplitude" curvature: the extra curvature beyond the static curvature 

produced by a DC or low frequency voltage signal of a given magnitude. 

0DC DCC c c  . 

3. C or Cres: Resonant amplitude curvature: the amplitude of the curvature produced 

by a voltage signal at the wing's resonant frequency.  res DCC QC , where Q is the 

quality factor. 

Often we will use bending angle rather than curvature, but the same nomenclature 

applies: 

1. 0 0c L  : static bending angle 

2. DC DCC L  : DC bending angle "amplitude" 

3. res DCQ    : resonant bending angle amplitude 

Section 2.2.2 Multimorph Curvature 

In reality, piezoelectric stack actuators are rarely truly unimorphs or bimorphs, because 

the electrical contacts have nonzero thickness and so affect the mechanical properties of 

the stack.  A piezoelectric stack with an arbitrary number of active and passive layers is in 

general known as a "multimorph". 

 

Multimorph curvature was explained by DeVoe et al. in [28], and is summarized below. 
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Curvature for a multimorph is: 

1

1

1

1
1

2

c






 



DA C

DA B

 

where 
1

1 2
1

1

1

1

2 2 2

m
m

jm
j

i i

i

t t t
t t

E I







 
   

 



D  

 

1 1 2 2

2 2 3 3

1 1

1 1
0

1 1
0

0 0

1 1
0

1 1 1 1

m m m m

A E A E

A E A E

A E A E 

 
 
 
 

 
 
 
 

 
 
 
 

A ,

1 2

2 3

1

0

m m

t t

t t

t t

 
 


 
 
 

 
  

B , 

_ 2 _1

_ 3 _ 2

_ _ 1

0

free free

free free

free m free m

 

 

  

 
 


 
 
 

 
 
 

C , 

Layers of the stack are numbered from bottom to top, positive c indicates an upward 

curvature, iA  is the cross sectional area of the ith layer (Ai = Bti), ti is the thickness of the 

ith layer, iE  is the Young’s modulus of the ith layer, _induced i  is the total induced strain 

(piezoelectric plus thermal) in the ith layer, and 

3

12

i

i

Bt
I   is the second moment of inertia 

of the ith layer of the beam about its center. 

 

Notice that 3EI Bh , so that  1

3

1 1
h Bh

Bh h

  
  
 

DA , and so, like bimorph curvature, 

this: 

1. is proportional to the induced strain, and 

2. is inversely proportional to the thickness. 
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This is programmed using MATLAB and compared with the Timoshenko formula for 

curvature in Appendix C. 

Section 2.2.3 Flexural Rigidity 

The quantity EI, the Young's modulus multiplied by second moment of area, is called the 

"flexural rigidity" and is a very important parameter for beam bending, being analogous 

to the spring constant for extension or compression.  For a uniform material, the Young's 

modulus is a constant and we can find the second moment of area is given by 

2

A

I y dxdy  , where y is the distance from the neutral axis of the bending and the integral 

is taken over a cross section of the material, giving 31

12
I Bh .  For a hybrid cantilever 

with multiple layers having different elastic properties, the formula is more complicated, 

but we can still find an effective EI which describes how the beam behaves. 

 

In any case, the flexural rigidity: 

1. has dimensions of 4 2

2

N
m N-m

m
  , 

2. determines the bending moment M that a beam produces in response to a changed 

curvature c : M EI c     (analogue: F k x   ), and 

3. determines the potential energy stored in a curved beam:  
2

1
2

U EI c L   

(analogue:  
21

2
U k x  ). 

Section 2.2.3.1 Flexural Rigidity for Multimorphs 

Following the work of [29], the flexural rigidity of a multimorph is: 

  2

0i i i i iEI E I A E y Y    (2.1) 

where 
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1. Y  is the AE centroid: i i i

i i

A E y
Y

A E




, 

a. Ai = Bti is the cross-sectional area of the i
th

 layer, and 

b. Ei is the [effective] Young’s modulus of the i
th

 layer in the longitudinal 

direction, 

2. iy  is the vertical centre of mass of the i
th

 layer, and  

3. 0iI  is the moment of inertia of the ith rectangular section about its centroid; 

3

0
12

i
i

Bt
I  . 

This is programmed in MATLAB and compared with the previous formula in Appendix 

B.  Note that still, 3EI Bh . 

Section 2.2.4 Beam Displacement due to Curvature 

Suppose we have a cantilever spanning internal coordinates  , 0.. , ..
2 2

h h
s z L

 
 
 

.   

To elaborate, the internal coordinates  ,s z  refer to a specific block of matter in the 

cantilever, while external coordinates  ,x y  refer to a specific point in space.  The point 

   , 0.5mm,0s z   is always the same point on the cantilever, while    , 0.5mm, 0x y   

is always the same point in space, as shown in Figure 2-4. 
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Figure 2-4: Variables for beam displacement; The beam has thickness h and length L.  Location 

within the beam is determined knowing internal coordinates arclength s and perpendicular position 

z.  Beam deformation is described by knowing the angle with respect to the horizontal at each 

position along the arclength, (s).  Displacement of each point depends on s, , and z.
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Given the curvature 1/c  , what is the displacement    , , & , ,x s z c y s z c   of each 

point on the cantilever,  , ,
x

s z c
y

 
 

 
r ?  In words, this problem is  “determine the point 

in space of a point on the cantilever given the cantilever curvature”.  In the Appendix F, I 

derive that the solution to this geometric problem is: 

sin sin1

1 cos cos

s sc sc sc
z

z sc scc

      
       

     
r  

 

Section 2.2.5 Piezoelectricity and Hook’s Law: 

Piezoelectric materials have their charge displacement and stress fields coupled together, 

so that an electric field applied across the material leads to a stress and/or strain, and vice 

versa.  This happens whenever the crystal is made up of atoms with different charges and 

is sufficiently asymmetric that applied stresses can cause a charge displacement, as in 

Figure 2-5. 

 

Figure 2-5 Crystal origin of the piezoelectric effect, from page 11 of [30] 

Piezoelectricity is modelled by the piezoelectric constitutive relations.  These couple the 

linear mechanical behaviour (Hooke’s law) and electrical behaviour of the material via 

the piezoelectric coupling coefficient.  In stress-charge form: 
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,ij ijkl kl kij k

i ijk jk ij j

T c S e E

D e S E

 

 
 

and in strain-charge form: 

E

ij ijkl kl kij k

T

i ikl kl ik k

S s T d E

D d T E

 

 
 

where subscripts denote directions; e.g., T11 is linear stress in the x-direction, while T12 is 

the xy-shear. 

Section 2.2.5.1 Reduced Matrix Notation 

Since the 2
nd

 order stress and strain tensors are symmetric, we can reduce their 9 matrix 

components into a 6-by-1 vector with the following convention: 

1 11 2 22 3 33

4 23 5 13 6 12

, , ,

2 , 2 , 2

S S S S S S

S S S S S S

  

  
 

This subsequently reduces the 3
rd

 & 4
th

 order coupling coefficient tensors to 3-by-6 and 6-

by-6 matrices: 

E

p pq q kp k

S

i iq q ik k

T c S e E

D e S E

 

 
, or 

       

      

TE

S

T c S e E

D e S E

   

    

 

Written out in full, 

1 111 12 13 14 15 16

2 21 22 23 24 25 26

3 31 32 33 34 35 36

4 41 42 43 44 45 46

5 51 52 53 54 55 56

6 61 62 63 64 65 66

E E E E E E

E E E E E E

E E E E E E

E E E E E E

E E E E E E

E E E E E E

T Sc c c c c c

T Sc c c c c c

T c c c c c c

T c c c c c c

T c c c c c c

T c c c c c c

  
  
  
  

   
  
  
  

      

11 21 31

2 12 22 32

1

3 13 23 33

2

4 14 24 34

3

5 15 25 35

6 16 26 36

e e e

e e e
E

S e e e
E

S e e e
E

S e e e

S e e e

   
   
     
     

     
         
   
      

 

and 
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1

2

1 11 12 13 14 15 16 11 12 13 1

3

2 21 22 23 24 25 26 21 22 23 2

4

3 31 32 33 34 35 36 31 32 33 3

5

6

S S S

S S S

S S S

S

S
D e e e e e e E

S
D e e e e e e E

S
D e e e e e e E

S

S

  

  

  

 
 
        
        

         
               
 
  

 

 

The coupling coefficients in stress-charge and strain-charge form are related by  

   

   

   

1

1

1

1

E E

T TE

E

T TT E S S

s c

d c e

d e c

c e d  









      

   

   

                 

 

 

The crystal class determines the value of the coupling coefficient tensor entries.  Quartz, 

for instance, has this set of matrix forms: 

11 12 13 14

12 11 13 14

13 13 33

14 14 44

44 14

14 66

11 11 14 11

14 11 22

33

0 0

0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 , 0 0

0 0 0 0 0 0 0 0

c c c c

c c c c

c c c

c c c

c c

c c

e e e

e e







 
 


 
 
 

 
 
 
  

   
   

 
   
      

 

 

We can obtain the specific values of coefficients from COMSOL’s MEMS library: 
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 

 

 

2.3 2.3 0 0.67 0 0
pN

0 0 0 0 0.67 4.6
C

0 0 0 0 0 0

12.77 1.79 1.22 4.5 0 0

1.79 12.77 1.22 4.5 0 0

1.22 1.22 9.6 0 0 0 pm

4.5 4.5 0 20.04 0 0 m-Pa

0 0 0 0 20.04 9

0 0 0 0 9 29.1

4.52 0 0

0 4.52 0

0 0 4.68

r

d

s



   
 

  
 
  

   
 
 
 
  

  
 

 
 

 

 
 


 
  

 

 

Section 2.2.6 Stress and Strain: Definitions and Relations 

Strain is the change in length per unit length: 0

0

L L

L



 .  Axial stress is the axial force 

per unit area: 
F

A
  .  The stress and strain in a multimorph vary across the layers and 

with bending.  If we assume that plane sections remain plane (no sliding of layers), then 

the stress and strain within a given layer are uniform in the absence of bending, linear 

along the thickness direction with discontinuities only at the layer junctions, and constant 

along the longitudinal direction. 

 

For a free object in the linear region acted on by an external stress, the external stress 

produces a proportional strain in the linear region 
E


   (with appropriate additions for 

extra dimensions, depending on boundary conditions). 
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Composite multimorph strain analysis is more complicated, especially in the presence of 

piezoelectric, thermal, and polymerization effects.  For convenience, define three distinct 

types of strain: 

1. Actual strain, is the change in length per unit length relative to some reference 

length. 

2. Free strain, free , is the strain that would happen if the layer were free of stresses 

from other layers.  This is due to thermal strain, piezoelectric strain, etc. 

 Mechanical strain, mech = / E , is the forced strain component.  This is due to a 

physical push or pull from other layers.

 

The first of these, actual strain  is measured relative to some reference point, usually 

defined as when the multimorph is assembled.  It is a combination of mechanical strain 

(the strain provided by stress) and the free strain (the strain, relative to the reference 

point, that would occur in each layer if it were liberated from the multimorph): 

mech free     

These definitions of strains are unique to this work, and prove very helpful aids in 

discussing multimorph bending.  The next three sections provide further detail on these 

three strain definitions. 

Section 2.2.6.1 Total Strain 

As long as the multimorph stays intact, then the total longitudinal strain of any point 

relative to when the multimorph was assembled is linear in z, the distance from the 

bottom of the multimorph, 0 bending    , where 0  is the arclength change of the 

bottom, and 
bending z

L


    is the change in the strain due to bending.  For positive- 

bending (upward bending), higher layers (higher z) experience more compression than 

lower layers. 
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Section 2.2.6.2 Free Strain 

Free strain is the strain that would occur if the layer were released. 

0

free thermal polymerization deposition piezo

free free piezo

    

  

   

 
 

thermal T    

polymerization  = some fixed value 

3 31piezo E d  , (or appropriate) 

 

Since the piezoelectric strain is the only time-varying strain (for piezoelectrically-actuated 

wings), break the free strain into 0free  and piezo . 

 

Negative values for free strain parameters mean the material would initially shrink if 

freed from the multimorph. 

Section 2.2.6.3 Mechanical Strain 

mech
E


   is constant within the layer until bending happens, after which it is a linear 

function of z: 

0

0

mech free

mech bending free

free

z

E

  

   


 



 

  

  

 

 

Hence, we can proceed like DeVoe et al. in [28] and break up the mechanical strain into 

an axial and bending part:  

 

mech axial bending

i i i

i i i

z F z

E A E

  





 

 
 



2-39 

 

where iz  is the coordinate of the point relative to the centre of the ith layer, Ai is the area 

of the ith layer, Ei is its Young’s modulus, iF  is the total axial force experienced by the 

layer, r is the radius of curvature of the multimorph (assumed not to vary significantly 

across layers; h  ), and i  is the stress in the ith layer. 

Section 2.2.6.4 Curvature from Free Strains: C0 and Cpiezo 

As mentioned above, its useful to break the free strain into built-in strain and voltage 

dependent strain for each layer: 

31
0

free thermal polymerization piezo

free

d V

t

   



  

 
 

These lead to  0 & piezo VC C  and, through left-multiplication by 
1

1

1

1
1

2





DA

DA B

, to c0 

& cPiezo, and hence  0 & DC V  , respectively.  DC and piezoC  are both directly 

proportional to V. 

Section 2.2.6.5 Stress at the Bottom and Top of Each Layer 

Stress is related to mechanical strain: mE   

For a material that bends up ( 0  ), the peak compressive strains are located at the top 

of each layer while the peak tensile strains are located at the bottom of each layer.  

   

   

/ 2

/ 2

mech axial bending

i bot ii

i i i

i top ii

i i i

z tF

E A E

z tF

E A E

  









 


 


 

 

This is calculated in the Matlab program found in Appendix E. 
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Section 2.2.6.6 Modifications to E & d31 for Cantilevers to Account 

for 3D Effects 

DeVoe et al. in [28] mentions that to account for 3D effects, one must replace the 

Young’s modulus and piezoelectric coupling coefficients with effective 3D ones: 

2

1
'

1
E E





 and  31 31' 1d d   .  This results from the plane-strain boundary 

condition, where the cantilever's boundary conditions prevent it from straining in the B or 

h directions.  Even then, the effective piezoelectric coupling coefficient equation is only 

appropriate for the "typical" piezoelectric case where d31 = d32.  For a III-V material with 

d31 = -d32, I have found using COMSOL that actually  31 31' 1d d   .  For x-cut quartz 

with the crystal x-axis in the cantilever's thickness direction and the crystal y-axis in the 

cantilever's length direction, I have found that 21 21' 106%d d .  Crystal quartz also is 

sufficiently asymmetric that even the strain condition must be modified, to 

Eeffective = 86.373 GPa.  These apply for both resonant frequency and curvature 

calculations. 

These are derived using COMSOL in Appendix H. 

Section 2.3 The RS Bending Mode 

The small-amplitude resonant mode shape of a flat beam is fairly straight-forward to 

derive.  I repeat such a derivation in Appendix D, resulting in a displacement shape as a 

function of arclength s along a beam of length L: 

  1

cos cosh
ˆ cosh cos sin sinh

sin sinh
w s A s s s s

L L L L

     

 

   
        

 

and curvature: 

 
2 2

12 2

ˆ cos cosh
cosh cos sin sinh

sin sinh

w
c s A s s s s

s L L L L L

      

 

    
            

 

with resonant frequency: 
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2

3 2resStraightBeam

m

EI h

Bh L
 


  

where B is the beam's width, h is its thickness, m is its density, EI is flexural rigidity (

3EI Bh ), and   are the roots of cos cosh 1 0    .  For the first mode, 1.875  .  

Often, derivations will express this in terms of a pure transverse displacement from 

resting position.  This is fine for small amplitudes, but breaks down for displacements 

larger than a few percent of the length.  Instead, using a computer to iteratively calculate 

the global beam displacement due to this locally-induced curvature leads to a more 

accurate picture of beam bending, as shown below in Figure 2-6. 

 

 

Figure 2-6: Large-amplitude fundamental resonant mode shape for a straight beam 
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Unfortunately, no concise description for the resonant shape of a naturally curved beam 

(such as the one in Figure 2-7) exists in literature.  Many authors have attempted the 

problem (e.g., [31]–[34]), but to date it remains a topic for finite element methods.  This 

is unfortunate, since individual experimenters and designers are left with either diving 

into applied math or redoing and reinterpreting complicated FEM simulations 

undoubtedly done by others.  Further, simulation results for the resonant shape of beams 

at large amplitudes are often misleading if available at all.  For thin cantilevers, the strains 

stay small and not very different from a straight beam, so it is not unreasonable to expect 

a solution similar to that of a straight beam.  By asserting this, we arrive at what I call the 

“RS” bending mode (RS referring to “Resonant Shape”): 

A thin resonating curved beam should have the same extra bending angle per arc length  

(
 s

s




) as a flat one. 

 is shown in Figure 2-4: Variables for beam displacement.)

 

This mode then explicitly specifies the wing position via the central longitudinal strain 0  

and angle  as a function of arclength s.  The bending of each piece comes from the 

pieces before it:  

 

   
    

  

0

0
0

0
, ,

cos ,0 ,
, , 1 ,

sin ,

s

s

d
s z t ds

z ds

s ts t
s z t s t z ds

z s s t






 
  
 

   
       

      





r
r

r

 

where  
 ,

,
s t

c s t
s





 is the curvature.  The functional forms are the same as a flat 

beam, but with an offset angle function 0 due to the natural curvature:

0    ,  

0 0   

where 
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1. 0 0c s   is the section angle of a constant-curvature wing with curvature 

0 0 /c L  

2. 
cos cosh

sinh sin cos cosh
2 sin sinh

r

s s
A s s

L L L L

      


 

   
         

 is the extra tip 

angle at each section due to resonance: 

a. Curvature is the derivative of the tip angle: c
s





 

b. This  is the curvature for small-amplitude flat cantilevers.  That 

functional form satisfies the cantilever boundary conditions, 

 
2 2

12 2

ˆ cos cosh
cosh cos sin sinh

sin sinh

w
c s A s s s s

s L L L L L

      

 

    
            

  

3. 0 sinr rA A t  is the relative tip displacement (i.e., relative to L; Ar0 =10% means 

the tip amplitude is 0.1*L).  12r

A
A

L
 . 

 

Substituting and using the chain rule, Appendix G shows that we can rewrite the position 

as: 
0

cos sin

sin cos

s

ds z
 

 

   
    

   
r  

 

Although it is defined in terms of an integral, we can still use this beam position 

definition to iteratively calculate the new positions of a resonating curved wing.  For 

example, the following Python function "rRS()", an excerpt from the program in 

Appendix J, accomplishes just that: 

 

def rRS(phi0,L,Ar = 0, z = 0, ep0ByAr=0.00, numintervals=100): 

    '''Returns the wing position array r(s) for a given Ar & z, where s has 

numintervals+1 values from 0 to L 

 

    phi0: full curvature angle in deg.  phi0 = c0*L 
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    L: wing length 

    Ar: relative amplitude.  Ar = 2*A1/L --> A1 = Ar*L/2. 

    z: offset from the neutral axis to compute 

    ep0ByAr: longitudinal strain divided by Ar. 

    numintervals: number of s-intervals to take from 0 to L.  (Points = 

numintervals+1) 

    ''' 

    import scipy as sp 

    from scipy import cos 

    from scipy import cosh 

    from scipy import sin 

    from scipy import sinh 

 

    N = numintervals 

    r=sp.empty((N+1,2)) 

    c0 = phi0*sp.pi/180/L 

    Ds = L*1.0/N 

 

    ep0= ep0ByAr*Ar 

 

    s = sp.linspace(Ds,L-Ds, N) 

    r[0,:]=(0,z) 

 

    lam=1.8751 

    Clam = (cos(lam)+cosh(lam))/(sin(lam)+sinh(lam)) 

    Lastbeta = 0 

    for n,sval in enumerate(s): 

        slam = sval*lam/L 

        beta = c0*sval +Ar/2.*lam*(sinh(slam)+sin(slam)+Clam*(cos(slam)-

cosh(slam))) 

        c = c0 + Ar/2.*lam**2/L*(cosh(slam)+cos(slam)+Clam*(-sin(slam)-

sinh(slam))) 

        r[n+1,:]=r[n,:]+(1+ep0-z*c)*sp.array([cos(beta), sin(beta)])*Ds  #No 

chain rule for the z-part 

 

    return r 

 

Using this function to plot a wing with a length of L = 1 and thickness h = 0.02 with 

bending angle 0 = 90
o
 when resting generates Figure 2-7. 
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Figure 2-7: A beam with h/L = 2% subtending an angle of 0 = 90
o
 

 

We can also use rRS() to plot this shape at a range of amplitudes, Ar = (-0.5, -0.25, 0, 

+0.25, +0.5): 

    import matplotlib.pyplot as plt 

    fig1 = plt.figure(figsize = (6,6)) 

    rRSPlot = fig1.add_subplot(1,1,1) 

    rRSPlot.set_xlim((0,1)) 

    rRSPlot.set_ylim((-.2,.8)) 

    for Ar in linspace(-.5,.5,5): 

        for i,z in enumerate(linspace(-h/2,h/2,5)): 

            r =rRS(90, 1,Ar, z=z) 

            rRSPlot.plot(r[:,0], r[:,1]) 

    plt.show() 
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Figure 2-8: A beam with h/L = 2% subtending an angle of0 = 90
o
, resonating with amplitude Ar = 0.5 

for the RS mode 

Unfortunately analytically deriving the differential equations for resonant curved beams 

and substituting this mode has proved intractable so far.  Nevertheless I have two pieces 

of evidence that this mode is a reasonable representation of reality: 

1. this mode looks like it fits well to the actual resonant flapping shape of fabricated 

curved cantilevers, and 

2. this mode correctly predicts the curved beam's resonant frequency modification as 

a function of bending angle. 

Section 2.3.1 Experimental Justification 

Although difficult to justify analytically, this bending is a natural fit to the actual wing 

deformation.  Consider the images of resonant curved cantilever wings shown in Figure 

2-9 through Figure 2-12.  The fabrication of these wings is discussed in Chapter 6. Figure 
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2-9 shows the wings with no applied voltage while Figure 2-10 shows this pair of wings 

at resonance.  To more easily distinguish the resonating wings from the background, the 

images are differenced and filtered resulting in Figure 2-11.  In Figure 2-10 and Figure 

2-11, the RS mode shape is overlaid in red while the DC bending shape of circular arc 

sections is overlaid in yellow.  These images demonstrate that the RS Bending mode is a 

better fit to the actual resonant shape than purely cylindrical bending shapes.  The 

difference is even more apparent in Figure 2-12, which shows the flapping shape for an 

even larger amplitude resonance. 

 

 

Figure 2-9: Stationary image of cantilever wings with arcs superimposed 

 



2-48 

 

 

Figure 2-10: Resonating cantilever wings for comparing RS bending (red) to cylindrical arc bending 

(yellow), which is the non-resonant bending shape.  RS bending mode is Ar0 = 0.18, cylindrical is 

 = 21
o
.

 

 

Figure 2-11: Difference image of resonating and stationary cantilever wings comparing RS bending 

(red) to cylindrical arc bending (yellow), which is the non-resonant bending shape. RS bending mode 

is Ar0 = 0.18, cylindrical is  = 21
o
. 
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Figure 2-12: RS bending mode arcs fitting to a larger amplitude resonance shape for QSU8_17a.  RS 

bending mode is Ar0 = 0.30, cylindrical is  = 34
o
. 

Section 2.3.2 Resonant Frequency Prediction 

Further justification comes from the RS mode’s correct prediction of the resonant 

frequency of cantilevers.  It is possible to determine the resonant frequency of a 

harmonically resonating structure by equating the peak kinetic and potential energies.  

Appendix I derives that the peak kinetic and potential energy of the RS mode shape are 

given by 

   
2 2 3

2 01
max max2 20

,
8

L
r

m m

resCor

A L
K v s t ds Bh

f


    (2.2) 

and 

24
2 01

max 2 0

1

2 4

L
rA

U EI c ds EI
L

 
     

 
   (2.3) 

where m mhB   is linear mass density, 1.8751   is the first root of 

cos cosh 1 0    , and the resonant frequency curvature-correction factor is: 
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2 4

0 01 2.0e-2 2.4e-4resCorf      (2.4) 

 

Equating these two energies at resonance leads to the resonant frequency equation: 

 
2 2 3 24

0 0

2

2

3 2

1

8 2 4

r res r
m

resCor

res resCor

m

A L A
Bh EI

f L

EI h
f

Bh L

 


 


 
  

 



 

(or, 
2

3 22
resCor

m

EI h
f f

Bh L



 
 ) 

Comparing to the resonant frequency equation for a straight beam, 

2

3 2resStraightBeam

m

EI h

Bh L
 


 , the curved beam has a resonant frequency given by the 

same formula multiplied by the correction factor, 2 4

0 01 2.0239e-2 2.4241e-4resCorf     . 

 

This correction factor analytically explains numeric results I have obtained using ANSYS 

Mechanical, and published results by Zhang et al. in [35], as shown in Figure 2-13. 

 

 

Figure 2-13: Comparing the fresCor with numerical results 
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Section 2.3.3 Nonlinearities 

At sufficiently large amplitudes, resonant systems typically become nonlinear as higher 

order terms in Taylor expansions are no longer ignorable.  Nonlinear systems give rise to 

nonlinear resonance effects.  For example, Landau and Lifshitz in chapters 28 and 29 of 

[36] suggest that at large amplitudes, the resonant frequency depends on the amplitude:

2

0 b     (where b is the amplitude). 

 

Another complication is the "foldover" effect: the resonant amplitude at a given 

frequency can depend on whether that frequency is approached from above or below, as 

illustrated in Figure 2-14.   

 

Figure 2-14: The foldover effect of nonlinear resonance leads to different amplitudes at the same 

frequency and driving force [37] 
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Chapter 3 CFD Simulations 

Even if you know exactly how a flapping wing is moving, calculating the force on it is 

difficult because the Navier-Stokes equations (the governing differential equations for 

incompressible fluid mechanics, which are a statement of Newton's second law for 

continuum mechanics), are nonlinear: 

2p
t

 
 

       
 

v
v v v f  (3.1) 

where v is the local velocity vector of the fluid,  is the fluid density,  is the fluid 

dynamic viscosity, and f contains other body forces, such as gravity [38].  Fortunately, 

these are still numerically solvable, and computers have recently made solving these 

problems on a large scale much more tangible using finite element methods. 

 

In fluid mechanic analysis of airplane wings or propeller blades, the problem is greatly 

simplified by using steady-state flow conditions.  However, initial simulations revealed 

that the instantaneous force on oscillating wings is not equal to the force from extending 

steady-state flow results.  For this reason, it was necessary to complete transient fluid 

mechanics simulations of flapping wings and average over several cycles (after the flow 

had stabilized) to determine the net force and average power dissipation of the wings. 

 

To complete these simulations, I used the commercial fluid mechanics software ANSYS 

CFX (CFX), run on SHARCNET
3
.  A tutorial detailing specifically how to set up a 

representative simulation is given in Appendix K. 

  

In this section, I describe some fluid mechanics basics and then the results of CFD 

simulations of flapping curved cantilevers. 

                                                 

3
 SHARCNET (www.sharcnet.ca) is a consortium of colleges, universities and research institutes operating 

a network of high-performance computer clusters across south western, central and northern Ontario. 
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Section 3.1 Fluid Mechanics Background Information 

Section 3.1.1 Physical Constants: Density and the Viscosities 

Three relevant constants for fluid mechanics are the fluid density , the dynamic viscosity 

 , and the kinematic viscosity .  The three are related by  





  

The viscosities are measures of the difficulty a fluid experiences trying to slide past itself. 

 

As explained in Appendix L, dynamic viscosity  for a gas is largely pressure-

independent below 30 atm, and since density is inversely proportional to pressure by the 

ideal gas law, kinematic viscosity is directly proportional to it. 

 

For air at 20 
o
C,  air = 1.2041kg/m

3
 and air = 1.46e-5 m

2
/s  [39]. 

Section 3.1.2 Similarity of Flows 

For incompressible lossless flow, the Navier-Stokes equations by themselves completely 

govern the velocity field of the fluid.  Since these equations are time consuming to 

numerically solve, it is useful to get as much information as possible out of every 

solution.  One way to do this is by "nondimensionalizing" the equations, as in [38]. 

 

To nondimensionalize the Navier-Stokes equations, define dimensionless quantities q* 

that are proportional to the actual quantities q through appropriate scale quantities, q0.  

For example, define the dimensionless coordinates  *, *, *x y z  as the actual coordinates 

divided by the length scale, L:  *, *, * , ,
x y z

x y z
L L L

 
  
 

.  Similarly, define dimensionless: 

1. velocity as 0* / vv v , where 0v  is the velocity scale, 
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2. time as 0* /t t t , where 
0

0

L
t

v
  is the time scale, 

3. del operator as * L   , and 

4. pressure as 0* /p p p , where 2

0 0p v  is the pressure scale (this definition 

requires incompressible flows so that the density is a constant). 

 

Substituting into the Navier-Stokes equations,  

 
       

     

2

0

0 0 0 0

0

2 2 2
20 0 0 0

2

2

2

0 0

* 1 1 1
* * * * * * *

*

*
* * * * * * *

*

*
* * * * * * *

*

v
v v p p v

L L LL
t

v

v v v v
p

L t L L L

L
p

t v L v

 


 



 

 
 
                            
   
  

 
        

 


      



v
v v v f

v
v v v f

v
v v v f

 

and if the only body force is gravity, ˆg f z , then 

2

2

0 0

*
ˆ* * * * * * *

*

Lg
p

t v L v






      



v
v v v z . 

 

The result is that we can use a Navier-Stokes solution for one flow situation as the 

solution for any other flow situation (in terms of relative parameters, that is) which is 

"similar" to the first one, where two flows are "similar" if they have the same Re, Fr, and 

Cp where: 

1. the Reynolds number is 0Re
v L




 , the ratio of inertial to viscous forces, 

2. the Froude number is 
2

0Fr
v

gL
 , an expression of the relative strength of gravity on 

the flow scale, and 
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3. the pressure coefficient Cp = 
   

21
02

p upstream p downstream

v


, the ratio of local 

pressure drop to kinetic energy per volume. 

 

Perfect frictionless flow corresponds to Cp = 2; this is assumed for all of my flow 

situations, and is equivalent to stating that the energy lost to heat is negligible. 

Section 3.1.3 The Power of Drag Coefficients: Similarity of Flows 

One way to apply similarity of flows is by drag coefficients.  The drag force on a body in 

a fluid is given by 21
2D DF C Av , where  is the fluid density, A is the cross sectional 

area of the body, v is the velocity of the fluid flow past the body, and CD  is the "drag 

coefficient", which accounts for streamlining. 

 

This is particularly useful because the drag coefficient is the same for two similar flow 

situations.  To see this, define the drag force on a body in terms of the dimensionless 

force 0* /F F F ,where the force scale is 2 2

0 0F v L .  The dimensionless force is then 

21
22 1

22 2

0

* * *D
D

C Av
F C v A

v L




   (where 

2* /A A L  is the dimensionless version of the 

body's cross sectional area), which means that the drag coefficient depends only on the 

flow's dimensionless scales: 
2

2 *

* *
D

F
C

v A
 , and thus two similar flows will have the same 

drag coefficient. 

 

For example, suppose we use a fluid mechanics simulation to find 640 nN of drag force 

on a square plate with side length  L = 1 mm sitting in a  air = 1 kg/m
3
 and 

1.5e-5 Pa-s   fluid moving with velocity v = 1 m/s.  Then we can calculate that the 

Reynolds number and drag coefficient for this flow are Re 68.5
vL




   and  
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2

2
1.28D

D

air

F
C

Av
  , respectively.  From similarity of flow, we know that the flow over a 

square plate with side length of L = 10 cm in a fluid with air = 0.5 kg/m
3
 and

1.5e-5 Pa-s   moving at v = 2 cm/s will be similar to the situation we simulated, and so 

the drag coefficient will be the same: 1.28.  This is sufficient to calculate that the force in 

this new flow situation is 

     
2 221 1

2 2
0.5kg 1.28 0.1m 0.02m/s 1.28 ND air DF C Av    . 

 

Note that if the fluid density and viscosity are held constant, then the force is also 

independent of length and velocity at constant Reynolds number, but the drag coefficient 

scaling is more general because it stays constant even across different fluid density and 

viscosity. 

Section 3.2 Simulations, Inputs and Outputs 

CFX simulation inputs varied were the initial bending angle (0), the amplitude (Ar) and 

the Reynolds number (Re).  Since the length and gas type were typically fixed, the 

Reynolds number was varied via the flapping frequency.  CFX is only a fluid mechanics 

solver, and so these simulations do not consider how fluidic forces are modifying the 

resonant shape of the wing.  It is possible to couple these kinds of solvers together, but at 

time of writing it is prohibitively computationally intensive.  Fortunately, since the 

quality factor is a ratio of stored to dissipated energy, a sufficiently high quality factor 

indicates the damping is not appreciably affecting the resonant shape, so these CFD-only 

simulation results can nevertheless be accurate for that high-Q range. 

 

The CFX simulations output a plethora of information, but most importantly they monitor 

the net force on the wings and their instantaneous power dissipation.  CFX commands 

make it possible to extract this monitor data into a csv (comma separated values) file, 

which allows processing it using other programs. 
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From the csv files, we can compute a moving average of the net force over an integer 

number of cycles.  The moving average of force computed this way is the net force of the 

simulation (technically, since the simulation models ½ of a wing, this force is really FN0.5.  

The net force of a 4-wing robot is 4 0.58N NF F , and the net force per wing is 0.52N NF F .  

This is another advantage of working with drag coefficients rather than forces: they are 

area-independent).  In the same way, averaging the power dissipation over an integer 

number of flapping cycles determines the average power dissipated into the fluid, 0.5AP , 

as well as the power used by 4 wings, 4 0.58A AP P , and the power used by one wing, 

0.52A AP P .  This net force and power combine with the known simulation inputs to 

determine the drag coefficients as functions of three "shape" parameters: 0, Ar0, and Re.  

For these wings, I define the Reynolds number as 

Re rms
air

v A



  (3.2) 

where air and  are the air density and dynamic viscosity, A LB  is the wing area, and 

2

max
0

L

rms

v ds
v

L



 is the RMS wing velocity for the RS flapping mode,  which turns out to 

be  
 

   
0

0

0 0

0

2

rms r
rms

resCor resCor

v A L
v

f f




 
  .  The choice of which velocity and length scale to 

use for Reynolds number is not critical, but consistency in that choice is. 

Section 3.2.1 Drag Coefficients, CDN and CDP 

Drag coefficients are convenient because they do not scale with the number of wings, so 

there is less risk of ambiguity when finding the total force output for a multi-wing robot.  

The net drag coefficient is defined as:  

2

2 N
DN

rms

F
C

Av
  
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where the wing area is 
2

4

L
A LB  .  Similarly, the power drag coefficient DPC  is 

defined as: 

2

2 P
DP

rms

F
C

Av
  

where FP is the "power force", defined as  

A
P

rms

P
F

v
  (3.3) 

 

By substituting the Reynolds number into the average velocity, we can rewrite the drag 

coefficient expressions: 

Re
rmsv

A




 , and so 

2 2

2

Re

P
DP

F
C 


  (3.4) 

and similarly for the net drag coefficient, 

2 2

2

Re

N
DN

F
C 


  (3.5) 

 

I am not aware of any prior work which extends the drag coefficient concept from steady 

state fluid mechanics to transient fluid mechanics, or applies it to power scaling.  

However, CFD simulations of different lengths, gas densities, and viscosities verify that 

these drag coefficients are functions only of shape and Reynolds number, meaning we can 

use them to predict fluid mechanics results using similarity of flow.  In summary, each 

CFX simulation is started with a unique pair of shape parameters 0 and  Ar0, and a 

unique Reynolds number Re, and leads to the drag coefficients CDN  and CDP, which 

depend only on these shape parameters and Reynolds number.
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Section 3.3 Simulation Results 

Figure 3-2 through Figure 3-5 plot the net drag coefficient CDN, power drag coefficient 

CDP, relative drag coefficient CDR  and flapping efficiency (defined as net force divided by 

average absolute force magnitude) as functions of Reynolds number Re, flapping 

amplitude Ar0, and static bending angle 0.  Each complete plot is interpolated from 

approximately 200 individual simulations spaced by factors of 2 in Reynolds number and 

steps of 0.05 in Ar0, shown without interpolation in Figure 3-1. 
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Figure 3-1: Raw data points used to generate contour maps for net drag coefficient (as of 24 Oct 

2013, simulations are in progress to fill the holes on this grid) 
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Figure 3-2: Net drag coefficient as a function of Reynolds number and flapping shape
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Figure 3-3 Power drag coefficient as a function of Reynolds number and flapping shape 
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Figure 3-4: Relative drag coefficient as a function of Reynolds number and flapping shape 
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Figure 3-5: Flapping efficiency as a function of Reynolds number and flapping shape 

 

Generally, CDP decreased with Re, leveling off at Re larger than about one hundred (10
2
), 

while CDN increased with increasing Re, leveling off at Re larger than about one thousand 

(10
3
).  Similar trends are observed with respect to amplitude, with CDN and CDP generally 

increasing and decreasing respectively, and leveling off above Ar0 = 0.4. 
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Using a symmetry plane at the base of the wing, the initial bending angles of 0 = 75
o
 and 

below were simulated at amplitudes as high as Ar0 = 0.7, but the maximum amplitude for 

0 = 90
o
  and above was 0.6 or lower, and as low as 0.25 for 0 = 140

o
.  This was due to 

the physical constraint imposed by the symmetry wall at the wing's base, as demonstrated 

in Figure 3-6 through Figure 3-10. 

 

Figure 3-6: Maximum simulated amplitude for initial bending angle 0 = 75
o

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Figure 3-7: Maximum simulated amplitude for initial bending angle 0 = 90
o
 

 



3-67 

 

 

Figure 3-8: Maximum simulated amplitude for initial bending angle 0 = 105
o
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Figure 3-9: Maximum simulated amplitude for initial bending angle 0 = 120
o
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Figure 3-10: Maximum simulated amplitude for initial bending angle 0 = 140
o
 

 

Some simulations circumvented this limit on amplitude for highly-angled wings by 

adding a stationary extension to the base of the wings, effectively moving the wings to the 

right in the figures above and making their tips further from the left walls (note that the 

other three walls in these pictures are not boundaries; the fluid box continues for 10 wing-

lengths in these directions, as explained in Appendix K).  This allowed exploring the 

high-bending angle, high-amplitude regions that would not otherwise be possible.  

Plotting the maximum relative drag coefficient vs. Ar0 for a range of Re where these 

coefficients are steady suggests that the most promising flapping shapes would be 

otherwise out of reach due to this condition, as shown in Figure 3-11. 
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Figure 3-11: Relative drag coefficient vs. amplitude for simulations with Reynolds number between 

8192 and 262144. 

 

Notice that for this range of Re, it appears that both 0 = 105
o
 and 120

o
 will have 

maximum CDR higher than that of 0 = 90
o
.  At first glance Figure 3-11 suggests that the 

optimum CDR at high-Re is for a bending angle somewhere in 0105 120    , but closer 

inspection shows the curious effect that higher bending angles only have superior CDR at 

sufficiently high amplitudes, so 0 = 140
o
 may perform better at larger amplitudes than it 
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appears.  Indeed, new data is confirming this idea, as indicated by the data point for 

0 = 140
o
 at Ar0 = 0.5. 

Section 3.3.1 Drag Coefficients in Perspective: Dragonfly and Fruit Fly 

Comparison 

Work by Sun et al. in [40] gives us the information we need to determine the equivalent 

shape and Reynolds number and corresponding drag coefficients for a dragonfly 

(Aeschna juncea) in hovering.  According to Sun, dragonflies have a mass of 754 mg, 

mass specific power of 37 W/kg, wing length of 4.7 cm, flapping frequency of 36 Hz, 

stroke amplitude (which is actually the peak-to-peak angular distance) of 69
o
, and four 

wings.  Approximating each point at position s along the wing as moving along an arc 

with instantaneous position described by  sins t , where   is the wing's angular 

amplitude and  is its angular frequency, the RMS wing velocity is 

   
2 2

max
0 0

3

L L

rms

v ds s ds L
v

L L

  
  
 

 

From this, we can apply this work's definition of Reynolds number as 

Re
rms wing

air

v A



  to calculate that dragonfly wings operate at Re = 5090.  (Note that 

Sun et al. found Re = 1350 in [40].  This is because their choice of velocity and length 

scale were the time-average spatial-average velocity and the chord length, both of which 

have smaller values than my choices, the time-max spatial-rms velocity and the square 

root of the wing area.  It is important to know how Re is defined for a particular 

application in order to determine force from drag coefficients.) 

 

Knowing that while hovering, the wings must be putting out a force that matches their 

weight, we can calculate their net drag coefficient, CDN = 0.504.  Then using their mass 

specific power and their mass to calculate their power dissipation, we can use their RMS 



3-72 

 

velocity to calculate their power drag coefficient, CDP = 0.514.  The ratio of these is their  

relative drag coefficient, CDR = 0.980. 

 

For comparing with the RS mode, dragonfly wings operate with an effective relative 

amplitude given by their tip motion per quarter flap cycle divided by its length, which is 

approximately 0 0.60r

L
A

L


   .  At this amplitude and Reynolds number, the RS 

mode generates less net force and requires more power than the dragonfly wings.  The 

specifics depend on which static bending angle wing we compare to, but at best the RS 

mode generates about half of the force of a dragonfly while simultaneously using twice 

the power.  The best RS mode relative drag coefficient at an amplitude of 0.60 and 

Reynolds number of 5000 was CDR = 0.198 for 0g = 120
o
, about 20% as effective as a 

dragonfly's wings. 

 

Sun et al. also presents information on fruit flies in [40]; fruit flies have wing length 

L = 0.3 cm, power efficiency P* = 30W/kg, frequency f = 240 Hz, and stroke amplitude 

2 = 150
o
.  Combining this with the fruit fly mass of m = 0.3 mg (from [4] and [5]), we 

can calculate that a fruit fly operates at a Reynolds number of 332 by our definition, and 

has drag coefficients CDN = 0.094, CDP = 0.084, and CDR of 1.12.  While this amplitude is 

far larger than I was able to simulate, the best relative drag coefficient at a Reynolds 

number of 330 was about 0.14, only 12% as effective as a fruit fly's wings.  Interestingly, 

this difference is entirely due to power dissipation: the net drag coefficient is superior for 

the RS mode, about CDN = 0.16, but the power used by the fruit fly was significantly 

lower than the RS mode's CDP = 1.13.  Note that these insects are capable of using their 

wings to generate more force than their weight, but in doing so they use more than the 

mass specific power presented here.

 

However, we need to be careful comparing the drag coefficients that use Reynolds 

number definitions due to different types of flapping.  For the purposes of calculating the 
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Reynolds number, the insect wings are modelled here as moving like flat plates, with 

velocity directly proportional to distance from a fixed pivot point.  This leads to a 

different velocity relation than the RS mode, where the velocity is nonlinear in this 

distance, the region near the tip moving much more than the region near the fixed 

support. 

 

To circumvent this misleading definition, we can obtain a more direct comparison of the 

flapping efficiency by finding the power dissipated by RS mode wings of the same length 

producing the same net force as the insect wings.  Doing so gives some easier to 

appreciate results: 

1. Compared to dragonfly wings, L = 4.7 cm resonant cantilever wings that produce 

1.9 mN consume 5.5 times as much power; and 

2. Compared to fruit fly wings, L = 3 mm resonant cantilever wings that produce 

1.5 N consume 6 times as much power. 

Section 3.4 Reversibility at Low Re 

At Re ≪ 1, fluid motion enters the regime of "Stokes flow", where viscosity effects 

dominate and the fluid motion is caused only by molecular diffusion (which is random 

and slow) and momentum diffusion (which is exactly reversible) [41].  Stokes flow is 

reversible, meaning that wings with symmetric flap cycles generate zero net force: 

sweeping back along the same path exactly undoes whatever sweeping forward did.  This 

is the flow regime of microorganisms possessing flagella, which get around reversibility 

by continuously rotating in the same angular direction rather than sweeping back and 

forth [42]. 

 

Referring to Figure 3-12, the simulations indicate that most of the transition to the low-

force region occurs as Reynolds number decreases from 1000 to 100, over which the 

flapping efficiency drops by 80%.  Below this, the net force gradually decreases towards 
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a negligible fraction of the average force, which makes calculating the net force from the 

simulations increasingly difficult and sensitive to errors. 

 

 

Figure 3-12: Flapping efficiency and relative drag coefficients behaviour in the low Reynolds number 

regime 

Section 3.5 Steady State Drag Coefficients 

The plots of net and power drag coefficients from Section 3.3 suggest that both DNC  and 

DPC  approach 0-dependent steady-state values above thresholds in amplitude and 

Reynolds number.  Constant drag coefficients significantly simplify fluid mechanics 

analysis, so this is worth investigating. 
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Figure 3-13: Net and power drag coefficient vs. amplitude for Re ≥ 8000 

 

Figure 3-13 plots the drag coefficients vs. amplitude for Re ≥ 8000.  In this range of 

Reynolds number, the net drag coefficient seems to plateau for wing amplitudes between 

0.45 and 0.65, while power drag coefficient appears to slowly decrease towards a limiting 

value as amplitude increases.  Even still, the power drag coefficient variability in this 

range of amplitudes is less than 8% different from its mean value, as shown in Table 3-1. 

 

 

 

 

 

Table 3-1: Average drag coefficients for Re ≥ 8000, 0.45 ≤ Ar ≤ 0.65 

phi0 
[deg] 

CDN Stdev Min Max CDP Stdev Min Max 

35 0.187 2.10% -6.91% 2.23% 2.02 3.50% -6.42% 5.47% 

50 0.193 2.60% -5.23% 3.33% 1.75 3.50% -5.86% 5.55% 

75 0.248 1.90% -3.99% 3.02% 1.64 4.10% -5.65% 7.13% 

90 0.244 2.20% -3.52% 3.86% 1.51 3.70% -5.02% 7.60% 

105 0.247 0.88% -1.29% 1.42% 1.48 1.40% -2.03% 1.35% 
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Figure 3-14 plots the drag coefficients vs. Reynolds number for this amplitude range, 

0.45 ≤ Ar ≤ 0.65.  This plot shows that the power and net drag coefficients appear to 

stabilize for Reynolds numbers above 500 and 2000, respectively.  Power drag coefficient 

appears to have a minimum around Re = 10
2.5

, while net drag coefficient has a maximum 

around 10
3.7

, but only for 0 between 90
o
 and 120

o
.   Unlike the net drag coefficient vs. 

amplitude, both extrema are close to the limiting value as Re extends to infinity. 

 

  

Figure 3-14: Net and power drag coefficients vs. Reynolds number for 0.45 ≤ Ar ≤ 0.65 

 

Considering all of these plots, the optimum bending angle for this type of flapping 

appears to lie in the range of 75
o
 to 105

o
 in terms of net force, with higher bending angles 

winning in terms of low power dissipation to get this net force.   
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Chapter 4 The Flying Robot Analysis Framework 

The fluid mechanics simulations from Chapter 3 return the net force and power used for 

each flapping wing given the simulation inputs (0, Ar0, and Re), and after some math, 

these are converted to the net drag coefficient and power drag coefficient.  Other things 

equal, the better design is the one with more net force and lower power used.  But what if 

a design change increases the net force and power used?  Furthermore, even within a 

fixed set of simulation inputs, which length-frequency combination is best for a given 

wing-material choice?  Most of all, which robot designs would actually fly, which design 

is best for a given material system, and which material system leads to the best robots? 

 

Evidently the simulation outputs in isolation are not going to answer these questions.  For 

that, we need to consider the simulation results not in isolation but as a piece of a 

complete “big-picture” robot framework that considers the actual flying robot candidate 

each simulation would lead to for a given choice of materials.  This chapter presents such 

a framework and some results of applying it to the simulations as a guide in making robot 

design choices.  To clarify, the analytical framework is a collection of equations which 

determine the robot parameters from input stack information, shape information, 

Reynolds number, materials properties, and drag coefficients.  In contrast, the 

optimization routine is a method to use the results of the analytical framework to 

determine which set of inputs we should use in the first place to produce the most 

desirable robot. 

