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ABSTRACT
This thesis deals with paracompact spaces with
the covering dimension of Lebesgue. A paracempact

Hausdorff space with finite covering dimension is charac-

terized by sequences of covers, as an -inverse limit of
finite dimepsional metric spaces, and‘in terms of a single
finite dimensional metric spaéa; In connection with non-

: dete:minietic mathematics we introduce tha modeling

distribution and it ls proved (undexr guitable assumptions)
that a modeling distribution preserves paracompactneas, f
compléée paracompactness, strong paracompactness, compactness,

and final compactness, and lowers covering dimension. . -/
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. ) INTRODUCTIQN

The concept of modeling distribution was communicated
to me by R. G. Lintz either orally or throuéh unpublished
,hotes. This concept generalizes the concept of homeomorphism
in tﬁat instead of'mappigg points to points in a one to one
correspondence, a modélihg distribution is a collection_of
"gpecial' continuous non-deterministic functions called’
modeling fynctions, each_of which maps open sets to‘open sets.
The concepts of continuous non-deterministic f;pction, modeling
fhnction,_and modeliﬂg distribution hava been applied by
R. G. Lintz to several questiqu'}n topology ([1]}., [2]).

' , The pregent work consists oﬁ three parts éesignated by
the last three Chapters. In II we make characterizations of
paracompact spaces with finité covering dimension. In III wé
investigate ﬁhe effect of a modeling distribution on para-
compactness, covering dimension, and related covering properties.
Finally, in IV, we apply the previous work to begin investigation
spécifically of cémpact Hausdofﬁf spaces under a modeling 0
distribution; and we make severgi conjectures. #

In this.thgsis I use the convention that my results are

indexed by two numerals while other results are indexed by a

numeral and a letter.
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" Fundamental Concepts

Theufollowing are some concepts and results from
topology and dimension theory to be used in this thesis.
.For a comprahénsive xeview of these subjects, the reader
is referred to ([3]l, [4], (5]). |

L. A cover of a set X is a collection of subszets

of X whose union is all of X. An open cover (almost open
cover) of a space X is a cover of X where each member of

the cover is open (where the collection of interiors of members

VoL of ‘the cover is a cover of X). The closure of a subset V

| of a space X is denoted V and if y is a collection of subsets

of X then the collection of closures of members of ¢ is

denoted V. We say X is Hausdorff (regular, normal) if

for any two distinct points x, y € X.there are open sets U,

V such that x ¢:U,v y e Vand UAV ='g (for any point x € X
and open set U with x ¢ U there is an open set V with

X ¢ VC VU, for any closed set P an&'dpeh"sét U with

F C U there is an open set V with F CVEVCU., We séfy

X is compact (finally compact) if each open cover-has a

1

finite (countable) subcover; X is geparable if it has a

countable dense subset; X is connected if it cannot be

written as X = U U V where U, .V are open, both.non empty,

;!; We =>v X is a ‘ dometric sotace if there




pix,y) >0, p(x,y) = ply,x), olx,y) < pfx,2z) + p(z,y),
and x = y implies p(x,y) = 0. If also p(x,y) = 0 implies

X =y, then X is a metric space. If (X,p) is a pseudometric

space then §_(x) = {y ¢ X] p(x,y) < €} for e>0 and x ¢ X

denote the spheres of radius ¢ about x, and if U C X then

the diameter of U is p(U) = sup{p(x,y)| %, y € U} while the
mesh of a collection U of subsets of X is

mesh U = sup{b(u)[ U e U}. A space X is metrizable if there

is a meﬁric p on X such that the topology of p is the topology
of X. A space X is called discrete if each point of X is open.

As usual covering dinension is denoted dim and

dim X <'n means that for each finite open cover U there is

an open caver ¥V such that V refines U and oxrd V < n + 1. 1If

————

U, V are collections of subsets of a set X and each member of

i V is contained in some member of d then we say V refines U

i
|
!
b
1

and write' V << U. Tne order of a cover V is

v

ord V = sup{oxd, V]x € X} where ord,V is the number of members

of V containing x.

A collection V of subsets of a spa¥e X is 1ocailx

finite (point finite, closure preserving) if\for each x ¢ X

P

there is an open nbhd. of x whigh has a non empty intersection
with at most a finite number of members of V(each x € X is

contained in at most a finite number of members of V, for each

subcollection U of V we have W} . v ¢ U} = UIV] V e U}). A

" space X.is paracompact if for each open cover U there is a
- N ]
' ]

- _

v U < that V << U.
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Lemma l.a: If U is a locally finite collection of
subsets of X, then U is closuré preserving ([4]), page 126).

Lemma l.p: If X is paracompact and either Hausdorff
or regular then X is normal ((6]).

Lemma 1.¢: A space X is normal if and only if for

each point finite open cover U = {:ll/y/EﬁTT\ﬁhere is an
open cover V = {VTI y ¢ T} such th v, c V§<§ v, for each
y e T ([6]),
y Lemma_1,d: A normal space X has dim X < n if and
only if for each locally finite open cover U there is a
locally finite open cover V such that V << U and ord V< n + 1
([71).

Using Lemmas l.b, 1.C, 1.3 we have:

Lemma l.e: For a Hausdorff or regular space X
the following are equivalent:

1) The space X is paracompact with dim X < n

2) For each open cover U there is a locally finite
open cover V such that V << U and ord V < n + 1,

3) For each open cover U there is an open cover V
such that V is locally finite V << U, and oxd V < n + 1.

2. We shall also use the following notions and
conventions. Let U, V be collections of subsets of a set
X. If U, V are such that if vy, V,, V5 ¢ V wi‘t‘jl}' v NV, # §
and vznv3 # then there is U ¢ U with Vluvzuv3§_ U,

then we say that V 3-chain refines U and write V Cae u.

by Z. ) ! (I
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U <S3c u, for each k: If V is a subset of X then

st (V, V) denotes the union of all members of V which ﬁ

have a non empty intersection with V; and in case V = {x} ‘ i
for some x ¢ X, then we write St(x, V) for st(v, V]. If
{st(x, V)| x e x} << U ({st(v, V)] V e V} << U) we say ‘

V star (strong star) refines U and write V <<*U [V <<**U).

A sequence {Uklk € 2} of covers is called a starring
AN
(strong starring) sequence if uk+1 <<*uk (uk41 <<**Uk) for

each k. We denote {U;\Vl UelUand Ve V} by UAV and

‘extend this to any finite number of collections. If X,y € X,

we shall write the collection {{x}, {y}f simply as {x, y}l.
Let A be a directed set. If I' is a subset of A
such that for each o € A there is 8 €¢ T with a < 8, then

we say that I is cofinal inA. If I' is a subset of the

collecéion of all covers of a space X where for each open
cover U of X there is V € T such that V << U, then we say

that T is cofinal in X.

Lemma 1.f: If X is a compact pseudometric space
then for any sequence {tkl k € 2} of poaitivg real numbers
with lim t, = 0, the sequence {{s, ®)| x e x} | ke 2}

koo R
is cofinal in X ([4], page 154).

Lemma l.g: Lat u, v, ¥ be collections of subsets
of a set X. If V <£;u and U <<*¢, then V <<**y,

-Proof: Let V be a fixéd‘msmbar of V. Since
vV <<*y fér cach % € V choose U, € U such that
st(x, N CU, . Letybe aomr:a point of V. Then
Vo | = € v} ¢ stly, U] since y € VC St(x, VI € U, for

~
-
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each x ¢ V. Hence,
St(v,V) = ulst(x,V)] x ¢ V}~§:U{Ux| x € V} C st{y,U) and s

since U <<* W, St(v, V) is contained in some member of W //

¢
» &

so that V o<<**y,

¢

The notion of star refinement is due to

/‘
J. W. Tukey, who proved:
Lemma l.h: In a metric space, for each open (:;xi\_ﬁjx

dbcover U there is an open cover V such that V <<* {

| It was A. H. Stone, who proved:
» Lemma 1.3j: A regular spade is paracompact if and
only if for each open cover U there is an open cover V

such that V <<* U ([4], page 170 and 171).

Thus, by Lemma l.h he obtained the following

{

famous result: ‘

Lemma 1.j: A metric space is paracompact.

As a consequence of Lemma l.g we have:

Lemma l.k: A regular space is paracompact if and
only if for each open cover U there is an open cover V such
that V <<** U.

If V is a collection of subsets of a set X and ¥V
is a subset of X we Qefine )
st} (v, V) = se(v,V) and st(v, V) = se(st* (v, vy, )
for k > 2. Let us note thgf given a fixed positive integer
k, we can restate Lemma l.k by saying: A regular space X

is paracompact if and only if for each open cover U there

is an open cover ‘V such that {Stk(ﬁ, N ve V} << U,

N



This is because, if X is paracompact and regular and U is

an open cover of X, by Lemma l.k we can choose open covers

v, Vi 1 < i< k such that

‘e *e *x w3 *y
V << Vk << Vk-l <<% L., < V2 << Vl.

If v eV then St(V, V) €V, €V,
a2
st(stv, V), V) = st?(w, v) cstw b v eV o,
3 .
St(St(St(v,V),V),V) = st™(V,V) € St(V, 1,V )G Vyop € Yy

) 4
* 06 p St (V,U) g Vl € Vlh ‘

2 The following result, essentially due to C. H. Dowker,

is basic to our work since it enables us to obtain metric

spaces from 3-chain sequences of covers.

Lemma 1.8%: If {Ukl k ¢ 2} is a 3-chain sequence of

covers of a set X, then there is a pseudometric p on X such
) € s (x) C st(x, U,) for each x ¢ X and K.

thét st (x, uk+l
2k—l

Y

Proof: Qefine a function h on X x X as follows:

For each (x,y) ¢ X x X,

s *
0 if for each k, {(x,y} refines U

h(x,y) ={2 if for each E, {x,y} does not refine Uk

1 . . .
;E:I if {x,y} refines Uk and does not refine Uk+l

\
For each (x,y) ¢ X x X define p(x,y) = inf B (x,y) where

B (x,y) = {h(X,Xyr eevr Xy _ys ) Xor eees Xy _q € X} and
h(x,xz, ceer X g y) denotes h(x,x2)+h(x2,x3)+‘,..,+h(xk_1,y)

Then p is a pseudometric on X. Clearly p(x,y) > 0,

b
1
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p(x,y) = ply,x}, and o(x,%) = 0 for all x,y € X. Given
J
X, Y, 2 € X, by definition of p(x,y) there is"

h(xy, «vs X)) ¢ B(x,y) such that h‘(xl; ceos xm)f_p(x,y)—te/z;
and similaz?ly there is h(x , «.+v xm+q) e B(y,z) such that

h(xm, cees X o) < oly,z) + €¢/2. Hence

m+d
p(x%x,2) _<_h(xl, veer Xprosees xm-t-q)

= h(xlf seey xm) + h(xm' s ey xm.*_q)

olx,y) + /2 + oly,z) + /2 = o(x,y) + ply,2) + ¢

{Aa

Since ¢>0 was arbitrary, p(x,z) < plx,y) + ply,2).

For each x and k, St(x, U ;) € 8, (x) since if

. ‘ : 27T
y ¢ S5t(x, Uk+1) then {x,y} << Uk+1 so that h(x,y) < '%i
2

/

and since p(x,y) < hix,y), we have p(x,¥) <

1
. * X7
o=
and y € Sy (x) .

-

2

Claim: For each p, for any X,. cenr xp ‘e x; if

h(xyr oo xp) < 21-1 then {x, xp} << Up. Ifp= 1 or if
k L -

p = 2 the 4Ciaim is true and suppose the Cléim is true for each

¥

%=T
2

' Case one: Suppose for some 1 < J < p we have
. i ——— o % o

i with i < p - 1, 'Consider h(xj, «ees X)) < o 1

J -

h(x., x_;_ ) = 1. Then, {Xj' xjﬂ"l} << uk#‘l and

¢

=



so that h(xl,...,xj)+ h(xj+l"“’xp) < 1

Since h(xl,...,xj) < ;% andwh(xj+l,...,xp) <‘;%,

induction hypothes;s {xl,xj} << uk+l, {xj+l'xp} << U

Since uk+1 <34 Uk, we have that {xl,xp} << uk .

Case two: Suppose for each 1 < j < p we have
1 1 .
h(xj,xj+l) # ;E.If h(xj,xj+l) > ;E for some 1 < j < p
then h(x.,x,.,) > 2 and h(x x ) ; 1
3T+l ~ 2k—1 R A TR 2k—1 '

1 .
h(xj,xj+1) < ;E for each 1 < j < p. Let s be the largest

integer with s < p such that h(x,,...,x ) < L .
- 1 s 2k

Subcase one: Suppose p-1 < s. Then

: 1 1
h(xl’f"'xp~l) < ;E and h(xp_l,xp) < ;E so that

{x ,xp} <<Uk+1 and by the induction hypothesis

p-1

{xl,xp_l} << Uy + Since U, << U , we have

{xllxp} << uk .

R S SR

—

‘Subcase two: Suppose s < p-1 . lLet t be the

largest integer with s < t < p such that hi{x peesaX,.) < —% .
1

3

If p~1 < t then s <p-l <t and h(xs,...,xp“l) <=

h(xl,...;xs) < ;% , and h(xp_l,xpi < ;% . Hence

w41 and by the induction hypothesis

{xp_llxp} << u9

,{xs,xp_l} << lUpyy o Ixgex } <<l o . Since Uy, <<
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have that (xl,xp} << Uk . On the other hand, if t < p-1

then s < £t < p-1 . Now,

h(xl,...,xp) = h(Xl,...,xt) + h(xtl"_’lxp) < 2k_l . {
. 1
If h(ht,...,xp) > ;E then
A
) 1 1 1 where
h(xl’...'xt) < ;E__l' h(xt,‘..,xp) < ‘z'm‘ Zk — 2-}-(—

8 < t. But s is the largest integer with s < p such that

h(xl,-..,.xs) < '2"51';' - Hence h(xtll.‘lxp) < -2_% [4

»

and by the induction

e

1
h(xs'oao,xt) < _Z'E, h(xl,,..,xs) < 2

hypotheSiS, {Xt,wp} << uk+l ’ {xslxt} << uk+ll {xl'xs} << Uk+l. \

Since uk+l <34 UE we have {xl,xp} << Uk. So the Claim holds.

Now considerx Sl(x) for some x and k aﬁd let.

EE:I ;
S, (%) 1 C ot

y e 1l so that p(x,y) < %=y + By definitioh of p there
2k~l 2

. i ) * l

is h(xl,,..,xp) ¢ B(x,y) such that h(xl,...,xp) < ;E:T,' -

By the Claim we have {xl,xp} = {x,y} << uk so that

Sl(x)

ZE-l

y € St(x,uk)f Hence g:St(x,uk) and this completes

the proof.

-~
o~

" 3: We shall call the pseudometric and the

pseudometric spacé obtained in Lemma 1.%, the>pseudometric

I

and pseudometric space generated by {Ukl k €Z2}. On the

pseudometric séac"e, (X,p) generated by {Uk{ ke 2) we cén

>

\
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define an equivalence relation by calling two points

x, y of X related if p{x,y) = 0. Then p*(x*,y*) = p(x,y),

wvhere x*, y* are the equivalence classes represented by
X,¥Y, is a metric on the set X* of equivalence classes and

we shall call p* and (X*,p*) the metric and metric space

associated with o, The surjection defined by assigning (

X* to x ¢ X we shall call the canonical map and denote it

by *, and if U is any subset of X we denote the image of
\
U under * by U*. Then, for each x* ¢ X* and ¢ > 0, the

¥ * - *
spheqes of X* are Se(x).and * 1[Se(x)] = Se(x). From this

it follows that *-I[U*] = U fér each open set U of (X,p).

Finally, let us note that'in Lémma 1.8, if X is a space

and each Ukzis an open cover of g, then the topology of - !
p is contained in the topology of X so that * is continuous

on X.



