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Abstract

This thesis is concerned with two separate subjects; (i) Defect localization using tree

mining and tree matching, and (ii) Quality-of-service-aware service selection; it is

divided into these parts accordingly. The underlying question addressed in the defect

localization part is how can we use the dynamic call graphs representing different

executions of a software system to identify root cause of a failure? This problem is

broken up into two steps: (a) identifying a method as a starting location to search

for the root cause, and (b) searching relevant parts of the call graph of the failing

execution to find the failure’s root. We focus on step (a) in this thesis. In the service

selection part, we investigate how we can employ the inherent variability of service

qualities to deliver better quality of service with less cost.

Defect localization using tree mining and tree matching. In the first part

of this thesis we present a novel technique for defect localization which is able to

localize call-graph-affecting defects (i.e., defects that make an execution diverge from

the expected path, thus creating unexpected dynamic call graphs), using tree min-

ing and tree matching techniques. In this approach, we assume a set of successful

executions, and a failing execution, where some requested task is not carried out as

expected. We first mine frequent patterns (i.e., subtrees) from the set of trees repre-

senting call graphs of successful executions. Then, we associate the extracted patterns

v



with different functionalities of the system. Next, we use a select set of patterns as a

reference to compare to the call tree representation of the failing execution. Finally,

we present a report, indicating method calls that are suspicious of being related to

the failure. The proposed defect localization technique is implemented as a proto-

type and evaluated using four subject programs of various sizes, developed in Java or

C. Our experiments show comparable results to similar defect localization tools, but

unlike most of its counterparts, it does not require the availability of multiple failing

executions to localize the defects. We believe that this is a major advantage, since it

is often the case that we have only a single failing execution to work with. Potential

risks of the proposed technique are also investigated.

Quality-of-service-aware service selection. In the second part of this thesis

we present an alternative strategy for service selection in service oriented architecture,

which is able to provide services with better quality for less cost. This approach

takes advantage of the inherent variability of non-functional properties of services

and mathematically shows that choosing a number of functionally-equivalent services

to perform a task can provide higher quality of service, as compared with choosing

a single service. Incorporating this characteristic, the proposed Request Replication

technique suggests replicating a client’s request over a number of cheap, low quality

services to gain the required quality of service. The applicability of this approach is

illustrated using a number of examples. Following this approach, we also present a

number of suggestions about how service providers should advertise non-functional

properties of their services.
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Chapter 1

Thesis Summary

This thesis is divided into two parts. The first part concerns defect localization using

tree mining and tree matching, and the second part quality-of-service-aware service

selection. In the first part we address this research question: how can we incorpo-

rate run time information about various executions of a software system (specifically

dynamic call graphs) to identify the root cause of a failure? In the second part we in-

vestigate the following: how can we employ the inherent variability of service qualities

to deliver better quality of service with less cost?

1.1 Part One: Defect Localization using Tree Min-

ing and Tree Matching

In the first part of this thesis (Chapters 2 to 7) we address the problem of software

defect localization. Defect localization is one of the major challenges that software

1
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providers face. Software systems frequently demonstrate unexpected behavior or pro-

vide incorrect results during their executions, even after they are released. Defect

localization refers to part of the debugging process which is responsible for finding

code segments causing such unexpected behaviors or results. This task in general

requires vast understanding of the software system’s usage domain, its code, and

specifically the link between source code constructs and the system’s run time behav-

ior. Understanding and recalling the code-behavior relation in today’s huge systems

with their distributed and concurrent algorithms is a complex, near impossible, task,

unless it is supported by effective diagnostic tools. Defect localization helps software

engineers downsize the problem by identifying a small potentially defective part of

the code to avoid unnecessary code review when searching for the cause of a failure.

In the first part of this thesis, we present a novel technique and tool for defect

localization. This technique spots methods that are possibly relevant to a failure by

noting the differences between dynamic call graph of the failing execution and a select

set of correct executions. Following this approach, one will be able to find and rank a

set of subgraphs of the failing call graph that are likely to include the defective code.

The technique also identifies suspicious methods on each candidate subgraph. Such

methods can be good starting points to search for the defective code. This approach

is intended for defects that cause structural changes to the dynamic call graph of an

execution (i.e., call-graph-affecting defects). In other words, the dynamic call graph

observed in the presence of a call-graph-affecting defect for a certain failing scenario

differs from the correct (i.e., expected) call graph.

The proposed defect localization tool first applies feature location to identify the

link between different functionalities of the system (also called features) and the code
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implementing those functionalities. In this step, dynamic call trees (i.e., tree repre-

sentations of call graphs) are mined to discover subtrees that are frequently executed.

The discovered patterns are then linked to system functionalities using feature lo-

cation techniques. Assuming that the failing functionality is known, our technique

then compares patterns that are assumed to represent correct executions of the fail-

ing functionality against relevant subtrees from the call tree of the failing execution.

A missing or extra method may point to a problem (e.g., a run-time exception, an

incorrect branch condition, an improper change during previous debugging, a change

from a previous version of the code, etc). Such a method can be used as a starting

point for further root cause analysis.

The work presented in the first part of this thesis provides a foundation for further

research in defect localization and feature location. A prototype of the proposed

technique has been implemented and evaluated using four subject systems. The

strengths and weaknesses of the tool are analyzed and a discussion of benefits, risks

and possible future research tracks is provided. We claim that the proposed technique

is more powerful compared with similar defect localization tools in the literature, in

the sense that we require less information for our analysis. It also is more effective in

dealing with systems having multiple functionalities, because we incorporate feature-

location to downsize the search space. Finally, it is more informative as it indicates

not only the method where the problem manifests but also the methods triggering

the problematic method by identifying and ranking subtrees in the call tree of the

failing execution that potentially include the problematic method.

3
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1.2 Part Two: Quality-of-Service-aware Service Se-

lection

The second part of this thesis (Chapter 8) presents our approach to the problem

of QoS-aware service selection in service oriented architecture (SOA). Service selec-

tion, in general, refers to the process of finding services that match a client’s func-

tional requirements. QoS-aware service selection also takes into consideration the

non-functional requirements when searching for proper services. The non-functional

properties of a service are usually published along with the service interface in the

form of QoS advertisements. Current QoS advertisements typically provide a single

value to represent the distribution of a non-functional property such as response time.

However, the SOA literature implies that non-functional properties such as response

time have inherently high variance in their values (Gorbenko et al., 2009; Zhu et al.,

2006), and thus representing non-functional properties with a single value does not

reveal much about their actual distribution. This makes it hard for service clients to

choose any selection strategy other than the conventional QoS-aware service selection

which is geared for clients choosing “a single service” to serve their needs.

In the second part of this thesis, we propose a new strategy for QoS-aware service

selection which takes advantage of the existing variability in QoS data to provide

higher quality services with less cost compared with conventional QoS-aware service

selection methods. In this method, we replicate each request over multiple indepen-

dent services to achieve the required QoS. We also present a number of recommen-

dations regarding the QoS advertisements in SOA so as to reveal more information
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about underlying distributions and thus enabling more sophisticated selection strate-

gies. We will show using various examples how this approach works and enhances

conventional QoS-aware service selection.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides an introduction to

the first part of this thesis, the problem of defect localization. Chapter 3 presents basic

information that is required to understand the problem of defect localization as well

as the proposed solution. We define terms and concepts in dynamic analysis, defect

localization, feature location and data mining. Chapter 4 presents related literature in

the domain of defect localization. Chapter 5 presents our defect localization approach.

Chapter 6 provides an experimental evaluation of the proposed defect localization

tool. Chapter 7 concludes the defect localization part of this thesis. Chapter 8

presents our approach and results for quality-of-service-aware service selection. This

includes an introduction to the problem, background information, related work, the

proposed approach and conclusions and future work. In Appendix A we discuss

the risks associated with the proposed defect localization technique. Appendix B

explains an alternative approach for pattern analysis which uses association rules

mining. Appendix C discusses how one can potentially extend our approach to deal

with concurrency defects.
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Chapter 2

Introduction to Defect Localization

“Poor software quality and security remain major problems for many businesses as

they grapple with a steady flow of applications, upgrades, and fixes...Even experienced

programmers inject about one defect into every 10 lines of code, according to the Soft-

ware Engineering Institute. If 99% of those are caught, that’s still 1000 bugs in a

one million-line application” (Hulme, 2002). Software programs are built by humans

and humans make mistakes. Despite available best-practices for software develop-

ment such as the Rational Unified Process (RUP), specification-driven development

and formal verification methods to prove the correctness of intended algorithms un-

derlying a system, software systems remain to exhibit buggy behavior after they are

released. In fact as Garrison Hoffman, a software engineer for technology consult-

ing firm Intrasphere Technologies Inc. in New York, noted “There’s always going

to be a bug you haven’t found” (Hulme, 2002). Too often these bugs are found by

customers (Hulme, 2002).

Software verification intends to find if software fully satisfies all the expected re-

quirements (Cheng, 2010). Static verification techniques examine software code to
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discover problems primarily by checking if software meets specified requirements. In

this context, techniques such as formal verification aim to check whether the algo-

rithms underlying the system satisfy certain properties specified in a formal language.

This is done using formal mathematical techniques. Static verification techniques can

be of great help in examining software code, specifically code paths that are rarely

executed in practice. However, static verification techniques cannot identify if a func-

tion actually does what it is supposed to do with regard to the requirements (i.e.,

functional correctness) (Rielly, 2011). Dynamic verification or testing is used to verify

functional correctness. The idea behind dynamic testing is “to create test cases that

associate specific input values with output values (expected values) and execute the

tests to ensure the program is accomplishing its goals” (Rielly, 2011).

Software testing reveals the existence of defects in the code but provides no clue

as to why a failure happens (i.e., the location of defects). The task of finding and

fixing software bugs is usually done through in-depth code review along with testing

and classical debugging (Eichinger et al., 2008). This, in one hand requires extensive

knowledge about the software domain of use, the underlying algorithms, and tech-

nologies and programming languages used to implement the algorithms. In the other

hand, manual search is time-consuming and expensive. Program understanding tools

help in building the required knowledge. Debugging tools provide a basis for faster

and easier code investigation. Above all, defect localization tools lead the program-

mers to the location of defects with minimal pre-existing knowledge, thereby reduce

the need to acquire knowledge about the system and speed up the search process.

In this work we are examining the problem of defect localization. One way to
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localize defects in software is to analyze dynamic call graphs with graph-mining tech-

niques (Di Fatta et al., 2006; Liu et al., 2005; Cheng et al., 2009; Eichinger et al.,

2008, 2010a,b, 2011). Graph mining is a general technique for the analysis of graph

structures (Aggarwal and Wang, 2010; Cook and Holder, 2006). In this work we

intend to show how we can leverage graph mining and matching techniques to learn

more about a failure and its origin.

2.1 Research Objective

Our aim in this work is to provide a tool to assist in the process of defect localization.

Defect localization in general refers to identifying defective statements in the code.

There are numerous static and dynamic techniques that help spot defective code. For

example, approaches such as evaluating software complexity measures (Ujhazi et al.,

2010) and mining revision histories (Livshits and Zimmermann, 2005) can help reveal

error-prone components of a system. Also, looking for suspicious code patterns (Palix

et al., 2010) or invariants (Abreu et al., 2008) helps spotting programming defects.

In practice, programmers usually rely on testing to find software deficiencies. They

run test cases on a system and resolve issues found during the execution. In this sce-

nario, they are searching for the cause of certain failure cases instead of looking for

all suspicious code in general. This approach is more to-the-point and consequently

requires less effort to make the program work. In other words, instead of exhaus-

tively searching for code deficiencies, the programmers typically seek reasons behind

a certain failure. Following this practice, in this work we assume the availability of a

certain failure case to be analyzed. We then search for methods in the source code of

the target system which contribute to the failure.
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To achieve this goal, we assume the availability of numerous successful cases (i.e.,

tests where the requested functionalities are carried out successfully), which we use

to build knowledge about the target system’s functionalities via execution pattern

mining. This is a practical assumption. A system in the testing phase often performs

it’s functionality partially. Therefore, we can think of more successful scenarios than

failure cases. Note that, a failure is not only a situation where programming errors

happen but also any case where wrong results are produced or unexpected reactions

to a scenario are observed, as in the case of functional testing.

As we will see in Chapter 4, a large body of research in defect localization assumes

the existence of multiple failing executions. There are some that, similar to this work,

deal with a single failure case (Dallmeier et al., 2005; Renieris and Reiss, 2003). How-

ever, they incorporate other techniques to find the root of a failure. Most of the

defect localization techniques are not designed with the complexities of today’s big

systems in mind. Therefore, such approaches are not suitable for large applications.

For example, approaches such as program slicing (Agrawal, 1992) and delta debug-

ging (Zeller, 1999) do not scale well. Call graph-based techniques such as (Eichinger,

2011) are more effective when dealing with big applications. However, as we will see

in Chapter 4, they: 1) usually are based on stronger underlying assumptions (i.e.,

assume multiple failing and multiple passing executions); 2) do not specifically plan

for large multi-feature systems.

Based on the above discussion, we identified the major goal of this study to be

devising a novel technique and a tool for defect localization, which:

• Finds a starting point for debugging and root cause analysis;

• Handles systems with multiple functionalities;
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• Deals with defects that cause a structural change in the call graph;

• Is constrained to work with just a single failing test case;

• Assumes multiple successful test cases.

2.2 Approach in a Nutshell

The basic idea behind our defect localization technique is to combine the power of

“feature location”, “frequent-pattern mining” and “pattern matching” to localize de-

fects. We use feature location to highlight, in the dynamic call tree of an execution,

which parts are related to which features. In this approach, we use frequent-pattern

mining to mine patterns among dynamic call trees of successful executions. Then we

analyze those patterns to discover which patterns are related to which features. A

feature-specific pattern identifies method calls that are frequently observed in suc-

cessful executions of a feature. It represents a fault-free execution of the feature.

When the execution of a feature fails, we use the feature-specific patterns associated

with that feature as a base to investigate the call tree of the failing execution. In

this method, we apply approximate pattern matching to identify deviations from the

base. Then, we present a ranked list of suspicious method calls, which provides a

starting point to search for the root cause of a failure.

2.3 Thesis Contributions

The major contribution of this thesis is devising a novel technique and tool for defect

localization, which is able to identify structure-affecting defects (defined in Chapter 3)
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in systems with multiple functionalities, having only a single failing execution. These

assumptions call for a more powerful technique than related approaches which assume

the availability of multiple failing executions or deal with smaller applications. As

part of our study, we also provide the following contributions:

• We discuss the challenges of distributed execution tracing in service-based sys-

tems and present an approach for aggregating execution traces.

• We devise an algorithm for mining frequent bottom-up sub trees which enhances

its existing counterparts.

• We enhance the conventional notion of feature location by identifying not only

the methods associated with a certain software functionality (i.e., feature), but

also the sub-call-trees that have exclusively been executed as part of the execu-

tion of the feature. This improves one’s understanding of how (in addition to

where) a feature is implemented. In this area, we suggest new method-feature

relevance formulations and a mechanism to quantify the relevance of call trees

to features, based on the methods they include.

• We enhance the state of defect localization by incorporating feature location.

We use feature location to highlight parts of a failing execution that are related

to the failing feature, thus reducing the effort needed to look for defect roots,

in systems with multiple functionalities.

• By the incorporation of pattern matching and feature location techniques, we

devise a defect localization technique that is more powerful than similar call-

graph-based approaches, because we eliminate the need for multiple failing cases

when analyzing a failure.
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• Our technique provides a more informative defect localization report. The re-

port includes a list of suspicious method calls accompanied by their associated

subtrees as well as expected alternatives. This provides insights as to where

and what the defects may be, which is beneficial for root cause analysis and

also when fixing defects.

• We present an experimental study of our tool in Chapter 6. We use our tool

to localize pre-known defects of a number of subject systems with different

characteristics. The experimental results are published in this thesis and can

be used by other researchers in this domain.

• We provide a risk analysis of the proposed technique in Chapter 5 and Appendix

A, which can be used to learn about the current work as well as to identify future

directions of research.
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Chapter 3

Defect Localization Background

Our goal in this chapter is to explain the basic concepts that are required for under-

standing the remainder of this thesis. The proposed approach in this thesis relates to

the areas of “dynamic analysis”, “defect localization”, “feature location” and “data

mining”. The following sections introduce these areas.

3.1 Dynamic Analysis and Execution Tracing

Dynamic analysis is one of the most popular techniques incorporated into defect

localization and feature location tools. Specifically, the proposed defect localization

technique in this thesis is based on dynamic analysis and execution tracing. Therefore,

in this section we examine the basics of these techniques in more details.

Most maintenance and debugging activities (e.g., adding a new functionality to a

system, migrating to a new environment, troubleshooting, etc) require deep under-

standing of the source code and algorithms implementing a software system. Pro-

gram comprehension, or understanding a software’s source code, is one of the major
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challenges in software engineering, especially when adequate documentation is not

available. The complexity of this task has inspired extensive research in this area

which consequently has led to the development of numerous supporting techniques

such as execution trace analysis, architecture reconstruction, and feature location.

These techniques take advantage of static and dynamic analyses to examine a target

system. Static analysis is the study of source code of a system without executing it

while dynamic analysis refers to the study of software execution. The advantage of

static analysis is its completeness as it deals with the source code which represents

the full description of the system. One drawback of static analysis is that it does

not capture dynamic aspects of the system. For example, how variable assignments

change the run time behavior of the system. In contrast, dynamic analysis is able to

deal with run time aspects of the system, however it is not complete.

Figure 3.1, adapted from (Cornelissen, 2009), illustrates the principal elements

of dynamic analysis. The process typically involves running a set of task scenarios

(or scenarios for short) on a software system (called the target system) which is

instrumented to print out information about executions. The following introduces

these concepts in more details.

In dynamic analysis we study the execution of a target system. This typically

starts by running a set of task scenarios on the target system. A task scenario is

a sequence of user-system interactions to perform a certain task. For example, in a

banking system to withdraw money from one’s account:

1. the client initiates a log-in request, providing their credentials;

2. the banking system authenticates the client;

3. the client requests a withdrawal for a certain amount from their account;
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Figure 3.1: Overview of principal elements in dynamic analysis (Cornelissen, 2009)

4. the banking system checks the balance of the client’s account and provides the

requested cash if approved.

As you see, in this scenario there are steps to be accomplished by the client and

the banking system in order to fulfill a certain task.

To study the execution of a target system one typically incorporates execution

tracing. An execution trace (or trace for short) is a record of dynamic characteristics

of a system in an execution, including values of variables, messages communicated

between different components of the system, the code executed by the system, timing

statistics, and other information necessary to debug and tune the system (Cole, 2009).

The process of recording execution traces is referred to as execution tracing, or tracing

for short. Different mechanisms such as interpretation (e.g., using the Virtual Machine

in Java) or instrumentation (e.g., using AspectJ (Kiczales et al., 2001)) have been

proposed for capturing execution traces.
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Software instrumentation usually refers to inserting print-out commands at cer-

tain points (e.g., every method entry, every method exit, etc.) in the binary or source

code of a program to record certain information (e.g., line of code executed, name of

method called, time of an event, etc.) about the system being executed. Instrumen-

tation tools also provide the ability to filter out certain packages, classes, or methods

in the resulting traces. There are many ways to instrument source code or binary of

a software system. One can incorporate instrumentation tools such as Aprobe (Cole,

2009) or TPTP (Mehregani, 2006) or provide custom code to instrument a target sys-

tem (e.g., AspectJ). Compilers such as GNU GCC (Stallman and the GCC Developer

Community, 2003) also provide tracing capabilities.

Experienced developers insert instrumentation code in their application while the

application is being developed. However, new issues always arise after the develop-

ment process is completed, which require different execution information in order to

be resolved. Therefore, there is always a need for updating the instrumentation code

to match the current requirements. This led developers to use probing mechanisms.

A probe is an instrumentation code which is not part of the application’s source code.

It is kept along with the source code in specific libraries and is inserted into the source

code upon need. Probing frameworks such as TPTP Probekit (Mehregani, 2006) and

Aprobe (Cole, 2009) let developers create probes and add them to the program’s

code statically, similar to the conventional software instrumentation, or dynamically

by inserting calls to probes into the application’s binary code at run time.

In our experiments in this thesis we used TPTP Probekit (Mehregani, 2006) to

instrument Java-based systems and GNU GCC compiler’s probing capabilities to

instrument C code. Details of this are provided in Section 6.4.
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3.2 Defect Localization

As part of the software development process, software engineers need to ensure that

a program’s implementation meets the requirements that has guided its design and

development. Finding and fixing defects in the source code of a program are among

the responsibilities of software testing and debugging. Defect localization is a part of

the debugging process that locates defects in the source code of a software. This is

required before any attempts to fix the defects can be made. The following sections

discuss related concepts in software testing and defect localization.

3.2.1 Bugs, Defects, Infections and Failures in Software

In the literature of defect localization, different terminology is used to refer to fairly

similar concepts. For example, one may use any of the terms defect or fault to cite

an incorrect block of program code. Also, defect localization and fault localization

are used interchangeably to refer to the process of locating such incorrect code. In

addition, terms such as fault, bug and error are used in different contexts to bring up

rather disparate concepts. For example, a bug can refer to an incorrect program code

(“This line is buggy”), state (“This pointer, being null, is a bug”), or execution (“The

program crashes; this is a bug”). Zeller (Zeller, 2009) and others, suggest avoiding

the use of these terms and replacing them with more precise terminology. To avoid

any ambiguity in this thesis, we will use Zeller’s terminology, as follows:

• Defect is an incorrect section of program code.

• Infection is an incorrect program state which is usually triggered by defects.
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• Failure is an observable incorrect program behavior, which either causes the

program to crash or provides unexpected results.

A defect can cause an infection which can itself result in a failure. When one

observes a failure, one usually tracks the infection to find and fix the defect. A correct,

successful, or passing execution is an execution which leads to a correct program

behavior and an incorrect, unsuccessful, or failing execution is an execution which

results in an observable diversion from the expected behavior.

The following definitions are borrowed from Eichinger (Eichinger, 2011) and ex-

plain different types of failing behavior:

• Crashing and non-crashing defects: Crashing defects lead to an unexpected

termination of the program. Examples include null pointer exceptions and

division by zeros. Non-crashing defects, lead to wrong results. Crashing defects

typically present a stack trace. The stack trace may or may not provide useful

hints about where the infection has occurred. For non-crashing defects, there

are usually no hints about what went wrong during the execution (Liu et al.,

2005; Lo et al., 2009). The proposed defect localization technique in this thesis

is able to handle both crashing and non-crashing defects.

• Occasional and non-occasional failures: Occasional failures are those which

occur with some but not with all input data. Localizing defects associated with

occasional failures is particularly difficult for the following reasons: 1) they are

harder to reproduce, thus fewer failing executions can be attributed to them;

2) it is more probable that they still exist after early testing of the software,

where non-occasional failures are usually detected. In this work we are focusing
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on occasional failures that happen so rare that not many failing cases can be

attributed to them. However, there are no obstacles in using our approach to

localize non-occasional failures in the same way as for occasional failures.

• Call-graph-affecting defects (including structure- and call-frequency-

affecting defects): Assume that exercising a specific scenario on a defect-free

program results in the execution of dynamic call graph g. Then, assume that

we embed a defect into the program, run the same scenario, but get a different

dynamic call graph g′. Such a defect is called a call-graph-affecting defect. In

this case, call graph g is called the expected, original or correct call graph and g′

the defective call graph. There are two types of call-graph-affecting defects. A

structure-affecting defect is one which result in some missing or additional parts

in the call graph of the failing execution as compared with the expected call

graph. A call-frequency-affecting defect (frequency-affecting defect for short) is

one which affects the number of invocations of a method. Figure 3.2, borrowed

from Eichinger (Eichinger, 2011), illustrates both kinds of defects. In this figure,

(a) illustrates a dynamic call graph which represents a correct execution of the

program given in Listing 3.1, also borrowed from Eichinger (Eichinger, 2011).

Assuming (a) as the original graph, graph (b) represents the execution of the

same program in the presence of a structure-affecting defect such as a defective

if-condition in the main method. Compared with (a), in (b) the call of method

A from method main is missing. Graph (c) represents the execution of the same

program in the presence of a frequency-affecting defect such as a defective loop

condition or a defective if-condition inside the loop in method B. This leads to

the increased number of calls of method A in (c) as compared with (a).
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Figure 3.2: (a) Original call graph (b) call graph with a structure-affecting defect (c)
call graph with a frequency-affecting defect (Eichinger, 2011)

Listing 3.1: Sample Java program
1 public class Example {
2 public static void main ( St r ing [ ] a rgs ) {
3 int x = 0 ;
4 i f ( x > 0)
5 A( ) ;
6 B( ) ;
7 }
8 public void A() {
9 System . out . p r i n t l i n ( ” i n s i d e method a” ) ;
10 }
11 public void B( ) {
12 for ( int i = 0 ; i < 3 ; i++)
13 A( ) ;
14 }
15 }
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• Call-graph and dataflow-affecting defects: In contrast to call-graph-affecting

defects, dataflow-affecting defects manifest themselves by changing the data ex-

changed between program components. In this thesis, we focus on call-graph

affecting (specifically structure-affecting) defects. However, dataflow-affecting

defects may also affect the call graph as a side effect and thus be localizable

using our approach.

3.2.2 Software Testing

The aim of testing is to ensure that programs provide the intended functionality.

Part of this process is software verification, in which the expected behavior of a

target program is specified as a set of software tests (also called test cases), and

verified against the program. A test case consists of program inputs and expected

outputs (Beizer, 1990), which help determining whether the program under test is

working as expected. Program inputs include system configurations, program param-

eters and files and user input read by the program, and the expected output includes

everything that is produced by the program, such as files written and output dis-

played on screen (Eichinger, 2011). For example, a sample test case for a banking

system may check for the system’s reaction when the client’s balance is less than the

required withdrawal amount. A test case usually has a test scenario which, similar

to a task scenario used in dynamic analysis, identifies steps to be followed during

the test, expected visible interactions between parties, and expected reaction of the

system. A collection of test cases that are intended to be used to test a software

system in order to show that it has some specified set of behaviors is called a test

suite.
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There is a complex field of research related to designing software tests. It typi-

cally aims at covering many different non-overlapping executions of a program which

execute possibly large parts of the source code (Eichinger, 2011). This is called test

coverage analysis and studies the coverage of tests over code, requirements, features,

etc. In this work we are interested in code coverage analysis. Code coverage is a

measure describing the degree to which the source code of a program has been tested.

There are a large number of code coverage criteria, the main ones being (Cornett,

2010):

• Statement Coverage. This metric reports whether or not each executable state-

ment is reached during testing.

• Decision Coverage. This metric reports whether Boolean expressions in control

structures such as the if-statements and while-statements were evaluated to

both true and false in the test suite. In decision coverage, the entire Boolean

expression is considered one true-or-false predicate regardless of whether it

contains logical-and or logical-or operators. Moreover, this metric is used to

monitor the coverage of switch-case-statements, exception handlers, and all

points of entry and exit.

• Condition Coverage. This metric reports weather each condition in Boolean

expressions is evaluated to both true and false. A condition is an operand of

a logical operator which does not contain any logical operators.

• Path Coverage. This metric reports whether each of the possible paths in each

function in the code have been executed in tests. A path is a unique sequence

of statements and branches in a function from its entry to its exit.
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To identify the expected output and compare it with the actual output of the

program under test, one usually relies on test oracles (Howden, 1978). A test oracle

typically identifies the expected output for a given input. Some also refer to a program

which produces the correct output and compares it with the actual output as the test

oracle (Eichinger, 2011). Test oracles are used in the testing process to decide whether

a certain execution leads to any failures. A test that runs as expected and successfully

completes its execution is called a successful or passing test and one that encounters

problems during its execution is called unsuccessful or failing. For simplicity we refer

to passing/failing test cases as passing/failing cases in this thesis. Later in this thesis

we use terms passing traces and failing traces to refer to traces associated with passing

and failing test cases, respectively.

In this thesis we assume that both test cases and test oracles are available, as we

focus on the defect-localization step. This assumption is reasonable, since testing is

an inherent part of modern software development (Sommerville, 2010), and developers

invariably have a test suite for their applications. The quality of the test suites may

vary, but all we claim at this stage is simply the existence of a test suite.

3.2.3 Software Debugging and Defect Localization

The aim of software debugging is to find and fix the defects that cause failures.

Debugging has also been described as the process of relating a failure first to an

infection and then to a defect (Zeller, 2009). Software debugging includes everything

from dealing with test cases and observing program executions, to localizing defects

and ultimately fixing them (Eichinger, 2011). In this thesis, we develop a novel

technique for the defect localization part of debugging. That is, we aim at helping
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software developers in localizing defects once a failure has occurred.

Defect localization techniques are either static or dynamic (Binkley, 2007). Dy-

namic techniques rely on the analysis of program executions while static techniques

do not require any execution. An example for a static technique is source code anal-

ysis, where the software’s source code or graph representations of it are examined to

identify potential location of defects. Program components with suspicious values of

specific measures or defect-prone programming patterns are good hints for statically

localizing defects. However, static approaches typically lead to many false positive

warnings, and they have difficulties discovering run-time failures (Rutar et al., 2004).

Dynamic techniques usually trace some information during the execution of a

software program and incorporate those traces in the process of defect localization.

They analyze program executions and typically compare specific characteristics such

as method call counts in correct and failing executions (Eichinger, 2011). Dynamic

traces may include values of variables, messages exchanged between different parties,

code segments executed during the run, etc. Dynamic defect localization approaches

use different information derived from executions, as well as different methodologies

to perform defect localization. Also the smallest unit that can be reported as defective

is different. Chapter 4 provides a detailed discussion of dynamic defect localization

literature.

Although, the terms defect localization and root cause analysis are used inter-

changeably in the literature, in this work we use them in different contexts. By

defect localization we mean finding code relevant to the problem i.e., on the path to

the root cause of the failure. However, by root cause analysis we mean determining

the most basic source of a problem, i.e., the root cause. The latter usually involves
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considering the correlation between code components, to track the symptoms of a

failure back to the root cause.

3.3 Feature Location

There are different definitions provided for the term “feature” in the literature. In

software systems, a feature represents “a functionality that is defined by requirements

and accessible to developers and users” (Dit et al., 2011). In this work we use the

definition provided by Dudar (Dudar, 2012), that is “a product’s discrete unit of

unique and attractive functionality that delivers measurable benefit to customers” .

The latter definition implies that a feature must be a component of the work required

to achieve a product’s goals.

Wilde and Scully (Wilde and Scully, 1995) pioneered the field of feature loca-

tion by introducing their Software Reconnaissance tool in 1995. Feature location is

defined as finding a primary location in the source code that implements a specific

functionality of a software system (Biggerstaff et al., 1994; Rajlich and Wilde, 2002).

It involves identifying the relations between system functionalities and different parts

of the source code, and has proven to be a popular research interest to the present

day (Cornelissen, 2009).

As explained by Dit et al., (Dit et al., 2011), feature location is one of the most

important activities performed by software engineers for software maintenance, evo-

lution and debugging. This includes tasks such as adding new features to programs,

improving existing functionalities, and removing bugs from existing features. Dit et

al., also claim that no maintenance activity can be accomplished without first locating
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the code that is relevant to the task at hand, i.e., feature location. Software engi-

neers incorporate feature location to identify where in the code the first changes to

complete a task need to be made. Then starting from the code segments identified by

feature location, they incorporate impact analysis to find all blocks of code affected

by the change. The following example provided by Dit et al., shows how one can take

advantage of feature location for the purpose of debugging. “Alice is a new developer

on a software project, and her manager has given her the task of fixing a bug that has

been recently reported. Since Alice is new to this project, she is unfamiliar with the

large code base of the software system and does not know where to begin. Lacking

sufficient documentation on the system and the ability to ask the codes original au-

thors for help, the only option Alice sees is to manually search for the code relevant

to her task. However, a manual search of a large amount of source cods, even with

the help of tools such as textual-pattern-matchers or an integrated development envi-

ronment, can be frustrating and time-consuming. Recognizing this problem, software

engineering researchers have developed a number of feature location techniques to aid

programmers in Alice’s position”.

