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Abstract

One in nine women is expected to be diagnosed with breast cancer during her life. In

2013, an estimated 23, 800 Canadian women will be diagnosed with breast cancer and

5, 000 will die of it. Making decisions about the treatment for a patient is difficult

since it depends on various clinical features, genomic factors, and pathological and

cellular classification of a tumor.

In this research, we propose a probabilistic graphical model for prognosis and

diagnosis of breast cancer that can help medical doctors make better decisions about

the best treatment for a patient. Probabilistic graphical models are suitable for

making decisions under uncertainty from big data with missing attributes and noisy

evidence.

Using the proposed model, we may enter the results of different tests (e.g. estrogen

and progesterone receptor test and HER2/neu test), microarray data, and clinical

traits (e.g. woman’s age, general health, menopausal status, stage of cancer, and

size of the tumor) to the model and answer to following questions. How likely is it

that the cancer will extend in the body (distant metastasis)? What is the chance

of survival? How likely is that the cancer comes back (local or regional recurrence)?

How promising is a treatment? For example, how likely metastasis is and how likely

recurrence is for a new patient, if certain treatment e.g. surgical removal, radiation
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therapy, hormone therapy, or chemotherapy is applied. We can also classify various

types of breast cancers using this model.

Previous work mostly relied on clinical data. In our opinion, since cancer is a

genetic disease, the integration of the genomic (microarray) and clinical data can

improve the accuracy of the model for prognosis and diagnosis. However, increasing

the number of variables may lead to poor results due to the curse of dimensionality

dilemma and small sample size problem. The microarray data is high dimensional.

It consists of around 25, 000 variables per patient. Moreover, structure learning and

parameter learning for probabilistic graphical models require a significant amount

of computations. The number of possible structures is also super-exponential with

respect to the number of variables. For instance, there are more than 1018 possible

structures with just 10 variables.

We address these problems by applying manifold learning and dimensionality re-

duction techniques to improve the accuracy of the model. Extensive experiments

using real-world data sets such as METRIC and NKI show the accuracy of the pro-

posed method for classification and predicting certain events, like recurrence and

metastasis.
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Notation and Abbreviations

BN (Bayesian Network)

CPD (Conditional Probability Distributaion)

PVD (Posterior Vitreous Detachment)

MLE (Maximum Likelihood Estimation)

EM (Expectation Maximization)

IID (Independent and Identically Distributed)

PCA (Principal Component Analysis)

Isomap (Isometric feature mapping)

LPP (Locality Preserving Projections)

LLE (Locally Linear Embedding)

SVMs (Support Vector Machines)

k-NN (k-Nearest Neighbor)

WOBC (Wisconsin Original Breast Cancer dataset)

WDBC (Wisconsin Diagnostic Breast Cancer dataset)

NKI (Netherlands Cancer Institute breast cancer dataset)

vii



Contents

Abstract iv

Acknowledgements vi

Notation and Abbreviations vii

1 Introduction 1

1.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Reasoning Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 CPD Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Parameter and Structure Learning in Bayesian Networks 13

2.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Sufficient Statistics . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Maximum Likelihood Estimation for BN . . . . . . . . . . . . 18

2.2 Bayesian Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 20

2.3 Expectation Maximization for Missing Data . . . . . . . . . . . . . . 22

viii



2.4 Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Dimensionality Reduction and Manifold Learning 25

3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Manifold Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Isomap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Locality Preserving Projections . . . . . . . . . . . . . . . . . 30

3.2.3 Locally Linear Embedding . . . . . . . . . . . . . . . . . . . . 32

4 Experimental Results 36

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Netherlands Cancer Institute (NKI) Dataset . . . . . . . . . . 37

4.1.2 METABRIC Breast Cancer Dataset . . . . . . . . . . . . . . . 37

4.1.3 Ljubljana Breast Cancer Dataset . . . . . . . . . . . . . . . . 38

4.1.4 Wisconsin Original Breast Cancer (WOBC) Dataset . . . . . . 39

4.1.5 Wisconsin Diagnostic Breast Cancer (WDBC) Dataset . . . . 40

4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusion and Future Research Directions 50

A MATLAB Code 52

ix



List of Figures

1.1 A simple Bayesian network for Example 1.1.1 . . . . . . . . . . . . . 4

1.2 The proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Likelihood function L(θ : D) = θ2(1− θ)3 versus θ . . . . . . . . . . . 16

3.1 A one-dimensional manifold . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 A two-dimensional manifold . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Embedding of a Swiss roll into a region in R2 by Isomap . . . . . . . 34

3.4 Embedding of a Swiss roll into a region in R2 by LPP . . . . . . . . . 34

3.5 Embedding of a Swiss roll into a region in R2 by LLE . . . . . . . . . 35

4.1 Structure Learning for the METABRIC Dataset. Nodes 1 to 24 are

clinical variables, while nodes 25 to 24 + d are genomic variables. The

number d is the dimensionality of the manifold. Node 1 denotes the

tumor grade. The white nodes are discrete, while the gray nodes are

continous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 An SVMs classifier with two classes: the circled samples, which called

support vectors, are the training samples that are effective for comput-

ing the hyperplane with maximum margin from samples of two classes.

A new example can be classified based on which side of the hyperplane

it fall on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

x



4.3 A 10-nearest neighbor (10-NN) classifier with two classes: a new sample

(black cross) and its 10 nearest neighbors are represented inside a circle.

The new sample is classified to the blue class since 8 samples of 10

nearest training samples belong to the blue class. . . . . . . . . . . . 47

xi



Chapter 1

Introduction

One in nine women is expected to be diagnosed with breast cancer during her life. In

2013, an estimated 23, 800 Canadian women will be diagnosed with breast cancer and

5, 000 will die of it. Making decisions about the treatment for a patient is difficult

since it depends on various clinical features, genomic factors, and pathological and

cellular classification of a tumor.

In this research, we propose a probabilistic graphical model for prognosis and

diagnosis of breast cancer. Probabilistic graphical models are suitable for making

decisions under uncertainty from data with missing attributes and noisy evidence.

Using this model, we may enter the results of different tests (e.g. estrogen and

progesterone receptor test and HER2/neu test), gene expression profile (microarray

data), and clinical traits (e.g. womans age, general health, menopausal status, stage

of cancer, and size of the tumor) to the model and answer to following questions.

• What is the chance of survival?

• How likely is it that the cancer will extend in the body (distant metastasis)?
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• How likely is that the cancer comes back (local or regional recurrence)?

• How promising is a treatment? For example, how likely metastasis is, and how

likely recurrence is for a new patient if certain treatment e.g. surgical removal,

radiation therapy, hormone therapy, or chemotherapy is applied.

• What is the type of the tumor (classification)?

The structure of the chapter is as follows. Sectin 1.1 presents an introduction

to Bayesian networks (BN). Section 1.2 discusses reasoning patterns in BNs by an

example. In Sectin 1.3, we discuss various Conditional Probability Distributaions

(CPDs) that can be assigned to a node in a BN. Section 1.4 describes related work.

Finally, in Section 1.5, we give the outline of this thesis.

1.1 Bayesian Networks

A Bayesian network (BN) is a probabilistic model that represents a set of random

variables and their conditional dependencies by a directed acyclic graph. In such a

network, each node is a continuous or a discrete random variable. There is an edge

between two nodes, if they are conditionally dependent. Nodes that are not connected

correspond to variables that are conditionally independent of each other. For each

node, there is a probability density function that takes as input a set of values for the

node’s parent variables and gives the probability of the variable represented by this

node.

For instance, a BN can represent the probabilistic connections between symptoms

and diseases. Having symptoms, the BN can be applied to compute the probabilities

of the existence of a disease.

2
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Formally, a Bayesian network is a directed acyclic graph G, whose nodes represent

random variables X1, X2, ..., Xn, and for each node Xi, a Conditional Probability

Distribution (CPD) is assigned, which defines the probability distribution of a node

given its parents. That is P (Xi | U(Xi)), where U(Xi) are parents of node Xi in

graph G. The BN represents a joint distribution via the chain rule for BNs [3, 11]:

P (X1, ..., Xn) =
n∏
i=1

P
(
Xi | U(Xi)

)
.

Further, BN is a legal probability distributaion. That is,

P (X1 = x1, ..., Xn = xn) = P (x1, ..., xn) ≥ 0 and
∑
x1

...
∑
xn

P (x1, ..., xn) = 1.

