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Abstract

This thesis details a collection of experiments performed on two condensed

matter systems, Co-doped BaFe2As2 and URu2Si2. These two materials are

related by their structural type (ThCr2Si2-type) serving as great examples of

the diversity of material properties present in this family. They are also both

superconducting materials and belong to the collection of strongly-correlated

electron systems. The interest in studying the Ba(Fe,Co)2As2 group of mate-

rials is due to the high superconducting transition temperature in these (and

related) materials, while the compound URu2Si2 was studied due to the pres-

ence of a poorly-understood ‘hidden order’ phase.

Muon spin relaxation/rotation/resonance (µSR) was used to measure sev-

eral single crystals of the series Ba(Fe2−xCox)2As2 with Cobalt concentra-

tions x = 0.038, 0.047, 0.061, 0.074, 0.107 and 0.114, and a single crystal

of Sr(Fe0.87Co0.13)2As2. The two samples with the lowest doping, x = 0.038

and x = 0.047, showed strong ĉ-axis magnetism occurring below the magnetic

transition, TSDW . The measurements suggest that the local magnetic field is

increasingly disordered as the concentration of Co increases. These samples

were shown to exhibit both superconductivity and magnetism, but that the

entire sample contains non-zero local magnetic fields, meaning that supercon-

ductivity exists in or near regions of strong magnetic order.

The remaining compounds (with x = 0.061, 0.074, 0.107, 0.114 and

Sr(Fe0.87Co0.13)2As2) were measured with zero-field (ZF)-µSR and no mag-

netic ordering was found down to T = 1.65 K. An analytic Ginzburg-Landau

model was used to fit the data and obtain absolute values for the penetration
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depth, λ. A model for the temperature dependence of the density of super-

conducting carriers, ns ∝ 1/λ2, based on two s-wave gaps describes the data

well. Below TSC , a paramagnetic frequency shift was observed indicative of

field-induced magnetism along the ĉ crystallographic direction.

Measurements of URu2Si2 under chemical and hydrostatic pressure have

focused on measuring the spin correlations that are present in the hidden order

phase. The chemical pressure that is induced by 5% Re doping perturbs, but

does not destroy, the commensurate spin excitations. The spin gap that is

present in the parent material is also present under this chemical doping. The

hidden order phase survives at least halfway to the quantum critical point to

ferromagnetism, but is weakened by the Re substitution.

Under hydrostatic pressure of 10.1 kbar, URu2Si2 becomes antiferromag-

netic, but the spin correlations are found to be qualitatively similar to those

of the hidden order phase. The width in reciprocal space ( ~Q-width) of the

excitations and their gapped nature remains unchanged upon entering the an-

tiferromagnetic phase. Quantitatively, there is an increase in the magnitude of

the gap at ~Q = (1.4 0 0). This may be a result of the increase in the transition

temperature preceding the entry to the antiferromagnetic phase.

Due to the large difference in their properties, and hence the motivation

for studying Ba(Fe1−xCox)2As2 and URu2Si2, they will be introduced and pre-

sented separately. Chapter 1 will provide the necessary background material

on Ba(Fe,Co)2As2, while Chapter 2 will provide the background for the work

on URu2Si2. Chapter 3 will describe the experimental techniques that were

used to study these systems.
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Original research results on Ba(Fe,Co)2As2 are presented in Chapter 4.

This is mainly focused on µSR measurements of dopings that display super-

conductivity. Samples that did not order magnetically were measured in the

mixed state to measure the vortex lattice to extract the various properties,

including the superconducting pairing symmetry. Samples that did order mag-

netically were measured to analyze the amount of magnetic disorder and dis-

cover the extent of coexistence or phase separation between magnetism and

superconductivity.

Chapter 5 details the original research results on URu2Si2. This involved

crystal growth of these compounds, and two neutron scattering experiments

to measure the spin correlations while perturbing the hidden order state. The

first experiment was done on a Re-doped crystal, URu1.9Re0.1Si2. Doping

with Re suppresses the hidden order, eventually leading to ferromagnetism

at higher dopings. This work showed that the spin correlations are also sup-

pressed, but not as quickly as the hidden order. The second experiment was

on pure URu2Si2 under hydrostatic pressure. Applied pressure increases the

hidden order transition, but eventually leads to antiferromagnetism, the phase

in which the experiment was performed.
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Chapter 1

Introduction to Ba(Fe,Co)2As2

1.1 Conventional and Unconventional Supercon-

ductivity

Superconductivity is a state that is characterized by two properties: per-

fect electrical conductivity and perfect diamagnetism. Discovered by Onnes

in 1911, the property of perfect conductivity was the first signature of super-

conductivity [1], while Meissner and Ochsenfeld’s discovery of the “Meissner

Effect” (perfect diamagnetism) in 1933 [2] showed the second property of su-

perconductors. The explanation for why superconductivity occurs didn’t come

until 1957 when it was shown by Bardeen, Cooper and Schrieffer (called BCS

Theory) that any net attractive interaction between electrons would cause

them to pair up, and that these “Cooper pairs” would be able to travel through

the material with no resistance [3]. It was also Bardeen, Cooper and Schrieffer

who explained that this attractive interaction could be mediated by phonons,

thereby providing the mechanism responsible for superconductivity. These
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properties along with a theoretical framework provided the beginnings of the

characterization of a “conventional” superconductor.

Many of the properties of superconductors can be characterized by two

parameters: the superconducting coherence length, ξ, and the magnetic pen-

etration depth, λ. The value of ξ, roughly speaking, describes the size of the

Cooper pairs, while λ denotes how far into the superconductor a magnetic

field penetrates. These are both temperature-dependent and are illustrated in

Fig. 1.1. Abrikosov determined that for values of ξ/λ ≤ 1√
2
, the superconduc-

tor would form a ‘mixed’ state at a range of applied fields, Hc1 ≤ H ≤ Hc2,

where the field would penetrate in filament-like “vortices” [4]. The field-

dependent phase diagram for a superconductor is shown in Fig. 1.2.

Figure 1.1: The interface between normal and superconducting regions, and
how ξ and λ dictate the field strength and superconducting order parameter
at the transition. Adapted from [5].

The mixed state occurs because for ξ/λ ≤ 1√
2
, the mixed state has a lower

free energy than the Meissner state for fields between Hc1(T ) and Hc2(T ).
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Figure 1.2: The H-T phase diagram for a superconductor. In a type-I su-
perconductor, there is only one critical field, Hc, and the phase transition is
given by the dotted line. In a type-II superconductor, shown by the solid lines,
there are two transitions. For T ≤ TSC and H ≤ Hc1(T ), the material is in
the Meissner state. For T ≤ TSC and Hc1(T ) ≤ H ≤ Hc2(T ), the material is
in the mixed state. The values of Hc, Hc1 and Hc2 depend on the microscopic
parameters. Adapted from [6].

Since the superconducting wave function is single-valued, the magnetic flux

penetrating the sample is quantized such that each vortex carries a flux Ω = h
2e

where h is Planck’s constant and e is the fundamental charge constant.

The free energy in the superconducting phase can be derived from the

specific heat (Fig. 1.3(a)), and is shown in Fig. 1.3(b) [7]. The difference in

the free energy between the superconducting and normal state is called the

condensation energy. This modification to the energy of a fraction of the

metallic electrons in the system produces a discontinuity at TSC . Below this

temperature, the entropy decreases markedly. Measurements of the electronic

contribution to the heat capacity as the temperature approached 0 K were

found to be exponential, with a form given by,

3
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Figure 1.3: (Left) The specific heat of a normal metal and superconductor.
This difference in entropy is reflected in the free energy (right). This illustrates
the second-order transition to the superconducting state. Adapted from [7].

Cp ∝ exp (−∆/2kBT ) (1.1)

This is the form for a fully, isotropically gapped system, where in a su-

perconductor, ∆ is known as the superconducting energy gap. The temper-

ature dependence of the gap function, ∆(T ) is shown in Fig. 1.4. This is

predicted from Bardeen-Cooper-Schrieffer (BCS) theory, and shows excellent

agreement with measurements of elemental superconductors such as Niobium

and Tin [6, 8]. It was also a prediction of BCS theory that the size of the

superconducting gap was given by [5]:

∆ = 1.764kBTSC (1.2)

By considering a superconductor as two fluids, one normal and one super-

conducting, and using the techniques developed by London and London for
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Figure 1.4: The temperature dependence of the superconducting gap, mea-
sured by electron tunnelling. This shows the excellent agreement between
a conventional, elemental superconductor and BCS theory. Figure adapted
from [6]. See also [9].

electrodynamics [10], one can classify the microscopic quantities of the super-

conductor in terms of quantities like the superfluid density, ns. The London

penetration depth, λL is given by:

λL =

√
mc2

4πnse2
(1.3)

This illustrates that the superfluid density, ns ∝ 1/λ2 and so measurements

of the penetration depth can reveal additional properties of the supercon-
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ductor, such as the superconducting gap symmetry, an important connection

for the measurements in Chapter 4. Later, the phenomenological model of

Ginzburg and Landau [11] showed that the coherence length can be written

as:

ξ =
2~vF
π∆

(1.4)

Another important consequence of the BCS theory was that due to the

mechanism of Cooper pairing and the energy scale of phonon spectra in real

materials, superconductivity shouldn’t be possible above ∼35 K. Thus, the

discovery of YBa2Cu3O7−x with a superconducting transition temperature,

TSC = 95 K, in 1986 was extremely shocking and revolutionary[12]. In order

for superconductivity to be feasible at this temperature, it was presumed that

another pairing mechanism is responsible – something distinctly different from

electron-phonon pairing, hence “unconventional”. Many other superconduc-

tors have emerged where the pairing mechanism is unconventional, but the

cuprate family of superconductors (those, like YBa2Cu3O7−x, that are based

on copper oxide planes) were the only known “high temperature” supercon-

ductors: those known to exceed the BCS limit of ∼35 K.

While many features of cuprate superconductors can be described with a

modified version of BCS theory [13], the unpredictably high transition temper-

atures necessitate that there are some features that do not fit into this frame-

work. The most notable is the anisotropy of the superconducting gap, shown in

Fig. 1.5. While most conventional superconductors have an isotropic, s-wave

gap, the structure of the gap in cuprates is d-wave. As shown in Fig. 1.5(a),
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the gap changes sign as one moves around the Fermi surface and nodes are

present along the (±π,±π)-directions, where the superconducting gap goes to

zero. This was first seen by nuclear magnetic resonance spin-lattice relax-

ation rate measurements [14], and confirmed by subsequent microwave res-

onator measurements [15], then by µSR [16] and tri-crystal experiments [17].

The nodes in the gap lead to quasiparticle excitations that exist within ∆

of the Fermi energy. Later, this pairing symmetry was confirmed by phase

sensitive tunnelling experiments [18, 19, 20] and angle-resolved photoemission

(Fig. 1.5(b)) [21].

Figure 1.5: (a) A plot of the d-wave superconducting gap on a circular Fermi
surface. Note the nodal points at which the gap changes sign. (b) The angular
dependence of the gap energy as measured by ARPES in Bi-2212. Figure taken
from [21] and used with permission.
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Other unconventional aspects of the cuprate superconductors are the linear

dependence of superfluid density [22] and magnetic fluctuation commensura-

bility [23] on TSC , known as the Uemura and Yamada relations, respectively.

The high transition temperatures suggest that the mechanism of Cooper pair-

ing in the cuprates is not the conventional electron-phonon interaction. Due

to the relationship between TSC and the magnetic fluctuations (in addition

to the close proximity to magnetic order), a number of theories emerged that

suggested that magnetic excitations may be the pairing mechanism in these

materials [24]. There is an emerging consensus that spin fluctuations are the

pairing mechanism responsible for high temperature superconductivity, but no

comprehensive theory has yet emerged to describe this phenomenon [21, 25].

1.2 Iron Pnictide Superconductivity

The cuprate superconductors continue to be widely studied in an attempt

to understand the nature of their pairing mechanism. However, a new avenue

of research emerged in 2008 with the discovery of several of Iron pnictide super-

conductors based on layers of FeAs, with superconducting transition tempera-

tures of up to 55 K [26]. These are another family of high-temperature super-

conductors, and so they form a natural basis for comparison to the cuprates.

One of the most significant comparisons came when studying the phase di-

agram of the Iron pnictide superconductors. The pnictide phase diagrams

appear very similar to those of the cuprates, where superconductivity appears

only after electron- or hole-doping an antiferromagnetic parent compound.
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The structure of these families are shown in Fig. 1.6, while a representative

phase diagram is shown in Fig. 1.7 [27].

Figure 1.6: The structure of the various families of Iron pnictide superconduc-
tors. Figure taken from [27] and used with permission.

Of these families, the AFe2As2 family has received considerable attention

due to the relative ease of growing large single crystals. This is important for

measurements that depend on the size of the sample being measured, such as

neutron scattering and to a lesser extent, muon spin relaxation. Superconduc-

tivity can be induced in several ways in these compounds: using rare-earth

doping on the A-site, transition metal doping for Fe and using hydrostatic or

uniaxial pressure [28]. Remarkably, all of these have very similar phase dia-

grams, which indicates that the chemical substitution does more than modify

the carrier concentration by adding or removing electrons. This is another mo-

tivation to study this family of pnictide superconductors, since the wide variety

of perturbations to the system may be probing the same physics. Hopefully, a

comprehensive study of these perturbations may yield insight into the salient

physics.
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The parent compounds, AFe2As2 (A=Ba,Sr,Ca), display a first order phase

transition from a high-temperature paramagnetic, tetragonal phase to a low-

temperature orthorhombic, antiferromagnetic phase [29, 30, 31, 32, 33]. This is

clearly seen in transport and thermodynamic measurements, shown in Fig. 1.8.

This is accompanied by an ∼1 K thermal hysteresis in the orthorhombic split-

ting and Bragg peak intensity as seen by neutron scattering [34, 35].

The small peak and sharp drop in the resistivity below TN points to a loss

of scattering and a decrease in the density of states at this transition [28].

Following this behaviour under different chemical substitutions is important

to understanding the effect of these dopants on the system.
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Figure 1.7: The phase diagram of Ba(Fe,Co)2As2. Most notable is the simi-
larity to the cuprate phase diagram where superconductivity is also in close
proximity to the antiferromagnetic phase of the parent compound. Figure
taken from [27] and used with permission.

Figure 1.8: Resistivity (upper), Magnetization (middle) and heat capacity

(lower) data on the parent material BaFe2As2. Here we see the clear signatures

of the first order transition to an orthorhombic antiferromagnet at T = 133 K.

Figure taken from [28] and used with permission.
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1.3 Experimental Survey of Ba(Fe,Co)2As2

One of the first members of this family to be successfully grown was using

Barium as the rare earth (BaFe2As2) and doping Cobalt for Iron. This is

unusual for a high-temperature superconductor, since it involves doping in the

FeAs plane. In the cuprates, any dopant introduced into the CuO plane rapidly

destroys superconductivity [36, 37]. Quite the opposite, the Iron pnictides

appear very robust against this disorder, and the resulting superconducting

phase has been shown to be quite homogeneous. The pnictides are usually

grown from self-flux (FeAs) [38, 39, 40, 41], resulting in crystals of up to

1 x 1 x 0.2 cm2 [28]. Using chemical analysis techniques, it has been shown

that transition metal dopings, and in particular Co-doping, produces much

more homogeneous doping than alkali doping on the A-site [28].

One of the first things to note is that the co-incident structural and mag-

netic transitions in BaFe2As2 split upon Co-doping the material. This is true

of all the transition metal dopings, where both transitions are suppressed, but

the antiferromagnetic transition is suppressed more rapidly. As Co replaces

Fe, the signatures of the structural and magnetic transitions change shape in

both resistivity and magnetization. The resistivity anisotropy is much larger

(∼2%) than the orthorhombicity (∼0.1%) [42], implying that the electronic

anisotropy is driving the structural transition. It is also noteworthy that the

symmetry of the 3D spins (O(3)) cannot be broken in 2D. However, neutron

scattering has shown that the underlying antiferromagnetic structure to be

either (π,0) or (0,π) [43], breaking the tetragonal symmetry, which Fernandes
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et al. suggest as the explanation for why the structural transition necessarily

occurs first [42].

At Co dopings above x ∼ 0.03, superconductivity appears while the mag-

netism and orthorhombic phase are still being suppressed. The superconduct-

ing TSC reaches a maximum around x= 0.061 in Ba(Fe1−xCox)2As2, coincident

(or nearly so) with the loss of orthorhombic and magnetic order. The struc-

tural phase transition and superconductivity also seem to be related through

the anisotropy of the upper critical field, Hc2. The anisotropy is largest at

higher dopings, while the most dramatic change in the anisotropy seems to

take place at the loss of orthorhombic order [38].

The thermoelectric power and Hall coefficient also demonstrate dramatic

changes around the onset of superconductivity and the loss of orthorhom-

bicity. Shown in Fig. 1.9, they both suggest large distortions in the Fermi

surface properties above x = 0.24 [44]. This is also seen in Cu- [44] and Ni-

doped [45, 46, 47] compounds at the same level of electron doping. This has

been confirmed by angle-resolved photoemission, which sees large changes in

the Fermi surface pockets between x = 0.24 and 0.38, and which are most

pronounced at low temperatures, but have been seen up to 150 K [48]. The

interpretation of the data is that the top of the hole band moves below the

Fermi energy above this doping.

Optical spectroscopy measurements have seen two Drude contributions to

the ab-plane optical spectroscopy of Ba(Fe,Co)2As2 [49, 50]. The first “nar-

row” one has a small relaxation rate, 1/τ , while the second “broad” one has a

larger relaxation rate. Both of these current carriers can contribute to the su-
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Figure 1.9: Thermoelectric power (left) and Hall coefficient (right) measure-
ments over a range of Co-dopings. Dramatic changes are seen above x = 0.24,
suggesting a topological change or distortion in the Fermi surface, coinciding
with the onset of superconductivity. Figure taken from [44] and used with
permission.

perconducting condensate, each with its own superconducting gap [50], which

agrees well with the concept of multiple superconducting gaps in these mate-

rials (see below). Furthermore, strong-coupling theories predict the existence

of two electronic carriers, with one set of carriers being low-energy carriers

near EF [51, 52]. Due to the difference in energy, these carriers could not be

represented by a single Drude term in the optical conductivity [53].