Different types of software analysis have been employed to identify blocks of code

associated with software features. The proposed techniques are all unique in terms

of their input requirements, how they locate a feature’s implementation, and how

they present their results. The following, borrowed from Dit et al., (Dit et al., 2011),

explains the most common types of analysis used for feature location: dynamic, static,

and textual.

Dynamic analysis refers to examining the execution of a software system. In
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dynamic analysis based feature location a feature is observed during run time. Typ-

ically, one or more feature-specific scenarios (i.e., those that exercise the desired

feature) are developed. Then, the scenarios are executed on the system which has

previously been instrumented, and execution traces are collected. These traces record

information about the code that has been executed. Once the traces are collected,

feature location can be performed in different ways. The traces can be compared

with other traces where the feature has not been invoked to find the pieces of code

that have only been observed in feature-specific traces (Eisenbarth et al., 2003; Wilde

and Scully, 1995). Alternatively, one can analyze the frequency of the observation of

different pieces of code in feature-specific traces and those that do not invoke the de-

sired feature to locate the feature’s implementation (Antoniol and Gueheneuc, 2006;

Eisenberg and De Volder, 2005; Safyallah and Sartipi, 2006).

Dynamic analysis is a popular approach for feature location. This is because most

features can be mapped to execution scenarios. However, dynamic analysis based

approaches have some limitations: 1) Tracing can impose considerable overhead on the

execution of a system. 2)The scenarios used to collect traces may not invoke all of the

code that is relevant to the feature, thus some parts of the feature’s implementation

may not be located. 3)It may be difficult to build a scenario that invokes only the

desired feature. This may cause irrelevant code to be executed (Dit et al., 2011).

Static analysis refers to examining structural information such as static call rela-

tions and control or data flow dependencies. In manual feature location, developers

may first identify a section of code as relevant to the desired feature, then follow

program dependencies in order to find additional related code. This idea is used in

some feature location approaches, such as (Chen and Rajlich, 2000). Other static
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techniques such as (Robillard, 2008) may analyze the topology of the structural in-

formation to point programmers to potentially relevant code. Static analysis often

overestimates what is pertinent to a feature and is prone to returning many false

positive results (Dit et al., 2011).

Textual analysis refers to examining the words used in source code of a system.

Textual feature location approaches such as (Deerwester et al., 1990; Blei et al., 2003;

Salton and McGill, 1986) are based on this assumption that identifiers and comments

convey domain knowledge, and a feature may be implemented using a meaningful set

of words throughout a software system, which makes it possible to find the feature’s

relevant code through proper querying. Despite the type of textual analysis used for

feature location, the quality of the results is heavily dependent on the quality of the

source code naming conventions and the query issued by the user (Dit et al., 2011).

3.4 Data Mining

The proposed defect localization technique in this thesis uses solutions from the do-

main of data mining including frequent-subtree mining and approximate tree match-

ing algorithms. In this section we provide necessary data-mining-related background

information. We start with an introduction of program call graphs, then briefly

overview call graph reduction techniques. Most frequent-subtree mining algorithms

borrow ideas from frequent-itemset mining algorithms, so we continue this section

with a review of frequent-itemset mining concepts that have also been employed in

frequent-subtree mining. We conclude this section with an overview of the concepts

in approximate tree matching.
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3.4.1 Program Call Graphs

Graphs have been used for different purposes in software engineering. The following

is borrowed from (Eichinger, 2011) and introduces graphs that are relevant to this

discussion.

Control-flow graphs (Allen, 1970) are static representations of source code, illus-

trating all the paths that may be executed during a software execution. The vertices of

a control-flow graph of a software represent its basic blocks, i.e., a group of statements

that are always executed conjunctively. An edge represents control-flow changes from

one basic block to another, for example due to an if or for statement. Control-flow

graphs are frequently used in compiler technology.

Program-dependence graphs (Ottenstein and Ottenstein, 1984) are static graphs as

well. The vertices of a Program-dependence graph represent individual statements in

the code and the edges represent control and data flow between statements. Program-

dependence graphs are typically used in program slicing (Korel and Laski, 1988) and

optimization (Ferrante et al., 1987).

Call graphs can be static or dynamic (Graham et al., 1982). A static call graph (Allen,

1974) can be obtained by parsing the source code. Vertices of a static call graph rep-

resent all methods of a program and edges represents all possible method invocations.

A dynamic call graph represents the execution of a certain scenario on a program.

Unlike static call graphs, dynamic call graphs reflect the actual invocation structure

of methods as edges. In this work, we deal with dynamic call graphs.

Dynamic call graphs can be represented as trees. Different tree representations ex-

ist to model dynamic call graphs. The following definitions are borrowed from (Washio

et al., 2005):
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• A free tree is an undirected graph that is connected and acyclic.

• A rooted unordered tree is a directed acyclic graph satisfying: 1) there is a

distinguished vertex called the root that has no entering edges; 2) every other

vertex has exactly one entering edge; and 3) there is a unique path from the

root to every other vertex.

• A rooted ordered tree is a rooted unordered tree that has a predefined ordering

among each set of siblings. The order is implied by the left-to-right order in

figures illustrating an ordered tree.

• An unrooted unordered tree is defined similar to a rooted unordered tree, except

that no distinguished vertex exists.

In this thesis, we use rooted ordered trees to represent dynamic call graphs. In

this representation the main method of the program is the root, the methods invoked

directly by the main method are its children, and the siblings are ordered by exe-

cution time. More details are provided in Section 5.3. In general, dedicated tree

mining algorithms can be less time consuming than general graph mining algorithms

(Eichinger, 2011).

3.4.2 Call Graph Reduction

Dynamic call graphs tend to become very big and thus call-graph-based approaches do

not scale well. Call-graph reduction is a technique to reduce the size of dynamic call-

graphs. Different reduction techniques have been proposed, such as total reduction

(where every distinct method is represented by exactly one node), iteration reduction

(where iteratively executed structures caused by loops are reduced) and recursion
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reduction (where recursive method calls are reduced). Eichinger (Eichinger, 2011)

presents a survey of the reduction techniques as explained below. Figure 3.3 is also

borrowed from Eichinger and illustrates unreduced call graphs (a), (h) and (j) and

different reductions of those.

Total reduction probably provides the most efficient compression but looses the

most information. There are three variants of total reduction. In simple total reduc-

tion, e.g., Figure 3.3(b), every distinct method is represented by exactly one node.

When a method calls another method at least once in an execution, a directed edge

connects the corresponding nodes. In total reduction with edge weights, e.g., Figure

3.3(c), every edge is annotated with a numerical weight which represents the total

number of calls of the callee method from the caller method. In total reduction with

temporal edges, e.g., Figure 3.3(d), temporal edges are introduced. A temporal edge

is a directed edge that connects two methods which are executed consecutively and

are invoked from the same method (Eichinger, 2011).

Reduction of Iterations compresses iteratively executed structures caused by loops.

There are different variations of iteration reduction. In unordered zero-one-many re-

duction, e.g., Figure 3.3(e), graphs are rooted (unordered) trees where nodes repre-

sent methods and edges method invocations. In contrast to unreduced call graphs,

an unordered zero-one-many-reduced graph ignores the order and omits isomorphic

substructures which occur more than twice below the same parent node. Ordered

zero-one-many reduction, e.g., Figure 3.3(f), omits only substructures which are ex-

ecuted more than twice in direct sequence. Subtree reduction, e.g., Figure 3.3(g),

ignores the order and reduces subtrees executed iteratively by deleting all but one

isomorphic subtree below the same parent node in an unreduced call tree. The edges
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Figure 3.3: (a) An unreduced call graph (b) simple total reduction (c) total reduction
with edge weights (d) total reduction with temporal edges (e) Unordered 0-1-m reduc-
tion (f) ordered 0-1-m reduction (g) subtree reduction (h) an unreduced call graph (i)
direct reduction (j) an unreduced call graph (k) indirect reduction (Eichinger, 2011)
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are weighted and numerical weights represent call frequencies (Eichinger, 2011).

Reduction of Recursions deals with recursive method calls. There are two varia-

tions. Direct recursion deals with the case where a method calls itself directly, e.g.,

method b in Figure 3.3(h). A possible reduction of this is presented in Figure 3.3(i)

where a self loop at node b substitutes the recursion. In Figure 3.3(i), edge weights

represent frequencies of iterations. Indirect recursion deals with the case where some

method calls another method which in turn calls the first one again, which leads to

a chain of arbitrary length of method calls. An example is provided in Figure 3.3(j)

where b calls c which again calls b. Such indirect recursions can be reduced as shown

in Figure 3.3(k) (Eichinger, 2011).

In this research we use a different reduction technique which extends the ordered

zero-one-many by introducing a cascading mechanism which repeatedly reduces it-

erative substructures until none left. Figure 3.4 illustrates this approach. In this

approach, graphs are rooted ordered trees where nodes represent methods and edges

method invocations (Figure 3.4(a)). In this reduction we first omit isomorphic sub-

structures which are executed more than once in direct sequence (Figure 3.4(b)), then

we omit isomorphic chains of substructures which occur more than once in direct se-

quence (Figure 3.4(c)), then we apply this to the parents of the reduced nodes until

finally reducing all iterations (Figure 3.4(d)). details of this reduction are provided

in Section 5.3.

3.4.3 Mining Frequent Itemsets

In this section we define the problem of frequent-itemset mining. Our purpose is

to introduce the concepts that have been exploited in subtree mining algorithms by
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discussing them first in the context of the simpler case of itemset mining.

Data mining is the process of finding interesting knowledge or patterns from

databases (Hong et al., 1999). Most of the available frequent-pattern mining al-

gorithms borrow techniques from the domain of market-basket association rules min-

ing (Chi et al., 2004a), where algorithms have been devised to examine customer

behavior with regards to the products they purchase.

In this thesis we follow the definition provided by Chi et al (Chi et al., 2004a).

They formally state the problem of frequent-itemset mining as follows. Given an al-

phabet
∑

of items and a databaseD of transactions T ⊆∑
, we say that a transaction

supports an itemset if the itemset is a subset of the transaction. The number of trans-

actions in the database that support an itemset S is called the frequency of the item-

set. The fraction of transactions that supports S is called the support of the itemset.

Given a threshold minimum support, the frequent-itemset mining problem is to find

the set F ⊂ 2
∑

of all itemsets S for which support(S) ≥ minimum support. A well-

known property of itemsets, which is the basis of frequent-itemset mining algorithms,

is that ∀S ′ ⊆ S : support(S ′) ≥ support(S). In other words, all none-empty subsets of

a frequent itemset must be also frequent. This property is called the Apriori property

and is used to reduce the search space. As an example consider
∑

= {A,B,C,D},
D = {{A,B,C}, {A,B,D}, {A,B,C,D}}, and minimum support = 2/3, then:

F =

{{A}, {B}, {C}, {D}, {A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {A,B,C}, {A,B,D}}.
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3.4.4 Mining Frequent Sequences

Sequence mining is a generalization of itemset mining where interesting rules among

sequences of items are discovered. For example in the context of market-basket anal-

ysis, the extraction of which items are purchased after certain other items is one of

the uses of sequence mining. More specifically, sequence mining is defined as the task

of finding all sequences that are subsequence of at least a minimum support number

of sequences in a set of transactions (Dong and Pei, 2007).

Sequence mining is used by researchers in the area of defect localization, e.g., (Hsu

et al., 2008), and feature location, e.g., (Sartipi and Safyallah, 2010). However, it is

not the focus of this work (we use subtree mining). Therefore, we do not provide any

further details here.

3.4.5 Mining Frequent Subtrees

Frequent-subtree mining is a special case of frequent-subgraph mining and is the

basis of our defect localization technique in this thesis. Many algorithms have been

proposed to discover frequent subtrees from a set of labeled trees. These algorithms

vary in how they formulate the mining problem and details of their solutions (Chi

et al., 2004a). However, they have many similarities as well.

In this thesis we use the definition provided by Chi et al., (Chi et al., 2004a) for

the problem of frequent-subtree mining. This problem is formally stated as follows .

Given a threshold minimum frequency, a class of trees C, a transitive subtree relation

P � T between trees P, T ∈ C, and a finite data set of trees D ⊆ C, the frequent-

subtree mining problem is the problem of finding all trees P ⊆ C such that no two

trees in P are isomorphic and for all P ∈ P : support(P,D) =
∑

T∈D d(P, T ) ≥
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minimum frequency, where d is an anti-monotone function such that ∀T ∈ C :

d(P ′, T ) ≥ d(P, T ) if P ′ � P . The subtree relation P � T defines whether a tree

P occurs in a tree T . The simplest choice for function d is given by the indicator

function:

d(P, T ) =

⎧⎪⎪⎨
⎪⎪⎩
1 if P � T

0 otherwise

.

In this simple case the frequency of a pattern tree is defined by the number of

trees in the data set that contains the pattern tree. This matches the definition

of frequency in itemset mining. Different kinds of the contains (subtree) relation

are allowed in this definition, that are bottom-up, induced or embedded subtrees, as

explained below (Chi et al., 2004a):

• A bottom-up subtree for a rooted tree T (either ordered or unordered) can

be obtained by taking a vertex v of T together with all v’s descendants and

the corresponding edges. Note that nodes and edges of the bottom-up subtree

preserve the original tree’s properties such as labeling and sibling ordering.

• An induced subtree for a tree T (free, ordered or unordered) can be obtained

by repeatedly removing leaf nodes (or possibly the root node if it has only one

child) in T .

• An embedded subtree for a rooted unordered tree T is a subtree T ′ that saves

the ancestor-descendant relationship which exists among vertices in T .

Figure 3.5 illustrates (a) a sample tree, (b) one of its bottom up subtrees, (c) one

of its induced subtrees, and (d) one of its embedded subtrees.
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Figure 3.5: (a) Sample tree, (b) a bottom-up subtree, (c) an induced subtree, and (d)
an embedded subtree

Since different definitions are possible for trees and subtrees, there are also differ-

ent techniques available for mining them. Rooted ordered trees can be mined using

FREQT algorithm (Asai et al., 2002). Rooted unordered trees can be mined using

HybridTreeMiner (Chi et al., 2004b), Unot (Asai et al., 2003), or FREQT (Nijssen

and Kok, 2003) algorithms. Unrooted unordered trees can be mined using FreeTreeM-

iner (Chi et al., 2003), HybridTreeMiner (Chi et al., 2004b), or any arbitrary graph

miners such as Gaston (Nijssen and Kok, 2004), as trees are special cases of graphs.

3.4.6 Approximate Tree Matching

Comparing trees has applications in many different areas (Shasha et al., 1994). One

common use of tree matching is to compare an unknown tree pattern against a number

of template trees in order to assign the new pattern to the category to which the

majority of its closest template trees belong (Duda and Hart, 1973).
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Tree matching is a generalization of string matching, which is defined in two forms

of exact and approximate. Exact string matching deals with two strings, a subject

string and a pattern string. The problem is then defined as finding the pattern string

in the subject string (Knuth et al., 1977; Aho and Corasick, 1975). Approximate

string matching is a little different. In this problem, we allow approximate matches,

which are substrings that have some distance to the searched pattern and we are

interested in minimizing this distance. This problem thus requires a distance metric

called the edit distance. The most trivial is Hamming distance, which specifies the

minimum number of substitutions required to change the pattern string into its cor-

responding substring in the subject string (Krcal, 2011). The most wide-spread is

Levenshtein distance, which also considers deletion and insertion operations in addi-

tion to substitution (Krcal, 2011). Damerau-Levenshtein distance is another metric

which generalizes Levenshtein distance by allowing transposition of two neighboring

characters (Miller et al., 2009).

Tree matching has also two variances. Similar to exact string matching, Exact tree

matching is defined as searching in a tree (called the subject tree) for a specific subtree

(called the pattern tree). Approximate tree matching is similar to approximate string

matching. It is defined as finding subtrees of a subject tree with the least distance to a

pattern tree. Edit distance of trees dates back to Lu (Lu, 1979), who first introduced

edit operations on trees. The usual edit operations are:

• insertion: indicates that a node that exists in the pattern tree is missing from

its corresponding subtree in the subject tree.

• deletion: indicates that a node that does not exist in the pattern tree is observed

its corresponding subtree in the subject tree.
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• substitution: indicates that a node that exists in the pattern tree is substituted

with a different node in its corresponding subtree in the subject tree

Figure 3.6 illustrates a pattern and its approximate matches, where (a) presents

the pattern, (b) presents the case of insertion (subtree rooted at C is missing), (c)

illustrates a case of deletion (vertex H is new), and (d) presents a substitution (subtree

rooted at C is substituted by subtree rooted at I).
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Figure 3.6: A pattern and approximate matches in a call tree: (a) pattern (b) insertion
(c) deletion (d) substitution

Note that in both string and tree matching, we allow the pattern to match only

part of the subject. In approximate pattern matching, we also allow the pattern to

suppress the details of the subject in which we are not interested.
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Chapter 4

Defect Localization Literature

When the execution of a program fails, the programmer often analyzes a memory

dump, in case the program crashed and forensic data may help to indicate why and

where the program failed. In another approach, the programmer inserts break-points

or print-statements around the code that is thought to be the cause of the failure,

to examine the program state (i.e., variable values) in order to find hints leading to

the location of defects. This approach places the burden on programmers to decide

which code segments are likely to have caused the failure, as well as which variable

values should be monitored. In this case, the programmer must develop a strategy to

examine only meaningful information.

There is a high demand for automatic defect localization techniques that can guide

programmers to the location of defects with minimal human intervention. As Wong

and Debroy discuss in (Wong and Debroy, 2010), this demand has led to the proposal

and development of various techniques over the years. These techniques pursue quite

similar goals. However, their underlying ideas can be different from one another, since

these ideas stem from several different disciplines. No article (regardless of breadth
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or depth) can hope to cover all defect localization techniques.

There are several ways to classify defect localization techniques. One way of doing

this is to categorize them into static and dynamic approaches. In static approaches the

program’s source code, documentation, or graph representations of the source code

(such as static dependence graph) are analyzed to localize defects. Static approaches

consider potential relations that may never happen in any executions. Therefore, they

tend to have many false positives. In contrast, dynamic approaches consider program

execution information such as run time program state, or execution traces. Dynamic

approaches have considerably fewer false positives but can have poor coverage of the

source code. The proposed approach in this thesis is a dynamic one. Therefore in the

following section, we focus on dynamic approaches and discuss them in more detail.

4.1 Dynamic Approaches

The essence of dynamic approaches is examining execution information in passing

and failing executions. Such execution information includes statements executed,

branches taken, methods called, values of variables, etc. Dynamic approaches can

further be categorized as follows.

4.1.1 Delta Debugging Based

Delta debugging was first introduced by Zeller (Zeller, 1999). The idea behind delta

debugging is to isolate failure-inducing entities, where the term “entity” can refer to

program input (Zeller and Hildebrandt, 2002), variables (Zeller, 2002), code (Zeller,

1999), etc. In a defect localization scenario, one may want to highlight within the
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set of program variables, those variable-value pairs that are relevant to the failure

(i.e., suspicious variables). Then, track causal relations between variables to iden-

tify variables affecting the values of suspicious variables, in order to ultimately find

the origin of the failure (i.e., the defect) (Cleve and Zeller, 2005; Zeller, 2002). To

identify suspicious variables, a delta debugging based approach first compares values

of variables in a failing execution with their respective values in a passing execution

to identify the changes, which are called failure-inducing changes. Then, it follows

an experimental narrowing process to find a minimal subset of the changes. An ex-

ample of such a narrowing process is that we replace a suspicious variable’s value in

a successful test with its corresponding value in a failed test, to see if it makes the

previously successful test fail, and keep it as failure-inducing if so.

The delta debugging idea has also been applied to isolate failure-inducing user

interactions, thread schedules, or code changes. For example, Zeller (Zeller, 1999)

searches for minimal failure-inducing code changes by examining different versions

of a program from a version-control system. Wang and Roychoudhury (Wang and

Roychoudhury, 2005) present a technique that automatically analyzes the execution

path of a failed test, and alters the outcome of branches in that path to produce a

successful execution. The branch statements whose outcomes have been changed are

recorded as failure-inducing.

Delta debugging is in essence a way of finding a starting point to search for the

root cause of a failure. This starting point may be a failure-inducing input, failure-

inducing variable assignments or suspicious code changes that have happened since

the last time a test has run successfully. The proposed approach in this thesis also

seeks a starting point for root cause analysis. However, we are using dynamic method
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call relations and their changes from passing to failing executions to find suspicious

method calls. In general, analyzing the program state space and designing extra tests

to narrow down failure-inducing changes (as performed in delta debugging) is more

costly than examining call trees (as performed in our technique). In this sense delta

debugging approaches are not appropriate for large systems.

4.1.2 Program Slicing Based

In program slicing-based defect localization, the goal is to narrow down the debugging

search space via slicing and dicing. This idea has been applied to static (Weiser, 1982),

dynamic (Agrawal et al., 1993a; Sterling and Olsson, 2005; Zhang et al., 2005), and

execution (Wong and Qi, 2006) slices. In this context, a static slice is the set of

statements of a program which might affect the value of a particular output (or the

value of a variable instance). A dynamic slice is the set of statements of a program

which do affect the value of the output (or the value of a variable instance) on the

execution of a particular input. An execution slice is the set of a program’s basic

blocks or a program’s decisions executed by a test input.

The underlying assumption in static/dynamic slicing-based defect localization is

that if a test case fails due to an incorrect variable value at a statement, then the

defect should be found in the static/dynamic slice associated with that statement.

Therefore, the attention is focused on that slice and the rest of the program is ignored

in searching for the defect.

Lyle and Weiser (Lyle and Weiser, 1987) proposed the notion of program dicing

which attempts to further reduce the search domain for possible locations of a defect.

In this approach, the search for the defect is narrowed down by considering the slice
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that belongs to a failing execution minus that of a passing execution, i.e., a dice.

Saha et al., (Saha et al., 2011) applied dynamic slicing to analyze data-centric

programs, where one or more entries in an output collection may be faulty. In this

approach, they break the execution trace into multiple slices, such that each slice

maps to an entry in the output collection. Then, they compute the semantic difference

between the slice that corresponds to a correct entry and the one that corresponds

to an incorrect entry to identify potentially faulty statements.

Like static and dynamic dicing, the underlying assumption behind execution dicing

is that if a test case fails because of a defect in the code, the defect should be found

in the execution slice of the failing test case minus the statements in a passing test

case. Agrawal et al., (Agrawal et al., 1995) proposed an execution slicing-based defect

localization technique where they formed all possible dices in which a successful slice

is subtracted from a failed slice, and then presented a randomly chosen dice to the

programmer as an initial guess at the defect’s location.

Gupta et al., (Gupta et al., 2005) integrated the potential of delta debugging

algorithm with the benefit of dynamic program slicing to narrow down the search for

defective code. In this approach, they use a delta debugging algorithm to identify

minimal failure-inducing input. Then, they use the minimal failure-inducing input to

compute a forward dynamic slice. Next, they intersect the statements in this forward

dynamic slice with the statements in the backward dynamic slice of the erroneous

output. The intersected statements compose what is called a failure-inducing chop.

In this process, the forward dynamic slice of a variable at a point in the execution

trace includes all those executed statements that are affected by the value of the

variable at that point. In contrast, the backward dynamic slice of a variable at a
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point in the execution trace includes all those executed statements which affect the

value of the variable at that point. The failure-inducing chops contain statements

that are likely to have caused the failure. They are expected to be much smaller than

backward dynamic slices since they capture only those statements of the dynamic

slices that are affected by the minimal failure-inducing input.

As we already mentioned, the basic idea behind our defect localization technique is

to note the differences between dynamic call trees associated with passing executions

and that of a failing execution. This idea is somehow similar to the idea behind slicing

and dicing. In this regard, the dynamic method call tree associated with a failing

execution can be regarded as a slice to search for the defect. Similar to dicing, we

assume that method calls from the dynamic call tree of a faulty execution that are

not executed in passing executions are more likely to point to defects. However, we

do not stop at this point and consider other cases too. For example, we assume that

method calls appearing in passing executions only and method calls shared between

passing and failing executions can also point to the defect.

In terms of dicing, we assume one failing and more than one passing tests which

is different from simple dicing (where difference of a failing and a passing slice is

reported). To handle many passing tests Agrawal et al., (Agrawal et al., 1995)

performed a one-to-one dicing and randomly presented the dices to the user. Also

Agrawal (Agrawal, 1992) proposed that one can deduce the union of passing slices

from the intersection of all failing slices to create a dice. Based on experimental

evaluation, Renieris and Reiss (Renieris and Reiss, 2003) claim that other approaches

such as the nearest neighbor (discussed in the upcoming subsection) work better than

union and intersection models. In our technique, we perform a one-to-one comparison
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between the call tree of the failing execution and a select set of passing executions

and propose a ranking mechanism to present the suspicious differences to the user.

Moreover, static/dynamic slicing can be a complementary approach to ours. Stat-

ic/Dynamic slicing requires a starting point which our approach can provide. After

finding a starting method using our technique, one could use static/dynamic slices to

find the root cause of a failure.

4.1.3 Program Spectra Based

Program spectra-based approaches rely on the spectrum of a program to localize

defects in the code. The term “spectrum” was first introduced by Reps et al., (Reps

et al., 1997), and refers to a record of a program’s execution in certain aspects such as

how statements and conditional branches are executed with respect to each test, the

number of times each line of the program is executed, function call counts, program

paths, program slices, and use-def chains.

When an execution fails, a program spectrum can be utilized to identify suspicious

code. Different program spectra-based approaches have been proposed. In most of

the approaches, the spectra of a program in passing and failing executions is used

to evaluate certain suspiciousness measures for every program construct. The suspi-

ciousness numbers are then used to rank program constructs, such that constructs

with greatest likelihood of being related to the defect rank the highest. Table 4.1.3

lists a number of suspiciousness formulations from the literature. We use the nota-

tion < anp, anf , aep, aef > provided by Naish et al., (Naish et al., 2011) in this table.

In this notation, the first part of the subscript indicates whether the statement was

executed (e) or not (n) and the second indicates whether the test passed (p) or failed
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(f). For example, aep of a statement is the number of tests passed and executed the

statement.

Table 4.1: Suspiciousness formulations presented in literature

Name Formula

Tarantula

aef
aef+anf

aef
aef+anf

+
aep

aep+anp

Ochiai
aef√

(aef+anf )(aef+aep)

Optimal Ranking Formula

{
−1 if anf > 0

anp otherwise

Spectra-based approaches differ on many levels including: the type of informa-

tion (i.e. spectra) they collect (such as statement hit, function call frequency, etc);

granularity of suspiciousness formulations (e.g., statement, basic block of statements,

method, class, component); the type of analysis (statement coverage analysis, se-

quence analysis, call graph mining); etc.

Tarantula (Jones and Harrold, 2005) is one of the pioneers of spectra-based defect

localization. In Tarantula (Jones and Harrold, 2005), a program spectrum includes

the statements that each test covers in its execution. The intuition behind Tarantula

is that entities in a program that are primarily executed by failed test cases are

more likely to be defective than those that are primarily executed by passed test

cases. Based on this intuition, a suspiciousness metric is devised which expresses

the likelihood of a statement being defective (See Table 4.1.3). The suspiciousness

numbers are computed for all statements in the code and visualized using a series

of colors. In this visualization, statements that are executed primarily by failed test

cases and are thus, highly suspicious of being defective, are colored red to denote
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“danger”; statements that are executed primarily by passed test cases and are thus,

not likely to be defective, are colored green to denote “safety”; and statements that are

executed by a mixture of passed and failed test cases and thus do not lend themselves

to suspicion or safety, are colored yellow to denote “caution”.

The literature contains many metrics that can be used for ranking statements

according to how likely they are to be defective. Naish et al., (Naish et al., 2011)

presented a very simple program with a single defect to model the defect localization

problem and evaluate the effectiveness of different proposed metrics which is followed

by devising an optimal ranking method (Table 4.1.3). Wong et al., (Wong et al.,

2010) introduced and evaluated a number of coverage-based heuristics to localize

faults. Abreu et al., (Abreu et al., 2009a) aimed at improving Tarantula (Jones and

Harrold, 2005) by evaluating different scoring functions besides Tarantula within the

same framework.

Renieris and Reiss (Renieris and Reiss, 2003) introduced the idea of nearest neigh-

borhood. Their method assumes the existence of a faulty run and a larger number of

passing runs. It then selects according to a distance criterion the passing run that

most resembles the failing run, compares the spectra corresponding to these two runs,

and produces a report of “suspicious” parts of the program. In this approach, the pro-

gram spectrum includes information about basic blocks executed and their execution

counts. To experimentally validate the viability of their method, they implemented

it in a tool, WHITHER, using basic block profiling spectra.

Pinpoint (Chen et al., 2002) is a framework for root cause analysis on the J2EE

platform and is targeted at large, dynamic Internet services, such as web-mail services

and search engines. In this approach, they dynamically trace real client requests as
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they travel through a system. For each request, they record its believed success or

failure, and the set of components used to service it. Then they use a data clustering

algorithm to correlate the failures of requests to the components most likely to have

caused them. In this clustering, similarity is calculated based on how often compo-

nents are and are not used together in requests that are highly correlated with failures

of requests. Finally, they report components whose occurrences are most correlated

with failures, and hence where the root cause is likely to lie.

Wong et al., (Wong et al., 2012b) presented a crosstab-based statistical technique

to localize defects. The presented approach makes use of the coverage information

of executable statements and the execution result (success or failure) associated with

each test case to assess the degree of association between execution result and the

coverage of each statement by means of statistical coefficients.

Wong et al., (Wong et al., 2012a) proposed DStar, a technique which uses state-

ment coverage information for fault localization. In this technique the suspiciousness

of program statements are evaluated using a similarity coefficient. This basic idea

is that the closer the execution pattern (i.e., the coverage vector) of a statement is

to the failure pattern (result vector) of the test cases, the more likely the statement

is to be faulty, and consequently the more suspicious the statement seems. Thus,

similarity measures or coefficients can be used to quantify this closeness. The degree

of similarity can be interpreted as the suspiciousness of the statements.

Most existing defect localization techniques focus on identifying and reporting

single code constructs (e.g., statement, method, etc) that may contain a defect. Even

in cases where a defect involves a single code construct, it is generally hard to under-

stand the defect by looking at that construct in isolation. Defects typically manifest
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themselves in a specific context, and knowing that context is necessary to diagnose

and correct the Defect. Hsu et al., (Hsu et al., 2008) extends Tarantula’s idea by

incorporating sequential patterns as context. They use Tarantula’s suspiciousness

formulation to compute suspiciousness of statements. Then, they filter less suspicious

statements (suspiciousness value of less than 0.6, intuitively representing statements

with less than 60% chance of being related to the failure). Next, they mine frequent

longest common subsequences from the filtered failing traces to identify bug signa-

tures. A longest common subsequence is a common subsequence that is not contained

in any other common subsequence. Such patterns present some kind of defect context

to the user.