II

Paracompact Spaces with Finite Covering Dimension .

Our main purpose here is to write a paracompact
space whose covering dimension is bounded by an integer n
as an inverse limit of metric spaces each of which also
has its covering dimeﬁsion bqpnded by n.

1. Towards this end we copsider the following

definition and the following result by P. Vopenka ([9]).

Definition 2.1: Let U, V be collections of subsets

of a set X, let P(V) be the power set of V, and let

Q: X +P(V) be a function such that if V ¢ Q(x) then x ¢ V
and U{Q(x)| x ¢ X} = V. If for each x e X there is

Ve d(x) and U ¢ U such that VC U, then we say V partially
refines U with respect to Q(x) and we write V <<p U with
respect to Q(x).

The author is aware that with this notion in mind
and using Lemma l.i, $. L. Gulden has obtained, but not
published, characterizations of paracompactness which arg
similar to Theorems 2.1 and 2.3 in_tﬁe sequel.

~In Definition 2.1, if X is a space and V is a base
and U is én opén cover, th?n v {<p U with respect to Q{x)
where Q: X + P(V] is defined by Q(x) = {V ¢ V] x e VY.

However, it can easily happen that V does not refine U.

X has © X  if and
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“
that Uk+l << Uk anag ord Uk <n + 1 for each k, and

lim mesh uk = Q.
koo

Theorem 2.1: A regular space X is paracompact

with dim X < n if and only if for each open cover U there
is a 3-chain sequence {Uki k ¢ 2} of open covers such that

ord Uk <n + 1 for each k and (St(x,Uk)] xe X, ke 2} <<p u
with respect to- Q(x) = {st(x,U )| k e 2} ([10]).

\ Proof: To prove the necessity, let U be an open
cover of X. Since X is paracompact with dim X < n by

Lemma l.e there is an open cover U = {UYI Y ¢ T} such that

Uo << {, oxd Ub <n+ 1, and U; is locally finite. For each

x € X choose Uy(x) € Uo with x ¢ Uy(x) and an open nbhd.

Vx of x which has a non empty intersection with at most
finitely many members of Ub. Then

= v - oo . g 1
U, = (v, \J{UleY(\Vx # @ and x ¢ UY}) N U, (x) 1S an open )
nbhd. of x which has a non empty intersection with at most
n + 1 members of Ué. By Lemma 1.k there is an open cover

I such that I <<** {Ux[ X & X}. Applying Lemma l. e again

let U1 be an open cover such that Ul << W, ord Ui <n+1,

and U; locally finite. Then U,,U  are open covers of X such ,

. Al

that Ul <<3c-uo; and for each'xae X, St(x,ul) has a non
empty intersection with at most n + 1 members of Uo. Now
carrying out the above construction with ul in blace of,uo,
continue inductiéely to obtain a 3-chain sequence {Uk} k €2}

- ' nd k, " ,) has a



non empty intersection with at most n + 1 members of Uk. :

Then for each k, ord {St(U,Uk+1)| Ue Uk} <n¥ 1 and siﬁce

u <<* {I, trivially {St(x,uk)l x e X, k e 2} <5 U with

respect to Q(x) = {st(x,U )| k ¢ 2}. Hence {ukl k ¢ 2}

is the required sequence.

To prove the sufficiency let q ='{UY| y € T} be
an open cover and {Ukl k ¢ 2} a 3-chain sequence of open
covers such that,{St(x,Uk)} X € X,Kk € 2} <<p U with
‘respect to Q(x) = {ét(x,uk)] k € Z}‘and o;d U <n+l
for each k. Since oxd U .,y 20 + 1 and U,y =<4 us

for 1 < i ¢ n + 1, we have u(n+1f+1 <<* Uy, Since.

ord U <n+1anddl 141 << 'u1 for

2{n+l)+1 - 3c
(n+l)+1 < iz 2§n+1), we have Uz(n+1)+1 <<k u(n+l)¥1 S0
that by Lemma 1.9, u2in+1)+l <<k¥ Ul. Similarly ,
Us ey 1 < Uy (1)1 208 u4(n:l—l)+1 # Bman

*k 1
so that ué(n+1)+l << u2(n+1)+1‘ and continuing in this
way we can obtain a strong starring sequence‘{vkl‘k e 2}
of open covers where Uy = u(k—l)(Z)(n+l)+l go that the
Asequence {Ukl k ¢ 2} has all the properties of ‘the

sequence {ukl k ¢ 2}. Thus, we simply assump that

{u,] k ¢ 2} is a strong starring sequence. BY Lemma 1.0,

14




that st(x, U ,) C8,(x) C St(x,U.) for each x ¢ X and k;

2k—l

and let Y be the metric space associated with p. For

P T
each k, let Sk = {SUI U e Uk} where

Sy = Uls; ()| Stlx,l ) € U} Since S5 C U for each

*

Ue U and since U <<*{(s; {x)| x ¢ X}, we have

"mz -

ord S <n+1 and mesh S —%—-—-— for each k. Also for
2

k+l
any k, if U e U ., then 5, ° C sv for some V e U since

*
uk+l <k Uk. Then, fSkl k ¢ 2}, where for each k

* *
Sk={(Sg) |U el}, is a sequence of open covers of Y such that

%* *
S <<S, and ord S <n + 1 for each kX, and lim mesh S 0;

k+l Tk e

and by Lemma 2.a we have dim Y < n. For each x, choose

,an integer k(x) and y ¢ U with'st(x,uk(x)) C u, and for each

y ¢ T let
3 *
W =Uts] (x) | stz (1)) €U} Then
C kT

e

'w * {le vy ¢ '} is an open cover of Y, and since by Lemma 1.5,

Y is pai‘acompact, by Lemma l.e there is a locally finite
open cover V of ¥ such that V << @ ‘a'nd ord V < n + 1.

Then {* [V]I Vel)lisa 1oca11y finite open cover which
refines ¢ and ord {* l{V]!V £ V} s n + 1. Thus, by

Lemma 1.€, X is paracompact with dim X < n. This éompletes



" is a strong starring sequence {ukl k £ 2} of open covers

16

Corollary 2.1: A regular space X is paracompact ’

with dim X < n if and only if for each open cover U there

such that ord U, < n + 1 for each k and
{st (x, Uk)l X € X, k £ 2} <5 U with respect to
Q(x) = {Stixa )| k e 2},

Corollary 2.2: A regular space X is paracompact

with dim X < n if and only if for each open cover U there

is a 3-chain sequence {ukl k € 2} of open covers such

that ord {st(u, U 7| U e U} <n+1 for each k, and

{st(x, Uk)l X e X, ke 2} <<, Uwith respect to

i [

Q(x) = {st(x, uk)] k e 2}. (
It is clear from Lemma 1.k that if U is an open

cover of a regular paracogpaet space X then there is a

sequence {ukl k € 2} of open covers of X such that

u <KRE uk for each k and U, <<** (I, As in the proof

k+l ‘ 1
of, the suffiéiency of Theorem 2.1 we can consider the
pseudometric space generated by the sequence {Ukl k £ 2},
the metric space Y associated with it, thg canonical map *,

and obtain an open cover W of Y such that {*-1[W1| We W) << U.

Since * is continuous on X we have:

¢ 0 e
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Corollary 2.a: A regular space X is paracompact

if and only if for each open cover U there is a continuous
surjection f from X to a metric space Y and an open cover
W of Y such that {£  MI|w ¢ W} << (.

In a similar way, from the proof of the sufficiency
of Theorem 2.1, we have:

Corollary 2.3: A regular space X is paracompact

with dim X < n if and only if for each open cover U there
is a continuous surjection f from X to a metric space Y
with dim:Y < n and an open cover W of Y such that
(T woe w) << U

2. Now we shall use the notion of a full inverse
limiting system.

Definition 2.2: Let {Y&, pjl a £ A} be an inverse

limiting system and %x be Ehe projection restricted to
Y = inv lim (%;'Qfl ac A). The system is full if for
each open cover U of Y there isa ¢ A and an open cover §§
of ¥ such that {nu—l[W]l We W << U, The system is sur-

jective if nOl is surjective for each g ¢ A.

Theorem 2.2: A Hausdorff space X is paracompact

(paracompact with dim X < n) if and only if X is homeo-
morphic to the limit space of a full inverse limiting
system of metric spaces (metric spaces Yawith dim Yui n
for each a) ([{10]). ‘

Proof: By Lemmas l.j and l.e the sufficiency is

-

To" * the ‘{7 first note that since X

17

§
i
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According to Lemma l.k (Corollary 2.1) there is a collection 1

A of all strong starring sequences a = {Uil k ¢ 2} of
open covers of X (with ord Ui < n + 1 for each k). By
Lemma 1.% let (X, p ) be the pseudometric space generated

a , (63 Q , Qa
by {ukl k € 2} such that St(x, U4y C Sy () c St (x, U} )
k-1

2

(x) are the spheres 1in o .

for each x ¢ X and k where S a
-1

l)—-‘Q

=

2

Let YOl be the metric space associated with Py (let Yo be
L]

the metric space associated with Py with dim Ya <n
according to the proof of the sufficiency of Theorem 2.1),

and let *u be the canonical map.

Define order between two members a = {Uzl k € 2},

g = {Uil k € 2} of A by a < 8 if and only if ui << Ui

for each k. If a, B ¢ A by Lemma 1.k (Lemma l.k and Lemma l.e)

choose an open cover ui such that ui <<**ui A Uf

§

(U§ ccrr (& A u% and ord U)

1 <n+1). Again by Lemma 1.k

(Lemma 1.k and Lemma l.e) choose an open cover Ug such that
5

6 a 8 6 $ a B

U, <<** Uy AUy AUy U, <<ty AL A ¢, and
ord Ug <n+ 1l). Continuing in this way we have a strong
starring sequence {Ui |k ¢ 2} of open covers of X such that
ud << u® A B for each k. (with ord U < n + 1 for each

k). Hence

isa "~ = eat
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Suppose a < 8 so that uﬁ <% uﬁ for each k. 1If

x € Xand y ¢ x*B then pB(x, y) = 0 so that y ¢ Sg(x)
. B B a a
for each k. Since Sl(x) C st(x, up) C st(x, uy) C 5, (x)
ET - K2

* * *
for each k, Oa(x, y) =0 and y ¢ x ®. Hence x B(; x O

8

: * *
, P s a
for each x ¢ X so that assigning x to‘gach X =, we have

8

a surjection p_ from Y, to Ya' Also, for each x ¢ X and

a B
kve have (p9)7H 1657601 = ot es] ) ™)™ = (s ™.
2k 2% P
Since S?(x) is open in Pgr (Si‘(x))*B is open in YB so that
PO *

pg is continuous. Thus we have an inverse limiting system

{Yu' ps | @ ¢ A} of metric spaces Y, (Qith dim ¥ < n for
each a ¢ A).
Let Y = inv lim (Y , pg | @ € A) and define
f: X+ Yby f(x) = (x*a[ a € A) for each x € X. Then
f is continuous since Hao £ = *Q is continuous for each

o € A where na are the projections.

B
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. *q
v Let z = ( z, | @ € A) € ¥ and \

. :
F={FCX| 2 “ CF for some o ¢ A}. If F,G ¢ F let

2 ° CF and z;B C G and choose § € A with a, B < §.
) _ .6 ‘ *a o 6, %6, _  *a
oﬂ6(z), HB(z) = pBOHG(Z) and 2, = pm(z‘S ) Zs

Then Ha(z) = P,

* so that Zg € z:aﬁ zEBQ FNG#Y

xg 5 %S
§ ) = %

zB = pB (z
and F is a filter on X. By Lemma 1.k (Corollary 2.1) for
each open cover of X there is a strong starring sequence

( g = {Ug | k ¢ 2} of open covers of X where

f . {st(x, Ug ) | x € X, k ¢ 2} partially refines the open

f cover with respect to Q(x) = {St(x, ug) ] X e 2} (with

| ord Ui <n + 1 for each k). So for each open cover of
; ‘ ' *

} ‘ X there is B £ A and integer k(zB) with zBB Q:Sg(zﬁ)

g 2k (2g)

i
}

g
57(z,)
where %TEQT is contained in some member of the open cover.
2778

Hence, there is x ¢ X such that each open nhbd. of x is
contained in F. Since F is a filter, if a ¢.A and U is

. *g 4 ¥
_opep\w1€h x €U, then UNz ~ #§ sothat x € z, . But

. . , a ' *q
since *a is continuous on X, x ¢ 2. . Hence, x e zu

o
ael

* .
and £(x) = (x u| a e lA) =z 80 that f is surjective.
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let X, y e Xand x # y. Since X is regular let
V be open withy e VCVC X - {x}. Then {x - {x}, X - V}

is an open cover of X and by Lemma‘l k (Corollary 2.1)

there is 8 ¢ A and integer k(y) with SB(y) C X - {x}. 1f
h LK)

f(x) = £(y) then HBO £(x)= HB o f(y) so that

x*B _*p 8 *g .. .

=y € (Sl(y)) . But this is impossible, since

XY

isBiy)) "By= 5By £ £ d f is i i

8 1y = 5§ y) ., Hence, £(x) # ¥(y) an is injective.
2§T§) 3 2ET§)

Let U be open in X and z-= £(x) ¢ £ (U] for some _
x € U. As beﬁore let V be open with x ¢ VC VC U so that
{u, X - V} is an open cover of X and there is 8 ¢ A and
integer kix) with 8500 C u. wow ¥ a M tr(s} )Py is
KX KXY

an open mbhd. of z in Y. If z' € ¥ A I3 ((s5(x))"P] then
K
z' = £(y) for some y ¢ X since f is surjective, so that
H%(z') = y*B € (Sg(x))*e and y E S%(x). Hence
KT KT

ze¥ N T {(sB(x)) *8)C £ (U] and £ is open.
F:_F)

If U is an open cover of Y, then {f-I[U}] U e U} is
an open cover of X and again by Iemma 1.k (Corollary 2.1)

there are integers K(x) for x e X such that
. {sg(x)i x & X} << {f'I[U]l‘U € U} for some 8 ¢ A. So

b i

1 ir—————
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W = {(Sg(x)) B | x € X} is an open cover of YB‘and
LK) g

' ~1 *g -1..

W <<{(f “[u]) "|u ¢ U}. But then {H8 (Wl we W} <<u
where ll; now is the projection restricted to Y. Thus
the system is full and this completes the proof.

Corollary 2.4: A Hausdorff space X 1is para-

compact with dim X = 0 if and only if X is homeomorphic

to the limit space of a-full inverse limiting system of
discrete spades.

ggéggz Since every discrete space is paracompact
Hausdorff with zero covering dimension by Lemma l.e the
sufficiency is evident. To prove the necessity consider
the collection of disjoint open covers of X; which, by
Lemma l.e, is cofinal in X. If t® is a disjoint open

a

cover, for each k let Uk = U® so that we have a colléction

A of strong starring sequences o = {Uﬁ | k € 2} of disjoint

A 4
&

open covers of X. By Lemma 1.% let (X, pa) be the
pseudometric space generated by {Ui | k ¢ 2} such that

st(x, Ug,,) C 87(x) C St(x, U)) for each x ¢ X and k where

2
Sg(x)larewthe spheres in py+ Let ¥ be the metric space
2F1 |

_ associated with pa'and let *Q be the canonical map.

& - . 1“ . '
If x O ¢ Y, then x ¢ U for some U’s,u“ and U = Sg(xlp
: ~ o KT
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. % * ' * *
U= (Sg(x)) ® for each k. Hence U % = fx °} which is

2k—l
open in Yaso that Ya is a discrete space< As in Theorem 2.2

define' order < on A and if o, B € A with a < B define

the continuous surjection pg from Y_ to Ya' so that we

B

have an inverse limiting system {Ya’ pg | « ¢ A} of discrete -
spaces.

