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Abstract

Solar energy is a clean and abundant renewable energy source which is currently used in

many types of photovoltaic (PV) designs. In practical PV systems, solar panels are used to

harvest solar energy and convert it into a usable form of electricity. Due to the intermittent

nature of solar energy input however, battery storage, in combination with solar panels,

must be used to provide an uninterrupted source of power.

The process of assigning solar panel and battery configurations for a PV system is re-

ferred to as energy resource provisioning. Unfortunately, energy provisioning costs are

still relatively high, and this is one of the main obstacles that inhibits the adoption of solar

power for many applications. These costs however, can be substantially reduced through

cost-efficient resource provisioning methods. The focus of this thesis is on the development

of efficient algorithms and energy management methods that will reduce energy provision-

ing costs in solar powered systems.

First, we consider resource provisioning in solar powered wireless mesh networks. In

practical solar powered systems, there are usually restrictions in the way that the mesh

nodes can be positioned, and this results in a time-varying and node-dependent attenuation

of the available solar energy. Unfortunately, conventional resource provisioning methods

cannot take this into account and therefore the deployed system may be unnecessarily ex-

pensive. In this part of the thesis, the resource provisioning problem is considered from this
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point of view. We first review conventional resource provisioning mechanisms and give an

example which shows the value of introducing positional solar insolation awareness. A Po-

sition Aware Provisioning (PAP) algorithm is then introduced that takes known positional

variations into consideration when performing the energy provisioning. Simulation results

show that reductions in total network provisioning cost can be obtained using the proposed

methodology compared to conventional algorithms.

In the second part of the thesis, we consider communication infrastructure that is oper-

ated from the power grid with a solar powered addition. Resource provisioning and energy

management algorithms are introduced to minimize the capital expenditure (CAPEX) and

operating expenditure (OPEX) costs. We first derive lower bounds on the costs using a

linear programming (LP) formulation where solar components are sized using solar insola-

tion and projected loading data. A variety of different node configurations are considered.

Three energy scheduling algorithms are then introduced to optimize online OPEX costs,

namely, Grid Purchase Last (GPL), Solar Load Optimization (SLO) and Solar Load Sim-

ulation (SLS) algorithms. Simulation results show the extent to which a solar powered

add-on can reduce total cost.

Finally, we consider solar powered systems where part of their energy demands are de-

ferrable, up to some maximum tolerable delay. The objective is to exploit the flexibility of

deferrable energy demands in a way that decreases the total provisioning cost. A mixed in-

teger linear optimization program is derived which gives a lower bound on the provisioning

cost. A Delay Aware Provisioning (DAP) algorithm is then proposed to determine practical

cost-efficient energy provisioning. The performance of DAP is compared to the provision-

ing bound and the conventional Stand-alone Node Provisioning (SNP) algorithm. Results

are presented which show the significant provisioning cost savings that can be obtained.
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Chapter 1

Introduction

1.1 Overview

Solar energy is a promising alternative compared to non-renewable and fossil fuel energy

sources. Due to the nature of solar energy however, a combination of solar panels and bat-

tery storage must be used to exploit solar energy in most practical applications. The process

of assigning solar panel and battery configurations to a photovoltaic node is referred to as

energy resource provisioning. Unfortunately, solar panels and batteries are still relatively

expensive, and for this reason, these costs are often an impediment to the use of solar energy

in many applications. In this thesis we consider methods for decreasing the provisioning

costs in wireless solar powered mesh networks and solar powered infrastructure.
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1.2 Energy Provisioning in Stand-alone and Grid-Connected

Solar Powered Networks

We focus on solar panel positioning in wireless solar powered mesh networks, nodes that

are powered by a combination of solar and power grid energy, and solar powered nodes

that have deferrable energy demands. In these types of systems we present provisioning

algorithms which can decrease the costs of solar powered implementations. The proposed

methods are summarized as follows.

• In the first part of the thesis, solar node positioning in wireless solar mesh networks

is considered. In practical systems there are usually restrictions in the way that the

solar nodes can be positioned, and this results in a time-varying and node-dependent

attenuation of the available solar energy. Unfortunately, conventional resource pro-

visioning methods cannot take this into account and therefore the deployed system

may be unnecessarily expensive. In this part of the thesis, we consider the resource

provisioning problem from this point of view. We first give an example which shows

the value of introducing positional solar insolation awareness. A provisioning al-

gorithm is then introduced that takes known positional variations into consideration

when performing the energy provisioning. Compared with conventional methods,

this takes the relative costs of provisioning each node into account when satisfying

the desired design load objective. A variety of results are then presented which show

that reductions in total network provisioning cost can be obtained using the proposed

methodology compared to conventional algorithms. The proposed algorithm also

performs very well compared with a linear programming formulation which gives

lower bounds on the node resource provisioning cost assignments.
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• In the second part of the thesis we consider solar powered communication infrastruc-

ture. This type of infrastructure is already common in situations where conventional

power grid connections are unavailable or prohibitively expensive. The cost of solar

power components will eventually decrease to the point where they can be routinely

used as an add-on for infrastructure that is operated from the power grid. In this part

of the thesis, we consider the operating and capital expenditure costs of providing

these types of solar powered additions. The capital expenditure (CAPEX) costs are

those associated with provisioning the solar power components and are selected us-

ing an offline design optimization. Once the solar add-on is designed and deployed,

the node starts its online operation phase where it incurs ongoing operating expen-

diture (OPEX) costs. These costs are associated with the purchase of power grid

energy when the node is running an online energy scheduling algorithm. We first de-

rive lower bounds on the costs using a linear programming (LP) formulation, where

the solar power components are sized using historical solar insolation traces and pro-

jected loading data. Different node add-ons are considered, which result in various

configurations, including, solar panel/battery/grid (PBG), solar panel/grid (PG), and

battery/grid (BG) scenarios. Three energy scheduling algorithms are then introduced

to optimize online OPEX costs, namely, Grid Purchase Last (GPL), Solar Load Op-

timization (SLO) and Solar Load Simulation (SLS) algorithms. A variety of results

are presented that show the extent to which a solar powered add-on can reduce total

cost. These results also show that the SLO and SLS algorithms give results that are

close to the lower bounds in many situations. The case where revenue can be derived

from returning unused energy to the power grid is also considered.

• Finally, in the last part of the thesis, the energy provisioning problem is considered
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for solar nodes that have deferrable energy demands. The objective is to reduce the

capital cost of a stand-alone solar powered system via management of its energy

consumption. Energy demand is split into either “non-deferrable” or “deferrable”

components. While non-deferrable demands are defined as the part of the load that

must be satisfied immediately, deferrable demands are those that are delay tolerant,

i.e., they do not need to be satisfied immediately upon their request and their activa-

tion time can be delayed from several minutes to several hours. The offline problem

is formulated using a Mixed Integer Linear Programming (MILP) optimization. A

realizable algorithm called Delay Aware Provisioning Algorithm (DAP) for offline

provisioning is then introduced. Simulation results indicate that using the proposed

algorithm will lead to a significant improvement in the total provisioning cost.

1.3 Thesis Organization

This thesis is organized as follows.

Chapter 2 introduces the fundamentals of solar energy and photovoltaic systems. The

process of solar energy creation is presented starting from the creation of photons in the

Sun to converting solar radiation to electrical power in the solar panels. The components

needed to harvest and use solar energy are also discussed.

In Chapter 3 the problem of solar node positioning and its effect on the total network

provisioning cost is considered. The motivation for the Position Aware Provisioning (PAP)

algorithm is presented, and the problem is formulated via a linear optimization. Two sim-

plified versions of energy aware provisioning, called IEAP and LAP are presented, and the

conventional Shortest Path Provisioning (SPP) algorithm is introduced. The performance

of the PAP algorithm is compared with SPP, IEAP, LAP and the provisioning bound using

4
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computer simulation.

In Chapter 4 energy provisioning and operating costs in hybrid solar powered infras-

tructure is considered. An optimization problem is formulated for different configurations,

and three online energy scheduling algorithms named GPL, SLO and SLS are presented.

Extensive simulation results evaluate and compare the performance of the proposed online

scheduling algorithms and the provisioning bound.

The last contribution of the thesis is presented in Chapter 5 where solar powered nodes

with deferrable energy demands are considered. The problem is formulated through a

mixed integer and linear program, and the Delay Aware Provisioning (DAP) algorithm is

introduced. The performance of DAP is compared with the conventional Stand-alone Node

Provisioning (SNP) algorithm using several simulation experiments.

The conclusions of the thesis and possible future work are given in Chapter 6.

5



Chapter 2

Background

2.1 Introduction

In this chapter an overview is presented of solar radiation, photovoltaic (PV) technology,

and some solar powered applications. The chapter starts with an introduction to the fun-

damentals of solar energy, followed by an overview of photovoltaic cells. It then explains

the basics of the photovoltaic effect, and briefly discusses some of the other components

needed for practical PV systems. Finally, stand-alone and power grid connected PV sys-

tems are considered, including a discussion of solar powered wireless mesh networks.

2.2 Solar Energy Fundamentals

The Sun is the most abundant and sustainable source of energy, and provides over 150,000

TW of power to the Earth. About half of this power reaches the Earth’s surface, and the

rest is absorbed or reflected back into outer space. However, only a small fraction of this

amount would be enough to satisfy world-wide energy demands (Camacho et al., 2012).

6



P.h.D. Thesis - M. Sheikh Zefreh McMaster - Electrical & Computer Engineering

Sun

Atmosphere

Figure 2.1: Energy Divergence from the Sun to the Earth

The Earth receives its solar radiation from nuclear fusion reactions accruing at the core

of the Sun, where hydrogen atoms are fused into helium. The Sun’s core is mostly com-

posed of helium (65%), while hydrogen is reduced to 35% because of it’s consumption in

fusion reactions. The intense gravity at the core of the Sun provides a large enough force

for these fusion reactions, which results in a conversion rate of about 700 million tons of

hydrogen to helium each second. This results in a 15 million degree Celsius core tempera-

ture. At these temperatures, photons are emitted, and it takes about 100,000 years for them

to reach the surface of the Sun, but only 8 minutes to travel the 149.6 million kilometers to

the Earth (Camacho et al., 2012).

The rate at which solar energy reaches a unit area at the Earth is called solar irradiance

or solar insolation and is measured in W/m2. The integral over time of solar irradiance is

called solar radiation or solar irradiation and is measured in J/m2. Often, solar irradiance

is also referred to as solar radiation with the same units (W/m2) (Camacho et al., 2012).

The solar energy outside the atmosphere is called extraterrestrial radiation. Since the
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total power emitted by the Sun’s surface is about 63.3 MW/m2, and considering the ra-

dius of the Sun and its average distance with the Earth, the extraterrestrial radiation power

falling on 1 m2 of surface area is 1367 W which is known as the solar constant (Figure

2.1)(Camacho et al., 2012).

When the solar radiation passes through the Earth’s atmosphere, it is attenuated by

reflection into space, absorbtion in the atmosphere, and scattering. The direct component

of the solar radiation and the scattered component that reaches the Earth’s surface are called

direct solar radiation and diffuse radiation, respectively. To measure the received solar

radiation on the Earth’s surface, Air Mass 1.5 standard (AM1.5) is defined by the American

Society for Testing and Materials (ASTM). In addition to defining the parameters for the

atmosphere’s impurity, the standard assumes that the receiving surface is an inclined plane

at a 37o tilt toward the equator, and the solar zenith angle is 48o19′. (Stine and Geyer,

2001), (Paulescu et al., 2013).

2.3 Photovoltaic Cells

Solar radiation can be converted directly into electricity using photovoltaic (PV) cells. PV

cells are constructed from a variety of semiconductors, but mostly from silicon (Si), cad-

mium sulphide (CdS), copper sulphide (Cu2S) and gallium arsenide (GaAs). Cells are

usually grouped into modules that produce electrical current when illuminated. A solar

panel is a set of solar modules that are electrically connected in series or parallel to pro-

duce larger voltages or currents, and are mounted on a supporting structure (Kalogirou,

2009). To understand the operation of PV cells we first briefly review the basics of semi-

conductors.

It is well known that atoms consist of a nucleus and its orbiting electrons. Electrons of
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an isolated atom, according to quantum mechanics, can have only specific discrete or quan-

tized energy levels and can occupy only certain orbits. Atoms have certain energy levels

called energy bands. Electrons are free to leave some energy bands, and they cannot leave

some others. The electrons in the valence band are the only ones that interact with other

atoms. Some electrons in the valence band may possess a lot of energy, which enables them

to jump into a higher band called the conduction band. These electrons are responsible for

the conduction of electricity and heat.

Silicon is an example of a semiconductor that has four electrons in its valance band, and

where each valance electron is bonded with a valance electron in the neighboring atoms. If

silicon is impurified (doped) with an element like phosphorus which has five valance elec-

trons, four of them are bonded with four valance electrons in the neighboring silicon atoms,

and the remaining electron orbits around the phosphorus nucleus at very low temperatures,

but diffuses through the crystal at ordinary temperatures. This creates an n-doped silicon

crystal. On the other hand, if silicon impurified by an element such as boron, which has

only three valance electrons, a p-type silicon is obtained. This incomplete bond has the

ability to capture an electron. The captured electron leaves behind a “positive hole” that

can be diffused through the crystal at ordinary temperatures. When n- and p-type semi-

conductors are joined together, i.e., a p-n junction is created, the excess electrons from the

n-type diffuse across the p-n junction to the p-side to fill the holes in the p-type material,

and the holes from the p-type material diffuse to the n-type side. The result is a net nega-

tive charge on the p-side and a net positive charge on the n-side of the p-n junction, which

creates an electric field across the junction (Kalogirou, 2009). Solar cells are made of a p-n

junction and can convert radiated solar energy into electrical current using the photovoltaic

effect which is briefly discussed in the following section.
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Figure 2.2: Photovoltaic Effect in a PV Cell

2.3.1 Photovoltaic Effect

When a photon hits a solar cell, it can be transmitted through the cell, reflected or absorbed.

If the photon is absorbed by a valence electron, its energy is increased by the energy of the

photon, and if this energy exceeds the band gap, the electron will jump into the conduction

band, where it can move freely. The electron can then be moved by the electric field across

the p-n junction, resulting in the flow of electrons, which will continue as long as the solar

cell is illuminated (Kalogirou, 2009).

The energy contained in a photon, Eph, is related to the wavelength of the light, λ, as

follows.

Eph =
hC

λ
(2.1)

where h is Planck’s constant and is 6.625×10−34 J.s, and C is the speed of light which

is 3×108 m/s (Kalogirou, 2009). If a PV cell is made of silicon, which has a band gap

of 1.11eV, from Equation (2.1), photons with a wavelength less than 1.12µm are useful

for creating electrical flow. Since the majority of solar energy that reaches the Earth is

concentrated in the spectrum with wavelengths ranging from 0.2 µm to 1.2 µm, it means
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that a significant amount of solar radiation can be converted into electricity. Note that when

a photon is absorbed by a valence electron, regardless of the intensity of the photon energy

relative to the band gap energy, only one electron can be freed. This is why photovoltaic

cells have a relatively low efficiency (Kalogirou, 2009).

2.3.2 Structure of PV Cells

A photovoltaic (PV) cell is mainly constructed of photovoltaic materials (p-n junctions),

metal grids, an anti-reflection coating and the materials that support the cell. Metal grids

in a PV cell are used to collect the electrical current. To minimize the reflection of sunlight

from the surface of PV cells, an anti-reflection coating is typically applied. As a result, PV

cells range in colors from black to blue.

The operating voltage of a single PV cell is about 0.5 V which is not usable for many ap-

plications. To generate a more useful voltage, PV cells are normally grouped into modules

and are encapsulated with various materials to protect the cells and electrical connectors

from environmental effects. PV modules can last for more than 25 years, and therefore

their supporting structures must be designed with this in mind (Kalogirou, 2009).

The efficiency of PV cells is defined as the ratio of the output power of the solar cell

to the incident light power. Efficiency is normally measured at a temperature of 25 oC and

with incident light with a solar irradiation of 1000W/m2. While the maximum theoretical

efficiency for a single-junction solar cell is about 33.7% (Shockley and Queisser, 1961),

this value for multi-junction types is 86.8% (Dimroth et al., 2005).
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2.4 Other PV System Components

In addition to solar panels, other components such as batteries, charge controllers and in-

verters are typically required for many PV applications. In the following an overview to

each of these components is presented.

The most common battery types that are used in PV systems are deep-cycle lead-acid

batteries. These can be divided into flooded or valve-regulated types. Flooded (or wet)

batteries generally need more maintenance than the valve-regulated versions, but with ad-

equate care, can last longer. Batteries in PV systems must often be able to accept repeated

deep charging and discharging, and although car batteries have the same appearance, they

are not designed for this type of use. Batteries can also be classified by their nominal ca-

pacity, which is the number of Ampere-hours (Ah) that can be maximally extracted from

the battery under certain discharge conditions. Battery efficiency, state of charge and life-

time are other important properties. The ratio of the charge extracted during discharge over

the amount of charge needed to restore the initial state of charge is defined as the battery

efficiency. State of charge of the battery is defined as the ratio of the present capacity of

the battery over the nominal capacity, and the lifetime of a battery is usually defined as the

number of charge-discharge cycles that the battery can sustain before loosing 20% of its

nominal capacity (Kalogirou, 2009).

Charge controllers are used in PV systems to protect the battery from over and un-

dercharging by regulating the power from the PV modules. Some charge controllers can

optimize the operating voltage of the PV module independently of the battery voltage so

that the PV can operate with maximum output power (Hansen et al., 2001).

PV modules produce direct current (DC), and therefore, a (DC-to-AC) inverter is re-

quired if the system has to provide alternating current. Similarly, an (AC-to-DC) inverter
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is needed if AC energy must be extracted from a power grid connection and stored locally.

In addition to transferring energy, inverters also adjust the voltage levels, e.g., most PV

modules provide DC power at 12 volts, whereas AC household power typically operates at

240 or 120 volts (Hansen et al., 2001).

2.5 Applications of PV Systems

The most common applications for PV systems include remote site electrification, pow-

ering remote monitoring devices, water pumping electric motors, charging electrical vehi-

cles, and powering wireless communication equipment. PV systems can be connected to

the power grid or they can be designed to operate independently. From this viewpoint they

can be categorized as stand-alone PV systems or power grid connected PV systems which

we discuss in the following sections.

2.6 Stand-alone PV Systems

Stand-alone PV systems are typically used in remote areas where there is no access to

the power grid, or when connecting to it would be very costly. In comparison with fuel

generators which can also be used in remote areas, PV systems are often preferred since

they are independent of a fuel supply, and require relatively low maintenance. In stand-

alone PV systems, the produced energy can be directly consumed (e.g., in water pumping

application), or it can be stored in batteries so that it can be used during times when there

is insufficient solar radiation (e.g., at night). A stand-alone PV system can also be operated

in conjunction with other stand-alone power sources such as fossil fuel (e.g., diesel fuel or

gas) or other types of renewable energies (e.g., wind) (Sayegh et al., 2008).
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2.6.1 Solar Powered Wireless Networks

Solar powered wireless networks, as examples of stand-alone PV systems, are emerging

in many wireless infrastructure applications. For example, the Green Wi-Fi organization

has launched several projects around the world whose aim is to bring Internet access to

schools in developing countries via solar powered networking (Green WiFi, 2011). In San

Fransisco, California, 1,100 solar powered Wi-Fi bus stops will be unveiled by 2013, and

in a similar project called Park Wi-Fi, which was run by the city of St. Louis Park in

Minnesota, 400 solar powered wireless access points were installed to implement a high-

speed Internet service delivered over a citywide wireless network (Pires, 2007). Google has

funded a project at the University of Nigeria to implement solar powered wireless access

to provide internet access to 40,000 students (UNN, 2010). In (Ab-Hamid et al., 2011) a

solar powered long range Wi-Fi network model is studied to connect nearby villages within

a 10 km radio distance from the Internet center. This network has been implemented in a

remote village in Borneo by connecting six villages to the telecenter for Internet access. In

the Quail Ridge Wireless Mesh Network (QuRiNet) project, a wireless solar powered mesh

network consisting of 34 wireless nodes is being developed that provides the backbone for

collecting ecological and environmental data (Wu et al., 2011).

