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ABSTRACT  
 

 

 

Forest ecosystems are a significant component of the global carbon (C) cycle. 
Afforestation is considered a cost-effective and ecologically viable means to sequester 
atmospheric carbon. However, afforestation requires intensive management practices, 
including thinning, to maintain and enhance the carbon sequestration capability of the 
forest. This study examines thinning effects on forest carbon dynamics using eddy 
covariance (EC) methods. In January 2012, a 74-year-old white pine (Pinus strobus) 
plantation located in southern Ontario was selectively thinned. Approximately 30% of trees, 
equating to 2308 m3 of wood (sawlogs and pulpwood), were removed to improve light, 
water and nutrient availability for remaining trees. Fluxes of energy, water, carbon dioxide 
(CO2) as well as meteorological variables were measured throughout the year following 
thinning and compared to data from the previous 9 years to evaluate effects of thinning on 
forest carbon dynamics. Mean annual net ecosystem productivity (NEP), gross ecosystem 
productivity (GEP) and ecosystem respiration (RE) from the 9 years prior to thinning were 
290, 1413 and 1118 g C m-2, respectively.  Post-thinning NEP, GEP and RE were 154, 1509 
and 1350 g C m-2 year-1, respectively. Post-thinning NEP was significantly less than pre-
thinning at the annual time scale due to higher RE, however post-thinning fluxes were still 
within the range of interannual variability. At this site, approximately 20% of interannual 
variability in NEP, GEP and RE was explained by environmental conditions. Effects of 
extreme weather events, particularly heat and drought stress, were demonstrated to 
negatively impact NEP. Biotic responses to environmental drivers explained the remaining 
80% of interannual variability in fluxes. Thinning did not significantly impact these 
responses. Further, results suggest that thinning may improve tolerance to drought stress 
by improving water availability for remaining trees. Therefore, thinning has the potential 
to effectively reduce resource competition and stimulate growth and carbon sequestration 
in temperate coniferous forests.  
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CHAPTER 1: INTRODUCTION 
 

Forest ecosystems cover approximately 30% of Earth’s total land area, and 

represent a significant carbon (C) sink (2.4 ± 0.4 Pg C year-1 over 1990-2007) in the global 

cycle (Dixon et al. 1994; Pan et al. 2011). The largest global carbon dioxide (CO2) flux is 

terrestrial gross ecosystem productivity (GEP), 47% of which is from forest biomes (i.e. 59 

Pg C year-1) (Beer et al. 2010). Forests support numerous vital ecosystem services, and 

influence climate through exchanges of water, carbon, energy and nutrients (Raffaelli and 

Frid 2010; Bonan 2008). Many global climate models (GCMs) forecast significant changes 

to the world’s climate over the next century (Field et al. 2012). Warmer surface 

temperatures, intensified precipitation events followed by extended periods of drought, 

increased atmospheric CO2 concentrations and more frequent and severe extreme weather 

events are examples of changes likely to have significant impacts on forest ecosystems 

(Field et al. 2012). Such changes are predicted to affect species ranges, disturbance 

frequency and intensity, and productivity of global forest ecosystems (Field et al. 2012; 

Ledig and Kitzmiller 1992; Hansen et al. 2001; Granier et al. 2007; Holst et al. 2008).  

 

The significant role of forests in the global carbon cycle has led to interest in 

managing forests for climate change mitigation. This primarily involves maximizing forest 

carbon uptake and long-term storage (Dixon et al. 1994; D’Amato et al. 2011). Afforestation, 

the establishment of forests on previously unforested land, is considered one cost-effective 

and ecologically viable means to sequester atmospheric carbon. However, for afforestation 

practices to be successful, intensive stand management is required. Common forest 

management practices include site preparation, selection of species and genotypes, 
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planting, fertilization, prescribed burning, weed control and thinning (Bettinger et al. 

2009).  Thinning, the removal of a substantial number of trees from a stand, is a common 

practice intended to reduce resource competition and stimulate growth and carbon 

sequestration for remaining trees that may have been constrained by the availability of 

light, water and nutrients (Smith et al. 1997; Spittlehouse and Stewart 2003). In Ontario, 

two silvicultural systems are applied for thinning: shelterwood and selection (Ontario 

Ministry of Natural Resources [OMNR] 2011b). Methods of thinning applied in other 

regions include low, crown, selection and geometric (Smith et al. 1997). In most instances, 

approximately 30% of the original stand is harvested (Spittlehouse and Stewart 2003). In 

the past, the most common objective of thinning was timber production. However, in 

recent years carbon sequestration and forest conservation have also become important 

management goals. It is important to understand and quantify impacts of thinning on forest 

carbon dynamics, particularly if stand management objectives include carbon 

sequestration. 

 

Eddy covariance (EC) is a well-established method for measuring carbon, water and 

energy fluxes between land surfaces (e.g. forests) and the atmosphere (Baldocchi et al. 

2001; Baldocchi 2008). Applications of these measurements include long-term monitoring, 

inter-site comparisons and climate model calibration, among others (Gower et al. 2001). 

Globally, there are over 400 active research sites currently using EC techniques to measure 

fluxes over a range ecosystems (Baldocchi et al. 2001; Baldocchi 2008; Fluxnet 2013). 

Several studies conducted at these sites have evaluated effects of prescribed thinning 

operations on carbon and water exchanges in forest ecosystems varying in age, geographic 
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location, climate and dominant species (Saunders et al. 2012; Scott et al. 2004; Dore et al. 

2012; 2010; Vesala 2005). In coniferous forests, results of thinning on carbon and water 

exchanges measured by EC techniques have varied. Several studies have reported minor 

effects of thinning on carbon uptake in coniferous forests, with recovery of the thinning-

depleted carbon sink within a couple of years (Vesala et al. 2005; Dore et al. 2010; 2012; 

Saunders et al. 2012). Saunders et al. (2012) reported that thinning of a temperate old-

growth Sitka spruce forest in Ireland did not have a significant effect on rates of carbon 

sequestration, but that it did increase the interannual variability in net ecosystem exchange 

(NEE; negative values indicate carbon uptake by forest). Other studies have reported 

longer recovery times for depleted carbon sinks following thinning, such as Scott et al. 

(2004) who predicted that it would take five years for a boreal Scots pine forest to re-

sequester the carbon lost during the thinning operation. Several studies have also 

investigated the re-allocation of carbon sources and sinks following thinning. Furthermore, 

the importance of considering and accounting for understory growth following thinning 

has been highlighted by Vesala et al. (2005), Campbell et al. (2009) and Moreaux et al. 

(2011).  

 

Research has also demonstrated connections between climate variability and 

thinning effects. Influences of climate variations, particularly air temperature (Ta), 

precipitation (P) and photosynthetically active radiation (PAR) have been shown to alter 

the expected impacts of thinning in a temperate old-growth Sitka spruce forest (Saunders 

et al. 2012). Further, a long-term study in a southern ponderosa pine forest in Arizona, USA 

found that following thinning, more carbon was stored during dry months compared to wet 
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months, suggesting improved drought tolerance (Dore et al. 2010). Several years later, a 

continuation of this study found evidence of improved heat tolerance as shown by a higher 

Ta at maximum GEP compared to previous observations (Dore et al. 2012). These findings 

are especially important because heat and drought stress are expected to become more 

prevalent in the future (Field et al. 2012).  

 

There is a need for a better understanding of the effects of thinning, particularly 

under the shelterwood management system, on afforested and managed temperate 

coniferous forests (Scott et al. 2004). In Ontario, approximately 80% of the 71 million 

hectares (ha) of forest are provincially owned and managed (OMNR 2011a). Thinning is a 

common management practice; between 2000 and 2010, over 130,000 ha of managed 

forests were thinned (OMNR 2011a). A better understanding of the effects of thinning on 

such forests will provide insight into how the efficiency of thinning treatments may be 

altered to maximize carbon sequestration and improve the forest’s tolerance to 

environmental stress in this region.  

 

In this paper, we examine the impacts of forest thinning (30% removal of trees) on 

forest carbon dynamics during the first post-thinning year (2012) using 

micrometeorological methods. We compare these measurements with pre-thinning fluxes 

measured at this site from 2003 to 2011.  In our study, 2003-2011 is referred to as the pre-

thinning period, and 2012 the post-thinning period. Study objectives are to (1) evaluate 

effects of climatic variability and extreme weather events on forest carbon dynamics; and 

(2) determine the impact of thinning on canopy characteristics and carbon sequestration 
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capabilities of the stand. We hypothesize that thinning will not significantly affect GEP in 

the first post-thinning year, and that increases in RE will be the major cause of observed 

decreases in NEP. 