Example 1.1.1. To explain the inference and learning in BN, we use a real example

through this text. A posterior vitreous detachment (PVD) occurs in the eye, when the

vitreous separates from the retina. Age and myopia (near sightedness) are two causes

and risk factors for PVD. It is rare in young people with normal vision. However,

people with myopia (greater than five diopters) are at higher risk of PVD at all ages.

PVD does not usually cause sight loss. Although it can cause some problems, such

as floaters and little flashes of light, in many cases, PVD does not lead to serious

vision problems. However, there is a small risk that PVD may lead to a retinal tear

or detachment, which needs urgent attention. Age is also a risk factor for glaucoma,

an eye disease, in which the optic nerve is damaged in a certain pattern. Glaucoma

usually affects old people.

Figure 1.1 shows a simple BN for this example. We construct the structure (nodes

3
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Figure 1.1: A simple Bayesian network for Example 1.1.1

and the dependencies) of the network using the above facts, although there are algo-

rithms to extract the structure of a BN from data automatically [8]. We briefly explain

some of these algorithms in Chapter 2. In this example, all nodes are discrete. We use

two states for each of the nodes myopia (M), age (A), glaucoma (G), and retinal tear

(R). Myopia has two states m0 = (no myopia), and m1 = (with myopia). Age has two

states a0 = (young), and a1 = (old). Glaucoma has two states g0 = (no glaucoma),

and g1 = (with glaucoma). Retinal tear has also two states r0 = (no retinal tear),

and r1 = (with retinal tear). For PVD (P), we use three states p0 = (no PVD),

p1 = (moderate PVD), and p2 = (chronic PVD). For example, (m0, a1, p2, g0, r1) is

an old person without myopia and glaucoma, but with chronic PVD and retinal tear.

As another example (m1, a0, p0, g1, r0) represents a young person without PVD and

retinal tear, but with myopia and glaucoma.

For each node a CPD is assigned. Each CPD takes as input a set of values for

the node’s parent variables and gives the probability of the variable represented by

4
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the corresponding node. For example, the first value in the CPD of node R shows

that the propability of having no retinal tear, given the sample has no PVD is,

P (r0 | p0) = 0.98. As another example, we may see from the CPD of node P that

the probability of having chronic PVD, given the sample is old and has myopia, is

P (p2 | a1,m1) = 0.25.

The paprameters of the network, that is CPDs, can be extracted from a data set

of samples. There are efficient algorithms for this purpose, and we discuss them in

Chapter 2, but for now we want to show how this network can be useful by obtaining

some reasoning patterns.

1.2 Reasoning Patterns

The most common reasoning pattern is causal reasoning, which goes from top to

bottom in the BN. For example, we may compute the effect of the age on retinal tear.

For this purpose, we first compute the probabilty of having retinal tear, P (r1), for a

randomly selected example. Using the conditional probability formula and CPD of

node R in Figure 1.1:

P (r1) = P (r1 | p0)P (p0) + P (r1 | p1)P (p1) + P (r1 | p2)P (p2)

= 0.02P (p0) + 0.1P (p1) + 0.15P (p2).

5
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Here, we need to compute P (p0), P (p1), and P (p2). To compute P (p0), we use the

conditional probability formula and the independency of nodes M and A:

P (p0) = P (p0 | m0, a0)P (m0)P (a0) + P (p0 | m0, a1)P (m0)P (a1)

+P (p0 | m1, a0)P (m1)P (a0) + P (p0 | m1, a1)P (m1)P (a1)

≈ 0.832.

Thus, the the probabilty of having no PVD for a randomly selected sample is 0.832.

Similarly, we obtain P (p1) = 0.1038 and P (p2) = 0.0642. Therefore,

P (r1) = 0.02P (p0) + 0.1P (p1) + 0.15P (p2) ≈ 0.03665.

Thus, the probabilty of having retinal tear for a randomly selected sample is 0.03665.

Now, suppose that we wish to see how age (cause) affects the probability of having

retinal tear. We want to compute the probability of retinal tear given the sample is

a young person (evidence):

P (r1 | a0) = P (r1 | p0)P (p0 | a0) + P (r1 | p1)P (p1 | a0) + P (r1 | p2)P (p2 | a0)

= 0.02× 0.88 + 0.1× 0.084 + 0.15× 0.036

= 0.0314.

As a result, the probability of retinal tear not surprisingly goes down compared with

0.03665, since now we know that the sample is not an old person, and age is one of

the risk factors of retinal tear.

As another example of causal reasoning with additional evidence, we may compute

6
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the probability of retinal tear given the sample is a young person, but with myopia.

In this case, we have two evidences: the sample is a young person, and he or she

has myopia. Formally, we should compute P (r1 | a0,m1). Using the conditional

probability formula and CPD of nodes P and R, we have:

P (r1 | a0,m1) = P (r1 | p0)P (p0 | a0,m1) + P (r1 | p1)P (p1 | a0,m1)

+ P (r1 | p2)P (p2 | a0,m1)

= 0.02× 0.8 + 0.1× 0.1 + 0.15× 0.1 = 0.041.

As we can see, the probabilty increases compared with 0.0314, because now we

know that the sample has myopia.

We can also do evidential reasoning. It goes from bottom to top in the BN. For

example, from the CPD of node M, we know that the probabilty of having myopia for

a randomly selected sample is 0.2, that is P (m1) = 0.2. Now, we want to compute the

probablity of having myopia given the sample has chronic PVD. Using the conditional

probability formula and CPD of nodes P, M, and A we have:

P (m1 | p2) =
P (m1, p2)

P (p2)
=
P (m1, p2, a0) + P (m1, p2, a1)

P (p2)

=
P (p2 | m1, a0)P (m1)P (a0) + P (p2 | m1, a1)P (m1)P (a1)

P (p2)

= 0.4517.

The probabiltity of having myopia, given the sample has chronic PVD, not surpris-

ingly increases compared with the probabilty of having myopia for a randomly selected

7
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sample which is 0.2 (see Figure 1.1), since we know that the sample has chronic PVD.

1.3 CPD Types

There are various ways to represent CPDs, based on whether the corresponding node

and its parents are continuous or discrete. Here, we discuss three types of CPDs,

which are more useful than the others in applications: table CPD, Gaussian CPD

and softmax CPD [11].

A table CPD is a multinomial distribution, and it can be represented by a table.

The number of parameters in this type of CPD is exponential with respect to the

number of parents. This may lead to poor results for predicting and classification,

especially if the size of the traning dataset is small. In many applications, a simple

BN with few edges is more efficient (for correct predicting and classification) than

a complex one with many edges, even if the structure of the BN is not completely

correct. Table CPDs are used for discrete nodes with discrete parents.

A Gaussian CPD is suitable for a continous node with discrete and continous

parents. Suppose that Y is a contious node. If it has no parents, its CPD is simply

a Gaussian distribution with mean µ and variance σ, that is Y ∼ N(µ, σ2). If Y has

a continous parent X, the CPD of it is defined as:

Y | X = x ∼ N(µ+ wx, σ2),

where w is a weight. We may extend this definition, if there are more than one

8



M.Sc. Thesis - Mahmoud Khademi McMaster - Computing and Software

continous parents, by assigning different weights to each parent as:

Y | (X1 = x1, ..., Xn = xn) ∼ N(µ+
∑
j

wjxj, σ
2).

If Y has a discrete parent D, the CPD of it is defined as Y | D = di ∼ N(µi, σ
2
i ),

where µi and σ2
i are the mean and variance associated with di, ith assignment of

discrete variable D. If Y has a continous parent X and a discrete parent D, the CPD

of it is defined as folows:

Y | (X = x,D = di) ∼ N(µi + wix, σ
2
i ),

where µi, σ
2
i and wi, are mean, variance, and weight associated with di, respectively.

A discrete node with a continous parent can be represented by a CPD, which is

called softmax CPD defined as follows:

P (D = di | X = x) =
exp (wix+ bi)∑
j exp (wjx+ bj)

Here bi and wi, the parameters of the softmax node D, are bias and weight of x

associated with di, respectively. It ensures the values are between 0 and 1, which is

necessary for a probability density function.

1.4 Related Work

Previous work mostly relies on clinical data [12, 19, 17]. In our opinion, since cancer

is a genetic disease, the integration of the genomic (microarray) and clinical data can

9



M.Sc. Thesis - Mahmoud Khademi McMaster - Computing and Software

improve the accuracy of the model for prognosis and diagnosis. However, the mi-

croarray data is high dimensional. It consists of around 25, 000 variables per patient.