Nuclear magnetic resonance measurements have observed a spin suscep-

tibility, χspin, that increases monotonically with T and decreases with Co-

doping [40, 54]. The value obtained for the parent material is close to the

total susceptibility, suggesting that the orbital contributions to the suscepti-

bility are small at high temperature. The increase in χspin with T has been

interpreted in terms of a pseudogap, however measurements of this feature
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by inelastic neutron scattering have not yet been attempted at the required

energy transfer of ∼40 meV [55].

Neutron scattering measurements have found a substantial reduction from

the free energy moment that would be present for a local moment system

(S = 2 gives µeff = 4.9 µB/Fe). The measured µeff = 0.28 µB/Fe sug-

gests that frustration and/or fluctuation effects suppress the moments in the

antiferromagnetically-ordered state [55]. Magnetic excitations were also ob-

served above TSC at the antiferromagnetic wavevector and were indicative of

quasi-two-dimensional spin fluctuations [56]. These fluctuations were present

up to 200 K, where they had decreased to roughly 1/4 intensity.

Further neutron scattering measurements have found the magnetic struc-

ture present in the material for lightly-doped samples. For dopings below

x = 0.056, the material exhibits a commensurate, ~QAF =(1 0 1) SDW static

magnetic order [57, 58, 59]. For dopings ranging from 0.056 < x < 0.06,

the magnetic order becomes incommensurate in the transverse direction. The

magnetic ordering vector ~Q=(1 0±ε 1) shows an incommensurability, ε, that

increases with increasing doping. However, the magnetism is still long-range

and well-ordered [60]. Above x = 0.06, neutron scattering sees no long-range

magnetic order. The phase diagram constructed from neutron scattering in

this doping range is shown in Fig. 1.10.

These observations are somewhat in contrast to nuclear magnetic reso-

nance [40, 61] and Mössbauer [62] measurements, that find disordered mag-

netism that becomes more disordered at higher dopings. One possible reconcil-

iation is that magnetic fluctuations may exist on timescales to which neutron
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Figure 1.10: (Left) The phase diagram in the doping region near where static
magnetism disappears. It shows the turnover of the magnetic and structural
transitions, and the region in which the incommensuration appear. (Right)
The neutron scattering measurements showing the change from commensurate
to incommensurate order, and then to the loss of magnetic order at higher
dopings. Figure taken from [60] and used with permission.

scattering are insensitive, but there may be other reasons for the differences

in these observations.

Finally, it is important to comment on the issues with which this section

began: the nature of the superconducting pairing mechanism and the gap sym-

metry. As in the cuprates, the high transition temperatures in the pnictides

presuppose an unconventional type of pairing. In addition to magnetic fluctua-

tions as the pairing mechanism, many other types have been proposed [63, 64],

but this remains an open question.

The question of the gap symmetry, however, has progressed much further.

Shown in Fig. 1.11 is the Fermi surface structure of electron- and hole-doped

BaFe2As2, determined by LDA calculations [65]. This shows the two sets of
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circular Fermi surface pockets, one at the Γ-point and one at the M -point.

The theoretical proposal was that both of the sheets have a superconducting

gap below TSC [66, 65]. Whether these gaps were s- or d-wave and whether

there was a phase difference between them was clarified by experiment.

Figure 1.11: The Fermi surface structure of electron-doped (eg.
Ba(Fe,Co)2As2, left) and hole-doped (eg. (Ba,K)Fe2As2, right) pnictide su-
perconductors. Note the two sets of spherical Fermi sheets connected along
(±π,±π). Figure taken from [65] and used with permission.

Triplet pairing symmetries were ruled out by experiments fairly early [63],

which excluded p- and f -wave gap symmetries. In a 3D system with tetrago-

nal symmetry, only s, d(xy), d(x2 − y2) and d(xz ± yz) are possible, and all

of these d-wave symmetries must have gap nodes since the Fermi surface is

quasi-two-dimensional [63]. Measurements of weakly-coupled Josephson junc-

tions failed to see a spontaneous current that would be created in a system

with gap nodes [67]. Gap nodes would also appear as orbital frustration in

scanning SQUID measurements, which have not been seen in pnictide super-
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conductors [68]. Both of these measurements suggest that the gap symmetry

is likely s-wave.

Since we have two Fermi surfaces that each have an s-wave superconduct-

ing gap, it leaves two possibilities: they have the same phase, or they have a

π-phase shift between them: called the s++ and s± states, respectively [66].

Several measurements have suggested that the s± state is the most likely can-

didate. A schematic of these two models is shown in Fig. 1.12.

First, inelastic neutron scattering measurements have observed a resonance

peak at (π,0), which should only be present where this scattering vector pro-

duces a change in sign of the superconducting gap [69, 70]. This was detected in

many different compounds across several pnictide families, suggesting the gap

structure was a common feature of the pnictide superconductors. Addition-

ally, measurements utilizing Josephson junction arrays [71, 72], quasiparticle

interference [73, 74] and penetration depth all seem to be consistent with the

s± model. The last of these quantities is the main parameter that is studied

in Chapter 4.
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Figure 1.12: A schematic of the s++ (left) and s± (right) states. In the latter
case, we see the sign changes as we move along the (π,0)-direction. Figure
taken from [63] and used with permission.
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Chapter 2

Introduction to URu2Si2

2.1 Heavy Fermion Materials

Heavy fermion materials are systems containing strongly-correlated elec-

trons, and are so-named due to the large effective masses of the conduction

electrons. This typically arises due to highly-localized f-electrons, so these

materials are generally based on intermetallics such as Ce, Yb, and U, though

not exclusively. At normal temperatures, these materials are ordinary para-

magnetic metals, with weakly interacting magnetic moments. When the tem-

perature is decreased, the moments created by the f-electrons become strongly

coupled to the conduction electrons [75], hybridizing and forming the heavy

fermion state. This increases the effective mass of the conduction electrons,

to values that are 10 to 100 times the bare electron mass. This mass enhance-

ment is clearly observed in a large electron contributions to the specific heat

at low temperatures [76], thermal conductivity [77, 78] and heavy quasiparti-

cles in the de Haas-van Alphen (dHvA) effect [79], as well as other quantum

oscillation measurements.

20



Ph.D. Thesis ––– Travis Jay Williams ––– McMaster University - Physics and Astronomy ––– 2013

The leading description of the heavy fermion phenomenon involves the

competition between the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-

tion and the Kondo Effect. The RKKY interaction is based on the exis-

tence of an indirect exchange through the polarization of the conduction elec-

trons [80, 81, 82]. The Kondo interaction is an antiferromagnetic exchange

between the localized and conduction electrons, leading to the enhancement

in the effective mass [83]. This can occur between conduction electrons and

a single magnetic impurity, or a lattice of magnetic ions. In the latter case,

the lattice of magnetic atoms is called a Kondo lattice. This also appears

as a reduction in the effective moment size in the system [84]. In f-band in-

termetallics, these atoms appear as magnetic moments with a large screening

cloud, which changes between the high- and low-temperature regime. The

cross-over between these two regions occurs due to a competition between

inter- and intra-site interactions [85]. These interactions are both related

through a common exchange coupling between the conduction electrons and

local moments [84]. This cross-over appears in transport measurements as a

maximum in the resistivity of the material, and indicates a loss in inelastic

scattering below the cross-over [84].

The competition between the RKKY and the Kondo interactions depends

on the same coupling parameter, since they both involve coupling of the f-

electron moment and the conduction electrons. While the Kondo effect screens

local moments, tending to a non-magnetic state, the RKKY interaction favours

long-range magnetic order. This competition results in a phase diagram in

which a magnetic region can form for a range of coupling constant values

at low temperature, which has been dubbed the Doniach model [86]. This
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phenomenon leads to materials with many interesting possible ground states,

depending mostly on the strength of the interactions. The ground states are

usually magnetic (both antiferromagnetic and ferromagnetic have been ob-

served), superconducting, or in some cases, non-magnetic [75]. Table 2.1 shows

some of the heavy-fermion materials, and their ground state.

Ordering Temperature (K)

Antiferromagnetic
UPtGa5 27.00
UAgCu4 18.15
UCu5 15.20
U2Zn17 9.70
UCd11 5.0
U0.97Th0.03Be13 0.40

Ferromagnetic
UGe2 52.00
URhGe 9.50
UCoGe 2.50

No Ordering
UAuPt4 0.15
CeAl3 0.02
CeCu6 0.02
UAl2 0.02
LiV2O4 0.02

Table 2.1: Ordering temperature of various heavy fermion materials with dif-
ferent ground state configurations. In the non-magnetic materials, the tem-
perature stated corresponds to the lowest measured temperature. Data taken
from [75, 87, 88].

The variations in the magnetic ground states in these materials is a result

of the competition between the RKKY interaction and the Kondo effect. Since
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they both depend on the same exchange interaction, J , between the f-electron

moments and the conduction electrons, materials with different values of J may

have different magnetic ground states. For example, in intermetallic Uranium

compounds, the exchange parameter J depends in part on the inter-Uranium

distance, dU−U . For dU−U > 3.6 the compounds are generally magnetic at

low temperature, while for dU−U < 3.4 the compounds generally have a non-

magnetic ground state [89].

It is this complex electronic structure that accounts for the wide variety of

phases seen in heavy fermion materials, including magnetism and supercon-

ductivity. However, the most complex phase arising in these materials seems

to be the elusive ‘hidden order’ phase of URu2Si2, one of the two major areas

of this thesis.

2.2 URu2Si2 and Hidden Order

URu2Si2 is a material having a tetragonal structure, space group I4mmm,

of the ThCr2Si2-type structure [90]. This structure is shown in Fig. 2.1. In-

terest in studying this material began in 1984 [91], when specific heat mea-

surements clearly showed two transitions, one at T0 = 17.5 K and the other

at TSC = 1.2 K [92, 93] (See Fig. 2.2). The lower transition was quickly iden-

tified as a superconducting transition, but the upper transition was a cause

for debate. To date, the order parameter of this phase has not been identified,

leading to the adoption of the term ‘hidden order’ phase to describe it.

As seen in Fig. 2.2, the contribution to the specific heat from this phase

transition is quite large, approximately 0.2R ln 2. If this were a magnetic phase
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Figure 2.1: The structure of URu2Si2. It is tetragonal, space group I4mmm,
with the ThCr2Si2 structure.

transition, the size of the ordered moment required for this entropy change is

easily detectable with a magnetic probe such as neutron scattering.

The magnetic susceptibility is shown in Fig. 2.3, which exhibits strongly

Ising-like behaviour along the c-axis. The fit to a Curie-Weiss law gives a

temperature θCW = − 65 K [94], indicative of moderate-strength antiferro-

magnetic correlations between the moments. The susceptibility deviates from

the Curie-Weiss behaviour below T ≈ 150K, with a maximum occurring at

T? ≈ 60 K [95]. This is generally taken to be the coherence temperature,

where the heavy electrons begin to form the heavy Fermi liquid. Approach-

ing the hidden order state, the susceptibility drops and below T0 it plateaus,

clearly different from the behaviour of a conventional magnetic system.
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Figure 2.2: The specific heat of URu2Si2. This shows the phase transitions
at T0 = 17.5K and TSC = 1.2K. This also demonstrates the fit to the large
specific heat coefficient of γ = 180 mJ/mol K2. Figure taken from [92] and
used with permission.

Finally, resistivity demonstrates a complementary picture. Shown in Fig. 2.4,

the high-T behaviour (top panel) shows the onset of lattice coherence at T?,

while the low temperature behaviour (lower panel) shows the onset of super-

conductivity at TSC = 1.2 K. It has been shown that the transport proper-

ties are not significantly affected by sample quality issues, with the coherence

temperature and hidden order transition being quite robust against impurity-

induced disorder. However, the low-temperature properties, most notably the

resistivity, are affected by the purity of the starting materials [95]. The su-

perconducting transition temperature has been shown to vary in the range of
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Figure 2.3: The susceptibility of URu2Si2 as a function of temperature.
This indicates a ĉ-axis, Ising-like magnet, with Curie-Weiss behaviour above
T = 150 K. From the high-T data, we see that TCW = -65 K and the coherence
temperature, T? ≈ 60 K. We also see a drop and a plateau in the susceptibil-
ity around the hidden order transition. Figure taken from [94] and used with
permission.

0.8 K to 1.5 K depending on the sample quality, but the hidden order transition

is unaffected [96, 97].

As previously mentioned, the hidden order phase has been so named for

the elusive order parameter present below T0 = 17.5 K. In an attempt to

explain the nature of this phase, many theories have been proposed – too

many to describe in detail here. They range from higher-order magnetism

(Quadrupolar ordering [98], Hexadecapolar order [99, 100] or higher), Charge-

[101] or Spin- [102] density wave states, Modulated spin liquids [103, 104], Spin

nematics [105, 106], Spin resonance [107], Topological spin-orbit ordering [108],

Hybridization waves [109, 110], Hastatic order [111] and many others. None
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Figure 2.4: The resistivity of URu2Si2 as a function of temperature. Figure
taken from [94] and used with permission.

of these theories have yet been proven correct, so it falls to experiments to

distinguish between these many possibilities.

2.3 Experimental Survey of the Hidden Order

Phase

The transport and specific heat measurements shown in Fig. 2.2 and 2.4

were consistent with a gapping of the Fermi surface. Fits to Ce(T ) ∝ exp(−∆/kBT )
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in the hidden order phase gave a charge gap of ∆ ≈ 11 meV with the gap

opening over about 40 % of the Fermi surface [92, 93]. Hall effect measure-

ments also saw evidence for the opening of a gap, accompanied by a sharp drop

in the carrier concentration below T0 [112]. Measurements of the coefficients

of thermal expansion show peaks at T0, indicating that the hidden order is

coupled to the lattice [113].

Since many of the proposals for the nature of the hidden order state were

magnetic in origin, neutron scattering was used to search for magnetic Bragg

peaks [96, 114, 115]. These studies observed antiferromagnetism along the

ĉ-axis, with alternating ferromagnetic ab-planes [96, 97]. However, several

problems were observed with this magnetic structure. First, the magnetic

Bragg peak intensity was quite small, corresponding to an ordered moment

of µ ≈ 0.04(1) µB/U. This was too small to account for the specific heat

jump at T0, and muon spin rotation (µSR) measurements gave an ordered

moment that was an order of magnitude smaller than that [116]. Second, the

observed magnetic correlation lengths were not resolution-limited, indicating

that the magnetic ordering was not true long-range order. Third, the mag-

netic Bragg peak intensities did not show the temperature dependence that

would be associated with an order parameter. And finally, the behaviour of

the magnetic order was shown to have strong sample dependence – more than

would be expected if the magnetic ordering were simply Neél order [95]. The

common interpretation of these observations is that the small moments ob-

served in the hidden order state are the result of stacking faults, due to the

strong sample dependence. This was confirmed by µSR measurements that

see spatially inhomogeneous regions of antiferromagnetic order [117, 118] and
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nuclear magnetic resonance (NMR) measurements under hydrostatic pressure

that similarly see antiferromagnetic regions with large (0.3 µB) moments [119].

The inelastic neutron scattering spectrum was measured to deduce the

excitations present in this system. The first detailed study of these excita-

tions found two distinct modes, one at the commensurate antiferromagnetic

wavevector, ~Qcom = (1 0 0) and the other at the incommensurate wavevector

~Qinc = (1± 0.4 0 0) [115], shown in Fig. 2.5. This was later extended to a full

inelastic measurement [120, 121, 122], shown in Fig. 2.6.

Figure 2.5: Neutron scattering measurements at various ~Q in the hidden order
state. Both excitations are seen here: the commensurate ~Qcom = (1 0 0) dis-

persing in the top two cuts and the incommensurate ~Qinc = (1 0.4 0) dispersing
from that cut (2nd from the bottom). Figure taken from [115] and used with
permission.
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Figure 2.6: A series of inelastic neutron scattering measurements along the
(H 0 0) direction, highlighting the excitations present in the hidden order
phase. Here we see the gap in the incommensurate excitations, and the large
spin wave velocities at both wavevectors. (inset) The quasi-elastic scattering
at (1.4 0 0), showing the opening of the gap below T0 = 17.5 K. Figure taken
from [121] and used with permission.

The incommensurate modes are present in the paramagnetic phase (T >

T0), but are weak and sharply dispersing. It is believed that they are related

to the heavy quasiparticles that form below the coherence temperature [121].

Below T0, both modes appear much more strongly, with the incommensurate

excitation acquiring a gap of 2 to 4.5 meV [115, 120, 121]. Although these

were originally classified as magnon modes, they are longitudinal rather than

transverse, which would be expected for low-energy spin fluctuations. It was

shown by Wiebe et al. that the opening of the gap in the excitation spectrum

at T0 [120] would result in an entropy change on the order of that seen by
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specific heat measurements. Furthermore, the opening of this gap was shown

to behave in an order-parameter-like way [121], shown in the inset to Fig. 2.6.

Finally, it was noted that as the temperature approaches T0 from below, the

commensurate mode softens and the damping increases, which rules out crystal

field effects as an origin of the hidden order state [123]. While these observa-

tions do not solve the nature of the hidden order parameter, it has provided

an avenue of research that is being studied intensely, both experimentally and

theoretically.

To determine the Fermi surface structure within the hidden order regime,

many quantum oscillations measurements were performed, both de Haas-van

Alphen and Shubnikov-de Haas [124, 125, 126, 127]. Within the hidden or-

der phase, three small closed Fermi surface pockets were observed [124], a

drastic deviation from the large Fermi surface present in the paramagnetic

regime. Later, a fourth, larger sheet was found, but only in an ultraclean

sample [125]. Angle-dependent Shubnikov-de Haas measurements have seen a

fifth pocket [126], as well as the splitting of one of the branches [127]. These

measurements have been shown to be consistent with one another, establishing

a clear picture of the Fermi surface in the hidden order state.

In addition to the sharp changes in Fermi surface properties, the carrier

concentration, effective mass and scattering rate show very dramatic changes

upon entering the hidden order state. Hall effect measurements show hole

concentrations of 0.10 per U atom above T0, which decreases to 0.02 per

U atom below [112, 128, 129]. Nernst effect measurements also confirm the
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increased scattering rate and a very low density of itinerant electrons that

carry the large entropy. [130].

