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ABSTRACT
- \

‘The structure of rare earth nuclei in@?igh spin states
is investigated.ﬁsing two collective modéis. The first modgl S
is a generalization of :Fé VariabiefMoment of Inertia model
to allow for axially asymmetrlc deformation. This model pre-
dlCtS that at sufflclently hlgh spin, the nucleus will mini-
mize its rotational energy by éhanging from an axially %;ym—

metric to an axially asymmetric shape. This sudden shape change

can cause a phenomenon described as "backbending". " This model

27T TN ~o
[/also provides a haturdil . explanation. for the phenomenon of

126 and OslBs.

"forking" as observed in Ba
The second model investigated is the qugdrupole collec-
tive model of Bohr aﬁd Mottelson. The Scbroedingé} equation with
the Bohr-Mottelson Hgmiltonian is solved numerically for states
with angular momentum as highjas 20 #. The method is valid for
arbitrary collective popential eneréy and arbitrary inertial
functions. The method involvés converting the partial differen-
élal equation into a matrlx elgenvalue equatlon uS179 finite
difference technlques. The resulting Hamlltonlan matrix is dia-
gonallzed using the Lanczos algorit he results confirm the
/prediction of the previous model that backbending can result
i from a shape change. E2 transition rates are calculated and

found to agree with rigid rotor estimates to within a factor of 2.

The method of solutlon of the Bohr—Mottelson Hamlltonlan
i

e \
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'is extended go’Gdd particle nuclei. It is @ound\that the B

repfesentations of the D, group are likely to be of. physical

~

importance in odd-even nuclei, a result which appears never

to have been considered before. . ' f

fa ™
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INTRODUCT IONN— y
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-

One of the major tools which has been used to study
the structure of atomic nuclei is spectroscopy. This technique
. ) o
involves measuring the energies, spins and parities of the

e

stg?Tmnary states of the nucleus. The goal of the theoretical

physiéist is to find a model which explains this data. The

ground and efcited states of  a nucleus are extremelycomplicated

guantum-mechanical s&stems. However many body theory suggests

\,
3

that the relationship between the gfound state and the low lying
/7 .

excited states {"elementary .excitations") can be relatively

simple. Because of this At is possible to develop theories for

~

b
more than just the lightest nuclei.
‘ - ~
The history of nuclear‘QEzsips is a good example of the
/ e N ‘
inferplay betweegftheoty and experimgnt. In the earliest days,

there was very little experimental data on the excited states

of a nucleus. The theories were correspondingly crude. For

example Eﬁe liquid drop theoxry predicted binding energies rea-
sonabl& accurgtely. HoweQer this theory also prédicted that
all nuclei were spﬁerical. wifh the aévent of;Lhe technique
of inelastic coulomg scaftering’it was possible to do spectrﬁ*
scopy on the lowest oﬁe or two excited states. The resultant
spectra for some nuclei were s9mewhat reminiscent of the spectra

“l

4
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of rotating molecules. However accordingrt? quantum-mechanics,

a spherical system can not rotate. Rainwater {(Rai 50) realized

VRS
that because of the spin dependence of the nuclear force, there

was a tendency for the outer.nucleons to "polarize” the nucleus.

(3

This implies that the eduilibrium shape of some nuclei was de-

formed rather than spherical as the liquid drop model predicted.

For this suggestion, Rainwater sﬁ ed/ this year's Nobel Prize

with Aage Bohr and Ben Mottelson.

In a series of papers in the early 1950's Bohr and

Ll

Mottelson (Boh 52, BM 53) extended the ideas of Rainwater in
developing an elaborate theory of collective motion. The Bohr-

Mottelson theory has -been spectacularly smccessful in explaining

a large body of data including excitation energies, electro-

magnetic moments ang lifetimes of nuclear states.
f }

A steady refinement® in experimental technigue has re-
sulted in not only more accurate data but also-d?ta on more
states of more nuclei. Of particular interest to the study og
this thesis is the structure of nuclei in high angular momentum
stateéi Usiﬁg the reaction (a,xny) Morinaga and co-workers
(MG 63, LM 65, ML 65, Mor 66) have been able to measure spectré'
of states in the ground state band as high as J = 12. Using
he;vy ions instead of o particles, Stephens and co~workers
(SLD 64, SLD 65, BDS 67, CDS+ 67, NSD 67) have extended the me-
thod to spins as'}igh as J = 18. Large usé is made of gapmma-

A I .
gamma coincidence technigues to determine the level schemes



%

Theereason for using heavy ions instead of, for example protons,
~is that heavy ions bring to the compound Sygtem a large amount

+ of angular momen£um without a corréspoqding lafge amount of
energy.