Dallmeier et al., (Dallmeier et al., 2005) proposed a tool for identifying defective

classes in Java applications. This tool instruments a given Java program such that

sequences of method calls are collected on a per-object basis. Then, it computes a

suspiciousness weight for each sequence. They proposed separate weight functions for

the cases (1) where one passing and one failing executions are available:

w(p) =

⎧⎪⎪⎨
⎪⎪⎩
1 if p /∈ Ppass ∩ Pfail - that is, p is new or missing

0 otherwise

,

as well as (2) when multiple passing and one failing executions exist:

w(p) =

⎧⎪⎪⎨
⎪⎪⎩
Support(p) if p /∈ Pfail

1− Support(p) if p ∈ Pfail

,

where w is a weight assigned to a sequence of method calls p based on Support(p),
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the percentage of passing traces exhibiting sequence p, for sequences that do or do

not belong to Pfail, the set of sequences in the failing run. Next, it computes the

average sequence weight of a class, from the weights of all sequences. For case (1) it

uses:

avg =
1

t

∑
p∈Ppass∪Pfail

w(p) where t = |Ppass ∪ Pfail|,

and for case (2) it uses:

avg =
1

t

∑
p∈⋃P (ri)

w(p) where t = |
n⋃

i=0

P (ri)|,

to compute the average weight. In this formulation r0 stands for the failing run and

ri, i = 1, .. stands for the passing runs. They claim that classes with the highest

average weight are most likely to contain a defect.

Di Fatta et al., (Di Fatta et al., 2006) proposed a call graph based defect localiza-

tion approach. In this approach, they collect method call traces and represent them

as rooted ordered trees. Then, reduce the iterations from the trees and mine frequent

subtrees from the reduced trees. The call trees analyzed are large and lead to scal-

ability problems. Hence, they limit the size of the subtrees mined to a maximum of

four nodes. Then they provide suspiciousness numbers for all methods in the code.

The suspiciousness formula is based on the support of a method in two sets of trees:

1) subtrees contained in call graphs of failing executions which are not frequent in call

graphs of passing executions, also called the specific neighborhood (SN); 2) the set of

call graphs of passing executions, Dpass. Suspiciousness of method m is computed as:

P (m) =
support(gm, SN)

support(gm, SN) + support(gm, Dpass)
,

where gm denotes all graphs containing method m and support(g,D) denotes the

support of a graph g, i.e., the fraction of graphs in a graph database D containing
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g. Note that this formulation assigns zero to methods which do not occur within SN

and one to methods which occur in SN but not in passing program executions Dpass.

The intuition is that methods that appear in all failing executions and not frequently

seen in passing executions are more likely to be defective. Although Di Fatta et al.,

do not specifically discuss the types of defects the can handle, they appear to be able

to localize structure-affecting defects.

Liu et al., (Liu et al., 2005) also proposed a call graph based approach to deal with

structure-affecting defects. In this approach, they mine sub graphs from reduced call

graphs associated with passing and failing executions. Then, assign binary vectors

for each execution where every element in the vector indicates if a certain subgraph

is included in the corresponding call graph for that execution. Using these vectors,

a support-vector machine (SVM) classifier (Vapnik, 1995) is learned which decides

if a program execution is passing or failing. For every method two classifiers are

learned: one based on call graphs including the respective method and one based on

graphs without this method. If the precision rises significantly when adding graphs

containing a certain method, this method is deemed more likely to contain a defect.

This approach does not provide any ranking of the defect-relevant method set.

Cheng et al., (Cheng et al., 2009) also proposed a call graph based approach to

deal with structure-affecting defects. They first used the LEAP algorithm (Yan et al.,

2008) to mine the top-k most discriminative subgraphs, i.e., subgraphs contrasting

failing executions from passing ones and thus are assumed to have an increased likeli-

hood to be related to defects. Then, they present them to the user. In this approach,

no method ranking is provided. Cheng et al., also applied their approach on finer-

grained basic-block-level call graphs.
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Eichinger et al., (Eichinger et al., 2008) also used graph mining for defect localiza-

tion for both structure and frequency affecting defects. In this approach, they mine

reduced call graphs and partition the resulting frequent subgraphs into two sets: 1)

the set of subgraphs which occur in both passing and failing executions; 2) the set

of subgraphs which only occur in failing executions. They use the former to provide

an Information Gain-based score Pe(m) which identifies which edge weights of call

graphs from a program are most significant to discriminate between passing and fail-

ing. Information Gain (Quinlan, 1993) is a measure based on entropy. It is defined in

the interval [0, 1] and quantifies the ability of an attribute A to discriminate between

classes in a dataset (without a restriction to binary classes). In the context of this

work, the data set is the set of passing and failing tests, attribute A represents a spe-

cific method call such as a call from method a to method b and values of this attribute

correspond to frequencies of this call in different tests. The aim of this is to see which

method call can best discriminate between passing and failing tests. Eichinhger et

al., use subgraphs only occurring in failing executions to provide a structural score:

Ps(m) = support(m,SGfail).

This score is based on the support of method m in the the set of subgraphs only

occurring in failing executions. This is done because Information gain-based scoring

cannot detect defects that are not call frequency affecting. Also, it does not consider

subgraphs which occur in failing executions only (as some defects can result in such

subgraphs). Finally, they normalize and combine (add) the two scores to compute

suspiciousness of methods and provide a ranking:

P (m) =
Pe(m)

2 maxn∈t∈T (Pe(n))
+

Ps(m)

2 maxn∈t∈T (Ps(n))
,
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where n is a method in a program trace t in the collection of all traces T .

In a follow-up of their work, Eichinger et al., (Eichinger et al., 2010b) extended

their approach to support dataflow affecting defects. In this approach, they mine

dataflow enabled call graphs, and, similar to their previous work (Eichinger et al.,

2008), assign an Information Gain Ratio-based and a structure-based suspiciousness

score to the methods. Information Gain Ratio is a measure based on Information

Gain which similarly measures the discriminativeness of an attribute A when val-

ues v ∈ A partition the dataset D. The Information Gain Ratio normalizes the

Information Gain value by SplitInfo, which is the entropy of the discretization of

the attribute into intervals. Eichinger et al., also extended their work to deal with

concurrency defects in (Eichinger et al., 2010a). In (Eichinger et al., 2011) they pro-

vided a hierarchical approach to localize defects, which analyzes graphs of a coarse

granularity before it zooms-in into finer-grained graphs.

As Eichinger et al., (Eichinger, 2011) explains, mining dynamic call graphs is

a relatively recent and very promising approach in the dynamic defect-localization

literature. Our aim in this thesis is not to develop a technique which rules out any

existing alternatives, but to investigate yet another usage of call graphs for defect

localization.

4.1.4 Discussion of Spectra-Based Approaches

The Spectra-based techniques we overviewed in the previous subsection have positive

and negative characteristics. In this section we discuss strengths and weaknesses of

the reviewed techniques. We also identify how these techniques relate to the proposed

defect localization technique in this thesis. Table 4.2 provides a list of related spectra-

based approaches and their characteristics.
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Table 4.2: Related spectra-based approaches

Approach Spectra Assumption
Suspiciousness

Formulation

Reps et al. (Reps

et al., 1997)

Number of

times each

different

loop-free path is

executed

m pass, n fail

(m,n>1)
NA

Jones and

Harrold (Jones and

Harrold, 2005)

Statement hit
m pass, n fail

(m,n>1)
Tarantula

Naish et al. (Naish

et al., 2011)
Statement hit

m pass, n fail

(m,n>1)

Optimal ranking

metric

Abreu et al. (Abreu

et al., 2009a)
Statement hit

m pass, n fail

(m,n>1)
Ochiai coefficient

Renieris and

Reiss (Renieris and

Reiss, 2003)

Block hit
m pass, 1 fail

(m>1)
NA

Chen et al. (Chen

et al., 2002)
Component hit

m pass, n fail

(m,n>1)
NA

Hsu et al. (Hsu et al.,

2008)
Statement hit

m pass, n fail

(m,n>1)
Tarantula

Dallmeier et

al. (Dallmeier et al.,

2005)

Method hit

m pass, 1 fail or

m pass, n fail

(m,n>1)

Dallmeier

Di Fatta et al. (Di

Fatta et al., 2006)
Call graph

m pass, n fail

(m,n>1)
Di Fatta

Continued on next page
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Table 4.2 – continued from previous page

Approach Spectra Assumption
Suspiciousness

Formulation

Liu et al. (Liu et al.,

2005)
Call graph

m pass, n fail

(m,n>1)
NA

Cheng et al. (Cheng

et al., 2009)
Call graph

m pass, n fail

(m,n>1)
Information gain

Eichinger et

al. (Eichinger et al.,

2008)

Call graph
m pass, n fail

(m,n>1)

Information gain and

support in frequent

failing subgraphs

Eichinger et

al. (Eichinger et al.,

2010b)

Call graph
m pass, n fail

(m,n>1)

Information gain ratio,

support in frequent

failing subgraphs and

support in frequent

correct subgraphs

Eichinger et

al. (Eichinger et al.,

2010a)

Call graph
m pass, n fail

(m,n>1)

Information gain and

information gain ratio

Eichinger et

al. (Eichinger et al.,

2011)

Call graph
m pass, n fail

(m,n>1)
Information gain

OUR APPROACH Call graph
m pass, 1 fail

(m>1)

An extension of

Dallmeier’s

formulation,

parentDiffSize and

diffSize

Among all spectra-based approaches, statement-based approaches such as (Reps

et al., 1997; Jones and Harrold, 2005; Naish et al., 2011; Abreu et al., 2009a; Hsu
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et al., 2008; Renieris and Reiss, 2003) locate defects more precisely by providing

finer-grained results. However, they need to deal with very long execution traces

and thus it is not clear in this stage whether they can handle large applications

effectively. More granular approaches such as call-graph-based techniques (including

our approach) are more extensible in this sense.

Machine learning based approaches such as (Chen et al., 2002; Liu et al., 2005)

require a none-trivial split of the test cases, where the number of passing and failing

cases are about the same, to train their machines. Therefore, they are not suited for

failures that happen very rarely. Specifically, they are not good candidates to handle

the case of one failing and many passing tests that we target in this thesis.

Eichinger et al., (Eichinger et al., 2010a; Eichinger, 2011) tried a number of dif-

ferent feature selection algorithms including Information Gain and Information Gain

Ratio for defect localization. Using some preliminary experiments they evaluated

a number of such techniques with the result that those based on entropy are best

suited for defect localization. They identified that Information Gain produces the

best results when applied to a small Diff tool taken from (Darwin, 2004). How-

ever, Information Gain does not provide good suspiciousness numbers for a test

suite with imbalanced class distributions (different number of passing and failing test

cases) (Eichinger, 2011). For example, referring to Figure 4.1, assume that we have

two classes “pass” and “fail”, where we have 99 cases pass and one fails and in all

passes, method a calls method b, while in the failing case this method call does not

happen. In this case, Information Gain of this method call is about 0.08. Thus,

the suspiciousness of this method call and hence that of method a is 8%, which does

not make sense since a missing call that has always been present is very suspicious.
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The same is true if in all passing executions, method a calls b 10 times, while in the

failing case this call happens only once. This reason behind this problem is that, in

an imbalanced class distribution the entropy of the classification of the cases is low.

Test a→ b . . . Class
t1 1 . . . pass
t2 1 . . . pass
t3 1 . . . pass
...

...
. . .

...
t100 0 . . . fail

Figure 4.1: An imbalanced class distribution where 99 out of 100 tests pass and only
one fails

Compared with Information Gain, Information Gain Ratio is robust regarding

imbalanced class distributions because it normalizes the Information Gain by its

SplitInfo (Quinlan, 1993). Revisiting our previous example, the Information Gain

Ratio in this case is one, which is closer our expectation. However, Information

Gain Ratio is unstable if the split is near-trivial (i.e., almost all cases pass or almost

all fail) (Quinlan, 1993). To avoid this undesirable eventuality, any test suite used

must contain more than a minimum number of passing and failing cases. Therefore,

approaches such as (Cheng et al., 2009; Eichinger et al., 2008, 2011, 2010a) that use

Information Gain and (Eichinger et al., 2010b,a) that use Information Gain Ratio

are not suitable for the case of one failing test and many passing tests that we target

in this thesis.

Approaches such as (Di Fatta et al., 2006; Dallmeier et al., 2005; Eichinger et al.,

2008, 2010b) incorporate a support-based formulation to compute suspiciousness val-

ues. Support-based formulations can not handle stochastic behavior very well and
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may create more false positives or false negatives. Assume in a passing execution

method a can call any of the methods b, c or d. Assume that the support of “a call-

ing b” is 2% in passing cases. In this case, if the failing case also exhibits “a calling

b”, then according to a support-based formulation such as Dallmeier’s suspiciousness

formula (Dallmeier et al., 2005) the suspiciousness of this call is 98%. This can be an

example of a false positive. “a calling b” can reflect a correct call which has also been

exhibited in a failing test case. However, if the failing case does not exhibit “a calling

b” then suspiciousness of this call is 2%. This can be an example of a false negative.

In this case, “a calling b” can be an expected call that is missing in the failing test

case. In our approach, we mitigate this effect by incorporating several other analysis

on call relations to find “expected” behavior. In this context if “a calling b” is rare

but belongs to a part of the call tree that is specific to the failing feature, it is ranked

higher in the list of suspicious methods.

Another issue with Dallmeier et al., (Dallmeier et al., 2005) is that it has the granu-

larity of a class which is less informative compared with method-level approaches. For

Di Fatta et al., (Di Fatta et al., 2006), another issue is that it gives zero for methods

that do not occur in the specific neighborhood, implying that they are not suspicious.

This, for example, happens for method calls that are frequent in passing executions

but not frequent in failing executions. As we will see later in this discussion, such

method calls can also point to defects in the code. Eichinger et al., (Eichinger et al.,

2008, 2010b) use InformationGain-based formulation for frequency-affecting defects

and support-based formulations for structure-affecting defects. They accordingly in-

herit the weaknesses and strength of both approaches.

Unlike our approach, the call-graph-based approaches we studied in the previous
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section are not suited to handle failures that happen very rarely. In a case in which a

defect is very unlikely to reveal itself, there may be very few failing cases (sometimes

only one case) that represent this defect. This can lead to two possible outcomes:

• If we assume a single defect in the code, this means having very few failing cases

as compared with passing ones which most approaches cannot handle very well.

• If we assume multiple defects in the code, then only a small percentage of failed

tests represents the rare failure. Assume that execution of method m is not

expected in a correct execution and is related to the rare defect. Since the

defect affects a small portion of the failed tests, m is observed in only a small

percentage of the failed tests. This leads to a low suspiciousness value for m.

Spectra-based approaches have another deficiency as well. They aggregate po-

tentially irrelevant information to compute suspiciousness measures. This can be

considered from different aspects:

• Aggregating information about different functionalities exercised in a test suite:

The following cases are considered. i) If a certain method call contributes to

the execution of multiple functionalities, the total frequency of this call in a

test case does not convey meaningful information about either of the function-

alities. In this case, changes in the frequency of the method call from passing

to failing executions does not provide useful insight into the failure. Using such

an aggregation could increase both false positives and false negatives in defect

localization. Availability of loops in programs can further aggravate this effect;

ii) Assume that among other functionalities of a system f1 and f2 are exercised

in a test suite. Assume that whenever performed, f1 is always successful, but

63



Ph.D. Thesis - Anis Yousefi McMaster - Computing and Software

f2 fails in a portion of runs (and we are searching for the method related to

the failure of f2). If by chance the test suite exercises functionality f1 only in

the failing tests, and if method m1 is specific to functionality f1 , then we only

observe m1 in failing tests. In an spectra-based approach such a method gets a

high suspiciousness value and consequently considered defect-related, although

it is not (i.e., false positive). Knowing more about the exercised functionalities

in addition to the outcome of test executions can help mitigate this problem.

• Aggregating information about different failure sources : Failures raised in a test

suite may have different reasons. They may happen as a result of distinct defects

in the code and reveal themselves via change in the frequencies of different

method calls. For example the failing test cases of a test suite can represent

failures of two functionalities f1 and f2 with different underlying reasons. In

such a case, it only makes sense to have different classifications of passing and

failing test cases for each failing functionality. Considering the functionalities

exercised in tests, especially the failing functionality, and by performing Feature

Location, we could mitigate this risk quite effectively.

Both statement-based and some of the call-graph-based approaches (Di Fatta

et al., 2006; Eichinger et al., 2008) assign high suspiciousness values to entities which

have been seen mainly in failing test cases. They assume that the more successful

tests execute a certain piece of code, the less likely it is that this code is defective.

Similarly, the more failed tests execute a certain piece of code, the more likely it is

that this code is defective. We believe that a missing code entity can lead us to a

defect in a related entity. For example assume that in all passing cases method a

calls method b but in all failing test cases the call to method b is missing. In such a
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case it is probable that method a has a defect (e.g., an exception, or change in the

path that is executed inside method a) that prevents it from calling method b. In

our approach we also consider an entity that is missing from the failing call to be

suspicious. Note that in some cases “a missing entity” may be our only clue to the

location of the defect.

Various techniques and tools provided in this domain consider specific defect types

in specific programming languages and under certain assumptions. Studies comparing

different defect localization approaches (Rutar et al., 2004; Santelices et al., 2009)

came to the conclusion that no single approach strictly outperforms any other for

all kinds of defects or can detect all kinds of defects. Therefore, a combination of

techniques should be used to build a powerful defect localization tool.

4.1.5 Other Approaches

There are many other dynamic approaches for defect localization which are quite

different from our approach. Two examples are statistical defect localization and de-

fect localization with graphical models. In statistical defect localization (Liblit et al.,

2005) programs are first instrumented to collect statistics about run time evaluations

of certain predicates (e.g., evaluations of conditional statements and function return

values). Take the predicate “idx < LENGTH ” for example, where variable idx is

an index into a buffer of length LENGTH. This predicate checks whether accesses to

the buffer ever exceed the upper bound. Statistics on the evaluations of predicates

are collected over multiple executions and analyzed afterwards to localize defects.

For example one can calculate the likelihood that the evaluation of a predicate to

true correlates with failing and use this to find suspicious code segments. In defect
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localization with graphical models (Dietz et al., 2009) graphical models are used to

localize defects. Graphical models are introduced in machine-learning and bring to-

gether concepts from graph theory and probability theory (Jordan, 1999). Well-known

representatives of graphical models are Bayesian networks, which are also known as

directed acyclic graphical models or belief networks (Jensen, 2009).
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Chapter 5

Defect Localization using Dynamic

Call Tree Mining and Matching

In this chapter we discuss our defect localization technique. We first present an

overview of the proposed technique in Section 5.1, followed by a detailed discussion of

the defect localization process in Sections 5.2 to 5.6. We conclude with a discussion of

the benefits and shortcomings of the proposed technique in Section 5.7. The proposed

technique has also been published in (Yousefi and Wassyng, 2013) and (Yousefi and

Sartipi, 2011).

5.1 Overview

In this section, we provide an overview of the proposed defect localization technique.

We first explain the problem we are targeting. Then, we briefly present the idea

behind our approach. Finally, we provide an overview of our defect localization

process.
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5.1.1 Target Problem

The proposed technique in this chapter deals with the problem of defect localization.

To be more specific, given a target program to be debugged, a failing case, and a set

of passing cases, our technique finds methods in the source code that most likely lie

on a path to the root cause of the failure. Such methods are good starting points

for a root cause search, which, without knowing a proper location to start, can be

very complex and costly if not impossible. Our technique also indicates where in

the dynamic call tree suspicious methods lie. This suggests subtrees that should be

examined to find the root cause.

In this work, we are targeting structure-affecting defects, or defects that cause a

structural change in the dynamic call graph. Such defects make the target program

diverge from executing the expected path in the source code. Regardless of the reason

behind this divergence (e.g., run time exception, hardware failure, or incorrect branch

taken as a result of wrong variable assignment or wrong branch condition), as long as

the defect changes the structure of the dynamic call graph, the defect can potentially

be localized using our approach.

Figure 5.1 illustrates a number of cases in which our approach can localize the

defect. In this figure you see sample code, that is the subject of four typical pro-

gramming defects. The patterns one sees in a correct execution of the code and the

ones that may be seen in different failing executions (associated with different defect

types) are identified. If the code is correct, any execution of it results in dynamic

call graphs (a) or (b). Four defective versions of the code are considered. In case

(I), a defect in the code leads to a run time exception in method A. In this case, if

the exception is not caught, the resulting call graph observed will be the one tagged
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as (I). In other words, non of the methods B, C or D will be executed. In case (II),

the branch condition is wrong (≥ instead of >). In this case, if var = 0 we will see

method B instead of method C as in (II). In case (III), a hardware failure happens at

the else statement. This leads to the execution of both B and C as in (III). In case

(IV), the programmer forgot to create a specific branch for the case where var = 0.

Therefore, instead of executing method E (associated with var = 0), method B is

executed.

In the current version of the proposed technique, we do not consider frequency-

affecting defects, defects that only change the frequency of method calls in a dynamic

call graph (e.g., defects that cause a loop to run for too long). Augmenting the tree

representation of dynamic call graphs with numbers representing frequency of method

calls can be a potential solution to deal with frequency-affecting defects. This idea is

investigated as a future work.

Our approach can localize defects to the granularity of a method. We identify

methods which behave suspiciously in terms of the way they call other methods. To

get finer grained results, one could replace the notion of “dynamic call graph” in this

research with “dynamic control graph”. With this extension, it would be possible to

identify a line-of-code (as opposed to a method name) to start searching for the root

cause of a failure. This extension is also left to future work.

In this work, we are targeting large systems with multiple features (i.e., function-

alities). Most approaches in the literature consider smaller programs and it is not

clear if they are able to cope with the challenges associated with large systems, which

are usually the target of automatic defect localization. To analyze large systems, we

take advantage of feature location, which is a technique used to identify the code
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main( ) {
A ( );

if (var ≥ 0)

       B( );

else

       C( );

D ( );
main( ) }

I. Uncaught exception in "A"

II. Wrong branch condition ( ≥ instead of > )

III. Hardware failure

IV. Missing branch

Correct executions result in:

main

A B D

main

A C D

main

A

main

A B D

main

A C D

instead of

main

A B C

main

A B D

main

A E D

instead of

D

I.

II.

III.

IV.

Faulty executions result in:

or

(a) (b)

Figure 5.1: Sample code with structure-affecting defects and patterns associated with
execution of defect-free and defective code
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associated with different functionalities of the system, including the failing feature

(which to avoid ambiguity we will call target feature in this thesis). This is one of

the main distinctions of our work.

In this work, we acknowledge the possible availability of multiple passing test cases

but are constrained to work with a single failing test case. Most call-graph-based

approaches in the literature consider more than a single failing case. We believe that

in a large number of real world cases a software debugger is actually constrained to

a single failing case and thus this assumption makes our technique more practical.

Clearly this makes defect localization more challenging since we have less information

from the target system on which to base our analysis.

5.1.2 Approach

A failing case is a case where the target program crashes, exhibits an unexpected

behavior, or provides wrong results. Such a failing case must be documented by two

pieces of information:

• Failure setting: is input and scenario which is required to reproduce the failure.

For example, a user may report a failure setting by noting that they have filled-

in some text box t with some specific value v and clicked on the some button

b.

• Failure description: is an explanation of what happens during the failing run;

i.e., which parts of the execution are performed as expected and which parts are

problematic and also what are the expected results. For example, a user may

report that they had expected the system to do tasks x, y and z; the system
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performs task x, encounters a problem during the execution of y and z is never

performed.

When one follows a given failure setting and applies it to the target system, the

system traverses a path in the code to perform the requested functionalities. This

path identifies the methods called by the program (i.e., dynamic call graph) and any

defects causing the failure has to lie on this graph. However, a dynamic call graph can

be very large. In addition to methods related to the failing functionality, a dynamic

call graph may include methods related to system initialization, other functionalities

that have been performed successfully, etc. In this work, we represent dynamic call

graphs as trees. As will be explained in Section 5.3, this is done via assigning distinct

nodes to different calls to the same method. Figure 5.2 illustrates a sample dynamic

tree associated with the sequential execution of tasks x, y and z. It indicates how

different subtrees can relate to different parts of the execution.

The idea of this work is to first identify which parts of a dynamic tree relate to the

failing feature, which reduces the search space for finding a defect. Then, contrast

the related subtrees against what we expect them to be, to identify defect-related

methods.

A failure description usually provides us with information about what the failing

functionalities are. For example if task y is the problematic part of an execution,

then we should search for the defect in the subtree associated with y. Now, if we

make the execution of a feature frequent within a set of runs, the subtree associated

with that also becomes frequent and thus identifiable via frequent-subtree mining.

We use a set of passing test cases where the target feature is performed as expected

and mine frequent patterns out of their dynamic call trees. Such patterns represent
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y

Do 
"z"

Do 
"x"

Do 
"y"

Shutdown 
System

Main

Initialize 
System

Listen for 
Command

Init. for 
"y"

y z

x

System
Initialization

System
Shutdown

Figure 5.2: Sample dynamic call tree associated with sequential execution of tasks
“x”, “y”, and “z”
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defect-free execution of the target feature and can be used as a means of identifying

what goes wrong in the failing case. We incorporate approximate tree matching

to identify whether the failing call tree conforms to the expected patterns. In this

context, structural differences are clues that lead us to where the defects lie.

5.1.3 Steps in Proposed Technique

Patterns
Pattern 
Mining

Pattern 
Analysis

Failing 
Feature

Traces

Pattern 
Matching

Pattern 
Ranking

Failing Tree

Trace-Feature 
Map

Trace-Pattern

Map

Pattern

Method 
Counts

Defect 
Localization 

Report

Tracing

Analysis 
of the 

matching 
results

Call Tree 
Const. 

and 
Reduction

Set of 
Passing 
Trees Phase I. 

Feature 
Location

Phase II. 
Defect 

Localization

Storage

Task

Data Flow

Figure 5.3: Proposed defect localization process

Figure 5.3 illustrates the defect localization process. This process has two major

phases. In phase one (feature location), we identify patterns associated with defect-

free execution of the target feature. This process is further divided into a number of
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steps. In the first step, “tracing”, we instrument the target system, run passing and

failing test cases, and collect their execution traces (i.e., records of method calls in

executions). In the second step, “call tree construction and reduction”, we represent

each execution trace as a tree (dynamic call tree), then apply tree reduction techniques

to make the trees manageable. In the third step, “pattern mining”, we mine frequent

subtrees from call trees of passing executions (also called passing call trees). This

will result in a database of passing patterns. In the forth step, “pattern analysis”,

we identify features exercised by each test case, then given a failing feature, we find

and rank patterns associated with that feature. In phase two (defect localization),

we contrast relevant patterns against the call tree of a failing execution to identify

mismatches. The mismatches point to methods in the source code where a search for

the root cause of the defect should begin. The following sections describe the process

of defect localization in detail.

5.2 Tracing

Tracing is the first step of our defect localization process. It is preliminary work that

needs to be done in order to build dynamic call trees, which are the main source of

information we use in our analysis. In this section we discuss tracing and its related

concepts.

5.2.1 Instrumentation and Tracing

Researchers have used textual, static, and dynamic analyses for defect localization.

In this work, we are focusing on dynamic analysis. Like all dynamic analysis-based
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approaches, we rely on execution traces to decide which methods may contain de-

fective code. In general, these traces include statements executed, methods called,

messages communicated, etc., during an execution.

To record execution traces, we first instrument the target system using an instru-

mentation tool. Since we use traces for the purpose of building dynamic call trees,

in this work we record method entries and exits, the IDs of process and threads ex-

ecuting them, and their associated time stamps, as illustrated in Figure 5.4. Note

that, we mainly use this simple trace structure to show the fundamentals of our de-

fect localization in this chapter. However, to further distinguish between methods, in

our experiments presented in Chapter 6 we have actually recorded the actual method

signatures (i.e., class path, class name, method name, input parameters types, out

put parameter type) instead of method names.

Enter/Exit  methodName  PID  TID  TimeStamp
 
Enter m1 P0 T0 12/11/19-08:10:12
Enter m2 P0 T0 12/11/19-08:10:13
Exit m2 P0 T0 12/11/19-08:10:15
Enter m3 P0 T0 12/11/19-08:10:15
Enter m4 P0 T0  12/11/19-08:10:16
Exit m4 P0 T0  12/11/19-08:10:20
Exit m3 P0 T0  12/11/19-08:10:21
Exit m1 P0 T0  12/11/19-08:10:25

Figure 5.4: Sample execution trace

Available tools for execution tracing differ in the programming language or oper-

ating system they can handle, the types of information they can monitor, etc. De-

pending on the target system, we can use any appropriate tool for dynamic method

call tracing. One thing to be aware of is that execution traces can become very large,
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depending on the scenario executed on the target system. Large execution traces

can take a long time to be produced. More importantly, they can consume run time

memory to the point they take up all available memory. Therefore, there is a need for

keeping execution traces as small as possible. Filtering is a methodology provided by

instrumentation tools to exclude generating traces for certain parts of the execution

that are specified by the user. In a filter, one can specify packages, classes, methods,

etc., that they wish to include or exclude in the tracing.

At this point, the decision about when and how much to filter is left for the

debugger. Factors such as the amount of memory available, the number of test

cases used for defect localization, and the size of generated traces affect this decision.

Depending on the debugger’s understanding of the target system, they can filter

out: 1) irrelevant subsystems, packages, classes, or methods, or 2) methods with low

probability of being defective, i.e., methods that are small, do not transform data, do

not interact with remote components, and are not time dependent (e.g., small utility

methods), or methods that have been tested and are proved correct (e.g., library

methods). Risks associated with filtering are presented in Appendix A.

5.2.2 Features, Scenarios, and Test Cases

Like many other dynamic analysis based approaches we rely on a set of scenarios to

exercise the target system and collect execution traces. In addition to the traces, most

defect localization approaches consider the result of an execution, i.e., pass or fail.

This information is used along with the execution traces to identify code components

distinguishing between passing and failing executions. Besides the execution traces

and results, in this approach we record information about the functionalities being
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executed in each run and whether they are carried out successfully. This is inspired

by the feature location research area, where they typically record functionalities being

exercised and components being executed in different runs to identify feature-code

relations.

Borrowing from the feature location domain, in this thesis we use the term feature

to refer to a functionality provided by the target system and used alone or in combina-

tion with other features in a scenario. In contrast to conventional defect localization

approaches that do not care about what is actually done in an execution, we exercise

a set of meaningful scenarios on the target system and keep track of features executed

in those scenarios.

There are two reasons behind this:

1. A major drawback of conventional defect localization approaches is that they

do not consider functionalities executed in different runs, and thus potentially

aggregate irrelevant information. For example, if a call to method m is frequent

in failing tests and infrequent in passing ones, they decide that it is very likely

that this call is defective. However, this call could simply belong to a function-

ality that is mostly exercised in failing test cases and has nothing to do with the

failure. We argue that considering program features provides richer semantics

that can be incorporated to enhance conventional defect localization.

2. Considering features allows us to deal with bigger applications more efficiently.

We take advantage of feature location techniques to reduce the code that needs

to be analyzed.

Since most features of a system are non-deterministic in terms of the path they

traverse in the call tree, our analysis requires the target system to be exercised with
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sufficient scenarios to capture different dynamic call trees associated with a feature.

In this context, the use of software testing techniques and concepts such as code

coverage measures can help to ensure that an adequate slice of the system’s set of

possible behaviors has been observed. Therefore, to provide a fair amount of coverage

we propose using a well-defined suite of test cases to exercise the target system. A

test suite has three major benefits:

• Test cases identify the functionalities/steps exercised in an execution. These

steps are part of the work that is done in an execution and can be regarded as

features in our analysis.