2.7 Power Grid Connected PV Systems

In power grid connected PV systems, there is a fixed connection to the public electricity

grid. The main components in these systems are the same as those used in stand-alone PV

systems except that an inverter is always necessary for interaction between the PV system

and the power grid. In these systems, energy storage units (e.g., batteries) can be used to:
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(i) smooth out the fluctuations of the output power of the solar panels fed into the grid, (ii)

consume the stored energy during the times that the energy demand from the power grid is

high (“peak shaving”), (iii) store surplus solar energy during the times that energy pricing

is low, so that it can be used when energy pricing is high. In addition, extra energy can be

sold to the power grid or stored in batteries for future use (Ru et al., 2012).

Grid connected PV systems can be either decentralized or centralized. Decentralized

PV systems, which are the subject of Chapter 4 of this thesis, usually operate at low power

consumption levels and can be installed on rooftops or integrated into building facades. On

the other hand, centralized PV systems typically operate at much higher power levels (in

the mega-Watt range) and are usually installed on unused land, but in some cases building

installation is possible (Goetzberger and Hoffmann, 2005).

2.8 Energy Provisioning in PV Systems

Providing an uninterrupted source of power had been an objective in the design of many

PV systems. The process of assigning solar panel and battery configurations so that this is

accomplished is referred to as energy resource provisioning. Methodologies for this have

been considered in the past literature and will be briefly summarized.

In (Narvarte and Lorenzo, 2000) it was shown that the accuracy of different photo-

voltaic sizing methods are bounded by statistical laws and in (Maghraby et al., 2002) three

methods for sizing stand-alone PV systems were compared. The results show that the

most accurate provisioning can be obtained by simulation using historical solar insolation

traces. Based on these results, most PV sizing papers adopt this approach using hourly

solar insolation data. This is the approach that will be used in this thesis. In (Balouktsis

et al., 2006) a method of sizing stand-alone PV systems with respect to satisfying the load
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demand, the component cost, and the battery discharge depth was presented.

A methodology that produces the optimal design for a hybrid power system for stand-

alone or grid connected applications has been proposed in (Chedid and Rahman, 1997),

and in (Borowy and Salameh, 1996) a method for calculating the optimum battery and

solar panel size for a stand-alone hybrid (wind/PV) system was developed. Historical data

for wind speed and solar irradiance for every hour over 30 years were used to perform

the provisioning. This information was used to compute the average power generated by

the wind turbine and the PV module for each hour. For a given load characteristic, wind

turbine, and a desired outage probability, the optimum number of batteries and PV modules

was determined so that energy provisioning cost was minimized. Rather than assuming a

constant system load, Reference (Saengthong and Premrudeepreechacharn, 2000) takes

variable energy loading into account in the sizing of solar powered systems.

Genetic algorithms were used in (Xu et al., 2005) to find the optimal resource assign-

ment for a hybrid powered system. This reference defines a mixed multiple-criteria integer

programming problem which optimizes the types and sizes of wind turbine generators, the

tilt angles and sizes of PV panels, and the battery capacities. In (Lopez and Agustin, 2005)

a hybrid optimization using genetic algorithms was proposed in the design a PV-diesel sys-

tem. The algorithm obtains the optimal configuration of PV panels, batteries and diesel

generator, and minimizes the total net cost over the useful lifetime of the system.

Energy provisioning in PV systems is the focus of this thesis. In Chapters 3 and 5

energy provisioning in stand-alone PV systems is considered, and in Chapter 4 this problem

is considered in power grid connected PV systems.

16



P.h.D. Thesis - M. Sheikh Zefreh McMaster - Electrical & Computer Engineering

2.9 Conclusions

In this chapter, background information on photovoltaic systems was reviewed. The dis-

cussion began by an introduction to the fundamentals of solar energy. This included a

discussion of solar radiation, the photovoltaic effect and some basic information relating

to solar cells. We then discussed applications of PV systems, including stand-alone and

power grid connected types. Finally, energy provisioning in PV systems was discussed.

In the next chapter, the problem of energy provisioning in solar powered wireless mesh

networks is addressed. In Chapters 4 and 5, the problem will be extended to power grid con-

nected PV systems, and stand-alone PV systems which have deferrable energy demands.
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Chapter 3

Energy Provisioning in Green Mesh

Networks Using Positional Awareness

3.1 Introduction

Energy resource provisioning in solar powered wireless mesh networks is done by de-

termining a bandwidth usage profile (BUP) for each mesh node, and then by assigning

resources that are based on results obtained using historical meteorological data for the

geographic location where the network is to be deployed (Farbod and Todd, 2006).

Solar resource provisioning is complicated by the problem of node positioning and

orientation. In photo-voltaic systems, the orientation of the solar panels determines the

amount of solar energy collected. In the northern hemisphere for example, solar panels are

ideally placed in an open area, pointed directly south, and sloped to an angle slightly less

than the node’s geographic latitude, so that solar energy collection is maximized (Sayegh

et al., 2008). Unfortunately, this requirement places restrictions on the location and the

flexibility with which the nodes may be placed. Since the positioning and orientation of the
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nodes may be constrained by other factors, panels may suffer from significant time-varying

orientation and shadowing losses compared with optimally-positioned ones. These effects

lead to a wide variation in the efficiency with which the nodes can collect solar energy,

and conventional resource provisioning algorithms do not take this into consideration. This

may lead to an unnecessarily expensive network deployment.

In this chapter we propose a position aware provisioning algorithm (PAP) which can

give significant reductions in total solar resource provisioning costs. The chapter first dis-

cusses conventional resource provisioning methods and gives an illustration which shows

why a conventional approach may not work very well. The PAP Algorithm is then in-

troduced that takes known positional variations into consideration using link-weight as-

signments which are motivated by the relative provisioning costs associated with using the

various mesh node links. A variety of results are presented and compared with previous

approaches which show that significant reductions in provisioning costs can be obtained.

The proposed algorithm also performs very well compared with a linear programming for-

mulation which gives lower bounds on the node resource provisioning cost assignments

(Zefreh and Todd, 2012), (Zefreh et al., 2010).

The remainder of the chapter is organized as follows. In Section 3.2 a brief overview

is given of related work. Following this, in Section 3.3 we discuss the issues of offline

versus online network design and operation. In Section 3.4 the node energy flow model is

discussed and the topic of resource provisioning is introduced. A lower bound on the mini-

mum cost network node provisioning is then derived in Section 3.5 which is used as a com-

parison with the proposed position aware provisioning algorithm introduced in this chapter.

Methods based on extensions to conventional stand-alone photo-voltaic node provisioning

methods are then introduced in Section 3.6. This includes both the Shortest Path Resource
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Provisioning (SPP) and Link Aware Resource Provisioning (LAP) algorithms. An exam-

ple is then given in Section 3.7 which motivates the value of using positional awareness

when doing resource provisioning. The Position Aware Provisioning (PAP) Algorithm is

proposed in Section 3.8 and in Section 3.9 we present an iterative algorithm which can in-

corporate online energy aware routing into the provisioning process. Example performance

results are then presented in Section 3.10 which show significant improvements over the

conventional algorithms. In Section 3.11 we then discuss issues such as provisioning re-

siliency and solar insolation factor error. Finally, in Section 3.12 the chapter presents some

conclusions of this work.

3.2 Related Work

Resource allocation and outage control in solar powered wireless mesh networks were first

considered in (Farbod and Todd, 2006). Algorithms were proposed which can prevent node

outage by introducing a bandwidth deficit when the node battery energy drops below a pre-

computed threshold. In this way, outage is avoided by adaptively reducing the level of

service offered to the end user stations. In (Badawy et al., 2010) a mechanism for mesh

network resource provisioning was introduced based on energy awareness, and a genetic

approach was used for battery assignment. This method is highly complex, and cannot

be used for our problem since the objective in (Badawy et al., 2010) was not to minimize

total provisioning cost. However, in this chapter we do compare our results to a modified

version of the energy aware algorithm proposed in (Badawy et al., 2010) which can be used

to reduce total provisioning costs.

There has also been recent work relating to the use of energy aware routing in energy

sustainable networks. In (Wieselthier et al., 2002), the residual energy is incorporated in
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the local cost metrics, and it is shown that using this technique it is possible to distribute

the traffic load among nodes and increase network lifetime. In (Zeng et al., 2006), rout-

ing protocols are proposed which make decisions based on packet progress, the residual

battery energy level and harvested solar energy. A version of their cost function is used in

Section 3.11. In (Ma and Yang, 2011), battery charging and discharging is modeled, and an

online routing algorithm that considers battery discharge losses was proposed. In this algo-

rithm, routes are frequently changed to let nodes with lower energy in their battery recover

themselves and hence increase network lifetime. The problem of routing in networks with

renewable energy sources is addressed in (Lin et al., 2005) (Lin et al., 2007) and a new

link cost function is proposed that considers nodes with energy replenishment. The link

cost incorporates available energy in the battery, rate of energy replenishment and required

transmission power. It is shown through simulations that the performance of the algorithm

is good in terms of maximum throughput. It should be noted that the energy aware routing

algorithms discussed above required knowledge of the solar panel and battery sizes, and for

this reason it is difficult to incorporate them directly into the energy provisioning process.

3.3 Offline Design Versus Online Operation

The design, deployment, and operation of an energy sustainable mesh network includes

two separate phases. The first consists of offline network design, which is the topic of our

work. This is followed by the online operation phase where the mesh nodes are activated

and carry online traffic. We will briefly discuss these two phases and the restrictions that

they impose on node energy provisioning procedures.

In the offline design phase the network topology and node energy provisioning configu-

rations are determined. We assume that the network topology and an aggregate bandwidth

21



P.h.D. Thesis - M. Sheikh Zefreh McMaster - Electrical & Computer Engineering

usage profile (BUP) has been given. In offline design, site surveys are normally conducted

to ascertain the final location and positioning of the nodes. Following this, the energy

provisioning of the network is done, which consists of assigning solar panel and battery

configurations to the nodes. This is the focus of this chapter.

In order to accommodate the assumed bandwidth usage profile, traffic routing must be

determined so that node loading and energy provisioning can be found. It is important

to note that at this time, no reasonable algorithms have been proposed which incorporate

conventional online energy-aware routing algorithms into this process.1 Online energy

aware routing uses inputs such as residual battery levels and charge replenishment rates,

which cannot be known until the nodes are provisioned.2 This is a “chicken-and-egg”

problem that makes the use of energy aware routing algorithms in energy provisioning

very difficult. As an illustration of this problem, in Section 3.9 we will give an example of

an iterative method using energy aware routing which leads to inconsistent performance.

Once the network has been designed and node energy provisioning has been deter-

mined, the network can be deployed and the online operation phase can begin. In this

case, routing can include energy-awareness using inputs such as residual battery levels and

charge replenishment rates, since the solar panel and battery sizes have now been deter-

mined and have been known since the network commenced online operation.

This discussion highlights the restrictions on routing which are possible during the

offline design phase. In the offline case, solar panel and battery assignments must be made

using path selection mechanisms that ensure satisfaction of the BUP, but cannot know the

solar panel and battery size. In the online case, energy aware routing may be used.

1This difficulty and restriction is discussed in more detail in Section 3.9
2It is not possible to know the current battery level at a node unless the sizes of the battery and solar panel

at the node were known when the network commenced operation. This is not known until the provisioning
process is completed.
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Figure 3.1: Solar Powered WLAN Mesh Node

3.4 Node Energy Flow and Solar Resource Provisioning

In this section we briefly review the energy flow model used at the solar powered mesh

nodes and introduce the resource provisioning problem. An example node is shown in Fig-

ure 3.1. The solar panel and battery are connected to the node through a charge controller

which provides protection from battery over and under-charging. Photo-voltaic system

modelling is normally done in discrete time with intervals of duration ∆ between time mod-

elling instants. It is well accepted that sufficient accuracy is obtained using ∆ = 1 hour time

increments (Farbod and Todd, 2006)(Maghraby et al., 2002)(Khatib et al., 2012)(Shrestha

and Goel, 1998). In the node energy flow model we define B(i, k) as the residual battery

energy stored at Node i at discrete time instant k, and Bmax(i) is defined to be the node’s

battery capacity. Boutage(i) is defined to be the maximum allowed depth of discharge based

on safety and battery life considerations of Node i. When B(i, k) < Boutage(i), the charge
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controller will automatically disconnect the electrical load and the node will experience a

radio outage.

We define Esp(i, k) as the energy output of the solar panel at Node i over time increment

[(k − 1)∆, k∆]. If we assume that L(i, k) is the load energy demand over the same time

period, then we can write that (Farbod and Todd, 2006) (Safie, 1989)

B(i, k) = min{max[B(i, k − 1) + Esp(i, k)− L(i, k),Boutage(i)],Bmax(i)}. (3.1)

Equation 3.1 is a simple recursion that finds the battery energy at time k to be that at time

k− 1, plus the energy received from the solar panel, minus the load energy expended, over

that time period. This expression uses the well accepted linear charge model but can easily

be modified to account for factors such as battery charging efficiency and temperature de-

pendence (Sayegh, 2008). It is well known for example, that battery capacity and charging

efficiency vary with temperature, and this effect can be taken into consideration (Farbod

and Todd, 2006)(Sayegh, 2008). For temperature dependence, a table can be used so that

when Equation 3.1 is evaluated, the temperature index returns values that modify the battery

capacity and charging efficiency.1 In the case of time-varying positional solar attenuation

we can, by definition, write that

Esp(i, k) , P(i) β(i, k) E∗(k) (3.2)

where P(i) is the size (i.e., area) of Node i’s solar panel and E∗(k) is the per unit area

energy availability for an optimally oriented solar panel during time increment k. Sample

1The energy provisioning algorithms to be presented only rely on there being a causal energy recursion
that permits the computation of current battery energy based on past history.
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functions of historical values of E∗(k) are available from meteorological databases.1 Equa-

tion 3.2 also contains the solar insolation factor term, β(i, k), which gives the attenuation

due to non-optimal positioning of the node, and where 0 ≤ β(i, k) ≤ 1. Note that in

practical network deployments the solar insolation factor can easily result in usable energy

values that are one to two orders of magnitude less than the optimum value due to node

positioning effects.2

In Equation 3.1 the value for L(i, k) is obtained based on a power consumption model

for the mesh node that uses the average traffic flow rate over the associated time period to

compute the expended energy (Farbod and Todd, 2006). We assume a standard exponential

distance-dependent path loss propagation model to compute the transmission component

of this energy consumption (Rappaport, 1996). Although this common model is used, the

methodology in our work is applicable to any propagation model. This is discussed in detail

in Section 3.5.

In order for outage-free operation, a solar powered node must have a sufficiently large

battery and solar panel without over-provisioning the network. This is done using histori-

cal solar insolation traces for the location that the network is to be deployed. It is assumed

that the network topology is given, consisting of a set of N nodes identified by an index

in the set N = (1, 2, ..., N). The design is done based on a supplied bandwidth usage

profile (BUP) and the input solar insolation trace, for a contiguous deployment time pe-

riod TL = (kmin∆, kmax∆), where k runs over the set K = (kmin, kmin + 1, ..., kmax).

The usage profile consists of a multicommodity traffic flow matrix U = [usd(k)], where
1Solar insolation data is available in the USA from the U.S. Department of Energy (U.S. Department of

Energy, 2012). In Canada it can be obtained from The Meteorological Service of Canada (The Meteorolog-
ical Service of Canada, 2012). These databases include samples spanning several decades of continuously
collected measurements for hundreds of geographic locations.

2We restrict our attention to predictable insolation factors, such as those which are due to known orienta-
tion losses. For this reason, errors in the solar insolation factors are expected to be very small. However in
Section 3.11.2 we also discuss how insolation factor errors may affect node provisioning.
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usd(k) ≥ 0 indicates the aggregate bandwidth requirement from Node s to Node d during

time period ((k − 1)∆, k∆).1 In solar powered networks, it has been shown that node

provisioning is highly insensitive to short-term fluctuations in node loading (Sayegh et al.,

2008), i.e., knowing the details of a node’s 24-hour energy use does not provide much more

information than knowing the same node’s average 24-hour energy use. For this reason the

temporal packet transmission activities over each ∆ time period can be summarized by

normalized flow rates. The solar insolation sample function consists of an input trace over

the same time period whose values are given by E∗(k) for all k ∈ K.

The energy resource provisioning problem can now be stated. Given the network topol-

ogy, the BUP, and E∗(k) for all k ∈ K, the problem is to find the solar resource provisioning

assignments that minimize the total provisioning cost. This must be done subject to pre-

venting node outage over all k ∈ K. The node provisioning cost is given by the sum of the

solar panel and battery cost at the node, and is defined in the next section, where a lower

bound on provisioning cost is formulated.

3.5 Resource Provisioning Cost Bound

In this section, a linear program is formulated to compute lower bounds on the cost of

network resource provisioning. Each solar powered Node i has an initial battery energy,

B(i, kmin) = Bmax(i), where i ∈ N . The traffic flow on Link (i, j) during time interval

[(k−1)∆, k∆] is defined to be lij(k). For convenience we normalize the maximum possible

flow on each link to unity, i.e., 0 ≤ lij(k) ≤ 1 for all i, j ∈ N , k ∈ K. Flow continuity for

1A bandwidth usage profile is assumed in many other resource allocation problems and is typically very
application dependent. As in other resource allocation problems, to account for BUP uncertainty, estimated
BUPs can include a safety margin.
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each Node i can then be written in the usual way as

∑
j∈N

lij(k) +
∑
d∈N

uid(k) =
∑
h∈N

lhi(k) +
∑
s∈N

usi(k) ∀i ∈ N and ∀k ∈ K (3.3)

where usd(k) are the entries in the BUP as part of the input to the problem.

As in other mesh network studies (Sayegh et al., 2008) we assume that there is a

demand-based contention-free operation on the links, i.e., overhead due to contention-

based media access control for example, is not present. In addition, it is assume that there

is no conflict in assigning the links to each node. The total energy that Node i consumes

for radio operation is

L(i, k) =
(∑
j∈Ni

Rlji(k) +
∑
m∈Ni

Ti,mlim(k) + S
(

1−
∑
h∈Ni

lhi(k)−
∑
l∈Ni

lil(k)
))

∆

∀i ∈ N , k ∈ K (3.4)

In this expression, Ni is the set of nodes which have links to Node i, Ti,j is the power

consumption due to transmission on link (i, j), R is the power consumption for packet

reception at a link, and S is the power consumption when the air interface is in a doze

mode due to power saving. The first term in Equation 3.4 is the amount of energy that

Node i uses for reception, and the second is that required for transmission.

The last term is the energy consumed in doze mode. Note that in this formulation we

have assumed directional links, but other options are possible.

The cost of provisioning a node consists of the sum of the battery and solar panel costs.
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Therefore, the total cost for Node i, CT (i), is given by

CT (i) = CB(Bmax(i)) + CP (P(i)), (3.5)

where CB(b) and CP (p) are the battery and solar panel costs for sizes b and p, respectively.

