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CHAPTER 1

INTRODUCTION

The sensitivity of a control system to the variations of its
plant parameters plays an important role in the analysis and synthesis of
automatic control systems. The study of this aspect is necessary,
firstly, because of the fact that the system plant parameter values
differ, as a rule, from the computed ones either because of inaccuracies
in the computed data, or because they vary with time, or because it is
impossible to achieve an exact realization of the controlling device.
Secondly, information on how the system characteristics depend upon the
variations of its parameters may be utilized to improve its performance
as, for example, in adaptive systems.

In the past, researchers have studied the sensitivity problem in
classical feedback control systems in great detail, some aspects of
which have been presented in Chapter IV of this thesis. However, little
work has been published on the sensitivity problem in the more recent
theory of optimal control systems. The theory of optimal control systems
has been treated extensively in Chapters II and III of this thesis.

The mathematical solution to the optimal control will depend upon
the parameters of the vector differential equation X =f [X(t), u(t), t].

This differential equation, in general, will represent an idealization of



the behavioﬁr of a physical plant. Due to the fact that the assumed
mathematical model will never be an exact replica of the physical plant
and due to the fact that certain plant parameters are either different or
will deviate slowly from their assumed values, it becomes imperative to
investigate the effects of parameters before one implements the mathe-
matical solution of the posed optimization problem.

Dorato25 called attention to this probiem of sensitivity of
optimal control systems for the first time in 1963, which is concerned
with the change in the value of the performance index with infinitesimal
plant parameter variations.

The primary motivation for introducing feedback around a system,
rather than relying upon an open-loop control system, is that the feed
back system is much less sensitive to parameter variations than the open-
loop system.

However, Pagure£6has shown that the sensitivity of the perfor-
mance index,to a first order approximation,due to an infinitesimal
change in the plant parameter is the same for both open-loop and closed-
loop optimal control of linear systems with respect toa quadratic perfor-
mance index. These results were extended by Weitsenhause%7in a recent
note.

This apparant contradiction can be explained by the fact that
both Pagurek and Weitsenhausen have considered infinitesimal variations
in plant parameters, with the result that their sensitivity functions are
only first-order approximations. On the other hand, in every practical
system, the variations in the plant parameters are of finit= amounts, and

due to this fact it is not possible to approximate the sensitivity to a



first—order‘0n1Y-

In this thesis the sensitivity of the index of performance to
variations in plant parameters is considered for optimal open-loop linear
control as well as optimal closed-loop linear control with one or two
degrees of freedom. It is here shown that, in general, the sensitivity
of the index of performance to finite variations in a plant parameter is
smaller for closed-loop optimal, particularly for a closed-loop optimal
control with two degrees of freedom, than for the open-loop case.

A second order linear plant has been considered as an example.
Both the open-loop and closed-loop optimal control systems with one or
two degrees of freedom have been designed. The sensitivities of index of
performance to a slight variation in the location of a pole of the plant,
for open-loop optimal control as well as closed-loop optimal control with
one or two degrees of freedom are obtained, to further illustrate the

theory.



CHAPTER II

AN INTRODUCTION TO OPTIMAL CONTROL THEORY

2.1 INTRODUCTION

Optimization has been considered as the number one problem in
automation, Automation may be defined as the branch of science and
technology concerned with the development of devices, plants and systems
that operate without direct human intervention and assume responsibility
for performing certain types of human mental work. -

Considerable interest in optimal control theory has been
developed over the past decade and a broad general theory based on a
combination of variational techniques, conventional servomechanism
theory and high speed computation has been the result of this interecst.

In this chapter, we set the context by discussing the system
design problem and by specifying the particular type of system design
problem which generates the control problem. We then discuss the his-
torical development of the optimal control theory, thus putting a tem-

poral perspective.

2.2 THE SYSTEM DESIGN PROBLEM
A system design problem begins with the statement of a job to be
accomplished either by an existing physical process or by a physical

process which is to be constructed.



The engineer will be provided with:
(1) a set of goals or objectives which broadly describe the

desired performance of the physical process.

(2) a set of constraints which represent limitations that
either arc inherent in the physics of the situation or are

artificially imposed.

The development of a system which accomplishes the desired
objectives and meets the imposed constraints is, in essence, the system
design problem.

There are basically two ways in which the system design problem
can be approached; the ''direct" approach and the "usual standard"
approach.

In the direct approach, the engineer combines experience, know-
how, ingenuity and the results of experimentation to produce a prototype
of the required system. He deals normally with specific components and
does not develope mathematical modes or resort to simulation.

Unfortunately, this direct approach becomes inadequate for compli-
cated systems. Also the risks and cost involved in experimentation are
too great. Thus the direct approach, no doubt it may lead to a sharpen-
ing of an engineers intuition, it fails to provide broad, general design
principles which can be applied to a variety of problenms.

At this point the second method, namely the ''usual standard"
approach, begins with the replacement of the real world problem by a
problem involving mathematical relationships. That is to say, the first

step consists in formulating a suitable model of the physical process,



the system.objectives and the imposed constraints.

Once the system design problem is formulated in terms of a
mathematical model, the system engineer then seeks a pencil-and-paper
design which represents the solution to the mathematical version of the
design problem. Then the engineer simulates these results to obtain
insight into the operation of the system and to test the behaviour of
the model under ideal conditions. Conclusions about whether the mathe-
matical model will lead to a reasonable physical system can be drawn,
and the sensitivity of the model due to parameter variations can be
studied. Various alternative pencil-and-paper designs can be compared
and evaluatgd.

Then the engineer goes to the job of building the prototype.

But very often the engineer is not satisfied with the system
which fulfills the task, he will seek to improve or optimize his design.
The process of optimization in the pencil-and-paper stage is quite use-
ful in providing broad insight into the problem and a basis for compari-
son, while on the other hand the process of optimization in the proto-
type building stage is mostly concerned with the choice of best
components. The role of optimization in the control system design pro-

blem will be examined now.

2.3 CONTROL PROBLEM

The translation of control-system design objectives into the
mathematical language of the pencil-and-paper design stage gives rise to
what will be called the control problem.

The essential factors of the control problem are:



1. A mathematical model (system) to be "controlled"

2. A desired output of the system

3. A set of admissible inputs or "controls"

4. A performance index or cost functional which measures the

effectiveness of a given ''control action"

The mathematical model, which represents the physical system,
consists of a set of relationships which describe the response or output
of the system to its various inputs. Constraints based upon the
physical situation are incorporated in this set of equations. Normally
in translating the design problem into a control problem the objective
of the system is translated into a requirement of the output.

As "control" signals in physical systems are usually obtained
from equipment which can provide only a limited amount of force or
energy, constraints are imposed upon the inputs to the system. These
constraints lead to a set of admissible inputs.

Often, the desired objective can be attained by many admissible
inputs and so the engineer seeks a measure of performance index or cost
functional which will allow him to choose the "best input'.

When a performance index or cost junctional has been decided,
the engineer formulates the control problem: _Determine the (admissible)
inputs which generate the desired output, and which, in so doing mini-
mizes (optimize) the chosen performance criterion. At this point
optimal-control theory enters the picture to aid the engineer in finding
a solution to his problem. Such a solution when it exists is called an

Y'optimal control'.



2.4 Historical Perspective

In the early fifties, minimum time control laws ( in terms of
switch curves and surfaces) were obtained for a varicty of second and
third order systems. Proofs of optimality were, however, more or less
heuristic and geometric in nature. The very idea of determining an
optimum system with respect to a specific performance measure, the res-
ponse time, was very appealing and hence attracted the interest of the
mathematician.

The time-optimal control problem was extensively studied by
mathematicians both in the United States and Soviet Union. In the
period from 1953-1957, Bellman, Gramkrelidze, Krasovskii, and La Salle
developed the basic theory of minimum-time problems and prescnted
results concerning the cxistence, uniqueness, and general properties of
the time-optimal control. Then enginecrs and mathematicians recognized
that optimal control problems were essentially problems in the calculus
of variations which was founded as an independent mathematical disci-
pline by Euler, about 150 years ago.

But calculus of variations theory could not readily handle the
more complicated control problems with "hard" constraints imposed on
them. This difficulty lead Pontryagin1 to first conjecture his cele-
brated "maximum principle" and together with Boltyanskii , and
Gamkrelidze? to provide a proof of it. The maximum principle was first
announced at the International Congress of Mathematicians held at
Edinburgh in 1958,

While Pontryagin's maximum principle may be viewed as an out-

growth of Hamiltonian approach to variational problems, the method of



"dynamic programming', which was developed by Bellmanzsaround 1953-1957,
maybe viewed as an outgrowth of Hamilton-Jacobf approach to variational
problems.

The method of maximum principle was extensively studied and
applied for various types of problems by Athanés, MerriamG, Tow7,
Rozoner8 and Roberts9 to mention a few,

Kalmanloutilized the classical tools of the calculus of varia-
tions, in particular the Hamilton-Jacobi equation in finding an optimal
control law for a certain class of control problems and studied the
stability properties of the matrix Ricatti equation, which arises as a
special case of the Hamilton-Jacobi equation.

At present the optimal control thecory is primarily a design aid
which provides the engineer with insight into the structure and proper-
ties of solutions to the optimal-control problems. Specific design pro-
cedures and rules of thumb are rather few in number.

Finally although the optimal designs may rarely be implemented,
the theory has expanded the horizon of the engineer and has thus allowed

the enginecr to takle complex and difficult problems.



CHAPTER 111
METHODS FOR SOLVING THE OPTIMAL

CONTROL PROBLEM

Among many techniques for solving problems in optimization, two
methods are generally regarded as most promising for the solution of
complex problems. They are the maximum principle of Pontryagin and the
method of dynamic programming developed by Bellman.

The Pontryagins maximum principle is chosen as the method for
solving the optimal control law for the given system.

The optimal control problem is stated precisely in the first
section of this chapter. 1In the sections that follow, the Pontryagin's

maximum principle and its applications are presented.

3.1 STATEMENT OF THE OPTIMAL CONTROL PROBLEM

The basic continuous-time optimal control problem will be
stated in order to establish a quantitative basis for discussion for
the results that follow.

The basic ingredients of a well formulated optimization problem
are: N

1. The equations of motion, in state variable form, of the

dynamical system to be controlled

2. A set of constraints on the control variables

10
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3. A set of boundary conditions on the state Variables at the
initial time and at the terminal time

4., A cost functional or performance index which is to be
minimized.

The dynamical system which is controlled is assumed to satisfy

the following vector differential equation.
X(t) = £[X(t), u(t), t] (3-1)

where X(t) is a vector with n components representing the state of the
system at time t and where u(t) is a vector with r-components repre-
senting the control input to the system at time t. In equation (3-1) f
is a vector valued function of the state X(t) and of the control u(t).
Let @ be a set on the r-dimensional space of the control varia-
bles. Usually © is a closed, bounded and convex set, and it is called

the control constraint sct. In general, @ represents the mathematical

model which takes care of tiny physical bounds upon the magnitudes of
the control. The fact that the control vector u(t) must satisfy any

posed constraints is written as
u(t) € a for all t (3-2)

and any control that satisfies the constraint relation given by Eq.
(3-2) is called admissible.

Let to be the initial time. Then it is assumed that the state
of the dynamical system given by Eq. (3-1) is known at time t = to;

this is specified by the relation

X(t)) = X (3-3)
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where Xo is the known vector of initial conditions.

Let te be the terminal time. In general t,. may be specified

f

a prior or not; in the latter case the determination of t_ is part of

f
the optimization problem. Let S be a surface, or manifold or point in
the n-dimensional state space. Usually S is called the target sect. As
part of the boundary conditions for the optimization problem, one may

demand that the state vector at the terminal time te belongs to the

target set S, i.e.,

X(tg) €S (3-4)

The target S represents the mathematical model of any requirements upon
the desired values of the state variables at the terminal time tf; for
tolerance requirements upon the state variables can be incorporated in
the algebraic equations which describe the target set S.

The general control problem consists in finding one or more

controls which satisfy the constraint u(t) € Q@ and which force the dyna-
mical system given by Eq. {(3-1) from the initial state Xo in such a way
so that X(tf) € é. In general there are many controls that accomplish
this objective. In order to find the 'best'" control, in some sense, one
must decide upon a measure of performance. Thus, depending upon the

physical nature of the control problem, one must decide what is impor-

tant and then transform these physical criterion of goodness into a

mathematical cost functional or performance index.