Moreover, structure learning and parameter learning for probabilistic graphical mod-

els require a significant amount of computations. The number of possible structures

is also super-exponential with respect to the number of variables. For instance, as we

will discuss in the next chapter, there are 4.2× 1018 possible structures with just 10

variables [11, 6]. Another difficulty is missing data, a common problem in medical

datasets. A good solution to this problem is the Expectation Maximization algorithm

which estimates the value of missing attributes and then re-estimates the parameters

using complete data. We discuss this algorithm in the next chapter.

Recently, several works reported using microarray technology for studying various

types of cancer. Bhattacharjee et al. [2], Singh et al. [16], and Vijver et al. [18] used

microarray technology for cancer study. Gevaert et al. [9] proposed a simple BN for

prognosis of breast cancer by integrating clinical and genomic data. They selected a

few genes (variables) based on the correlation between the expression values of the

genes with the classification outcomes. This is due to the fact that applying all genes

will lead to curse of dimensionality and small sample size problem for structure and

parameter learning algorithms. Then, they integrated these variblaes with the clinical

data to construct a BN. However, selecting a few genes may lead to loss of genomic

information, which is useful for classification and prediction.

In our method, we avoid this problem by appling an efficient dimensionality re-

duction (manifold learning) algorithms to the genomic data. Figure 1.2 illustrates

the proposed method. The number of clinical features in the real-world datasets is

usually less than 30. Thus, there is no need to apply dimensionality reduction to the

10
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Figure 1.2: The proposed method

clinical data. After applying the dimensionality reduction algorithm to the genomic

data, we have d genomic features for each sample, where d << 25, 000 (in our exper-

iments d = 30). Then, we aggregate the clinical and the features resulted from the

dimensionality reduction algorithm to create a BN. We use a node for each feature.

To create the BN, we need to extract the structure and parameters of the model. An

efficient algorithm for parameter learning that can tackle the missing data problem

is the Expectation Maximization (EM) algorithm [11]. We discuss this algorithm in

Chapter 2.

11
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1.5 Thesis Outline

The structure of this thesis is as follows. In Chapter 2 we discuss, given a dataset,

how to extract the parameters and structure of a BN. Chapter 3 explaines manifold

learning and dimensionality reduction techniques. Chapter 4 reports our experimental

results, and explaination of the datasets. Finally, Chapter 5 discusses conclusions and

future research directions.

12



Chapter 2

Parameter and Structure Learning

in Bayesian Networks

In this chapter we explain, given a dataset and the structure of a BN, how to extract

the parameters of CPDs. As we discussed in the previous chapter, there are various

types of CPD. For table CPDs, we must extract entries of the table. For Gaussian

and soft-max CPDs, we must compute the parameters of the conditional probability

density function like mean, variance, and weights.

The structure of this chapter is as follows. Section 2.1 explains the principle of

Maximum Likelihood Estimation (MLE) and applies it to extract the parameters of

a BN given a data set [11]. Section 2.2 discusses Bayesian parameter estimation [11].

Finally, in Section 2.3, we explain the Expectation Maximization (EM) algorithm to

deal with the missing data problem, which occurs when no data value is available for

some traits of a sample, a typical challenge in many applications [11]. For example,

when we work with a medical dataset, the value of some traits of one or more patients

may not be available. Finally, in Section 2.4, we briefly explain common structure

13
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learning algorithms for BNs [6].

2.1 Maximum Likelihood Estimation

Suppose that D = {x1, x2, ..., xn} is a sample set of n independent and identically dis-

tributed (IID) observations coming from a distribution with an unknown probability

density function f = f(θ) that belongs to a given family of distributions, where θ is

a vector of parameters for this family. The goal of Maximum Likelihood Estimation

(MLE) [11] is to find θ that predicts D well. The quality of the prediction is the

likelihood of D, for a given θ. Formally in MLE, the goal is to maximize the following

likelihood function:

L(θ : D) = f(D | θ) =
n∏
i=1

f(x1, ..., xn | θ) =
n∏
i=1

f(xi | θ). (2.1)

Example 2.1.1. Let P be a Bernoulli distribution:

P (X = x) =

 θ if x = 1

1− θ if x = 0,

where θ is the probability of success. Suppose that D = {x1, x2, ..., xn} is a sample

set of n IID tosses of a coin coming from P. Namely, tosses are independent and

coming from the same distribution. We want to estimate the parameter θ which is

the probability of obtaining a head (H) as the outcome. Thus, 1−θ is the probability

of obtaining a tail (T ).

14
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For example, if D = {H,T,H, T, T} then the likelihood function is as follows:

L(θ : D) =
n∏
i=1

f(xi | θ) = θ2(1− θ)3.

In general, for the Bernoulli distribution with a parameter θ:

L(θ : D) = θNH (1− θ)NT , (2.2)

where NH and NT , are number of heads and tails. Often, it is more convenient to

maximize the logarithm of the likelihood function, called log-likelihood function. For

(2.2) we obtain

l(θ : D) = log(L(θ : D)) = NH log(θ) +NT log(1− θ).

By differentiating and setting the derivative to zero, we have:

NH

θ
− NT

1− θ
= 0.

Thus, as an estimation of θ, the MLE gives:

θ̂ =
NH

NH +NT

.

Since NH = 2 and NT = 3,

θ̂ =
NH

NH +NT

=
2

5
= 0.4,

15
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is a value for θ, where the likelihood function achieves its maximum (see Figure 2.1).

Figure 2.1: Likelihood function L(θ : D) = θ2(1− θ)3 versus θ

As a result, the MLE gives θ̂ = 0.4, as an estimation of θ using the above sample set

D.

2.1.1 Sufficient Statistics

An important concept in the context of MLE is the notion of sufficient statistics. In

the coin example, as we can see from (2.2), the likelihood function depends only on

NH and NT . That is, NH and NT are sufficient to define the likelihood function,

and these two parameters are sufficient statistics for Bernoulli distribution with a

parameter θ. More formally, the definition of sufficient statistics is as follows.

Definition 2.1.1. A function s(D) =
∑

xi∈D s(xi) is a sufficient statistic from in-

stances to a vector in Rk if, for any two datasets D and D′ and any θ, we have

s(D) = s(D′)⇒ L(θ : D) = L(θ : D′).

Example 2.1.2. In the coin example, we define s(x) = (1, 0) if x is head, otherwise

s(x) = (0, 1). Thus, s(D) =
∑

xi∈D s(xi) = (NH , NT ) are sufficient statistics.

16
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Example 2.1.3. Suppose that D = {x1, x2, ..., xn} is a set of n IID samples, coming

from a multinomial distribution with parameters (θ1, ..., θk), where θj is the probabil-

ity of occurring of the jth outcome.

We may simply verify that, with s(x) = ej if x be the jth outcome, s(D) =(
N1, ..., Nk

)
are the sufficient statistics, where Nj is the number of times that xi’s are

the jth outcome in D, and ej is the jth unit vector of dimension k.

Namely, N1, ..., Nk are the sufficient statistics for multinomial distribution with

parameters (θ1, ..., θk). By computing the likelihood function we have:

L
(
(θ1, ..., θk) : D

)
= f

(
D | (θ1, ..., θk)

)
=

n∏
i=1

f
(
xi | (θ1, ..., θk)

)
=

k∏
j=1

θj
Nj .

By applying MLE, we obtain θ̂j = Nj/
∑k

i=1Ni as an estimator for θj.

Example 2.1.4. A random variable X has Gaussian distribution with mean µ and

variance σ2, denoted by X ∼ N(µ, σ2), if its probability density function has the

form:

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

This can be rewritten as

f(x) =
1√
2πσ

exp

(
−x2 1

2σ2
+ x

µ

σ2
− µ2

σ2

)
.

Suppose that D = {x1, x2, ..., xn} is a set of n IID samples coming from a Gaussian

distribution with mean µ and variance σ2. According to Definition 2.1.1, we can

simply verify that, with s(x) = (1, x, x2), s(D) =
(
n,
∑

i xi,
∑

i x
2
i

)
is the sufficient

statistic for Gaussian distribution. By computing the log-likelihood function and

17
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setting its derivative to zero, MLE gives

µ̂ =
1

n

∑
i

xi and σ̂ =

√
1

n

∑
i

(xi − µ̂)2

as estimators for the mean and variance of a Gaussian distribution.