• A proper test suite should provide some sort of coverage on the target system.

This provides more control on the amount of code that is visited in our analysis.

Completeness of test cases is one of the main concerns of dynamic analysis and

this work.

• Test cases are usually provided as a part of the software development process,

hence should be available at the time of debugging and we could take advantage

of them for defect localization. This will make sure that we are not adding too

much burden to what the debuggers already do.

Figure 5.5 illustrates a sample test case used in this work. This test case specifies

the process of buying 10,000 securities from a broker. The process starts by a client

sending a request to buy 10,000 shares. The broker acknowledges the request and

starts filling it in a number of steps. At the end of the day, the broker sends a “Done

For Day” message and stops the filling process. This test case identifies the messages
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Figure 5.5: Sample test case for a financial system

that are expected to be communicated between different parties of a financial system.

In this scenario, the communication of a specific message can be regarded as a feature.

To automate the process of testing, one usually specifies test cases in a certain

scripting language. Such a script is called a test script. Not only are such test scripts

of great help for failure detection, but also we can exploit them for defect localization

as they automate the process of tracing. As in feature location approaches, we require

that at least one test case in the test suite exercises each feature and each test case

exercises at least one feature. Also, no feature is exercised in all the test cases of the

test suite (Wilde and Scully, 1995).

5.2.3 A Special Case: Distributed Tracing in SOA-based Sys-

tems

Service-Oriented Architecture (SOA) is a set of principles and methodologies for de-

signing and developing software in the form of interoperable services. These services
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are well-defined business functionalities that are built as software components that

can be reused for different purposes. An SOA-based system consists of a client which

connects to and uses services provided in an SOA-based environment. Compared

with conventional monolithic systems, collecting trace data from SOA-based systems

is challenging (Wilde et al., 2008) for two reasons:

• Distribution of traces: in an SOA-based system, execution of a scenario typi-

cally involves services that have been deployed on different platforms. Hence,

the trace of an execution may be recorded in multiple files. Therefore, for an

analysis of the trace data (including building the dynamic call graph) one may

require to aggregate multiple trace files. For aggregation we need to know what

components are involved in the execution. This may not be known from the

start and dynamically be determined at run time.

• Concurrency of events: in a service oriented architecture, services are exploited

by many concurrent users. Therefore, the trace of a service may interweave data

related to different users and hence different scenarios. Figure 5.6 illustrates a

sample SOA-based system. There are five services (S1 to S5) and two clients

(C1 and C2).Now assume the following situation. We run client C1. C1 calls

operation Op1 of service S1, represented as S1.Op1. S1 calls operation Op2 of

service S2. On the other hand, there is also some unknown client C2 in the

environment which invokes S2.Op2 through a call to service S4. In this case,

the trace file generated for service S2 contains data related to both clients and

it is hard to see which instance of S2.Op2 belongs to which client.

As a special case, in this section we are considering the challenges of distributed

tracing in SOA-based systems. The mechanism we suggest in this work for aggregating
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Figure 5.6: Sample SOA-based system
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distributed traces exploits three types of causality:

• Time causality: is the before-after relation amongst trace records, based on

their timestamps.

• Textual causality: is the use of method names as an indicator of a caller-callee

relationship.

• Frequency causality: is the use of the fact that the frequency of observing

a certain method call in a trace file is related to the frequency of running a

certain scenario.

The aggregation mechanism starts by processing the trace associated with the

client program, then we search for instances of service operation calls and download

the trace files associated with those services. In this step, we start processing the

downloaded traces. In this process, we first use time causality between a caller and

a callee, and discard data records timed either before the time of service operation

call or after returning from that call. Then, we partition the remaining records into

a number of data blocks. A data block, is a portion of a trace file which is associated

with the execution of a single service operation. We use textual analysis to indicate

data blocks. Each data block starts with an “Enter” record, indicating entrance to a

method and ends with an “Exit” record, indicating exit form the same method. Using

textual analysis, we also detect those data blocks which correspond to an operation

different from the one called, and discard them. Next, we assign a unique ID to

remaining data blocks and add them to a tree called the block execution tree.

The block execution tree is proposed in this work to aid in the process of dis-

tributed trace aggregation. It is defined as a directed rooted tree which represents
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the caller-callee relation among data blocks, where the caller is the block which in-

cludes a call to a service operation and the callee is the block associated with that

service operation. The block execution tree is built gradually as data blocks are de-

tected in trace files. The root of the tree represents the client program and children

of the root are the blocks detected in the trace of services that are directly called

from the client. Figure 5.7 illustrates an example tree built using this approach. In

this figure, (a) shows five trace files associated with services S1 to S5 as well as the

trace file associated with the client program. As you see, the irrelevant trace data is

crossed out and the relevant blocks, indicated with ovals, are numbered for unique

identification. (b) shows the block execution tree associated with the trace data in

(a).

Root
1

2
5

3

4

6

S1 S2 S3C1

S4 S5

C2

Root

2

(a) (b)

6

1

3
4

5

Service Call
Edge in Block Execution Tree

Figure 5.7: (a) Service trace files partitioned into blocks (b) block execution tree
associated with (a)
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In this stage, we remove the remaining irrelevant data blocks from the block

execution tree. As mentioned earlier, a large amount of irrelevant trace data have

been discarded using time and textual causalities. However, due to concurrency of

events in SOA, there is a possibility that the same service operation is called at about

the same time by different users. The blocks generated as a result of such incidences

cannot be distinguished via time or textual analysis. We use frequency causality

to deal with this issue. In this mechanism, we repeat the execution of the client

program with the same input parameters a certain number of times and count the

instances of the questionable data blocks. If the number of instances is more than

or equal to the number of runs, the block remains, and if not it is deleted from the

block execution tree. Respectively, the sub trees starting from deleted blocks are

removed. The rationale behind this analysis is that by repeating the execution of the

client program, we basically repeat our scenario and respectively each relevant block

is repeated in the generated traces. For example in Figure 5.7, blocks three and four

belong to different scenarios and it is not clear which one is executed after block one.

By applying frequency analysis, we could indicate the relevant block.

Resolving all uncertainties leads to a tree where children of a block are blocks

associated with different service calls of the same scenario. In this stage, we merge

the traces by replacing each service call with its corresponding block. A depth first

pre-order traversal of the block execution tree indicates in which order the blocks

should be visited for this reason. In this traversal, nodes are visited in VLR mode

(parent-left child-right child).

Details of tracing in SOA systems and the uses of it are provided in the pa-

per (Yousefi and Sartipi, 2011).
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5.3 Constructing and Reducing Dynamic Call Trees

As mentioned before, running a scenario on an instrumented system will result in the

generation of a trace file which in our case is a record of method entries and exits

as illustrated in Figure 5.4. Such a trace can easily be translated into a dynamic

call graph. We represent dynamic call graphs as trees, by assigning distinct nodes

to different calls to the same method. Compared with the graph representation of

dynamic call relations, the tree representation is less compact but more precise in

illustrating call relations. For example, as noted by Xie and Notkin (Xie and Notkin,

2002), “a call chain whose length is beyond two is difficult to be extracted from the

call graph when one method of that chain, which is neither the head nor the tail of

that chain, is called by another method besides the call made by the caller in that

chain”.

In this tree representation, we represent each trace as a directed rooted ordered

tree (defined in Chapter 3), where nodes represent methods, edges represent method

calls, children of a node are methods that are directly invoked from the parent method

and are ordered according to their time stamps. The root of the tree is the main

entry method (usually associated with the main method in a program), and all other

methods are children of the root, ordered left to right according to their time stamps.

Although we do not consider concurrency-related defects in the current work, we

facilitate the localization of non-concurrent defects in multi-threaded systems. If the

target system is multi-threaded, we consider a multi-threaded call tree. We represent

a multi-threaded call tree as a tree with a dummy root whose children are roots of the

call trees associated with the threads involved in the execution. Figure 5.8 illustrates

a sample trace and its corresponding multi-threaded call tree.
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main

a

a

b

d

b

(a) (b)

root

dummyT0 dummyT1

Enter main P0 T0
Enter a P0 T0
Enter a P0 T1
Enter d P0 T1
Enter b P0 T0
Exit b P0 T0
Exit d P0 T1
Exit a P0 T1
Enter b P0 T0
Exit b P0 T0
Exit a P0 T0
Exit main P0 T0

Figure 5.8: (a) Sample trace and (b) corresponding multi-threaded call tree

Dynamic call graphs and specially call tree representations of them can become

very big and thus take a lot of memory. To reduce the required memory, it is cus-

tomary to apply call graph reduction techniques (Eichinger, 2011). In this work we

use iteration reduction, where we get rid of replicated method calls resulting from the

execution of loops and nested loops. In this case, we keep one instance of a method

call in a loop and omit the rest. To perform this, we use a string repetition finder

algorithm (Crochemore, 1981) and a cascading mechanism to consequently reduce all

repetitive subtrees.

Algorithm 1 presents a pseudo code for cascading iteration reduction. Given a

dynamic call tree t, this algorithm produces t′, the iteration-free version of t. In

the first step (line 3), the algorithm computes symbolic encodings of all nodes in t.

A Symbolic Encoding of a tree node in a rooted-ordered tree is a symbolic string

which represents children of the node in a unique way. The setSymbolicEncodings
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Algorithm 1 Cascading iteration reduction

Input: a dynamic call tree t
Output: a dynamic call tree without iterations t′

1: procedure cascadingIterationReduction(t)
2: repeat
3: setSymbolicEncodings(t);
4: repsFound = False;
5: repsFound← findAndRemoveRepetitions(root of t);
6: until ¬repsFound � (no repetitions are found)
7: return t′

8: end procedure

9: procedure findAndRemoveRepetitions(r)
10: findStringRepetitions(symbolic encoding of r);
11: if repetitions are found then
12: remove corresponding subtrees from t
13: repsFound = True

14: end if
15: for all remaining subtrees do
16: findAndRemoveRepetitions(subtree’s root)
17: end for
18: return repsFound
19: end procedure
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procedure, first assigns unique IDs to distinct bottom-up subtrees in t. Then for each

tree node in t, it builds a string out of the IDs assigned to the subtrees rooted at the

node’s children by putting them in the same order as the children themselves. Figure

5.9(a) illustrates a sample tree where unique numbers are assigned to its distinct

bottom-up subtrees. It also illustrates symbolic encoding of the tree’s root node (i.e.,

the main method), which is string 23437.

Main

a c a

b b b

d

a c

b bb

Main

a c a

b b b

d
(a) (c)

Main

a c a

b b b

d

a c

b b
1 1 1 1 1

[23437]

2 3 4 3

5

6

7

1 1 1 1

4

2 3 2 3

5

6

[23236]

(b)

Figure 5.9: (a) Sample tree, unique IDs assigned to its subtrees, and symbolic encod-
ing of its root method (b) the tree after calling findAndRemoveRepetitions once (c)
the tree after all iterations are removed

In the next step of the algorithm (lines 4 and 5), it searches for iterations in t and

removes them. This is done via a call to procedure findAndRemoveRepetitions. This

procedure incorporates Crochemore’s string repetition finder algorithm (Crochemore,

1981) to find repetitions in the symbolic encoding of t’s root (line 10). If repetitions

are found (lines 11 to 14), it consequently removes corresponding repetitive subtrees

from the tree. Then the algorithm calls 5 again for the remaining children (lines 15

to 17).

To remove less obvious iterations (i.e., nested loops) we call procedure findAndRem-

oveRepetitions several times. A repeat-until loop calls this procedure until no
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repetitions are found in t any more (lines 2 to 6). Figure 5.9 illustrates a sample call

tree before reduction, two passes of findAndRemoveRepetitions and the tree after

all iterations are removed.

5.4 Mining Frequent Subtrees

Frequent-pattern mining is the essence of our defect localization technique. It is

specifically used as part of the process of feature location to identify dynamic call

trees representing successful executions of a feature.

A frequent pattern in this work is a subtree that is frequently observed in dynamic

call trees of passing traces. It represents a task that is frequently performed in

passing scenarios. Therefore, if a feature is exercised frequently (i.e., in greater than

a threshold number of scenarios), the resulting patterns include those that represent

the frequent feature. Such patterns identify paths in the code that are traversed

in successful executions of the feature. Details of this process are discussed in this

section. The upcoming section also discusses our pattern analysis approach which

explains how one can spot in all possible frequent patterns, those that represent the

target feature.

Sartipi and Safyallah (Sartipi and Safyallah, 2010) also used frequent-pattern min-

ing to localize the implementation of software features. Their approach is different

from the work in proposed in this thesis: 1) they consider method call sequences as

opposed to call trees; 2) they assume that features are deterministic in the sense that

they always execute the same sequence of methods.

Eichinger et al., (Eichinger, 2011) also used frequent-pattern mining for defect

localization. They use subgraphs obtained from frequent-subgraph mining as different
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contexts and perform further analysis for every subgraph context separately. The way

we use frequent patterns in this work is different: 1) assumption of single failing cases,

means that no frequent patterns can be mined to represent a failure, thus Eichinger’s

suspiciousness formulae are no longer effective; 2) we reduce the number of patterns

to be analyzed by identifying patterns related to the failing feature; 3) we use frequent

passing patterns as means of specifying the expected behavior of the failing feature.

The following subsections provide details of our frequent-pattern mining algo-

rithm.

5.4.1 Definitions

In this work a pattern is a closed frequent bottom-up subtree of a dynamic call tree.

As introduced in Chapter 3, a bottom-up subtree T ′ of a rooted labeled ordered tree

T consists of a node from T ( which will be the root of T ′) and all the descendants of

this node (down to the leaves) such that the nodes and edges of T ′ exhibit the same

properties (i.e., labeling and sibling ordering) as in the super tree T .

In frequent-subtree mining, one is given a set of trees TS (also called a tree-set)

to be mined for frequent subtrees. A frequent subtree is a subtree T ′ where the

cardinality of its enclosing trees from TS (namely, the frequency of T ′) is greater

than or equal to a given threshold value, called the minimum frequency. In this case,

the subset of trees enclosing T ′ constitute the support set of T ′. A frequent closed

subtree is a frequent subtree T ′, where for any other frequent subtree T ′′ such that

T ′′ is a super tree of T ′, the frequency of T ′ is greater than the frequency of T ′′.

We also consider another threshold for subtree mining called minimum height, which

identifies the minimum height that a subtree must have in order to be considered as
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a candidate pattern.

Since we perform pattern mining on the set of passing call trees, the support set of

a pattern in this work is the set of passing test cases which exhibit the pattern in their

call trees. In the experiments we performed in this study, we consider both minimum

frequency and minimum height thresholds to be two because we want to capture as

many patterns as possible to reduce the risk of missing any useful ones. The “closed”

condition for patterns drastically reduces the number of extracted patterns and thus

makes our analysis less costly. It rules out insignificant patterns, those which do not

add more to the information provided by the frequent closed subtrees. By definition,

any sub tree of a frequent closed tree has the same support as the super tree, and

thus not really worthwhile to keep.

5.4.2 Related Work

There is a major difference in the way subtree mining algorithms define a “subtree”.

Most of the proposed algorithms are focused on “embedded” and “induced” subtree

mining (Chi et al., 2004a). One well-known algorithm for “bottom-up” subtree mining

is based on the work by Luccio et al., (Luccio et al., 2001, 2004). It uses the string en-

coding representation of subtrees which is defined in a recursive way as follows: 1) for

a rooted ordered tree T with a single vertex v, the pre-order string of T is PST = lv0,

where lv is the label for the single vertex v, and 2) for a rooted ordered tree T with

more than one vertex, where the root of tree is labeled r and the children of r are

r1, ..., rk from left to right, the pre-order string is PST = lrPST (r1)...PST (rk)0, where

PST (r1), ..., PST (rk) are pre-order strings for the bottom-up subtrees T (r1), ..., T (rk)

rooted at r1, ..., rk, respectively. The proposed subtree mining algorithm by Luccio
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et al., first initializes an array of pointers to each node in a tree-set (note that ev-

ery pointer points to the root of a bottom-up subtree); then, sorts the pointers by

comparing the string encoding of the subtrees to which they point; and finally, scans

the array to determine the frequencies of the bottom-up subtrees. Time complexity

of this algorithm in all cases is O(m.n. logn), where m is the number of nodes in the

largest tree of the tree-set and n is the number of all nodes in the tree-set. The major

drawback of the algorithm proposed by Luccio et al., is that the number of candidate

bottom-up subtrees is huge and the cost of frequency counting is high.

In general, most subtree mining algorithms adopt an Apriori-like approach, which

is based on the Apriori heuristic for association rule mining (Agrawal and Srikant,

1994), stating that any sub patterns of a frequent pattern must be frequent. The

Apriori-like algorithms for subtree mining have two major steps: candidate genera-

tion, and frequency counting. The essential idea is to iteratively generate the set of

candidate patterns of length (k+1) from the set of frequent patterns of length k (for

k ≥ 1), and check their corresponding occurrence frequencies in the database.

5.4.3 Proposed Algorithm

The proposed subtree mining algorithm in this section is an extension of the bottom-

up subtree mining algorithm by Luccio et al. (Luccio et al., 2001, 2004). As mentioned

before, the main bottleneck of Luccio’s algorithm is that a huge number of candidate

subtrees are generated in the first step and the cost of frequency counting is very

high. However, a lot of candidate subtrees are infrequent. The main idea behind

our algorithm is to find an effective pruning strategy in order to reduce the number

of candidates. By considering the minimum frequency property at early stages of
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our algorithm, we incorporate the Apriori heuristic to decrease the number of sub-

trees checked throughout the execution of the algorithm and hence reduce its time

complexity. Moreover, the algorithm proposed by Luccio et al., (Luccio et al., 2001,

2004) mines both closed and non-closed bottom-up subtrees. However, we need to

distinguish between closed and non-closed patterns. Therefore in the final step, our

algorithm indicates and keeps closed patterns and discards the rest.

Algorithm 2 Mining frequent closed bottom-up subtrees

Input: set of trees treeSet, minimum frequency thresholdminFreq, minimum height
threshold minHeight

Output: frequent closed bottom-up subtrees
1: initiate a 2-dimensional linked list whose elements are objects consisting of point-

ers to root of subtrees in the treeSet and their support sets
2: for i = 0 to max height of trees do
3: tag subtrees with an infrequent child as “infrequent” and delete their corre-

sponding pointers
4: update support sets for level i
5: tag subtrees where frequency < minFreq as “infrequent”
6: end for
7: remove non-closed patterns
8: print pattern info for all patterns starting from level minHeight

Algorithm 2 presents our subtree mining algorithm. Given a set of trees treeSet, a

minimum frequency threshold minFreq and a minimum height thresholdminHeight,

this algorithm mines frequent closed bottom-up subtrees from the treeSet. Steps of

the proposed algorithm are as follows.

Step 1 (line 1) - the algorithm initiates a 2-dimensional linked list of pointers

that cover all nodes of the treeSet, such that pointers in the same row point to nodes

in the same tree level. The level of a node is defined recursively as follows. Level of a

node is equal to maximum level of its children plus one, where leaves are of level zero.

Based on this definition, row L0 contains pointers to leaves, row L1 contains pointers
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to parents with leaf children, and so on. Not that, each entry in the 2-dimensional list

points to the root of a bottom-up subtree. In the beginning, the algorithm assumes

that all subtrees are “frequent” and marks them accordingly. It also initializes the

support set of each subtree with the tree containing its root node. The number of

rows in the 2-dimensional list is equal to the maximum tree-height in the treeSet.

Step 2 (lines 2 to 6) - the algorithm iterates over the list, starting from row

L0 (i.e., the leaves) and continuing to the top row. It performs the following in each

iteration: a) deletes pointers pointing to a node with at least one infrequent child

and marks corresponding nodes as “infrequent”; according to the Apriori heuristic

sub-patterns of a frequent pattern must be frequent too. Based on this heuristic,

deleting infrequent nodes and their ancestors does not change the result of pattern

mining. b) Sorts the remaining pointers in a row. This results in identical subtrees

becoming adjacent in a row. Then, it scans the row to update the support sets by

aggregating the support set of identical subtrees. Note that in our frequent-pattern

mining algorithm, we consider two subtrees st1 and st2 identical, if there’s a one-

to-one relation between their nodes and edges such that, if nodes a and b in st1 are

mapped to nodes a′ and b′ in st2, then edge (a, b) in st1 is mapped to edge (a′, b′)

in st2. Also, the order of children of corresponding nodes in st1and st2 must be the

same. c) Scans the row to detect each pointer pointing to an infrequent subtree,

by counting its support set members and comparing it with the minFreq threshold.

Then it marks such nodes as “infrequent”.

Step 3 (line 7) - the algorithm scans the 2-dimensional list from top row to the

first (i.e., the leaves in L0) to delete infrequent subtrees and those whose supports

are the same as their parents (i.e., non-closed). For each pointer at a higher row, the
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algorithm deletes its children located at lower rows of the list, if the parent and child

have same support set. The remaining pointers in the 2-dimensional list indicate

closed frequent bottom-up subtrees of the treeSet.

Step 4 (line 8) - in the final step, the algorithm prints patterns whose heights

are greater than or equal to minHeight.

Figure 5.10 illustrates a set of trees to be mined, four iterations of the pro-

posed mining algorithm, and the discovered frequent bottom-up subtrees, where the

minFreq and minHeight thresholds are equal to two. It first shows a 2-dimensional

list of pointers to subtrees in the tree set. As the maximum tree height is four, there-

fore we have four tree-levels and four rows in the 2-dimensional list of pointers. The

figure then shows how rows are updated in several iterations in step 2. Discovered

frequent closed bottom-up subtrees are also marked on the trees.

Time complexity of the proposed algorithm in the worst case is O(m.n.logr+n.s),

where m is the number of nodes in the largest tree in the tree-set, n is the number of

all nodes in the tree-set, r is the size of longest row in the list, and s is the number

of trees in the tree-set, for the following reasons. Steps 1, 2-a and 2-c each require a

single pass over the nodes of the tree-set and thus take a total of O(n) operations; Step

2-b takes a total of O(m.n.logr) operations, where the comparison takes a maximum

of O(m) operations, and thus sort takes a maximum of O(n.m.logr) operations; Step

3 is performed in a single pass over the nodes of the tree-set, in which the comparison

of support sets takes O(s) operations, thus takes the total f O(n.s).
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Figure 5.10: Sample tree-set and four iterations of proposed mining algorithm
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5.5 Pattern Analysis

Our aim in pattern analysis is to discover the relation between features and patterns.

When a feature fails, a developer usually examines the path it has traversed in the

code to locate programming defects. Contrasting the call tree of a failing execution

with what the developer expects, is a way of identifying suspicious methods. Know-

ing what to expect in this scenario is not a simple task and requires deep knowledge

about functional requirements of the system, algorithms used to satisfy the require-

ments and the code implementing the algorithms. Pattern mining can help in this

process. Frequent passing patterns identify paths that have previously led to success-

ful runs more than a threshold number of times. So, they can be used to identify

expectations. However, mining typically produces a lot more patterns than the ones

contributing to the execution of the target feature. For example, in Figure 5.11, three

patterns are discovered in the pattern mining stage, but only pattern (I) and (II) con-

tribute to the execution of the target (failing) feature, Acknowledge. Our ultimate

goal in pattern analysis is to distinguish between “feature-specific”, “common”, and

“irrelevant” patterns, as explained in the following subsections.

5.5.1 Pattern Semantics

In this section we explain what patterns represent. In other words, we depict the

relation between patterns and control structures in the code. A pattern is a bottom-

up subtree of a dynamic call tree. It represents the structure of a method in terms

of how it calls other methods. Figure 5.12 illustrates different control structures and

the corresponding patterns we expect from correct executions of those structures.

A program consists of the following control structures:
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Feature Specific Irrelevant
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Figure 5.11: Patterns and their relation to target feature, “Acknowledge”

• Sequence: represents statements that are executed sequentially (Figure 5.12-I).

In a correct execution of a sequence, we expect a fixed pattern. However, if

there are any run-time problems, we may see other patterns.

• Method call: is a control jump from the execution of a caller method to the exe-

cution of a callee. Figure 5.12-II illustrates a method call and its corresponding

pattern. Recursion is a specific kind of method call.

• Selection (or Alternation): is choosing between alternative paths. Figure 5.12-

III illustrates a selection control structure. In this case we have alternative

patterns, i.e., exactly one of the alternative methods must be seen in a correct

execution.

• Iteration: is repeating the execution of certain statements (Figure 5.12-IV).

Obviously, any complicated structures would be a combination of basic structures,
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main( ) {
              A ( );
              B ( );
              C ( );
main( ) }
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              A ( );
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              B ( );
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main( ) {
              if (cond)
                            A ( );
              else
                            B ( );
main( ) }

main( ) {
              while (cond)
                                 A ( );
main( ) }

Figure 5.12: Control structures and their corresponding patterns
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discussed here, and thus can take advantage of the same discussion.

5.5.2 Pattern Types

As illustrated before, Figure 5.11 presents three types of patterns in relation to a

target feature.

• A pattern that is specific to a certain feature f is called feature-specific, or

f -specific for short. It represents core logic of feature f . In other words, it

represents a path in the code that is traversed to perform f and is exclusive to

f . Pattern (II) in Figure 5.11 represents a feature-specific pattern for a feature

called “acknowledge”.

• A common pattern represents a shared functionality. In other words, a task

that is performed as part of the execution of a number of features. Usually a

common pattern represents a low-level subtask such as sorting, math calcula-

tions, etc. A specific case of a common pattern is a pattern that is exhibited in

all executions. We call such pattern omni-present. It usually represents a very

basic functionality of the system (such as system initialization, timer related

tasks, event handling, and message handling), that is inevitably performed as

part of any execution. Pattern (I) in Figure 5.11 illustrates an omni-present

pattern.

• An irrelevant pattern depicts a non-interesting, random, or unknown shared

functionality in a set of runs. For example, if we have both features f1 and f2

frequent in our executions, the pattern associated with f2 is irrelevant to f1 and

vice versa. Also, in some applications such as a picture editor, activities such
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as mouse movements could generate meaningless noise patterns. Pattern (III)

in Figure 5.11 illustrates an irrelevant pattern.

Based on the above definitions, the following characteristics are assumed for dif-

ferent pattern types.

• A feature f can have more than one feature-specific pattern. f -specific patterns

can be related to different subtasks of f or alternatives for the same subtask.

Features can have deterministic and/or non-deterministic subtasks. A deter-

ministic subtask is one which executes the same path in the code in every

execution. As a result, it produces the same execution pattern in all runs. A

non-deterministic sub-task executes different paths in the code depending on

the context and input values. Thus, it produces multiple alternative patterns.

• A pattern cannot be feature-specific for more than one feature or both feature-

specific and common or omni-present.

5.5.3 Identifying f-specific Candidate Patterns

As mentioned before, our ultimate goal in pattern analysis is to differentiate between

feature-specific, common and irrelevant patterns in relation to the target feature.

Deciding about the type of a pattern is essentially a binary decision. However, unless

one has a really good insight into the target system’s code, it is hard to categorize

the patterns. In general, a solution to this problem involves complex analysis of all

patterns and features as well as their combinations, which is exponential in nature

(See Appendix B). To reduce the complexity of this problem, we change our goal from

categorizing the patterns to ranking them in a way that feature-specific patterns get
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the highest ranks.

The reason we choose to focus on feature-specific patterns is that we can refor-

mulate common patterns in terms of feature-specific patterns where the feature is no

longer “single” but a “set”. In other words, if we know what feature or features fail,

by looking at the patterns specific to “the set of failing features” we would be able

to localize the defect.

To rank a pattern based on its specificity to the target feature, one important clue

is the support set of the pattern and the way it intersects with the support set of the

target feature (which, similar to the support set of a pattern, is defined as the set of

test cases exercising the feature). In this regard:

• A f -specific pattern is only exhibited in tests exercising feature f . In other

words, the support set of p is a sub set of the support set of f .

• An omnipresent pattern is is exhibited in all test cases. However, a pattern

common to a set of features is exhibited only in tests that exercise any feature

from the set.

• Any pattern that is only exhibited outside the support set of a feature is irrele-

vant. However, patterns that intersect with a feature’s support set can also be

irrelevant.

Based on the above statements, we define a f -specific candidate pattern to be a

pattern that is only observed in tests exercising feature f . In other words, its support

set is enclosed in the support set of f , or:

p is f -specific ⇐⇒ supportSet(p) ⊆ supportSet(f).
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A sub set of patterns that exclusively includes all f -specific-candidate patterns is

called a f -specific candidate set. The term “candidate” suggests that this set includes

all f -specific patterns, but potentially can include common and irrelevant patterns

too (for example those that are specific to other features, whose support sets intersect

with that of f). Further analysis is required to identify the set of f -specific patterns, a

sub set of the f -specific candidate set that exclusively includes all f -specific patterns.

The same is true if we want to rank f -specific candidate patterns such that f -specific

patterns are ranked highest.

5.5.4 Ranking Candidate Patterns

An important clue to help rank the patterns according to their specificity to a target

feature is provided by methods inside a pattern. A pattern consists of a set of methods.

The idea here is that, if a pattern contains methods that are highly specific to a

feature, then the pattern itself must also be specific to that feature. We use and

extend relevance formulations, from the domain of feature location, to identify to

what degree methods are specific to features and consequently the degree of specificity

of patterns to features. The following subsections explain different formulations as

well as the ranking process.

Related Work

In “feature location”, researchers try to identify in a system, methods that imple-

ment a specific functionality (i.e., feature). There are different approaches to this

problem. We are interested in statistical dynamic analysis-based approaches, where

probabilistic formulations based on dynamic scenario-based information are provided.
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Such formulations, called relevance formulations, quantify a method’s specificity to

a target feature, i.e., to what extent a method is specific to the target feature. This

usually facilitates making a fuzzy decision about whether a method is feature-specific,

shared among a subset of features, or common to all features.

Software reconnaissance(SR) (Wilde et al., 1992; Wilde and Scully, 1995) is one of

the earliest feature location techniques proposed by Wilde and Skully. It analyzes ex-

ecution traces of two sets of scenarios or test cases: 1) scenarios that activate a target

feature, and 2) those that do not. Feature location is then performed by analyzing

the two sets of traces using both “deterministic” and “probabilistic” approaches. In

the probabilistic approach, they use:

NC(ci, fj)

NC(ci)
,

where NC(ci, fj) is the number of times component ci appears in tests exercising

feature fj , and NC(ci) is the total number of times that component ci appears in tests,

to compute the relevance of component ci to feature fj, and thus identify components

that are primarily involved in the implementation of fj. In the deterministic approach,

they use set operations such as set difference or intersection to categorize components

based on their relation to the feature. For example, all of the components that

appeared in test cases exercising fj subtracted by those components that appeared

in the remaining test cases, would be the ones that primarily implement fj .

Software Reconnaissance provides a binary judgment based on whether an element

is uniquely activated by a feature. As an extension to SR, Edwards et al., (Edwards

et al., 2006) propose the component relevance index, pc, which is the proportion of

executions of component ci that occur when the feature is active, that is:

Pc =
NE(fIntervals, ci)

NE(ci)
,
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where NE(fIntervals, ci) is the number of events that are active in fIntervals, for all

events belonging to component ci, and NE(ci) is the total number of events belonging

to component ci. In this formulation, fIntervals are the time intervals in which feature

f is active and an event may correspond to creating an object, entering a method, or

executing a code fragment. The use of a numerical relevance index allows one to view

the identification of feature-related components as a statistical process, and avoids

the all-or-nothing nature of set operations.

