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ABSTRACT

. The problem of finding the characterizing parameters
of an unknown linear discrete-time system "on-line'" from
the measurements 6f the input and output déta is considered
in detail. Two new algorithms for sysiem identification
have been proposed for the e§timation of parémeters of time-
invariant single-input single-ougput systenis. The first
algorithm, called the Generalized Pseudoinverse, is the
recursive version of the generalized least squares algorithm.
The second algorithm, combining pseudoinverse and stochastic
approx. algorithm, is an iterative scheme and found to be
computationally more efficient‘than the first algorithm. The
two algorithms have been used in a number of simulation pro-
blems to test the reliability and efficiency of the methods.
A critical comparison of the new method with the'existing |
a}gorifhms has shown the new algorithm to be reliable in
most of the problems considered. Also a new recursive
pseudoinverse algorithm has been developed for iéentifica;

tion of a multi-variable transfer function model.
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CHAPTER 1 N
INTRODUCTION

The past two decades have seen'tremendous aavances'in
optimal controi theory. However one sees very little of it
being applied to industrial process control. One of the
"reasons for this lack of fncentive in this direction is thgt
most of thé work onioptimal control applies only to the
deterministic systems for which the mathematicgllmodels_are
known pﬂgciselyﬂ" In reality such gy;tems do not exist.

Real processes are almost always characterized by random
disturbances,\their mathematical models are only approximate
and the values of many paiameters are nof precisely known.
'In Stch cases, an effective control réquiyes that the para-
meters of the system be determined on the basié of observed
input output data and the estimates be ﬁpdated in the light
of new observations. This clearly calls for the development
of suitable algorithms that are recursive in ﬁature. Moreover,
for practicak implementation of any ;hentification scheme in
real time using mini computers requires parameter estimators
which are numerically economical and robust. This problem
of recursive identification'of linéér dynamic systems from
the obse;¥éh input-~output data has recéived considerable at-

tention in recent years.
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The lack of a suitable model still remains one of
the major obstacles in the implementation of control systems
in process industries. Many of the industrial process control
systems réquire simple dynamic models involving only basic
process variables. Therefore, the dynamic properties that
are of interest for control purposes could probably be
described by simple models. Application of systen identi:
fication can indicate suitable approximations. Moreover
theoretical modelling of disturbances is very difficult.
Identification is a valuable tool to determine the characteris-
tics of the disturbances. .
A number of methods of identification have been pToposed

in the literature in recent years, but they require considerable

computation, in addition to the fact that one has to wait for

accumulation of sufficient data to make the computation possible.

There is thus a need for a method of identification which allows
one to start with an estimate of the parameters of the model
even after the first set of data has been obtained, and then
keep on improving it as more data arrive. Moréover, a realistic
method must take intb account the fact that all measurements are
contaminated with noise.

The major effort in this thesis tis diigcted towards the
problem of sygtém identification under open loop conditions
when the observed data are corrupted with disturbances. AtteA-
tion is restriéted to the case Lhere the model of the plant is

1)
linear and time-invariant, and the order of the plant is known.

had



Desﬁite fhe.fundémentrT iwyértﬁice o< closég—loop identi-
fication,\attention is restricted only to identification of
system under open-loop gondition. However, in practical situa-
tions it may not be possible to open the feedback loop for iden-
tification purpose and identification may have to be carried out

with the normal operating conditions without disturbing the feed-

back path. . .

Chapter 2 discusses the problem associated with the
modelling of .an unknown process operating in stochastic
‘environment.:\lt is also concerned with the definition and
classificatioﬁ of different methods for system identification,

\
Chapter 3 gives a brief description of different off-
1

line identifichtion methods.

\

In éhapte% 4 the general on-line identification problem is
discussed for &pe single-input single-output case. This problem
is formulated b& relating the input-output record of the discrete-
time System wité the ungnown parameters in terms of a matrix
equation. Seve%gl existing on-line identification algorithms
are briefly discbssed. It is shown that although the pseudoin-
verse algorithm %s computationally simple it gives biased esti-
mates. The instﬂumental variable method (Wong and Polak, 1967)
does not guaranteé'uniqueness of the estimates. Stochastic
approximation algorithms for linear discrete systems (Saridis
and Stein, 1968) require a-priori knowledge of the noise vari-
ances for on-line uﬁbiésed identification.. The Generalised
least-squares method kClark,’1967) requires idéntification of
noise statistics and there is a considerable increase in compu- -
tation time due to iteréﬁive nature of the algorithm. For thé

+

of M-~ <fa’ ity is ‘not guaranteed.

‘



Ip the thesis, two new schemes are proposed for the esti-
mation of parameters of single-input single-output system.
These schemes essentially try to remove the bias associated with
parameter estimates by incorporating a noise model and recursively
estimating the parameters of the process model and noise model.
The first method called the Generalised Pseudoinverse 1is a re-
cursive version of the generalised least squares algorithm and
is based on the properties of pseudoinverse. The second scheme
combining the pseudoinverse and stochastic approximation algorithms
results in an iterative procedure in which noise parameters are
estimated by thé stochastic approximation algorithm and the
process p;rameters are estimated by the pseudoinverse algorithm.

The second algorithm is shown to be computationally more efficient

than the first algorithm based on the reclrsive Yersion of general-
ised least squares algorithm. These algorithms are discussed in
detail in this chapter.

Chapter 5 presents the results of identification experiments

performed on data obtained from simulated processes as well as

from processes under open-loop operation.

Chapter 6 is devoted to the problem of identification
of a multivariable system. A new recursive pseudoinverse
algorithm is proposéd for identification of such a system.

Conclusions and suggestions for future investigation

in the problem of identification are discussed in Chapter 7.

.



CHAPTER 2

MODELLING OF INDUSTRIAL PROCESSES

2.1. Introduction.

The choice of model structure is one of‘the basic
ingredients in the formulatioﬁ of the identification probleg.
This is because the accuracy and the quality of the control’
processes depend to a large extent on the availabilitykofﬂ
an _adequate model of the dynamics of the controlled pfgﬁ;:
Models derived from physicel a-priori knowledge often have
a wide range of validify. They usually provide a good insight
into fhe behaviour of the process and can be used for designing
new plants or ﬁadesigning existing ones. H;wever, the
governing equations describing the system may not be known
or they may be highly complex in nature. Therefore, it is
often necessary to take recourse to experimental data so that
a dynamic model may be inferred. Three model building sicps
can be distinguished. " |

(i) Determination of éhq form/of the model based

on physical principles. f”' _

(ii) Estimation of the paramet Frs of the model of

known structure using experﬁmental data.

f
- (iii) Combination of physical nowledge and estimation

~

techniques.



-

The physical knowledge of the process can be used
to establish the structure of the model and to assign numerical
values to some model parameters. Improved estimates of the
parameter values are then obtained from experimentai data.
'‘As many types of model may be employed, it is
preferable to choose a model based on the following properties:-
(L) It must be as simplelas possible with minimal
number of psra?eters.
(ii) It must be based on input-output measurements
and should not depend on measurements that
might be difficult or impossible to make
directly.
© - (dil) ~ The model must adeqﬁately represent the

" ~._ _dynamic behaviour of the pfocess and should be

A able‘fd\acssmmodate stochastic behaviour of
the system. due to ran\aﬁ‘aisturbanges -

(iv) If ppssible the proposed model should simplify

‘ the subsequent operations, viz. identification,
state estimation and controller design.

Sevsrai assumptions are also made about the process
under consideratisn during modelling which will reduce the
amount of work without seriously limiting the usefulness of
the model. The process is known to have the following
properties: »

(a). Linear: Ve shdll assume that the system is

linedr or can be.adeddrtsly approximatéd by



a linearised model.

(b) Stationary: This implies that the process
characteristics are time-invariant.

(c) Stable: 1Itis assumed that the piocess under
consideration ié stable. -Stability per se ié
not essential for identifying a system from a

~

theoretical point of view.

(d) Finite Dimensionaf: The process is assumed t&.
be finite dimensional, i.e. its behaviodr is pre-
dictable from a finite set of system states and systeﬁ
inputs. Accuracy of any identification scheme depends
on th§ correct value of the system order. However, in :
the aﬁsence of.any prior knowledge about the process
order, it may become necessary to £it a number of
models, of different order, and select the one which
provides the best fit as demonstr%ted by-suitable
statist;cal tests. For noise-freé cases many methods
are available for determining the system order, e.g.
one may refer to Lee (1968) and Sinha and Pille
(1971) among others. For cases where observations
are corrupted by noise, Woodside (1971) and Chow
(1972) . have :proposed a set of tests for,g;ﬁriori
estimation of process order. Box and Jenkins (1970)
have given a through treatment of model-order

_determination. ., j

I



The above aésumptions are based in practice on
preliminary experimentation, intuition, a-priori kno&ledge of
the system or engineering judgement,When dealing with control
probiems, the nature of the model, its structure, its degree
of complexity and its accuracy depend upon the type of the'
control, its goal and specifications, as well as upon the
mathematical tools used to build it up. Since most of the
theory on control systems is based on the state space or
transform representation of the systems, ghe majority of

the mathematical models will be either a set of state equations

or transfer functions.

2.2.1. State-Variable Model,

_A finite dimensional linear time invariant discrete-
" time system can be adequatély described by the state variable

difference equations: ) ' -

x (k+1) = A x(k) + B u(k)  (2.1)
N “ N . n

C(k) = Cx(k) . (2.2)
n “ -

wvhere k ¢ Z , . the set of integers, and x (k) eE®, u{k) EP
5 TS

and C(kJ e E, where E' denotes the n-dimensional real vector
n ~

.-space. The matrices A, 3,_C are of compatible dimensions.

The dimension, of x namely n is called the order of the
A . ‘ . ' .
. . \' ‘E"

system. -



2.2.2, Transfer Function Model. -

The transfer function model of the system can be
obtained from the state variable model by taking the z-
transform of the variables in equations (2.1) & (2.2) with

zeyo initial conditions. Thus we have:

¥ o
z X(z) = A X(z) + B U(z) . (2.3)
) n, n,
C(z) = CX (2.4)
N
and hence input ﬁnd output slgnals are related by:
‘C(z) = H(z) U(z) - (2.5)
. LY . " pu
where
R(z) = C(z I ~A) B €2.6)
= (z) , 1= 1,2...m‘
¥ - 2.7)

" j=1,2...p

H(z). is anmxp matrix of rational functions and is palled the
Transfer Function matrix of the system. For the work in this
thesis the transfer function model is chosen as the working

modei in view of the fﬁct that it givés.a direct relationship

between the inputs and the outputs,

2.38.1. Ident1f1cat1jk Problem

s .
Foxr the purpose of this thesis the identifica&ion

problem may be stated as follows.', . >
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Given an accurate mathematical structure - the
transfer function relating input and output in our case -
determine the values of the parameters of the transfer function
from the record of input and output measurements over a finite
period of time in such a way that the dynamic behaviour of
the model accurately describes the dynamic behaviour of tge
process. In other words, the identificationnproblem deals
wvith the determination of those physical quantities that can
not be measured from those that can be measured. So given an
accurate matheﬁaticalastructure the purpose of identification

is to estimate the numerical co-efficients associated with

such a structure.

2.3.2. Formulation of the Identification Probfém.

The common procedure to express the dynamic behaviour
of a process in quantitative form is to use some mathematical
model for the process. We will assume that fhe type of
equation describing the system is known. Once the decision
regarding the topology of the model is made the next step is
the evaluation of the.parameters of the model viz. parameter
estimation. The term identification used in its broadest
sense may encompass parameter estimation, but more speciiicaliy
‘the former is the determination of the tobology of the system,
while the latter is the determination of the parameter values

assuming the topology to be known.

b ey e o R e N
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The problem of parameter estimation can be represented
by the block diagram of Figure 2.1 where P is the process

A
with parameters ¢ and M is'the model with parameters ¢.
"

Since a physicalwprocess or a plant is never ideal, an exact
mathematical model may not be obtained. A choice must be
made such that the model represents or approximates the
system in the best manner. This is achieved by minimisation
of some cost functional dependent on the error.

In the literature a number of different estimation
procedu?es have been developed. These methods dii?er pre-
dominantly in the criteria used fqr defining optimality and
in the use of available a-priori gnowledgeﬂ It is evident that
the choice between these cfiteria has aspects thét are more
or less‘subjective and the mathematieal appreach is strongly
.dependent on theee~criteria‘ Furthermore if greater accuracy
has to be achieved one cannot disregard the interaction between
the physical'p}océss.and the stochastic environment in which
it usually operates. Moreover, aay measurements made on the
process are not exactly reproducible due to the random effects
that are present within and without the process.

Since it is desired to estimgte the process parameter

vector ¢ the intuitive mathematical formulation of the problem

n .
is to minimise the difference between the process parameter
A
vector ¢ and its estimate ¢ As ¢ is inaccessible for direct
N,

measurements one can only mlnimize the expectation of this

difference if‘sufficient a~priori knowledge is available.

L 3
>
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Figure 2.1 Parameter Estimation Problem
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Another approach is to minimize some function or

functional of

e = y -3 (2.8)

the error between the ouytput of the process and the output of
the model. Thé error e can provide some measure of the
correspondence of theparameter vectors. The error e may be
used becausé e can be made measureable and because in some
cases the correspondence of imnput-output relations is more
important than parameter correspondence, particularly if

the model is simpler than the process.

2.3.3. Classification of Identification: Methods.

The identification methods can be divided into two
categories, namely off-line methodé and on-line methods.
An o -~line methpd ié a one-shot approach whereby
the solution aveilable after a fixed and finite number of
steps. Thel ocessing of data can only start'aféer 2ll the
measurements -are completed, gnd estimates are calculated from
the completé records of input and output observafions.
But it ig tﬂe chargcferistiq of'a re#} plant that
. 1ts behaviour often changes gradually' in time, thefefore,g a
one-shot model does not yield positive results and so
depending on the rate of variation, the mode parémeters and
:the sfﬁuqture §bouid be upqéted‘continuously or. at fixed

times in' the course of control. This clearly requires a

|

TN RS 3 WIS et



scheme for parameter estimation which can be implemented
on-line. An identification schéme thch is recursive in
nature and which does not require that the whole s?ring of
input and output data be brought in at each step is called
an 'on-line' method. The parameter estimates are updated
as - new measurements are made,

In order that the identification algorithm be truly
on-line it should satisfy several requirementﬁ. First, it
should be computationally’effigient. This is because all
the necessary calculations have to be completed in updating
the esfimates before the next set of new measu;éments are made.
Mbreover,in an industrial setting, ;dentifiér is only parg
of control loop and the computer is likely to.be used for
other purposes as well. Thus the ease of implementation
and feasibility of'realigtic a@plication depend heavily on
computational simplicity Secondly,it must not require any
special input to‘'be applied to the plant. Thirdly, it should
use thé samples of the input and output data under actual
operating conditions. Fourthly, a realistic on-line method
must take into acdount the fact that all'meagurements are
contaminated with noise. ‘

Fiﬁally,it must not require tﬁe storage of all the
data to make the identification ﬁossible.

= x

N

2.3. 4. Problem“iﬁ‘?ractical Identification. o
v

The term system identificatfbn includes tﬁree types

. . \
of activities: » _ \

14



(i) Hypothesize a model based on physical data.

(ii) Parameter Estimation. ,

(iii) Performance Analysis.
Although the second step dealing with parameter estimation has
received the greategt emphasis in the literature, in practice,
it is often the case that all of the above mentioned steps
are equally impoztant. Thesg¢ steps may have to be repeated e
several~times before the performance analysis shows that the/
idé;§ified model performs satisfactorily for the particular
pﬁrpose for which it is intended to be used. There are many

problems associated with the identification of real processes.

The main reasons are:

-

. .
* (i) Limitations of data: Data from real processes

are limited often in several senses. The data
are not only contaminated by noise ?ut also
there may exist missing data or data with
erroneous values. For many proceéses quantities
that are important cannot be measured directly
and these may cause additional measurement
problems.

(ii) Sampling rate: The intended use of the model
determines the frequency range of intefest.
The chosen sampling rate determines the highest
sampling frequency thrat is possible to observe
in the sampled signal. Gustavsson (1971) has

shown that there exists an optimal sampling-

' &

15



rate with respect to parameter accuracy, but
such a precise choice requires the process
dynamics to bekown. The rule of thumb for

the choice of sampling frequency is to take the
smallest time constant Tmin as the sampling
interval Ts' Goédwin et al (1974) also con-
sidered the problem of determining optimal
sampling intervél in the context of design

of experiments, and showed that to '"achieve
maximal return from an experiment it is essen-
tial to carry out a coupled design of pre-
sampling filter, sampling intervals, and

input signals'. MacGregor and Huynh (1974)
have considered in detail the effect of choice
of sampling interval for process control. In
general as the sampling interval is reduced
the performance of the control system will
improve with corresponding increase in compu-
tafion time and effort.