As in many other studies, we assume that these are linear functions of b and p, i.e., CT (i) =

γBBmax(i) + γPP(i) (Sayegh et al., 2008). The objective function can therefore be written

as
∑

i∈N CT (i) and the lower bound on the network energy provisioning cost is given by

the following linear program (LP).

minimize
Bmax(i),P(i)

γB
∑
i∈N

Bmax(i) + γP
∑
i∈N

P(i) (LP–PAP)

subject to B(i, k) ≤ B(i, k − 1) + Esp(i, k)− L(i, k), ∀i ∈ N , k ∈ K \ kmin (3.6)

Esp(i, k) = P(i) β(i, k) E∗(k), ∀i ∈ N , k ∈ K (3.7)

B(i, k) ≤ Bmax(i), ∀i ∈ N , k ∈ K (3.8)

Boutage(i) ≤ B(i, k), ∀i ∈ N , k ∈ K (3.9)

0 ≤ lij(k) ≤ 1, ∀i, j ∈ N , k ∈ K (3.10)

0 ≤ Bmax(i), ∀i ∈ N (3.11)

0 ≤ P(i), ∀i ∈ N . (3.12)

In this formulation, lij(k) was previously defined in Equation 3.3 and L(i, k) was given

in Equation 3.4. In the interest of brevity we have not re-written these equations. LP–

PAP minimizes the total provisioning cost subject to constraints 3.6 to 3.12. Constraint 3.6

states that the stored battery energy at time k must not exceed that which was available

at time k − 1, plus the energy that which was obtained from the panel, minus the energy
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consumption during this time interval. Constraint 3.8 indicates that the battery energy

cannot exceed the battery capacity at the node and constraint 3.9 indicates that the node

must maintain a minimum battery level in order to prevent node outage. Constraint 3.10

incorporates the usual link capacity constraint and constraints 3.11 and 3.12 ensure non-

negative battery and panel provisionings. Note that constraint 3.6 is not active at time

k = kmin, and this, in conjunction with constraint 3.8 permits the optimization to initialize

a full battery.

It is important to note that although the above LP provides a lower bound on the provi-

sioning cost, it does not provide any solution to the provisioning problem for a realizable

system. The reason is that the LP is free to use its inputs in a non-causal fashion and may

therefore route traffic using knowledge of future loading and solar insolation values. Be-

cause of this, a system provisioned using the results of the LP will generally not be energy

sustainable when causal online path selection algorithms are used with the same loading

and solar insolation inputs. For this reason, more sophisticated provisioning algorithms

must be used which is the subject of Sections 3.6 to 3.8. Before proceeding, we first show

the following result which provides an important theoretical connection between the lower

bound and Equation 3.1.

Theorem 1. A feasible minimum cost solution to the offline optimization given in LP–PAP

can be obtained when the energy recursion given in Equation 3.1 is satisfied.

Proof . The proof consists of starting with a solution obtained from LP–PAP. We then

show that with feasible modifications to the B(i, k) variables, Equation 3.1 can be satisfied

for the same optimum values of Bmax(i) and P(i) for all i and k.

Assume that we have a solution to the optimization in LP–PAP, i.e., the values of

Bmax(i) and P(i) for all i minimize the objective function. Because of constraint 3.9,
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the “max” in Equation 3.1 must clearly be satisfied for all i and k. Also, because of in-

equalities 3.6 and 3.8, B(i, k) must satisfy

B(i, k) ≤M(i, k) , min{Bmax(i),B(i, k−1)+Esp(i, k)−L(i, k)} ∀i ∈ N , k ∈ K\kmin

(3.13)

For a particular Node i, assume the same initial value of B(i, kmin) and iterate over the

values of k = {kmin+1, kmin+2, . . . , kmax} in order, checking if B(i, k) = M(i, k). When

this is the case then Equation 3.1 is clearly satisfied in the optimum solution for these values

of i and k. We proceed in this manner until we find the first value of k where B(i, k) <

M(i, k), if one exists. Denote this value of k as k′. We now modify the value of B(i, k′)

by replacing it with B′(i, k′) = M(i, k′), i.e., energy which the LP had discarded is instead

placed in the battery and therefore Equation 3.1 holds for k′. The value of M(i, k′ + 1) is

then updated to M(i, k′+1) = min{Bmax(i),B(i, k′)+Esp(i, k′+1)−L(i, k′+1)}. It can

easily be seen that the value of B′(i, k′) still satisfies all of the optimization constraints for

the same objective function values since all we have done is to arrange for inequality 3.6

to be satisfied with equality. Also, since the update to M(i, k′ + 1) is non-decreasing, the

constraints for k′ < k are still satisfied with this new value of B(i, k′). By continuing in

this way the values of B(i, k) can be modified so that Equation 3.1 is satisfied with the

same optimum cost values for Bmax(i) and P(i) for all i. Repeating this process for each

value of i completes the proof. The proof also holds if we fully charge the batteries at

time kmin, i.e., B(i, kmin) = Bmax(i) for all i before beginning the iterations.1 The above

result is important in that it means that storing energy in the battery in accordance with

1Intuitively, this result is obtained by finding those times where LP–PAP has discarded energy when there
is still room left in the battery. Our modification to B(i, k′) instead, tops up the battery whenever possible
which is what would be done in any practical system using Equation 3.1. The optimization may not always
do this because it has non-causal knowledge of future solar insolation and node workload, and can discard
energy that it knows it will not need.
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Equation 3.1 (as would normally be the case in a practical system) does not necessarily

restrict it to sub-optimal performance, i.e., the optimum bound computed in LP–PAP is

also satisfied by Equation 3.1.

3.6 Conventional Resource Provisioning

In this section we discuss approaches for solar powered mesh node provisioning that are

based on conventional methodologies. Two algorithms are discussed, namely, Shortest Path

Provisioning (SPP) and Link Aware Provisioning (LAP). These algorithms are used later

in this chapter for comparisons with the proposed Position Aware Provisioning Algorithm

(PAP). Both SPP and LAP make use of the Stand-Alone Node Provisioning (SNP) Algo-

rithm first described in (Farbod and Todd, 2006) which is an implementation of classical

PV node provisioning (Maghraby et al., 2002). SNP considers the stand-alone node case,

where given a temporal solar insolation input trace and a temporal bandwidth usage profile

(BUP), an iterative simulation using Equation 3.1 is used to find the cost-optimal battery

and solar panel assignments (Sayegh, 2008).1 The SNP Algorithm is embedded into the

operation of both the SPP and LAP Algorithms as described below.

3.6.1 Shortest Path Provisioning (SPP) Algorithm

The SPP Algorithm was first discussed in (Badawy et al., 2010) and is shown in Algo-

rithm 3.1. The description in Algorithm 3.1 applies to both SPP and LAP (to be discussed

1Using the BUP and solar insolation inputs, SNP simulates the battery energy of the system for k =
{kmin, kmin + 1, . . . , kmax}, in order, using Equation 3.1. It starts from an initial provisioning and when
the node experiences an outage, the provisioning is incremented and the process is restarted. The optimum
battery and panel combination is obtained via a search procedure combined with this iteration (Farbod and
Todd, 2006).
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in Section 3.6.2), the difference being how the link weights are computed in Step 4. This

is shown in the algorithm by having Cx(i, j, k) take on either CSPP (i, j, k) or CLAP (i, j, k)

for SPP or LAP, respectively.

We are given the network topology, solar insolation data traces, and the bandwidth

usage profile (BUP) for a desired design lifetime for which solar insolation traces are given.

SPP uses Dijkstra’s Shortest Path Algorithm to route the BUP flows using hop count as the

link cost, which is similar to the routing used in Open Shortest Path First (OSPF) routing

protocol. For this reason the link cost between Nodes i and j is given by CSPP (i, j, k) = 1

if the nodes are within range, and ∞ otherwise. This initialization takes place in Steps 2

to 6 in Algorithm 3.1. Dijkstra’s Algorithm is then used to route the flows for each time

epoch in Step 7 which gives multicommodity flow rates for all time. Once the flows are

known for a given k, the node energy consumptions are computed in Step 9. Finally, the

SNP Algorithm from Reference (Farbod and Todd, 2006) is used in Step 12 to obtain solar

panel and battery assignments. In a practical system, the battery and panel sizes obtained

may be rounded up to the nearest commercially available size.

3.6.2 Link Aware Provisioning (LAP) Algorithm

In this section we introduce the Link Aware Provisioning Algorithm (LAP). LAP is sim-

ilar to SPP except that it uses different link costs. The objective is to route traffic such

that the path costs follow minimum energy consumption routes. Besides fixed overhead,

energy consumption consists of that consumed for packet transmission and reception. Ac-

cordingly, the link weight, CLAP (i, j), for Link (i, j) is the power consumption needed for

Node i to communicate over this link to Node j, i.e., that required to overcome path loss

with the required SNR. As in the SPP Algorithm, Dijkstra’s Algorithm is used to route the
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Algorithm 3.1. Energy Provisioning Algorithm Template
1: for all kmin ≤ k ≤ kmax do
2: for all 1 ≤ i ≤ N do
3: for all 1 ≤ j ≤ N do
4: Initialize network link weights, Cx(i, j, k).

(e.g., Cx(i, j, k) = CSPP (i, j, k) for SPP, or, Cx(i, j, k) = CLAP (i, j, k) for LAP.)
5: end for
6: end for
7: Use Dijkstra’s Algorithm with link costs, Cx(i, j, k), and the Bandwidth Usage Profile

(BUP) to route each flow.
8: for all 1 ≤ i ≤ N do
9: Compute L(i, k) using Equation 3.4.

10: end for
11: end for
12: Use SNP from Reference (Farbod and Todd, 2006) to determine P(i) and Bmax(i) using solar

insolation sample functions.

BUP during each time epoch, and the provisioning is done as before.

3.7 Motivation for Position Aware Provisioning

In this section we give a simple example which illustrates that both SPP and LAP Algo-

rithms may perform poorly where a deployment results in different node solar insolation

factors, i.e., where β(i, k) 6= β(j, k) for i 6= j. Consider the simple topology shown in

Figure 3.2 where a source node S transmits packets to a destination node D. In this exam-

ple the distance between source and relay nodes, and between relay and destination nodes

is assumed to be equal and it is set to d = 500 m and power control is used to achieve a

-70dBm received signal strength. There are two routes that Node S can use. The first is

a direct transmission to Node D, i.e., route S-D. The second is a multi-hop route through

relay node R, i.e., route S-R-D. For this simple single-flow traffic case we are interested in

finding the minimum cost node provisioning for these two route selection options. For this
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Figure 3.2: Three Node Provisioning Example. Node S can use either the direct path to
Node D (i.e., path S-D) or a relay path through Node R (i.e., path S-R-D).

example we will assume that power consumption is dominated by node transmit power,

although similar conclusions follow from including all power consumption components.

From the assumed propagation model, the total network transmit power for route S-R-D is

given by

P S−R−D =
2Pr
G

(
d

d0
)α, (3.14)

and for direct transmission the result is

P S−D =
Pr
G

(

√
2d

d0
)α, (3.15)

whereG is a constant which depends on the antenna characteristics and the average channel

attenuation, d0 is a far-field antenna reference distance, and α is the exponential path loss

exponent (Rappaport, 1996). We have assumed that the nodes use transmit power control

so that the receive power is the same for each link. It is easy to see that P S−R−D < P S−D

when α > 2, i.e., multi-hop routing consumes less total energy in this case. Therefore, for

this arrangement, if all nodes have the same per unit area solar energy source, transmitting

over the multi-hop path (i.e., S-R-D) will lead to a lower total provisioning cost. In this
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case the LAP Algorithm would choose this route and will result in a lower provisioning

cost than the SPP Algorithm, which would choose the S-D route. This example is an

illustration of the following informal result: When the per unit area solar insolation for the

nodes on two routes is the same, then the minimum total cost provisioning will occur by

using the path with the least total energy consumption.1 This conclusion is a result of the

linearity of resource provisioning versus power consumption noted in (Sayegh et al., 2008).

A consequence of this result is that if power consumption is dominated by transmission and

reception activity, then choosing an alternate path with the same hop length and the same

solar insolation factors does not change the solar resource provisioning cost. This is true

even if the average loading on the nodes along the two paths is different!

We now consider what happens if the solar insolation factors at the nodes in Fig-

ure 3.2 are different due to positional variations. The graph in Figure 3.3 shows the to-

tal provisioning cost of the network as the solar insolation factors of Nodes S and R, i.e.,

β(S, k) and β(R, k), are varied. This is done for the two routing scenarios discussed pre-

viously, i.e., S-R-D and S-D, corresponding to the SPP and LAP Algorithms defined in

Section 3.6. Node D has a fixed solar insolation factor (IF) of 1.

In these results we have assumed that α = 3, Boutage(i) = 0 for all i, and that power

control is used on the links so that a received signal strength of −70 dBm is obtained,

as before. In this example we assume that the solar insolation factors are constant, i.e.,

independent of k. Note that for different values of the solar insolation factors, the nodes are

re-provisioned using the SPP and LAP algorithms to create the plot shown. First consider

the case where Node R is optimally positioned and Node S is not, i.e., β(R, k) = 1 for all

k, at the left front of the figure. In this case the graph shows that using the S-D route is far

more expensive than the S-R-D route. Over a wide range of solar insolation factor values,
1This is when there are equal solar insolation factors for nodes along the two routes.
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Figure 3.3: Resource provisioning cost for the network shown in Figure 3.2. The plot
shows the total provisioning cost of the network as the solar insolation factors of Nodes S,
i.e., β(S, k) and R, i.e., β(S, k), are varied. This is done for two S-to-D routing scenarios,
i.e., S-R-D and S-D. In this example the insolation factors are constant, i.e., β(S, k) and
β(R, k) are the values shown for all k. Also, β(D, k) = 1 for the entire graph.

the relative costs are more than double, which is significant. So in this scenario, the SPP

Algorithm, which bases provisioning on shortest hop routes, gives a much more expensive

provisioning than the LAP Algorithm which would use route S-R-D.

Now consider the case in Figure 3.3 where we vary the solar insolation factor of Node

R, while β(S, k) = 1 for all k, at the right front of the plot. In this case, the opposite

is true, i.e., resource provisioning based on the S-D path is significantly better than that

based on using the S-R-D route. In this case the relative cost reductions are even more

significant especially at low values of the insolation factor, β(R, k). This scenario clearly

shows that the most energy efficient routes do not translate into the most cost effective
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solar provisioning. Therefore the least cost provisioning in this case is attained by the SPP

Algorithm, i.e., opposite to the situation we had previously. The intersection of the two

plotted surfaces in Figure 3.3 shows the breakpoints between the provisioning costs using

the SPP and LAP algorithms.

This example illustrates the fact that in order to obtain the minimum cost resource

provisioning, the algorithm cannot simply use the SPP or LAP approaches. Instead, the

algorithm must be aware of the solar insolation factors, i.e., the β(i, k)’s and the relative

costs on the two surfaces shown in Figure 3.3, that will result from node positioning. This

conclusion motivates the Position Aware Provisioning Algorithm (PAP) introduced in the

next section. In the remainder of this chapter we assume that the solar insolation factors

are due to node placement and orientation which are known when the network is planned

during its offline site survey.

3.8 Position Aware Provisioning (PAP)

In this section a position aware provisioning algorithm is proposed that uses the motivation

introduced in the previous section. In the proposed algorithm a position aware link cost is

assigned to each link. The idea is to define a link cost that is proportional to the provisioning

cost that the link would induce in a provisioned node. This is motivated and described in

detail as follows.

The provisioning cost for a node consists of solar panel and battery costs. Therefore,

we can say that the link cost between Nodes i and j at time k, Cl(i, j, k), contributes to the
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provisioning cost as follows.

Cl(i, j, k) = Cb(i, j, k) + Cp(i, j, k) (3.16)

where Cb(i, j, k) and Cp(i, j, k) are the contributions to battery and panel costs during

this time. Based on commercial data sheets for solar panels, there is a linear relation-

ship between panel size and its cost, i.e., Cp = γPP , where P is the solar panel size

(i.e., area) (Sayegh et al., 2008).1 Similarly, the cost of a lead acid battery is about

Cb = γBBmax (Sayegh et al., 2008). Therefore, the variation of link cost with respect

to consumption power, Pc, can be expressed as

dCl
dPc

=
∂Cl
∂Cb

.
dCb
dPc

∣∣∣∣
Cp

+
∂Cl
∂Cp

.
dCp
dPc

∣∣∣∣
Cb

=
dCb
dPc

∣∣∣∣
Cp

+
dCp
dPc

∣∣∣∣
Cb

, (3.17)

≈ γB
dBmax
dPc

∣∣∣∣
Cp

+ γP
dP

dPc

∣∣∣∣
Cb

. (3.18)

This follows from Equation 3.16 and the above discussion, i.e., since the battery and solar

panel have linear power relationship, we have that dCl

dPc
≈ γBC1 + γPC2. But we know

that while the solar panel size is inversely proportional to solar insolation factor, the battery

size is fairly insensitive. So, C1 can be viewed as a constant and C2 can be written as

C2 ≈ C ′2/β, and therefore dCl

dPc
≈ γBC1 + γPC

′
2/β, and from (Sayegh et al., 2008), γB =

3.4 and γP = 6.7. This gives dCl

dPc
≈ 3.4C1 + 6.7C ′2/β and for the solar insolation data

available from the geographic region considered, C1 = 90 and C ′2 = 10 give us good cost

1To simplify the expressions, we have removed the variable dependencies on i, j and k.

38



P.h.D. Thesis - M. Sheikh Zefreh McMaster - Electrical & Computer Engineering

approximations. As a result,

∆Cl(i, j, k) ∼= (γBC1 +
γPC

′
2

β(i, k)
)∆Pc(i, j, k). (3.19)

When Pc(i, j, k) = 0 then Cl(i, j, k) = 0 and thus an estimation of the link cost function

for Link (i, j), Cl(i, j, k), is given by

Cl(i, j, k) ∼= (γBC1 +
γPC

′
2

β(i, k)
)Pc(i, j, k). (3.20)

This good approximation for single node provisioning cost has been verified over a wide

range of parameter settings by using the SNP Algorithm (Farbod and Todd, 2006) to com-

pute actual provisioning costs and then by comparing them to the above approximation.

This link cost assignment is used in the PAP Algorithm proposed in the next section.

3.8.1 Position Aware Provisioning (PAP) Algorithm

The position aware provisioning algorithm uses the same template as that shown in Al-

gorithm 3.1, except for the link weight computations discussed in Section 3.8. The link

weights are now a function of time due to their dependence on the node solar insolation

factors. In this case the link costs computed at Step 4 in Algorithm 3.1 are given by

Cx(i, j, k) = CPAP (i, j, k) , (γBC1 +
γPC

′
2

β(i,k)
)Pc(i, j, k) using Equation 3.20. The rest

of the algorithm, which uses the solar insolation inputs and L(i, k) is the same as that dis-

cussed previously. As before, once the network flows are known the SNP Algorithm from

Reference (Farbod and Todd, 2006) is used in Step 12 to obtain the solar panel and battery

assignments.
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Algorithm 3.2. Iterative Energy Aware Provisioning (IEAP) Algorithm
1: Solve the linear program bound in LP–PAP.
2: Initialize the network configuration by setting the node energy provisionings to the solution

obtained in Step 1.
3: for all k ∈ {kmin, kmin + 1, . . . , kmax} do
4: Simulate the system at time k for all i ∈ N with Equations 3.1, 3.2, 3.3 and 3.4 using online

energy aware routing.
5: if B(i, k) < Boutage(i) for any value of i, i.e., outage occurs at a Node i then
6: Halt the simulation.
7: Increase Node i energy provisioning, i.e., Bmax(i) ← Bmax(i) + δB(i) and P(i) ←
P(i) + δP (i).

8: Restart the simulation at Step 1 using the updated network energy provisioning values.
9: end if

10: end for
11: The final solar panel and battery values are the energy provisioning algorithm output.