Let Y = inv lim (Y;, pg | « € A) and define

*
f£: X - Yby f(x) = (x & | @ € A) for each x € X. Then

£ is continuous since I o f= *u is continuous for each

a € A where Ha are the projections. In Theorem 2.2, to
show that a homeomorphism was defined and‘that the inverse
limiting system was full, Lemma 1\§ was applied and the
collection of all strong starring sequences of open covers
was considered. Here, similarlx;Lﬂby applying Lemma l.e
and considering A we have that f is a homeomorphism and

that the inverse limiting system is full. This completes

i ‘

ihe préof.
Corollary 2.4 has already been obtained by
K. Nagami in ({11]) and without reference to pseudometric

spaces generatéd by sequences of covers.

Corollary 2.5: A Hausdorff space X is compact
(compact with.dim X < n) if and only if X is homeomorphic
to the limit space of an inverse limiting system of

< ' spaces (compact metric spaces L with
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Proof: The necessit& follows since a compact‘
space is trii;ally paracompact, the inverse limiting
system constructed in Theorem 2.2 is surjective, and the
continuous image of a compact space is again compact.,

Let X be homeomorphic to Y = inv lim (Y, pgl a € A)
where each Y, is a compact metric space, We can assume
that the system {Y,, pgla € A} is full since it can be
shown using ([3], pages 428 and 429)that any inverse limit-
ing system of compact metric spaces is full. Let U be an
open cover of Y and {ngl[w] | we w}'<< U for some a € A
and open cover W of ¥ ,, where I, is the projection restricted

to Y. Then W, hence {Hzl{w}] W e W}, hence U, has a finite

<

subcover and X is compact. If also dim ¥, - n for each a

then it is evident from Lemmas l1l.j and l.e that dim X < n
and this completes the proof.

A compact Hausdorff.space has already been 6btained
as an inverse limit of coﬁpact metric spaces by S. Mardesié
in ([12]), 'with a method entirely different from the method
of Corollary 2.5, and relying heavily on induction.’

Definition 2,3: A collection V of subsets of a

space X is discrete (¢ - discrete) if for each x € X there

-is an open'nbhd. of x which has a non' enpty intersection with

at most one member of V (V can be wrltten as. the countable

union of dlSCrete collectlons).

-

E.Michael has proved the following ([4], page.156).
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Lemma 2.b: A regular space X is paracompact if
and only if for each open cover U there is a g - discrete
open cover V such that V << .

B

Trivially, a collection with only one member is

discrete so that we have:

Lemma 2.c: A regqular finally compact space is

paracompact.
Lemma 2.d: A metric space is separable if and only
if it is finally compact ([3], page 187).

Corollary 2.6: A Hausdorff space X is regular and

finally compact (regular and finally compact with dim X < n)
if and only if X is homéomorphic to the limit space of a
full inverse limiting system of separable metric spaces
(separable metric spaces YOl with dim Ya < n for each a).
Proof: The necessity follows from Lemna 2.c, from
the fact that the inverse limiting system constructed in
Theorem 2.2 is surjective, and from the fact that the
continuodus image of a finally compact space is finally compact.
If X is homeomo;phic to the limit space of a full
inverse limiting system of separable metric spaces then X is
reqgular since a product of reguiar spaces is regular and a
subspace of a regular space is regqular. Because of Lemma 2.d
the proof of the sufficiency is similar to the proof of the
sufficiency of Corollary 2.5. Th§s completes the proof.
Since the full inverse 1imi£ing\system con;tructed

- . '+ ve we easily obtain:
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Corollary 2.7: A Hausdorff space X is compact

(regular and finally compact) with dim X = 0 if and only
if X is homeomorphic to the limit space of a full inverse
limiting system of finite (countable) discrete spaces.

Corollary 2.8: A Hausdorff space X is paracompact

and connected (paracompact and connected with dim X < n)
if and only if X is homeomorphic to the limit space'of a
surjective full inverse limiting system of connected metric

spaces (connected metric spaces Ya with dim YOl < n for each

a).

Proof: The necessity follows since the inverse
limiting system constructed in Theorem 2.2 is surjective and
since the continuous image of a connected space is again
connected.

Let X be homeomorphic to Y = inv lim (y,, pgi o e A)
where the system {Ya' PS | o e AY is surjective and full
and each fa is a connected metric space. Suppose‘x is not
connected so that there is a disjoint apen cover {Ul' Uz}\of

X of non empty sets. Choose & € A and an open cover U of Ya

such that {na'l[W]] We W) << {Ul, Uz} where Hq is the
projection restricted to Y. Since I, is surjective,

{U{W e 0 H;l W] Cul, UiWe W) H;l W} C U,}} is a disjoint

open cover of ¥ of non empty sets and this contradicts that |
i

Y, is connected. Hence X is connected. If also dimY <n

nd .e - ' X < n. This
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&

‘ l
A continuum is a connected compact space and combining g
the proofs of Corollaries 2.5, 2.8, we have: ;

Corollary 2.9: A Hausdorff space X is a continuum

(continuum with dim X < n) if and only if X is homeomorphic
to the limit space of a surjective full inverse limiting

system of metrizable continua (metrizable continua Ya with
dim Y <n for each a).

3. Briefly let us turn to sequences of closed
covers. In the proof of the next characterization we shall
refer to the following result by K. Morita (([13]).

Lemma 2.e: A metric space Y has dim Y < n if and
only if Y has a sequence {F, | k € 2} of locally finite

closed covers satisfying the following conditions: each Fk

is of the form Fi = {Fay,...p0p | @; € @1 < i <k} where

for k > 1, Fogre-es0y o = U{Foyreees o 3, 8] 8 € Q) and
Fal,..., ., may be empty; ord Fk <n + 1 for each k; for

‘each nbhd. U of every point y € Y, there is k such that

st{y, F,) CU.
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Theorem 2.3: A regular space X is paracompact

with dim X < n if and only if for each open cover U there
is a sequence {Fk | x ¢ 2} d§7loca11y finite closed covers
satisfying the following conditions:

l) each Fk is of the form

F = qull"'i ol @ e @1 < i< k) where for k > 1,

Fayoeesr oy 3 = U{Fop,.ei0p 10 8 | 8 € Q) and Fayr-vs 0y g

may be empty.

2) ord F, < n +.1 for each k.
3) {st(x, Fk) | x € X, k € 2} <« . U with respect

to Q(x) = {st(x, F}) | x e 2},

4) for féch x ¢ X and k, "if St(x, Fp) C U for some
U € U then there is p with

St (x, Fp) C Vy (x)=X - U{Fer’k; x¢gF} ([10)).

Proof: Té prove the necessi£y let U,be an 6pen cover
of X and by Corollary 2.3 let £: X -+ Y be a continuous
surjection where Y is a metric space with dim Y < n and let
W be an open cover of Y such that {f~l[w1[ We W << U. Let

{Fk | k e 2} be a sequence of locally finite closed covers

of Y given by Lemma 2.e. Then for each Kk,

- r¢1
Gk = {f [Ful"..’akl ' C!i

of X such that f"lwal,..., a,_q) = £ {Fapr---ray_yvB|BER]

€ 1< i<k} isa closed cover

= UL tFa vovapyr BI| 8 € 8} for k > 1 where

f_l{Fhl,..., Qplyr 8] may be empty.' If x ¢ X, there is a
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nbhd. U of £(x) such that U has a non empty intersection

with at most finitely many members of Fk' so that f'l[U]

is a nbhd. of x which has a non empty intersection}rith

at most finitely many members of Gk’ Hence each Gk is
locally finite and similarly we have ord Gk <n+ 1 for

each k. Suppose St(x, Gk) C U for some x € X, k, and

UelUand lety = £(x). Now

W € Fkl y £ F} and since F, is closed and closure

preserving by Lemma l.a, this set is an open nbhd. of y.

Hence, there is p such that St(y, 'Fp) CY - U{F ¢ Fkl y £ F}.
For each F ¢ Fk' y ¢ F if and only if x € f'l[F] and letting

v, () = X ~ UL ] £1(F] ¢ 6, and x ¢ £71{F]} we have

St(x, Gp) = f'l[St(y, Fp)] c Vk(x). If x ¢ X and £(x) =y,

.
since W is an open cover of Y there is k such that

stly, F,) € W for some W e 0. Hence St(x, G)) = £list(y, Fy)l

C £1(w) C U for soms U € U so that
{st(x, Gk) l xe X, k g 2} << b U with respect to
Q(x) = {st(x, Gk) | k € 2}. Thus, for the sequence
{le k e 2} cor;ditions 1) té). 4) are satisfied.
Ngw suppose that for U there is a sequence {Fk] k ¢ 2}
o;f locally finita clc;sed covers of X satisfying conditions

'
S
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If x ¢ X and k ¢ Z by conditions 1) and 3) choose

i >k and U ¢ U with St(x, Fi) C U. By cqnditions 1) and
4) choose p >' i such that St(x, Fp) C v;(x) and again by
1) and 4), since Vi(x) C st(x, Fi), choose (x, k) > p such

that St(x, k)) Q_Vp(x). N‘ow, if st(x, F(x,k))n,St(y' F(x,k))#g

F(x,
then Vp(x) N st(y, Fp) # @ and Vp(x)11 G# P for some

Ge F,withy e G. If x £ G then GC U(F ¢ Fpl x £ F}
and Vp(x) N G=g. Hence x ¢ G so that

y € G C st(x, Fp) Qvi(x). If 2z ¢ St{y, Fi) let z € F ¢ Fi
with y e F. If x ¢ F then F f)Vi(x) = § so that x ¢ F

and z ¢ F C St(x, F,). Thus, St(y, F;) C st(x, F), and
since (x, k) > i, 8t(y, F(x,k)) C st(x, F, ). So for each

X ¢ X and k, there is (%, k) € Z such that if

St{x, F(x,k)) N stly, F(x,k)) # § then Stl(y, F{x,k))<; St(x, Fk).

For each x ¢ X this allows ‘us to choo§e a sequence of
integers 1(x) < 2(x) = (x, l(§L3 < 3(x) = (x, 2(x)) < «vuy
where (k + 1) (x) = (x, k(x)) means that if

St (x, F(k+1)(x))11 St(y, F(k+l)(x)) # § then

) C st(x, F

SteYs Firin) (x) k(x))

For each k let Wy = {St(x, F oo 1) ) | x € X}.

Suppose we Eave three members St(x, F(2k+lf(x))' St(y., F(2k+l)(y))

[
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St (x,

st(y, Yy (Y St(z, F(2k+l)(z)) # f#. Consider

F(2k+l)(y)

St(x'vF(2k+l)(x)) N St(y, F(2k+l)(y)) # § and the case

where (2k + 1) (x) (2k + 1) (y). Then, by 1)

i A

St (y., F(2k+l)(y)) C sty F(2k+1)(x)) so that

St(x, ) N stly, F(2k+l)(x)) # g and

F2k+1) (x)

St(YI F(2k+1) (X)) Q St (x, F(Zk) (x))- Hence

{
St(y, F(2k+1)(y)) C st(x, F(Zk)(x))' But since

(2k + 1) (x)' > (2k) (x), by 1) we also have

E
St (x, F(2k+1)gx))'g St (x, F(2k)(x))' So altogether we

have St(x, F o)) Y SEU Flakel) (y)) & St Flar !

On the other hand suppose (2k +1) (y) < (2k +1) {x). Then

by 1) Sti(x, F(2k+l)(x)) C st(x, F(2k+1)(y)) so that

Se(y Faren) () 0 SE P o) 7P
and St (x, F(2k+13(y)) C stly, F(2k)(y))‘ Hence,

St (%, F(2k+l) (x)) C stly, F(Zk ) (y)) . But since

(2k + 1) {y) > (2k) (¥), by 1) we also have

st(y, F(2k+1)(y)) C sty F(Zk)(y))' So altogether we have

St Figpany o) Y SEY P () © S50 Flanm

In any case, St(x, F(2k+l)(x))‘) st(y, F(2k+l)(y)) C stta, F o (a

where aq?s either x or y, Now in the same way Wwe can consider

g .

EPU R )



St(y, F
e Fakeny )V SEE ok (2)) C st(bs Fiopy (b))
where b is either y or z. Since

St(a, F(Zk)(a)) N St (b, F(2k)(b)) # § we can repeat the

argument above to obtain

) AU St (b, F(2k) (b)) C st{c, F(2k_l) (c))

$y -

St{a, F(Zk)(a)

for some c € X where St(c, F(2k-1)(c)) e Wy. Thus,
{w, [ ke 7} is a 3-chain sequence of covers of X.

Let p be the pseudometric generated by
{w, | k ¢ 2} such that St(x, W, ;) C s, (x) C st(x, w,) for
KT
each x ¢ X and k, according to Lemma 1.%; let Y be the

metric space associated with p; and let * be the canonical

map. For each x € X and k, since F(2k+l)(x) is closed and

locally finite, by Lemma l.a, V (%) is an open nbhd.
(2k+1) (x)

of x. Hence for each x and k we have

f
() CSE(x gy () © St Uyyy) €8 0

(2k+1) (x) ZE:T

- *
= * 1[Sl(x)] so that * is continuous on X.

—e——

2k-l

a— e

, . .

For each k, let b= {(Faj,e.i0y) e, e @1 <ig k}
If k ¢ Z and x is in the closure of Ful,...,ak in (X, p) by
3) choose i > k such that St(x, Fi) C u for some U ¢ U and

by 1) and 4) choose p > i with St(x, Fp) Q vi(Q). Then

32
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choosing (k - 1) (x) > p we have
Sl‘(x) C stxs Wy (yy +) € St (x, F(k-l) (x)) C Vv, (x) since

PEy € Stx, Uy (g 4) then ¥ € SE(Z Froy(y +1) (2)

where x € :5t(z, F(Zk(x) +1) (z)) so that

Ty
z ¢ St(y, F(Zk(x) +1) (z)) N st(x, F(Zk(x) +1)(z)) (by 2k(x)
here we mean k(x) doubled). Since (2k(x) +1)(z) > 2k(x) +1,

we have z € St(y. F‘k(x)) N St(x, Fk(x)) # § so that
st (y, Fk(x)) C st(x, F(k—l) (x)) and ny e St(x, F(k-l) (x)) .

Singe Sl(x) N Fayreee Oy # § we have Vi(x) 0 FaqseeerOy # 8
KT

and by 1) Vi(x) N FagreeerOgo O 41 # § for some & ., € Q

Withﬁ Fq,‘l,...,uk,ak_’.l C Fﬂl,---,ako Similarly

.vi(x) N F“l""'“k’“kﬂ""'“i ¥ g for some

Gk+l,...,ai £ Q Where F:ol,...,ﬂk,(!k_‘»l,...,aig_‘ Ful,-.-'(!k

2

S0 that X E Fq.l,.-.,(!k,(xk_"l,...,ai g Fal,.-.,ak' Thus'

Fal, LW is closed in (X, p) so that Gk is a closed cover

of Y.

. Again consider Fk and x € X and as beforé let
(k - 1) {x) > i > k such that
Sﬁ) C st{x, wk(x) +1) C st{x, F(k-l) (x)) c vi(x) .
. 2k(x) ’

[



members of Fk' Say Fai,..., aﬁ for n + 2 distinct indices

t t t t
Y )1 <t <n+ 2. Then Vi(x)l\ Foyseoeray # 8
5 t
for 1 < t <n + 2 and for each t choose Oppqremrrdy € Q
such that V_(x) N Fut . at at “e at £ 0 Then the
1 1’ *TRT Tk+l! | *
o t t t t L
indices (01""fak' ak+l""' ai) are distinct where
t t _t t .
X € Fagreees Opr Gpogreeer O for 1 < t <n + 2. This

Q
contradicts ord Fi;g_n + 1. Hence, Sy(x) has a non empty
2k(x)
intersection with at most n + 1 members of Fk‘ This means

F, is locally finite in (x, p) so that Gk is locally finite

@ k .
; in Y and also orxd G, < n + 1. Given x ¢ X and Sl(x) we have <§
f:k \ k-1
‘ -
] stixs Flopiny(x)) & Stlxe Uy C S, (x) so that
| , T

. * J *
Gt xr Fopen) (x))) = St G 2x+1) x)’ C sl(X) and the

-

2

sequence {le k ¢ 2} satisfies all the conditions in

Lemma 2.e. Hence dim Y < n.