2.1.2 Maximum Likelihood Estimation for BN

In Section 2.1, we defined the principle of maximum likelihood estimation for a single

parameter. We now consider a more complex case for a given BN structure.

First, consider the simple case in which we have only two nodes X and Y , and

variable X is the parent of random variable Y . Suppose that

D = {(x1, y1), (x2, y2), ..., (xn, yn)}

is a sample set of n IID observations. According to (2.1),

L(θ : D) =
n∏
i=1

P (xi, yi : θ) =
n∏
i=1

P (xi : θ)P (yi | xi : θ)

=
n∏
i=1

P (xi : θ)
n∏
i=1

P (yi | xi : θ) =
n∏
i=1

P (xi : θx)
n∏
i=1

P (yi | xi : θy|x),

where θx, and θy|x are likelihood of variables X and X given Y , respectively. The two

products in the last equation are called local likelihood.

18



M.Sc. Thesis - Mahmoud Khademi McMaster - Computing and Software

More generally, for m nodes X1, ..., Xm of a given BN structure, we have

L(θ : D) =
n∏
i=1

P (xi : θ) =
n∏
i=1

m∏
j=1

P
(
xj i | yj i : θj

)
=

n∏
i=1

m∏
j=1

P
(
xj i | yj i : θj

)
=

m∏
j=1

Lj(D : θj),

where xi = (x1i, ..., xmi), xj i is ith sample of random variable Xj, and Yj is the parent

of Xj, that is Yj = U
(
Xj

)
.

If we have table CPDs, that is all variables are discrete, we may further decompose

the previous equation into some buckets as follows:

L(θ : D) =
n∏
i=1

f(xi | yi : θx|y) =
∏
x,y

m∏
i:xi=x,u:ui=u

P
(
xi | yi : θx|y

)
=
∏
x,y

m∏
i:xi=x,u:ui=u

θx|y =
∏
x,y

θx|y
N(x,y),

where N(x, y) is the number of (x, y) in the dataset. By applying MLE we obtain

θ̂x|y =
N(x, y)∑
z N(z, x)

=
N(x, y)

N(y)
(2.3)

For instance, in Example 1.1.1, if we have 100 samples with chronic PVD in total,

and 15 of them have retinal tear too, we have N(p2) = 100 and N(r1, p2) = 15.

Then, by (2.3), we obtain θ̂r1|p2 = P (r1 | p2) = 0.15, as an estimation for parameter

P (r1 | p2) in CPD of node R.
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2.2 Bayesian Parameter Estimation

In the previous section, we discussed Maximum Likelihood Estimation (MLE) for pa-

rameter estimation in BNs. The MLE method supposes that given a fixed parameter

vector θ, the n observations are independent and identically distributed (IID). For

instance, in the coin example, we suppose that given a fixed θ, tosses are independent.

In this section, we explain an alternative approach called Bayesian parameter

estimation [11]. This method treats the parameters as random variables. For instance,

suppose that in the coin example, the parameter θ is a random variable such that

θ ∈ [0, 1]. Since θ is unknown, tosses are not marginally independent and each new

toss give some information about θ. As a result, using the chain rule for BNs,

P
(
X1, ..., Xn, θ

)
= P

(
X1, ..., Xn | θ

)
P
(
θ
)

= P (θ)
n∏
i=1

P (Xi | θ) = P
(
θ
)
θNH (1− θ)NT ,

The probability of θ, P
(
θ
)
, is called prior. By a simple application of the Bayes rule,

we may compute the so called posterior over parameter θ given the data:

P
(
θ | X1, ..., Xn

)
=
P
(
X1, ..., Xn | θ

)
P
(
θ
)

P
(
X1, ..., Xn)

. (2.4)

The probability of the data in the denominator of (2.4) is just a constant since it

does not depend on θ. A common situation is when the likelihood, P
(
X1, ..., Xn | θ

)
, is

a multinomial distribution over k values and the prior, P
(
θ
)
, is a Dirichlet distribution

with a set of hyperparameters (α1, ..., αk). Intuitively, αi represents the number of

the data with values xi which we have seen so far. In this case, we have the following
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form for P
(
θ
)
:

P
(
θ
)

=
1

c

k∏
i=1

θi
αi−1, where c =

∏k
i=1 Γ(αi)

Γ(
∑k

i=1 αi)
. (2.5)

Here, Γ(x) =
∫∞
0
t(x−1)e−t dt, is the gamma function. By (2.4) and (2.5), we see

that if prior is a Dirichlet distribution with a set of hyperparameters (α1, ..., αk)

and likelihood is multinomial, then the posterior is also a Dirichlet distribution with

a set of hyperparameters (N1 + α1, ..., Nk + αk), where N1, ..., Nk are data counts

corresponding to the k values.

We may also make a prediction over the value of a random variable X that depends

on parameter θ:

P (X) =

∫
θ

P
(
X | θ

)
P
(
θ
)
dθ.

Using integration by part and the properties of the integral of polynomials, we obtain

the following equation for the probability of obtaining value xi given parameter θ:

P
(
X = xi | θ

)
=

1

c

∫
θ

θi
∏
j

θj
αj−1dθ =

αi∑
j αj

. (2.6)

Since we know the posterior is also a Dirichlet distribution with a set of hyperparam-

eters (N1 + α1, ..., Nk + αk), by (2.6), we obtain:

P
(
XN+1 = xi | θ,X1, ..., XN

)
=

αi +Ni∑k
i=1 αi +

∑k
i=1Ni

. (2.7)

In Example 2.1.1, if D = {H,T,H, T, T}, then N1 = NH = 2 and N2 = NT =

3. Moreover, if θ has a uniform distribution on [0, 1], then α1 = 1 and α2 = 1,

since the uniform distribution is the same as a Dirichlet distribution with a set of
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hyperparameters (α1, α2) = (1, 1). Thus, by (2.7), we can compute the probability of

getting a head in 6th toss given the data as follows:

P
(
X6 = H | X1 = H,X2 = T,X3 = H,X4 = T,X5 = T

)
=

α1 +N1

α1 + α2 +N1 +N2

=
3

7
.

However, as we discussed before (see Figure 2.1), with the MLE method, the proba-

bility of obtaining a head is 0.4.

2.3 Expectation Maximization for Missing Data

In many real-world applications, we may not have the value of some features for some

samples. For instance, in a breast cancer dataset, we may not have the value of

some tests for a patient. In this section, we address the problem of missing data by

explaining the Expectation Maximization (EM) algorithm [11].

The intuition behind the EM algorithm is that the parameter estimation is a

well-defined problem, if we have complete set of data. Conversely, if we have a full

set of parameters, then we may compute the probability of missing data given the

parameters, by performing inference as we discussed in Chapter 1. As a result, we

have two sets of things that we need to estimate and each of them gives the other:

the parameters and the value of missing data.

The EM algorithm is basically an iterative algorithm, which starts with some set

of parameters and try to estimate the value of the missing data. Then, it uses the

data to re-estimate the parameters. This process continues until it converges.

More precisely, the EM algorithm selects a starting point for parameters, and then

it iterates the following two steps:
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• Expectation step: estimate (inference) the value of missing data using current

parameters.

• Maximization step: re-estimate the parameters using the complete data by the

MLE method.

2.4 Structure Learning

Structure learning algorithms can be divided into two main methods: constraint-

based methods and search-and-score methods. The constraint-based methods start

with a complete graph and try to remove edges, if conditional independencies are

detected. However, in the search-and-score methods, which are more common, the

algorithm searches among possible solutions to find an approximation to the best

directed acyclic graph.

Due to the fact that the number of directed acyclic graphs is super-exponential

with respect to the number of nodes, it is impractical to search through the whole

space of the solutions. For instance, there are 4.2× 1018 directed acyclic graphs with

just 10 nodes. As a result, we have to use a local search algorithm such as the K2

algorithm [3, 11].

The K2 algorithm is basically a greedy search algorithm that starts with no parents

for each node. It then adds the parents one by one. The parent that lead to the most

increase in the score of the resulting structure will add first. The algorithm stops

when adding the next parent cannot increase the score [11]. For structure learning,

we applied a structure learning software developed by Cassio P. de Campos, Zhi

Zeng, and Qiang Ji [8], which can be downloaded from http://www.ecse.rpi.edu/
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~cvrl/structlearning.html. They used a branch and bound algorithm that uses

structural constraints with the data.
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Chapter 3

Dimensionality Reduction and

Manifold Learning

As we discussed in the previous chapter, parameter and structure learning algorithms

may lead to poor results, if the number of variables is high with respect to the number

of samples. Since we want to use genomic features (around 25, 000 features for each

patient) to model breast cancer, the number of variables is too high with respect to

number of samples (around 2000 samples) in our application.