Many other probes have been brought to bear on the hidden order prob-

lem. Spectroscopic probes have been particularly useful in probing the nature

of the hidden order state. Far-infrared reflectance also sees evidence for a

charge gap and Fermi surface reconstruction in the hidden order state [131],

which combined with the other probes mentioned produces evidence of both a

charge and spin gap within the hidden order phase. More recent optical spec-

troscopy measurements have seen evidence of a hybridization gap that exists

at temperatures above 40 K [132], pointing to a reconstruction of electronic

states well above T0. Scanning probe microscopy observes a Fano lineshape

in the differential conductance [133, 134], suggesting a Kondo temperature of

TK ≈ 120 K in this material. At T0, the hidden order gap ≈ 5 meV appears

within the Fano structure. The largest density of states was found near the U

sites, and have been interpreted as evidence for hybridization of non-localized

5f electrons. These measurements have highlighted the need for new theoret-

ical descriptions of the electronic structure around the U sites [95]. Finally,

angle-resolved photoemission spectroscopy (ARPES) has been instrumental in

studying various Fermi surface properties. Most notably, it was found that

the differences in the electronic structure across T0 reveal a doubling of the

unit cell along the c-axis that occurs at the hidden order transition [135], a

conclusion that is consistent with quantum oscillation measurements [127].

Time-resolved ARPES has also demonstrated the dramatic increase of the

quasiparticle lifetime within the hidden order phase [136].

32



Ph.D. Thesis ––– Travis Jay Williams ––– McMaster University - Physics and Astronomy ––– 2013

These experiments provide an extensive, but not yet complete, picture of

the hidden order phase. While measurements of URu2Si2 are still on-going,

the experimental study has branched out considerably to include the effects

of chemical doping, applied pressure and applied fields. In fact, the stud-

ies have become so broad as to include multiple magnetic field orientations,

both uniaxial and hydrostatic pressure, and chemical dopings of (U,Th)Ru2Si2,

(U,Ce)Ru2Si2, U(Ru,Rh)2Si2, U(Ru,Re)2Si2, U(Ru,Co)2Si2 and U(Ru,Fe)2Si2

among others. The studies of these effects are too extensive to cover here, so

the two that are relevant for this thesis will be explored: chemical doping of

Re for Ru, and the application of hydrostatic pressure.

2.3.1 U(Ru,Re)2Si2

Chemical doping is a common way to probe the robustness of a system, and

thus it has often been used as a probe for URu2Si2. Chemical substituents for

Ru include Mn, Tc, Th, Re, Os, Rh, Ir and Fe. All except Fe act to suppress

the hidden order, and except for Os, all of these suppress the hidden order

by ≈ 5 % chemical doping [137]. Only Fe, Rh and Re have been studied

at dopings beyond those needed to suppress the hidden order phase: Fe and

Rh display antiferromagnetism that arises before the complete suppression of

the hidden order phase. In contrast, Re doping has complete suppression of

the hidden order phase, where a quantum critical point occurs at the border

between hidden order and ferromagnetism (See Fig. 2.7).

The long-range nature of the ferromagnetic state has been confirmed by

neutron scattering [138] and 29Si nuclear magnetic resonance [139]. The mo-
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Figure 2.7: The phase diagram up to 50 % Re substitution. The hidden order
is continuously suppressed, with a quantum critical point estimated around
x = 0.10. A ferromagnetic phase then arises, which extend up to at least 50 %
doping, but displays non-Fermi liquid-like behaviour. The quantum critical
point and ferromagnetism are a departure from other chemical substitutions,
where an antiferromagnetic phase usually emerges from within the hidden
order dome. Figure taken from [137] and used with permission.

ments are small (≈ 0.2 µB at x = 0.5) and itinerant, with no specific heat or

electrical resistivity anomalies at the ferromagnetic transition, TC [137]. At all

Re dopings studied, including in the ferromagnetic region, the heavy fermion

nature remains intact, with an enhanced electronic specific heat [140] and a

narrow Drude peak in the optical conductivity at low T [141].

Around T0, there are peaks in the electrical resistivity and specific heat, as

shown in Fig. 2.8. The specific heat anomaly is still clearly present at dopings

below x = 0.12, indicating that the Fermi surface gapping that occurs in the

parent (x = 0) material continues to occur with light Re doping [93, 137].

Magnetometry measurements on the Re-doped series also display evidence for

a transition to ferromagnetism between x = 0.10 and x = 0.12 [137].
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Figure 2.8: The electrical resistivity (a) and the specific heat (b) of
URu2−xRexSi2 as a function of temperature. Both quantities display disconti-
nuities as T0. Despite the decrease in the transition temperature the features
remain well-defined, suggesting that the gapping of the Fermi surface is fairly
robust against this disorder. Figure taken from [137] and used with permission.

It is of interest to study the effects of Re doping on the other properties of

the hidden order phase noted in Section 2.3. In this thesis, the spin excitations

observed by neutron scattering were measured in one of the Re-doped samples.

The results of this work are discussed in Section 5.2.
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2.3.2 URu2Si2 Under Hydrostatic Pressure

Another perturbation which has been used to shed light on the nature of the

hidden order phase is the application of hydrostatic pressure. This initially

serves to strengthen the hidden order phase and increases T0, as shown by

specific heat measurements [94] in Fig. 2.9. This is a marked difference from

other perturbations such as chemical pressure or applied magnetic fields that

tend to destroy the hidden order phase. At higher applied pressures, a standard

Neél ordered phase emerges from within the hidden order dome. Since this

region has a larger antiferromagnetic moment (∼ 0.4 µB) than the hidden

order region, it has been called the large moment antiferromagnetic (LMAF)

phase. The pressure-temperature phase diagram is shown in Fig. 2.10.

Figure 2.9: The specific heat of URu2Si2 as a function of pressure and temper-
ature. This shows the phase transition at T0 = 17.5K, which increases slightly
with applied pressure. Figure taken from [94] and used with permission.
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Figure 2.10: Pressure-temperature phase diagram of URu2Si2 using He as a
pressure medium, compared to various other media. Applied pressure initially
increases T0 before an antiferromagnetic phase emerges above 0.5 GPa. It is
suspected that superconductivity and antiferromagnetism meet at a multicrit-
ical point. Figure taken from [142] and used with permission.

Early resistivity measurements also saw the increase in T0 with applied

pressure, as well as finding an increase in the transport gap [143], with the

hidden order gap being ≈ 70 % to 80 % of the LMAF gap [144, 145, 146].

And while the magnetic Bragg peak intensity jumps sharply at 0.5 GPa, there

is no signature of this transition in resistivity or specific heat [95, 143, 147].

When pressure-dependent 29Si-NMR measurements were performed, there was
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evidence for phase separation between non-magnetic and LMAF regions, with

the latter occupying just a few percent of the volume [119, 148]. This offers

an explanation for the small moment seen by neutron scattering within the

hidden order region, where impurities and defects create stress in the lattice

constants. This pushes them past critical values and creates small, localized

regions of the LMAF phase [95]. Though it is now believed that the hidden

order region does not contain intrinsic moments, the LMAF phase has retained

that name.

To observe any changes in the Fermi surface topology within the LMAF

phase, quantum oscillation measurements were performed. Surprisingly, there

was almost no change detected in the Fermi surface across the transition to

the LMAF phase [127, 149], as shown in Fig. 2.11. The only noticeable change

is a decrease in the cyclotron effective mass (Fig. 2.11(d)) due to the increase

in the magnetic moment size. This is consistent with neutron scattering mea-

surements, that observe the same nesting vector in the LMAF phase [150].

Combined with the lack of a specific heat peak, this suggests no Fermi surface

reconstruction or entropy change between the hidden order and LMAF phases.

This suggests a remarkable similarity between the hidden order and LMAF

phase properties. One aspect of the LMAF phase not yet discussed is the spin

correlations and their similarities to those observed in the hidden order region.

This is one of the topics of study in this thesis, thus these measurements and

the comparison to other work of this type will be left for Section 5.3.
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Figure 2.11: Shubnikov-de Haas measurements as a function of field angle (a
& b, in the LMAF phase) and pressure (c & d, summed over the entire Fermi
surface pocket). No dramatic changes in the Fermi surface are seen in the
LMAF phase, and only slight changes in the cyclotron effective mass due to
the increased moment size. Figure taken from [127] and used with permission.
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Chapter 3

Experimental Techniques

This chapter will cover the three primary experimental techniques used in

this thesis. First, the method of crystal growth will be discussed, in the capac-

ity to which it was used by the author. Next, the two techniques of muon spin

rotation/relaxation/resonance (µSR) and neutron scattering will be discussed,

as they represent the primary measurements performed in Chapters 4 and 5,

respectively.

While they will be discussed separately, it would be ignorant not to com-

ment on the similarities and, more importantly, the complementary nature of

the two measurement techniques. Both depend on the use of particles inci-

dent on the material to measure its electronic and magnetic properties. The

complementary nature appears when we notice that µSR is a local, real-space

probe of magnetism, while neutron scattering is a bulk, reciprocal space probe.

They also work on slightly different timescales, allowing for a comparison of

dynamical properties observed by both techniques. In this way, µSR and neu-

tron scattering can provide complementary information about the properties of

the system being studied, a theme that is highlighted by the results presented

in this thesis.
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3.1 Crystal Growth

For some of the neutron scattering measurements of URu2Si2, the mea-

surements were performed on crystals grown at McMaster University using

the Czochralski method, described below.

The samples were made with high-purity depleted Uranium (>99.9% Ura-

nium, >99.5% 238U) produced by electro-refinement at Ames Laboratory,

high-purity Ruthenium (>99.99%) and Silicon (>99.999%). The constituents

were mixed in stoichiometric amounts to achieve the ratio necessary to form

URu2Si2. They were combined in a mono-arc furnace (shown in Fig. 3.1) and

put through several cycles of melting and solidifying to ensure homogeneity of

the materials.

Figure 3.1: Schematic of the mono-arc furnace used for premelting of the
samples. A welding arc from a high-voltage supply heats the material, which
is in an inert Ar atmosphere.
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In order to create larger single crystals, the resulting boule was placed into

a tri-arc furnace (see Fig. 3.2). The crystal was grown using the Czochralski

method in a continuously gettered Ar atmosphere. This method is commonly

used to grow larger single crystals for both scientific and industrial applica-

tions, and is described in detail elsewhere [151].

Figure 3.2: Schematic of the tri-arc furnace. The sample is placed on the
stage and melted with the arcs. The seed rod is lowered into the sample,
crystallizing material on it. As the seed rod is raised, more material solidifies,
forming a long, single-crystalline rod.

In the apparatus used for growing URu2Si2 crystals here, the polycrystalline

boule from the mono-arc furnace is loaded onto the stage and melted in an

analogous way with three welding arcs. A water-cooled seed rod is then lowered

into the sample, crystallizing some material. While the stage and sample rod
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are counter-rotated to promote even heating and crystallization, the seed rod

is slowly raised (∼20-30 mm/hr) producing a long rod that is mostly of a single

grain.

For the neutron scattering experiments described in Chapter 5, the sample

needed to be measured in the ac-plane. Since the pressure cell containing the

sample could only be inclined ∼ 5◦, the crystal needed to be grown with the

b̂-axis within 5◦ of the growth axis. This was accomplished by taking a piece

of URu2Si2 from a previous growth, and cutting it along this direction. This

small (∼0.5 g) piece was attached to a specially-designed seed rod, allowing the

piece to function as a seed for the growth to be attempted. The intention was

to promote the growth of the larger crystal with this particular orientation.

This growth was attempted four times, resulting in the creation of a large,

8.4 g single crystal. The b̂-axis was aligned 2.4◦ from the growth axis, allowing

a piece of suitable size to be cut to fit the pressure cell. The Czochralski

method tends to accumulate impurities near the end of the growth [151] and

the beginning of the growth tends to be polycrystalline, so these parts were

removed during the cutting process.

The final piece used for the measurements had a mass of 1.2 g, a size

suitable for the measurements to be performed. Other pieces of the same sam-

ple were retained for further measurements, including electrical and thermal

transport, magnetization and other spectroscopic techniques that were not a

part of this work.
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3.2 Muon Spin Relaxation/Rotation/Resonance

(µSR)

3.2.1 Principles of µSR

The technique of muon spin relaxation/rotation/resonance (µSR) is one

of the most sensitive experimental techniques for measuring local magnetic

properties within a material. µSR is a local, real-space probe of condensed

matter systems. It utilizes muons implanted in the sample to measure the

response of the muons to the local magnetic field.

Muons are fundamental particles, a lepton like the electron, with which

it shares many properties. The muon also has spin S = 1
2

and a charge

of ±e. However, muons are much heavier, with a mass mµ = 207 me and

consequently a larger gyromagnetic ratio, γµ = 135.54 MHz
T

. They are also

unstable, decaying with a mean lifetime τµ = 2.197 µs [152]. To generate

muons used for these experiments, a proton accelerator is used to generate

pions. This is done by colliding high-energy protons with a low-Z target. At

TRIUMF, where the µSR measurements for this thesis were performed, the

protons have an energy of 500 MeV and the target is Beryllium or Carbon.

Three principle processes will generate pions in this case [153]:

p+ p→ p+ n+ π+ (3.1)

p+ n→ n+ n+ π+ (3.2)
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p+ n→ p+ p+ π− (3.3)

After a mean lifetime of 26 ns, they then decay via the weak interac-

tion [153]:

π+ → µ+ + νµ (3.4)

π− → µ− + ν̄µ (3.5)

In the rest frame of the pion, weak decay can only produce left-handed

neutrinos: neutrinos with spins that are opposite of their linear momentum.

This is a feature of parity violation in the weak interaction. After generation,

some pions migrate to the surface of the target. Pions themselves have no

spin moment, so to preserve both linear and angular momentum, the muons

must also be generated left-handed. Thus all of the muons generated through

the processes above will have their spin antiparallel to their momentum, and

so this produces a beam of nearly 100 % spin-polarized muons, with a kinetic

energy of 4.119 MeV. While surface pions do not need to be used for µSR

experiments, this produces the only fully-polarized beam, but also produces

only positive antimuons. In addition, surface pions produce a muon beam that

is quite luminous and at an energy that is very suitable for implantation into

a sample.
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It is these muon beams that are used for the µSR experiments in this work.

Using magnetic steering and Wien filters, the muons can be implanted into a

sample one by one. Since both muons (µ−) and antimuons (µ+) are produced

in these processes, either type can be used for performing µSR experiments.

Negative muons involve more complicated interactions and analysis, which is

why nearly all µSR experiments tend to be performed using positively-charged

antimuons [152, 153]. All of the µSR experiments in this these were performed

with positively-charged, antimuon beams.

When the positive-muon is incident on the sample, it will stop within the

sample at a position that is an electrostatic potential minimum. The muons

will stop even in fairly thin samples, since the stopping range is fairly small,

∼120 mg/cm2 in Carbon. This “muon site” is usually located near the negative

ions in a sample (such as F− or O2−), but maybe not be crystallographically

unique. Further, some experiments see evidence of muon “hopping”: move-

ment of the muons between muon sites, but this has been shown to be highly

dependent on the structure and composition of a material [153]. When a muon

is in a region of non-zero local magnetic field, it undergoes Larmor precession,

with a frequency that is proportionally dependent on the magnitude of the

local field and its gyromagnetic ratio [153]:

ν = γµ ∗Hloc (3.6)

As noted above, muons are unstable, decaying with a mean lifetime of

τµ = 2.197 µs. Positive muons decay through the weak interaction via the

process [153]:
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µ+ → e+ + νe + ν̄µ (3.7)

which gives off a positron and two neutrinos. The two neutrinos are not

detected in the experiment, but information can be extracted by measuring

the positron. Since this is also a weak decay process, it also violates parity.

This is a three-body final state, and so there is a probability associated with

the decay. The positron is ejected preferentially along the direction of the

muon spin at the time of decay, with a probability distribution that depends

on the energy of the positron [153]. This is shown in Fig. 3.3.

Figure 3.3: A representation of the probability distribution of the positron
momentum produced from muon decay. When the positron carries all of
the energy (∼ 53 MeV, the rest energy of the muon) the decay is highly
anisotropic. The distribution becomes more isotropic with lower energy, be-
coming completely symmetric at half the rest energy (∼ 26 MeV). Figure taken
from [154].
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This distribution has a probability, W , that depends on the angle from the

muon spin, θ, give by [153]:

W (θ) = 1 + a(ε) cos(θ) (3.8)

where a(ε) is called the “asymmetry factor” and increases with the kinetic

energy of the positron, ε.

The ejected positrons are detected by positron counters placed around the

sample. These counters are largely insensitive to the positron energy and

thus sum over all values of ε. However, the detectors have time resolution on

the order of nanoseconds, and so the time taken from a muon entering to a

positron being detected can be measured for each event. By counting many

millions of positron events, a histogram of counts versus time for each counter

can be created and the time dependence of the muon spin in the sample can

be extracted. More details on how this is done, and the information gathered

from this quantity will be discussed in the following sections.

3.2.2 Zero-Field (ZF)-µSR

The schematic of a Zero-Field (ZF)-µSR experiment is shown in Fig. 3.4.

This type of experiment is generally performed with the muon spin antiparallel

to its momentum, though a perpendicular arrangement can be used as well.

Since ZF-µSR is performed, by definition, in zero applied magnetic field, the

only difference between these two arrangements is the orientation of the muon

spin with respect to the crystallographic orientation.
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Figure 3.4: The experimental geometry of a ZF-µSR experiment. Here, we
define ẑ as being the beam direction, ŷ is Up-Down and x̂ is Right-Left. Figure
taken from [154].

Prior to entering the sample, the muons pass through a thin scintillation

detector, which acts as a signal to start a timer. As described above, the muon

will stop in the sample and Larmor precess with a frequency given by Eq. 3.6.

If ẑ is the initial direction of the muon spin, then the z-component of the spin

evolves in a manner described by [154]:

Sz(t) = cos2 θ + sin2θ cos(γµHloct) (3.9)

where cos θ =
~Hloc·ẑ
Hloc

.

When the muon decays and emits a positron, it may be detected by one

of the scintillation detectors around the sample. When a positron count is

detected, it stops the timer, and so the time that the muon was precessing
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in the sample can be determined. If no positron is detected, or two positrons

are detected, the event is vetoed. Similarly, if another muon enters the sample

before the positron from the previous muon is detected, the event is also vetoed.