(iii) VFeedback Structure: Most parameter estimation
algorithms suffer severe difficulties in the
presence of feedback. }Thisvis because, man;
of the assumptions made in identifying open-
loop processés do notlhogd for'systems Operatigg

A

under closed loop. An incorrect model form may



result if standard open-ioop procedures for
model identification are applied to such cases.
For some processes it is often dangerous to
carry out experiments under open-loop.

Fisher (1965) has shown that a process

under closed loop control may-be'identified if
the feedback is made non-linear. Bohlin (1971)

has discussed the implications of closed loop
control on the prob?em of model identifiability
and has shown that %uch a process will be iden-
tifiable provided axsmall perturbation is
superimposed at the@nPut. Gustavsson et al
(1974) have studied ﬁée identifiqgtion of closed-
loop systems and have\deduced identifiability
conditgpns for a variéty of situations. Ljung

et al (1974) have dlscussed in detail the con-
cepts that are useful for the treatment of

system identification under linear feedback
control and suggesp;d a method where a seriés

of different feedback laws are used for obtaining
parameter estimates. Box and MacGregor (1974,
1975) also discussed the proﬂlems associated
with -parameter estimation.-under closed-loop
operating data and gave necessary and sgfficient
éonditions for estimability using data collected

under conditions of optimal control.

Y



(iv)

)

Choice of iden;ification algorithm: Many
techniques have been developed for identi-
fication of process dynamics as indicated

in the survey paper by Astrom and Eykhoff
(1971)., 1Isermann et al (1974), Saridis'(1974),
Sinha and Sen (1975) have presented comparisons
of different identification algorithms and
evaluated the performance of each method. It
is very difficult to give a general answer to
the question of what identification method
should be used for a particular case. For

data with small disturbances any method works
well, For highly disturbed data some elaborate
method has to be tried to extract useful

information

Accuracy of identification: The problem of
assigning accuracy to an identification
experiment 1s a difficult one. The reason
is that accuracy can be defined in several
w;ys and the identification which may be
considered accurate in one sense may be very

inaccurate in many other senses. This problem

is discussed extensively by Astrom (1967), Herles

(1970) and Stepan (1970).

{
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(vi) Identifiability Problems:- If the input
sequence does not adequately excite some of
the modes or if the model includes unknown
dynamics that are fast compared to the
sampling rate the associated parameters may
not-be'identifiable. If the model chosen
to get the input-output data is inadequate
the parameters of that model may be forced
to account for some major unmodeled effects.

' The estimated parameter values may therefore
be quite differen@ from the actual values.
Finally if there are large unaccounted for
instrumental errors or poor initiai parameter

estimates,non~physical parameter values may

result.

All thege difficulties have led to considerable

research 07 the subject of system identification. It seems

to be difficult to give a general answer to all of the

’

above problems faced in practical identification.
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CHAPTER 3
TIME SERIES AND MAXIMUM LIKELIHOOD METHOD
fOR OFF-LINE IDENTIFICATION.

3.1. Introduction.

The term system identification includes three types
of activities, (1) hypothesize a model based on physical
data, (2) parameters es@}mation, and (3) performahce analysis.
The second step dealing with parameter estimation has for the
most part received the greatest attention in the literature.
Héwever, in practice, all of the above meptioned'steps are
equally important. These steps in realit§ are not disjoint,
for @he results of any one may alter the results of another
and, thus, require a repeated application of some or all of
the previous steps. Experience has shown that all of the
above three steps may have to be repeated several times
before the performance analysis shows that thg identified
model is adequate for the particular purpose for which it
is to be used.' This chapter presents a discussion of the
three steps in identification methodology which have been
extensively treated by Box %nd Jenkins (1970). Also
considered is the method of maximum likelihood for estimating
the parameters of the mode}, as it is the most attractive
method from the theoretical point of view and is applicable

20
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to the widest range of situations.

3.2. Method of Box and Jenkins.

Box and Jenkins (1970) have proposed to using general
(
linear difference equations to characterize the dynamic rela-
tionship between the process input and process output. The ’
model can be represented by:
1 -8

+ TR L L.t
8.0 alz a.sz

Y, = - —u, . - (3.1)
t 1+b1z1'+....+brzr -1

where f represents the number of whole periods of time lag
or fransport delay between making a change in the input and

1

the beginning of its effect on the output and z -~ is the

backward shift operatdr such that z—kut = Uy g

However, in practice, the simulation.of the process
based onl& on the trausfer function model is not adequate
because of the preéence of noise in the.prOEess; The noise
which comes from disturbances in the process of oﬁe kind or
- another, can be,in general, described by a time series model.
A time series can be conceived as a realization of a white
noise process 8y passed through a linear fi}ter. Box and
Jenkins introduced the general forﬁ\of the time series model
called Antoregressive-Integrated-Moving Avérage models of

oxder (p, d, q) defined by: L

i y
\ \
o

o . -
: | y



I 1+8, 271 L+ 04 z 4 . (3.2
t (-2 08 (1rg; 272 v 4y 2 P) ¢ (3.
8
) ve ¢p(2-1) " 8-
where {at, t=1,2....} is a white noise sequence with mean

zero and variance 02. The general input denominator term
d

v ¢p(z”l) consists of two terms, a backward difference term
Vd = (1 - z"l)d containing d roots on the unit circle in the
z_1 plane to allow the process to be nonstationary,and a

stationary au?oregressive term ¢p(z"1) containing p roots
outside the unit circle to satisfy stﬁtionarity conditions.
For most stochastic disturbances the various polynomial orders
P, d and q will rarely exceed two.

Any complete description of the process must include
both a description of the dynamic elements relating input to
output and thé description of stochastic distrubance.affecting
the output. The aynamic stochastic model for a process may

< ST N
be written as: ; : .

a, tay z—l... +oa z S b
y = — — u, . + N (3.4)
t ‘ 1+b1 o 1 + br 2z~ T t-£f t
ws(z_l) _f .
= —"*‘:—f— Z ut + Nt : (3.5)
§_(z77) : :



where
. eq(z—l) ( -1, (3.6)
= a = IP 2 a *
t 74 5 (z71y Tt ¢
p
WS(Z 1) a0+a1 Z-l"' +aS Z‘S (3.7)
Srzhy 1+by z-2 *b 2" |
From (3.4)
v. = V(z 1) u, +N (3.8)
t -4 Y t : )
where
-1, -f
w_(z Dz - -
vyl 4 22 = (V47 27 h4V,z7% 400 (3.9)
§.(z 7 .

3.3. Model Building.

Box and Jenkins (1970) have proposed a very extensive

body of technigques for building such a dynamic stochastic

model of a process from the input-output measurements taken

23

on the brocess. In brief, they advocate a three-step iterative

procedure, viz. identification, estimation and diagnostic

checking, to build models characterizing dynamic and stochastic

behaviour of the system. This is illustrated in Figure 3.1,

..

\

—

~

Identification ———qiEétimation,—__Q[Diagnosting Checking

Good

No

. Figure 3.1.Three~Step itérative approach'Tor
- ndel building.

4
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3.4. Identification of Transfer Function Model.

Identification is necessary when the form of the
transfer function model is unknown. The model for the process

may be represented by:
- -1
v = V(z 7) u, + Ny (3.10)

where Vi and u, are outputs and inputs respectively and Nt
is the noise term. The basic tool used for identification
of the transfer function model is the cross—-correlation

function between input and output. The autocovariance and

the cross-covariance -at lag K are defined as:

>

A

Viu®) = ECQQui-n,) ppgmiyg)) (3.11)
A

Vyy x) = E((Y't-uy) (Yt+ K'"l-‘y )) (3.12)
A -

Vag &) = EQQugny) (Fpygmig)) (3.13)
A .

vyu(K) = E(C gmng) (i) “ (3.14)

- where My and p._ are the mean values of u, and Ve respectively.

y
Similarly autocorrelation and cross-correlation co-efficients

at lég K are defined as: he



A v (K)
uu
pgu(K) = ;;;(57 (3.15)
4 . /
A v__(K) oA
gy (E) = Gigzﬁy : (3.18)
A v __(K) X
Puy(R) = ~X (3.17)
/vuu(O)vyy(O)
A v (K) .
pyu(K) = yu (3.18)
/buu(O)vyy(O)

Assuming that the input u, is an uncorrelated white noise

series,multiplying equation (3.10) by ut_ﬁ and taking

expectations yields

vuy(K) = Vg vuu(O) +.vun(K) for K > O (3.19)

= Vya(K) for K < O. (3.20)

Since the input is not correlated with noise /
vun(K) = 0 (3.21)

Vg = o K20, (3.22)
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Knowing vuu(K), vuu(O) one can obtain estimates of VK'

But in practice one uses the estimates of autocovariance

and cross—covariance coefficients as well as of auto-
correlation and cross-correlation respectively. The estimates

buu(K) and vuy(K) of autocovariance and cross-covariance

coefficients respectively are given by:

N-x
~ - 1 — —
vuu(K) = X til (ut—u) (ut+K—u) (3.23)
and g
N 1 N-k _ _ A
J1 vuY'(K) = N til (ut—u); (Yt.’.K“y) (3°24)
i :
where L
' | N
\ _— 1
! u = £ I u (3.25)
| N g 8
. 1y (3
‘ y = F y .26)
N t=1 t

Substituting these estimates in (3.15) and (?.17) puu(K) and

puy(K) of autocorrelation and cross-correlation co-efficients
at lag K can be evaluatéd:
\

\\ A~

Fal \)
puulK) = x‘-‘—}—*—&)—)-' (3.27)
\,uu
and .
~ v (K)
. (K)\ = e (3.28)
uy \\ ¥y (0)Vy (0)
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Thus from (3.22) the estimate VK of VK,is given by:

A v, (K) N V(0
Vg = =2t— = o () [ — k>0 (3.20)
vuu(o) Y vuu(o)

Using these estimates of VK the orders of r, s and f will be
identified and the preliminary estimates of the parameters
8y and bi will be made.

3.5. Identification of tpe Noise Model.

Given the preliminary estimate V(z—l) of the transfer
function V(z~1) as discussed in the last section, then an
estimate of the noise series is provided by:

N =

~ _1 .
t Ve = V(2 7)) u, (3.30)

The stu@y of the estimated agto~correlation function of ﬁt
will ;egd to the ident;fication’of the noise model similar
to th; case of identification of transfer function model.
Once the tentative form of the transfer function of
the process and the noise model is identified,the next step

is the estimation of the parameters of the process and noise

model.

3.6. Estimation. .

In the previous section, the model Yorms were identified

and rough estimates of the parameters were obtained. Since

1 s TV oo HARINY



rough estimates do not allow for checking for the inadequacy
of the modgl,parameters . should be estimated by more
efficient methods. This is done by minimising the condition-

al sum of squares:

1a% (8) (3.31)
Y

i

S5(8) =
v t

¢

where B denotes the pérameters to be estimated. a, can be
"
computed recursively from the appropriate model, for any

given choice of parameters and starting values.

El

3.7. Diagnostic Checking.

Diagnostic'checkinggéf the fitted models using
residuals indicate not only whethexr the representation of
the data provided by the fitted model is adequate, but'if
it is inadequate, how the original model form should be
modified.‘

\\ Let the overall model be given by:
, (

1y ug + v 8y (3.32)

Ve = V(z

; ) » .
Suppose &t be the residuals obtained from the incorrect model

|
. . ./

Yo = Vo(z ) ug + vz agy (3.33)
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Then:
“1, -1 -1 - -1, -1 -1
agy = VRGETH (vzTh - v ) ) uy et vz,
(3.39)
It is apparent that 2y will be cross-—correlated with u,
when the identified transfer function model V,(z 1) is

1

different from the true model V(z ~). Furthermore, if the

transfer function is correct 2.t is given by:

Boy = Vo (zTT) W(zTH) ay (3.40)

It is easy to see if wo(znl) is different from w(z_l), 8ot

will not be white. Thus,one can check for model adequacy’
by testing for the presence of significant sample cross-

a g (K). Finally,

® 0
an overall check can be performed on the autocorrelation

correlations Yuao(K) and autocorrelations V

and cross-correlations of the residuals.

3.8. Maximum-Likelihood Algorithm for Paraméter Estimation.

, The algorithm discussed here was. originally presented
- .
by Astrom and Bohlin (1965). The linear system treated here

is described by the following equation:

Bz 1) y(t) = ACzD) u(t) + A c(zY) e(t)  (3.41)

29
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where {u(t)} is the input, {y(t)} the output and {e(t)f is a

sequence of independent normal (0,1) random variables.

<

A(z-l), B(z”l) and C(z-l) are polynomials:

-1, 2 -1 -n
A(z ) a, + 2.2 ceen t a2 (3.42)
B(z') = 1 +bgzl ...+ bz (3.43)

~1 -1 -n N
C(z ™) = 1 + C42 ees. t CZ . (3.44)

?

The system model (3.41) contains 3n + 1 parameters BorByees
a.n,»bl...bn and °1’°Z"‘°n' So our problem is to estimate

the parameters of the model from the input {u(t),t=1,2,...N}
and observation of the output {y(t), t=1,2,...N}. Let -
p({y(t)} | {u(t)}, a,b,c,A) be the probability density function
of the outputs {y(t)}. given the inputs {u(t)} and the
parameters aq%,c,l, where we introduce the row vectors a,b,c

whose components are ai,bi and cy s respectively.

Let us define the function e(t) by:

cczly e(t) = B(z™Y) y(t) - Az 1) muCt)

= A C(z 1l e(t) (3.45)
¢

It follows that e(t) defined in (3.45) is an independent and
normal process (0,x). The logarithm of the probability demnsity

function of {€{%)} now becomes:
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N
L(8,1) = - —2= I e?(t) - N log A + const.(3.46)
. 2 t=1
Let
, 6 = {ao cev 8y, by woo bpcy L cn}
Maximising L(6,A) implies:
BL(8,1) > 2 _1 N 2
____2 ) - 0 => A\ = N L € (t). (3.47)
A t=1
1 N g
and Max L(6 1) => Min 5 T e“(t) = Min J(8) (3.48)
] t=1 6

3.9. Numerical Algorithm.

To minimize J(8) the following algorithm is used:

gitl _ ok _ (Jee(ek) y~1 Je(ek) (3.49)

€
1.2

denotes the gradient and Jee the matrix of second

AN

where J6

partial derivatives of J(8). " The partial derivatives afe
P .

given by:
d N 3e(t)
] = ) E:(t) 38 (3.50)
i t=1 i
I
225 N oaeqt) sery ¥ 22e (£)
56,36, ~ .1, 30, 86, ¢ L et 55350 (3.51)



The derivatives of e(t) are given by:
R L A (&) - (3.52)

cez1y %%gzz = z1 yet) €3.53)

cezly 28(t) o 1 (e (3.54)

1]

c(z-ty 2e(t) _-(i+3) 3e(t

Jda.dscC, al (3.55)

cz™h) %zﬁ% = ) ow i(a.ss)

-1y 2%e(t) _ ., _-(i+3) 2e(t) |
C(z ™) aciacj = 2z aci . (3.57)

- <
The algorithm for likelihood function is thus:

(1) Put 0%=g© starting value of 6.. : -
(2) Evaluate Jy(0%) and J,,(6") using (3.50) and (3.51)."
(3) Calculate ek+1 from (3.49) and repeat 2.

"It is shown by Astram and Bohlin (1965) that the maximum

likelihood estimateé are consistent; asy&ptotically

normal and efficient for increasiﬁg sample size. But on the
* other hand it is e#%remeiy slow, time cbnéuming ﬁnd difficult

to implement.

2.,



CHAPTER 4
ON-LINE IDENTIFICATION METHODS

4.1 . Introduction.

Once a suitable médel for the process has been
postulated, the next step is to estimate the parameters
associated with this model. 1In this chapter we will c ider
a single-input, single-output discrete-time system which is

characterized by its pulse transfer function of the forh:

a_-+ta z"1 +...+ az ™

H(z) = o "1 ' m

~1
1+ blz +bnz

- (4.1)
where m and n are known. The %dentification problem to be
treated here consists of determining the coefficients

{a%, By e B, bl’ b2"' bn} from the equatioﬁ (4.i)'on the
basis of input and output records taken over some arbitrary
time interval.