 

CHAPTER 2: MATERIALS AND METHODS 

2.1 Study site 

 This study was conducted in a 74-year-old eastern white pine (Pinus strobus L.) 

plantation forest located near the north shore of Lake Erie in southern Ontario, Canada 

(42◦71N, 80◦35W). Referred to in short as TP39 for the year in which it was planted, this 

39 ha site is part of the Turkey Point Flux Station (TPFS), an age-sequence of stands 

consisting of three white pine plantations (11-, 39- and 74-years-old in 2013) and a 

naturally-regenerated deciduous stand (approximately 80-years-old in 2013). Like many 

other afforestations in the area, the OMNR established TP39 on cleared oak savannah to 

generate timber revenue and stabilize the highly erodible sandy soil. Species composition is 

82% white pine; remaining species include oak (Quercus velutina L., Quercus alba L.), maple 

(Acer rubrum L., Acer sachrum L.), black cherry (Prunus serotina Ehrh) and balsam fir (Abies 

balsamea L.) (Peichl et al. 2006; Peichl et al. 2010a; Elliott et al. 2011).  Understory 

vegetation includes bracken fern, poison ivy, Canadian Mayflower, allegheny raspberry and 

mosses (Arain and Restrepo-Coupe 2005). The 30-year mean annual Ta and P in this region 

are 8.0◦C and 1036 mm, respectively, over 1981-2010 (Environment Canada 2013). On an 

annual basis, rainfall accounts for 906 mm of the 30-year mean P, and snowfall accounts for 

130 mm. Approximately 457 mm of P falls during the most productive months (May to 

September) of the growing season (Environment Canada 2013). 
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Soil at the site is classified as Brunisolic Grey Brown Luvisol (Presant and Acton 

1984). It is very sandy (~98% sand, 1% silt, <1% clay), well-drained, and has a low-to-

moderate water holding capacity (Peichl et al. 2010a). Topography is predominantly flat. 

Field capacity and wilting point are estimated to occur around soil volumetric water 

contents (VWC) of 0.16 m3 m-3 and between 0.01 and 0.04 m3 m-3, respectively (Peichl et al. 

2010a). Plant stress is estimated to occur below 0.068 m3m-3, indicated by a positive 

relationship between xylem sapflow velocity and VWC below this moisture content 

(McLaren et al. 2008; MacKay et al. 2012). 

 

2.2 Thinning operation 

TP39 is managed by the OMNR and is currently in the preparatory stage of 

development under the shelterwood silvicultural system (Elliott et al. 2011). This 

silvicultural system is characterized by two or more partial cuts (also known as thinnings) 

over the course of 10 to 30 years, with each cut allowing for the regeneration and 

development of seedlings in partial shade (OMNR 2011b). The first partial cut took place in 

1983, at which time approximately 108 m3 ha-1 of wood volume was removed (Elliott et al. 

2011). In winter 2012, the second partial cut was conducted (Elliott et al. 2011). A 

mechanical harvester was used to cut, de-limb and section the trees. A forwarder 

transported logs to a loading area at the perimeter of the forest, where they were stored for 

transportation to a mill near Sudbury, Ontario.  To reduce soil compaction and disturbance 

during this operation, pre-existing multi-use trails throughout the stand were used where 

possible. Thinning residues (e.g., limbs, bark, crowns) were placed on the ground ahead of 

the harvester and forwarder to reduce compaction where trails were not accessible. 
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Approximately 200 legacy trees (largest, best quality) were retained on each hectare, and 

remaining trees were harvested. In total, approximately 2308 m3 of wood volume was 

removed from this stand, equating to approximately 60 m3 ha-1. Of the total amount 

harvested, 352 m3 were pulpwood and 1958 m3 were sawlogs (P. Kallioinen, personal 

communication, June 20, 2013). Using a volume (m3) to mass (metric tonnes, t) conversion 

factor of 0.854 provided by the mill that processed the pulpwood, the total amount of wood 

harvested was 1973 t (P. Kallioinen, personal communication, June 20, 2013).  Peichl and 

Arain (2007) used destructive methods at this site to determine the approximate allocation 

of total tree biomass between above- and belowground pools: 69% stem, 1.5% foliage, 7% 

living branches, 4.5% dead branches and 18% roots. Based on these proportions and the 

total amount of harvested stems (i.e. 1973 t), it is estimated that at total of 2859 t of 

biomass were affected by this operation in 2012.  The operation added 43 t of foliage, 200 t 

of live branches and 129 t of dead branches to the forest floor.  An additional 515 t of roots 

were made inactive from growth and production. These components, totaling 887 t of 

biomass, will eventually decompose and contribute significantly to heterotrophic 

respiration in coming years at this site. Stand characteristics were also greatly impacted by 

the thinning operation as summarized in Table 1 (Peichl et al. 2010b; Kula 2013).  

 
Table 1. Stand characteristics. 

  2003* 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Basal area (m2 ha-1) N/A 37.7 37.7 38.4 38.7 39.4 40.1 40.3 40.7 35.6 

Mean tree height (m) N/A 20.3 20.8 21.3 21.8 22.5 22.7 22.8 22.8 23.2 

Mean DBH (cm) N/A 34.8 34.9 35.3 35.6 35.9 36.3 36.7 36.8 38.7 

*Biometric Measurements began in 2004. 
 

 

On average, basal area (BA) was reduced by 13% (from 40.7 to 35.6 m2 ha-1) (Kula 

2013). Peak leaf area index (LAI) was reduced by 35% (from 8.5 to 5.5 m2 m-2) (measured 
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by Dr. Jing Chen’s Remote Sensing and GIS group at the University of Toronto; Chen et al. 

2006).  Figure 1 shows photographs of an area near the flux tower prior to and after the 

thinning operation.  

 

2.3 Meteorological measurements 

        Continuous meteorological measurements have been made at TP39 since 2003 (see 

Peichl et al. 2010a for additional details). Ta and relative humidity (RH) were measured at 

three heights: above-, mid- and below-canopy (model HMP45C, CSI). Vapor pressure deficit 

(VPD) was calculated from measurements of Ta and RH. Above-canopy wind speed and 

direction (WS, model 05 103-10RE, R.M. Young Co.), net radiation (Rn, model NR-LITE, 

Kipp and Zonen Ltd) and PAR (model LI-200S, LI-COR Inc.) were also measured 

approximately 28 m above ground at the top of a scaffolding tower located within the stand. 

Two spatially distinct soil pits were used to measure soil moisture (SM, model 615/616, 

CSI) and soil temperature (Ts, model 107B, CSI, respectively) at depths of 2, 5, 10, 20, 50 

and 100 cm. Year-round P was measured in an open area at the Normandale Fish Hatchery 

(2 km northeast of site) using a weighted rain gauge (model T200B, Geonor Inc.). This rain 

gauge was relocated to Long Point Waterfowl (1.5 km east of site) in 2011. A tipping bucket 

rain gauge (model TE525, Texas Instruments) was installed beside the weighted rain gauge 

to cross-check measurements. P was also measured above the TP39 canopy (20 m above 

the ground) using a heated tipping bucket rain gauge (model 52202, R.M. Young Co.). 

Atmospheric pressure (model 61205V, R.M. Young Co.), snow depth (model SR50, CSI) and 

water table height (model OTT PLS, CSI) were also measured.  
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Gaps in metrological variables were filled using data from the three nearby TPFS 

sites. To fill gaps, year-long comparisons were performed between simultaneous 

measurements at TP39 and the three other sites. The site with the highest coefficient of 

determination (R2) was used to fill the gaps in TP39 measurements using a regression. 

Normalization was applied to account for physiological differences between the two sites. 

Gaps in P measured by the weighted rain gauge were filled using measurements from the 

two nearby tipping bucket rain gauges. Gaps in incoming shortwave radiation (SW) were 

filled using a linear relationship with measured PAR. Soil heat flux was calculated by 

applying a correction factor to buried heat flux plate measurements (model HFT3, CSI) to 

include heat storage in the overlying three centimeters of soil.  

 

To evaluate the occurrence of extremely high Ta events throughout the study period, 

a heat stress index following Beaumont et al. (2011) was applied (Beaumont Heat Index, 

BHI). This index considers months with average Ta exceeding two standard deviations (SD) 

from the 30-year normal as “extreme” (Beaumont et al. 2011). Monthly normals from 

1981-2010 recorded at an Environment Canada weather station in Delhi, Ontario (20 km 

northwest of TP39) were used to determine which study period months were extremely 

hot (Environment Canada 2013; McLaren et al. 2008).  

 

2.4 Eddy covariance measurements 

        A closed-path EC system, consisting of an infrared gas analyzer (IRGA, model LI-

7000, LI-COR Inc.), sonic anemometer (model CSAT-3, CSI), climate control box, four meter 

long heated sampling tube and a desktop computer was used to estimate half-hourly NEE 
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of CO2 (negative values indicate carbon uptake by forest) (Arain and Restrepo-Coupe 2005). 