Using the amount of time that the muon was in the sample, a histogram

of the number of positron events in a counter versus time can be determined.

For the geometry described in Fig. 3.4, the number of counts in the For-

ward/Backward counter pair is given by:

NB,F (t) = N0B,F [BB,F + exp(−t/τnu)(1± AB,FPz(t))] (3.10)

where the initial muon spin is in the Back (−ẑ) direction, and the +/- refer

to the Back/Forward counter. AB,F are the intrinsic detector asymmetries for

the Back or Forward counters, N0B,F are normalization factors and BB,F are

time-independent backgrounds, which can be measured in the experiment. In

general, AF 6= AB and so we define AF = βAB. The factor β is difficult

to measure experimentally, but except for very thick samples or where the

detectors have large differences in their angular coverage or geometry, β ≈

1 [153, 155]. Finally, Pz(t) is the ensemble average muon spin polarization

along the ẑ direction.

A typical histogram for a single counter is shown in Fig. 3.5. Here, we

see that the overall behaviour is exponential, due to the radioactive decay of

the muon with its mean lifetime of τµ = 2.197µs. Superimposed on this is

the oscillation that is generated b y the precession of the muon spin in the

local magnetic field of the sample. All of the information about the magnetic
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Figure 3.5: An example of a µSR histogram in one counter. This shows the
oscillatory behaviour of the rotating muon spin, which decreases over time,
superimposed on the exponential from the radioactive decay of the muon.
Data taken by the author as part of [155].

environment of the muon is contained in a measurement of this type. However,

in order to see the effects more clearly and to remove the effects of the muon

lifetime, one often plots the asymmetry of two opposing counters, such as the

Back and Forward counters, defined by:

Az(t) =
(NB(t)−BB)− α(NF (t)−BF )

(NB(t)−BB) + α(NF (t)−BF

(3.11)

Here, the parameter α is introduced to account for any differences in the

counter efficiency, solid angle and other factors. Unlike β, this values is not

always close to 1, but it can be easily measured with a µSR experiment in
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a para- or non-magnetic phase with a small applied field (∼ 50 G) [153]. A

representative asymmetry, with identical data to Fig. 3.5 is shown in Fig. 3.6.

Figure 3.6: An example of a µSR asymmetry using two counters. This shows
the oscillatory behaviour of the rotating muon spin more clearly, including its
decreases over time. The exponential arising from the radioactive decay of the
muon has been cancelled out with this method. Data taken by the author as
part of [155].

The asymmetry is proportional to Pz(t) through NB,F (t), so we want to

analyze the behaviour of Pz(t), since it contains the information about the

magnetism within the sample. In the case of static magnetic moments, Pz(t)

can be obtained by weighting Eq. 3.9 with the components of the magnetic

field at the muon site:

Pz(t) =

∫∫∫
Sz(t)P(Hx)P(Hy)P(Hz)dHxdHydHz (3.12)
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where P(Hn) is the probability of the muon seeing a field Hn in the n̂-

direction.

In the case of long-range, static magnetic order, the field distribution is

given by one or more delta functions, reducing Eq. 3.12 to a cosine plus a con-

stant. This represents the coherent precession of the muon ensemble about the

perpendicular component of the local magnetic field. In reality, the magnetic

order is not completely uniform and so a distribution of local fields is present.

For example, each delta function may be more like a Gaussian distribution of

fields. This causes a dephasing of the muon spin ensemble, and the rate at

which this occurs is known as the muon “relaxation rate”. This is an impor-

tant quantity that carries information about processes that tend to dephase

the muon spins, such as field inhomogeneity, interaction with the magnetic

moments (spin flips), muon hopping and others [152, 153]. As an example, for

the case of a single Gaussian distribution of fields about H = 0, we have:

P(Hi) =
γµ√
2π∆

· exp(−γ2
µH

2
i /2∆2) (3.13)

where i = x, y, z. Applying this to Eq. 3.12 gives the polarization func-

tion [156]:

Pz(t) =
1

3
+

2

3
(1−∆2t2) exp(−1

2
∆2t2) (3.14)

This equation is known as the Gaussian Kubo-Toyabe and corresponds to a

system of randomly oriented spins such as a spin glass [157]. The constant term

corresponds to the fraction of random local fields that point along the direction
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of the initial muon spin polarization. We also see that the information about

the width of the local field distribution (∆, the Gaussian width) is contained

in the relaxation rate of the polarization function.

The local field distribution is what carries the information about the mag-

netism in the system being studied and finding the functional form of Pz(t)

is one of the main objectives of a µSR experiment. Various function forms

for Pz(t) arise for different kinds of magnetism in a sample, depending on the

size, distribution and dynamics of the magnetic moments. These forms are

used to fit the µSR measurements, and the quantities extracted from such fits

describe the character of the magnetism in the material. Where the µSR data

is presented in Chapter 4, these functional forms will be discussed in more

detail.

3.2.3 Transverse Field (TF)-µSR

Transverse Field (TF)-µSR experiments involve applying a magnetic field

perpendicular (transverse) to the direction of the initial muon spin polariza-

tion. This can be done by either applying the field perpendicular to the beam

direction (parallel to the muon momentum), or applying the field along the

beam direction and rotating the muon spin by 90B.Sc. (Hons.), M.Sc. [158].

For small fields, either method produces the same results, however large fields

tend to produce significant deflection in the beam when directed perpendic-

ular to the muon momentum. Consequently, the latter is the more common

method when fields exceed ∼100 G. A schematic of this experimental geometry

is shown in Fig. 3.7.
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Figure 3.7: The experimental geometry of a TF-µSR experiment. This shows
the latter of the two arrangements, where the muon spin has been rotated to
be perpendicular to the beam direction (the muon momentum). The magnetic
field is then applied along the direction of the muon momentum. Figure taken
from [154].

It can be seen from Fig. 3.7 that the muon spin will precess through four

counters arranged in two opposing pairs (Up/Down and Left/Right). Thus,

two asymmetry functions can be defined through Eq. 3.11, one for each pair.

They can be fit simultaneously to obtain information about the local magnetic

field at the muon site. Since the precession frequencies are often quite large,

it becomes more useful to combine these two asymmetry function in a “ro-

tating reference frame” analysis. This is a method by which the asymmetry

function is generated in a reference frame that effectively rotates the positron

counters with respect to the laboratory frame at a rate that is very close to

the muon precession frequency. Fitting the data in this manner proves much

more effective. For a more detailed discussion, see Ref. [159].
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Muons in a large transverse field will precess at a frequency given by Eq. 3.6.

The applied fields are, in general, much larger than the local field due to the

magnetism within the sample, so all of the muons tend to see nearly the

same field, and very nearly perpendicular to their spin direction. This greatly

simplifies the task of analyzing the µSR data, since the x̂-component of Eq. 3.12

reduces to:

Px(t) =

∫
P(Hz) cos(γµHzt)dHz (3.15)

This is a Fourier transform, so it can readily be seen that the TF-µSR

asymmetry in the x̂-direction is proportional to the cosine Fourier transform

of the distribution of local magnetic fields in the ẑ-direction, assuming a static

magnetic system. This is also somewhat apparent from Eq 3.6, where the muon

precession frequency is directly proportional to the local field. So the muon

ensemble probes the distribution of local fields within the sample environment.

For example, a Gaussian distribution of local fields would have a probability

distribution:

P(Hz) =
γµ√
2π∆

· exp(−γ2
µ(Hz −Happ)

2/2∆2) (3.16)

where Happ is the applied magnetic field. This gives a precessing muon

polarization that is convoluted with a Gaussian form of relaxation:

Px(t) = cos(γµHappt) · exp(−1

2
∆2t2) (3.17)
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As in the case of ZF-µSR, there will be some relaxation in the signal due

to disorder, fluctuations, etc. This contains similar information to the ZF

case, but differs due to the presence of the magnetic field. In this thesis, the

primary use of TF-µSR was to measure properties of the mixed (vortex) state

of type-II superconductors, which is discussed in the following section.

3.2.4 µSR in the Vortex State of Type-II Superconductors

As discussed in Section 1.1 and shown in Fig. 1.2, a type-II superconduc-

tor will exist in the Meissner state for Happ<Hc1, while for Hc1<Happ<Hc2,

the material exists in the mixed, or vortex, state. Both of these states are de-

scribed by the superconducting properties discussed in Sec. 1.1, but the vortex

state contains an ordered arrangement of normal and superconducting regions.

This can allow the extraction of information about the superconducting state

which may lead to a more detailed understanding of the microscopic pairing

mechanism in unconventional superconductors.

In particular, measurements of the magnetic penetration depth, λ, are one

way of probing low-energy electronics, since λ−2 is proportional to the super-

fluid density (the density of superconducting carriers), ns [10]. In the vortex

state, as in the Meissner state, magnetic fields are not perfectly screened, so

the field decays outside of the vortex core over the length scale λ. Within the

vortex core, the superfluid density, ns, the superconducting order parameter,

ψ(r), and the supercurrent density, Js(r) are strongly suppressed, as shown in

Fig. 3.8 [160].
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Figure 3.8: The spatial variation of the superconducting parameters Js(r) and
ψ(r) around a conventional vortex core. The parameters are shown normalized
to their maximum values, which occurs at r = r0 for the supercurrent density
and r =∞ (far from the vortex core) for the superconducting order parameter.
Figure taken from [160] and used with permission.

The order parameter is zero at the center of a vortex and rises sharply

to a maximum outside the vortex core on a length scale called the coherence

length, ξ. This is thus closely related to the size of the vortex cores, while

the decay of the magnetic field arising from the vortex core is determined by

λ. Both of these parameters can be determined by studying the magnetic

field distribution within the vortex state. Thus, µSR is is a technique that is

well-suited to this type of measurement. Using µSR, both of the characteristic

length scales λ and ξ can be determined by analysing the field distribution

arising from a regular Abrikosov vortex lattice [160, 4].

As described in Section 3.2.1, muons stop at interstitial sites within the

crystal lattice. The precise location of the muon site is often hard to deter-

58



Ph.D. Thesis ––– Travis Jay Williams ––– McMaster University - Physics and Astronomy ––– 2013

mine. However, since the spacing between adjacent vortex is generally large

for a µSR experiment (usually performed with Happ ≤ 8 T) compared to the

crystallographic unit cell and is usually incommensurate, the muons stop at

random locations with respect to the vortex lattice. In this way, the muon

ensemble randomly samples the entire field distribution within the sample,

regardless of the actual muon stopping site.

If we assume that the field is applied in the ẑ-direction, then the vortices

will also be oriented in that direction, as is the net field everywhere. So we

can write the time evolution of the total muon polarization, Px(t), as [160]:

Px(t) =
1

N

N∑
i=1

cos[γµB(~ri)t+ ω] (3.18)

where the sum is over all muon sites and B(~ri) is the magnitude of the

local field at site i. Since we can assume that the muons randomly sample the

entire vortex lattice, we can extend the sum into an integral:

Px(t) =

∫ ∞
0

n̄(B) cos(γµBt+ ω)dB (3.19)

where n̄(B) is the ideal probability field distribution. In other words,

n̄(B)dB is the probability that a muon sees a field between B and B+dB, and

so precesses with a frequency ν = γµB. Here we see that the mean precession

frequency and the relaxation rate (rate of dephasing) is determined by the

field distribution n̄(B). An example of this probability distribution is shown

in Fig. 3.9, for a hexagonal vortex lattice, known as an Abrikosov lineshape.

Here, we see that there is a peak frequency, determined by the most probable
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field, which is the saddle point between two adjacent vortices. There are also

a low-field and a high-field cutoff. The lowest possible field is at the center

of a three-vortex arrangement, while the highest field is at the vortex core.

Relating this to the superconducting properties, the high-field cutoff is mostly

determined by ξ, while the overall width is related primarily to λ.

Figure 3.9: The theoretical field distribution for a hexagonal vortex lattice.
The maximum, minimum and most probable (saddle point) fields are shown.
The inset shows a contour plot of such an arrangement of vortices. Figure
adapted from [160].

In a real material, there are deviations from an ideal vortex lattice, that

will change the field distribution, and will introduce a depolarization function,

G(t) [160], which accounts for the effect of weak disorder:

Px(t) =

∫ ∞
0

n(B) cos(γµBt+ ω)dB (3.20)

60



Ph.D. Thesis ––– Travis Jay Williams ––– McMaster University - Physics and Astronomy ––– 2013

All of the information on the field distribution within a sample is contained

in n(B) = G(t) · n̄(B). As stated above, an ideal vortex lattice will have a

characteristic field distribution that is given by an Abrikosov model. Factors

such as vortex pinning, lattice disorder, sample geometry and others will also

contribute to n(B). To a good approximation, these deviations can be ac-

counted for with a Gaussian depolarization function, G(t) [161]. In general,

vortex pinning is the largest contribution to the imperfections in the field dis-

tribution of the vortex lattice [160, 162]. An example of this field distribution

in a sample of YBa2Cu3O6.95 is shown in Fig. 3.10. All of these contributions

will, in general, provide a Gaussian broadening to the field distribution.

To more readily identify the magnetic field distribution seen my the muon

ensemble, a fast Fourier transform (FFT) is often performed. Since the time-

frequency relationship is related by the local magnetic field (see Eq. 3.6), a

FFT of the complex muon polarization, P̃ (t), yields a good approximation

of the internal field distribution. Now, fitting the muon frequency spectrum

is equivalent to fitting the magnetic field distribution, which can be done to

a form determined by the geometry of the vortex lattice (square, hexagonal,

etc), and the microscopic superconducting properties such as λ and ξ. In this

way, µSR can provide simultaneous absolute values for these parameters.

This was done for some of the samples discussed in Chapter 4. For this

analysis, the data was fit in the time domain, with a theoretical field distribu-

tion, n̄(B), given by the Abrikosov form. This lineshape was convoluted with

a Gaussian to account for lattice disorder, as described above. More details of

the fitting will be discussed in that chapter.
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Figure 3.10: The field distribution measured in the normal (top) and mixed
(bottom) states of YBa2Cu3O6.95, which has a hexagonal vortex lattice. In
the normal state, the field distribution is a narrow Gaussian about the ap-
plied field. Below TSC , the Abrikosov lineshape appears. Superimposed on
this is a Gaussian with the same frequency and smaller amplitude than the
normal state. This is due to a volume fraction or background that is not
superconducting. Figure taken from [160] and used with permission.

3.3 Neutron Diffraction

3.3.1 Introduction to Neutron Scattering Properties

Neutron scattering has proven itself as one of the primary methods for

the study of long-range order, both in terms of crystallographic structure and

magnetic structure. Like µSR, it uses particles from outside the system (in
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this case, neutrons) to probe the properties of the material. Neutrons are

particles normally found in the nucleus of atoms, and are weakly interacting

with matter. Samples can often be several centimeters thick, and typically

only 1 in 1000 neutrons will interact with the sample. They are uncharged,

and so do not interact through the Coulomb interaction. The main interac-

tion with the material comes through the strong force with the nuclei. This

force is extremely short-ranged, requiring the neutrons to be on the order of

femtometers from the nucleus. A reasonably accurate model of the interaction

is a delta function at the nucleus.

When a neutron does interact with the sample, it is usually a scattering

event, where the momentum and/or the energy of neutron is changed. Multiple

scattering events for the same neutron is not generally a concern, except in

special cases [163]. Neutrons also behave as waves, so scattering of neutrons is

analogous to scattering of electromagnetic waves. We can assume the atoms in

a crystal to be arranged in periodic planes, separated by a distance d. When

a plane wave, such as those from a neutron wavefunction, is incident on these

planes, the waves will scatter at an angle θ. Scattered waves will interfere with

one another, and will generally cancel each other out, since different planes

will produce all possible phase differences. However, at specific angles, the

path length between waves incident on successive planes will be an integer

multiple of the wavelength. This will produce no phase difference between the

outgoing waves, and will produce constructive interference. This principle is

known as Bragg’s law [164], and can be described by the equation [5]:
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nλ = 2d sin(θ) (3.21)

where n ∈ Z is an integer, λ is the neutron wavelength, assumed to be

the same for the incoming and outgoing waves, d is the separation between

scattering planes and θ is the angle that the incoming and outgoing waves

make with the normal to the scattering plane. ie. the angle between the

incoming and outgoing waves is 2θ. This is shown in Fig. 3.11.

Figure 3.11: An illustration of Bragg’s law in a periodic crystal. The path
length difference is 2d sin(θ), which is an integer multiple of the wavelength to
obtain constructive interference. Figure taken from [5].

This condition will be satisfied in any direction where planes of scatterers

exist within the crystal. This is necessarily related to the crystal structure,

and so it is natural to rewrite Bragg’s law in terms of reciprocal lattice vectors,

~Q, since the scattering exists in reciprocal space. In other words, Bragg’s law
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is satisfied for any reciprocal lattice vector that is the difference between the

outgoing and incoming wavevectors that also satisfy Bragg’s law:

| ~Q| = 4π sin(θ)

λ
(3.22)

where ~Q = ~kf−~ki is the difference between the outgoing, ~kf and incoming,

~ki wavevectors. This can also be extended to inelastic scattering – where the

incoming and outgoing wavevectors correspond to waves of differing energies.

This is a case where the neutron has given energy to the lattice in the form of

an excitation of the system. A phonon (lattice vibration) is an example of an

excitation that can be detected by its inelastic neutron scattering spectrum.

Neutrons also have magnetic dipole moments, ~µn = γnµN~σN , where γn is

the neutron gyromagnetic ratio, µN is the nuclear magneton and ~σN is the

spin-1
2

Pauli spin operator. For this reason, neutrons interact with magnetic

moments, and so can be scattered by these moments in a material. The scat-

tering is analogous to Bragg scattering, and the Eq. 3.21 and 3.22 are equally

valid for magnetic structures. Since the strength of magnetic scattering and

nuclear scattering is often quite comparable [163, 165], neutron scattering is a

useful probe of long-range magnetic structure in condensed matter systems.

Fermi’s Golden Rule provides an accurate description of the scattering cross

section of the interaction between the neutron and the system being measured.