Nuclear theoreticians have been unable to keep abreast
of these dev&lopménts. Nuclear spectra can be measured far
more accﬁratély than calculﬁted. The structure of high spin
states poses\an interésting problem. The éxcitation spectr;

of many huclei appear to be almost classical in nature. In par-
*  ticular, it appears that the exqitation.energy takes the férm
‘ of kinetic\energy'of rotation. The classical relation between
" energy E and angﬁla; momentum J for a system rotating perpen-
dié%lar t? its sym&gtry axis is E. = 32/2J. Expérimenté ,- the
eﬁergy is approximately proportional to the square of the angu-
lar momengum. However if the classical formula for the moment
of inertia is used, the answer is too large by a factor of about
two. This means that nuclei do not rotate “rigiély”. It is
generally believed that pairing correlations reduce the effective
moment of inertia from the "rigid" rotation value (Bel 59).

In 1972 the Stockholm group, using tﬁg (o, xny) reactioq,
noticed that in Er162 at about J = 14 the effective moment of
inertia suddenly incfeased almost to the "rigid" rotor value.
They called this effect pbackbending. Backbending is discussed

in more detail in Chapter 2, Section III. Since then, back-

beénding has been observed in more than a dozen nuclei. Several



theoretical expianations of this eﬁfect have been proposed.
Most prominent among the microscopic thedries are the Coriolis
anti-pairing {(CAP) effect of Mottelson and Valatin {(MV 60) and
the decoupling model of. Stepliens and Simon (SsS 72).

The basic idea of the 'CAP effect, is as'follow;; When
thé even-even nucleus is not rotating, p;irs of identical par-
ticles ?re in degenerate time-reversed single particle states.
Becéuseiof the short range of the nucleon-nucleon force, such
pairs of particles tend to couple to J = 0 thereby reducing
the moment of inertia. However when the nucleus is rotating,
the timelgeversal degeneracy i1is broken causing the pa;ring
correlations to be weakened. For sufficiently higp spin there
should be no pairing correlations at all and the nﬁcleus should
rotate witﬁ the "rigid" rotor value of the ﬁoment of @nertia.
This is analogous to the Meisner effect in superconductivity.

In BCS theory there is no superconducting solu;ion if the
effective pairing sﬁrength G is smaller than some critical
valye Gé’ In the CAP effect, the sudden vanishing of the gap
is responsible for backbehding. However the lack of a super-
conductlng solutlon//9r G < G is a result in the approxima-
tions 1nvolved in the Bcéﬁﬂbdel It is not clear that thls would
happen if the,Hamlltonlan were solved more exactly. The attenua-
tion of pairing correlations does, however,-pro§ide a natural
_explanation of-tﬁe.slow incfease in the moment of ineftia'well
below the critical angular momentum. Anotﬁe problem with

.. ' : )
"the CAP theory is the fagt that a proper mitroscopic calculation
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i$ very cumbersome. Ideally Hartree-Fock-Bogolyubov calcu-
lations with cranking) angular momentum and particle number
projection before variat;on, and using a realistic interaction
should be performed. Because of the technical difficulties
involved, this has not yet been done.

At present interest in the microscopic theories is
{ .

/

gravitating toward the decoupling model of Stephens and Simon

(SS 72). They observe that the Coriolis force should be®especial-
J
Q

mentum j and small 3~projection §i. This is the case in the

ly strong for nucleons in a state XZ having large angular mo-
Nilsson model for neutrons at the Fermi level in the Er region

of the peériodic table. In this model a pair of i neutrons

13/2 )
decouple from the rotating core and align their angular momen-
tum aiong the axis of rotation. As a result the rotational.
band based on the appropriate two quasi-particle excitation
crosses the ground state band at the critical angular momentum.
Calculations have shown that this indeed can cause backbending.
The decoupling model has difficﬁlty in explaining backbending

in the heavy rare earth nuclei where the i neutron states

t

13/2
should be full.

The two microscoPic theories are related. In the de-
coupﬁing model, the baifing‘qorrelations in two nucleons are
destroyed at the backbending point. In the CAP modgl, the
pairing correlations in all the nucleons (or at least in all

the neutrohs) are destroyed at the backbending point. Any
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particle aligned aiong the axis of rotation can not have good
angular momentum along the symmetry axis of the core. Hence
both theories predict that the nuclei can not have axial sym-

metry above the;backbending point.

hY

In this thesis a new theory of the structure of high

v

spin states is presented. The basic idea is that at high angu-
lar momentum, the nucleus becomes axially asymmetric in éhape;
To investigate this idea, calculations are performed based on

twe collective theories: a generalized variable moment of inertia

v

™ theory and the collective guadrupole theory of Bohr and Mottelson.