A second IRGA was used to measure mid-canopy (14 m) CO2 concentrations to calculate 

changes in CO2 storage in the air column below the EC system (model LI-820, LI-COR Inc.). 

Continuous flux measurements (20 Hz) were made at the top of the tower from January 

2003 to December 2012.  

 

High-frequency EC data were saved on a desktop computer housed in a trailer near 

the tower. Software developed by Dr. T.A. Black’s Biometeorology and Soil Physics Group at 

the University of British Columbia was used to calculate half-hourly fluxes. Changes in 

carbon storage in the air column below the EC system were calculated from the difference 

between corresponding above- and mid-canopy CO2 measurements. NEE was calculated by 

adding the measured half-hourly flux of CO2 (Fc) and CO2 storage. From this, NEP was 

calculated as the inverse of NEE (NEP = -NEE). 

 

 Processes applied to the calculated half-hourly fluxes, in order of operation, were: 

(1) outlier and spike removal; (2) footprint filtering; (3) friction velocity (u*) threshold 

filtering; (4) RE gap-filling; (5) partitioning of NEP into GEP; (6) GEP gap-filling; and (7) 

filling of NEP gaps resulting from instrument malfunction, power outages, calibration or 

data processing. With the exception of storage calculations, all of these processes were run 

separately for pre- and post-thinning periods (2003-2011 and 2012, respectively) to avoid 

confounding effects caused by any phenological changes in the stand resulting from 

thinning. Details of these processes are described in Brodeur (2013) and in Appendix A. 
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Differences between pre- and post-thinning annual sums of GEP, RE and NEP, as well as 

annual GDD and P, were evaluated using t-tests in MATLAB (The Mathworks Inc). 

 

2.5 Uncertainty estimates associated with EC measurements 

 There are numerous sources of uncertainty associated with EC methods. 

Uncertainty may result from errors associated with the operator, population sampling, 

instruments, calibration and measurement conditions (Aubinet et al. 2012). These errors 

may be random or systematic. Random errors are unpredictable errors that result in 

scattered data, while systematic errors are constant yet unknown (Aubinet et al. 2012). 

Random errors in flux measurements may be caused by the nature of turbulence and 

resulting sampling errors, random measurement errors, and changes in the footprint 

(Aubinet et al. 2012). Systematic errors arise when the EC assumptions are not met, and 

from calibration and processing problems (Aubinet et al. 2012). On ideal sites, it is 

estimated that uncertainty in annual NEP is less than 50 g C m-2 (Baldocchi 2003). A 

previous study conducted at this site estimated that between 2003-2007, average 

uncertainty in annual NEP was ±40 g C m-2 year-1 based on half-hourly mean absolute error 

(MAE) (Peichl et al. 2010a).  

 

2.6 Comparison with nearby forest sites 

Carbon dynamics from an adjacent 39-year-old white pine plantation forest (TP74, 

Peichl et al. 2010a) and an 80-year-old deciduous forest (TPD, Parsaud 2013) located 20 

km west of the thinned stand (TP39) were compared to TP39. Because the EC system at 

TPD was established in early 2012, and coniferous and deciduous forests are different with 
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respect to physiological characteristics and carbon sequestration strategies, this 

comparison focused mainly on TP74.  

 

In 2012, average tree height, average diameter at breast height (DBH) and LAI at 

TP74 were 16 m, 18 cm and 6.6 m2 m-2, respectively. Located adjacent to TP39 on the south 

side, TP74 was selected as a control comparison for TP39 because it was not thinned, it is 

relatively similar in age to TP39 and it experienced identical meteorological conditions. EC 

and meteorological measurements have been made at this site since 2003. A roving open-

path EC system (comprised of Li-7500 IGRA and CSAT3 sonic anemometer) was used from 

2003-2007 on top of a 16 m tower. In 2008, a 20 m scaffolding tower was erected and the 

EC system was upgraded to a permanent closed-path system (Peichl et al. 2010a).  Because 

of differences between the open- and closed-path systems (e.g. different measurement 

heights) and uncertainty resulting from filling large data gaps prior to 2008, only 

measurements from the permanent closed-path system were considered in this analysis 

(i.e. from 2008 to 2012). 

 

The closed-path system at TP74 consisted of an infrared gas analyzer (IRGA, model 

LI-7000, LI-COR Inc.), sonic anemometer (model CSAT-3, CSI), climate control box, heated 

sampling tube and a desktop computer. Key meteorological variables (Ta, Ts, VWC, RH, 

PAR) were also measured. Outlier and spike removal, u* threshold filtering and gapfilling 

processes were identical at both sites. A footprint filter was not applied at TP74 because it 

was not critical to exclude fluxes from surrounding stands since this site was not thinned. 
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To account for age-related differences between TP39 and TP74, carbon fluxes were  

normalized based on a standard forestry measure of site quality (site index, SI). Previous 

work at the TPFS determined site-specific SI values based on tree height measurements 

and stand age, using standard eastern white pine relationships between dominant tree 

height and base age 25 (i.e. SI25 curves) (Peichl et al. 2010a; Parresol and Vissage 1998). SI 

values determined by Peichl et al. (2010a) were used in this analysis. Site indices at TP39 

and TP74 were 7.9 and 8.4, respectively (Peichl et al. 2010a). Site-specific normalization 

factors were computed by dividing the reference SI25 at TP39 by the SI25 at TP39 and TP74, 

resulting in normalization factors of 1 and 0.93, respectively. Carbon fluxes were multiplied 

by these site-specific normalization factors. 

 

2.7 Determination of functional relationships  

 Functional relationships between measurements of productivity (in this case 

unfilled NEP), and key meteorological variables (Ta, PAR, VPD and VWC) were examined to 

evaluate possible thinning effects. NEP was chosen to represent productivity instead of GEP 

because the latter is entirely modeled. Unfilled NEP was used to further reduce potential 

errors associated with the gap-filling process. Only daytime growing season measurements 

(April 1- October 31) were considered. Once daytime growing season measurements were 

selected, NEP was bin-averaged using bin sizes of 50 µmol m-2 second-1 for PAR, 0.5C for 

Ta, 0.05 kPa for VPD and 0.05 m3 m-3 for VWC. A moving average was calculated for each 

year to show the general trend of each annual relationship.  
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2.8 Crossed- meteorological and parameter year test 

 A simplified test following Richardson et al. (2007) was performed to partition 

fluxes into two main effects: variation in environmental drivers and variation in biotic 

responses to environmental forcing. Environmental drivers included: Ta, Ts at 5 cm depth, 

PAR, VPD and VWC. Gapfilling model parameters, or coefficients, were used to characterize 

biotic responses to environmental forcing. Richardson et al. (2007) predicted that changes 

in the biotic response to environmental forcing might be caused by differences in maximum 

process rates (e.g., maximum GEP), sensitivity of key processes to environmental drivers 

(e.g., response of RE to Ta) and changes in the size or distribution of the carbon pool. 

 

 Model coefficients for GEP and RE, parameterized and used during the gap-filling 

process to estimate half-hourly carbon fluxes based on corresponding observations of 

meteorological conditions, were derived for each year during the gapfilling process. For 

each year between 2003-2012, GEP and RE were modeled by crossing each ‘meteorological 

year’ (i.e. each of the 10 years of meteorological data) with each ‘parameter year’ (i.e. each 

of the 10 years of model parameter sets), resulting in 100 different combinations for each 

flux component. For each combination of ‘meteorological year’ and ‘parameter year’, NEP 

was calculated as the difference between the estimates of GEP and RE.  A two-way analysis 

of variance (ANOVA) was performed in MATLAB to partition the variability in model 

predictions of annual fluxes into ‘meteorological year’ and ‘parameter year’ effects. The 

ANOVA error term accounted for the remaining unexplained variance. Multiple 

comparisons were used to evaluate which years exhibited meteorological and biotic 

conditions conducive to higher rates of GEP, RE and NEP.   
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CHAPTER 3: RESULTS 

3.1 Climate variations throughout study period 

 Table 2 provides annual growing season (April 1 – October 31) climatic conditions 

for 2003-2012. Throughout the study period, annual mean annual Ta ranged from 7.5 to 

10.3C. Mean annual pre-thinning (2003-2011) Ta was 8.40.8C, and mean annual post-

thinning (2012) Ta was 10.3C, respectively. Annual growing season Ta ranged from 14.1 

to 16.6C. Highest annual growing season values were observed in 2005 and 2012. Monthly 

trends in Ta varied between years (Fig. 2a). Deviations from normal included a warm 

winter in 2006, a relatively cold winter in 2007, a warm summer in 2005 and an unusually 

warm winter and spring in 2012. On average, 2012 was the warmest year of the study 

period; January, February, March, June and July were warmer than in all pre-thinning years. 