The types of cost functionals or performance indices that one

considers are scalar valued and take the form
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t

f
J = ./- L [X(t), u(t), t] (3-5)

t
0

where L is a scalar-valued function of the state vector X(t) and of the
control vector u(t). In an optimal control problem, one must find
admissible controls that satisfy the posed boundary conditions and in
addition, minimize the cost functional or performance index J.

Now a precise statement of the optimization problem can be given
as follows:

Given the system X(t) = f[X(t), u(t), t}. Given the boundary
condition X(to) = XO. Given the control constraint set . Given the
target set S. Given the cost functional or performance index

te
J = ‘I L [X(t), u(t), t] dt
t

O

Then find the control that
{a) satisfies the constraint u(t) €
(b) transfers the state of the system given by Eq. (3-1) from
X(to) = XO to X(tf) so that X(th € S, and

(c) minimizes the cost functional J

In general, the solution to the above optimization problem

involves the following topics:
1. Does a solution exist?

2. If a solution exists, is it unique?
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3. Arxe there any properties of optimal solution which enahle
the designer to find it either analytically or by using a
digital computer?

4. How sensitive are the solutions as well as the minimum value
of the cost functional or performance index to variations
in the paramcters of the plant and/or of the initial

conditions?

The answers to such questions provide the engineer with significant

qualitative and quantitative information regarding the optimal system.

3.2 PONTRYAGIN'S MAXIMUM PRINCIPLE
Consider an nth order control process controlled by Eq. (3-1).

In terms of the components of the state vector, Eq. (3-1) may be written

as

%, = £, (X(1), u(t), 1) i=1,2,....n (3-6)

The optimum design problem requires the minimization of the integral
criterion function given as

te

J = .[‘ L [X(t), u(t), t] dt

t
o —

with respect to u(t), the control vector.
By introducing a new state variable xn+1(t) defined by
te
Xpe1 (8) = j’ L [X(t), u(t), t] dt (3-7)
t

(o)
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x ,(t) = 0 (3-8)

and

X (0) = L X(8), u(t), t] dt (3-9)

The problem of minimization of the integral given by Eq. (3-5)
becomes the problem of minimizing the (n+l) st co-ordinate, xn+1(tf), at

the terminal of the trajectory t = t The derivatives of the other co-

£
ordinates are given by Eq. (3-6).
In general, an optimum control problem can be transformed into

the problem of minimizing or maximizing a Pontryagin function such as

6) = (b, X(%) = b' X(ty) (3-10)

subject to certain constraining functionals, The control strategy which
minimizes or maximizes the Pontryagin function is referred to as the
optimum-control strategy. In Eq. (3-10) X is a state vector of nth
order control process under constrain, and b is a column vector which
depends upon the co-ordinates to be minimized or maximized.

In terms of components of the state vector X, The Pontryagin

function GD may be expressed as

¢ -

-

bi xi(tf) (3-11)
Intuitively, the Pontryagin junction may be minimized by maximizing the
energy or power in the system. This physical intuition leads to the

speculation that there may exist an energy function such that its maxi-

mization implies the minimization of the Pontryagin function. Here the
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concept of fhe Hamiltonian comes into the pictufe. The Hamiltonian is
defined as the sum of the kinetic energy and the potential energy and is
expressed as the inner product of the momentum vector and the co-
ordinate vector of the system. The very nature of Hamiltonian leads to
the fact that maximization of the Hamiltonian imply minimization of the
Pontryagin function. Pontryagin used the natures secrct weapon and for-
mulated his celebrated maximum principle.

The maximum (or minimum) principle states that, if the control
vector u is optimum i.e., if it minimizes (or maximizes) the Pontryagin
function OD, then the Hamiltonian H (X, P, u, t) is maximized { or mini-
mized) with respect to u over the control interval. The Hamiltonian is

defined as

H[X(t); P(); u(t); t] = (P, f) =
j

M3

. P;fy (312

where X(t) is the state vector, P(t) is the momentum vector to be
defined later, and the vector function is as given in Eq. (3-1). The
obove statement points out that maximum H implies minimum G) and minimum
H implies maximum 6) . Thus a necessary condition for the control
vector u(t) to minimize the Pontryagin function is the fulfilment of the
maximum condition for u(t).

The design of optimum control aims agﬁthe determination of an
optimum control law u*(X) or an optimum-control sequence u*(t). However,
direct application of the maximum principle yields the optimum-control
vector u” as a function of the momentum vector P. In order to find u”
as a function of X or t, some equations providing the relationships be-

tween u and P must be established. The momentum vector P is defined on
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the solution to the differential equation:
n
pi=-zp.-—-l i=1,2,....n (3-13)

where

py(tg) = -by (3-14)

bi being some known constant specified in the Pontryagin function (;),

and:

x; = £, [X(t), u(t), t] (3-15)

Differentiating Eq. (3-12) with respect to Py yields:

M
'é—i)'; = fi [X(t), U(t), t] (3—16)

Differentiating Eq. (3-12) with respect to X5 gives:

of,

J
9X.

. i=1,2, .. .n (3-17)
1 J i

Making use of these two equations reduces Fgs. (3-13) and (3-15) to the

Hamilton canonical form:

17 %p; (3-18)
. _ 9H
Pi T ax; (3-19)

These canonical equations are subject to be boundary conditions on

xi(to) and pi(tf); that is:
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i
»

x (t,) (3-20)

and

1
|
<
(W
i
-
8
=

pi(ty) = b, , (3-21)

The physical interpretation of the maximum principle may be
stated as follows: The Hamiltonian Il is the inner product of P and f,
or that of P and i, which represents the power when P is identified as
the momentum. Thus, to minimize 0) , the power is maximized, and when
is minimum, H is a maximum,

The design procedure is to maximize H with respect to u, substi-
tute the optimum-control vector u”(P) into the llamiltonian canonical
equations given in Eqs. (3-18) and (3~19) and solve the resulting
boundary-value proble m for the optimum trajectory X(t) and the momentum
vector P(t) subject to boundary conditions given in Eqs. (3-20) and
(3-21) with the optimum trajectory X(t) and the momentum vector P(t)
known, the optimum control strategy u* can be determined.

The Pontryagin function given in Eq. (3-10) and the boundary
condition given by Eq. (3-21) are valid for control process with free
final state. When the final state of the control process is constrained
by:

Rk [X(tf)] =0 k=1,2, . ..n (3-22)
The pontryagin function takes the form:

=b' X(t) + A' R [X(tp)] (3-23)

£
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where X' is a vector Lagrange multiplier7. The canonical equations

(3-18) and (3-19) are now subject to boundary conditions:

- 0 -
xi(to) = X . (3-24)
and
n 3R, -
p.(t.) = - [%. + I A ---~]
it f i k
k=1 Bxi(tf) (3-25)

with the final state X(tf) constrained by Eq. (3-21).

In general, the maximum principle provides a nccessary condition
for system optimization. However, if the control process is linear and
subject to an additive control function, i.e., when the process dynamics

is characterized by:

. n
xi(t) = kil aik(t) xk(t) + mi(ul, Uye o ur)
i=1,2, ... .n (3-26)
or in vector notation:
X(t) = A(t) X(t) + m(u) (3-27)

the maximum principle provides the necessary and sufficient condition

for optimum control.

3.3 CLOSED LOOP OPTIMAL-CONTROL

The closed loop optimal control has greater advantages on the

open loop optimal control, especially from the point of view of
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sensitivityvdue to plant parameter variations.

As has been shown in the previous Section 3.3, one can always
find an optimum control function u*(t), i.e., the open loop solution to
the problem. However, the disadvantages of open loop over closed loop
are well known in engineering circles. In the closcd~1oop optimal con-
trol we seek that the optimum control variable u* must be obtained as
function of current values of state variables, i.e., we seek a control

*
function u (x).

One of the most powerful design techniques that has been deve-
loped to-date deals with the design of the optimal closed loop system
for a linear, possibly time varying, plant with respect to a quadratic
performance index. The pioneering work in the area was done by Kalmanlo.
He utilized the well known Hamilton-Jacobi equation of calculus of

variations as the method of attack. The basic results for this problem

are as follows: Consider the linear system:
X(t) = A(t) X(t) + B(t) u(t) (3-28)

the cost functional or performance index is:

te

J = %- XT(tf)F X(ty) + 3 [XT(t) Q(t) X(t) + u'(t) R(t) u(t)] dt

t (3-29)

b

with the assumptions that the matrix F is positive semidefinite and what
the matrices Q(t) and R(t) are positive definite. Then, the optimal con-
control u*(t) which minimizes the cost functional or performance index
given by Eq. (3-29) exists, is unique, and it is given by the equation:

u ey = -r 1) BT() K(t) x(b) (3-30)
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where K(t) is symmetric and positive definite matrix which is the solu-

tion of the matrix Riccatti differentjal equation:

d . T , -1 T ,

gt K(B) = -K(t) A(t) - A"(t) K(t) + K(t) B(t) R "(t) B (t) K(t) - Q(t)
(3-31)

subject to boundary condition:

K(ty) = F

£)

Figure 1l.whows the structure of the optimal closed loop system.
Since the optimal control is u*(t) = -R—I(t) BT(t) K(t) X(t}, the state
X(t) is operated on by the linear transformation K(t) and then by the
linear transform —R_l(t) BT(t) to generate the control. The feed back
system is thus time-varying. Since R(t) and B(t) are known matrices,
it follows that the matrix K(t) governs the behaviour of the system K(t)
is called "gain'" matrix.

The response X(t) of the optimal system is the solution of the

differential equation:

X(t) = G(t) X(t) (3-32)
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F‘Q—d@)&ﬂ‘)ﬁ X(+) = Al X(H) + BHOU(H) =

K(t)

/\

Fig1. The Structure of the Optimal Feedback System



CHAPTER 1V

SENSITIVITY ANALYSIS OF A SYSTEM

4.1 INTRODUCTION

The study of automatic control system sensitivity is started
with the origins of feed back system theory. Feed back is used for two
primary rcasons11

1) Feed back '"may'" decrease the effects of parameter variations
upon the system theory.

2) Feed back "may'" improve rejection of disturbance signals12

The study of sensitivity in a control system is necessary
firstly becausc of the fact that the system parameter values differ, as
a rule, from the computed one either because of inaccuracies or because
they vary with time or because it is impossible to achieve an exact
realization of controlling device. Secondly, information on how the
system characteristics depend upon the variations of its parameters may
be utilized to improve its performance, as for example in adaptive
system.
‘ In this chapter some of the basic definitions of sensitivity in
a feed back system are given in the first segiion. In the following
sections, some methods of finding the sensitivity are presented, both in

time-domain and frequency-domain.

23
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4.2 BASIC DEFINITION OF BODE

The basic concepts of feed back system sensitivity appeared in
the fundamental work of H. W. Bodell.

Bode's definition: In a feed back circuit, the sensitivity, S,

for an element, W, is given by:

30 (4-1)

3 log W

where 6 represents the gain through the complete circuit. Now, if it is

expressed in terms of the logarithm of the output E and replace the

R)
partial derivative by ordinary differentiation, on the assumption that W
is the only element in the circuit which varies. This allows Eq. (4-1)

to be written as:

dw/W
dE /By (4-2)

S =
4.3 MODIFICATIONS FOR APPLICATIONS TO CONTROL SYSTEMS

Horowitz13 modified Bodes difinition by defining the sensitivity

of a system as:

T d T/T
d a/a

(4-3)

T is the over-all transfer function and a is a plant parameter.

T . . . .

sa as defined by Horowitz is normally called as the ''classical
sensitivity'.

Another extended estimate for the sensitivity is the logarithmic
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derivative ("'the logarithmic sensitivity'')

o 3 In o (4-4)

A more elegant, mathematical method is used by Haykim14 to evaluate
sensitivity in transistor feed back amplifiers which is equally appli-

cable to control system analysis. The sensitivity Sic of the closed

loop gain Kc to variations in a specified parameter k can be determined

from:

K i} d KC/}\C
k d k/k

1 1
T v T F 4-5
F Fu (4-5)

where F is the return difference with reference to k; evaluated under

the condition of zero source signal. FN is the null return difference

which results when the source is adjusted so as to produce a zero load

signal. In terms of the circuit determinant A, we have F = where

[o]

A° is the special value assumed by A when the parameter k is reduced to

zero. Let node 1 of a feed back amplifier refers to the source and node
A .

2 refers to the load, we find that FN = —%Z—-by deleting its first row
A
12
and second column. A?z is the value that A12 reduces to when k = O.

The concept of Logarithmic sensitivity has also been extended to
multidimensional linear systems. The following approach is used hy Cruz
and Perkinsl2. A sensitivity matrix S(s) is introduced as:

8K (s) S(s) = &K_(s) (4-6)
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+ where AKo(s)'and AKC(S) are the variations in the transfer functions,
respectively, of the open and closed loop systems.