 

Section 4.1 is a brief introduction to the framework and associated optimization routine.  

Section 4.2 presents additional theory and equations necessary to apply the analytical 

framework algorithm, and section 4.3 combines them to present the complete robot 

analytical framework.   Sections 4.4 and 4.5 implement phase 1 of the optimization 

routine, applying the analytical framework for all CFX inputs and a particular stack 

structure, exploring the effect of each constraint.  Section 4.6 closes out the chapter by 
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making simplifying assumptions to analytically examine the consequences of using 

different stack structures and investigate which stack structure parameters are the most 

important. 

Section 4.1 Analytical Framework vs. Optimization Routine 

Section 4.1.1 The Analytical Framework 

The analytical framework is shown in Figure 4-1.  The two input boxes to the analytical 

framework are the CFX inputs and the stack structure.   The CFX inputs include the 

flapping shape (0 and Ar0) and the Reynolds number, while the stack structure means 

the material properties of the layers making up the wings, including their order, built in 

strain, and relative thickness to each other (but not the total stack thickness h, which is 

determined by the analytical framework).  From these inputs alone, and a given set of 

constraints, the analytical framework determines what kind of robot the inputs would lead 

to, and whether it would be able to fly.  For the robots that do fly, the analytical 

framework calculates the robot’s figures of merit (such as extra power available, how fast 

the robot moves, etc.). 
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Figure 4-1: The analytical framework uses constraints to determine which inputs lead to flying 

robots.  For each design that does, the analytical framework also determines that that design’s figures 

of merit. 

 

In the previous chapter, Figure 3-2 and Figure 3-3 presented the net and power drag 

coefficients of the RS bending mode wings as functions of the CFX inputs (shape and 

Reynolds number).  These plots determine an RS wing's fluidic behaviour over a finely 

spaced grid of inputs, having mapped the input parameter space in steps of no more than 

0.5 in amplitude, 15
o
 in static bending angle, and factors of 2 in Reynolds number.  While 

Chapter 3’s results are interesting in isolation from a fluid mechanics perspective, the 

analytical framework further capitalizes on the results of this mapping.  This chapter will 

show that when combined with a choice of stack structure, every set of CFX inputs 

uniquely determines the length, thickness, frequency, and weight of the wings.  If further 

combined with the drag coefficients, these inputs also determine the wings’ quality factor, 

and voltage, net force output, and power dissipation.  By using a series of additional 

constraints, this information also determines whether the resulting robot can fly, and if so, 
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how well it performs.  At time of writing, each CFX simulation takes 8 hours on 

SHARCNET, which would make performing the simulations a serious bottleneck to 

analyzing robot results.  But having mapped the parameter space of the CFX simulations 

in advance, the analytical framework avoids doing a simulation for each new robot design 

in favour of looking up previously-determined drag coefficients in a table. 

The details of each piece of the analytical framework will be presented in subsequent 

sections of this chapter. 

Section 4.1.2 The Optimization Routine 

The optimization routine is twofold.  Phase 1 of the optimization routine optimizes the 

flapping shape and Reynolds number for a given input stack material, as illustrated in 

Figure 4-2.  Phase 2 of the optimization routine optimizes the stack structure by repeating 

Phase 1 for a number of different possible stack structures, as illustrated in Figure 4-3.  

This finds the overall optimum robot design.  

 

 

Figure 4-2: Phase 1 of the optimization routine: use list of simulated CFX input parameters to find 

the best possible robot for a fixed stack structure.  This optimization routine is automated. 

 

 



4-81 

 

 

Figure 4-3: Phase 2 of the Optimization Routine repeats Phase 1 of the Optimization Routine for a 

number of different input stack structures to determine the overall best robot. 

 

Currently, Phase 2 is not automated.  Future work will involve building a database of 

possible stack structures to loop over and quickly determine the overall best design for a 

given choice of optimum (which is dependent on the desired robot application).  This 

necessitates including the individual constraints and challenges of each material. 

Section 4.2 Derivations and Details of the Analytical Framework 

Equations 

This section presents the details of the equations necessary to carry out the analytical 

framework.  These equations are collected in  

Section 4.2.1 Fixed Stack Structure: Flexural Rigidity and Curvature 

Revisited 

A "fixed stack structure" means: 

1. a fixed set of materials, 

2. with fixed relative thicknesses to each other, and 

3. in a specific order. 

 

For example, Table 4-1 shows the stack structure for a quartz:SU-8 composite wing 

whose cross-section is shown in Figure 4-4.  Layers are numbered from bottom to top, 

thickness is specified in arbitrary units, and layers with a nonzero "contact number" are 

electrical contact layers.  

Optimization 

Routine Phase 

1 

Input List of Stack 

Structures: Wing 

Materials and 

Relative Thicknesses 

Best Robot 

Overall 
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Table 4-1: Stack structure example 

Layer 
Number 

Material Contact 
Number 

Thickness 

[m]

Built-in 
Strain 

6 SU-8 0 7.600E-06 -0.0075 

5 Au 2 1.500E-07 -3.2E-05 

4 Cr 2 2.500E-08 -0.00717 

3 Quartz 0 7.600E-06 -0.00164 

2 Cr 1 2.500E-08 -0.00717 

1 Au 1 1.500E-07 -3.2E-05 

 

 

Figure 4-4: Visualized stack structure 

 

By dividing the thickness of each layer 
it  by the total thickness h, we can compute the 

relative thickness of each layer i
i

t
t

h
  as in Table 4-2.  Since only relative thicknesses 

matter for the analytical framework, any stack structure with the same relative thickness 

of each layer is considered identical to this one.   
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Table 4-2: Stack structure example with relative thickness numbers 

Layer 
Number 

Material Contact 
Number 

Thickness 

it , [m]

Relative 

Thickness, 
it   

Built-in 
Strain 

6 SU-8 0 7.600E-06 48.875% -0.0075 

5 Au 2 1.500E-07 0.965% -3.2E-05 

4 Cr 2 2.500E-08 0.161% -0.00717 

3 Quartz 0 7.600E-06 48.875% -0.00164 

2 Cr 1 2.500E-08 0.161% -0.00717 

1 Au 1 1.500E-07 0.965% -3.2E-05 

 

Suppose we further fix the width of the wing to B = L/4.  Then we can substitute into the 

multimorph flexural rigidity and curvature formulas from Chapter 2 to obtain simplified 

formulas that separate the size dependence from the stack structure dependence.  Doing 

so (in the next sections) leads to 4 parameters that depend uniquely on the stack structure 

and not on the scale of the wings themselves: 

1. Effective Young's modulus, YE  

a. Definition: 

2

3 12
i i i

Y i i i i i

i i

t E y
E E t t E y

t E

  
        





 

b. Interpretation: measures the stack's stiffness.  Gives the flexural rigidity via 

3

12
Y

Bh
EI E  

2. Average density, m  

a. Definition: _m m i it   

b. Interpretation: average measure of the stack's mass per unit volume 

3. Curvature constant, 0c  

a. Definition: 
1

0 0
11

1
2

c








DA
C

DA B
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b. Interpretation: the stack's built-in drive for curvature.  Determines the 

curvature after dividing by thickness: 0 0 /cc h  and the initial bending angle 

after then multiplying by length: 
0 0c

L

h
   

4. Piezoelectric curvature constant, 
cpiezo  

a. Definition: 
1

11
1

2

cpiezo piezo








DA
C

DA B

 

b. Interpretation: Measures the ease with which voltage transduces into wing 

bending; this is a curvature constant per unit electric field,  

2

cpiezo

piezo cpiezo

V V
c

h h h


   

Section 4.2.1.1 Flexural Rigidity 

Recall that flexural rigidity of a multimorph was, from equation (2.1) 

  2

0i i i i iEI E I A E y Y    

where 

1. Y  is the location of the AE centroid: i i i

i i

A E y
Y

A E




, 

2. iy  is the vertical centre of mass of the i
th

 layer, and  

3. 0iI  is the moment of inertia of the i
th

 rectangular section about its centroid: 
3

0
12

i
i

Bt
I   

Re-expressing in terms of relative layer positions and thicknesses: 

1. 
4

i i i

L
A Bt t h   

2. i iy y h   (where i
i

y
y

h
  is the dimensionless layer centroid position) 

a. i i i

i i

t E y
Y h

t E
 



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3. 
3 3

3

0
12 48

i i
i

Bt t
I Lh   

  2

0

2
3

3

2
3

3

48 4

48 4

i i i i i

i i ii
i i i i

i i

i i ii i
i i i

i i

EI E I A E y Y

t E yt L
E Lh t hE y h h

t E

t E yt t
E E y Lh

t E

   

  
        

   
           













 

Compare this with the flexural rigidity of a single-material beam of width B = L/4 and 

thickness h: 
3 3

12 48

Bh Lh
EI E E  , where E is the Young's modulus.   Therefore, define 

the stack's "effective Young's modulus" YE  such that: 

2
33

3

2

3

48 48 4

12

i i ii i
Y i i i

i i

i i i

Y i i i i i

i i

t E yt tLh
E E E y Lh

t E

t E y
E E t t E y

t E

   
           

  
        











 

With this definition, the flexural rigidity of the entire stack is 
3 3

12 48
Y Y

Bh Lh
EI E E  . 

Section 4.2.1.2 Resonant Frequency 

2

2

3

2

2

2

2

2

12

2

2 12

res resCor

m

Y

resCor

m

Y
resCor

m

EI
f f

L Bh

Bh
E

f
L Bh

E h
f

L



 



 



 






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Y

m

E


 depends only on the stack structure (the density is a thickness-weighted average), but 

resCorf  depends only on the initial bending angle (i.e., the CFX simulation chosen). 

Section 4.2.1.3 Curvature Parameters 

1
1 2

1

1

1

1
...

2 2 2

m
m

jm
j

i i

i

tt t
t t

E I







 
   

 



D  

Using the definition of iy  as the location of the i
th

 layer's centroid from the flexural 

rigidity section,  1 2

1

1
... mm

i i

i

y y y

E I





D .  Further substituting the formula for 

second moment of area of the i
th

 layer, 

3

12

i i
i

B t
I  , 

 1 23

1

1
...

12

mm
i i

i

i

y y y
B t

E





D , and now writing in terms of the relative parameters: 

 

 

1 23
3

1 23 2

2

4
...

12

1 4
...

12

4

m

i
i

m

i
i

y y y h
t

Lh E

y y y
t Lh

E

Lh











D

D
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1 1 2 2 1 1 2 2

2 2 3 3 2 2 3 3

1 1 1 1

1 1 1 1
0 ... 0 ...

1 1 1 1
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and 

0 _ 2 0 _1

0 _ 3 0 _ 2

0

0 _ 0 _ 1

...

0

free free

free free

free m free m

 

 

  

 
 


 
 
 

 
 
 

C  is already relative to the stack structure only. 

 

The curvature is then: 
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
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Built-in Curvature: 

The built-in curvature is now 
1 1

0 0 0 0
1 1

1 1

1 1
1 1

2 2

cc
h h


 

 

  

 

DA DA
C C

DA B DA B

, where the 

curvature constant 
1

0 0
11

1
2

c








DA
C

DA B

 

 

Interpretation:  A curvature of c = 1 rad/m means that in 1 m the beam subtends an angle 

of 1 rad.  Since c0 = c0*h, this parameter is not itself a curvature but rather a curvature 

times a wing thickness.  So, a c0 of 1m-rad/mm means that a 1 m-thick beam subtends 

a 1 rad angle over 1 mm.  Where thickness is a wing's resistance to curvature, 0c  is its 

drive.

 

Curvature from the piezoelectric effect: 

Suppose the stack is a unimorph with layer #2 as a piezoelectric (layer #1 is a contact 

layer).  Then: 

2

2

0

0

piezo

piezo

piezo





 
 

 
 
 
 
  

C   

where the piezoelectric strain is proportional to the appropriate piezoelectric coupling 

coefficient (say, d31) and the field: 2 31,2 3,2piezo d E  , where crystal direction 3 is the 

thickness direction, the indices before the comma refer to piezoelectric crystal directions, 

and those after the comma refer to the stack layer number.  The field is given by the 

voltage divided by the thickness: 3,2

2

V
E

t
 , and so the piezo strain matrix can be written: 
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/
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0
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 
 

  
 

  
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    
      
  

 
  

 
      

  

C C  

and the piezo-induced curvature is then: 

1 1

2
1 1

1

1 1
1 1

2 2

piezo piezo piezo cpiezo

V V
c

h h h


 

 

  

 

DA DA
C C

DA B DA B

 

Section 4.2.1.4 Stack Structure Examples 

Following are three examples of piezoelectric stacks (“stack structures”) for use as inputs 

for the analytical framework.  It is necessary to select relative layer thicknesses and the 

built-in layer strains. 

 

1. Quartz-Silicon unimorph with chrome/gold/tin contact layers 

a. Single crystal Si passive structural layer (solar cell; 0.2% compressive 

compared to the Quartz, 6.2 m) 

b. Gold/Tin eutectic bond layer; eutectic @ 280
o
C (50 nm) 

c. Chromium layer (for adhesion to quartz) (5 nm) 

d. Single-crystal x-cut quartz active piezoelectric layer (tensile) (8.1 m) 

e. Chromium, 5 nm 

f. Back gold contact, 50 nm 

2. Quartz-SU8 unimorph with chrome/gold contact layers 

a. SU-8 layer (0.75% tensile) (7.6 m) 

b. Gold contact layer (150 nm) 

c. Chromium layer (for adhesion to quartz) (25 nm) 
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d. Single-crystal x-cut quartz (active piezoelectric layer, compressive) 

(7.6 m) 

e. Chromium, 25 nm 

f. Back gold contact (150 nm) 

3. InGaP-InGaP bimorph with GaAs contact layers 

a. GaAs contact layer, degenerate n-doped 30 nm 

b. GaxIn1-xP piezoelectric layer, 0.1% tensile, undoped, 750 nm 

c. GaAs contact layer, degenerate p-doped 40 nm 

d. GaxIn1-xP piezoelectric layer, 0.1% compressive, undoped, 750 nm 

e. GaAs contact layer, degenerate n-doped 30 nm 

 

These stack structures lead to the parameters shown in Table 4-3.  This indicates that the 

stacks have some key differences.  The InGaP stack is the stiffest, but also the densest.  

For any given length and thickness, the Q:SU-8 stack will have the highest bending angle 

because it has the highest curvature constant, but will also be more pliant due to its low 

Young’s modulus. 

 

Table 4-3: Stack parameters for three multimorph stacks 

Stack c0 EY m cpiezo

 m-rad 

/mm 

GPa kg/m^3 m
2
-mrad 

/mm-V 

Q:Si 3.446 110.8 2631 6.397 

Q:SU8 3.929 19.04 2273 3.052 

InGaP 2.97 136.1 4518 2.294 

 

The difference in cpiezo between the Q:Si and Q:SU8 stacks is due to poor stiffness 

matching between the quartz and SU-8 compared to the quartz and silicon, as explained 

in Section 2.1.  In contrast, the InGaP design is perfectly stiffness matched, and so has a 

comparable cpiezo despite having a far inferior effective piezoelectric coefficient: 

' 0.385pm/Vpiezod  for InGaP compared to 2.44pm/V  for quartz. 
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Section 4.2.2 Q, Quality Factor 

Insects flap their wings at a frequency different from that of their wings, instead flapping 

at the resonant frequency of their thorax (the muscles of which are the "actuator") with 

the wings just along for the ride [43].  In contrast, the fluid diode cantilever wings are 

(quite uniquely) both the wings and the actuator, so working at the resonant frequency of 

one means working at the resonant frequency of both.  There is good reason to do this.  At 

resonance, the amplitude 0rA  is increased compared to the low-frequency (or "DC") 

amplitude the same driving force would produce 0r DCA : 

0 0r r DCA QA  

where Q is a dimensionless quantity called the "quality factor". 

 

It turns out this "amplitude amplification" definition for the quality factor is not the only 

one.  As you can see from a derivation of the basic forced-response of a linear system, 

presented in Appendix M, the quality factor is also equal to the ratio of stored to 

dissipated energy per cycle: 

max2

A

U
Q

T P





 

where maxU  is the peak stored mechanical energy, T  is the actuation period, and AP  is the 

average power dissipated into damping. 

 

This dual nature of the quality factor provides another constraint equation and a method 

to calculate the predicted amplitude of the wings in resonance given information about 

the rate of energy dissipation into the fluid (which we know from the CFX simulations). 

 

The analytical framework assumes that the damping is entirely fluidic.  This turns out to 

be justified if the mechanical quality factor (the one obtained by operating the resonator 

in vacuum) is much larger than the quality factor in air. 
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Section 4.2.2.1 DC Response of the Wing From Voltage: Relation 

between Ar0 and Phi   

In DC, the bending shape of the wing in response to voltage is not actually the RS mode 

at all, but rather a circular arc with an angle of 0 DC   , so that a slowly varying 

(approximately DC compared to resonance) voltage leads to an angle amplitude DC  

resulting from the curvature amplitude DCC  through the regular multimorph static 

bending angle formulas from Section 2.2.2.  This means that piezoelectric actuation at the 

resonant frequency excites the RS mode using a constant-curvature bending shape.  As 

such, the equivalent 0r DCA  to use in the quality factor definition that 0 0r r DCA QA  is the 

one resulting from projecting the DC constant-curvature bending shape onto the RS 

bending mode.  This involves knowing the infinite set of orthogonal resonant shapes and 

writing the RS Bending as a superposition of them all. 

Section 4.2.2.2 Background Information on Curvature from the 

Two Modes 

For constant-curvature bending (i.e., the low-frequency bending), a curvature change 

leads directly to a wing bending angle change: L c      (since c  is a constant, 

there is no need to evaluate it anywhere in particular along the length). 

For RS bending in contrast, the curvature change is not a constant but instead is the 

derivative of the bending angle expression, 

cos cosh
sinh sin cos cosh

2 sin sinh
r

s s
A s s

L L L L

      


 

   
         

 

Section 4.2.2.3 Approximation by Tip Displacement 

The answer we get for relating 0r DCA  to DC  should be similar to the one we get by 

equating the tip displacements of each mode.  The tip displacement for a small amplitude 
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RS bending is  
0

L

w L ds  = rA L , while for constant-curvature bending it is 

 
0 2

L L
w L s ds

L

 
  .   

Therefore, at small amplitudes, constant-curvature bending with an angle amplitude of   

has the same tip displacement as RS bending with 
0

2
rA


 . 

 

If we use this to set the Ar0 to the one that gives the same tip displacement: 

0
2

DC
r rDCA QA Q


   

Section 4.2.2.4 Approximation by Projecting the Flat Cantilever 

Modes 

Since we do not know all the modes of the curved beam, we can appeal to the flat beam 

and assume that the same fraction of its first mode that is used to represent a constant-

curvature excitation also applies to a curved beam. 

 

For an initially flat beam, the built-in curvature is 0 0c  , and so the extra angle is related 

to the total curvature: L c Lc    .  At small amplitude, the curvature of a flat beam is 

approximately the second derivative with respect to distance from the fixed end: xxc w .  

Therefore, a small constant curvature bending angle of   means a displacement from a 

flat beam of  

0 0

2

2

x x

w cdxdx

w x
L






 
 

 

Let the set of all of the resonant mode shapes be   
1..i i

w x
 

.  Then we can represent any 

driving shape as a superposition of them: 
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 2

12
i i

i

x b w x
L






  

Since the mode shapes of the flat beam form an orthogonal set, we can find the 

contribution from the first mode 1b  by multiplying both sides of the equation and 

integrating: 

     

    

2

1 1
0 0

1

22

1 1 1
0 0

2

2

L L

i i

i

L L

x w x dx b w x w x dx
L

x w x dx b w x dx
L











 

 

 

 

  

2

1
0

1 2

1
0

2

L

L

x w x dx
b

L w x dx


 




 

 

Using the known 

 
 

1
0

0

cos cosh
cosh cos sin sinh

2 sin sinh

x

r

x L x x x x
w x dx

A L L L L

      

 

    
         
  (divided 

out the Ar0 from the previous  definition because here we just want the mode shape; the 

amplitude Ar0 is then equal to b1), and the nondimensionalizing substitution 
x

u
L

  

these integrals become: 

       

 

 

1
2 2 2

1
0 0

1
4 2

0

4

cos cosh
cosh cos sin sinh

2 sin sinh

1 cos cosh
cosh cos sin sinh

2 sin sinh

1
0.44539...

2

L L
x w x dx L u u u u u Ldu

L u u u u u du

L

 
   

 

 
   

 

 
    

 

 
    

 



 

  

 

and 
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      

 

 

2 2
12

1
0 0

2 2
1

3

0

2

3

cos cosh
cosh cos sin sinh

2 sin sinh

1 cos cosh
cosh cos sin sinh

2 sin sinh

1
1

2

L L
w x dx u u u u Ldu

L u u u u du

L

 
   

 

 
   

 

   
      

   

   
      

   

 
  

 

 

  

Substituting, we find the first mode amplitude component is 

 

  

4
2

1
1

0
1 122

31
0 2

1

2
0.445

2 2 1

2

L

L

L Ix w x dx
b I

L Lw x dx
L I

 
        

  
     




.  Therefore, a cylindrical 

bending amplitude angle of 
DC  should lead to an RS mode amplitude of: 

0 0.445r DC DCA    

As expected, this is close to the equivalent tip-displacement relation between these 

bending mode shapes from the previous section, which found 0 0.5r DC DCA   . 

Section 4.2.3 RS Velocity-Kinetic Energy Relations 

Referring to the RS mode potential and kinetic energy derivations in Appendix I, we can 

determine the quality factor constraint equation for the RS bending mode: 

Defined the time-max spatial-rms velocity as 

2

max
0

L

rms

v ds
v

L



 

then found that  

 
 

   
0

0

0 0

0

2

rms r
rms

resCor resCor

v A L
v

f f




 
   

 

Then max kinetic energy at all 0 was: 
21

max 2 rms mK Lv  , which lead to  

 
2 2 2 2 2 3

2 0 01 1
max 2 2 2 24 8

r r
rms m m m

resCor resCor

A L A L
K Lv L Bh

f f

 
  

 
   

 
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( m mhB   is the linear mass-density) 

 

Quality factor calculated using kinetic energy is: 

 
   

21
2max

31
2

0

0

2 2

1

2

/ 2

2

rms m

avg
air DP wing rms

m m

air DP rms air DP r resCor

resCor m

air DP r

K Lv
Q

TP
C A v

f

L Bh f h

C BL v C A L f

f h

C A L

  



   

  





 

 



 

where the resonant frequency correction factor is 2 4

0 01 2.0e-2 2.4e-4resCorf      from 

equation (2.4),  power-drag coefficient is defined as in equation (3.4), 

2 2 2

2 2

Re

P P
DP

rms

F F
C

Av


 
  , and is only a function of Reynolds number, defined by 

equation (3.2), Re rmsv A



   (where &   are the air density and dynamic viscosity).  

The power force FP is related to the fluid power dissipation rate per wing through the 

velocity, as in equation (3.3), A
P

rms

P
F

v
 , and so the power dissipated into the fluid per 

wing is 
31

2
A DN rmsP C Av . 

 

As a check, we should be able to also calculate the quality factor using the potential 

energy: 

Quality factor using potential energy: 

2

1
max 2

3.09059rA
U EI

L
 , so  
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EI

U LQ
TP

C v A
f

EIA EI

LA L C A AL C A
ff
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
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



 






 

 
 
 
 

 
 
 
 

4

0

59 8 resCor m

air DP r

f h

C A L



 



 

And it turns out 
4

3.09059
4


 , making the two formulations equivalent. 

Section 4.2.4 Wing Net Force and Weight 

As mentioned in Section 3.2.1, the simulations determine the net drag coefficient of the 

air on the wings due to flapping, DNC  .  This drag coefficient is a function of only 

Reynolds number, static bending angle, and resonant bending amplitude, 

 0 0Re, ,DNC Ar , and determines the robot's total net force via 
21

2N air DN Wings rmsF C A v .  

Since Re
rms Wing

air

v A



 , another way to write this is  

21
Re

2
N Wings DN

air

F N C 


  . 

Section 4.2.4.1 Wing Lift Ratio 

The wing lift ratio is the ratio of the net force to the weight of the wings: 

 
4

4

N
WL

m

F
r

LBh g



 

A wing lift ratio < 1 would mean the robot cannot even lift its own wings' weight.  Other 

things equal, wings that produce much more thrust than they themselves weigh are good 

wings, so WLr  is a figure of merit. 
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Section 4.2.5 Power 

The power available to the robot comes from two sources: 

1. a volume-based power source, such as a battery or supercapacitor, and 

2. an area-based solar cell power source over the wings. 

 

In equation form, the available power is: 

avail PBatt Batt PSolar wingsP m LB N     

(since chord length is 
4

L
B   and 4wingsN  , this is also 

2

avail PBatt Batt PSolarP m L   ) 

where: 

1. Battm   is the mass of the battery (or supercapacitor), 

2. PBatt  is the power density (power per volume) of the battery (or supercapacitor), 

and 

3. PSolar  is the solar cell power density (power per area). 

 

Since more battery power is better, other things equal, the battery mass is set at the 

heaviest one each robot could lift and still have excess force to move forward while tilted 

at a 45
o
 angle.  This means the vertical force component is 

1
cos45

2
   times the net 

force, and altitude is maintained when 
1 1

2 2
Net Total NetW F m g F   . 

 

The total mass has 3 components: 

1. battery, 

2. wings, and 

3. core (the central fuselage). 
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The size of the core depends on miniaturization of computation elements and other 

circuits.  This is improving with Moore's law so it may be possible to actually ignore it.  

A more cautious estimate would be 4 wing's worth of mass (to maintain structural 

integrity for large designs) plus some fixed mass amount (to reflect the fact that some 

fixed space is required for computation circuitry regardless of robot size).  In any case, 

we have that: 

Batt Total Wings Corem m m m    

 

The battery power density depends on the energy density and dissipation time, with an 

upper limit (i.e., minimum discharge time) depending on the particular power source: 

 
 E flight

PBatt flight

flight

t
t

t


   

 

For the solar power density, assume operation in 20% of one sun with 12.5% cell 

efficiency: 225 W/mPSolar  .  For the battery power density, assume 20 kW/kg, the 

power for the Aerogel ultracapacitor during its minimum discharge time of 16.25 s.   

published in [44].  These numbers are useful to get the general idea of the feasibility of 

this kind of flight, but are definitely not set in stone, and no doubt will improve with time. 

Section 4.2.5.1 PExcess: Excess Power beyond that Required for 

Flight 

A very important figure of merit is the excess power: how much power is left over after 

accounting for the power required to fly: Excess Avail requiredP P P   

 

Neglecting electrical power losses, 4required AP P , the average flapping power required for 

4 wings. 
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Section 4.2.6 Stress and Strain Limits 

Robot stacks need to take into account the limits to stress and strain that are acceptable to 

the material.   Recalling the curvature of the RS Bending mode from Section 2.3, 

  
2 2

12 2

ˆ cos cosh
cosh cos sin sinh

sin sinh

w
c s A s s s s

s L L L L L

      

 

    
            

 

which in terms of 12r

A
A

L
  is 

 
2 cos cosh

cosh cos sin sinh
2 sin sinh

rc s A s s s s
L L L L L

      

 

   
          

 

The maximum of this curvature function from s = 0 to L is at s = 0, where 

 
2

0 2
2

rc A
L


     

Using the the stress and strain definitions from Section 2.2.6, the mechanical strain inside 

the cantilever is then 

 

  

0

0 0

mech free

free

z Z c

z Z c c

  

 

   

    
 

where Z  is the z-coordinate of the neutral axis.  The default curvature causes the static 

bending angle, 0 0 0 0 /Lc c L    , so  

 
2

0
0mechMax free rz Z A

L L

 
  

 
     

 
 

This equation, combined with material strain limits, establishes a maximum amplitude Ar 

for each stack structure, which is dependent the offset angle and resulting wing length. 

 

How large is the resonant strain (“dynamic strain”) compared to the offset angle strain 

(“static strain”)?  The bending portions of the strain equal when 0

2rA



 .  For fixed stack 

structure and shape (inputs for the analytical framework), the amplitude where peak 

dynamic strain matches peak static strain is shown in the table below.  This places a limit 
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on the allowed amplitude depending on how far below the materials’ strain limits the 

material stack operates at.  I.e., for a symmetric stack, if a stack is designed so that the 

peak built-in strain after bending is 50% of the allowed strain limit, then the maximum 

allowed amplitude is ArMatch / 2.  This is because for a symmetric stack, bending sends the 

centre of both layers to zero strain, but inverts their junction-strain at the outside edges; 

i.e., bending strain is at the outside edge is twice the relative strain.  Therefore, 0/L worth 

of curvature produces a net mechanical strain at the outside edges equal and opposite to 

the junction strain.  Adding ArMatch would double the bending strain, for a net of 4-1 = 3 

times the strain at the outside edge.  Adding 2ArMatch would triple the bending strain, for a 

net of 6-1 = 5 times the strain at the outside edge, etc.

 

Table 4-4: Amplitude for equal strain from static and dynamic bending 

0 [
o
] ArMatch 

35 0.17 

50 0.25 

75 0.37 

90 0.45 

105 0.52 

120 0.60 

140 0.70 

 

Depending on material limits, this can establish a severe constraint, especially for the 

lower bending angles.  Fortunately, single crystal materials do not suffer from fatigue like 

the materials of a typical macroscopic cantilever beam, so the allowed strain limits for a 

resonating structure are significantly higher. 

Section 4.2.7 Robot Velocity 

In order to do anything besides hover, this type of robot needs to tilt forward.  The tilting 

itself is accomplished by reducing the force output of the front wings relative to the back 

ones.  The robot's max tilt angle  from the vertical is where the vertical force component 

matches the robot's weight:  cosN totalF W m g   , as illustrated in Figure 4-5. 
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Figure 4-5: Force balance when tilting for forward velocity 

 

The terminal forward velocity at this angle occurs when the forward force produced 

equals the drag force in that direction: 
21

2
sinN air Dfwd fwdMax robotF C v A   where 

sinrobot Wing WingA N A   is the projected frontal area of the robot.  (Note that this is only 

the correct area to use for sufficiently large tilts from vertical that the drag is mostly from 
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the wing surface rather than their thickness, when skin friction would become more 

important). 

 

If we select the battery so that the robot's weight is 2total Nm g F , then this conveniently 

sets the tilt angle to 45
o
.  Balancing the forces for terminal forward velocity causes the 

angle component to drop out: 
21

2

1 1

2 2
N air Dfwd fwdMax Wing WingF C v N A . 

 

If we approximate the forward drag coefficient as 

6 6
0.5 0.5

2Re
Dfwd

air fwdMaxfwd

C
v L

 





   
 
 
 

, we can substitute and calculate what this 

terminal forward velocity is in terms of the other variables: 

   

   

21
2

2
21

2

2

2

6
0.5

2

6
0.5 4

2 4

2 3
0.5

3 2
0.5 0

1 3 3

N air fwdMax Wing Wing

air fwdMax

N air fwdMax

air fwdMax

N fwdMax fwdMax

air air

fwdMax fwdMax N

air air

fwdMax

air

F v N A
v L

L
F v

v L

F v L v L

v L v L F

v
L


 




 





 



 

 



 
   

 

 
   

 

 

  

   

 

2

2

4

41 3
1 1

3

N

air air

air N
fwdMax

air

F

F
v

L



 



 

 
   

  
 

 
    
 
 

 

Only the positive root makes sense since this was setup for positive vfwdmax.  Therefore, 

the maximum forward velocity in terms of the wing length and net force is: 
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 
2

41 3
1 1

3

air N
fwdMax

air

F
v

L



 

 
   
 
 

 

Section 4.2.8 Robot Range  

The range is the maximum distance the robot can travel in a single sustained flight.  This 

is also figure of merit, and is calculated from  

fwdMax flightrange v t   

Section 4.2.9 Electrical Properties 

The electrical picture of a Quartz:Si unimorph piezoelectric cantilever when off-

resonance is a voltage supply across a large capacitor in series with two small resistors.  

Near a resonance frequency of the cantilever, this is better modelled by the Butterworth-

van Dyke (BvD) model shown in Figure 4-6 rather than only a capacitor.  This must be 

the case because if a pure capacitor cannot dissipate electrical energy, and so there would 

be no way for the moving wing to do any work. 
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Figure 4-6: Electrical model of a stack structure resonator 

 

The resistance of the contacts is based on an average length of L/2: 
/ 2

c e e

l L
R

A Bt
   .  

If instead two contact metals per side are involved, the resistance is the resistance from 

each in parallel: 1 2||cTop cTop cTopR R R . 

 

Since there is a contact on the top and the bottom of the wing, the total resistance in series 

with the piezoelectric resonator is  

total cTop cBottomR R R   

Section 4.2.9.1 BvD Model: Introduction 

The Butterworth-van Dyke (BvD) model for piezoelectric resonators is a capacitor 

(package capacitance) in parallel with an RLC branch to model the resonance of the 

circuit. 
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Figure 4-7: The BvD model for piezoelectric resonators 

 

The BvD model of the resonator reflects the mechanical resonance characteristics in the 

electrical domain.  Therefore, the energy stored and dissipated in the RLC branch must 

equal the energy stored and dissipated by the mechanical resonator.  This allows us to 

calculate the wing's electrical parameters from its mechanical ones. 

Section 4.2.9.2 Package Capacitance 

The capacitance of a standard parallel plate capacitor is given by 
0 r

A LB
C

d t
     (that 

is, for 1 wing), where in this equation  is the electrical permittivity; 
0

F
8.85e-12

m
   is 

the permittivity of free space and r  is the relative permittivity of the piezoelectric 

material in the vertical direction (for the layout of Figure 4-6).  However, the coupling of 

mechanical and electrical domains in a piezoelectric material requires modifying this 

expression.  From [45], "If the coupling factor is small, 0.1 or less, then [Cp] can be 

calculated accurately from the dielectric constant and dimensions of the resonator."  The 
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package capacitance (which is the capacitance far from resonance) for the piezoelectric 

layer with thickness ti then turns out to be: 

2

31
33

11

T

p E

i

LB d
C

t s

 

  
 

  (4.1) 

where 33 here is the permittivity in the field direction, d31 is the piezoelectric coupling 

coefficient relating the field and strain directions, and s11 is the compliance in the strain 

direction. 

Section 4.2.9.3 Resonant Branch Impedance: 

The RLC branch on the left side of the BvD model is known as the "resonant branch".  

This alone has an impedance of 1 1

1

j
R j L

C



  , leading to a resonance when 1  , at 

which point 1

1

1
L

C



 .  This gives the inductance in terms of the capacitance: 

1 2

1 1

1
L

C
 , meaning the impedance is: 

2

1 1

1 1

1
1res rZ R j R jX

C



 

  
      
   

 

 

Recasting this in terms of difference from resonant frequency, 1 1     , allows 

rewriting the impedance as 
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   
    
     

   
   

   


 

 

(when sufficiently near resonance). 

Section 4.2.9.4 Calculating the Resonant Branch BvD Parameters 

from the Mechanical Parameters 

The analytical framework starts with a fixed stack structure and a fixed bending shape, 

amplitude, and Reynolds number.  This fixes the wing dimensions, and in turn the peak 

mechanical energy stored in the wings maxU , their resonant frequency 1 , their average 

fluidic power dissipation AP , and even the voltage applied to the resonant branch of the 

wing   sinresv t V t , among other things. 

 

We can calculate the resonant branch parameters 1 1 1, ,  and R C L  in terms of these known 

values as follows: 

 

Resistance 

At resonance, the capacitance and inductance of the resonant branch cancel, meaning the 

impedance is purely resistive, 1resZ R .  Therefore, the average power dissipated in this 

branch is 
2

1
1 2

1

R

V
P

R
 , where V  is the voltage amplitude applied to the branch.  Since this 

power dissipation is just a representation in the electrical domain of the power actually 
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dissipated by the flapping wing, we know already that 1R AP P , and therefore the 

equivalent resistance is: 

2

1
2 A

V
R

P
  (4.2) 

 

Inductance 

The resonator branch is a series circuit, and therefore has the same current everywhere.  

Since the impedance at resonance is 1R , we can find this current from the applied voltage: 

 
1

sinres

V
i t t

R
 . 

The energy stored in an inductor is given by the inductance and the current passing 

through it, 21
2LE Li , so the max stored energy in the BvD inductor must be 

2

1
12 2

1

LMax

V
E L

R
 . 

Since again the RLC circuit models the resonator, this energy must be equal to the known 

maximum RS-mode mechanical energy maxU , which determines the BvD inductance: 

2

1
1 max max2 4

2 8 AR P
L U U

V V
   (4.3) 

 

Capacitance 

As in the previous section, for the inductance and capacitance to cancel at resonance, we 

need 1 1

1 1

1
L

C



 .  Therefore the capacitance must be: 

4

1 2 2

1 1 1 max

1

8 A

V
C

L P U 
   (4.4) 



4-111 

 

Section 4.2.10 Extra Electrical Power Losses and Required Voltage 

The electrical contacts on each side of the wings have nonzero resistance, and thus lead to 

additional power losses.  In typical circuits, the wires are made thick enough that their 

power losses are ignored next to the device, but in the complete mechatronics design the 

wings require, thicker contacts can lead to appreciably more robot weight and altered 

resonance characteristics.  As such, we are tempted to make the contacts as thin as 

possible, but effectively zero thickness contacts would mean that most of the power is 

dissipated there rather than in the wings.  To determine how thin the contacts can be 

before this becomes a problem, we need to calculate the power losses through the 

contacts. 

 

Consider a unimorph design, as shown in Figure 4-6.  Let the top contact resistance be 

RcTop, and the bottom be RcBottom. 

 

The complete BvD impedance is the impedance of the resonant branch (which at 

resonance is R1) in parallel with the impedance of the package capacitance, p

p

j
Z

C


 , 

1 ||BVD pZ R Z . 

 

This leads to a current 
BVD

V
I

Z
 , where V is the voltage applied to the resonant branch 

(which is in parallel with the package capacitance in the BvD model, and therefore is also 

the voltage across the entire BvD block). 

 

Now, this current is also the current in the contact resistors (since it is a series circuit), 

and so leads to an extra power loss of  
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 
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I
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The contacts also lead to a different total applied voltage than the one that actually 

appears on the resonator material: 

 

 

1

1
||

Total cTop cBottom

cTop cBottom

cTop cBottom

BVD

cTop cBottom

p

V V V V

I R R V

V
R R V

Z

R R
V

R Z
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  

 
   
 

 

Thus, for non-ignorable contact resistance and package capacitance, this total applied 

voltage is both higher and at a different phase from the voltage that appears across the 

resonator material. 

Section 4.3 Analytical Framework Explained: Start to Finish 

Each CFX simulation flaps a curved rectangle with a specific offset angle (, relative tip 

amplitude  (Ar0), and Reynolds number (Re).  The wings always have chord length equal 

to one-quarter their wing length (B = L/4).  The simulations output the instantaneous force 

and power dissipation which I average over the final few cycles (once the flow has more-

or-less stabilized) to calculate the net force (FN) and average power dissipated in the fluid 

(PA), respectively.   

 

For fixed fluid viscosity and density, the net force is invariant with L and flapping 

frequency (f) at constant Re & shape (0 & Ar0but the dissipated power is not.  To get 
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around this we can use the related quantity which is invariant at constant Re & shape (for 

a fixed fluid), the power force, /P A rmsF P v  where  
 

   
0

0

0 0

0

2

rms r
rms

resCor resCor

v A L
v

f f




 
  . 

 

Further, defining the net and power drag coefficients as 
21

2

Net
DN

rms wing

F
C

v A
  and 

2 31 1
2 2

P A
DP

rms wing rms wing

F P
C

v A v A 
   gives quantities which are only functions of Reynolds 

number and shape, even across different fluid densities and viscosities.  These then define 

the force and power for a given wing: 

    21
0 0 0 02

, , , , ,Re Re, ,Net r air air DN r rms wingsF L A f C A v A      

    31
0 0 0 02

, , , , ,Re Re, ,A r air air DP r rms wingsP L A f C A v A      

 

Next, we select a piezoelectric "stack structure" to make up the wings.  This consists of 

picking the order and relative thickness (that is, thickness of each layer as a percentage of 

the total wing thickness (h), but not the thickness itself) of all the layers from bottom to 

top that make up the wings, along with their material parameters and built-in strains after 

fabrication. 

 

The stack structure and shape then uniquely lead to a final robot design via the analytical 

framework, displayed in detail in Figure 4-8. 
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Figure 4-8: Detailed flowchart for the analytical framework 

 

The details of the steps in this figure are sketched out in the following sections.  

Following that, we will apply the routine to some wing designs and determine whether 

the force and power are sufficient for some robots to fly, and if so, which ones fly best. 
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Section 4.3.1 Analytical Framework Discussion, Based on Equation 

Sections 

Section 4.3.1.1 Resonance Constraint 

The stack structure choice or CFX simulation inputs alone do not uniquely determine the 

wing length, total thickness, or resonant frequency.  However, when combining them at 

resonance we obtain three equations that do combine to determine L, h, and f: 

1. Reynolds number of the wings 

2. Initial bending angle of the wings 

3. Resonant frequency of the wings 

 

1. The CFX simulations are run at a specific Reynolds number.  Since the operating air 

density and viscosity of the final robot are constant (at STP values for air), a fixed 

Reynolds number relates the wing length and frequency:  

20

20

1

4
Re

Re
2

r

resCorrms
air air

air r

resCor

A fL
L

fv A

A
fL

f



 
 

 



 
 
  



 

Therefore 2

0

Re2 1resCor

air r

f
f

A L



 
  

 

2. The CFX simulations are also run at a specific built-in bending angle 0 .  For a given 

stack structure, fixing the bending angle 0  relates the wing thickness to the wing length: 

Bending angle is 0 0c L  , where the built-in curvature is 

1

0 0 0
1

1 1

1
1

2

cc
h





 



DA C

DA B

; therefore: 0 0c

L

h
   
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3. The wing is operating at its resonant frequency:  

2

22 12

Y
resCor

m

E h
f f

L



 
  

Again, Y

m

E


 depends only on the stack structure (density is a thickness-weighted average), 

and resCorf  depends only on the initial bending angle (i.e., the CFX simulation chosen), so 

with a fixed CFX simulation and stack structure, everything here is fixed except for h & 

L. 

 

 

Thus, we’ve arrived at three independent equations in the three unknowns h, L, and f: 

1. the Reynolds number of the wing matches that of the simulation:  

2

0

Re2 1resCor

air r

f
f

A L



 
 , 

2. the bending angle of the wing matches that of the simulation: 0 0c

L

h
  , and  

3. the frequency of the wing matches its resonant frequency: 

2

22 12

Y
resCor

m

E h
f f

L



 
  

 

Solve them by direct substitution: 

1. Combine the resonant frequency equation with the Reynolds number definition; fixes 

h for given stack, air, and shape: 
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Note: h depends on the stack’s ratio of effective density to Young’s modulus, and the 

simulation’s ratio of Reynolds number to amplitude.  However, h is independent of the 

offset angle and the stack’s curvature constant. 

 

2. Known h and stack then determine L from the resting angle: 

0 0

0 0

2

0 0 0

124Re

c

m

c c air r Y

L

h

h
L

A E

 

  

   



  

 

 

3. Finally, backsubstitute h & L to determine the resonant frequency for the stack and 

shape: 
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Section 4.3.1.2 Stress Limit Constraint 

The stack structure defines the built-in strain of each layer before bending.  Over most of 

the wing, this is relieved during bending but can be locally enhanced near the material 

interfaces.  Resonanting further increases the local strain proportional to the amplitude 

through the curvature: bending   

Section 4.3.1.3 Quality Factor Definitions 

Next, appeal to the dual definitions of the quality factor as amplitude ratio and energy 

ratio. 

 

Quality factor as an amplitude ratio:  
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We know that 0 0.445r DC DCA   , where DC bending angle is 

2DC piezo cpiezo

V
c L L

h

 

    
 

 
so define 

0 2r DC ArDC

LV
A

h
  where 0.445ArDC cpiezo  . 

Then the quality factor is the ratio of the resonant amplitude to this amplitude:  

0

0

r

r DC

A
Q

A
  

0

2

r

ArDC

A
Q

LV

h


  

 

Quality factor as an energy ratio: 

Quality factor is also the ratio of 2 times the peak energy stored to energy dissipated per 

cycle: max

0

2 2 resCor m

A air DP r

K f
Q

TP C A

 


   

 

Equating: 

Equating these definitions determines the voltage amplitude applied to the resonator 

material: 

2

0r

ArDC

h
V A

L Q
   

Section 4.3.1.4 Breakdown Field Check 

Knowing the voltage and the thickness of the piezoelectric allows finding the electric 

field across the piezoelectric element: 
V

E
t


 . 

A robot could only work if this field is sufficiently lower than the breakdown field of the 

piezoelectric. 
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Section 4.3.1.5 Drag Coefficient Definitions: 

With the size and shape determined, we can substitute the h, L, & fres into the equations 

for the drag coefficients to determine the net force and power used by flapping: 

    21
0 0 0 02

, , , , ,Re Re, ,Net r air air DN r rms wingsF L A f C A v A      

    31
0 0 0 02

, , , , ,Re Re, ,A r air air DP r rms wingsP L A f C A v A      

Section 4.3.1.6 BvD Elements and Electrical Power Losses 

With the dissipated power and dimensions of the stack now known, we can find the Cp, 

R1, C1, and L1 of the BvD model for the electrical picture of the piezoelectric layer, and 

also the resistances of the top and bottom contacts to determine the electrical power losses 

elecP . 

Section 4.3.1.7 Calculations Once Size is Known 

Knowing the size of the wings allows determining their mass and weight, as well as the 

mass and weight of the fuselage (minus the battery), and the solar power available. 

Section 4.3.1.8 Net Force Check 

To fly, the force output by the wings must exceed the robot weight while in forward 

flight, so exclude robots whose net force is not greater than the one needed to lift the 

wings and fuselage when tilted at 45
o
 to the vertical:   2N wings coreF g m m   

Section 4.3.1.9 Battery Mass and PBatt 

The battery mass is max liftable when tilted at 45
o
 to the vertical: 

2

N
batt wings core

F
m m m

g
    
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With this known, the power output by the battery is batt batt pbattP m   .  This depends on 

the flight time chosen, 
flightt : 

,

,

Ebatt
flight flightMin

flightpbatt

pbattMax flight flightMin

t t
t

t t










 
 

. 

Section 4.3.1.10 Total Available Power 

The power available to the robot is from both the volume and the area power source: 

battery or supercapacitor combined with solar cells: 

avail batt solarP P P   

Section 4.3.1.11 Total Required Power 

The total required power for flight is the power dissipated by flapping plus the extra 

electrical power losses: 

required A ElecLossesP P P   

Section 4.3.1.12 Power Check and Calculation of Excess Power: 

The "excess power" is defined as the leftover power available from all sources after 

accounting for the power required to fly: 

excess avail requiredP P P   

 

This power is necessary to operate all other things on the robot, such as control, sensing, 

and communications circuitry.  As such, Pexcess > 0 is not only the final check of whether 

flight is possible, but also a figure of merit to be optimized in its own right. 

Section 4.3.2 Figures of Merit 

Is higher excess power better if it means the robot takes longer to recharge its battery?  Is 

maximum top-speed more important than maximum average speed over a long distance?  

Is a bigger, faster, more powerful robot a superior choice to using the same material and 
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fabrication time to produce many smaller robots?  Selecting which robot is best out of 

several flying designs is not at all obvious, and depends on the relative weights of several 

figures of merit such as the following: 

1. Max payload: excess FN at hover = Payload N totalW F gm   

a. Under the 
2

N
batt wings core

F
m m m

g
    constraint, this is equal to: 

b. 