Most remarkably, monthly average Ta in March 2012 was 7.3C, compared to the 30-year 

normal (1981-2010) of 0C (Environment Canada 2013).  During the study period, three 

years had at least one extremely hot month during the growing season according to the BHI 

(Beaumont et al. 2011). In 2005, June and September were extremely hot (0.3 and 1.8 

degrees warmer than 2 SD, respectively). October 2007 was 1.0 degree above 2 SD.  In 

2012, March and July were both extremely hot (3.5 and 0.2 degrees above 2 SD, 

respectively). 

 

Mean annual PAR ranged from 311.8 to 345.2 µmol m-2 second-1 over 2003-2012.  

Mean annual pre- and post-thinning PAR was 327.212.7 and 345.2 µmol m-2 second-1, 

respectively.  Mean annual growing season PAR ranged from 408 to 462 µmol m-2 second-1. 

Maximum and minimum annual growing season PAR were observed in 2012 and 2003, 
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respectively. Monthly mean PAR was lower than normal during March 2004 and April to 

May 2011, and was higher than normal during June 2007 (Fig. 2b). Periods of relatively low 

PAR were associated with abundant P. Upward, or reflected, PAR was also measured. Mean 

annual pre- and post-thinning reflected PAR was 10.0 µmol m-2 second-1 and 12.6 µmol m-2 

second-1, respectively. Mean monthly reflected PAR in 2012 was higher than pre-thinning 

years during May, July and August. This was a combined effect of high incoming PAR and 

increased exposure of bare soil and understory vegetation following the thinning operation. 

Bare soil and understory vegetation have a higher albedo than pine trees, increasing 

reflected radiation.  

 

VPD, a function of Ta and RH, exhibited interannual variability throughout the study 

period. Mean annual growing season VPD ranged from 0.6 to 1.0 kPa. Mean annual growing 

season pre- and post-thinning VPD was 0.70.1 and 1.0 kPa, respectively.  Low monthly 

values were observed in July and August 2010 and March to May 2011 (Fig. 2c). Maximum 

monthly VPD was higher in March, May, July, August and September of 2012 compared to 

pre-thinning years. 

 

Annual P during the study period ranged from 896 to 1293 mm (Fig. 2d). Mean pre-

thinning P was 960158 mm and post-thinning P was 1001 mm. Pre- and post-thinning 

annual P were not significantly different (p = 0.4519). Previous work at this site evaluated 

the occurrence of extreme drought events using the Palmer Drought Severity Index (PDSI) 

(Peichl et al. 2010a). Droughts were not evident in 2003 or 2006. The 2004 growing season 

began with a wet spring, but a minor drought developed towards the end of the summer 
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(Peichl et al. 2010a). This mild drought was maintained until the middle of the 2005 

growing season. In 2007, increasingly limited water availability throughout the growing 

season resulted in an extreme drought by the end of the summer (Peichl et al. 2010a). 

Highest annual rainfall was recorded in 2011, nearly half of which occurred by May. Cloudy, 

rainy conditions during this period contributed to low PAR (Fig. 2b). Cumulative P in 2012 

was low compared to previous years until late summer. By the end of the year, cumulative 

P was average because of several large events that occurred in the fall. In 2012, 

approximately 226 mm of P fell as snow, and 775 mm as rain. The rainband of Hurricane 

Sandy passed through this region in late October, resulting in 62 mm of rain over 4 days. 

 

Table 2. Annual growing season (April 1 – October 31) climatic conditions. All reported 
values are averages except for precipitation (P), which is an annual cumulative sum. Only 

daytime values were considered for vapor pressure deficit (VPD). 
  2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Ta (°C) 14.1 14.5 16.6 15.6 15.6 14.6 14.1 15.9 15.3 16.2 

Ts (°C) 13.8 14.0 14.4 14.2 14.3 13.4 13.2 14.7 14.3 14.9 

P (mm) 583 492 477 752 441 508 608 608 745 650 

PAR (µmol m-2 s-1) 408 418 458 411 459 451 437 439 417 462 

VPD (kPa) 0.64 0.56 0.75 0.76 0.83 0.61 0.55 0.61 0.69 1.02 

VWC (m3 m-3) 0.11 0.11 0.10 0.12 0.09 0.12 0.11 0.10 0.11 0.09 

 
 

SM, a function of P, soil texture and soil structure, is an important secondary 

controlling factor for GEP and RE (Richardson et al. 2007). Previous research conducted at 

this site identified that below a VWC threshold of 0.068 m3 m-3, trees experience water 

stress (McLaren et al. 2008; MacKay et al. 2012). To evaluate the annual extent of water 

stress, days with average VWC below this threshold were identified. Years with the most 

frequent number of water stress days were 2007, 2011 and 2012. In 2007 there were 70 

days with average daily VWC below 0.068 m3 m-3. This corresponds with the growing 
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season-long drought identified by the PDSI in 2007 (Peichl et al. 2010a). The last two years 

of the study period were very similar; 2011 and 2012 had 50 and 54 water stress days, 

respectively. In 2011, this was driven by limited P between May and August, whereas there 

was limited P until late August in 2012.  

 

Annual growing degree days (GDD), a measure of heat accumulation over the 

growing season, ranged from 1137 to 1621D between 2003-2012 (Fig. 3). Mean pre-

thinning GDD was 1354159D; GDD in the post-thinning year was 1562D. Pre-thinning 

GDD was significantly less than post-thinning (p = 0.0044). The year with the lowest GDD 

was 2009; relatively low growing season Ta was observed in this year (Fig. 2a). Compared 

to previous years, 2012 maintained the highest GDD for the majority of the growing season, 

particularly between June and August. This high rate of GDD accumulation corresponds 

with the extremely hot Ta in July identified by the BHI. In mid-September, GDD in 2005 

surpassed that of 2012 (Fig. 3). September 2005 was also identified as extremely hot by the 

BHI. 

 

3.2 Carbon and water dynamics throughout study period 

 Figure 4 shows half-hourly non-gap-filled measurements of NEP throughout the 

study period. Positive daytime values represent photosynthetic carbon uptake via GEP; 

negative values represent carbon losses due to RE. All years show the same general trend 

of dormancy in the winter followed by long, productive growing seasons. A mid-summer 

decline in productivity was observed in 2005 and to a greater extent in 2011 and 2012. In 

all instances, these declines were followed by a recovery to normal values.  
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Figure 5 demonstrates the modeled response of RE to changes in Ts, using 

coefficients derived from the gap-filling process (coefficients are given in Appendix B). For 

all possible soil temperature values, 2012 exhibited one of the highest rates of respiration, 

along with 2003, 2004 and 2008. Overall, however, the relationship between modeled RE 

and Ts was not significantly different. The modeled response of GEP to changes in PAR, 

using coefficients derived from the gap-filling process (coefficients are given in Appendix 

B), also demonstrates no substantial effect of thinning (Figure 6). Again, the response in 

2012 was within the range of interannual variability. Years 2008 and 2010 demonstrated 

the highest rates of GEP with increasing PAR; 2006 demonstrated the lowest.  

 

Figure 7 shows monthly dynamics of GEP and RE. The early growing season start in 

2012 is apparent in the remarkably high dynamics of GEP and RE in March. Maximum 

monthly GEP was observed in July 2008. March 2012, June 2010 and July 2010 also 

demonstrated relatively high monthly GEP. Conversely, the year with the lowest GEP 

throughout the majority of the growing season was 2005. Maxiumum monthly RE was 

observed in August 2003. Relative to other years, monthly RE was low in 2011 for most of 

the growing season. Although monthly dynamics of GEP were very similar in 2011 and 

2012, RE was higher in 2012 compared to 2011. The mid-summer decline in productivity 

in 2011 and 2012 is visible in the monthly dynamics of GEP (Fig. 7). GEP typically reaches 

an annual maximum in July at this site, however this was not observed in 2011 and 2012. 

Instead, GEP was lower in July compared to June and August in 2011 and 2012. A 

corresponding decline in RE was not observed.  

 



 

 

20 

Figure 8 shows cumulative NEP for the study period. All years experienced a 

negative trend in NEP until the start of the growing season, because RE is the only 

component flux during the dormant winter period. The earliest growing season start, 

shown by a positive trend in NEP, was in 2012. 2010 and 2006 also experienced a relatively 

early start to the growing season. Conversely, 2004 experienced the latest growing season 

start. Most years experienced a similar rate of increase in NEP between April and June. 

Exceptions to this were 2004 and 2012; these years experienced lower rates of NEP shown 

by lower slopes. After June, annual NEP diverged. In general, net uptake continued to 

increase until the end of the growing season in October. However, rates of increase 

remained relatively low in 2004, 2005 and 2012, resulting in the lowest observations of 

annual NEP. Overall, 2005 and 2012 showed nearly identical annual dynamics. Maximum 

and minimum annual NEP were observed in 2004 and 2011, respectively. 