However, Hungls pointed out that the definitions given by Bode,
Horowitz13 and others arc troublesome when used as a measure of a pole
sensitivity under the following conditions:

(i) When the pole of the closed-loop transfer function, whose

sensitivity is desired, has multiplicity greater than one.

(ii) When the pole of the cloécd-IOOp transfer function, whose

sensitivity is desired, is at the origin.

(iii) When the pole, or zero, of the open-loop transfer function,
with respect to which the closed-loop sensitivity is
desired, is at the origin,

The first two conditions have bcen shown to yield infinite sensitivity
yield the third condition yields.zero sensitivity.

In almost every practical system, the change of the parameter a
is an increment Aa rather than a differential. Therefore, Hung used the

definition :

T _AInT _ AT/T _ AT

Sa " AlIn o Aofo Ao

a
T (4-7)

4.4 SENSITIVITY IN FREQUENCY-DOMAIN
Out of all the methods developed, the root locus or algebraic
methods of estimating sensitivity are importang;é’ 17. To these are

related the sensitivity coefficients of the poles and zeros of the

systems transfer function.

g(S-zu)
K(s) = k = - (4-8)
I(s-
Ies-p.)
and with respect to the parameter Qj’ the sensitivities are given as:
P e )
Sy,j(s) T3 In oj (4-9)
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z 3z
S .(s) = —-H— (4-10)
w1l 3 1n aj

In general, these quantities are complex cocfficients characterizing the
trends of the movement of the poles pY in the S-plane as a function of
the small relative variations of the parameter ao: for example:
Ao,
P J

Ap. . ~ S . @ —
pY)J v Y,J o (4"11)

j
another definition such as api/aaj were also used. With the help of the

z
estimates Ss 3 and Su ; we can obtain expressions for the relative

’ H

increments in the transfer function:

i
AjK(s) ) 5 1n k ] 1 sz . ; 1 SP Aai
Ks T 19 Ina. s-z_ i sp o,
HGJ p= 1 L y=1 Y AER j
(4-12)

which graphically connects the frequency and the algebraic estimates of
the sensitivity.

Methods of finding the variations of the closed-loop roots of a
system due to variations of the open loop parameters (such as gain, pole

15, 16, 17

or zero) have been developed The sensitivity relating to

this is termed as ''root sensitivity'.
. 16 els s . .
Following Ur , the root sensitivity is defined as:
dq,

S = d
a da/a (4-13)
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qj is the closed loop root and '"a'' is an open loop parameter (such as

gain, pole, or zero of open loop system) whereas Haungl7; Truxal

used the definition:

q, da, /4.
sd = 1
o da/a (4-14)

s . . )
yet, another definition is given by Hungl , as:

AK/K » (4-15)

q. is the closed loop pole, M is the multiplicity of the pole, K is the
~J

open loop gain.

And also,
d (8q "
s - — (4-16)
% Ap
p is the open loop pole, or
, Ag )™
qu = E_Sll
z Az (4-17)
z is the open loop zero.
For a system with unity feed back as in Figure 2, the open loop
transfer function is:
Ges) = Xals)
p(s) (4-18)

K is the open-loop gain and q(s) and p(s) are polynomials in s. The

closed-loop transfer function is:



¥

MM+CQ

G(S) C(S);

Fig.2.

Control

System with  Unity Feedbeack.

29
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¢ Kq(s)
T(s) = —— () =
R P(s) + Kq(s) (4-19)

The above equations (4-15), (4-16) and (4-17) can be written as:

I (g )" : - :
= — = -[(s-q,) TSI 5
K AK/K J s>ay  (4-20)
. Aq )™ PR
RIS (bqy)" | (5 - 95 P(S) (4-21)
Py Ap (p(s) + Ka(s)}(s-py) | s = ay.
and
m
. (s - a,)
qu _ —_d 1)
2 (s - z;) s > q. (4-22)
i 3

Also sensitivity was analyzed graphically by various authors. They use
the well known "'root-locus' techniques in the frequency-domain studies.
The graphical techniques used to find sensitivity are termed as ''root-
contour” methodslg; to distinguish the fact that in root-locus. the
closed-loop poles are plotted when K, the gain, is variable parameter,
where as in "'root-contour”, the closed poles are plotted when K is held
constant, but the open-loop poles and zeros are varied (due to the
variation of the open loop parameters of the system other than K, the
open-loop gain). The single-degrec-of-freedom system, and the two-

degree-of-freedom systems are now studied from the sensitivity point of
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view. Consider a single-degree-of-freedom structure as shown in

13
Figure 3 .

P is the transfer function of the a priori given plant. An
important feature of this structure, from that feedback theory point of

view, is its single degree of freedom L = GP,

The sensitivity to the plant is given as:

AT/T
AP/P , (4-23)

= 1-T (4-24)
vhere

GP
1+ Gp

The one-degree freedom system, is inherently more sensitive to parameter
variation than the two-degree freedom system.

Consider next, a two-degree-of-freedom structure as in Figure 4.
The significant feature of this type of system is that the system sensi-
tivity (o planﬂ function Si, and the system transmission function T can
be independently realized. These two functions T and ST, fix the values

P
of G and H functions in the configuration shown in Figure 4.
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Fig 4. Two-degree-of-freedom Structure
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T = GP - GP
1 + GPH 1+ L (4-25)

where

L = GPH
S0

P 1

S =

T 1+1L . (4-26)

By adding a zero or pole to L, it is possible to improve‘the system, from
the sensitivity point of view. But in one-degree freedom s&stems, by
adding a zero to L means, it appears as a zero in T also, so significantly
changeé T as well as L. There is no sufficient freedom to independent by
control T and the sensitivity of the poles of T.

In the case of a two-degree freedom system, zeros (and to a
lesser extent, poles) can be assigned to L without worrying about their
effect on T. Thus L is chosen primarily to attain the desired sensiti-
vity of T, and there still is one-degree of freedom to achieve the
desired T.

Thus, it is possible to achieve better sensitivity values, using
a two-degree freedom system configuration, rather than a one-degree free-

dom system configuration.

4.5 SENSITIVITY IN THE TIME DOMAIN
The sensitivity of the system in the time domain is defined as the
8,20
variation of the state variables due to a parameter variation °’ .

By parameter variations we mean any deviations from the values

initially taken by them. These may be static, time-invariant or
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time~-variant.
Consider a multi-variable system, whose dynamic response may be

represented by a set of first order equations as follows:

X, =f [X t,0] i=1,2,....n (4-27)
1 1 .

Where x_  are the set of independent state variables which describe at any

1

time t, the state of the system.

o = (al, G¢.. . .) are system parameters.

2

with initial conditions x (0) = x .
. i i
Let the parameters change by Aa, the varied motion then is des-

cribed by the system as:

- d .
X, = f, (X, t, athda) % ~28)
i i
~~ .
Then AX = X _(t) - X (v) i=1,2, ... .n %-29)
i 1 1
M 9%,
= I (——i) Aaj
Aa = O
m

by Taylor series expansion, to a first order approximation,let us denote

)
Bxi(t)
wo(t) =
ij da, . ¢ -31)
J
when Aa. =0, . . . . . A =0
1 m

The function wij(t) is called the "sensitivity function" of the
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21, 31
j .

The standard procedure to obtain the sensitivity function vij

co-ordinate Xi relative to the 1 e Zer o

follows the pattern proposed by Murray and Miller2l. The method is

based on the differentiation of equation (4-27); followed by a Taylor
series development in Aa to obtain equations (4-30). This method reduces
the problem of calculating the sensitivity function wij(t) to the solution
of the so-called sensitivity differential equations, obtained from

equation (4-27). For each component of state vector Xy

n af of

. k

wk, = r — w, . 4 —

J 1 ax, 1] da,

i i

w (0) = 0 (i, k=1, 2, ... . .n
kj
j = l, 29 e o . .m) ([4—32)

Equations (4-32) are called the "sensitivity differential equations" or

simply 'sensitivity equations" .

W ‘(t) 3X. (t)
. ( ) il i R . .
Al [o] nOte W., t - - ———— . ty

functions wi_(t) are obtained as a result of solving the '"m" equations
J

given by Eq. (4-32). In general these are linear equations with variable

) If
coefficients ——=,

axi -
The general method of solving the equations (4-32) on anolog com-—
putors are given by Meissingerzz. However, the above method, unfortuna-

tely, requires that the function of f in equation (4-27) be regular in o,

which is by no means always the case in practice.
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There are methods, including the method of undetermined coef-
ficients, difference equations, and asymptotic expansions which do not
have this limitation. Kokotovi%3, has demonstrated the advantage of such
a broader approach to sensitivity analysis.

A method, developed by Richard Dorf20 using partial derivatives,

to solve sensitivity equations is given:

. n /3f, of
w = ¥ <—-> w,, + ——
Kj i'—'—'l oX. lJ Ba.
i k|
w (0) =0 (i, K=1,2, ... .n
Kj
j=1,2, . . . .m)
or
ax n ,3f 3x of
K _ (XK} i, _K
3 3 do. da (4-33)
“i SR S 3

— — _ - -
a>';T 3f | 3
1 o R ofy %y £
da dx ax ox aa da
r 1 2 n e T
= +
Ix of af of IX of
2 2 2 2 2 2
da 3 X 3 3 Ja
T 32 2 ;Xn ?r ‘T
: i i | | :
} f i : : :
L L 4 L 1L N
(4-34)
As it is desired to obtain the variation in each state variable with
respect to the parameter ar that is %é(t) or denoting the gradient of

r
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f with respect to X by a Jacobian matrix J and %§~ by a vector V and:
o
r

7z = §§-, equation (4-34) can be written as
Y
V = JV+12Z (4-35)

24
Iterating the solution of Eq. (4-35) is  using transition
matrix.

t

v(t) = &(t) V(0) +-‘jﬂ ¢ (t-1) Z2(T)dt (4-36)
0

So the change in the state vector due to a change in a simple parameter

is:
t
V(t) = 2{5“‘? = o(t) V() + f e(t-1) Z(1) dv 4-37)
Y
0

The simultaneous solution of Fgqs. (4-35) and (4-37) can be obtained by
compugor solution 22. The following example illustrates the procedure to
obtain the resulting change in each state variable for a linear system
with parameter variations.

Consider the system with transfer fungtions:

1

G(s) = —m—
(s+1) (s+2)

o 1
and the system matrix A = [2 ;

The system transition matrix is:

(2e - e ) (e—t - e_Zt)

¢(t) =
®) -t -2ty (-e”t + 2¢72% & -38)
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Assume that the parameter a21 = p1 = ~2 increases by a small amount so

that a21 = -2 (1 + €) and V(0) = 0. Then we get using Eq. (4-36):

t
vit) = vfn o(t - 1) 2(t) dx (4-39)
¢}
where
0
Z2(t) = }
X
1(T)
Therefore, we find that,
t
X
V(t) =—— = o (t - 1) Z(1) dt
1 Py 12 (4-40)
(o]
where
0
Z(v =
Xl(r)
Therefore, we find that,
t
Bxl
Vl(t) = ;—- = le(t - 1) @11(1) dt
Py b (4-40)
t
90X
V (t) =—= = ¢ (t-1) ¢ (1) drt (4-41)
2 Bpl 22 11
0]

¢ are elements of the transition metrix.

210 %120 %210 %22

T
when X (0) = [1, o] and thus Xl(r) = ¢11(T)

Evaluating Eqs. (4-40) and (4-41) we get:

Vie) = et (e -3) + e (e +3) (4-42)
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V() = et (s - 2t) - et (54 21) (4=43)

The time response of the sensitivity variables, Vi(t) and Vz(t) is given
in Table I and is shown in Figure 5.

It would be desirable to compare the accuracy of the sensitivity
variables with the exact change of the state variables due to a change in
a21 so that Gyy = -2(1 + €). The actual change in xl(t) was calculated
for € = 0.05 by obtaining xl(t) wvhen a,. = ~2 and 921 = -2.1. Several

21

values of the actual Axl(t) are shown in Figure 5.

Ax
Since V_(t) = —= |, we have,
Ax1 = Vl(t) Apl
= V() (e aZl)
= -0.1 Vl(t) (4-44)

The curve of the change in xl(t) obtained from the sensitivity coef-
ficient is shown in Figure 6. The agreement is very good for this 5%
increasement in the parameter.