 

1
1

2 2

Payload N batt wings core

N
N N

W F g m m m

F
F g F

g

   

   
      

  

 

2. Max forward velocity: 
 

2

41 3
1 1

3

air N
fwdMax

air

F
v

L



 

 
   
 
 

 

3. Excess power Pexcess (the power the robot has available beyond that needed for 

sustained flight) 

4. Operation time ratio, defined as the fraction of time the robot can spend flying: 

arg

flight

flight ch e

t
OTR

t t



, where arg

Batt
ch e

Solar

E
t

P
  

5. Manoeuvrability: Max acceleration the robot can generate ( /Max N robota F m ) 

6. Inverse mass: 1/mTotal.  Other things equal, lower mass means less materials are 

required and therefore lower cost per robot 

7. Inverse WaferAreaRequired: 
  

1 1

WaferAreaRequired 2 3L B B



.  More area of a 

starting wafer taken up means less robots can be made on each wafer 

 

One approach is to define a function made up of the product of all of these quantities and 

optimize that: 

     
  

1 1

2 3
Payload FwdMax Excess Max

Total

Merit W v P OTR a
m L B B



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Priorities can be changed by adjusting the weights of each quantity as-needed.  Doing so 

does not change the robot that each stack and shape leads to; that is fixed by the 

constraints of the analytical framework.  Rather, choosing a merit function only affects 

the decision of which stack and shape we decide is best. 

Section 4.4 Optimization Routine Implementation 

This section walks through Phase 1 of the Optimization Routine (optimizing CFX inputs) 

by carrying out the Analytical Framework for all CFX inputs using the Q:Si stack 

structure from Section 4.2.1.4.  This stack structure had the following stack parameters, 

shown in Table 4-5. 

 

Table 4-5: Q:Si stack parameters 

Stack c0 EY m cpiezo

 m-rad 

/mm 

GPa kg/m^3 m
2
-mrad 

/mm-V 

Q:Si 3.446 110.8 2631 6.397 

 

Section 4.4.1 Resonance Constraint: h, L, and f 

Asserting that the structure operates at resonance uniquely defines the thickness, length, 

and frequency of every input flapping shape, given the stack parameters.  The results for 

the Q:Si stack are shown in Figure 4-9 through Figure 4-11. 
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Figure 4-9: log10 of the wing thickness in m 

The wing thickness required increases with higher Reynolds number, and decreases with 

increasing amplitude. 
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Figure 4-10: log10 of the wing length in m 

Higher bending angles for the same stack mean larger lengths are required.  Length 

increases with thickness and bending angle, and decreases with amplitude. 
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Figure 4-11: log10 of frequency in Hz 

 

The frequency is inversely proportional to the length squared and proportional to the 

thickness.  This, combined with its shape dependencies lead to frequency decreasing with 

Reynolds number, increasing with amplitude, and decreasing with initial bending angle. 
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Section 4.4.2 Wing Mass and Force 

Knowing the dimensions and density we can determine the wing mass and weight to 

compare to its net force output.  The wing weight ratio (WWR), equal to the weight of the 

wings divided by their net force output, does just that and is plotted in Figure 4-12.  

Referring to the colourbar, wings whose flapping produces enough force to lift their own 

weight are those whose colour is at least as blue as cyan.  This requires a sufficiently high 

amplitude and sufficiently low Reynolds number, with the higher initial bending angle 

designs performing worse at this metric.  This is because although the net drag coefficient 

(and therefore net force) at high-Re and high-Ar is better for 0 in the range of 90
o
 than 

35
o
,  the 90

o
 bending angles require longer wings to achieve this angle for the same 

stack’s c0.
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Figure 4-12: log10 of the wing weight ratio.  Only wings with WWR < 1 (log10(WWR)<0) produce 

enough force to lift their own weight.  For fixed stack curvature constant, higher bending angles 

require more length and consequently extra mass than they make up for with drag coefficient. 

 

Section 4.4.3 Q, V, and E 

Knowing the dimensions of the stack and its resonant amplitude and drag coefficients 

enables calculating the peak energy stored and quality factor. 
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Figure 4-13: Quality factor 

 

The quality factor increased most markedly as amplitude decreased.  Although lower 

amplitudes lead to higher power drag coefficients and thus more dissipated energy for 

each Reynolds number and velocity, this was not enough to overcome the increase in 

their stored energy.  This also increased the quality factor for higher bending angles.  

Interestingly, because many of the same parameters are in the numerator and 
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denominator, the quality factor did not vary as much as many of the other parameters, 

spanning less than 2 orders of magnitude over the entire simulation set. 

 

 

Figure 4-14: log10 of the voltage amplitude (in V) required for to produce the wing’s flapping 

amplitude given its quality factor 

 

Other things equal, a higher quality factor means less required voltage to reach each 

bending amplitude.  Higher amplitudes did lead to more required voltage, but not so much 



4-131 

 

as higher Reynolds numbers.  This is because as shown by Figure 4-9, higher Reynolds 

numbers require significantly higher thicknesses, and the electric field produced by a 

given voltage is inversely proportional to the thickness. 

 

 

Figure 4-15: log10 of electric field (in N/C) required to produce the flapping amplitude 
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Required electric field increases with decreasing quality factor and increasing amplitude, 

leading to significantly higher required fields for the higher amplitudes.  The breakdown 

field for quartz is in excess of 1 GN/C, so even using the air breakdown of approximately 

40 MN/C, this constraint is not relevant for the Q:Si wing. 

Section 4.4.4 Battery Mass and Powers 

Restricting to the designs which can lift a battery at least as heavy as their wings means 

restricting to wing weight ratios lower than 0.5 (neglecting the core mass for the time 

being).  At time of writing, the 0 = 140
o
 wings do not have enough working points to 

generate a contour map, and so resorted to a scatter plot. 
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Figure 4-16: log10 of battery mass, in kg 
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Figure 4-17: log10 of available solar power in W when in 10% of 1 sun 

 

Solar power available scales directly with the square of wing length. 
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Figure 4-18: log10 of required power for flight, in W, not including electrical losses 
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Figure 4-19: log10 of "excess power": the total available power less required power, in W 
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Figure 4-20: log10 of the power ratio: the ratio of required to available power.  Like the Wing Weight 

Ratio, this must be less than 1 for the robot to fly 

 

The lower bending angle designs produce less force for the same Reynolds number and 

use more power to produce that force.  However these designs can be built with shorter 

wings making them lighter, and for many shapes, able to lift a larger battery than their 

higher-bending angle counterparts.  And so, although the designs with the largest fraction 

of their power not used for flying are have high bending angles, the designs with the 
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largest magnitude of power not used for flying have low ones.  This persists across 

different stack input conditions as well, as shown in the following figures for an identical 

Q:Si structure with double the starting strain, leading to double the c0.

 

 

Figure 4-21: Log10 of excess power 
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Figure 4-22: Log10 of the ratio of dissipated power to available power 

 

For any of the initial bending angles there appears to be a sweet spot where a minimum 

relative power is used for the wings.  This is located near, but not on, the limiting wall for 

a liftable battery mass, and generally towards the high amplitude, high Reynolds number 

portion of the plots. 
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Section 4.4.5 Figures of Merit 

Returning to the original built-in curvature of the Q:Si wings, this section determines 

several figures of merit of the robots which fly. 

 

 

Figure 4-23: Operational time ratio, the fraction of time the robot can spend flying rather than 

charging when it uses all of its excess power when flying and none of it while charging  
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Figure 4-24: Maximum forward velocity, in m/s 

 

The low-curvature designs have nearly zero operational time ratio because their low wing 

lengths mean their solar power is low.  Multiplying the maximum forward velocity and 

the operational time ratio gives an interesting quantity: the effective velocity over many 

charges and discharges, while still utilizing all excess power for things besides flying. 
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Figure 4-25: Effective forward velocity in m/s.  This is the average forward velocity of the robot over 

many charges and discharges if it uses all of its excess power when flying 

 

Effective velocity favours lower amplitudes and higher initial bending angles.  In 

addition, we can see which robots are best at long-distance travel by plotting the speed a 

robot has when only drawing energy from its solar power.  If solar power alone is 

sufficient for flight, this is equal to the robot's maximum speed, but if solar power is less 

than the flight power, it is equal to the this speed multiplied by the fraction of its time the 
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robot can spend flying, which is the ratio of solar power to required power for flight.  

This "travel velocity" vtravel is plotted in the next figure. 

 

Figure 4-26: Velocity when travelling in m/s is the speed of the robot if it focuses on long-distance 

travel, spending all of its power to fly and saving excess power rather than using it on other functions 

 

Long-term travel velocity favours higher bending angles and amplitudes, because their 

larger wings directly increase the solar power, and solar power is the source of the robots' 

energy. 
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The VolumeScanAbility is a composite figure of merit that simultaneously accounts for 

several useful factors of the robot.  Assume each robot is doing a scan whose range is 1 m 

times the square-root of its excess power in W, and that they need to scan a volume of 

5 m by 10 m by 10 m, which is 500 m away from where the robots are released.  How 

long would it take a swarm of robots made from a 4" wafer to do this?  This time is called 

the "VolumeScanTime", plotted in Figure 4-27.  This is the most complete figure of 

merit, accounting for a significant travel distance followed by useful operation.  

Evidently, the best robots from this perspective are the 105
o
 and 120

o
 ones, which can 

accomplish this task in 10
2.4

 s = 4 minutes, 11 seconds.  
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Figure 4-27: log10 of the volume scan time in seconds for a 1-wafer swarm of robots 
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Section 4.5 Optimization Routine with Inefficiencies 

Next, we can attempt to account for overhead by asserting a fixed core dimension, mass, 

and power requirement.  We can get an idea of what is required by using the parameters 

of the ATtiny4, Atmel's smallest microcontroller, shown in Figure 4-28 [46]. 

 

 

Figure 4-28: Atmel's ATtiny4 microcontroller is only 2 mm by 2 mm by 0.5 mm including the 

package, and uses only 0.4 mW of power when active at 1 MHz [46] 

 

Based on the packaged dimensions of 2 mm by 2 mm by 0.5 mm, I will assume 

dimensions of 1 mm by 1 mm and thickness of 100 m for the core without the package, 

for a mass of 2e-7 kg.  The typical operating current at 2 V in the active mode at 1 MHz is 

0.2 mA for a power consumption of 0.4 mW, and 10% of this in the idle mode: 0.04 mW. 

 

These constraints redefine the status of the robots as follows: 

1. Battery mass: 
2

N
batt wings core

F
m m m

g
   , 2e-7 kgcorem    

2. Excess power, flying: excess batt solar flight coreP P P P P    , 0.4 mWcoreP   

3. Excess power, resting: resting solar idlecoreP P P  , 0.04mWidlecoreP   

 

As expected, the constraint on a minimum core mass has had the biggest effect on the 

smallest robots, eliminating those with Reynolds number lower than 250. 
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Figure 4-29: log10 of battery mass in kg if lifting a fixed core 

 

Constraining to positive excess power while still power the core further restricts the 

design, eliminating the highest amplitude simulations at the lowest working Reynolds 

number for the two smallest bending angles, as shown in Figure 4-30. 
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Figure 4-30: log10 of excess power in W for a fixed core 

 

Finally, we can calculate the volume scan time with a fixed core.  The fixed core does 

three things to make the volume scan times worse: 

1. it lowers the battery mass by the core mass, lowering the available power, 

2. it raises the required power by the core power, and 

3. it raises the wafer area required per robot, lowering the number of robots in the 

swarm produced by a single source wafer. 
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The volume scan time with a core is plotted in Figure 4-31.  The requirement of a fixed 

core has had little effect on the robot designs with the best volume scan times, leaving 

them at 10
2.4

 seconds.   

 

 

Figure 4-31: log10 of the volume scan time with a fixed core 
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Of the robots that can lift this core and still fly, what scale of UAV are they?  Certainly 

constraining to lift a 2e-7 kg = 0.2 mg and 1 mm-by-1 mm core puts a lower limit on their 

UAV class as an XAV, but do any of the predicted robots achieve this range? 

 

 

Figure 4-32: log10 of length of working designs with a fixed core 
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Figure 4-33: log10 of total robot mass of working designs with a fixed core 

 

The best VST designs are mostly affected by amplitude and static bending angle, independent of 

Reynolds number, while the smallest designs for both length and mass are at the lowest Reynolds 

number, largely independent of both amplitude and static bending angle.  The smallest design which 

flies corresponds to 0g = 35
o
, and has a length of L = 10

-2.9
 m = 1.3 mm and a mass of 10

-6.5
 kg = 

0.32 mg, but have a VST of 2290 s.  The best VST designs of 251 s are actually not very far behind in 

line for title of smallest flying robots, with L = 10
-2.6

 kg = 2.5 mm and a mass of 10
-6.4

 kg = 0.40 mg.  

Referring back to  
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Table 1-1, these designs are XAVs: Xeno Air Vehicles.  If the analytical framework is 

correct, then this quartz:Si design, which is not necessarily the optimum material choice, 

can lead flying robots on the scale of a fruit fly even while lifting microcontrollers on the 

market today. 

Section 4.5.1 Discussion 

The optimization routine has provided a significant amount of insight that was not 

anticipated by the drag coefficients in isolation.  In Section 3.3 it was easy to dismiss the 

lower static bending angle wings due to their lower net drag coefficients and higher 

power drag coefficients but the optimization routine demonstrated that under a variety of 

design goals the low bending angle simulations are the superior choice.  This has all 

stemmed from applying a fixed built-in curvature constant 0c , which means the wing's 

length is directly proportional to bending angle.  This constraint has required the larger 

bending angle simulations to have more massive wings, reducing the battery mass more 

than their increased force generation increased it.  The low bending angle simulations 

were only unambiguously inferior in one respect: peak voltage and electric field required.  

For highly dielectric quartz wings, this was not an issue, but there are material choices 

where this would be more important, pushing the higher curvatures to more desirable 

situations. 

 

The next section turns to analytically examining the output of the framework in an effort 

to explore which material parameters are optimal. 

Section 4.6 Analytical Scaling Calculations 

Is it possible to carry input variables through the calculations and see clearly their effect 

on the output figures of merit in order to know a priori what input parameters we should 

be designing for?  Specifically, which stack structure parameters are optimal? 
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The thickness, length, and frequency as functions of the simulation and stack structure 

are: 
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Thus, for a given CFX simulation, the thickness depends only on m

YE


, the square root of 

the effective wing density over its effective Young's modulus.  The length is proportional 

to the thickness multiplied by 0

0c




, i.e., the ratio of bending angle to the curvature 

constant, 
1

0 0
11
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, and so for a fixed simulation is proportional to 
0
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The frequency is then proportional to 
2
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m

E 
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By using the second definition of quality factor as an energy ratio, it depends only on the 

density for a given CFX simulation: higher density leads to higher quality factor. 
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The voltage required thus depends on: 
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Net force: 
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The battery mass is: 

2

N
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F
m m m

g
    

where the wing mass is 
2
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L
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Therefore, all things considered, thanks to the resonant frequency constraint, the wing 

mass actually scales with density to the power of 2.5 (among other things)! 

Ignoring core mass for now, the battery mass is: 
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For the robot to fly, the battery mass must be positive.  Since the fluid mechanics 

simulations reveal that CDN is sub-linear in Re, requiring a positive battery mass results in 

an upper limit on the Reynolds number for successful robots: 

2
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This maximum Re for a positive battery mass explains the Ar0-dependent wall observed 

for the optimization results as log(Re) increases: for a fixed stack, 0, and Ar0, increasing 

Re increases the wing mass like Re
3
 while only increasing the force like Re

2
. 

 

For the power balance, we will ignore electrical power losses and the core mass for the 

time being.  The power used is then required AP P , where 

31
2A air DP rms wingsP C v A  

and using 
Re Re

2rms

airair

v
LLB

 


  , this becomes: 
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The available power is  
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Meaning the excess power is: 
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In terms of maximizing output excess power, there are only three unambiguously good 

parameters: 

1. CDN 

2. pBatt  
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3. pSolar  

And only one unambiguously bad parameter: 

1. DPC  

In other words, everything else is more complicated!  For example, you might imagine 

that making the wings of a low density material would be better than a heavier material, 

but is it?  Looking at where m  appears here, increasing the wing density: 

1. Lowers the battery power (bad)   

2. Raises the solar power (good)  

3. Lowers the required flight power (good)  

 

Wing stiffness , EI , is similarly complicated: 

1. Raises the battery power (good) 

2. Lowers the solar power (bad) 

3. Raises the required flight power (bad) 

 

As is the initial curvature constant, 0c : 

1. Raises the battery power (good)   

2. Lowers the solar power (bad)   

3. Raises the flight power (bad)  

Section 4.6.1 Scaling for the Best Robots 

We can gain further insight into these scaling results by examining robots only within the 

range of steady net and power drag coefficients.  As discussed in Section 3.5, the drag 

coefficients are effectively constant with Re and Ar as long as Re ≥ 1000 and Ar0 is 

between 0.45 and 0.65.   In fact, in this amplitude and Reynolds number range, as 0 

varies between 75
o
 and 120

o
, CDN is nearly constant at 0.25 while CDP decreases from 

about 1.6 to 1.3 with increased bending angle and amplitude.  As well as being 

particularly easy due to these constant drag coefficients, this range of Re, Ar0, and 0 is 
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particularly interesting because it is where the some of the best robots are located, as long 

as the material parameters can make them possible, as presented in Section 4.4.  In this 

section we will analytically examine the analytical framework results in this range of 

shape parameters.  To do so, we will use the three example stack structures from Section 

4.2.1.4.  Table 4-3 showed the parameters for these stacks. 

 

Once again, thickness, length, and frequency are: 

2
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The restriction of Re ≥ 1000 and Ar ≤ 0.65 places a stack-dependent lower limit on wing 

thickness of  

 
 

max

2

0min

4 Re 12 m

air r Y

h
A E

 

 
  

For the quartz:Si, Quartz:SU-8, and InGaP stacks of Table 4-3, this lower thickness limit 

works out to 0.16, 0.36, and 0.19 m, respectively. 



Battery mass is 

3
2.5

2 2 2

0 2 2 1.5

0 0

2

4 12
Re 2 Re

N
batt wings

DN m

air air r c Y

F
m m

g

C

g A E


 

   

 

  
        

 

Substituting known values of the constants, including CDN = 0.25, this equation becomes 

(in SI units): 
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The battery mass depends on the stack parameter ratio 
2.5

2 1.5

0

m

c YE




, which for the three stacks 

is 811e-6, 607e-5, and 310e-5 [in SI units: 
 
   

2.5
3 0.5 4

2 1.5 5.5

kg/m kg s

m1 Pa
 ].  This difference in 

stack parameter ratios means that the Q:Si wings are four times lighter than the InGaP 

wings, which themselves are twice as light as the Q:SU8 wings for any choice of shape 

parameters.  Qualitatively, the Q:Si wings do much better than the InGaP wings because 

they are nearly half the density but have a similar curvature constant and stiffness (and 

the wing mass scales with wing density to the power of 2.5 due to the resonant frequency 

constraint).  Even though the Q:SU8 wings have a lower density and higher curvature 

than the Q:Si wings, the SU-8 has made their stiffness so much lower that they need to be 

significantly thicker than the other stacks to have the same shape parameters. 

 

Requiring positive battery mass sets an upper limit on the Reynolds number, but there is 

actually a subtler limit before this: if the wings are much more massive than the rest of 

the robot (i.e., the battery) then the wings would move the fuselage up and down an 

appreciable amount as they flap, making their movement in the air significantly different 

than what the simulations modelled.  Examining the battery mass equation reveals that the 

ratio of wing mass to total mass is proportional to Re.  By differentiating the battery mass 

equation with respect to Reynolds number, we can see that for a fixed stack and 2 3

0 0/ rA , 

the battery mass reaches a maximum value at 
2 2.5

0

3 2 1.5

0 0

2 1.052e-11
Re

3 2.367e-13
battm Max

m

r c YA E

 








, when 

the wings account for 2/3 of the total robot mass, meaning they are twice as massive as 

the battery.  For the wings to be reasonably steady against the air, we need the battery to 
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at least match the wing mass, which gives a more restrictive maximum Reynolds number 

of:  

max 2 2.5

0

3 2 1.5

0 0

1.052e-11 22.2
Re

2 2.367e-13 m shape stack

r c YA E
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

 



 

where we have broken the formula into one parameter that depends on the stack, 

2.5

2 1.5

0

m
stack

c YE





 , and one that depends on the shape, 

2

0

3

0

shape

rA


  . 

 

This maximum Reynolds number increases with the cube of amplitude and decreases with 

the square of bending angle.  Table 4-6 shows log10 of this maximum Re vs. 0 for each 

stack structure for the maximum optimum amplitude of 0.65, and illustrates that the 

battery mass-determining stack parameter ratio, stack, has a large effect on whether that 

stack will lead to wings that are light enough for each bending angle. 

 

Table 4-6: Remax for mbatt ≤ mwings with Ar0 = 0.65 

Stack\0 stack 75
o 

90
o 

105
o 

120
o 

shape:  4.06
 

5.84
 

7.95
 

10.38
 

Q:Si 8.11e-4 6759 4694 3448 2640 

Q:SU8 6.07e-3 902 627 460 352 

InGaP 3.11e-3 1769 1228 902 691 

 

Looking at this another way, if we solve max

22.2
Re

shape stack 
  for the battery mass-

determining stack parameter ratio, we can calculate the maximum value of 
2.5

2 1.5

0

m
stack

c YE





  

for each bending angle to lead to robot designs with Re ≥ 1000 and Ar0 ≤ 0.65.  Table 4-7 

shows the result, and agrees with the results for Table 4-6 given the ratios for the example 

stacks, 811e-4, 607e-3, and 310e-3. 
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Table 4-7: Maximum value of the mass-determining stack parameter ratio stack (in SI units) to allow 

Re ≥ 1000  

0 75o 90o 105o 120o 

Ar ≤ 0.65 5.48E-03 3.81E-03 2.80E-03 2.14E-03 

Ar ≤ 0.45 2.63E-03 1.82E-03 1.34E-03 1.03E-03 

 

So, the battery mass scaling results give us bending angle-dependent upper limit on 

2.5

2 1.5

0

m
stack

c YE





  for working in the best drag-coefficient regions while keeping the battery 

mass at least 50% of the wing mass.  And for each simulation, a lower value of this ratio 

leads to a larger battery mass.  Still, this doesn’t necessarily mean that stacks should 

strive to minimize this ratio.  To learn more, we need to examine the power balance 

constraint. 

 

The excess power [calculated in Section 4.6] is given by 
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The robot needs to have a positive excess power to be able to fly.  This equation reveals 

that within the sufficient Re and Ar0 ranges that the drag coefficients are constant, the 

excess power is an increasing function of Re as long as the battery mass is.  Therefore, 

the maximum excess power for a fixed stack, Ar0, and 0 occurs at the maximum Re from 
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the battery mass balance: max

22.2
Re
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  (the max battery mass itself is 

  2

max5.261e-12 kg RebattMaxm  ).  Substituting this Reynolds number for the largest 

allowable battery, the largest possible excess power is: 
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Besides the variation in DPC  with 0, the maximum excess power turns out to depend 

only on maximum Reynolds number and the parameter 
0.5

0 0

0.5

0

r c Y

m

A E


 
 .  For a fixed 

maximum Re, the ratio of required flight power to battery power increases linearly with 

  while the ratio of available solar power to battery power decreases quadratically with 

it.  For both of these reasons, minimizing for fixed Remax is beneficial.  This is 

nontrivial because 
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 
  so every parameter that increases Remax also 

increases .  Nevertheless, we can say that for a fixed stack, Remax is constant for fixed 
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maximize 0rA  in order to minimize   for a fixed Remax.  Therefore, for any fixed stack 

and from any starting point for 0  and 0rA  we can increase the excess power, reduce the 

flight power, and reduce the charge time while holding the battery mass constant if we 

follow the 1.5

0 0rA   curve to its maximum value in the efficient parameter space of 

00.45 0.65rA   and 075 120    .  Depending on the desired Reynolds number, this 

means the best simulations should either end up with 0 0.65rA   or 0 120   .

 

Positive excess power requires 21.052e-7 9.566e-8 2.963e-10 0DPC    , which places 

a maximum value on .  Over the efficient parameter space the shape parameter's 

contribution to ranges from 0

0

r
Shape

A



 0.215 at 0 0120 , 0.45rA    to 

0.497Shape   at  0 075 , 0.65rA    .  Referring to  Figure 3-13, 1.6DPC   at both 

extrema.

For the three example stacks, 
0.5

0

0.5

c Y
Stack

m

E



 = 22.4, 11.4, and 16.3, respectively.  These 

enable computing the extrema on the maximum powers per Re
2
 at maxRe  to see how 

serious the excess power restriction is.  The results are in Table 4-8: the excess power per 

Re is not a very sensitive function of Over the entire range of input parameters, ExcessP  

only ranges from 1.01e-7/Re
2
 to 1.20e-7/Re

2
.  Thus, the PExcess constraint is not an issue 

next to the flight constraint over the efficient parameter space. 












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Table 4-8: Range of maximum output powers per Re
2
 for  in the range of the example stacks and 

efficient shapes 

 stack shape  PBatt/ Re
2
 PSolar/ Re

2
 PFlight/ Re

2 
PExcess/ Re

2
 

Q:Si 22.4 0.215 4.80 1.05E-07 4.14E-09 -2.28E-09 1.07E-07 

Q:SU8 11.4 0.215 2.44 1.05E-07 1.60E-08 -1.16E-09 1.20E-07 

InGaP 16.3 0.215 3.50 1.05E-07 7.80E-09 -1.66E-09 1.11E-07 

Q:Si 22.4 0.497 11.10 1.05E-07 7.76E-10 -5.26E-09 1.01E-07 

Q:SU8 11.4 0.497 5.65 1.05E-07 3.00E-09 -2.68E-09 1.06E-07 

InGaP 16.3 0.497 8.09 1.05E-07 1.46E-09 -3.84E-09 1.03E-07 

 

In addition, Table 4-8 lists the effect on the solar power, which scales with 2  .  

Although the range of  does not have a very large effect on the excess power at the 

maximum battery size, it does effect the time it takes to charge that battery.  Smaller 

values of  lead to larger wings at the max battery Re, more available solar power, and 

shorter charge times.  The battery power used in Table 4-8 is for a 16.25 s discharge time, 

meaning charge times between 107 s for  = 2.44 and 2200 s for  = 11.1.  The solar 

power mentioned is for 25% efficiency in 100 W/m
2
 lighting.  These long charge times 

illustrate the real importance of reducing : reducing robot down-time. 

 

To summarize, the optimum robot in terms of excess power occurs for a maximized 

battery mass, which occurs at a maximized value of 
3 2 1.5

1 0 0
max 2 2.5

0

Re r c Y

m

A E


 

  .  At this 

value, the excess power is proportional to 2

maxRe , and is further increased by minimizing 

0.5

0 0

0.5

0

r c Y

m

A E


 
 , resulting in reduced required flight power and increased available solar 

power.  For the stack examples and shape parameter ranges considered, Remax existing in 

the efficient Re range is a difficult constraint to meet for the stack, but the constraint on 

positive excess power was not an issue.  The range of increased excess power with 

reduced   over the range of stacks and shapes was at most a 20% increase, and was 

accompanied by a 20x reduction in charge time.  These parameters provide guidance 
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about which parameters to look for in choosing a piezoelectric stack for optimum robot 

power. 
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Chapter 5 RIE of x-cut Quartz 

To make quartz wings for testing, one of the challenges was obtaining thin enough quartz 

membranes.  The thinnest quartz wafer that a vendor was willing to grind for us was 

100 m thick, so I developed a method to thin x-cut quartz from 100 m to less than 10 

m using reactive ion etching (RIE), and have it still be electrically resistive after 

metallizing both sides; i.e., free from etch pits. 

 

The drive for this came after fabricated samples were initially electrically shorted from 

the front to bottom of the quartz.  Optical microscope inspection of such a sample before 

back-metallization is shown in Figure 5-1.  The back-lighting (i.e., light traveling through 

SU-8, gold, chrome, then quartz, as viewed from the quartz-side) reveals that the darker 

etch pits are actually through-holes, explaining why the sample is shorted from front to 

back. 

 

 

Figure 5-1: Close up on the bottom of QSU8_10 with lighting from the front and back, respectively 

 

On SEM inspection of the etch pits after only a short RIE using SF6, it became clear that 

the pits were showing some strange spiral patterns at their base, as shown in Figure 5-2. 
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Figure 5-2: Spiral patterns at the bottoms of pits observed after crystal quartz etching with 100% SF6 

for 5.5 hours 

 

In order to learn more about what was causing these pits and how to avoid them, I carried 

out a detailed study of quartz etching using an STS-320 RIE, varying the shadowmask 

material and replacing portions of the etch gas with argon.  This study was quite 

informative, and lead to publishing an article ([47]) in Volume 23, Number 11 of the 

Journal of Micromechanics and Microengineering, Optimum Reactive Ion Etching of x-

cut Quartz using SF6 and Ar, reproduced with permission in this chapter.  Part of this 

work required writing a program to process data output by the optical interferometer to 

establish a measure for surface roughness and obtain a more accurate measure for height 

differences.  This program appears in Appendix Q. 
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Section 5.1 Introduction 

Single crystal quartz is a piezoelectric material with low-loss elastic and electrical 

characteristics making it well suited as an electromechanical resonator [48].  Thin x-cut 

alpha quartz (single-crystal SiO2 in its natural phase at STP and with the crystal x-axis 

perpendicular to the surface) is particularly useful for fabricating piezoelectric transducers 

as quartz couples electric fields in the x-direction to strains in the x- and y-directions [49].  

As such, a modest voltage applied across a thin x-dimension will translate into a large 

electric field and consequently a large displacement in y (if that dimension is much larger, 

as it can be in a thin x-cut wafer), making x-cut quartz the optimum quartz cut to use for 

out-of-plane MEMS cantilever actuators.  However, it is difficult to chemically thin x-cut 

quartz since this direction has only one dangling bond compared to two in the z-direction 

and consequently etches much slower in hydrofluoric acid ([48], [50]), leading to long 

etch times which make masking difficult and undercuts excessive. 

Reactive ion etching (RIE) presents an interesting alternative to chemical thinning of x-

cut quartz.  RIE combines plasma etching with ion milling: Charged ions physically 

ablate the surface while free radicals produced by the plasma chemically react with it, 

forming a volatile species which evaporates in the vacuum of the RIE chamber ([51], 

[52]).   When quartz is thinned by RIE, this combination of ion milling and the high 

reactivity of fluorine radicals overcomes the chemical stability of the bonds in the x-

direction. 

Unfortunately, RIE thinning of quartz often induces significant pitting damage on the 

etched surface which prevents using the thinned membrane as a resonator, due to the 

formation of through-holes.  The problem is compounded by shadow masking (i.e. 

physically blocking parts of the surface with another material to mask them against 

etching) and using a stable crystal plane (i.e. x-cut) as the surface rather than amorphous 

SiO2.  This pitting damage and methods to circumvent it have been studied for amorphous 

SiO2 using SF6 and Ar (or SF6 and Xe) and the low pressures possible in ICP RIE ([53], 

[54]).  Although developed for amorphous SiO2, these techniques have been successfully 

applied to produce resonant structures by thinning y-cut quartz from 100 m to 18 m 
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thickness ([55]) and by thinning AT-cut quartz from 25 m to less than 10 m ([56]).  

However, no systematic study of the surface damage produced on single crystal quartz 

has been made, nor has it been demonstrated whether it is possible to eliminate the 

damage with standard parallel-plate (non-ICP) RIE.  In this work, we systematically 

investigate RIE pitting damage in shadow-masked x-cut quartz and minimize it using the 

addition of Ar to SF6 in a standard, moderate pressure RIE system. Additionally, we 

examine the role of crystal orientation and shadow mask composition on pitting damage. 

Section 5.2 Experimental 

Experiments were performed using an STS320 RIE system employing a liquid cooling 

system.  The chamber pressure was fixed at 20 mTorr, and the RF power was fixed at 

300 W
4
.  This led to a bias voltage which ranged from 650 V to 700 V.  The target and 

the bottom plate were held at 15 
o
C. 

Etch targets were polished x-cut single crystal quartz wafers provided by LapTech 

Precision and (where mentioned) polished fused silica (amorphous SiO2) wafers provided 

by Valley Design.  All targets were segments of 1" discs or smaller samples cleaved from 

1" discs.  Shadow masks for the argon-concentration trials were 500 m-thick fused 

quartz wafers with 8 mm by 2 cm central rectangular windows.  Shadow masks for the 

mask effect trials were 1 cm by 3 cm plates 0.3 to 1 mm thick made of fused silica, 

alumina, or Ni with 4 mm-diameter holes through their centers.  Etching gases were SF6 

and Ar, with total gas flow rate fixed at 18.3 SCCM.  All gas percentages are in volume 

%. 

Prior to etching, debris was removed from the surface of the wafers with a dry nitrogen 

gun, and all etch runs began with a 5 minute oxygen plasma clean (50 W RIE power, 

300 mTorr of chamber pressure) to remove residual organic contaminants. 

                                                 

4
 Preliminary trials showed that lower chamber pressures lead to faster and smoother etches while higher powers lead to faster etches without impacting 

etch smoothness very much.  20 mTorr and 300 W are not an optimum, but the STS-320 could maintain these parameters for (18.3 sccm total gas flow 

rate) consistently across all etch trials. 
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In the mask effect trials, wafers were etched in individual runs for 5.5 hours with either 

no mask or one of the three possible shadow masks using both 100% SF6 and 87.5% Ar 

(i.e. 12.5% SF6 by volume).  Etch depth and surface roughness were measured using both 

a contact and optical profilometer (ZYGO New View).  SEM images and EDS spectra 

were obtained with a JEOL-7000F in secondary electron mode. 

Wafers masked only by quartz were etched at several ratios of SF6 to Ar to study the 

effects of the Ar concentration on the etch rate and long-etch-time pitting.  At 0%, 50%, 

75%, and 87.5% Ar these etches were carried out for much longer times to obtain 

membranes of less than 20 m thickness.  Long etches with 50% Ar were also conducted 

on fused silica to study the dependence of the pitting and etch rate on crystalline 

microstructure, and conducted on x-cut quartz masked by Ni to study the long-etch 

stability of this mask. 

Section 5.3 Results and Discussion 

Section 5.3.1 Effect of Argon Concentration 

Section 5.3.1.1 Effect of Argon Concentration on Etch Rate 

The etch rate of x-cut quartz masked with quartz decreased only slightly with increasing 

Ar concentration until above 90% Ar where the etch rate quickly fell to nearly zero 

(0.3 m/hr  0.1 m/hr; see Figure 5-3).  Increasing the Ar concentration reduces the SF6 

concentration (at constant total gas flow rate), which lowers the number of reactive 

species in the plasma and slows down the etch.  The surprisingly small initial slope 

implies that the SF6 etch is not significantly limited by the concentration of fluorine 

radicals until the Ar concentration is greater than 90%.  This trend is similar to that found 

by Li et. al. for Pyrex ([54]) and by Chen et. al. for fused silica ([57]) at the lower 

pressures of ICP RIE. 
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Figure 5-3. Etch rate decay with increasing Ar concentration relative to SF6.  Total gas flow rate, 

pressure, and power are fixed.  The etch is fastest with 100% SF6 and slows only moderately with 

increased Ar concentration until it is above 90%.  This suggests that for stable surfaces like those of 

x-cut quartz, increasing the ion milling at the expense of free radicals gives a relatively minor 

reduction in the etch rate as long as some free radicals are still present.  Phenomenologically, the 

trend is well described by a power law function
5
 (as shown). 

 

Section 5.3.1.2 Effect of Argon Concentration on Surface Quality 

With SF6 alone as the process gas, pit depth accelerates as the etch progresses, potentially 

leading to through-holes in the membrane.  This is believed [58] to be due to the plasma 

induced surface damage (PISD) mechanism: Material ablated from the mask or the 

substrate redeposits on the surface of the sample, perhaps after reacting with the plasma 

                                                 

5
  

0.25
4.3 1 ArRatioRate    
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species, forming a small local shadow mask known as a micromask.  Until they are 

removed by etching, ablation, or possibly evaporation, these micromasks shield the 

substrate underneath them and deflect incoming ions and radicals at an angle into the 

surrounding surface. Due to x-cut quartz having a slow directional etch rate, these 

deflected species can preferentially etch faster etching crystallographic surfaces, 

particularly the {122} family [59], resulting in pit formation which accelerates once 

facets are exposed. Even after the micromask is removed, the exposed facets continue to 

etch more quickly than the surrounding surface. This results in severe pitting as shown in 

Figure 5-4. 

 

 

Figure 5-4. Deep pitting in quartz etched using 0% Ar (SF6 only) after only 5.5 hr (26.5 

depth), a) near the center and b) near the edge of the etch mask. 

 

After etching 72 m of a 100 m wafer, these pits are deep enough that they break 

through, providing conduction paths from the metal contact on each side of the 

membrane, rendering it inoperable as a piezoelectric device. 

 

PISD pitting is overcome by adding sufficient Ar to the process gas mixture, as shown in 

Figure 5-5.  While a small addition of Ar reduces the pitting at all etch times, we found 

that a much more significant improvement occurs at 75% Ar and above: At these 

concentrations, the pits no longer showed a noticeable increase in depth or areal density 
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with increased etch time, as shown in Figure 5-6.  The addition of Ar to the RIE process 

enhances the physical sputtering action, cleaning contaminants off the surface, and 

destroying the faster etching crystal facets. This allowed fabrication of very thin 

insulating quartz membranes with high aspect ratios (7 m x 6 mm x 20 mm). 


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Figure 5-5. Reduced pitting after long etch times with increasing Ar%: a-b) 50% Ar, 21.25 hr c-d) 

75% Ar, 29.73 hr, e-f) 87.5% Ar, 33 hr.  With 50% Ar, pit depth increases with etch time and breaks 

through the thin membrane resonator as shown in b) (72.2 m etched out of a 100 m wafer).  75% 

or more Ar did not show a pit depth increase as the etch progressed and 87.5% Ar showed even lower 

pit depth and density. 
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Figure 5-6. Pit depth vs. etch time for 50% and 75% Ar.  This plot illustrates that pit depth increased 

as the etch progressed for 50% Ar, but not for 75% Ar. 

 

Section 5.3.2 Effect of Crystalline Microstructure 

Section 5.3.2.1 3.2.1. Comparing to Fused Quartz Etching 

The results of a 21.25 hr 50% Ar etch of fused silica (amorphous SiO2) are shown in 

Figure 5-7.  The pitting and jagged-angle spiral pit bottoms observed in figure 3 for 

crystal quartz etched with 50% Ar are much reduced for fused silica. This supports the 

hypothesis that the spiraling pits observed in single crystal quartz are due to the crystal 

structure and the anisotropy it entails.  Fused silica etched moderately faster than x-cut 

quartz under the same etch conditions: 4.6 m/hr vs. 3.4 m/hr. 
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Figure 5-7. Results of etching fused silica with 50% Ar (50% SF6) for 21.25 hrs, depth of 97.4 m, a) 

typical center pit and b) increased pitting near the edge of the shadow mask.  The smoother angles 

observed, especially at the bottom of the pits, supports the hypothesis that the crystal direction 

dependence of the etch rate is responsible for the sharp-angle pitting when etching x-cut quartz. 

 

Section 5.3.2.2 Micromasking vs. Crystal Defects 

We also explored the possibility that the pitting is due to crystal defects rather than 

micromasking exposing high-index planes.  In contrast to micromasking, if the pitting is 

due to crystal defects, then proximity to a wall and sample cleanliness should not 

appreciably effect the pitting.  To test this, we cleaned one area of a sample by etching it 

for 6 hr with 100% Ar while masking the other area with fused quartz.  Following this, 

the mask was removed and both areas were subjected to 21.25 hr of 50% Ar etching.  The 

results are shown in Figure 5-8. 
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Figure 5-8. Reduced (but not eliminated) pitting from an extra Ar pre-etch and a quartz ridge 

transformed into a curve of densely-packed pitting,  a) clear and b) annotated. 

 

The Ar pre-etched area resulted in locally less pitting from the SF6-containing etch that 

followed.  Since both regions were subjected to identical SF6-Ar etching for the rest of the 

run, this is inconsistent with the pitting explanation being due to crystal defects.  As the 

etch involving SF6 begins, if the crystal surface is not etched uniformly because of dirt on 

the surface, this non-uniform etching could locally expose high-index planes as the 

material is removed, leading to pit formation.  Further note in Figure 5-8 that the step 

down (by 2.2 m) to the area with 6 hr of extra Ar-only etching has, after etching 

involving SF6, turned from a step into a curve of densely-packed etch pits.  Since this pit 

formation occurred when there was not actually an etch mask adjacent to this part to 

increase micromasking, it suggests an additional source of increased etching near walls: 

walls of the quartz have faster-etching planes exposed.  This promotes pit formation and 

is consistent with the structures observed near masked walls, such as Figure 5-4b. 
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Section 5.3.3 Effect of Masking Material 

Section 5.3.3.1 Effect of Masking Material on Etch Rate 

Figure 5-9 compares the etch rates for quartz using different shadow mask materials, for 

both 100% SF6 and 87.5% Ar etch gases.  The etch rate for 100% SF6 was significantly 

lower using an alumina mask than with a Ni mask, fused silica mask, or no mask.  

Alumina, while resistant to RIE thinning, is still sputtered somewhat and redeposits on 

the target material forming a layer which inhibits etching.  This effect was alleviated for 

87.5% Ar.  Fused silica and Ni did not noticeably reduce the etch rate beyond that of no 

shadow mask. 

 

 

Figure 5-9: Etch rate for 100% SF6 and 87.5% Ar using different shadow mask materials, measured 

after 5.5 hrs of etching.  The etch rate for 100% SF6 was not affected by shadow masking with fused 

silica or Ni, but was significantly slowed when masking with alumina.  This was not observed when 

sufficient Ar was present, supporting the hypothesis that the reduction in etch rate for alumina is due 
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to redeposition of alumina on the surface of the quartz that is alleviated by increased ion milling with 

Ar. 

Section 5.3.3.2 Effect of Mask Edges 

Pitting showed an increased density immediately next to where the mask was placed.  

This increase, which typically extended only tens of microns out from the walls, is 

believed to be due to the increase in high-index planes of quartz that arrive next to the 

wall as the etch progresses due to the nonuniform direction of incident etch species (see 

Figure 5-8, and Figure 5-4b).  Surface conditions in the majority of the etched region 

were uniform, and largely independent of distance from the mask.  The residue from the 

Ni-masked 100% SF6 etch dropped off 10 mm from the mask edge, after which point the 

surface appeared gradually closer to the quartz or no-mask case.  Likely this effect is 

strongly dependent on chamber pressure.  Unfortunately, the 100% SF6 alumina-masked 

sample only had 6 mm clearance from the mask to the sample edge and no drop in residue 

was observed over this distance. 

Section 5.3.3.3 Effect of Masking Material on Surface Quality 

The surfaces after masking with alumina, Ni, and fused silica, are shown in Figure 5-10 

and Figure 5-11, with respect to a control sample having no mask.  Alumina masking led 

to rough surfaces with no Ar, and even with Ar present led to some surface damage after 

extended etch times. Due to the resulting morphology, shadow masking with alumina 

using only SF6 etching has potential application as an antireflective coating [60].  EDS 

measurement in SEM indicates the formation of aluminum fluoride on the surface of the 

masked quartz. 
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Figure 5-10:  Surface of x-cut quartz after etching for 5.5 hrs with 100% SF6 while shadow masked 

with a) alumina, b) Ni, c) fused silica, and d) no mask.  The quartz surface is not only etched far more 

slowly with alumina as the shadow mask, but also greatly damaged.  Ni masking gave more pitting 

than silica masking and left residue on the surface.  Pitting with fused silica masking is similar to no 

masking. 
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Figure 5-11: Surface of x-cut quartz after etching for 5.5 hrs with 87.5% Ar while shadow masked 

with a) alumina, b) Ni, c) fused silica, and d) no mask.  The shadow masking material has a much 

smaller effect on surface quality when Ar is present in the etch gas.  The surface damage with an 

alumina mask is greatly reduced by the introduction of Ar gas.  Initial pitting is similar for Ni and 

quartz masks but surface damage is still present for non-quartz masking.  Ni masking resulted in 

hollow column-shaped surface structures. 

 

The standard shadow mask for quartz RIE, Ni, left cleaner surfaces than did alumina but 

not as clean as masking with fused silica.  This is expected because masking with fused 

silica introduces no additional surface chemistry (the substrate and mask are both SiO2), 

and so presents no additional possibility for non-volatile compounds to micromask the 

surface.  Without Ar in the gas mixture, the quartz surface after masking with Ni was 

quite rough (see Figure 5-10b).  We even observe what appear to be shards of metal on 
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the surface.  EDS confirmed the presence of Ni and nickel fluoride on the surface after 

etching. 

 

While Ni and silica masking of quartz produced similar surfaces after 5.5 hours etching 

with 87.5% Ar (Figure 5-11b and c), silica masking proved superior for long etch times.  

Figure 5-12a shows that x-cut quartz masked with Ni and etched using 87.5% Ar for 

34.5 hrs (96.5 m depth) left a surface which was quite rough and covered with hollow 

pillar-shaped structures similar to those observed in Figure 5-11b after ecthing for 5.5 hrs. 

The membrane produced after this etch (~ m thick quartz) was electricaly shorted from 

one side to the other through its bulk, indicating the surface roughness causes sufficient 

pitting to create conduction paths through the wafer.  Adding Ar does not eliminate the 

pillars, but changes their shape: The result of etching using a Ni shadow mask with 

93.75% Ar for 22.8 hrs (55.5 m depth) is shown in Figure 5-12b.  Large conical-shaped 

structures appeared on the surface composed of quartz and non-volatile nickel fluoride.  

Insufficient SF6 may hinder the lateral etching of these columns leading to their wide base 

compared to the pillars observed with 87.5% Ar.  This effect was not observed with silica 

masking, and suggests that Ni is not an appropriate shadow mask for non-ICP RIE where 

smooth surfaces are required after deep etching.  Despite the appearance of these 

structures, the etch rate using Ni masking did not mesuarably decline over the course of 

the etches, indicating that Ni is a suitable shadow mask even for non-ICP RIE where a 

through-etch is required. 
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Figure 5-12. Structures observed on the surface for deep etching x-cut quartz with Ni shadow 

masking using a) 87.5% Ar and b) 93.75% Ar.  Lowering the SF6 concentration reduces the lateral 

etch rate and changes the structures from a) hollow pillars to b) conical-shaped structures. 

 

Section 5.4 Conclusions 

Thinning x-cut quartz via RIE gives the fastest etch rates with 100% SF6 as the process 

gas, however the smoothest surfaces (particularly for deep etches) are obtained with Ar 

making up 75% of the gas mixture with only a 30% reduction in etch speed.  Ni is a better 

shadow mask for quartz than is alumina for both etch speed and final surface quality, but 

fused silica is better still (although it is etched just as fast as the substrate).  After long 

etch times, Ni masking leads to significant surface damage, while smooth surfaces are 

obtained with silica masking.  Although etch rates for ICP RIE systems [61] are 30 times 

faster than presently reported, we have demonstrated that it is also possible to reach 

impressive etch depths and create thin electrically-insulating membrane structures from x-

cut quartz using more readily available non-ICP RIE systems, and we have optimized the 

process parameters for doing so.  
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Chapter 6 Creating the Wings 

As an initial proof of concept, I opted to work with a quartz:SU-8 wing design.  SU-8 is a 

UV-cured epoxy, which can be spin-coated directly on to quartz, patterned, and used as a 

structural material with a built-in tensile strain when deposited on quartz.  Although the 

optimization routine of Chapter 4 indicates that quartz:Si leads to superior wing 

performance, using quartz:SU-8 involved simpler fabrication because depositing SU-8 is 

significantly easier than the wafer bonding or polysilicon deposition required for 

quartz:Si wings. 

 

While robot wings themselves will be attached only to a fuselage and battery, for testing 

purposes the wings are attached to a wafer and printed circuit board (PCB). This "test 

structure" design has some differences from the standalone wings.  For one, it possesses a 

"bridge" section clamping the centre of the wings, which modestly changes the resonant 

boundary conditions.  Also, it has only a narrow hole for air to pass through, and so can 

alter the fluid mechanics compared to free wings. 