* The results of both these collective theories are compatible

. .with the microscopic theories described previously. The col-
v ™~

lective theories provide an alternative but not incompatible
viewpoint to the microscopic theories.

In Chapter 2, the variable moment of inertia model is

generalized to allow for the possibility of axial asymmetry. It

is shown that backbendiﬂg can result from a sudden shape’change.

In Chapter 3 a method -of solving the Bohr Hamiltonian for angular
momentum as high as J = 20 is described. In Chapter 4 the re-

sults of this method are given.' AlsJ in Chapter 4, the generalized
variable moment of inertia model is ¢ompared to the Bohr col-
leétive model: Ih-¢hapter 5, the techniques used to solve the

Bohr Hamiltonian axe extended to oif particle nuclei. Finally -
n

a summary and discussion is given Chapter 6.
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CHAPTER 2

VARIABLE MOMENT OF INERTIA MODELS

I Some Early Models of High Spin States

1. Power series

The simplest model® for an even-even rotational nu-
cleus is that of an axially symmetric rigid rotor. The
state of this system is completely described by g%é two lear-
co-ordinates which give its orient&tion. The quanpum:

mechanical properties of this system are easily calculated,

"The excitation energies are

_ J{J+1)
i~ 2 2.1)

<

Here the moment of inertia cﬁ is independent:of the angular

\

momentum J. Because of symmetry reasons (see Appendix B), J
is restricted to>even integers. ‘Thus the first tﬁree levels
of a nucleus are predicted to have angular momenta J = 0,2,4,
all with even parity. This prediction does indeed apply to
a large number of even-even nuclei in the rare garth and ’
actini@e regions of tbe periodic tabie. Moreover, for many
of these nuclei the lével spacing'given by equation (2.1) is
approximately valid for the lowest few states. |

‘Equation (2.1) predicts tﬁat the ratio of the energy
of the secondlexpited staﬁe-to that of the first is 3 1/3.

»

i n 7
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Experimentally this ratio is about 3.3 for good rotational

nuclei. The deviations from equation (2+l)-become progressive—/faj\\\v
ly more severe for the higher states.‘PThe classic papers of
Bohr and Mottelson (Boh 52; BM 53) showed that this deviation

of the experimental spectra from that of a rigid rotor could// —
\ B

be understood as a coupling between rotation and vibration.

In analogy with molecular spectra they modified equation (2.1)

to “

P

E; = A J(3+1) - B(J(J+1)) 2% . (2.2)

An explicit exyféﬁsion for B was given in terms of the B and
y stiffness parameters. However it was found that the agree-~
ment with experiwent was significantly improved if B was taken
as a phenomenoclogical parameter and fitted to data. While
equation (2.2) did result in improvement,‘it still was inade-
guate for the higher spig states.

Proceeding in the same spirit, additioﬁal terms were

added to equation (2.2) yielding the equation

B, = A J(3+1) - BLI(I+1))2 + c(@w+1))® + p@@an? . (2.3) .

This time ni,attémpt was made to give an expression for the
parameters C and D. They were fitted to data for each nucleus.
The addition of more parameters gives betﬁer“ agreemént to
experiﬁent but no increase in knowledge of fhe physics involved.

Moreover, to get reasonable fits, it takes almost, as many



parameters as pieces of data. The energy is beiﬁg expaﬁded

as a finite power series in J{(J+1l). However J(J+l1) is always
greater than 1 and can be quite large indeed. As a result the
highest term in the gxpansion becomes dominant for sufficient-

[
ly high spin. This gives an unreasonable asymptotic behaviour

~

for equation (2.3).

2. Centrifugal stretching models

Considerable effort has been devoted to obtaining a
good fit to rotational spectra using a limited number (two or
three) parameters. A major contribution to our understanding
of rotational nuclei was made with the development‘of the
Davydov-Chabon model (DC 60). Since details of this model are
described elsewhere, only a brief sketch will bé_given here.
The model is basically a’simplification of the collective model
.0of Bohr (Boh 52). The Davydov-Chabon (D-C) model involves an
axially asymmetric rotor in which 8 stretching is treated .