Antoniol et al., (Antoniol and Gueheneuc, 2005, 2006; Poshyvanyk et al., 2007)

assume a simplified one-to-one mapping between features and components so that

events and components can be interchanged. They reformulate Edward et al’s rele-

vance index into:

Pc(ei) =
NE(ei, fj)

NE(ei, fj) +NE(ei, f̄j)
,

where, NE(ei, fj) is the number of times ei appears in tests exercising fj and NE(ei, f̄j)

is the number of times the same event appears in the remaining tests. Based, on this

formulation, they propose the Scenario based Probabilistic Ranking (SPR) where the

relevance index has the form of:

r(ei) =
NE(ei, fj)/NE(fj)

NE(ei, fj)/NE(fj) +NE(ei, f̄j)/NE(f̄j)
,

where, NE(fj) is the total number of events in tests exercising fj and NE(f̄j) is the

total number of events in the remaining tests.

As a continuation of SPR, Eaddy et. al.(Eaddy et al., 2008; Eaddy, 2008) proposed

Element Frequency-Inverse Concern Frequency (EF-ICF) where the relevance metric

is defined as:

NL(li, fj)

NL(li)
× log2

NF

NF (li)
,
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where NL(li, fj) is the number of times element li appears in tests exercising feature

fj , NL(li) is the total number of times that li appears in the tests, NF is the total

number of features, and NF (li) is the number of features that activate li.

EF-ICF is based on Term Frequency Inverse Document Frequency (TF-IDF) (Baeza-

Yates and Ribeiro-Neto, 1999) and Dynamic Feature Traces (DFT) scores. TF-IDF is

a metric used in information retrieval to indicate relevance of a query to a document

based on the terms appearing in the query and the document. EF-ICF essentially

borrows the TD-IDF idea to adjust the DFT to account for the likelihood that the

element is activated by other features.

Our Ranking Formulations

Following the literature on relevance measures we define the following four formulae

to compute a method’s relevance to a specific feature. We call a quantification of

such a relevance the degree of specificity. Degree of specificity of method m to feature

f , or DS(m, f) is defined as:

• DS1(m, f) =

NT (m,f)
NT (f)

1 + NT (m,f̄)

NT (f̄)

• DS2(m, f) =

NT (m,f)
NT (f)

NT (m,f)
NT (f)

+ NT (m,f̄)

NT (f̄)

• DS3(m, f) =

NM (m,f)
NM (f)

1 + NM (m,f̄)

NM (f̄)

• DS4(m, f) =

NM (m,f)
NM (f)

NM (m,f)
NM (f)

+ NM (m,f̄)

NM (f̄)

where,
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• NT (m, f): number of tests that exercise feature f and produce a call to method

m in their traces

• NT (f): number of tests that exercise feature f

• NT (m, f̄): number of tests that do not exercise feature f and produce a call to

method m in their traces

• NT (f̄): number of tests that do not exercise feature f

• NM(m, f): number of calls to method m in tests exercising feature f

• NM(f): total number of method calls in tests exercising feature f

• NM(m, f̄): number of calls to method m in tests not exercising feature f

• NM(f̄): total number of method calls in tests not exercising feature f

Note that DS4 is an interpretation of Antoniol et al.’s relevance and the other

three formulae are different variations of DS4 which follow the same concept, but

implement slightly different realizations. To compute the degree of specificity values,

we record distinct method calls as well as the frequency of each method call in traces

and patterns.

Any of these four formulae or any other formula from the literature can be used to

identify the method-feature relevance. However, in this work we prefer to use formula

DS2 and DS1 where DS2 is used as the primary formulation and DS1 is used as a tie

breaker. There are two reasons for this:

1. We believe that in the quantification of relevance, one should not depend so

much on the frequencies of method calls as to whether they are called at all.
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Consider the following example. Assume that we have 100 test cases exercising

a specific feature f and 100 others that do not. Assume method m appears in

all traces exercising f but only in one of the traces that do not exercise f . Also

assume that m is called once in each trace exercising f and n times in the trace

that does not exercise f (assume that m is called in a loop). In such a setting,

we have DS2(m, f) = 99%. However, depending on n, DS4(m, f) is varied. For

example, if n = 1 then DS4(m, f) = 99%; if n = 100 then DS4(m, f) = 50%;

if n = 200 then DS4(m, f) = 33%. As you see DS4 is not very reliable as it

changes as a result of the number of times a loop operates. Also, the above

setting is very likely to represent a case where m is shared between features f

(exercised in the first 100 tests) and an unknown feature g (exercised in some

tests including number 101) such that feature f always requires m but feature

g needs it occasionally. We believe that in such a case the likelihood of m

belonging to f should be a great number, because it is more relevant to f than

to any other features such as g. Therefore, DS2 seems to be producing more

compelling numbers.

2. DS1 is a good tie breaker when dealing with specificity numbers generated by

DS2. For example, as long as there are no incidents of a call to m in traces

which do not exercise f , DS2 always produces 1.0, implying that if m is only

called in traces exercising f , then it must be specific to f . However, DS2 can

not differentiate between the following cases: 1) m is only called in 1% of traces

exercising f ; and 2) m is called in 100% of traces exercising f . Although m may

be specific to f in both cases, the latter implies a stronger relation between m

and f . DS1 is a good formula to break the ties in such scenarios.
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Pattern Ranking Mechanism

Relevance formulations studied in the previous sections quantify the specificity of a

method to a feature. However, what we seek in this work is a way of identifying the

specificity of patterns to features. In the following, we explain how we use relevance

formulations to rank patterns according to their specificity to a feature.

Patterns consist of methods. To rank patterns according to their specificity to

a feature we use pairwise comparison, where pairs of patterns are compared based

on the specificity numbers calculated using DS2 and DS1. In this approach, we first

descendingly sort methods of each pattern based on DS2 values where DS1 is used as

a tie breaker. Then, starting from the beginning, we examine the first pair of methods,

one from pattern p1 and the other from pattern p2. Comparing these methods using

DS2 where DS1 is a tie breaker can result in one of the following three outcomes:

• The methods have the same specificity: in this case the algorithm examines the

next pair of methods without preferring either of the patterns over the other.

• One method is more specific than the other: the comparison stops. The pattern

containing the more specific method is considered more specific. The rationale

behind this is that, if a pattern includes a method with high specificity to the

target feature then the pattern is more likely to be feature-specific no matter

what other methods in the pattern are.

• There’s no counterpart method on one of the lists: if the method at hand has

specificity value of greater than 0.5, then its corresponding pattern is considered

more specific but if it has a specificity value of smaller than 0.5, then its corre-

sponding pattern is considered less specific. In this case, all methods up to this
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point have had equal specificities and cannot be used to differentiate between

the patterns. The rest of the methods add to the likelihood of specificity, if

they are considered specific (greater than 0.5), and deduct from it otherwise

(less than 0.5).

When comparing a pair of patterns there is one other thing that needs to be

considered and that is the relation between the two patterns in terms of the methods

they include. Figure 5.13 uses Venn diagrams to illustrate different cases. In general,

we can not decide if one pattern is more specific than the other based on their shared

methods. So, if the two patterns we are comparing are of form (b), we ignore their

shared methods in the pairwise comparison.

A B A B A    B

(a) (b) (c)

Figure 5.13: Relation of pattern A to pattern B with regard to their methods: (a)
patterns have no common methods (b) pattern A and B have some shared methods
(c) pattern A includes all methods in pattern B

If the patterns are of form (c), we keep the shared methods for pattern B and

ignore them in A, thus comparing the shared part (i.e., B) against the rest of A.

This usually represents a case when one pattern is a subtree of the other one. In this

case, if the shared part contains methods that are more specific than the rest of the

methods, then the smaller pattern is more likely to represent the implementation of

the target feature and the bigger to represent a serialization of a number of features

besides the target feature. So, the smaller pattern is considered feature-specific. But
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if the shared part contains methods that are less specific than the rest of the methods,

then the smaller pattern more probably represents a utility function contributing to

the target feature and thus the bigger pattern is considered feature-specific. Note

that if A and B include exactly the same set of methods, they are equally specific to

the target feature as far as this approach is concerned.

Identifying Feature-specific Patterns

As mentioned before, there is no efficient algorithm to decide for certain if a pattern

is feature-specific (See Appendix B for details). That, in fact, was the main reason

we decided to pursue the pattern ranking approach. Nevertheless, we still need to

pick patterns that are very likely to be specific to the target feature for the sake of

pattern comparison for defect localization.

A feature in a system is usually implemented using a few core methods. The core

methods usually implement the main functionality of the feature. They use other

methods to aid them in performing their tasks. Therefore, in terms of dynamic call

trees, they are roots of subtrees implementing a feature, i.e., feature-specific patterns.

We use this assumption to pick patterns that we believe are more likely to be feature-

specific. So, to decide on the specificity of patterns to a feature we consider a threshold

number called number of roots to pick (rootsToPick). In this approach, we pick top

ranked patterns with at most rootsToPick distinct roots to be feature-specific. In our

experiments we considered the rootsToPick threshold to be equal to five. Note that

this threshold can vary according to the system we are dealing with, for example in

a system with only one feature we need to consider all patterns in pattern matching,

thus rootsToPick is ∞. Additional experimental study on the use of different values
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should be performed as future work.

Other Ranking Criteria

In this section we argue that apart from the specificity measures, other ranking criteria

could also be used to identify feature specific patterns:

• Text including method names, comments in the code, etc.: finding keywords

related to the failing feature among the method names involved in a pattern or

rather contents of the methods (including comments) is a clue that the pattern

is likely to be specific to the failing feature. This approach can be very effective

depending on how meaningful the names are in the target system’s code and

how well we can do at guessing the keywords.

• Coverage ratio: in general, the greater the coverage of a pattern over a failing

feature, the more likely it is for the pattern to be specific to the failing feature.

This works well if features are deterministic. However this is usually not the

case. For non-deterministic features, the coverage of a feature-specific pattern

tends to be smaller than that of the feature.

• Pattern size: in general patterns that are too small are more likely to perform

utility functions and thus be common patterns. This criteria is not always a

good one because some utilities are specific to the feature, also patterns that

are too big can represent random serialization of features.

• Pattern callers: compared with common patterns, feature-specific patterns usu-

ally have fewer callers. However this applies to all feature-specific patterns and
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hence distinguishing the ones that are specific to the failing feature needs more

analysis.

In this work, we chose a dynamic analysis based approach from the feature location

domain, as it is independent from the target system and does not have the above

mentioned problems. However, users of our approach can choose or prioritize any

other metrics for ranking. In reality, programmers are likely to modify the ranking

results based on their understanding of the code and the features.

5.6 Defect Localization

In this section we discuss the process of pattern matching and defect localization. The

input to this step is a list of patterns with high likelihood of being feature-specific

and the output is a report of the matching results.

5.6.1 Defect Types and their Effect on Dynamic Call Trees

Eichinger et al., (Eichinger et al., 2010b; Eichinger, 2011) identified the following de-

fects as typical programming mistakes that are non-crashing, occasional and dataflow-

affecting and/or call-graph-affecting. They concluded this after examining the liter-

ature, including the Siemens benchmark programs (Hutchins et al., 1994) that are

used in many related publications on dynamic defect localization (e.g., (Jones and

Harrold, 2005; Naish et al., 2011; Renieris and Reiss, 2003; Hsu et al., 2008)).

• Wrong variable used. An example uses variable a instead of b in some compu-

tation.
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• Wrong variable assignment. An example of such a defect is counter = a + b

where the correct code is counter = a.

• Off-by-one. This defect often happens when accessing the i + 1th element of a

collection instead of the ith or vice versa. For example, arr[i] is accessed instead

of arr[i+ 1].

• Wrong return value. In this case, only the return statement of a method has a

defect. For example, zero is returned instead of bestValue.

• Wrong branch condition. This kind of defect covers wrong comparison operators

such as a > b instead of a < b, additional conditions, missing condition, etc.

Furthermore, the Boolean expressions and, or, true and false, can be easily

misplaced in branch conditions.

• Loop iterations. This kind of defect affects the number of executions of a

loop. For example, a for loop uses the wrong counter variable or misses an

iteration: for(int i = 0; i < max; i++) instead of for(int i = 0; i <=

max; i++).

We also add another important defect and that is “missing branch”, where the

correct branch does not exist in the code usually because it is not known at design

time. This is a very common defect and one of the most difficult to catch.

In this work we focus on defects that change the structure of call graphs. Fre-

quency affecting and data flow affecting defects are not the target of this work. For

structure-affecting defects, a defect can lead to:

• Execution of a wrong branch: defects such as wrong variable usage, wrong

variable assignment, off-by-one, wrong return value, wrong branch condition,

115



Ph.D. Thesis - Anis Yousefi McMaster - Computing and Software

etc., can make the program take an incorrect branch in the code which itself

leads to a program fault.

• Problem in the execution of the correct branch: defects such as wrong variable

assignment and off-by-one can lead to run time exceptions which makes the

program stop the branch that is being executed.

• Path mixing: things such as hardware defects can lead to generation of unex-

pected paths in the code. For example, if a hardware failure happens during

the execution of an IF statement, the program may execute multiple branches

instead of picking one.

As you see structure-affecting defects lead to a deviation from the expected path.

The goal of approximate pattern matching is to identify the distance between the

path executed by defective code and the one that is expected to execute. This is done

through comparing the defective call tree of the failing feature with corresponding

feature-specific patterns.

5.6.2 Approximate Pattern Matching

In the approximate pattern matching step we search for previously mined patterns

that are specific to the target (failing) feature in the call tree of the failing execution.

As we will see in the following section the matching results convey information about

the target system and help in localizing the defect.

As our patterns are call trees, in this work we apply approximate subtree matching,

which is the technique for finding subtrees that approximately (rather than exactly)

match a pattern. In this context, the closeness of a match (i.e., the edit distance)
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is measured in terms of primitive operations (i.e., the edit operations) necessary to

convert the subtree into an exact match. The edit operations we consider in this work

are insertion (indicates that an expected method call is missing from the subject tree)

and deletion (indicates that an unexpected method call is observed in the subject

tree).

The algorithm we use for approximate subtree matching uses approximate string

matching which is similarly defined for strings. This algorithm finds longest common

subsequences of two strings and reports their differences.

Algorithm 3 presents our approximate pattern matching algorithm. In this algo-

rithm, we compare a set of patterns (the feature-specific patterns discovered in the

previous step) against a subject tree (call tree of the failing execution) to find ap-

proximate matches. For each pattern p from the list of feature-specific patterns P ,

the algorithm:

1. (lines 3 to 6) Searches for the pattern’s root method pr in the failing tree tf . In

this stage, it may find zero or more matches. If no matches are found, it reports

“root not found” and moves on to the next pattern in the list.

2. (lines 7, 8 and 13 to 20) For each m, pr’s match in the failing tree, which

is the root of the bottom-up subtree stm, the algorithm compares stm and

the tree representation of the pattern p. This is done via a call to procedure

approximateMatching. In this procedure, we: a) build a string representation

of the children of both pr and m. This is done through serializing the symbolic

representation of their labels, where each distinct label gets a unique symbol;

b)use an approximate tree matching algorithm (i.e., procedure Diff) to identify

edit differences between the string representations; c) record edit differences and
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Algorithm 3 Approximate pattern matching

Input: set of feature-specific patterns P , failing tree tf
Output: matching results (i.e., list of pattern-match pairs and their associated edit

differences, parentDiffSize and diffSize)

1: procedure approximatePatternMatching
2: for all patterns p ∈ P do
3: search for root of pattern p in the failing tree tf
4: if no matches are found then
5: print root not found!
6: end if
7: for all match m do
8: approximateMatching(p, stm);
9: print edit differences, parentDiffSize and diffSize
10: end for
11: end for
12: end procedure

13: procedure approximateMatching(p, t)
14: Diff(string representation of children of p’s root, string representation of chil-

dren of t’s root);
15: add edit differences to editDiffs
16: for all matching children child1 and child2 do
17: approximateMatching(stp,child1, stt,child2);
18: end for
19: return editDiffs
20: end procedure
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also parent nodes with different children; d) continue the matching process for

matched children through a recursive call to method approximateMatching

with inputs stp,child1, the bottom-up subtree of pattern p with root child1, and

stt,child2, the bottom-up subtree of tree t with root child2; e) return the recorded

matching results.

3. (line 9) For each p and m, the algorithm computes and prints the total number

of mismatches as diffSize(p, stm). It also, provides the total number of parents

with mismatched children as parentDiffSize(p, stm). Note that diffSize and

parentSize for a pattern whose root is not found in the failing tree are equal to

one (associated with the missing root).

Figures 5.14 and 5.15 illustrate the matching process by showing excerpts of a

sample pattern tree and a subject tree. In the first step of this process (Figure 5.14),

we search for the root of the pattern in the subject tree. Then, for each root match

we continue the matching as illustrated in Figure 5.15.

5.6.3 Analysis of Matching Results

Approximate pattern matching provides for each feature-specific pattern a list of

approximate matches in the failing tree where the edit distance operations (insertions

and deletions) are identified for each pattern-match pair. It also assigns two numbers

(ParrentDiffSize and diffSize) to each pair. In this stage we want to look a little

closer at what these numbers mean and how we can improve the pattern matching

report. Considering the values for ParrentDiffSize and diffSize, we can identify the

following cases for each pattern-match pair:
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Figure 5.14: (a) A pattern tree and (b) a subject tree
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Figure 5.15: (a) pattern tree (b) subtree with matching root from subject tree
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• Exact Match (ParentDiffSize=0, diffSize=0): indicates an exact match. An

obvious implication of this may be that the examined subtree (i.e., the match)

is defect-free as it conforms to one of the expected patterns. However, this is

not quite true. An exact match can also imply that although the observed call

tree conforms to one of the expected patterns, it conforms to the wrong pattern

due to a defect. In other words, an exact match can happen because of wrong

branches being taken in the code thus leading to the observation of a wrong

pattern. Referring to Figure 5.1, assume that in a failing execution we observe

methods A, B and D. This may indicate that the execution is correct. However,

it could also be because of a wrong branch condition as in Figure 5.1-II.

• Root Not Found (ParentDiffSize=1, diffSize=1): indicates that an expected

top method (root of a feature-specific pattern) has not been executed in the

failing run. This can point to a defect in the code (e.g., a run time exception,

a wrong branch taken). It can also be a false positive, if the execution of the

missing method is not necessary for the execution of the feature.

• Approximate Match ParentDiffSize=m, diffSize=n: indicates that the failing

execution does not conform to the expected pattern. This could point to a

defect (wrong branch condition, run time exception, etc.). However, it can be

a false positive resulting from the comparison of the wrong pattern with the

failing tree.

In the approximate pattern matching step, we provided a report of matching

feature-specific patterns against the call tree of the failing execution. This report

presents an insight into the failing execution and helps the developer to locate the
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failure’s root. However, the number of feature-specific patterns and the differentiating

methods inside them may be large, thus presenting them to the user without a proper

ordering is not a good idea.

Many of the defect localization tools provide an ordering of suspicious methods,

i.e., a ranked list of methods where those with a higher likelihood of being defective

are given higher ranks. To provide such a ranking, the related approaches typically

use suspiciousness formulations that quantify the likelihood of defectiveness for a

method based on the percentages of it’s appearance in correct and failing runs. This

approach has a couple of drawbacks: 1) Most of the suspiciousness formulations

require multiple failing cases. This violates our assumption of having a single failing

case. 2) A report involving only a ranked list of suspicious methods provides no

context about the potential defects. It only specifies suspicious method names without

identifying where and how the methods are called. Identifying methods surrounding

the suspicious methods can help in discovering the reason behind the failure.

The report we provided in the previous step, presents a context for suspicious

methods as it identifies suspicious pattern-match pairs containing those methods.

However, it does not impose a proper ranking on the suspicious pairs. In this stage

we sort the pattern-match pairs in this report in a way that pairs that are more likely

to reveal a defect are given higher ranks. In this work, we consider two metrics for

ranking:

• Coverage of a pattern (i.e., the percentage of tests that exercise the feature and

exhibit the pattern in their call trees): the higher the coverage of a feature-

specific pattern is, the more it is expected to be seen in an execution involving

the feature, hence a mismatch is more suspicious. One good formulation of this
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is provided by Dallmeier et al., (Dallmeier et al., 2005), which to the best of our

knowledge is the only other work providing a suspiciousness formulation for the

case of single failing and multiple passing tests. The formulation he provides is

based on sequences of method calls. However, it can easily be reformulated for

patterns, as follows:

w(p) =

⎧⎪⎪⎨
⎪⎪⎩
Support(p) if p does not match CTfail

1− Support(p) if p matches CTfail

,

where p is a pattern, Support(p) is the percentage of passing trees exhibiting

pattern p, and CTfail is the call tree of the failing run.

• parentDiffSize and diffSize: the smaller parentDiffSize and diffSize are, the

closer the failing execution is to a feature-specific pattern. This usually implies

the existence of fewer defects underlying a single failure. Assuming that every

failure corresponds to a few defects or a few defects cause the program to crash

and not proceed to pass the other defective parts of the code, we can use this

metric to rank the suspiciousness of pattern-match pairs.

Based on the above discussion, we considered the following approaches to sort the

pattern-match pairs [p,m] according to their suspiciousness:

• Approach 1. Sort all [p,m] pairs based on parentDiffSize where diffSize is used

as a tie breaker.

• Approach 2. For each match m, ascendingly sort the list of patterns which

approximately match m, based on parentDiffSize where diffSize is used as a tie
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breaker. Then, compare head of the associated sorted list of patterns to sort

them. Present the results for each m before going to the next.

• Approach 3. Sort [p,m] based on Dallmeier’s defectiveness formula. Break the

ties using parentDiffSize and diffSize.

Our initial experiments showed similar results for approaches 1 and 2. Therefore,

the results we report in Chapter 6 are mostly based on approach 1. For one of

our subject programs, namely NanoXML, we also report the results produced using

approach 3, which shows improvement over approach 1. However, comparing the

approaches requires more investigation, which is one of our future works.

In this step, we provide a ranked report of the matching results to the users. In

case we choose approaches 1 or 3, our report would include pattern-match pairs and

their differences as illustrated in Figure 5.16. In this figure a pattern is identified by

its number and is annotated with its root. If the root of the pattern is not found in the

failing tree, the report identifies prospective callers for the root method. Otherwise,

a report of missing and additional methods for each approximately matching subtree

(identified by its location) is provided.

The report for approach 2 is slightly different:

• if for the first pattern pi in match mj ’s list, diffSize is zero, it means that the

pattern pi observed in the failing execution probably represents an incorrect

path followed in the execution, that should not be executed at all or the correct

path (if previously seen in correct executions and thus in our pattern database)

is one of the other patterns in mj ’s list. So, in our report for each pattern pi we

report that method mj (which is also root of pattern pi) is problematic and it
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either should not be called at all or the path it executes is incorrect (in which

case we provide the edit operations we computed in the previous step for other

patterns in mj ’s list).

• if for the first pattern pi, diffSize is greater than zero, the above argument still

holds. The only difference is that we also present the edit operations for pi in

our report.

Figure 5.16: Defect localization report
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Compared with the ranked list of suspicious methods, this kind of report provides

more information to a user. It provides not only a location to search for the root cause,

but also expected and observed paths, which guide the user to where the defects may

locate. However, to compare our results with related work an extra step is needed,

which is to provide a ranked list of suspicious methods. We do this by looking at

the ranked list of pattern-match pairs and taking note of the methods involved, as

follows:

• in case of a root-not-found, we note the missing root’s prospective callers.

• in case of a match, we note the root of the matching pattern.

• in case of a mismatch, we note the parents with different children.

The list constructed in this way will identify starting locations to search for the root

cause of the failure.

5.7 Discussion

In this chapter, we proposed a novel defect localization technique. The proposed

technique deals with structure-affecting defects, i.e., defects that cause the execution

of an unexpected dynamic call tree. In this technique, we assumed the availability

of one failing test case and multiple passing test cases. We first mined dynamic call

trees of passing test cases. The frequent patterns discovered in mining are subtrees

representing defect-free execution of system functionalities. We then analyzed these

frequent patterns to discover their relations to different functionalities of the system.

Having a failing test case we built a dynamic call tree of the failing execution and
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searched for subtrees that approximately matched a select number of relevant pat-

terns. A relevant pattern in this case is a pattern that is associated with the correct

execution of the target (failing) feature. A report of the matching results was provided

to the user.

The strengths and shortcomings of the proposed technique are presented in the

following subsections.

5.7.1 Benefits

The current work provides a number of advantages over related approaches:

• No database of failing test cases is needed. The assumption of a single failing

case in this work makes defect localization more challenging. In the real world,

there are many programming defects that cannot be linked to multiple test

cases. In many scenarios there exists only a single test case that reveals a

specific defect in the code. Also, sometimes a defect is not caught in the testing

phase and is later reported by end users of the system. Such occasional defects

reveal themselves in very specific circumstances and thus are more challenging

to localize. In this sense, our approach is more powerful and practical than

spectra-based approaches which require a database of failing executions.

• We deal with multi-feature systems. The proposed technique in this paper is

tailored for multi-feature systems and takes advantage of feature location to

reduce the code that needs to be analyzed.

• We provide context for debugging. In addition to names of the defect-related

methods, our approach identifies defect-related patterns and provides a report
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of probable reasons behind the failure (in terms of what method calls are or are

not expected). This provides a context for developers to better understand the

failing feature as well as the defect and makes fixing defects easier.

• We manage non-determinism. In contrast to other call graph/tree based ap-

proaches we do not depend on the existence of fixed patterns in passing and

failing executions and deal with non-determinism in feature execution.

5.7.2 Risk Analysis

Appendix A presents a collection of risks associated with our defect localization tech-

nique and possible mitigations of those risks. Risk analysis is an important step that

needs to be done in any project to identify potential pitfalls and plan for them. We

believe that new techniques or tools provided in the software industry should also be

accompanied with proper risk study to indicate what could go wrong, thus preventing

the new technique or tool to successfully complete its tasks as desired.

In the analysis we have performed in this work, we have identified risks associated

with every step of the proposed defect localization technique. We also have indicated

the consequences in case those risks happen. We then suggested possible mitigations

for the identified risks. Most of the identified risks stem from the dynamic nature of

the analysis we use for defect localization.

Dynamic analysis usually deals with large amount of information produced at run

time. Risks such as the possibility of long tracing times and the generation of large

traces and their corresponding call graphs/trees, relate to this aspect of dynamic

analysis.

Dynamic analysis also suffers from incompleteness, as the assumption of having
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test cases that cover each and every path in the source code of a system is not logical.

Consequently, we can not count on the completeness of the discovered patterns. This

may lead to inability of the proposed technique to locate useful defect-related methods

in some scenarios. However, in most cases the provided defect localization report is

to some extent useful for identifying the defects.

Techniques such as filtering specific methods in the instrumentation phase or

reducing iterations in call graphs/trees, which are utilized in dynamic analysis-based

approaches to reduce the amount of information that needs to be analyzed may lead

to the loss of useful information that is required to locate suspicious methods in a

failing execution. We must be cautious when applying such reduction techniques. We

recommend the investigation and development of other less troublesome techniques

to handle large traces.

There are a number of risks associated with improper ranking of patterns (to iden-

tify feature-specific patterns) and pattern-match pairs (to identify suspicious match-

es/method calls). These risks can lead to situations in which defect-related methods

are ranked low down the final list of suspicious method calls, so that it is practically

not useful.

Furthermore, there exists risks related to one of the underlying assumptions of

this work, that the defects to be found make the call tree of the failing execution

different from its correct version.

Note that there are no one-size-fits-all solutions for defect localization in the liter-

ature. Every approach can deal with specific defect types under certain assumptions.

To build a powerful defect localization tool, one should combine different approaches.
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Chapter 6

Evaluation

In this chapter we present an experimental evaluation of our defect localization tech-

nique. To show the applicability of and to evaluate our technique, we implemented a

prototype defect localization tool. Then we conducted a set of experiments, in which

we used our tool to localize numerous defects on four subject programs. In this chap-

ter, we present the experimental results. For our first subject, FIXImulator, we also

provide details of the defect localization process. But, for the other three subjects we

only present the final results, then compare them to related approaches.

The rest of this chapter is organized as follows. Section 6.1 provides details about

the prototype implementation of the proposed technique. In Section 6.2 we introduce

the programs we use as subjects of defect localization. Section 6.3 introduces the

evaluation measures we use in the different experiments to present the results and

compare them with the related approaches. Section 6.4 introduces the instrumenta-

tion tools that we use in this study to collect the required execution traces. Section

6.5 provides snapshots of how our tool works with the first subject, FIXImulator.

Section 6.6 provides results and comparisons related to the second subject, Weka.
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Section 6.7 provides results and comparisons related to the third subject, NanoXML.

Section 6.8 provides results and comparisons related to the forth subject, print tokens.

Section 6.9 provides the concluding remarks.

6.1 Prototype Implementation

As a proof of concept, we built a prototype tool for defect localization which uses

the technique proposed in Chapter 5. Our defect localization tool is implemented in

Java and deployed on a 64-bit virtual Ubuntu (version 10.04) machine with 6.8 GB

of RAM and a 2.93 GHz Intel Core i7 CPU. Figure 6.1 illustrates the architecture

of our defect localization tool. The following describes different components of this

architecture.

• Trace Manager is responsible for parsing execution traces, preparing them for

Tree Manager, which constructs dynamic call trees from the traces. Trace Man-

ager also provides a report of the frequencies of method calls in traces, for

Feature Location Engine.

• Tree Manager builds dynamic call trees from traces. It also performs iteration

reduction.

• Pattern Mining Engine mines frequent bottom-up subtrees from the set of pass-

ing trees. It stores the patterns as well as the support sets of patterns in Patterns

Database, which in the current version is implemented as both XML and plain

text.

• Feature Location Engine ranks patterns in the Patterns Database according to

their relevance to a target feature. It uses the method call frequencies report,
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Figure 6.1: Architecture of proposed defect localization tool
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test-pattern map (a mapping of patterns to tests which exhibit the patterns

in their associated call trees; this is built using the support set information for

the patterns, which is stored in the Patterns Database), and test-feature map (a

mapping of features to tests exercising them; this should be provided as an input

to the tool) to produce a ranked list of candidate feature-specific patterns, using

the ranking technique introduced in Section 5.5. It then uses the rootsToPick

threshold to identify patterns that are very likely to be feature-specific.

• Pattern Matching Engine approximately matches a feature-specific pattern against

the call tree of the failing execution and provides a report of the matching re-

sults, including the edit operations.

• Report Generation Engine uses the matching results associated with the feature-

specific patterns to generate a defect localization report. This report includes

a sorted list of pattern-match pairs, ranked according to their likelihood of

defectiveness.

• Method Ranking Engine uses the previous defect localization report to provide

a sorted list of methods, ranked according to their likelihood of defectiveness.

6.2 Subject Programs

To show the applicability of, and to evaluate the proposed technique, we conducted a

set of experiments. We targeted a number of subject programs with a controlled set

of defects to examine how our defect localization tool works. We chose programs of

different nature, in terms of the functionalities they provide, their sizes, the languages
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used for their implementation, the types of defects they contain, to see whether we

are able to localize defects in different settings.

Although defect localization literature is very extensive, there is no agreement

among researchers on the subject programs they use for their experiments. In fact,

except for the Siemens suite and a few other small programs such as Space (Jones

et al., 2002), there are no widely used benchmarks in this domain. Benchmarks such

as the Siemens suite are too small to represent real programs. Therefore, many

approaches, especially those targeting bigger programs, use a wide variety of other

subject programs to illustrate their capabilities. These subject programs include

Tornado (Tornado, n.d.), WebLech (WebLech, n.d.), Mozilla Rhino (Rhino, n.d.),

Weka (Weka, n.d.), NanoXML (NanoXML, n.d.), as well as other programs developed

by the researchers themselves.