 

Annual values of GEP, RE, NEP and ET for the study period are shown in Table 3. 

Maximum and minumum annual GEP were observed in 2008 and 2005, respectively. 

Interannual variability was higher in annual RE than GEP. Maximum and minimum annual 

RE were observed in 2012 and 2011, respecitvely.  

 

Table 3. Carbon and water dynamics throughout study period. 
  2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

GEP (g C m-2 year-1) 1427 1368 1264 1383 1309 1573 1411 1559 1427 1509 

RE (g C m-2 year-1) 1185 1274 1090 1087 1054 1203 1011 1214 944 1350 

NEP (g C m-2 year-1) 238 92 160 289 254 363 397 340 479 154 

ET 401 411 424 491 449 529 484 539 486 501 

 

Mean annual pre-thinning GEP was 1413102 g C m-2 year-1; post-thinning GEP was 

1509 g C m-2 year-1.  Mean annual pre- and post-thinning GEP were not significantly 
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different (p = 0.0225). Mean pre-thinning RE was 1118108 g C m-2 year-1; post-thinning 

RE was 1350 g C m-2 year-1. Mean annual pre-thinning RE was significantly lower than post-

thinning (p < 0.01). Mean pre-thinning NEP was 290120 g C m-2 year-1; post-thinning NEP 

was 154 g C m-2 year-1. Mean annual pre-thinning NEP was significantly greater than post-

thinning (p < 0.01). 

 

Water dynamics were measured continuously throughout the study period. Annual 

ET ranged from 401 mm to 539 mm (Table 3). Maximum and minimum annual ET were 

observed in 2010 and 2003, respectively. Mean pre-thinning ET was 46850 mm; post-

thinning ET was 501 mm. Mean annual pre- and post-thinning ET were not significantly 

different (p = 0.0825). Cumulative evapotranspiration (ET) is shown in Figure 9. 

Cumulative ET was higher in 2012 than all other years until July. ET declined during July 

and August, but returned to normal in September. Growing season ET was lowest in 2005.  

 

Water use efficiency (WUE), the amount of productivity (GEP) per unit of water use 

(ET) ranged from 2.8 to 3.6 g C kg-1 H2O. Thinning did not affect WUE; mean pre-thinning 

WUE was 3.00.2 g C kg-1 H2O and post-thinning WUE was 3.0 g C kg-1 H2O.  

 

3.3 Thinning effects on NEP, GEP and RE 

 Three different approaches were used to evaluate thinning effects on carbon 

dynamics: (1) pre- and post-thinning carbon dynamics at TP39 were compared to two 

nearby un-thinned forests (TP74 and TPD); (2) annual functional relationships between 
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NEP and key meteorological variables were evaluated; and (3) effects of variation in 

environmental drivers and biotic responses on carbon dynamics were assessed. 

 

3.3.1 Comparison with nearby forest sites  

Carbon dynamics in 2012 from an adjacent 39-year-old white pine plantation forest 

(TP74, Peichl et al. 2010a) and an 80-year-old deciduous forest (TPD, Parsaud 2013) 

located 20 km west of the thinned stand (TP39) were compared to TP39. TP74 and TPD 

were not thinned. We first compared the relationships between Ts and SM at TP39 and 

TP74 to evaluate whether gaps created in the canopy by the thinning operation affected 

these variables by increased light availability and air motion. Direct comparisons of the 

relationships indicated that Ts and SM were not affected by thinning (mean pre- and post-

thinning R2 for Ts were 0.98 and 0.99, respectively; mean pre- and post-thinning R2 for SM 

were 0.80 and 0.87, respectively).  

 

Figure 10 shows annual cumulative NEP for TP74, TP39 and TPD. TP74 fluxes were 

SI-normalized to account for differences in stand age. The start of the 2012 growing season 

began simultaneously at TP39 and TP74. The growing season started nearly two months 

later at TPD compared the coniferous sites because of the additional time required for 

deciduous leaf emergence. During the growing season, the highest rate of carbon uptake 

was observed at TPD, followed by TP74 and TP39. Both coniferous sites experienced a 

pronounced mid-summer decline in productivity in 2012, associated with hot and dry 

conditions; this was not observed to the same extent at TPD. The annual retention of most 

pine needles compared to the annual loss of all deciduous leaves via senescence resulted in 
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an earlier end to the growing season at TPD. At the coniferous sites, carbon dynamics 

diverged towards the end of the 2012 growing season. While NEP was maintained at 

approximately 400 g C m-2 between October and December at TP74, TP39 experienced a 

reduction in net productivity of approximately 50 g C m-2. It is hypothesized that this 

reduction was driven by the decomposition of thinning-related residuals; these residuals 

may have required several months of warm temperatures and available water in order to 

begin breaking down and releasing CO2, explaining the lagged effect. 

 

Differences between annual SI-normalized carbon dynamics at TP39 and TP74 are 

shown in Figure 11. Between 2008-2012, normalized GEP, RE and NEP were higher on 

average at the younger site (by 45 g C m-2 year-1, 44 g C m-2 year-1 and 1 g C m-2 year-1, 

respectively). The greatest difference in annual NEP was observed in 2012, a combined 

effect of lower RE and higher GEP at TP74. RE was higher at TP39 for the majority of the 

2012 growing season. Notably, normalized GEP was higher at TP74 than TP39 throughout 

all growing season months except July. This month was identified as extremely hot by the 

BHI, and was identified as having many water stress days. Higher GEP at TP39 during this 

extremely hot and dry month provides evidence for increased drought tolerance following 

thinning by reduced competition for water.  

 

3.3.2 Functional relationships 

 The functional relationship between non-gapfilled NEP and binned Ta (bin size of 

0.5C) is shown in Figure 12. Peak NEP occurred at approximately 22C for all years except 

2003 and 2008. These years peaked at approximately 25C. For any observed Ta, NEP was 
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lowest in 2005, 2007 and 2012. As previously described, 2005, 2007 and 2012 experienced 

extremely hot and dry growing season conditions. Maximum Ta was observed in 2012. 

 

Figure 13 shows the functional relationship between non-gapfilled NEP and binned 

PAR (bin size of 50 µmol m-2 second-1). Productivity plateaued at approximately 1500 µmol 

m-2 second-1 for all years except 2005, which showed a decline in NEP at higher rates of 

radiation. Analogous to the functional relationship between NEP and Ta, 2005, 2007 and 

2012 demonstrated the lowest rates of NEP for all levels of PAR. 

 

The functional relationship between non-gapfilled NEP and binned VPD (bin size of 

0.05 kPa) is shown in Figure 14. For most years, maximum productivity occurred between 

0.7-1 kPa. At VPD values below 1 kPa, productivity was lowest in 2005, 2007 and 2012. 

Highest values of VPD were also observed in these years, particularly 2012. Above 1 kPa, 

the least productive year with increasing VPD was 2005. Conversely, 2012 became one of 

the most productive years with increasing atmospheric demand for water vapor. This 

provides further evidence for reduced competition for water and improved drought 

tolerance following the removal of 30% of trees.  

 

 The relationship between non-gapfilled NEP and binned VWC (bin size of 0.05%) is 

shown in Figure 15. Below VWC values of approximately 8% (i.e. 0.08 m3 m-3), productivity 

is limited. Above VWC values of 8%, productivity becomes increasingly reduced. Therefore, 

maximum productivity at this site occurs when VWC is approximately 8%. The relationship 

between VWC and NEP is similar to that of Ta (Fig. 12) and PAR (Fig. 13) in that 2005, 2007 
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and 2012 generally demonstrated lowest rates of NEP compared to all other years. Below 

VWC values of 12%, lowest productivity was observed in 2004 and 2005; highest 

productivity was observed in 2011. Above 12% VWC, 2007 was least productive and 2008 

and 2010 were most productive.  

 

3.3.3 Crossed- meteorological and parameter year test 

 By crossing each ‘meteorological year’ with each ‘parameter year’, environmental 

driver and associated biotic response scenarios were generated for NEP (Fig. 16). Using 

2012 model parameters and 2003-2012 meteorological data, NEP ranged between a 

minimum of 95 g C m-2 year-1 (in 2006) and maximum of 338 g C m-2 year-1 (in 2007) (Fig. 

16a). Particularly low annual NEP from 2006 meteorological conditions and 2012 

parameters was driven by elevated RE from high annual SM and Ts conditions. Using 2012 

meteorological conditions and 2003-2012 model parameters resulted in higher variability; 

NEP ranged between 92 g C m-2 year-1 (in 2004) and 625 g C m- year-1 (in 2011) (Fig. 16b). 

This emphasizes that variation in biotic responses to environmental forcing is responsible 

for more variation in NEP compared to meteorological conditions. 