This is an expression based on first-order perturbation theory, and given by:
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d2σ

dΩdE ′
=
k′

k

( mn

2π~2

)2

|〈k′σ′λ′|V |kσ0λ0〉|2 · δ(Eλ0 − Eλ′ + ~ω) (3.23)

Here, σ is the cross section, Ω is the solid angle into which the neutrons

are scattered and E ′ is the final energy of the neutron. k and k′ are the initial

and final wavenumbers of the neutron, V is the interaction potential and ~ω

is the energy transfer. The delta function ensures energy conservation in the

collision.

The scattering cross-sections contain information about the excitations of

the system that are too diverse to cover in detail here. The width, in energy

E or momentum ~Q, of the scattering feature can be a result of the scattering

cross section (rather than experimental resolution). This can be indicative of

short-lived excitations (E) or features with a finite spatial correlation length

( ~Q), as examples.

The following section will serve to provide more detail about the experi-

mental technique of triple-axis neutron scattering that is used in this thesis.

3.3.2 The Triple-Axis Neutron Scattering Technique

The triple-axis neutron scattering technique was pioneered by B. Brock-

house and C. Shull, and was such an important development that it was

awarded the 1994 Nobel Prize in Physics. Triple-axis is so named because

it uses three Bragg scattering events for a very precise measurement of the
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nuclear and magnetic structure of a material. A simplified schematic of the

triple-axis technique is shown in Fig. 3.12 [166].

Figure 3.12: A schematic representation of a triple axis experimental setup.
Here, a beam of neutrons from a source is incident on the monochromator
crystal, selecting an incoming energy. The neutrons are then scattered from the
crystal, and the outgoing beam is scattered from the analyzer crystal, picking
out one particular outgoing energy. The resultant flux is then measured by a
detector. Figure taken from [166].

Many neutron scattering experiments use neutrons that are generated from

nuclear fission reactions that are thermalized by a moderator, usually heavy

water at room temperature, and so are called “thermal neutrons”. These neu-

trons come over a wide range of energies and thus a range of wavelengths. This

would serve to produce a range of angles for the scattered beam, and so is not

used for most experiments (though there are experiments that make use of

this). In order to obtain a mono-energetic beam of neutrons, the thermal neu-

tron beam is Bragg-scattered from a large single crystal called the monochro-

mator. This is usually done with a material such as Silicon or Graphite, which
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produce a relatively clean (in terms of energy) beam of neutrons. Primarily,

a single energy of neutrons will be diffracted from the monochromator, called

the initial energy, Ei. By rotating the monochromator crystal, a different Ei

can be chosen [165].

This beam of neutrons is then incident on the sample, where it is Bragg-

scattered again. By looking at different scattering angles and different orienta-

tions of the sample, all possible scattering vectors ~Q = ~kf −~ki can be studied.

This is often done with a diffractometer, a device that allows for movement in

any combination of the four possible rotation axes: the three crystallographic

rotation axes (α, β and γ) and the scattering angle (θ). A schematic of such

a four-circle diffractometer is shown in Fig. 3.13.

Figure 3.13: A schematic representation of a four-circle diffractometer. This
is used to rotate the crystal through α, β and γ, and to change the scattering
angle, θ, to achieve any desired scattering vector ~Q. Figure taken from [167].

Following this, the outgoing neutron beam is incident on the analyzer crys-

tal. This behaves exactly the same as the monochromator by selecting a par-
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ticular energy. This defines the final energy for the neutrons, Ef . For elastic

scattering, Ei = Ef , but in the case of measuring inelastic features (phonons,

magnons, etc.), Ei > Ef , indicating that the neutron gave energy to the crys-

tal in the form of excitations. By rotating the analyzer crystal, various Ef will

be measured. Lastly, the neutrons hit a detector, usually composed of 3He,

allowing them to be counted.

We have seen how to measure a specific ~Q by changing the angle settings

of the diffractometer or spectrometer. To measure any E = Ei − Ef , we

can change the angle of the monochromator or the analyzer. The former is

“fixed Ef” mode and the latter is “fixed Ei” mode. For the neutron scattering

measurements in this thesis, both methods were used; the measurements in

Section 5.2 used a fixed Ef , while the measurements in Section 5.3 used a fixed

Ei. The two instruments that were used will now be addressed in more detail.

3.3.3 The C5 DUALSPEC Spectrometer

For the measurements in Section 5.2, experiments were performed on the

C5 DUALSPEC Spectrometer at the Canadian Neutron Beam Center, at

Chalk River National Laboratories in Chalk River, Ontario, Canada [167].

A picture of the C5 spectrometer is shown in Fig. 3.14.

This instrument allows scattering at angles up to 115◦, in steps of 0.001◦.

It can be fitted with a variety of collimators, filters and different kinds of

monochromator/analyzer crystals. The specific experimental details will be

discussed in Section 5.2.
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Figure 3.14: (Left) An image of the C5 Spectrometer, showing the sample in
between the analyzer & detector and the monochromator and source. (Right)
The layout of the beamline floor at Chalk River Laboratories, indicating the
location of C5, and showing the three axes for the instrument. Figure taken
from [167].

3.3.4 The Multi-Axis Crystal Spectrometer

For the measurements in Section 5.3, experiments were performed on the

Multi-Axis Crystal Spectrometer (MACS) at the National Institute for Stan-

dards and Technology (NIST) National Centre for Neutron Research (NCNR)

in Gaithersburg, Maryland, USA [168]. A schematic of the MACS instrument

is shown in Fig. 3.15.

The operation of MACS is based on the same principles as a conventional

triple axis instrument. It uses a reactor-based neutron source, however, the

neutrons are moderated to emerge with a lower energy than conventional ther-

mal neutrons. These “cold” neutrons allow for lower energy neutrons to be

incident on the sample so that better energy resolution can be achieved. The

MACS instrument allows for energy resolution down to 0.2 meV.
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Figure 3.15: (Left) An overhead schematic of MACS, showing its various com-
ponents. (Right) A closer view of the sample station and the 20 detector
channels. Figure taken from [168] and used with permission.

A single crystal analyzer is used and the neutrons scatter from the sample

as previously described. However, the third leg of the diffractometer is set up

with multiple channels, essentially allowing for multiple scattering angles from

the sample. These 20 detector channels are quite closely spaced (∼8◦) and

each has its own analyzer crystal. This allows comprehensive coverage of the

scattered neutrons, generating much more data more quickly.

More details about the particular configuration of the instrument will be

given in Section 5.3.

3.3.5 Instrumental Resolution Function

The discussion of neutron scattering in Sections 3.3.1 and 3.3.2 has focused

on a technique in an abstract way, and in this sense all of the measured peaks

should appear as points in ( ~Q,E)-space. However, the details of the instru-
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mentation in Sections 3.3.3 and 3.3.4 clearly indicate a minimum accuracy in

measuring such points, giving them width in both ~Q and E. This is due to the

limited resolution of each instrument, and depends on quantities such as the

degree of focusing, the width of the detectors and the mosaic of the crystals.

In attempting to extract quantitative values from a measured spectrum, the

influence of the instrumental resolution must be considered.

To do this, one defines the instrumental resolution function, which is the

probability of detecting a neutron of energy E = ~ω and momentum ~Q when

the instrument is configured to measure a scattering process at ( ~Q,E) [169]. To

a first approximation, the mosaic spread of the monochromator and analyzer

and the transmission function of the slit systems are Gaussian distributions.

This allows the resolution function to be defined everywhere in ( ~Q,E)-space

for any value of the instrumental parameters.

While this can be done in a functional form, it is more efficient to compute

it numerically. This is done by constructing the Cooper-Nathans matrix [169,

170], a combination of the instrumental parameters (divergences) from the

slits, monochromator and analyzer. With the definition of other such matrices

to include the differences with respect to scattering angles and energy transfer,

the resolution matrix can be constructed. A more complete mathematical

treatment of this method is given in Ref. [171].

This resolution matrix can then be convoluted with the 4D dataset to

obtain data that has been corrected for this resolution, allowing for more ac-

curate calculations of physical parameters. This was included for both neutron
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scattering experiments described in Chapter 5, using the numerical program

RESLIB [171].
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Chapter 4

µSR Measurements of Ba(Fe,Co)2As2

This Chapter details a series of µSR measurements performed on single

crystals of the pnictide superconductors Ba(Fe2−xCox)2As2 as well as a single

crystal of Sr(Fe0.87Co0.13)2As2. This work has been previously published, in

part. The work in Sec. 4.2 is contained in a manuscript that will be submitted

for publication shortly [172]. The work of Sec. 4.3 was published in [173], while

the work of Sec. 4.4 and 4.5 has been published in [174].

4.1 Introduction

Several single crystals of the series Ba(Fe2−xCox)2As2 were measured with

Cobalt concentrations x = 0.038, 0.047, 0.061, 0.074, 0.107 and 0.114, as well

as a single crystal of Sr(Fe0.87Co0.13)2As2 using µSR. As described in Chapter 1,

these samples are grown from self-flux and produce relatively large, homoge-

neous single crystals of approximately 1 cm2 surface area. These materials

have been shown to have very clean transitions, in particular the supercon-

ducting transition as shown in Fig. 4.1 for x = 0.074.
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Figure 4.1: (Top) Resistivity of Ba(Fe0.926Co0.074)2As2 in the vicinity of TSC

and (inset) from 2 to 300 K. (Bottom) Field-cooled and zero-field-cooled mag-
netization in the vicinity of TSC . Figure taken from [173].

The samples were taken to TRIUMF, where the µSR measurements were

performed. All of the measurements in Sections 4.3, 4.4 and 4.5 were performed

on the M20 surface muon beamline, while the measurements of Section 4.2 were

performed on both the M20 and M15 surface muon beamlines. In all cases,
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the measurements were performed in a Helium gas flow cryostat using a low

background sample holder, such that only muons landing in the sample were

measured in the µSR spectra.

4.2 Coexistence of Magnetism and Supercon-

ductivity in Underdoped Ba(Fe,Co)2As2

The two samples with lowest Co-doping, x = 0.038 and x = 0.047, are

in the portion of the phase diagram that contains both static magnetic order

and superconductivity. To measure the properties of the magnetically ordered

region, Zero-field (ZF)-µSR spectra were collected on both samples over a

range of temperatures and were compared to the parent (x = 0) material.

Representative spectra for these three dopings measured at T = 1.65 K are

shown in Fig. 4.2.

In the parent material, there is a clear precession signal indicative of long-

range magnetic order. In the doped samples, this signal is highly-damped,

suggesting a broad distribution of internal fields at the muon site(s). This

would result from a substantial degree of disorder in the magnetic ordering in

the doped materials. The solid lines in Fig. 4.2 are fits to a model based on

two precessing muon sites and a non-precessing background signal:

A(t) = A1 cos(ω1t) ∗ e−λ1t + A2 cos(ω2t) ∗ e−λ2t + Aee
−λet (4.1)

This fitting function seems reasonable given previous studies of the under-

doped and parent compound in which two muon sites have been observed [175,
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Figure 4.2: The zero-field (ZF)-µSR spectra taken at T = 1.65 K for the
parent x = 0 (blue), x = 0.038 (red) and x = 0.047 (black). The x = 0.038
data is vertically offset by +0.15 and the x = 0 data is vertically offset by
+0.3 for clarity. The solid lines are fits to the data, as described in the text.
Here, clear precession is seen in the parent material, but the precession in
the doped compounds are strongly damped, indicating significantly disordered
magnetism. Figure taken from [172].

176], as well as DFT calculations supporting two local electrostatic minima in

the crystal structure [177]. Furthermore, a single damped exponential did not

fit the data well. The frequencies extracted from the fits were found to scale

with one another, consistent with the signals being from two muon sites with

different local fields. This characteristic was found in the initial analysis, and
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so the frequencies and asymmetries of the two signals were fixed to be a con-

stant ratio of one another. These ratios were included as fitted parameters, but

were fixed to be temperature-independent using the whole temperature range

below TSDW . The ratio for the parent was found to be 0.24(1), while for the

3.8% sample, the ratio was 0.20(4), decreased slightly from the parent com-

pound. This continues with the 4.7% sample, where the ratio has decreased

to 2.3(4) × 10−3. The decrease in the ratio may reflect an increase in the

impurities that distort the magnetically-ordered lattice. In the 4.7% doped

sample, the small ratio value may be a result of the nearly complete loss of

long-range magnetic order. With a large degree of disorder, all of the muon

sites appear to have different local fields, removing most of the distinction

between the high- and low-field sites.

The frequencies that are observed decrease with increasing doping, as

shown in Fig. 4.3. This could be due to the replacement of Fe moments with

Co, reducing the size of the internal field. Neutron scattering has observed a re-

duction in the ordered Fe moment in the isostructural Ca(Fe1−xCox)2As2 [178]

and an incommensurate magnetic structure for dopings above x ≈ 0.05 [60].

These samples were also measured in a transverse field (TF) of 4 mT to

measure the paramagnetic volume fraction. In a weakly magnetic or param-

agnetic region of the sample, the muons see a local field equal to the applied

field, and so can be fit to a simple exponentially-damped cosine:

A(t) = A cos(ωt) ∗ e−λt (4.2)
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Figure 4.3: (a) ZF-µSR spectra for Ba(Fe1−xCox)2As2 for x = 0.038
(TSDW = 71 K and TSC = 8 K) and x = 0.047 (TSDW = 45 K and TSC = 15 K).
There is a clear onset at TSDW , where the precession frequency becomes non-
zero. There is no change below TSC . Figure taken from [172].

where ω = γµHapp.

Below a magnetic ordering transition, the local field becomes a vector sum

of the applied and ordered field (generally, much larger than the applied field).

For this reason, the muons no longer precess at the same value of ω above, and

so the amplitude of the precessing signal, A, decreases. However, any muons

still landing in a para- or weakly magnetic region will still precess at this
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frequency. This allows TF-µSR to be used to measure the volume fractions of

region of static magnetic moments.

Figure 4.4: TF-µSR measurements of x = 0.038 and 0.047 in TF = 4 mT. (a)
The frequency shows a drop below the magnetic ordering temperature, but
slowly increases again towards T = 0. This may be indicative of field-induced
ordering. (b) The relaxation rate increases sharply below TSDW , saturating
well before T = 0. This indicates that the local field is fairly inhomogeneous in
these samples, which causes dephasing of the muon polarization in the ordered
part of the phase diagram. (c) We see a 100% paramagnetic signal above
TSDW , which drops sharply at the transition. Below the ordering temperature,
there is a residual signal from the low-field region, about 40% for x = 0.047
and less than 10% for x = 0.038. Due to the small residually-precessing volume
present in the 3.8% doped sample, the points below 50 K are omitted from (a)
and (b). Figure taken from [172].
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Fig. 4.4 shows the results of fitting the temperature-dependent TF-µSR

signals to Eq. 4.2. The paramagnetic volume fraction (shown in Fig. 4.4(c))

is normalized to its value above TSDW , and a sharp drop is observed below

the transition. The signal saturates quickly, levelling off within 15 K of the

ordering temperature. In the 4.7% sample, there is a residual signal that

still precesses down to the lowest temperatures measured, but the relaxation

rate is still increasing below TSDW indicating that it is only weakly magnetic.

This low-field region is less than 10% in the x = 0.038 sample, while it is

approximately 40% for x = 0.047 (see Fig. 4.4(c)).

It is also worth noting that the TF-µSR spectra do not relax to zero asym-

metry in the ordered region when the spectra are measured in the direction

of the initial muon spin polarization, shown in Fig. 4.5. While the precessing

fraction relaxes completely, there is a fraction of the signal which does not

precess and does not relax. This indicates that the local field is largely along

this direction, corresponding to the ĉ-axis crystallographic direction. This is

confirmed by measuring the TF-µSR spectra in a perpendicular direction, and

noting that the spectra do relax to zero in this case (also shown in Fig. 4.5).

This is consistent with other techniques that find that the internal field tends

to lie in the ĉ-axis for various dopings [176]. These measurements found fields

in excess of 0.15 T, consistent with the local field at the high-field muon site

in our measurements, which precessed at a frequency corresponding to an in-

ternal field of 0.13 T. Additionally, that the precessing signal in the TF-µSR

spectra completely relax within the first 0.5 µs indicates that they still see a

local field from the sample. This means that the regions of low-field magnetism
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Figure 4.5: Representative TF-µSR spectra measured in Ba(Fe0.962Co0.038)2As2

in a field TF = 40 G. The black squares are data taken at T = 1.65 K in a
spin-rotated (SR) configuration, such that the initial muon spin direction is
perpendicular to the crystallographic ĉ-axis. The other two sets of data, the
red circles (T = 90 K) and the green triangles (T = 1.65 K) are taken in a non-
spin rotated (non-SR) configuration, so that the initial muon spin direction is
along ĉ. These spectra provide evidence for strong ĉ-axis magnetism, and no
macroscopic phase separation of strongly- and weakly-magnetic regions.

must be small (on the order of nanometers), so that muons landing there will

see the effect of the high-field contribution.

Fig. 4.4(a) and (b) show the precession frequencies, ω and relaxation rates,

λ, from the TF-µSR data. The frequency decreases below the magnetic order-

ing transition, attributable to the decrease in local field, caused by an increase

in the magnetic field disorder in the ordered region. Coupled with the in-
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crease in the relaxation rate at the ordering temperature, there is significant

evidence of magnetic disorder present in this system. The relaxation rate also

saturates at a constant value towards T = 0, indicating that the disorder is

not eliminated by removing thermal excitations. This picture of a highly dis-

ordered local magnetic structure is in agreement with other local probes, such

as NMR [61, 40] and Mössbauer [62] that see a similarly disordered structure.

This is in contrast to neutron scattering measurements that see sharp mag-

netic Bragg peaks at all dopings where magnetism exists [59]. Below TSC , there

is a loss in intensity, but the peaks remain well-defined. Additionally, for dop-

ings between x = 0.056 and x = 0.060, an incommensuration is observed in

the magnetic structure that, while the shift depends on doping, continues to

represent a well-defined magnetic structure [60]. Three particular explanations

may provide a way to reconcile these two contrasting pictures: the timescale

of the measurements, an incommensuration in the magnetic structure, or a

combination of an ordered and a disordered magnetic moment.