Since {St(x, wk)[ x € X, k € 2} << p U with
respect to Q(x) = {St(x, wk{ k ¢ 2}, form an open cover
W of Y such that {*Tl{W]l We W} << U. Then, by Corollary 2.3,

X is paracompact with dim X < n. This completes the proof.




III

Paracompact Svaces and the Mcdeling Distribution

4

Our main purpose here is to show that a modeling
distribution preserves paracompactness in regular spaces
and lowers covering dimension in regular paracompact
spaces.

1. First consider the following concepts due

to R. G. Lintz ({1]). Let X, Y be spaces.

Definition 3.1: A non-deterministic function

1
is a pair of collections V, YV of open covers of X, Y
.-—\J{

. ’ \ ‘
respectively, with a function r: V + Y and a collection

of functions {fy,: V » x(V) | V eV}

- -~
Here, as. in the literature, it is implicit in

this .definition that for each V e {, if Ve Vand V # ¢

then fV(V) £ 8 .

We denote a non-deterministic function as defined
> , : .
above as f: (X, Vi-= (Y, V) or simply as f.

"Definition 3.2: A non-deterministic fund{ion is

called cofinal if the image of r is cofinal in Y.

Definition 3.3: A non-deterministic function is

said to be continuous if for each pair Vl, V2 of members

of \| where V, << V_, if V. ¢ V

1 2! 1 and V, e V, with Vv, Cc v,

1 2
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/

'Definition 3.4: A non~determ§i;stic function is

surjective (injective) if for each V g\Y, fV is surjective
(injectivé).
We shall index a non-deterministic function by
1
some index, say W, by letting V = Vw, Vv =YV w, r=r,,

and £, = fg for each V ¢ Vw and writing

1
i (X, Vw) - (Y, V w) or simply £, The index
—
will often be an open cover of Y.

Definition 3.5: A modeling function from X to Y

is a continuous, surjective, non-deterministic function
L Y ' .
£: (x, V) » (¥, V) where Y is cofinal in X and for each

Vel if Vyr V€ Vowith £,(V)) N £,(V,) # § then V, N V% g

Definition 3.6: A modeling distribution from

X to Y is a collection of modeling functions from X to Y
where for each open cover W of Y there is a member

. L]
fw: (X, Vw) + (¥, V w) of the collection suagh that

rw(Vé << W for each V ¢ Vw. If there is a modeling distribution

from X to Y'we say that Y is a model of X.

Any usual function f which is open, continuous,
and surjective, with the property that £l s qu = v
for each open set U, always induces a cofinal injective
modeling function. in particular, if X is a regular

paracompact space, {Uk[ k € 2} is a 3-chain sequence

of open coveré of X obtained .by Lemma 1.k, and (X, p)
. k Z} wh
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X* is the metric space associated with p, then the canonical
map * induces a cofinal injective modeling function from

(X, p) to x*. However (x, p) and X* may not be homeomorphic
for if X is regular and compact but not Hausdg}ff ( for
example, if X has at least two points and the only open sets
afe X and #) then (X, p) cannot be Hausdorff whereas x* is
Hausdorff.

2. Using Corollary 2.3 we easily generalize the
following result due to A. Ostrand ({14]) to regular para-
compact spaces. .

Lemma 3.a: If X is a metric space then dim X < n
if and only if for each open cover U and i € 2, i >n+ 1,

there are i discrete collections of open sets Vk l<k<i
such that the union of any n + 1 of the V, is an open cover

which refines U.

Corbllary 3.1: A reqular space X is paracompact with

dim X < n if and only if for each open cover U and o
iez, i>n+1, there are i discrete collections of open

sets Uk 1 < k < i such that the union of any n + 1 of the V,

is an open cover which refines 4.

T@gprem 3.1: Let X,bee reqular, If X is paracompact
»(paraccmpact with dim X < n) and ¥ is‘a madel'of X, thén Y is
paracompact (paracompact with dim Y < n) ([10]).

Proof: . If W is an open gQ;er of Y let . ]

Y (X,'V@) + (Y, V'w) be a modeling function and V. e Vw

Tl i p———



Since X is regular and paracompact by Lemma 1.k

let A be an open cover of X such that A <<** {, and since

Vw is cofinal in X choose U ¢ Vw such that U << A so that

W w
U << *x* Y,  Now, if f(Ul) N f(Uz) # # for some
u u
Up, U, € U then U, N U, # 8 so that U; C St(U,, U) CV
v Y W
for some V ¢ V., By the continuity of £, f(Ul)g £(V)
u v
W W
so that St(f(U,), r(t)) C £(V) and r(U)<<** r(V). Since
u w v W U]

fw is surjective, r(U) is an open cover of Y such that
W

r(U) <<** @, and by Lemma l.k, Y is paracompact.
W

If also dim X < n, then by Corollary 3.1, we can
n+l

further gssume that U << \y V¥, << V where V| = {Vyl Y e T)
k=1

1 <k<n+1aren+ 1 discrete collections of open sets.

If 1 <k<n+1, for each y ¢ T} let .
W )
= f u cCvV 1 = {S r'. 1.
S, U { éu) |U e Uand UC y) and let S, { YI Yy e I}
m n+1l
Since £ 1is surjective, § = \J Sk is an open cover of Y;
k=1

and by the continuity of fw, S << W, If we suppose that

there are distinct indices YyriYy € I‘k with S. NS # §8
Y 2

1 Y
W W

then we have f(Ul)(\f(Uz) # @ for some Uy, U, e U with
u T .

U, € Ve 1 9y C VYZ. Then U, N U, # § implies that

1

V. N Vv_ # g which contradicts that V, is a disjoint
Yy Yo L .k

N

S, 1 for " k. * us, S is an

s | W————



an

open cover of Y, § << W/, and ord §$ < n + 1 so that

=

dim Y < n. This completes the proof.

Corollary 3.2: Let X be regular. If X is finally '

compact (finally compact with dim X < n) and Y is a model

of X then Ylis finally compact (finally compact with E

dim Y < n). \ |
Proof: If W is an open cover of Y let

T (X, Vw) + (Y, V'w) be a modeling function and

Ve Vw such that r(V) << W. If X is finally compact, let
w

A bé a countable subcover of V and choose U ¢ Vw such that
U << A. By the continuity of fw, réU) < {f?V)l Ve A}';o
that the latter is a countable cover which refines U.
Hence, we can choose a countable subcover of:{ so that Y
is finally compact. If also dim X < n then- Theorem 3.1
can be applied to obtain dim Y i n since by Lemma 2.¢
X is paracompact. This completes the proéf.

Now, in the above proof, considering X to be
compact and A to be a finite subcover of V, we have:

Corollary 3.3: Let X be fegular. If X is compact

(compaét with dim X < n) and Y is a model of X then ¥
is compact (compact with dim ¥ < nj. .

Theorem 3.2: Let X be regular and paracompact.

If ¥ is a model of X then X is compact (finaﬁly compact)

if and only if Y is compact (finally compact).
. \
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Proof: We have the necessity from Corollaries 3.2,3.3.
To prové the sufficiency, let £f: (X, V) =+ (Y, y') be any
member of the modeling distribution from X to Y. Let V be
any member of Y and since X is regular and paracompact by
Lemma 1.k choose U ¢ V such that U <<** U, Assumlng Y is

compact, let {£(U.)]| 1 < i < 8} be a finite subcover of r(U).
, u

If X € X, then x € U for some U € U so that U # g implies that

£(U) # g and £(U) N f(Ui)¢ § for some-l < i < s. Hence,
u u u

UNU# P so that x e UC st(u,, U). Thus, {St(u, W] 1cics}

covers X and we can choose a finite subcover of V. Since V is

cofinal in X, X ig compact. Similarly , assuming ¥ is finally
compact and considering countable subcovers in place of finite
ones, we have X finally compact. This completes the proof.

Now using Theorem 3.2 and Lemmas 1.j, 2.d, we have:

Corollary 3.4: ILet X, Y be metric spaces. If Y is

»

a model of X, then X is separabie if and only if Y is
separable.

Theorem 3.3: Let X be Hausdoxrff. If Y is a model of

ad

X, then X is connected if and only if Y is connected.
Proof: Suppose ¥ is-not connected so that there is

a disjoint open cover w = {Y r ¥, } of ¥ of non empty sets.

Choose a modeling function fu (X, Vw) (Y, V ) and V ¢ Vw

" guch that. r({V) << W, and let

o A



w e
X; = Ulve V] £(v) C v} for i =1, 2 so that

v , - &
(X, X2} is an open cover of X. Choose V ¢ V with j

W W i)
f(V)C;Yl and £(V) # 4 . Then V # g and xl;éﬁ.
v )

Similarly , X, # #. If X; N X, # § then Vv, N V, # §

W W
where f(Vl) C Xy and £(v,) cy

and let x ¢ Vlf\ V2
v v :

2

~ Since X is Hausdorff, {V1 N Vor X = {x}} is an open cover

of X and choose { ¢ Vw such that U << {Vl N Vo X - {x}}.

If xcUel then U C YV, n v, 'and by the continuity of

g Y w W w
£, £(u) C f(Vl)f\f(Vz). Since U # § implies £(U) # 8,
u v v . u

we contradict that ¥, Y, are disjoint. Hence {X;, XZ}

2
is a disjoint open cover of X of non empty sets and X is
not connected. -

Now suppose X has this cover; choose a modeling
function £: (X, V) » (Y,‘V‘) and some V € Y such that

V << {X., X.}, and let ¥, = U{f(v)|] VvC X} for i =1, 2.
Since V covers x'there is Vl e V, Vl # g and Vl (& xl SO

that févl) C Y,. Since V; # § implies févl) # B, Y # 8.

Similarly Y, # §. If Y, 0 ¥, # § so that '
févl) N févz) # # where Vl o Xy and V, C Xy then we
contradict that X), X, are disjoint.' Hence, {¥,, Yz} is a

+ of Y of non empty sets so that Y is not



connected. This completes the proof.

3. Let us turn briefly to two of the most
important modifications of paracompactness, strong
paracompactness and complete paracompactness.

( ﬁefinition 3.7: A collection V of subsets of
A
a spade ‘%-is star finite if each member of ¥ has a non
v\ '//
empty intersection with at most finitely many members

of V., L\

hY

Definition 3.8: A space X is strongly para-

compact if for each open cover U there is a star finité

open cover V such that V << U,

Theorem 3.4: Let X be regular. If X is strongly

paracompact (strongly paracompact with dim X < n) and ¥
is a model of X then Y is strongly paracompact (strongly
paracompact with dim ¥ < n). ‘

Proof: Let W/ be an open cover of Y and
fw: (X, Vw) +> (Y, V‘w) a modeling function and V ¢ Vw

such that r(V) << W, Since X is strongly paracompact
w ]

let A ={AY| Y € '} be a star finite open cover of X such

that A << V aﬁ&\choose Ue Vw such that U << A. For

w
each vy ¢ T let SY\E”Lifﬁép)l UelUand UCA}. Then

S ={SY| Y € r} is an open cover of Y and $ << W by the

continuity of fw. If we suppose there are distinct
indices Yyr Yy €T with S. N s # § then we have
1

Y Yo
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W W
féul) N fL(IU?’) # # for some Uy, U, ¢ U with Uy C AYl,
U, c AYZ. Then Ul A 02 # 8 implies AYl(’\ AY2 # §. Hence,

S 1is star finite, since otherwise A would not be star
finite. If also dim X < n, then since strong paracompactness
ﬁmpiies paracompactness, Theorem 3.1 gives dim Y < n.

This completes the proof.

Definition 3.9: A space X is completely para-

compact if for each open cover V there is an open cover

[~ <] vy
U such that U << V where U C U U, and each U, is a star
k=1

finite open cover.
Using Lemma 2.b and a result by M. Smirnov
([15), page 256}, in ([16], page 1535) A. Zarelua proves:
Lemma 3.b: A regular completely paracompact
space 1is paracompact.

Theorem 3.5: Let X be regular. If X is completely

paracompact (completely paracompact with dim X < n)and
Y is a model of X, then Y is completely paracompact
(completely paracompact with dim ¥ < n).

Proof: If X is regqular and completely paracompact
let / be an open cover of Y. Let fw: (X, Vw) »> (Y, V'w)

be a modeling function with V ¢ Vw such that r(V) << W;

W
<«©
and let U be an open cover such that U << V and U g_;gl Uk
where U = {0, | @ ¢ A} is a star finite open cover for
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By Lemma 3.b, let A = {Ayl y € T;} be a locally
“

finite open cover such that A, << U; A U and choose
vV, ¢ Vw such that V, << Al; for each v ¢ Ty let

s, = Ulve Ul[ v C AY} and let $; = {SYI vy e T)} so that

Uy << 8) << A << Ul/\ U Let A, ={AYI Y ¢ T,} be a locally

3,
%

finite open cover such that A, << u, A $, and choose Vzve
such that U2<<A2; for each Yer‘z let Sy= VIV e VlvC AY} and

let S, = {SYI Y € T,} so that V, << S, << A, << u2A S,

Continuing in this way, for each k > 2 we have a locally

finite open cover Ak = {Ayl Y € I‘k} such that

e << U A S and V, e V¥ such that V, << S, << A where

k k
IS V{V€V1VCA}

k - 1!

8, = s l}.‘yel‘ " and for each yel

k
Foreachk,1fl<1<k,let3 kallael\}
W
where S, ; = U{fISV) | v QAY for some y € T) and S, Cu,,}
k

for each o ¢ A,. Consider a fixed Ski’ If y ¢ Y then

W

y ¢ £(V) for some V ¢ Uk. Since Vk << A'k, VCA_ for some
V ‘ > . - .Y
k

Yy € - and since S, << Uy SY Cu;, for some o ¢ A;. Hence
W

y € féV) C Skui so that Ski covers Y. Suppose ay, a, are
K .

distinct indi-ces in Ai and Sk .N S .7 P Then,

all ku21
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w W
£(V)) O £(v,)) # 8 whereV, C s, for some y; ¢ T and

v - Vi 1

k k
and SY CU;,, randV, G SY for come vy, € 'y and SY Cu,.-

1 1 2 2 2
. . Thi

SoV, NV, #fPand vy AV, C8 N s CU; Ny, #8. This

1 Y2 1 2

means Ski must be star finite, since otherwise Ui would

not be star finite. 8o we have the countable union

%0 k

v (v Sk.) where each Sk' is a star finite open cover
k=1 i=1 °* *

of Y.

Let x £ X and consider some Sp. Let SY 1 <j<t
J

be all the members of Sp containing %X (this number is
finite since, in particular, Sp is point finite). Since

Sp << U, for each j let SYj c quaj where quaj e U f\qu.

Let k be an integer with k > max {p, qjl 1 <j <2} and

let x ¢ SY £ Sk' Since Sk << Sp.we must have

U
Sy €8y, € Vq.a

for some 1 < j < L. Now, 1 <q. <k
J 373

J

and denote the set Ska.q'g S as Sx' Doing this for

kq.