Sensitivity analysis by using perturbation techniques were also

developedza. The system equation given by (4-27) can be written as:

X=f (X, u, t) (4~45)
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Fig.5.
I9.5- The Time Response of the Sensitivity Variables
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AX

-.01

=02

X =Ac fUdle]

Fig.6. The Change in fhe State Voriable x(t) Obtamned

from the Sensitivity Coefficient
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Linearizing the system equation about the operating point, the equation

can be written as:

X = AX+Bu (4-46)

of of

A is the Jacobian matrix so that a,., =— and B is b, ,6 = — .
1] 9% ij du

i 3
If there is a change in the system parameters, then the system
matrix A will change, and if the change in system matrix is represented

by €D. Then the problem can be considered to be represented by the

, , 24
perturbation equation  as:
X = (A+ €D) X (4-47)

The solution of Eq. (4-47) obtained by the perturbation methods is

written as:
t

X(t) = ¢(t) X(0) + ¢ “}A o(t -~ 1) D X(1) dr + 0O( ez)

Y (4-48)

At .
$(f) = e is the systems transition matrix, and X(0) is the initial
value of the state vector.

Iterating equation (4-48) can be written as (Since X(t) = &(f)

X(0), then X(1) = &(1) X(0)).
t

h 2
X(t) = ¢(t) X(0) + eu[~®(t - 1) D ¢(1t) X(0) dt + 0(C e ) (4-49)
0

Therefore, the change in state vector due to a change in system matrix is

given by: t
A X(t) =¢€ ‘/.Q(t - 1) D ¢(1r) X(0) dr (4-50)
0
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neglecting the terms containing second and higher order powers of €.

For a stable system, the elements of ¢(t) are decaying
exponentials and this equation (4-50) converges to zero as time increases
without limit.

Here in this method, we assumed that the non-linecarities in the
system are not large, so that we can linearize the system equation, but
if the non-linearities are of large nature it is impossiblec to use the
linearized system equation (4-46). In that case we may have to resort to
computer solutions or variable gain approximation20 methods. This techni-
que can also be applied to time varying systems as well.

Sensitivity analysis utilizing the time-domain matrix has been

deveioped by Richard Dorfzo.



CHAPTER V

SENSITIVITY OF OPTIMAL CONTROL SYSTEMS

5.1 INTRODUCTION

In the past, researchers have studied the sensitivity problem in
classical feed back control systems in great detail, some aspects of
which have been presented in the previous chapter. However, very little
work has been published on the sensitivity problem in the more recent
theo?y of multi~variable optimal control systems.

Dorato25 in 1963 has called attention to this problem, for the
first time, which is concerned with the change in value of the perfor-
mance index with infinitesimal parameter variations.

Pagurek26 in 1965 has shown the sensitivity of cost functional,
to a first order approximation due to an infinitesimal change in the
plant parameter is same for both open-loop and closed-loop control of
linear systems with respect to a quadratic performance index. These

27

results were extended by Witsenhausen™ in a recent note.
Inclusion of sensitivity function as an integral part of the per-
formance index has been considered by Rohrer and Sobral 28, also by
29
Holtzman and Horing®~’.
Typical results of sensitivity analysis which deal with the

effects of perturbations on the optimal control have been reported by

44
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Belanger30 in 1966.

In the first section of this chapter the results of Pagurek and
Witsenhausen are presented and some of- their practical limitations are
studied. In the next section, for a typical second order system, the
results concerned with optimal control law and sensitivity in both open-
loop and closed-loop optimal control systems are obtained for a definite
variation in a plant parameter. Finally, the sensitivity with finite

variations of plant parameters is considered.

5.2 RESULTS OBTAINED BY PAGUREK AND WITSENHAUSEN AND THEIR
PRACTICAL LIMITATIONS
Suppose that the system to be controlled is described by vector

differential equation,

X(t) = £(X(t), u(t), t, a), X(e) = X (5-1)

The vector o = (al, @, « « +*+ o0 ) represents a set of m plant para-
m

2

meters. The optimization problem is to choose the control input over an

interval (to, tf) such that the index of performance:

t
£
J = f L[X(t), u(t), t, a] C(5-2)
t
[o]

is minimized.

The optimal closed loop control law is assumed as:

W) = v [x0), t, «] (5-3)

or open-loop control law:
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G(e) = e [X(D), t, a] (5-4)

as the case may be, has been determined by employing the available techni-

ques of optimization, as presented in chapter 3.

In synthasizing the optimal controller, a number of components

are used, whose values we denote by the vector:

These components are related to the system (plant) parameter by:

*

b- = g i (al’ 0-2 e s e @ .am) i = l, 2 . .p

or in vector form:

b = g (a) (5-5)

So that the output of the optimal controller (assuming closed-loop

control):

u*(t) = ¥ [X(1), t, b)
C

is related to the optimal control law given by Equation (5-2), by:
. *
¥ [X(t), t, g (@] = v [X(t), t, o]

Unfortunately in actual practice the plant parameter vector a,
which appears in FEquation (5-2), seldom corresponds to the value of a
used in the controller (5-3). This is due to such things as compomnent
inaccuracies, environmental effects, aging etc. The problem then is to

determine the effect of such variations on the performance index.
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In general, controller components are less subject to variations
than plant parameter. With this in mind, we shall consider only the case
of a fixed controller which is designed for a plant, whose parameters
vary, i.e., when we say parameter variations, we are speaking of plant
parameter variations.

Assume that the plant parameters have drifted from the above
nominal values to values given by a vector a#ao. Again, when the plant
parameters are given by a, and the controller component values are given
by b0 = g*(ao), we denote the corresponding values of the performance
index by J(bo, a). Here optimal operation requires that o = o, with
the corresponding value of the index of performance J(bo, ao).

Due to the difference Aai T ENT the change in the value of

performance index is:
A = J(bo, a) - J(bo, ao) (5-6)

If the parameter variations are infinitesimal, Equation (5-6) can

be written by Taylor series expansion of J(bo, a) about o = s

3J(bo, a)
p] = 3 (W po.
i da, 1 (5-7)
i a = a
o
the derivative: B
3J(b , a)
o
Jda =
i a a

is denoted as the performance index sensitivity function for the parameter
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a . It should be noted that J(bo, o) is not necessarily the minimum with
i

respect to o at o = o s and so these sensitivity functions need not
vanish.

It should also be noted that the actual structure of the control-
ler and the controller component values do not appear in this problem at
all although they do enter in the first case considered. Here, the
results depend only on the nominal plant parameters o s and the actual

plant parameters given by a. This follows because b, = g*(ao) and so:
‘% [t, X(v), bo] = Y o {t, X(t), ao] (5-8)

Following Doratozs, the direct computation of the performance
index sensitivity function, assuming an index of performance of the form
given by Equation (5-2). Recalling Equation (5-8), we substitute either
the open-loop control law given by Equation (5-4) or the closed-loop con-
trol law given by Equation (5-3), with o = o into Equations (5-1) and

(5-2) to get:

X = f [t, X(£), u (t), o] = £, [t X(0), a_, o (5-9)
and
L \ t ‘
J(b,a) = L[t, X(t), u*(t)] dt = Ll[t, X(t), a, o] dt
t, ’ t, (5-10)

Therefore, from Eq. (5-10):

tf .
3J(by, a) 3L,y 3L,
B = P ' ( — ) dt (5-11)
a = X o = EI] =
i s 3 0.0 t 4 (!O 1 o 0.0



and from (5-9):

Q_(EPL
dt 99y

oL

8

of

Here §Yl' is an n-dimensional row vector, X

column vector,

of
1

of

39X
3
h

X

3.
i

is an n-dimensional

is an n by n matrix such as:

-

of
1

8X1

of

X

is an n-dimensional column vector.

da,
i

Except, for certain degenerate cases the boundary condition for

Equation (5-12) is:

Since Equation (5-12) is linear though time-varying, a solution of

tO (isl, 2, 3 .m)
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(5-12)

(5-13)

(5-14)

Equation (5-12) may be written explicitly in terms of the transition

motion &(t, t) (Zadeh and Desoer 196333) for the system:

d

dt

(

oX

aai

a = ao)

afl
oX

e |

aX
o

(5-15)
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Thus one can write:

s
X - of ,
3o, |0 =0y bja ¢(t, 1) L dr (5-16)
i to do o = a

which completes the evaluation of:

(a_J_cbo, o)
sa

»

a = o given by eq. (5-11).

In general, the solution of Eq. (5-12) and the integration in eq. (5-11)
are sufficiently complex as to require a computer solution.

The procedure must be repeated for every set of initial condi-
tions X*(to) = X,. But Pagurek developed a method which eliminates
the necessity of repeating the computations for each set of initial
conditions, which is presented now. Consider a linear system of the

form:

]

X(6) = A () X(t) + B_(£) u(t), X(t) = X_

y(t) Ho(t) X(t) (5-17)

A, B, are n by n and n by r-dirensional matrices respectively, Ho is a

p by n matrix, where p < n. The index of performance is of the form;

t

: f
I(tg, X(t), tg) =—§; f [ <y(®), @ y()> + ule), R, (t)u(t)>]dt
t
[¢]
1
+ 5 X(tf), MOX(tf) s

(5-18)
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where Q and R are symmetric positive definite p by p and T by r-
dimentional matrices respecitvely and Mo is a constant symmetric non-

negative definite n by n-dimentional matrix. We use the notation:

T
<y, Q> = I I g yy =y0y (5-19)
i iji]

[ N

for quadratic forms.
It has been given in chapter III, Equation (3-30), using Kalman's

method, the optimal control law as:

% -1 T
u (t) = -R (t) B (t) M (t, tf) X(t) (5-20)
(o} 0 (o}

where M (t, tf) is the solution of the matrix Ricatti equation:
o}

dM . .
24 A" +MA -MBRIBM +HOH =0M(t,, t) =K 5-21)
dt oo oo o000 "o 0 oot T O Mty tg) = (5~
The optimal value of index of performance, when x(to) = x_ can be

written as:
1
I (g, Xgu tg) =5 <:xo, M, tg), X, > (5-22)

0

we assume here, that the nominal system is given by matrices Ao’ Bo» o

R0 and H,, also that a  represents the set of parameters in these
matrices, constant over (to, tf), the optimal time variable feed back

control input based on the nominal parameters al is:

: -1
) = v _[t, X(0), g¥(a )] =¥ [t, X(v), 0] = R BzMo(t, te) X(t).

(5-23)
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Now suppose that the actual system is given by the matrices A, B, Q, R
and H, with the true value of the parameter vector being a. When the
control input given by Equation (5-23) is used with this plant, there

results the closed-loop system:

X(£) = F(OX(E), X(t)) = X_, (5-24)
where

-1 7T
F(t) = A - BR_ BM(t, tg) (5-25)

The closed-loop response is then:
X(t) = o(t, to) Xo s (5-26)

where ¢(t, to) is the transition matrix of the free system given by
equation 6-24). On substituting Equation (5-25) and Equation (5-23)

into the index of performance we obtian:

Le
1 T T
J (to, Xos bo, o, tf) =5 X, % (t, to)Ql(t)Q(t, ty) dt

to

(5-27)

T
+ ¢ (tf, to) K @(tf, to) X, s

where

(t) = M B RR R8T+ nlo n
Ql t) = 0 00 o Yoo 0 H.

Clearly it is seen from Equation (5-27), that J(t, X(t), bo, o, tf) is of

the form:

=1
J(t, X(O), by, o, tg) =3 <x, w(t, t) x>,
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where t
£ T T
M(t, tf) =b/‘ o (1,t) Ql(T) d(t,t) dt+ ¢ (tf,t)K ¢(tf, t) .
t

o (5-28)

Differentiating Equation (5-28) with respect to t using Leibnitz's rule,
and using the properties of transition matrices (Zadeh and Desocer 1963)

we get:

dM
ot FIM + MF + Q = 0; M(I, T =K (5-29)
This equation is a special case of the matrix Ricatti equation, and is

well known in Liapunov stability theory.