 

Two pairs of fabricated wings and attached test structure are shown in Figure 6-1. There 

were several working test structures with various changes in the fabrication to give 

different layer thicknesses and latent strains.  In this thesis, I only report the force on 

QSU8_17a, as it was the most extensively tested.  As such, I will focus exclusively on 

QSU8_17a's fabrication recipe. 
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Figure 6-1: QSU8_17 in August 2011.  Back: QSU8_17a, front: QSU8_17b. 

 

The stack structure for QSU8_17a, is given in Figure 6-2.  The SU-8 has a latent tensile 

stress in it compared to the rest of the structure as a result of the polymerization process 

and its higher thermal expansion coefficient than quartz.  
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Figure 6-2: Layers for QSU8_17a. 

 

Using SU-8 as the passive layer for quartz wings, the fabrication is broken into 5 phases: 

1. Patterning the metal contacts onto the quartz top side.  This will be the electrical 

contact in the middle of the quartz and SU-8. 

2. Patterning the SU-8 on the top of the quartz.  SU-8 is the passive structural layer 

for the unimorph. 

3. Thinning the quartz from the bottom side with RIE.  Only in a section around the 

wings, in order for the wafer to maintain structural integrity for ease of handling. 

4. Metallizing the back side of the quartz.  This will be the other electrical contact 

for the quartz. 

5. RIE releasing the wings.  This step defines the wing shape.  The strain difference 

between quartz and SU-8 causes the wings to lift after the RIE mask is removed. 
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Section 6.1 Fabrication Steps Explained 

The detailed steps in this fabrication recipe are presented in Appendix R.  Final 

thicknesses of the metal layers were determined using a quartz crystal microbalance 

during deposition, and final thickness for the quartz and SU-8 layers were determined 

using optical profilometry.  The quartz crystal microbalance is part of the e-beam 

evaporation metallizer in the Centre for Emerging Device Technologies (CEDT)'s clean 

room at McMaster University.  I wrote custom software to analyze the optical 

profilometry measurements, discussed in Appendix S.  Following is the recipe with a 

brief explanation for each of the 5 fabrication steps. 

Section 6.1.1 Pattern the Metal Contacts onto the Top Side of the Quartz 

After cleaning the quartz wafer in solvents, deposit and pattern positive photoresist 

(1808) using a photomask (all photomasks were ordered from Fine Line Imaging), the 

dimensions of which are shown in Figure 6-3, then evaporate a thin layer of chromium 

onto the quartz surface followed by gold.  The gold is the main conductor of electricity, 

and the chromium is necessary to adhere gold to the quartz.  Dip in acetone to remove the 

gold on top of the 1808, then remove any residual acetone using methanol. The result is a 

metallized surface like that shown in Figure 6-5, although without SU-8 on it just yet. 
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Figure 6-3: Electrical contact mask 

 

Section 6.1.2 Pattern the SU-8 on the Top of the Quartz 

Spin-coat SU-8 2007 at 3000 rpm, then expose using the mask of Figure 6-4.  SU-8 is a 

negative photoresist (technically it is a UV-cured epoxy, but that means it is exposed like 

a negative photoresist), and so the areas of SU-8 where the mask is blank will be cross-

link polymerized on UV exposure, and so will remain on the surface after developing.   

 

The most important feature of this mask is that it leaves SU-8 on the wings, but does not 

leave SU-8 on the electrical contact pads.  This mask also removes the SU-8 immediately 

around the wings, but since SU-8 is easy to remove in RIE, it just as well could have left 

the SU-8 around the wings in place, relying solely on the RIE to define where the wings 

are located.  In an industrial process to make these kinds of wings, that would be 

unnecessary extra RIE time, but for this process it would have been better to leave it in 

place to avoid problems associated with a slightly misaligned RIE mask, such as 
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nonuniform SU-8 coverage on the wing.  Following the SU-8 deposition, the surface 

appears as shown in Figure 6-5.  SU-8, like quartz, is transparent to visible light, but close 

inspection reveals its outline extending slightly past the gold around the edges of the 

wings. 

 

 

Figure 6-4: Photomask for SU-8 deposition 
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Figure 6-5: Surface after front-metallization and SU-8 deposition 

 

Section 6.1.3 Thin the Quartz from the Bottom Side using RIE 

With the top processing complete, flip the wafer and place it into an STS-320 RIE under a 

quartz shadow mask, and etch for 37.6 hours using 90% Ar, 10% SF6 by volume at a 

chamber pressure of 13-15 mTorr, 300 W power, in order to maintain a smooth surface, 

as explained in Chapter 5.  The quartz shadow mask is shown in Figure 6-6.  This shadow 

mask was produced by hand, using a rotary diamond tool (with water running onto the 

surface to minimize breathing quartz dust).  This leads to the rough edges shown for the 

mask, but the edge quality is unimportant because this is not a through-etch and so the 

edge does not define much about the final dimensions. 
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Figure 6-6: QM5: The quartz mask used for back RIE of QSU8_17, after its retirement 

This RIE thins down the quartz by 96 m, from an initial 104 m to only 7.6 m 

thickness (determined by optical profilometry).  Following the thinning, the sample 

appears as shown in Figure 6-7. 
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Figure 6-7: QSU8_17 after RIE back-thinning 

 

Section 6.1.4 Metallize the Back Side of the Quartz 

With the back of the quartz thinned, it can now be metalized to allow electrical contact to 

the back of the wings.  For this metal coating, it is critical that the un-thinned back of the 

wafer ends up electrically connected to the thinned part.  Therefore, rather than using the 

low-pressure e-beam evaporation metallization used for the front side, this step uses a 

relatively high-pressure metal sputtering (5e-3 Torr vs. the 3e-8 Torr of the e-beam 

system).  The higher chamber pressure of the sputtering system leads to a non-directional 

metal deposition that coats the somewhat-sharp sidewalls of the etched area, connecting 

them to the unetched area.  The result is shown in Figure 6-8. 
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Figure 6-8: Back-side of QSU8_17 after back metallization but before RIE wing-release 

 

Section 6.1.5 RIE Release the Wings 

The final step is to release the wings by RIE using a shadow mask made of Ni.  The final 

lateral wing dimensions are determined by this shadow mask, a section of which is shown 

in Figure 6-10, and dimensioned in Figure 6-9.  This mask was fabricated using water jet 

machining.  The gold trail in Figure 6-9 shows the path of the waterjet cutter, which has a 

0.5 mm nozzle radius.  When the waterjet starts, the initial blast is at a higher pressure 

and leaves a wider hole than afterward.  Because of this, the trail is designed to start at an 

exterior edge where the dimensions are not critical.  The water jet radius is equal to the 

radius of the resulting fillets on the bridge: 0.5 mm. 
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Figure 6-9: Section of RIE release mask showing dimensions in mm 

 

 

Figure 6-10: NiFM3, the Nickel Front Mask used for RIE wing release of QSU8_17 
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The shadow mask shown in Figure 6-10 is after use in the RIE, which causes the initially 

shiny Ni surface to blacken.  Energy-dispersive X-ray spectroscopy (EDS) results suggest 

that the blackness is due to nickel-fluoride. 

 

Following RIE release, the latent tensile stress in the SU-8 layer partially relaxes by 

curving the wings out of plane as soon as the shadow mask is removed.  The resulting 

structure is shown in Figure 6-11. 

 

 

Figure 6-11: QSU8_17 released 

 

The finished sample is then mounted on a PCB for testing, as shown in Figure 6-12.  The 

back of the sample is electrically connected to the isolated central ring of the PCB via 

silver paste.  Silver paste also connects very thin gold wires on the front contact pads for 

each wing pair to their SMA connector pads on the PCB.  Because this board was 

designed with a central insulating pad which was slightly too small (both in its interior 

hole and its insulating circumference), black insulating paint was added around the edges 
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of the central pad before the test structure wafer was affixed to the PCB to avoid shorting 

back of the wafer to the ground of the PCB.  This isolated ground contact enabled three-

terminal capacitance bridge measurements for each wing, but was later manually shorted 

to allow testing in the torsion bar test chamber, which only accommodated a single two-

terminal contact. 

 

 

Figure 6-12: QSU8_17 mounted on its PCB for testing 
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Chapter 7 Experimental Measurement Procedure 

The results of the optimization routine suggest that these resonant fluid diode wings can 

lead to successful flying microrobots.  The true test of this model would involve actually 

building such a robot, but before doing that it makes sense to test the predictions that the 

analytical framework relies on, namely: 

1. The wing’s bending angle given its length, layer thicknesses, Young's moduli, 

Poisson ratio, and built-in strain, 

2. The wing’s resonant frequency given its length, layer thicknesses, Young's moduli, 

Poisson ratio, bending angle, and density, 

3. The wing’s fluidic power dissipated given its Reynolds number, bending angle, and 

amplitude, 

4. The wing’s net force output given its Reynolds number, bending angle, and 

amplitude, and 

5. The wing’s BvD electrical parameters given its length, layer thicknesses, fluidic 

power dissipated, and excitation frequency. 

 

The completed wing pair QSU8_17a was electrically insulating and had a large static 

bending angle, so was chosen for testing.  In order to test these predictions, QSU8_17a 

was electrically actuated by passing a sine wave from a function generator through a 1:20 

amplifier at output voltage amplitudes of up to 200 V and frequencies of 10 to 200 Hz.  

The current flowing through these wings were measured and compared to that of a 

capacitor by using an SR-830 lock-in amplifier.  The flapping wings' amplitudes were 

measured by directly filming them with a high-speed camera, and by observing the blur 

made by the wing envelop with a regular speed camera.  The net force output by the 

wings was measured with a custom-designed torsion bar similar in concept to the one 

Cavendish used to measure the universal gravitational constant G, all enclosed in a 

vacuum chamber which allowed testing in N2 at various levels of vacuum. 

 

This chapter explains the measurements made on QSU8_17a and how they were taken. 
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Section 7.1 Measurements 

Where a "test" is comparing a measured to a predicted result, a "measurement" is 

acquiring that measured result in the first place. 

 

The wings' physical dimensions were measured, and several of its flight-related 

parameters were measured vs. applied frequency f, applied voltage V, and ambient gas 

pressure P: 

1. Static bending angle and flapping amplitude 

2. Electrical parameters 

3. Output net force 

 

This section will go through each of these quantities in turn, both explaining how they 

were measured and presenting the measured results. 

Section 7.1.1 Physical dimension measurements 

The length and width of the wings were measured by the mask dimensions.  Specifically, 

referring to Figure 6-9, the wingspan is 15.68 mm, and the minimum bridge width is 

1.48 mm, so that the effective wing length is 7.64 mm (the fillets have 0.5 mm radius, but 

do not affect the effective length or width for the purpose of resonant frequency or 

curvature).  All of these are limited by the precision of the waterjet cutting machine and 

the RIE lateral etching for uncertainty of 0.1 mm. 

 

The quartz and SU-8 thickness are determined by optical profilometry, while the Au & Cr 

layer thickness are determined by the quartz crystal microbalance in the metallizer at 

deposition time. 

 

Thicknesses with uncertainty where SU-8: 7.6 +/- 0.12 m and Quartz: 7.6 +/- 0.10 m.  

In terms of the total thickness, the uncertainty is 0.22 mh  .  Total thickness is 
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15.55 m,  so relative uncertainty is 0.22/15.55 = 1.4%.  Uncertainty on the metal layer 

thickness was significantly smaller due to their relatively smaller size, and does not affect 

the wing thickness uncertainty. 

 

The wing length of 7.64 +/- 0.1 mm has a relative uncertainty of 1.3%.  The uncertainty 

in the predicted resonant frequency due to uncertainty in the dimensions is 

2
2res fres h L

h
f

L
       (in terms of relative uncertainties).  Substituting the relative 

uncertainties in thickness and lengths give a predicted frequency relative uncertainty of 

4%. 

Section 7.1.2 Static Bending Angle and Amplitudes 

Static bending angle was measured by taking pictures of the wing and measuring angles 

using ImageJ (software to measure angles between selected points in an image), as shown 

in Figure 7-1.  By measuring the tip angle compared to the horizontal when the wing is 

open and closed, it is possible to calculate the wing’s static angle and bending amplitude, 

knowing its length and the bridge width.  

 

 

Figure 7-1: Measuring the wing angle using ImageJ 
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Comparing the amplitude produced for a given voltage at different frequencies is also a 

way to locate the wing’s resonant frequency.  Consider Figure 7-2, which plots the 

measured wing amplitude per applied volt of input signal vs. applied frequency for 

QSU8_17 in 1 atm N2.  This plot tells us the output wing amplitude per input voltage by 

looking at the low-frequency results, and identifies a resonance at 130 Hz. 

 

 

Figure 7-2: Measured wing amplitude per voltage shows a steady value at low frequency and an 

approach to resonance around 130 Hz 

 

By dividing the output amplitude by the amplitude which would be produced at that 

voltage off-resonance, we arrive at the amplitude amplification quality factor, plotted in 

Figure 7-3.  This plot illustrates several interesting things about the wings.  It tells us the 

resonant frequency at each voltage, and the magnitude of the quality factor at that 

resonant frequency, as well as the quality factor's off-resonant behaviour around it.  The 

resonant amplitude is sublinear in applied voltage, as expected for nonlinear damping; 
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this is shown by the quality factor being lower for the higher voltage sweeps.  Also, the 

location of the peak shifts to the left for higher voltages, illustrating nonlinearity in the 

resonant frequency. 

 

 

Figure 7-3: Amplitude amplification over DC amplitude (i.e., quality factor) vs. frequency at different 

applied voltages at 1 atm in N2 demonstrates resonance, as well as its nonlinear behaviour 

 

Section 7.1.3 Electrical Parameters Measures 

To electrically test the wings, the current through the wings was measured and compared 

to the current through a decade capacitance box by differencing with an SR830 lock-in 

amplifier.  Using an off-resonance input signal to the wings, the capacitance on the 

decade capacitance box was adjusted until it zeroed out the signal from the wings.  This 

allowed more sensitive detection of the changes in current through the resonant branch 

around resonance, which are otherwise difficult to detect next to the current through the 

very large package capacitance. 
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The details of the setup and calculations for the electrical test procedure are explained in 

Appendix P.  This leads to current measures through the resonance branch like those 

given in Figure 7-4.  

 

 

Figure 7-4: Resonance branch current for QSU8_17 at various low voltages in 1e-7 atm 

 

Referring to the legend, each plot was at a different voltage (2, 4, 6, 8, then 1, 3, 5, 7, 9 

V), and this was sweep numbers 21 - 29. 

 

The resonant frequency appears independent of voltage until voltage rises above about 

4V, at which point it starts to decrease with increasing voltage.  Unfortunately, voltage is 

not the only determinant of resonant frequency.  Notice that the 8V and 6V sweeps appear 

to be shifted to the right a bit compared to the 9V, 7V, and 5V sweeps. 
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This could indicate a decrease in resonant frequency with time; the odd-voltage sweeps 

numbered 25-29 were completed an average of two days after the even-voltage ones (25 

& 26 vs. 23 & 24 of May 2016).  This shift could also have been influenced by 

temperature.  The 8 & 6V sweeps were at a lower temperatures than 5, 7, and 9V ones, as 

shown in Table 7-1.  Temperature was measured continuously via a resistive temperature 

detector. 

 

Table 7-1: Temperature vs. sweep number for current measures 

Sweep# Applied Voltage [V]: Average Temperature 

[
o
C]: 0.2 C   

29 9 23.30 

24 8 22.87 

28 7 23.36 

23 6 22.42 

27 5 23.05 

26 3 23.04 

22 4 22.84 

 

At high voltages in vacuum, the current measures stopped being consistent, as shown in 

Figure 7-5.  Notice the nonlinear effect of reduced resonant frequency with increased 

amplitude observed as voltage increased up to 25 V. 
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Figure 7-5: Electrical measurements of current through the resonant branch vs. frequency for 

different voltage amplitudes in vacuum showing highly nonlinear behaviour 

 

Section 7.1.4 Force Measurement: The Torsion Bar 

To measure the wing force, I placed the wing at one end of a light metal bar suspended 

from a wire and balanced with a counterweight.  Since the wire has a low resistance to 

twisting, the force output by the wing will cause the bar to rotate dependent on the force 

and the wire's spring constant in torsion.  By measuring the twisting of the bar using a 

laser reflected off of a mirror at its centre, we can determine how much net force the wing 

is producing.  The details of the torsion bar theory and setup is explained in Appendix T. 

 

The torsion bar was placed inside a sealed chamber to allow testing the wing's behaviour 

in various gas environments and ambient air pressures, and also to eliminate interference 
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from moving room air.  This chamber is shown in Figure 7-6.  The spire extending up 

from the top of the chamber holds the torsion wire, which is a coaxial cable.  This 

eliminates the need for separate wires to connect to the torsion bar, which is necessary 

because those wires can interfere with the very small forces being measured. 
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Figure 7-6: The vacuum chamber containing the torsion bar 
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The torsion bar appears in Figure 7-7, as viewed from the viewport where the camera 

photographed the wings in motion.  This figure shows the sample arm (foreground), 

counterweight (background), and the junction block which holds the mirror, as well as the 

magnetic damper system below it.  This contains sample QSU8_18 along with a paperclip 

holding down paper to hold down one pair of wings for ease of automatic image 

processing. 

 

Figure 7-7: The final torsion bar 
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The rotation of the torsion bar was detected by the movement of a HeNe laser reflected 

off of a mirror placed on the junction block at its centre.  The laser is directed to impact a 

position-sensitive detector, as shown in Figure 7-8.  When the wings are actuated, the 

small forces they generate cause the torsion bar to rotate, which changes the position of 

the beam on the detector. 

 

 

Figure 7-8: Laser position detection of the torsion bar's rotation 

 

In order to improve the accuracy of the force measurement, the wings are modulated on 

and off.  Varying the modulation period of the signal applied to the wings is a way to 

determine the frequency response of the torsion bar, as in Figure 7-9.  From accurate 

measures of the torsion bar's component masses and their position, we can determine its 

moment of inertia.  This, combined with its resonant frequency from its frequency 
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response curve enables us to determine the effective spring constant of the torsion bar.  

Combining the torsion bar's spring constant with the known distances from the bar's 

centre to the photodetector allows turning the measured photodetector signal into a force 

measurement for the wings. 

 

 

Figure 7-9: Torsion bar response voltage signal vs. wing modulation period at 50 V and 130 Hz 

 

Using the calibrated torsion bar, I swept wing frequency and applied voltage to determine 

the output force, generating plots like Figure 7-10. 
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Figure 7-10: Measured wing output force in 1 atm N2 vs. frequency for several up and down sweeps, 

from 50 V to 200 V in 25 V steps 
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Chapter 8 Experimental Results: Tests of Theory 

This chapter analyzes the results in light of several tests of theory: 

1. Natural bending angle 0 

2. DC Voltage translation into extra curvature 

3. Resonant frequency 

4. Quality factor magnitude: Testing FP by measuring the amplitude we get vs. the 

expected one for each voltage at resonance compared  

5. Wing net force 

6. Electrical parameters 

Section 8.1 DC Voltage translation into extra curvature 

Does the DC bending amplitude agree with theory?  To determine this, I measured the 

bending angle of the wing in response to applied voltage, and found that although the 

resonant properties of the wings changed over time and with pressure, the low frequency 

response was significantly more stable. 
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Figure 8-1: Quality factor by amplitude amplification, measured separately for each wing vs. 

frequency 

 

At low frequency, the effective quality factor (i.e., amplitude amplification over DC) 

should be QDC = 1.  Therefore, at low frequencies the measured flapping amplitude 

divided by the applied voltage tells us how voltages transduce into DC flapping 

amplitude: 

  -10
0

@low frequency

4.8 0.7 e-5 Vr
r DCperV

A
A

V
     (8.1) 

where the uncertainty is one standard deviation of the measurements.  The measures did 

not appear to be correlated with pressure or voltage. 

 

This value can be used to calibrate the Young’s modulus of SU-8, under the assumption 

that the multimorph bending angle theory is correct.  Doing so yields a Young’s modulus 

for SU-8 of 4.2 +/- 1GPa, (5.5e-5/V --> 5.2 GPa, 4.1e-5/V --> 3.4 GPa) which is well 

within the accepted range of 2.5 to 4.95 GPa reported in Section N.2.  This large range in 
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the uncertainty of SU-8 would have allowed amplitude amplification factors of 3.4e-5/V 

and 5.34e-5/V. 

Section 8.2 Initial Bending Angle, 0 

The wing’s angle measures are plotted in Figure 8-2. 

 

 

Figure 8-2: Static bending angle of QSU8_17a vs. measurement pressure in air and N2 environments 

 

The static bending angle of the QSU8_17a wings was not constant over various pressure 

and temperature conditions.  Notably, the angle increased from as low as 76
o
 to as high as 

117
o
 on pumping to partial vacuums, and did not completely (or sometimes at all) return 

to the lower bending angle on backfilling with N2.  The lower angle did return (to within 

experimental precision) on returning the wing to an ambient air environment.  One 

possible explanation is that approaching vacuum causes water vapour to exit the SU-8, 

leaving it under increased tension, which the wing relaxes by increasing its curvature.  

70

75

80

85

90

95

100

105

110

115

120

0 0.2 0.4 0.6 0.8 1 1.2

p
h

i0
 [

d
eg

]

Pressure [atm]

phi0 for QSU8_17a

Air

N2



8-214 

 

This is consistent with the wing maintaining this higher bending angle after backfilling 

with N2 back to 1 atm. 

 

The bending angle of the wing is largely dependent on the latent strain in the SU-8 after 

fabrication.  The SU-8 strain reported in literature was, from Section N.3, 4.6e-3 to 11.1e-

3.  These lead to a large range of allowable initial bending angles (using the N2-calibrated 

EY) of 55
o
 to 179

o
.  Using the average bending angle of 111

o
 to calibrate the SU-8 built-in 

strain yields 7.5e-3: well within the accepted literature range. 

Section 8.3 Resonant frequency 

Using the calibrated SU-8 Young’s modulus, the resonant frequency can be calculated 

using 
2

3 22
resCor

m

EI h
f f

Bh L



 
 .  Doing so yields fres = 132.6 Hz, while the measured 

value ranged from 130 Hz to 136 Hz (in N2) depending on voltage and pressure 

conditions, dropping with higher voltage and higher pressure. 

 

The resonant frequency measurement was different for each wing, and was also affected 

by pressure and strongly affected by whether the wing was in room air or pure N2.  The 

right wing's resonant frequency was 1.2-1.8% higher than the left wing's, and had a 

smaller resonant amplitude.  Examining high-speed wing videos shows that at both 

resonances, the right wing leads the left wing in phase by between 45 and 90
o
.  Since both 

resonances have a similar relative phase for each wing, this suggests that the two 

resonances are indeed separate resonances for each wing rather than an in-phase and out-

of-phase resonant mode. 

Section 8.4 Quality Factor Magnitude 

By plotting the measured amplitude at resonant frequencies vs. the DC-amplitude at the 

same input voltage, we obtain the quality factor, as shown in Figure 8-3 (For details of 

how to make the calculations for these plots, see Appendix O). 
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Figure 8-3: Measured quality factor by amplitude-amplification at resonance 

 

All data for these plots is in N2 by averaging the amplitude of both wings.  Low 

amplitudes are difficult to measure optically.  Further, because the resonant frequency 

depends on the pressure and amplitude, and because it changed over time and with 

temperature, not all data points are exactly on-resonance.  The quality factor declined 

with amplitude at each pressure, and was lower for higher air pressures, as expected for 

nonlinear damping. 

 

To quantify how well this agreed with the damping predicted by the CFX simulations, we 

need to calculate the what the quality factor from fluidic damping should have been for 

each amplitude and pressure.  As calculated in Chapter 4: 
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Incorporating the CFX-determined drag coefficients from Chapter 3, this formula 

generates the predicted fluidic quality factors shown in Figure 8-4. 

 

 

Figure 8-4: Expected quality factor at each measured amplitude and pressure based on fluidic 

damping 

 

But the predicted quality factors in Figure 8-4 look nothing like the measured quality 

factors from Figure 8-3.  What went wrong? 
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The analytical framework assumed mechanical losses were negligible next to fluidic ones.  

For nonnegligible mechanical damping, the effective quality factor is due to two sources 

of power dissipation.  Writing down and manipulating the energy-balance quality factor 

definition reveals that we can combine quality factors like resistors in parallel: 

 
max

max max

2 1 1

1 1

2 2

fluidic mechfluidic mech

fluidic mech

U
Q

TP TPT P P

Q QU U



 

  
 

 

 

For the amplitude measures taken at resonance, Figure 8-4's predicted Qfluidic of 30 to 130 

are dominant next to a typical air-damped MEMS cantilever Qmech in excess of 7500 (e.g., 

[62]).  However, the quartz-SU8 wings have some problems preventing high quality 

factors: SU-8 is not a very good resonator material ([63] found that the maximum 

mechanical quality factor of SU-8 cantilevers is around 70), and the two wings on 

QSU8_17a had similar but unequal quality factors due to imperfect mask alignment, 

leading to mode interference.  These effects led to a non-ignorable mechanical quality 

factor for the wings.  Unfortunately, eliminating fluidic damping for the wings in order to 

precisely measure Qmech without any fluidic damping required pressures below 10Barr.  

After a number of system improvements in early 2013, I did attain this pressure in the test 

chamber, but the wings underwent permanent changes as a result, and on returning to 

1 atm of air ambient conditions the wing flattened out completely, as shown in Figure 

8-5.  Even still, the amplitude at resonance did not increase significantly at these 

pressures, indicating that the mechanical quality factor for this sample is nonignorable. 
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Figure 8-5: After almost continuous testing for 2 years and tirelessly flapping over 5 billion times, 

QSU8_17 settles into retirement in June 2013 after months at vacuum pressures lower than 1e-8 atm 

were too much for its built-in curvature 

 

The changes in the wing with changing air pressure mean that the mechanical quality 

factor is not only non-ignorable , but also non-measurable unless the fluidic quality factor 

is known.  One approach then is to use the CFX-predicted fluidic damping coefficient to 

calculate the fluidic quality factor for each amplitude measurement, then use this to 

calculate the what the mechanical quality factor must have been if the fluidic damping 

coefficient is correct.  Figure 8-6 shows the result. 



8-219 

 

 

Figure 8-6: Quality factor due to mechanical damping 

 

Compared to the Qtotal plot, accounting for fluidic quality factor as-predicted has 

compressed the data from different pressures together.  This is consistent with the 

mechanical damping-limiting hypothesis, since air pressure should have less effect on 

mechanical damping than it does on fluidic damping (unfortunately since this wing's 

properties change with air pressure we cannot say that air pressure should have no effect 

on mechanical damping).  Unfortunately, this calculated mechanical quality factor is still 

not completely constant across all bending amplitudes and pressures.  This could reflect a 

nonlinear mechanical damping at these amplitudes, but may also be due to the changed 

overlap of the two wings' resonant frequencies with amplitude and pressure. 

 

Figure 8-6 suggests an average mechanical quality factor of 45-70 at moderate 

amplitudes.  To compare the theory and measurement, we can use a fixed mechanical 

quality factor of 58, the 0r DCperVA  from Section 8.1 and measured amplitudes to calculate 
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the power drag coefficient by rearranging (8.2) to get 
0

2 /resCor m
DP

air r fluid

f h L
C

A Q




 .  Figure 8-7 

plots the result. 

 

 

Figure 8-7: Drag coefficient from CFX vs. drag coefficient measured from optically-measured 

amplitudes and a fixed mechanical quality factor 

 

Figure 8-7 shows that the calculated CDP is consistent with the measurements.  Further 

testing required reducing the uncertainty introduced by the SU-8 and the wing resonant-

frequency overlap of QSU8_17a.  Future work should improve on this by fabricating a 

cantilever out of materials whose properties are independent of ambient pressure to at 

least 1 Barr, which would allow measuring the mechanical damping directly.
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Section 8.5 Wing net force: 

Using the torsion bar as described in Section 7.1.4, I was able to find the force produced 

by the wings under a variety of voltage, frequency, and pressure conditions.  This test 

structure was mounted on a PCB which was partially blocking even the area directly 

behind one of the wings, as shown in Figure 8-8. 

 

Figure 8-8: Tested wings were mounted with a significant amount of PCB blocking the airflow from 

the wings.  QSU8_17a is in the back, and the right wing is particularly blocked by the PCB. 

 

Technically, the torsion bar does not directly measure the force output by the wings, but 

rather the net force on the wings and the PCB together.  When the wings flap, on-average 

they cause airflow to make a net force, but this also causes some air to hit the PCB, 

leading to a force in the opposite direction.  Simulations which include the PCB reveal 

that this force reduction scales from 50-90%, with a complicated dependence on 

amplitude, frequency, and pressure.  For consistency of comparing theory with 

measurement for the force data, plots will assume a uniform measured-force reduction 
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due to the torsion bar of 75% for all cases (i.e., they assume that the actual wing net force 

is 1/75% = 4 times the reported force from the torsion bar, because the wings’ air 

movement caused 75% of the force on the wings to appear on the PCB in the opposite 

direction). 

Section 8.5.1 Measured vs. predicted force 

Measured vs. predicted force at several related initial bending angles are plotted for 

different pressures of N2 in Figure 8-9 through Figure 8-12. 

 

Figure 8-9: 1 atm N2 measured vs. predicted force 
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Figure 8-10: 0.7 atm N2 measured vs. predicted force 

 

Figure 8-11: 0.4 atm N2 measured vs. predicted force 
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Figure 8-12: 0.2 atm N2 measured vs. predicted force 

 

The measured force from the torsion bar is consistent with the predictions from CFX.   

Several caveats are worth mentioning: 

1. The wings of QSU8_17a were technically not pure cylindrical arcs. 

As you can see in this picture, the tips of QSU8_17a are rotated out-of-plane a fair bit, 

likely due to mask misalignment during fabrication. 

 

 

Figure 8-13: The tested wings twisted out of the plane of perfectly cylindrical arcs 
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The wings are not quite the same size as each other, nor do they have the same resonant 

frequency meaning that at the largest overall amplitude the wings are flapping out-of-

phase with each other.  Intuitively you might imagine that one wing flapping out of phase 

with the other would hinder the net force. 

  

2. The force lost to the PCB is unclear. 

Simulations predicted that interference from the PCB accounted for a 50-90% reduction 

in the measured force, but these simulation results were very sensitive to timestep and 

mesh density.  The above plots assumed a 75% measured force loss for all measured 

values and this exaggerates the certainty in these measured values. 

 

3. There is uncertainty in the wing amplitudes. 

The wing amplitude in response to frequency changed somewhat over time, and 

furthermore measuring the amplitude entailed shining a moderate light on the wings 

which noticeably changed their curvature.  This suggests that the actual wing amplitude 

and offset during the force measurements could be somewhat different from the ones 

measured in the amplitude tests under the same voltage and frequency conditions. 

Section 8.5.2 The Air Force 

These wings were also measured in air (rather than N2), although not as extensively.  In 

air at 200 V compared to N2, the static bending angle 0 was lower (86.7 1.9   vs. 

112 4  ), as was the peak amplitude (0.15 vs. 0.17), and the resonant frequency (125 Hz 

vs. 130 Hz), as shown in Figure 8-14.  These numbers, combined with the density and 

viscosity from Appendix L and summarized in Table 8-1, determine that the Reynolds 

number was lower (126 vs. 106) and the predicted net drag coefficient was slightly higher 

(0.05 vs. 0.045), for an overall lower predicted net force from two wings (0.156 N vs. 

0.185 N). 



8-226 

 

 

 

Figure 8-14: Measured flapping amplitudes in air and N2 

 

Table 8-1: Measures and predictions in air vs. N2, using raw measured force 

 gas  Ar0 f 0 fresCor Re CDN FN2 FMeasured 

 [kg/m
3
] [Pa-s]  [Hz] [

o
]    [N] [N]

N2 1.165 17.4 0.17 130 112 1.08 126 0.045 0.185 0.063 

air 1.205 18.3 0.15 125 105 1.07 106 0.05 0.156 0.12 

 

However, the measured force in air was notably higher than in N2, as shown in Figure 

8-15, which shows the raw force measured by the torsion bar, without multiplying by 4 to 

account for the force lost to the PCB.  This increased force in air relative to N2 is 

surprising, and suggests a separate method of force loss besides the PCB.  Recall from 

Figure 8-13 that these wings twisted at their tips when curved.  The wings had a higher 

curvature and more out-of-plane twisting in N2 than in air.  Perhaps this twisting is 

responsible for reducing the peak force in N2 so much lower than the peak force measured 
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in air.  If so, it illustrates the importance of symmetric fabrication to reduce wing twist, 

and gives another motive for favouring the wings with lower curvature. 

 

 

Figure 8-15: Raw measured force (i.e., not accounting for force lost to PCB) in air vs. in N2 

 

Section 8.6 Electrical parameters: 

Do the BvD-predicted parameters match the measured ones given the electrical behaviour 

of the wings?   The easiest BvD-parameter to test is the package capacitance.  Using 

equation (4.1) from Section 4.2.9.2, we find that each wing should have a package 

capacitance of 78 pF, and so the total test structure including bridge should have a 

capacitance of 183 pF.  Measuring the test structure in air without the torsion wire 

attached gave a package capacitance of 180 pF, in good agreement with the prediction.  
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The torsion wire affects this capacitance measurement, and with the torsion wire attached 

and in vacuum, the total effective package capacitance was 351 pF. 

 

The resonant branch parameters are more difficult to predict and test.  As presented in 

Section 4.2.9.4 with equations (4.2) through (4.4), knowing the fluidic power dissipated 

and peak energy stored by the wings also determines what their electrical parameters 

should be in the BvD model:  

2

1
2 A

V
R

P
 , 

2

1
1 max2

2R
L U

V
 , 1 2

1 1

1
C

L
  

 

Chapter 2 told us the peak mechanical energy stored in the wing is related to its flexural 

rigidity EI, its length L, and its RS mode amplitude 0rA   via equation (2.3),  

4 2 2

0 01
max 2

1
3.09059

2 4

r rA A
U EI EI

L L

 
  

 
, where 1.8751   is the first root of 

cos cosh 1 0    .  The RS mode amplitude at resonance is related to the applied 

voltage and quality factor through the amplification factor,  

 0 0 0r r DC r DCperVA QA Q A V   , and the quality factor and peak mechanical energy stored 

determine rate of energy dissipation given the resonant frequency:  

max max
1

1 max

2 1

A A A

U U Q
Q

TP P P U





     

 

To test the electrical model we can use measured values from other sections to calculate 

what the BvD parameters should be, and then plot the current they would give against the 

actual measured current.  We have to be careful which values to use though, because due 

to time constraints, detailed electrical measures were only taken in vacuum where the 

wing had a different resonant frequency and bending angle, indicating some wing 

properties had changed.   In Section 8.1 we found Ar0PerV = 4.8e-5/V.  This did not appear 

to be affected by the pressure at least down to 1e-4 atm, so although lower pressure 
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increased the resonant frequency and static bending angle, the off-resonant transduction 

of voltage into bending stayed the same.  This implies that vacuum may be decreasing the 

SU-8 density and increasing its built-in strain, but keeping its Young’s modulus mostly 

the same. 

 

Figure 8-16: Measured amplitudes by-wing at 1e-7 atm during the 10 V sweep of electrical 

measurements 

 

The camera amplitude measures in vacuum determined the resonant frequencies and 

resonant amplitudes shown in Figure 8-16.  Off-resonance and at low frequency, a 10 V 

actuation signal produces an amplitude of 4.8e-4, so dividing the resonant amplitudes by 

4.8e-4 determines the quality factor.  Then, by using the known length (7.64 mm) and 

flexural rigidity (1.15e-8 Pa-m
4
), we can calculate the BVD parameters in Table 8-2. 

 

Table 8-2: Calculated BvD Parameters 

  fres Ar0 Ar0DCPerV Q R C 

  [Hz]   [V-1]  [M] [fF] 

Right 
Wing 

137.4 0.030 4.8e-5 62.5 1730 10.7 

Left  
Wing 

135.7 0.085 4.8e-5 177 617 10.7 
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Figure 8-17 plots the current magnitude and phase that were measured along with the 

ones predicted by these BvD model parameters for a 10 V amplitude signal in 10
-7

 atm 

N2.  The model does not completely agree with the measured current, but the general 

trend is in agreement.  

 

 

Figure 8-17: Experimental data vs. predicted BvD model at 10 V, using Ar0DCPerV = 4.8e-5/V to 

determine quality factors 

 

The BvD parameters plotted in Figure 8-17 hinged on the measurement of the Ar0DCPerV 

from Section 8.1.  This number has a significant amount of uncertainty associated with it, 

which is coupled to uncertainty in the SU-8 Young's modulus, and thus uncertainty in the 

wing's flexural rigidity, EI.  Both the Ar0DCPerV and EI have a strong effect on the BvD 

parameters, so determining the range of values from these will impact the output 
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significantly.  The high value for Ar0DCPerV of 5.5e-5/V is associated with 

EY_SU8 = 5.2 GPa and EI = 1.25e-8 Pa-m
4
, while the low value of 4.1e-5/V is with 

EY_SU8 = 3.3 GPa and EI = 1.07e-8 Pa-m
4
.  These lead to the BVD parameters in Table 

8-3, and the plots in Figure 8-18 and Figure 8-19. 

 

Table 8-3: Range of BvD parameters from range of input values 

  fres Ar0 Ar0DCperV EI Q R C 

  [Hz]   [V
-1

] [Pa-m
4
]  [M] [fF] 

Right 

Wing 

137.4 0.03 4.8E-05 1.16E-08 62.5 1722 10.8 

Left 

Wing 

135.7 0.085 4.8E-05 1.16E-08 177.1 615 10.8 

Right 

Wing 

137.4 0.03 5.5E-05 1.25E-08 54.5 1388 15.3 

Left 

Wing 

135.7 0.085 5.5E-05 1.25E-08 154.5 496 15.3 

Right 

Wing 

137.4 0.03 4.1E-05 1.07E-08 73.2 2176 7.3 

Left 

Wing 

135.7 0.085 4.1E-05 1.07E-08 207.3 778 7.3 

 

The range of BvD parameters in Table 8-3 is fairly large, but nevertheless insufficient to 

account for the plot data.  Consider the best-guess BvD parameters plotted vs. some this 

electrical measure and another set of measures at the same voltage taken one week earlier, 

shown in Figure 8-20.  At both the low and high-frequency end of the plot the measured 

current was lower than expected for the pure BvD model.  This could reflect additional 

loss mechanisms off-resonance that were not accounted for using an RLC model. 
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Figure 8-18: With both wings at Ar0DCPerV, EI = 5.5e-5, 1.25e-8 
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Figure 8-19: With both wings at Ar0DCPerV, EI = 4.1e-5, 1.07e-8 
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Figure 8-20: BvD model using best-guess parameters from the amplitude measures vs. three different 

electrical measures at 10V in vacuum, taken one week apart 

At a more fundamental level than measurement uncertainty, the discrepancy may be 

related to the inability of the RLC resonator branch model to perfectly reflect what the 

flapping wing is doing.  Referring to Figure 8-16, notice that when the left wing reaches 

its resonance at 135.7 Hz the right wing responds as well.  This could be due to 

mechanical coupling between the two wings and is not covered by the BvD model: an 

RLC branch does not start storing more energy in its inductor and capacitor just because a 

branch in parallel enters resonance but the voltage applied across it stays the same. 

Section 8.7 Summary 

This section contained several related tests.  If all of the analytical work is correct, then 

the Q measured by the BvD model and the Q measured by the amplitude should agree 

with each other.  In Section 8.6 we found that this was generally the case on resonance, 
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although the current off-resonance decayed faster than the BvD model predicted using 

linear damping.  The magnitude of quality factor for the left wing was approximately 177, 

while that for the right wing was approximately 62.  In contrast, the non-vacuum 

measurements from Section 8.4 found that for agreement with the CFX-predicted power-

drag coefficients, the mechanical quality factor should be approximately 58.  Looking 

more closely at Figure 8-6, it seems that the quality factor does increase with lower 

amplitude.  The measures in vacuum may provide an answer: higher amplitude causes the 

wing resonances to overlap and interfere with each other, reducing the mechanical quality 

factor.  If this is true, then predicted mechanical quality factor being closer to the right 

wing's quality factor makes sense. 

The big picture of the measurements is that current measurement techniques have been 

limited by the inconsistent behaviour of the wings, and we can be fairly confident that this 

is due to inconsistent properties of SU-8.  Nevertheless, all theoretical predictions for the 

wings were in agreement, and in agreement with each other, and the uncertainty on this 

only gives room for deviation within a factor of two.  The electrical, visual, and force-

based measures of the resonant frequency are in agreement, and the measured amplitude 

and force are consistent with both the net and power drag coefficients and the analytical 

framework, both in their general trends and in their absolute magnitude. 
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Chapter 9 Conclusion 

Understanding that the flight mechanism is the least explored component for microrobotic 

flight, and assuming that MEMS parallel processing techniques are essential for mass-

producing the future's microrobots, this work set out to explore a very simple wing design 

that permits easy MEMS fabrication: resonating curved cantilevers.  I determined the 

large-amplitude resonant shape and frequency relations of these cantilevers, and 

presented equations to generate them.  This shape agrees with experiments performed 

here, and its frequency relation agrees with simulations and published results.  I 

performed thousands of CFD simulations to determine the forces and dissipated power 

from this resonant shape, and extended the drag coefficients of steady-state fluid 

mechanics to explain the average results over many cycles of motion.  Confirming the 

scaling laws necessary to extend the fluid results using similarity of flow for equivalent 

Reynolds number situations, I developed an analytical framework to interpret the fluid 

mechanics results in the context of a complete microrobot.  Using this analytical 

framework, I employed an optimization routine to determine that this flight method does 

indeed lead to flying robots, and how to optimize material choice and flapping 

dimensions for various applications.  Next, I studied and optimized RIE thinning of x-cut 

quartz, and used this to fabricate 15 m-thick Quartz:SU8 wings.  To test the wings, I 

built a torsion bar, and combined it with a camera and lock-in amplifier to measure the 

wings' flapping amplitude, force generation, and electrical parameters in tandem, all in 

various ambient gas pressure conditions.  Finally, I analyzed the experimental results, and 

demonstrated that they are consistent with the theory for the resonant shape, fluid 

mechanics results, and the analytical framework. 

 

To the best of my knowledge, the smallest flight mechanism for flying robots that has 

been published with a net force is the Harvard RoboBee whose flight mechanism (wings 

+ actuators + mechanical gain components) has a mass of 60 mg [64].  In contrast, the 

fabricated flight mechanism in this work has a mass of only 1 mg, and the analytical 
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framework determined the performance of even smaller robots.  These Quartz:SU8 wings 

generated a force of 200 nN when flapping in 1 atm N2 at their 130 Hz resonance and 

200 V-induced amplitude of Ar0 = 0.165.  Although this force was only 2% of their 

weight, it agreed with the fluid mechanics predictions for this amplitude and Reynolds 

number.  Furthermore, the default curvature, bending amplitude, and resonant frequency 

agreed with the predictions from the analytical framework and fluid mechanics 

simulations.  That same framework suggests that building an identical wing using silicon 

rather than SU-8 should significantly improve the design.  Using Si instead of SU-8 

doubles the resonant frequency and lowers the mechanical damping, which quadruples 

the amplitude at a lower input voltage, and increases the Reynolds number by a factor of 

8 (for the same wing dimensions).  Furthermore, the fluid mechanics simulations indicate 

this increase in Reynolds number and amplitude would push the wings into a much more 

favourable flight regime, increasing their net drag coefficient by a factor of 5.  Together, 

this change in Reynolds number and drag coefficient increase the net force output by a 

factor of 320, enough for the wings to lift 6 times their own mass. 

 

This is indeed a promising picture for this form of MEMS-fabricated microrobotic flight, 

but it certainly is not the end of the story.  Additional work needs to be done even in 

testing the rectangle wings simulated in this thesis.  Fabricating wings with tighter 

tolerances to create shapes closer to pure cylinders will allow better testing of the fluid 

force predictions, and less interference from close-but-unequal resonances.  Making 

wings out of materials which are more resistant to pressure changes (i.e., Si rather than 

SU-8) will enable extending vacuum measures of mechanical damping to higher 

pressures, and thus will allow us to more carefully test the power drag coefficient.  

Making the wings out of materials with lower intrinsic mechanical damping should test 

whether material choice can reduce the wings' mechanical damping and allow larger 

amplitudes at lower voltages.  Constructing test structures with smaller PCBs that have 

more clearance for the flapping wings and less drag force themselves will reduce their 

interference with the wing force measurement, greatly increasing its accuracy. 



9-238 

 

 

Rectangles with a length-to-width ratio of 4 are not the only wings permitted by MEMS 

fabrication.  Future work on the flight mechanism should explore other potential fluid 

diode wings, including different rectangles (Length-to-width = 5?), streamlined shapes 

more similar to insect wings, grids of flaps, textured surfaces, and wings with a lip around 

their edges in the thickness direction, to name a few.  Much additional work is also 

possible in material selection.  The Quartz:Si, Quartz:SU-8, and InGaP wings analyzed 

here are barely a scratch on the surface of material possibility.  The optimization routine 

employing the analytical framework, especially if enhanced with specific application 

requirements, can do much to enable material optimization. 

 

So what is the outlook for the future?  Is it possible to create autonomous robots on the 

scale of a fruit fly fabricated in parallel by MEMS technology?  Much work certainly 

remains, but we are on our way to answering that question, and, at least so far, the answer 

is yes. 
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Appendix A Friction and Form Drag in Thrust and Lift Flight: A MEMS 

Scaling Exercise 

One way to model the drag force is by separating out the contribution due to pressure 

(“form drag”, dominates on large scales) and the contribution due to viscosity (“[skin] 

friction drag”, dominates on small scales).  To do this and still use drag coefficients in the 

usual formula for drag force, 21
2D DF C Av , we need to break the drag coefficient into 

separate parts due to friction and form drag: D Dfric DformC C C   

 

In an ideal case, the friction drag coefficient is largely independent of shape and inversely 

proportional to the Reynolds number, as in the Stokes drag formula for the drag 

coefficient of a sphere: 

24

Re
DfricC   (A.1) 

where Re
vL




  taking v as the free-stream velocity and L as the sphere’s diameter.  In 

contrast, form drag is independent of Reynolds number and highly shape-dependent: 

Dform shapeC C  

Figure A-1 shows form drag coefficient of common shapes, which ranges from about 

0.05 to 1.3.  For a flapping wing, the skin friction drag force (on average) cancels out, so 

it contributes only to the power dissipation (and not the net force), and all of the useful 

force comes from the form drag. 
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Figure A-1: Form drag coefficients are greatly affected by shape, from [65] 

Let L be the length and be the flapping frequency.  Define the net drag coefficient DNC  

as the effective drag coefficient difference on the up and downstroke so that the thrust 

force scales like:  

21
2

4 2

T air DN

T DN

F C Av

F C L








 

To a first approximation, since it’s due to form drag, the net drag coefficient should be 

largely independent of Reynolds number. 

 

Next, define the power drag coefficient DPC  so that the effective power used to hover 

scales like:  

  31
2

5 3

avgA air DP

A DP

P C Av

P C L





  



F v
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With this definition, the power drag coefficient should be from a combination of form 

drag and friction drag.  Defining the Reynolds number as 
2Re

Lv
L


  , the power-

drag coefficient is 

 
1

22

DP DPfriction DPformC C C

C
C

L

 

 
 

meaning that the average power used is highly size-dependent: 

5 3 3 2 5 31
2 1 22A

C
P C L C L C L

L
  



 
    
 

 

Section A.1 Thrust flight: 

For maintaining altitude using thrust flight, set: thrust = weight 

Since weight scales with 3L , setting the thrust force to directly oppose gravity relates the 

frequency to the wing length: 

4 2 3

0.5

TF W

L L

L



 





 

 

Substitute the frequency into the power used equation to find: 

2 3.5

1 2'AP C L C L   

Section A.2 Lift Flight: 

In lift flight, there are two force balance equations: 

1) Lift-Weight balance: Lift WeightF F  

2) Thrust-Drag balance: T BodyDragF F  
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Section A.2.1 Lift-Weight Balance: 

The lift force is given by 
2

Lift air fwdF v LB   , where  is the angle of attack and B is the 

chord length.  i.e., 
2 2

Lift fwdF L v . 