3.9 Energy Provisioning Using Online Energy Aware Rout-

ing

In Section 3.3 we briefly discussed the problem of incorporating conventional energy aware

routing algorithms into the offline provisioning process. We are only aware of one method

for accomplishing this based on an iterative design procedure discussed in this section, re-

ferred to as Iterative Energy Aware Provisioning (IEAP). IEAP however, while incorporat-

ing energy aware routing, does not perform very well in general situations and is included

to help illustrate this problem.

The algorithm simulates the operation of the system using the provided inputs and halts

when node outage occurs. The energy provisionings for the node in question are then

increased and the process is repeated until feasible provisionings are obtained. A detailed

description of the algorithm is shown in Algorithm 3.2 and is described as follows.

The linear program from LP–PAP is first solved which gives a set of node provisionings

which lower bound the provisioning cost. The solar panel and battery configurations are
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Parameter Value
Receive Signal Strength -70 dBm

α 3
Boutage(i) ∀i 0
B(i, kmin) ∀i Bmax(i)

S 1 mW
R 500 mW
γB 3.4
γP 6.7

Location Toronto, Canada (6 weeks, 01/01/80)

Table 3.1: Default Parameters for the Examples

then initialized using this solution. This is shown in Steps 1 and 2 of Algorithm 3.2. The

network is then simulated in time using Equations 3.1, 3.2, 3.3 and 3.4. A conventional

online energy aware routing algorithm can be used at this step. This is shown in Steps 1

and 4. During this process, if a node experiences outage, the simulation halts and the energy

provisioning of the node is increased (Steps 5, 6 and 7). This is done by adding solar panel

and battery increments defined by δP (i) , δP (i) and δB(i) , δBmax(i), respectively, and

where δ is a fixed step size factor. The simulation step is then restarted from k = kmin and

the process is repeated (Step 8). Once the simulation completes without any node outage

the final panel and battery values are the algorithm output (Step 11). In Section 3.10 we

present some results for the IEAP Algorithm using the energy aware routing algorithm

from (Zeng et al., 2006) which is known to perform well in renewable energy situations.
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Figure 3.4: 25 Node Mesh Example.

3.10 Energy Provisioning Results

A large variety of experiments have shown that the PAP Algorithm can perform signifi-

cantly better than that of the SPP and LAP Algorithms. In this section we present some

examples of these results that illustrate various tradeoffs and conclusions. However, it

should be noted that the relative cost performance comparison of the three algorithms is

highly situation dependent. In these results we use the same parameter values as those used

in the examples given in Section 3.7, e.g., we assume distance dependent exponential path

loss using the default parameters given in Table 3.1.

We first consider a mesh network consisting of 5 × 5 nodes as shown in Figure 3.4

where the distance between horizontally and vertically adjacent nodes is 500m. The links

in the figure show the nodes which are within communication range. In the initial set

of experiments we assume that network carries transit flows where the BUP consists of the

following large source-destination bandwidth flows: (1, 25), (2, 24), (4, 22), (5, 21), (6, 23)
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Node ID 1 2 3 4 5 6 7 8 9 10
PAP .5 .2 0 .2 .5 .2 1.1 0 1.1 .2
LAP .2 .5 0 .7 .2 1.2 .5 .5 .3 .9
SPP .5 .2 0 .5 .5 .7 .6 0 1.1 .5

Node ID 11 12 13 14 15 16 17 18 19 20
PAP .6 0 1.1 0 .5 0 1.1 0 1.1 0
LAP .3 .5 .5 .5 .3 .3 0 .3 .5 .3
SPP 0 .6 1.1 .3 0 0 1.1 .3 .5 0

Table 3.2: Average Node Loading Example for SPP, LAP and PAP Algorithms.

and (10, 23). For convenience, in our results the flow rates are expressed as a fraction of

the link capacity and all nodes are assumed to be solar powered. Several simulations for

different conditions are done, and for each case, the provisioning costs of the SPP, LAP and

PAP Algorithms are compared.

In the first experiment, we assume that the solar insolation factors for Nodes 6, 8, 10,

12, 14, 16, 18 and 20, are smaller by 10% than the rest of the nodes. We refer to these as

shadowed nodes and are shown as shaded in Figure 3.4. The traffic flows of all sources are

set to be equal. For the solar insolation inputs, a profile was used consisting of 30 years of

solar insolation data for Toronto, Canada, using 6 week duration sample functions starting

at the beginning of January 1980.1

To illustrate the path selection effects, the average load on the first twenty nodes when

the links are heavily utilized is shown in Table 3.2. SPP uses the shortest paths regardless

of the solar energy capability of the nodes. For this reason it has included most of the

shadowed nodes (i.e., Nodes 6, 10, 12, 14 and 18) when other options are available. On

the other hand, the LAP Algorithm uses minimum energy routes which may also involve

1In temperate regions, provisioning is often done using worse-case monthly solar insolation inputs. This
is because node provisionings that are outage-free spanning worse-case winter months result in year-round
outage-free operation.
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shadowed nodes. Conversely, the PAP Algorithm includes the solar factors in its path

selection thus avoiding shadowed nodes as much as possible. This is clearly apparent in

Table 3.2. While shadowed nodes are heavily selected by the LAP and SPP Algorithms,

the PAP load on these nodes is much lighter. We can see that there is no load on shadowed

Nodes 8, 12, 14, 16, 18, 20, and Nodes 6 and 10 are lightly loaded by the PAP Algorithm.

Note that even if PAP has to incorporate a shadowed node in its chosen route, the route

is such that shadowed nodes need to transmit over shorter hops to consume less power. For

this reason, in the PAP Algorithm, nodes that are in the neighbourhood of a shadowed node

have to relay traffic for their neighbours. For example, since Nodes 17 and 19 are in the

neighbourhood of shadowed Node 18, PAP avoids the shadowed node and diverts traffic to

its neighbours, i.e., Nodes 17 and 19, as would be expected. As another example, consider

the flow from Node 10 to Node 23. When the flow rate is high, the SPP Algorithm chooses

the shortest path 10-12-18-23 which includes three shadowed nodes, 10, 12 and 18. Among

these, Nodes 10 and 12 transmit over diagonal hops which consume more energy than when

horizontal or vertical links are used. The path selected by LAP is 10-9-8-13-18-23, which

is clearly the minimum energy path. However, from a provisioning cost viewpoint, this

route contains shadowed Nodes 8 and 18, which leads to higher provisioning costs. On the

other hand, PAP uses path 10-11-19-23 which has the same hop count as the SPP route but

avoids shadowed Nodes 12 and 18, and avoids hops 10-12 and 12-18. This example shows

that the PAP Algorithm is making path selections which should lead to lower provisioning

costs.

The network provisioning costs of SPP, LAP, IEAP and PAP along with the cost lower

bound for the example given are shown in Figure 3.5. In this figure we have plotted total

provisioning cost versus normalized traffic flow rates, which were obtained by scaling up
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Figure 3.5: Network Provisioning Costs for SPP, LAP, IEAP, and PAP Algorithms for the
25 Node Mesh Network. The provisioning cost lower bound is also included.

the BUP. As can be seen in this figure, the network provisioning cost when a high flow rate

and the PAP algorithm is used is about 26% less than when SPP is used, and we have about

44% improvement when we compare it with LAP. The provisioning cost bound which is

derived in Section 3.5 is tracked very closely by the PAP Algorithm, which indicates that

there is very little room for improvement using more sophisticated methods. We have found

that this is always the case for the regular mesh network examples that we have considered.

This is caused by the fact that the path selection options at each node are relatively limited

and the PAP Algorithm does a very good job of choosing minimum cost paths. In this par-

ticular example it can be seen that the SPP Algorithm significantly out-performs LAP, but

as will be seen, the extent to which this happens is very situation dependent. In Figure 3.5

we have also shown results for the IEAP algorithm using the battery and solar charging

aware routing described in (Zeng et al., 2006). In this case the algorithm performs well

compared with SPP and LAP but is unable to find provisionings that are as good as PAP.

However, in this particular example the results obtained using IEAP are reasonable.
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Figure 3.6: 16 Node Mesh Example

We also include results which compare the algorithms for a 16 node mesh network

shown in Figure 3.6 using the same assumptions as before. The nodes which are labeled as

1, 2, 3, 4, 6, 7, 9 and 12 are assumed to be positioned such that their solar insolation factors

are 10% of the other nodes. The distance between nodes and path loss exponent are the

same as in the previous case. In this example there are 4 heavy source-destination flows

with sources 1, 4, 6 and 7 and corresponding destinations 13, 16, 13 and 16, respectively.

In Figure 3.7 the network provisioning cost for each of the algorithms and the cost

provisioning bound are shown. It can be seen that at low flow rates LAP and SPP have

roughly the same cost until 0.5, and after that the performance of LAP is better than SPP.

On the other hand, the provisioning cost for the PAP Algorithm is much lower across the

entire range. For example, at the 50% point, the provisioning cost for PAP is about 50%

lower than the other two. This ratio is about the same for higher flow rates. In the limit

at the right hand side of the graph, PAP is better than SPP for 49.6%, and LAP provides a

network which its cost is 143% of the cost of the same network provisioned using PAP.

The breakpoints shown in Figure 3.7 are due to flow bottlenecks. For example, when
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Figure 3.7: Network Provisioning Costs for SPP, LAP, IEAP, and PAP Algorithms for the
16 Node Mesh Network. The provisioning cost lower bound is also included.

the flow rates are 0.5, the selected path by PAP algorithm for Flows 1-13 and 4-16 are 1-8-

10-11-14-13 and 4-5-11-10-15-16, respectively. These flows have Link 10-11 in common.

When the flow rate is increased above 0.5, this forces the algorithms to use additional routes

and therefore the new paths are 1-8-10-11-14-13 and 4-5-11-15-16. The new route for flow

4-16 uses Link 11-15 instead of 11-10-15 which increases the total provisioning cost, and

consequently there is a jump in the provisioning cost curve. This is also true for SPP and

IEAP. However, the reason that there is no jump for LAP is that in this example, the total

cost for the alternative routes that LAP uses have the same cost as before.

In Figure 3.7 we have also included results for IEAP using the routing as in Figure 3.5.

In this example the algorithm performs well compared with SPP and LAP at low values

of flow rate, but is significantly worse when the flow rates are higher, i.e., 0.6 and greater.

This type of inconsistent result is typical of those which were obtained with IEAP. The

behaviour can be traced to the incorporation of energy awareness in the offline routing

algorithm, i.e., when a node outage is found, energy provisioning at the node is increased.
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As this repeatedly happens, this may eventually lead to radically different routing decisions

due to the energy state awareness of the routing algorithm. This results in new routes that do

not require the increased provisionings that were set for the nodes on the original routes. As

a result of this, the provisioning costs become unnecessarily high, and in other results that

we ran it performed worse than SPP and LAP. This highlights the problem of incorporating

energy aware routing algorithms into the offline provisioning process that make decisions

based on the instantaneous energy stored at the nodes. In view of these results, we will not

include curves for IEAP in our remaining results but will instead quote some of the costs

obtained.

It can be seen from Figure 3.7 that the PAP Algorithm again performs very well com-

pared with the provisioning cost bound derived in Section 3.5. As before, this shows that

in this example, PAP is generating resource provisioning which are very close to being

optimum. This is typical of what we have found in other mesh examples that we have

tested.

3.10.1 Random Hybrid Network Examples

We have also considered the network provisioning cost examples for hybrid networks, i.e.,

those consisting of combinations of non-solar and solar powered mesh nodes. An example

is given which uses the same topologies and parameters as in the 25 node mesh as before.

In this example, 8 nodes are randomly selected as shadowed nodes with reduced solar

insolation factors by the same as that in first experiment. From the remaining nodes, 4

are randomly chosen as continuously powered nodes (CPNs). Network provisioning is

done for 100 different random selections of CPNs and shadowed nodes, and the average

provisioning costs for the SPP, LAP and PAP algorithms are shown in Figure 3.8. Note
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Figure 3.8: Average Network Provisioning Cost for the Hybrid Network Example

that since we are generating random network configurations we have not included cost

provisioning bounds in these results.

The LAP and PAP algorithms are clearly better able to take advantage of the contin-

uously powered nodes, and it can be seen that they give less provisioning costs than SPP.

Furthermore, the PAP algorithm takes the insolation factor of solar nodes into account and,

consequently, its resultant provisioning cost is less than LAP. For example, it can be seen

that when the flows are heavy, the provisioning costs for the PAP are lower by about 23%

when we compare it with LAP, and 37% less than SPP. These values, when the flow is

about half that value, are 49% and 52%, respectively. In this example, the results for IEAP

were much worse and gave provisioning costs which were roughly twice that of SPP across

the traffic flow rate range.
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Figure 3.9: Average Network Provisioning Cost for Random Solar Insolation Factor As-
signments

3.10.2 Random Insolation Factor Example

We have also considered cases that include random selections of solar insolation factors.

In this example, we use the 25 node mesh in Figure 3.4. The same flow sources and

destinations are assumed, but in this case a random solar insolation factor in the interval

(0, 1] is assigned to each node. The algorithms are run for 100 different selections using

the same parameters as before. The average of the results obtained are shown in Figure 3.9.

Again, we see that the performance of the PAP Algorithm is superior than LAP and SPP.

As in the previous example, the results for IEAP roughly twice that of SPP across the traffic

flow rate range.

3.10.3 Random Topology Example

In this experiment, the performance of PAP in comparison with SPP and LAP is evaluated

for random topologies. To do this, a square area with side length of 2000m is considered

50



P.h.D. Thesis - M. Sheikh Zefreh McMaster - Electrical & Computer Engineering

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

500

1000

1500

2000

2500

3000

3500

4000

Normalized Traffic Flow Rate

To
ta

l P
ro

vis
io

ni
ng

 C
os

t

 

 

SPP
LAP
PAP

Figure 3.10: Average Network Provisioning Costs for 100 Random Topologies

and 25 nodes are randomly distributed. The source and destination nodes are as the mesh

network in Figure 3.4, i.e., the destinations for source nodes 1, 2, 4, 5, 6 and 10 are 25,

24, 22, 21, 23 and 23, respectively. All other parameters are as before. Again, Nodes

6, 8, 10, 12, 14, 16, 18 and 20 are shadowed nodes and their solar insolation factor is

10% of the others. The minimum distance from each node to all other nodes is computed

and the transmission range is set to the maximum of all minimum distances. Using this

transmission range, if the network is connected, then the provisioning is done, otherwise a

new random topology is generated. This is done for 100 topology selections, and for each,

the SPP, LAP and PAP algorithms are applied.

The average provisioning costs versus different flow rates are shown in Figure 3.10.

The figure indicates that the proposed position aware provisioning algorithm performance

is superior to SPP and LAP in terms of network provisioning cost. It can be seen that in

general, LAP, which chooses routes with minimum energy is less expensive than SPP.

We have also considered examples which include a “sink node” where mesh nodes relay
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all traffic to and from the sink. This type of scenario may be common when there is a single

point of presence through which the mesh nodes communicate. One example consisted of a

single sink node at the center of a 19 hexagon arrangement with shared edges, and 54 solar

powered mesh nodes were placed at the hexagon vertices. The distance between adjacent

nodes in the same row or column is given by 300m, the maximum transmission range is

600m, and 28 of the nodes were taken to be shadowed. A variety of different loading

conditions were considered and the results that were obtained in this case showed very

similar relative algorithm comparisons as that obtained before, i.e., the provisioning costs

for the PAP Algorithm were significantly less than the other two. In these experiments the

differences between SPP and LAP are quite large. SPP makes too much use of shadowed

nodes and LAP also uses shadowed nodes but those that are shadowed tend to transmit over

shorter hops. This tends to result in lower provisioning costs compared to SPP. Since the

main conclusions are similar as that before, we have chosen not to include the graphs.

3.11 Discussion

3.11.1 Provisioning Resiliency

The results presented in Section 3.10 show that significant cost advantages are possible

when positional awareness is taken into consideration. However, it is possible that a net-

work provisioned for lower cost may be less able to handle traffic flow which is different

from that for which the network was provisioned. This is an obvious trade-off which was

considered in Reference (Badawy et al., 2010) and is expected to be true when a reduced

cost network is operated online compared with a more expensive deployment. In this sec-

tion we show an example that this is not always the case when traffic loading is uniformly
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Overload (%) 5 10 15 20 25 30 35 40 45 50
SPP 271 260 245 236 125 120 117 113 104 101
PAP 120 115 108 104 100 96 93 89 87 84
LAP 97 92 88 84 81 78 75 72 70 67

Table 3.3: Algorithm Provisioning Robustness Example: Network Lifetime vs. Traffic
Overload

scaled.

In this example, a 5× 5 mesh network is considered with the same sources and destina-

tions as in the first set of results in Section 3.10. In this experiment, nodes with odd labels

have a fixed solar insulation factor equal to 0.3 and the value for even nodes is set to be

0.9. A traffic flow rate equal to 0.6 is set for all sources and destinations, and the network

is first provisioned using PAP, LAP and SPP provisioning algorithms.

For each network provisioning we then used an online battery aware algorithm which

routes traffic in each time interval based on Dijkstra’s Algorithm using the link weights

given in (Zeng et al., 2006). This algorithm was chosen because it incorporates both the

node energy state and the solar insolation renewal rate. In (Zeng et al., 2006) this link cost

metric was found to produce good results for networks operating with renewable energy

sources. The traffic load was then scaled to values up to 50% larger than that given in the

bandwidth usage profile. This results in network outage and the network lifetime is mea-

sured for the SPP, LAP and PAP provisioned networks. The results are shown in Table 3.3

which gives the network lifetime for the three provisioning algorithms versus the percent-

age overload. It is clear that the network provisioned using the SPP algorithm is superior to

the other two. For example, at a 10% overload the PAP network lifetime is only about 44%

of that for SPP. At the same overload level, the LAP designed network is at about 35%.
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These values change to roughly 78% and 64% when the overload is increased to 40%.

These results confirm our intuition that in some cases a more precisely provisioned

network may be less able to adapt to unforeseen bandwidth scenarios. This should be taken

into account when defining the bandwidth usage profile that is used in the design process.

If network usage parameters can be predicted well in advance, then significant cost savings

can be obtained by position-aware provisioning combined with small bandwidth margins.

If bandwidth flows differ significantly from that used in the provisioning, then in practical

deployments this may lead to higher bandwidth deficits when an outage control algorithm

is used. This may be perfectly acceptable in many applications.

3.11.2 Solar Insolation Factor Error

The use of positional awareness in provisioning depends on site survey results that include

the solar insolation factors. The results that we have shown so far indicate that there can be

major cost advantages when this information is taken into account. However, in practice

there may be errors which occur when collecting the solar insolation factor data. These

errors will clearly lead to provisioning differences compared to that which would take place

in the error free case. In this section we present some results which show that when solar

insolation factor errors are introduced, this may lead to network outages when the network

is operated online. This possibility should be taken into account during the design process.

We have done a variety of experiments which illustrate the effects of solar insolation

factor error, and a short representative example is given. The mesh network used in Sec-

tion 3.11.1 was considered when there are errors in the estimated solar insolation factors,

i.e., β(i, k)’s. Given the three network provisioning algorithms, we routed traffic using the

corresponding offline algorithms. The case was considered where the estimated insolation
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factors (IFs) include a random Gaussian error component, with mean µi,k , β(i, k) and

standard deviation, σ, i.e., the mean value of insolation factor is the actual solar insolation

factor.