In this chapter attention is restricteé to the
estimation of the process paiameters. Various methods wh}ch
have been proposed in the literature for on-line identification
of discrete-~time systems are discussed. Two new algorithms
are proposed which are particularly well-suited for handling
the inevitable measufement noise inherent in most practical

LA

situations.
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4.2. Model for Identification.

The linear discrete~time single-input, single-output
system characterized by the pulse transfer function H(z)
givén by equation (4.1) can be equivalently expressed in the

following difference equation form:

m n
c; = jEOaJ Tioj jilbj i3 (4.2)
where
¢y = c(iT) = Output of the system at t = iT \
Ty = p(iT) = Input of the system at t = iT.
T = Sampling period

i = An integer

-

Letting i range from 1 to some integer k equation (4.2) can

be concatenated in the form of the matrix equation:

Al ¢ = ¢ (4.3)
K ¥ Sx
where
ry T, Ty m "G ~ C.1 -+ - - ~Cip
o Ti Yo-m %1 " % -+ %2
Ai, = . - . . Te N . (4¢4)
‘ ¢ ;4‘\’?’“"' :“ *
""q.?
[T "1 Tr-m “%k-1"%-2° ° ° "Cken|
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—

cg = (c1 Cy oo ck) (4.5)
3 = (aoal ce. & b1 52 ... b)) (4.6)

and the superscript T represents transposition.

Equation (4.3) can be solved gnalytically if m+n+1
pairs of ri and c; are known exactly.

However, the equation (4.3) does not supply details
of any unmeasurable disturbances or measurement noise that
may affect the process. It is assumed that the observed

output is given by:
4.7)

where n; represents the combined effect of all unmeasureable.
disturbances and measurement noise affecting the process
output cy - The overall signal topology of the system as
described by eq;ations (4.2) and:(4.7) is shown in Figure 4.1.

From equations (4.3) and (4.7) we have:

Ve = A o+ ey (4.8)



H(z)
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Y

Figure 4.1:

Signal topology of a general s1ng1e input,

single—output process.

ey
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where
Ty Yo i.m Yo Y1 Yi-n
Tog Ty + + = Tgogp ™V Yo -+ V3on
Ak = S . . . . (4.9)
Ty Tkt Tyem k-1 k-2 Ygon
b .
vvo= (y, v (4.10)
Tk 1 Y2 Kk .
- .
’ eT = (ey e e, ) (4.11)
e L €9 - - - € i
. n
- . /
and € ny + jzlbj Ry (4.12)

Our objective is to derive an estimate ¢ of ¢ from the

un N
sequence of observations rk and yk.such that the resulting
estimated model adequately describes the dynamic character-

istics of the process.

4.3. Remarks.
- 1. In general, k > p, i.é. the nﬁmber of measurements
exceeds the number of p#rameters p = mtn+l to be estimated.
2. For a si#gle equation or one of the rows in

£equation (4.8):

m n .
= I aj.rk-j - & b, V-3 * ‘ (4.13)

y
- 50 =19

v A N



the independent variables Tk Ti-i

yk-—n

Tkem’ k-1 Yk-2

are referred as the 'regressors' and the dependent

variable ¥y ©n the left hand side, is referred as the

'regressand’.

3. In the vector matrix model (4.8) the following

terminology is often used.

k Observation vector

“??'4

ch 2o

Information matrix

= Parameter vector

Kk = Disturbance wvector.

4, The following partitioning of the information

matrix Ak into its rows is convienient.

T
where & = (rk Te_1 °

so that

Yk

"

Tk-m Yr-1 k-2
!

- )

21,

(4.14)

~Vye_p) (4.15)

(4.16)

Needless to say, the model (4.8) and its variations presented

above will be irequently used.

Y
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4.3.1, Least-Squares Estimation of Process Parameters

using Pseudoinverse Algorithm.

To find the least-squares estimator ¢k of the
n

parameters ¢ an error vector € may be defined as:
4

€ = Vi - Ak ¢k (4.17)
The least squares estimators imply a minimisation of:

E = c'e = |[e]]?
NNy "]

= Iy, - & o112
Ve = A Ol

T T ,T A °T T
= ¥V Vet b AL AL ¢ -2 ¢ Ay
K Rk K Tk Tk Lk S Nk
(4.18)
Differentiation of equation (4.18) with respect to ¢ gives:
| n
3E - - i T . T
—_ = V¢ E = 2 Ak Ak ¢k 2 Ak Y (4.19)
3¢k ,\'k n A
N
For the optimal model parameter
v2E= o (4.20)
Px
n
This implies:
~ - T ~1 T
ik = (Ak Ak) Ak zk (4.21)

ARSI § ST



or

~

a7t
¢k Ak Zk (4.22)

where A; is the Pseudoinverse of Ak defined as:

+ -1 ,T
AL = (A A 1A, for k >p (4.23)

The properties of the pseudoinverse are discussed in Appendix
I. The pseudoinverse defined by equation (4.23) exists and
is unique if the matrix Ak possesses full rank, i.e. it is

of rank p. This condition is assured if the input sequence

40

satisfies any of the following set of conditions (Liff, 1966).

1. Ty is a random sequence
2. re = O for k < m
= 1 for k > m
3. rk’is a sequence composed of mt+l discrete Fourier
components and ,all natural modes are present in
the output sequegce ¢, . )

Model (4.8), which is the basis of the least-squares
estimator and which will dictate its statistical properties,
has the following chﬁracteristics: '

1. It will be assumed that:

p. lin (% AL A) (4.24)

exists and is nonsingular. This condition assures

J
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that the measured signals contain sufficient
information to make the estimation possible.
2. The asymptotic property of the estimator can

be found by taking the probability limit of

(4.22).
2 +
p. lim ¢ = p. lim A, y
K> '\,k koo k '\:k

k Vi)

N

. T -1
= p.lim {(A; A A
pim B A

= p.lim {(Af AT AL(A, ¢+ o)

koo

_ . T -1 ,T
= p.lim{¢ + (A Ay) Ay

}
k+o A, k

o

= . T -1
= 2 + p.lim (Ak Ak) . p.lim (Ak ek)

k- n,

A, e
= ¢ + p.lim (%Ag a7t polim (B (4.25)

koo

In equation (4.25) the first limit on the right hand side
exists by assumption (4.24) and the second limit does not
vanish since ey at any given sampling instant k is correlated

-,

with the regressors: Yk-1 Yk-2 ...yk_nihis confirms that:

p.lim ¢ 4 0 (4.26)

K> n

In other words the estimators will yield inconsistent results,
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4.3.2. Recursive Pseudoinverse Aigorithm for Least Squares
-Parameter Estimation:.

The computation of leaét squares estimation of sk as
given by equation (4.22) requires computation of pseudoz
id%erse of A; for each estimate $k. This requires matrix
multiplication and inversion of a matrix of order p = mtn+1

for ¥ > p. Clearly if the parameter estimator is on-line,

Y 13

matrix inversion is nndesirable,particula;ly for a system
of higher order. Indeed on-line estimation may not be
possible as k increases, since the number of operatioﬁs
required to form the estimate ik becomes prohibitively large.
Moreover, another additional disadvantage of using the
equation (4.22) is that all the past data in the ;nter§a1 overib
which the estimates are made must be stored. These problems
suggest the necessity of a recursive scheme where it would
be pgssible to update the estimate ;k in real time at eaéh
stage k based upon ik—l and'the kthwdata pair of the input
and output.

Greville (1959, 1960) developed a recursive algorithm
for the pseudoinverse by considering a matrix A and the s
addition of a singie columnn-to A. The proﬁlem of additional rows,
which is the effect of an additional set of data, was considered
by We11§ (1967), Albert and Sittler (196é)g and Sinha and Pille
(1971). The information matrix Ak+1 is formed in the .

following manner:

A A1 7, (4.27)
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where

aT
LKL

Cke1 "k © ¢ ktdlem " Yk " Vi1 0 0 0 7 Yked-n)

(4.28)
is a row vector containing the latest set of measurements.
Similarly the output vector ¥k+l is of the form:

y
K

Ti+1 (4.29)

Yk+1
whére Vie+1 is the latest measurement of the output of the
system at (k+1)th instant corresponding to the input k1
The result is that, when\a new pair of input-output
measurements is made, a new row is added to the information
matrix Ak and a ner element is added to the output vector
¥ith these arrangements we are now in a ﬁQsition,to derive

v, -
K

the iterative algorithm (Sinha and Pille 1971). - The main

results for the kth yariation are summarized’below:

" —

For k> m+n+1l

, T 2O
~ P (y = Biaq 9y)
k 1 k1 T Zke1 Tk

P T b ? —
1+ a P, a
2e+1 Tk Prel

(4.30)

L
T
Pr Brr1 Py i)
Pev1 = Py - M (4.31)
ey P Ber

A
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The values of P and 2m+n+l are determined from the

m+ntl
square submatrix Am+n+1 as:
¢ (A )ty (4.32)
amtntl m+n+1 mm+n+1 -
= -1 -1 T
Prentt T Ppaner? © Gpinsa) (4.32)

The formulation of the estimates for the parameter vector

¢ in this way avoids the matrix inversion required in
N

equation (4.22) and also reduces storage requirements.

4.4.1. Transformation of Data - The Generalized
Least-Squares Estimators.

The application of least-squares method to the model
to'estimate its parameters ¢ leads to inconsistent estimates
of the process parameters w;en the obsérved data are
cor%Ppted by noise. However ¢ can be consistently estimated
by the least-squares method p;ovided the elements of the
disturbance vector e, are independently and identically
distributed. Many ;ethods have been proposed in the literature
to overcome this difficulty (Wong and Polak 1967, Young 1970,
Clarke 1967). One of these iékthe generalised least~§quares
method (Clarke 1967). In oxrder to arrive at an uncorrelated
residual, a nolse model is introduced in the system equation
and the system parameters are estimated along with tﬁe noise

model by the method of least-squares. The basic idea is as

follofws. From equation (4.13) the process can be expressed as:



f H
n n

Yy t E bj Yg—j = E aj k-3 ey (4.34)

§=1 =0 \

-1 _ -1
or B(z ™) Vi = A(z ) re toey (4.35)
-1 _ -1 s ~-n

where B(z ) = 1 + blz +...+ bnz (4.36)
Azl = ag v agzTel L+ a2 (4.37)

and {ek} is the sequence of correlated residuals. Supposing
{e(k)} can be generated as an autoregressive process of
order s:

= - fl €1 fz €k-2 - fs ex s + Wy (4.38)
where {wk} is assumed to be an uncorrelated random sequence.

Thus from (4.38):

"k
e, = —j_ . (4.39)
F(z ™)
=ty o -1 -S
where F(z 7) =1+ £,z ST A (4.40)
From equations (4.35) and (4.39) we can write:
-1 ) -1
B(z ™) yi = A(z “)r* + W (4.41)

k
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where
* -1
e = F27) vy
<
(4.42)
r¥ = F(z"l) Ty

Hence if the signals rﬁ and yﬁ are considered as the inputs

and outputs we have the ordinary least-—=squares probleﬂ.

The autoregressive parameters § 7 [}1, fz, . e e f;] are
estimated by: é, (
v = 6f e (4.43)
K k -k -
where wk = Estimators of § at kth iteration
n 3]
N N ~ T
= [fl. fz... fs] ] (4.44)
ey = ¥y - ay $k (4.45)
n n
a, = [r, 1 ’ r -y -y -y T
Bk kTk~1 ¢ * Tkem ” Yk-1 " Vke2 ¢~ Vien]
(4.486)
[—A‘ A A ]
} ~Co T %21 " €3¢
A A, A
Gy = 1 7% - T %2 (4.47)
"®k-1 k-2 * T ®k-s]

—

and G; is the pseudoinverse of Gk i.e.

+ T -1 : :
G = [Gk Gk] G, for k>s (4.48)
f

/k
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Utilising this estimate wk’ the noisy input~output sequences
N

T and Yy are filtered to obtajin:

S -~
¥ = .+ L £, r (4.49
rk TR j=1 J k-3 ; )
S ~ .

From these filtered sequences a correctea matrix AE is obtained
instead of Ak in equation (4.9) using nﬁ and yﬁ instead of

rk and Yy respectively. Equation (4.22) can now be used

with A¥ to obtain unbiased estimations.

Due to highiy nonlinear relationships bétween the
péramete;% in the estimating equation, a theoretical analysis
of convergence is not yet available. Experimental results
reported in the literature have shown,however, that this
algorithm works quite well. In the faollowing section,a'
recursive algorithm which is particulérly well suited for

on-line implementation will be developed.

4.4.2. Recursive Algorithm for Generalized Least-Squares
(Generalized Pseudo-inverse) Paramster Estimation.-

A recursive version of the generdlised least-sqqgres
estimation procedure,based on thg recursive algorithm for
computing the matrix pseudoinverse,is proposed. Because of
its recursive nature,the aigorithm can bé used for on-line

identification.



Defining:

G
Sk
Gk+1 = T (4.51)
g
mg+1
T - A ”~ ~
§k+1 = Eek ~ey_1 - ~€x+1-s (4.52)
AX
k
A§+1 = oI (4.53)
n +1
T .
ik+1 = [?§+1 T s TEe1om VR Vke1
. o=y ¥
' k+1—n]
(4.54)

the following equations can easily be derived:for k>m+n+l:

and

vkt+1

k+1

4’ =
Jk+1

k+1

T ~
P, a* * o gk
A P 3 Ofer - 3 0

sk + T T > " (4.55)
2kl Tk kL
| T
Px iﬁ+1 Py 2§+1)
P, - . : (4.586)
1-+ g* . P, a¥
2+l Tk P
(A ~ T A‘)
o P Bren (Open 7 Bkaa Pk
¥ T+ ol —r (4.57)
v &g g
Bre1 R B
‘ T
By §k+1(Rk Bic+1)
R, (4.58)

- T
1 + -R
Bl Pk Bxed
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.
" ~

The values of P ., .4, Rg, $m+n+1’ Vs

are determined from

the following: .

,%m+n+1 B (Am+n+1) Ym+n+1 (4.59)
Pm+n+‘1‘ = l—f*ﬁ'i+n+1]-1 Exﬁ-;;i-l]'r (4.60)
and R, = G 1 [Gs"l] T (4.61)

The entire process may have to be repeated a number of times
in order that the residuals may be uncorrelated.

The generalised pseudoinverse algorithm proposed
here makes it much more efficient #o iteratively estimate
the parameters of the system model as well as tge suto-
-regresgive parameters of the noise m?del. The ﬁesults of
applying this algorithm for system identification will be

' presented in a later chapter.

4. 5.1. Instrumental Variable Method for Process Parameter
Estimation. .

The Instrumental Variable technique which provides
consistent estimates of structural parameters of the model'
was first used in engineering context by Joseph, Lewis,

and Tow (1961). Since then it has been discussed by Wong
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N /
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!

/

~ and Polak (1967), Rowe (1970), Young (1970) and Pandya (1972)
among others,

The Instrumental Variable approach aims at removing
the source of inconsistency in ordinary least-squares estimaters
in a conceptually simple manner. The principle is easily

understood by rewriting the equation (4.8):

e, = y. - A ¢ (4.62)
K K k 'k
.Consistent estimates can be obtained by premultiplying
equation (4.62)with Wy
T _ T T .

where WE is called the instrumental matrix which satisfies:

bl ES el;l = 0 (4.64)
n
and

p'iiﬁ ; WE Ay| nonsingular (4.65)

&y§\

The elements of Wk are ,therefore, chosen to be uncogrelated
with the residuals but correlated with the uncorrupted

signals of the process. Then,from equation (4.63) we have:

| -1 Ty o
. , Evk Ak] Wi (4.67)



Wong and Polak (1967) and Young (1970) showed that there

exist optimal instrumental variables,and they uéed samples of
calculated undisturbed output signal as instrumental variables,
taking the parameter estimates as the parameters of an

L2}

- auxilary model. If h is the output of the auxiliary model

then Wk becomes:

o R - - by ]

1 % ™em B
s T oem B1 B - - f§2—g
l . .
wo=|. . . . . (4.68)

. . * . . . -

Lfk k1 ¢ Tkem “Px-1 “Brop s

—
\

The rate of convergence of th% estimates to the true
parameter value depends on the choice of the instrumental /
variables and there are.many sets of instrumental variables
that satisfy conditions (4.64) and (4.65). Thus ome of the
b;sic problems in this method is to find a suitabie set of
instrumental variabies. Also,sihce the optimal'ipstrumental
variables cannot be generateg directly,extra effort has to
be made to compute aﬁproximately ?he optiﬁal instrumental

variables.