In this chapter, we discuss dimensionality reduction and manifold learning algo-

rithms. The most common dimensionality reduction algorithm is Principal Compo-

nent Analysis (PCA) [10]. We explain PCA in Section 3.1. Then, in Section 3.2, we

explain more advanced manifold learning techniques to reduce the dimensionality of

the samples, while keeping useful information [5, 13].
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3.1 Principal Component Analysis

Suppose that D = {x1, ...,xn} is a dataset of n samples, where xi’s are m-dimensional

vectors, and we wish to reduce the dimensionality of the samples of this dataset from

m to d (d < m). Without loss of generality, we may assume that
∑
xi = 0, since

we can always center the data by subtracting the mean of the samples. Moreover,

suppose that X is an n×m matrix, where its ith row is xi.

The goal of PCA is to find directions that maximize the variance of the projected

dataset. That is, we have the objective function

max
V

var(XV ), (3.1)

where V is an orthogonal m × d matrix, and d is the dimensionality of the new

subspace. If d = 1, the problems is to find a unit-length vector v that maximizes the

variance of the projected dataset:

max
‖v‖=1

var(Xv) = max
‖v‖=1

n∑
i=1

v>xix
>
i v = max

‖v‖=1
v>
( n∑
i=1

xix
>
i

)
v = max

‖v‖=1
v>X>Xv.

The unit-length vector v that maximizes the above optimization problem is the eigen-

vector corresponding to the largest eigenvalue of the m ×m matrix X>X (for more

details see [10]).

If d > 1, V which maximize the objective function (3.1) is an m× d matrix whose

columns are the d eigenvectors corresponding to the largest eigenvalues of X>X. The

samples can be projected onto the new subspace using yi = V >xi, where yi is a

d-dimensional vector representing xi in the new subspace.
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3.2 Manifold Learning

PCA is a linear dimensionality reduction algorithm. That is, it supposes that the

data approximately lie on a linear subspace. However, if the data do not have such

a property, as we can see in many applications, after projecting the data to the new

subspace, the information for classification may be lost. Manifold learning algorithms

are non-linear extension of PCA and try to solve the limitation of linearity. They

suppose that the data lie on a non-linear manifold rather that a linear subspace.

Definition 3.2.1. A compact set M ⊆ Rn is a smooth d-dimensional manifold, if

there exists a differentiable function with a differentiable inverse f : M → Rd. This

smooth map f is called a coordinate chart, which is an embedding of manifold M

into the lower-dimensional space Rd.

Figure 3.1 illustrates a one-dimensional manifold, since we can map the points

on the curve into an interval in R1 by a coordinate chart like f(x, y, z) = t, where

x = sin(t), y = cos(t) and z = t. The coordinate chart f is a differentiable with

a differentiable inverse function and maps the points on the curve into the interval

[0, 18] which is a subset of R1. Similarly, Figure 3.2 shows a Swiss roll, which is a

two-dimensional manifold, since we can map it into a region in R2 by a coordinate

chart f , which unravels it by opening the Swiss roll and mapping it to a subset of R2.

Given a training dataset D = {x1, ...,xn}, where xi’s are m-dimensional vectors,

but lie on a d-dimensional manifold M described by f : M → Rd, manifold learning

algorithms try to find D′ = {y1, ...,yn}, where yi’s are d-dimensional vectors and

yi = f(xi). We will describe three of these algorithms in the next subsections.
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Figure 3.1: A one-dimensional manifold

3.2.1 Isomap

Isometric feature mapping (Isomap) is based on two main assumptions. First, there

exists a coordinate chart f : M → Rd, such that the distances along the manifold M ,

which are called geodesic distances, are preserved in the new space Rd. That is, for

all pairs of training samples xi and xj we have:

dM(xi,xj) = ‖f(xi)− f(xj)‖2,

where, dM(xi,xj) is the geodesic distance between xi and xj along M in Rn. Second,

Isomap assumes that the geodesic distance between close points along manifold M in

the original space is approximately equal to the Euclidean distance between them in
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Figure 3.2: A two-dimensional manifold

the original space Rn.

Isomap is composed of two stages: estimating geodesic distances and finding d-

dimensional samples, whose inter-point distances (the distances between each pair

of points) are compatible with the estimated geodesic distances. To estimate the

geodesic distances, Isomap creates a graph with n vertices corresponding to the n

training samples {x1, ...,xn}.

In this graph, each vertex is connected to its k nearest neighbors, and the weights

on the edges of the graph are based on Euclidean distance between samples in Rn.

This is due to the fact that according to the second assumption, the geodesic distance

between close samples is almost linear and is approximately equal to the Euclidean

distance between them. Then, for the vertices which are not connected (are not close

to each other), we may use algorithms such as Dijkstra’s or Floyd’s to estimate the

distances between them. This gives us a n × n matrix G of estimated inter-point

geodesic distances.

29



M.Sc. Thesis - Mahmoud Khademi McMaster - Computing and Software

Given a matrix G of geodesic distances from the first stage, the goal of the second

stage is to find a set D′ = {y1, ...,yn} of d-dimensional samples whose inter-point

distances is compatible with G. This is due to the fact that Isomap assumes geodesic

distances are preserved in the new space Rd. To perform this, there are various

algorithms [5]. We explain a common algorithm, which is called Multidimensional

Scaling.

Multidimensional Scaling first computes A = −1
2
BGB, where B = I− 1

n
D and D

is a matrix of ones. Matrix A is positive semidefinite if and only if, G is an Euclidean

distance matrix. That is, there is a set of points whose inter-point distances are com-

patible with G. Then, Multidimensional Scaling computes eigenvalue decomposition

of A as A = CΛC>.

If G is exactly a Euclidean distance matrix, then all entries of the diagonal matrix

Λ are non-negative, and the desired configuration would be Y = CΛ
1
2 . However,

since G is an approximation of a Euclidean distance matrix, some of the entries of

the diagonal matrix Λ may not be non-negative. Thus, we compute the m×d matrix

Λ̂ by selecting d largest non-negative eigenvalues of Λ where d < m. Then, we can

compute the desired configuration via Y = Λ̂
1
2 . The inter-point distances of rows of

n× d matrix Y , yi’s, are compatible with G.

3.2.2 Locality Preserving Projections

Locality Preserving Projections (LPP) is another popular manifold learning algo-

rithm. It first constructs an adjacency graph using neighborhood information of the

training database. Then, LPP computes a transformation matrix, such that the lo-

cality information of the original space is preserved in the new subspace. That is, if
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two samples are close to each other according to a certation criteria, they must be

close to each other after the transformation matrix applied.

To construct the adjacency graph, LPP builds a graph with n nodes. Each node

represents a training sample. There are two ways to construct the adjacency graph:

ε-neighborhoods and k-nearest neighbors. In the ε-neighborhoods method, nodes i

and j are connected, if and only if ‖xi − xj‖22 < ε, where ε is a positive real number.

This number is a parameter of the algorithm, which must be determined using the

dataset. In the k-nearest neighbors method, however, we put an edge between nodes

i and j, if j is among k nearest neighbors of i or vice versa.

There are two method for choosing the weights: heat-kernel and simple-mined.

In the heat-kernel method, if there is an edge between nodes i and j, then the corre-

sponding weight is

Wij = exp
(
−‖xi − xj‖2

2

t

)
,

where t > 0 is a parameter of the algorithm. If there is no edge between two nodes,

the corresponding weight is 0. The weight Wij shows how much samples i and j

are close to each other. In the simple-mined method Wij = 1, if nodes i and j are

connected, otherwise Wij = 0.

After constructing the adjacency graph, to find the transformation matrix, LPP

solves the following generalized eigenvector problem:

X>LXv = λX>LXSv, (3.2)

where S is a diagonal matrix with diagonal values the row sums of W . That is,

Sii =
∑

jWij and L = S −W . The matrix X is an n ×m matrix, whose ith row is
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xi as before.