The first explanation depends on fluctuations in the system that are dy-

namic (producing disorder) on the timescale of the µSR experiments, but ap-

pears static (producing order) on the neutron timescale. This would agree with

the other local probes that work on similar timescales to µSR, such as NMR

and Mössbauer (∼ 10−7s). The second stems from the above-mentioned neu-

tron experiments that saw incommensuration for higher Co-dopings than were

studied in this experiment. Those measurements saw an incommensuration

that increased with increasing doping, but was relatively small for all dopings

studied [60]. It is possible that lower dopings, such as the ones studied in this
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thesis, contain an incommensurate magnetic structure but that the splitting

in the magnetic Bragg peaks is too small to be detected by neutron scattering.

This would produce a broad distribution of local fields, appearing as magnetic

disorder when measured with µSR. Finally, the magnetic moments in the sys-

tem may be composed of two components: one that is well-ordered and one

that is random. As a reciprocal space probe, neutron scattering would only

be sensitive to the ordered component, producing well-defined magnetic Bragg

peaks, while real space probes would see both components and appearing as

disordered magnetism. This should manifest itself as a decrease in the ordered

Fe moment as the disorder increases, which has been seen by neutron scatter-

ing in the isostructural Ca(Fe1−xCox)2As2 [178]. In this compound, there is a

reduction in the ordered moment per Fe atom of ∼25% at a relatively similar

doping level.

By measuring TF-µSR in a larger field of TF = 0.02 T in both a field-

cooled and zero-field cooled experiment, evidence of flux pinning is seen. This

is seen through a strong increase in the relaxation between the two orientations,

confirming the presence of superconductivity in these samples. Since the entire

sample sees magnetism, superconductivity must exist in or near regions of

strong local magnetism. There may be phase separation on a nanoscale, in

agreement with scanning tunnelling spectroscopy measurements that finds no

phase separation at longer length scales [179].
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4.3 Superfluid Density of Optimally-Doped

Ba(Fe0.926Co0.074)2As2)

Measurements of the microscopic parameters through the method outlined

in Sec. 3.2.4 can only be accurately performed in the absence of magnetic

order. To check for static magnetism on the µSR timescale, ZF-µSR mea-

surements were performed at T = 2 K and above TSC . These spectra were

identical, exhibiting only weak, temperature-independent relaxation. This is

characteristic of a system of nuclear dipole moments, a fits to this data gave

a characteristic relaxation rate of 0.15 µs−1.

Figure 4.6: Fast Fourier transform of the TF-µSR signal in B = 0.1 T applied
along the ĉ crystallographic axis. The solid black line is taken at T = 1.7 K
while the red dashed line corresponds to T = 30 K. The anisotropic shape at
low temperature is characteristic of a well-ordered vortex lattice. Figure taken
from [173].
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Fig. 4.6 shows a fast Fourier transform (FFT) of the TF-µSR spectrum

measured in TF = 0.1 T and T = 1.7 K and T = 30 K, the latter of which

is above TSC . The high temperature data is well-described by a Gaussian

distribution, centered on ν = γµ ·Bapp = 13.54 MHz, the precession frequency

generated by Bapp = 0.1 T. This Gaussian distribution of fields is the expected

field distribution for a paramagnet. At low temperature, the field profile be-

comes anisotropic and is characteristic of an Abrikosov vortex lattice (See

Sec. 3.2.4). This indicates the presence of at least a locally well-ordered vortex

lattice within the superconducting state. The lower cutoff in the field distri-

bution corresponds to muons landing at the center of three vortices (farthest

from the vortex cores) while the high-field cutoff comes from muons landing

in the vortex cores. The overall width of the lineshape is determined mostly

by λ and the high-field cutoff is highly dependent on ξ. At the highest applied

fields, far from the London limit, the field would be finite at the vortex cores,

giving the most reliable measure of ξ.

This lineshape can be fit to an analytic Ginzburg-Landau model [180]. This

allows the calculation of the magnetic field distribution in terms of the micro-

scopic parameters, such as the penetration depth and the coherence length.

These field distributions were then inverse Fourier-transformed, constructing

theoretical time spectra that could be compared to the measured data. This al-

lowed for the determination of λ and ξ by minimizing χ2 with respect to these

parameters. From this, it was possible to determine the Ginzburg-Landau

parameter, κ = λ/ξ, obtaining κ = 44. This value was held fixed for the

remainder of the analysis. This can be done since measurements performed at

lower fields are insensitive to κ as long as it is large.
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In addition to the Ginzburg-Landau model, a temperature-independent

relaxation rate was included to account for nuclear dipole fields; this was

fit using data above TSC and then fixed to the fitted value of 0.089 µ−1.

Additionally, small-angle neutron scattering has detected a highly disordered

vortex lattice in fields above 0.2 T [181]. The effect of this was included in the

analysis by convoluting the model with a Gaussian in the frequency domain to

account for a Gaussian broadening of the signal [161, 182]. It is assumed that

this broadening was proportional to 1/λ2, as has been observed in previous

studies of cuprates and other high-κ superconductors [180].

The fitted results for the RMS deviation of the vortex position, (< s2 >1/2,

in units of length), relative to the vortex separation, L0, is< s2 >1/2 /L0 ≈ 2.4 %

at T = 1.7 K and Happ = 0.1 T. This deviation decreases with increas-

ing temperature and decreasing field. (7 % in Happ = 0.05 T and 30 % in

Happ = 0.02 T). In higher fields, this relatively low amount of vortex disor-

der is somewhat in contrast to small-angle neuron scattering [181], but may

reflect that µSR, as a real-space probe, is less sensitive to the loss of true long-

range order than reciprocal space probes. Bitter decoration measurements

have shown at least a locally well-ordered vortex lattice [181], supporting this

conclusion. This also lends support for the way this disorder was included in

the fitting, and it is noted that the fitted values of the penetration depth are

not particularly affected by this disorder.

With this fitting procedure, it was possible to reliably fit the rest of the

parameters in the µSR signal, including the penetration depth, λ(H,T). Results

for this analysis, plotted as 1/λ2 ∝ ns/m
? where ns is the superfluid density,
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are shown in Fig. 4.7 for applied fields of 0.1, 0.05 and 0.02 T. It can be clearly

seen that both the temperature dependence and the zero-temperature value,

ns(T→0) depend on the applied field.

Figure 4.7: Combined two-gap fit (solid line) and power-law fit (dashed line)
to the superfluid density measured from TF-µSR at fields of 0.02 T (black
diamonds), 0.05 T (red crosses) and 0.1 T (green squares). Error bars are
smaller than the plotting symbols. Figure taken from [173].

The temperature dependence of the superfluid density reflects how easily

thermal fluctuations are able to create quasiparticles. In conventional weak-

coupling BCS theory (See Chapter 1), one finds that the low-temperature

behaviour of ns becomes exponentially flat, whereas the presence of gap nodes

is reflected in power-law behaviour. For example, one observes ns ∝ T in the

cuprate superconductors. To check for this behaviour, one can fit the data to

a power law, given by:

88



Ph.D. Thesis ––– Travis Jay Williams ––– McMaster University - Physics and Astronomy ––– 2013

ns(T ) = ns(0)[1− (T/TSC)p] (4.3)

The results of the fit are shown by the dashed lines in Fig. 4.7. The fitted

power decreases with increasing field while the superfluid density at T = 0

decreases with field, as shown in Table 4.1. This model provides a fairly good

fit to the data, but the strong dependence of both of these parameters on the

magnetic field is surprising considering that all of the fields are much less than

the upper critical field, Hc2 [38]. This prompts an effort to try other models

that may characterize the behaviour of the superfluid density.

Field (T) ns(0) (µm−3) Power, p

0.02 20.47±0.15 1.62±0.03
0.1 13.01±0.05 2.27±0.03

Table 4.1: Values obtained for ns(0) and p from the power law fits shown in
Fig. 4.7. Data taken from [173].

As described in Chapter 1, a leading proposal for the superconducting

gap structure is a combination of two s-wave gaps, in the s± configuration.

Multi-gap superconductors have been realized in other systems, including

MgB2 [183, 184] and NbSe2 [185], which can be clearly observed by mea-

suring the temperature dependence of the magnetic penetration depth us-

ing µSR [180, 186]. To check if these measurements are consistent with

such a multi-gap picture, the data was fit to a phenomenological two-gap
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model [187, 188] which was successfully employed in a previous µSR study of

LaFeAs(O,F), Ca(Fe,Co)AsO and (Ba,K)Fe2As2 [189], given by:

ns(T ) = ns(0)− w · δns(∆1, T )− (1− w) · δns(∆2, T ) (4.4)

where w is the relative weight of the first gap, ∆1. The gap functions are

given by:

δns(∆, T ) =
2ns(0)

kBT

∫ ∞
0

f(ε, T ) · [1− f(ε, T )]dε (4.5)

where f(ε, T ) is the Fermi distribution:

f(ε, T ) = (1 + e
√
ε2+∆(T )2/kBT )−1 (4.6)

Here, ∆i (i = 1 and 2) are the energy gaps at T = 0 and ∆i(T ) are taken

to follow the standard BCS temperature dependence. The size of the gaps,

∆1 and ∆2, and TSC were fit globally while ns(0) and the weighting factor, w,

were allowed to be field-dependent.

The results of this fitting are shown by the solid lines in Fig. 4.7. This gives

a very good fit to the data, with a χ2 that is approximately half of that for the

power law fit. Based on the other experimental support for the two gap model,

this validates the choice of this fitting function. From the fits, the values of the

gaps were 2∆1/kBT = 3.768 ± 0.009 and 2∆2/kBT = 1.57 ± 0.05. The fits also

gave TSC = 22.1 ± 0.2 K. The larger of the two gaps is close to the BCS value

while the smaller gap is roughly half the BCS gap. This is lower than has been
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reported for other pnictide compounds, which presumably indicates that the

strength of the superconducting pairing varies from system to system. These

values are, however, in excellent agreement for other measurements of the two

gap values reported by specific heat, 2∆1/kBT = 3.75 and 2∆2/kBT = 1.65,

at the same doping [190, 191].

The relative weighting factor for the larger gap increases with Bapp and the

superfluid density decreases with Bapp, as shown in Table 4.2. This indicates

that the effect of the applied field is to weaken superconductivity on the bands

with the smaller gap.

Field (T) Weighting factor, w ns(0) (µm−3)

0.02 0.655±0.007 19.1±0.1
0.05 0.766±0.006 14.411±0.004
0.1 0.909±0.004 13.0±0.1

Table 4.2: Values obtained for the weighting factor, w, and superfluid density,
ns(0), from the two-gap fits shown in Fig. 4.7. Data taken from [173].

Finally, the magnetic field dependence of the penetration depth and su-

perfluid density were studied at the lowest measured temperature, T = 1.7 K,

using field cooling through TSC . By simultaneously fitting pairs of µSR spectra

at T = 1.7 K and in the normal state, at each measured field, using the same

procedure as outlined above, the value of the penetration depth (and thus, the

superfluid density) can be reliably obtained. The results of this analysis are

shown in Fig. 4.8. The superfluid density shows a small peak near 0.02 T, then

decreases with increasing field, in agreement with the temperature scans. The

91



Ph.D. Thesis ––– Travis Jay Williams ––– McMaster University - Physics and Astronomy ––– 2013

peak at low field may reflect the proximity to the lower critical field, estimated

to be ≈ 0.007 T at T = 5 K [192]. The penetration depth also tends to a con-

stant value of around 300 nm at higher fields. Recalling the field-dependence

of the weighting factor, this may reflect the loss of superconductivity on the

bands with the smaller gap.

Figure 4.8: (Top) Magnetic field dependence of the magnetic penetration depth
in Ba(Fe0.926Co0.074)2As2 measured at T = 1.7 K. (Bottom) 1/λ2 ∝ superfluid
density, ns, measured at T = 1.7 K. Figure taken from [173].
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4.4 Superfluid Density of Overdoped Ba(Fe,Co)2As2

Extending the analysis of Section 4.3 to other dopings in the series, the

lineshapes characteristic of an Abrikosov lattice continue to be present at dop-

ings above x = 0.061, as well as in the related compound Sr(Fe0.87Co0.13)2As2,

shown in Fig. 4.9. It is also noted at ZF-µSR spectra in all of these sam-

ples confirm that there is no static magnetic order or spin freezing down to

T = 1.7 K.

As with the analysis in Section 4.3, Fourier transforms of the TF-µSR spec-

tra were constructed, and all dopings measured show an anisotropic lineshape

below TSC characteristic of an Abrikosov vortex lattice. The lineshapes for

some of the dopings measured are shown in Fig. 4.9 for applied fields of 0.02 T

and 0.1 T. These measurements are indicative of at least locally well-ordered

vortices, and all are consistent with a triangular vortex lattice. This can be

inferred because a square lattice would show a peak (most likely field) that

is much more separated from the minimum in the field distribution, owing to

the larger average separation between the vortices [160].

Fitting to the analytic Ginzburg-Landau model, as above, yields reliable

values for the penetration depth, λ, and the coherence length, ξ. Similarly, the

effect of vortex lattice disorder was incorporated via a Gaussian broadening of

the lineshape. The trends found in the optimally-doped sample were found to

exist at all dopings. Namely, the RMS deviation fo vortex positions is greatest

in lower fields (up to 30% in 0.02 T, but as small as 2% in 0.1 T) and decreases
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Figure 4.9: Fourier transforms of the TF-µSR spectra for Ba(Fe1−xCox)2As2,
showing the anisotropic lineshapes characteristic of an Abrikosov vortex lat-
tice. Figure taken from [174].

with increasing temperature. Furthermore, the samples with the highest TSC

showed the largest amount of lattice disorder.
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Figure 4.10: Superfluid density ns ∝ 1/λ2 as a function of temperature for the
(Ba,Sr)(Fe,Co)2As2 samples measured. The filled symbols and solid lines are
the measured values and two-gap fits in TF = 0.02 T, respectively, while the
open symbols and dashed lines are the measurements and fits in TF = 0.1 T.
Figure taken from [174].

Fig. 4.10 show the results of this analysis for applied fields of 0.02 T and

0.1 T. The lines show fits to the data using a phenomenological model given

in Eq. 4.4. Once again, the gap values and TSC were fit globally, while the

weighting factor, w, and the superfluid density were allowed to be temperature

and field-dependent. Additionally, no parameters were common between the

different dopings, allowing the doping-dependence of each parameter to be

studied. As was the case with the optimal doping, the two-gap model fits the
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data with a very reasonable χ2 and fits using a single s-wave gap did not give

satisfactory results.

For most samples, the larger gap was 2∆/kBTSC ≈ 3.7, which is close

to the BCS value. For the Sr(Fe0.87Co0.13)2As2 sample, the larger gap value

was 2∆/kBTSC ≈ 2.7, lower than the BCS value. For the larger Co-dopings,

Ba(Fe0.893Co0.107)2As2 and Ba(Fe0.886Co0.114)2As2, most of the weight was on

the smaller gap. This may suggest gap anisotropy or even nodes in this doping

regime. The steep temperature dependence of the superfluid density shows

that the gap is not a single s-wave, though whether this is evidence for a non-

s-wave gap as suggested by tunnel diode resonator measurements [192, 193]

or multiple s-wave gaps is not possible to distinguish. However, our fits do

allow a reliable extraction of the penetration depth approaching T = 0, λ0 ≡

λ(T → 0). This was done at both fields, which then allowed extrapolation to

B = 0. These results are given in Table 4.3.

TSC λ0(0.02 T) λ0(0.1 T) λ0(B = 0)
Ba(Fe0.939Co0.061)2As2 23.6 189.4 ± 1.1 240.5 ± 2.0 182.6 ± 1.4
Ba(Fe0.926Co0.074)2As2 22.1 224.2 ± 0.6 277.4 ± 1.0 216.8 ± 0.7
Ba(Fe0.893Co0.107)2As2 14.1 332.2 ± 2.2 348.3 ± 4.6 329.3 ± 3.4
Ba(Fe0.886Co0.114)2As2 10.3 453.8 ± 2.6 448.0 ± 2.4 454.9 ± 3.6
Sr(Fe0.87Co0.13)2As2 16.2 325.5 ± 0.5 339.8 ± 0.6 322.8 ± 0.7

Table 4.3: Results of fitting 1/λ2(T ) to Eq. 4.4 for TSC (in K) and λ0 (in nm).
Also shown are values of λ0 extrapolated to B = 0. Data taken from [174].

Over the range of dopings studied, 1/λ2
0 varies considerably, nearly an order

of magnitude, from 5 µm−2 to 30 µm−2. The field dependence is rather pro-

nounced for the x = 0.061 and 0.074 dopings, but almost entirely absent for the
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higher dopings, due to the smaller superfluid density. This field-dependent be-

haviour has been observed in other pnictide samples by other techniques [194].

Calculations of the field-dependence of a multiband superconductor suggest

that strong field dependence should be observed for fields on the order of the

smaller gap [195], which could partially explain this behaviour in the x = 0.107

and 0.114 samples, particularly because most of the weight was on the smaller

gap for these samples. However, the field dependence seen here is actually

larger than would be expected. This likely indicates that one or both of the

gaps are anisotropic and/or have nodes.

Figure 4.11: Superconducting TSC and 1/λ2
0 for Ba(Fe1−xCox)2As2 and

Sr(Fe1−xCox)2As2 as a function of Co concentration x, measured in
TF = 0.02 T and 0.1 T, and for extrapolated values to B = 0. The open points
and dashed lines are the measured TSC ’s and the superconducting dome taken
from [31] for Ba(Fe1−xCox)2As2 and from [196] and [197] for Sr(Fe1−xCox)2As2.
Figure taken from [174].
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The calculated values of λ0 at both fields as a function of Co doping is

shown in Fig. 4.11. Also shown is the superconducting dome, the plot of TSC

versus Co-doping using data from [31, 196, 197]. As described in Section 1.1,

the cuprates exhibit a strong, roughly linear correlation between TSC and

the superfluid density divided by the effective mass [22]. To check for this

relation in this system, the extrapolated zero-temperature superfluid density

was plotted against TSC in Fig. 4.12. In contrast to Fig. 4.11, the points

from the two fields here lie on almost the same line. This suggests that the

superconducting TSC is apparently determined by the carrier density divided

by the effective mass.