The technique proposed in this thesis is also more effective when applied to pro-

grams with multiple functionalities. Thus, we also needed a larger subject program

with multiple functionalities to experiment on. To be able to perform comparisons

with the related work, as well as illustrate the capabilities of our technique, we incor-

porated four subject programs in our experimental evaluation: FIXImulator (FIX-

Imulator, n.d.), which is a multi-feature program and has been seeded with a num-

ber of defects by our collaborator, the Systemware Innovation Corporation company

(SWI); Weka (Weka, n.d.), which has also been used by Eichinger et al., (Eichinger

et al., 2010b); NanoXML (NanoXML, n.d.), which has also been used by Dallmeier

et al., (Dallmeier et al., 2005); and print tokens, one of the seven programs from the

Siemens suite, which has been used by many researchers in this area (Jones and Har-

rold, 2005; Yu et al., 2011; Naish et al., 2011; Renieris and Reiss, 2003; Hsu et al.,
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2008). Our subject programs are introduced in the following subsections.

6.2.1 FIXImulator

FIXImulator (FIXImulator, n.d.) is an open source Java-based program, which is

part of a distributed capital markets trading system. It is a sell-side trading program

which uses the Financial Information eXchange (FIX) protocol to exchange securi-

ties transactions. FIX protocol is a messaging standard developed for the real-time

exchange of securities transactions. It is widely used by both the buy side (institu-

tions) as well as the sell side (brokers/dealers) of the financial markets (e.g., invest-

ment banks, brokers, stock exchanges, etc.) for automated trading. As illustrated

NetworkFIX Engine
(QuickFIX/J)

Buy Side 
(Junit Test 

Script, Banzai)

FIX Engine
(QuickFIX/J)

Sell Side 
(FIXimulator)

Figure 6.2: Architecture of target FIX-based trading program

in Figure 6.2, a sample FIX-based trading system is composed of three components

communicating via FIX messages:

• FIX Engine is a messaging engine, managing FIX messages. It performs mes-

sage validation, sending, receiving, etc. QuickFIX/J is a full-featured open-

source implementation of the FIX engine in Java. It supports different versions

of the FIX protocol (e.g., FIX 4.0-4.4).

• Buy Side is the initiator of securities transactions. A transaction starts when a
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buy-side program sends a request to buy securities. The QuickFIX/J package

provides a sample buy-side program called Banzai. It also provides a set of

JUnit acceptance test cases to test the trading system. In this study, we use

both Banzai and the acceptance test suite to initiate transactions.

• Sell Side is a party responding to buy queries by rejecting or filling them.

FIXImulator is a Java based sell-side FIX trading program whose main purpose

is to be used as a testing tool in writing, building, and analyzing buy-side trading

programs that use FIX. In this study, FIXImulator is used to communicate FIX

messages with Banzai or the acceptance test cases.

In this study we focused on FIXImulator. In other words, we investigated defects

in FIXImulator ’s code and only instrumented this component for defect localization.

Defects were introduced to FIXImulator ’s code by our collaborator, the SWI com-

pany. They provided 29 defective versions of the code, each containing one (versions

1-10, 13-24, 26-29) or more defects (versions 11, 12, and 25). Note that a single de-

fect does not necessarily correspond to a single change in the code. In many of the

defective versions, more than a single line of code is changed, but not all changes lead

to a failure. Moreover, in versions 22-25 the changes have been applied to different

methods. The embedded defects cover a wide range of programming problems such

as, 5x wrong variable assignments, 2x wrong branch conditions, 3x missing or extra

branches, 4x wrong method calls, 13x missing or additional method calls, 4x wrong

method parameter values, 1x wrong ordering of method calls.

FIXImulator is a medium-size program which provides multiple functionalities

and thus is a good subject to show the capabilities of our defect localization tool. To

the best of our knowledge, no other approaches have targeted this program before.
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So, we will not provide any comparison results for FIXImulator and use it as a case

study to examine different steps of our defect localization technique. Table 6.2.1

provides statistics about FIXImulator.

Table 6.1: Code counts for FIXImulator

Subject Program No. Classes No. Methods LOC No. Defective Versions
FIXimulator 29 669 8554 29

6.2.2 Weka

Weka (Weka, n.d.) is an open source data mining software, developed at University

of Waikato. It is a collection of Java-based machine learning tools for data mining

tasks such as pre-processing, classification, regression, clustering, association, and

visualization.

Eichinger et al., (Eichinger et al., 2010b) used Weka to evaluate their defect

localization tool. They manually inserted a number of defects into Weka’s source

code, thus providing 16 defective versions of the code. The defect types introduced in

Weka are typical programming mistakes, are non-crashing, occasional and dataflow-

affecting and/or call-graph-affecting. In total, ten separate defects (Versions 1-10) as

well as six combinations of two of these defects (Versions 11-16) have been introduced

in the code. The defects introduced are 4x wrong variable assignments, 3x wrong

return values, 1x off-by-one, 1x wrong loop condition and 1x wrong branch condition.

Weka is a multi-feature program providing different data mining related function-

alities. It is a large program consisting of more than 19k methods. The complexities

of this program makes it an interesting case for study. Also, we use this subject to
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compare our tool with the tool provided by Eichinger et al., (Eichinger et al., 2010b).

Table 6.2.2 provides some statistics about Weka.

Table 6.2: Code counts for Weka

Subject Program No. Classes No. Methods LOC No. Defective Versions
Weka 1355 19395 291407 16

6.2.3 NanoXML

NanoXML (NanoXML, n.d.) is a small XML parser implemented in Java. Five de-

fective versions have been generated for NanoXML, each containing multiple defects.

NanoXML has a total of 33 known defects. The defects were discovered during the

development process, or seeded by Do et al (Do et al., 2004) and others. A defect

definition file identifies defects in each version. Unfortunately, no defect definition

files are provided for Version four of NanoXML and thus we are not able to provide

results for this version.

NanoXML is a small program. The only functionality provided by NanoXML

is parsing an XML file. Therefore, NanoXML is not really the target of our defect

localization technique. However, as Dallmeier et al., (Dallmeier et al., 2005) also deal

with a similar problem as targeted in this thesis (i.e., defect localization using only

one failing execution), we also use NanoXML as a subject program to be able to

compare our results with what they have published. Table 6.2.3 provides statistics

about NanoXML.
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Table 6.3: Code counts for NanoXML

Subject Program No. Classes No. Methods LOC No. Defective Versions
NanoXML 21-26 177-286 2313-3696 5

6.2.4 Print tokens

Print tokens, one of the seven programs in the Siemens suite benchmark, is a lexical

analyzer which tokenizes its input file and prints out the tokens. The Siemens suite

benchmark consists of a set of programs, which were assembled by Tom Ostrand

and colleagues at Siemens Corporate Research for a study of the defect detection

capabilities of control-flow and data-flow coverage criteria (Hutchins et al., 1994).

Print tokens comes in seven defective versions and each of these versions has one or

more defects injected. The goal of defect seeding is to introduce defects that were as

realistic as possible, based on experience with real programs. For each base program,

the researchers at Siemens created a large test pool containing possible test cases for

the program. The researchers retained only defects that were neither too easy nor too

hard to detect, which they defined as being detectable by at most 350 and at least

three test cases in the test pool associated with each program.

Print tokens is a small program written in C. It consists of only one feature. Thus,

it is not the target of our defect localization technique. However, as the Siemens

benchmark (including the print token program) is a reference of many researchers

in this domain, we would also like to perform some experiments on it. Table 6.2.4

provides statistics about the Print tokens program.
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Table 6.4: Code counts for print tokens

Subject Program No. Classes No. Methods LOC No. Defective Versions
print tokens NA 18 344 7

6.3 Evaluation Measures

As discussed in Chapter 5, similar to most defect localization approaches, our tech-

nique can also produce a list of methods, sorted according to their likelihood of being

related to the failure. In this section we introduce the measures we use in this exper-

imental study to evaluate the resulting list. Various measures have been suggested

in the literature to assess the precision of defect localization techniques. We use the

following in this work.

• Position: position of the defective method in the ranked list. This measure

quantifies the number of methods a developer has to review in order to find the

defect in a random case. Assuming that all methods have the same size and

the same effort is required to localize a defect within a method, this measure

represents the effort one must invest to find the defect. Smaller numbers are

preferred. The assumptions may not be realistic, but position still seems a

useful measure in comparing the results obtained by competing methods.

• Rank : position of the defective method in the ranked list, where methods with

the same likelihood numbers use the worst position for all methods with the

same likelihood. This measure quantifies the number of methods a developer

has to review in order to find the defect in the worst case. Assuming that the

effort required to examine different methods is about the same, this measure
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represents the effort one must invest to find the defect in the worst case. Smaller

numbers are preferred.

• Number of methods atop: Rank of the defective method minus one. This mea-

sure quantifies the number of methods a developer has to review before reaching

the actual defective method. Similar to the Position and Rank measures, this

measure also represents the effort one must invest to find the defect. Smaller

numbers are preferred.

• Score(M): percentage of methods that need not be examined (i.e., those that

appear after the defective method in the list). Score(M) is computed as:

Score(M) = Total Number of Methods − Rank of the Defective Method
Total Number of Methods

∗ 100%.

Greater numbers are preferred.

• Distance to root cause: in the case the reported method is not the actual de-

fective method, we provide the distance to root cause measure, which identifies

the number of edges in the dynamic call tree which sets the root cause apart

from the reported method. For example, if the reported method is parent or

child of the actual defective method, the distance to root cause is equal to one.

Smaller numbers are preferred.

In the above calculations, if more than one defects exist in the code, we report the

numbers associated with the best ranked defect. This reflects that a developer would

first fix one defect, before applying our technique again. This is consistent with other

defect localization approaches in the literature.
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6.4 Instrumentation

As mentioned before, we perform program instrumentation to collect execution traces,

which are the main inputs to our defect localization tool. Different instrumentation

tools have been developed, that can deal with different programming languages. The

following is a short description of the tools we use in our experimentation.

To instrument our Java-based subjects, we use Eclipse Test and Performance

Tools Platform Project (TPTP) version 4.4.2. The TPTP Project provides an open

platform, supplying powerful frameworks and services for program monitoring, in-

cluding test editing and execution, tracing and profiling, and log analysis. TPTP

supports a broad spectrum of computing programs, including embedded, standalone,

enterprise, and high-performance.

In this study, we use TPTP’s tracing framework, which is called Probekit. Probekit

allows developers to write fragments of Java code (called probes), that can be invoked

at pre-specified points in the execution of a Java class to collect run time data about

the program. Probekit offers various injection points that developers can use for their

probes, including: Method entry, method exit, catch/finally blocks, class loading, etc.

One common use of Probekit is to trace method invocations. Figure 6.3 illustrates a

sample probe to print out on every method entry and exit, the method’s name and

parameters, process ID and Thread ID.

Probekit also provides a filtering mechanism that allows the user to determine

which packages, classes or methods must or must not be instrumented. This helps

reduce the size of the generated traces. Figure 6.4 illustrates filters of our sample

probe. As illustrated in this figure, Java libraries such as “Sun.*”, “java.*” are filtered

out and thus no records from these packages are expected in the resulting traces.
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Figure 6.3: Sample probe created with Probekit editor

Figure 6.4: Filters associated with sample probe

144



Ph.D. Thesis - Anis Yousefi McMaster - Computing and Software

To instrument our C-based subjects we use one of the features of the GNU GCC

compiler, which enables tracing and profiling. GCC’s -finstrument-functions op-

tion generates instrumentation calls for entry and exit to functions. A function may

be given the attribute no instrument function, in which case the instrumentation

will not be done. This can be used, for example, for the profiling functions themselves,

high-priority interrupt routines, any functions from which the profiling functions can-

not safely be called (perhaps signal handlers, if the profiling routines generate output

or allocate memory), and any functions that the debugger does not want to instru-

ment.

6.5 Localizing Defects in FIXImulator

In this section we show in detail how our defect localization tool can localize the

defects that are embedded in our first subject program, the FIXImulator.

6.5.1 Test Cases and Test Oracles

To exercise FIXImulator, we need a suite of test cases. Our collaborator, the SWI

company, provided a suite of test cases and their corresponding test scripts. The test

cases in this suite are categorized into two groups “Session-Level” and “Program-

Level”, where Program-Level test cases have further been categorized into “Pre-

Trade”, “Trade”, and “Post-Trade”. In this case study we use the Trade test cases,

which describe messages exchanged between the buy side (e.g., Banzai) and the sell

side (e.g., FIXImulator) for trading activities such as placing a new order, canceling

an order, etc. Figure 6.5 illustrates a sample Trade test case. As you see in this figure,

145



Ph.D. Thesis - Anis Yousefi McMaster - Computing and Software

the buy side sends a new order to the sell side (line 1), the sell side acknowledges the

order (line 2), fills the order in a number of steps (lines 3-4), and sends back a Done

for Day (DFD) message (line 5).

Figure 6.5: Sample test case

FIXImulator ’s test cases not only identify what needs to be done in a testing

scenario (e.g., sending a new order) but also indicate what is expected to be observed

in a successful run (e.g., an acknowledge message, fill messages and a DFD message).

In this sense, a test case also acts as a test oracle, indicating when a test passes or

fails.

6.5.2 Tracing

Tracing is the first step of our defect localization technique. Since FIXImulator is a

Java-based program, we use TPTP Probekit to instrument it. Then we run our test

suite to collect the execution traces.

There are a number of ways one can run a test case. In manual testing, we follow

the steps defined in a test case’s scenario. In this approach, we use the buy-side
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program, Banzai, to send trading orders to FIXImulator. Figure 6.6 is a snapshot of

Banzai sending a buy request to FIXImulator. Figure 6.7 illustrates how FIXImulator

receives the order and responds to it. As you see, FIXImulator displays the messages

it sends/receives in a message flow table.

Figure 6.6: Banzai sending a new buy order to FIXImulator

In automatic testing, we use JUnit (Junit, n.d.) to automatically execute scripts

provided for each test case in the test suite. JUnit is a unit testing framework for the

Java programming language which tests units of source code, i.e., sets of one or more

computer program modules together with associated control data, usage procedures,

and operating procedures, to determine if they are fit for use.

When running a test script, JUnit provides a report, including the pass/fail result

and execution details. Figure 6.8 illustrates the execution of a sample test script

using JUnit, where the test case has failed, because wrong message type is received.

147



Ph.D. Thesis - Anis Yousefi McMaster - Computing and Software

Figure 6.7: FIXImulator receiving a new buy order from Banzai and sending a num-
ber of messages
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Figure 6.8: Running a test script using JUnit

Running a test case on the instrumented program produces dynamic execution

traces. Figure 6.9 illustrates an excerpt of a sample trace file which indicates method

entries and exits. Each line in this trace is composed of the keyword Enter or Exit, a

method’s class path, name and parameters, and ID of the process and thread running

the method.

Note that our defect-localization technique requires that we execute every program

several times and ensure that there is a sufficient number of examples for correct

executions. This is necessary since we focus on occasional failures, i.e., failures whose

occurrence depends on input data, random components or non-deterministic thread

interleaving. Through experience we have seen that decision coverage is effective to

provide useful defect localization results. However, even if the number of test cases

are not big enough, we still get useful insights into the fault. Appendix A identifies
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Figure 6.9: Excerpt of a sample trace file
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risks associated with insufficient number of test cases.

6.5.3 Pattern Mining

Upon collecting the traces, we run our tool to build dynamic call trees, reduce them,

and mine frequent subtrees.

Figure 6.10 illustrates excerpts of an XML file that holds the discovered patterns.

In this experiment, we ran 37 test cases. With the assumption of Minimum Height

threshold = 2 and Minimum Frequency threshold = 2, we mined 249 patterns. This

means that we mined subtrees as small as a parent and its children, if the subtree is

observed in at least two call trees. The XML file indicates the total pattern count. It

also indicates for each pattern, the pattern’s identifying number, its support set and

the method calls representing its call tree (since a pattern is a dynamic call tree).

Figure 6.10: XML file holding discovered patterns
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To analyze the stability of pattern mining (i.e., to see if more executions would

lead to a significant change in the number of patterns discovered), we selected different

subsets of test cases from our test suite and performed pattern mining. Figure 6.11

illustrates dependency of the total pattern count on the number of test cases.
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Figure 6.11: Relation between total pattern count and number of test cases

As you see, there is a non-linear relationship between the number of patterns and

the number of test cases. So, increasing the number of test cases would not drastically

change the number of patterns. In the worst case (assuming path coverage), the

number of discovered patterns is bound by the number of paths in the call graph.

However, path coverage is not realistic and we have seen through experience that

decision coverage is good enough to provide good defect localization results. In this

case, the number of patterns should not be greater than the total number of branches

in the code.
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6.5.4 Pattern Analysis

The first step in pattern analysis is to identify the mapping between tests and fea-

tures (i.e., test-feature mapping). Since FIXImulator ’s test cases describe messages

communicated between buy and sell parties, we consider messages as features. In

this context, a feature is defined as “communication of a particular message to/from

FIXImulator” and a test case describes a scenario in terms of what messages are com-

municated. As a consequence, the number of features in the FIXImulator program is

equal to the number of distinct message types in FIX. Table 6.5.4 presents a number

of message types in FIX4.2. A complete list of message types in FIX is presented in

the FIX protocol website (FIXMessages, n.d.).

Table 6.5: FIX Protocol Messages

Message Type Sub-type
1 OrderSingle (new order) -

2 ExecutionReport

2.1 Rejected
2.2 New
2.3 Partial Fill
2.4 Fill
2.5 Done for Day
2.6 Pending Cancel
2.7 Cancelled
2.8 Restated
2.9 Pending Replace
2.10 Replace

3 OrderCancelRequest -

4 OrderCancelReject
4.1 New
4.2 Partially Filled
4.3 Filled

5 OrderReplaceRequest -

A test-feature map indicates if a test exercises a certain feature. In the context of

this experiment, a message type is mapped to a test case if the test case includes at
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least one message of the specified type. Table 6.5.4 illustrates the test-feature map

for 37 test cases and 20 features. In this table entries starting with letter “T’ are

FIX trade test cases and those starting with letter “F” are features. The number

following letter “F” identifies the type of the message communicated. For example

F2.1 represents the communication of a “Rejected” execution report message, to/from

FIXImulator.

The second step in pattern analysis is to identify the target feature (i.e., failing)

feature. As an example, assume that test case T5 fails and JUnit reports that the

done for day (DFD) message contains some invalid values (e.g., field number 150

of the message is expected to be equal to three but is empty). From this report, we

know that feature F2.5 (i.e., communication of message Done for Day (DFD) to/from

FIXImulator) has failed. Also, assume that the defect only affects feature F2.5. In

this scenario, F2.5 is the target of pattern analysis.

In the first step of pattern analysis, identifying f -specific candidate patterns, we

use the test-pattern mapping provided by the Pattern Mining Engine and the test-

feature mapping we created in the previous step to find patterns that are only observed

in tests exercising feature F2.5. In this step, we found 34 out of 249 patterns as

candidate feature-specific for F2.5. Next, we use the method call frequencies provided

by Trace Manager to generate a sorted list of candidate patterns, where patterns

are ranked according to their relevance to the failing feature. To do this ranking

we use formulae DS2 and DS1 and the pattern ranking mechanism introduced in

Section 5.5.4. Figure 6.12 illustrates this list for F2.5, where the numbers are pattern

identifiers.

In the next step, assuming that the rootsToPick threshold is equal to five, we pick
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Table 6.6: Mapping test cases to features they exercise

Test Cases
Features
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F
5

T1 � �
T2 � � �
T3 � � � �
T4 � �
T5 � � � �
T6 � �
T7 � � � �
T8 � � � � �
T9 � � � � �
T10 � �
T11 � � � � �
T12 � � � � � � �
T13 � � � � �
T14 � � � � � �
T15 � �
T16 � � � �
T17 � � � � �
T18 � � � � � �
T19 � �
T20 � � � � �
T21 � � � � � � � �
T22 � �
T23 � � � � �
T24 � � � � � �
T25 � � � � � �
T26 � �
T27 � � � � � �
T28 � �
T29 � � � � �
T30 � � � � � � �
T31 � � � � � � � �
T32 � � � � �
T33 � � � � �
T34 � � � � �
T35 � � � � � �
T36 � � � � � �
T37 � � � � � �
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Figure 6.12: Ranked list of candidate feature-specific patterns for feature F2.5

patterns with at most five different roots to be feature-specific. Figure 6.13 illustrates

the first ranked feature-specific pattern (pattern number 213) for feature F2.5. As

you see, the root of this pattern is method dfd from the FIXimulatorApplication

class, which based on its name, seems to be relevant.

6.5.5 Defect Localization

In this step, we compare call tree of the failed execution with each feature-specific

pattern, found in the previous step, to identify new and missing method calls. Then,

we sort the pattern-match pairs using parentDiffSize and diffSize values. Figure 6.14

illustrates the sorted list, which includes the comparison results. As you see, the third

entry in this report indicates that method dfd is missing from method onMessage.

Verifying the results, this actually was the true reason behind the failure.

The final step is to rank methods according to their likelihood of being responsible

for the failure, which is built from the sorted list of pattern-match pairs. Table 6.5.5

presents defect localization results for 29 defective versions of FIXImulator. The
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Figure 6.13: Feature-specific pattern for feature F2.5, display of message done for
day

Figure 6.14: Results of comparing F2.5-specific patterns with call tree of failing
execution
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numbers in this table represent Position and Rank of the defective method in the

ranked list. The ranking is based on Approach 1 introduced in Section 5.5.4 (sorting

all pattern-match pairs using parentDiffSize, where diffSize is used as a tie breaker).

As you see, except for the defective version number one, the defective method is ranked

within the top four (out of 669) methods in the FIXImulator. For version one, in the

worst case, the defective method is still within the top 2.8% of the methods. This

means that 97.2% of the methods need not be examined in the search for the defect

(Score(M) = 97.2%). These results correspond to 37 test cases, different defect types,

and different failing features.

Table 6.7: Results of defect localization for FIXImulator

Versions V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15
Position
(random case)

6 1 1 1 4 2 1 3 4 2 2 2 2 3 3

Rank
(worst case)

19 2 1 1 4 2 1 3 4 2 2 2 2 3 3

Versions V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29
Position
(random case)

3 3 3 1 1 1 2 4 2 2 2 2 4 4

Rank
(worst case)

3 3 3 2 1 1 3 4 2 2 2 2 4 4

6.6 Localizing Defects in Weka

Weka’s defects were all introduced in weka.classifiers.trees.DecisionStump class,

which implements a decision-tree-based classifier algorithm. Although all of the de-

fective versions target a single feature (i.e., the DecisionStump classifier), in our

experimentation we traced other features of the program as well. This includes other

classifiers, clusterers, and association rule miners. Tracing other features helps to rule

out common and omnipresent patterns.
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Eichinger et al., (Eichinger et al., 2010b) provide 90 test-input data to exercise

Weka, leading to successful and unsuccessful runs. We used a subset of the test-

input data to exercise different features of Weka. The reasons behind this are as

follows: 1) We intended to show that even without proper code coverage we can still

get reasonable results; 2) Many of the test-input data led to a failing run and we

needed only one failing trace, which we chose randomly; 3) Weka is a big program

and tracing some inputs was too slow; 4) The test-input data was originally intended

to be used for exercising the DecisionStump class and thus did not have the correct

format to be used to exercise other features.

We emphasize that, even though we knew the defective class, we instrumented all

19,395 methods ofWeka, thus all of them were potential subjects of defect localization.

To identify if a test passed or failed, we developed a program that compares output

of a test applied on a defective version against output of the same test applied on the

original (non-defective) version.

Table 6.6 provides results of defect localization inWeka. The results correspond to

Approach 1 in ranking pattern-match pairs introduced in Section 5.5.4. As you see, in

this experiment the defective method is always within the top seven ranked methods.

Provided that Weka has about 19K methods, this corresponds to a Score(M) of above

99.9%.

Table 6.8: Results of defect localization for Weka

Versions V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16
Position
(random case)

6 6 4 4 4 4 3 5 7 2 6 3 3 3 4 5

Rank
(worst case)

6 6 4 4 4 5 4 5 7 3 6 4 4 3 4 5
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In all defective versions of Weka, except V 3 and V 10, the reported numbers as-

sociate with the actual defective method (i.e., the root cause). For V 3 the reported

results belong to the parent of the actual defective method (distance to root cause =

1). For V 10 the reported results belong to an ancestor of the actual defective method

(distance to root cause = 3).

In this step we compare our results with Eichinger et al., (Eichinger et al., 2010b).

For the sake of comparison, we provide Eichinger et al’s results in Table 6.6. This

table presents results associated with six different approaches E1 to E6 presented

in (Eichinger et al., 2010b). Although, Eichinger et al.’s best results (corresponding

to approach E3) are better than what we got, our results are still comparable (i.e.,

our numbers are in the range of numbers Eichinger et al. has published). Moreover,

Eichinger et al. assumes multiple failing cases, and in this sense our approach is more

powerful. As we discussed in Chapter 4, Eichinger et al.’s approach cannot deal with

a single failing case as effectively.

Table 6.9: Eichinger et al.’s results for Weka (Eichinger et al., 2010b)

Versions V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16
E1 3 3 1 3 2 2 12 3 1 1 2 2 1 2 1 3
E2 2 2 1 2 2 2 9 2 1 1 2 2 1 2 1 2
E3 1 1 1 2 6 1 1 1 3 5 1 1 1 1 1 1
E4 1 1 11 13 10 3 13 10 9 6 3 8 1 3 8 10
E5 1 1 4 5 4 2 7 3 5 4 2 4 1 2 3 3
E6 1 1 1 2 7 1 2 1 8 6 1 1 1 1 1 1
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6.7 Localizing Defects in NanoXML

Do et al., (Do et al., 2004) provided an extensive test suite for NanoXML, containing

more than 200 test-inputs for each defective version of the code. NanoXML is a

single-feature program. Therefore, we had to skip the pattern analysis step when

looking for defects, because all mined patterns are considered relevant to the only

feature of the program, and should be checked against the failing tree.

Table 6.7 provides the results of defect localization on NanoXML. In this table we

report the number of methods atop the defective method. The provided results asso-

ciate with approaches 1 and 3 in the ranking pattern-match pairs. In Approach 1, we

sort all patterns base on parentDiffSize where diffSize is used as a tie breaker. In Ap-

proach 3, we sort all patterns based on Dallmeier et al.’s formula where parentDiffSize

and diffSize are used as tie breakers.

Table 6.10: Results of defect localization for NanoXML

Versions V1 V2 V3 V5 Averge

Methods Atop - Approach 1 44 14 22 - 26.7

Methods Atop - Approach 3 1 14 3 - 6

As you see, Approach 1 does not provide very good results. Compared with the

results we got for NanoXML, our results for bigger subjects such as FIXImulator and

Weka are much better. This may be because we could take advantage of feature

location to reduce the size of the search space in bigger subjects whereas for smaller

(one-featured) subjects this is not true. In one-featured applications, all patterns
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are considered relevant, thus the pattern analysis part, which helps locating feature-

specific patterns, is skipped. Another possible reason could be that Approach 1 is

not really a good fit for this program, and perhaps not a good fit in general. As you

see, the results improved with Approach 3. However, whether Approach 3 is better

in general requires further investigation, which is left for future work.

In this stage, we compare our results with Dallmeier et al.’s (Dallmeier et al.,

2005). One should note that Dallmeier et al., provide a ranked list of suspicious

classes. Based on their results, on average there are 2.22 to 3.69 classes atop of the

defective class in the ranked list. NanoXML has 10.1 methods per class on average.

Assuming that the defective method is the first method investigated in the class (the

best case), Dallmeier et al.’s results correspond to 22.4 to 37.2 methods atop of the

defective method. In contrast, using our ranking approaches 1 and 3, our results

correspond to the investigation of 26.7 and six methods on average, respectively.

Thus, Approach 1 is within the range and Approach 3 improves over Dallmeier et

al.’s results.

As mentioned before, no defect definition files were found for version four of the

code. Therefore, we do not provide results related to V 4. For V 5, we could not locate

the defects. The reason for that is as follows. NanoXML test cases consist of a test

driver, which basically is a main method calling different NanoXML methods. When-

ever a driver calls a specific NanoXML method (ancestor of the defective method), the

test fails. Assume this ancestor is method B. So, in passing tests, main calls methods

A and C, and in failing tests it calls A and B. In this case, no correct patterns can be

attributed to B, since no correct executions include method B. However, the existence

of method B in the failing execution while it is not seen in any correct executions can
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be a good clue leading us to the actual location of the defect. This can simply be

checked by looking for methods which appear in the failing execution only. Yet, this

is not implemented in the current version of our tool, and we are only depending on

correct execution patterns to find the location of defects. In this case if main calling A

and C happens so frequently that we capture it as a frequent pattern, comparing this

pattern with the failing execution will point us to the missing B. Unfortunately, this

has not been the case in V 5. The aforementioned problem is one of the risks of using

our tool, which is discussed in Appendix A (Risk v in A.3). The suggested solution for

this problem and any other possible mitigation require further investigation, which is

left for future work.

6.8 Localizing Defects in Print tokens

The test-input required to trace Print tokens is provided by Siemens researchers (Hutchins

et al., 1994). Like NanoXML, Print tokens also has only one feature (i.e., tokeniz-

ing the input), therefore no pattern analysis is performed and all mined patterns

are considered relevant. Table 6.8 provides the results for Print tokens. The results

correspond to Approach 1 in ranking pattern-match pairs. As you see, the defective

method is within the top six ranked methods. As Print tokens has 18 methods, this

corresponds to a Score(M) of greater that 68%.

Yu et al., (Yu et al., 2011) provided an evaluation of their technique (Loupe) as

well as a number of other statement-level spectra-based techniques using the Siemens

suite. Figure 6.15 is borrowed from (Yu et al., 2011) and illustrates their evaluation

results. There are seven graphs associated with seven defect localization techniques:

Loupe (Yu et al., 2011), Tarantula (Jones and Harrold, 2005), Sober (Liu et al., 2006),
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Table 6.11: Results of defect localization for print tokens

Versions V1 V2 V3 V4 V5 V6 V7

Position (random case) 3 1 2 4 1 5 5

Rank (worst case) 5 4 4 5 6 5 5

Score 0.73 0.78 0.78 0.73 0.68 0.73 0.73

PPDG (Baah et al., 2008), CrossTab (Wong et al., 2008), BARINEL (Abreu et al.,

2009b), and avgSBD (Santelices et al., 2009). The measure used for evaluation is

Score(S), which is defined similar to the Score(M). A point (x, y) in a graph indicates

that y percentage of defective versions have score(S) of greater than or equal to x.

Given a ranked list of suspicious statements S, score(S) is computed as the percentage

of statements in the ranked list that need not to be examined after reaching the

defective statement, and is computed as:

Score(S) = Total Number of Statements − Rank of the Defective Satatement
Total Number of Statements

∗ 100%.