To calculate the performance index sensitivity function:

BJ(tO, X bo’ o, Ef)

BOL =
i o =0y

differentiating Equation (5-29) with respect to t, there results:

T T aQ
Aoy By Bpy Foweuil o+ oo
o, o 3%
dt 3oy % %y % i i
(5-30)
with -
M
aai (tf, tf) = 0
Now let
aM(t, tg)
P.(ts tf) = -
dag a = o
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Hence letting o = a_ in Equation (5-30):

(o}
dp
N R R =" 0; P (t ) = 0 (5-31)
It o1 FEFoHQ = 05 Py, vg) =
where
T
20, |
= oF
Q = [ oF 1
2 1 Ja, Mo + Mo . T
i i i~ o =a (5-32)

o

In practice, an open-loop controller may be easier to synthesize
than a closed-lcop controller, In this case for the system given by
Equation (5-17) and performance index given by Equation (5-18), the open-

loop controller based on nominal parameters ags Ao’ B_etc., produces a

o

control input:

% -1 *

u (t) = —Ro BOMo(t, tf) X (v, (5-33)
where

ok = * *

X (t) = (Ao - BORo Bo Mo) X (t) X (to) = Xo
letting

-17T

F (t) = A, - B R BM(t, tc)

and

o(t, to) = Fo(t) @o(t,to), @o(to, to) =1

we obtain
*

X (t) = ¢o(t, to) X,»

The dynamics of the perturbed system are then given by:
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f—m Bi%TM( o ( ) X
= Ax = BR_B M (t, to) ¢ (t, t_

o "

Defining Ii(t, to), such that:

i
o

ﬁ(t, to) = A I(t, to), n(to, to)

we have
X(t) = G(t, to) Xo

where

6(t, t)) = Me, t) - Y(t, £)

=17
Y(t, to) =u[' n(t, t) B R, BOMO(T, tf) d(t, to) dr
t

We define also:
-17T
F(t) = A-BR BM(t, T)
: o 0O

*
Substituting u (t) and X(t) into Equation (5-18), we get:
T
1 T T T
J(to, X, bo, a, tf) --E X, [‘fﬂ G (t, to) H Q H G(t, to) dt

o}

o]

T
T ' T T T
+ G (tg, t)) K G(tg, to{1 X+ %-xo U{[Qo(t, t,) [pl—H Q H]@o(t,to)d% X

o

(5-34)
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where

1

- -1 T T
Q(£) = MBR R RSB M +HQH.

let
= 1
J(t, X, b, o, tg) =5 < X M(t, tg) X2 (5-35)

where

M(t, tf) = Ml(t, tf) + Mz(t, tf)
with
Y
—-— T T ’ T
Ml(t, tf) = JP G (t,t)H" Q H G(t, t) dt + G (tf, t) K G(tf,t)
tO
(5~36)
and
e
T T
My(t, ;) = ¢ (1, t) [Ql(T) -HQ H] ¢ (1, t) dr (5-37)
to

Differentiating Equations (5-36) and (5-37) with respect to t and adding

we get as:

T T T
dM - - - - F = =
Sy 0+ +[;ql + (F-F) (C=Cp) + (6;=C,) ( roi] 0, M(t,, tg) =K

(5-38)
where Cl and 02 satisfies:
dc .
: + ATC +C +C. A+ HTQ H=0; C(t., t.) =K (5-39)
dt 3 1 1 S R A §
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and

dcC

_2 T -1
dE *AC, +CA+CBRBM =05 Cylty, tp) =0 (5-40)

1
ool

Note that of a = aO(A B=B, etc.) then M becomes M and also

O,
Cy = (C1 = Cy) a=a © M.
o
Again let
aM(t, tf)
Pi(t’ tf) = e
dag @ = a

Proceeding in « similar as in the closed-loop case, there results:

Py T oFT aF 9y
™ 4+ FP.+PF 4} — C +C o——+t —= = 0
dt o1 io aa 0 o Jda, 3a

i i ija = a

(5-41)

Using Equation (5-32) we get:

P T
-—iat +FP +PF +0Q = 0
with
Pi(tf, tf) = 0 N

Therefore, comparing Equations (5-31) and (5-41) it is seen that
the performance index sensitivity function to a first degree approxima~
tions are turned out to be identical in both open-loop and closed-loop

optimal control systems, for small (infinitesimal) variations in plant
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parameters.

These results were extended by Weitsenhausen27

, who showed that
the first order sensitivity of the performance index was identical for
both open-loop and closed-loop optimal control for a broad class of non-
linear systems and performance criteria, as follows.

Any sufficiently smooth non-linear problem is linear-quadratic to
first order approximation. This is the case even in the presence of
smooth constraints and for any sufficiently smooth controller optimal
just for the one nominal system condition for which the sensitivity is

sought.

Consider three real Banach spaceszg:

an "input space" D
an "'output space" Ex

a "parameter space" I

Let S be a function with domain D(S) in Zu GEZG and range Xx. Let B be a
real function with domain D(V) in Zu & Za. Let F be a function with

28
domain D(F) in Zx and range in Zu. Then, by implicit function theorem ,

in a neighbourhood of (u,, %5, ©,) the system:

"
t

= S(u, a) 7 (5-42)

F(x) (5-43)

e
[

defines u and x uniquely as differentiable functions of «a.

%x = X(a) with derivative X' at o
o
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u = U(a) with derivative U; at o
o

and to first order approximation.

dx = § '"du+ S ' da
u o

du= F ' dx
v (5-44)
from which
X' = (I~-S'F ‘)_1 s ! (5-45)
a u X o
1 t ' [} -1 [
U = F'(I-S'F?"Y S (5-46)
o X u X o

I is the identity operator on Zu.

Now define J(a), a real function in a neighbourhood of o in Za, by:

J(a) =V [U(a), X(a), a] (5-47)

Weitsenhausen's Theorem:

The Frichet derivative Ju' of J at Gs @ linear operator from

Za + R, exists and is given by:

' — 1 ' [ -
J o= v Sa + va (5-48)

an expression independent of F.

The theorem may be made intuitively obvious by considering the

1t The proof of this theorem can be found in Weitsenhaussen's paper
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feed back loop cut at the input to S. Then, J is a function of o and u

with zero partial with respect tou at a = o , u = ug by stationarity.
o

When the loop is closed u changes with o, but this change has no first-

order effect on J.

"

The input u, need not be optimal for « o only stationarity
is required.

The open-loop case corresponds to F(x)

the constant u for all
x, The content of theorem is that the sawme sensitivity Ja' is obtained
for any F which:

1) nmaps xb into u_ and is smooth in a neighbourhood of x .
o

o

2) makes sense in closed-loop operation (i.e., the linear opera-
tion I - F ' S ' on I is invertible, which implies that I - S ' F ' is

X u u u X

investible on Z..)

3) maps a neighbourhood of L into the constriant set if one is
present.

Thus F need not be external for any condition other than (uo, xo,
ao). In particular it need not be related to what may happen for a dif-

ferent S. No similar results hold for the second sensitivity derivative.

Weitsenhassen applied his theorem to problems of 1) fixed
nominal initial condition 2) arbitrary initial conditions.

In his results Pagurek considered an infitesimal plant parameter
variation. Due to this, it became possible to approximate the perfor-

mance index sensitivity function to a first order as:

AT = 1 (BJ(bo3 @)
du,

) Aai
i a = o

o]
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But in ever§ practical system, the plant parameter variation is a finite
quantity. So, in every practical system, the sensitivity function cannot
be approximated to a first order, besides the second order and maybe the
higher order terms also have to be included to get a fairly good know-
ledge of sensitivity. So expanding AJ given by Eq. (5-6) by Taylor

series,

2
ar = 3 (2L, @ pa, + L g (R o) (Ao )2k -
. \ou, i 2 X 2 i
i i o= a i sa
(o] 1 a = 0

(5-49)
including the higher order terms also

Then the result of Pagurek may not hold good with this new
identity which is obtained by considering a finite plant parameter
variation.

Also Weitsenhausen pointed out that the results of (Pagurek and
Weitsenhausen) will not hold for a second order approximation in his
recent note27.

Thus, although the results of Pagurek are very true for an
infitesimal plant parameter variation, in a practical system, where the
variations of plant parameter are finite amounts, the closed-loop
(particularly if we consider a two-degree-of-freedom structure) optimal
system is always advantageous than the open-loop optimal system, from the
point of view of sensitivity of performance.

Following Doratozs, we consider the sensitivity in an optimal
control system as that concern with a variation in the performance index

for a variation in a plant parameter.
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Thus,
33 (b , a) 1 325 b, @) 2
Al = plr—"o © ba, + = z<—~2~~- o’ (b, ) A —-=--
. \3a, i 2 ; i
i i o= o ido .
o] 1 o =

We define the sensitivity of performance in an optimal system as:

AJ
S = —
Ao
where AJ = the variation in the performance index due to a variation
in plant parameter.
Aa = the variation in plant parameter.

So from Equation (5-49), we get:

b , a)
AT 3J (b , a) 1 3 J ( o’
pa CF (Ba. ° ) M) ’?( 2 )(Aai) Mk
i i a=qa i ‘3o
o i a = a

o
(5-50)

It can be seen from Eq. (5-50), that by defining the sensitivity of
performance as %% all the higher order terms are included. So we will
get a fairly correct measure of sensitivity of performance,in a optimal
control system, by calculating %%u
5.3 AN EXAMPLE OF SENSITIVITY OF OPEN-LOOP AND CLOSED-LOOP OPTIMAL
SYSTEMS FOR A SECOND ORDER SYSTEM
Statement of the Problen:

Given a linear system as shown in Figure 10awith plant trans-

fer function:
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o~ _....—_._...——o—l -
Ps) = ST (5-51)
Given the boundary conditions:
0
X = (5-52)
0

Given

Given

Given

the constraint on the control signal (input):

£ 2
f u” dt K (5-53)
o

the target:

X(tg) = (5-54)

the performance index:

dt (5-55)

(&
]
h
=
hrw

not pre-specified.

Then, to find the control that:
(1) satisfies the constraint on u(t)
0
(2) transfers the state of the system frou X(0) = [ ]

1 0
to X(tf) = and

0
(3) minimizes the performance index.
Then to investigate,

(1) how sensitive is the minimum value of performance index

to variations in the parameters of the plant.
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(2) how sensitive is the minimum value of performance index
to variations in the parameter of the plant, in an
optimal closed-loop linear control system.

(3) comparison of the sensitivities of performance in optimal

open—-loop and closed—loop linear control systems.

SOLUTION:

P(S) = ot
s(s + 1)

The differential equation describing the system is:

|
|

5 at u(t) (5-56)

The state variables are chosen as:

Xl C 5
X = J (5-57)
X dc/d

t

Then the set of first order differential equations describing the system

is:

%

prraniL N % (5-58)

dx2

i = X tu (5-59)
This equation can be represented in matrix form as:

o 1 0
X = X + u (5-60)

0 -1 1
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The index of performance is:

f
J = x2 d
o
and the constraint on u is:
te
Ljr u2 dt ¢ X
o)

Applying the Lagrange multiplier results in the criterion

functions:
2 2
Jl = (Xl + Au’) dt (5-61)

let X3 be the new co-ordinate given by:

t
f 2 2
X3=f (x] + 2 ar (5-62)
o}
or
X.= (% 4+ D) (5-63)
3 "

So we have the three first differential equations as:

Sl )
x2 = —x2 + u
. 2 2
= -64
X4 Xy + Au (5-64)

subject to the boundary conditions:

X(0) = [8] o X(eg) = [(1)] (5-65)



The Pontryagin function (}) is:
63 = a1 (tf)

with the coefficients bi given as:

The Hamiltonian H is given by:

H = plx1 + p2x2 + p3x3

2 2
= plxz + pz (—XZ + U) + p3 (Xl + Au )

66

(5-66)

(5-67)

(5-68)

Taking the partial derivative of H with respect to u and equating the

derivative to zero yields:

0 = P,y + 220" Pq

Therefore the optimal control law is:
Py

2 A Py

The Hamilton canonical equations are:

. _ aH
Xy 3P,
1
. oH
Pl T ax
so,
5, = - SH
1 BXi

(5-69)

(5-71)

(5-72)

(5-73)
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-(py = Py) = Py~ Py

ax2
aH
p3 - 3x3 =0
so,
py = -1

Hence, substituting Eq. (5-76) in Eq. (5-73), we get:
él = 2 x

and

pz = p2 - pl
subject to boundary conditions on auxilary variables P,

pl(tf) = 0

and

|
o

P, (te)
Substituting Eq. (5-70) in Eq. (5-64) we get:

L T S 7

Thus we have the following first order equations:

b )
P
1] 2
X = =X + —
2 2 2%
Py = 2%

67

(5-74)

(5-75)

ﬂ5—76)

(5-77)

(5-78)

(5-79)

(5-80)
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These equations are subject to the boundary conditions:

0
X(0) =
. 0 ]
F 1
X(tf) =
L O ]
and (5-81)
pl(tf)= 0
pz(tf)= 9

The best way of solving these equations is working. backwards in
time, starting from te since pl(tf) = 0, pz(tf) = 0 for all optimum

trajectories. So, the equations given by FEq. (5-80) are modified as:

1 TR
. P
¥ T %27 A
. - - (5-82)
Py 2 3
Py = P17 h
and now, the boundary conditions will be: )
1 o
X(0) = and X(t,) =
0 0
and
p,(0) = 0; p,(0) = 0 (583)
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let

- = k (5-84)

d'x d x
z - Z + 2kx2 = 0
e’ at '
or
A
(p - D2 + 2k) X, = 0 (5-85)

where D = gz- is the operator.