J73 3
each x € X, we have the ;ollect;on
S = {sxl x e X} C kgl (iglski). |
If Sx e S theﬁ Sx = Skai for some k, some 1 < i <k
and o € Ai: and Uiy € u
' V‘ V. If Ve Vk - vC AY
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'
for some y ¢ I' where SY CU,» thenVCV so that

K
W W
f(v) C f(v'). Hence §_, C f(V') so that § << r (V)<< W. For
v, ~ Vv X7 W

each x ¢ X, ¥ 1s contained in the union of the members of
the collection

= / =
c,=Wevfvc A, for some y ¢ Ty and S, C U;, where 8 =8, }.

k 1
W (1]
Choose T ¢ Y such that T << U C.. If yeYthenyce £ (T)
| ‘ xeX T
f ‘ it W
for some T ¢ T, TC V ¢ Cx for some x, and £(T) C f(V) for
’ T Uk
some k where f£(V) C S.; so that S covers Y.
v
k

Thus, S is an open cover of Y such that $ << W, and

s

M, SC QL/ Ski); and Y is completely paracompact. If

k=1 1=l

H

also dim X < n, then from Lemma 3.b and Theorem 3.1, we
have dim Y < n. This completes the proof.
4. Two other important concepts of dimension
are large inductive dimension (denoted Ind} and small
inductive dimension (denoted ind). For a space X, Ind X < n
i (ind X < n).if for each closed set F (for eaép point x £ X)
and each open set U with FC U {with x ¢ U) there is an open

set Vsuch that FCVC U (x ¢ VC U) and Ind bd(V) < n -1
: X

| (ind bd(V) < n ~ 1) where bd(V) = VN X -~ V is the boundary
X X

! of V' in X.
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It was M.‘Katgtov ([17]) who first proved that
covering dimension and large inductive dimension are \
equivalent in metric spaces. As shown by A. Zarelua ([16]),
covering dimension is bounded above by small inductive
dimension in reqular completely paracompact Hausdorff spaces.
Since small inductive dimension is bounded above by large
inductive dimension in any Hausdorff space, this means
that all three dimensions are idengical in completely
paracompact metric spaces. N. B, Vedenissoff ([18]) has

shown that covering dimension is boundkd above by large

inductive dimension in normal Hausdorff spaces.

From these remarks and Lemmas 1.b, 3.b,utilizing «

Theorems 3.1, 3.5 we  have:

Corollary 3.5: Let X\be paracompact Hausdorff and

Y metrizable., If Ind X <nand ¥ is a model of X then

Ind ¥ < n.

Corollary 3.6: Let X be regular completely para-’

compact Hausdorff and Y metrizable., If ind X < n and Y is

a model of X then ind Y < n.
Since a reqular finally compact Hausdorff space is
strongly paracompact ([15]), Corollaries 3.5, 3.6 hold when

X is regular finally compact Hausdorff. )

5.. Briefly let us consider a weakening of the concept

of modeling distribution.



I1f we do not assume that for each V ¢ VY, if

Q
- Ve Vand V# g then £(V) # f#, then Definition 3.1 describes
v

what we call a weak non-dete~ministic function, dendted

£: (X, V) » (v, V'). Definitions 3.2, 3.3, 3.4 apply

to a weak non-deterministic function; Definition 3.5
destribes a weak modeling function from X to Y if the
non-deterministic function is replaced by a‘weak non-
deterministic function; and Definition 3.6 describes a

weak modeling distribution from X éo Y if the collection

of modeiing functions is replaceﬁ by a collection of weak
modeling functians. If there ii a weak modeling distribution

} from X to Y then we say Y is a weak model of X.

| ‘ We note that Theorems 3.1 and 3.5 are valid if
we consider Y to be a weak model of X rather th$n~a model
K of X.

‘ Applying the folldwing results by M. Katétov
([{17)) and J. Nagata ([19]).respecti¢e;y, we” obtain yet’
another characterization of a regular paracompact space

with finite covering dimension.

Lemma 3.c: Jf X is a space which has a locally

finite closed cover {FYI Y € I'} such that each FY is

metrizable (metrizable with dim-'FY < n) then X is metrizable

(metrizable with dim X < n).

Theorem 3.6: A reqgular space X is paracompact

(paracompact with dim X < n) if and only if X is a weak

model of a metric space (metric space Y with dim ¥ < n).




(R,
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Proof: Lemma l.7 and Theorem 3.1 give the
sufficiency. To prove the necessity let A index the

collection of metric spaces Ya obtained as follows: If
Ua 1s an open cover of X, by Corollary 2.a (Corollary 2.3)
let Y be a metric space (with dim Y < n), let £ : X > ¥
be a cgntinuous surjection, and let wa be an open cover of
Y, such that {f;l[W]l We wa} << U . We can assume that the
collection of {Yal « £ A} is disjoint, and consider |,

Y = \’{Ydl o € A} to have the sum topology; that is, a sub-
set of Y is open if and only if its intefsection witQ‘Yu is

open in Y, for each a e A. Since {v,| ove A} is a locally

finite closed cover of Y where each Yais metrizable (metrizable

with dim Y, £ n), by Lemma 3.c, Y is metrizable (metrizable

with dim Y < n).

For each « € A, S, =W VU {YBI B # a} is an open
cover of Y and {f;IIS]I S e Sa} << U ; and if V% is the

!
collection of open covers of Y which refine Sa and V ® is the

.collection of inverse images under fa of the members of Va,

. . .
then each member of V @ refines ua. For each & ¢ A4, defining

$ . -
the function r,: TRER VAL by ra(V) = (fa1[V]| V ¢ V} for each °
w . '

v e.Va and the collection . of functions {f%: Vo+x(v)| v e.Va}‘
. o

-



by f?V) = f}%] for each V e V, we see that X is a weak model
of YY Thlsucompletes the proof.

As yet we do nét know if Theorem 3.6 is valid
when "weak model" is replaced by "model”.

Definition 3.10: A space is strongly metrizable

if it is regular, Hausdorff and has a base 8 = L)B
k=1

where each B, is a star finite open cover.

¢

The-relationship between Definition 3.9 and 3.10Y
is, as A. Zarelua oggerves in ({l6}), ihat a strongly
metrizable space is simply a completely paracompact
metrizable sgpace. |

Theorem 3.7: A Hausdorff space X is regular

and completely paracoméact (regular and completely para-
compact with dim X < n) if and only if X is homeomorphic
to the limit space of a full inve;sé i&miting syséem\df.

strongly metfizable spaces (strongly metrizable spaces

v¥64w1th dim Y < n for gqqh o).

regular, X is regular. ' . - . SR

! )
Proof: . Let X be homeomorphic to the limit gpace

of the full inverse limiting system {¥,, P | a e A)

‘where each Y is. stzongly metrizabbe (with dim Y £.n).

Since the system is full,’ X is completely paracompact
{with dim X < n). ance a product of regular spaces is

regulaxr and since a.subspace of a.regular space is

R . ! .j{

- F

TS, R

1]
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To prove the necessity first note that by Lemma 3.b,
X is regular paracompact(with dim X < n). Repeatedly
applying Lemma l.k and l.e let A be the collection of all

strong starring sequences a = { Uzl k € 2} of open covers

of X obtained’as follpws:

.

Let W/, be an open cover of X (with ord ¢/; < n + 1)

1

and choose an open cover u‘i‘ such that ui <<k% wl and

u
1

where UY .is a star finite open cover for

o a
ul Q 1,1 1,1

(=N
s

each i. Let U, be an open cover (with ord W, <n + 1)

such that W, <<k Uu N ul land choose open coyer u;

2 - 2,1

[+.]
such that U <<** @_ and e Uou*. .where a2 . is a star
2 2 =1 2,1

finite open cover for each i, Let 013 be an open cover

(with ord w3 <n+ 1) suejh that w3 <<k% Ug AN JAN u®* )

1<qg<2
and choose open cover u‘g such that ug‘ <<k w3 and
) i .
ut ¢ v u% .where each U% .is a star finite open cover.
3 - i=l 3:3- 311

Continuing 1nduct1vely, we have strong starr:.ng sequences

{Wki k e 2}, {U | k.¢ 2} of open covers of X; where for
. :
each k, U k <<k Ll /\ (1 < Q < ke 1 ) where
l<qg<k-l

m . '.' I; v "
: C ‘U uﬁ' iAand ug'iis a star finite open cover for each
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: o o
i, and U << W, << Uy (afxd ord W, < n +1) . By Lemma 1.2,
let (X, p,) be the pseudometric space generated by

{u‘;‘c | x € 2} such that St(x, uiﬂ) C S(;(x) C St(x, u‘}"{) for
2kTi'

each x £ X and k where SZ(X) for x € X and ¢ > 0 denote
the spheres in Py Let Yabe the metric space associated with
N . . a V]
fa and * be the canonical map.Since le+1<<(1}]€6<(1k flor each k,
(X, pa), has the same topology as the pseudometric space generated

by {0, | k € ). 8o if ord W <n + 1 for each k then

dim ¥ < n according to the proof of the sufficiency of Theorem 2.1.

For each Kk, if1<p,q<k-l, let

k K. *o
Speq " sy > | ve “ } where S = U{s{(x)| stix, k) c ul.
- 2
> X
Then we have the cou'ntlable. union B = kgl (l f.g < k—lsp,q)
l<qskl

of star finite opefx covers of X, Let O be open in Y, and
* - <o
Yy ® ¢ 0 so that y € *al [0] which is open in (X, pa) and
-1
there is k such that St(y, k+1) c g% (y) C* J [0]. Since

t
-

2 .

a ’ . .
“,k+2 <§**§ uk 1 ¢Sty k+2) C U for some U € uk 1 and .

in particular let U'e uk+l,s' Choose j > max {k +'1, s} so0

: a._ o g* Ly a
that uj-l'l' ek uk+l,$,' St(y, uj+l) g St(y_, uk+_2)'

‘ ‘ , . . * 41, * J+1
ye UsS(] stlx 5,0 ¢Vl andy " ¢ (Sp H' e s s
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eJtL ¥ .
where (Sg 1) * C 0. Hence, B is a base for Y, and Y,

is strongly metrizable.

Similarly as in Theorem 2.1 it can be shown

that A is directed by the order defined there,éand

E | similarly forming the inverse limitiné system indexed
f by A, we have the desired result.

i | If U is an open cover of a regular completely

| / .
| paracompact space X (with dim X < n) a8 in the proof of

Theorem 3.7 there is a strong starring sequence {Uki k ¢ 2}

L of open covers of X such that Ul <<* (| and the metric

space Y associated with the pseudomefric space generated

’by {Ukvﬂk\e 2} is st*:?gly metrizable'(with dim Y55 n).

v We can form an open cover U of ¥ such that

; T Wl jwe w} << u where * is the canonical map;

and since * is continuoua on X we have'

; .
;Z T ‘ COrollary‘3 7: - A regular space X is completely ,

E ‘ X pdéacompact (ccmpletely paracomnact'with dim X < n) if

: and only if for each open cover U there is a contlnuaus )
3 ' surjectionﬂf from X to a strongly matrizable space ¥
(strongly metrizable space Y with dim Y < n) and an open.
caver of Y such that {f[ﬁ] | n g u} << u. -

Thcorem 3.8:- A rcgular Bpace.x is comnletely

0 o ' Aparacompact (comnletely paxacompact thh &im X < n) if
t and only if X is a wcak mndei of a Btrongly'metrizable

P space (atrongly matr1zab1e apaqg Yiwith dim Y < n)
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Proof: Since a strongly metrizable space is a

completely paracompact metric space, Theorem 3.5 gives

the sufficiency.

To prove the necessity, apply Corollary 3.7

and just as in Theorem 3.6, form the metric spaée

Y=lJ{Yu| a ¢ A} to show that X is a weak model of Y.

We need only observe that if each Yq is strongly metrizable

then so is Y. - If

[+<}
for each o ¢ A, B = U B, is a base for

k=1 ko
Y, where each Bka is a star finite open cover of Ya' simply
let 8 = U ,§ where 8, = U 8, for each k. Then B is
k=1 - o e A

a bade for Y and since the spaces Y are disjoint, each Bk

is a star finite open cover of Y. This completes the proof.

“

»
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Compact Spaces and the Modeling Distribution

/
\

our purpose here is to assist further xnvestigation

‘of spaces under a mgdeling 4 stribution. We restrict

ourselves to compact spaces @&nd link the concept of modeling

distribution and the notion of inverse limiting system.

~ This is expressed precisely in.Theorem 4.2.

1. For our purposes here it is convenient to
generalize the concept of modeling function. et X, ¥

be spaces,

AN

Definition 4.1: A crudd nqn—deterministic function

is a pair of collections V. V of almost open covers of X, Y

,.reapectxvely, with a function r: Ve V and. a collection of -
 functions {£,i V » rﬁ()l VeVl '

L

Aa in ﬁhe case of a non—deterministic function;

it 15 assumed that for each Ve V, 1f‘v € V and‘v #’Q

. then f(Vl ¥ ﬂ; a crude non-dcterminiatic function as defined

PR
M P»'

;D@finitiqns 3. a, 3 3 '3, 4 apply to a g:ude non—determinlstlc :

is denotcd f. (X: V) (Y; Y ) or 5imn1y as f, and

P




Definition 4.2: A crude modeling function from X

to Y is a continuous, surjective, crude noun-deterministic
¥
function f: (X, V) » (Y, V) where V is cofinal in X and

: = A
, € V with févl)I\ tévz) # g

for each V ¢ V, if Vl, Y
then St(V,, Vy N St(V,, vy # 0.

, - ¥
Lemma 4.1: Let X be regular and £: (X, \) = (Y, V)

a continuous crude non-deterministic function where V is
}

. 3 » I -
cofinal in X. IfV, eV, ¢ V and v, € v, € V where Vi Y,

are nbhds. of a common point of X, then f(vl) N £(v,) 0.
v v

1 2
\
Proof: Let vl, V2 be nbhds. of a point x € X so
that there are open sets Ul' U2 with x ¢ Ul c Vl’ X € UZ C Vz.
Since X is regular let V be open with x e VC V C U, N U,.
Then {U, MV u,, X - V} is an open cover of X and since V is

cofinal in X choose U € Y such that U<< {Ulh 02, x - Vl.

If x ¢ U e U then U g:_ Ul N U, C Vl N v, ané\by the continuity

"of £, £(U) C £(V;) N £(V,) . Since U# § implies £(U) # £,
‘ u

u Vl Vz

(V,) # g, This completes the proof.

1 Vs

we have :E(Vl) Nng
¥

; The following is an adaptation of a proof by
A. Jansen in ([20], page 8) where the existence of a
continuous function under conditions similaxr to the ones

' 1 i3 proved,



Lemma 4.a: Let X, Y be regular and paracompact
and f: (i; V) -+ (Y, V') a cofinal, crude non~deterministic -
function where \ is cofinal in X. If Y is Hausdorff then .
there is a continuous function f£rom ﬁ to Y realizedby £ in

a manner made precise below.

Proof: Claim: For each x ¢ X there is y ¢ Y such

that for each nbhd.'Ny of y and V € | there isanbhd. V of x

with V ¢ V such that féV)l\ Ny # 0.
Suppose that for.some fixed point x € X, for each
y .¢ Y there is a nbhd. N, of y and Vy € V such that for each
-
nbhd. V of x with V ¢ V;, we have £(V) N N = . Choose

Y
VY

U ¢ | such that r{l) << {Nyl ¥ € Y}, and choose a nbhd.
U of x with U ¢ U and £(U) € N+ for some y'. If VeV,
choose a nbhd, V of x'with V ¢ Y. Then by Lemma 4,1,

f(U)I\ f(V) # §, so that f(V)t\ Ny, # @, and this contradicts

the choice of Ny.. Hence the Clafm holds.