We added the results of our experimentation with print tokens to this figure, which

corresponds to the magenta graph marked with stars. One should note that since

we are dealing with methods, the score we compute is Score(M) which is different

from Score(S) used by Yu et al. Since we are dealing with methods in this work,

the score we compute is based on the number of methods, which is different from the

statement-based score used by Yu et al. However, with the (unlikely) assumption that

all methods have the same number of statements and that the defective statement is

the last statement in the defective method (the worst case), there is a relationship

between our definition of Score and the score used by Yu et al., and so a rough

comparison can be made.
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Our Tool

Figure 6.15: Comparison of a number of approaches using Siemens suite subject
provided by Yu et al., (Yu et al., 2011), with additional data points from our tool
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There are a number of points to consider when comparing our results with Yu et

al.’s:

• The Print tokens program is very small (18 methods), thus a call-tree-based ap-

proach such as ours is not very helpful. Considering the definitions for Score(M)

and Score(S), in the best case, when the defective method/statement is ranked

first in the list, the corresponding score is less than 100% in both cases. However,

since the number of methods is much smaller than the number of statements, the

effect of a small change in the rank of the defective method/statement on com-

puting the percentages is much greater for Score(M) as compared to Score(S).

For example in a program with 10 methods and 100 statements, in the best case

(if the defective method is ranked first in the list), the computed Score(M) is

equal to 90% which corresponds to having the defective statement at rank 10.

• The approaches compared in this diagram deal with different underlying as-

sumptions and use different techniques for defect localization. For example, all

of the presented approaches are spectra-based, requiring multiple instances of

the failing execution. Dealing with one failing execution, our approach is more

powerful than the other approaches in the diagram. On the other hand, our

approach localizes defects in the granularity of a method, which is less precise

than its counterparts, which deal with statements.

• The approaches compared in this diagram have different time and memory over-

heads. In general statement-level approaches need to deal with huge statement-

level traces, which is a big issue in very large target programs. This is one of

the reasons they target smaller programs such as the Siemens suite. In compar-

ison, method-level approaches such as ours impose less tracing overheads and
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are thus preferable for bigger programs.

• Yu et al. provided these results by performing experiments on all seven Siemens

programs (about 120 defective versions), however, our results are based on

Print tokens (seven defective versions).

Considering the above discussion, the results provided by our technique are still

comparable with other techniques presented in Figure 6.15. More experimentation

with other programs in the Siemens Suite is needed to confirm this. However since

small subjects are not targeted in this research, we left this for future work.

6.9 Discussion

This section provides a summary of the lessons we learned from applying our defect

localization technique on different subject programs, and the challenges we encoun-

tered.

6.9.1 Lessons Learned

Dealing with different subject programs, types of defects, and settings, we learned a

lot about defect localization in general as well as our proposed technique.

• Our experiments illustrated the applicability of the proposed defect localization

technique. The proposed technique was shown to be more effective on bigger

programs such as FIXImulator and Weka. However, there is a need to improve

our pattern-match ranking mechanism to enhance the results. As shown in

NanoXML experiment, better ranking mechanisms such as Approach 3 can

improve the results. This needs to be verified with further experimentation.
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• Although the proposed technique does not necessarily beat spectra-based ap-

proaches, it provides comparable results. When comparing the results one

should consider that: 1) Compared to statement-level approaches, method-level

approaches deal with relatively smaller traces and thus starting from methods

and digging into a few potentially defective ones seems to be an advantage

when dealing with very large target systems; 2) call-graph-based spectra-based

approaches assume multiple failures of the same nature. The single-failure as-

sumption in this work makes the analysis more challenging. Nevertheless, our

technique was able to provide good clues to lead the programmer to the defec-

tive methods in various cases. We could verify this for the FIXImulator subject,

by presenting our results to an expert in SWI company.

• We need more comprehensive experimentation to evaluate the usefulness of our

technique. We need to analyze time and space overheads. We also need to

analyze the stability of the results (i.e., to see whether the number of false

positives change as a result of changing the number of test cases, which as we

presented before changes the number of patterns).

• In a technique such as the one discussed in this thesis, the reported method is

not necessarily the root cause of the failure. In such approaches, criteria such as

“rank of the first relevant method”, “number/percentage of relevant methods

that proceed the actual defective method in the ranked list” and “distance of

the top ranked method to the root cause” can also be useful.

• In addition to finding the potential location of defects, the proposed technique
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also identifies suspicious missing or additional method calls within the poten-

tially defective method. This can lead to better understanding of the problem

and a lower overall cost for debugging.

• Using details about the failure, such as what features or events are problematic,

are good clues to narrow down the search space for finding defects. They narrow

the scope of the search to the relevant code, instead of doing a blind search for

all suspicious changes.

• Without pattern mining it is generally hard to determine which parts of a

dynamic call tree are involved in the execution of the failing feature. Thus,

to locate the problem one would need to examine a bigger search space. For

example, one of our tests on FIXImulator created approximately 72K method

calls which is a rather big search space to locate a defect. In contrast, a typical

pattern in FIXImulator had an average of 161 method calls. Therefore, using

a pattern or a few patterns representing the failing feature was wiser.

6.9.2 Challenges of Experimental Evaluation

The following is a list of challenges we faced during our experiments.

• Benchmarks used in the literature of defect localization are small programs and

cannot really demonstrate the effectiveness of defect localization approaches.

The diversity of the programs used by researchers in this area makes compari-

son challenging and inefficient. Moreover, there is no agreement on the measures

researchers use to report their results. Measures such as score, as used by Yu et

al., (Yu et al., 2011), or averaging, as used by Dallmeier et al., (NanoXML, n.d.),
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do not really convey enough information about the actual defect localization re-

sults. We believe that measures such as rank of the defective statement/method

are more informative.

• In some cases it is not clear which version of the program has been used for

experimentation by the researchers.

• In some cases, subject programs, their pre-requisite programs, their defective

versions, test inputs that were exercised to raise the defects are not available

for download.

• Subject programs or their pre-requisite programs cannot be installed or are hard

to install. In some cases, such as NanoXML, there are errors in the compilation.

• Proper documentation is not available for subject programs or the provided

documentation does not reflect the code. For example, there are fault matrices

available for NanoXML and Print tokens which are supposed to indicate which

tests are failing, but are not accurate. In the case of NanoXML, defects of

version four were not documented, so we could not verify our results.

• Lack of proper documentation in some cases results in difficulty understanding

how one should run/instrument the target program and execute a test.

• In some cases, the provided test cases are not enough or do not cover certain

parts of the code (e.g., only testing one feature).

• Many manual operations need to be done to trace the programs and verify the

results by checking them against the actual defects.

• Tracing is time consuming.
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Chapter 7

Conclusion and Future Work

In this thesis, we investigated call-graph-based defect localization and proposed a

novel technique that incorporates tree-mining and tree-matching to provide hints as

to where the defects may be located. In this research, we have considered a number of

challenges. First, we assumed that the target systems to be analyzed are large multi-

functional systems and that it is hard to construct scenarios that only execute a single

feature of the system. This leads to the generation of huge traces (and extensive call

graphs) which do not exclusively represent the feature of interest. Considering such

call graphs as a whole leads to too many false positives. We incorporated feature

location techniques to identify feature-specific sub graphs, thus reducing the code that

needs to be searched for defects. Second, we assumed the availability of minimum

information about a failure - a single failing scenario. This is different from most

call-graph-based defect localization techniques which assume multiple failing cases

and incorporate statistical formulations to identify code discriminating correct from

failing runs. The following sections provide a summary of the proposed approach,

some concluding remarks, and directions for future research.
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7.1 Summary

The defect localization part of this thesis started with an introduction to the research

problem. Then, we presented introductory information about dynamic analysis, de-

fect localization, feature location and data mining. Next, we provided a survey of

dynamic-analysis-based techniques for defect localization. We observed that call-

graph-based defect localization, a fairly recent technique in this domain, is promising

for localization of structure and frequency affecting defects. However, it could po-

tentially be improved to consider systems with multiple functionalities where only

one failing test case was provided. We consequently proposed a call-graph-mining

and matching-based approach which dealt with the above-mentioned challenges. We

then implemented our technique as a prototype defect localization tool and evalu-

ated it using four target applications with known defects. Our experiments showed

that the results provided by our technique are comparable with those presented in

the literature, bearing in mind that we are dealing with a more challenging problem

in the sense that we target bigger programs and assume the availability of a single

failure case. The following section lists our contributions, the lessons we learned in

this research and uses of the proposed technique.

7.2 Discussion

The major outcome of this research is a novel defect localization technique that is

able to handle large multi-feature systems with as little information as a single failing

test case, and still provide an informative report. As part of this research, we also

provided the following contributions:
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• We enhanced state-of-the-art feature location by introducing the notion of

feature-specific patterns. Feature-specific patterns provide context to the con-

ventional feature-location where methods in the code had been associated with

the features of the system. They illustrate how a method behaves in terms of

the way it calls other methods. Thus, they can help understand methods that

are commonly used by a number of features, by identifying in which scenarios

the shared methods are specific to a feature. In this process: i) we suggested

new formulations for quantifying method-feature relevance. The new formula-

tions favor methods that are not only specific to a feature but also fundamental

to the execution of the feature (i.e., highly probable in an execution exercising

the feature); ii) we considered non-determinism in feature execution and thus

dealt with non-deterministic patterns which required more complex analysis;

and iii) we devised a novel approach to analyze the specificity of patterns to

features based on their internal methods.

• We examined the challenges of distributed execution tracing in the special case

of Web-service-based systems and suggested an approach to aggregate the dis-

tributed traces.

• We devised an algorithm for mining frequent bottom-up subtrees which en-

hances and improves its existing counterparts.

Experimenting with our tool, we found out that:

• Call trees better represent defects compared with single methods. The infor-

mation such as “method B is called (or method B is called from method A) in

all faulty executions and no correct ones” is an important clue to localize the
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source of a failure. However, it can lead to false negatives and false positives.

For example, method A can call method B in all faulty executions simply be-

cause a certain functionality is exercised in faulty executions only. This leads

to a false positive. Also, method A can call method B in what appears to be a

random way and not considered relevant to the defect. However, this can be

because the target (faulty) feature has a non-deterministic call graph and in

the specific failing case at hand can point to the location of the defect (false

negative). The lesson we learn here is that a single method call is not enough

for us to make wise decisions with regard to the defect. Context of the method

call is important. Context can be defined as surrounding method calls. In this

thesis we used a tree of method calls as a context for a suspicious call. In this

method, a relevant subtree (a subtree representing the execution of the target

feature) is used to differentiate relevant from irrelevant method calls.

• Feature-location can improve defect-localization. The proposed defect localiza-

tion technique takes advantage of feature location techniques. Among other

benefits, feature location provides the ability to narrow the code we search for

a defect. When one searches for a failures source, one only needs to consider

only relevant sections of the code. For example if a failure happens in the user

interface (UI) of a program it should be located in the UI’s code (unless it is

related to the communication between UI and some other section of the code).

The first identifies dynamic call trees associated with different features of the

system (including the failing feature). It then uses relevant subtrees to locate

suspicious method calls. The incorporation of feature location and approximate

pattern matching enhances the state of call graph based defect localization by
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introducing a new approach to defect localization which requires less informa-

tion about the system (it uses a single failing case as opposed to many failing

cases that is used by similar approaches).

The proposed tool is useful for software engineers in the following areas:

• Defect Localization: to locate structure-affecting defects in a system’s source

code, which aids engineers in the process of root cause analysis and debugging.

• Feature Location: to understand how a feature is implemented which is useful

in system comprehension, debugging, migration, maintenance, etc.

• Software Migration: to distinguish technology-related code from the core logic

of a system. In general feature-specific patterns represent the core of a system

and common patterns represent utilities and technology-related code. However,

this requires more investigation.

All in all, following our experimentation with a number of real world subjects, we

found the outcome of our work beneficial for program understanding and consequently

defect localization and correction. The report generated by our tool provided useful

knowledge about passing and failing executions of different features of the target

system, if not pointing to the exact location of the defects. Such knowledge could

assist the software support team to better understand and maintain the system.

7.3 Future Work

Based on our study in this research we have identified some possible future research

directions as presented below.
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Managing large traces. Software systems tend to produce huge dynamic traces

which require special considerations to be handled. One enhancement to the current

defect localization technique could be to incorporate available knowledge about a fail-

ure to reduce the overall size of the required traces (and consequently their associated

dynamic call trees). For example, in the pattern mining phase of the proposed tech-

nique, one may use a subset of traces (those related to the failure) for mining. e.g., if

the failure is related to systems interactions, we can use only test cases provided for

that matter. Furthermore, irrelevant subsystems, classes, or methods can be omitted

in the search for defects. Another approach is to break down large dynamic call trees

into smaller subtrees and devise a proper algorithm for pattern mining.

Localizing other types of defects. In this work we focused on localizing

structure-affecting defects in single-threaded programs. By keeping track of frequency

of method calls and incorporating them in the approximate matching process, we can

extend the proposed technique to handle frequency-affecting defects. Also, we are

interested in investigating the idea of mining- and matching-based defect localization

to manage control-graph affecting, data-flow affecting and concurrency defects. In

this case, one should incorporate other graph representations of dynamic executions.

For instance, communication graphs (Lucia and Ceze, 2009) can be used to local-

ize concurrency defects. We have conducted an initial study of concurrency defect

localization in Appendix C.

Providing feedback for testing. One of the main drawbacks of dynamic anal-

ysis is its incompleteness. Software testing’s code coverage criteria provides a means

to control the coverage of the test cases and mitigate this problem. Another possible

solution is to indicate which parts of the static call graph of a system are not covered
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by dynamic call graphs built from test cases and thus identify the need for more test

cases. This can also be used to detect minimum number of test cases required to

cover all code.

Maintaining patterns database. The proposed defect localization approach

performs pattern mining as one of its main activities. When one finds and fixes a

defect, one may change some of the dynamic call graphs and their corresponding

patterns in the database. Therefore, to locate more defects one may need to change

the patterns which involves running the pattern mining phase all over again. One

improvement in this area could be to keep the patterns up-to-date by applying the

fixes to relevant patterns to update them according to recent changes.

Dealing with multiple features, feature interaction. In this work we have

assumed features to be independent. We also assume that one feature fails in the fail-

ing execution. However, other scenarios can be assumed: a failure during an execution

of the feature can be related to other features executing before it (feature interac-

tion), a defect can make multiple features to fail, there can be multiple instances of a

feature where one of the instances fails. To make a powerful defect localization tool,

one needs to consider all different scenarios.

177



Ph.D. Thesis - Anis Yousefi McMaster - Computing and Software

178



Chapter 8

Request Replication: An

Alternative to QoS-aware Service

Selection

In this chapter we present our second research subject which is designing a novel

alternative strategy for service selection in SOA with the aim of satisfying the QoS

requirements of a client in a more cost-efficient way. The proposed technique, namely

Request Replication, has also been published as a conference paper (Yousefi and Down,

2011a) and a technical report (Yousefi and Down, 2011b).

8.1 Introduction

Service Oriented Architecture (SOA) is an increasing trend in developing business

applications. In this architecture, software functionality is represented as a set of

services with well defined interfaces which can be reused to build various types of
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applications. A service is published by a service provider (from now on, we will

simply use “provider”) and used by one or more service clients (“client” for short).

Research in web services includes many challenging areas such as service composition,

quality of service (QoS) aware service selection, etc.

Service selection is the process of choosing a service implementation from a pool

of previously published services in a way that the selected service satisfies a client’s

functional and non-functional requirements. This process is done in two steps. In

Functional-based service selection (Baldoni et al., 2006; Klusch and Kapahnke, 2008),

services matching a set of functionality requirements are retrieved. In Non-functional

based (or QoS-aware) service selection (Tian et al., 2004; Yang et al., 2007), func-

tionally equivalent services, discovered in the previous step, are ranked based on

non-functional requirements of the client.

The non-functional requirements are soft constraints on non-functional properties

(NFPs), including quality of service (performance, security, reliability, response time,

call cost, etc.) and Context (location, intention, client name, provider details, etc.).

In the process of QoS-aware service selection, a client submits to the service selection

engine a set of non-functional requirements. Furthermore, many service providers

advertise functional and non-functional capabilities of their services at the time of

publication. Hence the service selection engine can match requirements of a client

against advertised capabilities of services. In SOA, there are two general approaches

for satisfying QoS requirements. In the first approach, a client chooses from the pool

of available services, the service which best matches non-functional requirements. An

alternative to this approach is QoS Negotiation, in which the client negotiates with

the provider to reach an agreement with regard to the non-functional requirements.
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Non-functional properties of services, such as response time, are stochastic in

nature. The dynamics of the environment in which a service is deployed, such as

network-related delays and server congestion, can result in high variability in ser-

vice non-functional properties. This yields two outcomes: On the negative side, the

selected service may for a particular service invocation have response time that sig-

nificantly exceeds the average value advertised. On the positive side, one could take

advantage of the inherent variability in non-functional properties of a service to pro-

pose alternative service selection strategies.

In this chapter, we present a novel alternative strategy, namely Request Replica-

tion, to satisfy the QoS requirements of a client in a more cost-efficient way by taking

advantage of the existing high variance in NFPs. Unlike conventional QoS-aware

service selection, in Request Replication we choose from available services a set of in-

dependent low-cost and low-quality services in a way that their combination provides

the required QoS. Throughout this work, we specifically consider response time as a

representative of performance related NFPs. We concurrently send a request to a set

of services, take the fastest response, and discard the remaining requests.

The term “replication” has been used in other contexts in the literature of QoS-

aware service selection. For example, Service Replication is a mechanism providers

use to guarantee their quality of service obligations in their service level agreements

(SLAs) (You et al., 2009). Also, the idea of sending a request to multiple functionally

equivalent services followed by a voting mechanisms is used in the context of fault

tolerance (Looker et al., 2005; Salatge and Fabre, 2007; Zheng and Lyu, 2009).

In this work, we enhance the state of QoS-aware service selection in SOA from

the client’s perspective. The contributions of this work are:
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1. We provide an alternative strategy to conventional “QoS-aware service selec-

tion” in SOA, which has the potential to allow clients to have higher quality

services with less cost. In this method, a client can build better quality services

from low cost, low quality ones.

2. We present a number of recommendations about service advertisements for per-

formance related NFPs, and specifically service response time. We believe that

the advertisements should provide enough information about non-functional

properties of a service to enable clients to make better decisions with regard

to service selection. For this reason, we believe that clients should know the

distribution of NFPs, or a sufficient number of parameters to estimate the dis-

tribution.

The rest of this chapter is organized as follows: Section 8.2 presents related concepts

in the domain of service selection. Section 8.3 discusses related work in the literature

of QoS-aware service selection in SOA. Section 8.4 presents the proposed “Request

Replication” strategy. Section 8.5 provides a number of recommendations for service

advertisements. Section 8.6 concludes this chapter.

8.2 Service Selection in SOA

In this section, we discuss the QoS model of SOA. Specifically, we explain the basics

of QoS-aware service selection and negotiation as well as the nature of QoS adver-

tisements.
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8.2.1 QoS-aware Service Selection

Services in SOA are functional units, wrapped in well defined interfaces which are

published for others to use. At the time of publication, a provider registers a ser-

vice with a registry by providing information about the functionality and interface

of the service along with its non-functional properties. QoS-aware service selection is

the process of choosing a service implementation from a pool of previously published

services in such a way that the selected service satisfies a set of functional and non-

functional requirements. The basic building blocks for any service selection approach

are discussed below and in (Sathya et al., 2010).

Client Service Requirements

To find an appropriate service, a client submits to the service selection mediator a set

of requirements along with their request. The requirements may involve both func-

tional and non-functional aspects which need to be satisfied by the candidate service.

Provider Service Advertisements

The services offered by providers are concerned about functional and non-functional

aspects. The providers thus specify both functional and non-functional properties of

services in what is called a “service offering” or “service advertisement”. The func-

tional properties include service parameters, messages, behavior and operation logic.

The non-functional properties include QoS (security, reliability, response time, call

cost, etc.) and Context (location, intention, client name, provider details, etc.). The

non-functional properties are usually defined using a QoS ontology.
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Service Selection Process

The service selection process involves finding a match for a client’s requirements,

among available service advertisements. In a basic form, service selection provides the

best match for the client’s requirements. In a more general form, service selection pro-

vides a ranking of the available services with regard to the client’s requirements. Many

service selection techniques and algorithms are proposed in the literature. These tech-

niques can be divided into three categories (Sathya et al., 2010):

Functional-based service selection is retrieving functional descriptions from ser-

vice repositories and examining them to see if they satisfy functional requirements

demanded by the client (Baldoni et al., 2006; Klusch and Kapahnke, 2008).

Non-functional based (or QoS-aware) service selection is concerned with non-

functional properties. With the rapidly growing number of available services, clients

are presented with a choice of functionally similar services. This choice allows clients

to select services that match other criteria, non-functional attributes, including QoS

and context (Tian et al., 2004; Yang et al., 2007).

User-based service selection involves the selection of the best service among nu-

merous discovered services based on client feedback, trust and reputation (Srivastava

and Sorenson, 2010; Wang et al., 2009).

8.2.2 QoS Negotiation

The requirements specified by a client may vary from the specified QoS in a service

advertisement. In this case the provider and the client can enter a negotiation process

to adjust the client’s requirements and the provider’s advertisement and reach an

agreement accordingly (Swarnamugi et al., 2010; Wang et al., 2006b).
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8.3 Related Work

So far there are no established standards for specifying NFP advertisements and

requirements in a formal, machine-readable way (Bianco et al., 2008). However,

various XML-based languages such as Web Service Level Agreement (WSLA) (WSLA,

2003) and Web Services Offerings Language (WSOL) (Tosic et al., 2002) have been

proposed. These languages allow the specification of agreed-upon, non-functional

properties of Web services in the form of Service Level Objectives (SLOs). They

also provide a model for measuring, evaluating, and managing the compliance with

non-functional properties.

A service level objective expresses a commitment to maintain a particular state

of the service in a given period. The state is defined as a logical expression over

predicates that refer to NFPs and defines an obligation, that is, what is asserted by

the provider to the client. An example of such an obligation is (WSLA, 2003): “it is

guaranteed that the average response time of the service is less than five seconds”.

Many QoS-aware service selection approaches deal with single-valued descriptions

of NFPs (Wang et al., 2006a; Reiff-Marganiec et al., 2007). That is, a non-functional

property is specified with a single value and a given unit of measurement. For exam-

ple, “the price of the service is 10 dollars/month” or “the throughput of the service is

at least 10MB/sec” or “the average response time of the service is at most 10 msec”.

In this case, to evaluate a non-functional requirement, one performs a one-to-one com-

parison between the advertised and requested values. This approach works well for

deterministic NFPs such as cost but not for non-deterministic ones such as response

time, throughput, availability, etc.
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An extension to single-valued description of NFPs is to consider ranges that in-

dicate boundaries on NFPs. For example, “the service delay is between five and

100 msec”. In this case, different approaches could be incorporated to evaluate

non-functional requirements. In (Martin-Diaz et al., 2003; Kritikos and Plexousakis,

2007), the boundary values of an NFP’s range are considered for the evaluation of

non-functional requirements.

There are also a few approaches which specify NFPs as intervals with certain

probability characteristics. Stantchev and Schropfer (Stantchev and Schropfer, 2009)

recently proposed a structure for formalization of service level objectives and techni-

cal service capabilities. A service level objective in this structure has the following

form: non-functional property + predicate + metric (value, unit) + percentage + if

+ qualifying conditions (non-functional property + predicate + metric). An exam-

ple of such a SLO would be “The transaction rate of the service is higher than 90

transactions per second in 98% of the cases if throughput is higher than 500 kB/s.”

There are a few approaches that provide distribution-based description of NFPs.

Rosario et al., (Rosario et al., 2007) suggest that hard guarantees (e.g., response time

always less than five msec) are not realistic and using soft probabilistic descriptions

is more appropriate. In this work, NFPs are specified using probability distributions

of the form P (X ≤ x), where X is a random NFP (such as response time) and x is

a particular value of interest. Hwang et al., (Hwang et al., 2007) consider an NFP

measure as a discrete random variable associated with a probability mass function

(PMF) which results in discrete probability distributions. This can be applied to

model NFPs such as reliability, fidelity and price. However, it is less intuitive to use

a PMF for describing other NFPs, such as response time, whose domain is inherently
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continuous. Li et al., (Li et al., 2009) also assume a distribution-based model for

description of NFPs. They propose a novel evaluation mechanism which indicates

“the degree of match” between an NFP offer and a requirement, where a requirement

is described using a utility function on the range of acceptable values.

Others also consider non-quantitative NFPs and introduce ontologies for semantic

based matching, where semantic defines the relationship between QoS-related terms

and provides a mechanism to evaluate NFP properties whose values are instances of

given domain ontologies (Chaari et al., 2008).

QoS service selection involves finding services that match a set of QoS require-

ments. Matching is a one to one comparison of an obligation and a requirement.

Then, there is an aggregation process to evaluate a service with regard to all require-

ments. With this regard, the QoS-aware literature in SOA considers the challenges of

“semantic” matching, where semantic defines the relationship between QoS-related

terms (Chaari et al., 2008). On the contrary, in this work we are interested in finding

a better matching based on the actual distribution of non-functional properties.

Conventional service selection approaches are geared for choosing a single service

to satisfy the client’s requirements. They use optimization algorithms to choose the

“best” available service or rank services with regard to an application-specific utility

function (Yan and Piao, 2009; Yu and Lin, 2005). Other QoS-related tracks of research

in SOA use and extend the simple one-to-one matching with QoS negotiation (Swar-

namugi et al., 2010; Wang et al., 2006b), and breaking down and dealing with global

and local QoS constraints in composite services (Yang et al., 2007). Marzolla and

Mirandola (Marzolla, M. and Mirandola, R., 2010) recently published a survey of

QoS-related literature in SOA. In this survey, they identified the main approaches
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followed in the literature, including: providing QoS ontologies, developing techniques

and tools for measurement and monitoring of non-functional properties of services,

and devising QoS-aware service selection and composition strategies. To the best of

our knowledge, there are no other approaches similar to Request Replication where a

set of services are incorporated in order to satisfy non-functional requirements.

8.4 Proposed Request Replication Strategy

In this chapter, we present an alternative strategy for QoS-aware service selection.

The proposed strategy benefits clients in potentially receiving better services for less

cost. In this method, a client uses multiple functionally equivalent services to get the

quality they want while minimizing the service costs. We will show how and when

using multiple services can increase the quality of service.

8.4.1 Motivating Example

Assume services S1 to S5 are different implementations of a calendar service with

usage prices of $40, $10, $20, $10, and $10 per month, respectively. Assume that the

following service advertisements are provided by corresponding providers of S1 to S5.

S1: The response time of S1 is less than or equal to 9s in 96% of the cases

S2: The response time of S2 is less than or equal to 10s in 92% of the cases

S3: The response time of S3 is less than or equal to 10s in 92% of the cases

S4: The response time of S4 is less than or equal to 8s in 70% of the cases

S5: The response time of S5 is less than or equal to 8s in 70% of the cases
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Assume that a client is looking for a calendar service with the following QoS require-

ment.

R: Response time of the service must be less than or equal to 9s in 96% of the

cases

With this information, a conventional service selection mechanism will choose S1,

because it is the only service matching the QoS requirement. The price to be paid in

this case is $40 per month.

However, one can employ strategy different from this conventional service selec-

tion. One could choose any combination of services, concurrently send a request to

all of them, and pick the fastest response. In general, this new strategy could improve

the results. Assuming that the service response times for S1 to S5 are mutually inde-

pendent and exponentially distributed, we can show that replicating over S2 and S3

provides the requested QoS for less. In this case, the resulting response time would

be less than 9s in 99% of the cases and the price to be paid would be $30 per month.

The details are as follows:

First, we represent the advertisements of S2 and S3 as

P (R2 ≤ 10s) = 0.92

P (R3 ≤ 10s) = 0.92.

Knowing that the distributions of R2 and R3 are exponential, in this step, we need

to find the rate parameters λ2 and λ3 of the corresponding distributions. We have

P (R2 ≤ 10s) = 0.92

1− e−10λ2 = 0.92⇒ λ2 =
−ln0.08

10
≈ 0.25.
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Similarly,

λ3 ≈ 0.25.

Since we pick the fastest response, the resulting response time Rmin will be equal to

the minimum of R2 and R3 and thus it is exponentially distributed with parameter

λ2 + λ3, that is

P (Rmin ≤ r) = 1− e−(λ2+λ3)r

P (Rmin ≤ 9) = 1− e−(0.50)(9) ≈ 0.99.

This satisfies the client’s requirement which is represented as

P (Rreq ≤ 9s) = 0.96.

Of course it is not at all clear that the exponential distribution is a reasonable

choice for the individual response time distributions. However, if we have more in-

formation about the distribution of service response times we could estimate the

underlying distributions. We will show in Section 8.4.4 how adding more information

to current advertisements enables us to construct such estimates.

8.4.2 General Approach

In this work, we are dealing with the general problem of QoS-aware service selection,

defined as:

Having functionally equivalent services S1 to Sn, find the most cost efficient service(s)

that match the QoS requirements of a client.

In other words, we need to minimize the cost of the selected services while satis-

fying client defined constraints on NFPs.
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We assume the following format for QoS advertisements.

P (Ri ≤ ri) ≥ pi

E[Ri] = mi,

which is read as “the probability that the response time of service i is less than or

equal to ri is greater than or equal to pi, where the mean response time of service i

is mi”. We also assume the following format for a non-functional requirement.

P (R ≤ rreq) ≥ preq,

which is read as “the probability that the response time of the selected service(s) is

less than or equal to rreq must be greater than or equal to preq”.

8.4.3 Request Replication

The proposed strategy for QoS-aware service selection is called Request Replication.

In this method, we choose one or more services whose aggregate QoS serves the needs

of a client. We concurrently send a request to all of the selected services, pick the

fastest response and cancel the other requests. A key motivation comes from the

idea that taking advantage of even a small amount of additional choice for a client

can lead to significant performance improvements. This idea has been explored by

Mitzenmacher (Mitzenmacher, 2001), amongst others, in another context (queuing

problems).

Algorithm 4 presents a pseudo code description of the proposed Request Replica-

tion method. Similar to conventional QoS-aware service selection, in the first step
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we need to find all services with matching functional properties. We call this set

the functionally eligible services (FES) set. We can use any functional-based service

selection method to find this set. In the next step, we choose one or more services

from FES whose aggregate QoS matches the request. This is done in two steps, as

follows.

Algorithm 4 Request Replication

1: find all functionally eligible services and represent them as a set (FES).
2: fit appropriate distributions to the response time data of all functionally eligible

services.
3: cost =∞
4: for all fes ⊆ FES, fes �= ∅ do
5: if (costsum =

∑
s∈fes

s.cost) ≤ cost then

6: compute cumulative distribution function (CDF) for the minimum
response time distribution of the services in the subset fes at point

rreq, that is CDFmin(rreq) = 1−
∏
s∈fes

(1− CDFs(rreq)), where

CDFs(rreq) is cumulative distribution function for service s evaluated at
rreq.

7: if CDFmin(rreq) ≥ preq then
8: cost = costsum
9: selectedServicesPool.replace(fes)
10: end if
11: end if
12: end for

STEP 1 - Fit appropriate distributions to the response time data of all

functionally eligible services.

Current service advertisements do not indicate the actual distribution of NFPs.

Therefore, we need to find estimates of the actual distributions in a way that they

best describe available service advertisements. The first question here is “what sort

of distribution better fits the available service response time data in SOA?”.
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The choice of what distribution to fit and the method that we use to make the fit

do not affect our approach - the insights provided in the rest of this section will still

hold for other methods of fitting a distribution. Gorbenko et al., (Gorbenko et al.,

2009) provide an approach to measure the performance and dependability of Web

services from the client’s perspective and suggest that the Gamma distribution best

describes response time data in SOA. Therefore, we represent response time data

using Gamma distributions, if the actual distribution is unknown. As an illustration,

we show how a Gamma distribution can be fit to a service advertisement of the form

P (Ri ≤ ri) ≥ pi

E[Ri] = mi

The Gamma distribution is a two-parameter family of continuous probability dis-

tributions. It has a scale parameter θ and a shape parameter k. A random variable X

that is Gamma-distributed with scale θ and shape k is denoted X ∼ Gamma(k, θ).