The roots of Eq. (5-85) are:

D = *81 and *82
where
Bl = /TJI_ and 82 = \/—c?
where
1+ /1 -8k

o and a,

1 2 (5-86)

Hence the solution of Eq. (5-85) is:

—B-t Bat -B,t
f1t , e B1Y L e 2 4. c e 2 (5-87)

X = C 3

2 1 + C

where C;, Cy, C3 and C4 are constants, to be evaluated.
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From Eq. (5-82), we get, substituting Eq. (5-87),

1 Blt —Blt th _bzt
P, = I(- [:Cle (1—81) + Cze (l+31) + C3e (1—32) + C4C (1+82:):|
(5-88)
2 -8.t Bt 2 -B,t 2
1 Bet 1 2 2 2 ]
py =i [ et ey cpe T -E]) + Che P (1-6)) + Che 2 (1-8))
(5-89)
g1t 2 -8t
_ ___:!__ 1 2 2
x; = ™ [Cle 81(1—61) + C2e Sl(pl -1
+ C3e 2(1—32) + Cae 82(62"18 (5-90)

The boundary conditions,

1 0
X({0) = [j :]and p(0) = [j l and now substituted in the Egs.
0] 0]

(5-87), (5-88), (5-89) and (5-90), so we get:

C1 + 02 + C3 +C, = x2(0)
cl(l-el) + 02(1+61) + C3(1—81) + 04(1+82) =0

2 2 2 2 "~ (5-91)
Cl(l—sl) + C2(1-61) + 03(1—82) + 04(1—82) =0

2 2 2 2
-87) + -1) + - ~1) =
Clsl(l 81) 0281(81 1) C382(1 82) + 0462(82 1) 2kx1(0)

where
x (0) = 1 and x,(0) = O
1 2

The above equations are solved to get Cl’ C,, C4 and C4 and the values

are:



: 2
(148 ) (1-6) 2k
Cl = XZ(O) - Xl(O)
26 (6 -2 2. (560
2
(1-87) (1-85) 2k
C2 = "Xz(o) ) + xl(O) 2 2
28, (8,-8,) 26, (8,-8,)
2
(1-8.) (1+8.) 2k
Cy = x,(0) 1 2.~ x.(0)
28, (82-8%) ! 2 2
- ) _
2 P27y 82 (82 Bl)
2
(1-8,)(1-8,)
C = -x,(0) _.__QE_____% 2k
4 2

+ xl(O)

2 2 2 2
28 (B_-B,) -
2 1 282 (82 Bl)

71

(5-92)

The value of A is taken as 0.1. We are justified in assuming this

value because the given constraint on control input

so0,

K oe L.
0.2

Substituting in Eq. (5-86) we get,

o
1 3.16 ZSO 54"

3.16  [-80%54"

Q
[

0.5 + j 3.123

Q
"

0.5 - § 3.123



8, 1.776  [40°27" - 1.35 + § 1
62 1.776 {-40027' = 1.35 + j 1
1-8, -1.202 735" = -0.35 - j 1
1—32 -1.202 1—7305' = -0.35 + j 1
148, 2.61 26°7" = 2.35 + § 1
146, 2.61 {-2607' = 2.35 - j§ 1
2 9 o
B_-B = 6.246 90
' B1ts -Bt Bat -B,t
= 0= f £ 2°f
Now xz(tf) 0 Cle + C2e + C3e + C4e

Putting in the values of Cl’ C2’ 03 and C4 and using x2(0)

B, t

2k -8t Bot
e LI

2 2
B (828
2 Gy

xl(O) = ] we get:

n

x (k) = 0 _E_ZE_M_E_ [e'eltf
28 (2-8,)

=N

substituting values of Bl, B, and k we get

2

0 = [2.5952 cos (l.lStf) sinh (1.35tf)
~ 3.04388 sin (1.15tf) cosh (1.35tf{‘

by the method of iteration, the value of te is computed as:

te = 3.3456296

Figure 7 shows the plot of X,- Since il = -X,, we get:

.15

.15

.15

.15

.15

= 0 and

72

.15 (5-93)

(5-94)



Fig.7.The Response of the

State variable

X, (1)

¢L
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xl(tf) = [Fos (l.lStf) cosh (1.35tf) - 0.16 sin (1.15tf) sinh (1.35tfﬂ
(5-95)

The optimum control input is given by Eq. (5-70)

Substituting for Py from LEq. (5-88) and using) as 0.1 we get:

*

Byt B
u = - [Cle (1—81) + C

1% asy + ce 2t
28 ( Bl) 36 ( "'82)

_th
+ Cae (l+82i]

Simplifying with values of Cl and C,, C3, C4 and xl(o) = 1 and x2(0) = 0.

. 2k (1-6,) Byt , 2k sy -8t
u = =TT ST e T Ty
2 9 2 2 ©
28, (8,-6,) 28, (B)-6p)
2k (1_32) th + 2k (l+62) -8,t
2s, (826D : 28, (52-8D)
2 271 2271

using values of 61, 82 from Eq. (5-93) we get:

* -1.35¢t
e

u = [.0.5814 cos (1.15t) + 2.27956 sin (1.15tﬂ

(5-96)

_ele30t [ 0.5814 cos (1.15t) + 0.912509 sin (1.15cﬂ

Now going back to Eq. (5-95) calculating xl(tf) at t. = 3.345629 we get:

xl(tf) = ~29.64

*
But actually xl(tf) should be equal to zero, so scaling the u (t) by

(29.64+41) = +30.64, the value of xl(tf) will be zero.
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* -
u = —1_ [ e 1.35¢ [0.5814 cos (1.15t) + 2.27956 sin (1.15tﬂ

30.64

_e1.35t [0.5814 cos (1.15t) + 0.912509 sin (1.151:):,:]

Changing the time co-ordinate from t to t_-t, we will get the solution

f

of the optimum control input starting from t = O.

* - -
G S [he 1.35(tg-t) [0.5814 cos 1.15 (t-t) + 2.27956
30.64 ,
sin 1.15 (t —tﬂ
(5-97)
—e1- 3P G 5814 cos 1.15(t ~£)+0.912509 sin 1.15(tf—t)]
using tf = 3.345629, and simplifying we get the optimum control law as:
* -
u w130t [3.104 cos 1.15t - 0.9517 sin 1.15;]
1.35t (5-98)
-e [0.00677 cos 1.15t - 0.004498 sin 1.15t]
we summarize the results starting from t = 0 as follows:
xl(t) = [%os 1.15(tf—t) cosh l.35(tf—t) (5-99)

-0.16 sin 1.15(tf—t) sinh l.35(tf—t)]

X'-2(t) = 0.45 [2.5952 cos 1.15(tf—t) sin 1.35(tf—t)

- 3.04388 sin l.lS(tf—t) cosh 1.35(tf—tﬂ
(5-100)

-1.35t

*
u (t) =e [?.104 cos (1.15t) - 0.9517 sin (1.15tﬂ

1.35t (5-101)
- [0.006777 cos (1.15t) - 0.00449 sin (1.15tﬂ

*
Checking the optimal control law u (t) satisfies the Hamilton Canonical
equations.

The Figure 8, shows the plot of xl(t). It is seen that the
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-
(@)
I

Time

Fig:2. The Response of x,(t) for an Optimum Input
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the target xl(tf) = 1, and xl(O) = 0 arc satisfied.
Also x2(0) = 0 and Xz(tf) = 0. The Figure 9 shows the plot of
ux(t). Also the performance index is minimized. Thus the calculated

optimal control law given by Eq. (5-101) satisfies the constraint on u(t),

0 0
transfers the state of the system from X(0) ={ } to X(tf) ={ J and
0 ) 1

minimizes the performance index.
* » .
Hence, u (t) is the optimal control law.

Optimal open-loop linear control:

The optimal open-loop linear control system is shown in Figure 10b
representing the solution in a open-loop manner, the controller G(s) is
calculated when a step input is applied.

P is the plant, and G is the controller.

R is the step input.

Analyzing the system:

Ui (s) = G(s) R(s)
P(s) U*(s) = Xl(s)
so ’ X,(s) = P(s) G(s) R(s) (5-102)
u*(s)
and G(s) = ———
R(s) (5-103)

%
Since R(s) = 1/s, taking Laplace transform of u (t) and substituting in

Eq. (5-103 ) we get:

. 3.0972 s> - 5.388 s” + 1.6866 s + 9.471
v (s) = (5-104)
2 2 2 2
(s + 1.392 + (1.15)?] (s - 1.39)2 + (1.15)
3 2
s (3.0972 s> - 5.388 s°+ 1.6866 s + 9.471
G(s) = (5-105)

[(s +1.35)% + (1.15){][(5 - 1.35)2 4 (1.15)2
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Fig.9. Behavior of Optimum  Control

law

Time

U”E'i’) with time



79

Using Eq. (5-102) xl(s) is calculated.

(3.0972 53 ~ 5.388 sz+ 1.6866 s + 9.471)

s(s+1) [ (s + 1.35)% + (1.15)2][(3'- 1.35)%+ (1.15)2]

Xl(S) =

(5-106)

Taking inverse Laplace transform of Eq. (5-106) we get:

-1.35¢t [

Xl(t) = -e 0.946597 cos (1.15t) + 1.0517 sin (l.lStﬂ

_el-33t [0.0013557 cos (1.15t) + 0.00087688 sin (1.15tﬂ

+ 0.8814 + 0.06646 e (5-10)
Now let the plant parameter vary by 0.0l. Here we take the plant para-
meter as the plant open-loop pole. The open-loop system is shown in

Figure 10a. The controller is assumed to be constant.

s0, P'(s) = R S
s (s + 1.01) (5-108)
U(s) = R(s) c(s) (5-109)
Xi(s) = ¥ (s) P'(s) = R(s) G(s) P'(s) (5-110)

where P' is the new plant and X' is the output with this plant.

: 3.0972 s> - 5.388 s2 + 1.6866 s + 9.471
X)(s) = 2 2 2 2
s(s+1.01)[(s +1.35)2 + (1.15) ] [(s - 1.35)% 4 (1.15) J
(5-111)
xi(t) is calculated taking the inverse Laplace transform of Xi(s), and is
x](t) = _e1:35t [ 1.0319 cos (1.15t) + 1.132 sin (1.15tﬂ

1.35t
-e

[ 0.00147898 cos (1.15t) + 0.0009543 sin (1.15tﬂ

-1.01¢t

+ 0.94771 + 0.09656 e (5-112)
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U(s) [ _s X(s)
S(5+1) ’

Fig. 10a. A Second Order System

Plant P(s) = s”(sS_T)

3
Controller § (1.0072 5 5.388 §-1 6865 S +.9.471)
(s%-005 5%+ 9.397)

F1g.10b. Open-loop Optimal Control System.



Sensitivity in open-loop linear optimal control system:

81

The sensitivity of performance in the open-loop optimal control

system is now calculated.

as:

where AJ is change in performance index due to a change in a plant

*

parameter, J is the optimum performance index,

- 1
Where xl and Xl

*
By the method of numerical integration the values of J and J' are

computed as:

AJ
Ao,

*
AT = J' - J
3.345629
*
J = Jﬁ X12 dt
0
3.345629
J' = x'12 dt
0

We will define the sensitivity of performance

(5-113)

(5-114)

(5-115)

are given by Equations (5-107) and (5-112) respectively,

[
]

1.9094351

J' 2.2289334

So sensitivity performance in optimal open-loop linear control system is:

AJ _ _0.3194983

Ao 0.01

Two degrces of freedom closed-loop linear optimal control:

31.94983

(5-116)

The optimal closed-loop linear control system is shown in Figure

11, e use here two-degree-of-freedom structure.
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P(s) is the plant transfer function; G(s) is the controller transfer

function. The feedback element is (1 + sa) with variable "a'.