Suppose that for some'fixed x € X tﬁepé are two
distinct points Y1, ¥ of Y given by the Claim. Since ¥
is Hausdorff let N ’ Nz be disjoint open nbhds. of &1, Y
respéétively( By Lemma 1.b, Y is regular and let Ul' Us

be open with yl e U, € 01 C Nl' y2 Uy € 02 c N Choose
\‘

Ve V such that ) << (N, NZ, Y - B”""‘ﬁ"}lu 5} and choose

_ynhhas Vl, V, of x with Vl, V2 ey such that f(Vl)l\ Uy # g

. -
TS
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.

and f((/vz) N U, # §. ‘Then, févl) c N, and févz) c Nz
-
so that £(V,) N £(V,) = #, and this contradicts Letma 4.1.
v v o

Define g: X + Y by g{x) = y where for each nbhd. |

NyofyandVthhereisanbhd.Vofxwith VeV

such that £(V) N N_ # £.
- V y

Let Ny be an open nbhd. of g(x) = y. Choose open

CUy €Ty C N

3

sets Uy, U,, Uy such that y ¢ U, ol i] 160 2

2’ Y - 63} is an open cover of

'Y and choose V ¢ V such that r(V) << U. Since g(x) =y,

choose a nbhd. v of x with Vel such that £(V) n‘Ul # g
v

.
i

Then we must have £(V) C U,, and let M be an open set with
V . ! ’

X Jm C V. Let y' e g[M] so that y' = g(x') for some x' ¢ M.

Let N be any ofzen nbhd. of y'. Since g(x') = y*, choose a

nbhd. V' of x' with V' ¢ V such that £{V') N N # §. Since
: v .

V, V* are both nbhds. of x', by Lemma 4.1, f‘(,V) N féV’) # 8,
. - . '
and since £(V) C U,, we have f‘(’V') I\'UZ # . So we must have
v : .

f(\(')"‘(_l_ U, - ,61 or £(V') (_; UZ’ ‘and in.gii:her qase; £(v') C U3.

v IR
| /

Thus,NnU #ﬁsothaty'e%andy sny. -Thus, M is

an open nbhd. of x. with gl € ", and g - is continuous. This

comp}etea the praof
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Lemma 4.2: Let X, Y.be reqular paracompact and
)

€ ¢, V)~ (Y, V) a cofinal, crude modeling function. If

Y 1s Hausdorf{ (X and Y are Hausdorff) then there is a

continuous surjcction ( a homeomorphism) from X to Y.

Proof: Let g: X » Y be the function defined in

Lemma 4.a. Consider a fixed point y ¢ Y and for each V ¢ V

choose V, « V with y ¢ (V). Consider any pair V, U with

L gV

V, U ¢ V. By Lemma 1.k let S ¢ V such that § <<** UAY,

S) CUNMV for some Ue U and V ¢ V. Hence

Then St(V, C

Vo CUNV so that y ¢ £(Vo) C £(V) and y ¢ £{Vv.) C £(U).
S s Ty s Ty

Thus, (V) N f(vu) # g, £(U) f\f(vu) # 3 so that
v U (s U

Tst(v, V) Aosev,, V) # 0 and St(U, U) A stV U) ¥ 9.

But then V N St° (V, V) # § and U N st® (v, U) # § so

that St(Ve, $) CUNVC St3(vv, vy N St3(vu, U). Since

f(VS) # ¢ implies that VS # @, we have
S

St3(vv, vy N StB(Vu,‘U) # #. Thus, the collection
F = {F C x| St3(vv, ¥) CF for some V ¢ V} is a filter on
X.
Suppose that for each x £ X there is a nbhd. Ox
of x such that O_ 4 F. Then {Oxl % € X} covers X and

since X is regular and paracompact, by Lemma l.k, choose

V ¢ V such that st (v, | vevl<<{o] xeX} But



then StB(VV, vy C o,, for some x' ¢ X and O_, ¢ F. This

means therc 1s a point of X, call i1t x, such that each
nbhd. of % 1s 1n F.

Let Ny be any nbhd, of y aad choose U & Y such
that r(U) g«** {N , ¥V -~ {y}} so that St(f(v,), c(U)) C u_.
\ Y U u - Y
By Lemma l.k, choose V ¢ \ such that {Stz(v, VY| v e V) << U

and choose a nbhd. V of x with VvV ¢ V. Since V ¢ F,

2

¥ ]
v N St(Vv V) # 8 and so V C St (VV’ V) C U for some

v’

U ¢ U where U is also a nbhd. of x. Since VU(; U,

y € £(v,) C £(U) so that £(U) N £(V,) # 0 and
v u u u

r(u)) C N Now consider any V ¢ VY and

£(U) C St(£(V,), C N

u u
choose a nbhd. V of x with V ¢ V. By Lemma 4.1,

f(v) N £{U) # § so that £(V) N Ny # @#. So, for any nbhd.
v u v

Ny of vy and any V ¢ || there is a nbhd. V of x with V ¢ V
such that £(V) 7 Ny # 8. Thus, g(x) = y and g is surjective.
]

Now suppose X is also Hausdorff. Let Xy %, be
distinct points of X and suppose g(xl) = g(xz) = y. Let

01, 0. be disjoint open nbhds. of Xyr % respectively,

2

so that 0 = (Ol, 0, X - {xl. 32}} is an open cover of X

{

\
and by Lemma 1.k, choose V ¢ Y such that



{St3(v, VY| v ¢ V} << 0. Choose V ¢ V such that f(V)

Vv
18 an nbhd. of y. Since q(xl) = q(xz) = y there 15 a

nbhd. V. of x, with V! ¢ V such that £(v,) ) f(V) # ¢
1 1 1 v 1 v

and there 1s a nbhd. VZ of XZ witch VZ ¢ U such that

{

Yy Y £(V) # 0. Then St(V,, V) N st(v, V) # 0 and

£(v : 1

¢ 2

St(VZ, V)  st(v, V) # 0§ so that VIKJ V2 g_StB(V, V).

But this contradicts that St3(V, V) 1s contained in sone

member of 0. Hence g(x;) # g(x,) and g is injective.

4

<

So we have h: Y » X, the inverse of g defined

hiy) = x where g(x) = y.

Claim: If h(y) = x, then for each nbhd. NX of x

and r(V) for V ¢ V , there is a nbhd. £(V) of y for some
v

V ¢ V such that vV 1 Nv # 4.
&

X, let Ng be a nbhd. of x, consider

If h(y)

gome r(V) for V ¢ V, choose U ¢ V such that

61

{StB(U, Uy| v e U} << N, % - {x}} AV, and choose U ¢ U

such that £(U) is a nbhd. of y. Since g(x) = y there is

u

[ ] | ] .
is a nbhd. U of x with U € U such that £(U ) (\ £(U)
u U

Hence, St(U', U) N St(U, U) # §and UC St (U, W CN_.

Also, St3(U', L) CV for some V ¢ V so that £(U) C £(V)

u v

»

gd.
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which means f (V) 15 also a nbhd. of y where V f\NK # 0
l'l

and this proves the Claim.

Now let N be an open nbhd. of h{y) =x, choose

open sets UI’ SN U3 such that
i DR 0 -~ 0
SN Cu, ¢ u, C U2 < U3 C U3 C Nx so that
U = ] - U N -~ U ' P, -‘L.‘,‘— 1 r'
{LZ, U3 Ul Nx U2 X U3} is an open cover of X
and choose V ¢ \ such that V <<** |/ Since hiy) = x,

by the Claim there is a nbhd. f(V) of y for some V ¢ V
v

such that VO U, # 0. Then we must have St(v, V) C U,

and let M be an open set with y ¢ M C f(V}). Let x' ¢ hiM]
Vv

soO that x' = hly') for some y' ¢ M. Let N be any open

nbhd. of x'. Since hiy') = x', by the Claim let fbV‘)

be a nbhd. of y' for some V' ¢ V such that V'\ N # #.

Since f(V) N £(V') # @ we have St(V, V) N St(v', V) # @
v v

and since St(v, V) Q-UZ we have Uzl\ st(v', V) # 8. So
we must have St(V', V) C U;. Thus, N n Uy # § so that
X' € U3 and let x' ¢ Nx' Thus, M is an open nbhd. of y with

h{m} C N and h is continuous.

So g is a homeomorphism and this completes the

proof.
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Corollary 4.1: 1If X, Y are paracompact Hausdorff

and there 1s a cofinal modeling function from X to Y,
then X and Y are homeomorphic.

Definition 4.3: Let X, Y be spaces. An injective

modeling distribution from X to Y is a modeling distribution
from X to Y where each member of the modeling distribution
15 injective. If there 1s an injective modeling distribution
from X to Y then we say Y is an injective model of X.
In general Corollary 4.1 does not remain valid
(even when X, Y are compact Hausdorff) if an injective
modeling digtribution is substituted for the cofinal modeling
function. For example in ([21]) R. G. Lintz shows that a com-
pact subset of the product of two generalized arcs is an injec-
tive model of a closed subset of the product of two unit intervals
2, Now we shall return to the inverse limiting .

4

systems constructed in II.
0

2 w
Lemma 4.b: Let {Xo’ pol | 0 ¢ I'} and {Ym’ qmil w e Q}

be inverse limiting systems where there is a function

Q: T + @ such that Q[I'] is cofinal in R and if Oyr 0y € T
with 03 < gy then Q(cl) < Q(oz), and for each ¢ ¢ T there

is a homeomorphism fd: YQ(o) +.xo such that if 0y <0, then

Qa,)
o £ = £ 2

w
2
. Th Y r is an
o oy 01 ° qQ(cl) en { w':qwll “ F ?{ 1}

w
inverse limiting system and inv lim (Yw' qwzl w e QT]),
1

“2
tim (¥ q | we Q)
b §
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o
inv lam(X_, p02] o ¢« I') arc all homeomocphic.
) 1

({3), page 430 and 431). ‘
°, 2
Lemma 4.3: Jf (X, p "] o ¢ '} and (Y , g 7| w e Q}
. 0 O1 w ml

arc inverse limiting systems then there i1s a set A and

there arc inverse limiting systems {XQ, pii a ¢« A),
8 2
{Y » g ] o ¢ A} such that anv lim (X , p "] o ¢ T) is
o O 0 01

homeomorphic to inv lim (X, pil « ¢ A) and
Y2

inv lim (Y , g | w € @) is homeomorphic to
1

\ .. B
inv lim (¥ . quf a ¢ A).

Proof: On T x 2 = A define order by calling

4

{o wl) < (02, wz) 1f 0y < 0, and Wy < Wsy Since ', Q

ll
are directed sets, A is also a directed set.

For each (6, w) ¢ A define X( = xo and if

g, w)

(ol, wl) < (02, wz) define the continuous function
by p(x) o = p(x) for
(Gl’ wl) Ol

(6., w.)
p 2 2. . X

(01, wl)' X(oz, wz) (ol, wl)

each X ¢ Xo . If (ol, wl) < (Gz, wz) < (03, w3) then we

‘ 2
. (0,0 w,) (040 wy) O 0 o (0, w,)
o have p 2 ‘op ° °=p 2opl=p3=p > 3 and
(03, ) lopewy) o) gy 0y {9y @)
'“% (021 wz)
- {x(o yr P | (o, w) € A} is an inverse limiting
‘ ! w (Ol' wl)

N system.

G



Now, Q: A » T by Q(o, w) = 0 defines a surjective

function such that if (?1, wl) < (02, mz) then
Q(ol, wl) < Q(o2, m2) and for each (0, w) € A there is

a homeomorphism f X ~X X namely the identity.

(0, w)’ 0 (0,

If (01‘ wl) < (02, w2) then

(0,0 ©,) (0,0 0) 9 %2
o f(x) = p(x) = p(x) = £ o p(x)
o
for each x ¢ X_ . Hence, by Lemma 4.b, inv lim (X_,p 2[ g ¢ T)
9, ¢'%ay
is homeomorphic to inv lim (X, =+ P | (0, w) € A).
' (dll wl)
Similarly , for each (0, w) € A define Y(a, 0 Y,

and if (0,,w,) < (0,, w,) define the continuous function
1771 2 2
(0,0 wy) 1y

, w,) PY aly = q(y)
1 (030 wy) g

(04, W )
(01, @) 2! Y2 1

for each y ¢ Y , to obtain, using Lemma 4.b, an inverse
2
(0, w,)

,w Yoy, ‘”1" (0, w) € A} with

limiting system {Y(o

" .
inv lim (Yw' q 2] @ € ) homeomorphic to
“1

inv lim (Y l (0, w) € A).

r 9
(o, W) (ol’ ml)

For brevity, denote the members of A by «, 8. This

completes the proof.
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Lemma 4.4: In Lemma 4.b, if Y . g 2] w £ Q)
— w' Cwy

™

is a full inverse limitaing system, then {XG, pozl o ¢ T}
1

Ls a full anversc lamiting system.

proof: Let f be the homeomorphism from

~

W 0,
inv lim (Y » g 7] w e Q(I)) o inv lim (X, p "1 o ¢ 1)
w u)l J Ol

<

defined by f( yQ(o)l Qo) ¢ QIry ) = (fO(YQ(Oﬁi o ¢ I)

W
and let g be the homeomorphism from inv lim (Yw, qwz\ w € Q)
~ 1

I wz
| to inv lim (Y » @ “| w € Q[T]) defined by
| w' Wy

g(y | we ) = (yyloeel

7 02
Let U be an open cover of inv lim (X s Py | o ¢ T)
1

so that {g—l f-l[U]\ U ¢ U} is an open cover of
w
inv lim (Y . qwzl w ¢ 9). Choose w ¢ { and an open cover

v of Y such that {ﬂ;l[V]l ve V| }<<{g-l f—l[U]] U e Ul
0 0 0 0

where Hw is the projection restricted to
0

W
inv lim (Y . qwzl w € Q). Since Q(r] is cofinal in §, choose
1
' Qo)) .
o, € I' with Q(Qo) > o Then {foé(qw0 Yy T[v11| Ve Vwo} is

an open cover of xG and let “0 be the projection restricted
0 )

0
to inv lim (X_, P 2l g e
o' Foy



If V ¢ Vw choose U € U such that H;l[V) Q_g— f (v},
0 0

If £y 0] 0@ € o)) e 17 1@ T vy, then

} % Y% 0
; Qo) Qo)
oy ).t g ) "{V])) and y £ (g ) v
% Q(oo)/ %% Q(Oo) Y
! w,
Let (ywl\g»ﬁ ) be a point in ainv lim (Yw, qmlf w £ Q) with
g( yw[ we Q) = (ywl w e QI']) = (yQ(o)] Qo) ¢ Qfr}]) so
0(o )
0 , =
that qw (}Q(o )) Y, ¢ V. Hence,

0o 0 0

(vl we® e gt €701, (ry,,] 200 ¢ Q) € £ ), and
-1 Q(oo) -1
(fo(yQ(O))! o ¢ T) ¢ U. Thus, noo fOo[(qwo ) VI C U
Qo) 0
-1 o', -1 . , 2
{HOO foJ(qao ) "IV [ Ve Vwo} << U; and {ho, pol] o f I}

is a full inverse limiting system. This completes the proof.
From Lemma 4.b and 4.4 we conclude that in Lemma 4.3,

o w
if (X, p 2[ o ¢ T} and {Y , q 2] w ¢ 9} are full inverse
o’ oy w' Ty

limiting systems then (X . pgl a e A} and {Y . qﬁ! a e A}

are full inverse limiting systems.



Suppose X is a paracompact Hausdorff space with
dim X = 0 and we have everything as in the proof of

Corollary 2.4 (with the exception that it is assumed now

that each member of cach U% is not empty). Let A' = {UOIQ(A},
define order between two members UQ, U8 of A' by u* < U8
B
if and only if u8 << UQ, and if U% < u8 let qu= pi
u
;
From the proof of Corollary 2.4 we-fiave that v, = u® for

ub

o | u* ¢ A'} is a surjective
u

each o and that {Ua, p

!

full inverse limiting system of discrete spaces whose

limit space is homeomorphic to X. In case X is compact
(regular and finally compact) Hausdorff with dim X = 0

then by Lemma 2.c X is still paracompact and since a
continuous surjection preserves compactness (final compactness)
we can assume that each U% is a finite (countable) discrete

space.