 

Predictions of GEP, RE and NEP from the crossed- meteorological and parameter 

year test (n = 100) were analyzed using ANOVA. Results were used to determine the 

magnitude of ‘meteorological year’ and ‘parameter year’ effects on annual fluxes, shown in 

Figure 17. Positive effects for RE indicate increased respiratory losses, whereas negative 

effects for GEP indicate reduced canopy uptake.  
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Relative to the average crossed-model prediction, ‘parameter year’ effects for GEP 

(Fig. 17a) ranged from -130 g C m-2 year-1 (in 2005) to +184 g C m-2 year-1 (in 2007). 

‘Meteorological year’ effects were smaller, ranging from -103 g C m-2 year-1 (in 2003) to 

+94 g C m-2 year-1 (in 2010). At the annual time scale, GEP was more influenced by 

variability in model parameters (76%) than meteorological conditions (21%). Relative to 

the average crossed model prediction, ‘parameter year’ effects for RE (Fig. 17b) ranged 

from -198 g C m-2 year-1 (in 2011) to +162g C m-2 year-1 (in 2004). ‘Meteorological year’ 

effects were smaller, within ±90 g C m-2 year-1. Annual RE was more influenced by 

variability in model parameters (81%) than meteorological conditions (19%). ‘Parameter 

year’ effects for NEP, relative to the average crossed model prediction, were also greater 

than meteorological year effects (Fig. 17c), ranging from -262 g C m-2 year-1 (in 2004) to 

+283 g C m-2 year-1 (in 2011), and -158 g C m-2 year-1 (in 2006) to +101 g C m-2 year-1 (in 

2009), respectively. Similar to the other flux components, NEP was more influenced by 

variability in model parameters (76%) than meteorological conditions (23%). Overall, 

post-thinning ‘parameter year’ effects were not significantly different from pre-thinning 

effects, indicating that thinning did not significantly affect the biotic response to 

environmental drivers. 

 

Results of multiple comparisons (not shown) give an indication of which years had 

more favorable meteorological conditions and model parameters for maximizing NEP. For 

‘meteorological year’, the least favourable year was 2006. Years 2003 and 2012 were also 

less favourable compared to other years. Using 2003, 2006 and 2012 meteorological data 

with any year of model parameters resulted in relatively low NEP. The most favourable 
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‘meteorological year’ was 2009. For ‘parameter year’, the least favourable years were 2004 

and 2012; 2011 was by far the most favourable. Modeling NEP with all years of 

meteorological data and 2004 and 2012 model parameters therefore resulted in relatively 

low annual NEP. In general, model results were consistent with observations. For example, 

2004 was identified as the least favourable ‘parameter year’ for NEP; lowest NEP of all 

study years was observed in this year. The most favourable parameter year was identified 

as 2011; this year had the highest observed NEP, attributed to warm growing season Ta 

and abundant P (Fig. 2d). Finally, 2012 was one of the least favourable years for 

‘meteorological year’ and ‘parameter year’, and it had one of the lowest observed annual 

NEP values.  

 

CHAPTER 4: DISCUSSION  
 

This study demonstrates the effects of climatic variability, extreme weather events 

and thinning on forest carbon dynamics in a 74-year-old white pine plantation in southern 

Ontario. We found that meteorological conditions were responsible for approximately 20% 

of interannual variability in carbon dynamics. Remaining variability was explained by 

factors including maximum GEP, the response of RE to Ta, and the size and distribution of 

the carbon pool (Richardson et al. 2007). Thinning did not significantly impact biotic 

responses to environmental conditions. Although NEP was reduced by an increase in RE in 

the first post-thinning year, the forest remained a net carbon sink.  Further, results suggest 

that thinning may improve drought tolerance by improving access to water for remaining 

trees. 
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4.1 Climatic effects on GEP, RE and NEP 

In general, extreme weather events, particularly heat and drought stress, affected 

annual carbon dynamics. Years that experienced heat and drought stress (i.e. 2004, 2005, 

2007 and 2012) were generally associated with limited net carbon uptake, while moderate 

annual Ta and water availability resulted in higher net uptake (i.e. 2011).  

 

Air and soil temperature, important factors in the growth and development of forest 

ecosystems, exhibited seasonal and interannual variability throughout the study period. 

NEP was positively correlated to growing season Ta until a peak threshold (approximately 

23-25°C at TP39); rates of carbon uptake declined with increasing Ta above this threshold. 

Water availability was another important determinant of carbon dynamics at TP39. 

Consistent with Holst et al. (2008), we observed reduced NEP during periods of heat and 

drought stress (i.e. 2004, 2005, 2007 and 2012). Our results further support findings by 

Granier et al. (2007), who found that reductions in NEP associated with heat and drought 

stress were driven more by reductions in GEP than increases in RE in European coniferous 

forests.  

 

Trends in early growing season Ta were also important factors for carbon uptake at 

TP39. For example, in 2004 cool spring Ta and abundant P resulted in a delayed start to the 

growing season compared to all other years, and contributed to low annual NEP (Fig. 8). 

Conversely, abnormally warm Ta during the start of the 2012 growing season caused 

increases in both GEP and RE; in previous years trees were still dormant during this time of 

year. Consistent with Barr et al. (2002), we found that during this unusually warm spring 
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period, soil respiration offset increases in carbon uptake. High Ta during spring months has 

also been shown to increase annual carbon sequestration in some forests (Goulden et al. 

1996; Chen et al. 2009). Quantifying the effect of this on annual carbon dynamics was 

challenging for 2012 because of the difficulty in separating effects of thinning from effects 

of early spring Ta.  

 

 VPD exhibited variability at monthly and annual timescales. Previous work at this 

site determined that VPD was the primary control on forest water loss (MacKay et al. 2012). 

When the forest was not water-limited (VWC > 0.068 m3m-3), ET increased with VPD. 

Above this site-specific threshold, and when VPD was high (above 0.8-1 kPa), tree stomata 

closed to conserve water (Fig. 14) (McLaren et al. 2008; MacKay et al. 2012; Breshears et al. 

2013). Limitation of photosynthesis associated with high Ta and VPD was observed at 

TP39 in 2005, 2007 and 2012. This was also observed in a ponderosa pine forest in 

California, USA (Goldstein et al. 2000).  

 

Consistent with the findings of Richardson et al. (2007), the crossed- meteorological 

and parameter year test determined that at TP39, approximately 20% of the interannual 

variability in GEP and RE was explained by environmental conditions. Results for NEP were 

less consistent; we found that environmental conditions explain 20% of the interannual 

variability in NEP at TP39, compared to 40% observed by Richardson et al. (2007). 

Therefore, all components of annual fluxes (i.e. NEP, GEP and RE) were driven more by 

biotic responses to environmental drivers (i.e. maximum GEP, the response of RE to Ta and 

the size of the carbon pool) than by meteorological conditions. While meteorological 
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conditions, especially extreme weather events, are important to consider when evaluating 

annual carbon dynamics, these results emphasize the significance of also considering 

longer-term climatic conditions and factors such as disturbances. The forest management 

practice of thinning was conducted at this site in 2012, and was predicted to affect biotic 

responses to environmental drivers by altering functional responses of productivity and 

the size and distribution of the carbon pool.  

 

4.2 Thinning effects on GEP, RE and NEP 

Overall, we found that in the first post-thinning year, effects of thinning on GEP, RE 

and NEP were less substantial than expected based on reductions in LAI and BA (Saunders 

et al. 2012; Scott et al. 2004). Consistent with the findings of Saunders et al. (2012), the 

forest remained a net carbon sink, although NEP in the first post-thinning year was reduced 

by increased RE. This differed from Dore et al. (2012), who found that a ponderosa pine 

forest in Arizona, USA became a net carbon source in the first post-thinning year.  

 

At TP39, model predicted RE with increasing Ts, and model predicted GEP with 

increasing PAR, did not demonstrate significant effects of thinning (Fig. 5 and Fig. 6). 

Further, post-thinning GEP and RE were within the ranges of interannual variability for the 

study period. Increased understory growth, stimulated by increased light, water and 

nutrient availability, likely compensated for thinning-related reductions in GEP (Vesala et 

al. 2005; Campbell et al. 2009; Moreaux et al. 2011). Annual RE was slightly higher in 2012 

compared to pre-thinning years. Annual RE was also higher at TP39 compared to the two 

nearby forest sites, TP74 and TPD. This was unexpected for TPD because decomposition of 
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litterfall from the deciduous trees was predicted to drive higher annual RE. Plausible 

reasons for high post-thinning RE at TP39 include thinning-related increases in Ts and SM, 

soil disturbance and decomposition of thinning residues. A comparison between Ts and SM 

at both TP39 and TP74 refuted the former reason. Soil disturbance caused by the feller-

buncher and forwarder may have been a contributing factor. Thinning operations are 

typically conducted when soil is frozen to minimize disturbance, however the mild winter 

Ta in 2012 did not allow for this. Nevertheless, effects of thinning on RE were less than 

expected considering the significant addition of thinning residues to the forest floor. 