Analyzing the system we have:

R(s) - X, (s) (1+sa) G(s) = v (s)

or

%
U (s)
G(s) =
R(s) - Xl(s) (1 + sa)
also
U (s) P(s) = X, (s)
so *
G(s) = U {s)

R(s) - U*(s) P(s) (1 + sa)

(5-117)

(5-118)

Now when the plant parameter is varied, let the new plant be P'(s). The

controller G(s) is kept fixed, and the output with plant P'(s) be X"(s),

, *
and the optimum input be U '(s). Then,

R(s) - (1 + sa) X{(s) G(s) = U*‘(s)
atso, P'(s) U (s) = X[(s)
XJ'(s)
so, R(s) - (1 4+ sa) Xf(s) =
P'(s)

P'(s) R(s) G(s)
1+ G(s) P'(s) (1 + as)

therefore, X{(s)

U (s)

and G(s) is given by G(s) = *
R(s) - U (s) P(s)(1 + a s)
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P'(s) R(s) U (s)

thercfore, Xf(s) =

* (5-119)

R(s) + U (s)(1 + a s)(P'(s) - P(s))

So we have the controller:
*
G(s) = u_(s)
R(s) - U*(s) P(s) (1+s a)
and
*
X P'(s) R(s) U (s)

R(s) + U (s) (1+a s)(P'(s) - P(s))

Let a = 2 : The optimal closed-loop control system is shown in Figure 11

with a = 2. We have,

P! = 1
s{s + 1.01)

R = L
s

and
3 2
* 3.0972 s - 5.388 s” + 1.6866 s + 9.471
U (s) =

ks " 1.35)2+(1.15)2J[(s - 1.35)2+(1.15)2]

Substituting a = 2 in Equations (5-118 and (5-119) we get the controller;

G(s) = . U (s)
R(s) - U (s) P(s)(1 + 2 s) (5-120)
and , *
Xn o= P'(s) R(s) U (s)
1

R(s) + U (s)(1 + 2 s)(P'(s) - P(s))  (5-121)
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B R o) | r L,

1425 s

Fig.11 . Two-degree- of-freedom Closed loop

Optimal  Control System.

Plant P(S) = S(; ]

3 2 ~
S(S+1)(3.09725-5.788 5 +1.6266 S -+ 9.471)

(55— 5.1944, ¢y 6.46828 5 +1.0168 ¢ _ 97316 S +0.426)

Controller G(§) =
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*
Using the values of P'(s), R(s) U (s), and P(s) we get;
s(s + 1)(3.0972 53 - 5.388 52 + 1.6866 s + 9.471)

(s - 5.1944 s* + 6.46828 s> + 1.0168 s - 9.7316 s + 0.426)

G(s) =

(5-122)
The output Xf(s) is now calculated from Equation (5-121)

(s+1) (3.0072 s° - 5.388 s> + 1.68066 s + 9.471)

S(s6 + 2.01 sS - 0.049944 54 - 1.92921 s3 + 8.90995 52

Xf(s) =

+ 19.086714 s + 9.90219)

(5-123)
The roots of the denominator of Equation (5-123) are computed, so
Xf(s) is written as:

3 2
Xi(s) - (s + 1)(3.0972 s - 5.388 s + 1.6866 s + 9.471) (5-124)

s(s + 0.988)(s + 1.0471)(s + 1.338 - §1.1198)

(s +1.388 + §1.1198)(s - 1.35 + j 1.15)(s -~ 1.35 - j 1.15)

Using partial fractions, and taking inverse Laplace transform, we get:

-0.988 t “1.0471 t

xf(t) = 0.095592 + 0.0085859 e + 0.1234 e

—61'35 t [ 0.0009033 cos(1.15t) + 0.00062132(sin 1.15t)]

e1:338 t[(1.0109 cos (1.1198t) + 1.223 sin(1.1198t) ] (5-125)

So for the two-degree-of-freedom closed-loop optimal system with a = 2

we have, the output x, as given in Equation (5-107)

-1.35 t [
-e

1
Xl(t) = 0.946597 cos(1.15t) + 1.0517 sin(1.15t) ]

—elr3 e [0.0013557 cos(1.15t) + 0.00087688 sin(l.15t) ]

+ 0.8814 + 0.06646 e ©
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1
by 0.01, is from Equation (5-125).

and the output x, when the plant parameter (open-loop pole) is varied

xf(t) = —el'35 t {0.0009033 cos(1.15 4+ 0.00062132 sin(l.lSC)}

- f
~-e 1.35 t‘Ll.0109 cos(1.1195  + 1.223 sin(1.1198 ]

+ 0.95592 + 0.0085859 e 0988 T 4 o 1934 o71-0471 L

Sensitivity in two-degree-of-freedom closed-loop linear optimal control
system as given in Figure 11,
The performance indices

3.345629
J* = 0[‘ x2 dt

3.345629

2
J" = "7 dt

(o]

-

and

are computed, using Numerical Integration methods. The results are as

shown below.

3= 1.9094351
(5-126)
JU = 2.1730306

So the sensitivity of performance in the closed-loop linear optimal

system with a a = 2 is:

. .
g - AL _ 3" _ 0.2645955 _ 26.45955

Ao Ao 0.01

(5-127)

Now let a = 1.
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The optimal closed-loop control system is shown in Figure 12, with a = 1.

Substituting a = 1 in Eqs. (5-118) and (5-119), and simplifying we get:

S (3.0972 s> - 5.388 s% + 1.6866 s + 9.471)
G(s) = . ; ) (5-128)
(s-3.0972 s> + 4.390 s° - 1.6866 s + 0.426)
and
P'(s) R(s) U (s)
i . S S
Xj(s) = ) (5-129)
R(s) + U (s) (1 4+ s)(P'(s) ~ P(s))
and
P(s) = —=—— , P'(s) = ———t—
S(S + 1) S(s + 1.01)
. 3 2
ey = 3:0972 87 - 5.388 8” + 1.6866 s + 9.471 _
s+ 1.35)% + (1.15)% (s - 1.35)% + (1.15)2 (57129
Substituting these values in Equation (5-129) we get;
3 2
| 3.0972 s> - 5.388 s> 4 1.688 s + 9.471
Xj(s) = 5 A 3 )
S(s” + 1.018" - 1.02897 s> - 0.954 s° + 9.8801 s+ 9.9013)
(5-130)

The roots of the denominator of Equation (5-130) are computed, so Xf(s)

is written as:

3.0972 s> - 5.388 8% + 1.688 s + 9.471

(S + 1.3595 - 31.1367)(S + 1.3495 + 31.1367)
(S - 1.35 + 31.15)(S - 1.35 - §1.15)(S + 1.0197)

Xj(s) = (5-131)

Using partial fractional method, and taking inverse Laplace transform of

Equation (5-131) we get:



¥
R(s)&@ J6) u(s) RES) X(s),

—

1+S k

Fig.12. Two degree of freedom Closed loop
Optimal  Control System.

Plant P() = T(ssm)

3 2
Controller GG)= §(3.0972 5 ~5.398 5 +1.6866 S+ 9.L71)

;
(5= 2.072 © + 4390 £ ~1.6865 § + 0. 426)

88
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x9(t) = 094831 + 0.11453 o~10.0197¢

+ e1.35t [

-0.0007497 cos 1.15t + 0,00094576 sin l.lSt]

*e—1'3495t[ 1.016172 cos 1.136t + 1.155 sin 1.136t]

(5-132)
so for the two-degree-cof-freedom closed-loop optimal control system with

a = 1, the output is as given in Equation (5-107)

-1.35¢ [

xl(t) = —¢ 0.946597 cos 1.15t + 1.0517 sin l.lSt]

—e1'3St [0.0013557 cos 1.15t + 0.00087688 sin 1.15{}

+ 0.8814 + 0.06646 e ©

and the output xf when the plant parameter (open—loop pole) is varied by

0.01 is from Equation (5-132)

1.35¢

x(t) = e [—0.0007497 cos 1.15t + 0.00074576 sin 1.15t]

-e'1'3495t[1.016172 cos 1.136t + 1.155 sin 1.136t]

+ 0.94831 + 0.11453 o L-0197¢

Sensitivity in two-degree-of-freedom closed-loop linear optimal control

system given in Figure 12, The performance indices,

3.345629
* 2
J = xl dt

and 3.345629

J¥= f x'iz dt

(o]
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are computed. The results are,

1.9094351

[
]

(5-133)

J" = 2.1485611

]

To the sensitivity of performance in the closed-loop linear optimal

system with a = 1 is,

*
N
s =& 4= 0.2391280 0 _ 53 91960 (5-134)

Ao b 0.01

Single-degree-of-freedom closed-loop linear optimal control:

Now, let us consider a single-degree-of-freedom closed-loop optimal

control system as given in Figure 13. Analyzing we get,

*
U (s)
R(s) - U(s) P(s)

G(s) = (5-135)

and

X(s) = P(s) U(s)

and when the plant parameter (a open-loop pole) is varied, let P'(s)
*
be the new plant, U (s) be the optimal input, and X;(s) be the output.

%
Keeping the controller G (s) fixed, we get;

(R(s) - X](s)) G(s) = U (s)
*
P'(s) U "(s) = X (s)
R(s) G(s) _ P'(s) R(s) G(s)

X{(S)=
(1/Pp'(s) + G(s)) 1 + P'(s) G(s)
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%
R(s)+® I a6 5 X(s)

Fig. 13.9ngle - degree - of - freedom  Closed [oop

Optimal Control . System.

Plant PG = ”s%m

3 2
Controller G(s) = S(6+1 (2097255385 +1.68665 + 8.471)

(35+sl'~z,.ugsz Sg+£..39052+8.2101,8 +0.426)
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Substituting for G(s) from Eguation (5-135),

XI(s) = P'(s) R(s) U (s)

(5-136)
R(s) + U(s) (P'(s) - P(s))
P'(s) =~ R(s) = —— P(s) = ——>—
s{s + 1.01) s s(s + 1)
* (3.0972 33 - 5.388 52 + 1.6866 s + 9.471)
U (s) = :
(s + 1.35% + (1.152 (s - 1.35)%2 + (1.15)°
Using these values and calculating X{(s) ve get;
3 2
x"(s) = (S - 1)(3.0972 s~ ~ 5.388 s” + 1.688 s + 9.471)
1 6 5 6 3 2
S(s” + 2.01 s7 + 0.012 s - 2.037 s~ 4+ 8.943 s
+ 19.876 s + 9.9013) (5-137)

The roots of demoninator of Fquation (5-137) are computed, so X{(s) is
written as:
3 2
xi(s) = (S + 1)(3.0972 s~ ~ 5.388 s” + 1.688 s + 9.471)
! s(s + 0.994 - 30.0264)(S + 0.994 + 30.0264)

(s - 1.35 - j1.15)(s - 1.35 + 31.15)(s + 1.361 - J1.1541)

(s + 1.361 + 31.1154) - (5-138)

using partial fractional method, and taking inverse Laplace transform of
Equation (5-438) we get;

-0.994¢t

xf(t) = 0.956312 + e E0.0&IlS& cos 0.0264t - 0.071555 sin 0.026At)]

+ l-35¢ [_

0.00884932 cos 1.15t + 0.0066681 sin 1.15{]
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—e'1°361t[§.91234 cos 1.154t + 0.62283 sin 1.154€

so for the single~degrec-of-freedom closed-loop control system we have

the output Xl(t)

0.945597 cos 1.15t + 1.0517 sin 1.15{]

Xl(t) - _e—l.35t [

—e+l'35t [0.0013557 cos 1.15t + 0.00087688 sin 1.15%

+ 0.8814 + 0.06646 e °

and when the plant parameter (open-loop pole) is varied by 0.01, the

|

output Xy is:
" -0.994¢t " .
xl(t) = 0,9565312 + e LO.O41]54 cos 0.0264t -~ 0.071555sin 0.0264t)
1.35¢ ' .
+ e ~-0.0834932 cos 1.15t + 0.0066681sin 1.15t
—e“1‘361t[0.91234 cos 1.154t + 0.62283 sin 1.154 t{

Sensitivity in the single-degree-—of-freedom- closed-loop linear optimal

control system as given in Figure 13.

The performance indices

3.345629
* 2
J = x1 dt
o]
and 3.345629
J" = x12 dt
o]

are computed, and the results are:

*
J = 1.9094351; J" = 2.2062123 (5-139)
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So the sensitivity in the sinple-degree~of-~freedom closed-loop linecar

optimal control system is:

S5 = =TS = 29,6772 (5-140)

Summarizing the sensitivity results:

SYSTEM SENSITIVITY

Open-loop optimal control 31.94983

Two-degree~of-freedom closed-
loop optimal control system 26.,45955

with a = 2

Two-degree-of-freedom closed-
loop optimal control system 23.91260

with a = 1

Single-degree~of-freedom

closed-loop optimal control 29.6772

system

Thus the sensitivities of performance in optimal open~loop and closed-
loop linear systems is calculated. Both single degree-of-freedom feed
back structures are considered.