The network is operated using Dijkstra’s Algorithm with the link costs defined in the

PAP, LAP and SPP Algorithms using the same inputs as in Section 3.11.1. The network

lifetime vs the average Relative Standard Deviation (RSD) is considered, where RSD is

defined as the normalized standard deviation, i.e., σ/µi,k. The results are shown in Ta-

ble 3.4. As can be seen, the network lifetime decreases with the variation in IF error, as

one would expect, although the table is showing a large range of RSD. In the case we have

shown here, the network provisioned using the PAP algorithm is the most resilient to IF

error, followed by the LAP and SPP algorithms, respectively. However, this comparison

cannot be generalized in that the results are highly situation dependent. However, this and

other examples not shown clearly indicate the need for accurate IF estimation when truly

minimum cost provisioning is required.

The results of this section are a confirmation of the tradeoffs associated with minimum

cost provisioning. In some cases a more precisely provisioned network, or a network whose

BUP or IFs cannot be reasonably estimated, may not perform as expected or may be less

able to adapt to unforeseen bandwidth scenarios. This should be kept in mind when defin-

ing the BUP that is used in the design process. If network usage can be predicted well in

advance, then significant cost savings can be obtained, but if bandwidth flows differ signif-

icantly from that used in the provisioning, then in practical deployments this may lead to

higher bandwidth deficits when an outage control algorithm is used.
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RSD Error 5 10 15 20 25 30 35 40 45 50
PAP 904 610 417 353 321 293 268 249 232 219
LAP 592 430 325 294 270 248 225 208 193 181
SPP 377 332 297 276 257 236 215 199 185 174

Table 3.4: Algorithm Provisioning Insolation Factor Error Example: Network Lifetime vs.
Relative Standard Deviation Error.

3.12 Conclusions

In this chapter a position aware provisioning methodology for solar powered wireless mesh

networks was proposed. Unlike previous methods for assigning solar panel and battery

configurations, the new methodology takes into account the positional variations in the per

unit area ability for a deployed node to harvest solar power. It was shown that when this is

taken into account, reductions in the provisioning costs are possible. The problem was first

formulated as a linear programming optimization which gives a lower bound on the total

network provisioning cost. A provisioning methodology (PAP) that takes position aware

routing into consideration was then proposed. The performance of the proposed algorithm

was compared with conventional provisioning methods, i.e. Shortest Path Provisioning

(SPP) and a proposed Link Aware Provisioning (LAP) algorithm. Results for a 5× 5 mesh

network show that the total provisioning cost savings when PAP is used can be as high

as 44% than in the case where LAP is used, and is 26% when compared with SPP. The

reductions in the provisioning cost for the 4× 4 mesh network are about 50%. Some other

sample scenarios, e.g. hybrid networks, random networks, network with random insolation

factors and networks with a centralized receiver, show that the proposed algorithm can

significantly decrease the total network provisioning cost. Results were also presented

which illustrate provisioning resiliency and the effects of solar insolation factor error. As
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one would expect, as the cost of provisioning is reduced, it may make the network less able

to accommodate unforeseen loading conditions. This effect should be taken into account

when the network is designed, otherwise it may be forced to reduce its offered performance

to prevent outage.
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Chapter 4

Energy Provisioning and Operating

Costs in Hybrid Solar Powered

Infrastructure

4.1 Introduction

The cost of solar components will eventually decrease to the point where they may be

commonly used as an add-on for grid powered communications infrastructure. In a hybrid

powered node of this type, the issue of node energy provisioning is a key consideration. In

this chapter we consider a methodology that can be used to assess the costs of installing

and operating a hybrid powered node solar add-on. The offline problem is formulated as

a linear program (LP) which provides lower bounds on the operating expenditure (OPEX)

and capital expenditure (CAPEX) costs. A variety of configurations are considered in-

cluding conventional solar add-ons which give, solar panel/battery/grid, battery/grid, and
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panel/grid systems. These designs are compared on the basis of total CAPEX and OPEX

costs. Three energy scheduling algorithms are introduced which operate on the online sys-

tem and reduce the costs associated with power grid purchases. They are referred to as, Grid

Purchase Last (GPL), Solar Load Optimization (SLO), and Solar Load Simulation (SLS).

A variety of results are presented that show the conditions under which a solar powered

add-on can reduce the total cost. These results also show that the SLO and SLS algorithms

give performance that is close to the lower bounds in many situations (Zefreh et al., 2013).

The rest of the chapter is organized as follows. In Section 4.2 we briefly review pre-

vious work that is related to our work. Then, in Section 4.3 the problem is introduced in

detail including a discussion of the OPEX and CAPEX costs under consideration. In Sec-

tion 4.4 we then carefully introduce the offline and online design phases associated with

our problem. This is followed, in Section 4.5, by an introduction to the node energy flow

model used throughout this chapter. In Section 4.6, lower bounds are formulated for the

cost of solar configuration add-ons using linear programming (LP) formulations. Online al-

gorithms are then introduced in Section 4.7, and simulation results are presented in Section

4.8. Finally, in Section 4.9, the conclusions are given.

4.2 Related Work

To move towards green wireless infrastructure, many researchers and manufacturers are

now focusing on improved energy efficiency. The intent is that better designs will reduce

both capital expenditures (CAPEX), and ongoing operational expenditure (OPEX) costs.

For example, the Energy Aware Radio and Network Technologies (EARTH) project is a

European research effort started in 2010 with partners from 15 countries. Their goal is to

achieve a reduction in the energy consumption of mobile networks by 50% (Gruber et al.,
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2009). Green Radio (Green Radio, 2007) (Han et al., 2011), Green Touch (Green Touch,

2010), ELBA and Class-S (ELBA and Class S Projects, 2007) are similar projects that have

been recently launched, which focus on improving energy efficiency of power amplifiers

and other communication subsystem components.

In addition to improving networking components, infrastructure power management

can also significantly decrease the total energy consumption in many applications, such as

cellular networks. To improve energy efficiency for example, basestations (BSs) that are

experiencing light traffic loading can be switched off, and other BSs can be coordinated to

replace the removed nodes. In (Bu et al., 2012), Coordinated MultiPoint, CoMP, is used

to extend the coverage of the active BSs, and to ensure acceptable service quality in the

cells whose basestations have been deactivated. In (Louhi, 2007), an overview is given

of improved transmitter efficiency, system features, fresh air cooling, renewable energy

sources and energy saving during low traffic periods.

Solar energy is being considered and used to power basestations by many cellular net-

work operators. In 2008, the GSM association (GSMa), consisting of about 800 mobile

operators, initiated a program to use renewable energy sources such as solar and wind, to

power 118,000 BSs. The aim is to provide communications services in rural and remote ar-

eas where connections to the electricity grid are either unavailable or financially prohibitive

(GSM Association, 1995). In (Chowdhury and Aziz, 2012), the design of a basestation that

is powered by solar and diesel energy is analyzed, and in (Yu and Qian, 2009) a hybrid

solar-wind powered basestation is described. A hybrid system consisting of solar, wind

and diesel energy was designed in (Nema et al., 2010).

In the research and projects cited above, the basestation use of solar and wind power

is mainly in scenarios where there is no access to power grid connections, and therefore it
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is assumed that the basestation is completely powered by renewable energy. In (Han and

Ansari, 2012) a hybrid configuration of grid and solar energy is considered and it is assumed

that the cellular network consists of highly loaded BSs (HBS) that are powered by grid

electricity, and solar powered BSs that are lightly loaded (LBS). An algorithm is proposed

that minimizes the maximal energy depleting rates of the LBSs, therefore enabling more

users to be served with green energy. The optimum number of green base stations in a

cellular network is analyzed in (Zheng et al., 2012).

To better manage energy consumption, smart grid technology is appearing. In smart

grids, in addition to power delivery, a two-way information flow is established between

energy providers and clients. The provider declares its energy pricing and the client can

manage its energy usage based on these advertisements (Hashmi et al., 2011). This feature

has been considered in many published papers which improve power grid performance and

at the same time decrease client energy costs. Typically the provider charges more during

peak energy hours, which helps to motivate the clients to modify their energy consumption

profiles. This in turn, relieves stress on the power grid (Joe-Wong et al., 2012)(Conejo

et al., 2010).

4.3 Problem Introduction

We consider a single outdoor communications node which provides some kind of fixed

infrastructure functionality1. It is assumed that the node is connected to the electric power

grid, but that the energy needed for continuous operation may be supplemented with a

solar powered add-on. For this reason, the final system is referred to as a hybrid-powered

1There are many applications, such as micro-cellular basestations, vehicular roadside units, sensor net-
work back-haul infrastructure, etc.
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system, an example of which is shown in Figure 4.1. The solar add-on includes solar panels

that have been positioned to absorb the maximum possible solar energy, and an associated

battery bank that can store both solar energy, and optionally, draw energy from the power

grid connection. The electrical inputs and outputs are interconnected through an Energy

Controller which, among other things, provides protection from battery over and under-

charging. There will also be an AC/DC converted block (not shown in the figure) between

the power grid and the energy controller. Further system details and the energy flow model

used are given below in Section 4.5.

In this chapter we are interested in the solar add-on deployment and operating costs

of the node shown in Figure 4.1. The total cost under consideration consists of the sum of

Capital Expenditure (CAPEX) and Operating Expenditure (OPEX) costs over some defined

time period1. There are many different CAPEX and OPEX scenarios. In our case we as-

sume that the node is already deployed with a power grid connection, and the CAPEX cost

of interest is that associated with a solar power add-on to the existing system. In this case,

a significant CAPEX cost consists of solar panel and battery provisioning and installation

costs. Note that in our work we do not consider the installation cost component, but this

can easily be included in our formulations, if desired. Once the solar add-on is installed, the

solar energy used is “free” and does not contribute to on-going OPEX costs. For this rea-

son, the major OPEX cost considered, is that of power grid electricity purchases. Clearly,

the OPEX and CAPEX costs are dependent, i.e., a higher investment in solar CAPEX cost

can reduce ongoing OPEX costs, and vice versa. In the basic model, we therefore assume

that the total cost consists of the sum of the solar panel and battery provisioning costs, plus

the ongoing energy costs incurred over a specified time period.
1CAPEX consists of one-time costs typically associated with the deployment itself, such as installation

costs and equipment purchases. OPEX costs consist of on-going operating costs such as those associated
with power grid energy purchases.
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Energy Controller

Load

Solar Panels

Power Grid Connection

Batteries

Figure 4.1: Grid Powered Node with Solar Powered Add-on. The figure shows the solar
panel/battery/grid (PBG) configuration. The load energy needed during time epoch k is
L(k). The solar panel size and battery capacity are given by P and Bmax, respectively.
During time period k, solar energy P ζ S(k) is available, where S(k) is the per unit area
solar insolation and ζ is the panel efficiency. An energy, εg(k), may also be purchased from
the power grid and stored in the battery or applied to the load, i.e., εg(k) = εgb(k) + εgl(k).
In the configuration shown, energy εgb(k) and εsb(k) are placed in the battery from the
power grid and the solar panel, respectively. εbl(k) is drawn from the battery to the load
in time period k. In some configurations the node may derive revenue by selling surplus
energy back to the power grid.

4.4 Design and Operation Methodology

In this chapter we consider CAPEX and OPEX costs which involve both offline design

and online operation of the node to which solar components are to be added. To avoid

confusion, it is important to clearly distinguish between these two phases and how they

relate to our algorithms and experiments.

In the offline design phase, for each particular solar add-on configuration, the energy
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provisioning for that configuration is determined. This is done by using historical solar

insolation traces for the node’s geographic location, combined with estimates of the node’s

energy usage requirements. The design is assessed from a total CAPEX and OPEX cost

viewpoint using the offline input data. When this phase is completed, the solar add-on

configuration has been designed, which sets its CAPEX cost.

Once a particular solar configuration has been designed and included in the node, it can

be used for online operation experiments. In a practical system this phase would continue

indefinitely once the solar add-on has been installed. As would be the case in a real system,

in our work the online experiments are done using solar insolation traces and node energy

loading which are different from those which were used in the offline design phase. This

procedure allows us to accurately assess the combination of offline and online design that

is done in practice.

Based on the above discussion, the design and experimental procedures used in our

work are briefly summarized as follows.

• The process starts with input data which includes historical solar insolation traces

for the node deployment region, and estimated node energy loading values. In our

case we use solar insolation data from the years 1967-1978. An offline design is

performed based on minimizing the sum of projected CAPEX and OPEX costs over

a target deployment amortization time period. This is done using linear programming

formulations discussed in Section 4.6 and gives us the solar add-on configuration to

be deployed.

• The designed solar add-on is now deployed and subjected to online experiments

which must include a real-time node energy scheduling algorithm which tries to

minimize ongoing OPEX costs. The energy scheduling algorithms are introduced
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in Section 4.7. In our experiments we use different solar insolation traces and node

loading values, as would be the case in a practical deployment. In our case, the solar

insolation data used is from the years 1979-1990.

• The costs are compared for different configurations and with lower bounds computed

using the online experimental inputs. This is done in Section 4.8.

In the next section we formalize these definitions by reviewing the energy flow model

used in this chapter.

4.5 Hybrid Node Energy Flow Model

Modeling in photo-voltaic systems is normally done in discrete time using time epochs of

duration ∆t between time modeling instants1. We are interested in the operation of the

system over some contiguous time period T = [0, K∆t], where K is a large integer, and

for convenience we have started the system at time t = 0. In discrete time we define

K = [1, 2, . . . , K], where each k ∈ K corresponds to one ∆t time epoch.

For expository purposes, we consider the solar panel/battery/grid (PBG) configuration

shown in Figure 4.1. The node energy flow model accounts for the production, purchase,

and use of energy over T . We define B(k) as the residual energy in the battery at the end

of time epoch k. Input energy flow to the battery during time period k consists of energy

harvested from the solar panels, εsb(k), and energy purchased from the power grid, εgb(k)2.

During the same time epoch, energy εbl(k) is drawn from the battery and consumed in the
1Since our experiments will span very long time periods, it is convenient for us to express time in units of

hours. It is also well accepted that for solar provisioning purposes, excellent accuracy may be obtained using
∆t = 1 hour time increments (Maghraby et al., 2002)(Farbod and Todd, 2006)(Khatib et al., 2012)(Shrestha
and Goel, 1998).

2The notation for the energy flow variables is εxy(k), where x and y are the energy source (e.g., solar (s),
grid (g)) and destination (e.g., battery (b), load (l)), respectively.
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load. Bmin and Bmax are defined to be the minimum allowed battery level, and the battery

capacity, respectively. Bmin is typically based on safety and battery life considerations,

which is enforced by the energy controller in Figure 4.1.

Using these definitions, the energy in the battery at the end of time epoch k can be

written as

B(k) = min{max{B(k−1)+η+b (εsb(k)+ εgb(k))− εbl(k),Bmin},Bmax} ∀k ∈ K (4.1)

where η+b is the charging efficiency of the battery (Sobu and Wu, 2012). Equation (4.1)

is a simple recursion that finds the battery energy at time k to be that at time k − 1, plus

the energy received from the solar panels and the power grid, minus the energy supplied

from the battery to the load over that time period. Equation (4.1) uses the well known

linear energy flow model that is commonly used for photovoltaic node energy provisioning

(Maghraby et al., 2002)(Badawy et al., 2010)(Sayegh, 2008). We have added variables to

the conventional model to account for the presence of the power grid connection. Note that

this recursion ensures that Bmin ≤ B(k) ≤ Bmax, ∀k ∈ K, as required. Typically, we

assume that the battery is fully charged at the beginning of its operation, and therefore we

define B(0) = Bmax.

The load energy required during time epoch k is given by L(k). This can be supplied

from a combination of sources: 1) directly from the solar panels without storage in the

battery, 2) from energy purchased from the power grid, and, 3) from energy drawn from

the battery. This gives the following load equation,

L(k) = εsl(k) + εgl(k) + η−b εbl(k) ∀k ∈ K (4.2)
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where εsl(k) and εgl(k) are the direct solar energy and power grid energy consumed in the

load, and η−b is the battery discharge efficiency. Finally, the maximum energy that can be

drawn from the battery in time epoch k must not exceed that which was available at the

start of the interval, i.e.,

εbl(k) ≤ B(k − 1) ∀k ∈ K (4.3)

Assuming that εs(k) and εg(k) are the total harvested solar and purchased power grid ener-

gies in time epoch k, we must have that

εs(k) = εsb(k) + εsl(k) ∀k ∈ K (4.4)

εg(k) = εgb(k) + εgl(k) ∀k ∈ K. (4.5)

That is, the solar energy available for storage and the load is equal to the amount har-

vested. Similarly, the power grid energy applied to battery storage and the load, equals that

purchased. The term, εs(k), can be written as

εs(k) = P ζ S(k) ∀k ∈ K. (4.6)

where P , ζ and S(k) are the solar panel size (i.e., area), efficiency, and the per unit area

solar energy availability for an optimally oriented solar panel during time period k, re-

spectively. Sample traces of historical values for S(k) which are used in this chapter are

available from meteorological databases.

The above definitions define the node energy flow, inputs, outputs and constraints. In

the next section, we formulate the total CAPEX and OPEX cost for the node and derive

lower bounds that are used for offline design, and for comparisons with the online systems

running energy scheduling algorithms.
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4.6 Hybrid Node Total Cost Bounds

Our objective is to minimize the total CAPEX and OPEX cost for the node over the time

period T . Using the energy flow model from Section 4.5, this can be found using the linear

programs (LPs) formulated in this section. Different versions are given for various node

configurations: 1) solar panel/battery/grid (PBG), 2) solar panel/grid (PG), 3) battery/grid

(BG), and, 4) PBG with energy revenue (ER).

4.6.1 Solar Panel/Battery/Grid (PBG) Configuration

This is the basic configuration shown in Figure 4.1 which includes a solar panel and battery

add-on. The inputs to the problem are given by the set of n-tuples

I = {(cb, cp, cg(k),L(k),S(k), η+b , η
−
b , ζ,Bmin} ∀k ∈ K (4.7)

where cp and cb are the per unit solar panel and battery prices, respectively, and cg(k) is the

power grid energy purchase price during time epoch k.

The LP finds a lower bound on the minimum total CAPEX and OPEX costs over the

set of optimization variables defined by the n-tuples

V = {(Bmax,B(k),P , εg(k), εgb(k), εgl(k), εs(k), εsb(k), εsl(k), εbl(k))} ∀k ∈ K. (4.8)

The LP finds the optimal battery and solar panel sizing, the power grid energy purchases

for all time, and how the input energy is stored and applied to the load1. The optimization,

1For the purpose of deriving cost bounds and for the offline designs, we model the solar panel and battery
sizes as continuous variables. In the online case, these are rounded up to the nearest available panel and
battery sizes. An alternative formulation is to introduce integer variables into LP–PBG representing the num-
bers of panels and batteries. This will result in an integer linear program (ILP) which will, in general, have
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referred to as LP–PBG, is first given, and then described below.

minimize
V

cb Bmax + cp P +
∑
k∈K

cg(k) εg(k) (LP–PBG)

subject to B(k) ≤ B(k − 1) + η+b (εsb(k) + εgb(k))− εbl(k) ∀k ∈ K (4.9)

L(k) ≤ εsl(k) + εgl(k) + η−b εbl(k) ∀k ∈ K (4.10)

εsb(k) + εsl(k) ≤ εs(k) ∀k ∈ K (4.11)

εgb(k) + εgl(k) ≤ εg(k) ∀k ∈ K (4.12)

εbl(k) ≤ B(k − 1) ∀k ∈ K (4.13)

Bmin ≤ B(k) ∀k ∈ K (4.14)

B(k) ≤ Bmax ∀k ∈ K (4.15)

εs(k) = P ζ S(k) ∀k ∈ K (4.16)

B(0) = Bmax (4.17)

0 ≤ εg(k), 0 ≤ εs(k), 0 ≤ εgl(k), 0 ≤ εgb(k),

0 ≤ εsl(k), 0 ≤ εsb(k), 0 ≤ εbl(k) ∀k ∈ K (4.18)

0 ≤ P , 0 ≤ B (4.19)

The first two terms in the objective consist of the solar panel and battery CAPEX costs,

and the third term is the sum of the OPEX costs of power grid purchases over T . The LP

finds the minimum sum of OPEX and CAPEX costs by selecting the best combination of

battery and panel sizes, and the amount of energy that should be purchased during each

time interval. Most of the terms in LP–PBG come from straightforward modifications to

exponential worse-case complexity. LP–PBG is a relaxation of this formulation with polynomial complexity
which gives us a lower bound on cost, and a reduced complexity solution suitable for online heuristics.