1

quantum-mechanically. However the ‘asymmetry parameter, j{ is

taken to be a phenomenological constant rath dynamical
co-ordinate. .

A fewlyears later, Diamond and cg“workers (DSS 64)

observed that the D-C model in the cage of ax£a1 symmetry

- (y = 0) gave excellent results‘for,t e very high spin states.
In this paper they outlined a classi¢al anaiogue to the
(axiélly symmetric) D-C model. Theyl\gave the following egua-

tions:

UL L L o 2 '
E; = IR + §'C(B Bo) | (2.4)
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with

, Ji) =3B g% (2.5)

i . .
For each J, equation (2.4) was minimized with respect to 8.

n This procedure leads to a two parameter fit to the data.

Mosgszkowski (Mos 66) elaborated on the Diamond model

to obtain the equations

1 FV{(1+V) .
E. = (2.6 1)
J 2=% (l-V)2
FV .
J(J+1l) = —7 - . (2.6 ii)
(1-v) ‘

\

The potential energy V is eliminated between the above two
equations yielding a two-parametexr formula for the energy as

a function of angular momentum.
o

3. Harris model
The pair of equations (2.6) are similar to the two
parameter ‘equations proposed by Harris (Har 64). By considering

higher terms in perturbation theory for the cranking (Ing 54)

moment of inertia, he obtained the following:

12 2 :
EJ =5 W (d& + 3 C w7) ‘ (2.7 1)
VJszl) = w(JL + 2 C wz) . (2.7 ii)

Here w is eliminated between the two equations. Explicit
expressions were giQen for w% and C using the cranking forma-

lism. However using the method of least squares Harris fitted the
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parameters<yé and C to the data. In a second paper (Har 65)

Harris extended his model to even higher order terms:

~

EJ:—;—UJZ((/O+3CU)2+5DUJ4+7FQ)6+'..~) (2.81)

[TV = wl/ + 2 Cwl+3Dwl +daF @+ ). (2.8 ii)

Introduction of higher order terms leads to additional free

parameters. Although Harris only applied his model to (even-

X

even) rotational nuclei, his method yields reasonable results ‘/A\W

p 4
for many even-even transitional nuclei as well.

I1 VMI Model of Mariscotti, Scharff-Goldhaber and Buck C e

1. Outline of the model

In 1969 Mariscotti, Scharff-Goldhaber and Buck proposed
their now famous variéble moment of inertia (VMI) model
(MSB 69); It is a two-parameter phenomenoclogical model for
energy ;evels and transition rates of the ground state band
of.even-eveﬁ nuclei. It is valid for rotational nuclei as well
as those transitional nuclei for which E,/JE, > (10/3)2/3 = 2.23.
The appliéaiion of the model can be extended to bands other‘ﬁhan
the ground state band. The conventional st?tement of the

model is given below. The excitation energies are

2
_3(3+1) L ., f(8) _ _4(s) .

B, = IR c(J’J Jo ) . (2.9 1)
J

3

For each angular momentum J, the moment of inertia is deter-

4

mined by the equilibrium condition
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!

dEJ -

S = 0. (2.9 ll)
afS (s) -
i

’* Under certain circumstances there “can arise ambiguities

- connected with the statement of the model given above. As a
+ result a more mathematical stazfyent of the model will be given

in Chapter 4, Section VIII. .

In the original VMI paper (MSB 69), the above formula

was least-squases fitted to 88 even-even rotational andz&ransi-'
tional nuciei. "The results were excellent. It was also shown
by Mariscotti et.al. that the VMI model is matheQaticaliy
equivalent to the Ewo\parame;er Harris model (Har 64).

—

2. Conventional plot of data

A groupof Stockholm nuclear physicists have developed
a convenient graphical method (JRS 71) for plotting the “
~ : .
energy level data of rotational bands. In analogy with Harris

(ng 64) they define an "angular velocity" o as

dE

tw = . (2,20 1)
avy (J+1) ]

Also they define théj;ffective moment of inertia ii)

2d _ (=—9E )_l - (2.10 ii)

v 52 d I+ . *

Equations (2.10) togéthér imply that

. ~ ’

#/ITEFD =Ju . (2.11)

. Since the energy is experimental and is known only for discrete
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values of the angular momenta, it is necessary to evaluate

the:aifferentials in equation (2.10) according to some finite
v

difference interpolation prgcedure. The Stockholm procedure

yields the following relagdions:

y o ,
: (mJ):.2 = LI (AE ) (2.12)
t (2J3-1)

2d
J _ 2(23-1)
5 = N ] (2.13)

He ~J

AE_ = EL -+ E (2.14)
J I J-2

€

These definitions vaj and w will be used in this.
work., Sorenson, in a review article (So; 73), has discussed
other possible definitions. 1In the conventional method of
displaying the data, 2d¢h2 is plotted as a function of th)z

"for each availabie energy level. An example of such’'a plot

'is given in Figure 2.1.