It is clearly seen from the results above that the optimal
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closed-loop linear control system is advantageous to optimal open-loop
linear control systems, from the sensitivity point of view.

From the results above it can be seen that the optimal closed-
loop control system is less sensitive than the open-loop optimal control
system, for a finite amount of variation in a plant parameter. (Here in
the above calculations an open-loop pole is taken as plant parameter)

Also comparing the sensitivity values in the three types of
optimal closed-loop systems considered, it can be seen that the two-
degrees-of-freedom closed-loop optimal system is less scnsitive than the
one-degree-of-freedom closed-loop optimal system.

The sensitivity in the two-degree-of-freedom closed-loop optimal
control system shown in Figure 12 is 23.91260, which is less than the
other systems considered. So this type of two-degree—of-freedom closed-
loop optimal control system is very less sensitive than the other systems

considered.

5.4 SENSITIVITY OF PERFORMANCE OF OPTIMAL LINEAR CONTROL SYSTEM TO
FINITE VARTATIONS IN PLANT PARAMETERS

Linear continuous optimal systems with Quadratic performance criteria

We shall consider linear systems of the form

X

A X(t) + B u(t)
o o
(5-141)

X

X(to) o

where Ao’ Bo’ are n by n and n by r-dimensional metrices respectively.

The index of performance is of the form:
t

J = %{ [<&®), Qx>+ <), Rou<t)>] at + 3 <K(ep), KX(e D
o (5-142)
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where Qo and Ro are symmetric positive definite p by p and r by r-

dimentional matrix. We use the notation:

<<3, QX>> = I L qinin = XTQX for quadratic forms.
t

It follows (from KalmanBZ) that the optimal control input is

given by:

1

& -1.T o, ’
u (£) = —Ro BOMOX(L) (5-143)

where Mo is the solution of the matrix Ricatti equation
dM
—2 4 A% —ma —uB R 40
at oo oo ocoo oo o

0

1l

(5-144)
Mo(tf,tf)= K

The optimal value of the index of performance is given by, following

Kalmanlo’ 32,
3 x), 1] = <K, M (), X(ED> (5-145)
s f 2 9 o s
For a time invariant system, A , B , Q and R_ are time-invariant, and
aM o’ "o’ Yo o}
so is Mo. Hence —> = 0 and so Equation (5-144) becomes:
dt

A +MA -MBRIBM +Q = o0 (5-146)
00 [e N o] 0O 0 O 0O 0 (o}

Derivation of performance index for optimal linear closed-loop systems:

Consider the system given by Eq. (5-141) with the performance
index given by Eq. (5-142)., If the nominal system is given by the
matrices Ao, Bo’ Qo, Ro’ and o represents the set of parameters in these

matrices, then the optimal input based on nominal parameters s is
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1T

"ty = -2 ety x
u (t) Po bolo}(t)

The configuration for the closed-loop optimal control system is given in
Figure l4.

Suppose that the actual system is given by the matrices A, B, Q,
R, with the true value of the parameter vector being o, now as the matrix
Ao is varied to A due to the parameter variation from @, to o, in the
closed-loop case, the optimal input u*(t) is no longer optimum and let
the new input to plant be u*'(t), so due to this change in the input, let

the state vector X(t) change to X'"(t), hence the system equation becomes:

XU(t) = AX'(t) + B u* (8) (5-147)

%
where u '(t) is given by,

1

*l - _D T il =
u "(t) = Ro BoMoh (t) (5-148)

so substituting Equation (5-148) in to Equation (5-147) we get:

1.7 "
BOMOX (t)

]

- " —
t
X, (t) AX"(t) BORO

1

#

-1.T 13 -
(A - BoRO BoMo) X" (t) (5-149)

The performance index given by Eq. (5-142) will now be written, using the

*
new input u ' and the new state vector X' (t), as

t
o1 (T x, *, 1 o o
3" = -5f &), o x>+ <o), rutEd]ae P <k, rxep>

t (5-150)

where J" is the performance index for the closed-loop case. Now, substi-

tuting Eq. (5-148) and Eq. (5-149) in to (5-150), the performance of index
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for the closed-loop case is:

te

tno_ st T . -1 T; r1t _ T ]
I = [<>\ (), QX"(£)> + <RO BM X"(t), - BM X (t)>}dt

l fi > 1
+ 5 <X (t.), KX (tf)>

The optimal control input based on the nominal parameters ags is:

% -1 ]
u () = ~Ro BOMOX(L)

substituting this value in Fquation (5-141) we get,
X(t) = (A - BROBLM ) X(t) (5-152)
o o oo
= P X(t)

Let the transition matrix of equations (5-152) be given by ¢(t, to),
Hence, we have: X(t) = 9 (¢, to) Xo' The configuration of the open-
loop optimal controller is, therefore, as shown in Figure 15. For a
time-invariant system ¢(t) = ePt. Now, consider the nominal parameter of
the system plant @ be varied to o. Due to this let the matrix Ao
change to A. Here in this open-loop the optimum input to the plant u*(t)
is not altered. Due to the change in the system matrix Ao, let the state
vector X(t) change to X'(t), so from equation (5-141), the state vector
X'(t) is given by,

X'(t) = AX'(t) + Bou*(c)

From equation (5-142), the performance of index is written using the new

state vector X'(t), as
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X,

V) e anT

Jg 7T
41 B, W,

Fig.14 Closed-loop Optimal Control System.
Yo ([Fod X[ meme L d) W
o | &, X& PR PO pLaNT | XU
—— DY) A B R BMy T Ag

TTTTT GONTROLLER

Fig.15. Open-loop Optimal Control  System
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t
f
3= {<x'(t)o X' (D> + <u” (o t*('->>]dt +y e, KD
= 2 . »OA v u N \OL [ 2 Lf ’ f
o

(5-153)
where J' is the performance index for the open-loop optimal control
system.

Determination of the sensitivity of performance fox cptimal closed-loop

linear systems:

As has been stated previously, we define sensitivity of perfor-

, AJ , .
mance of optimal control system as: § = v where AJ is the change in
the performance index due to a Ao variation in a plant parameter. Fron

equation (5-142), the optimum performance of index for nominal parameters

*
@ with optimum input u (t) is,

*

f
% *
J = %~ &<X(t), Qox(ti> + <u (t), R u (t):ﬂ dt + % <:X(tf), Kx(tf£>
%o (5-154)
*
or substituting for u (t) from Eq. (5-143), we get:
t

f
* 1 - ~L.T T }
J = zf [@(t), QOX(t)> + <Ro B M X(t), BOMOX(t)> dt
t
° 1
+ 5 <x(e,), KX(t)>  (5-155)
The performance index when the plant parameters a  vary to o from

Equation (5-151) is
4

, = ]
| -2 /
t

so, the change in the performance index due to a variation in the plant

f[<)(”(t), QOX”(t)> + <—R;IB3;MOX”(t), - BEMOX”(t)>:| dt

° +%— Lx(ty), KX'(to)>  (5-156)

*
perameters AJ = J"-J 1is obtained by substracting Eq. (5-155) from

MILLS MTIMORIAL LIBRARY,
MCMIASTER UNIVERSITY
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Eq. (5-156) as J* is optimum, and hence is minimunm.
L
f [<x"(t), Q (e > - <LX(t), QOX(t)>J dt
t

0

SO LI =

2O b

t

£ -1.T T
— - \ ‘A - I\' 11
+ f [< R B M X (t), B M X (t>
t

8N

° -1.T T, «
-<.RO B M X(t), -BOMO)\(t)>J dt
r3 [ Qg o> - Q. Ked>] (5-15)

A special case of the above problem is the one in which tp = and K = O,

then AJ becomes:

t
ou 1 [ aeen - aw. ] @
t0
te ‘ . ,
. %_ / [<R;181MOX‘,(U’ _BEMOXH(t)>_<R;lBlMOX(t), -BZMOX(tD] dt
Vto (5-158)

so the sensitivity of performance for closed-loop optimal control system

- AT
po

t
S = %—d E ] 1<x"(t), QOXg(t)> - <X(t), QOX(t)>] dt
t

is §

t
f
1 -1.T, .. T on -1,.T T
+ 3 /t [:(-RO B M X (t), -B_M X (t)y>- R BOMOX(t), B M X(t) dt
[o]

+9 {(x"(tf), KX (e > - <leg), Kx(tf)>ﬂ (5-159)
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and for the case when tf = o gand K = 0, we have

€
f
t:0
t )
S [ e, e
t
(o)

~1.T, LT -
- <-RO B M _X(t), BOMOX(t{>>1 dt} (5-160)

Determinetion of the sensjitivity of performance for optimal open-loop

The optimum performance index for nominal parameters s is
t .
1 £ * *
J =3 E(X(t), QOX(ti> + < (v, R.u (t)y>| dt
t
o

+ —% <Xty KX (£,

The performance index when the plant parameters a, are changed to o is,
from Equation (5-153),

tf , ‘
3t =3 f [<x'(c), X" (tD> + (D), Ro“*(t)ﬂ ac
t

(o}

1 ' '
+ 3 <X (te), KX (tgd
*
so AJ = J'-J 1is obtained as,

>
£

AJ = %f [<X‘(t), QX' (e)> - <x(v), OoX(t)>] o
t
(o]

+

LR

[xrcepy, kx> - <o), Kxe )] (5-161)

Again, when te = and K = 0, we have:
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Ay = 2 e XT(t), 0 X'(eP , >
= f[ (), o X' (t)> - <X(t), Qox(t)] dt (5-162)

t
o}

so the sensitivity of performance for open-loop optimal control system is:

t
f

g =8 1 [ ;jt [<x'(t), QX (P> - <K(v), QOX(t)>] dt
(o]

Ao Ao
+3 [<X'(tf)’ KK (e)> = <K(tp), Kx(tf)>ﬂ (5-163)
or for the case when T = oo,

t
f

_1 1 f , s \

S = - ) . E<X (), QOX (£)> <:X(t), QOX(t£>J dt (5-164)

o

Thus from equations (5-159) and (5-163) we have the sensitivity of per-
formance of indices in both the closed-loop and open-loop optimal control

systems. Rewriting them again we have; in the closed-loop optimal system,

£
s = i [% f[( X"(t), QX"(e)> - <X(t), QOX(L‘D] dt

Ao
t
(o]
Rt
1 [__-—lT " I NS B T J
+ zf <-R_"B M X"(t), -B_M X (> <Ro BM X(t), BOMOX(t>dt
t
(o)

+
LR

[<x”(cf), KX”(tf>— <X(tf), KX(t, ,]]

In open-loop optimal control system
t

f
S 1 [%—f [<X'(t), QOX'(t)>—<X(t), Qox(t)>] dt

" b

t
(o}
+ %j [<X'(tf), K‘i‘(tf)> -<X(tf), KX(tf»ﬂ
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tivity of
open-loop

X" (t) are

oY T
X' (t—) ’ —BO

of closed-
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clearly seen that from the above two equations that the sensi-
closed-loop optimal control system is different from that of
optimal control system, because of the fact that X'(t) and
t
g -1.T
different and also due to an additional term~% jﬁf E&}Ro BOMO
t
o}
F1t ~1.T T . . P B
Mok (ti> -~ ‘<}Ro BOMOX(t), —BOMOX(L5:>dt in the sensitivity

loop optimal control system.

Also due to the fact that the value of the performance index for

optimal closed-loop control system given by Eq. (5-151) is less than

that for optimal open-loop control system given by Eq. (5-153), we can

say that the sensitivity of performance for optimal closed-loop control

systems is less then that for optimal open-loop systems, in general.

This above theory can be further illustrated by the results of

the example of second order system considered in the last section.



CHAPTER 1V

CONCLUSION

In this Thesis the practical 1imitatioﬁs of the results of some
recently published work on sensitivity of optimal control systems have
been examined and discussed. A new definition of sensitivity of per-
formance of optimal control systems has been proposed. In essence, with
the proposed definition of sensitivity it is possible to calculate the
sensitivity without approximating it to a first order. Thus the proposed
definition is sipgnificant and quite useful for almost every practical
system.

It has been shown that the sensitivity of performance for a closed~-
loop optimal control is less than that for an open-loop optimal control
system. A second order system has been considered as an example, to
illustrate the merits and the realiability of the proposed definition of
sensitivity, and to further illustrate the theory.

The following problems may also be approached using similar
techniques.

1. Sensitivity of performance index to controller component
variations.

2. Sensitivity analysis in discrete-time linear optimal systems.

3. The theory may be generalized to include non-linear systems.
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