Theorem 4.1: Let X, Y be paracompact (compact;

regular and finally compact) Hausdorff- spaces with dim X = 0.
If Y is a model of X then X is homeomorphic to the limit

space of a full inverse limiting system {Xa, pg| a € A} of

discrete (finite discrete; countable discrete) spaces and
Y is homeomorphic to the limit space of a full inverse

limiting system {Ya' qg | @ ¢ A} of discrete (finite
discrete; countable discrete) spaces where Ya is homeomorphic

to X, f~r . a e A,



Proof: By Lemmas l.b, 2.c, in each case X 1is
regular and paracompact so that by Theorem 3.1 dim Y = 0.
According to the above remarks and Lemma 4.3, X is homeomorphic
to the lumit space of a full inverse limiting systemn
{x, pﬁ‘ a v A'Y of discrete (finite discrete; countable discrete)

Q

spaces and Y 1s homeomorphic to the limit space of a full
kaerse limiting system {Yu’ qil o ¢ A'} of discrete (finite
digﬁyete; countable discrete) spaces; with A' being all pairs
a = (y, W) where V 1s a disjoint open cover of X and Xa =V,
and wéero W 1s a disjoint open cover of Y and ¥ = . And

if ?/; (V, wy, B = (V', W'Y ¢ A' then a < B means V' << V

and W' << W. Consider a fixed pair a = (V, W) « A'.

Let . (X, Vw) + (Y, V'w) be a modeling function
with 0 ¢ VW such that 0 << V and réO) << W/, Since X is
paracompact (compact; regular and finally compact) Hausdorff
with dim X = 0, by Lemma l.e let A = {AYI y € I'} be a disjoint
(finite disjoint; countable disjoint) open cover of X of
non empty sets such that A << (¢ and choose U ¢ Vw such that
U << A, For edch y ¢ T let Sy= y{ve Uj v C AY} and

W
TY =U{f(U)}] Ue U and U g:Ay}. Then $§= {SYI y e T} is a

u
disjoint open cover of X and § << V. If we suppose there

are distinct indices Yir Yy € T' with TY N TY # ¢ then we
1 2



W W
have f(Ul) N f(Uz) # § for some Ul' U. £ U with
u u 2
’ . ‘ A ) . .
U, C Awl_ U2 Q’A\z Then Uy U2 # 0 implies that

A_ N A_ # 0 which contradicts that A 1s a disjoint

)
collection. Hence, since fa 1s surjective, T = {T\l v ¢ T}

: W
1s a disjoint open cover of Y; and since £ 1s continuous,

T << W, Given y ¢ ', there is U ¢ U with U # § and U C AY

W
so that SY #6, f£(U) # 8, and T # #. Hence 6 = (S5, T) ¢ A
u 1

with a < §, and X, = {SY‘ Yy € T}, Yo = {TY‘ Yy ¢ T} so that

8

X5' Y6 are homeomorphic.

Thus, A = {8 ¢ A" Y, 1s homeomorphic to Xg) is
cofinal in h', so that by Lemmas 4.b, 4.4 X is homeomorphic to
inv lim (Xa' pS] a ¢ A) and Y is homeomorphic to
. . , B i
inv lim (Y, g | o € A) and for each a ¢ A, X , Y are

homeomorphic discrete (finite discrete; countable discrete)

spaces, and the systems are full. This completes the proof.
/

Lemma 4.5: Let U, 1 <1i

i A

jo VY, 1 <1 <3 be covers
of a set ¥%. 1If Ui <<HR Vi for 1 < i < j, then

N Ui <Kk N V.,
i i

1<i<i 1<i<3

Proof: Consider St( nY; /\ui } where
1 <ic<)i lecizg]

e e e,



Y

U ¢ U . Since U ~«*% Vl for each 1, cnoose \’1 oV

1 2 1 1
¥ 1
with St(y , U ) CVv . Consider N U where U U
1 1= 1 1 1
Lo
3 1
1{ N (U NG ) #@ thenU NU # 0 tor each | so
R ) )\ 1 1

that U O sttt , U Y CVv for cach 1 and
; Lo A 1 1

N U, - 0N v, . Hences
Lrre) Tl
St ( A U, A u) C N V. so that
. X v 1T X
1 <1+« I L 1 <1
A Uy cexs N\ v
I <1< 1 <1 < j 1

Lemma 4‘6: Let X, Y be compact metric spaces,

{wjl ) + 2} a sequence of covers of Y cofinal i1n Y such

! < . } 5
that a3+l <wJ for each 3, and {Sl! 1 + 2} a sequence of

covers of X cofinal in X such that Sx+l << Sl for each 1.

Then ¥ 1s an injective model of X, 1f for each j there 1s

an injective, surjective, non-deterministic function

' i
£ (x, V) - (v, V) satisfying the following conditions:

D V)= qs] 12> 3) and £ (S)) <<l

2} for each i > j, if Sl S2 £ Si with

) ]
f(sl)/W f(S ) # § then S N S # 4.
S. S
i
3) if q > 5 > Jand S € Sq and 52 € Ss with
S C S then f(S)Cf(S). Jp

2! S s,
g



)

Proof: First suppose X is discrete. Since X

18 compact, X must be finite, say X = {xﬂi 1 < ¢ < m} where
{xg} 1s open in X. Choose 3 such that
SJ s {{x M 1 <t <m) so that S, = {{x,}] 1 < U< m}

tor each 1 > ).

For each t ¢ Z let A = {Bl(y)l y € Y} where B(y)

- £

2t
denote the spheres in Y for y ¢ Y and € > 0. Choose j1 > j

Choose j2 > jl

such that wj << Al so that rj 1

(S, ) << A
1 1 )

1

h that W. << A_.Nr, (S.) so that r. (S. ) << A, and
sheh e i, S EE 1Y i, 3, 2

r (S.) <<r. (8$.). In this way choose a strictly increasing
2 2 1 1

sequence {j_| t ¢ Z} such that r, (S. ) << r. (S.) and
t Jerr Ten Je It

rj (Sj ) << At for each t. By 2) for each t we have a disjoint
t t jt
open and closed cover r. (S, ) = {f({x,})] 1 < & < m} of Y.
Je J¢ s, *
It

Since r., (S. ) << r, (Sj ),for 1 < £ < m we have
. . 2 12 31 N
b)) J

1
f({xi}) C f({x,}) where {xgl 1 < & < m} is just a permutation
S, S.

i\ Th

of {x,] 1 <& <m}. Similarly , ry (Sj ) <« ry (Sj ) and for

3 -3 2 -2



)3 ; s N ;
c - P N
1+~ 8 < mowe have §({x,DC t(IxTHwhere X 1 . m}
- - v y ] - -
S N
), ) -
oy
1s ust g permutatyron of ox o 1t mi. In o this way we
; ~ -
Can CconCinue, Lo obhtain for o ocach ooweth Do ™, d
ACCTreasin gy Seg elate
) : »
e ot 3 S '
BT SR E RN U GO B (XL B S S S WA (L1 MU B BSR RETAS
. i - - LK PR N
S S| e BN S,
N 15 I2 N

sets whose diameters approach 0. Since Y 18 compact metrac,

o J
N [ t, ~
for cach v, N fq ({x,1) 1s one point, sayy . Thus,
t=2 '
It

{y£§ 1 - « < m) as a set of distinct points and for cach t,

{B.(y,)] 1 <« ¢« m} covers Y. If y ¢ Y then for somec y,
- 19

p Y/l bl
t
2
|
| there 1s & subscguence of {Bl(yn)i t ¢ 2} such that cach
| L
| 5t

f member of the subsequence contains y. This means that the

distance between y and y, can be made arbitrarily small so

that y =y, . Hence Y = {ygi 1 < ¢+ m} so that X and Y are

homeomorphic.

' Now suppose X 1s not discrete and let S(x) for
. €

* ®x ¢ X and € > 0 denote the spheres in X. Consider any

integer il and suppose Si refines more than a finite
1
i1
> number of members of Y . . Then 8§, s {s(x)| x ¢ X} for
1 €



each ¢ > 0 so that the sets in Sl are point sets. But \
1 I

this 1s impossible since X 1s not discrete. So let 12

be the smallest integer such that Si does not refine
1
o)
any member of V . Similarly , Sl‘ can refine at most a
2

1 1
finite number of members of V 2 and let i3 be the smallest

i
such that Si does not refine any member of V 3. In this
2

way choose a strictly increasing sequence {1 t ¢ 2} such

¢
it+l
that S, does not refine any member of V for each t.
t ¢
Then {U/, | t ¢ 2} is cofinal in Y. For each t let
t
ul
e
V = {S, | + >t} and let Xy be the retriction of ry
o i t
t
w. .
i, C iy .
to V and let V be the image of ry - We also have

W,
i

the collection of functions {f t. s, = r, (.| 2>¢t}
84 tp W Ty -
W, i ' \
i

v t
defined by f(S)t = f(S) for S ¢ Si . Suppose 1

S, S. £

1t 2t

§; << 8, , 8, ¢8 ,5,¢e35, ands§ Cs,. KowS,

1 2 1 %y "

i
; £.+1
does not refine anx’member of 1) 1f £2 > 21 then
e, 1zl+1 1,
Vv “CV and S,  does not refine any member of V

|

2



and this contradicts that S RN . Hence ¢ oo, 8

so that by 3), t st so by condition 2}, torx

cach t there 18 an anjectave modeling function
W W W
Yy Y, Co
oo Vo) v, VY such that v (S) e W

for each ¢ > t.

Thus, whether X 1s discrete oy not, Y 1s an injectave

model of X. This completes thc proof.

Theorem 4.2: Let X, Y be compact Hausdorff spaces.

If Y 'is a model of X then X 1s homeomorphic to the limit

space of an inverse limiting system {XQ, pi[ a ¢ A} of

compact metric spaces and Y is homeomorphic to the limit

space of an inverse limiting system {Yu, qi{ o ¢ A} of
compact metric spaces where Y, is an injective model of Xu

for each a ¢ A.
Proof: According to Theorem 2.2, Corollary 2.5,
and Lemma 4.3, X 1s homeomorphic to the limit space of an

inverse limiting system {Xu’ pil a ¢ A'} of compact metric

spaces and Y is homeomorphic to the limit space of an

inverse limiting system {Ya’ qgl a € A'} of compact metrac

spaces; with A' being all pairs

a = ({Vk[ k ¢ 2}, {Uki k ¢ 2}) where {v, | k € 2} is a

k|
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strony starring scquence of open covers of X and X 18
o
L

the metric space associated with the pgcudometric space

1

qenerated by xk’}\ Xk « 2}, and where (U kK ¢« 21 18 3

|

strong Starying seguence of open covers of Y and Y 1S
)

L
the netric Space associated with the pseudometirc space

generated by {Uké—k' ¢ 2}. And 1t

0= ({pki K« 2}, {Uu | ko 21),8= ({vk'[ K ztl {uk| kv Z))e A

A
' ' N A

then o+ P means Vk SN L"k and Uk <l Uw for each k. Consider
T
a fixed pair a = ({Vk| k ¢ 21, {Ukl k¢ 2D A

Throughout the following inductive procedure we
shall repeatedly apply Lemma 1.k and the propertics of a
modeling fundtion in order to choose the desired strong

starring scquences. Let wl = U1 and let

w, W, S
¢l (x, V') - (v, V ) be a modeling function where

each member of the image of Ly refines wl. Choose a strong

1,1 W
starring sequence {Vk k¢ 2} CV 1 such that

|
1,1 0,1 1,1
k

Vk <<hK Vk and réV,
1

) K< wl for each k

0'1 '

(Uk = Uk for each k).

w

1,1 W W 5

Let w2 = u2 ﬁsr(Vl ) and let £ 2: x, VY 2) > (Y, V

Wy

)

L

be a modeling function where each member of the image of Xy
2



11

refines wz. Choose a strong starring sequence

2,2 w 2,2 1,1
v, | k¢ 2} C V such that V, «** UV and

2,2
r(vy ) ot w2 for cach k and choose a strong starrinyg
w A

2

1,2 w - 1,2 2,2

sequence {V, | k } C V such that U, ~o¥* U

k

for each k.

U 3,2
We have f ~, f and let w3 = U3/\ ( A ry (Vk })
e l <k <273
1 <3 <2

Vs 3 Yy
and let £ 7 (X, V 7) » (Y, V ) be a modeling function
where each member of the image of Ly refines w3. Choose

3
3,3 w3
a strong starring sequence {V, | k ¢ 2} CV ~ such that
3,3 1,2 3,3
. * %
Vk <<k Vk and ré’Vk ) << w3 for each k and for
3
1 < j < 2 choose strong starring sequences
3.3 Wj 3,3 j+1,3
(v, | kez}CV-~ such that V), — <<** ¥ for each k.
Wy Yy Uy
Now we have £ ~, £ 7, and let
33
w4=u4/\ ( A r(V, )), and let
1<kz<3 wj

) 1 _<_ j <3

£ 4, (X, V y ~ (Y, V 4) be a modeling function where

each member of the igage of ry refines wd. Choose a strong

4
4,4 w4
starring sequence {V, | ke 2} CV * such that
4,4 1,3 4,4
v <<kk | and r(V ) <<** (U  for each k and for
k % k W k 4

A



- PSRRI ¢

1 < J < 3 choose strong starring sequences
j. 4 W 3.4 )+l 4
{Vy I k ez} CV J such that Uk kK Vk for each k.
Continuing 1n this way, for a given 1 w¢ have
W
modeling functions f I < 3 < 1 - 1 where ecach member of
¢, J-1
the image of r, refines W. = U AN A r(V, ).
j ] Y I < k=« -1 WQ“
1 <2 <3-1
and we have chosen a strong starring sequence
Je) w] JI] 11 :]"l
(v, | xe2} €V~ such that V, <RV and
3ed

r(Vk ) <<k¥ wj for each k and for 1 < & < j ~ 1 we have

J

£,3 W
chosen strong starring sequences {Vk | kK € 2} C ) b
2,3 2+1, 3
such that Uk <KXk Vk fok/each k. And we have
j, i-1
wi = Ui.A ( . A r(Vk )), a modeling function
1 <k < i-1 wj
1 <j<i-l
W, W W

£' x, VN s (v, V 1) where each:member of the image

of r,, refines wi, a strong starring sequence

w,
1
i'i wi i’i lp i-l
(v, | ke2}CV " such that V,  <<** v and

r{V, ) <<¥* W, for each k, and for 1< j < i -1

W,
i

3,1 W,
strong starring sequences {Vk f kez}CV J such that
j.i j+l, 1
Vk <Kk Vk for each k.

78
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By this inductive procedure for each i we have

l+l, 1+l lll 2,.1.
Uk (k% Vk <<kk Vk <<**“”
=1, 1 1,1
«<ExE kR and
k
i]i 1, ibl 2} i—l
Vk (kR Vk . V}( KR )
i-2, 1-1 1-1, 1-1
., CKEE Vk kR Vk for each k. Thus,
i+l, i+l i,1
Vk <Kk Vk for each k and if 1 < j < i - 1 then
j,i i]l j,i j, i"'l .
* % * %
Uk << Vk and Vk << Uk for each k. Furthermore,
Jii 3.k

if 1 <j <% <1i-1 then Ve —<sxr v for each k since

1 <3 <8 <f+l,..., <1i-2 < i-1 and repeating the above

argument a finite number of times we have '
PP j,i-1 j,i-2 jr i+l i, R
vk <<**uk <<**uk <<**,_,,,<<**vk <<**vk for each k.