The mean and cumulative distribution function of the Gamma distribution can be

expressed in terms of the Gamma function parameterized in terms of the shape pa-

rameter k and scale parameter θ. Both k and θ are positive values. The mean of a

Gamma-distributed random variable X is kθ and the cumulative distribution function

of X is

CDF(x) = P (X ≤ x) = γ(k,x/θ)
Γ(k)

,

where γ(k, x/θ) is the lower incomplete Gamma function, defined as

γ(s, x) =
∫ x

0
ts−1e−t dt,

and Γ(k) is the Gamma function, defined as
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Γ(k) =
∫∞
0
tk−1e−t dt.

There is no fixed way to fit a Gamma distribution to an available advertisement.

In this work, we incorporate the bisection search method where we search for the root

of the following function

g(k) = γ(k,rik/mi)
Γ(k)

− pi

which is derived from the cumulative distribution function of the Gamma distribution

(CDF) at x = ri, where θ is replaced by mi/k.

The bisection method searches for the root of g(k) in an initial interval [a, b] such

that g(a) and g(b) have opposite signs. Then, it iteratively divides the interval in

half in each step until it finds a sufficiently small interval that encloses the root. The

method is guaranteed to converge to a root of g if g is a continuous function on the

interval [a, b] and g(a) and g(b) have opposite signs. It is not difficult to see that g is

a continuous function of k.

To find the initial interval [a, b], we start by setting k to integer values and com-

puting g(k). Knowing that k is a positive value, we compute g(k = iv) for iv = 1, 2, ...

until one of the following is true:

• g(iv) = 0: in this case the root has been found and is equal to iv.

• g(iv) · g(iv + 1) < 0: in this case a = iv and b = iv + 1.

The method now divides the interval (a, b) in two by computing the midpoint

c = (a+ b)/2 of the interval. Unless c is itself a root, there are now two possibilities:

either g(a) · g(c) < 0 in which case we select the interval (a, c), or g(c) · g(b) < 0 in

which case we select the interval (c, b) to continue.
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As an example, assume that in the advertisement above, ri = 100, pi = 0.81 and

mi = 66. In the initial step, we find out that k = 2 results in CDF(100) − 0.81 =

−0.00466777 and k = 3 results in CDF(100) − 0.81 = 0.02147040. In the next

steps we continue breaking this interval in half and testing CDF(100) − 0.81 for

k = 2.5, 2.25, .... We find that k = 2.17116 is a very close fit. In fact, with 10−7

precision, the result is zero:

γ(2.17116,217.116/66)
Γ(2.17116)

− 0.81 = 0.00000003

STEP 2 - Check if any single service or combination of services satisfies

the QoS requirements.

In this step, we need to find one or more services where the distribution of the

minimum of their response times matches the requirements. We also need to select

from available candidates, the set of services with minimum cost.

For this purpose, we first choose a subset of functionally equivalent services FES

where the cumulative cost of services is less than the current cost, initially set to

infinity. Then we compute the distribution of the minimum response times for services

in the selected subset (in Request Replication we choose the fastest response and thus

the distribution of response times for the super service is equal to the distribution of

the minimum response time of its underlying services). The cumulative distribution

function for the minimum response time for a set of services fes is computed as

CDFmin(Rmin = r) = P (Rmin ≤ r)

= P (Mins∈fes(Rs) ≤ r)

= 1− P (∧s∈fes(Rs > r)),
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where fes is a subset of functionally eligible services and Rs is the response time of

service s.

It is in general difficult to calculate this value unless the response times of services

in fes are mutually independent. In this case:

1− P (∧s∈fes(Rs > r)) = 1−
∏
s∈fes

P (Rs > r)

= 1−
∏
s∈fes

(1− CDFs(Rs = r)).

At this point we compute CDFmin(rreq) for all eligible subsets and update the pool

of selected services, if a subset satisfies the requirement (i.e., CDFmin(rreq) ≥ preq).

8.4.4 Motivating Example Revisited

Adding to the previous example in Section 8.4.1, assume that we also know the means

of the distributions:

m1 = 8, m2 = 8, m3 = 8, m4 = 7.2, m5 = 7.2.

Following Algorithm 4, in the first step we find matching Gamma distributions

for all service advertisements. In this case:

k1 ≈ 0.01, θ1 ≈ 800

k2 ≈ 34, θ2 ≈ 0.24

k3 ≈ 34, θ3 ≈ 0.24

k4 ≈ 18, θ4 ≈ 0.4
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k5 ≈ 18, θ5 ≈ 0.4

In the next step we try different subsets of services, starting from single services,

the results are:

S1 is still a match.

S2 or S3 does not match (CDF2(9) ≈ 0.78 and CDF3(9) ≈ 0.78).

S2+3 (replication over S2 and S3) does not match (CDFmin(9) ≈ 0.95).

S4 or S5 does not match (CDF4(9) ≈ 0.86 and CDF5(9) ≈ 0.86).

S4+5 (replication over S4 and S5) matches (CDFmin(9) ≈ 0.98).

In this case, replication over S4 and S5 is preferred since it provides the required

QoS with a lower price of $20. Note that the previous choice of S2 and S3 for repli-

cation is no longer an option. The extra information provided by the means results

in the construction of more accurate distributions for S2 and S3 which consequently

indicates that replication over S2 and S3 does not actually satisfy the requirement.

8.4.5 Discussion

In this section we discuss a number of points related to the Request Replication ap-

proach.

QoS Heterogeneity

One of the advantages of our algorithm is that, no matter what format the adver-

tisements have and how one estimates a distribution for an advertisement, one is still
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able to use the Request Replication algorithm and the underlying mathematics are

valid. In other words, our proposed algorithm can deal with a mix of advertisement

formats that providers may use in an SOA-based environment. For example, assume

service S1 is advertised with having average response time of 10 msec and service S2

with mean of 9 msec and variance of 12 msec. In this case, we can fit an exponential

distribution to S1 and a Gamma distribution to S2 and the remainder of the calcu-

lations in Algorithm 4 are still valid. The proposed Request Replication method also

works for other distribution-based NFPs such as availability, reliability, etc. Note

that the minimum distribution here must be changed to the appropriate metric. As

future work, we intend to investigate how Request Replication can be enhanced with

optimization techniques to handle requests with multiple QoS constraints.

Service Interdependencies

The underlying mathematics works well if service response times are mutually in-

dependent. In other words, for any two services Si and Sj , P (Min(Ri, Rj) > r) =

P (Ri > r)P (Rj > r) if Ri and Rj are independent. If response times are dependent,

the calculation is not as straightforward. In this case, we would also need to esti-

mate joint probabilities, which may be difficult to calculate. Note that our approach

should also work well if there is approximate independence, i.e., if the relation above

approximately holds. As future work, we are aiming to extend the current approach

by modeling services’ interdependencies.

198



Ph.D. Thesis - Anis Yousefi McMaster - Computing and Software

High Variance

The Request Replication method takes advantage of high variability in the response

time data. If the response times were deterministic, the result of choosing more than

one service would be the same as the result of choosing the service with minimum

response time (which is what conventional QoS-aware service selection does). High

variability in response times increases the chance that multiple services may comple-

ment each other with respect to performance and thus achieving better response times

via Request Replication is more likely. Therefore, the provided method improves the

results over conventional service selection as long as the response time data are highly

variable. The precise form of the distribution is not important.

Replication Overheads

Similar to other domains such as fault tolerance (Looker et al., 2005; Salatge and

Fabre, 2007; Zheng and Lyu, 2009), replication in this work also introduces a number

of overheads.

• Using Request Replication, one should think of a mediator which replicates a

service call to selected services, returns the first response to the client and

cancels the remaining calls.

• Replication increases incoming network traffic to servers. However, we incorpo-

rate request cancellation to avoid lengthy responses and reduce congestion as

much as possible.

As suggested by (Looker et al., 2005) the replication overhead is small and thus

acceptable.
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Request Cancellation Model

We use request cancellation as a companion to our request replication strategy. From

the client’s point of view, canceling a synchronous (request-response) SOAP call is

the same as for any other HTTP call. The client just disconnects and stops lis-

tening for the response. A well written server will check whether the client is still

connected before proceeding with lengthy operations (e.g., in .NET the server would

check IsClientConnected) and should cancel the operation if not. One-way calls in

asynchronous calls cannot be canceled in this manner however, because the client

has already sent the payload and disconnected. Cancellation of one-way calls would

require an explicit call to some sort of cancellation method on the SOAP service (such

as Abort), which it would have to explicitly support. Note that our strategy provides

the best results when we have the “plan” pricing model for Web service usage as

opposed to the “pay per usage” model. For the latter we need to take into account

the cancellation fees when computing costsum in Algorithm 4.

Stateful Services

Our approach handles stateless services. Compared with stateful services, stateless

services offer higher scalability and availability, are faster and easier to test, and can

deal better with fail-over situations. Therefore, stateless services are preferred when

developing Web services. Also, a stateful service may be implemented as a stateless

service by sending all relevant information with every request.
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8.5 Revisiting Service Advertisements

Looking at the literature, current QoS advertisements typically provide a single value

(e.g., the average) to represent the response time of a service. For example, “Average

response time of operation X from service Y is less than or equal to 0.5 seconds” or

“Response time of operation X from service Y is less than or equal to 0.5 seconds in

at least 95% of the cases”. This makes it difficult for clients to employ a strategy

other than the conventional service selection where the client is limited to choosing

“a particular service” as the “best available choice” with regard to their needs.

Conventional service selection would work well if the non-functional properties of

services were actually deterministic. However, the literature (Gorbenko et al., 2009;

Zhu et al., 2006) suggests that non-functional properties of services and in particular,

service response time, are non-deterministic and highly variable due to dynamics of

the environment in which services are deployed. For example, factors such as network

traffic and server congestion greatly influence the response time of services and current

advertisements do not reflect this high variance.

Knowing more about the actual distribution of NFPs provides more opportunities

for clients, including:

• Adjusting the requirements: non-functional requirements are usually soft

constraints. Clients may be willing to change their non-functional requirements

based on the availabilities and the offered prices, as in the case of QoS negotia-

tion. Providing more information about the actual distribution of NFPs makes

it easier for the clients to make better decisions about their requirements. As

an example, assume the following situation. Services S1 and S2 are advertised

with average response times of 0.95 and 1.05 seconds, respectively. A potential
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client needs a service with an average response time of less than one second.

With this information, the client would choose S1 as the better choice. On the

other hand, assume that we know variances of the response times for services S1

and S2. In this case, S1 has high variance ( = 1) and S2 has low variance ( = 0).

Knowing this information, the client may be willing to revise their requirement

and choose S2 as the better choice as it is more reliable with regard to timing

constraints.

• Changing the selection strategy: as mentioned before, having a better

understanding of the distribution of non-functional values makes it possible for

clients to choose from a variety of strategies for QoS-aware service selection.

Request Replication is one example of such strategies which benefits clients by

providing them with better quality services with less cost. There may also be

other possibilities.

For these reasons we recommend that providers advertise the response time of

their services using more than one representative value. This makes it possible to

estimate a distribution for the response time of a service. For example, with two

pieces of information, one can estimate a Gamma distribution, which is shown to

be a good fit for describing the response time distribution in SOA (Gorbenko et al.,

2009). Providers can use any two pieces of information about the response time. In

this work we are considering advertisements of the form

P (R ≤ limit) ≥ percentage

E[R] = m,
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as this is a lightweight change to the advertisements currently available. However,

one could think of other pieces of information, such as mean m and variance σ2, for

an advertisement.

No matter how the services are advertised, the Request Replication strategy can

still be applied. As long as we estimate a distribution to the available advertisement

we can use Algorithm 4 to find appropriate services for replication. If an advertisement

provides one piece of information about the response time, we could fit an exponential

distribution (a simple form of Gamma distribution, where k = 1), and if two pieces

of information are provided a fit to a Gamma distribution could be performed. Our

algorithm is able to deal with a mix of advertisement formats, which is very likely in

a heterogeneous SOA environment.

8.6 Conclusion

In this chapter, we presented a novel alternative strategy to satisfy the QoS require-

ments of a client in a more cost efficient manner by taking advantage of the existing

high variance in the values of non-functional properties. In this method, we use mul-

tiple independent low-cost, low-quality services to satisfy the QoS requirements of a

single request.

There is a possibility to combine the Request Replication idea with the QoS ne-

gotiation process already existing in the SOA literature. In this approach one can

negotiate with the provider of a service to acquire a reasonably low price for a service

(and of course loose QoS as a result) and then incorporate multiple services of this

sort to acquire the required QoS. This idea is being investigated as future work.
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Also, the underlying assumption of independence should be considered more com-

prehensively. If service response times are correlated as a result of services sharing

resources (e.g., shared services, network access, server, etc), the calculation of the

minimum response time distribution becomes more difficult. As future work we are

investigating how we can exploit knowledge about structure of the correlations to

perform the required calculations.

Moreover, one can think of more complex QoS scenarios where the requirements

involve multiple non-functional constraints that must be satisfied at the same time.

Many researchers have used optimization approaches such as linear programming (Cardellini

et al., 2007) and constraint satisfaction (Zemni et al., 2010) techniques to deal with

such scenarios in the traditional QoS service selection literature. Request Replication

simply suggests more options (the use of multiple services in addition to single ones)

when selecting services and can be an appropriate replacement for traditional QoS-

aware selection in optimization-based approaches. This idea is being investigated as

future work.
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Appendix A

Risk Analysis

This appendix presents the known risks associated with the proposed defect local-

ization technique, possible consequences of those risks and suggestions for mitigating

them. The following subsections are organized according to the steps of our defect

localization technique and present risks in each step.

A.1 Tracing

A.1.1 Instrumenting Target System

Risks. Not every method is instrumented.

Consequences. i) The defective method is filtered out. ii) Method calls differen-

tiating between the failing and correct executions are filtered out (e.g., method b is

expected to be called following the defective method a, but is missing because of a

defect in a. In this case, if b is filtered, one cannot differentiation between the correct

and failing executions based on their call graphs which both consist of a call to a).
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Mitigation. i) Instrument all methods: it mitigates both consequences but can result

in very long tracing times and very large traces that require special care to be useful for

defect localization. ii) Instrument one subsystem at a time, then aggregate the results:

it can mitigate both consequences. More investigation is required. iii) Filter out

methods with low probability of being defective. This includes (a) simple methods,

that are small, do not transform data, do not interact with remote components, and

are not time dependent, e.g., small utility methods, and (b) methods that have been

tested and are proved correct, e.g., library methods. This mitigation deals with the

first consequence. iv) Identify and filter irrelevant subsystems, packages, classes, or

methods, based on the debugger’s knowledge about the target system and the nature

of failure.

A.1.2 Running Test Cases on Instrumented System to Get

Execution Traces

Risks. i) Tracing takes too much time. ii) Traces are too large to handle.

Consequences. If the traces are too large, their associated call trees can take up

available run time memory. This can prevent the tool from further processing.

Mitigation. i) Do not instrument all methods: it mitigates both risks but causes

new risks specified in A.1.1. ii) Break down the traces into a number of sub-traces:

it mitigates the second risk. More investigation is required.
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A.2 Constructing and Reducing Dynamic Call Trees

A.2.1 Constructing Dynamic Call Trees

Risks. Call trees do not fit in memory.

Consequences. If the trees are too big, they can take up available run time memory.

This can prevent the tool from further processing.

Mitigation. i) Do not instrument all methods: it mitigates the risk but causes new

risks specified in A.1.1. 2) Break down the call trees into a number of subtrees. More

investigation is required.

A.2.2 Reducing Dynamic Call Trees (Iteration Reduction)

Risks. Repetitive method calls which differentiate between the failing and correct

executions are removed from the trees.

Consequences. We cannot handle frequency-affecting defects. This applies to both

methods that are called from within a loop and those that are repeated a few times

outside a loop.

Mitigation. i) Set a threshold for the maximum number of repetitive calls allowed

(for example five), so that methods that are repeated less than this threshold are

not deleted from the trees. This mitigation targets repetitive method calls outside a

loop. ii) Assign the frequency of method calls to tree edges and extend the proposed

analysis to consider frequency-affecting defects.
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A.3 Mining Frequent Subtrees

Risks. i) Since the minimum height threshold is equal to two in our method, frequent

subtrees with a single method call are not recorded as patterns. ii) Since the minimum

frequency threshold is equal to two in our method, subtrees that are observed in only

one tree are not considered frequent and thus not recorded. iii) Subtrees that are

part of bigger trees with the same support set are not recorded. iv) Since sufficient

test cases are not available, some correct patterns do not reveal themselves. v) We

do not consider failing patterns, i.e., subtrees that only appear in failing test cases.

Consequences. Some correct patterns may be missing. If the missing patterns are

related to features other than the target (failing) feature or are specific to target

feature but are sub-patterns of other patterns in our database, this will not cause any

problems. If the missing patterns are related to the target feature, but other patterns

with the same root exist in our database, we report the root as defect related. If the

missing patterns are related to the target feature and no other patterns could localize

the defect, the defect cannot be localized.

Mitigation. To mitigate risk i, set the minimum height threshold to zero. This

can lead to the generation of more patterns that can increase the number of false

positives. To mitigate risk ii, apply a test case twice with different inputs. This can

lead to the creation of big patterns that are the result of a serialization of features.

To mitigate risks iii and iv, if patterns with the same root as the missing pattern

exist and are high in the ranking, we report the root method as defect related (as we

will see in A.5.2, such patterns could be low in the ranking). To mitigate risks iii, iv

and v, consider methods that are not part of any correct patterns but are observed

in the failing trace, especially those that, according to relevance metrics, are highly
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relevant to the target feature. To mitigate risk iv, ensure decision coverage in the test

suite.

A.4 Pattern Analysis

Risks. i) Due to improper ranking or assuming a very small number for rootsToPick,

some feature-specific patterns are missing. ii) Due to improper ranking or assuming

a very big number for rootsToPick, some shared/irrelevant patterns are selected as

feature-specific.

Consequences. Consequence of risk i is that the defective method may get filtered

out. Consequence of risk ii is that we may increase the number of false positives.

Mitigation. Develop a feedback and/or learning mechanism to improve the results

of ranking and cutting the ranked list.

A.5 Defect Localization

A.5.1 Pattern Matching

Risks. i) Defect does not change the call tree. ii) Defect does not change the call

tree in the section associated with the failing feature (i.e., defect is related to and

changes the code before this section). iii) Defect is related to a subtask that is shared

between multiple features. iv) The correct pattern is not in the database of mined

patterns.

Consequences. Consequence of risks i, ii and iii is that all feature-specific patterns

match and thus the best guesses we can provide for the location of the defect would
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be roots of all feature-specific patterns. For risk iv, if other patterns with the same

root exist we can identify the root as defect-related; otherwise, we cannot localize the

defect.

Mitigation. Risk i implies that the defect is not structure-affecting and thus this is

out of the scope of this work. To mitigate risk ii, consider shared patterns and feature-

specific patterns for features that have been executed before the faulty feature. To

mitigate risk iii, consider shared patterns. Run extra tests to identify if other features

are affected by the defect and consider the patterns specific to the group of features

involved. To mitigate risk iv, if patterns with the same root exist and are high in the

ranked list, we report the root; otherwise, consider methods that are not part of any

correct patterns but are executed in the failing trace, especially those that are highly

relevant to the target feature.

A.5.2 Analysis of Matching Results

Risks. i) Due to improper ranking, the pattern-match pair which includes the defect-

related method is not ranked high enough in the list of suspicious matchings. ii) Not

all the differences between an expected pattern and the failing execution are related

to the defect.

Consequences. Too many false positives are possible. Therefore, defect-related

method is not in the top methods reported.

Mitigation. To mitigate risk i, a better ranking algorithm should be devised, which

considers other ranking criteria besides parentDiffSize and diffSize. To mitigate risk

ii, we can (a) keep a history of similar failures (i.e., failures that relate to the same

feature and produce similar outcomes) and search for frequent failing patterns, or (b)
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consider ignoring changes related to sub-patterns that are common to all executions.

A.6 General Risks

Risks. i) The frequency of the appearance of features in test scenarios is not con-

sidered when analyzing pattern-feature relevance. ii) The number of times a pattern

appears in an execution is not considered when analyzing pattern-feature relevance.

iii) Failures due to feature interaction, including those related to ordering of features

or multiple execution of the same feature in a scenario are not considered.

Consequences. This affects feature location and can lead to improper ranking of

patterns.

Mitigation. See the above discussion for A.4.
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Appendix B

Pattern Analysis using Association

Rules Mining

In Section 5.5, we explained how we use method-feature relevance formulations to

quantify the relevance between features of a system and frequent patterns discovered

on dynamic call trees. In this Appendix, we explain how a complex association rules

mining based algorithm could help making more definite decisions about patterns

implementing a feature and why we avoided such an approach.

B.1 Main Idea

The idea here is to discover pattern-feature relations in terms of association rules.

After performing pattern mining on dynamic call trees and identifying the test-feature

and test-pattern maps presented in Chapter 5, we can build a test-feature-pattern

table, where each row represents a test case and each column represents a feature or

a pattern. Table B.1 illustrates an example. A check mark in cell cij indicates that
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test case ti includes feature/pattern fj/pj.

Table B.1: Example of a test-pattern-feature table

Test Cases Features Patterns
f1 f2 f3 p1 p2 p3 p4

t1 � � � � �
t2 � � � � �
t3 � � �
t4 � � � � � �
t5 � �
t6 � �

In the next step we perform associations rules mining on this data. An association

rule can be of the form p⇔ f , which means pattern p is observed if and only if feature

f is executed. Such a pattern is a feature-specific candidate. Reviewing the pattern

types identified in Section 5.5, we can re-define different pattern-feature relations in

terms of association rules, as follows:

• A feature-specific candidate pattern (a pattern p that exists only in traces as-

sociated with feature f) can be specified as p⇔ f .

• A common pattern (a pattern p that is observed as part of the execution of a

number of features, identified as set F ′) can be specified as
∨

f∈F ′⊂F f ⇔ p.

• An omni-present pattern (a pattern p that exist in all traces) can be specified

as
∨

f∈F f ⇔ p.

Extending this, A feature can be represented as a formula on patterns. For exam-

ple, f ≡ p1∧(p2⊕p3) means executing feature f results in the observation of pattern

p1 and either pattern p2 or pattern p3. This suggests that if feature f fails, one of

the patterns p1 and p2 or p3 should be investigated to locate the problem. This is
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an alternative approach for finding relevant patterns for defect localization which is

different form the relevance formulation based approach we presented in Section 5.5.

In this approach we are ideally seeking rules of the form ψ ⇒ ω and ψ ⇔ ω, where

ψ and ω are boolean expressions over the union of features and patterns, which are

built using conjunctive (∧) and disjunctive (∨ and ⊕) operators, and have no literals

in common. An example of such a rule is, f1 ∧ p2 ⇔ p3 ⊗ p4, which means if f1 is

executed and p2 is observed, we are also expecting p3 or p4. Such information can

enhance the effectiveness of defect localization. If f1, p2 and p3 are observed in a

faulty execution, there is no need to look for p4 even though it may be feature-specific.

This reduces the time that we spend on defect localization and also the number of

false positives. Generalized association rules mining, introduced in the next section,

helps discover such rules from our test-feature-pattern table. We are interested in

discovering a complete set of rules, where no two rules are logically equivalent.

B.2 Generalized Association Rules Mining

Association rules mining is a popular data mining method seeking interesting relations

between variables in a large database. Agrawal et al., (Agrawal et al., 1993b) intro-

duced association rules for discovering regularities between product sales in point-

of-sales. A rule such as milk, eggs ⇒ toast found in the transactions database of a

supermarket would indicate that a customer that buys milk and egg is likely to also

buy toast bread.

Toivonen (Toivonen, 1996) generalized the notion of set and association rules to

boolean formula and boolean rules. A boolean rule is an expression of the form

ψ ⇒ ω, where ψ and ω are Boolean formulae. A Boolean formula can be built using
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negation, conjunctive and disjunctive operators.

The following are among researchers who deal with generalized association rules

mining. Zaki et al., (Zaki et al., 2010) introduce a novel framework, called BLO-

SOM, for mining frequent Boolean expressions over binary valued databases, where

boolean expressions can be conjunctions, disjunctions, conjunction of disjunctions

and disjunction of conjunctions. Flach and Lachiche (Flach and Lachiche, 2001) deal

with the discovery of first-order logic rules from data. The proposed system, Tertius,

employs a normal form variant of the first-order rules which is comprised of a dis-

junction of possibly negated literals, e.g., H1 ∨ H2 ∨ ¬B1 ∨ ¬B2, usually written as

B1 ∧ B2 ⇒ H1 ∨ H2. Nanavati et al., (Nanavati et al., 2001) deals with generalized

disjunctive association rules (d-rules) which allow the disjunctive logical operators, ∨
(inclusive-or) and ⊕ (exclusive-or). Hamrouni et al., (Hamrouni et al., 2008, 2010)

proposed a tool called GARM to discover association rules offering conjunctive, dis-

junctive and negative connectors between items.

B.3 Discussion

Available techniques and tools for mining association rules deal with a limited set of

rule structures. The majority of tools (ConceptExplorer, n.d.; ARtool, n.d.; ARMiner,

n.d.) discover the simplest form of relation between attributes, which is the conven-

tional association rule mining of the form p ⇒ q where, p and q are built using the

conjunctive operator ∧ only. Others who consider generalized association rules pose

limitations on the structure of a rule. For example, GARM (Hamrouni et al., 2010)

discovers rules of the form p ⇒ q in three cases: 1) both p and q are built using

disjunction operator ∨; 2) both p and q are built using negation operator ¬; and
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3) either p or q is built using ∨ operator and the other one uses ¬. Nanavati et

al., (Nanavati et al., 2001) discover q for known p in p⇒ q, where q is in disjunctive

normal form (DNF). Weka (Weka, n.d.), a widely known data mining tool suite, im-

plements a number of different association rules mining algorithms. Weka considers

both the simple conjunctive association rules discussed above and rules of the form

p⇒ q where, p is built using conjunctive operator ∧ and q uses disjunction ∨.
None of the above tools and techniques produces a complete set of boolean asso-

ciation rules. This is because this problem is exponential in nature (Sampaio et al.,

2008). For example, extending Nanavati’s approach requires examining 22
n
combi-

nations of attributes where n is the number of attributes (in our case the number of

features plus the number of patterns). This is not practical. For this reason, one has

no other choice but to limit the types of rules one can mine. Also, for many structures

such as DNF, one cannot guarantee completeness of the set of rules (Nanavati et al.,

2001). Discovering rules of the form p⇒ q where, p is an exclusive disjunction (XOR)

of patterns and q is a conjunction of features, which is one of the most interesting

relations for our analysis is itself exponential in nature. For the mentioned complexity

reasons we decided to change our strategy to using method-feature relevance formulae

from the domain of feature location, and rank patterns according to the relevance of

their methods to features as explained in Section 5.5.
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Appendix C

Dealing with Concurrency

In Chapter 5, we explained a graph-based approach to localize software defects. In this

approach, we focused on defects in single-threaded applications. In this Appendix,

we examine how we can extend our graph-based technique to deal with concurrency

defects such as atomicity and ordering violations.

C.1 Concurrency Defects

Several types of concurrency defects exist in the literature. As specified by Lucia

and Ceze (Lucia and Ceze, 2009), the main categories discussed in the literature are

data races, atomicity violations and ordering violations. A data race happens when

two or more threads access a shared memory location without using suitable locks or

other synchronization to control their accesses to that memory. Atomicity violation

is referred to the state when a group of memory operations that are assumed to be

executed atomically are interleaved by memory accesses from other threads. This

happens when atomic operations are not enclosed inside the same critical section.
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Ordering violations occur when memory accesses in different threads happen in an

unexpected order. A study on real world concurrency defects (Lu et al., 2008) shows

that, most of existing tools do not address less well-studied classes of defects such as

ordering violations and defects involving multiple variables fairly well.

C.2 Select RelatedWork in Localizing Concurrency

Defects

Lucia et al., (Lucia et al., 2008) present Atom-Aid, which is an approach to detect

potential atomicity violations and pro-actively choose chunk boundaries before the

potential violations get exposed. A chunk is a set of operations executed on hardware

as if they are one unbreakable operation. It provides implicit atomicity. To detect po-

tential atomicity violations Atom-Aid performs the following. With every read/write

it saves the addresses in rc/wc after copying their current values to rp/wp (does this

for every thread). Then it checks if these values indicate any unserializable interleav-

ings (e.g., if a remote write interleaves two local reads, a remote write interleaves a

local write followed by a local read, a remote write interleaves a local read followed

by a local write, or a remote read interleaves two local reads). This approach deals

with single-variable atomicity violations.

Lucia and Ceze (Lucia and Ceze, 2009) use communication graphs to detect incor-

rect thread interleavings. A communication graph indicates thread communication

through shared memory operations (i.e., reads and writes). It is a directed acyclic

bipartite graph where nodes indicate memory read/write instructions and edges in-

dicate communication via shared memory. Edge (u, v) indicates that v reads from a
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memory location that u has most recently wrote to. The basic idea in (Lucia and

Ceze, 2009) is to indicate communication edges that appear in incorrect executions

only. Such edges indicate incorrect interleavings and thus where a concurrency defect

is originated. They argue that context-aware variations of communication graphs are

able to detect more complicated concurrency defects such as multi-variable atomicity

and order violations as opposed to basic context-oblivious graphs.

C.3 The Proposed Idea

Concurrency defects (e.g., single and multi variable atomicity and order violations,

data races, etc) may or may not affect the call tree. The real reason behind a concur-

rency related failure is usually a wrong thread interleaving. The proposed technique

for defect localization in this thesis is based on changes in dynamic call trees of dif-

ferent executions. This approach as it stands is not suitable for locating concurrency

defects. However, a similar idea (graph mining and matching) can be applied to deal

with concurrency defects.

The basic idea here is to extend dynamic call trees with communication edges.

In this notation a conventional dynamic call tree is augmented with edges that rep-

resent communication via shared memory. To localize concurrency defects, we mine

patterns of communication from correct executions and compare them against the

communications that have happened in the faulty run. This is an extension of Lu-

cia and Ceze (Lucia and Ceze, 2009). When using communication graphs to detect

concurrency defects, Lucia and Ceze (Lucia and Ceze, 2009) suggest taking one of

a couple of alternatives: 1) consider edges that are rare in communication graphs,

believing that buggy communication is rare; 2) produce a set of defect-only graphs by
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taking a graph difference between the graph of each buggy execution and the union

of all graphs obtained from non-buggy executions.

As with call graph affecting defects (Chapter 5), we believe that we can provide

better results when applying feature location to find related subgraphs for comparison.

Hence, we suggest augmenting dynamic call trees with communication edges and

mining two types of patterns:

• Intra-thread patterns: patterns on the conventional dynamic call trees which

assist in locating call tree and frequency affecting defects.

• Cross-thread patterns: patterns on communication edges which indicate correct

structure between the timing of events (i.e., memory read and writes) in a multi-

threaded application. The cross-thread patterns identify order and atomicity

invariants and any violations from those invariants can be detected using pattern

matching.

This idea requires further investigation.
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