69



P.h.D. Thesis - M. Sheikh Zefreh McMaster - Electrical & Computer Engineering

the energy flow equations from Section 4.5, as discussed below.

Inequality (4.9) expresses Equation (4.1) as an inequality constraint, as does (4.10) for

Equation (4.2). Inequality (4.11) ensures that the solar energy stored and expended in the

load during interval k cannot exceed that provided by the solar panel. Similarly, inequality

(4.12) performs the same function for purchased power grid energy. Constraints (4.13)

to (4.19) are the same that those discussed in results (4.3) to (4.6), plus the obvious non-

negativity constraints on the energy and panel/battery sizes. This includes the constraint

that batteries are fully charged at the beginning of their operation, i.e., Equation (4.17).

The above LP considers supplementing a grid-powered system with solar powering,

which includes battery storage and solar panels. However, depending on limitations and

requirements, battery/grid (BG) and solar panel/grid (PG) systems can also be considered.

It is also easy to include battery charging/discharging rate constraints in LP–PBG. How-

ever, we have found that for the inputs and parameters considered in this chapter, these

constraints are not active, and in the interests of simplicity, they have not been included in

the above formulation.

Before continuing with our description of other node configurations, we first show the

following result, which provides theoretical motivation for our Grid Purchase Last (GPL)

energy scheduler, which will be introduced in Section 4.7.1.

Theorem 1. Consider the basic solar panel and battery (PBG) configuration when η+b =

η−b = 1. If grid energy pricing is fixed, cg(k) = cg for all k, then a feasible minimum cost

solution for LP–PBG can always be obtained when εgb(k) = 0 for all k. That is, in order

to achieve the optimum offline bound, it is never necessary to store power grid energy in

the battery.

Proof. It is assumed that the battery is ideal, i.e., η+b = η−b = 1, and it will be shown that
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even in this case, it is never necessary to store power grid energy in the battery in order to

achieve the offline cost bound. We start from a given optimal solution, and we manipulate

it into a more structured one, before we prove the theorem. First, notice that if εgb(k) > 0

in (4.9), then it must be the case

B(k) = B(k − 1) + εgb(k) + εsb(k)− εbl(k) (4.20)

otherwise we could reduce εgb(k) without becoming infeasible and get a solution better

than the optimal. Notice that if also εbl(k) > 0, we can apply the following changes for

some ε > 0, without changing the objective value or violating the feasibility of the solution:

εgb(k) := εgb(k)− ε, εbl(k) := εbl(k)− ε, εgl(k) := εgl(k) + ε.

After these changes εgb(k) or εbl(k) becomes 0. Then (4.20) is replaced by

B(k) = B(k − 1) + εgb(k) + εsb(k) (A)

or by

B(k) = B(k − 1) + εsb(k)− εbl(k). (B1)

The rest (when εgb(k) = 0) of the constraints (4.9) are of the form

B(k) ≤ B(k − 1) + εsb(k)− εbl(k) (4.21)
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and by decreasing B(k − 1) while still maintaining (4.13), we get either

B(k) = B(k − 1) + εsb(k)− εbl(k) ∧ B(k − 1) > εbl(k) (C1)

or

B(k) ≤ B(k − 1) + εsb(k)− εbl(k) ∧ B(k − 1) = εbl(k). (C2)

Note that the constraints in group (B1) can be distributed (relaxed to an inequality) into

groups (C1), (C2), depending on whether B(k − 1) > εbl(k) or B(k − 1) = εbl(k) respec-

tively, i.e, we end up with an optimal solution that satisfies (A), (C1), (C2).

Suppose that kmax is the largest time index in (4.9), and k the biggest index of any

constraint (4.9) from group (A). Then any sequence of constraints (4.9) after time index k

are of the following general form in terms of the group they belong to:

index . . . k k + 1 . . . k + i k + i+ 1 . . .

group . . . (A) (C1) . . . (C1) (C2) . . .

We note that from what follows it will become apparent how to handle the special cases

i = 0 (no (C1) constraints following k) and k + i = kmax (only (C1) constraints, if any,

following k). Also note that B(l − 1) > εbl(l) ≥ 0, k + 1 ≤ l ≤ k + i. This implies that

B(k + i) = εbl(k + i+ 1) > 0, because otherwise B(k + i) = 0 = B(k + i− 1) + εsb(k +

i)− εbl(k+ i) > 0, a contradiction (the same contradiction arises in the case i = 0, because

B(k) = B(k − 1) + εgb(k) + εsb(k) > 0).

Let

ε1 := mink+1≤l≤k+i{B(l − 1)− εbl(l)}

and let

ε := min{ε1, εgb(k), εbl(k + i+ 1)}.
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Obviously, ε > 0. Then if we perform simultaneously the following changes, we maintain

feasibility and we reduce εgb(k) by ε:

εgb(k) := εgb(k)− ε,

B(k) := B(k)− ε,

B(k + 1) := B(k + 1)− ε,

. . .

B(k + i) := B(k + i)− ε,

εbl(k + i+ 1) := εbl(k + i+ 1)− ε,

εgl(k + i+ 1) := εgl(k + i+ 1) + ε.

Notice that after these changes the composition of groups (A), (C1), (C2) have changed:

the constraint (4.9) at time index k will move to group (C1) or (C2) (in case ε = εgb(k)), or

a constraint (4.9) between indices k + 1 and k + i will move to group (C2) (in case ε = ε1,

or in case ε = εbl(k + i + 1), because then B(k + i) = 0 and, hence, (i) all the constraints

(4.9) at indices k + i, k + i − 1, . . . , k must move to group (C2), and (ii) εgb(k) = 0, in

order to avoid a contradiction).

We continue in a similar fashion, until group (A) becomes empty.

4.6.2 Battery/Grid (BG) Configuration

In a BG configuration, electricity from the power grid can be purchased and stored for

future use. This may be advantageous when power grid costs are time dependent, e.g.,

when εg(k) is not the same for all k. During off-peak hours, when power grid pricing is
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reduced, battery storage for future use may lead to reduced OPEX costs. By setting P = 0

in LP–PBG we can obtain the offline lower cost bound for the battery/grid case.

4.6.3 Solar Panel/Grid (PG) Configuration

The panel/grid configuration is another deployment option. In this case, the capability

of storing electricity in off-hours is eliminated, and all the input energy from the solar

panels is applied directly to the load whenever possible. Since energy pricing is normally

more expensive during daytime hours, there is a good correlation between solar energy

availability and higher grid pricing.

To formulate the panel/grid problem, LP–PBG can be modified as follows.

minimize
P, εg(k)

cp P +
∑
k∈K

cg(k) εg(k) (LP–PG)

subject to L(k) ≤ P ζ S(k) + εg(k) ∀k ∈ K (4.22)

0 ≤ εg(k) ∀k ∈ K (4.23)

0 ≤ P (4.24)

In this case, the LP selects the best solar panel size and power grid energy purchases. This

is subject to providing sufficient load energy during each time epoch.

4.6.4 Energy Revenue (ER) Configuration

We also consider the case where the PBG configuration sells unused energy back to the

power grid. In this case we define εr(k) to be the energy sold to the power grid during time
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epoch k. The objective function in LP–PBG will now become

cb Bmax + cp P +
∑
k∈K

cg(k) εg(k)−
∑
k∈K

rg(k) εr(k) (4.25)

where rg(k) is the unit price paid by the power grid for surplus energy at time k. We also

introduce two new optimization variables, εbg(k) and εsg(k), which are battery-to-grid and

solar-to-grid energy transfers during time interval k. Inequality (4.9) now becomes

B(k) ≤ B(k − 1) + η+b (εsb(k) + εgb(k))− εbl(k)− εbg(k) ∀k ∈ K (4.26)

and expressions (4.11) and (4.13) will change to

εsb(k) + εsl(k) + εsg(k) ≤ εs(k) ∀k ∈ K (4.27)

and

εbl(k) + εbg(k) ≤ B(k − 1) ∀k ∈ K (4.28)

We must also have that

εr(k) ≤ εsg(k) + η−b εbg(k) ∀k ∈ K (4.29)

Given these changes to LP–PBG, we can easily compute a lower bound on cost for the

energy revenue configuration.

The offline LPs formulated above have access to all past and future input data, and

therefore, they provide only lower bounds on cost, which are in general, not achievable in a

practical system, i.e., if the minimum cost solar provisioning (i.e., P and Bmax) is used, the
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bound cannot generally be realized. For this reason, online energy scheduling algorithms

are needed which control energy flow, purchases and storage decisions in real time. In

the following section, three online algorithms are proposed and performance results are

compared with the lower bounds in Section 4.8. As described in Section 4.4, the system

is first configured using the LPs defined in this section. This sets the CAPEX costs. The

purpose of the online algorithms is then to reduce OPEX costs as much as possible, by

proper energy scheduling, given the node configuration.

4.7 Online Energy Scheduling Algorithms

When the system is operated online, the solar configuration and its associated CAPEX

costs, have already been determined. The objective of the online algorithms is then to

schedule node energy use with minimum OPEX costs. We first consider the PBG config-

uration discussed in Section 4.6.1. The algorithms to be discussed are also applicable for

the BG configuration.

4.7.1 Grid Purchase Last (GPL) Algorithm

The Grid Purchase Last (GPL) algorithm is based on the discussion at the end of Section

4.6.1 and the result which motivates the purchase of power grid energy as a last resort. This

is also motivated by the idea that when energy is bought and stored before it is actually

needed, the chance of energy wastage is increased due to battery overflow. Accordingly,

the GPL algorithm defers any power grid purchases as long as possible. The details of it’s

operation are shown in Algorithm 4.1.

In step 2, if there is sufficient solar energy to power the load, this is the option taken.
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Algorithm 4.1. Grid Purchase Last (GPL) Algorithm
1: for all k ∈ [1, 2, · · · ,∞) do
2: if L(k) ≤ εs(k) then
3: Supply load, L(k), using solar energy and place any residual energy in the battery, i.e.,
εsb(k) = εs(k)− L(k).

4: else if εs(k) < L(k) ≤ εs(k) + η−b B(k − 1) then
5: Supply L(k) using both solar and battery energy, i.e., εbl(k) = εs(k)− L(k).
6: else
7: Supply L(k) using using available solar and battery energy plus a grid power purchase,

i.e., εgl(k) = εs(k) + η−b B(k − 1)− L(k).
8: end if
9: end for

In this case any residual solar energy, εs(k) − L(k), is made available for storage in the

battery. If there is insufficient solar energy, then energy is also drawn from the battery to

make up the shortfall, as shown in step 5. Finally, only if solar and battery reserves are

insufficient energy is purchased from the power grid (step 7). In this case the purchase is

just enough to supply the energy shortfall.

The GPL algorithm is very simple and is likely to be the sort of default algorithm used in

many practical situations. However, there are many scenarios where its performance is not

very good. In the following, two other algorithms are introduced which take into account

solar insolation factors, traffic loading and grid energy pricing. In order to accomplish this

we must have predictions of future solar insolation values.

4.7.2 Solar Load Optimization (SLO) Algorithm

The SLO Algorithm uses predictions of input solar insolation values, S(k), over a future

window of duration w∆t as a basis for its energy scheduling decisions. The predictions

that we use are based on the algorithm first proposed in (Ali et al., 2010), and is briefly

reviewed in Appendix A. This is used to predict both future solar energy, S(k) and the
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Algorithm 4.2. Solar Load Optimization (SLO) Algorithm
1: for all k ∈ [1, 2, · · · ,∞) do
2: Use the prediction from Equations (A.1) to (A.5) and LP–PBG for k+ 1 ≤ i ≤ k+w with

the updated objective (4.30) to find the target variables including εg(i) for i = k, k+1, . . . , k+
w.

3: Implement the energy flow in accordance with the solution obtained in step 2. If L(k) is
higher than its prediction, or if S(k) is lower, then draw the additional energy needed from the
battery, i.e., increase εbl(k) above its predicted value. If this is insufficient, purchase additional
energy from the power grid, i.e., increase εgl(k) to make up the shortfall.

4: end for

load, L(k). Using these predicted values, the algorithm solves a linear program over the

next w time epochs, which gives estimated values of εg(k) to use for power grid energy

purchases.

More formally, at time k the algorithm estimates the values of S(i) and L(i) for i =

k+ 1, k+ 2, . . . , k+w, and uses these estimates with the known value of B(k) in LP–PBG

to determine the estimated future values of εg(j), εgb(j), εgl(j), εsb(j), εsl(j), for k ≤ j ≤

k + w. Note however, that the objective function in LP–PBG is replaced by

i+w∑
i=k

εg(k) cg(i) (4.30)

since the battery and panel sizes are already determined, and are no longer variables of the

LP. The only remaining variables are the amounts of energy that should be purchased from

the grid in each future time epoch. the CAPEX costs are already determined. The above

result gives estimates for the variables indicated, however, the “next step” values for k + 1

are the only ones used. This is because the entire process is repeated and the estimates are

updated for each ∆t period.

The algorithm is run at the end of every ∆t time epoch. At each run the algorithm

introduced in Appendix A is used in step 2 to predict the available solar energy and the
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power consumption in the next w∆t hours, i.e., for i = k + 1, k + 2, . . . , k + w. The LP

Solution gives a set of grid energy variables, εg(j) for j = k, k + 1, . . . , k +w, that should

be purchased over this time period. Since the algorithm is run every ∆t, only the result for

the current time period, k, is purchased.

4.7.3 Solar Load Simulation (SLS) Algorithm

The SLO Algorithm involves solving an LP at each time epoch, which is undesirable. In

this section we consider an alternative with the same motivation but does not have this

requirement. This algorithm is referred to as the Solar Load Simulation (SLS) Algorithm

and is shown in Algorithm 4.3. The idea behind the algorithm is that when a grid energy

purchase is needed, the algorithm is willing to purchase the energy early, provided that

there is room in the battery and the purchase price is lower. As in SLO, predicted values

for solar insolation and load are used for a window of w time epochs extending into the

future.

In Step 3 the predicted values in Step 2 are used to find the battery energy levels at each

time epoch over next w intervals. This is accomplished by simulating the battery energy

recursion (4.1), subject to Equations (4.2) to (4.6) using the GPL Algorithm. We then find

the first time period, p, where a future power grid energy purchase is predicted, i.e., step 4.

If the current energy purchase price (at time k) is less than all other time periods between

k and p, and purchasing energy would not overflow of the battery for i ∈ {k + 1, . . . , p},

then we move the grid energy purchase from time p to k. This is shown in steps 5 and 6.

Note that this early energy purchasing is with respect to the current available energy in the

battery. The variables used in the recursion are then updated.
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Algorithm 4.3. Solar Load Simulation (SLS) Algorithm
1: for all k ∈ [1, 2, · · · ,∞) do
2: Obtain the predictions from Equations (A.1) to (A.5) for i ∈ {k + 1, k + 2, . . . , k + w}.
3: Using the predicted values from step 2, and known values of available solar energy and

battery energy level at time k, simulate the system over {k, . . . , k+w} using the battery energy
recursion (4.1), and (4.2) to (4.6). When doing this, use the GPL Algorithm.

4: Find p = minj : 0 < εg(j) for all j ∈ {k + 1, . . . , k + w}.
5: if cg(k) < cg(i) and B(i) < Bmax for all i ∈ {k + 1, . . . , p} then
6: εg(k) := εg(k) + min(εg(p),Bmax − B(k)).
7: end if
8: end for

4.8 Simulation Results

The offline and online results are obtained as follows. For a particular solar add-on con-

figuration, historical solar insolation data and estimates of the node loading over a target

time period are used to obtain a good energy provisioning (i.e., solar panel and battery

configuration) for the node. The time period used for this are the years 1967-1978 taken

from solar insolation data for Boston, MA. This is done by using the appropriate LP from

Section 4.6, for the desired node configuration. This result determines the CAPEX cost of

the solar add-on. Once this has been obtained, we subject the configured node to online

experiments. For this purpose we use solar insolation data from the years 1979-1990 for

the same geographic location. The node energy loading assumed in this case is correlated

to the original, as discussed below.

A wide variety of experiments have been performed that illustrate the performance of

the proposed algorithms. In this section we present some examples of these results that

illustrate various tradeoffs and conclusions. We have also evaluated the algorithms for

New York, Atlanta, Phoenix and Seattle, cities which have different climate conditions

than Boston, for the same period of time.
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Although node temporal loading is application dependent, for the examples in this chap-

ter we use a model obtained from the observations in (Correia et al., 2010) that show a 24hr

sinusoidal periodicity in averaged basestation power consumption. Accordingly, we define

the average power usage of the load by PL. In addition, the minimum and maximum value

of energy consumption of the node occurs at 5 a.m. and 5 p.m., respectively. Based on the

results presented in (Correia et al., 2010) (Oh et al., 2011) (Frenger et al., 2011), which

show a time-correlated daily periodicity in energy use, we adopt the following node power

consumption model where P (k) is the power consumption at the start of time epoch k.

P (k) = PL(1 +
1

3
cos(

π

12
(k∆t+ 7))) + γn ∀k ∈ K (4.31)

where γn is a normally distributed random variable with mean of 0 and standard deviation

of 70 W, which is used to model random perturbations in the loading. Note that in Equation

(4.31), k = 0 corresponds to midnight at the start of the first day considered in T . The

actual node energy requirements are therefore given by L(k) = P (k) ∆t.

A Time of Use (TOU) pricing model is used which has two pricing modes. It is assumed

that electricity price is on-peak from 7 a.m. to 6 p.m., and the price during these hours is

1.5 times the average, and the off-peak price is half the average (Yang et al., 2012). Unless

otherwise stated, the unit battery and panel specifications as well as other parameter values

are given in Table 4.1. The default value for PL is set to 1450 W (Arnold et al., 2010).

For comparison purposes we include three different node powering configurations:

1. Operation completely from power grid energy (Grid-Only (GO)), i.e., no solar add-

on.
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Solar Panels
Size 1.65×.992 m2

ζ 0.1497
Cost $197 CAN

Default Parameters
w 24 hours
H 3 hours
D 20 days
π 0.2

∆t 1 hour

Batteries
Capacity 150 Ah
η+b , η

−
b 0.92

Cost $229 CAN

Table 4.1: Default Parameter Settings

2. Operation completely from the solar add-on, i.e., it is provisioned for energy sustain-

able (Solar Only (SO)) operation.

3. The hybrid case where the node is powered by a suitable combination of solar and

grid energy, i.e., PBG.

The intent is to design a minimum cost system for the online time period, 1979-1990,

and to compare the total costs for various configurations and parameters. The plotted lower

bounds on cost are obtained using the actual online data for 1979-1990, and solving the

appropriate LP in Section 4.6. As discussed previously, the data from 1967-1978 are used

to determine the CAPEX cost configuration of the system in the offline design phase. Once

this is done, the actual values of traffic loading and solar insolation for the intended deploy-

ment years of 1979-1990 are used in the algorithms that were introduced in Section 4.7 for

an online computation of the required energy and OPEX costs.

The hybrid scenario can be divided into three categories. In the first, both batteries and

panels are used, i.e., the PBG case from Section 4.6.1. In the second case, only a solar

panel is used to augment node energy requirements, i.e., the PG case from Section 4.6.3.