4.5.2. Recursive Instrumental Variable Algorithm:

It has been established by Wong and Polak (1967)
and Young (1970), that the instrumental variable estimator
has the foilowing recursive form:

o P g Gy - g 8)
N n, n

¢ = 4 t (4.69)
k41 A\ S, :§+1 Py s

T

Pr Oke1 Pr Gicer)
L I (4.70)
2+l Tk k1

where

P, = AT (phHT (4.71)

and

T
Ogs1 T [?k+1 koot Tretem Px Peeg - - "hk+1~£]

(4.72)
Young (1970) introduced a time delay and a low-pass filter,
e
before updating the auxiliary model,to ensure that auxiliary

model parameters are not correlated with ey at the same
N

instant and to smooth the estimates. The following low~pass

filter is used:

“éux ‘ Taux "
= (1-v) ¢ + Vv ¢ 4.74
/ _ " mk"l mk ( )

where 0.03 <v < 1 is chosen to prevent instability in the

ectimation. -L: A : : X

g
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The recursive form not only permits the updating of
the parameters in real time,but also generates the instrumental
variables in real time. Thus it is not essential that all the

elements of the instrumental matrix Wk be known a-priori.

4.6.1. Bootstrap Estimator.

Bootstrap estimators proposed by Rowe (1970) and
extended by Pandya (1972) belong to the class of on-line
estimators that utilize an auxiliary dynamic model %o generate
-recursively the estiﬁates of noise-free ou}iut. Needless to
say, one of the estimators in this set of estimators is the
instrumental variable estimator. An on-line algorithm for
this estimator was given in the previous section. ' The boot-
strap estimators are characterised by the fact that the
structural parameters ¢ are estimated’}ecursively in suéh
a way that the latest ;stimates of the structural parameters
are used.in estimating the incidental parameters and vice versa.
Thus the basic bootstrap estimator consists of two recursive
estimators.__one for the structural parameters and the other
for the incidental parameters.

The recursive algorithm as proposed by Pandya (1972)
has *the ;ollowing form:

RN
P Zre1 (Vr1 ~ Biar fi )
+ (4.78)

' T
1 + P =z
3k+1 k Zx+1

k

-

fer1 T

{

~ 1
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-l

2 T
P Pxe1 Py Py
Per = P TToT — (4.79)
2+l Tk k1

T - _l\ ~
Zr+1 [%k+1 oot Thatem T Xk 0 oc o T Xk—n+1/k-n+ﬂ
(4.80)
where
Xk = Xaggge1 t VCR) [?k - Xk/k—i] O<v(k)<l (4.81)
~ B TA . \\
and - Xesk-1T Pk Ok . (4.82)

The gain sequence v(k) is chosen in such a way as to prevent
instability in ghe estimation. By introducing the filtér the
algorithm becomes more flexible. This is because the esfimator
now depends on the nature of filter gain sequence v(k).

There are many choices of v(k) as discussed by Pandya (1972)
but no general theory is available that dictates the optimal
choice of v(k). Moreover stabildty of the procedure cannot‘

be guaranteed.

4.7.1. Correlation as Applied to the Estimation of Parameters.

The method essehtially consists of first depermining
correlation functions and then estimating the pa?ameters of
the desired parametric model by the method of 1e£st—sqqares.'
If the input is a stationary random variable, then its

sutocorrelation function is given by:
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(4.83)

and the cross-correlation between the input and output signals

is:
R()==11’“.jL . (4.84)
uy T N+ N+1 k=0 X-T Tk -
The convolution equation
- -]
Ruy(T) = I g(v) Ruu(T"v? - (4.85)

v=0

-

relates the input-output through the .impulse response g(v)

of the process. From (4.85) we get:

R._(M) = M 4.86
Ryy () R € - @ese)
‘where
Ruy(-u)"
R._(M) = R (-1 4.87
Ryy O ay 1) (4.87)
Ry (0)




R u (M) . Ry GM-2)
. SN ‘
R,y (M) = | Ry, (-1) . Ry (-1-2) (4.88)
N\
Ruu(o) : Ruu("y‘)
, .— 13
T
g = [g@) . . . . )] (4.89)
n,
The least-squares estimate g(M) of g is given by:
n "
~ + R
. g(m) = Ry, (M) Ry (M) (4.90)
where R" (M) is the pseudoinverse of R__ (M) defined by:
LJuu Luu
“y | T 1 T‘ ;
'Euu(M) = [Euu(m) suu(le ) Euu(M) ,,%ﬁjgl)

One may ,again,use the recﬁrsive pseudoinverse algorithm with

' the correlétion ordinates and thereby get an on-line procedure.
If there are £ = min+l unknown‘parameters then £ = mtn+l
values vl the impulse response g(i) are estimated by equation

(4.90) and the parameters a; and Qé are then calculated using
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the estimated g(i)'s. The autocorrelation and the cross-

correlation function can also he obtained recursively using:

’

= 2 - -
3uu(T’k) = R (t,k-1) + 57 [rpe o T - R, (nk 1{]
. (4.92)
- 1
Ryy (X)) = Ry (t,k-1) + gy 1 ¥ = Ryy(t.k-1)]
(4.93)

The correlation method is relatively easy to implement because
computation time and storage: requirements are small. The
accuracyoof the result can be controlled by changing the
number 2% of impulse response samples. Thus the computational
expense can be reduced by accepéing a loss of accuracy of the
model. For practical implementation,the estimates can
sometimes be very sensitive to the choice of M in equation
(4.91) and there is no ;-priori way of choosing the optimum

value of M.

4.8.17 Stochastic Approximation Algorithm.

One of the most popular.methods for parameter
identification is the Stochastic Approximation method. It was
first introduced by Robbins and Monro (1951) and generalizéd
by Dvoretzky (1956). An eXxtensive tre#tment of this method
was given by Albert aqd G;rdner in (1967). Comprehensive
survey papers by Sakrison (1966) and Saridis (1974) give a
good general picture of the vgrious aspects of, the subject.
Applications of Stochastic approximation aigo?ithms have been

proposed in adaptive and learning control by Sklansky (1966),
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~ in system identification by Saridis, Nikolic and Fu (1969),

and in adaptive communication and pattern récognition by
Cooper (1964).

Stochastic approximation may be defined as a scheme
for successive approximation of a sought quantity,when the
observations involve random errors due to the stochastic
nature of the problem. It can be applied to any problem
that can be formulated as some form of.regression in which
repeated observations are made. It has the following
advantages: |

(a) Only a small amount of data needs processing.

(b) Only simple computations are required,even when

the actual functional dependence of the
regression function on the parameters of interest
is nonlinear.

(c) A-priori knowledge of the process statistics is

not necessary nor is the detailed knowledge of
Ithe functional relationship between the desired
parameters and the observed data. The only

’ requirements are that the regre;gion function
satisfy cexrtain regularity conditions and that
the regression problem have a unique solution.

Let us first look at the Robbins-Monro (1951) approach

to search for the roots of an unknown function f£(x) of random

variable x corrupted with measurement noise v:
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z(x) = f(x) + v (4.94)
The fgllowing iterative algorithm is proposed:
Xpel = Xg = Y Z(xk) (4.95)
Robbins and Monro showed that the equation (4.95) will

converge with probality one and in the mean square sense,if the

following conditions are met:

oy =0, (4.96)
® .
El Yk = © ’ : (4 .97)
“ © 2
and , 2 Y < © (4.98)
k=1

Yk = B—'FR (4.99)

.where a and 8 aie positive constants. It is also required
that £(x) be bounded on either side of a true solution by
straight lines such that it is not possible to overshoot
the soluti x which cannot be corrected by a Yx sétisfying

(4.99).
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Kiefer and Wolfowitz (1952) proposed the second
important stochastic approximation algorithm, suitable for
the search of an extremum of the function £(x) of a random
variable x corrupted with measurement noise v of the Robbins-
Monro method. The following iterative - algorithm is proposed:

(%, +C ) —-=z(x_-C,)
Y =k C§ ckz Tk (4.100)

+

Xk+1 T *x

Kiefer and Wolfowitz (1952) showed that the eguation will
converge with probability one and in the mean square sense

if the following conditions are met:

lim

kow T = 0 | | (4.101)
iﬁg C = Q (4:192)
o ngl (%i e , _ (4.103)
o ngl Y, =% (4.104)

Detailed presentations of the mathematical background{
applications andldevelopment of.stochastic approximation
algorithms are'given by Wasan (1969), Mendel'and'Fu (1970},
Albert and Gardner (1967) and Holmes (1969).
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{
4.8.2. Stochastic Approximation Algorithms as Applied to
Parameter Estimation.

Most of the stochastic approximation algorithms used
for recursive_ identification of the dynamic systems are based
on the Robbins-Monro or Kiefer-Wolfowitz algorithms. Saridis
and Stein (1958) have proposed such an algorithm for obtaining

estimation of the impulse response. It is of the form:

)

G(k+2) G(k-1) + v(k) U(k+2) E(ku) - uT(x+2) G(k—l;;l (4.105)
4Y N Y : v Y
. T
th G = Co 4.106
wi ¢ [%1 gq gé] ( )

where g; are the samples of impulse response

T -

g (k) = Ek Ty 1 Ik—z—i] (4.107)

v(k) = g-%; : (4.108)
& 8

(k) = X3 k=1, 2+2, 2043.. . (4.109)

If there are m+n+l unknown parameters £ = m+n+l values of the
impulse response g; are estimated by equation (4.105) and the
parameters ai'bi are then calculated using the gsfimated gi's

updating algorithm (4.105) after each sampling interval leads:

G(k+1) = G(k) + v(k+1) U(k+1) [§k+1 - uT (k1) 6(k{l | ,
A, n _ . "
| | (4.110) {
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with vwk) = 1/k k=1, 2, 3.... (4.111)

This algorithm gives: biased estimates,but the bias is
‘relatively small even for large noise-to-signal ratio. This
(

algorithm is simple and easy to implement but demonstirates

rather slow convergence.

4.9.1. Proposed Algorithm for On-Line System Identification
Combining Stochastic Approximation and Pseudoinverse.

In a recent survey (Sinha and Sen 1974) of various methods
for on-line identification of a simulated system, under realistic
conditions of noisy measurement of input-output data, it has been
observed that whereas recursive pseudoinverse algorithm is compu-
tationally efficient, the resulting parameter estimates are biased
and inconsistent. On the other hand, although the ordinafy stoch-
astic approximation algorithm.of the form described in equation
(4.110) gives biased estimates, it is simple and easy to imple-
ment requiring less computation per iteration. The aim of the
proposed algorithm is to combine ?seudcinverse'and stochastic
approximation to overcome the problem of bias encountered in the
pseudoinverse algorithm in thé presence of large noise while
requiringlless quﬁutation to make it practical for use in on-
line identification. The methdd is based on getting generalized least
squares estimates of the parameters of the system model as well
as the auxiliary noise parametefs in such a way as to obtain

uncorrelated residuals. The main difference between the proposed



method and the generalized least squares method is that a
Dvoretzky-type (1956) stochastié approximation algorithm pre-
sented by Kwatny (1972) is used for estimating the parameters

of the noise model, whereas recursive pseudoinverse algorithm

is used for estimating the parameters of the system model. This
solution, which is iterative is shown to be computationally

more efficient than the generalised least squares algorithm.

In the next section the noise model is formuiated in terms
of which the observed input-output data are filtered to get un-
correlated fésiduals. This results in an iterative proéedure by
which the filteér parameters and system parameters are alternately

estimated.

pae

-~



4.9.2. Formulation of the Noise Model,

Let the system dynamic equation be represented as

in equation (4.13) in the following form:

B(z"l) Ve = A(z—l) re ey L »(4.112),
where
n - -1
e, = (1 + jil bJ z v) n, = B(z ™) By (4.113)

and oy is a zero mean random noise sequence. To guarantee
stability of the process, the roots of B(z-l) are assumed to
lie outside the unit circle.

It is assumed that the noise sequencé'{nk} can be
described as a linear transformation of a well behaved zero

mean white noise signal Ei’ i.e.

P ' q
n, + d;n,_. = § + I g, & (4.114)
kT 42103 e kT g5 8 SK-i
or equivalently,
oot |
n, = K2 (4.115)
D(z )
where D(zl) = 1+dzt . L+ d 2P - 4.118)
X -1l -1 . -q

and Gz ~) = 1+ gz~ .. .+Eg = (4.117)

: q

Again the roéts of D(zrl) are assumed to be outside the unit

circle. Combining equations (4,113) and (4.115), we have:



B(z"l) G(z—l)

e N (4.118
ng"IZ .
= —5= & (4.119)
D(z ™)
where we write:
-1, _ -1 -1 '
C(z 7)) = B(z ) G(z™ ) (4.120)

In (4.119) ey is described as a sample of mixed autoregressive
moving-average time series. The above residua} exrror sequence
{ek} is now approximated by a low order linear process. Two
possible processes are sultable forx this purpose. They are the

moving average process of the form:
. -r
e = gk_+ bX m, z gk . (4.121)

and the autoregressive process of the form:

p -i : ' . ,
e + I fi z zk = Ek' (4.122)
i=1 )
The true process can be approximated to any degree of accuracy
by choosing an appropriate sequence tfi}. Using this principle
equation (4.119) can therefore be approximated by:

gk ' :
e = —3 (4.1?3)
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where

¥ (z"l

= ~1 -1
s ) = 1+ 27, . o F £ o2 (4.124)

This implies that:

-1

F (=) = ) B e (4.125)

This is true if sufficient number of fi's of the filter are
used. Substituting (4.123) into (4.112), we have:

&y
1)y (z"1) r © (4.126)
S k¥ 3 (z‘l) -

B(z™1) FS(2~1) Yo = Az Fs(z'"l) re B (4.127)
\ B(zﬁl) yx = A(z-l) r*x + & (4.128)

& k" Sk .
where T ¢ S Sl P S a1 (4.129)
r* = (1 + £ z71 + + £ 2 %)r (4.1.30)

k 1 . - - R s k .

and Ek is a white noise sequence.

If the filter is known, the measurementsr will

Kk’ Yk
be processed as in eqqations (4.129) and.(4;130) to obtain

the filtered inpgt and output pair'rﬁ and.yﬁ.’ These filtered
quantities are then used to calculate the estimates. Comparing
equations (4.128) and (4.112), the residual e}ror seguence

has now béep changed to a white noise sequence. ‘Hence the

-
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least-squares estimates wilf‘be consistent and unbiased
because the white residual error is not correlated ﬁith
the input and output,.

Once the structure of the filter is known, the next
step is to find the parameters of the filter Fs(z—l). The

residuals are estimated by assuming the model:

- _ T
e = E ik + gk (4.131)
R _ T .
i = fl.fz . e e fé] , the filter paramgﬁer vector
\\ \ - (4.132)
I I A N e
ik = Lek—l ~€p_og + - - ekné] , the error vgctor
? (4.133)
Pal TA
e = - 4.134
X Vi T 2 %k ( )

To oBtain the estimate of Y, it is proposed to use a étochastic
I\', «

approximation algorithm of the same form as suggesfed by

Kwatny\ (1972), i.e. \\7
P £
R ) [:k ] £x
B k+1

wk+1 5 (4.135)
" IIkll
¥
where v is\a positive constant and
; ’f"
wk = kth estimate of ¥y
n, ) , a,
! - ~ T ,
= [%1(k), fz(k) . fs(ki] (4.136)



Using the estimated filter wk’ the input and
N,

measurements are filtered to obtain:

k+1

>

P
Y+

I

I

H
*
]

]
g3
n

These filtered

S A
r.+ L f.(K)rx, .

S A
L £,

et

R) vy

output

(4.137)

(4.138)

quantities are used in updating the

the complete algorithm reads as follows:

i=1

T ~
PoaFi i (v¥ey — 2 &)
k 2k+1Wked T Pkl Yk

T
1+ 2%e1 Px 2f4q

N N

T
P, oax _ (P, ak, .)
k mk+1 k k+1

) T
1 4+ a*x P, a*
2x+1 "k 2ke1

T N
P, e, - e:]s
v [\Ik,\‘k, k| K

2
€

information matrix Ak in the pseudoinverse algorithm.