Suppose that the vectors v1, ...,vd are d eigenvector solutions of (3.2), associated

with d largest eigenvalues λ1 > ... > λd. Then, the ith columns of desired transfor-

mation matrix V is vi, and the low-dimensional representation can be obtained via

yi = V >xi.

3.2.3 Locally Linear Embedding

The main idea of Locally Linear Embedding (LLE) algorithm is to see a manifold as a

set of overlapping approximately linear patches. We also assume that for every patch,

there is a linear coordinate chart from the manifold to Rd. Thus, if the manifold is

smooth, we can see it as a set of neighboring small patches that are approximately

linear.

Suppose that N(i) is the of set of k-nearest neighbors of the sample xi. The LLE

algorithm consists of two steps. In the first step, it attempts to represent the sample

xi as a weighted sum of its k-nearest neighbors. The weights must be determined

such that the following objective function be minimized.

‖xi −
∑
j∈N(i)

Wijxj‖2
2
. (3.3)

There are two constraints on the weights in (3.3). For each i, Wij = 0 if j /∈ N(i),

and
∑

j∈N(i)Wij = 1. The first constraint shows that LLE is a local algorithm. The

second constraint makes the weights invariant to translation, scale, and rotation. For

instance, we can see from the following equation that the weights are invariant to an

arbitrary translation β.
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‖xi + β −
∑
j∈N(i)

Wij(xj + β)‖2
2

= ‖xi −
∑
j∈N(i)

Wijxj‖2
2
.

By Lagrange multipliers, we can find a close form solution to minimize (3.3). The

reconstruction weights for each xi are as follows.

W ′
i =

∑
k C
−1
jk∑

l

∑
mC

−1
lm

,

Here, Cij = (xi − zj)>(xi − zk), where zj and zk are neighbors of xi. The weight

Wij = 0 if j /∈ N(i), otherwise Wij = W ′
il, where xj is the lth neighbor of xi.

The second step of the LLE algorithm determines a set of d-dimensional points

D′ = {y1, ...,yn} whose geometry is indicated by W . This is like the second step of

Isomap, but here d is unknown. To find the d-dimensional points, LLE solves the

optimization problem

min
n∑
i=1

‖yi −
n∑
j=1

Wijyj‖2
2

. (3.4)

The solution of (3.4), is an n × d matrix Y = [y1...yn]>, whose columns are the d

eigenvectors of (I −W )>(I −W ), corresponding to the d nonzero eigenvalues [5].

Figures 3.3, 3.4, and 3.5 show different embedding of the Swiss roll in Figure 3.2

using two manifold learning algorithms. In Figure 3.3, Isomap is used to project the

Swiss roll into a region in R2. In Figure 3.4, LPP is applied to map the the Swiss roll

into a region in R2. Finally, in Figure 3.5 LLE is applied to map the the Swiss roll

into a region in R2.

33



M.Sc. Thesis - Mahmoud Khademi McMaster - Computing and Software

Figure 3.3: Embedding of a Swiss roll into a region in R2 by Isomap

Figure 3.4: Embedding of a Swiss roll into a region in R2 by LPP
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Figure 3.5: Embedding of a Swiss roll into a region in R2 by LLE
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Chapter 4

Experimental Results

This chapter presents our experimental results. The structure of the chapter is as

follows. Section 4.1 explains the datasets which we used to train the probabilistic

graphical models. The details of the implementation and experimental setup is pre-

sented in Section 4.2. Then, in Section 4.3, we explain the methodology and two

baseline methods to compare the BN method with some typical classification ap-

proaches. Finally, in Section 4.4, we discuss the results.

4.1 Datasets

To evaluate the accuracy and performance of the proposed method, we tested it using

several breast cancer datasets: the Netherlands Cancer Institute (NKI) dataset [18],

the METABRIC dataset [7], the Ljubljana Breast Cancer dataset, the Wisconsin
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Original Breast Cancer (WOBC) dataset from the University of Wisconsin Hospi-

tals [12], and the Wisconsin Diagnostic Breast Cancer (WDBC) dataset from Uni-

versity of Wisconsin, Clinical Sciences Center. The last three datasets can be down-

loaded from the machine learning repository at University of California, Irvine [1]

http://archive.ics.uci.edu/ml/.

4.1.1 Netherlands Cancer Institute (NKI) Dataset

This dataset includes expression profiles and clinical traits extracted from 295 breast

cancer tumors collected from the tissue bank of the Netherlands Cancer Institute [18].

These data can be downloaded from the Bioinformatics and Statistics Division of

Molecular Carcinogenesis, Netherlands Cancer Institute (bioinformatics.nki.nl/

data.php). This dataset has been used to develop a gene expression signature that

is highly predictive for good versus poor prognosis in patients with stage I or stage

II breast cancer. Each individual has 24, 496 genes and 19 clinical traits. Each gene

is represented by a real number between −1 and 1. The clinical traits are showed

in Table 4.1. Some clinical traits are discrete, like regional recurrence at any time

during follow-up, while some others are continuous, like tumor diameter.

4.1.2 METABRIC Breast Cancer Dataset

The METABRIC dataset contains clinical traits, expression profiles, copy number

variation profiles, and single nucleotide polymorphism genotypes extracted from 1981

breast tumors collected from participants of the METABRIC trial [7]. These data

were accessed through Synapse (synapse.sagebase.org). Each patient has 24 clin-

ical features. Some of them are age at diagnosis, size, lymph nodes positive, grade,
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Trait ID Trait Description
NKI-TR1 Regional recurrence at any time during follow-up; (0=no, 1=yes)
NKI-TR2 Local recurrence at any time during follow-up; (0=no, 1=yes)
NKI-TR3 Distant metastasis at any time during follow-up; (0=no, 1=yes)
NKI-TR4 Death; (0=no, 1=yes)
NKI-TR5 Survival interval in years between first data of treatment and

last date of follow-up
NKI-TR6 Disease free interval in years between first date of treatment and

last date of followup
NKI-TR7 Metastasis free interval in years between first date of treatment

and date of diagnosis of distant metastisit
NKI-TR8 Interval in years between first date of treatment and date of

regional recurrence
NKI-TR9 Interval in years between first data of treatment and local

recurrence
NKI-TR10 Chemotherapy; (0=did not receive, 1=received)
NKI-TR11 Hormonal therapy (0=did not receive, 1=received)
NKI-TR12 Surgical removal; (0=no, 1=yes)
NKI-TR13 Tumor diameter in mm
NKI-TR14 Lymph node status from pathology report
NKI-TR15 Histopathology tumor grade
NKI-TR16 Angio invasion
NKI-TR17 Degree of lymphocytic infiltration
NKI-TR18 Age at diagnosis in years
NKI-TR19 Estrogen receptor alpha expression measurement (0=no, 1=yes)

Table 4.1: Description of the clinical trait of the Netherlands breast cancer dataset

histological type, treatment, menopausal status inferred, group, stage, mutation sta-

tus, and various molecular pathologic classifications.

4.1.3 Ljubljana Breast Cancer Dataset

This breast cancer dataset was obtained from the University Medical Centre, Institute

of Oncology, Ljubljana, Yugoslavia, provided by M. Zwitter and M. Soklic, http://

archive.ics.uci.edu/ml/datasets/Breast+Cancer. The instances are described
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by 9 attributes plus the class label (no-recurrence/recurrence) for 286 instances. There

are 9 instances with missing values. In this dataset, 85 instances have recurrence,

while 201 instances do not have recurrence. The description of the attributes are

presented in Table 4.2.

Trait ID Trait name Domain
A0 Class No-recurrence, recurrence
A1 Age 10-19, 20-29, 30-39, 40-49, 50-59, 60-69,

70-79, 80-89, 90-99.
A2 Menopause Less than 40, greater than 40, premeno
A3 Tumor size 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34,

35-39, 40-44, 45-49, 50-54, 55-59.
A4 Invasive nodes 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20,

21-23, 24-26, 27-29, 30-32, 33-35, 36-39.
A5 Node-caps Yes, no
A6 Degrees of malignancy 1, 2, 3
A7 Breast Left, right
A8 Breast-quad Left-up, left-low, right-up, right-low, central
A9 Irradiate Yes, no

Table 4.2: Attributes of the Ljubljana Breast Cancer dataset

4.1.4 Wisconsin Original Breast Cancer (WOBC) Dataset

This breast cancer databases was obtained from the University of Wisconsin Hospitals,

Madison from Dr. William H. Wolberg [12]. It contains 699 instances. The number

of attributes is 10 plus the class attribute, which is benign or malignant. In this

dataset, 458 instances are benign, while 241 instances are malignant. There are 16

instances that contain a missing attribute value. The description of the attributes

are presented in Table 4.3.
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Trait ID Trait name Domain
A0 Clump Thickness 1− 10
A1 Uniformity of cell size 1− 10
A2 Uniformity of cell shape 1− 10
A3 Marginal adhesion 1− 10
A4 Single epithelial cell size 1− 10
A5 Bare nuclei 1− 10
A6 Bland chromatin 1− 10
A7 Normal nucleoli 1− 10
A8 Mitoses 1− 10
A9 Class Benign, malignant

Table 4.3: Attributes of the Wisconsin Original Breast Cancer (WOBC) dataset

4.1.5 Wisconsin Diagnostic Breast Cancer (WDBC) Dataset

This breast cancer databases was obtained from the University of Wisconsin, Dr.