S%yeral featgrés of theny-wz plot should be noted. First, °

enerqgy transitions rather than energy levels are displayed. *
Th%s affordgs close contact with the data sincé what is mea-
sured is the ?Pergy of the gamma réy emitted durirg the transi-
tion. Second, each measured level (assuming all the lower
"levels are known) }esults in e;actly one point on the plot.

Third, the shape of the plotted curve is very sensitive to

the data. Fourth and most important, the predictions of,éﬁg

>

-
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[/ Figure 2.1
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" J-0? plot of Er °“ data. The straight

2
Mev

line represents the

prediction of the Variable Moment of Inertia model



VMI model on thisg kind of a plot yield(approxinately a straight
line. This statemenﬁ.will be substantiated in Chapter 4, Section
VIII. ;t is a remarkable acgiévement for.the(VMI model
(likewisé'the»{wo'parameter Harris- model) that the data for Er162

lies very close to a straight line for angular momentum as

high as J =.12.

I1I Backbending

In Erl§2 the level spaCing AE increases steadily with

J until J reaches 14. At this point, the level spacing sudden-

ly decreases; that.is AEJ 16 °© AEJ=14. For yet higher an-

gular momentum, thé level spacing resumes increasing When r

EJ is plotted as a function of ¢J3J+1 » “this change in AE

is not readily apparent. However on anc/~w plot, the change
- . l . >

is.guite'dramatic. Fof large J wr = 5 AEJ; As a result, a
decrease in AEJ causes a decrease -in Wy and a resulting sudden
. increase in“J (see equation (2. ll)) This effect was first

observed in 1972 by A. Johnson, H. Ryde and S: A Hjorth

(JRH 72). Some-of their data is shown: in Figure 2.1. They

A

called this effect backbending
This discovery caused conSiderable eXCitement. The

interesting fact was not that w decreased but that the ‘moment

of inertia suddenly increased Long before any such exper1~

u

.ments were attempted Mottelson and Valatin (MV 60) had pre-

di?ted at suffiCiently high spin all pairing correlation should'

-y .

.disappear and ‘the moment of inertia would increase rapidly



to the rigid rotor value. They predicted that this effect

should occur at J_ = 1% for mads/number A = 180. This de-

4 N

duced ,effect was called the Coriolis an;ﬁ—pairing'(CAP)

effect. At present the true cause oﬁ backbending is not abso- '
lutely kndwn. It is clear,/however, that backbendlng nuclei
undergo a sudden changei&% a critical angular momentum J.

"Since the pioneering work of Johnson et.ai. (JRH 72),

over ; dozen nuclei have been found which exhibit béckbending

in the ground state band. Most of these nuclei are in the

rare earth region of t iodic tagle., A few nuclei also show

backbending in the B-band (WGG+' 73, KBB+ + 74).

[ 14

One theoretical approach to explain backbending was

to generalize the VMI model. Das and| Banerjee (DB 73) have

substituted for the original potentia} energy term a more

L. ]
general te#m

- v - c 'S :J’éS))“/nn, . (2.15) -

il 1
N

n
€21 ©3
4 to the data, backbending curves were produced. A fourth

By least squares fitting the four parameters Qg,
and c
degree polyjbmiaL'was chdsen. because this is the lpwést order ¢

polybémial for which backbending is possible.

" .. " There is no reason wh§‘ igher order terms could not be
used.' In fact Thiebérgér “(Thi 72) has given a prescription

-for obtalnlng the approprlate VMI potential to fit any data
(prOVlded data does not show "downbendlng“) (Downbendlng

describes a .phenomenon in whlcﬂ the moment of 1nert1a~J decreases

T
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K
> 4 .
<

With increasing angular®momentum J.) The Thieberger prg%Fr§p—
tion is descfibed qéﬁ u;ilizgd in Chapter 4, Section VIYI. Thé
fact that the VMI model can deScribe.aImost any level s hemqh
has been used to criticize the moael. It has been said that

the model is just an alternative statement of the data. Perj'

d1aps this is true for the generalized VMI model.
7

‘

ngever
the original two parameter fo;mulation gives very good results‘
.for J‘i 10. fi/is a éhallenge to understand why this is so.
It ﬁas already been stated that Mariscotti et.al. proved
the -equivalence of the original VMI model. to the two para-
. meter Harris model.  Klein, Dreihlér and Das ' (KDD 70).have
’

proved -that the generalized VMI model is equivalent to the .

model if taken to all orders. However this proof can

be used onl notonic funcrions of J. In the

case of backbending, w is not monotonic. As a 1t the two-
models are equivalent only if there is no backbending (or

downbending) . 'The VMI model cén reproduce backbending whereas

the generalized Harris model cannot.