~_/

Thus

(4.139)
(4.140)

(4.141)

(4.142)

(4.143)

(4.144)
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T _ '
by Ei’iﬂrf{ C o Theaam YR T VR - - “yi__l-za

(4.145)

A La) T

Thus, the proposed algorithm consists of using stochastic
approximation to obtain the autoregressive noise model
parameters,and,  recursive pseudoinverse to determine the

probess model parameters,after the input-output data are
suftébly'fiffered utilising the noise model. Obviously the
algorithm as represented by equations (4.139) to (4.146) consists
of two recursive estimators - one for the process parameter ¢ and
the other fox the noise p;rameter, where the latest estimates of
the noise parameters are used in estim;ting'the process parameters
and vice versa. ‘

The convergence of the algorithm has not been theoretiéally
justified. When these two estimators are treated seperately, the
convergence of each can be argued if the other one satisfies
.certain properties. Kwatny (1972) has presented conditions under
which algorithm of equation (4.135) converge in the mean. However,
the convergence Sf the overall estimator is not obvious. This is
because the behavior of one affects the operation of the other.

Ljung (1974) has given conditions ﬁnder which genefal

recursive algorithms with stochastic observations converge. The
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.

recursive algorithm can in general be put in the following form

~ ~

*n T ;n-l *¥n Hn (¢n-1’ yn)
where ;n is nth estimate of ¢n' The correction term Yo Hn ($n:1’
yn) is function of p;evious esgimate ;n-l and observation Yo
Ljung (1974) has suggested that the problem of convergence can
be studied by convergence and stability analysis of an ordinary
differential equation. The problem of convergence of the proposed
algorithm‘combining pseudoinverse and stochastic approximation
algorithm, it is suggested, may be treated aloﬁg the lines of .
Ljung (1974) and is'left for future investigation.”

The algorithm is tested extensivqu on simulafed data and

on data from real processes under open loop operation. Since

the stochastic approximation algorithm used to estimate the
noise parameters requires very little computation per itergtion
the proposed algorithm is}computationally more efficient
relative. to—the recursive Qersion of genera%ised least squares
algorithm. This advantage is further enhanced as data length
‘and the dimension of ¢ increases since increased data filtering
time is required for generalised least squares. This proposed
algorithm also retains the advantage of generalised least S5quares
algorithm in that the bias is considerably reduced because a
noise modef is incorporated in the algorithm in the same gay as
i? gﬁé generalised least squares algorithm. The perfgrmance of
the algoritﬁm is illustrated in the next chapter.
. BecauSe of the relétively ﬁes:&computatiénal requirement
the propdged algorithm can easily pe implemented in'real-time;
The implemenfation of this algorithm-using PPP—11/45 has been

- e
- 4

reported-by Tang (1975).



CHAPTER &
COMPARISON OF DIFFERENT ON-LINE METHODS

FOR SINGLE-INPUT SINGLE-OQUTPUT SYSTEM

5.1. Introduction.

The various identification algorithms that perform
on-line by sequentially updating the parametér estimates
from\noisy measurements are discussed in Chapter 4. In this
chap%er the performance of cach on-line method of identification
is efaluated and compared. For comparisog four test cases are
considered (i) a simulated secbnd—order system with output
noise added to obtain different noise-to-signal ratios,

(ii) a two-stage heat-exchanger system, (iii) a continuous
stirred tank pfocéss, and (iv) a dual-input heat exchanger

systen. The test problems will now be described.

5.1.1. The Simulated Second-order Process.

The process is described by:

Frr T 31 Tk Yo% TPy Fg 7 Py Xy (G-1)
R S a ny
= -0.975, and'b

whetre aq; = 0.079, a, = 0.047, b = 0,223,

1 2

The input sequence r, Wwas a zero mean white Gaussiah noise

sequence with unit varianc&. Two different cases of the output

&
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noise sequence, ny, were considered, (i) when it was a
zero-mean white Gaussian noise sequence of unit variance,
uncorrelated with Ty and (ii) when it was a coloured noise
sequence, obtained as the output of a first-order digital
filter with white-noise input, i.e.

= 0.8 0 + 0.7 w (5.3)

By4q Kk

where Wy is a unit variance white noise sequence uncorrelated
with Iy The value of the constant a was adjusted for
different noise-to-signal ratios, varying between 20% and
100%. 1In particular, with o equal to 0.04, 0.08 and 0.2,

the ratios of the standard deviation of the noise and the

signal correspond to 20%, 40% and 100%, respectively.

5.1.2. The Two-Sfage Heat—éxchanggr Process

The heat ‘exchanger system selected for this example has
been studied extensively by Wright and Bacon (1975), who have
obtained models using time series analysis of Box and Jenkins
(1970). For detail description of the process, reference may
be made to the paper by Wrigﬂt and Bacon (1975). A schematic
diagram of the progess'was shown in Figu;e 5.1.

For our purpose, thg process may be considered as a system
with one input and one output. The inpu% variable is the steam
valve positiom-and the output variable is the water temperature

T,. For our identification purpose 300 pairs of input-output

-
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t The -Figure %.1 ﬁas been repro?uced from the paper of Wright
and Bacon (1975). L .

‘ |



74

data, taken at 5 second sampling interval have been supplicd
to the author by Dr. J.D. Wright.

Following the procedure of Box and Jenkins (1970) it was
found that the system can be adequately represented, within 95%

confidence limits, by the following difference equation model:

Yk = byx-1 * 21 Uk-1 * 33 Ug 5 ywhere

b = 0.829 = 0.0148 = 0.022.

21 g2,

These parameteré; therefore, were used as the basis for

comparison with the values obtained using the on-line methods.
It may be pointed out that since no noise was added

externally, as in the simulated problems, it is difficult to

state the noise-to-signal ratio.

5.1.3 'The Continuous Stirred Tank Process

A schematic diagram of the process is shown in
Figure 5.2;_ It consists of a steém—jacketed tank which is
continuously stirred and interfaced to a remote Supernova
.mini-computer. Water flowing through the steam is being
heated by low pressure steam in the Jjacket. The>output of the
system is the temperature of the water in the tank, which is
coﬁtrolled'by regulating the steam flow to the gfnk Jjacket.
‘Uncontrolled fluctuafions in the inlet water flow and
temperature as well as ;n the stregmqpressure have tﬁe effect
of adding a random disturbance noise to the systen. _The
temperature of the wéter.in the tank is measpred by a thermo-

couple and relayed to the A/D input of thexmini—computer

by a - re - “ter, The stedm.flow to the



Water
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Water
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Transducer . Temperature
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L_ D e L A/ —_—
/A Mini-Computer .,.,9

s 4

fFigu?e 5.2. Schematic Diagram of the continuous stirred tank
reactor

-

tThe Figure 5.2 has been reproduced from the report of MacGregor
and Huynh (1974).
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tank jacket is regulated by the voltage output from the D/A
unit of the mini~computer to an electro-pneumatic transducer
and a pneumatic control vg}ve. The stream pressure upstream
of the control valve was manually controlled at a nominal
pressure of 8%;p.s.i.g. For further’ details, reference may
be made to the report by Hong and McGregor (1974) and to
Hong's thesis (1974). Hong and McGregor (1974) using the
time-series analysis of Box and Jenkins (1970) have determined
that the system can be adequately represented within 95%
confidence limits by the following difference equation model:
R T (5.5
where \ -
a, = 0.162 and b1 = -0.873
These parameters'were used as the basis for the comparison

with the values obtained using on-line methods.

5.1.4. Dual-Input Heat-Exchanger System.

The same two stage heat exchanger discusseq in
section 5.1.2 was considered. For our purpose, thg process
may be considered as a system‘with two inputs and one ou&put.
The two input variables are the steam valve and the water
valve positions, which control the’rate of flow of steam
and water, regpéptively. The output variable is the water
temperature T;, at the outlet from the second heat exchanger.

In addition, there is an unwanted disturbance or noise input



?.
due to random variations in the water supply pressure. The

block diagram of the system is shown in Figure 5.3. The

L

effect of the disturbance is to introduce an equivalent noise
n(t) at the output, and this may be regarded as the output

of a '"'moise process'" subject to white Gaussian noise input.

78

Wright and Bacon (1974) have determined the following discrete

transfer function for the process using the time-series

analysis method.

® a.z ' + a 272 + a 23
YH-(Z—I) = 1 2 _1 3 (5.6)
1 1 + ¢z
1 blz‘.’“1 + bzz.’"2
Ho(z 7)) = (5.7)
2% 1+ c:z"1
where ¢
a4 = Q;00885 . Bg = 0.00623
ag = ~0.00283 bl = ~0,0295
bz = ~0.0152 c = -0.314
In the absence of noise the output is given by:
cz™y = Hl(z"l) Ul(z“l) ¥ Hz(z‘l) Uzcz"l) (5.8)

Since the output samples c(iT) are contaminated with noise

we only have available:

y(iT) = ¢(iT) + n(iT) _ . (5.9)



\ ¢
From (5.8) and (5.9) we have: .
Ve = Ay ey (5.10)
where
e = [en, yen ..oy s ] T (5.11)
e, = [e(3D), etam) . . . eliry T (5.12)
N,
e(kT) = n(kT) + ¢ n(kT-T) (5.13)
[, (2T)  uy (T) u,(0) uy(2T)  uy(T) -y (2T) ]
u1(3T) u1(2T) ul(T) u2(3T) u2§2T) -y (3T)
A, = )
g (KT)  ug (KT-T) ug(KT-2T) uy(KT)  up(KT-T) -y (KT)

o . (5.14)

and

T
= a, a, a, by b, ¢C 5.15
s [21 22 23 Py Py €] (5.15)

Equation (5.15) is of exactly the same form as equation (4.8)
of chapter 4, although the latter was derived from a single-
input, single-output system. Hence the various algorithms

given therg can be directly used for the present problem.

n

5.2. Results and Comparison of Methods:
The results obtained using various methods gf

identificatioh will now be presented for each case.

\
\
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5.2.1. Second-order Process with White Measurement Noise.

For this case, 500 samples of input-output data
were used for recursively estimating the four parameters of
the system for three different values of noise-~to-signal

v

ratio. The normalised estimation error, defined as:

N 2
-d
o - o1

|14]12
n,

has been plotted against the number of iterations k, in
figure§ 5.4, 5.5, and 5.6, for noise to signal ratios of
20%, 40% and 100% respectively. The'final values of the
parameters, obtained at the end of 500 iterations, are
shown in Table 5.1.

It will be seen although all the methods give
reasonably good results for low noise, when the noise-to-
signal ratio is increased to about 100%, the correlation
method, the instrumental variable method and the combined
pseudointverse and stochastic approximation meihod only give
good results. Of these three methods, the combined pseudo-
inverse and stochastic approximation hlgorithm appears to
have fastest rate of con%ergence.

5.2.2. Second-order Process with Coloured Measurement Noise.

The computations were repeated with QOO samplés of

. input-oufput data with coloured output noise. The normalized



estimation error

C e -] 1?
‘ NN

: >
- 1el]
. N
has been plotted against 'the number of iterations in figures
5.7, 5.8, and '5.9, for noise-to-signal ratios of 20%, 40%
and 100% respectively. The final values of the estimates
of the parameters, obtained at the end of 500 iteratiéns,

are shown in Table 5.2. \

4
\

In this case again, %11 thg methods work well for
the low noise case, but for ioo% noise-to-signal ratio, good
results are obtained onl} with correlation method; the
instrumental variable method, \he generalised pseudoinverse
method, agg the combined pseud&inverse and stochastic
approximation algorithm. Ofﬂthéﬁe the combined pseudoinverse
and stochastic approximation algx:i%hm abpears to have the

fastest rate of convergence'. \

\

5.2.3. The Two-Stage Heat~Exchang;& Process. .

In this case, 300 pairs of\input—output data, obtained

\
at sampling intervals of 5 seconds,\were used for recursive

, \ .
estimation of the three parameters of the model. These .

estimates, along with the'barameter lues obtained using the

time series method are shown in Table \5.3.
The results indicate considerable bias in the
estimates obtained using the pseudoinvexnse method. Of all

the methods considered, thatcombining s uaoinverse and stochastic
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approximation appears most promising. It .gives better

estimates in fewer iterations.

5.2.4. The Continuous Stirred Tank Processf

Using 100 samples of the input-output data obtained
experimentally, the parameters were estimated recursively.
Table 5.4 gives the estimates after different number of
iterations. Figure 5.10 shows the plot of the normalized

error -~ l I 2

against the number of iterations.

It will be seen that bséudoinveyse and stochastic
approximation methods give estimates which are slightl§ biased.
The combined pseudoinverse and stochastic approximation

algorithm gives the best results. -

5.2.5, The Dual-Input Heat Exchanger Process.

In this case, 280 samples of input-output data,obtained
experimentally,are used for recursive estimation of parameters.
A plot of the normalized error

NBE

1o~ ¢l

n n

2

REN

. V)
against the number of iterations is shown in figure 5.11. The
[}

final estimates of the parameters as obtained after 280

iterations afq shown in Table 5.5.
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It will be seen that the best results a}e obtained by
the algorithm combining pseudoinverse and stochastic
approximation and the generalized pseudoinverse algorithm
. gives the next best rate of convergence. Both of these
algorithms show the estimates converging to their final

-
values in less than 140 iterations.

Table (5.6) shows the total number of arithmetic operations
(addition, substraction, multiplication and division) required
per iteration of different algorithms. The number p denotes
the total number of parameters of the process model and s denotes
the number of parameters of the corresponding noise models.

Table (5.6) also summarizes the execution time'required by
differeﬁt algorithmsgﬁbased on CDC 6400 computer and programmed
in Fortran) for 300 iterations in the case of the two-stage heat

exchanger system.

5.2.6. Discuséions.

Different methods for on-~line identification have
beeﬂ compared for four test cases. For the simulated second
order process,three different noise—to—éignal ratios have
been used with white measurement noise as well as coloured
measurenmnent noise. The othgr test cases, a two stage‘heat
exchanger system and a continuods stirred tank reactor, have
sufficient inherent noise to make the problem realist;c. On

the basis of the comparison, the following conclusions may

N L)

be formed.



(a) The pseudoinverse algorithm is most effiqient

for low-noise level. Not only dpes it require least

time for computation (with the exception of stochastic
approximation method),but estimates converge to the

correct value very fast.

(b) The stochastic approximation requires the ledst amount of
computation per iterationj;.but it has 3 very slow ,

rate of convergence.
s 1)

(c) The correlation method is quite efficient even
for large noise, but, one must wait for sufficient
amount of data to get reasonable initial estimates

of the correlation ordinates. It is a good '"off-line"
method, but its usefulness as an "on-line" method

may be questionable.

(d) All the other methods consideéred try to deéeIOp
a model for the noise parameters in an on-line manner.
Although the estimates obtained are satisfactory with

most of them, it was found that the method using

pseudoinverse for the model p;rameters and stochastic
épprokimatioﬁ for the auxiliary noise parameters yields

faster convergence and better accyracy. This is‘achieQed at
the cost of increased computational effort compared t6 other
methods (except generalised pseudoinverse aléorithm). This
proposed method is found to be comﬁﬁtationally more efficient
relative to the recu;sive version of generalised least squares
algorithm. The méin reas&n for this is the incorporation of

much simpler stochastic approximation algﬁ?ﬁthm to estimate the
: ) ‘



N

parameters of the noise model: This inclusion of noise model,
similar to the case of generalized least squares, tends to
remove the bias of the estimates generated by the pseudoinverse
algorithm. When operating wi£z a finite data set, an effective
estimator should not only convexge to the true parameter values
but does so at a rate that is faster than any other estimator.
Moreover, for any identification scheme to be of any practical
value it should determine.the'barameters as quickly as possible.
For all tﬂe cases considered the algorithm combining pseudoinverse
and stochastic approximation yields faster convergence and better
accuracy with some increase in computational effort.