William H. Wolberg, W. Nick Street, and Olvi L. Mangasarian. It can be downloaded

from the machine learning repository at University of California, Irvine [1] http:

//archive.ics.uci.edu/ml/. It contains 569 instances. There are ten real value

attributes. The description of the attributes are presented in Table 4.4. The mean,

standard error, and ”worst” or largest (mean of the three largest values) of these

features were computed resulting in 30 attributes. The class attribute is benign

or malignant. In this dataset, 357 instances are benign, while 212 instances are

malignant. There is no instance containing a missing attribute value.

4.2 Experimental Setup

For dimensionality reduction and manifold learning, we used a free subspace learning

library [4], [13], which can be downloaded from http://www.cad.zju.edu.cn/home/

dengcai/Data/DimensionReduction.html. To create the BN, we need to extract the

40

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html


M.Sc. Thesis - Mahmoud Khademi McMaster - Computing and Software

Trait ID Trait name Domain
A0 Radius Real value
A1 Texture (standard deviation of gray-scale values) Real value
A2 Perimeter Real value
A3 Area Real value
A4 Smoothness (local variation in radius lengths) Real value
A5 Compactness (Perimeter2/Area− 1.0) Real value
A6 Concavity (severity of concave portions of contour) Real value
A7 Concave points (number of concave portions of contour) Real value
A8 Symmetry Real value
A9 Fractal dimension (”coastline approximation” - 1) Real value

Table 4.4: Attributes of the Wisconsin Diagnostic Breast Cancer (WDBC) dataset

structure and parameters of the model. For structure learning, we applied a strcture

learning software developed by Cassio P. de Campos, Zhi Zeng, and Qiang Ji [8], which

can be downloaded from http://www.ecse.rpi.edu/~cvrl/structlearning.html.

They used a branch and bound algorithm that uses structural constraints with the

data.

As we discussed in Chapter 2, an efficient algorithm for parameter learning that

can tackle the missing data problem is the EM algorithm [11]. We used the EM algo-

rithm implemented in the Bayes Net Toolbox for Matlab written by Kevin Murphy

(https://code.google.com/p/bnt/) to extract the parameters of the proposed BN

from the breast cancer datasets.

There are 24, 496 genes in Netherlands Breast Cancer dataset and 18, 538 copy

number variation profiles plus 49, 576 expression profiles in METARBRIC dataset.

Since the dimensionality of the genomic features for each instance in these two

datasets is high compared to the number of samples of the dataset, structure and

parameter learning would lead to poor results, in terms of accuracy of the prognosis,
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due to the curse of dimensionality dilemma and small sample size problem. There-

fore, we first apply the dimensionality reduction algorithm described in Chapter 3, to

reduce the number of genomic features in these two datasets.

More specifically, for the Netherlands Breast Cancer Dataset, we first apply Princi-

pal Component Analysis (PCA) to the data to reduce the dimensionality from 24, 496

to 130, by keeping 0.99 percent of the energy of the eigenvalues (sum of the absolute

of the eigenvalues). Then, we used Isomap described in Chapter 3, to reduce the di-

mensionality from 130 to d which must be determined from the data by doing several

experiments. We used d = 30. In this way, we have 59 features for each sample: 30

continuous genomic features plus 19 clinical traits.

For the METABRIC dataset, we first computed the correlation between class label

(e.g. tumor grade or tumor stage) and 18, 538 copy number variation features plus

49, 576 expression features and kept the features which for them | ρ |> 0.3, where ρ

is the correlation coefficient. Then, we applied dimensionality reduction algorithm to

the remained features. The best performance was obtained by Isomap algorithm. In

this way, we got 54 features: 30 continuous genomic features plus 24 clinical traits.

For the other datasets, we did not used dimensionality reduction algorithms since the

number of the traits is not high.

To create a BN, we represent each feature by a node. Then we apply the structure

learning algorithm [8] to extract the structure of the BN. We suppose that each

genomic node has no income link, while each clinical node may have income links

from some genomic nodes. This is due to the fact that each clinical trait is related to

some specific genes. We may easily set these constraints for the structure identification

algorithm (see Figure 4.1).
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Figure 4.1: Structure Learning for the METABRIC Dataset. Nodes 1 to 24 are
clinical variables, while nodes 25 to 24 + d are genomic variables. The number d
is the dimensionality of the manifold. Node 1 denotes the tumor grade. The white
nodes are discrete, while the gray nodes are continous.

Having the structure of the BN, we represent each genomic feature by a Gaussian

node. Thus, we suppose that the microarray data has a Gaussian distributaion. For

a clinical trait, we use a table CPD or a Gaussian node depends on the type of the

trait and its parents (if there is any parents). Then, we apply the parameter learning

algorithm described in Chapter 2 to extract the parameters of the BN.
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4.3 Methodology

We use a techniques called cross validation to estimate the accuracy of our predictive

BN. In an n-fold cross validation method, the samples of the data set are divided into

n parts. Then, the samples of n− 1 parts are used for training purpose and samples

of the remaining part are used for testing. By repeating this process for each fold as

the test fold, we obtain n values as the accuracy, and the average of them is used to

estimate the accuracy of the predictive BN.

More specifically, we select first an interesting discrete clinical feature for which we

anticipate its value. For examples, regional recurrence at any time during follow-up

(0=no, 1=yes) may be used for this purpose. Then, we create a BN using samples

of n − 1 folds and the learning algorithm described in Chapters 2 and 3. This gives

us two matrices Mpca and Miso for dimensionality reduction using PCA and Isomap,

plus structure and parameters of the BN.

For each sample of the remaining part, we first reduce its dimensionality using

Mpca and Miso, then we remove the value of the query trait, which is regional recur-

rence at any time during follow-up in this case, and compute its probability of being

0 or 1 using the BN that we created.

The maximum value is used for anticipating the label (0=no, 1=yes). For in-

stance, if the probability of recurrence at any time during a follow-up is 0.3 (and the

probability of no recurrence at any time during follow-up is 0.7), we can anticipate

that no recurrence will occur for this sample at any time during follow-up. In the

meantime, we can see whether the anticipated label is correct or not. In this way, we

can compute the ratio of correctly classified samples for the test part.

We also implemented two baselines to compare the BN method with some typical
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classification methods. We used Support Vector Machines (SVMs) [14] and k-nearest

neighbor (k-NN) [15] classifiers with cross validation technique to evaluate the BN

method. The SVMs method applies an optimization technique to find a hyperplane

with maximum margin from samples of two given linearly separable classes. After

the model is created, new examples are mapped into the same space and anticipated

to belong to a class based on which side of the hyperplane they fall on. There are

nonlinear and multi-class extensions for this method (see Figure 4.2).

The k-NN classifier find k nearest samples in the training set by computing the

Euclidean distance between a test sample and all training samples. Then, it assigns

the class-label to the test sample based on the majority of these k training samples

(see Figure 4.3).