 

Setting the lift force equal to the weight gives a scaling on the required forward velocity 

for lift-flight: 

2 2 3

Lift Weight

fwd

fwd

F F

L v L

v L



 

 

 

 

Section A.2.2 Thrust-Drag Balance: 

The thrust is the same as above:  

21
2

4 2

T air DN

T DN

F C Av

F C L








 

 

The body drag is given by the drag equation from the earlier power calculation:  

2 2 21
2D DBody fwd DBody fwdF C Av C L v  , where the body drag coefficient is 

1
2

DBody DBfriction DBform

B
B

fwd

C C C

C
C

Lv

 

 
 

giving 
2 2

1 2DBody B fwd B fwdF C Lv C L v  . 



Substituting fwdv L  gives that the drag force is  

1.5 3

1 2' 'DBody B BF C L C L   

 

Equate this to the thrust force to find the new frequency-length relation for lift flight: 
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4 2 1.5 3

1 2

2.5 1

1 2

' '

' '

DN B B

B B

C L C L C L

C L C L


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 
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And finally the power used to do it: 

   

5 3 3 2 5 31
2 1 22

1.5
3 2.5 1 2.5 1

1 1 2 2 1 2' ' ' ' ' '

A

ALiftFlight P B B P B B

C
P C L C L C L

L

P C L C L C L C C L C L

  


   

 
    
 

    

 

 

Scaling domains: 

1) L is very large; form drag dominates forward motion & thrust mechanism: 

1 0.5

20 'BC L L      and 
5 3 3.5

20ALiftFlightP C L L    

2) L is moderately large; friction drag dominates forward motion, but form drag 

dominates thrust mechanism 
2.5 1.25

1 ' 0BC L L      and 

5 3 1.25

20ALiftFlightP C L L    

 L is very small; friction drag dominates forward motion & thrust mechanism: 

2.5 1.25

1 'BC L L     and 
3 2 0.5

1 10ALiftFlightP C L C L   

 

(Note that the opposite middle region, friction drag for thrust mechanism & form drag for 

body, is nonphysical, as it requires the wing velocity to be slower than the bird velocity.) 

Section A.3 Summary and Comparison 

Lift flight power required: 

~L
3.5

 for large objects 

~L
1.25

 for mid-sized objects 

~L
0.5

 for small objects 

Thrust flight power required: 

~L
3.5 

for large objects 
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~L
2
 for small objects 

 

The available power for biological systems and fossil-fuel aircraft is volume based: 

3

AvailP L .  Defining “Suitability” as the available power divided by the required power 

allows comparing which size scales we expect each flight design to dominate on. 

 

Using reasonable (but highly variable!) numbers for parameters, we can get some idea for 

where this transition area should be.  The Maple program in section Section A.4 

calculates the suitability vs. length scale for volume-based power, area-based power, and 

a combination of both vs. length scales, generating Figure A-2 through Figure A-4.   

As expected, volume-based power supplies favour larger designs, area-based ones favour 

smaller ones, and a hybrid power supply works over a broader range.  Furthermore, thrust 

flight dominates lift flight on smaller size scales but for larger objects lift flight wins out. 

  

 

Figure A-2: Suitability vs. Length [m] for a volume-based power supply 
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Figure A-3: Suitability vs. Length [m] for an area-based power supply 

 

 

 

Figure A-4: Suitability vs. Length [m] for volume- and area-based power supplies 
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Section A.4 Maple Program to Derive Thrust & Lift Flight Plots 

> restart; 

> rho_air:=1.22: nu:=1.46e-5: 

> alpha:=evalf(15*Pi/180); 

 

> c:=L/4; 

 

> FL:=evalf(2*rho_air*vfwd^2*L*c*Pi*alpha); 

 

> Cdfric:=R->24/R; 

 

> with(plots): 

> loglogplot(Cdfric(R)+0.2, R=0.1..1e6): 

> theta:=A*sin(2*Pi*f*t); 

 

> omega:=diff(theta, t); 

 

> A:=0.9*Pi/2; 

 

> RMSomega:=simplify(sqrt(f*int(omega^2, t=0..1/f)), 
assume='positive'); 

 

> CshapeWing:=1; 

 

> Ft:=1/2*2*int(rho_air*CshapeWing*c*(RMSomega*r)^2/2, 
r=0..L); int(r^2, r=0..L); 

 

 

> 
P:=2*(CshapeWing+2*Cdfric(sqrt(L*c)*(2/3*L*RMSomega)/nu))*In

t(rho_air*c*(RMSomega*r)^3/2, r=0..L); 

 

> P:=simplify(value(P), assume='positive'); 

 

> Cg:=9.81*5e-7/(1.7e-3)^3; 

 

 :=  0.2617993878

 := c
L

4

 := FL 0.5017048906 vfwd2 L2

 := Cdfric R
24

R

 :=  A ( )sin 2  f t

 :=  2 A ( )cos 2  f t  f

 := A 0.4500000000 

 := RMSomega 6.280977780 f

 := CshapeWing 1

 := Ft 2.005409662 L4 f2

L3

3

 := P 2 











1
0.0003347249542

L2 L f
d




0

L

37.78780057 L f3 r3 r

 := P 0.3778780056 10-11 ( )0.5000000000 1013 L2 f 0.1673624771 1010 L3 f2

 := Cg 998.3716670
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> Fw:=L->Cg*L^3; 

 

Lift Flight 

> FDWings:=2*(.1)*rho_air*c*L*(vfwd)^2/2 + 
2*Cdfric(vfwd*sqrt(c*L)/nu) * rho_air*c*L*(vfwd)^2/2; 

 

> FDBody:=(.1)*rho_air*Pi*c^2/4*(vfwd)^2/2 + 

Cdfric(vfwd*sqrt(Pi*c*L)/nu) * rho_air*Pi*c*L*(vfwd)^2/2; 

 

> EqnThrustDrag:=simplify(0.25*Ft=FDWings+FDBody, 
assume='positive'); 

 

> EqnLiftWeight:=0.5*FL=Fw(L); 

 

> solve(EqnLiftWeight, vfwd): LFvfwd:=simplify(%[1], 
assume='positive'); vFlap:=2/3*L*RMSomega; 

 

 

> subs(vfwd=LFvfwd, EqnThrustDrag); 

 

> solve(subs(vfwd=LFvfwd, EqnThrustDrag), f): 
LFf:=simplify(%[1], assume='positive'); 

vFlapLF:=simplify(subs(f=LFf, vFlap), assume='positive'); 

#semilogplot(abs(LFf), L=1e-5..1); 

evalf((1.8e10/8.5e13)^(2/3)); 

loglogplot([LFvfwd, vFlapLF], L=1e-5..100, numpoints=1000): 

 

 

> PLF:=0.5*simplify(subs(f=LFf, P), assume='positive'); 
 

 

 := Fw L Cg L3

 := FDWings 0.03050000000 vfwd2 L2 0.0002137440000 vfwd L2

L2

 := FDBody 0.0009531250000  L2 vfwd2 0.0001068720000 vfwd  L2

 L2

EqnThrustDrag := 

0.5013524155 L4 f2 0.03349433050 vfwd2 L2 0.0004031696880 vfwd L

 := EqnLiftWeight 0.2508524453 vfwd2 L2 998.3716670 L3

 := LFvfwd 63.08657564 L
 := vFlap 4.187318520 L f

0.5013524155 L4 f2 133.3046227 L3 0.02543459502 L
( )/3 2

 := LFf
0.00001410398673 0.1336651892 1013 L

( )/3 2
0.255033913 109

L
( )/5 4

 := vFlapLF
0.00005905788484 0.1336651892 1013 L

( )/3 2
0.255033913 109

L
( )/1 4

PLF 0.5449710125 10 -21 ( := 

0.48634437 108 L
( )/3 4

0.1336651892 1013 L
( )/3 2

0.255033913 109

0.1154223980 1010 ) L ( )0.1336651892 1013 L
( )/3 2

0.255033913 109
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Thrust Flight 

> EqnThrustWeight:=Fw(L)=Ft; 

 

> solve(EqnThrustWeight, f); TFf:=%[1]; 

 

 

> PTF:=simplify(subs(f=TFf, P), assume='positive'); 

 

> loglogplot([TFf, LFf], L=1e-5..100, legend=["Thrust Flight 

", "Lift Flight "]): 

> PaBatt := 72.2*L^3*1200: 

PaSolar := 120*2*c*L: 

 

> Pa := PaBatt+PaSolar: 
loglogplot([Pa/PTF, Pa/PLF], L=1e-4..1, legend=["Thrust 

Flight", "Lift Flight"], labels=["L","S"], numpoints=1000): 

 

> Pa := PaBatt: 
loglogplot([Pa/PTF, Pa/PLF], L=1e-4..1, legend=["Thrust 

Flight", "Lift Flight"], labels=["L","S"], numpoints=1000): 

 

> Pl:=2*(CshapeWing*int(rho_air*c*(sqrt(RMSomega^2)*r)^3/2, 
r=0..L) + 

2*Cdfric(sqrt(L*c)*(2/3*L*sqrt(RMSomega^2+vfwd^2))/nu)*int(r

ho_air*c*(sqrt(RMSomega^2+vfwd^2)*r)^3/2, r=0..L)); 

 

> PLF2:=simplify(subs([f=LFf, vfwd=LFvfwd], Pl), 
assume='positive'): 

 

> loglogplot([Pa/PTF, Pa/PLF,Pa/PLF2], L=1e-5..10, 
legend=["Thrust Flight Suitability", "Lift Flight 

Suitability", "Total v Lift Flight Suitability"], 

labels=["L","S"]):  

 := EqnThrustWeight 998.3716670 L3 2.005409662 L4 f2

,
22.31231190

L


22.31231190

L

 := TFf
22.31231190

L

 := PTF 0.1881225075 10-8 ( )0.1115615595 1015 L
( )/3 2

0.1673624771 1010 L2

 := Pl 18.89390028 L5 ( )f2
( )/3 2 0.0001603080000 L4 ( )39.45068187 f2 vfwd2

L2

PLF2 0.2000000000 10 -13 L ( := 

0.3542710078 1013 L
( )/9 4

0.1336651892 1013 L
( )/3 2

0.255033913 109

0.675951023 109 L
( )/3 4

0.1336651892 1013 L
( )/3 2

0.255033913 109

0.8407789170 1014 L
( )/3 2

0.1604210778 1011 0.3190061892 1014 L
( )/7 2

   )
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Appendix B MATLAB Program to explore Multimorph Frequency 

t=[10.1e-6, 7e-6];  %Layer thickness; layer 1, layer 2 

E=[86.7e9, 4.4e9];  %Layer young's modulus 

rho=[2600,1190]; %Layer density 

rhom=sum(rho.*t)/sum(t); %weighted average beam density 

B=2e-3; %Beam width 

A=t*B;  %Layer Cross-sectional area 

L=8e-3; %Beam length 

  

%%Formulation 2 (multimorph) 

y=0; 

for(i=1:length(t)) 

    y(i)=sum(t(1:(i-1))) + t(i)/2; %yi is the coordinate of the centroid of the ith layer 

end 

Ybar=sum(A.*E.*y)/sum(A.*E);   

I0=B*t.^3/12; 

EI=sum(E.*I0 + A.*E.*(y-Ybar).^2) 

fres=1.875^2/L^2/(2*pi)*sqrt(EI/B/sum(t)/rhom) 

  

%%Formulation 1 (only works for 2 layers); extension of Timoshenko 

m=t(1)/t(2); 

n=E(1)/E(2); 

Ey=m*E(1)/((m+1)^3*(m*n+1))*(4+6*m+4*m^2+n*m^3+1/(n*m)); 

I=B*(sum(t))^3/12; 

EI1=Ey*I; 

fres1=1.875^2/L^2/(2*pi)*sqrt(EI1/B/sum(t)/rhom) 
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Appendix C MATLAB program to explore Multimorph Curvature  

(This is MATLAB code) 

clear all; 

close all; 

  

t=[10.1e-6, 7e-6];  %Layer thickness; layer 1, layer 2 

E=[86.7e9, 4.4e9];  %Layer young's modulus 

rho=[2600,1190]; %Layer density 

rhom=sum(rho.*t)/sum(t); %weighted average beam density 

B=2e-3; %Beam width 

A=t*B;  %Layer Cross-sectional area 

L=8e-3; %Beam length 

epfree=[-0.0016446, -0.00495-0.00715]; 

nL=length(t); %number of layers 

  

%%Formulation 2 for res frequency(works for multimorphs) 

  

y=0; 

for(i=1:length(t)) 

    y(i)=sum(t(1:(i-1))) + t(i)/2; %yi is the coordinate of the centroid of the ith layer 

end 

Ybar=sum(A.*E.*y)/sum(A.*E);   

I0=B*t.^3/12; 

EI=sum(E.*I0 + A.*E.*(y-Ybar).^2); 

fres=1.875^2/L^2/(2*pi)*sqrt(EI/B/sum(t)/rhom); 

%DeVoe formulation; from the DeVoe Paper 

Ddv=1/sum(E.*I0)*y 

Adv=zeros(nL); 

for(i=1:nL-1) 

    %Generate the 2 nonzero entries in Row i: 

    Adv(i,i) = 1/(A(i)*E(i)); 

    Adv(i,i+1) = -1/(A(i+1)*E(i+1)); 

end 

for(i=1:nL) 

    %Generate the row of 1s in the last row of A: 

    Adv(nL,i)=1; 

end 

Bdv=[t(1:nL-1)+t(2:nL),0]'; 

Cdv=[epfree(2:nL)-epfree(1:nL-1), 0]'; 

cdv=Ddv*Adv^-1*Cdv/(1-0.5*Ddv*Adv^-1*Bdv) 

phiDegdv=cdv*L*180/pi 
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%%Formulation 1 for res frequency (only works for 2 layers) 

m=t(1)/t(2); 

n=E(1)/E(2); 

Ey=m*E(1)/((m+1)^3*(m*n+1))*(4+6*m+4*m^2+n*m^3+1/(n*m)); 

I=B*(sum(t))^3/12; 

EI1=Ey*I; 

fres1=1.875^2/L^2/(2*pi)*sqrt(EI1/B/sum(t)/rhom); 

%%Timoshenko Formulation for curvature: 

%c = (strain difference)/h * curvrel, and: 

  

DelEp=(epfree(2)-epfree(1)); 

h=sum(t); 

cTimoshenko=6*DelEp*(1+m)^2/((m^2+1/n/m)*(1+n*m)+3*(1+m)^2)/h 

phiDegTimoshenko=cTimoshenko*L*180/pi 
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Appendix D Resonant derivation of a non-curved cantilever: Euler-

Bernoulli Beam Theory 

Following is a summary of using Euler-Bernoulli beam theory to determine the dynamic 

equation of a straight beam; as presented in [25].  

 

Flexural rigidity = stiffness = EI 

 
4

4

d w
EI q x

dx
 , where  w x  is the transverse displacement of the beam at point x from 

the no force condition due to the distributed load q (force per unit length). 

 

Derivatives of w have important physical meanings:  

dw

dx
 is the slope of the beam. 

2

2

d w
M EI

dx
   is the bending moment of the beam. 

2

2

d d w
Q EI

dx dx

 
   

 
 is the shear force in the beam. 

Section D.1 Deriving the bending moment equation 

In actuality, 
1

M EI


  , where   is the radius of curvature of the beam.  When the 

bending is small, then the curvature is 

2

2

1 d w

dx
 . 

--> Restoring moment of the beam is linear in displacement from neutral curvature! 

 0M EI c c    

Section D.2 Dynamic Beam equation 

We get the dynamic beam equation by using the Euler-Lagrange equation for this action: 
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   
22 2

20

1 1
,

2 2

L w w
S EI q x w x t dx

t x


    
     

     
  

Terms: 

1. Kinetic energy per unit length: 

2
1

2

w

t


 
 
 

 

2. Potential energy due to internal forces: 

2
2

2

1

2

w
EI

x

 
 
 

 

3. Potential energy due to the external load  q x :    ,q x w x t  

 

Use the Euler-Lagrange equation to find the function that minimizes the action S.  

Answer: 
2 2 2

2 2 2

w w
EI q

x x t


   
   

   
 

Section D.2.1 Lagrangian 

The Lagrangian is the kinetic energy minus the potential energy: L T V  . 

 

Equations of motion come from the Euler-Lagrange equation: 
L d L

q dt q

 


 
 

(q is the function such that 

 

 

: ,q q b X

t x q t

 

 
 

) 

If there are two spatial dimensions, then this is a system, with one for each component: 

         , , ' , , '
0

i i

L t q t q t L t q t q td

x dt v

 
 

 
, for i = 1..n 
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Section D.2.1.1 e.g., particle in a conservative field: 

   
3

2

1

1
, ,

2
i

i

L t m v U


 x v x , then we get: 

   
 

, ,
i

i i

L t U
F

x x

 
  

 

x v x
x  

and 
 , ,

i i

i

L t
mv p

v


 



x v
 

so that the Euler Lagrange equation is  

  , 1..3i i

L d L

q dt q

d
F p i

dt

 


 


  


x

 

Which is Newton's second law. 

Now, since v x , this says:   mF x x . 

Section D.2.1.2 More complicated Lagrangians 

One function of one variable, and only one derivative: 

 , ,

0
'

xT V L x f f

L d L

f dx f

 

 
  

 

 

(these should be fancy L's below, and  

     

   f

f

H T V

H f L

 

  
 

) 

And without higher derivatives,      L T V   

(Where the    denote densities) 

 

Extension #1: Higher derivatives: 
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  

 
 

2

2

, , , , , ,

1 0

n

x xx xxx x

n
n

n n
x xx x

T V L x f f f f f

L d L d L d L

f dx f dx f dx f

  

    
       
     
 

 

(Longer equation) 

/* 

e.g., 3 7T V x x x x     : 

 
2 3

2 3

, , , ,

0

L f t x x x x

L d L d L d L

x dt x dt x dt x



   
    

   

 

*/ 

 

Extension #2: More than one function: 

 

 

1 2 1 2, , , , , ', ', '

0, 1..
'

n n

i i

T V L x f f f f f f

L d L
i n

f dx f

 

 
   

 

 

(Coupled equations) 

 

e.g., object of mass 2 in free fall with some initial velocity: 

   2 2 , , , ,

0

0

T V x y gy L t x x y y

L d L

x dt x

L d L

y dt y

    

 
  

 
 

  
 

 

gives: 

0 2 0

2 0

d
x

dt

d
g y

dt


 


  


 

 

Extension 3: Function of Several Variables 
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 

 

1 2 1 2, , , , , , ,

0

n x x xn

i i xi

T V L x x x f f f f

L d L

f dx f

    

 
  

  


 

(Sum the derivatives) 

 

Extension 3 & 1 together: Function of 2 variables with higher derivatives: 

 
2 2 2

2 2

, , , , , , ,

0

x y xx xy yy

x y xx xy yy

T V L x y f f f f f f

L L L L L L

f x f y f x f x y f y f

 

          
     

           

 

Section D.2.1.3 Derive the Dynamic Beam Equation 

     

  

       

     

22 2

2

2 2

2

2

2

2

1 1
, , , , ,

2 2

2 2

Euler Lagrange 0

0 0

0

x xx

xx

x xx

xx

xxxx

L T V

w w
EI qw L x t w w w w

t x

EI
w w qw

L L L Ld d d

w dx w dt w dx w

d d d
q w EIw

dx dt dx

q w EIw









 

   
     

    

  

    
     

    

   

  

 

 

This differential equation admits the solutions with displacement: 

  1

cos cosh
ˆ cosh cos sin sinh

sin sinh
w s A s s s s

L L L L

     

 

   
        

 

and curvature: 

 
2 2

12 2

ˆ cos cosh
cosh cos sin sinh

sin sinh

w
c s A s s s s

s L L L L L

      

 

    
            
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where   are the solutions to the equation    cosh cos 1 0    .  For the first mode, 

1.875  . 

 

  



E-20 

 

Appendix E MATLAB program to explore Multimorph Stress 

clear all; 

close all; 

 

t=[2/3, 1/3]*48.8e-6;  %Layer thickness; layer 1, layer 2 

E=[111.4e9, 86.7e9];  %Layer young's modulus 

rho=[2300,2600]; %Layer density 

rhom=sum(rho.*t)/sum(t); %weighted average beam density 

L=9.5e-3; %Beam length 

B=L/4; %Beam width 

A=t*B;  %Layer Cross-sectional area 

epfree=[4e-6, 16e-6]*(-621.1485354); 

  

nL=length(t); %number of layers 

 

y=0; 

for(i=1:length(t)) 

    y(i)=sum(t(1:(i-1))) + t(i)/2; %yi is the coordinate of the centroid of the ith layer 

end 

Ybar=sum(A.*E.*y)/sum(A.*E);   

I0=B*t.^3/12; 

EI=sum(E.*I0 + A.*E.*(y-Ybar).^2); 

fres=1.875^2/L^2/(2*pi)*sqrt(EI/B/sum(t)/rhom); 

%DeVoe formulation; from the DeVoe Paper 

Ddv=1/sum(E.*I0)*y 

Adv=zeros(nL); 

for(i=1:nL-1) 

    %Generate the 2 nonzero entries in Row i: 

    Adv(i,i) = 1/(A(i)*E(i)); 

    Adv(i,i+1) = -1/(A(i+1)*E(i+1)); 

end 

for(i=1:nL) 

    %Generate the row of 1s in the last row of A: 

    Adv(nL,i)=1; 

end 

Bdv=[t(1:nL-1)+t(2:nL),0]'; 

Cdv=[epfree(2:nL)-epfree(1:nL-1), 0]'; 

cdv=Ddv*Adv^-1*Cdv/(1-0.5*Ddv*Adv^-1*Bdv); 

phiDegdv=cdv*L*180/pi 

  

Fdv=Adv^-1*(1/2*cdv*Bdv+Cdv); 

sigmaCompressive=Fdv'./A-(E.*t)/2*cdv; 

sigmaTensile=Fdv'./A+(E.*t)/2*cdv; 
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epCompressive=sigmaCompressive./E 

epTensile=sigmaTensile./E 

  

%% Formulation 1 for res frequency (only works for 2 layers) 

m=t(1)/t(2); 

n=E(1)/E(2); 

Ey=m*E(1)/((m+1)^3*(m*n+1))*(4+6*m+4*m^2+n*m^3+1/(n*m)); 

I=B*(sum(t))^3/12; 

EI1=Ey*I; 

fres1=1.875^2/L^2/(2*pi)*sqrt(EI1/B/sum(t)/rhom) 

%%Timoshenko Formulation for curvature: 

%c = (strain difference)/h * curvrel, and: 

  

DelEp=(epfree(2)-epfree(1)); 

h=sum(t); 

cTimoshenko=6*DelEp*(1+m)^2/((m^2+1/n/m)*(1+n*m)+3*(1+m)^2)/h; 

phiDegTimoshenko=cTimoshenko*L*180/pi; 
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Appendix F Deriving Beam Displacement due to Curvature 

Section F.1 Displacement of a point on the neutral axis (z = 0) 

It’s easiest to first find the displacement of points on the neutral axis of the cantilever: 

that axis which experiences no longitudinal strain.  For a symmetric bimorph cantilever 

actuator, the neutral axis is in the vertical middle: 0z  .  (The symmetric case is the one 

assumed here for simplicity, but this leads to no loss of generality, for if the actuator is 

not symmetric, we will still be able to use the resulting formulas if we adjust the 

cantilever extent.  E.g., for a neutral axis at the absolute bottom, instead define the 

cantilever extent as    , 0.. ,0..s z L h .) 

The arc length s of the neutral axis is related to  &   through  ,s s c   , so that  

 
1

,s c s cs


   

N.B.: Even off the axis,   is not a function of z, as we assume that plane cross sections 

remain plane in the cantilever. 

 

Appendix Figure F-1: Variables for beam displacement derivation 

To find the external displacements of each internal point, use Appendix Figure F-1 to 

write: 

  
  ,0,

sin ,
s x s c

s c


 
 ,   

 ,0,
cos ,

y s c
s c







  

Which lead to: 
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 

 

  

sin
1/

1
sin

1 1
sin sin

s x s x

c

sc s x
c

x sc s sc sc
c c




   
 

   

    

 

and 

 

 

  

1

cos
1/

1 1
cos

1
1 cos

y
y c

c

sc y
c c

y sc
c









 

  

  

 

 
 

 

sin1
,0,

1 cos

sc sc
s c

scc

 
   

 
r  

In terms of ,  
sin

,0,
1 cos

s
s

 




 
   

 
r , which is more useful at times. 

 

Given that the initial external coordinate from internal coordinate ,0s  is  ,0,0
0

s
s

 
  
 

r , 

the new coordinate is  

     
 

 

sin1
,0, ,0,0 ,0,

1 cos

sc
s c s s c

scc

 
     

 
r r r  
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Section F.2 Displacement of a point at arbitrary z: 

 

Figure F-2: Off-axis displacement due to bending angle of a beam section 

Referring to Figure F-2, the off-axis point originally at  ,s z  will find itself moving to a 

new position of      
sin

, , , ,0 ,0,
cos

z
s z c s z s c

z





 
    

 
r r r  

 , the angle that the section at s’s neutral axis makes with the horizontal, is related to the 

curvature and arclength via: sc   (for pure cylindrical bending,    s s  .  Later 

we’ll examine resonant bending where this is not the case).

 

Given that the original position was  , ,0
s

s z
z

 
  
 

r  and the neutral-axis displacement is 

 
sin1

,0,
1 cos

sc sc
s c

scc

 
   

 
r  (as given above), this makes the total displacement: 

 
sin sin1

, ,
1 cos cos

sc sc sc
s z c z

sc scc

    
     

   
r  

and the new coordinates of the point are: 
sin sin1

1 cos cos

s sc sc sc
z

z sc scc

      
       

     
r    
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Appendix G Chain rule to simplify the RS definition: 

Unfortunately, the functional form for is not easy to analytically integrate to find the 

displaced position, so most of the work dealing with this is going to be numeric.  We can 

however numerically simplify the z-correction term using the chain rule:

   
    

  

    
  

0
0

0

0 0

0

cos ,0 ,
, , 1 ,

sin ,

cos ,0 ,
1

sin ,

0 cos cos

sin sin

0 cos

sin

s

s

s s

s

s ts t
s z t s t z ds

z s s t

s ts t
z ds

z s s t

ds z ds
z s

ds
z










 

 





   
       

      

   
      

      

     
       

     

   
    
   





 

r

0

cos

sin

s

z ds
s





 
  

  
 

 

Examine the integral using the chain rule: 

0 0

cos cos

sin sin

sin 0 sin

cos 1 1 cos

s

ds d
s

 


 

 

 

   
   

    

     
       

       

 
 

 

Therefore, you could more compactly write the position as: 

0

0

0 sin cos

cos sin

cos sin

sin cos

s

s

z ds
z

ds z

 

 

 

 

     
       

     

   
    

   





r

 

(The z-correction working the same as for cylindrical bending). 

 

And so, alternatively 
0

cos sin

sin cos

s

ds z
 

 

   
    

   
r , although this is somewhat less 

convenient when using curvature instead of . 
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Appendix H COMSOL Simulations Exploring 3d Boundary Condition 

Corrections to Young’s Modulus and Piezoelectric Coupling 

Coefficients 

DeVoe and Pisano mention in [28] that for fixed cantilever boundary conditions, the 

effective Youngs modulus of a bending beam is 
2

'
1

E
E





, and the effective 

piezoelectric coefficient is  31 31' 1d d   .  To explore whether these are the case for 

III-V materials and Quartz, I carried out a number of simulations in COMSOL 

Multiphysics 3.5a. 

Section H.1 InGaP_2dVolt 

Built a 2d rectangular grid and explored the effective d31 required so that the strain would 

develop using 1 31 3 31

V
d E d

t



   in response to voltage over layer thickness t, for a III-

V material using InGaP’s d31 of 5.791e-13. 

From [66], III-V materials have the piezoelectric coupling matrix 

 
2 2

14
2 2

2 2 2

0 0 0 2 2 0

0 0 0 2 2 0
2

0 0 0 2

a b
d

b a

b b a



 
 


 
  

d   

where the z axis is 100 , the x axis makes an angle of  with 011 , and 

2 2sin 2 , cos2a b   .  The maximum linear piezoelectric effect therefore couples 

electric fields in the 100  direction to strains in the 011    ones, and 31 32d d  : applied 

voltage in z extends the material in x and shrinks it in y.  This attempted shrinking in y is 

resisted by the cantilever boundary conditions, and so actually results in a similar effect to 

extending the beam in the y-direction with strain: it should shrink in the other directions 

by the attempted strain multiplied by the poisson’s ratio. 
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Result: Longitudinal strain and thus effective d31 was 66.4% of the free strain; that's the 

same as if one were to scale  31 31 1d d    ( = 0.33). 

 

To ensure this understanding is correct, I carried out a number of additional tests: 

1) Remove the d32 component.  The effective strain should now be the one predicted 

using the actual d31, since the material no longer attempts to shrink in y.  Verified. 

2) Reverse the d32 component.  Effective strain should now be 33% larger, as the 

material attempts to extend in y.  Verified. 

3) Altered the Poisson ratio to 0.2. material should now develop 80% of the free strain.  

Verified. 

Result: these COMSOL simulations confirmed that DeVoe's statement that for plane 

strain conditions  31 1effectived d    applies to "typical isotropic-E piezoelectric" 

materials with 13 23d d .  For a III-V material, E is still isotropic but 13 23d d    and 

using COMSOL we found that  31 1effectived d   . 

 

Eigenfrequency and bending simulations demonstrate similarly that:  

1. EY effective for quartz (of the orientation I'm using; x-thickness, y-length, z-width 

of a cantilever) (for resonance agreement with COMSOL over a large range) is 

actually 86.37298814 GPa (not actually that many sig figs) 

a. This particular EY was defined as the one that gives identical theory and 

COMSOL results for the resonant frequency of a 30m Thick 1mm long 

quartz-quartz cantilever with ground plates between them and on the top & 

bottom: 

b. This works the same for bending as Eigenfrequency Verified 

2. This is modified by the boundary conditions due to piezoelectric effects, and 

COMSOL reflects this in a sensible way. 

Note:  At least for version 3.5a, COMSOL has problems modelling h <=30m unless L 

<=8mm.  It has less problems with h<=120m, L<=64mm, even though L/h is quite a bit 
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larger and in fact so is L
2
/h.  These problems are also present for simple isotropic 

materials. 
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Appendix I RS Mode Energy Balance 

Section I.1 In general 

The resonant frequency of the first mode of a straight cantilever is: 

2

2 2
resStraightBeam

m

EI
f

L Bh



 
  

where L is cantilever length, B is the width, h is the thickness, m is the density, EI is 

flexural rigidity, and   is the first root of to cos cosh 1 0    . 

 

Preview: 

For a curved cantilever, I’ve found that this formula still works if you apply a correction 

factor that depends on the natural bending angle,  0resCorf  : 

2

2 2
res resCor

m

EI
f f

L Bh



 
  

where   2 41 0.0202 0.000242resCorf      , where   is in radians.  This results from 

truncating a Taylor expansion and is verified with ANSYS mechanical simulations, but is 

also analytically derived by equating the kinetic and potential energy for the RS mode 

shape.  The following sections do just that. 

Section I.2 Energy Derivations 

With the RS mode asserted, we can calculate the kinetic and potential energy of the beam.  

At resonance, the kinetic and potential energy must balance, so by setting these quantities 

equal, we can derive the resonant frequency of the beam as a function of the static 

bending angle.  Then, we can compare this to numerical results for the resonant frequency 

as a test of the RS mode. 

Section I.2.1 Potential Energy Derivation 
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Summary of this section: For RS bending, the extra potential energy from bending is 

24
21

2 0

1

2 4

L
rA

U EI c ds EI
L

 
     

 
 , where 1.8751   is the first root of

cos cosh 1 0    . 

 

To derive this potential energy formula: 

1. Prove that we can work with c rather than the absolute curvature. 

2. Write an expression for the potential energy in terms of this c 

3. Substitute and nondimensionalize 

4. Numerically evaluate the integral using the assumed form of c 

Section I.2.1.1 Proof that c replaces c for strain energy for bending from c0: 

Neglecting shear strain, 
21

2Beam
U dU E dV    

What if the beam has a resting strain distribution which gives rise to a static curvature? 

 

0

0

mech free

mech bending free

freezc
E

  

   


 

 

  

  

 

(where free  is the strain that would occur if the layer were released from the composite 

beam, and 0  is the strain at 0z   that is actually manifested.) 

The resting curvature is determined from the beam’s equilibrium conditions of no net 

force or moment on any cross-section: 

1. Net force on any cross section is 0:  0 0 0free
A A

dA E zc dA        

2. Net moment on any cross section is 0:  0 0 0free
A A

zdA E zc zdA        

a.   0 0free
A

E zdA EIc   . 
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The relevant strain for the potential energy is this “mechanical strain”, since that’s the 

strain that produces a stress: 

 
2

1
02 free

Beam
U dU E zc dV       

 

Defining 
0BuiltIn free     as the resting non-bending strain in the curved beam, the true 

change in potential energy due to a change in curvature alone (i.e., change in longitudinal 

strain at z = 0 is 0) is: 

   

 

    

      

0

2 21 1
02 2

2 2 2

1
2 2 2 2

0 0

2 2 21
0 02

22 21
0 0 0 02

2

2

2

2

BuiltIn BuiltIn
beam beam

BuiltIn BuiltIn

beam
BuiltIn BuiltIn

BuiltIn
beam

BuiltIn

U U U

E zc dV E zc dV

zc z c
E dV

zc z c

E z c c z c c dV

E z c c c z c c c d

 

 

 





  

   

  
  

    

    

        

 





  

       

2 21
02

2 2 21 1 1
02 2 2

2 2

2 2

beam

BuiltIn
beam

BuiltIn
beam beam beam

V

E z c z c c c dV

E z c dV E z c dV E z c c dV





      

      





  

 

 

Evaluating each integral separately: 

1)  

   

 

1 1
2 2 0

1
2 0

2 2

2

L

builtin builtin
A

L

builtIn
A

E z c dV cds E z dA

cds z dA

 



    

  

  

 
 

 

and   0builtin builtin
A

E z dA M EIc   , as above for a total term of: 1
02

0
2

L

EIc cds   

 

2) 
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2 2 21 1
2 2

0

L

beam
Ez c dV EI c ds     

(This is found to be 
2

21
2

0

1
3.0906

2

L
rA

EI c ds EI
L

 
   

 
  in the next section) 

3) 

21 1
0 02 2

0
2 2

L

beam
Ez c cdV EIc cds     

(cancels with term #1) 

 

Therefore, without an additional axial strain component to the resonance, the stored 

energy is based only on the difference in curvature from equilibrium. 

Section I.2.1.2 Calculating RS Potential energy for c 

In the previous section, we found that the extra potential energy beyond neutral curvature 

for the beam is: 

2 2 21 1
0 2 2 0

L

beam
U U U Ez c dV EI c ds         

Where c
s


 


, 

cos cosh
sinh sin cos cosh

2 sin sinh
r

s s
A s s

L L L L

      


 

   
         

, 

and  2

iCrossSection
i

EI Ez Bdz EI   

 

We can numerically solve for  and then evaluate this U integral for the c of RS 

bending to find.  This is carried out in the next subsections, and finds that: 

1.87510406871196...   

23.090591

2

rA
U EI

L
   

and also that 

4 21

2 4

rA
U EI

L


   (7.1) 
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I.2.1.2.1 Numeric evaluation for lambda 

 is defined as the solution to 
cos cosh

1
sin sinh

 

 





; resulting from setting no bending 

moment or shear stress at the tip: 

 0
s L

s L

c c
s



 
    



Apply the “no bending moment at the tip” boundary condition: 

  
2

1 2

cos cosh
cosh cos sin sinh

sin sinh

0

s L
c A

L

  
   

 

 
       





(by definition) 

Apply the “no shear stress at the tip” boundary condition: 

 

 

3

1 3

2

2 2 2 2

0

cos cosh
sinh sin cos cosh 0

sin sinh

cos cosh
sin sinh

sin sinh

cos 2cos cosh cosh sin sinh

1 2cos cosh 1 0

s L

c
s

A
L

  
   

 

 
 

 

     

 



 
  

 
      


  



    

  

 

(using the fundamental trig and hyperbolic identities, 
2 2sin cos 1x x   and 

2 2cosh sinh 1x x  ) 

cos cosh 1     

 

This can be evaluated numerically; the function calc_symbolic_delta_U(): from 

RSVelocityWork.py comes up with  

lamSoln = 1.87510406871196 
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I.2.1.2.2 Numeric evaluation of U 

2 cos cosh
cosh cos sin sinh

2 sin sinh
r

c
s

s s
A s s

L L L L L



      

 


 



   
         

 

i.e, rA s
c f

L L

 
   

 
 

So,  

   

  

21
2 0

2
1

1
2 0

2
1 2

1
2 0

,

L

r

r

U EI c ds

s ds
S dS

L L

A
U EI f S LdS

L

A
U EI f S dS

L

  

 

 
   

 

 







 

Where        
2 cos cosh

cosh cos sin sinh
2 sin sinh

f S S S S S
  

   
 

 
      

 

(Now the integral has been nondimensionalized.) 

Using the precise lamSoln, find using calc_symbolic_delta_U() that  

 
1

2

0
f S dS   

3.0905894240098   (1000-pt midpoint rule) 

3.09059048756361 (2000-pt midpoint rule) 

3.09059068451803 (3000-pt midpoint rule) 

 

So that 

2 2 4

1 1
2 2

3.09059
4

r rA A
U EI EI

L L


     (Using lamSoln = 

1.87510406871196 with a 3000-point midpoint rule) 
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As expected, the max potential energy occurs when 0 sinr rA A t  is its max value of 

0rA , and the potential energy scales with the flexural rigidity and the square of the 

amplitude (as in a Hooke’s law spring). 

Section I.2.2 Kinetic energy 

 

21
2

21
2

0
,

wing

L

m

K v dm

K v s t ds








 

( m  is linear mass density.) 

 

Unfortunately, this integral is very difficult to do for the RS mode.  The difficulty lies in 

the iterative position definition: 

0

cos sin

sin cos

s

ds z
 

 

   
    

   
r  

where 0

cos cosh
sinh sin cos cosh

2 sin sinh
r

s s
A s s

L L L L

      
 

 

   
         

 and 

0 sinr rA A t , making the velocity equal to: 

 
 

0

cos sin, ,
, ,

sin cos

ss z t
s z t ds z

t t t

 

 

     
     

     


r
v  

Since z is very small, neglect the modification to velocity from off-axis components: 

0

cos

sin

s

ds
t





 
  
  
v  
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 

 

0

0

0

cos cosh
cos sinh sin cos cosh

2 sin sinh

cos

sin

r

t t

t

s s
A t s s

L L L L

t

t

  



      
 

 


 



 
  

 


 



   
        

 

 

So 

0

coscos

sinsin

st
ds

t


 



 
   

 
v  

And even now, this is impossible to do analytically. 

 

But we can do it numerically. 

 

Assert that the maximum velocity should be at the equilibrium crossing point. 

To find the velocity numerically: 

1. Find the position of the wing at t = t0 

2. Find the position of the wing at t = t0+Δt 

3. Find the displacement by subtracting these two 

4. Find the velocity by dividing this by t . 

 

Results: Analyzing K vs. L, , Ar, and using the program in Appendix J: 

 
2 2 3

0
max 28

r
m

resCor

A L
K Bh

f


 , where 2 4

0 01 2.0239e-2 2.4241e-4resCorf      

Section I.2.2.1 Kinetic energy scaling 

In this section, we plot the wing velocity (tip and average velocity, as well as the ratio 

between the two), and the quantity 
2

m tip

K

v
 to investigate the peak kinetic energy and 
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velocity scaling for the RS mode vs. several parameters, amplitude A, wing length L, and 

frequency .

I.2.2.1.1 K vs. A, fixed L 

 

Appendix Figure I-1: Kinetic energy divided by mvtip
2
 is independent of amplitude for fixed wing 

length, static bending angle, and frequency 

At phi0=90.0,L=1,A=0.0625,omega=6.28318530718, 

 

2
0.132

m tip

K

v
 ; and this is: 

independent of A 
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I.2.2.1.2 K vs. L 

For both fixed A/L and variable A/L, (K/-vtip
2
) is directly proportional to L and 

independent of A. 

I.2.2.1.3  fixed A/L 

 

Appendix Figure I-2: Kinetic energy divided by mvtip
2
 is linear with length for fixed amplitude per 

length, static bending angle, and frequency 
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I.2.2.1.4 K vs. L, fixed A 

 

Appendix Figure I-3: Kinetic energy divided by mvtip
2
 is linear with length for fixed amplitude, static 

bending angle, and frequency 

(same story) 

I.2.2.1.5 K/mu-v2 vs. omega 

K/mu-v
2
 is also independent of omega: 
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Appendix Figure I-4: Kinetic energy divided by mvtip
2
 is independent of frequency for fixed wing 

length, static bending angle, and amplitude 

 

So,  

2

tip

K
L

v


 

 

Section I.2.2.2 K-dependence on 0 for fixed f: Deriving fresCor 

Using a similar approach to the last section, we could find that for fixed f as well as the 

other variables, Kmax  depends on 0 like  
2

2 4

0 01 2.0239e-2 2.4241e-4 


  :
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Appendix Figure I-5: Max beam kinetic energy vs. bending angle shows a curious dependence (fixed 

f, L, Ar, and m; all set to 1) 

Instead, this section will take a more roundabout way to derive this same fact that settles 

on a useful name for this correction factor. 

 

Since 

2 2 4

1 1
max 2 2

3.09059
4

r rA A
U EI EI

L L


   is constant in 0 and f0, and the max potential 

energy equals the max kinetic energy at resonance, therefore the max kinetic energy must 

also be constant in 0 and f0 (for a fixed L & Ar ). 

 

However, the max kinetic energy turns out to be a function of both of these variables.  

We’ve already mentioned that 2

maxK f , and by fixing f, L, and Ar we can rerun these 

calculations to determine that K is a decreasing function of 0.  Therefore, for kinetic 

energy to be constant, the resonant frequency must be an increasing function of .

 

Encompass this dependence on frequency with a “0-dependent resonant frequency 

correction factor”,  0resCorf   defined so that  



I-42 

 

 
2

02

1

2
resCor

m

EI
f f

L




 
   

 

Constant max-kinetic energy at all 0 requires: 

    max 0 max 0 0 00, , resCorK f K f f    

and since 
2K f ,  

       
2

max 0 0 0 max 0 0 0, ,resCor resCorK f f K f f       

 

so that  
 
 

max 0

0

max 0 0

0,

,
resCor

K f
f

K f



  (as long as the peak potential energy is 0 independent, 

which is true if the bending shape and 0 0   is correct) 

 

Result:  from using function derive_fresCor() from RSVelocityWork.py ,  

fresCor(0) turns out to be equal to:  

fresCor = 1+(0.0202390368072*phi0^2+0.000242411506101*phi0^4) 

(where phi0 is in radians). 

The strictly even poly fit polynomial makes sense since the fres correction should be 

symmetric about 0 = 0.  

 

This function also plots the actually derived fresCor along with this fit polynomial, the error 

between the two, and the verification that this resonant frequency does lead to constant 

kinetic energy, as required: 



I-43 

 

 

Appendix Figure I-6: Using the function derive_fresCor() from the program in Appendix J 

 

Section I.2.2.3 Check: Energy balance for straight beam: 

 With no static bending angle (0 = 0) we found in the last section that 

2 3 2

max =4.942 m rK f L A  

 

Setting max maxU K  at resonance leads to the resonant frequency 

2
2 3 2

2 2

3.0906
4.942

2

3.0906 1 1
0.5592

4.942 2

r
m r

m m

A
EI f L A

L

EI EI
f

L L



 



 




Check: Compare to 
21.875

0.5595
2

 .   Difference < 0.04% 

Section I.2.2.4 RMS Velocity Compared to Kinetic Energy and a Straight Beam 

For the straight beam, in Appendix D we found that the transverse displacement 

amplitude was given by 

  1

cos cosh
ˆ cosh cos sin sinh

sin sinh
w s A s s s s

L L L L

     

 

   
        

.  Referring to Section 

2.2.6, A1 is related to the RS mode's Ar0 by 1
0 2r

A
A

L
 , meaning that we could also write 

the amplitude as a function of arclength as 
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  0 cos cosh
ˆ cosh cos sin sinh

2 sin sinh

rA L
w s s s s s

L L L L

     

 

   
        

.  For harmonic 

motion with this amplitude, the maximum velocity in time is    max
ˆv s w s   .  This 

means the time-max spatial RMS velocity for the straight beam is: 

  

2

2

0
00

cos cosh
cosh cos sin sinhˆ sin sinh

2

L
L

r
rms

s s s s ds
w s ds A L L L L L

v
L L

     
  



   
        



This integral is nondimensionalized by the u-substitution 
s

u
L

 , leading to: 

 
2

1
0

0

cos cosh
cosh cos sin sinh

2 sin sinh

r
rms

A L
v u u u u du

 
    

 

 
     

 , which 

evaluates to unity, meaning 

0

2

r
rms

A L
v


   (for a straight beam). 