Finally, it should be a&ded that no theoretical justification
has yet been offered for the observed improvement in convergence
obtained with the proposed method. But simulation results indi-

cate the method to be quite promising. The theoretical-aspect

,0f convergence of this algorithm needs to be further explored.
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Method e " ~ ~
e ';ggnal %1 \ 22 % Py
ratio
Pseudoinverse 20% |0.0790 | 0.0750 | -0.6810 |{-0.0310
40% |0.0780 | 0.0890 | ~0.4530 | -0.2020
100% |0.0800 | 0.1080 | -0.2410 | -0.2270
Generalized 2%% |0.0630 | 0.0550 | ~0.7160 0.1810
Pseudoinverse 40% |0.0410 | 0.0520 | -0.4530 0.3090
100% 10.1390 | 0.0450 | -0.1330 0.5610
Instrumental 20% |0.0780 | 0.0580 | ~0.8520 0.1150
Variable ' 40% |0.0790 | 0.0610 | -0.8310 0.1000
100% |0.0800 | 0.0630 | -0.8200 | 0.0970
Pandya's 20% |0.0790 | 0.0590 | -0.8200 0.0950
Bootstrap -1 40% 0.0770 | 0.0770 | -0.6030 |-0.0820
| Estimator 100% |0.0820 | 0.1020 | -0.3110 |-0.2550
Correlation 20% |0.0710 | 0.0405 | -0.8820 0.3110
Method 40% |0.0710 | 0.0480 | -0.8110 0.2650
100% }0.0703 | 0.0663 | -0.6630 0.1860
Ordinary 20% |0.0790 | 0.0520 | -0.8950 0.1550
Stochastic %0% |0.0820 | 0.0540 | -0.8830 0.1540
Approximation 100% 0.0870 0.0580 -0, 8480 0.1530
Combined Pseudo- 20% |0.0810 | 0.0470 | -0.9610 0.2110
inverse&stochastic| 40% {0.0820 | 0.0460 | -0.9560 0.2070
Approximation Alg. 106% 0.0850 0.0560 -0.8690 0.1640
True Values L 0.0790 | 0.0470 | -0.9750 0.2230

v

I

Table 5.1: Final estimates of parameters of the second-order
system for white measurement noise.
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Noise

to: A ~ A ~

Method iigggl ay 2, Pl b2
Pseudoinverse 20% 0.0772 0.0483 -0.9440 0.1910
40% 0.0756 0.0514 -0.8900 0.1330
100% 0.0716 0.0543 }|,-0.8040 0.0121

Generalized 20% 0.0775 0.0445 -0.9820 0.2350
Pseudoinverse 40% 0.0775 0.0423 -0.9880 0.2530
100% |0.0695 | 0.0385 | -0.9790 | 0.2750
Instrumeﬂtal 20% 0.0772 0.0475 -0.9540 0.2030
Variable 40% 0.0755 0.0470 -0.9510 0.1980
) 100% 0.0707 0.0452 -0.9250 0.1710
Pandya's 20% |0.0772 0.04980 -0.9340 0.1850
Bootstrap 40% Q. 0750 0.0497 -0.9110 0.1580
Estimator 100% 0.0713 0.0523 -0.8310 O.Q540
Correlation 20% 0.0705 0.0321 -0.9520 0.3540
Method 40% 0.0690 0.0325 ~0.9350 0.3360
100% 0.0640 0.0336 -0.8790 0.2750
Ordinary 20% 0.0790 0.0520 -0.8950 0.1550
Stochastic 40% 0.0820 0.0540 -0.8830 0.1540
Approximafion 100% 0.0870 0. 0580 -0.8480 0.1530
Eombined Pseudoi= 20% 0.0771 0.0459 -0.9740 0.2201
nverse&Stochastic 40% 0.0765 0.0447 -0.9750 0.2158
Approximation Alg.| 100% 0.0729 0.0418 -0.9660 0.1776
True Values 0.0790 0.0470 -0.9750 0.2230

“

Table 5.2 Final estimates of the parameters of the second-

. arder proc§§s for coloured measurement noise.

)
&
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CHAPTER 6

ON-LINE IDENTIFICATION OF MULTIVARIABLE SYSTEM

6.1. Introduction.

Linear multivariable time-invariant dynamic systems may
be described either by transfer function matrix H(z) or in

state space by the triple {A,B,C} where:

S1; x(k+1) A x(k) + B u(k) (6.1)
N V) n,

y(k) C x(k) (6.2)

4" n,

where'x(k), u(k) and y(k) are n, p, and m diménsional state,
n, n n

control and output vectors, while A, B and C are matrices of

compatible dimensions. The transfer function matrix H(z) of

(81) may be derived directly from {A,B,C} as:
H(z) = C(zI-A)"1B (6.3)

On the other hand, for a given H(z) the triple {A,B,C} is not
defined uniquely. The problem of minimal realisation of the
transfer function matrix to obtain the triple {A,B,C} for minimum
n is one of the-fundamental problems in linear system theory.

Many canonical forms for the minimal realisation of finite di-

N e e
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mensional multi-iﬁput-mﬁlfi~output linear systems have been
developed. Several results exposing the interrelations between
state variable and transfer function descriptions of multi-input
multi-output system have been recently presented by Dickinson

et al (1974). The problem of minimal realisation has been
studied, among others by Ho and Kalman (1965), Silverman (1971},
Chen and Mital (1972) and Sinha and Rézsa (1974).

Much of the work on system identification reported so far
concentrates on obtaining a state space model from the given
input-output data. Gopinath (1969) presented the first clear
picture for the realisation of multi-input multi-output discrete
systems directly from input-output observations; In particular
a procedure was presented to determine the triple {A,B,C}.
However, this procedure requires an extensive search and it
neglects the structure of resulting realisation. Subsequently‘
Gopinath's aigorithm was improved computationally by Budin (1971).
Recently Passeri and Hergert (1972) also considered this problem
and proposed minor modifications. Djorovic and Bingulac*- (1972)
have considered a method of constructing a minimal realisation
of general mutivariable system directly from noisy input-output
observations. However, their algorithm is non-iterative in

nature and the minimal realisation is constructed first by

obtaining nonminimal realisation. This makes their method less
attractive from computational point of view.
The problem of parameter estimation of a multivariate

stochastic system described in terms of vector difference -
1 .



equation has been studied by/Vaiis (1970), Rer (197Q1§ Wilsén
(1973) and Kashyap et al (1974). For a given {A,B,C} many
equivalent vector difference equations can be formed. The
- number of possible structures of the vector difference equation
depends on the properties of the particular pair of matrices
A, C. This.implym that a-priori knowledge of the order of the
system is inadequate to specify the form of the‘vector differ-
ential equation and the structure of A has to be given as well.
The e§timation of the parameters of the ubcéor difference equation
are rather involved. | |

In this chapte{ an identification method has been proposed
from which the prulse response matrix H(z) is obtained from the
observations of the system inputs and outputs over a finite
interval of time. In theory the transfer fqnction matrix H(z)
can be calculated from the {A,B,C} matrices. In practice this
computation can be highly inaccurate as discqssed by Bosley et al
(1972). The proposed algorithm determines the transfer function
matrix directly from the input-output observations. This
algarithm is based on the properties of matrix pseudoinverse
and yields least squares estimates of the parameters of the

transfer function matrix. The method is iterative in nature

and rather simple to apply. /

-
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6.2. Pseudo~inverse Algorithm for Multivariable Systems.

6.2.1. Statement of the Problem.

Consider a discrete-time system with p inputs and
m outputs. It can be represented by an mxp transfer function
matrix, H(z), with the following input-output relationship

in terms of z-transforms:

»

Y(z) = H(z) U(2) (6.4)
4 N
where
T
Y(Z = Y Y N 4 6.5
¥(2) [¥1(2) Yp(2) ()] (6.5)
= 2 [y;(8) yp(8) . oy0)]T L (6.6)
and
T
Uz = U U . . . U 6.7
u(z) [01(2) V=) p(2)] (6.7)
= z [ul(t) ug(t). - . up(t)] T (6.8)

The superscript T represents transposition and the symbol 2
representing z-transform for a sampling period ts.

The transfer function matrix H(z) may be written as:

(Hyy(2) Byp(2) - . . By (2)]
Hzl(z) sz(z) - e . Hzp(z)

H(z) = ] ) . (6.9)

_gml(z) Hmz(z) . e . gmp(z)

b



o

]

where each element, Hij(z), i=1,2...m; j 1,2...p, is a
rational function of z. The transfer function matrix may also

be expressed as:

M., (z) M, . (z) M, (z)
11 12 1
1117 D,.42) v l51p(25
M., (z) M,,(z) M, (z) .7
21 22 . 2 ;
Dy, (2) D,,(7) D,,(z)
H(z) = P
. . : (6.10)
M, (2) M, (2) M ,(2)
meltzj DmLEzj ﬁmp(z)d

where Hij(z) in equation (6.9) is replaced by Mij(z)/nij(z)’
Mij(z) and Dij(z) being polynomials in z. Though putting H(z)
in this form shown in equation (6.10) results in least number
of parameters, in general, this is not very suitable for

parameter estimation. This is because when the system difference

_equation is written from (6.10) using input-output observations,

some of the parameters appear jointly. This difficulty of
separating the parameters makes it difficult to apply sequential
linear least squares techniques for parameter estimation.

The transfer function matrix which is particularly suitable

for sequential estimation may be expressed as:
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| [N11(z) Nygz) - - - Ny,(z)
Nyy(2) Npplz) . . - Ny (2)

H(Z) = 5oy ' (6.10)

LI“{mi(z) Nmz(z) e .+ . Nmp(z{

where D(z) is the characteristic polynomial of the system;
defined as the least common monic denominator of all minors
of H(z), and NiJ(Z) are polynomials in z. It will be
assumed that D(z) is a polynomial of order n, so that one

may write:

D(=z = z +b,Z -+ .. . +Db z + Db 6.11
D@ '+ by 1 L (6.11)

The polynomials NiJ(z) may, similérly, be written as:

1 2

Njg(2) = ag5(1) 277 + ay4(2) 277

+ . . .+ aij(n-l).z + aij(n)

(6.12)

where ! . .
) i=1,2.. .m J= 1,2 .. .p
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Our problem may be then stated as the estimation of
the parameters bl’ b2 e bn; and aij(l)’ aij(Z) e . aij(n)
for L1 = 1,2, . . . mand j = 1,2 . . . p from the measurements

of the system inputs and outputs.

6.2.2.perivation of the Identification Algorithm.

From the definition of H(z) given in equation (6.11),

the ith output may be written as:

- 1
¥5(2) = przy ;

il ek o}

) N; j(2) U;(2) (6.14)

where i = 1,2, . . . m,
It is easily seen that the ith output &' the rthysampling

instant is given by:

A
y,(x) = yi(rts)'\
p n n
= L I ai.(s) u.(r-s) - I bjyi(r~j) (6.15)
j=1 s=1 *J J j=1
Define for i = 1,2, . . . m:
&
A
by = [}11(1) a;1(2). - .agy (). . Lag (D), 8y (2) . aip(nﬂ
(6.16)
A T
b = [@ b b , (6.17)
~ 172 é]

‘and
A

. = .(r-1 (r-2) . . . y.(xr- 6.18)
y; (1) [vi(r-1) y;(r-2) y;(r-n)] (
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Also define for j=1,2 . . . p
A .
= L(r-1 - . e - .19
uy(x) [y 1) uy(r-2) uyGr-n)]  (6.19)
Then, equation (6.15 ) may be written more compactly as: w
(x) (r) u,(xr) (r) SRS
r = u, (r) ug(r) . . . u (r) - y.(r o
Yi [;1 N2 up 71 ] b
N
»
(6.20)
Collecting the different outputs related through equation
(6.20) for i = 1,2 . . . m we get the matrix equation:
y(r) = A(r) ¢ (6.21)
N n,
where
. ) ()] T
y(r) = |yq(r) yo(r) . . . y (r) ’ (6.22)
~ [ 1 2 m ]
A T
T T T,T
6. = [eT el . . .o b] (6.23)
N ['\,1 '\,2 PRLIPY
and
u,(r) u,(r). . u (r) O Q .. .0 0 0..0-y, (r)]
'\al '\42 ’\zp N n, Y] NN N '\41
0 0 .. .0 u(r) ul(r)...udr) 00..0-y, ()|
N 4" N '\:l '\12 '\;p NN n, ’\:2 !
A(r) =
0 u (r)-y (r}
n AP AT
= ]

(6.24)

S T o A SRS RIS i

A e . L

S S

w = SGTIAE bt a0 I RSN s e m B
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It may be noted that the dimension of the parameter vector

¢ is given by:
N

q = n(mp t+ 1)

Consequently, the matrix A(r) has m rows and q columns.

Coilggting vectors y(r)for r = 1,2,...kK, we have:
o ~
N
[v(1) A(1)]
y(2) = A(2) | ¢ (6.25)
N N
y (k) A(K) |
L J .
or, Y(k) = A(k) ¢ (6.26)
n n
"where,
[y (1)]
A ~n
Y(k) = v(2) (6.27) -
N, h
LY(k)
"" 4

and
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A(L)]
A
Ak) = |AC2) N (6.28)
N
(ACK)

Equation (6.26) provides kin linear equations for the q
components of the parameter vector ¢. If km > q the least-

4"
squares estimate of the parameter vector is given by:

"~

¢ = AT(K) Y(K) (6.29)
n, N,

where A+(k) is the pseudo-inverse of A(k), defined by:
n N

AT (k) = [AT(k) A(k{f 1 aAT(k) for km > q. (6.30)
~ N n "~
Although the least-squares estimate of the parameter
vector may be obtained from equation (6.29), it is not
convenient as the inversion of a qxq matrix is required.
Moreover, this has the additional disadvantage that all the
past data in the interval over which the estimates are made
must be stored. i
These problems suggest the necessity for a recursive

scheme. In the following such a recursive algorithm is

presented for estimating the parameters of the transfer function
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matrix H(z).

6.2.3. Recursive Algorithm for Multivariable System
Identification.

Each block of new input output data adds m rows

A(k+1l) to the matrix A(k). Thus let:
v

»

a(e1) = RG]

" A (k1)) (6.31)

and y(ev1) = [T (6.32)
y(k+1)
v .

Then the following recursive algorithm may be derived, as
shown in Appendix III.

For km > ¢

.5 = ¢ + P AT(k+1) [} + A(k+1)P AT(k+1i]—1 (k+1) - ACk+1)9
S N S " K 4 Pk

n

(6.33)

k+1 k

\

It may be noted that unlike the recursive algorithm given in

-1
Py = P - PLAT(k+1) [% + A(k+l)PkAT(k+1ﬂ A(k+1)P, (6.34)

Chapter gour in the case of single-input, single-output case,
equations (6.33) and (6.34) do require matrix inversion. But
the size of the matrix to be inverted is only mxm as compared
with gxq in equation (6.29), where q = n(mp+1), and is much
larger than m.

To start the algorithm, one may note that:



o
"

. At (x) A+(k{] T (6.35)
N - ny .

!

[AT(R)."A(k)] -1 T (6.36)
n, n,

I
t

Hence one may start with an A(k) which is square for k = q/m
n

(or the_mext higher integer, in which case some rows may be

deleted) and cbtain the initial estimate ¢o and Po for the

Y
case.

-—

6.2.4. Results of Simulation.

To test the algorithm an example of a system with
two inputs and two outputs was considered. As in equation
(6.10 ), the transfer function matrix of such a system is

of the following form:

) Nll(z) le(z)'

H(z) 57Z) (6.37)
' Ny (2)  Npp(2)

For the given example it was assumeg tﬂat:

- D(z) = 25+ b,z% + bz + by (6.38)
N, (2) = ag () 2? + a,,(2) 2z + a;,(3) (6.39)
Nyg(2) =..2i,(1) 2% + 21,(2) 2 + 8;,(3) (6.40)
Ny (2) = 2,,(2) 2 + 251(3) + ay;(4) 2"t (6.41)
Nyg(Z) = ap,(1) 72+ 25(2) 7 + a55(3) + ayp(4),-1

(6.42)
@
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with the following values of the parameters:

a (1) = 3, a;,(2) = -3.5, () = -1.5
a,(1) = 1, a;,(2) = -0.167, a;,(3) = -0.167
a21(2) = -4, a21(3) = -2, a21(4) = =1

22 (1) = L 25502 o 00167, a,,(3) = -0.083

0.083.

I

a,,(4)= ~0.167, b, = 0.833, b, = 0.417, b

1 2 3

The two inputs to the system were taken as uncorrelated unit
variance white Gaussian noise sequences. To the outputs,
uncorrelated white noise was added to obtain wvarious noise
to signal ratios. It was found that the proposed algorithm
gave reasonably good estimates of tﬁe parameters for noise-
to-signal ratios not exceeding 3%, and the results were
rather poor if these ratios exceed 10%. In this case 900
samples of input-output datg were used for recursively
estimating the sixteen parameters of the system for noise to
signal ratios ranging from 1% to 3%. The estimates are
shown ;n Tables 6.1,6.2 and 6.3. The normalized estimation
error, defined as

1o~ ¢]12

o n
1ol 12
N

has been plotted against the number of iterations k in

figure 6.1.