Relatively slow decomposition rates of large thinning residues (i.e. large branches, crowns 

and roots) are the most probable explanation. It is expected that GEP and RE will increase 

over the next several years at this site as understory growth develops and thinning 

residues continue to decompose. 

 

The crossed- meteorological and parameter year test determined that variation in 

the biotic response to environmental forcing (e.g., maximum GEP, response of RE to Ta, size 

and distribution of the carbon pool) accounted for approximately 80% of variation in 

annual GEP, RE and NEP. This finding is consistent with Richardson et al. (2007) for GEP 

and RE. Functional relationships between productivity (i.e. unfilled NEP) and key 

meteorological variables (i.e. Ta, PAR, VPD and VWC) in 2012 were within the range of 

interannual variability. For Ta, PAR and VWC, the least productive years for given 

meteorological conditions were 2005, 2007 and 2012. This was attributed to inadequate 

growing season conditions (i.e. heat and drought stress) rather than physiological changes 

caused by disturbances. Similar to findings by Dore et al. (2012), we did not observe an 
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impact of thinning on WUE. Thinning also changed the size and distribution of the carbon 

pool by the removal of boles from the stand and the addition of crowns, branches and 

foliage to the forest floor. Most importantly, despite changes to the carbon pool, thinning 

did not significantly impact biotic responses to environmental conditions. Two non-

thinning years (i.e. 2004 and 2011) exhibited greater ‘parameter year’ effects than 2012.  

 

 Our results support previous studies that have reported increased drought 

tolerance following thinning (Dore et al. 2010; Dore et al. 2012). Differences in carbon 

uptake between TP39 and TP74 provide evidence of improved drought tolerance. While 

both sites experienced a decline in carbon uptake associated with extremely hot and dry 

conditions in July 2012, the extent of the decline was greater at TP74. This suggests that 

thinning may have reduced the limitation of drought on carbon uptake during the summer, 

as was observed in a ponderosa pine stand following thinning (Dore et al. 2010). The 

functional relationship between VPD and productivity (NEP) at TP39 provides further 

evidence of improved drought tolerance following thinning.  When VPD was above 0.8 kPa, 

2012 was more productive than pre-thinning years despite the increasing atmospheric 

demand for water vapour. This was attributed to improved drought tolerance by reduced 

competition for water following thinning. In contrast to Dore et al. (2012), the functional 

relationship between Ta and productivity was not affected by thinning at this site. 

 

4.3 Implications and directions for future research 

Forests represent a significant carbon sink in the global carbon cycle, and 

maximizing the amount of carbon sequestered by these ecosystems is an important climate 
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change mitigation strategy (Beer et al. 2010).  Improving adaptation of forests to climate 

change, especially to heat and drought stress, is another important challenge facing forest 

managers, as these conditions are expected to become more frequent and severe in the 

future (Field et al. 2012).  Results of this study may be used to modify current management 

practices in temperate coniferous forests to increase carbon sequestration and improve 

tolerance to environmental stress. In the past, the shelterwood silviculutral system has 

been a common practice in managed pine plantations, used to reduce resource competition, 

stimulate growth for timber production and enhance long-term carbon sequestration. 

Results of this study indicate that in temperate coniferous forests, this management 

practice may also be an effective tool in the improvement of drought stress tolerance (Dore 

et al. 2010; Dore et al. 2012). 

  

The extent to which climatic conditions in a given year influence forest growth 

conditions in future years (lagged effects) may be a source of uncertainty in this study 

(Braswell et al. 1997). Continuation of flux measurements at this site will further improve 

the understanding of thinning effects on carbon dynamics in temperate coniferous forests, 

because some processes (e.g. decomposition of thinning residues) operate on time scales 

longer than one year. Evaluating methods by which lagged climate effects may be estimated 

and controlled for would also benefit this area of study. Further research at this site is also 

needed to quantify the extent to which understory growth compensated for thinning-

related reductions in productivity (Campbell et al. 2009). Soil respiration measurements 

may also be evaluated to better understand effects of thinning residues on ecosystem-level 

respiration.  



 

 

34 

CHAPTER 5: CONCLUSIONS  
 

Our study found that in the first post-thinning year, effects of thinning on carbon 

dynamics in a temperate coniferous forest were less substantial than expected based on 

reductions in leaf area index and basal area. Although the forest remained a net carbon sink 

in the first year following the operation, post-thinning NEP was less than the pre-thinning 

mean (2003-2011). The reduction in NEP associated with the removal of 30% of trees from 

the stand was very similar to the effects of extreme heat and drought stress. This was 

shown by similarities in NEP between a year that experienced heat and drought stress 

(2005) and the post-thinning year (2012). Thinning-related reductions in NEP were driven 

by increased RE; GEP was not significantly affected. Increased understory growth, 

stimulated by increased availability of light, water and nutrients, likely compensated for 

reductions in GEP caused by the reduced photosynthetic capacity of the forest. Results also 

indicate that thinning may improve drought stress tolerance in temperate coniferous 

forests by improving water availability for remaining trees.  

 

 In general, although climatic variables were shown to explain less interannual 

variability in carbon dynamics compared to biotic responses to environmental drivers, 

extreme weather events, particularly heat and drought stress, affected annual carbon 

uptake. Years that experienced heat and drought stress (i.e. 2004, 2005, 2007 and 2012) were 

generally associated with low net carbon uptake, while a year with moderate temperatures and 

water availability (i.e. 2011) demonstrated high net carbon uptake.  

 



 

 

35 

Overall, our study highlights the potential to maximize long-term carbon 

sequestration and improve drought stress tolerance in temperate coniferous forest 

ecosystems through effective management practices. 
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FIGURES 
 

 
Figure 1. Photographs of an area of the stand near the flux tower (a) before thinning, (b) 

immediately after thinning and (c) 18 months after thinning. Growth of understory 
vegetation is evident in (c). Red circles identify the data logger and soil respiration 

chamber visible in each photo. Soil chambers were removed during the thinning operation.  
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Figure 2. Monthly average air temperature (Figure 1a, Ta, °C), monthly average 
photosynetically active radiation (Figure 1b, PAR, μmol m-2 s-1) , monthly maximum vapor 

pressure deficit (Figure 1c, VPD, kPa) and cumulative precipitation (Figure 1d, P, mm) 
throughout the study period.  
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Figure 3. Cumulative growing degree days (GDD, °D) for the study period growing seasons 
(April 1 – October 31).    
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Figure 4. Half-hourly non-gapfilled net ecosystem productivity (NEP, µm C m-2 second-1) 
for the study period. 
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Figure 5. Model predicted ecosystem respiration (RE, µm C m
-2

 second
-1

) with increasing soil 

temperature (Ts, °C).  
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Figure 6. Model predicted gross ecosystem productivity (GEP, µm C m
-2

 second
-1

) with 

increasing photosynthetically active radiation (PAR, µmol m
-2

 second
-1). 
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Figure 7. Monthly average gross ecosystem productivity (GEP, g C m-2 month-1) and 
ecosystem respiration (RE, g C m-2 month-1) for the study period.  
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Figure 8. Cumulative net ecosystem productivity (NEP, g C m-2) for the study period. 
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Figure 9. Cumulative evapotranspiration (ET, mm) for the study period.  
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Figure 10. Cumulative net ecosystem productivity (NEP, g C m-2) in 2012 for the thinned 
74-year-old stand (TP39), a nearby 39-year-old white pine stand (TP74) and a nearby 80-
year-old deciduous stand (TPD).  TP74 fluxes were site index (SI) -normalized to account 

for differences in stand age. 
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Figure 11. Differences in annual carbon fluxes (g C m-2 year-1) between the 74-year-old 
stand (TP39) which was thinned in 2012, and a nearby unthinned 39-year-old stand 

(TP74). Fluxes at TP74 were site index (SI) -normalized to account for differences in stand 
age. Positive values indicate that fluxes were higher at TP39; negative values indicate that 

fluxes were higher at TP74. 
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Figure 12. Relationship between daytime growing season measurements of binned air 
temperature (Ta, bin size of 0.5 °C) and non-gapfilled net ecosystem productivity (NEP, µm 
C m-2 second-1). Solid lines show the moving average for each year. The stand was thinned 

in winter 2012. 
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Figure 13. Relationship between daytime growing season measurements of binned 
photosynthetically active radiation  (PAR, bin size of 50 µmol m-2 second-1) and non-

gapfilled net ecosystem productivity (NEP, µm C m-2 second-1). Solid lines show the moving 
average for each year. The stand was thinned in winter 2012. 
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Figure 14. Relationship between daytime growing season measurements of binned vapor 
pressure deficit (VPD, bin size of 0.05 kPa) and non-gapfilled net ecosystem productivity 

(NEP, µm C m-2 second-1). Solid lines show the moving average for each year. The stand was 
thinned in winter 2012. 
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Figure 15. Relationship between daytime growing season measurements of binned 

volumetric soil water content (VWC, bin size of  0.05%) and non-gapfilled net ecosystem 
productivity (NEP, µm C m-2 second-1). Solid lines show the moving average for each year. 