Finally we have the battery/grid case, i.e., BG case from Section 4.6.2 in which no solar

energy is used. In this case electricity can be stored in the battery and used later. In the

following, simulation results for each category are presented.

82



P.h.D. Thesis - M. Sheikh Zefreh McMaster - Electrical & Computer Engineering

2 3 4 5 6 7 8 9 10 11 12
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10
4

Deployment Time (years)

T
ot

al
 C

os
t

 

 

Grid−Only (GO)
Solar−Only (SO)
PBG: GPL Algorithm
PBG: SLO Algorithm
PBG: SLS Algorithm
PBG: Total Cost Bound

Figure 4.2: Example Comparison of GO, SO and PBG Configurations. Total cost is plot-
ted versus the add-on (amortization) deployment time, assuming an energy pricing of 0.3
$/kWh.

4.8.1 Solar Panel, Battery and Grid (PBG) Case

In the first experiment, the performance of the PBG configuration is compared with the

cases where we operate the system with grid-only (GO) powering, and solar-only (SO)

powering. The GO case is the original system without any addition, and the second is with

a solar/battery add-on which is provisioned to be energy sustainable, i.e., no grid purchases

are needed. Results are evaluated for deployment time periods ranging from 2 to 12 years.

The average energy price varies over a wide range from 0.1 to 0.5 $/kWh.

In the first set of results shown in Figure 4.2, the average energy price is set to 0.3

$/kWh, with the daily fluctuation discussed above, and the performance of the algorithms

in terms of the total cost, i.e., the sum of CAPEX and OPEX costs, is compared for an

add-on deployment time from 2 to 12 years. It can be seen that for this set of parameters,

the cost break-point between a GO and SO configuration is about 8 years. Clearly the SO
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Figure 4.3: Percentage of Cost Savings using PBG versus GO Configurations. This is
plotted versus energy pricing for different CAPEX amortization periods.

case incurs a high initial CAPEX cost but no ongoing OPEX costs, compared to the GO

case which is exactly the opposite. An interesting result is that by properly combining the

two configurations, we can obtain a system with significantly less total cost. From Figure

4.2, the GO scenario is up to about 100% more expensive than the PBG configuration,

even when the Grid Purchase Last (GPL) algorithm is used. However, the GPL scheduler

has relatively poor performance compared with SLO and SLS. This is because it does not

take into account the daily grid power pricing differences. In this case, where we have used

practical numbers, the cost of the system using GO is about 210% higher than that obtained

with the SLO and SLS algorithms. In results that we have not shown, we find that when the

grid pricing is fixed, i.e., cg(k) = cg for all k, the GPL scheduler performance is about the

same as SLO and SLA. This observation is consistent with the theoretical result obtained

for the offline optimization in Theorem 1.

Figure 4.3 summarizes the cost saving percentage obtained by using the PBG config-

uration compared with the Grid-Only case for different energy pricing. This information
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is plotted for different CAPEX amortization periods. In this case we have used the SLO

scheduler rather than GPL for the previously mentioned reasons. It can be seen that the hy-

brid system will lead to between 40% to 78% savings in the total cost over a wide range of

energy prices. Note that when the deployment time is as short as two years and electricity

pricing is as low as 0.1 $/kWh, it is probably not worth investing in a solar power add-on.

In this case the optimizer prefers to continue using only grid energy. Notice that there is

a “saturation effect” in Figure 4.3. For larger time periods, the percentage improvement

as a function of energy pricing in going to a solar add-on, flattens out. This is caused by

the decreasing use of grid energy to power the node as we move to the right in the figure.

Eventually the node will be configured to be fully solar powered and costs will then be

independent of increases in grid energy pricing. Clearly. Figure 4.3 makes a good case for

solar powered add-on configurations as future energy pricing increases.

4.8.2 Solar Panel/Grid (PG) Configuration

In the next set of results, the node add-on consists only of solar panels, and its performance

is compared with the GO configuration. Using a PG configuration is interesting because

solar energy output obviously occurs only during daytime hours. However, this is a good

match since this is exactly when node energy consumption and grid energy pricing tends to

be higher. In these experiments, LP–PG has been used to determine the optimum cost for

variable energy pricing and for different deployment periods.

The total cost bound for PG along with its online results in comparison with the Grid-

Only case are shown in Figure 4.4. It can be seen that there is very little difference between

the bound and the online results. This is because there is no intelligent energy scheduling

required, i.e., any available solar energy is immediately used, and the power grid fills in
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Figure 4.4: Total Cost (OPEX and CAPEX) for a Panel/Grid (PG) Configuration Compared
with the Grid Only (GO) case.

any shortfall. Similarly, if the solar energy is higher than that needed, the surplus is lost.

It can be seen from this figure that the savings in cost are much more modest than the

cases that we considered previously. For example, when the deployment time is more than

about 4 years, up to 21% savings is achievable over a wide range of energy prices. Only

when energy pricing becomes very high is this arrangement reasonable. Too much of the

available solar energy is lost and cannot be applied during non-daytime hours.

4.8.3 Battery/Grid (BG) Configuration

The converse case to PG is to use a battery only, BG, node add-on. In this case all consumed

energy will be that from the power grid. This configuration makes no sense if energy pricing

is fixed, i.e., when cg(k) = cg for all k. When this is not the case however, the node may

choose to store energy purchases made at lower prices for use later. This makes sense since,

in practice, elevated pricing tends to occur over long time periods during peak usage hours.
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Figure 4.5: Total cost (OPEX and CAPEX) for the Battery/Grid (BG) Configuration Com-
pared to the Grid Only (GO) Case.

The SLP Algorithm is used to determine battery provisioning cost, and this result, along

with the total cost bound are compared with the GO case in Figure 4.5. In this case we

see that the cost improvements due to the add-on are much more significant than in the PG

configuration. For example, up to almost 50% cost savings can be obtained in this method

for the energy price range considered before. This improvement over the BG case is due to

the fact that the “energy time shifting” can occur over large time periods and is not subject

to the energy loss associated with the PG configuration’s inability to store energy. Clearly,

for the parameters that we are considering, BG provides better cost saving performance

than PG. This scenario could change however, if, for example, the relative unit costs of the

battery and solar panel were to dramatically change from their current values.
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4.8.4 Energy Revenue (ER) Configuration

In this section it is assumed that the node add-on is configured to sell unused energy back

to the power grid. The LP introduced in Section 4.6.4 is used to determine the CAPEX and

provisioning costs using the modified version of LP–PBG as discussed in that section. The

CAPEX configuration of the add-on therefore takes into account the revenue scenario. We

then present results using the SLO algorithm and this modification to the LP. The online

algorithm therefore schedules grid energy purchases, but also determines if surplus energy

should be sold back to the grid at each time epoch.

Simulation results when the average energy price for purchasing electricity differs from

the selling price are shown in Figure 4.6. The average energy purchase price is 0.3 $/kWh,

and the add-on amortization time is set to 10 years. It is clear from this figure that permitting

energy revenue strongly affects the economics of the node add-on. The GO case is the top

curve shown which is significantly more expensive than the PBG configuration. In this

figure, separate curves have been shown for the add-on CAPEX and selling profit values.

With a revenue capability, the overall cost is seen to decrease as the energy selling price

increases. It can be seen that if the selling price increases, the optimizer aggressively

increases CAPEX expenditures. Eventually, if the selling price becomes sufficiently high,

the node can turn a profit by investing in solar panels and battery storage, and by time-

shifting energy purchases.

4.8.5 Example for Different Locations

A wide variety of results have been obtained for different locations, and compared for New

York, Atlanta, Phoenix, Seattle and Boston. Among these, Boston and new York have

almost the same climate. Seattle has a marine climate, with a relatively high fraction of
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Figure 4.6: Energy Revenue Example with PBG Configuration

overcast days that significantly affect CAPEX provisioning costs. Atlanta has a temperate

climate, and Phoenix has a subtropical arid climate with extremely hot summers and warm

winters, with an abundance of solar energy.

As a final example, the total costs for a deployment period of 10 years are shown in

Figure 4.7 using the PBG configuration. Phoenix clearly has the lowest total cost and

Seattle, as expected, has the most expensive solar add-on provisioning costs. It can be seen

that Phoenix and Atlanta have the best cost savings, followed by New York and Boston.

Clearly, the economics of a solar add-on are highly location dependent.

4.8.6 Discussion

The development and results introduced in this chapter provide a methodology and strong

indications for the future use of hybrid grid and solar powered infrastructure. However,

as noted in Section 4.3, one should be careful at assessing all of the costs associated with

providing solar powered additions. For example, if installation costs become significant,
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Figure 4.7: Cost Comparisons For Different Locations using the PBG Configuration.

then these should be taken into account when making cost comparisons. This may very

well result in shifts to the cost curves which will affect the timing of cost break-points.

These types of costs can easily be incorporated into the formulations.

4.9 Conclusions

In this chapter, we have considered the operating and capital costs of providing a solar

powered add-on to power grid operated communications infrastructure nodes. Both capital

(CAPEX) costs and operating (OPEX) costs were considered. CAPEX costs are associated

with provisioning the solar panel and battery components of the add-on, and are selected us-

ing an offline design method. The operating (OPEX) costs are those associated with power

grid energy purchases when the node is online. Online energy scheduling algorithms were

also introduced. Lower bounds on the costs were also derived using linear programming

(LP) formulations, where solar components are sized using solar insolation and projected
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loading data.

To compare the performance of the proposed algorithms, solar insolation traces for the

city of Boston, MA. were used. Simulation results show that when comparing with the

grid energy only case, using the proposed energy management scheduling algorithms re-

sults in a 40% to 78% deduction in the total cost. This is achieved when a combination of

batteries and panels are used to supplement purchased power grid energy. The improve-

ments obtained are 21% and 48% for the panel/grid and battery/grid configuration cases,

respectively. Simulation results were also performed for other cities with different solar in-

solation profiles. Results show that the algorithms achieve better cost improvements when

solar power is more plentiful.
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Chapter 5

Energy Provisioning in Stand-alone

Solar Powered Systems with Deferrable

Load

5.1 Introduction

In this chapter we show that in a stand-alone PV system where part of the energy demand

is deferrable, it is possible to reduce the total provisioning cost by careful energy manage-

ment. A single solar powered node is considered where its energy (load) demands can be

divided into non-deferrable and deferrable components. Non-deferrable loads are referred

to as the part that must be satisfied immediately upon their request, and deferrable loads are

those that are delay tolerant, i.e., their satisfaction can be postponed up to a predetermined

deadline. Electric vehicles, heating, ventilation, and air conditioning equipment are exam-

ples of power consumers with deferrable energy demand which can defer their activation
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from several minutes to several hours.

The energy control problem is formulated using a Mixed Integer Linear Programming

(MILP). This is done for the specified deployment time, and its solution results in a lower

bound on the energy provisioning cost. An algorithm called Delay Aware Provisioning

(DAP) for offline resource provisioning is then introduced and its performance is evaluated

using several simulation scenarios.

5.2 Related Work

A substantial portion of the energy demands of residential, commercial and industrial con-

sumers are time flexible. This fact creates an opportunity to manage loading in a way

which increases the performance of the system. Load management in power systems has

been discussed since the early 1980’s (Ipakchi and Albuyeh, 2009) and various manage-

ment methods including peak shaving, peak shifting and direct load management have been

addressed in the literature and implemented by many utilities.

In (Vukojevic et al., 2012) deferrable loads are considered as a way to decrease the

effect of overloading in transformers. An algorithm was proposed to increase the expected

transformer lifetime by shifting deferrable loads to off-peak hours. The unpredictability

and non-controllable fluctuation of renewable power sources is studied in (Papavasiliou

and Oren, 2010). In order to mitigate this issue, the problem is presented in the form of

a stochastic dynamic program and two algorithms are proposed for supplying renewable

power to time-flexible electrical loads. The idea is that the requests from flexible con-

sumers are received and regulated by a central scheduler which determines the allocation

of renewable resources to consumers subject to their deadlines.

An issue with renewable energy resources is the effect of their high penetration on
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the power grid. With current growth rates of solar energy generation, it is expected that

solar PV power plants will be a significant component of power systems in the near future.

High solar energy generation and input into the power system during periods of low energy

demand may cause problems for the power grid. This issue has been addressed and studied

in (Steffel et al., 2012), and as a solution the authors have suggested that consumers with

delay tolerant loading shift their demands to peak PV output intervals.

Deferrable loads have also been used to decrease the energy bills for consumers. In

(Alizadeh et al., 2012) Time of Use (TOU) pricing of energy is discussed and the problem

of minimizing the operating cost for consumers that have deferrable loads is formulated

and solved. In (Shinwari et al., 2012) a water-filling based method for scheduling power

consumption is proposed, such that the overall demand becomes relatively constant, which

will reduce the cost of electricity generation. The load is divided into soft and hard load

components. To reduce the peak-to-average load ratio and flatten the overall energy con-

sumption profile, soft loads are allocated to time intervals with less hard loads.

In the remainder of this chapter we will show that in addition to all the above advantages

of deferrable loads, it is possible to decrease the provisioning cost of an off-grid solar

powered system by properly scheduling its energy use.

5.3 Motivation for Delay Aware Provisioning

The participation of deferrable loads in the total energy consumption of a household con-

sumer is expected to grow significantly in the coming years as a result of the increasing

penetration of Plug-in Hybrid Electric Vehicles (PHEV) and smart appliances (Gan et al.,

2013). According to (Ipakchi and Albuyeh, 2009), to drive with an electric vehicle for
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Figure 5.1: Battery Energy Level and Input Solar Energy vs. Time.

30-40 miles, the vehicle requires 7-10 kWh of energy. In other words, most plug-in vehi-

cles need 0.2-0.3 kWh of charging power for a mile of driving. When the charging rate of a

PHEV is 1.4 kW it takes about 8 hours to fully charge its batteries. During its charging time

the PHEV consumes more than double the average household electricity consumption1.

Now suppose that a system, such as the one mentioned above, is powered by solar

energy (i.e., a single solar powered node). Therefore, a combination of solar panels and

batteries are used to provision the node. We assume that the batteries and panels are char-

acterized by the same parameters as the ones described in Chapter 3. Suppose that the node

has to supply a 1000 W load in each hour over 1000 hours of deployment time. Solar insu-

lation data for the city of Toronto, starting from January 1980, is used. Accordingly, energy

provisioning of the node can be done based on the method that is explained in (Farbod and

Todd, 2006). The available energy in the battery at each time interval as well as input solar

energy is plotted and shown in Figure 5.1. It can be seen from this figure that the input

1Note that this information is for sedan types of PHEVs. The consumption power for other types of
PHEVs with higher charging rates, when they are charged in fast charging mode, would be between three to
about fifteen times than that of a typical household energy consumption rate (Ipakchi and Albuyeh, 2009).
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solar energy to the node is decreased over several time intervals, and therefore the node

has encountered an energy shortage in these intervals (the first one is shown in the figure).

Since the node has to continuously supply the load, the battery energy level is dropped

when the input solar energy is low. Therefore, in order for the node to operate outage free,

the battery must have enough capacity to compensate for solar energy shortage, which in

turn may lead to high provisioning costs.

Now suppose that part of the load is deferrable, i.e., the corresponding demands are

delay tolerant and do not need to be satisfied immediately upon their request. It is apparent

that deferrable demands in the intervals with energy shortage can be postponed until a time

that the node receives sufficient solar energy for their fulfillment. Energy drops in the

battery would be minimized by this process, and therefore, a smaller battery size would be

required. As a result, the total provisioning cost would be decreased.

5.4 Energy Flow Model

In this section we briefly review the energy flow model used at an isolated solar powered

node and where solar is the only power source. The node could be a house, for example,

that has a significant delay tolerant energy demand from its appliances and other electrical

equipment. Plug-in Hybrid Electric Vehicles (PHEV) are examples of this kind of equip-

ment where their charging can be postponed for several hours. An example node is shown

in Figure 5.2. The energy model is the same as the one explained in Section 3.4 except that

in this chapter, we assume that the energy controller not only controls the battery charging

state but also schedules the energy demands. We assume that the operation of the sys-

tem is done over a contiguous time period that can be defined using a set of time intervals

K = [1, 2, . . . , kmax], where the duration of each is equal to one hour.
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Figure 5.2: Solar Powered Infrastructure with Deferrable Loading.

In this chapter, we assume that the solar panel is optimally oriented and therefore Equa-

tion (3.2) can be written as follows

Esp(k) = PE∗(k) (5.1)

where P is the area of the panel and E∗(k) is the per unit area energy availability at each

time interval k ∈ K at the geographical location of the solar node.

Battery energy level B(k) at time interval k is given by Equation 3.1, and we represent

it as follows

B(k) = min{max[B(k − 1) + Esp(k)− L(k),Boutage],Bmax} (5.2)
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where L(k) is the load energy demand over time interval k ∈ K, and Bmax and Boutage are

the maximum battery capacity and the maximum allowed depth of discharge, respectively.

Using this recursion, in the next section we explain and formulate the problem of solar

node provisioning when the load energy demand is a combination of deferrable and non-

defferable loads.

5.5 Problem Formulation and Provisioning Bound

In this section we formulate the problem of solar node provisioning when all or part of

the energy demands are delay tolerant. Our objective is to exploit the flexibility of sup-

plying deferrable loads to minimize the total provisioning cost. We assume that we have

a sequence of dmax demands over the designated time period K = [1, 2, . . . , kmax]. The

set of demands is given by D = {1, 2, 3, ..., dmax} where i ∈ D is the ith demand in the

sequence of demands. The demand type could be either deferrable or non-deferrable which

is declared to the energy controller unit upon its request. If demand i ∈ D is deferrable,

its maximum tolerable delay is also sent to the controller. We assume that each demand

can be supplied in one time interval, and define the binary variable b(i, k) to indicate the

supplying of demand i ∈ D at time interval k as follows.

b(i, k) =

 1 if demand i is supplied at time interval k

0 otherwise,
(5.3)

for all i ∈ D and k ∈ K.

We define a(i) ∈ K to be the arrival time of demand i. Hence the delay in satisfying
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demand i can be obtained from the following equation

τ(i) =
kmax∑
k=1

k.b(i, k)− a(i) ∀i ∈ D (5.4)

where τ(i) ≥ 0.

Assuming that τ ∗(i) is the maximum delay that demand i ∈ D can tolerate, the follow-

ing constraint should be met.

τ(i) ≤ τ ∗(i) ∀i ∈ D (5.5)

Note that since each demand i has to be supplied only once, we have the following con-

straint.

kmax∑
k=1

b(i, k) = 1 ∀i ∈ D (5.6)

Let E(i) be the required energy to supply the deferrable demand i ∈ D, and let Lnd(k)

be the non-deferrable load at time interval k which the node has to supply immediately.

Therefore, the total load that the node supplies at each time interval k can be defined as

follows.

L(k) =
dmax∑
i=1

b(i, k).E(i) + Lnd(k) ∀k ∈ K (5.7)

Now we can develop an optimization which derives a lower bound on the provisioning cost

where the demand is a combination of non-deferrable and deferrable demands. The LP

finds the optimal battery and solar panel sizing and determines how deferrable loads have

to be scheduled such that the minimum provisioning cost is achieved. The inputs to the
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problem are given by the set of n-tuples

I = {γP , γB, a(i), τ ∗(i), E(i), E∗(k),Bmin,Lnd(k),L∗, kmax, dmax} ∀i ∈ D, ∀k ∈ K

(5.8)

and the problem variables are defined by the following n-tuples.