For each pair j, i consider the modeling function
.,i w. j,i
| kea}CV J, and {r(V
) W,

]

: 3
£, (v

y )| k ¢ 2}. Let

k

-

Xj i (Yj i) be the pseudometric space generated by the

Joi
strong starring sequence {Uk ] k € 2} of open covers of

SFR!
X ({r(Vk ) |ek ¢ 2} of open covers of Y) according to

W,
J ) [ » . [ 0
J/1 Jrl Jel
Lemma 1.% so that St(x, Vk+l) Q_Sl(x) C st(x, Vk ) for
ZE:T

jod
each x ¢ X and k where Séx) for x ¢ Xand ¢ > 0 denoté the

i

T joi
‘spheres in X, . (St(y, r(V, ,)) Q'BE£Z? C stly, r (V' ))for

Jid W,
J 2

=1 Wy
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3,
each y ¢« Y and k where Béy) for y € Y and ¢ > 0 denote
*3,.1 *3,1

the spheres in Y_ .}). Let X. . (

Y. ) be the metric
Jed Il J.2

space assoclrated waith X) i (YJ i)' No confusion arises
’ 1

as
Js2
if wé denote by *j,1 the canonical map from Xj i to Xj i
¥ i
*jri
and the canonical map from Y. . to Y

. . « Since the
J.1 J.2 '

topology of Xj i(Yj i) is contained in the topology of
L4 !

*5, 1 *j, i
X(Y), xj'i and hj,i (Yj,i and Yj,i ) are compact.
Je 1 Jed
Consider a fixed pair j,i. For each k, vk+l KKK Uk
jll Jll j'l
so that {Sl(x)l x € X} <o V<< {Sl(x)l x £ X},

k k-2

*5,1 j,i *5,i 3,1 *j,14
v, ) << {(By(y)) | vy e Y}
k-2

N>“l
= o~
L

w 2

j'i *jli J *jli, J,l

where r(V, ) ={(E(V) ) IV e V., }. since
W .

] k

*j'i

X. . (Yj i ) is a compact pseudometric space, by Lemma 1.f,
joi . J0i %31

V = {Vk | ke 2} (V = {r(vy, ) | k € 2}) is a collection

W,

' ]
*j, 1 *5,1
L. (Y., final i . (Y. .
o; covers of lel ( 5,4 ) cofinal in X3,1 ( I’

£ J is a modeling function, r: V\ =+ V defined by
jei . J,1 *j,1
K ) = r(Vk ) and the collection of functions
W,
J

). Since

r(v



- 3.1 3,1 Vj,i \ wh
. " ]
{fvj,i' Uk r(Lk ) | L € V} where
k
|
R i
£(v) = (£(V) ) for V ¢ Uk , defines a continuous,
yioi plri
k k

surjective, cofinal, crude non~deterministic function. If

Jei
Vi v, egvk and f(Yl) N f(v,) # 6 let
3.1 jei
Vi Vi
S PE RN BT U S T PP 5, %34
Y e (£(V))) N (£(V,)) so that y = a
i, i jed
Vi Vi
]
. 5,0 *5,i .
for some a ¢ f(Vl) and vy =b for some b ¢ f(Vz).
v}]{'l v}]{ll

By definition of the pseudometric on Yj ; we have that

14

© 3.1 , joi
y € St(a, r(vk YY) NN St(b, r(Uk )) so that there are
. .
] ]
. . W, W.
J.2 R ]
Var V4 £ Uk such that f(Vl)lﬂ f(Y3) £ 4,
j.i j.i
Uk Vk
W, W, W, . W,
] J ] ]
f(V3) N f(V4) # 8, f(V4)(W f(V,) # #. Hence, v, n v, # 0,
j.d jel R P 1 J.d
'k 'k Vi 'k .
ol j, i

Va NV, # B, VNV, # 8, VStV V), V, CSt(v,, ¥

k

)



o

. 7
X, .. By Lemma l.k choose k such that !

82

j'i j:i
and St(vl, Vk ) N St(Vz, Vk ) # #. Thus, we have a

s 4
Jr2
cofinal crude modeling function from xj i to Yj i and let
1 !
*j, 1
g. . be the continuous surjection from X. . to Y. . given
1,1 Jrd Jed

*3,1 *Jod
by Lemma 4.2. Consider y* ¢ Yj i and let g(x) =y
' 1] .
Je2

x4 3”
Jrd %;;.‘
for some x ¢ X. If ce x then by definition of the

pseudometric on X. ., each nbhd. of x in Xj i is a nbhd.

31 e
*j'i

1
L0,

of ¢ in X, ., so that g(x) = g(c) and ¢ ¢ g.
Je TR P L

*3,1 *3,d
On the other hand suppose g{(c) =y . Ifc ¢ x then
3od

jel joi
for some ¢ > 0 S(x) N S(y) = # and
€ €
AP S PR *jo1 *j, 1. s
0 = {s(x), S(c), X~ (x Ue )} is an open cover of
c : | . ‘

j'i /
3,1 jei : 3.1
K } << 0 and choose V ¢ Vk where

3
{st” (v, Vk

) ‘ A Et"v
-7

L]
L]

wj *jli' L\ ’ B “*jpi &
(£(V) ) is a nbhd. of y . Since g(x) = g(c)
V)j(li . , o > Jed wjll
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1R
choose Vx’ vc € Vk with x ¢ Vx' C ¢ Vc and

L .
(E(V,) ) N (£ ) 8,
3 i
Vk Uk
//

W, .. W, ..
i ¥, j *j,1

(f(Vc)) N (£(V) ) # f. Then
jii Wyl
Vk k
jel J.i
St(Vx' vk )y NN st(V, Vk ) # 8 and
, Jel jei
St{V,, Uk ) N St(v, Vk ) # .8
3 Jod

so that V. U V_C St” (V, V, ) and this contradicts that

joi
St3 (v, Uk ) is contained in some member of (. Hence
3,4 )
cC € X . So for each x ¢ X, if

A . "'\. .
/\ : . '
" ‘ "Q
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gix) =y then x = gfl.(y ). Thus, for each
j'i J,l o
o *j,1 *5,1 *¥j,1
pair j,i; fj,i: Xj,i + Yj,i defined by fjgxi ) = g(x)
' Jeld

for each x ¢ X, is a homeomorphism.

Now choose a strictly increasing sequence

v

(pi[ i ¢ 2} of integers such that
*i,i ' i,i

-1 -
(*y; £; 408 ]| § e 8;} << W, where $;= {s;(x)] x e x}.
it
i,i
(If p. has already been chosen, since r(V ) <<* (0.,
i-1 w.l i
h e

o .
choose an open cover W of Y, . such that W << wi and by
’

Lemma l.f choose an integer P; > Pi-1 such that
*i,i

1d S|
S; = {8;(x)] x e X} << { ii £ W ]| W e W) so that
p.-1l >
o i
2
"'l *i’i '
. . . .
{ i, fi,i[s 1| 8 € 8;} << W). @Given i, since
i+l, i+l itl, i+l
P Py, V <<k% | and since
i+l 1" 'piyy Py
i+4, i+l ooi,d A+l, i+l i, i
v <<kx Y we have that V <<k .
Py Pj Pi+1 Py
. I ¥ 1,1 e, o
And, since p; 2 i, Upi < ¥V, <f‘Vi = vi» I£1 <3 <i-l
j.i Joi-1 | ) ) i .
then V,  <<** U for each k and for the-modeling function
PR and s

»

[ 4
jri jri“l . R
(¥, ) <«<x* x(¥, ) for each k and in particular for

-3 1‘05

-

C 3,40 W, . 3,41 W,
£3, ( | xezigVIad tv, | kezCV 7. Hence
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1 <k<i-1. By Lemma 4.5

A Je2 Jex-1
U,y N e D AT riv, )
. . _ i 1 . k
1< n 1=k 1 < kK < =1 W
i ] SR ]
L2 ant 1) = -]
i < < % ¥
so that ul+l Wl.
1,2

Hence § = ({Up | 1 ¢ 2}, {wli 10 2} o At o< S,
1

and X6 (Yé) is the compact metric space associated with

the compact pseudometric space XO (YO) gencrated by
1,1
{Vp | i¢ 2) ({wi: 1 ¢ Z}). No confusion arises if we
i
denote by * the canonical map from XO to X& and the canonical
map from Yo to 16.

Claim: Yd 1s an injective model of XG'

We shall show that for tnese spaces we have the situation
described in Lemma 4.6,

* *
For each i, let §;, = {5 | s ¢ $;}. Given i and

X € X choose j > max {k+2, i} so that pj > k+2 and

i i, i 33 i, i

1,
r 1 /
Sl(x) C Sl(h). Since Up_ << lp. , We have
p-2 K . )
2 J
33 i, i i, i
St (x, Up ) C St(x, Vp ) € 5;(x); and according to Lemma 1.%,
3 3 P2
2 3
Je]

St (x, Vp ) contains an open set of Xo containing x. Hence
J



the topology of Xl L 1s contained in the topoloyy of XO.

!

i+1, 141 1,1 J
Since V oo , for cach x + X we have /
Py Pin '
141, 1+ 1+1, 14) 1,12 1,1
S, (%) C oSt(x, U ) C St(x, V ) C S (x)
L . P B Pis) %~— .,
2p1+l : . 2P1+1 -
1,1 1,1 1,1
, ~ , X > x, V
and since py P spxl ¢ Slii)(; St b ) so that
p..,-2 p -1
2 141 5 1
. i,1
Si41 << S << s, Vp. )] x ¢ X}. By Lemmas 1.f, 1.%,
i
i,i .
the collection {{St(x, Vp )] x € X}] 1 ¢ 2} is cofinal 1n
1

*
X, so that {Si] 1 € 2} is a sequence of open covers of X,
iy L * R ;
cofinal in hé such that Si+l << Si or each 1.
N Ot
For each j, let Y’ = {Sll i >3} and let

v ) - {r(§;)[ 1 > 3) where .

*5,1

L -1 * .
x(8,) = {(*],i £. .[S ) | s e S }and for 1> j let

;1
3 ]
*]’i *

£l . s% 4 r(8T) be defined b fj;S*) LT SR T R
¢t TET T RN i1 3,4
i s’

1
* l

for each S ¢ Si'
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i, 1 i,1
If i > j then Uk << Uk for each k so that the

topology of Xl L 1s contalned in the topology of XJ i

!

s
- Il

Hence *.1. £f. (8 ] is open i1n Y_ . for each § ¢ §
Jll Jll J(l 1

If y ¢ Y choose % such that ¢ - 1 > max {i, j, k-1}. Then

jl l-l j' Q«"l
w2 << r&(}Vk 1 ) so that St(y, W ) C St(y, r(Vk 1 )).
] J

j' 2-"'1 j,l
Since 1 < J <1 < -2, vk-l << Vk-l ; and since
. W, W,
3, -1 UJ: ] _ ) ]
Uk~1 e Vo € V  for the modeling function f ,
jl Rf"'l jli
x(Vy ) << x(V,_4). So
W, W.
] ]
j, -1 jli 3! ,
St{y, £V, 4 )) Cstly, x(V, 1) C Bl( y) where, according
W. - .
j j E‘?

LS

to Lemma 1.%, St(y, wz) contains an open set of Y,
~ -7
containing y. Hence the topology of Yj i 1s contained in
!
*j,i *

-1 . .
*
the topology of Yo*and ( 5.1 fj,i[s 1) is open in Y,

13 .
for « «h S¢e S.. Thus, V J is a collection of open covers
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Let ¢, s be integers with g > s > j and let

% S* S* S* * * C f
i , 5
S) ¢ g’ 52 € % with 81 C S, so that S, C Sz. If g > s
* J * *jr q 5.9
let y ¢ £(S,) so that y = f. (x ) = g(x) for some
x1 jr q :
S J:9g
q
*j,s *j.8
X € Sl' Let Ny*j,s be a nbhd. of y in Yj,s Since
3.q 1S
1 <3j<s <qg-l, Uk << Vk for each k and for the modeling
W

3 3,9 wj j,s W,
function £ , {V, | kez}CV -’ and {Uk | kez}CV J

v

J.q iss
so that r{Uk ) <X r(Vk ) for each k. Hence the topology

W, W,
. J

L}

of Yj 5 is contained in the topology of Yj q so that

%,

« L

j,s [Ny*j,s] is a nbhd. ?f Y in Yj,q and
IS R *3iq . *Iig Y*j,q
M *5,q " ( 5,8 { *j,s]) is a nbhd. of y in Y5 oo

Yy Y
3
Jes i *3.q

Consider Vk for a fixed k. Since g(x) =y , there is

* j.q

. 3eq
a nbhd. V of x in X. with Vv ¢ V' such that

1
J.q k+l
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W, ny W,
J 19 , J
(f(v) ) NM,. #@. So'letac f(V) and
1.q y 79 iq
v-o! V!
k+l k+l
*"l *jlq *jlq .
b e 5.8 (N *j,s] where a = b . Since
Y
jrq jls j,S C j’S C j,S
<<k Y » VC St(x, V ) C U for some U ¢ V
ka1 < Vka1 k kl k

so that U is a nbhd, of x in Xj g By the continuity of
!

W, W. W, . W, .o ¢
L] ] J jes 3 jes
f +ace f£(V) C £(U) and a e (£(U) ) . But the
3.9 s jes
Visl Yk k.

topology of Yj 5 is contained in the topology of Yj q'

[ . * 4

*j.q *3:8 *j.q *J8 *3,8 *j,s
so that a ca and b Ch and a = b
: W, .
*j.8 j *iss
Hence a € N 4y g SO that (£(U) ) ON,. _#408. By
' : J:5
y ylrs Yy
k
*j,s *j,s

definition of £, , £. _(x ) =gix) =y and since

318" "3.s j,8
*j,s *j,s *j,s *y,8 *j,s
X £ S2_, Y 0= fJ's(x ) € fj'S{S2 ] so that



*3r8 3

-1. * *
*
ety s fy 185, )andy e f(s;). Thus
S
+ - s
I J »
f(fl ) C f(f2 ) .
Sq Se ‘
_ * *
For each, j let wj ={W | We wj}. Then “r

* . <
{wjr j £ 2} 1is a sequence of covers ©f Y, cofinal in Y

) )

* *
such that wj+l << wj for each j. Furthermore, by the

. ‘
choice of p., r(S.) <« W' for each 3.
J i J J ‘

Since fj i is a homeomorphism for each pair j,i:;

[
gor each ] we have an injective, surjective, non-deterministic

. . ~ L
function f£7: (X0 vy - (Yq V9 satisfying the conditions

’

in Lemma 4.6. So the Claim holds.

Thus, A = {§ ¢ A'] Y, is an injective model of Xs),

is cofinal in A', so that by Lemma 4.b, X is homeomorphic

to inv lim (Xa' pS] a € A} and Y is homeomorphic to

inv lim (Y, qﬁT a ¢ A} and for each a € A, X, Y, are compact

metric spaces where Ya is an injective model of xa. This

completes the proof.



91

In the proof of Theorem 4.2, using Corollary 2.8
in place of Corollary 2.5, we have:

Corollary 4.2: Let X, Y Sg‘Hausdorff continua.

If Y is a model of X then X is homéomorphic to the limit

space of an inverse limiting system {X , pgl o € A} of

metrizable continua and Y is homeomorphic to the limit

space of an inverse limiting system {Ya’ qgl o € A} of
metrizable continua where Y is an injective model of X,

for each a ¢ A.
3. Let us conclude with some questions related to
our work.

Conjecture: A regular space X is paracompact

with dim X < n if and only if for each open cover U there

is a sequence {ukl k € 2} of opeﬁ covers such that

uk+l << Uk and ord uk <n+ 1 for each k, and
L)

{st(st(x, Uy, Uk)[ X e X, k € 2} <, U with respect to

Q(x) =£‘St(St(x, Uy, u)| ke z}.

Conjecturé? If X, Y are compact metric spaces

W

" and Y is an injective model of X then X and XY are homeomorphic.
If this is true then Theorems 2.2,)3.1, 4.2 can
be used to show that covering dimension ié invariant under

a modeling distribution in compact Hausdorff spaces’. .
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Conjecture: 1If X, Y are paracompact Hausdorff

4
spaces and Y is a model of X then dim X = dim Y,

2.

FJ;-u:"
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