Figure 4.12: Superconducting TSC versus 1/λ2
0 for Ba(Fe1−xCox)2As2

and Sr(Fe1−xCox)2As2 as a function of Co concentration x, measured in
TF = 0.02 T and 0.1 T, and for extrapolated values to B = 0. Figure taken
from [174].
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Specific heat measurements of the superconducting transition found that

the jump at the superconducting transition was correlated with the value of

TSC as Cp/TSC ∝ T 2
SC [198]. Comparing this to the measured superfluid

density data (shown in Fig. 4.13), it can be seen that both sets of data fit well

to a straight line with n ≈ 2, indicated by the dashed line. This correlation

in both the specific heat and superfluid density was observed in cuprates [199,

200, 201], suggesting some commonalities between them.

Figure 4.13: 1/λ2
0 versus superconducting TSC for Ba(Fe1−xCox)2As2

and Sr(Fe1−xCox)2As2 as a function of Co concentration x, measured in
TF = 0.02 T and 0.1 T, and for extrapolated values to B = 0. This is plotted
with ∆Cp/TSC from [198]. The dashed line has slope n = 2 and is a guide to
the eye. Figure taken from [174].
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4.5 Field-Induced Magnetism in Overdoped

Ba(Fe,Co)2As2

The fitting process described in the preceding sections contains several

parameters that are fit from the data. One of these is the average muon

precession frequency, νµ, which is slightly larger than the peak frequency. In

the normal state, this precession frequency can be expressed as:

νµ = (1 +Kµ)γµBapp (4.7)

where Bapp is the applied magnetic field, γµ is the muon gyromagnetic ratio

and Kµ is the muon Knight shift. In the superconducting state, the precession

frequency is usually slightly reduced compared to the normal state, due to

flux expulsion. The fractional shift in the muon precession frequency, νS/νN −

1 as a function of temperature is shown in Fig. 4.14. It can be seen that,

except for a negative shift below TSC for some samples due to bulk screening,

all samples show an increasing frequency shift with decreasing temperature.

This is not what is expected from a bulk superconductor with triplet pairing

(temperature-independent shift) or singlet pairing (Yoshida function). Similar

shifts have been observed in other pnictide superconductors [202], and cannot

be explained by bulk screening, which only gives a negative contribution.

The fractional shift is much larger in TF = 0.02 T as compared to 0.1 T.

In fact, the absolute frequency shift, νS − νN , is roughly the same for the two

fields. The shift is also larger for samples with larger TSC ’s and superfluid

densities, ns/m
? ∝ 1/λ2

0. Previous µSR studies of the electron-doped cuprate
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Figure 4.14: Fractional shift of the muon precession frequency, νS/νN − 1,
relative to the normal state frequency, νN . The superconducting transition
temperatures are indicated by triangular symbols. Figure taken from [174].

superconductor Pr2−xCe2CuO4 also exhibited a positive frequency shift below

TSC which was taken as evidence for field-induced magnetism [203]. In that

case, the absolute shift decreased with increasing field, indicating moments

aligned perpendicular to the applied field. In the pnictide case, that the abso-

lute shift appears to be field-independent may suggest that the field-induced

magnetism is along the ĉ-axis, the direction of the applied field, and is ferro-

magnetic in character. An antiferromagnetic alignment would produce a split

of the precession frequency, rather than a shift. Finally, since it onsets at TSC ,

it suggests that this is a property of the superconducting state.
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4.6 Conclusions

Measurements of the underdoped samples (x = 0.038 and x = 0.047)

showed strong ĉ-axis magnetism, occurring below TSDW . The size of the local

field and the magnetic volume fraction did not change below the supercon-

ducting transition. There is a residual volume fraction that displays low-field

magnetism, increasing with increasing Co-doping. The measurements suggest

that the local magnetic field is increasingly disordered as the concentration of

Co increases.

Since neutron scattering measurements see well-ordered magnetic moments [59],

the disorder seen by local probes (such as the experiments of Sec. 4.2) must be

reconciled. Possible explanations of this discrepancy are that there are fluctu-

ations on the timescale of the µSR experiments to which neutron scattering is

insensitive, that there exists an incommensuration in the magnetic order that

is too small to be detected, or that there are both an ordered and a disordered

moment in the system.

These samples were shown to exhibit both superconductivity and mag-

netism using larger transverse field of 0.02 T. This may suggest some nanoscale

phase separation, but that the entire samples sees magnetism means that su-

perconductivity exists in or near regions of strong magnetic order.

The samples of Ba(Fe1−xCox)2As2 with x = 0.061, 0.074, 0.107, 0.114 and

the sample of Sr(Fe0.87Co0.13)2As2 were measured with ZF-µSR and no mag-

netic ordering was found down to T = 1.65 K. This allowed TF-µSR mea-

surements to be performed on these samples to study their superconducting

properties.
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In the first sample studied, Ba(Fe0.926Co0.074)2As2, an analytic Ginzburg-

Landau model was used to fit the data and obtain absolute values for the

penetration depth, λ. The fitted value for the Ginzburg-Landau parameter

κ = 44, confirming that the material is in the extreme type-II limit. The

temperature-dependence of the superfluid density, ns ∝ 1/λ2 can be well-

described by an s-wave two-gap model where the field-independent gaps are

2∆1 = 3.77kBTSC and 2∆2 = 1.57kBTSC .

Expanding the analysis to the remaining compounds by fitting to the two-

gap models produces similarly successful results, where the gaps follow the

same temperature dependence. It was found that the superfluid density as

T → 0, ns(0), varies roughly quadratically with the superconducting transi-

tion temperature, TSC . The superfluid density also decreases with increasing

doping, ie. as normal state charge carriers are added to the system. This may

suggest a form of electronic phase separation, either in real or reciprocal space.

Finally, a paramagnetic frequency shift was observed below TSC , where the

absolute frequency shift was independent of the applied magnetic field. This,

coupled with the decrease of the absolute shift with increasing Co concentra-

tion, suggests that the Fe moments experience field-induced magnetism along

the ĉ-axis below the superconducting transition.
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Chapter 5

Neutron Scattering Measurements of

URu2Si2

This Chapter details two neutron scattering measurements of URu2Si2 un-

der different perturbations to the “hidden order” state. When Re is substituted

for Ru, the hidden order phase is suppressed and the system moves towards

a ferromagnetic phase. These results are presented in Sec. 5.2, and have been

previously published in [204]. Under hydrostatic pressure, the system is per-

turbed into an antiferromagnetic phase. This is the basis for the measurements

in Sec. 5.3, and are contained in a paper that will soon be submitted for pub-

lication [205].

5.1 Introduction

As described in Section 2.3, neutron scattering measurements have seen

spin correlations at commensurate (1 0 0) and incommensurate (1.4 0 0) wave

vectors. These are thought to be connected to the nature of the hidden order

in this material.
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Transport measurements on URu2−xRexSi2 had been performed previously [137,

206, 207] and had found that Re-doping suppresses the hidden order, as shown

in the phase diagram (Fig. 5.1). It has also been shown that the application

of hydrostatic pressure enhances T0 before giving rise to an antiferromagnetic

phase.

J. Phys.: Condens. Matter 22 (2010) 164204 N P Butch and M B Maple

Figure 3. Arrott–Noakes scaling law and modified Arrott plots for
URu1.70Re0.30Si2. (a) In the scaling plots, |M|/|t |β versus H/|t |δβ ,
the M(H) data collapse onto two curves for T > TC and T < TC.
(b) In the modified Arrott plots, |M|1/β versus |H/M|1/γ , the M(H)
data are linearized and evenly spaced in temperature.

Figure 4. Re concentration dependence of magnetic critical
exponents, critical temperature, and ordered moment of
URu2−x Rex Si2. The x-dependence of δ and γ , and TC and M0 (for
x � 0.5) is well described by linear fits. The values of δ − 1, γ , TC,
and M0 extrapolate to zero near x = 0.15. Error bars denote the
range of values that satisfy the scaling analysis.

at x = 0.15 ± 0.03. This is the first documented example
of such a trend. The critical exponents deviate substantially
from mean-field values and values describing classical FM
transitions, where β < 0.5 and δ > 3. Near the quantum phase
transition, as x decreases, δ → 1 as the M(H ) isotherms (at
T = TC) become less curved. Because β remains constant,
γ → 0, implying a sharpening of the curvature of the

Figure 5. Comparison of the phase diagrams of URu2−x Rhx Si2 and
URu2−x Rex Si2 up to 50% substitution. In URu2−x Rhx Si2, the hidden
order appears to be suppressed by x = 0.10, although for
0.04 � x � 0.06, HO gives way to larger-moment AFM order. The
complex AFM and high-T AFM phases are characterized by
local-moment order. Closed circles follow [10] and open squares
follow [11]. In URu2−x Rex Si2, the hidden order persists to x = 0.10.
Ferromagnetic order appears to emerge near x ≈ 0.15, and TC
increases with x until x = 0.8. Structural heterogeneity sets in near
x = 1. Open triangles follow [4]. The range of NFL behavior was
established in [15, 16].

divergent susceptibility at TC. While this behavior looks like
a trend towards a first-order transition, note the simultaneous
suppression of the order parameter M0.

The Re concentration dependence of the HO and FM
phases in URu2−xRex Si2 is shown in figure 5. Although the
HO transition can only be determined for x � 0.10, the HO
phase boundary does extrapolate to 0 K near x ≈ 0.15, where
it might meet the FM phase at a multicritical point. There is no
direct evidence yet that the HO and FM phases meet, but it has
been observed that AFM correlations and magnetic excitations
associated with the hidden order phase persist to x = 0.35 [16].
Such correlations provide a plausible explanation for the
unusual critical behavior of the FM ordered phase. Another
possible cause is a competition between magnetic order and the
heavy fermion state in URu2−x RexSi2. However, the details of
this interplay are not certain, nor is it known whether itinerant
FM arises from a light band or a heavy band in URu2−x Rex Si2.
FM Kondo lattice models for both light and heavy magnetic
bands are consistent with the measured enhanced specific
heat [21, 22]. Also shown in figure 5 is the range of x
over which NFL behavior has been observed [15, 16], which
appears to coincide with the FM ordered phase. There is
some correlation between the NFL effects and the novel critical
behavior: power-law exponents describing unconventional T -
dependence of the magnetic susceptibility [15] are in good
agreement with values of γ determined by the scaling analysis,
implying that they actually describe the same phenomenon.

3

Figure 5.1: Magnetic Phase diagram of URu2−xRexSi2 showing the antiferro-
magnetic (hidden order) and ferromagnetic phases. Figure taken from [137]
and used with permission. See also [206] and [207].

The response of the spin correlations under these perturbations are dis-

cussed in this Chapter, in an effort to elicit the properties of the hidden order

phase.

5.2 Measurements of Re-doped URu1.9Re0.1Si2
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To check for static magnetism, elastic scattering was performed at 2 K, in

the hidden order phase, and no peaks were observed at either the commen-

surate or incommensurate points. This is in contrast to the parent material,

where a minority phase creates weak elastic scattering at these points [120],

so any static moment in the Re-doped compound must be smaller than what

is observed for the parent compound ∼ 0.03 µB.

To measure the change in the inelastic spectrum across T0, the scattering

along the (H 0 0) direction at an energy transfer of 2.9 meV was measured at

2 K and 40 K, shown in Fig. 5.2. At 2 K, the scattering shows the relative

strength expected from the magnetic form factor at equivalent incommensurate

wave vectors (0.6 0 0) and (1.4 0 0). At this temperature, the scattering at

the commensurate (1 0 0) position also exhibits comparable strength. The

fast neutron background is shown, as well as the total sample background,

obtained from the fitting, described below.

The change in scattering as a function of temperature, both at the com-

mensurate and incommensurate positions, can be used to identify the hidden

order transition. At 40 K, well above the hidden order transition, the incom-

mensurate scattering remains quite strong at 2.9 meV. It appears with roughly

half the intensity as in the hidden order phase, but the commensurate scat-

tering has been diminished significantly. This is consistent with the idea that

the commensurate (1 0 0) fluctuations are the signature of the hidden order

phase [208]. Fig. 5.3 shows the temperature dependence of the commensurate

(1 0 0) fluctuations at 1.65 meV. This measurement was performed under dif-

ferent experimental conditions, which accounts for the change in background
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Figure 5.2: Inelastic scattering along the (H 0 0) direction for an energy trans-
fer of 2.9 meV at T = 2 K (black squares) and T = 40 K (red circles). At
40 K, well above the hidden order transition, there is partial suppression of
the incommensurate fluctuations. In contrast, there is almost complete sup-
pression of the commensurate fluctuations. The lines are Gaussian fits at each
of the three peak positions. Figure taken from [204].

compared to Fig. 5.2, but with the same array of single crystals. A disconti-

nuity in the temperature dependence of the peak is observed around ∼13 K,

which may indicate the onset of the hidden order phase. This change is not as

clear as in the parent material [208], but this is likely due to electronic disorder

associated with Re doping. The reduction of T0 at this level is in agreement

with previous results [140, 206, 209].
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Figure 5.3: The temperature dependence of the commensurate (1 0 0) fluc-
tuations in URu1.9Re0.1Si2 at 1.65 meV. The onset of order parameter-like
behaviour is observed around at the hidden order phase transition, T = 15 K.
The inset shows a close-up of the data below 30 K. Figure taken from [204].

Energy scans at ~Q = (1.4 0 0) comparing the Re-doped sample with the

pure material are shown in Fig. 5.4. The data have been normalized to a

constant volume for the two crystals via phonon measurements at (2.3 0 0)

and (1.8 0 0), respectively. The spectrum of URu1.9Re0.1Si2 also exhibits an

incommensurate spin gap similar to that in pure URu2Si2 [115, 210], but Re-

doping seems to lower the value of the gap.
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Figure 5.4: The fits to the incommensurate fluctuations for (a) URu1.9Re0.1Si2
at T = 2 K and for (b) URu2Si2 at T = 3 K and 5 K (combined data). The
blue line is the fit to Eq. 5.1 and the red line is a fit to a Lorentzian of energy
2∆, amplitude A, and damping 2γ = FWHM, convoluted with the resolution
function, as described below. For the Re-doped case, the nesting gap energy,
∆, is reduced to 60% of its value in the pure system. Figure taken from [204].

The normalized intensity in Fig. 5.4 shows that doping has reduced the

intensity at the incommensurate wave vector by a factor of two, obtained from
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the integrated intensity of the peaks. Re doping also increases the spectral

width as seen in Fig. 5.4, showing that the fluctuations are highly damped by

doping. The slowing of the fluctuations is more dramatic at the commensurate

wave vector, as shown in Fig. 5.5. There, the lifetime is so short that the

characteristic energy barely gives a peak in the spectrum. It may also signal

the destruction of perfect nesting by charge impurities.

Band structure calculations and ARPES measurements suggest that there

is partial Fermi surface nesting at the incommensurate wave vector [210, 107].

A theory based on a spin resonance in the hidden order state, involving tran-

sitions between nested parts of the Fermi surface separated by ~Q = (1.4 0 0)

has been proposed by Balatsky et al. [107]. This spin resonance leads to the

appearance of a particle-hole condensate [107]. The fermion energies are as-

sumed to rise quadratically above the hidden order gap, ∆ ~Q? , allowing pairs

of excitations to contribute to the dynamic susceptibility measured by by neu-

tron scattering [107]. The data of Fig. 5.4 are fairly well-described by this

theoretical model, given by:

χzz( ~Q?, ω) = A2|∆ ~Q?|2
∫

1√
E2 −∆ ~Q?

1

ω2 − 4E2
dE (5.1)

to which a constant background (bg) has been added, shown by the blue

lines in Fig. 5.4. In this model, the gap in the spin spectrum in Fig. 5.4 is

equal to 2∆ ~Q? .

In Fig. 5.4, the model for the spectrum has been convoluted with the

four-dimensional instrumental resolution using RESLIB, as described in Sec-
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Figure 5.5: (a) The elastic scattering at (1 0 0) in the URu1.9Re0.1Si2 sample,
measured at T = 2K. (b) The (1 0 0) inelastic scattering in the pure URu2Si2
system, measured at 3 K and 5 K (combined data). Both were fit to a Gaussian
for the elastic peak and a Lorentzian of energy ω ~Q = 2∆, amplitude A, and
damping 2γ = FWHM for the inelastic peak, convoluted with the resolution
function. The commensurate fluctuations of the hidden order state are damped
in the presence of Re-doping. Figure taken from [204].
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tion 3.3.5 [171]. The required spin velocities were taken from Ref. [115]. The

spectrum was broadened slightly to deal with the square root singularity of

Eq. 5.1 by adding a small imaginary part γ to the frequency in such as way

that it is analogous to the broadening γ of Fig. 5.4 described in relation to

Eq. 5.2. The data has been corrected for higher-order perturbation of the

monitor rate. This has been done since the amount of higher-order scattering

in the monochromator is energy-dependent, but is known for most instruments

and so this can be corrected in the analysis.

Recent measurements of the inelastic scattering along (H 0 0) have been

analyzed in terms of a peak and a continuum [208]. In contrast to this work, no

additional continuum was needed to describe the data. However, attempts to

fit the commensurate excitations to the Balatsky nesting equation did not con-

verge. Therefore, the spectra at both the commensurate and incommensurate

points were fit to Lorentzians, give by:

I( ~Q?, ω) =
A

ω ~Q?

[
1

(ω − ω ~Q?)2 + γ2
− 1

(ω + ω ~Q?)2 + γ2
] (5.2)

This was multiplied by a Bose factor, and convoluted with the resolution

function, as described above and in Sec. 3.3.5. The commensurate fluctuations

at (1 0 0) for the Re-doped and parent samples are shown in Fig. 5.5(a)

and 5.5(b), respectively. Compared to the parent compound with a spin gap

of 1.75 meV, the commensurate fluctuations are peaked at a lower energy,

1.38 meV. This corresponds to a reduction factor of 0.79, which tracks the

reduction of T0. Within a nesting picture, it appears that Re impurities greatly

weaken the nesting that is present in the pure system.
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As temperature is increased, the commensurate fluctuations are destroyed

much more quickly than the incommensurate ones. Thus, the hidden order

gap (the gap around (1 0 0)) becomes much less well-defined. Both the com-

mensurate and incommensurate spectral form is that of a resonant frequency

that decays into the Re-induced continuum of the itinerant particle-hole states.

The Re-doping achieves this by ~Q-broadening the nesting that gave the well-

defined spectral onset above the gap. The relatively large spin wave veloci-

ties [115] then convert the ~Q-broadening into an observed spectral broadening.