{

ﬁ IV Theoretical Justification of the VMI Model

There have been severéfjattempts to .justify the VMI
model on theore#ical grounds. Das.et.al. (DDK 71) and Volk$§\-'
(Vol 71) have presented-'similar jﬁstifica£ions based on the
quantum-mechanical variational principle. A varijational
argument will be given here because ‘it ;; suggestive as to
how ‘the VMI model can be extended. This argument will consider

N

A



only the ground state band although this limitation is not

-

o ¢
necessary. KE} .
. . ’ )

As in the collective model, it is assumed that the
Hamiltonian can be broken into an intrinsic vibrational part

HO and a rotational part. We take

H=H + © H 3°%. , (2.15)

The operators Jr are the anguiar momentum operators about
the body-fixed axes which, in the most general case, are de-
fined as the principal axes of the asymmetric system. @Assuming

he validity of the Hamiltonian in equation (2.15), a trial

wavefunction may be written: . y o i
. ‘ Jd J‘ .
— 1
wJ({ui} = Kio AK({ai})¢MK(el,62,63) (2.16)
where = _ : . . p
J _ 2J+1 Cd R A |
¥ 16n (1+6KO) : _ . _
“ ‘ /(2.17)

The‘summatioﬁ iﬁ equdtion (2.16) is over even K only. This wéve-\
function embodies‘the A repFesentation of tﬁg)pz group. (See
Appendices A, B.) The sét {ui]i = 1,2,...N}‘labels the '
variational parameters. They.reprggent any change in the in-
trinsic state y;thin a baqd. For example, they ¢ould représent
shape co-ordinates, paifing.gags, etc.’ - ‘

We now define the expectation value
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wo({ai})

_<wJ=O({ai})|H|wJ=0({ai})> (2.18) -
= <AK=Q({ai}{IHOIAK=O({ai))> . (2.19)

The ground state energy E, is obtained by minimiZing Wok{ai})

with respect to the variational parameters {aij. Thus we

define the locations of the *J=0 rinimum, {a (o)}, by

awO({ai}) .
T {GI(O)} = 0 n = lr2,...N .‘ (2-20)

-

The ground state J=0 must Have X=0. We assume the intrinsic
7

state varies slowly with J. Hence the higher K components must

be small;
AK({ai(o)}) =0 if K # 0 : (2.21)
and
3A_ ({a. })
——53-—i—— =0  n=1,2,...N. (2.22)
%n- {ai(o)} - 7

o«The 'respective values of the energies of the excited

states are

WJ({ai})

= (WJ({Gl})IHIwJ({qi})> ‘ | . (2. 23)
- ‘ 3 - | |
A 3 J

J 122, ,J
+ (o <a e NiH A, Ha })><o, |T0]60 0>) .
v=1 K,K'=0 ‘K i vITK! i MK'“v' MK

The excited state energy E; is obtained by minimizing WJ({ai}).-

. That is

Ey = min(W ({a;})) - B, - (2.2
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!

The location of the mini*um, {ui(J)}, is determined by

.an({ai})

= d n=1,2,...N. (2.26)
%n e @)

-

Assuming that the minimum in parameter space is a function of

J, we can expand

N amn(am(J)-am(o))(an(J)—an(o)Y
E. = L 5 . ] + v
J _ 21
m,n=1
N T |
+ T (. <a ({a, @ NDIH A, {a.(JT)})>
v=l K,K'=0 K 1 JOv K 1
t
J 142 .J . :
. % <¢MK|JV|¢MK|>) . (2.27)

The fir§£'order terms- in an(J)-an(o) vanish because of equa-

tions {2.20), (2.21) and (2.22). 1If it is assumed that the
Hamiltonian is axially symmetric, i.e. H; = H, = H_, then the

ground state band must be pure K = 0. This causes equatiopn.——

f‘(2.27) to simplify to

! ,
N (am(J)-am(O))(an(J)~an(O))
. EJ = 1 ain 51 + ...
' . m,n=l ) . ’ .
+ <Ay o({ai(J)}ylﬂLIAK=0({ai(J)3)$J(J+l) 7 (2.28)