V = {Bmax,B(k),P ,L(k), Esp(k), b(i, k), τ(i)} ∀i ∈ D, ∀k ∈ K (5.9)

The optimization problem, referred to as Linear Program for Delay Aware Provisioning

(LP-DAP), is given below.

minimize
V

γB.Bmax + γP .P (LP–DAP)

Subject to: B(0) = Bmax (5.10)

Boutage ≤ B(k) ∀k ∈ K (5.11)

B(k) ≤ Bmax ∀k ∈ K (5.12)

B(k) ≤ B(k − 1) + Esp(k)− L(k) ∀k ∈ K (5.13)

Esp(k) = PE∗(k) ∀k ∈ K (5.14)

b(i, k) ∈ {0, 1} ∀i ∈ D, ∀k ∈ K (5.15)
kmax∑
k=1

b(i, k) = 1 ∀i ∈ D (5.16)

τ(i) =
kmax∑
k=1

k.b(i, k)− a(i) ∀i ∈ D (5.17)

τ(i) ≤ τ ∗(i) ∀i ∈ D (5.18)
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L(k) =
dmax∑
i=1

b(i, k).E(i) + Lnd(k) ∀k ∈ K (5.19)

L(k).∆ ≤ L∗ ∀k ∈ K (5.20)

0 ≤ L(k), 0 ≤ B(k), 0 ≤ P , 0 ≤ τ(i) ∀i ∈ D, ∀k ∈ K (5.21)

LP–DAP minimizes the total provisioning cost for a solar powered node that has de-

ferrable load subject to constraints (5.10) to (5.21). Parameters γB and γP in the objective

function are battery and panel unit prices, respectively. We assume that the battery is fully

charged at the beginning of its operation, and Equation (5.10) shows this condition. Con-

straint (5.11) indicates that the node must maintain a minimum battery level in order to

prevent node outage, and Inequality (5.12) indicates that the battery energy cannot exceed

the battery capacity. Therefore, these two inequalities put upper and lower limits on the

battery energy level. Constraint (5.13) states that the stored battery energy at time k must

not exceed that which was available at time k−1, plus the energy which was obtained from

the panel, minus the energy consumption during this time interval. Note that the recursion

(5.2) is reformulated by constraints (5.12) to (5.11) using Theorem 1 in Chapter 3. Con-

straints (5.14) to (5.19) have already been defined and explained. We assume that there is

a limitation on the amount of load that the node can support. Inequality (5.20) shows this

constraint by using L∗ as the maximum load that the node supports at each time interval k.

Constraint (5.21) ensures non-negative values for the variables that are used in LP–DAP.

The lower bound on the provisioning cost is obtained using LP–DAP. However, since

this LP does not provide an online algorithm, we need to introduce one. This algorithm is

proposed in the next section.
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5.6 Delay Aware Provisioning (DAP) Algorithm

In this section a provisioning algorithm for a stand-alone PV system when the energy de-

mand consists of a combination of deferrable and non-deferrable demands is introduced.

The proposed Delay Aware Provisioning (DAP) Algorithm is shown in Algorithm 5.1. In

the first step, given the input data set I in (5.8), the algorithm uses the Stand-alone Node

Provisioning (SNP) algorithm introduced in (Farbod and Todd, 2006) to determine the op-

timum values of battery and panel sizes. Note that although the demand set consists of

deferrable and non-deferrable demands, in the first step we do provisioning as if all the

demands are non-deferrable.

In the next steps, the DAP algorithm starts with the optimum values of battery and

panel, Binimax and P ini, achieved from Step 1. It fixes the panel size to P ini and tries to find a

smaller battery size by using the flexibility of deferrable demands. This is done by putting

a threshold Tr on the available energy in the battery. We measure the difference between

available energy in the batteryB(k) and the threshold. We have called this energyBDAP (k),

which is our energy budget, and is used to test if this amount of energy is sufficient to satisfy

demands over the current time interval. Initially the threshold value is set to Binimax in Step

2 which means that BDAP = 0 at the beginning of the operation of the algorithm.

Since the demand set includes non-deferrable demands that should be satisfied imme-

diately, the satisfaction priority is given to this kind of demand. Note that the deferrable

demand i ∈ D can be treated as non-deferrable if it has not been satisfied for τ ∗(i) time

intervals, where τ ∗(i) is the maximum delay that demand i can tolerate.

To find the best battery size, the DAP algorithm does two kinds of iterations. The first

set of iterations is over the threshold value, and the second, which is nested in the first

iteration set, is the iteration over all time intervals k ∈ K. In Step 3 the DAP algorithm
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Algorithm 5.1. Delay Aware Provisioning (DAP) Algorithm
Given: Input data set I

1: Use SNP from Reference (Farbod and Todd, 2006) to determine P ini and Binimax using
input data set I

2: Set Tr←Binimax

3: while there is any unsatisfied demand in the buffer do
4: Set Tr←Tr − δTr
5: for all 1 ≤ k ≤ kmax do
6: Update battery energy level Bini(k) using Equation 5.2.
7: Set BDAP (k)←Bini(k)− Tr
8: while there is any non-deferrable demand do
9: if BDAP (k) is sufficient to satisfy the demand then

10: Satisfy the demand and update BDAP (k).
11: else
12: Go to Step 4
13: end if
14: end while
15: while there is any deferrable demand do
16: if BDAP (k) is sufficient to satisfy the demand then
17: Satisfy the demand and update BDAP (k).
18: else
19: Put the demand in the buffer
20: end if
21: end while
22: end for
23: end while
24: Return BDAP

iterates over all possible thresholds until the node can satisfy all its energy demands. In

each iteration, we decrease the threshold value Tr by a small amount δTr. It turns out

that B(k)DAP is increased by δTr to start a new iteration with a higher value of BDAP (k).

This step is shown in Step 4. In Step 5, the iteration over time intervals starts. At each

time interval, the battery energy level Bini(k) is updated in Step 6 using input solar energy.

Consequently, in Step 7, BDAP (k) is updated. Considering BDAP (k) and available energy

demands, the DAP algorithm attempts to satisfy the demands from Steps 8 to 23. First,
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in Steps 8 to 14, the DAP algorithm checks the availability of non-defferable demands. If

BDAP (k) is sufficient to satisfy these demands, then it supplies them. Otherwise, BDAP (k)

has to be increased and the process starts from Step 4 again. If enough energy is remaining

in BDAP (k), deferrable demands can be supplied in Steps 15 to 21. If not, their service will

be delayed to another time interval. The algorithm keeps performing these iterations until

there is no unsatisfied demand left in the buffer1. It will finally converge to a BDAP ≤ Binimax

such that it can supply all the non-defferable demands immediately, and all the deferrable

demands within their maximum tolerable delays.

Note that the algorithm can easily be modified to account for violating the maximum

permissible delay of a small portion ε of deferrable demands. In other word, we can con-

sider the following constraint

Pr
(
τ(i) ≥ τ ∗(i)

)
≤ ε, ∀i ∈ D (5.22)

which indicates that for each demand i ∈ D, the probability of having a delay greater than

τ ∗(i) is less than ε. This can be done in the DAP algorithm by recording the delays and

adding another loop to iterate over the delays and to satisfy constraint (5.22).

5.7 Simulation Results

In this section, simulation results are presented. Provisioning costs for a single solar pow-

ered node for the DAP algorithm are compared to the SNP algorithm and the provisioning

bound. In addition, the performance of DAP is evaluated in terms of maximum tolerable

delay and delay distribution. Finally, the proposed delay aware provisioning algorithm is

1We assume that the node is equipped with a buffer in which the deferrable demands can be placed, to be
served in a first-come, first-served order.
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Parameter Value
Load Power E(i) ∀i ∈ D 1000 W

L∗ 1000 Wh
Boutage 0
γB 3.4
γP 6.7

Location Toronto, Canada (6 weeks, 01/01/80)

Table 5.1: Default Parameters for the Examples
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Figure 5.3: Comparison of Normalized Provisioning Cost for DAP and SNP.

investigated for different geographic locations.

Simulation parameters are shown in Table 5.1, where we have assumed that all energy

demands are the same. Experiments are done using a profile of solar insolation traces for

Toronto, Canada. We assume that the demand arrival rate is a Poisson process with an

average of λ demands per time interval, with 0 ≤ λ ≤ 1. The solar node deployment time

is set to be 1100 hours (≈ one and a half months) starting from the beginning of January1.

1As mentioned in Chapter 3, node provisionings that are outage-free spanning worse-case winter months
result in year-round outage-free operation.
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5.7.1 Provisioning Cost Comparison

In the first experiment, we have assumed that all the demands are delay tolerant, and we

have no constraint on the maximum delay i.e., τ ∗(i) = ∞,∀i ∈ D. Both SNP and the

proposed DAP algorithms are used to do provisioning for 100 sample runs. In each round

of simulations the provisioning cost is recorded and the average value of the results are

plotted in Figure 5.3. The graph also contains the provisioning bound which is obtained

from the mixed integer linear optimization LP–DAP formulated and explained in Section

5.5. It can be seen from Figure 5.3 that comparing with the SNP provisioning algorithm,

DAP reduces the provisioning cost by about 50% over a wide range of demand rates. When

the arrival rate increases to the maximum values shown, there is no room to support shifted

deferrable demands. As a result, the performance of the DAP algorithm is limited. On

the other hand, when the demand arrival rate is light, there is more room for improvement

compared to when the solar node is heavily loaded.

5.7.2 DAP Average Delay

The average satisfaction delay for the aforementioned experiment when the DAP algorithm

is used is shown in Figure 5.4. Comparing this figure with Figure 5.3, it is evident that the

higher the improvement in provisioning cost, the more satisfaction delay that the demands

have to tolerate. In this case, since there is no restriction on the maximum delay, DAP may

schedule some demand satisfaction times to time intervals that may be 20 to 30 hours from

the arrival time of the demand. Note that although the maximum delay is set to infinity,

from Figure 5.4 it can be seen that, on average, the maximum delay is about 28 hours for a

demand rate of λ = 0.6.
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Figure 5.4: Average Demand Satisfaction Delay.

5.7.3 DAP Delay Distribution

Under the same conditions, the DAP provisioning algorithm is used for 500 different ran-

dom inputs and the delay distribution for λ = 0.2, 0.4, 0.6 and 0.8 is shown in Figure 5.5. It

can be seen that when the load on the solar node is light, the algorithm has more flexibility

to do demand scheduling than the case when the node is highly loaded. In fact, when the

demand rate is low, there are more time intervals in the near future that the algorithm can

use to satisfy demands. This results in a lower delay when we compare it with a highly

loaded node.

5.7.4 The Effect of ε and the Maximum Delay

In this experiment, we put a limitation on the maximum tolerable delay, i.e., τ ∗(i) <

∞,∀i ∈ D. In addition, we assume that all the demands have the same value for their
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Figure 5.5: DAP Delay Distribution for λ = 0.2, 0.4, 0.6 and 0.8.
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Figure 5.6: Average Percentage Improvement in Total Provisioning Cost vs. Demand Rate.
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maximum delay, i.e., τ ∗(i) = τ ∗,∀i ∈ D. We also add Constraint (5.22) to the DAP algo-

rithm such that the probability of violating the maximum delay is limited to ε, where ε is

set to 5%, 10% and 15%. The performance of the DAP algorithm in comparison with the

SNP algorithm is evaluated for each value of ε and two maximum delays, 24 and 48 hours.

Both the DAP and SNP algorithms are used for solar node provisioning.

The average percentage improvement of the DAP algorithm in the total provisioning

cost for 300 scenarios is achieved and the results are shown in Figure 5.6. It can be seen

that in the most limited case where ε is 5% and τ ∗=24, about 25% improvement in the

total provisioning cost over a wide range of demand rates can be achieved using the DAP

algorithm. When the permissible ratio ε is increased, a better result is obtained, e.g., when

ε is 15% and τ ∗ is 24 hours, an improvement of up to 48% is observed. If the maximum

permissible delay τ ∗ is increased to 48 hours, an even better improvement using the same

ε can be obtained. Saturation in the improvement is observed when ε or τ ∗ is increased, at

which point any further increment in ε or τ ∗ will not have any effect, resulting in about a

50% improvement.

5.7.5 Performance of DAP for Different Locations

In the next set of experiments, the performance of the DAP algorithm is evaluated for

different geographical regions with varying climates. Six cities, consisting of Toronto,

Yellow Knife, New York, Los Angles, Miami and Seattle are used. The deployment time is

set to 45 days and the solar insolation data corresponding to each city from the beginning of

January 1980 is used. As before, the input load is a Poisson arrival process with parameter

λ. Both the SNP and DAP provisioning algorithms are used, and it is assumed that there

is no restriction on the maximum delay. The provisioning cost versus demand rate for the
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(b) Miami
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(c) Toronto
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(d) New York
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Figure 5.7: Normalized Provisioning Cost for DAP and SNP Algorithms vs. Demand Rate
for Different Locations.
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DAP and SNP algorithms is shown in Figure 5.7.

It can be seen that, while the improvement in the provisioning cost is 15% and 20%

for Los Angles and Miami, respectively, the observed improvement is much higher for

the other cities, which are mainly located in more temperate regions. Simulation results

show that the improvement in the provisioning cost for the cities of Toronto and New York,

which have almost the same climatic conditions, is up to 51%. The DAP algorithm results

in 63% and 74% improvements for Seattle and Yellow Knife, respectively. The reason that

the improvement in the non-tropical regions is higher than the tropical regions is that, while

the required optimal panel for an outage-free operation of a node in a tropical region is a

major part of the total provisioning cost, for the non-tropical regions it is the battery that

has a higher contribution to the provisioning cost. Therefore, when the DAP algorithm

is used, which fixes the panel and decreases the battery size, its effect for provisioning in

non-tropical regions is higher than in the tropical regions in terms of the total provisioning

cost.

5.8 Conclusions

In this chapter, the problem of energy provisioning was considered for stand-alone PV sys-

tems where part of their energy demand is deferrable. The objective is to exploit the flex-

ibility of deferrable energy demands to decrease the total provisioning cost. The problem

was formulated as a mixed integer linear optimization which gives a lower bound on the

provisioning cost. Since the solution of the optimization problem is non-casual, a casual al-

gorithm which is called Delay Aware Provisioning (DAP) was proposed. The performance

of DAP was compared to the provisioning bound and the conventional Stand-alone Node

Provisioning (SNP) algorithm through several simulation experiments. The results show
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that the maximum tolerable delay (τ ∗) has a significant effect on the total provisioning

cost. For the city of Toronto, for example, when the DAP algorithm with τ ∗ = 24 hours is

used, about 25% improvement in the total provisioning cost was achieved. Under the same

conditions, this value for τ ∗ = 48 was 31%. In addition, simulation results show that the

improvement in the total provisioning cost depends on the geographic location of the solar

node, e.g., while the percentage of cost reduction for Miami is about 20%, this value for

Yellowknife is 74%.
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Chapter 6

Conclusions and Future Work

In solar powered node installations, the process of sizing the batteries and panels is referred

to as energy provisioning. The focus of this thesis was on energy provisioning in nodes that

are either networked with other solar powered nodes, e.g., wireless solar mesh networks,

operate in conjunction with the power grid, or are used independently.

In Chapter 2, a brief introduction to photovoltaic systems was presented, including a

discussion of topics relating to energy provisioning in solar powered nodes.

In Chapter 3, we focused on the energy provisioning problem in wireless solar powered

mesh networks. To decrease the total provisioning costs, the positioning of the solar nodes

was considered and a Position Aware Provisioning (PAP) algorithm was proposed. A linear

optimization was developed which gives a lower bound for the PAP algorithm. The Short-

est Path Provisioning (SPP), Link Aware Provisioning (LAP) and Iterative Energy Aware

Provisioning (IEAP) algorithms were introduced, and their performance were compared

with the PAP algorithm. Simulation results indicated a significant improvement in the total

provisioning cost when the proposed algorithm is used.

In Chapter 4, we considered a single wireless communication node that is operated
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from a combination of power grid and solar components, where the solar part is a node

add-on. The CAPital EXpenditure (CAPEX) costs and OPErating EXpenditure (OPEX)

costs of the node were introduced. Different node add-on configurations were considered

including, solar panel/battery/grid (PBG), solar panel/grid (PG), and battery/grid (BG) sce-

narios. A linear optimization was derived whose objective is to minimize the total CAPEX

and OPEX costs. Three energy scheduling algorithms were then introduced to optimize

online OPEX costs, namely, Grid Purchase Last (GPL), Solar Load Optimization (SLO)

and Solar Load Simulation (SLS) algorithms. The case where revenue can be derived from

returning unused energy to the power grid was also considered. Extensive simulation ex-

periments indicate the value of the proposed algorithms in reducing the total CAPEX and

OPEX costs.

In Chapter 5, solar powered systems that are independent of the power grid and have

deferrable energy demands were considered. The objective was to reduce the total pro-

visioning costs. A Mixed Integer Linear Program (MILP) was developed which gives a

lower bound on provisioning costs. The Delay Aware Provisioning (DAP) algorithm was

then introduced that uses results from the conventional Stand-alone Node Provisioning

(SNP) algorithm and decreases the required battery size by scheduling the deferrable de-

mands. Simulation results showed that when the energy demands can tolerate several hours

of delay in their service time, good savings in the provisioning cost is achievable.

The work in this thesis can be extended in the future, based on the following ideas.

1. The proposed algorithms in Chapters 4 and 5 were for a single node that can be

extended to a network of similar nodes.

2. In Chapter 4, it was assumed that the grid energy price is known beforehand. Instead

of a predetermined value of energy price, the solar node can negotiate with the power
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grid to minimize its operating cost. Game theory methods can be used in this case.

3. In Chapter 4, the optimization problem is developed under the assumption that the

energy price is known for the entire deployment time. As a more realistic assumption,

a random variable can be added to the energy price to model pricing uncertainty. The

problem can then be solved by using risk analysis methods which should result in

more reliable provisioning and scheduling algorithms.
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Appendix A

Solar Irradiation and Loading

Prediction Algorithm

To schedule grid energy purchases, the SLO and SLS Algorithms defined in Section 4.7 use

simple estimates of future solar insolation values and loading for the next w time intervals.

The prediction algorithm that is used is based on that first introduced in Ali et al. (2010).

The prediction uses a linear combination of its current (i.e., known) value and its average

over the last D days. Assuming that p(k + 1), is the parameter to be predicted, then

p̃(k + 1) = π p(k) + (1− π)µD(k + 1) ΦH (A.1)

where p̃(k + 1) is the predicted value and p(k) is the actual parameter for the current time

period, k. In Equation (A.1), π ∈ [0, 1] is a weighting parameter and µD(j) is the parameter

average at time interval j over the last D days, i.e.,

µD(j) =

∑D
i=1 p(j − iM)

D
(A.2)

116



P.h.D. Thesis - M. Sheikh Zefreh McMaster - Electrical & Computer Engineering

where M is defined to be the number of ∆t time periods in 1 day, i.e., M ∆t = 24. ΦH

is defined as a conditioning factor that depends on the last H time intervals and the history

of the parameter over the last D days. It is determined by weighted values of h(j) for

j ∈ {1, 2, . . . , H}, defined as the parameter values in last H time intervals and normalized

by the corresponding µD, i.e.,

h(j) =
p(k −H + j)

µD(k −H + j)
∀j ∈ {1, 2, . . . , H} (A.3)

Since time intervals that are closer to k + 1 are more correlated with the current time, the

weighting factors of the h(j)’s decrease from 1 to 1/H starting at k, and can be defined as

follows.

θ(j) =
j

H
∀j ∈ {1, 2, . . . , H} (A.4)

The conditioning factor, ΦH , is then determined as follows.

ΦH =

∑H
j=1 h(j)θ(j)∑H
j=1 θ(j)

(A.5)

Note that the values ofD,H and π can be found such that the estimation error is minimized.

Having the predicted value p̃(k+ 1), the same algorithm can be used to find predictions for

time interval k + 2, and can be continued until time interval k + w.
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