Numerically, the program in Appendix J finds that repeating the calculation for a curved 

beam modifies this same formula by resCorf , to the time-max spatial RMS velocity: 

0

2

r
rms

resCor

A L
v

f


  

Comparing with the max kinetic energy,  
2 2 3

0
max 28

r
m

resCor

A L
K Bh

f


 , and substituting 

wing mm BhL  confirms that the max kinetic energy is related to the time-max spatial 

RMS velocity by the familiar 21
2

K mv . 
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Appendix J Python Program to Derive the RS mode Energy relations 

and Plots 

# -*- coding: utf-8 -*- 

""" 

Created on Fri Apr 19 16:07:25 2013 

 

@author: Minnick 

""" 

def rRS(phi0,L,Ar = 0, z = 0, ep0ByAr=0.00, numintervals=100): 

    '''Returns the wing position array r(s) for a given Ar & z, where s 

has numintervals+1 values from 0 to L 

 

    phi0: full curvature angle in deg.  phi0 = c0*L 

    L: wing length 

    Ar: relative amplitude.  Ar = 2*A1/L --> A1 = Ar*L/2. 

    z: offset from the neutral axis to compute 

    ep0ByAr: longitudinal strain divided by Ar. 

    numintervals: number of s-intervals to take from 0 to L.  (Points = 

numintervals+1) 

    ''' 

    import scipy as sp 

    from scipy import cos 

    from scipy import cosh 

    from scipy import sin 

    from scipy import sinh 

 

    N = numintervals 

    r=sp.empty((N+1,2)) 

    c0 = phi0*sp.pi/180/L 

    Ds = L*1.0/N 

 

    ep0= ep0ByAr*Ar 

 

    #s = sp.arange(Ds/2, L+Ds/2, Ds) 

    s = sp.linspace(Ds,L-Ds, N) 

    r[0,:]=(0,z) 

 

    #print s 

    lam=1.8751 

    Clam = (cos(lam)+cosh(lam))/(sin(lam)+sinh(lam)) 

    Lastbeta = 0 

    for n,sval in enumerate(s): 

        slam = sval*lam/L 

        beta = c0*sval +Ar/2.*lam*(sinh(slam)+sin(slam)+Clam*(cos(slam)-

cosh(slam))) 

        c = c0 + Ar/2.*lam**2/L*(cosh(slam)+cos(slam)+Clam*(-sin(slam)-

sinh(slam))) 

        #beta = c0*sval +A*lam/L*(2*(slam+slam**4/120)+Clam*(-1*slam**2-

2*slam**6/720)) 

        #r[n+1,:]=r[n,:]+(1+ep0-z*c)*sp.array([cos(beta), sin(beta)])*Ds  

#No chain rule for the z-part 
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        r[n+1,:]=r[n,:]+(1+ep0)*sp.array([cos(beta), sin(beta)])*Ds# + 

sp.array([sin(beta)-sin(Lastbeta), -cos(beta)+cos(Lastbeta)])#Chain rule 

for the z-part 

 

    #z-correction part when using chain rule part 

    for n,sval in enumerate(s): 

        slam = sval*lam/L 

        beta = c0*sval +Ar/2.*lam*(sinh(slam)+sin(slam)+Clam*(cos(slam)-

cosh(slam))) 

        r[n+1,:]=r[n+1,:]-z*sp.array([sin(beta), 1.-cos(beta)])# + 

sp.array([sin(beta)-sin(Lastbeta), -cos(beta)+cos(Lastbeta)])#Chain rule 

for the z-part 

 

 

    #r = sp.transpose(r) 

    #RotMatrix = sp.array([[sp.cos(Rotation), -

sp.sin(Rotation)],[sp.cos(Rotation),-sp.sin(Rotation)]]) 

    #r = RotMatrix*r 

    #r = sp.transpose(r) 

    #print r 

    return r 

 

def rRS_Cyl(phi0,L,Ar = 0, z = 0, ep0ByAr=0.00, numintervals=100): 

    import scipy as sp 

    from scipy import cos 

    from scipy import cosh 

    from scipy import sin 

    from scipy import sinh 

 

    N = numintervals 

    r=sp.empty((N+1,2)) 

    c0 = phi0*sp.pi/180/L 

    Ds = L*1.0/N 

 

    ep0= ep0ByAr*Ar 

 

    #s = sp.arange(Ds/2, L+Ds/2, Ds) 

    s = sp.linspace(Ds,L-Ds, N) 

    dw=sp.empty(N+1) 

    du=sp.empty(N+1) 

    r0 = r*0 

    rUW = r0*0 

    #print s 

    lam=1.8751 

    Clam = (cos(lam)+cosh(lam))/(sin(lam)+sinh(lam)) 

    for n,sval in enumerate(s): 

        slam = sval*lam/L 

        dbeta = Ar/2.*lam*(sinh(slam)+sin(slam)+Clam*(cos(slam)-

cosh(slam))) 

        beta = c0*sval +Ar/2.*lam*(sinh(slam)+sin(slam)+Clam*(cos(slam)-

cosh(slam))) 

        beta0 = c0*sval 

        r0[n+1,:] = r0[n,:]+sp.array([cos(beta0), sin(beta0)])*Ds 
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        #beta = c0*sval +A*lam/L*(2*(slam+slam**4/120)+Clam*(-1*slam**2-

2*slam**6/720)) 

        dw[n+1] = dw[n]+sin(dbeta)*Ds 

        du[n+1] = du[n]-(1-cos(dbeta))*Ds 

        rUW[n+1] = r0[n+1]+sp.array([cos(beta0)*du[n+1]-

sin(beta0)*dw[n+1], sin(beta0)*du[n+1]+cos(beta0)*dw[n+1]]) 

 

        r[n+1,:]=r[n,:]+(1+ep0-z*c0*sval)*sp.array([cos(beta), 

sin(beta)])*Ds 

    #beta0 = c0*sval 

 

    return rUW, r 

 

 

def rRS_at_t(phi0, L, Ar, omega, t, numintervals=50): 

    from scipy import sin 

    return rRS(phi0, L, Ar*sin(omega*t), numintervals=numintervals) 

 

def vmag_at_t(phi0,L,Ar,omega,t = 0, numintervals=50, dt=1e-11): 

    ''' returns the speed as a function of time t; if no speed is given, 

returns max speed. ''' 

    from scipy import linspace 

    from scipy import sqrt 

    vVec = (rRS_at_t(phi0,L,Ar,omega,t+dt/2, numintervals=numintervals)-

rRS_at_t(phi0,L,Ar,omega,t-dt/2, numintervals=numintervals))/dt 

    vMag = sqrt(vVec[:,0]**2+vVec[:,1]**2) 

    N = len(vMag) 

    s = linspace(0,L,N) 

    return s, vMag 

 

def arclength(r): 

    ''' given a sequence of connected (x,y) as an array, calculates the 

arclength of the object ''' 

    from scipy import sqrt 

    x = r[:,0] 

    y = r[:,1] 

    S = 0 

    for i in range(len(x)-1): 

        Dx = x[i+1]-x[i] 

        Dy = y[i+1]-y[i] 

        S+=sqrt(Dx**2+Dy**2) 

    return S 

 

 

def derive_fits_vs_Ar(phi0): 

    ''' outputs fits to displacement Dr(s/L,z=0,Ar) given phi0''' 

    from scipy.optimize import curve_fit 

    from scipy import linspace 

    from scipy import empty 

    from scipy import sin 

#    from scipy import array 

    L=1. 
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    def quartic(x,a,b,c,d): 

        return(a*x**4+b*x**3+c*x**2+d*x**1) 

 

    def quartic0(x,c1,c2,c3,c4): 

        return(c1*x+c2*x**2+c3*x**3+c4*x**4) 

 

    def quintic0(x,c1,c2,c3,c4,c5): 

        ''' quintic function with y-intercept = 0''' 

        return(c1*x+c2*x**2+c3*x**3+c4*x**4+c5*x**5) 

 

    def quintic(x,c0,c1,c2,c3,c4,c5): 

        ''' quintic function ''' 

        return(c0+c1*x+c2*x**2+c3*x**3+c4*x**4+c5*x**5) 

 

#    def cubic(x,a,b,c,d): 

#        return(a*x**3+b*x**2+c*x+d) 

 

#    def quadratic(x,a,b,c): 

#        return(a*x**2+b*x+c) 

    def sinusoid(x,amp,omega,x0): 

        return amp*sin(omega*(x-x0)) 

 

    def quartic2(x,c0,c1,c2,c3,c4): 

        return(c0+c1*x+c2*x**2+c3*x**3+c4*x**4) 

 

    def polyfit_string(FitDegree): 

        if(FitDegree==4): return 

'{}{:+}*Ar{:+}*Ar**2{:+}*Ar**3{:+}*Ar**4' 

        if(FitDegree==5): return 

'{}{:+}*Ar{:+}*Ar**2{:+}*Ar**3{:+}*Ar**4{:+}*Ar**5' 

 

    sFitFunc = quintic0 

    NP = 5 #Number of fit parameters in the fit to x & y 

 

    print '-'*10+'fit starting' 

    NArPts = 400  #Points to use for the fit to the fit parameters 

    NSPts = 600  #Number of s-intervals to use when generating the r's 

    r0 = rRS(phi0,L,0,numintervals=NSPts) 

    s = linspace(0,L,len(r0[:,0])) 

    xvar = 'Ar' 

    SweepParam=linspace(-0.7,0.7, NArPts) 

    fitvals = empty((NArPts,NP)) 

    fitvalsy = empty((NArPts,NP)) 

    for i,Ar in enumerate(SweepParam): 

        rNow = rRS(phi0,L,Ar,numintervals=NSPts)-r0 

        popt,pcov = curve_fit(sFitFunc, s, rNow[:,0]) 

        fitvals[i,:]=popt 

        popt,pcov = curve_fit(sFitFunc, s, rNow[:,1]) 

        fitvalsy[i,:]=popt 

 

    #print fitvals 

    from matplotlib import pyplot as plt 

    #from matplotlib import plot 
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    figrows = 4 

    figcols = NP 

    fig = plt.figure(figsize=(4*figcols,4*figrows)) 

    p=[] 

    fitfit=[] 

    fitfity=[] 

    fitfunc=quintic 

    fitfuncstr=polyfit_string(NP) 

 

    ''' fit and plot x-fit parameters ''' 

    for i in range(NP): 

        p.append(fig.add_subplot(figrows,figcols,i+1)) 

        p[i].set_xlabel(xvar) 

        p[-1].set_ylabel('x fit parameter') 

        p[i].plot(SweepParam, fitvals[:,i], label='cx{}'.format(i+1)) 

 

        popt,pcov = curve_fit(fitfunc, SweepParam, fitvals[:,i]) 

        fitfit.append(popt) 

        #amp,omega,x0=popt 

        p[i].plot(SweepParam, fitfunc(SweepParam, *popt), label='fit') 

        p[i].legend(loc=0) 

        print 'cx{} = '.format(i+1)+fitfuncstr.format(*fitfit[i]) 

 

    ''' show x-fit parameter errors ''' 

    for i in range(NP): 

        p.append(fig.add_subplot(figrows,figcols,len(p)+1)) 

        p[-1].set_xlabel(xvar) 

        p[-1].set_ylabel('x fitfit error') 

 

        params=fitfit[i] 

        p[-1].plot(SweepParam, fitfunc(SweepParam, *params)-

fitvals[:,i], label='cx{}Er'.format(i+1)) 

        p[-1].legend(loc=0) 

 

 

    ''' fit and plot y-fit parameters ''' 

    for i in range(NP): 

        p.append(fig.add_subplot(figrows,figcols,len(p)+1)) 

        p[-1].set_xlabel(xvar) 

        p[-1].set_ylabel('y fit parameter') 

        p[-1].plot(SweepParam, fitvalsy[:,i-NP], 

label='cy{}'.format(i+1)) 

 

        popt,pcov = curve_fit(fitfunc, SweepParam, fitvalsy[:,i]) 

        fitfity.append(popt) 

        #a,b,c,d=popt 

        p[-1].plot(SweepParam, fitfunc(SweepParam, *popt), label='fit') 

        print 'cy{} = '.format(i+1)+fitfuncstr.format(*fitfity[i]) 

        p[-1].legend(loc=0) 

 

    for i in range(NP): 

        p.append(fig.add_subplot(figrows,figcols,len(p)+1)) 

        p[-1].set_xlabel(xvar) 
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        p[-1].set_ylabel('y fitfit error') 

 

        params=fitfity[i] 

        p[-1].plot(SweepParam, fitfunc(SweepParam, *params)-

fitvalsy[:,i], label='cy{}Er'.format(i+1)) 

        p[-1].legend(loc=0) 

 

#    for i in range(len(p),len(p)+NP): 

#        p. 

 

    opXstr='Dx =' 

    opYstr='Dy =' 

    for i in range(1,NP+1): 

        operator = '+' if i>1 else '' 

        opXstr+=operator+'cx{}*S**{}'.format(i,i) 

        opYstr+=operator+'cy{}*S**{}'.format(i,i) 

    print opXstr 

    print opYstr 

#    print 'Dx = cx4*s**4+cx3*s**3+cx2*s**2+cx1*s' 

#    print 'Dy = cy4*s**4+cy3*s**3+cy2*s**2+cy1*s' 

    plt.tight_layout() 

    plt.show() 

 

def compare_fit_to_iteration(phi0=90, L=1): 

    import matplotlib.pyplot as plt 

 

    #from scipy import array 

    from scipy import linspace 

    #from scipy import pi 

    NSPts = 300 

 

    r0 = rRS(phi0, L, numintervals=NSPts) 

 

    s = linspace(0,L,len(r0[:,0])) 

 

    fig = plt.figure(figsize=(24,12)) 

    PlotGridWidth=2 

    PlotGridHeight=1 

    p=[] 

 

    '''Fit comparison''' 

    p.append(fig.add_subplot(PlotGridHeight,PlotGridWidth,len(p))) 

    p[-1].set_xlabel('x') 

    p[-1].set_ylabel('y') 

    p[-1].set_title('Positions of deformed wing; full = blue, fit = 

green') 

    p[-1].set_xlim((0,L)) 

    p[-1].set_ylim((-L,0)) 

    p.append(fig.add_subplot(PlotGridHeight,PlotGridWidth,len(p))) 

    p[-1].set_xlabel('s') 

    p[-1].set_ylabel('FitErr') 

    p[-1].set_title('Error of fit; blue = x, green = y') 

    for Ar in linspace(-.5, .5, 10): 
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        r = rRS(phi0, L, Ar, numintervals=NSPts) 

        #Dr = r-r0 

 

        #x,y = Dr_fit(Ar, s) 

        DrFit = Dr_fit(s, Ar) 

        rFit = DrFit + r0 

 

        p[-2].plot(r[:,0], r[:,1], 'b') 

        p[-2].plot(rFit[:,0], rFit[:,1], 'g') 

 

        Err = rFit-r 

        p[-1].plot(s, Err[:,0], 'b') 

        p[-1].plot(s, Err[:,1], 'g') 

 

    fig.tight_layout() 

    plt.show() 

 

 

def r_cc_point(c0,s,z=0): 

    ''' returns the point that (s,z) maps to on a constant curvature arc 

with curvature c0 ''' 

    from scipy import sin 

    from scipy import cos 

    #from scipy import array 

    from scipy import empty 

    x = (1/c0-z)*sin(s*c0) 

    y = z+(1/c0-z)*(1-cos(s*c0)) 

    r = empty((len(s),2)) 

    r[:,0],r[:,1]=x,y 

    return r 

 

 

def r_cc(phi0,L,z=0, numpoints=101): 

    ''' return a set of points on a constant curvature arc ''' 

    from scipy import pi 

    from scipy import linspace 

    phi0rad = phi0*pi/180. 

    c0 = phi0rad/L 

    s = linspace(0,L,numpoints) 

    return r_cc_point(c0,s,z) 

 

def r_fit(Ar, s, z, L=1, phi0=90): 

    ''' returns the x,y points corresponding to Ar, s, & z for the 

current fit. 

 

    s may be an array, but z should be a scalar 

 

    The fit itself is for fixed L & phi0 

    ''' 

    from scipy import empty 

    from scipy import pi 

    from scipy import sin 

    from scipy import cos 
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    phi0rad = phi0*pi/180. 

    c0 = phi0rad/L 

 

    r0 = r_cc_point(c0,s,0) #position of undeformed arc 

    Dr0 = Dr_fit(s, Ar) #deformation of centre-line 

    betaNow=beta(s/L,Ar,phi0) 

    #beta0 = beta(s/L,0,phi0) 

 

    rzExtra = empty([len(s),2]) 

    rzExtra[:,0]=z*(-sin(betaNow)) 

    rzExtra[:,1]=z*(cos(betaNow)) 

 

    return r0+Dr0+rzExtra 

 

def r_disp_fitt(Ar, s, z, L=1, phi0=90): 

    ''' returns the x,y displacements from Ar = 0 corresponding to Ar, 

s, & z for the current fit. 

 

    s may be an array, but z should be a scalar 

 

    The fit itself is for fixed L & phi0 

    ''' 

    from scipy import empty 

    from scipy import pi 

    from scipy import sin 

    from scipy import cos 

    phi0rad = phi0*pi/180. 

    c0 = phi0rad/L 

 

    r0 = r_cc_point(c0,s,0) #position of undeformed arc 

    Dr0 = Dr_fit(s, Ar) #deformation of centre-line 

    betaNow=beta(s/L,Ar,phi0) 

    #beta0 = beta(s/L,0,phi0) 

 

    rzExtra = empty([len(s),2]) 

    rzExtra[:,0]=z*(-sin(betaNow)) 

    rzExtra[:,1]=z*(cos(betaNow)) 

 

    return Dr0+rzExtra 

 

def beta(sByL, Ar=0, phi0=90): 

    from scipy import pi 

    from scipy import cos 

    from scipy import cosh 

    from scipy import sin 

    from scipy import sinh 

 

    phi0rad = phi0*pi/180. 

    lam=1.8751 

    Clam = (cos(lam)+cosh(lam))/(sin(lam)+sinh(lam)) 

    slam = sByL*lam 

    beta = sByL*phi0rad 

+Ar/2.*lam*(sinh(slam)+sin(slam)+Clam*(cos(slam)-cosh(slam))) 
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    return beta 

 

def Dbeta(sByL, Ar, phi0=90): 

    return beta(sByL, Ar, phi0)-beta(sByL,0,phi0) 

 

def calc_symbolic_delta_U(): 

    from sympy import symbols 

    from sympy import diff 

    from sympy import cos 

    from sympy import cosh 

    from sympy import sin 

    from sympy import sinh 

    from sympy import integrate 

    from sympy import Eq 

    from sympy.solvers.solvers import nsolve 

    from sympy.solvers.solvers import solve 

    from sympy import simplify 

 

    L, Ar, s, lam = symbols('L Ar s lam', positive=True) 

    sByL = s/L 

    Clam = (cos(lam)+cosh(lam))/(sin(lam)+sinh(lam)) 

    slam = sByL*lam 

    Dbeta = Ar/2.*lam*(sinh(slam)+sin(slam)+Clam*(cos(slam)-cosh(slam))) 

    Dc = diff(Dbeta, s) 

    DcDiff = diff(Dc, s) 

 

 

    #1----------Solve for lam 

    expr  = DcDiff.subs({s:L, Ar:1})  #hard mode 

    expr = simplify(expr*L**2)  #need to remove the L to enable solving 

 

    print 'Expression to solve for lambda: expr:',  expr 

 

    lamSoln = nsolve(expr, lam, 1.9, tol=1e-9) 

    print 'Found lamSoln =', lamSoln 

    print 'using lam = 1.8751:', expr.subs({lam:1.8751}) 

    print 'using lam = lamSoln:', expr.subs({lam:lamSoln}) 

 

    #2----------Solve for U 

#    LVal=1 

#    ArVal=1 

#    DcSub = Dc.subs({lam:lamSoln, L:LVal, Ar:ArVal}) 

#    print DcSub 

#    Dc2Sub = simplify(DcSub**2) 

 

    lam = lamSoln 

    Clam = (cos(lam)+cosh(lam))/(sin(lam)+sinh(lam)) 

    f= lambda S: 1/2.*lam**2*(cosh(lam*S)+cos(lam*S)+Clam*(-sin(lam*S)-

sinh(lam*S))) 

    print f(1) 

#    #U = integrate(DcSub**2, (s,0,LVal))  #Doesn't work 

    from scipy import linspace 

    from scipy import vectorize 
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    fv = vectorize(f) 

    N = 30 

    SEndPoints = linspace(0,1, N+1) 

    S = (SEndPoints[0:-1]+SEndPoints[1:])/2.  #midpoints 

    Ds=1/float(N) 

    dF = fv(S) 

 

#    dF=sMPs*0 #initialize 

#    for (i,sval) in enumerate(sMPs): 

#        dF[i] = Dc2Sub.subs({s:sval})*Ds 

    f2Int = Ds*sum(dF**2) 

    print 'Constant for the DeltaU expression =', f2Int 

 

 

    #print 'U =', U 

 

    #print Dbeta 

    #print Dc**2 

    #IntDC2 = integrate(Dc**2, (s, 0, L)) 

    #print 'Integral of (deltaC/(Ar/2))^2 from s = 0 to L =', IntDC2 

 

    return 

 

 

def Dr_fit(s,Ar,L=1): 

    ''' returns x,y displacements of centre-line for a given Ar & s 

 

    This fit is for: 

    phi0=90 

    ''' 

    from scipy import empty 

    S= s/float(L) #dimensionless arclength 

    Dr=empty((len(s),2)) 

 

 

    ''' phi0 = -90, epsilon0 = 0 ''' 

    cx1 = -1.45736312265e-06+0.00661860003827*Ar+0.00457111307058*Ar**2-

0.0148675258367*Ar**3+0.00877461543996*Ar**4+0.000591190828005*Ar**5 

    cx2 = 1.57713940247e-05-0.0875967393542*Ar-

0.0356116187383*Ar**2+0.169499584388*Ar**3-0.11535586392*Ar**4-

0.00245614556228*Ar**5 

    cx3 = -4.62539757505e-05+2.26925244918*Ar-2.12023952113*Ar**2-

0.517881899062*Ar**3+0.457728554782*Ar**4-0.0182093310178*Ar**5 

    cx4 = 2.92897672562e-05-1.87806615128*Ar+2.97532556221*Ar**2-

0.0109868415584*Ar**3-0.451348618295*Ar**4+0.0879009244088*Ar**5 

    cx5 = -1.14464059178e-06+0.448345774142*Ar-

1.10061447187*Ar**2+0.174197104622*Ar**3+0.12956024793*Ar**4-

0.051496085948*Ar**5 

    cy1 = -3.08139675884e-08-0.00365210950858*Ar+0.0269630858174*Ar**2-

0.0169273678953*Ar**3-0.00407318078444*Ar**4+0.00263898095313*Ar**5 

    cy2 = 3.57396161896e-06+1.83468607452*Ar-

0.36731980764*Ar**2+0.26240091504*Ar**3+0.0376800751839*Ar**4-

0.0311705859764*Ar**5 
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    cy3 = -3.033325547e-05-1.13190196682*Ar+1.68944872664*Ar**2-

1.4076808631*Ar**3-0.0606389966332*Ar**4+0.105043915957*Ar**5 

    cy4 = 7.58208881938e-05-0.575655943153*Ar-

0.937567950184*Ar**2+1.57704797061*Ar**3-0.15722628534*Ar**4-

0.0882171676537*Ar**5 

    cy5 = -3.97054148684e-05+0.410187725349*Ar+0.059811543127*Ar**2-

0.5183633958*Ar**3+0.122053142231*Ar**4+0.0188127891307*Ar**5 

    Dx =cx1*S**1+cx2*S**2+cx3*S**3+cx4*S**4+cx5*S**5 

    Dy =cy1*S**1+cy2*S**2+cy3*S**3+cy4*S**4+cy5*S**5 

 

 

 

    Dr[:,0]=Dx+0 

    Dr[:,1]=Dy+0 

    return Dr*L 

 

def Dr_offaxis_fit(s,z,Ar=0,L=1.,phi0=90.): 

    ''' Uses the fit function Dr_fit to compute the displacement of an 

on or off-axis point ''' 

    #from scipy import pi 

    from scipy import cos 

    from scipy import sin 

    #phi0rad = phi0*pi/180. 

    beta0 = beta(s/L, 0, phi0) 

    beta1 = beta(s/L, Ar, phi0) 

    Dr = Dr_fit(s, Ar, L) 

    x = -z*(sin(beta1)-sin(beta0)) 

    y = z*(cos(beta1)-cos(beta0)) 

    Dr[:,0]+=x 

    Dr[:,1]+=y 

    return Dr 

 

def KmaxByMu(phi0, L, Ar, omega, numintervals=50): 

    ''' returns max kinetic energy over mu ''' 

    s, vmax = vmag_at_t(phi0,L,Ar,omega, numintervals=numintervals) 

    Ds =s[2]-s[1] 

    KmaxByMu = 0.5*sum(vmax**2)*Ds 

    return KmaxByMu 

 

def K_at_t(phi0, L, Ar, omega, t, numintervals=100): 

    ''' returns K/mu at time t ''' 

    s, v = vmag_at_t(phi0,L,Ar,omega,t=t, numintervals=numintervals) 

    Ds =s[2]-s[1] 

    KByMu = 0.5*sum(v**2)*Ds 

    return KByMu 

 

def U_at_t(phi0, L, Ar, omega, t): 

    ''' returns the potential energy(/EI) at time t ''' 

    from scipy import sin 

    return 3.0906/2*(Ar*sin(omega*t))**2/L 

 

 

def getz(r0cc,s,c0): 
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    from scipy import cos 

    from scipy import sin 

    beta0 = s*c0 

    z0= -sin(beta0)*r0cc[:,0]+r0cc[:,1]*cos(beta0)+(1-cos(beta0))/c0 

    return z0 

 

def derive_fresCor(): 

    ''' Derives the f_resCor so that Um is constant in Ar for RS bending 

 

 

    Result on 22 Apr using 

    numintervals=800 

    numphipoints=100 

    --> fresCor = 1-(5.78534024314e-06*phi0**2) 

    ''' 

    from scipy.optimize import curve_fit 

    from scipy import sqrt 

    from matplotlib import pyplot as plt 

    #from matplotlib import plot 

    fig = plt.figure(figsize=(12,4)) 

    p=fig.add_subplot(131) 

    errplot=fig.add_subplot(132) 

    Kplots = fig.add_subplot(133) 

 

 

    from scipy import linspace 

    from scipy import pi 

    L = 1 

    Ar = 1 

    omega = 2*pi#*0.571 

 

    numintervals=800 

    numphipoints=120 

 

 

 

    K0 = KmaxByMu(0,L,Ar,omega, numintervals=numintervals) 

 

    def quadratic(x,c1,c2): 

        return c1*x+c2*x**2 

    #fitstring = '{}{:+}*phi0{:+}*phi0**2{:+}*phi0**3{:+}*phi0**4' 

    def square(x,c): 

        return c*x**2 

 

    def poly25(x,c2,c5): 

        return c2*x**2+c5*x**5 

    def quintic(x,c0,c1,c2,c3,c4,c5): 

        ''' quintic function ''' 

        return(c0+c1*x+c2*x**2+c3*x**3+c4*x**4+c5*x**5) 

 

    def poly24(x,c2,c4): 

        return c2*x**2+c4*x**4 
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    fitfunc = poly24 

    #fitstring = '{}*phi0{:+}*phi0**2'  #quadratic 

    #fitstring = '{}*phi0**2' #square 

    #fitstring = '{}*phi0**2+{}*phi0**5' #poly25 

    #fitstring = 

'{}{:+}*phi0{:+}*phi0**2{:+}*phi0**3{:+}*phi0**4{:+}*phi0**5' 

#fullQuintic 

    fitstring = '{}*phi0**2{:+}*phi0**4' #poly24 

#    def quadratic 

 

    #return 

 

    Sweeprange = linspace(0,180, numphipoints) 

    fresCor=Sweeprange*0 #initialize 

    Kmax=Sweeprange*0 

    for (i,phi0) in enumerate(Sweeprange): 

        #Umax = 3.0906/2*Ar 

        Kmax[i] = KmaxByMu(phi0, L, Ar, omega, 

numintervals=numintervals) 

        fresCor[i]=sqrt(K0/Kmax[i]) 

 

    phi0List = Sweeprange*pi/180. 

    popt, pcov = curve_fit(fitfunc, phi0List, fresCor-1) 

    print 'fresCor = 1+('+fitstring.format(*popt)+')' 

    fresfit = 1+fitfunc(phi0List, *popt) 

 

#    K_with_fChange=Sweeprange*0 

#    for (i,phi0) in enumerate(Sweeprange): 

#        K_with_fChange[i]=KmaxByMu(phi0, L, Ar, omega*fresfit[i], 

numintervals=numintervals)  #Detailed 

    #optimized: 

    K_with_fChange = Kmax*(fresfit**2) 

 

    p.plot(Sweeprange,fresCor, label='fresCor') 

    p.plot(Sweeprange,fresfit, label='fit') 

    err=(fresfit-fresCor) 

    errplot.plot(Sweeprange, err, label='fit error') 

    errplot.set_xlabel('phi0 [deg]') 

    errplot.legend(loc=0) 

    p.set_xlabel('phi0 [deg]') 

    p.set_ylabel('K/mu') 

    p.legend(loc=0) 

 

    Kplots.plot(Sweeprange, Kmax, label='Kmax at fixed f') 

    Kplots.plot(Sweeprange, K_with_fChange, 'g', label='Kmax at fres') 

 

    Kplots.set_xlabel('phi0 [deg]') 

    Kplots.set_ylabel('K') 

    Kplots.legend(loc=0) 

 

    fig.tight_layout() 

    plt.show() 
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def Dr_cyl_by_rho0(sByL, Ar, phi0, numpoints=50): 

    from scipy import linspace 

    from scipy import sin 

    S = linspace(0, sByL, numpoints) 

    from scipy import pi 

    rho0 = 1/(phi0*pi/180) 

    return -sum(sin(Dbeta(S, Ar, abs(phi0))))*sByL/float(numpoints)/rho0 

 

def cylindrical_approx_velocity(phi0,L,Ar,omega,t = 0, numintervals=500, 

dt=1e-11): 

    ''' returns the speed as a function of time t; if no speed is given, 

returns max speed. ''' 

    from scipy import linspace 

    from scipy import sqrt 

    from scipy import pi 

    from scipy import sin 

    c0 = phi0*pi/180./L 

    sEndpoints = linspace(0,L,numintervals+1) 

    #s = (sEndpoints[:-1]+sEndpoints[1:])/2. 

    s = sEndpoints 

    Ds = s[2]-s[1] 

    betaDot = (beta(s/L, Ar*sin(omega*(t+dt)), phi0)-beta(s/L, 

Ar*sin(omega*t), phi0))/dt 

    vr=s*0 

    vq=s*0 

    for i in range(len(s)): 

        vr[i] = sum(betaDot[:i])*Ds 

        #vq[i] = sum(vr[:i])*Ds 

 

    vq = vq*c0**1 

 

    vMag = sqrt(vr**2+vq**2) 

    #N = len(vMag) 

    #s = linspace(0,L,N) 

    return s, vMag 

 

def fresCor(phi0deg): 

    ''' expects phi0 in deg ''' 

    from scipy import pi 

    phi0rad = phi0deg*pi/180 

    return 1+(0.0202390368072*phi0rad**2+0.000242411506101*phi0rad**4) 

 

def KmaxbyMufit(phi0deg, L, Ar, omega): 

    ''' uses the fit function to return KmaxbyMu for given flapping 

parameters ''' 

    return L/8.*(Ar*omega*L/fresCor(phi0deg))**2 

 

def main_loop(): 

    #calc_symbolic_delta_U() 

 

 

 

    phi0=-50. 
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#    derive_fits_vs_Ar(phi0) 

 

 

    #compare_fit_to_iteration(phi0) 

   # derive_fresCor() 

 

    import matplotlib.pyplot as plt 

 

    #from scipy import array 

    from scipy import linspace 

    from scipy import pi 

 

#    derive_fresCor() 

#    return 

    #phi0=0 

 

    L = 5 

    Ar = .2 

    NSPts =30 

    #ZPts = 5 

    c0 = (phi0*pi/180.)/L 

    h = .04 

    omega = 7*pi#*0.571 

 

    #print K_at_t(phi0, L, Ar, omega, 0, 

numintervals=500)/(Ar*omega*L/fresCor(phi0))**2 

    N = 5000 

    print KmaxByMu(phi0,L,Ar,omega,numintervals=N) 

    print KmaxbyMufit(phi0,L,Ar,omega) 

    #Extreme Displacements 

    #phi0, ArLimit = 75, .7 

    phi0, ArLimit = 90, .6 

    #phi0, ArLimit = 105, .5 

    #phi0, ArLimit = 120, .4 

    #phi0, ArLimit = 140, .25 

    #phi0, ArLimit = 0,  .5 

    #phi0, ArLimit = 105, .6 

  #  phi0, ArLimit = 75, .0 

    #phi0, ArLimit = 90,0.0 

 

 

 #   print (beta(1,ArSmall, phi0)-beta(1,0, phi0))**2/2 

#    print Dr_cyl_by_rho0(1, ArSmall, phi0) 

 

    rUW,r = rRS_Cyl(phi0, L, Ar) 

 

    s = linspace(0,L,len(r[:,0])) 

    #plt.plot(r[:,0], r[:,1], 'b', label = 'original formulation') 

    #plt.plot(rUW[:,0], r[:,1], 'g', label = 'formulation using uw') 

    #plt.legend(loc=0) 

#    Dr1 = r1-r0 

 

    #r0cc=[] 
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    rA=[] 

 

    #plt.show() 

    Figsize = 5 

 

    fig1 = plt.figure(figsize = (Figsize,Figsize)) 

    rRSPlot = fig1.add_subplot(1,1,1) 

    BoxSize = 1.05 

    Bot = -.2 

    rRSPlot.set_xlim((0,BoxSize)) 

    rRSPlot.set_ylim((Bot,Bot+BoxSize)) 

 

    h = .02 

 

 

    import scipy as sp  

    for Ar in linspace(-ArLimit,ArLimit,5): 

        rTop =rRS(phi0, 1,Ar, z=h/2) 

        rBot =rRS(phi0, 1,Ar, z=-h/2) 

        xpts = sp.concatenate((rTop[:,0], rBot[::-1,0])) 

        ypts = sp.concatenate((rTop[:,1], rBot[::-1,1])) 

        #rRSPlot.plot(rTop[:,0], rTop[:,1]) 

        #rRSPlot.plot(rBot[:,0], rBot[:,1]) 

        extrax = [] 

        extray = [] 

        ArrayPts = 101 

         

        ZigZags = False 

        Bars = True 

         

        if ZigZags: 

            Zags = 100 

            StepSize = ArrayPts/Zags 

            for i in range(Zags/2): 

                Index1 = 2*i*StepSize 

                Index2 = (2*i+1)*StepSize 

                extrax.append(rTop[Index1,0]) 

                extrax.append(rBot[Index2,0]) 

                extray.append(rTop[Index1,1]) 

                extray.append(rBot[Index2,1]) 

        elif Bars: 

            TopNext=True 

            for i in range(0,ArrayPts, 2): 

                if(TopNext): 

                    TopNext=False 

                    extrax.append(rTop[i,0]) 

                    extray.append(rTop[i,1]) 

                    extrax.append(rBot[i,0]) 

                    extray.append(rBot[i,1]) 

                else: 

                    TopNext=True 

                    extrax.append(rBot[i,0]) 

                    extray.append(rBot[i,1]) 
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                    extrax.append(rTop[i,0]) 

                    extray.append(rTop[i,1])                     

        extrax.append(rTop[-1,0]) 

        extray.append(rTop[-1,1]) 

        xpts = sp.concatenate((xpts, sp.array(extrax))) 

        ypts = sp.concatenate((ypts, sp.array(extray))) 

        rRSPlot.plot(xpts, ypts) 

        #rRSPlot.plot(extrax, extray) 

 

    print 'Top of tip position = ', rTop[-1,:] 

    print rTop[-1,0] 

 

 

     #       plt.plot(s,z0-z) 

            #rA.append(r_fit(Ar,s,z,L,phi0)) 

#            rA.append(Dr_offaxis_fit(s,z,Ar,L,phi0)+r0cc) 

#            rRSPlot.plot(rA[-1][:,0], rA[-1][:,1]) 

 

#    for i in range(5): 

#        z= 0.005*i 

    fig1.patch.set_facecolor('white') 

    plt.title('$\phi_0={}^o, {} = {}$'.format(phi0, 'A_{r0}', ArLimit)) 

    plt.savefig('RSPlot phi{} Ar{}.png'.format(phi0, ArLimit), 

bbox_inches='tight', pad_inches=0, transparent=True, dpi=300) 

 

    plt.show() 

 

if __name__ == '__main__': 

    main_loop() 
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Appendix K Tutorial for Creating the phi0g120 sims in ANSYS, using 

ANSYS 13 

"phi0g120" in the simulation filename means that the static angle 0  for the geometry 

setup is 120
o
. 

 

Launch ANSYS Workbench. 

 

Create a Fluid Flow (CFX) Analysis system. 

 

Edit geometry with design modeller. 

Set units to mm. 

 

Section K.1 Geometry part: 

Overview: 

We're going to make a wing with these dimensions: 

1. L = 2 mm, 0 120g   , and 0 0gL    

2.  0

0

0.95493mm
g

L



   

3. B/2 = 0.5 mm 

4. h/2 = 0.025 mm 

5. “Blend” on edges: radius = 8 m 
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And the wing will be placed in a cylindrical fluid domain with dimensions Radius = 

20 mm, Height = 40 (Height/2 = 20 mm).  This means the fluid domain extends for at 

least 10 wing lengths in all directions, except for the symmetry planes immediately 

adjacent to the wing. 

 

At the end, the components of the geometry will look like this: 

 

 

Steps: 

1. Make a sketch on the yz plane for the wing: Sketch1 

a. Draw the wing outline 

i. Finished Version: 
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ii.  

iii.  

iv. Sizes are from this: 

1. L = 2 mm, 0 120g   , and 0 0gL    

2.  0

0

0.95493mm
g

L



   

3. h/2 = 0.025 mm 

b. To make the sketch:  

i. Draw a construction point on the negative z-axis a distance 0 from the 

origin. 

ii. Draw lines from the origin down and up by h/2 

1. Do this by placing the point and drawing the lines to any 

distance, then specifying their dimensions. 
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iii. Draw a line at a non-horizontal, non-vertical angle to the right from the 

construction point to serve as a guide 

iv. 

  

v. Draw circular arcs "Arc by Center" with the construction point as 

centre and the ends of the vertical lines from the origin as start points 

that stop on the guide line: 

vi.  
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vii. Use an Angle dimension to specify that the guide line should be at 

120
o
 from the vertical 

viii.  

1.  After setting A5 to 120
o
: 

2.  
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ix. Delete the guide line from the construction point, and make a final line 

connecting the open end of the arc. 

x.  

2. Extrude the wing shape from sketch 1 

c. A distance B/2 = 0.25 mm (in the +x direction; "normal") 



K-68 

 

d.   

3. Blend the external edges of the wing to smooth it for easier meshing 

e. Use all five external edges (not the ones on the yz or xz plane because those 

are going to be mirror planes) 

f. Fixed radius = L/250 = 0.008 mm 
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g.   

4. Freeze the wing 

a. Select it in the tree outline under 1 Part, 1 Body 

b. Tools Menu: Freeze 

5. Make a sketch on the xy plane for the edge of the cylindrical fluid domain, which is a 

quarter-circle 
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h.  

i. Line up from origin to edge a distance of Radius = 10L = 20 mm 

j. Circular arc down to the right by 90
o
 angle 

k. Line closing the edge 

6. Extrude the fluid domain 

l. both directions, by Height/2 = 20 mm in each direction 

m.  
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7. body op: cut the wing from the fluid domain 

a. Create: Body Operation 

b. Type: Cut Material 

c. Body: Wing 

d. Finished:  

e.   
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Section K.2 Meshing Part: 

 

1. Generate a mesh based on CFD Physics preference and CFX solver preference. 

2. Make named selections SymX, SymY, Opening, WingBulk 

a. Right click on Model 

b. Insert > Named Selection 

c. SymX: symmetry plane perpendicular to x 

d. SymY: symmetry plane perpendicular to y 
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e.  

f. Opening: the other 3 edges of the cylindrical boundary region 



K-74 

 

g.  

h. WingBulk: Remaining sections; all sides of the wing (11 faces) 
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i.  

3. Set WingBulk's option to "Include" in "Program Controlled Inflation" 

4. Mesh Properties 

a. Change sizing to: Min size = 8e-6 m, max face size = 2e-3 m, max size = 

default; growth rate = 1.25. 

b. Inflation >  

i. Use Automatic Inflation > Program Controlled 

ii. Maximum Layers > 1 

iii. Growth Rate > 1.1 

c. elements: 165854 
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Section K.3 Creating the Solver Definition File in CFX-Pre: 
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Double click "Setup" to launch CFX-Pre.  This program is where you use the mesh file to 

specify the simulation that the CFX-Solver will carry out. 

1. Create Boundaries 

a. Right Click on "Default Domain" and insert 4 boundaries with the same names 

as the mesh sections: SymX, SymY, Opening, WingBulk 

b. SymX 

i. Boundary Type = Symmetry 

ii. Location = SymX 

c. SymY 

i. Boundary Type = Symmetry 

ii. Location = SymY 

d. Opening 

i. Boundary Type = Opening 

ii. Location = Opening 

iii. Relative Pressure = 0 

e. WingBulk 

i. Boundary Type = Wall 

ii. Location = WingBulk 

2. Analysis Type: Transient 

a. Total Time = TotalTime 

b. Timesteps = Timestep 
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c.  

3. Input the CCL code: 

a. Create any temporary expression, then 

b. Right click on it and select "Edit in Command Editor" 

c. Replace the text with this CCL code (explained in the next section): 

LIBRARY:  

  CEL:  

    &replace EXPRESSIONS:  

      Ar = Ar0*sin(6.28318530718*atstep/TSteps) 

      Ar0 = 0.1 

      AreaDirect = area()@WingBulk 

      B = 0.5e-3[m] 

      Clam = (cos(lam)+cosh(lam))/(sin(lam)+sinh(lam)) 

      Dx = Dx0*L+Dxz 

      Dx0 = cx1*S^1+cx2*S^2+cx3*S^3+cx4*S^4+cx5*S^5 

      Dxz = -z0*(sin(beta1)-sin(beta0)) 

      Dy = Dy0*L+Dyz 

      Dy0 = cy1*S^1+cy2*S^2+cy3*S^3+cy4*S^4+cy5*S^5 

      Dyz = z0*(cos(beta1)-cos(beta0)) 

      Fz = force_z()@WingBulk 

      L = 2e-3[m] 

      PowerUsed = -areaInt(dPbydA)@WingBulk 

      S = s/L 

      TCycle = TSteps*Timestep 

      TSteps = 344 
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      Timestep = 8.44589062485e-07[s] 

      TotalTime = 12*TCycle 

      beta0 = S*phi0rad 

      beta0g = S*phi0grad 

      beta1 = S*phi0rad +Ar/2.0*lam*(sinh(slam)+sin(slam)+Clam*(cos(slam)-cosh(slam))) 

      c0 = phi0/L 

      c0g = phi0g/L 

      cx1 = -1.83190599725e-06+0.0114197280605*Ar+0.00955589778247*Ar^2-

0.0228687858247*Ar^3+0.00930306144494*Ar^4+0.00127266550374*Ar^5 

      cx2 = 2.12982851148e-05-0.158155863426*Ar-0.0794460144141*Ar^2+0.268143472532*Ar^3-

0.12770357418*Ar^4-0.00948678484208*Ar^5 

      cx3 = -7.18547358598e-05+3.25349903498*Ar-2.08584155058*Ar^2-

0.877567935534*Ar^3+0.537596966458*Ar^4+0.000659796933706*Ar^5 

      cx4 = 7.36971404931e-05-3.0799256064*Ar+3.48019344616*Ar^2+0.30137510422*Ar^3-

0.63522265112*Ar^4+0.0801943771275*Ar^5 

      cx5 = -2.11905534952e-05+0.809669119156*Ar-

1.41807612032*Ar^2+0.115955345299*Ar^3+0.220105311812*Ar^4-0.0553806900559*Ar^5 

      cy1 = 3.04619819663e-07-0.0115170123179*Ar+0.0399779683927*Ar^2-

0.0163457846018*Ar^3-0.00680178513738*Ar^4+0.00302678698426*Ar^5 

      cy2 = 4.52922406367e-07+1.93378522823*Ar-

0.54902649457*Ar^2+0.269817013498*Ar^3+0.0684537253067*Ar^4-0.0376090365062*Ar^5 

      cy3 = -2.37199541578e-05-1.53648615992*Ar+2.5395346435*Ar^2-1.52701484589*Ar^3-

0.157370633995*Ar^4+0.138253596144*Ar^5 

      cy4 = 7.72944327477e-05-0.77767965679*Ar-1.80278524119*Ar^2+1.98479340019*Ar^3-

0.0895552722834*Ar^4-0.15192056819*Ar^5 

      cy5 = -4.45363391066e-05+0.64226306852*Ar+0.284586904661*Ar^2-

0.735008291995*Ar^3+0.119008616212*Ar^4+0.0486130520136*Ar^5 

      delY = Dx+delY0g*(1-exp(-t/(Timestep*2)))/2 

      delY0g = (1/c0-z0)*(sin(s*c0)) - (1/c0g-z0)*(sin(s*c0g)) 

      delZ = Dy+delZ0g*(1-exp(-t/(Timestep*2)))/2 

      delZ0g = (1/c0-z0)*(1-cos(s*c0)) - (1/c0g-z0)*(1-cos(s*c0g)) 

      lam = 1.8751 

      mu = 1.831000000E-05 

      phi0 = -120[deg] 

      phi0g = -120[deg] 

      phi0grad = phi0g*3.14159[rad]/180[deg] 

      phi0rad = phi0*3.14159[rad]/180[deg] 

      s = 1/c0g*atan2(c0g*(y-Total Mesh Displacement Y),(1-c0g*(z-Total Mesh Displacement 

Z))) 

      slam = S*lam 

      z0 = -sin(beta0g)*(y-Total Mesh Displacement Y) + (z-Total Mesh Displacement 

Z)*cos(beta0g)+(1-cos(beta0g))/c0g 

    END 

  END 

END 
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d. Click "Process" & "Close". 

4. Right Click "Additional Variables" and "Insert Additional Variable" 

a. Name = dPbydA 

b. Units = [kg/s^3] 

5. Edit Domain: Default Domain 

a. Mesh Deformation:  

i. Option = Regions of Motion Specified 

ii. Mesh Stiffness 

1. Option = Value 

2. Mesh Stiffness = (1 [m^3.5/s]/(Wall Distance+1e-

12[m]))/sqrt(Wall Distance+1e-12[m]) 

b. Fluid Models 

i. Heat Transfer: 

1. Option = None 

ii. Turbulence: 

1. Option = Shear Stress Transport 

iii. Additional Variable Models 

1. Additional Variable 

a. dPbydA: Check as active 

b. Option = Algebraic Equation 

c. Add. Var. Value = (Wall Shear X + Pressure*Normal 

X)*Mesh Velocity X + (Wall Shear Y + 

Pressure*Normal Y)*Mesh Velocity Y + (Wall Shear Z 

+ Pressure*Normal Z)*Mesh Velocity Z 

c. Initialization: 

i. Check: Domain Initialization 

ii. Initial Conditions: Velocity Type = Cartesian 

iii. Cartesian Velocity Components: Option = Automatic with Value 

1. U = 0 



K-83 

 

2. V = 0 

3. W = 0 

iv. Static Pressure: Option = Automatic with Value 

1. Relative pressure = 0 

v. Turbulence: Option = Medium (Intensity = 5%) 

6. Boundary Conditions, part 2: Revisit to set the mesh motion and the Turbulence 

boundary conditions now that they're set up. 

a. Opening 

i. Mesh Motion = stationary 

b. SymX:  

i. Mesh Motion = unspecified 

c. SymY: 

i. Mesh Motion = unspecified 

d. WingBulk: 

i. Mesh Motion: 

1. Option = Specified Displacement 

2. X Component = 0 

3. Y Component = delY 

4. Z Component = delZ 

7. Solver Units 

a. Length Units = [mm] (this is necessary to prevent certain round-off errors for 

with the small length values  in the mesh stiffness variable) 

8. Solver Control: Set up Solver to search for solutions to higher accuracy due to the 

sensitivity of the force measurement. 

a. Basic Settings: 

i. Convergence Criteria 

1. Residual Target = 1e-5 

b. Equation Class Settings 
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i. Mesh Displacement Set to help prevent stability problems from an 

improperly deformed wing. 

1. Convergence Control 

a. Max. Coeff. Loops = 50 

b. Min. Coeff. Loops = 1 

2. Convergence Criteria 

a. Residual Type = RMS 

b. Residual Target = 1e-5 

9. Output Control:  

a. Trn Results Prevent the simulation from outputting results at every time step 

because these are hard-drive intensive and not necessary unless making a 

video of the flow. 

i.  

ii. New 

iii. Output Frequency = None 

b. Monitor Set up the numeric outputs of the parameters that we actually need 

from the sims. 

i. Monitor Objects 

1. Monitor Points and Expressions 

a. AreaMon 

i. Option = Expression 

ii. Expression Value = AreaDirect 

b. FzMon 

i. Option = Expression 
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ii. Expression Value = Fz 

c. PowerUsedMon 

i. Option = Expression 

ii. Expression Value = PowerUsed 

10. Simulation Control: 

a. Insert: Execution Control 

i. Executable Selection = Double Precision 

 

Next, we need to save the definition from the CFX file in a format that's usable for batch 

mode processing on sharcnet.  Here's how: 

1. Close Workbench 

2. Navigate to the folder where you saved the Workbench project, say, "phi0g120" 

3. Find the CFX file in the directory tree; likely in: 

phi0g120\phi0g120_files\dp0\CFX\CFX 

4. Open this file in CFX-Pre in standalone mode (i.e., not through Workbench). 

5. Now there are additional options 

6. File > Save Case As: 

a. RS166kf0g120DP_R5_mm_SST.cfx 

i. Deciphering this: 

ii. RS: Resonant shape 

iii. 166k: 166000 mesh elements 

iv. f0g120: 0 for the geometry = 120
o
 

v. DP: Double precision 

vi. R5: Residual convergence criteria = 1e-5 

vii. mm: Length scale = mm 

viii. SST: Turbulence model = Shear stress transport 

7. Use the toolbar button "Write Solver Input File": 
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a.  

b. Rename as RS166kf0g120DP_R5_mm_SST.def 

 

The .def file is the one the sharcnet solver actually needs to begin a simulation. 