Howgver, to derive the'ordiﬁary VMI model, it is not
necessary to' make this assumption. Instead we define the

» quantity </(S)

J by requiring

i
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3 J
J{(J+1) '
= I ( z <A_{({a. (N |H_|A,, ({a, (I)})>
24§S) v=1 K,K'=0 Kt- it vI"'K ‘1 \
' J 132,73 | L ‘
X <¢MK|JVIQ >). . , . (2.29)

LMK

For each J there is a point in parameter space {ai(J)}:éorres—

ponding to the minimum. of WJ({ai}).‘ The quantity‘Jgs) defined

by equation (2.29) also depends on J. Hence it is possible to

_consider (ﬂﬁS) as. a function/of {ai}. That is,

(s) _ : '
th = £({a D)) .. (2.30)

.o t
For our purposes it is necessary to assume that:Jés) is a

monOtonical Y increasing -function of J. ExperiméQtally it is
. P ‘
seen that,this assumption is valid except in the case of down-

bending. This 'is not a severe limitation. As a resul£,~
equation (2.30) can be inverted to yield the vector function

a(bﬂs)) with componén;s defined as
- (syy . .
e () = g, W% i= 1,2,...N\. (2.31)
) ' \
Expanding g?ués)) in a Taylor series about (/éS) we
obtain - . !
(s)
: dg, (") S
- _ 1 (s) _ yg{s) . :
ai(J) Ol.i(O) = -—d]'(g)-—-'—‘p(s) X (JJ ‘JO ) IS A (2._32)
o o :

L ]

Upon substitution of equations (2.32) and (2.29) into equati?n

(2.27), the following simple equation is obtained:

. * ’2 4 N
_J{I+1) L . S8) _ jis) .

By = C, (/5 S A U (2.33)
it )

1 . . /
P . y
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/

N ag 48 ag_ (/!5
=37 I (a TS (s) " n;]”—'(sr' (g) - (2.34)
m,n=1 mn dJ Jo ‘jo .

The locations of the energy'minima {jﬁ(J) for J =0,2,4
etc. lie'along a path in the N-dimensional parameter space.
‘The quaﬁtity\ﬂ(s) is a monotonically increasing function of
the distance along that path as J increases from 0. Thus
the {ai(J)} can be considered to be implicit functionF of c/“”
and these N variationgl parameters {ai} have béen essentially
replaced by a single qﬁ&ﬁtity </(S). "This process is exéct.
The VMI equilibrium condition is obtained h*'substitu-

\
ting equation (2.31) into equation (2.26). This yields

de(J(S)) .
— 57— | sy = 0 for all J. S (2.35)
ad™’. I/ _ :

Employiné equation (2.25) we finally obtain the condition

dEJ

/ mdés) =-0 for all J .. | "~ {2.36)
This completes the justification for thg ordinary VMI mod;I.
In this model a single go-ordinate;J Aescribes the
change of the intrinsic sﬁ;ucfure within the band. However.
there is no reason why just one co—drdinate must be used. A’
natural choice would be to take the three moments of inertia
about the three quy-fixed,axesra§ co-ordinates. Using.

this suggestion and working in analogy to equation (2.29) we

define three moments of/inertia by
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3 _ : .
R (Ji,J‘;.J‘;)? T ( z <AK({ai(J)})|Hv|AK.({ai(J)})>

I

T a2 .
x <¢MK|J\)|<I>MK, ) (2.37)

_-where RJ i,xﬂg,tjg) is the lowest eigenvalue of the operator

oo]
il

[ e %}
|<

v=l 23J

for a Qavefunctio? in the A representation of the D, group' *
with angular momentum J. Eguation (2.37) dées not uniquely
define the quantities;Jq,zlg Eﬂﬁclg but this does not matter.
It is cleér that these*duantities are not unique because
equation (2.29) must be a special case of equatién (2.37). all
that matters is thét the quantitiese/i,gjg andtlg dé not change

 too rapidly with J so that an appropriate inversion and Taylor
series expansion can be méde:'

An inversion-analogous to equation (2.31) is performed
to give the relationé\\ ) o \

a () = g, (LA (2.38) .