L2
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It is seen that when the output noise level is small the
estimates are fairly good,and reasonable estimates are

obtained even after 200 iterations. It is seen from figure 6.1
that with higher noise~to-signal ratios the estimates are
biased and inconsistent. For the case where the noise level

is high the data must be prefiltered before applying the

algorithm,

Although the algorithm is computationally simple and
requires much less effort to obtain transfer function matrix,
the number of parameters become quite large as the dimension
of the system increases., This is because of the particular
form of the transfer function in equation (6.10) and this may
pose some convergence problems resulting in poor parameter
estimates. The problem of convergence acceleration has to be

further investigated.

The algorithm requires the inversion of an mxm matrix where
m is the number of outputs. Since this number is often
quite small, it may be possible to use this algorithm for

on-line system identification.
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parameters with various
numbers of iterations for
noise-to-signal ratio of

1%.

Parameter Estimates after the following number True Value
of iterations.
100 300 500 700 900
all(l) 2.995| 3.002{ 3.008} 3.006( 3.004 3
all(Z) -3.570]-3.535]-3.543]-3.543 |-3.546 ~-3.5
all(S) -1.451(-1.464 —1.426 ~-1.4261-1.421 -1.5
alz(l) 1.000f 1.005] 1.005| 1.006| 1.004 1
alz(z) -0.187{-0.175{-0.179|-0.181|-0.182 -0.167
alz(S) -0.167|-0.1641-0.157|-0.158{-0.158 -0.167
a21(2) -4.012{-4.001|-3.998|-4.001|-4.000 -4
a21(3) -1.946]-1.952({-1.936(-~1.938}-1.934 -2
a21(4) -0.989(-0.982}-0.992]-0.993}-0.993 -1
a22(1) 0.995} 0.997}( 1.000] 1.001} 1.000 - 1
a22(2) -0.197{-0.181}-0.184}-0.185]-0.186 -0.167
a22(3) -0.081}-0.077}-0.0771-0.076}-0.075 ~0.083
a22(4) -0.1711-0.166{-0.169|-0.170}-0.171 ~-0.167
b1 0.814} 0.8211 0.817| 0.817 0.817 0.833
b2 0.4031 0.409}| 0.409| 0.409{ 0.410 0.417
b3 0.077] 0.080} 0.080f 0.080} 0.081 0.083
Table 6.1 Estimates of different
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Parameter Estimates after the following number True Value
of iterations.
100 300 500 =700 900
all(l) 2.980 3.003 3.016 3.011 3.007 3
all(Z) -3.720 -3.654 -3.668 ~3.668 -3.672 -3.5
a11(3) -1.278 -1.300 -1.228 -1.230 -1.220 -1.5
alz(l) 1.000 1.011 1.011 1.012 1.008 1
a12(2) -0.233 -0.211 -0.200 -0.223 -0.225 -0.167
a12(3) -0.153 ~0.147 -0.132 -0.135 ~0.136 -0.167
a21(2) -4.021 -4.002 -3.996 —-4.003 -4.000 -4
a21(3) -1.785 -1.792 -1.765 -1.768 -1.760 -2
a21(4) -0.968 -0.950 -0.970 -0.974 -0.972 -1
azz(l) 0.992 0.995 1.000 1.001 0.999 1
a22(2) -0.253 -0.223 -0.228 ~0.228 -0.231 -0.167
a22(3) -0.064 -0.055 -0.055 —~0.054 -0.053 -0.083
a22(4) -0.178 -0.168 -0.173 -0.174 -0.176 -0.167
bl 0.769 0.782 0.774 0.775 0.774 0.833
b2 0.378 0.388 0.388 0.383 0.390 0.417
b3 0.067 0.072 0.072 0.073 0.073 0.083
Table 6.2. Estimates of different parameters

with various number of iterations

for noise-to-signal ratio of 2%.

Q\
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Parameter Estimates after the following number True Value
of iterations

100 300 500 700 900
all(l) $2.986 3.004 3.023 3.015 3.010 3
all(Z) -3.921 -3.835 -3.851 ~3.848 -~3.855 -3.5
a11(3) ~-1.024 -1.040 -0.944 -0.948 -0.933 -1.5
alz(l) 1.000' 1.016 1.016 1.017 1.012 1
a12(2) -0.298 -0.269 -0.280 -0.285 -0.287 -0.167
a12(3) -0.129 -0.120 -0.098 -0.102 -0.104 -0.167
a21(2) ~4.029 ~4.002 ~3.994 ~-4.004 -4.000 -4
a21(3) -1.553 -1.550 ~1.518 -1.523 -1.511 -2
a21(4) ~0.941 -0.909 ~0.939 -0.944 -0.942 -1
azz(l) 0.990 0.992 0.999 1.000 0.999 1
a22(2) ~-0.326 -0.284 -0.291 -0.290 -0.295 ~0.167
a22(3) ~-0.036 -0.021 -0.024 -0.021 -0.019 ~0.083
a22(4) ~0.186 -0.172 -0.178 -0.179 -0.182 ~0.167
bl 0.706 0.721 0.712 0.713 0.711 0.833
b2 0.345 0.357 0.358 0.360 0.361 0.417
b3 0.053 0.061 0.061 0.061 0.062 0.083 F

Table 6.3 Estimates of different parameters

with various number of iterations

for noise-to-signal ratio of 3%.
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CHAPTER 7
CONCLUSIONS

The major effort in this thesis is directed towards
the problem of System Identification in the presence of
disturbancq§; Attention is directed towards the identification
of both single-input, single-output and multi-input, multi-
output stable linear discrete-time model§ from the input-
output measurements which are normally contaminated with
noise in realistic problems. The implementation of the
parameter estimation algorithms requires only samples of th?
normal input and output of the system, and no description
of the noise statistics is involved. This is the situation
which often arises in system analysis, Qhere the noise
statistics are not known and only the input-output record is
available.

Chapter 1 provides an introduction to this work through
a brief literature survey yhich shows the need for developing
better schemes to identify the parameters of the model.

Chapter 2 is an exposition on the problems associated
with the modelling of an unknown process operatings in a stoch-
astic environment, under open-loop conditions.

Chapter 3 reviews the different methods for off-line

identification.
\
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A more practical problem is that of identifying a
system while it is in normal operation. In Chapter 4
different schemes for on-line identification are discussed.
Some of the disadvantages of these schemes are demonstrated.
Two new algorithms are proposed to overcome some of the
problems encountered in previous known schemes.

Results of simulation with tables and plots are
presented in Chaptexr five. ‘

Chapter Six considers the identification of a multi-
input, multi-output system. A new algorithm is developed
which directly determines the parameters of tﬂe multivariable
system described by the transfer function matrix. The\
algorithm is applied to estimate the parameters of a dual-
input, dual-output system.

Tﬁe identification algorithms discussed in’this
thesis can be put into two main groupii (1) those which do
not use any statistical models for/fie hoise, and, (ii) those
which attempt to filter the data using some kind of noise
model so that the residual errors are uncorrelated. All the

.

methods except the generalized pseudoinverse algo;ithm and

the algorithm combining stochastic approximation and pseudo-

inverse belong to the first category, whereas the latter

algorithms belong to the second category.
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Under conditions of low input-output noise levels

the pseudoinverse algorithm provides good estimates of the
system parameters. Not only does it require the least time
for computation (with the exception of the stochastic
approximation method), but also the estimates converge to
correct values very fast. However, for higher noise-to-
signal ratio the bias and inconsistency in estimates is
quite pronounced. The stochastic approximation method, on the
other hand, requires the least amqunt of computation per iteration
but it has a very slow rate of convergence. All the other methods
considered in this dissertation try to develop prefiltering
techniques to reduce the éffect of noise. The generalized least
squares method proposed by Clarke (1967) was an important con-
tribution in this direction. The generaiized pseudoinverse
algorithmlproposed in this thesis is an attempt to obtain a
recursive version of Clarke's method using the pseudoinverse
for estimating the system parameters as well as the parameters
of the auxiliary noise model. The algorithm tends to remove ~_
the bias of the estimates generated by the pseudionverse algorithm. )
This is accomplished through whitening the correlat;d residuals
by filtering input-output data. ’However, this réa;ires consider-
ably more computing time compared to other algorithms.

The second algorithm which is proposed in the thesis uses-’

. . c N
pseudoinverse algorithm to determine the process model parameters

and stochastic approximation algorithm for the auxiliary noise
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parameters. This algorithm is found to be computationally more
efficient relative to recursive version of generalised least
squares. The main reason for this is the inclusion of a much
simpler stochastic approximation algorithm to estimate the para-
meters of the noise model. The inclusion of the noise mpdel, as
in the case of the generalised pseudoinverse algorithm tends to
remove the bias in estimates generated by ordinary pseudoinverse
algorithm. 1In all the examples considered the algorithm combining

stochastic approximation exhibits faster convergence and better
L

accuracy with some increase in computational effort.

The major appeal of the proposed on-line parameter
estimation algorithms is their simplicity. Since the storage
requirements for data are small and the identification algorithms
require few arithmetic operations, they may be implemented

on a minicomputer in real time as reported by Tang (197S5). /

However, no theoretical justification has yet been offered
for the observed improvement in convergence obtained with com-
bined pseudoinverse and stochastic approximation algorithm.

Th?; theoretical aspect of convergence of the 2nd\algorithm needs
to‘be further explored.

For multivariable system a new recursive algorithm is pro-
posed. This extends the recursive pseudoinverse algorithm to
estimate parameters of single input single output case. Although
the algorithm is computationally simple and easy to implement,

the number of parameters may become quite large as the dimension

of the system increases. This may cause some convergence problems
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resulting 1n poor parameter estimates. It may be added that
although a state-space formulation requires fewer parameters, no
on-line algorithms have been developed so far. Even the off-line
algorithms for this formulation are rather complicated and
require the knowledge of the structure of the A-matrix as well

as the order.

7.1. Suggestions for Future Research.

1. At present there is no rationale for the choice
of the gain factor y(k) in the stochastic approximation
algorithm which would best suit a particular situation.
It would be a worthwhile research area to devise an
iterative scheme by which an optimal prediction of
this gain factor can be done on-line. However, a
time consuming iterative scheme to predict the optimal
gain would destroy the major appeal of our present
approach. This computational aspect could be
further investigated.
2. The generalised pseudoinverse algorithm, and the
combined pseudoinverse and stochastic approximation
algorithm have been shown to work well in specific
examples, with reasonable ad hoc choices for the
order of the noise filter. There are no systematic

- rules for the choice of the order of autoregression.
The prqblemwof predicting the optimal filter order

needs to be further explored.

PRI L & s



123

3. The convergence of the algorithm combiniéé pseudoin-
verse and stochastic approximation has not been theor-
etically justified. When these two estimators are
treated seperately, the convergence of each can be argued
1f the other one satisfies certain properties. However,
the convergence of overall estimator is not obvious.

This aspect has to be further studied.

4. Throughout our discussion it was assumed that

the system to be identified pad an open loop structure.
However, despite the fundamental importance of closed-~
loop identification, most parameter estimation
algorithms suffer severe difficulties in the presence
of fcecedback. There appears to be little work done in
the arcas of on-line identification of a\closed—loop
system. This is an area where there is &uch Scope

for further work,

S. The problem of identifying multivariable systems
has not been solved completely. The basic difficulty
with these systems is in finding a suitable represent-
ation. Unlike the scalar output case, a multivariable
system doesmot admit a unique canonical representation.
Further work is needed for choosing the structure of
the multivariable systems which is best suited for
identfification purposes under realistic conditions,

i.e., when the data are contaminated with noise.

-y n,‘?b%%mm



APPENDIX 1

DEFINITION OF PSEUDOINVERSE AND ITS PROPERTIES

[+

>
When the matrix A is invertible it is possible to

solve the equation:

Ax =y (a1.1)
by operating on both sides with the fnverse of_A. The
concept of pseudoinverse of a matrix is iqtroduced to extend
the above technique to situations in which A has no inverse
but the equation (Al.1) has a solution. One way of defining
the pseudoinverse is as follows: ‘

Let A be a matrix of dimension mxn with rank'equal

tor. Let A be factorized into two matrices B and C such
that: ‘

A = BC ‘ (A1.2)
where B is a mxr matrix of rank r, and C is a rgh matrix of
rank r. The above factorization can be obtained first by

selecting B such that its columns are the linearly independent

columns of A. Since A is of rank r, the dimension of B ls

mxr. C is chosen, such that it satisfies equation (Al.2). 1\
The pseudoinverse of A is defined as:
+ T [T 7Y 1] -1 T
, AT = C [bc ] [é é] B" if A # O
i © (A1.3)

0 if A =0

]
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1t can be proved (Greville, 1959), that there always exists a unigue
pseudoinverse, A+ defined as in (A1.3) for any matrix A. Two

cases can be distinguished:

(1) Let the rank of A be n, i.e. n = r.
In this case (Al.2) reduces to:

A = BI (A}.4)
and (Al1.3) reduces to

A} = [I:BTB] -1 gT = ATA "M AT (a1.5)

A; is called left pseudoinverse of A.
(2) Let the rank of Agbe m.i.e., m = r.
In this case (Al.2) reduces to:

A = IC (Al1.6)

and (Al.3)reduces to:
-1
A = cT[cc'{l (A1.7)

R -1
- s

A; is called the right pseudoinverse of A.

f

|
Al.1. Properties of the Pseudoinverse

" . For every real mxn matrix A, ‘there exists a unique

real pseudoinverse A+, defined as in (Al.3), which satisfies

-

« the following identities:

\ A+AA+ = A+
. ( ' arata = a . (A1.8)
. [anf] T = ast

- ¢ o [A*éIT_- N .

PP TP
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where the superscript T denotes transpositioﬁ%”

Theorem 1: Let A be an (mxn) matrix of rank r = m. Let

AT[;Af] “! be the right pseudoinverse of A as defined in

equation (A1.7). Then the minimum norm solution ; for the
equation:
Ax =y
with
RIS

Proof:

is given by

x = AL Y (A1.9)
Let J o= #|xl12+ 2T (v - ax)
3d  _ T T, .
s—fl; = X - ATA 0
therefore
xT = ATa (A1.10)
i.e xT AL = aTaa}
= AT
i.e. o= AT x ‘ (A1.11)
Thus:
+T L+
A o= AR Ap |
= [AAT] *ly (A1.12)

From (Al1.10) gnd (A1.12) we have:

>

"
!

AT [AAT1 -1
: :

+
= AR y Q.E.D.



. 1264

L/

Theorem 2: Let A be an (mxn) matrix of rank = n. Let AT =

LU E RIS ) L
[}TA 1 AT be the left pseudoinverse of A as defined in
equatign (A1.5). Then the solution ; minimising the norm
of the residual error:

| e = y - Ax

of the vector equafion

Ax = vy
is given by
x = ALy (A1.13)
Proof: Let I = ||y - A¢|]?
aJ _ “ 1TT,T
-é}'l;{ 0O = =2 & - AXJ A
ATax = ATy
5o [ATA] -1 T,
= +
AL y Q.E.D.

Thus the left pseudoinverse yields the least squares
approximate solution in the sense that it minimises the square

of residual error.
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APPENDIX IX
DERIVATION OF RECURSIVE GENERALIZED
PSEUDOINVERSE ALGORITHM

It is shown in section 4.4.1 of chapter four that
in order to arrive at an unbiased least squares estimate
of the process parameters ¢ the incoming data has to be
filtered. Filtering of th: inputs and outputs is accomplished
via equation (4.42). Let %k(z'l) be the present estimate of

the autoregressive noise process.

/

RS |
ST N (A2.1)
”~ N _1
e = R v a2.2)
From equation (4.41) we have: ;“k
VE = AX 6 +w (A2.3)
where :
o T
A L TP . (A2.4)
Y

T
W, o o= | WyWo . .\ﬁg (A2.5)



b

ri rg . e . rI_m —yg - 11

r2rf - - - T3, VT Y
Aﬁ =

Lfﬁ TR-1 © c Them TYE-1 “YE-2

~¥1n

~Y3_n

- X
Y-n

(A2.6)

The effect of the new filtered data on the present brocess

parameter Qk adds a new row to the matrix Aﬁ.