Section K.4 Generating the RS Fits for 120o 

In the previous section on Creating the Solver Definition File in CFX-Pre, we needed a 

CCL input file to define the variables.  Here's how to generate that: 

 

Run RSVelocityWork.py (the program from Appendix J) with this in the main_loop(): 

    phi0=-120. 

    derive_fits_vs_Ar(phi0) 

 

This produces the output (after 30 s on an AMD FX 8 Core Black Edition machine circa 

April 2013): 

----------fit starting 

cx1 = -1.83190599725e-06+0.0114197280605*Ar+0.00955589778247*Ar**2-

0.0228687858247*Ar**3+0.00930306144494*Ar**4+0.00127266550374*Ar**5 

cx2 = 2.12982851148e-05-0.158155863426*Ar-

0.0794460144141*Ar**2+0.268143472532*Ar**3-0.12770357418*Ar**4-

0.00948678484208*Ar**5 

cx3 = -7.18547358598e-05+3.25349903498*Ar-2.08584155058*Ar**2-

0.877567935534*Ar**3+0.537596966458*Ar**4+0.000659796933706*Ar**5 

cx4 = 7.36971404931e-05-

3.0799256064*Ar+3.48019344616*Ar**2+0.30137510422*Ar**3-

0.63522265112*Ar**4+0.0801943771275*Ar**5 

cx5 = -2.11905534952e-05+0.809669119156*Ar-

1.41807612032*Ar**2+0.115955345299*Ar**3+0.220105311812*Ar**4-

0.0553806900559*Ar**5 
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cy1 = 3.04619819663e-07-0.0115170123179*Ar+0.0399779683927*Ar**2-

0.0163457846018*Ar**3-0.00680178513738*Ar**4+0.00302678698426*Ar**5 

cy2 = 4.52922406367e-07+1.93378522823*Ar-

0.54902649457*Ar**2+0.269817013498*Ar**3+0.0684537253067*Ar**4-

0.0376090365062*Ar**5 

cy3 = -2.37199541578e-05-1.53648615992*Ar+2.5395346435*Ar**2-

1.52701484589*Ar**3-0.157370633995*Ar**4+0.138253596144*Ar**5 

cy4 = 7.72944327477e-05-0.77767965679*Ar-

1.80278524119*Ar**2+1.98479340019*Ar**3-0.0895552722834*Ar**4-

0.15192056819*Ar**5 

cy5 = -4.45363391066e-05+0.64226306852*Ar+0.284586904661*Ar**2-

0.735008291995*Ar**3+0.119008616212*Ar**4+0.0486130520136*Ar**5 

Dx =cx1*S**1+cx2*S**2+cx3*S**3+cx4*S**4+cx5*S**5 

Dy =cy1*S**1+cy2*S**2+cy3*S**3+cy4*S**4+cy5*S**5 

 

As well as these plots detailing the fit goodness: 
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Appendix Figure K-1: Plots detailing the fit goodness for 120
o
 

Note that the error is relatively very small (the blue plots detailing error in the fit have 

much smaller magnitudes than the green ones detailing the absolute value of the result of 

it). 

 

The text output is formatted for Python (where ** means exponentiation).  To place it into 

CFX, we need to replace all the **'s with ^'s (using a find and replace in say, 

Notepad++): 

----------fit starting 

cx1 = -1.83190599725e-06+0.0114197280605*Ar+0.00955589778247*Ar^2-

0.0228687858247*Ar^3+0.00930306144494*Ar^4+0.00127266550374*Ar^5 

cx2 = 2.12982851148e-05-0.158155863426*Ar-

0.0794460144141*Ar^2+0.268143472532*Ar^3-0.12770357418*Ar^4-

0.00948678484208*Ar^5 
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cx3 = -7.18547358598e-05+3.25349903498*Ar-2.08584155058*Ar^2-

0.877567935534*Ar^3+0.537596966458*Ar^4+0.000659796933706*Ar^5 

cx4 = 7.36971404931e-05-

3.0799256064*Ar+3.48019344616*Ar^2+0.30137510422*Ar^3-

0.63522265112*Ar^4+0.0801943771275*Ar^5 

cx5 = -2.11905534952e-05+0.809669119156*Ar-

1.41807612032*Ar^2+0.115955345299*Ar^3+0.220105311812*Ar^4-

0.0553806900559*Ar^5 

cy1 = 3.04619819663e-07-0.0115170123179*Ar+0.0399779683927*Ar^2-

0.0163457846018*Ar^3-0.00680178513738*Ar^4+0.00302678698426*Ar^5 

cy2 = 4.52922406367e-07+1.93378522823*Ar-

0.54902649457*Ar^2+0.269817013498*Ar^3+0.0684537253067*Ar^4-

0.0376090365062*Ar^5 

cy3 = -2.37199541578e-05-1.53648615992*Ar+2.5395346435*Ar^2-

1.52701484589*Ar^3-0.157370633995*Ar^4+0.138253596144*Ar^5 

cy4 = 7.72944327477e-05-0.77767965679*Ar-

1.80278524119*Ar^2+1.98479340019*Ar^3-0.0895552722834*Ar^4-

0.15192056819*Ar^5 

cy5 = -4.45363391066e-05+0.64226306852*Ar+0.284586904661*Ar^2-

0.735008291995*Ar^3+0.119008616212*Ar^4+0.0486130520136*Ar^5 

Dx =cx1*S^1+cx2*S^2+cx3*S^3+cx4*S^4+cx5*S^5 

Dy =cy1*S^1+cy2*S^2+cy3*S^3+cy4*S^4+cy5*S^5 

 

Finally, paste into the CFX file, after modifying the names of Dx & Dy to Dx0 & Dy0, 

respectively: 

            elif Base[:12] == 'RS166kf0g120': 

                L='2e-3[m]' 

                phi0g = '-120[deg]' 

 

                CCLString = '''LIBRARY: 

      CEL: 

        &replace EXPRESSIONS: 

          Ar = Ar0*sin(omega*tn) 

          Ar0 = {Ar} 

          AreaDirect = area()@WingBulk 
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          B = 0.5e-3[m] 

          Clam = (cos(lam)+cosh(lam))/(sin(lam)+sinh(lam)) 

          Dx = Dx0*L+Dxz 

          Dx0 = cx1*S^1+cx2*S^2+cx3*S^3+cx4*S^4+cx5*S^5 

          Dxz = -z0*(sin(beta1)-sin(beta0)) 

          Dy = Dy0*L+Dyz 

          Dy0 = cy1*S^1+cy2*S^2+cy3*S^3+cy4*S^4+cy5*S^5 

          Dyz = z0*(cos(beta1)-cos(beta0)) 

          Fz = force_z()@WingBulk 

          L = {L} 

          PowerUsed = -areaInt(dPbydA)@WingBulk 

          S = s/L 

          TCycle = 1/(omega/2/3.14159) 

          TStep = TCycle/{TCycle} 

          TTotal = {TTotal}*TCycle 

          beta0 = S*phi0rad 

     beta0g = S*phi0grad 

          beta1 = S*phi0rad 

+Ar/2.0*lam*(sinh(slam)+sin(slam)+Clam*(cos(slam)-cosh(slam))) 

          c0 = phi0/L 

          c0g = phi0g/L 

 

        cx1 = -1.83190599725e-

06+0.0114197280605*Ar+0.00955589778247*Ar^2-

0.0228687858247*Ar^3+0.00930306144494*Ar^4+0.00127266550374*Ar^5 

        cx2 = 2.12982851148e-05-0.158155863426*Ar-

0.0794460144141*Ar^2+0.268143472532*Ar^3-0.12770357418*Ar^4-

0.00948678484208*Ar^5 

        cx3 = -7.18547358598e-05+3.25349903498*Ar-2.08584155058*Ar^2-

0.877567935534*Ar^3+0.537596966458*Ar^4+0.000659796933706*Ar^5 

        cx4 = 7.36971404931e-05-

3.0799256064*Ar+3.48019344616*Ar^2+0.30137510422*Ar^3-

0.63522265112*Ar^4+0.0801943771275*Ar^5 

        cx5 = -2.11905534952e-05+0.809669119156*Ar-

1.41807612032*Ar^2+0.115955345299*Ar^3+0.220105311812*Ar^4-

0.0553806900559*Ar^5 
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        cy1 = 3.04619819663e-07-0.0115170123179*Ar+0.0399779683927*Ar^2-

0.0163457846018*Ar^3-0.00680178513738*Ar^4+0.00302678698426*Ar^5 

        cy2 = 4.52922406367e-07+1.93378522823*Ar-

0.54902649457*Ar^2+0.269817013498*Ar^3+0.0684537253067*Ar^4-

0.0376090365062*Ar^5 

        cy3 = -2.37199541578e-05-1.53648615992*Ar+2.5395346435*Ar^2-

1.52701484589*Ar^3-0.157370633995*Ar^4+0.138253596144*Ar^5 

        cy4 = 7.72944327477e-05-0.77767965679*Ar-

1.80278524119*Ar^2+1.98479340019*Ar^3-0.0895552722834*Ar^4-

0.15192056819*Ar^5 

        cy5 = -4.45363391066e-05+0.64226306852*Ar+0.284586904661*Ar^2-

0.735008291995*Ar^3+0.119008616212*Ar^4+0.0486130520136*Ar^5 

        Dx0 =cx1*S^1+cx2*S^2+cx3*S^3+cx4*S^4+cx5*S^5 

        Dy0 =cy1*S^1+cy2*S^2+cy3*S^3+cy4*S^4+cy5*S^5 

 

          delY = Dx+delY0g*(1-exp(-tn/(TStep*2)))/2 

          delY0g = (1/c0-z0)*(sin(s*c0)) - (1/c0g-z0)*(sin(s*c0g)) 

          delZ = Dy+delZ0g*(1-exp(-tn/(TStep*2)))/2 

          delZ0g = (1/c0-z0)*(1-cos(s*c0)) - (1/c0g-z0)*(1-cos(s*c0g)) 

          f = {f}[s^-1] 

          lam = 1.8751 

          omega = 2*3.14159*f 

          phi0 = -{phi0}[deg] 

          phi0g = {phi0g} 

          phi0grad = phi0g*3.14159[rad]/180[deg] 

          phi0rad = phi0*3.14159[rad]/180[deg] 

          s = 1/c0g*atan2(c0g*(y-Total Mesh Displacement Y),(1-c0g*(z-

Total Mesh Displacement Z))) 

          slam = S*lam 

          tn = t+TStep/8 

          tnG = tn*(1-exp(-tn/(TStep*4))) 

          tnp1 = t+9*TStep/8 

          tnp1G = tnp1*(1-exp(-tnp1/(TStep*4))) 

          z0 = -sin(beta0g)*(y-Total Mesh Displacement Y) + (z-Total 

Mesh Displacement Z)*cos(beta0g)+(1-cos(beta0g))/c0g 

        END 
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      END 

    END'''.format(L=L, phi0g=phi0g, Ar=Ar, phi0=phi0, f=f, 

TTotal=TTotal, TCycle=TCycle) 

 

For example, with phi0 = 120, Ar = 0.2, ReSet = 8, TCycle = 344, and TTotal = 12, we 

should get 

ID00871_RS166kf0g120DP_R5_mm_SST_phi120_Ar0.2_Re2_T344_TT12.ccl: 

LIBRARY: 

      CEL: 

        &replace EXPRESSIONS: 

          Ar = Ar0*sin(omega*tn) 

          Ar0 = 0.2 

          AreaDirect = area()@WingBulk 

          B = 0.5e-3[m] 

          Clam = (cos(lam)+cosh(lam))/(sin(lam)+sinh(lam)) 

          Dx = Dx0*L+Dxz 

          Dx0 = cx1*S^1+cx2*S^2+cx3*S^3+cx4*S^4+cx5*S^5 

          Dxz = -z0*(sin(beta1)-sin(beta0)) 

          Dy = Dy0*L+Dyz 

          Dy0 = cy1*S^1+cy2*S^2+cy3*S^3+cy4*S^4+cy5*S^5 

          Dyz = z0*(cos(beta1)-cos(beta0)) 

          Fz = force_z()@WingBulk 

          L = 2e-3[m] 

          PowerUsed = -areaInt(dPbydA)@WingBulk 

          S = s/L 

          TCycle = 1/(omega/2/3.14159) 

          TStep = TCycle/344 

          TTotal = 12*TCycle 

          beta0 = S*phi0rad 

     beta0g = S*phi0grad 

          beta1 = S*phi0rad 

+Ar/2.0*lam*(sinh(slam)+sin(slam)+Clam*(cos(slam)-cosh(slam))) 

          c0 = phi0/L 

          c0g = phi0g/L 

 



K-93 

 

        cx1 = -1.83190599725e-

06+0.0114197280605*Ar+0.00955589778247*Ar^2-

0.0228687858247*Ar^3+0.00930306144494*Ar^4+0.00127266550374*Ar^5 

        cx2 = 2.12982851148e-05-0.158155863426*Ar-

0.0794460144141*Ar^2+0.268143472532*Ar^3-0.12770357418*Ar^4-

0.00948678484208*Ar^5 

        cx3 = -7.18547358598e-05+3.25349903498*Ar-2.08584155058*Ar^2-

0.877567935534*Ar^3+0.537596966458*Ar^4+0.000659796933706*Ar^5 

        cx4 = 7.36971404931e-05-

3.0799256064*Ar+3.48019344616*Ar^2+0.30137510422*Ar^3-

0.63522265112*Ar^4+0.0801943771275*Ar^5 

        cx5 = -2.11905534952e-05+0.809669119156*Ar-

1.41807612032*Ar^2+0.115955345299*Ar^3+0.220105311812*Ar^4-

0.0553806900559*Ar^5 

        cy1 = 3.04619819663e-07-0.0115170123179*Ar+0.0399779683927*Ar^2-

0.0163457846018*Ar^3-0.00680178513738*Ar^4+0.00302678698426*Ar^5 

        cy2 = 4.52922406367e-07+1.93378522823*Ar-

0.54902649457*Ar^2+0.269817013498*Ar^3+0.0684537253067*Ar^4-

0.0376090365062*Ar^5 

        cy3 = -2.37199541578e-05-1.53648615992*Ar+2.5395346435*Ar^2-

1.52701484589*Ar^3-0.157370633995*Ar^4+0.138253596144*Ar^5 

        cy4 = 7.72944327477e-05-0.77767965679*Ar-

1.80278524119*Ar^2+1.98479340019*Ar^3-0.0895552722834*Ar^4-

0.15192056819*Ar^5 

        cy5 = -4.45363391066e-05+0.64226306852*Ar+0.284586904661*Ar^2-

0.735008291995*Ar^3+0.119008616212*Ar^4+0.0486130520136*Ar^5 

        Dx0 =cx1*S^1+cx2*S^2+cx3*S^3+cx4*S^4+cx5*S^5 

        Dy0 =cy1*S^1+cy2*S^2+cy3*S^3+cy4*S^4+cy5*S^5 

 

          delY = Dx+delY0g*(1-exp(-tn/(TStep*2)))/2 

          delY0g = (1/c0-z0)*(sin(s*c0)) - (1/c0g-z0)*(sin(s*c0g)) 

          delZ = Dy+delZ0g*(1-exp(-tn/(TStep*2)))/2 

          delZ0g = (1/c0-z0)*(1-cos(s*c0)) - (1/c0g-z0)*(1-cos(s*c0g)) 

          f = 2.732E+01[s^-1] 

          lam = 1.8751 

          omega = 2*3.14159*f 
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          phi0 = -120[deg] 

          phi0g = -120[deg] 

          phi0grad = phi0g*3.14159[rad]/180[deg] 

          phi0rad = phi0*3.14159[rad]/180[deg] 

          s = 1/c0g*atan2(c0g*(y-Total Mesh Displacement Y),(1-c0g*(z-

Total Mesh Displacement Z))) 

          slam = S*lam 

          tn = t+TStep/8 

          tnG = tn*(1-exp(-tn/(TStep*4))) 

          tnp1 = t+9*TStep/8 

          tnp1G = tnp1*(1-exp(-tnp1/(TStep*4))) 

          z0 = -sin(beta0g)*(y-Total Mesh Displacement Y) + (z-Total 

Mesh Displacement Z)*cos(beta0g)+(1-cos(beta0g))/c0g 

        END 

      END 

    END 

Section K.5 Sharcnet Simulation Starting 

These commands are subject to change as the sqsub system evolves, but this is correct at 

time of writing and likely similar to future commands. 

1. Ensure that the proper .def file and .ccl files are in the working directory on sharcnet. 

2. Load the ansys module: 

a. module load ansys/14.0 

3. Load the commands to run simulations separated by semicolons into a shell script, 

say, ID00835.sh, and place that in the working directory as well. 

a. e.g., command to run a simulation: 

b. cfx RS166kf0g120DP_R5_mm_SST.def -fullname 

ID00871_RS166kf0g120DP_R5_mm_SST_phi120_Ar0.2_Re2_T344_TT12 -

ccl 

ID00871_RS166kf0g120DP_R5_mm_SST_phi120_Ar0.2_Re2_T344_TT12.ccl 

4. Launch the shell file by submitting it via the sqsub command; e.g., on orca, for best 

results use the xeon cores: 
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a. sqsub --idfile ID00835jid -r 7d --nompirun -q mpi -n 12 --

mpp=500M -f xeon -o ID00835.%J sh ID00835.sh 
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Appendix L Viscosity Scaling 

Section L.1 Viscosity of nitrogen and air with temperature: 

Viscosity vs. temperature from [67]. 

0
0

0

T C T

T C T
 

 
  

  
 

Or, 
3/ 2T

T C
 


, where 

 0 0

3/ 2

0

T C

T





  is a constant for each gas: 

2 2
1.406732195, 111K

1.512041288, 120K

N N

Air Air

C

C





 

 
 

effect: 

@ T = 19 degC = 292K,  

 

 

 

 

2

3/ 2

3/ 2

292KPa-s
1.406732 17.417

292K 111KK

292KPa-s
1.512041 18.3122

292K 120KK

N

Air







 


 


 

and 

3

2

3

1.165kg/m

1.205kg/m

N

Air








 

Section L.2 Full Detailed Viscosity vs. Temperature and Pressure 

Based on work using [68], 

Viscosity of a gas doesn't really depend on the pressure at all for partial vacuums: 

1atm @ 300K: 17.890e-6 Pa-s 

6.5%atm @ 300K: 17.878e-6 Pa-s 

 

But depends a lot more on temperature:  

@T = 293K, P = 1atm --> rho = 0.042mol/dm^3, 

 Total viscosity is eta = 17.565949585 microPa-s 
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(  , dynamic viscosity; remember that 





 : 

17.57e-6 Pa-s  ) 
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Appendix M Derivation of Basic Forced Response of a Linear System 

Mass on a spring subject to a restoring force: kx  and damping force bx  has the 

undriven (homogeneous) equation of motion: 

mx bx kx    

Assumed solution form: 

rtx e  --> 

 2

2

0

4

2

rtmr br k e

b b mk
r

m

  

  
 

 

For low damping relative to mk, 
2 4b mk  and the square root is imaginary: 

2

2 2

b k b
r i

m m m

  
   

 
 

giving the solutions: 

2 2

2 2cos , sin
2 2

b b
t t

m m
k b k b

x e t e t
m m m m

    
           

      
   

 

Both of which describe ringdown of a response at the natural frequency, 

2

0
2

True

k b

m m


 
  

 
.  For sufficiently low damping, the frequency approaches

k

m
. 

 

Suppose the amplitude is A and the result is SHM. Then the peak energy stored for is 

21
2

U kA  (which equals  
221 1

max2 2
K mv m A  ) leading to a quality factor of 

2 U
Q

TP




, where 
1 2

T
f




   is the resonant period and 

0

T

dampingP F vdt   is the average power 

going into damping over a cycle:  
22 2 21

20 0
sin

T T

P bv dt b A t dt b A      .  

Therefore, 
21

2

2 21
2

2

2

kA k
Q

b
b A



 


  . Substituting 2

0k m , 

2

0m
Q

b




 . 



M-99 

 

 

 

(Using the later definition of 0mb
Q


 , where 0 /k m  , this gives a resonant 

frequency with non-ignorable damping of: 

0 02 2

/ 1
1

4 4
True

k k m

m Q Q
      

The damped resonant frequency is lower: 2

0 1df f   , where  1/ 2Q   is the 

damping ratio.) 

 

The general solution is then 

 2
1 0 2 0cos sin

b
t

m
cx e C t C t 



   

 

Driving the oscillator with the signal  0 sinF F t  leads to a system response 

obtainable by finding a particular solution to: 

0 sinmx bx kx F t    

 

Try the method of undetermined coefficients; assume a particular solution of the form: 

 sin cospx A t B t    

Then get the table: 

Table 9-1: Derivatives for Method of Undetermined Coefficients for Linear System Forced Response 

DE 

 sin t  cos t  

xp A B 

xp' -B A

xp'' -2
A -2

B

mx bx kx   2m A b B kA     
2m B b A kB     
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F  
0F  0 

Solve the equations: 
2

0

2 0

m A b B kA F

m B b A kB

 

 

   

   

 

--> 
2m k

A B
b






  

--> 

 

     

2
2

0

0 0

2 2 22 2

m k
B b B F

b

F b F
B

m k m k b
b

b








  





  

 
 

  


 

 

   

2

0

2 22

m k F
A

m k b



 

 
 

 
 

And the particular solution found using the MUC is: 

   
 20

2 22

sin cos

sin cos

px A t B t

F
m k t b t

m k b

 

   
 

 


   
 

 

 

This sum of a sine and cos at the same frequency can be written as a single sine or cos 

with a phase constant by writing: 

 

 

2 2

1

sin cos cos

cos cos sin sin

sin

cos tan /

A t B t R t

R t R t

A R R A B

B R A B

   

   



  

  

 

   
  

  

 

therefore,  

   
   

   

2
2 22 10

2 22

2
10

2 22

cos tan

cos tan

p

p

F m k
x m k b t

bm k b

F m k
x t

b
m k b


  

 




 





   
     

    

   
    

   
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Rewrite in terms of 0

k

m
  : 

 

2
10

2 2

2

2 2
10 0

2
2

2 2

0

/
cos tan

/

/
cos tan

/

p

F k m
x t

b mk b
m

m m

F m
t

b mb

m





 

 



  





   
   

     
    

   

   
   

   
   

 

 

At resonance, the amplitude is: 

0

/F m F

b k
b

m m



 
 
 

.  Compared to the DC response, 0 /DCx F k , this is an amplification of 

01 1
/

mkm
Q

k b bk
b

m



 
 
   
 
 
 

 

Therefore, 

 

2 2 2
10 0

2
02

2 2 0
0

cos tanDC
p

x
x t Q

Q

  


  
 


   

    
   

   
 

 

As we move off-resonance, the amplitude drops as the denominator increases. 

 

 

The response drops off to 1/ 2  of the resonant one at a frequency where  
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 2 2 0
0 0

2 20
0

2

20 0
0

0

2

for >

0

4

2

1 1
4

2

Q

Q

Q Q

Q Q


    


  

 







 

  

 
  

 


 
    
 

 

Need positive , so must have the positive root.  For sufficiently large Q, 

2

1
4 2

Q

 
  

 
, 

so  

0 0
0

0
0

0

1
2

2 2

2

2

Q Q

Q

Q

 
 


 





 
    
 

  

 


 

where   is the distance from resonance to the location where the amplitude drops by a 

factor of sqrt(2). 

2 2
1 0

2
2 2 0

0 0

2 2
1 0

2
2 2 0

2

0 0

cos tan

1

cos tan

1

DC
p

DC
p

x
x t Q

Q

Qx
x t Q

Q

 


 
 

 

 


 
 

 





   
    

      
          

   
    

      
          

 

This determines the off-resonant response: 
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Section M.1 Off-resonance quality factor 

(for the linear mass-spring derived in the previous section) 

And the effective Q (i.e., amplitude amplification) for off-resonant actuation: 

2
2 2

2

0 0

1

eff

Q
Q

Q
 

 



    
          

 

Section M.2 Non-Ignorable Mechanical Damping 

Mechanical damping in the linear regime gives a mechanical quality factor related to the 

mechanical power loss, 4A MechP : 

4

2 peak

Mech

A Mech

U
Q

P T


  

 

The total quality factor would be: 

 4 4

2 2 1

1 1

peak Peak
True

ATotal A Mech A

Mech Fluidic

U U
Q

P T P P T

Q Q

 
  




 

Section M.3 Damped Resonance Frequency: 

2

0

1
1

2
df f

Q

 
  

 
 

( 2

0 1df f    where the damping ratio is 
1

2Q
  , following [69]) 

 

For a mass-spring-linear damper, 0mx cx kx   , the damping ratio is defined as 

2

c

km
  .  For forced vibrations, the amplitude of the vibration is: 
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   

0

2 22

1

1 2

F
X

k
r r



 

 

where r is the ratio of the forcing frequency to the undamped resonant frequency: 
0

f
r

f
 . 

Comparing with  

2
2 2

2

0 0

1

eff

Q
Q

Q
 

 



    
          

 

we get that: 
0

1
2

2
r

Q Q


 


   . 
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Appendix N Material Properties for the Fabricated Wing 

The fabricated wing’s properties depend on several material properties:  The resonant 

frequency is dependent on each layer’s density and Young’s modulus, the static bending 

angle depends on each layer’s Young’s modulus and built-in strain, the DC amplitude 

depends on each layer’s Young’s modulus and piezoelectric coupling coefficient, and the 

power drag coefficient’s translation into a quality factor depends on each layer’s density.  

This section compiles research on the numeric values of these properties. 

Section N.1 Density 

The density of each layer was retrieved from literature: 

Quartz: 2651 kg/m
3
 [COMSOL Materials Library: [70]] 

SU-8: 1190 kg/m
3
 [71] 

Au: 19300 kg/m
3
 [72] 

Cr: 7190 kg/m
3
 [72] 

Section N.2 Young’s Modulus & Poisson’s Ratio 

The Young’s modulus was a fair bit trickier to obtain.  The bridge at the end of the wings 

is very stiff in the width-direction, and so acts as a plane-strain boundary condition for the 

wings.  This means that the effective Young’s modulus for isotropic materials (like the 

metal layers and the SU-8) is related to the unbounded Young’s modulus via 

21
effective

E
E





 [28]. 

Au: E = 78.0 GPa,  = 0.44 [72] 

Cr: E = 279 GPa,  = 0.21 [73]

 

By carrying out simulations in COMSOL Multiphysics, I’ve verified that for quartz 

cantilevers with the crystal x-axis as the thickness direction and the crystal y-axis as the 

length direction, the effective Young’s modulus with this boundary condition is 86.4 GPa.  

These simulations are explained in appendix 0. 
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Unfortunately SU-8’s Young’s modulus is highly variable, ranging from 2.5 to 4.95 GPa 

in literature ([74], [75]) (this is the raw E, before correction for 3d-boundary conditions).  

Because of this variation, we have less confidence in the exact Young’s modulus of SU-8 

than we do in the DC-curvature formula, and so in the testing section, we’ll use that to 

calibrate the Young’s modulus of SU-8. 

Section N.3 Built-in Strain 

Built-in strain, like the Young’s modulus, is a particularly difficult to pin down parameter 

of SU-8.  As Bachmann says in [76], "It has been observed that the material parameters of 

SU-8 strongly vary with slight variations of the process parameters. It is therefore not 

applicable to use literature values."  Indeed, the built-in strain in deposited SU-8 in 

literature ranged even more than the Young’s modulus: from 4.6e-3 [77] to 11.1e-3 [76]. 

Section N.4 Piezoelectric constant 

As mentioned in Section 2.2.6.6, the effective piezoelectric coefficient for quartz is 

modified due to the boundary conditions of the beam to be 21106%effectived d , where d21  

= 2.3e-12 m/V [70], [78]. 
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Appendix O Quality Factor Magnitude Calculations 

First, we need to know what the power drag coefficient is. 

 

Globally, the trend of the drag coefficient vs. Re is CDP = 37.8/Re + 1.5.  Really, drag 

coefficient depends on amplitude and offset as well, and even then this trend isn't always 

perfectly representative of the simulation, but even still this is within about a factor of 2 

of the simulation result: 

 

 

Appendix Figure O-1: Power drag coefficients vs. Re 

 

 

Next, refer to the spreadsheet QSU8_17AngleMeasures_RSFix.xls which stores measured 

amplitudes measured for QSU8_17a.  For each measurement pressure in turn (1, 0.7, 0.4, 

& 0.2 atm), we will: 
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1. Plot amplitude vs. frequency to find the resonance frequency at different voltages 

and times; 

2. Plot CFX-determined drag coefficient for that resonant frequency at that pressure 

to obtain a local fit function for drag coefficient; then 

3. Calculate the mechanical quality factor for each measurement near the resonant 

frequency and plot vs. applied voltage to look for trends. 

Section O.1 1 atm: 

Section O.1.1 18 May 200 V, 113-145, f10 to 280 

Found a resonance at 130Hz 

phi0 measure weirdly changes from 110
o
 to 117

o
 between 120 & 121. 

 

V = 200, Ar0 = .1964 

Qmech @ res = 39.6 

 

Appendix Figure O-2: Total quality factor vs. frequency based on amplitude measurements at 200 V 

from 2012-05-18 
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Section O.1.2 4 & 5 Jul 2012, (200, 160, 120, 80, 40)V f-sweeps: 

 

Appendix Figure O-3: Amplitude amplification measures vs. frequency at different voltages 

demonstrates the nonlinear frequency-dependent effect of resonance 

This reveals a nonlinear nature to the resonant frequency.  Resonant frequency for the 

pair of wings at 1 atm appears to be decreasing slightly with voltage, from around 

131.5 Hz at 40 V to 130 Hz at 200 V. 

 

This unfortunately means that sweeping voltage at a single frequency (i.e., 130 Hz) is not 

an effective way to measure the amplitude at resonance as a function of voltage.  Rather, 

this approach likely underestimates the resonant amplitude at lower voltages: 0% at 

200V, and 18% (27 vs. 33) at 40 V. 

 

These sweeps had phi0 = 117
o
, stdev = 0.4

o
. 
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Section O.1.3 1 atm V-sweeps 

 

Appendix Figure O-4: Amplitude amplification vs. Voltage 

 

Compared to the 15 Jul: 130 Hz V-sweep, the 9 August: 132.5 Hz V-sweep appears to 

give larger amplitudes at lower voltages and slightly lower amplitudes at higher voltages, 

consistent with the observation that lower voltages have a higher resonant frequency from 

the 5 Jul f-sweeps.  However, the earlier 29 June: 130 Hz V-sweep did not reveal this, 

instead showing a smoothly increasing Ar0/Ar0DC as voltage decreased. 

 

Several wing properties definitely changed over time - Most notably the default 

curvature.  For the V-sweeps plotted here, this was: 

2012-06-29: 117.04
o
, stdev = 0.27

o
. 

2012-07-15: 106.88
o
, stdev = 0.40

o
. 

2012-08-09: 104.96
o
, stdev = 0.68

o
. 
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If we use the flapping amplitude, frequency, and known wing size to determine the 

predicted drag coefficient using the approximate CDP = 37.8/Re + 1.5, then use this to 

determine the predicted fluidic power dissipation, and finally use this predicted fluidic 

quality factor compared to the A0/A0DC to calculate a mechanical quality factor, we get 

the following: 

 

Appendix Figure O-5: CDP = 37.8/Re + 1.5 

 

Section O.1.3.1 Making it better: use a specialty CDP fit for these V-sweeps 

The CDP = 37.8/Re + 1.5 is an OK fit to all data.  However, by using a CDP fit based only 

on data relevant around 130 Hz & 1 atm, we can compare to more specific data. 

 

Equivalent frequencies  for all the pressures: 
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1 atm is 130-135.5 

.7 atm: 91 - 95 

.4 atm: 52.3 - 54.6 

.2 atm: 26.2 - 27.5 

 

Using this data, the fit for CDP vs Re actually tells a very different story: 

 

Appendix Figure O-6: Drag coefficient for 1 atm sweeps 

The trend line is 
92.1

1.06
Re

DPC   .  That’s a LOT different than the global trend-line. 

 

Using this fit instead for the drag coefficient now reveals a decreasing measured 

mechanical quality factor with voltage as well. 
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Appendix Figure O-7: Using CDP = 92.1/Re + 1.06 

 

On the one hand, this now suggests a decreasing mechanical quality factor with 

increasing amplitude, however it no longer decreases with decreased amplitude (save for 

the very low voltage at 130 Hz, where we know we’re going off-resonance) 

Section O.1.3.2 Making it better: correct amplitude for measuring off-resonance 

If we use the resonance measures from 2012-07-05, we know that at 200 V, 130 Hz is the 

resonance but at 40 V, the resonance is higher; closer to 132 Hz.  Use this information to 

come up with a voltage-specific “predicted A0 at resonance”, and recalculate & plot the 

Qmech using that. 
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Section O.1.3.3 Making it better: separate wings 

In reality, these amplitudes are the average of 2 wings.  Plotting their amplitudes 

individually reveals that they resonate at close but not equal frequencies.  By calculating 

the Qmech for each wing individually, it may reveal new information, or force us to deal 

with extending the Qmech theory to interference from partially overlapping resonances. 

 

 

Section O.2 0.7 atm: 

Section O.2.1 20 May, 190-199, .7atm, f128-138 

20 May 

res @ 131 

 

V=120, Ar0 = .1523 

Qmech = 41.8 

 

Appendix Figure O-8: Total quality factor for one sweep at 0.7 atm 
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Section O.2.2 6 Jul 

 

Appendix Figure O-9: Total quality factor from amplitude measures at 0.7 atm 
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Appendix Figure O-10: Drag coefficient from CFX for 0.7 atm amplitude sweep range 
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Appendix Figure O-11: Calculated mechanical quality factor for 0.7 atm 

 



O-118 

 

Section O.3 .4 atm: 

 

Appendix Figure O-12: Total quality factor from amplitude measures at 0.4 atm 

 

Plotting the power drag coefficient for the fixed equivalent frequency applicable to the 

resonance measures in 0.4 atm, we obtain: 
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Appendix Figure O-13: Drag coefficient from CFX for 0.4 atm amplitude sweep range 

 

Leading to these mechanical quality factors for the two relevant voltage sweeps at 0.4 

atm: 



O-120 

 

 

Appendix Figure O-14 Calculated mechanical quality factor for 0.4 atm 
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Section O.4 .2 atm: 

 

Appendix Figure O-15 Total quality factor from amplitude measures at 0.2 atm 

 

 

As before, plotting the power drag coefficient for the fixed equivalent frequency 

applicable to the resonance measures in 0.2 atm, we obtain: 
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Appendix Figure O-16: Drag coefficient from CFX for 0.2 atm amplitude sweep range 

 

Which leads to these mechanical quality factors: 
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Appendix Figure O-17: Calculated mechanical quality factor for 0.2 atm 

clearly, 136.1 Hz missed the resonance, and so did low-voltage 133 Hz at later dates. 

Section O.5 All pressures 
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Appendix Figure O-18: Mechanical quality factor vs. V for all pressures 

(removed the off-resonance data) 

This looks like there isn’t too much difference between the different pressures.  But to 

really compare them, we should plot vs. amplitude, not voltage.  That plot looks like this: 

 

Appendix Figure O-19: Mechanical quality factor vs. Ar0 for all pressures 



O-125 

 

No obvious difference appears between the different pressures: Mechanical quality factor 

is quite similar across different pressures and amplitudes, supporting the idea that the CDP 

modeling is successful.  Optically measuring very low amplitudes entailed a significant 

amount of uncertainty, so although the mechanical quality factor appears to rise as 

amplitude decreases, this may actually be due to a systematic error. 
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Appendix P Electrical Testing Procedure 

Section P.1 Coax cable model 

According to [79], a coaxial cable can be electrically modelled by  

 

Appendix Figure P-1: Coaxial cable model from [79] 

Where: 

Shunt capacitance per unit length: 
 
2

ln /

C

h D d


  

Series inductance per unit length:    0ln / ln /
2 2

rL
D d D d

h

 

 
   

(h is length of cable, diameters are d (inner conductor) & D (shield)). 

(series resistance is negligible most of the time) 

Shunt conductance is very small for well-insulated cables. 

All my stuff is at very low frequency compared to what these cables can handle.  So it's 

doubtful they're responsible for anything strange. 

Section P.2 Equivalent impedance of the BvD model: 

In Chapter 4, we found the impedance of the BvD model at resonance.  For testing 

purposes, we're going to need to know what this is off-resonance as well.  So, let's derive 

the impedance of an RLC resonator in parallel with a package capacitance: 

||

1 1

1

1 1

1

||r ResonantBranch p Package

r p p

r p

p

Z Z Z

j j
R j L

Z Z C C

j jZ Z
R j L

C C


 


 

 

  
  

 
 


  
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And at resonance, 1 1

1 1

1
L

C



 , therefore 1 2

1 1

1
L

C
 , and 

1 2

1 1 1

2 2

1
1 2

1 1

2

1

1 1

1

r

j
Z R j

C C

j
R

C

j
R

C



 

 

 



 

  

 
   

 

  
    
   

 

 

making the parallel equivalent impedance: 

2

1

1 1

|| 2

1

1 1

2

1

1 1

2

1

1 1

1

1

1

1 1
1

p

p

p

p

j j
R

C C
Z

j j
R

C C

j
R

Cj

C j
R

C C



  



  



 

 

 

    
         

  
       

   
          

   
          

 

 

 

At low frequencies: 

 

 

1

|| 1

1

1

||
1 1

1

C p

p

p

j

Cj
Z Z Z

C j

C C







 
 

   
 

   
 

 

At high frequencies: || pZ Z  

At resonance: || 1 || pZ R Z  

 

In terms of reactances: 
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2

1 1

1
1

1

r

p

p

X
C

X
C



 



  
   
   




 

Then: 

 
1

||

1

r
p

r p

R jX
Z jX

R j X X




 
 

Separate the real and imaginary parts by: 

 
 
 

   

 

  
 
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p
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R j X XjR X
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R j X X R j X X
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X
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 
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   

    

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In conclusion: 

  
 

2

1 1

|| 2
2

1

p r r p

p

r p

R X j R X X X
Z X

R X X

  


 
 

where: 
1

p

p

X
C


  and 

2

1 1

1
1rX

C



 

  
   
   

 are the reactances of the package and 

resonance branches, respectively. 
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Section P.3 Electrical Test Procedure: Current measures across a resistor out of 

the device 

 

Appendix Figure P-2: Circuit model for measures 

Let the 1k resistor be Rs (the s is for sensing)  Then: 

/Rs sI V R  

In terms of the input voltage, /S totalI V Z where ||total s LZ R Z R    (where LR  is the 

"limiting" resistor) 

Vs is known. 

I is measured 

I have theory on the parameters of Z||. 

 

Referring to 
  

 

2

1 1

|| 2
2

1

p r r p

p

r p

R X j R X X X
Z X

R X X

  


 
: 

 

Using the notation: 

1. Z R jX  : Impedance = Resistance + j*Reactance 
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2. Y G jB  : Admittance = Conductance + j*Susceptance 

where 
1

Y
Z

  so that 
2 2

1 R jX
G jB

R jX R X


  

 
 

(Note that since conductance  ReG Y , the of a branch is not 1/ the resistance of that 

branch unless the branch has 0 reactance!) 

Note that if R = 0, 
1 1

jB B
jX X

    ) 

 

Overall, current through the sense resistor is: 

Supply Supply

total L TS s

V V
I

Z R Z R
 

 
 

where: 

1. Test structure impedance is 
1

TS

TS

Z
Y

   

2. TS res packageTS LeakageTSY Y jB G    

a. 
1

res

res

Y
Z

 , and 1 1resZ R jX   

i. R1 is the resonance branch resistance for the number of wings on 

the teststructure. 

1. Scales inversely with quality factor; proportional to 

damping. 

ii. 

2

1 1 2

1 1 1 1 1 1

1 1 1 1
1X L

C C C C


 

    

    
          
     

 

1. Independent of damping 

b. 
1

packageTS packageTS

packageTS

B C
X




   is the package susceptance for the test 

structure from the BvD model. 

i. Output by WA4 / measured by capacitance bridge. 
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c. 
1

LeakageTS

LeakageTS

G
R

  is the leakage conductance due to the piezoelectric 

layers not being perfect insulators. 

i. Output by WA4 / measured by capacitance bridge. 

 

Working in python, this is no problem: Python can do complex math and then plot the 

magnitude and phase at the end. 

 

Input constants to get I at each frequency:  

1. Teststructure: 

a. C1, R1, CpackageTS, RLeakageTS, f0,  

2. Circuit: 

a. RL, RS. 

Strategy: plot the difference between the measured current and predicted current for these 

constants and use it to fit the constants. 

Section P.3.1 Detailed recipe using Difference measures: 

Strategy: 

1. Setup: 

a. Put capacitance bridge to match the wing circuit (except res branch) across 

the voltage output from the 1:20 amp. 

b. Measure current out of that by measuring voltage across a 1k: 

A CB sCBV I R  

c. Get very similar 1k resistor and use it to measure the current out of the 

wing: BV  = Wing sWI R  

2. Each cycle: 

a. Set lockin to single input: A 

b. Autogain 

c. Measure lockin: AV  
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i. This measures current through the capacitance bridge: 

/CB A sCBI V R  

d. Calculate the impedance of the capacitance bridge: CB CB

CB

j
Z R

C
   

e. Calculate the 1:20 amp's output voltage: sCB CB
S A

sCB

R Z
V V

R


   

f. Set lockin to difference input: A-B 

g. Autogain 

h. Measure lockin: A BV   

i. Calculate A B

sCB sW

V
I

R R








  (output through the wing relative to just a 

capacitance bridge) 

3. Output the phasors for: 

a. ZCB 

b. Vs 

c. I  

d.  W sCB CB SI I R Z V   : instead of this, I output ICB: W CBI I I   

4. Interpret the parameters: 

a. Likely CBY  isn't exactly p leakageY Y .  Supose the curve fits a resonance 

curve after additionally subtracting off the current through another 

admittance, fitY : 
 

fit fit

S W CB fit

I I I

V Y Y Y

  

  
 

b. therefore,  p leakage CB fitY Y Y Y   .   

i. 
 

1 1

1/

1

p

p

leakage

leakage

Y j C
Z j C

Y
R




  


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ii. therefore Im
CB fit

package

Y Y
C



 
  

 
, 

 
1

Re
leakage

CB fit

R
Y Y




 

c. And for the resonance branch: 

2

1 1 1

1 1

1res

j
Z R jX R

C



 

  
      
   

 

5. Simplified final step:  

a. Let Package Leakage CB fitY Y Y   . 

b. (ignoring the leakage, that's just: package CB packagej C j C j C      --> 

package package CBC C C   ) 

c. Since  

i. 
CB W

W CB

I I I

I I I





 

  
 

d. And res W packageI I I   

i. 

   

 

 

   

res W package

res CB package s

res CB package s

res CB package s

res package CB s

I I I

I I I Y V

I Y Y V I

I j C C V I

I I j C C V













 

  

  

  

    

 

ii.    res package sI I j C V     

e. e.g., set Cpackage = 352, then  352pF 351pFres sI I j V     

f. Plot resI  vs. the I through a predicted resZ , 

2

1 1 1

1 1

1res

j
Z R jX R

C



 

  
      
   

 

g. 
2

1

1 1

1

s s
res

res

V V
I

Z j
R

C



 

 
  
      
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(imporant to use the fit sV  to not introduce new noise) 

That's it!  For each wing, compare the R1 & C1 that makes it fit the current difference 

curve nicely with their predictions. 

 

Section P.3.1.1 Picture of the setup: 

Colour-coded circuit map: 

 

Appendix Figure P-3: Colour coded circuit model 
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Appendix Figure P-4: Colour coded realization of the circuit model 

Section P.3.1.2 Decade capacitance box characterization 

 

Set Cap Meas Cap 

Meas 

Loss 

[pF] [pF] [GOhm] 

185 185.20059 1.41891 

180 180.19173 1.42662 

435 434.9359 0.6519 

385 385.24622 0.71969 

 

Section P.4 Electrical power losses 

Summary 

2

2

amp

R

V
P

R
 , and 

1

1

2
R

Qk
  (at resonance), so that 

2

1R ampP Qk V . 
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Section P.5 Partial Vacuum Effect on Drag Force 

The effect of partial vacuum on drag force is principally goverened by two dimensionless 

numbers: 

1. Reynolds number Re
vL


 , where   is the air density (proportional to 

pressure), v & L are the characteristic velocity and length scales, and  is the 

[dynamic] viscosity (17.6e-6Pa-s for N2 at 293K and independent of vacuum 

pressure). 

a. Re > 1: Form drag: 21
2D DF C v A , where CD is the drag coefficient and is 

only slowly varying or constant with Reynolds number, v is the velocity 

scale, and A is the frontal area. 

b. Re < 1: Stokes drag: 
6

Re
DC


  --> 3DF Lv .  Stokes drag force is 

constant with pressure as long as it's valid: Kn & Re < 1. 

2. Knudsen number Kn
L


 , where   is the mean free path of gas molecules and L 

is the characteristic length scale. 

a. is inversely proportional to density; at room temperature & pressure,  = 

50nm. 

b. Kn << 1: Continuum regime 

c. Kn > 1: Free-Molecular Flow Regime: Drag force is proportional to 

pressure, velocity, and area: _ 0.01D FMRF PvA  (the coefficient depends on 

the temperature and surface chemistry).  This equals the stokes drag force 

for an L = 2mm object at Kn = 0.3. 

 

The Knudsen number is proportional to the ratio of Mach and Reynolds numbers: 

Ma
Kn

Re 2


 , where  is the ratio of the gas's specific heat at constant pressure to that at 

constant volume, [80].    
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Appendix Q MATLAB Program to process the Zygo Data 

%Made on 29 Feb 2012 to load and process datafiles output by Metropro when 
%using the optical profilometer 
%Generated using MatlabPrograms.doc in Dropbox\General Reference\Programming\ 
clear all; 
close all; 
disp('****ZygoProcStart*********************************') 

  
%ASCII file to read: 
DatFileName='Su8_Gold_2.asc'; 
Data3dPlot=0; 
%Tilt correction points 
FitLowerLeft=[180,465]; 
FitUpperRight=[200,475]; 
NumberOfPointsPerFitLine = 5; 

  
%Points To Calculate Height At: 
TiltCorrectedPlot=1; 
TiltCorrectedContourNumber=100; 
xHeightPoints=[200,205,170,170,288,292,297,100, 100, 100, 600, 600]; 
yHeightPoints=[475,475,261, 262, 107,102,95,250, 50, 400, 50, 400]; 

  
xHeightPoints2=xHeightPoints+1; 
yHeightPoints2=yHeightPoints; 
xHeightPoints3=xHeightPoints; 
yHeightPoints3=yHeightPoints+1; 
EtchCalcs = 0;  %Turn off etch rate calculations if this is not an etch depth test 
RawDataPlot=0; 
RawDataContourNumber=20; 

  
PointsToAverage = 4:7; 

  

  
DatFID=fopen(DatFileName, 'r'); 
if(DatFID == -1) 
    fprintf('Missing DatFile: %s.\n', DatFileName); 
    break; 
end 

  
%% Read the headers 
%Expected syntax of an output ASCII metropro file is described in MetroPro Reference Guide 

J.pdf: 
%1 Zygo ASCII Data File - Format 2  
Header1=fgetl(DatFID); 
%2 SoftwareType  MajorVers  MinorVers  BugVers  SoftwareDate  
Header2=fgetl(DatFID); 
%3 IntensOriginX  IntensOriginY  IntensWidth  IntensHeight  NBuckets  IntensRange  
%e.g., 0 0 640 480 1 255 
Header3=fscanf(DatFID, '%d %d %d %d %d %d', 6); 
IntensWidth=Header3(3); 
IntensHeight=Header3(4); 

  
%4 PhaseOriginX  PhaseOriginY  PhaseWidth  PhaseHeight  
%e.g., 0 0 640 480 
Header4=fscanf(DatFID, '%d %d %d %d ', 4); 
PhaseWidth=Header4(3); 
PhaseHeight=Header4(4); 

  
%5 Comment  
fgetl(DatFID); 
%6 PartSerNum  
fgetl(DatFID); 
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%7 PartNum  
fgetl(DatFID); 
%8 Source  IntfScaleFactor  WavelengthIn  NumericAperture  ObliquityFactor Magnification  

CameraRes  TimeStamp  
%e.g., 0 0.5 6.48e-007 0 1 0 2.85262e-006 1329236048 
Header8=fscanf(DatFID, '%d %g %g %d %d %g %g %d', 8); 

  
%9 CameraWidth  CameraHeight  SystemType  SystemBoard  SystemSerial InstrumentId  

ObjectiveName  
%e.g., 640 480 11 0 50299 0 " 10X  Mirau" 
Header9=fscanf(DatFID, '%d %d %d %d %d %d ', 6); 
ObjectiveName=fgetl(DatFID); 
%10 AcquireMode  IntensAvgs  PZTCal  PZTGain  PZTGainTolerance  AGC TargetRange  

LightLevel  MinMod  MinModPts  
%e.g., 2 0 0 0 0 0 0 30.7937 1 0 
Header10=fscanf(DatFID, '%d %d %d %d %d %d %d %g %d %d ', 10); 
%11 PhaseRes  PhaseAvgs  MinimumAreaSize  DisconAction  DisconFilter ConnectionOrder  

RemoveTiltBias  DataSign  CodeVType  
%e.g., 2 2 7 0 0 0 0 0 0 
Header11=fscanf(DatFID, '%d %d %d %d %d %d %d %d %d ', 9); 
%12 SubtractSysErr  SysErrFile  
%e.g., 0 "                           " 
Header12=fscanf(DatFID, '%d ', 1); 
SysErrFile=fgetl(DatFID); 
%13 RefractiveIndex  PartThickness  
%e.g., 1 0 
Header13=fscanf(DatFID, '%d %d ', 2); 
%14 ZoomDesc  
Header14=fgetl(DatFID); 
fgetl(DatFID); %clear the '#' sign. 