The stand was thinned in winter 2012. 
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Figure 16. Modeled cumulative net ecosystem productivity (NEP, g C m-2) at the 74-year 
old site (TP39). In (a), the model was run using 2012 model parameters against 10 years 

(2003–2012) of meteorological data. In (b), the same model was run using 10 years (2003–
2012) of model parameters against 2012 meteorological data. Line specifications (colour 
and style) indicate meteorological data year (a) and model parameter year (b). The stand 

was thinned in winter 2012. 
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Figure 17. Effects of interannual variability in meteorological conditions (‘meteorological 
year’ effects) and model parameters (‘parameter year’ effects) on modeled CO2 fluxes (g C 
m-2 year-1) at the annual time step: (a) gross ecosystem productivity (GEP), (b) ecosystem 

respiration (RE), (c) net ecosystem productivity (NEP). A positive effect for RE means 
increased respiratory losses resulting in a higher rate of respiration, whereas a negative 
effect for GEP means decreased canopy uptake. The stand was thinned in winter 2012. 
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APPENDIX A: EDDY COVARIANCE DATA PROCESSING  
 

         Processes applied to the calculated half-hourly fluxes, in order of operation, were: 

(1) outlier and spike removal; (2) footprint filtering; (3) friction velocity (u*) threshold 

filtering; (4) RE gap-filling; (5) partitioning of NEE into GEP; (6) GEP gap-filling; and, (7) 

filling of NEP gaps resulting from instrument malfunction, power outages, calibration or 

data processing. With the exception of storage calculations, all of these processes were run 

separately for pre- and post-thinning periods (2003-2011 and 2012, respectively) to avoid 

confounding effects caused by any phenological changes in the stand resulting from 

thinning.  

 

Outlier and spike removal 

 Spikes and outliers in half-hourly NEE measurements, caused by changes in 

turbulence and water drops on the sonic anemometer, were identified and removed 

following Papale et al. (2006). First, the acceptability of instances with large differences 

before and after a spike was evaluated using pre-determined upper and lower thresholds 

(Papale et al. 2006). Next, an ensemble method was applied which divided data into 

temporal windows and compared half-hourly values to the calculated mean temporal 

window value, rejecting points that were significantly different from the mean over the 

temporal period. On average, 13% of half-hourly NEE measurements were either 

unavailable due to operational failures and maintenance, or removed during the outlier and 

spike removal process.   
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Footprint model 

TP39 is surrounded by similar-aged stands of different species, predominantly red 

pine. Because the objective of this study was to evaluate thinning effects on carbon 

dynamics, it was necessary to include only flux measurements from within the boundary of 

the white pine stand by excluding adjacent stands of other species (Aubinet et al. 311). To 

do this, a one-dimensional analytical footprint model was applied following Kljun et al. 

(2004). This model was developed from parameterization of a previously described 

Lagrangian stochastic dispersion model (Kljun et al. 2002). An acceptance level of 80% was 

used, meaning that for each half-hourly measurement to be retained, at least 80% of the 

flux must have been estimated to come from within the source area. Half-hourly values 

were discarded if less than 80% of the measured flux came from within the source area. For 

a detailed explanation of the footprint method selection for this site, see Brodeur (2013). 

On average, 46% of half-hourly NEE measurements were removed each year by the 

footprint filter. 

 

Turbulence correction   

To correct for the underestimation of nighttime fluxes due to low turbulence, which 

results in a selective systematic error, a u* threshold (u*th) was applied to nighttime data to 

remove fluxes measured during periods of insufficient turbulence (Aubinet et al. 2000). A 

modification of the u*th methods presented in Reichstein et al. (2005) and Barr et al. (2012) 

was applied. For each three month interval, nighttime data were selected and divided into 

six equally-sized temperature classes, then further sub-divided into twenty equally-sized u* 

classes (Reichstein et al. 2005). For each temperature class, the threshold was defined as 
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the u* class in which the average nighttime flux reached more than 99% of the average flux 

at the higher u* classes. The threshold was rejected if the temperature class, temperature 

and u* were correlated (|r|≥0.4) (Reichstein et al. 2005). Bootstrapping was used to run 

each season 100 times, resulting in 100 seasonal values per year (Brodeur 2013). The 

median of these seasonal values was chosen as the annual u*th.  Half-hourly nighttime fluxes 

were discarded if the calculated u* was lower than the annual u*th. Annual u*th values for the 

study period are given in Table 4. On average, 28% of half-hourly measurements of NEE 

were removed each year by the u*th. 

 

Table 4. Annual friction velocity (u*) thresholds. 
  2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Annual u*th (m s-1) 0.41 0.41 0.41 0.38 0.45 0.47 0.45 0.51 0.46 0.47 

 

 

Table 5 shows the percentage of data removed during each step of EC data 

processing for the study period. On average, 87% of half-hourly measurements of NEE 

were gap-filled.   

 

Table 5. Percentage of data removed during each step of EC data processing. 

 
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Percent removed due to 
operations, calibrations, 
spikes and outliers 30.6 20.7 9.5 6.3 8.6 11.0 13.9 9.4 11.6 7.6 
Percent removed by u*th 22.7 23.7 29.7 26.4 29.7 29.5 27.2 30.7 26.9 30.4 
Percent removed by footprint 35.8 44.6 52.0 47.5 47.8 43.0 46.9 52.0 49.6 48.6 
Total percent removed 89.1 89.0 91.2 80.3 86.1 83.5 88.0 92.2 88.1 86.6 

 

 

Eddy covariance gap-filling and partitioning 

It is assumed that when photosynthesis is not occurring, at night and when Ta is less 

than 2°C, measured NEE equals RE. Remaining gaps in half-hourly RE were filled using a 

non-linear regression-type method introduced by Richardson et al. (2007) and adapted for 
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this site in Peichl et al. (2010a) and Brodeur (2013). RE is modeled as a function of Ts and 

VWC in the rooting zone (VWC30), following Equation 1: 

 

               

       

                (1) 

 

where R10 and Q10 are temperature response parameters that explain the relationship 

between RE and Ts, and f(VWC30) is a sigmoidal function that characterizes the role of 

VWC30 in modifying the temperature response of RE as:  

 

         
 

[              ]
      (2) 

 

where c1 and c2 are parameters ranging between 0 and 1 as  a function of VWC30. This acts 

as a scaling function for the RE-Ts relationship. For a detailed explanation of this 

methodology, see Brodeur (2013).  

 

GEP was estimated by subtracting NEE from gap-filled RE. During nighttime and 

when Ta was less than 2°C, GEP was set to zero. When either NEE or RE was unavailable, 

GEP was modeled using the following relationship: 

 

         
      

       
                           (3) 
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where PPFD is downward photosynthetic photon flux density (μmol m-2 s-1), α is the 

quantum yield and β is photosynthetic capacity (Peichl et al. 2010a; Brodeur 2013). The 

first term in Equation 4 is a rectangular hyperbola relationship between GEP and PAR, and 

the remaining terms describe sigmoidal-type scaling responses of GEP to Ts, VPD and 

VWC30, respectively.   

 

Once gaps in RE and GEP were filled, remaining gaps in NEE resulting from 

instrument malfunctions, power outages, calibration and data processing were filled using 

the difference between modeled GEP and RE. Net ecosystem productivity (NEP) was 

calculated as negative NEE. 
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APPENDIX B: GAP-FILLING COEFFICIENTS  
 
  
Table 6. Model coefficients for the relationship between ecosystem respiration (RE µm C m-

2 second-1) and soil temperature (Ts, °C).  

 

RE Model 
Coefficients 

2003 2.02 4.27 
2004 2.73 3.20 
2005 2.19 3.23 
2006 2.31 3.34 
2007 2.22 3.25 
2008 2.71 3.37 
2009 2.41 3.35 
2010 2.29 3.42 
2011 2.19 2.86 
2012 2.51 3.28 

 
 

 
Table 7. Model coefficients for the relationship between gross ecosystem productivity 

(GEP, µm C m-2 second-1) and photosynthetically active radiation (PAR, µmol m-2 second-1).  

 

GEP Model 
Coefficients 

2003 0.07 51.59 
2004 0.09 77.92 
2005 0.06 68.85 
2006 0.05 25.98 
2007 0.07 72.38 
2008 0.10 76.52 
2009 0.06 67.72 
2010 0.09 83.42 
2011 0.05 52.09 
2012 0.07 55.73 

 

 

 