_ k
Aﬁ+1 B T
o %
N
where
T _
ak+1 —  |TE+1 TR TE+1-m YR Vi1
4v)
and let
RO B
Vet TV
Y+

Then from equation (A2.3) we have

v = A¥. ., ¢t w
T+l k1 27 Vi
E kK
Xk K Nk
plo*
Yi+1 agel ™ Vr+1

L

Thus let:

(A2.7)

~Y R+ 1-:J

(A2.8)

(A2.9)

(A2.10)

128
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The least squares estimates ¢k+1 is given by:

- _ +
S+ T AR+ Yie1 (A2.12)
where
+
= *
A¥Ly Pseudoinverse of A¥ .

: T ~1 ,*T
] = Exigﬂ Ai’ﬁﬂ] Ay, for k > p-1 (A2.13)

1

where p = m+n+l
Assuming A§+ is of full rank, the pseudoinverse of Ak+1 may

be written as:

' T
\\WAig:l = E:k : ck+ﬂ (2.14)

From: (A2.7) and (A2.14):

T

+ - T
Afer Afer = G AR * “k+1 ﬁ§+1 (A2.15)
Postmultiplying equation (A2.15) by Aﬁf we have:

+ + T + oo + )
Afen Afer A8 - G AR AR Y Okaa Bfe1 A (42.16)

Now Ak+l Aﬁ+1 = I (A2.17)
T + - T
and . Ck A; Aﬁ .= Ck (A2.18)
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Employing (A2.17) and (A2.18) from (A2.16) we have:

T + T +
= *x — *
Cx Ag “k+1 Pk+l A (A2.19)
Therefore;
+ _ + T + .
Biv1 = [Aﬁ ~ Cke1 Be1 ARG Ck+]] (42.20)

From the properties of pseudoinverse in appendix I equation

(A1L.8) we have:

o\
k+1

'

+

+ 4T .
x k+1

Ay Areq A = A (A2.21)

Substituting equations (A2.7) and (A2.20) into equation (A2.21)

and postmultiplying the first resulting equations by A§+T 2y
QY

and substituting the result into second equation yields:

-1+ LT

+ 4T ', 4
A B 8y (A2.22)

o 4T
= * * *
k1 Lroage A A 2k+i]

-

Define;
_ + 4T
P, = Ar A¥ (A2.23)
Then
.. = [1+ax . p ax ] top (A2.24)
k+1 el Tk ik+i] K kv '
N + +T
Also Prep = Afoq ANl (A2.25)
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Substituting ﬂﬁ2.7), (A2.20) and (A2.24) in equation (AZ2.25)

yvields:

-1
= T T
Pre1 = P - E)k f}t+1] Ek :1*;+1] E * 2}’24—1 Py 5;"1]

. (A2.286)
Now from (hg.lZ)
a = A*+ y*
hg 351 k+1 Jk+1
= [cF yx + o, yx (A2.27)
k Yk & “kt1 Tkl '

Substituting (A2.19), (A2.24) in (A2.27) and using the fact

N +
¢, = A* y* we have for k > p:
S k Kk

.
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Sren T d * P A1 Ot Bker 80 [P P §§+€]
(A2.28)
‘Thus for k > p the recursive algorithm is given by:
P oax.. (. - afry o)
~ R k 21 Ykl T P2kid 2k
ey = O T T " (A2.29)
v V1Y Ak Pr 2
P, ax [P, a* T (A2.30)
k ,3k+1[k 2 k+1:[ :
Prex = P -

T
1+ a P *
A1 Px PR

The values ' of P_ and ¢_ are given by:
p P
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P 1T
P = * A% .
p .:AP ] [p ] (42.31)
o = [ax]7l g (A2.32)
o “p o

It remains to update the noise model parameters Fk on the

basis of new observations, Vit The noise present in (k+1)th.

output observation Ve

”~ T ~
e =y -~ akr . ¢
k+1 k+l  k+1 Jk+1

From equation (4.39) of Chapter 4 we have:

e = G Y + w (A2. 33)
K k o K
where e is the estimate of €
"eo "'e__l . . - "el_s
Gk = “81 —Bo - . ¥, "ez-s (A2.34)
A ~ ® ~ ¢R_:, N
| %k-1 "®k-2' 't "%k-s|
~ _ A ~ ~ T
and 2k = [%1 e2 e . eé]
Writing Gk+l gs: -
Gk ]
Gk#l = . . (A2.35)



where

we have

T _ ~ ~ Fal
%K+l = [}ek ~ep 1 ¢ kel
e = G P+ w
%k+1 k+1 mk+1

e \.'Z
ok k nk
. T vt

Cx+1 Ei+1 i
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é] (A2.36)

(A2.37)

(A2.38)

Thus least square estimates of Y at (kt+l) instant:

/

A+ ~

Vel k1 Skr1

(A2.39)

I\+ .
where Gk+1 is the pseudoinverse of Gk+1' This equation (A2.39)

is similar in form to the equation (A2.12).

is given by:

and

Thus the recursive

equations for estimations y§ can similarly‘Be evaluated. This
(A T ~
R ~ B By (Opey 7 Brar W)
.¢k+1 = wk + ) 6y \ (A2.40)
N N + g g
Bicr1 i Bir1
g (R, €& )T
R Brer Py Biey

Per = B - 0w (A2 41)

1+e g
- * Bie1 By Biey

C s AL e AN AL

P



APPENDIX ILI

DERIVATIQN OF EQUATIONS FOR RECURSIVE ESTIMATION

A(k+1)
n

Y(k+1)

FOR MULTIVARIABLE SYSTEM

| ¥y(2)

JRPEGEN x

-

(A(1)
A(2)

A(k)

A

Ek(lf‘

v .

X(k)

(ACkr1)]

|y (k1))

A(k)
= "
A(k+1)

Y(k)
y(k+1)
LA,

A}

(A3.1)

(A3.2)

We willfirst derive A(k+l), the pseudoinverse of A(k+1).
. n,

where

+ T
Let A'(k+1) = [c D ]
A k Perr|
T

S

Dk+1:

: d x km matrix

g xm matrix

134
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For (k+1)m > g

at(xely = [}T(k+1) A(k+l{] “1 AT (x+1) (A3.4)
n, , N, n,
ot _[T ]—1T

(k+t1) A(k+1l) = |AT(k+1) A(k+1) AT(k+1) ACk+1)

/\? V) 4" N, , 4V \
= I
AT (k1) A(k+1) AY(x) = at(x) (A3.5)
n, N, N, W)

From (A3.1), (A3.3), and (A3.5})

s ] (k) + A
D x) = At )
Ck k+1 [;(k+1 A A

c

~ 3

A(k) + Dk+1A(k+1i] A" (k) = A (k)
N

-3

+ . + - At
Cp AK) AT(K) + Dy Alk#1) AT(K) = AT(K)  (A3.6)

Ilemma: 1

Ck A(k) A (k) = Ck for km > q (A3.7)
l\'
Proof: Since from the properties of pseudoinverse

A(k) = A(k) AT(k) A(k)
") \ N

Vv

Ac) At ) = A ATx) Ax) AT (k)
n, n, N N,

N n,

since A(k) A+(k) is a projector matrix
N 4"
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T

CE has columns in the column space of AL

N

T T +
cC = A(k) A (k
” « T G A AT

From using (A3.6) Lemma 1

T + L4

Ck + Dk+lA(k+l) i (k) = 2 (k) (A3.8)
or ‘

T + +

Ck =~$ (k) - Dk+l A(k+1) ﬁ (k) (A3.9)

From(A3.3)and (#3.9)

+ N + . +
ﬁ (k+1) = [} (k)—Dk+lA(k+1) 5 (k) Dk+i] (A3.10)
Lemma 2
At (k+1) ATT(k+1) AT(k+1) = At (k+1) (A3.11)
V] N N v
Proof: From the properties of pseudoinverse

AT (k+1) A(k+1) At(k+1) = AT (k+1)
N, ",

n, n,
A ix+1)[ACK+1) A+(k+1§] T o at(k+1)
N “N, ", “\
AY ey AT Tex+1) ATy = At (et1) Q.E.D.
N, V) N, N
Since AT (k+1) A+T(k+1) AT(k+1) = A+(k+1)

N N N N

[T “x T T _ T

Cx Dk+]] T [’3 (k) A (k*l)] = [}k Dk-t-l]

Di+1

[T T T T T
C.Cp * Dk+1Dk+£][é (k) A (k+1i] = [;k Dyyq| (43.12)
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*
From (A3.12)
[T T T T
-?kck + Dk+1Dkfi] f (k) = C (A3.13)
and Te + p oY ] aT(x+1) = D (A3.14)
“k% * Prt1Prea k+1 -
. +T T
Multiplying (A3.13) by A " (k) A (k+l), we have &
n,
T T T +T7 T T 4T T
[?kck + Dy yy Dk+i] A (k) A (k) AT(k+1) = C ﬁ (k) A (k+1)
) (A3.15)
T
Now Cka =
+ + +T +T T T
Bx (k)-Dy,, A(k+1) A (k)] [A (k)-A" " (k) A" (k+1) DkH]
N n v
- [}*(k) & T - Atao Ao aTGe) Dy
Y 4" \, "\,
+ +T
~ Dyt1 A(k+1) ﬁ (k) i (k)
+ +T T T
+ D, AQk+l) ﬁ (k) ﬁ (k) A*(k+1) Dk+J (A3.16)

From (A3.15)-and (A3.16)
[%+(k) a* Ty - At AT AToern) o,
Y Y N~ Y

- Dypy A1) Q*(k) Q+Tck>

+ .. +T T T
+ Dyyy ACieH1) ATCk) ATTGR) ATCKHD) Dyyy
T T +T T
+ Dk+1Dk+1] ﬁ (k) ,‘3 (k) A (ktl)

T L +T T
= A k) A" (kt+l
Ce AT CR) AT (HD)

or Aty AT aTao ATk AT
Ny n, n, N,

e TN et T
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- A+(k) A (k) A (kt1) D A (k) A (k) A (k+1)
n

k+1

D, AG+1) AT AT AT AT ) AT )
n, N 4V Y ‘

+ DK+1A(k+1) at(x) A+T(k) aTaert) op o ATG) a7Tae) AT
n, N, N N
T +T

= ¢f A+T(k) AT(k+1) ' (A3.17)

Since : ' s

ATy AT A" T = atT )
n, n, N

from (A3.17)
At A Tao aTer1)
N,

4"

r

AT a0 A Ty aT(x+1) ol
n,

k1 A Ty A Texy aTaer1)

AT (x) A (k) At (k+1)

Diev1 Aprr?
+ +T T T +T T
+ Dy g Alk+1) ﬁ (k) ﬁ (k) A (k+1) Dy st ﬁ (k) é (k) A (k+1)
+ D, . DX AT(x) A Ty aTaet1)
k+1 Pie1 A : }
= ¢y A" (k) AT (k+1)
v

]

+ T oat +T T
[é (k) = Dyyq BApa ﬁ (k{] ﬁ (k) A" (k+1)

Hence

T

k+1 Dy iy A (k) A Tex) AT(eH1)

A" (k) A (k) A (k+1) Dk}l (k) A (k) A (k+1) .

- Dyyy AGD) 8700 A7T00) ATOe) D,y 4700 AT AT qer)
(A3.18)
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From (A3.14) and (A3.16)

atax) aTT) ATy -ata) AT aTxr1) Dy ,q AT(k+1)
~ n n, o
- D, Ak+1) AT ) AT (k) AT(xt1)

k+1 A A

+ +T T T T
Dirafiers 4700 AT ATGer1) D, ATCer1)

+D, .. DX AT(k+1) = D (A3.19)

k+1 “k+1 k+1 -

Postmultiply (A3.19) by Dk+1 A (k) A (k) A (kt+1)
n

AT ) A Txy aT(x+1) pf A (k) A Tex) aAT(k+1)

. k+1

-2 0 AT 0T (e 1D AT k1D ATGODE AT a0 A TG0 AT (1)
n N N Y Y Y

- k+1A(k+1)A (k)A T (o)At e+ 1) +1A (k)A TaaT k1)

* Dieyy Ay A ORI G0ATUer)DE 47 )0, 18T G0 A T 0 a T ()
T
+ Dk+1 D yq AT(xe1y Dk+1 A (k) A Texy aT (k+1)
’ v
_ T
= Dyyq Diyy A (k) A Texy aT(x+1) (A3.20)

Equating (A3.20) and (A3. 1@7

A (k+1) D

k+1

+
_ ﬁ (k) A Ty aT(x+1) Dk+1

A (k)A TooraT(k+1)

.'++T T T T T, . (. +T, .T
+ Dk+1A(k+1)A (k)ﬁ ()AT (k+1)Dk+lA (ktl)Dk+1£ (k)ﬁ (k)A" (k+1)

T

+ Dk+1Dk+1A (k+1)DY, AT Ck)A TkyaT(xe1) =

. k+12
[}Aﬁck)A+TCk>AT(k+1)+D
4" n, .

+ +T, T
or AGKFL)A (k)ﬁ (K)A" (k+1)

n

*Dgyq] Dyarh” (kt1) k+1A GOA AT (k¥ = 0
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At aaa T a0 aT (k1 34D, ACGH AT (0)A T (k)aT (et 1) +p 0
n * n, n

o K+l

or
r

+ +T T o+ +T T
Dy .y E+A(k+1)5 TN (k+1)] = ATCOATT (A (ke1)

D, = AT AT aaTaer) [1+A(k+1)A*(k)A*T(k)AT(kﬂﬂ -1
N Y] n, N

(A3.21)
So
+ T
Aty = [ck Dk+]]
R N,
where
T + +
Ci = A"(k) - D, ACk+1) AT(K)
N n
Dy = AT G0OATT AT (v 1) 1+A(k+1)A‘“(k)A*T(kMT(m] -
n n, 4V} n,
Define
+ +T . . .
P, = A (k) A" (k) {Dimension of Pyia X al (A3.22)
n n,
+ +T . : -
Prog = ATCe1) AT T (k1)
n n,
_ [CT o ] Cx
k “k+1
T
1Pk
_ T T
Prer = Gl ¥ Dyyq Dy

T

* Dy 1Pkaq

~ At +T + Ty AT T
Preg = ATCRY AT7CK) <A OF (oAl (1)

+ +T
= Dyyy ACKFD) A0 AT (0)
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k+l

T 3
A(k+l)A (k)A Ta® (k+l)Dk+1 )+ 12k +1

- : T
Pty = P — P A Cktl) D =D 1A 4Py

oI
* D1 Py

‘+

Dyyq ACk+1) P AT(R+1) Dy 4

' T
P + [}PKA (k+1) + Dyyq A(k+1) PkA (k+1) + Dk+£1 Dy

-~

= Dpya Ayen Px (A3.23)

Since by (A3.21)

[} + ACk+1) P A (k+1i] = P AT (k+1)

D1
— p AT
k+1 + Dy, AGk+1) P AT(e+1)= P AT (kr1)
_ T
~P AT (k+1) + D, ACk+1) P AT(k+1) # D, = O (A3.24)

By (A3.22) and (A3.23)

Pee1 ™ P = Dy Agaq Px

P, - kA (x+1) [1+ace+1)p aT(re1)] 7 Laee1)p,

e
I

a = pk-p AT (x+1) [}+A(k+1)p AT(er1)] - A(k+1)P (A3.25) -

For mk > q

¢ = AT(K) Y(k) (A3.26)
n n :

N
Consider one more block of data

+
[0} = A (k+1) Y(k+1
_ [ ] Y(k)
= fC. D -
"

‘ T
= ¢ Y(k) +D k+1
sk (k) et 1 X( )

!

= [ﬁ*(x) - Dk+; A(k+1) 5‘“(1:)] ¥(k) + Dyyy yktl)
/ T " .- (A3.27)
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~ + ’ +
= A (k) Y(k) + D ktl) - A(k+l) AT (k) Y(k)
bey = ATOQ YR kﬂB( ) - ACkt1) A )]
= %k + Doy [i(k+l) - A(kt1) 2%] (A3.28)

- ~ T T -1 ~
Say = b * DA (k¥1) [I+AGKF1IPLA (k+1)] [{(k+1)—A(k+1)$1{]
(A3.29)

So for mk > q

~

N = T T -1 ~
2k+1.— ik + P AT (k1) [}+A(k+1)PkA (k+1i] [i(k+1)—A(k+1)$%]

T T -
Prer = PPt (kt1) [}+A(k+1)PkA (k+1i] laqe+1)p,
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