  
IntensityScaleFactor=Header8(2); 
ObliquityFactor=Header8(5); 
CameraRes=Header8(7);  %Tells you m/pixel 
lambda=Header8(3); 
PhaseRes=Header11(1); 
if(PhaseRes==0) 
    ResolutionCorrection=4096; 
elseif(PhaseRes==1) 
    ResolutionCorrection=32768; 
elseif(PhaseRes==2) 
    ResolutionCorrection=131072; 
else 
    disp(['Invalid PhaseRes in datafile: ', num2str(PhaseRes)]) 
    break 
end 

  
fprintf('Intensity data %dx%d, Phase data %dx%d\n', IntensWidth, IntensHeight, PhaseWidth, 

PhaseHeight); 
fprintf('S = %g, O = %d, lambda = %gnm\n', IntensityScaleFactor, ObliquityFactor, 

lambda*1e9); 
fprintf('ResolutionCorrection = %d\n', ResolutionCorrection); 

  
%% Read the bulk of the datafile 
IntensData=fscanf(DatFID, '%g ', [IntensWidth, IntensHeight]); 
fgetl(DatFID) %display a '#' 
PhaseData=fscanf(DatFID, '%g ', [PhaseWidth, PhaseHeight]); 
fgetl(DatFID) %display a '#' 
PhaseDataProcessed=PhaseData.*(lambda*IntensityScaleFactor*ObliquityFactor/ResolutionCorre

ction); 

  
%% Plot the heights 
%Preallocation for speed 
% x=zeros(1,PhaseWidth*PhaseHeight);%init 
% y=zeros(1,PhaseWidth*PhaseHeight);%init 
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% z=zeros(1,PhaseWidth*PhaseHeight);%init 
% %2d init 
% z2=zeros(PhaseWidth,PhaseHeight);%init 
% %Generate datapoints 
% for(rowCounter=1:PhaseHeight) 
%     for(colCounter=1:PhaseWidth) 
%         y((rowCounter-1)*PhaseWidth+colCounter)=PhaseHeight+1-rowCounter; 
%         x((rowCounter-1)*PhaseWidth+colCounter)=colCounter; 
%         if(PhaseData(colCounter,rowCounter) <2147483640) %If this datapoint was a valid 

reading 
%             z((rowCounter-

1)*PhaseWidth+colCounter)=PhaseDataProcessed(colCounter,rowCounter); %as a 1d array 
%         else 
%             z((rowCounter-1)*PhaseWidth+colCounter)=0; %as a 1d array 
%         end 
%     end 
% end 
%2d version: 
z=zeros(PhaseWidth,PhaseHeight);%init 
for(rowCounter=1:PhaseHeight) 
    for(colCounter=1:PhaseWidth) 
        if(PhaseData(colCounter,rowCounter) <2147483640) %If this datapoint was a valid 

reading 
            z(colCounter,PhaseHeight+1-

rowCounter)=PhaseDataProcessed(colCounter,rowCounter);  %as a 2d array 
        else 
            z(colCounter,PhaseHeight+1-rowCounter)=0;  %as a 2d array 
        end 
    end 
end 

  

  
nx=size(z,1); %number of x-points 
ny=size(z,2); %number of y-points 
if(Data3dPlot) 
    xvec=zeros(1,nx*ny); 
    yvec=zeros(1,nx*ny); 
    zvec=zeros(1,nx*ny); 
    for(cx=1:nx) 
        for(cy=1:ny) 
            xvec((cx-1)*ny+cy)=cx; 
            yvec((cx-1)*ny+cy)=cy; 
            zvec((cx-1)*ny+cy)=z(cx,cy); 
        end 
    end 

  
    plot3(xvec,yvec,zvec, '.') 
    xlabel('x') 
    ylabel('y') 
    zlabel('z') 
end 
fclose(DatFID); 

  
if(RawDataPlot) 
    figure(2); 
    contourf(z',RawDataContourNumber); 
    xlabel('x') 
    ylabel('y') 
    PltTitleStr = strrep(DatFileName, '_', '\_'); %Makes underscores in the file name show 

up correctly in the plot title. 
    title(['Raw Height Data: ', PltTitleStr]); 
    grid on; 
    hold on; 
    plot(xFitPoints,yFitPoints,'g*') 
end 
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%% Calculate the tilt correction 
%First, find the coordinates of the points to use on each fit line: 
xFitPoints=round(linspace(FitLowerLeft(1), FitUpperRight(1), NumberOfPointsPerFitLine)); 
yFitPoints=round(linspace(FitLowerLeft(2), FitUpperRight(2), NumberOfPointsPerFitLine)); 

  
[X,Y] = meshgrid(xFitPoints, yFitPoints) 
for row = 1:NumberOfPointsPerFitLine 
    for col = 1:NumberOfPointsPerFitLine 
        Z(row,col) = z(xFitPoints(col),yFitPoints(row)) 
    end 
end 

  

  
A = ones(6); 
d = ones(6,1); 
xCoefPows = [2,1,0,1,0,0]; 
yCoefPows = [0,1,2,0,1,0]; 
for row = 1:6 
    for col = 1:6 
        A(row,col) = 

sum(sum(X.^(xCoefPows(row)+xCoefPows(col)).*Y.^(yCoefPows(row)+yCoefPows(col)))); 
    end 
    d(row) = sum(sum(Z.*X.^(xCoefPows(row)).*Y.^(yCoefPows(row)))); 
end 
%Fit Coefficients 
p = A\d 

  
%Then the fit parabolas are z = a(1)+a(2)*x+a(3)*y+a(4)*x^2+a(5)*y^2+a(6)*x*y, so correct 

the 
%z-points like this: 
zCor=z;%init 
for(cx=1:nx) 
    for(cy=1:ny) 
        if(z(cx,cy)>0) 
            zCor(cx,cy)=z(cx,cy)-(p(1)*cx^2+p(2)*cx*cy+p(3)*cy^2+p(4)*cx+p(5)*cy+p(6));   

%Tilt corrected z 
        end %else, leave it as 0             
    end 
end 

  

  

  

  
%plot3(x,y,z, 'r.') 
%plot3(xFitPoints,yFitPoints,zFitPoints,'r*') 

  
%% Plotting and outputs 
if(TiltCorrectedPlot) 
    figure(3); 
    contourf(zCor', TiltCorrectedContourNumber); 
    xlabel('x') 
    ylabel('y') 
    PltTitleStr = strrep(DatFileName, '_', '\_'); %Makes underscores in the file name show 

up correctly in the plot title. 
    title(['Curvature-Corrected Height Data: ', PltTitleStr]); 
    grid on; 

  
    PointLabels={'R'}; 

  
    %RefHeight=zCor(xHeightPoints(1),yHeightPoints(1)); %Height reference is the first 

point 
    RefHeight1=sum(sum(zCor((xHeightPoints(1)-1):(xHeightPoints(1)+1),(yHeightPoints(1)-

1):(yHeightPoints(1)+1))))/9; %Height reference is the first point 
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    RefHeight2=sum(sum(zCor((xHeightPoints2(1)-

1):(xHeightPoints2(1)+1),(yHeightPoints2(1)-1):(yHeightPoints2(1)+1))))/9; %Height 

reference is the first point 
    RefHeight3=sum(sum(zCor((xHeightPoints3(1)-

1):(xHeightPoints3(1)+1),(yHeightPoints3(1)-1):(yHeightPoints3(1)+1))))/9; %Height 

reference is the first point 
    RefHeight=(RefHeight1+RefHeight2+RefHeight3)/3; 
    fprintf('Abs height at the reference points = (%g,%g,%g)m, average = %g m\n', 

RefHeight1, RefHeight2,RefHeight3, RefHeight); 
    fprintf('Rel height at the reference points = (%g,%g,%g)um, average = %g m\n', 

(RefHeight1-RefHeight)*1e6, (RefHeight2-RefHeight)*1e6,(RefHeight3-RefHeight)*1e6, 0); 

  

     
    fprintf('\nRelative depths of each point, along with the average & stdev of all 3 

colours for that point:\n') 
    fprintf('%3s%9s%9s%9s%9s%9s\n', 'P#', 'D1', 'D2', 'D3', 'Avg', 'StDev') 
    fprintf('%3s%9s%9s%9s%9s%9s\n', '#', 'um', 'um', 'um', 'um', 'um') 
    for(c=2:length(xHeightPoints)) 
        PointLabels{c}=num2str(c); 
        %RelHeight(c)=zCor(xHeightPoints(c),yHeightPoints(c))-RefHeight; 
        RelHeight1(c)=sum(sum(zCor((xHeightPoints(c)-

1):(xHeightPoints(c)+1),(yHeightPoints(c)-1):(yHeightPoints(c)+1))))/9-RefHeight; %use 9pt 

avg 
        RelHeight2(c)=sum(sum(zCor((xHeightPoints2(c)-

1):(xHeightPoints2(c)+1),(yHeightPoints2(c)-1):(yHeightPoints2(c)+1))))/9-RefHeight; %use 

9pt avg 
        RelHeight3(c)=sum(sum(zCor((xHeightPoints3(c)-

1):(xHeightPoints3(c)+1),(yHeightPoints3(c)-1):(yHeightPoints3(c)+1))))/9-RefHeight; %use 

9pt avg 
        RelHeight(c)=(RelHeight1(c)+RelHeight2(c)+RelHeight3(c))/3; 
        stdev(c) = sqrt(((RelHeight1(c)-RelHeight(c))^2+(RelHeight2(c)-

RelHeight(c))^2+(RelHeight3(c)-RelHeight(c))^2)/2); 
        %fprintf('#%d pts rel depth = (%g,%g,%g)um, Avg=%g um, stdev = %.1e 

um\n',c,RelHeight1(c)*1e6, RelHeight2(c)*1e6,RelHeight3(c)*1e6, RelHeight(c)*1e6, 

stdev(c)*1e6); 
        fprintf('%3d%9.4f%9.4f%9.4f%9.4f%9.4f\n',c,RelHeight1(c)*1e6, 

RelHeight2(c)*1e6,RelHeight3(c)*1e6, RelHeight(c)*1e6, stdev(c)*1e6); 
    end 

     
    fprintf('\nAveraging these points:') 
    disp(PointsToAverage) 
    fprintf('find\nmean = %g um, stdev = %g um\n', mean(RelHeight(PointsToAverage))*1e6, 

std(RelHeight(PointsToAverage))*1e6) 

     
    hold on; 
    text(xHeightPoints,yHeightPoints,PointLabels, 'BackgroundColor', 'w'); 
    text(xHeightPoints2,yHeightPoints2,PointLabels, 'BackgroundColor', 'm'); 
    text(xHeightPoints3,yHeightPoints3,PointLabels, 'BackgroundColor', 'c'); 
    %Plot the points used for the curvature correction: 
    plot(X,Y, 'g*') 

     

     
    if(EtchCalcs) 
        AvgEtchRate=min(RelHeight)/sum(EtchTimes) 
        n=length(EtchTimes); 
        EtchComboMatrix=zeros(2^n-1,n); 
        EtchNames=[]; 
        for(crow=1:(2^n-1)) 
            EtchNames{crow}=[]; 
            for(ccol=1:n) 
                EtchComboMatrix(crow,ccol)=mod(floor(crow/2^(n-ccol)),2); 
                if(EtchComboMatrix(crow,ccol)>0) 
                    if(length(EtchNames{crow})==0)  %if first entry for this one 
                        EtchNames{crow}=num2str(ccol); 
                    else 



Q-142 

 

                        EtchNames{crow}=[EtchNames{crow}, ' and ', num2str(ccol)]; 
                    end 
                end 
            end 
        end 
        PossibleEtchTimes=EtchComboMatrix*EtchTimes'; 
        %EtchNames 

  
        for(c=2:length(RelHeight)) 
            TimeEstimate(c)=RelHeight(c)/AvgEtchRate; 
            BestEtchComboGuessNumber=1; 
            BestCloseness=abs(PossibleEtchTimes(1)-TimeEstimate(c))/TimeEstimate(c); 
            for(cEtchTimes=2:length(PossibleEtchTimes)) 
                Closeness=abs(PossibleEtchTimes(cEtchTimes)-

TimeEstimate(c))/TimeEstimate(c); 
                if(Closeness<BestCloseness) 
                    BestCloseness=Closeness; 
                    BestEtchComboGuessNumber=cEtchTimes; 
                end 
            end 
            BestEtchComboTime(c)=PossibleEtchTimes(BestEtchComboGuessNumber); 
            BestEtchComboName{c}=EtchNames{BestEtchComboGuessNumber}; 
            fprintf('Pt #%d @(%d,%d) = %g um, TimeGuess=%g hr,ClosestTime=%g hr from 

Etches %s\n',c,xHeightPoints(c),yHeightPoints(c), RelHeight(c)*1e6, TimeEstimate(c), 

BestEtchComboTime(c), BestEtchComboName{c}); 
        end     
        for(c=2:length(EtchNumberManualSpec)) 
            ManualEtchTime(c)=PossibleEtchTimes(EtchNumberManualSpec(c)); 
            ManualEtchNames{c}=EtchNames{EtchNumberManualSpec(c)}; 
        end 

  
        LayerEtchRate=(RelHeight(2:end)*1e6)./ManualEtchTime(2:end); 
        AvgEtchRate2=sum(LayerEtchRate)/length(LayerEtchRate) 
        for(c=2:length(RelHeight)) 
            TimeEstimate2(c)=RelHeight(c)*1e6/AvgEtchRate2; 
            fprintf('Pt #%d:%g um, TimeGuess2=%g hr,ActTime=%g hr from Etches %s\n',c, 

RelHeight(c)*1e6, TimeEstimate2(c), ManualEtchTime(c), ManualEtchNames{c}); 
        end 

  
        %outputvariables at the end are: 
        ManualEtchTime' 
        -RelHeight'*1e6 
    end 
end 
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Appendix R Detailed Fabrication Recipe for Quartz:SU-8 Testing Wings 

Not all tested samples used exactly this recipe, specifically, this is the recipe for sample 

“QSU8_17a” 

1. Pattern the metal contacts on the quartz top side 

a. Take sample from packaging 

b. Clean:  

i. Clean tweezers with DI water (DI), then soap, acetone, then methanol, 

sonicating (i.e., placing the beaker containing the wafer and solvent in 

an ultrasonic bath) for each 

ii. N2 gun, wafer 

iii. Rinse with DI water 

iv. Sonicate in DI water for 5 minutes 

v. Clean tweezers with IPA 

vi. Rinse with IPA 

vii. Sonicate in IPA for 5 minutes 

c. Dry with nitrogen, then 150
o
C hotplate for 10 minutes 

d. 1808 for metallization of front-pattern with electrical isolation 

i. Coat with Shinetzu microprime 

1. coat using syringe 

2. let sit for 15s 

3. Spin at 4kRPM for 30s 

ii. Spin on 1808 

1. 1808 on surface using syringe 

2. let sit for 30s 

3. spin at 4kRPM for 30s 

iii. Let sit for 5 min in a dish, partially covered (8 min for _17) 

iv. Soft bake at 90
o
C for 2 min 

v. Over expose, at least 40mJ/cm
2
 (40mJ/5.2mW = 7.7s) (QSU8_17a: 21s 

@ 1.9mW) 
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1. Use the electrical contact mask shown in Error! Reference 

source not found..  1808 is a positive photoresist, so the area 

of the photomask which allows light to pass = the area where 

1808 will be removed = the area where metal will remain on 

the quartz after liftoff. 

  

Appendix Figure R-1: Electrical contact mask for 1808 

vi. Toluene dip, 5-6min (QSU8_17a: 5.5min) 

vii. Blow dry with N2 

viii. Dev in S351 (corrosives):DI water mixed at 1:5 

1. Over dev: 3x normal time of 30s = 90s (or so; swirling) 

a. (QSU8_17a: Developed for 2x 90s since the wafer was 

still reddish; unclear whether this was actually 

necessary). 

ix. Rinse in DI, being careful to make pattern parallel to the water 

x. Checked on alpha stepper that everything went well 

e. Metallize: 25nm Cr, 150nm Au in the clean room.  

f. Liftoff in acetone in ultrasonic immediately afterwards 

i. rinse, then about 5min in ultrasonic 
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g. Then methanol in the ultrasonic 

i. rinse, dry, then proceed to hotplate: 

2. Pattern the SU-8 on the top of the quartz as the passive layer: 

a. SU8 structural for front: 

i. Dehydration bake: 5 min at 150
o
C setting, under glass slide lid 

ii. UV-Ozone clean, 10 5 min 

iii. Use syringe and filter, and disposable beaker. 

iv. Spin as per _5’s recipe: 30s @ 3k after slow ramp up 

v. 2.5min soft bake @107
o
C hot plate setting, on foil under glass lid  

1. (Put onto already hot hot plate then turn off after 2.5min and let 

cool for about 5 2 min after letting out the hot air under the 

glass & replacing it) 

vi. 460mJ/cm
2
 exposure = 88s @5.3mW (100s @4.1mW/cm

2
) 

1. 256s @ 1.8mW. 242s @1.9mW (4.04min) 

Apply the SU-8 front mask 

 

Appendix Figure R-2: SU-8 Front mask 
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SU-8 is a negative photoresist, so the area of the mask which passes light through = the 

area where SU-8 is strengthened and will remain on the surface after development. 

 

Here is the SU-8 mask overlaid on the metal mask: 

 

Appendix Figure R-3: SU-8 mask overlaid on the metal mask 

Notice that the metal mask blocks more area around the wings than the SU-8 mask does.  

Since the SU-8 mask around the wings is nominally coincident with the release mask (and 

therefore the ultimate wings themselves), this is so that the metal doesn't extend to the 

edges of the wings, in order to prevent high voltages from arcing through the air at the 

edges, since air has a lower breakdown field than quartz does.  This would also work if 

the SU-8 covered the entire surface (except the circles at the top and bottom to allow 

access to the contact pads), but would then require a longer wing-release RIE to etch 

through the quartz and the SU-8. 
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vii. 3.5min PEB @ 107
o
C HP setting (As per soft bake.  Did 3.5 minutes 

for actual bake, then 9 minute cool). 

viii. Develop, 2.5min, swirl during, then rinse in IPA, then blow dry. 

(Developed for 4.5 minutes) 

ix. HB: 185
o
C setting, 30 minutes. 

1. Gradually rose temp to 185 over 6 3 minutes, then left at 

temperature for 32 27 minutes before turning off.  Took off hot 

plate 5 (0 for _17, 3 for _18) min later. 

b. and measure on alpha stepper & micrometer. 

i. Alpha stepper measures:  

1. _17: 7.9, 8, 7.6, 7.8 

2. _18: 8, 7.8, 7.8  

ii. Micrometer:  

1. _17: 104um. 

a. Etch depth measured as 96microns.  So, if that’s to be 

believed, then the quartz is 8microns thick at the end. 

b. QSU8_17 was etched to 7.5 & 9.5 microns for the two 

different wings. 

c. Optical profilometry found --> 7.513 um. 

iii. Micrometer _18: 106-109um; 111-114 incl. the PR.  (Measured 

12/12/2011 2:46 PM).  Wing thickness measured as 11-12um (in 

CCEM pictures) 

1. If wing pictures thickness are to be believed, and SU8 is still 

8um, then quartz is about 4um. 

2. But there's some problems with this: 

a. I've lost the CCEM pictures that made that 

measurement. 

b. The alpha stepper and RIE predictions for the thinning 

etch done suggest a removal of 96.3m.  A 104um 
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original wafer would make a thickness of 7.7um.  7.7um 

gives exactly the right kind of curvature in WA2 (as of 

24/02/2012 1:50 PM) of about 83
o
. 

 

Appendix Figure R-4: Sample QSU8_14 after SU-8 patterning 

3. Thin the quartz from the bottom side with RIE 

a. RIE log recipe for QSU8_17, (90% Ar) 

Date Run 
Time  

SF6 
flow 
rate  

Ar 
flow 
rate  

P Pwr VBias VPP Load: Tune: 

 h [sccm] [sccm] [mTorr] [W]  [V] [V] [V] [V] 

2011-
08-26 

6.55 1.793 16.4 15 300 705 2110 40.8 60.6 

2011-
08-27 

15.47 1.793 16.4 13 300 706 2110 40.8 60.9 

2011-
08-27 

14.68 1.793 16.4 13 300 706 2110 40.8 60.9 

2011-
08-28 

0.867 1.793 16.4 14 300 702 2100 41 60.9 

 Total: 37.57                 
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Appendix Figure R-5: Bottom mask 
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Appendix Figure R-6: Bottom mask overlaid on the metal mask 

 

The quartz thinning mask is actually not a photomask but a shadow mask made from 

fused silica by milling this pattern by hand. 
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Appendix Figure R-7: The back of QSU8_17 prior to back-metallization illustrates the importance of 

proper mask alignment 

4. Metallize the back side 

a. There is no mask for this step; rather, the back side is metallized uniformly in 

a low vacuum (300mTorr?) sputtering system to encourage coating the 

sidewalls of the etched quartz regions in order to make electrical contact to the 

bottoms of the wings. 

b. QSU8_17 back metallize: 25 August 2011, in clean room 

i. Thickness was 25nm Cr, 150nmAu. 

c. QSU8_18 back metallized on 12 Oct 2011 with QSU8_19's front 

metallization: 

i. Cr: 10nm, Au: 100nm 
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Appendix Figure R-8: After metallizing the back of QSU8_17 (bottom) and the fronts of QSU8_18 & 

19 

5. RIE release the wings 

 

Appendix Figure R-9: Release mask 
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The release mask, Appendix Figure R-9, is a shadow mask made of nickel using waterjet 

cutting.  As the release etch is a through-etch, there's no final surface so the surface 

quality is irrelevant and nickel shadow masking is preferable to quartz shadow masking 

for two reasons: ease of mask fabrication and longevity of mask in RIE. 

 

 

Appendix Figure R-10: Sample QSU8_17 after release 
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Appendix S Optical profilometry of QSU8_17a 

Thickness measures of parts of the wings were accomplished several ways: 

1. Contact profilometry,  

2. Micrometry, 

3. Measured etch rate multiplied by etch time, and 

4. Optical profilometry. 

 

The measured etch rate was reliant on the aggregate of many etches with the same 

parameters and so is typically less justified than an individual measurement, except where 

large errors are possible.  Optical profillometry was the most reliable measurement 

technique, and also the least invasive.  Optical profilometry was accomplished with a 

ZYGO New View profilometer.  Unfortunately, the software supplied with the 

interferometer, MetroPro, was not sufficient for simultaneously correcting for curvature 

and tilt or averaging several specific measurements, so I wrote a separate MATLAB 

program to manually parse its data and accomplish this. 

 

In this section I demonstrate this program by in turn examining 3 sections of the 

completed QSU8_17: 
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Appendix Figure S-1: Examined sections of QSU8_17 using optical profilometry 

Section S.1 QSU8_17: Section #1 

Section #1 is useful for determining the index of refraction of the SU-8; it does this by 

measuring a distance to gold through SU-8, another to gold through air, and a third to the 

SU-8 surface. 

Here is the image of the processed data produced by MetroPro: 
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Appendix Figure S-2: Measuring the SU-8 thickness with MetroPro 

There are 3 areas of interest here: 

1. Top left: Gold with no SU-8 on top of it. 

2. Bottom leftish strip: gold with SU-8 on top of it 

3. Top right: SU-8 directly on quartz. 

 

Appendix Figure S-3: Subsection labels 
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Because the thin gold surfaces in regions 1 & 2 are much more reflective than the quartz 

and SU-8 surfaces, we conveniently have a top-surface reflection at region 3 and a 

subsurface reflection at region 2.  Therefore, the SU-8 height is the difference between 1 

& 3, and the SU-8 index of refraction comes from the extra depth that region 2 appears 

compared to region 1 (once we know the SU-8 thickness). 

 

To do these measurements, use this set of inputs for the ZygoProc program: 

%ASCII file to read: 

DatFileName='QSU8_17_Su8_Gold_1.asc'; 

Data3dPlot=0; 

%Tilt correction points 

RawDataPlot=0; 

RawDataContourNumber=20; 

xFitPoints=275+[-225 0 0 0];  %Dx move, then Dy move 

yFitPoints=200+[0 0 0 -198]; %Dx move, then Dy move 

  

  

%Points To Calculate Height At: 

TiltCorrectedPlot=1; 

TiltCorrectedContourNumber=100; 

xHeightPoints=[50,100,200,300,75,450, 600, 600, 265, 400, 544, 234, 208, 

506]; 

yHeightPoints=[350,400,175,100,90,275,275, 450, 385, 200, 20, 354, 390, 

16]; 

xHeightPoints2=xHeightPoints+2; 

yHeightPoints2=yHeightPoints; 

xHeightPoints3=xHeightPoints; 

yHeightPoints3=yHeightPoints+2; 

EtchCalcs = 0;  %Turn off etch rate calculations if this is not an etch 

depth test 
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Zygoproc.m uses 2 pairs of points and does a two-axis tilt-correction to remove the slope 

in x and y.  The points it used are marked with green asterisks in the figure.  Here is the 

result of using part of the SU-8 surface for this tilt correction: 

 

Appendix Figure S-4: Thickness measurements indicate the need for tilt-correction 

The large number of contour lines indicates that the SU-8 region was not a good choice 

for image calibration.  If instead we specify that the gold area is flat and we correct the tilt 

to that, then the height map is more believable: 
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Appendix Figure S-5: Sections measured after tilt-correction 

(The green asterisks are very faint.  We can tell wehre they are from the code presented at 

the start of the section: 

xFitPoints=275+[-225 0 0 0];  %Dx move, then Dy move 

yFitPoints=200+[0 0 0 -198]; %Dx move, then Dy move 

which is equivalent to: 

xFitPoints=[50,275,275,275];   %Dx move, then Dy move 

yFitPoints=[200,200,200,2]; %Dx move, then Dy move 

This specifies 4 points: (50,200), (275,200), (275,200), (275,2). 

The first 2 are for tilt-correction in x, while the second 2 are for tilt-correction in y.) 

 

Even better results come after doing a curvature correction: 

ZygoProc_CurvatureRemoval2d_2.m with input: 

%ASCII file to read: 

DatFileName='QSU8_17_Su8_Gold_1.asc'; 

Data3dPlot=0; 
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%Tilt correction points 

FitLowerLeft=[100,100]; 

FitUpperRight=[275,200]; 

NumberOfPointsPerFitLine = 5; 

  

%Points To Calculate Height At: 

TiltCorrectedPlot=1; 

TiltCorrectedContourNumber=100; 

xHeightPoints=[50,100,200,300,75,450, 600, 600, 265, 400, 544, 234, 208, 

506]; 

yHeightPoints=[350,400,175,100,90,275,275, 450, 385, 200, 20, 354, 390, 

16]; 

xHeightPoints2=xHeightPoints+2; 

yHeightPoints2=yHeightPoints; 

xHeightPoints3=xHeightPoints; 

yHeightPoints3=yHeightPoints+2; 

EtchCalcs = 0;  %Turn off etch rate calculations if this is not an etch 

depth test 

RawDataPlot=0; 

RawDataContourNumber=20; 
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Appendix Figure S-6: Array of points correcting for tilt and ccurvature 

This is from ZygoProc_CurvatureRemoval2d_2.m.  Green asterisks define the points used 

to fit a second-order polynomial. 

 

The reference point is marked with an 'R', point 2 is a check of the uniformity in this 

region (it should be the same height as the reference). 

Points 3-5: apparent depth of the gold under the SU-8 compared to the reference point 

(the same gold layer with no SU-8 on top). 

Points 6-8: far away SU-8 

Points 9-11: close SU-8 

Points 12-14: very close SU-8 

 

The program outputs this chart: 

Relative depths of each point, along with the average & stdev of all 3 colours 

for that point: 
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 P#      D1      D2      D3     Avg   StDev 

  #      um      um      um      um      um 

  2 -0.0177 -0.0164 -0.0190 -0.0177  0.0013 

  3 -4.9909 -4.9898 -4.9919 -4.9909  0.0011 

  4 -4.9873 -4.9866 -4.9885 -4.9874  0.0010 

  5 -4.9783 -4.9769 -4.9792 -4.9781  0.0012 

  6  7.5743  7.5638  7.5736  7.5706  0.0059 

  7  7.3857  7.3832  7.3896  7.3862  0.0032 

  8  7.3666  7.3641  7.3639  7.3649  0.0016 

  9  7.6037  7.6043  7.6057  7.6046  0.0010 

 10  7.5733  7.5700  7.5751  7.5728  0.0026 

 11  7.7200  7.7162  7.7165  7.7175  0.0021 

 12  7.6502  7.6478  7.6470  7.6483  0.0017 

 13  7.6413  7.6379  7.6350  7.6381  0.0032 

 14  7.7606  7.7600  7.7556  7.7587  0.0027 

(Each measure is actually 3 points very close together.  A high standard deviation here 

indicates a bad point was picked). 

Referring to the average column, the SU-8 thickness is the average of P# 6-14: 

8 7.58 0.13 mSUt    (using 1- as the uncertainty, i.e., 68% confidence that 

8 7.6 0.13SUt    if we had a normal distribution). 

 

And referring to the average of P# 3-5: 3:5 4.985 0.0066 mh    

 

(Notice that the gold under the SU-8 appears lower than the reference area.  In reality, 

they're the same height, and that gold just has SU-8 on top of it rather than air, giving it a 

longer optical path length.) 

 

The reflection off of the gold under the SU8 has an increased one-way optical path length 

compared to air by  1n t , where t is the thickness of the SU8.  Therefore, we'd expect 

that relative to the reference, the height of P# 3-5 should be: 



S-163 

 

 

 
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therefore  

4.98547 0.006615
1

7.584633 0.133818

1.657 0.012

n

n


 



 

 

 

That's reasonable.  Compare with the MEMS page on SU8 [81], SU-8's index of 

refraction is listed as between 1.575 and 1.8 depending on processing conditions.  It's 

reasonable that SU-8 2000 would be in this range as well.

Section S.2 QSU8_17: Section #1, second scan 

As a check, scan a part of the the gold-under-SU-8 farther away from the contact pad. 

 

%ASCII file to read: 

DatFileName='Su8_Gold_1.asc'; 

Data3dPlot=0; 

%Tilt correction points 

FitLowerLeft=[200,100]; 

FitUpperRight=[450,400]; 

NumberOfPointsPerFitLine = 5; 

  

%Points To Calculate Height At: 

TiltCorrectedPlot=1; 

TiltCorrectedContourNumber=100; 

xHeightPoints=[165,167,170,170,288,292,297,100, 50, 75, 25,    550, 550, 

600, 600]; 

yHeightPoints=[238,238,261, 262, 107,102,95,250, 50, 400, 125, 050, 450, 

200, 300]; 

xHeightPoints2=xHeightPoints+2; 



S-164 

 

yHeightPoints2=yHeightPoints; 

xHeightPoints3=xHeightPoints; 

yHeightPoints3=yHeightPoints+2; 

EtchCalcs = 0;  %Turn off etch rate calculations if this is not an etch 

depth test 

RawDataPlot=0; 

RawDataContourNumber=20; 

  

PointsToAverage = 8:15; 

 

 

Appendix Figure S-7: Curvature corrected gold bridge 

 

 

 

Relative depths of each point, along with the average & stdev of all 3 

colours for that point: 
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 P#      D1      D2      D3     Avg   StDev 

  #      um      um      um      um      um 

  2 -0.0009 -0.0026 -0.0004 -0.0013  0.0011 

  3  0.0025  0.0011  0.0030  0.0022  0.0010 

  4  0.0027  0.0016  0.0035  0.0026  0.0010 

  5  0.0007 -0.0000  0.0000  0.0002  0.0004 

  6  0.0019  0.0008  0.0017  0.0015  0.0006 

  7  0.0022  0.0015  0.0005  0.0014  0.0009 

  8 12.4831 12.4850 12.4853 12.4844  0.0012 

  9 12.6114 12.6088 12.6086 12.6096  0.0016 

 10 12.4278 12.4284 12.4289 12.4284  0.0006 

 11 12.5443 12.5470 12.5466 12.5460  0.0014 

 12 12.6821 12.6817 12.6798 12.6812  0.0013 

 13 12.6980 12.7035 12.6984 12.7000  0.0030 

 14 12.6695 12.6705 12.6689 12.6697  0.0008 

 15 12.6868 12.6896 12.6862 12.6875  0.0018 

 

Averaging these points:     2     3     4     5     6     7 

 

find 

mean = 0.00110084 um, stdev = 0.00144373 um 

 

Averaging these points:     8     9    10    11    12    13    14    15 

 

find 

mean = 12.6008 um, stdev = 0.103452 um 

 

Thus, the optical path one-way through the SU-8 is 12.6 0.1  m.  Dividing by the index 

of refraction (found to be 1.657 0.012n    in the previous section) gives the SU-8 

thickness measure: 

8 7.60 0.12SUh    m.
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So then, the SU-8 thickness here is effectively the same as measured right next to the 

contact pad. 

Section S.3 QSU8_17: Section #2 

 

Appendix Figure S-8: MetroPro output for section #2 

This one contains thickness info for the good pair of wings on QSU8_17.  PV indicates a 

height of only 12 m.  And that's compared to the Gold surface!  Can use the index of 

quartz to find the quartz thickness for this one. 

 

%ASCII file to read: 

DatFileName='QSU8_17_Su8_Gold_2.asc'; 

Data3dPlot=0; 

%Tilt correction points 
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RawDataPlot=0; 

RawDataContourNumber=20; 

xFitPoints=[284,286,286,286];   %Dx move, then Dy move 

yFitPoints=[101,101,101,99]; %Dx move, then Dy move 

  

%Points To Calculate Height At: 

TiltCorrectedPlot=1; 

TiltCorrectedContourNumber=40; 

xHeightPoints=[284,286,282,300,288,292]; 

yHeightPoints=[100,98,101, 95, 107,102]; 

EtchTimes=[5,13.5,6,8.5]; %Times of each etch, in hours 

EtchNumberManualSpec=[0 1   1   9   9   11  11  15  15]; 

 

 

Appendix Figure S-9: Tilt-correction image reveals that the surface is very  curved 
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Appendix Figure S-10: Close-up measure of the step depth nevertheless can determine thicknesses 

Abs height at the reference point(284,100) = 1.59892e-005m 

Relative height of point #2 @(286,98) = -0.00141724microns 

Relative height of point #3 @(282,101) = 0.00177306microns 

Relative height of point #4 @(300,95) = -11.5623microns 

Relative height of point #5 @(288,107) = -11.91microns 

Relative height of point #6 @(292,102) = -11.7224microns 

So, if positions 5 & 6 are most representative, being the closest, then the extra path length 

was about 11.65um, or (with n = 1.544), 7.5453m. 

 

 

Moving the ref closer to 4, 

%ASCII file to read: 

DatFileName='QSU8_17_Su8_Gold_2.asc'; 

Data3dPlot=0; 
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%Tilt correction points 

RawDataPlot=0; 

RawDataContourNumber=20; 

xFitPoints=[284,286,286,286];   %Dx move, then Dy move 

yFitPoints=[101,101,101,99]; %Dx move, then Dy move 

  

%Points To Calculate Height At: 

TiltCorrectedPlot=1; 

TiltCorrectedContourNumber=40; 

xHeightPoints=[295,286,282,300,288,292,297]; 

yHeightPoints=[91,98,101, 95, 107,102,95]; 

EtchTimes=[5,13.5,6,8.5]; %Times of each etch, in hours 

EtchNumberManualSpec=[0 1   1   9   9   11  11  15  15]; 

 

Appendix Figure S-11: Another measure of step depth 

 

Abs height at the reference point(295,91) = 1.59961e-005m 
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Relative height of point #2 @(286,98) = -0.00823892microns 

Relative height of point #3 @(282,101) = -0.00504863microns 

Relative height of point #4 @(300,95) = -11.5691microns 

Relative height of point #5 @(288,107) = -11.9168microns 

Relative height of point #6 @(292,102) = -11.7292microns 

Relative height of point #7 @(297,95) = -11.5973microns 

 

So, maybe the height was closer to 11.5973.  11.6 gives 7.513m. 

Section S.3.1 Redo: 

%ASCII file to read: 

DatFileName='QSU8_17_Su8_Gold_2.asc'; 

Data3dPlot=0; 

%Tilt correction points 

FitLowerLeft=[270,75]; 

FitUpperRight=[285,95]; 

NumberOfPointsPerFitLine = 5; 

  

%Points To Calculate Height At: 

TiltCorrectedPlot=1; 

TiltCorrectedContourNumber=100; 

xHeightPoints=[295,286,282,300,288,292,297]; 

yHeightPoints=[91,98,101, 95, 107,102,95]; 

xHeightPoints2=xHeightPoints+1; 

yHeightPoints2=yHeightPoints; 

xHeightPoints3=xHeightPoints; 

yHeightPoints3=yHeightPoints+1; 

EtchCalcs = 0;  %Turn off etch rate calculations if this is not an etch 

depth test 

RawDataPlot=0; 

RawDataContourNumber=20; 

  

PointsToAverage = 4:7; 
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Appendix Figure S-12: Redoing the step depth after curvature correction as well 

 

Output: 

Averaging these points:     4     5     6     7 

 

find 

mean = -11.6967 um, stdev = 0.153815 um 

 

Using the x-cut quartz index of refraction of n = 1.544, this means tQ = -11.6967/1.544 =  

7.575583 : 

7.6 0.10Qt    m. 

Compared with: 

Micrometer measure:  original thickness = 104. 

Etch depth measured with alpha stepper: 96  t = 8 m. 
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Etch depth calculated from calibrated etch rate and etch time: 96.2m  t = 7.8 m.
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Appendix T Torsion Bar Theory & Setup 

Section T.1 Spring Constant in Torsion 

The twisting angle of a wire of length Lwire is directly proportional to the length and the 

torque applied and inversely proportional to the shear modulus (

   2 1 0.332 1

y y

yz

yz

E E
G


 


) and torsion constant (

4

2

r
J


 ): 

wire wire
wire

L L

JG JG
      , where wire  is the torque applied by the wire to counter this 

torque   on the wire [82]. 

Therefore, the "torsional spring constant" of the wire is 

4

2

wire

wire wire

r GJG

L L


   , and    . 

Section T.2 Resonance calibration of spring constant 

A "torsion bar" is a bar suspended at the end of a wire for measuring small forces by the 

angles they produce.  The components that make up the spring constant of a coaxial wire 

used for suspension are difficult to measure directly, but fortunately an alternative is to 

measure the moment of inertia (by measuring the masses of components of the torsion bar 

and their location relative to the suspension point) and the natural resonant frequency of 

the bar. 

 

Moment of Inertia: 

When such a bar is suspended from a wire, the moment of inertia of the bar dominates: 

2
2 2 2

1 1 2 2
12

bar bar
wire bar bar bar offCentreSuspension

m L
I I I I m x m x m x         

where 
2

offCentreSuspensionx  is how far off the centre of the bar the suspension wire is connected 

(applying the parallel axis theorem), and 2

i im x  is the MoI contributed by a point mass im  

located a distance ix  from the suspension point. 
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(e.g., for a bar suspended from the centre with equal masses endm  on each end: 

22

2
12 2

bar bar bar
bar end

m L L
I m

 
   

 
) 

 

Resonant Frequency: 

Newton's 2nd law says: I  .  In the natural resonant case (no forcing), the torque on 

the bar is proved by the wire:    , so that: 

barI    

This has the solution: 0 0sin TBt   , where the natural angular frequency of the torsion 

balance is 
0TB

barI


  . 

Therefore, 2

0bar TBI  . 

Section T.3 Wing movement from Laser Spot Movement: 

Account for piezo movement: technically, spotx  is the spot displacement relative to the 

psd (which is on a piezo stage).  Since the psd is moving too, the spot movement relative 

to the table (left = positive) is  

0spot spot piezox x x    , 

where piezox  is the psd movement relative to the table (due to its piezo actuators, left = 

positive) 

These two displacements are found from: 

1. 
psd

spot

psd

V
x




   

2. 1 2piezox PiezoX PiezoX      (The reason for the sign is in the piezo control 

part of the PTBC program: 

self.c1 = -position_correction/2. #Higher axis 1 number = moves the 

stage to the left = moves the beam to the right = lower Vpsd 
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self.c2 = position_correction/2. #Higher axis 2 number = moves the stage 

to the right = moves the beam to the left = higher Vpsd 

Therefore: 

1. Beam moves right = lower Vpsd. 

2. When wing moves right, beam moves left  

--> This is why I define positive as left at the detector and right at the wing, so that:  

1

0

1

1

1
1 2

wing

spot

beam

spot piezo

beam

psd

beam psd

x x

x
x

L

x x
x

L

Vx
PiezoX PiezoX

L





  




  


 
     

 

 

Section T.3.1 Application: Cropping images by predicted wing position 

Recipe for calculating the pixel shift of the on-pic: 

Shift of on-pic to align it = position of off pic relative to on pic 

1
1 2 /

1 20.28m
26.2px

0.854m 2.151215V mm

psd

wing px mm

beam psd

psd

wing

Vx
x PiezoX PiezoX

L

V PiezoX PiezoX
x




 
       

 

  
   

 

 

Where: 

1

2

1 1

2 2

psdV OffPicVpsd OnPicVpsd

PiezoX OffPicPiezo OnPicPiezo

PiezoX OffPicPiezo OnPicPiezo

  

  

  

 

Section T.4 Force Measurement  

Voltage from laser spot movement: 

The angle is actually measured by the movement of a laser spot on a split photodiode.  

This puts out a voltage signal into the multimeter (after additional amplification and 
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relative differencing) is linearly proportional to the displacement of the spot centre: 

spd spd spotV x    (and independent of the spot intensity, thanks to the relative 

differencing). 

To determine 
spd , we can piezoelectrically move the detector a known displacement and 

record the voltage change. 

 

Laser spot movement from angle: 

For a laser beam reflecting off of a mirror at the centre of the torsion bar and then 

travelling a distance beamL  before making a spot on a detector, the spot movement is 

(using the small angle approximation sin tan    ) linearly related to the torsion 

angle: spot beamx L     

 

Angle Measurement 

Therefore, 
spot spd

beam beam spd

x V

L L




 
    

 

Force Measurement 

The force F produced by a wing at the end of the torsion bar generates a torque given by 

1x F   (where 1x  is the distance from the support to the end of the bar; for a symmetric 

bar-mass setup, 1 / 2barx L ). 

And the torque produces an equilibrium angle balanced by the restoring torque: 

1x F     

Therefore, the force is: 
2

0

1 1

spdbar TB

beam spd

VI
F

x x L







    

(For convenience, define FbyVspd spdF V  ) 

 

Measurements required and how to do them: 
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1. Ibar: 

a. Measure mass of bar 

b. Measure mass of each mass at the ends of the bar 

c. Measure distance off-centre that the bar is supported at. 

i. 
1

2

bar
offCentreSuspension

L
x x   

2. Lbeam: use a meter stick 

3. spd : piezoelectrically move the detector a known distance and measure the 

change in the output voltage signal. 

4. 0TB : sweep frequency of modulation of the wing signal and determine the 

resonant frequency of the bar. 

 

Modulation of the Wing Signal 

The signal applied to the wings when they are actuating is    sin 2on ampV t V ft .  (f is 

not necessarily the wings' resonant frequency if doing a frequency response sweep) 

The wings are not always actuating:  In order to isolate the output signal from the wing 

force, the wing signal is modulated by a square wave of period Tmod: 

   wing on

t
V t square V t

T

 
  

 
 

where  
1, mod1 0.5

0, mod1 0.5

t
square t

t


 


, and the modulo function means: modx y   the 

remainder of /x y . 

 

The output signal is  

      
1 1

, ,spd wing wing wing amp

FbyVspd FbyVspd

t
V t F V t f F V f square

T


 

 
    

 
  

(the torsion bar cannot respond to the instantaneous force on the wing, only to the net 

force produced on average over many flap cycles.  Hence, on the time-scale of the torsion 
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bar's response, the force produced by the wings when they're being flapped depends on 

the frequency f and amplitude of the actuation voltage 
ampV , but not on the instantaneous 

actuation voltage  onV t ). 

Therefore, the output is also be a square wave (possibly with a phase lag   due to the 

torsion bar's response time).  The force produced by an amplitude 
ampV  when the wing is 

on is FbyVspd  times the peak-to-peak amplitude of spdV  (or equivalently 2 times the 

amplitude of spdV ). 

 

Demodulation of the output signal: 

Really, the output signal is due to the force, and noise: 

 
 

 
,wing amp

spd

FbyVspd

F V f t
V t square Noise t

T




 
    

 
 

A modulation-demodulation square wave filtering at the frequency of interest can 

eliminate the noise and reproduce the amplitude of the drive signal as follows: 

spdAmp Filtered IPAvg OPAvgV v v v    

And has a phase of  arctan /OPAvg IPAvgv v  . 

The peak-to-peak signal on the split photodiode is 2spd spdAmpV V  , and so therefore: 

 , 2 2wing amp FbyVspd spdAmp FbyVspd FilteredF V f V v    

 

Section T.5 Summary: 

The force output by the test structure is:  , 2wing amp FbyVspd FilteredF V f v  

where 

2

0

1

1bar TB
FbyVspd

beam spd

I

x L





  is the force per voltage reading out of the circuits after the 

PSD: position sensitive detector. 
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Filtered IPAvg OPAvgv v v   is the demodulated voltage reading 

and     2 1IP spd

t
v t V t square

T

  
     

  
,     2 0.25 1OP spd

t
v t V t square

T

  
      

  
 

are the in-phase and -90
o
-out-of-phase modulated voltage readings. 

 

The components of the voltage to force gain are: 

1. Ibar: moment of inertia of the torsion bar, 

2
2 2 2

1 1 2 2
12

bar bar
bar bar offCentreSuspension

m L
I m x m x m x      

a. Measure mass of bar barm  

b. Measure mass of each mass at the ends of the bar; 1 2,m m  

c. Measure distance off-centre that the bar is supported at: offCentreSuspensionx  

(positive means the support is closer to the active arm) 

i. 
1

2

bar
offCentreSuspension

L
x x   (If the suspension is left of the bar's 

centre, that's a negative offCentreSuspensionx  and a larger x1) 

2. Lbeam: distance from mirror to split-photodiode detector;  

a. measure with a meter stick 

3. 0TB : torsion bar resonant frequency;  

a. sweep frequency of modulation of the wing signal and determine the 

resonant frequency of the bar. 

b. Or record the output with no input and fit a sine wave to it to determine the 

frequency (count peaks, divide by time) 

4. spd : rate of voltage signal change out of the split photodiode circuit with respect 

to laser spot position change; [V/m] 

a. piezoelectrically move the detector a known distance and measure the 

change in the output voltage signal voltage: 
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i. 
spd

spd

spot

V

x






 

b. Modulate the piezo input signal with a peak-to-peak value of 

2spotPP spotAmpx x   , and this leads (after processing as in the force 

measurement) to a demodulation signal of  

i. 

Filtered spd spotAmp

Filtered
spd

spotAmp

v x

v

x





 

 


. 
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