We compare these methods with the proposed method by choosing various clin-

ical traits as the query trait. For each query trait, we compare the accuracy of all

methods. Also, we may change the number of genomic features (by changing the

target dimensionality in dimensionality reduction algorithm) or other parameters of

the network to obtain better performance.
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Figure 4.2: An SVMs classifier with two classes: the circled samples, which called
support vectors, are the training samples that are effective for computing the hyper-
plane with maximum margin from samples of two classes. A new example can be
classified based on which side of the hyperplane it fall on.
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Figure 4.3: A 10-nearest neighbor (10-NN) classifier with two classes: a new sample
(black cross) and its 10 nearest neighbors are represented inside a circle. The new
sample is classified to the blue class since 8 samples of 10 nearest training samples
belong to the blue class.
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4.4 Results and Discussion

Table 4.5 represents the accuracy of the classification for different datasets. For NKI

and METABRIC datasets, we implemented two baseline methods (SVMs and k-NN)

to compare the proposed method (BN method) with them. For the other datasets,

we compared the accuracy of the BN method with some best published results. For

Ljubljana dataset, we compared the BN method with a method which uses weighted

networks for representing the classification knowledge [17]. For WOBC dataset, we

compared the BN method with a method which uses a multisurface technique for

pattern seperation [19], and for WDBC dataset, we compared the proposed method

with a method which applies a linear programming technique [12].

Dataset Query trait BN method Baseline method
Recurrence 95% 93% (SVMs), 91% (k-NN)

NKI Metastasis 96% 94% (SVMs), 94% (k-NN)
Death 91% 88% (SVMs), 87% (k-NN)

METABRIC Tumor grade 83% 78% (SVMs), 78% (k-NN)
Tumor stage 68% 62% (SVMs), 61% (k-NN)

Ljubljana Recurrence 74% 74% (Weighted networks [17])
WOBC Benign or not 97% 96% (Multisurface [19])
WDBC Benign or not 96% 97% (Linear programming [12])

Table 4.5: Experimental results

As we can see from these results, the BN (with manifold learning for microarray

data) method is promising especially for NKI and METABRIC datasets. This is due

to the following advantages:

1. Modeling using BN is a powerful method for making decisions under uncertainty

from data with noisy evidence.

2. The BN method can efficiently combine discrete and continous features.
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3. The BN method can tackle the missing data problem by applying Expectation

Maximization (EM) algorithm.

4. For the NKI and METABRIC datasets, using manifold learning techniques and

by finding the optimum structure of the BN, we efficiently aggregated clinical

and genomic (microarray) data.
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Chapter 5

Conclusion and Future Research

Directions

In this chapter, we briefly discuss conclusion and some future research directions.

By applying structure and parameter learning algorithms, we trained a probabilistic

graphical model for prognosis and diagnosis of breast cancer using real-world data.

We applied manifold learning to reduce the dimensionality of the genomic features.

Our experiments using different datasets shows promising results for classification of

the tumors and predicting certain events, like recurrence and metastasis. The results

obtained from our methodology can help medical doctors make better decisions about

the best treatment for a patient. We may enter the results of the various tests to the

model and predict the probability of events such as recurrence and metastasis.

Some future research directions are as follows:

1. Treatment selection: how promising is a certain treatment? For example, what

is the survival interval, how likely metastasis is, and how likely recurrence is
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for a new patient, if certain treatment (e.g. surgical removal, radiation therapy,

hormone therapy, or chemotherapy) is applied.

2. Extracting new features directly from the MRI, CT and bone scans using man-

ifold learning. This automatic feature extraction may improve the accuracy of

the model, since these features can represent some information about the tumor

that may not have been described by the clinical features, which are extracted

by human. By this technique, manifold learning treats each pixel as a feature,

and then it reduces the number of the features. Doctors cannot use these fea-

tures for making decision since they are just numbers and do not represent

semantic information for the doctors, but we may use them in the model.

3. Using dynamic probabilistic graphical model [11] for genomic features.
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Appendix A

MATLAB Code

%_______________LOADING THE DATA__________________

c lear a l l ; c lose a l l ; c lc ; format long;

M = 1981; % number of samples in METABRIC dataset

Data1 = load(’Data1’); % microarray data

Data2 = load(’Data2’); % clinical data

dnodes = [1 5 6 7 8 9 10 11 12 13 14 ...

15 18 19 20 21 23 24]; % discrete nodes

%_______________MANIFOLD LEARNING__________________

%center data by subtracting the mean of the samples:

Data1 = Data1 - repmat(mean(Data1), M, 1);

options.Metric = ’Euclidean ’;

options.PCARatio = 0.99;

options.ReducedDim = 30;

% Isometric feature map (Isomap):
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[eigvector , eigvalue] = IsoP(options , Data5);

% projection (reducing the dimensionality):

fea = [];

for i = 1 : M

fea = [fea; Data1(i, :) * eigvector ];

end

% scaling the features to [-1 1]:

ck = 1;

for k = 1 : s i ze (fea , 2)

max0(k) = max(fea(:, k));

min0(k) = min(fea(:, k));

i f (min0(k) < max0(k))

cmx(:, ck) = 2 * (fea(:, k) - min0(k)) /...

(max0(k) - min0(k)) - 1;

ck = ck + 1;

end

end

fea = cmx;

c lear cmx;

d = s i ze (fea , 2);

% d is the dimensionlity of the manifold (number of

% features after applying dimensionality reduction)

Data = [Data2 Data1]; %aggregate clinical and microarray

n = 24 + d; % 24 is the number of clinical features , so
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% n is total number of features (number of nodes in BN)

%__________________STRUCTURE LEARNING_________________

dag = zeros(n, n); % the adjacency matrix of the BN

%calling the structure learning software via DOS:

[a, b] = dos(’sl.win64 sl.txt out.txt’);

% the output (adjacency matrix) will be in out.txt

fileID = fopen(’out.txt’);

dag = read_matrix(fileID );

%if there is an edge from node i to the node j, then

%dag(i, j) = 1, otherwise dag(i, j) = 0.

% dag(1:24, 1:24) = [

% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
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% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0;

% 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0;

% 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0]’;

%____________________CREATING THE BN_________________

ns = ones(1, n);

% ns includes the number of states for each node

% ns(i) = 1 if i is a continous(Gaussian) node

ns(1) = 3; % node 1 is the tumor grade

ns(5) = 12; ns(6) = 2; ns(7) = 2; ns(8) = 2;

ns(9) = 4; ns(10) = 3; ns(11) = 2; ns(12) = 8;

ns(13) = 2; ns(14) = 4; ns(15) = 5; ns(18) = 3;

ns(19) = 2; ns(20) = 4; ns(21) = 6; ns(23) = 5;

ns(24) = 4;

onodes = ones(1, n); % all nodes are observation nodes

% make Bayesian network:

bnet = mk_bnet(dag , ns , ’discrete ’, dnodes , ’observed ’ ...

55



M.Sc. Thesis - Mahmoud Khademi McMaster - Computing and Software

, onodes );

% Conditional Probability Distributaion (CPDs):

%nodes 2, 3, 4, 16, 17, and 22 are continous (Gaussian

%CPD). Other clinical nodes are discrete (table CPD)

for j = 1 : 24

i f (j==2 || j==3 || j==4 || j==16 || j==17 || j==22)

bnet.CPD{j} = gaussian_CPD(bnet , j);

e l se

bnet.CPD{j} = tabular_CPD(bnet , j);

end

end

for i = 24 + 1 : n % all genomic nodes are continous

bnet.CPD{i} = gaussian_CPD(bnet , i);

end

%____EVALUATION OF THE BN (CLAASSIFICATION ACCURACY)___

max_iter = 20; sum0 = 0;

engine = jtree_inf_engine(bnet);

fold = 20; % number of folds for cross -validation

av = 0; % number of correctly classified samples

for test = 1 : fold

st = (test - 1) * f l oor (M / fold) + 1;

i f (test == fold)

en = M;

e l se

56



M.Sc. Thesis - Mahmoud Khademi McMaster - Computing and Software

en = st + f l oor (M / fold) - 1;

end

D = [Data (1: st - 1, :); Data(en + 1 :M, :)];

% parameter learning and the Expectation

% Maximization (EM) algorithm

[bnet0 , ll] = learn_params_em(engine , D’, max_iter );

engine0 = jtree_inf_engine(bnet0 );

for i = st : en

i f ( s i ze (Data{i, 1}, 2) > 0)

for j = 2 : n

evidence{j} = Data{i, j};

end

% computing the probabilities for the new sample

[engine1 , loglik] = enter_evidence ...

(engine0 , evidence );

mar = marginal_nodes(engine1 , 1);

% predicting the class

[max1 , index ]= max([mar.T(1) mar.T(2) mar.T(3)]);

% checking if the class label is correct or not

i f (Data(i, 1) == index)

av = av + 1;

end

clear evidence;

sum0 = sum0 + 1;

57



M.Sc. Thesis - Mahmoud Khademi McMaster - Computing and Software

end

end

end

accuracy = av / sum0
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