This suggests that the gap may vanish when the quantum phase transition to

ferromagnetism is reached.
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Figure 5.6: Locus of the half-widths in reduced wave vector, H, of spin fluctu-
ations around (1.4 0 0). These inverse dynamic correlations lengths are narrow
in wave vector for low energies, but they broaden significantly at higher ener-
gies. The black circles are the center of the peak, while the red squares are
the FWHM of the peaks. The error bars for the low-energy data lie within the
points. Figure taken from [204].
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The ~Q-width of the incommensurate excitations is shown in Fig. 5.6 as

a function of energy. Constant energy scans were measured along (H 0 0) at

energies ranging from 2.1 to 10.3 meV. These ~Q-E patterns with Re present are

very similar to those observed in the pure material [210]. The FWHM in H at

10 meV is anomalously large because of an overlap with spin cones emanating

from (1 0 0) and phonons from (2 0 0), but the low-energy correlation width

is accurate. The intensity and peak energy of the excitations have decreased

from the parent material, but their ~Q-width and hence their dynamic spin

correlation lengths remain unchanged. Those incommensurate fluctuations

that are not a primary signature of hidden order are barely affected by doping

or temperature. So the predominant behaviour that survives the approach

to the quantum critical point is the robust cone of gapped, incommensurate

fluctuations, similar to the parent material.

5.3 Measurements of URu2Si2 Under Hydro-

static Pressure

Measurements were performed in three temperature- and pressure-driven

phases of URu2Si2. These are the paramagnetic (P = 0, T = 25 K), hidden

order (P = 0, T = 2 K) and antiferromagnetic (P = 10.1 kbar, T = 4 K)

phases. The inelastic neutron scattering measurements are shown in Fig. 5.7.

To normalize the data between the paramagnetic and hidden order phases,

the phonon at (2 0 0) was used. Since the sample environment is different when

being measured under pressure, a more complicated procedure was necessary

to normalize the data in the antiferromagnetic phase. The background was
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Figure 5.7: The scattering intensity as a function of energy and scattering
vector along (H 0 0) in the three phases studied: (a) at ambient pressure and
25 K, in the paramagnetic phase. The phonon at (2 0 0) is visible, as are
the excitations at the incommensurate (1.4 0 0) wave vector. (b) at ambient
pressure and 2 K, in the hidden order regime. The phonon is present with
equal intensity, while the excitations at (1.4 0 0) have become gapped, and
more slowly dispersing. The commensurate excitation at (1 0 0) is also present.
(c) at 10.1 kbar and 4 K, in the antiferromagnetic phase. The scattering here
looks qualitatively similar to the spectrum in the hidden order phase, with
some additional intensity at the commensurate point. Figure taken from [205].
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first removed by subtracting a measurement of a piece of Al occupying the

same volume as the sample and pressurized to 10.1 kbar. Then the data was

normalized to the intensity in the hidden order phase by comparing the (1 0 0)

elastic peak. This yields an approximate transmission of the pressure cell of

18% and a transmission of the He of approximately 1%. This is an inexact

method, producing a normalization that is only valid within ∼50%, but it

does provide relatively good agreement with the hidden order phase and with

previous measurements in the antiferromagnetic phase [211]. The data has

also been corrected for the higher-order perturbation of the monitor.

The paramagnetic phase shows nearly absent commensurate excitations,

as well as incommensurate correlations that are gapless and strongly dispers-

ing. Upon entering the hidden order phase, the commensurate excitations

are much stronger, as are the incommensurate features. The incommensu-

rate excitations have also become gapped. The antiferromagnetic phase looks

qualitatively similar to the hidden order phase, with strong commensurate and

incommensurate excitations with a spin gap present at the incommensurate

wave vector. The spin gap appears to have increased in the antiferromagnetic

phase compared to the hidden order phase. In the antiferromagnetic phase,

there is elastic magnetic scattering present at (1 0 0), arising from the static

magnetic ordering in this phase. Thus, the excitation at (1 0 0) is expected,

in contrast to other measurements that have not observed this feature [208].

The phases can also be compared qualitatively by using constant E slices

in the (H 0 L) plane, as shown in Fig. 5.8. These slices were constructed by

integrating ±0.5 meV around 2, 5, 8 and 11 meV (shown clockwise from top
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left) and folding the data into the H,K > 0 quadrant, allowed by the tetragonal

symmetry of the crystal. In agreement with the observations in Fig. 5.7, the

incommensurate excitations are present in all three phases, albeit are much

stronger in the hidden order and antiferromagnetic phases. The commensurate

excitations are only present in the hidden order and antiferromagnetic phases.

Comparing these two phases, we see that the spin gap is larger in the antifer-

romagnetic phase. This is seen in the 5 meV slices, where all of the excitations

are observed in the hidden order phase but the incommensurate features are

not seen at 5 meV in the antiferromagnetic phase, due to this shift. Further-

more, the 8 meV slice shows the overlap of the two excitations in the hidden

order phase, while they still appear separated in ~Q in the antiferromagnetic

8 meV slice.

To quantify these measurements, cuts of the data through the wave vectors

(1 0 0) and (1.4 0 0) in each of the three phases are shown in Fig. 5.9. Following

the analysis in Ref. [115], the data in each phase was fit to a spin wave model

for interacting singlets, given by Eq. 5.3:

I( ~Q∗, ω) =
A

ω ~Q∗
·

[
1

(ω − ω ~Q∗)2 + γ2
− 1

(ω + ω ~Q∗)
2 + γ2

]
(5.3)

where A is the Intensity and γ is the FWHM width of the peak. The gap

energy, ∆, is contained in the term ω ~Q? , given by:

ω ~Q =
√

∆2 + v2
H(H −H0)2 + v2

K(K −K0)2 + v2
L(L− L0)2 (5.4)
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Figure 5.8: Constant energy slices in the (H 0 L) plane in each of the three
phases. Energies shown are 2, 5, 8 and 11 meV (clockwise from top left).
The range of integration of energy for the slices was ±0.5 meV. Figure taken
from [205].
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This was multiplied by a Bose factor, and convoluted with the 4D instru-

mental resolution function using RESLIB [171]. Using data taken from [115],

the required spin velocities were taken to be: vH = 56.30, vK = 36.61 and

vL = 19.97 meV/r.l.u. around ~Q = (1.4 0 0) and vH = 48.64, vK = 63.78 and

vL = 27.50 meV/r.l.u. around ~Q = (1 0 0).

The results of this fitting are given in Table 5.1. In agreement with pre-

vious measurements of the commensurate spin excitations [115, 127, 208], a

peak around 2.26(1) meV was found. Surprisingly, this peak is unaffected

by the transition to the hidden order phase. The incommensurate gap is af-

fected by the transition to antiferromagnetism, with a gap that increases by

∼30%. While this may be due to the strengthening of the hidden order and

an increase in T0, the increase in the gap is proportionally larger than the

increase in T0. It is also worth noting that the ~Q-width of the excitations in

the antiferromagnetic phase is similar to that of the hidden order phase. This

qualitative similarity is supported by transport and thermodynamic measure-

ments that find Fermi surface reconstruction when passing from the param-

agnetic to the hidden order phase [92, 93]. In contrast, there is no significant

Fermi surface reconstruction across the hidden order-antiferromagnetic phase

boundary [143, 127].

5.4 Conclusions

The neutron scattering measurements in this Chapter have focused on the

excitations present in the hidden order phase, and their response to two per-
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Figure 5.9: The energy-dependence of the scattering intensity at the com-
mensurate (filled circles) and incommensurate (open circles) wave vectors in
each phase. The lines are fits to the data as described in the text. (a) In the
paramagnetic phase, no scattering is seen at the commensurate point, while
a weak signal is seen at the incommensurate point. (b) In the hidden order
phase, the scattering is much more intense at both wave vectors while opening
a spin gap at (1.4 0 0). (c) In the antiferromagnetic phase, both peaks are still
present. The incommensurate peak seems to have shifted to slightly higher
energies. (inset) The scattering along (1 0 L) in the antiferromagnetic phase
shows the substantially more intense peak at (1 0 0), arising from the large,
ordered antiferromagnetic moment. Figure taken from [205].

turbations: chemical pressure through Re doping and the application of hy-

drostatic pressure.
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Phase ~Q Intensity ∆ (meV) γ (meV)
PM (1 0 0) 7.69(13) 2.32(3) 2.41(2)
PM (1.4 0 0) 16.69(15) 2.23(1) 1.75(1)
HO (1 0 0) 12.38(3) 2.26(1) 0.91(1)
HO (1.4 0 0) 10.60(2) 4.15(1) 0.65(1)
AF (1 0 0) 17.23(69) 2.27(2) 0.93(2)
AF (1.4 0 0) 13.3(2.5) 5.50(1) 0.68(1)

Table 5.1: Results of fitting the data in Fig. 5.9 to the dispersion described in
Eq. 5.3. Data taken from [205].

When doped with 5% Re, the commensurate spin fluctuations lose much

of their collective peaking as nesting is disturbed. The lifetime of these spin

fluctuations, or more likely the fermions from which they arise, is shorter in

the Re-doped compound compared to the parent material. However, the spin

gap that is present in the parent material is also present under this chemical

doping. Though weakened, it indicates that the hidden order phase survives

at least halfway to the quantum critical point to ferromagnetism. This is a

contrasting case to Rh doping, where the hidden order phase is destroyed as

the antiferromagnetic phase is enhanced.

When hydrostatic pressure greater than 6 kbar is applied, there is a phase

transition to an antiferromagnetic phase. As described above, the spin cor-

relations within the antiferromagnetic phase are qualitatively similar to those

of the hidden order phase. This extends to the gapped nature of the incom-

mensurate feature as well as the ~Q-width of the excitations. The qualitative

similarities suggest that the hidden order phase is closely related to the conven-

tional antiferromagnetic phase that arises with the application of hydrostatic

pressure. The main difference that is observed between the two phases in an
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increase in the magnitude of the gap at ~Q = (1.4 0 0). This may be a result of

the strengthening of the hidden order phase that occurs with the application

of hydrostatic pressure [212]. This trend continues as the antiferromagnetic

phase takes over.

Together, these two sets of measurements display the robust properties of

the spin correlations present in the hidden order phase. With perturbations

caused by the application of chemical and hydrostatic pressure, the excitations

survive as the system approaches (in the case of Re-doping) or even enters

(with hydrostatic pressure) a more conventional magnetic state. This suggests

an intimate relationship between conventional magnetism and the hidden order

phase in URu2Si2.
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Chapter 6

Conclusions

6.1 Ba(Fe1−xCox)2As2 and Sr(Fe0.87Co0.13)2As2

Muon spin relaxation/rotation/resonance (µSR) was used to measure sev-

eral single crystals of the series Ba(Fe2−xCox)2As2 with Cobalt concentra-

tions x = 0.038, 0.047, 0.061, 0.074, 0.107 and 0.114. A single crystal of

Sr(Fe0.87Co0.13)2As2 was also measured. The two samples with the lowest

doping, x = 0.038 and x = 0.047, showed strong ĉ-axis magnetism occurring

below TSDW . The magnetic properties, such as the size of the local field and

the magnetic volume fraction, do not change below the superconducting tran-

sition. The measurements suggest that the local magnetic field is increasingly

disordered as the concentration of Co increases. These samples were shown

to exhibit both superconductivity and magnetism, but that the entire sam-

ples sees magnetism means that superconductivity exists in or near regions of

strong magnetic order.

The remaining compounds (with x = 0.061, 0.074, 0.107, 0.114 and

Sr(Fe0.87Co0.13)2As2) were measured with ZF-µSR and no magnetic ordering
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was found down to T = 1.65 K. An analytic Ginzburg-Landau model was

used to fit the data and obtain absolute values for the penetration depth, λ.

A model for the temperature dependence of the superfluid density, ns ∝ 1/λ2,

based on two s-wave gaps describes the data well. The superfluid density

varies roughly quadratically with the superconducting transition temperature,

TSC . Below TSC , a paramagnetic frequency shift was observed indicative of

field-induced magnetism along the ĉ crystallographic direction.

These measurements represent one of the first measurements of the pen-

etration depth in the iron pnictide superconductors. The values of the gaps

obtained from fitting this data have been confirmed using other techniques, as

well as by theoretical calculations. The µSR techniques described here have

been used in other pnictide compounds and have proven effective in measuring

magnetic properties of these compounds in the superconducting state.

6.2 URu1.9Re0.1Si2 and URu2Si2

Measurements of URu2Si2 under chemical and hydrostatic pressure focused

on measuring the spin correlations that are present in the hidden order phase.

The chemical pressure that is induced by 5% Re doping perturbs, but

does not destroy, the commensurate spin excitations. The commensurate spin

fluctuations lose much of their collective peaking, indicating that the lifetime

of the fermions that give rise to them is shorter in the Re-doped compound

compared to the parent material. The spin gap that is present in the parent

material is also present under this chemical doping. The hidden order phase
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survives at least halfway to the quantum critical point to ferromagnetism, but

is weakened by the Re substitution.

Under hydrostatic pressure of 10.1 kbar, the spin correlations are found to

be qualitatively similar to those of the hidden order phase. The ~Q-width of

the excitations and their gapped nature remains unchanged upon entering the

antiferromagnetic phase. Quantitatively, there is an increase in the magnitude

of the gap at ~Q = (1.4 0 0). This may be a result of the increase in the

transition temperature preceding the onset of the antiferromagnetic phase.

These studies find that the spin correlations present in the hidden order

phase are fairly robust against perturbations. This suggests an intimate re-

lationship between conventional magnetism and the hidden order phase. As

work continues into the nature of the broken symmetry in this phase, this

work may lead to avenues of exploration related to more conventional mag-

netic states.

Future work for this compound may involve measurements at other pres-

sures, allowing for a study of the excitations more completely across the hid-

den order-antiferromagnetic phase transition. Similarly to what has been done

with previous measurements [208], it may be possible to do this at a pressure

where both the hidden order and antiferromagnetic phase are accessible by

varying temperature.
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[132] J. Levallois, F. Lévy-Bertrand, M.K. Tran, J.A. Mydosh, Y.-K. Huang,

and D. van der Marel. Phys. Rev. B. 84 (2011) 184420(R).

[133] A.R. Schmidt, M.H. Hamidian, P. Wahl, F. Meier, A.V. Balatsky, J.D.

Garrett, T.J. Williams, G.M. Luke, and J.C. Davis. Nature. 465 (2010)

570.

138



Ph.D. Thesis ––– Travis Jay Williams ––– McMaster University - Physics and Astronomy ––– 2013

[134] P. Aynajian, E.H. da Silva Neto, C.V. Parker, Y.-K. Huang, A. Pa-

supathy, J.A. Mydosh, and A. Yazdani. Proc. Nat. Acad. Sci. U.S.A.

107 (2010) 10383.

[135] R. Yoshida, Y. Nakamura, M. Fukui, Y. Haga, E. Yamamoto, Y. Onuki,

M. Okawa, S. Shin, M. Hirai, Y. Muraoka, and T. Yokoya. Phys. Rev.

B. 82 (2010) 205108.

[136] G.L. Dakovski, Y. Li, S.M. Gilbertson, G. Rodriguez, A.V. Balatsky,

J.-X. Zhu, K. Gofryk, E.D. Bauer, P.H. Tobash, A. Taylor, J.L. Sarrao,

P.M. Oppeneer, P.S. Riseborough, J.A. Mydosh, and T. Durakiewicz.

Phys. Rev. B. 84 (2011) 161103(R).

[137] N.P. Butch and M.B. Maple. J.Phys.: Condens. Matt. 22 (2010) 164204.

[138] M.S. Torikachvili, L. Rebelsky, K. Motoya, S.M. Shapiro,

Y. Dalichaouch, and M.B. Maple. Phys. Rev. B. 45 (1992) 2262.

[139] Y. Kohori, Y. Noguchi, T. Kohara, Y. Dalichaouch, M.A. de la Torre,

and M.B. Maple. Physica B. 186-188 (1993) 792.

[140] Y. Dalichaouch, M.B. Maple, M.S. Torikachvili, and A.L. Giorgi. Phys.

Rev. B. 39 (1989) 2423.

[141] St. Thieme, P. Steiner, L. Degiorgi, P. Wachter, Y. Dalichaouch, and

M.B. Maple. Europhys. Lett. 32 (1995) 367.

[142] N.P. Butch, J.R. Jeffries, S. Chi, J.B. Leao, J.W. Lynn, and M.B. Maple.

Phys. Rev. B. 82 (2010) 060408(R).

139



Ph.D. Thesis ––– Travis Jay Williams ––– McMaster University - Physics and Astronomy ––– 2013

[143] M.W. McElfresh, J.D. Thompson, J.O. Willis, M.B. Maple, T. Kohara,

and M.S. Torikachvili. Phys. Rev. B. 35 (1987) 43.

[144] J.R. Jeffries, N.P. Butch, T. Yukich, and M.B. Maple. Phys. Rev. Lett.

99 (2007) 217207.

[145] J.R. Jeffries, N.P. Butch, T. Yukich, and M.B. Maple. J. Phys.: Condens.

Matter. 20 (2008) 095225.

[146] G. Motoyama, N. Yokoyama, A. Sumiyama, and Y. Oda. J. Phys. Soc.

Jpn. 77 (2008) 123710.

[147] H. Amitsuka, M. Sato, N. Metoki, M. Yokoyama, K. Kuwahara,

T. Sakakibara, H. Morimoto, S. Kawarazaki, Y. Miyako, and J.A. My-

dosh. Phys. Rev. Lett. 83 (1999) 5114.

[148] K. Matsuda, Y. Kohori, T. Kohara, H. Amitsuka, K. Kuwahara, and

T. Mastumoto. J. Phys.: Condens. Matter. 15 (2003) 2363.

[149] M. Nakashima, H. Ohkuni, Y. Inada, R. Setti, Y. Haga, E. Yamamoto,

and Y. Onuki. J. Phys.: Condens. Matter. 15 (2003) S2011.

[150] A. Villaume, F. Bourdarot, E. Hassinger, S. Raymond, V. Taufour,

D. Aoki, and J. Flouquet. Phys. Rev. B. 83 (2008) 193102.

[151] N.V. Abrosimov, S.N.Rossolenko, V. Alex, A. Gerhardt, and
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