After substitution of eqﬁations (2.37) and (2.38) into equation

(2.27) a “"three-dimensional" VMI équation is ‘obtained:

f\/ 3- C
_ J T 4 . UV _ J ‘
= RS 4 S (Jﬂ ‘f;)(vjv-J‘\’)) + oo (2.39)

E
J 0, v=1 21
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where va can be obtained easily. The equilibrium conditions

for each J become

EJ(‘D IJ l*:/3)
3/ J 3 4J
"1 \\) (J ler- 3)

= 0 v=1,2,3 . (2.40)

Equatidns (2.39) and (2.40) have not been used to study nu-
clei. 1Instead a model intermediate to the ordinary VMI and
the "three-dimensional" VMI has been used. This model will be

described in the next section.

V. An Axially Asymmetric VMI Model

A "two-dimensional" VMI type model (SV 73) has been
developed and applied to several nuclei. Two co-ordinates
based on a volume conserving hydrodynamical model (Boh 52)

are employed to describe changes in the intrinsic wavefunction

The first co-ordinate y describes the amount of axial aéymmetrw

+

. of the nuclear shape. A second co-ordinate \MA), instead of
the traditional R, describes all other aspects fof the change

in the intrinsie wavefunction.

The starting point of the model. isfthe f\hree moments
of inertia from the collective guadrupol

given by A. Bohr (Boh 52):

¢4,= 4 B 62 sinz(y -~ %1 V) v=1,2,3 {(2.41)

! :
Note that y determines the ratios of the three mgments of

inertia. The overall magnitude of the three moments of inertia

is specified by the gquantity ‘“A) in the more general relation
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(2.42)

Using these moments of inertia and following Davydov and
Filippov (DF 58) the asymmetric rotor Hamiltonian is de-

fined as (see Appendix B)

oy ‘ 3 1 3 ' 53
R = > AT z . (2.43)
4 ZwﬂA) v=1 sinz(Y - %1 v)

The lowest few eigenvalues of the operator R are plotted as

a function of y in Figure 2.2. The rotor eidenvalues are .

Wi

symmetric about v .= % in the relevant range of 0 <y <
Two special cases are noted. In the case of axial

symmetry (y = 0), the operator R can be replaced by

] 1l ~2 ~2

v=0 = ;:FXT (37 + JZ)' A : }2.44)

-

!

To avoid an infinite eigenvalue at y ='0. the wavefunction

must have K = 0 since in this case the operator 33 always

can be omitted. The

has zero expect;tion value and thus 33 f

eigenvalues of §Y=0 are the well known symmetric rotor energies
, X
4 g, = L (2.25)
24 = « /

The second special case is that of maximal axial

asymmetry (y = %). In this case the operator R reduces to
A T 3 | 1 ~2 n2 ~2, 3 ~2 3 IQ
Ry=n/6 = EJTKT (4 J] +J5 ¢ J3) = EJRXT (7 vy Jl) . (2.46)

-

Despite the fact that the nuclear shépe displays maximal



mlevels of a rigid asymmetric rotor. These are

the results of the DavydowFilippov model. y is the axial

asymmetry parameter.

-3
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-axia}/ﬁsymmetry, the vector Hamiltonian for vy =

27
Ul is
6
actually axially symmetric about the l—axis,sincexJ; =‘Jg.

As a result the wavefunction can be quantized with respect to

“~the l-axis and written in terms of a DJ function. The eigen-

g)

MK
values of Ry=n/6 are then simply
I i _ 3 .2
] »EJKl —W (T {3+1) 2 Kl] . (2.47)

¥

For a given J the lowest, or so-called Yrast, level is obtained’
when Kl = J;3

_ 1 3 '
EJJ = W ] J{3+4) . (2.48)

Either by examining Figure 2.2 or by comparing equations (2.45)
and (2.48) it can be seen that for J < 8, fhé energy is lowest
when y = 0. However for J = 8 éhe axially symmetric and the
maximalvaxialhy asymmetric systems have equal rogat}onal energy.
For J > 8 the rotational enerqgy favours a nucleus with a maxi-
mal asymmetrié shape. This has'important'physical consequen-
ces in a more realistic case.

We now return to the construction of a new VMI type

model. The symbol RJ(Y) is defined to be the lowest eigen-

- value (consistent with angular momentum J) of the operator

“'inﬂA)ﬁ where R is given in equation (2.43). In analogy with

the two previous derivatigg; the quantities C}A) and y. are
' 1
8

determined by the condition ' C
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asymmetrle YMI model (VMIA) The model of MarLscottl et al

g e

RyCr) . 3 " L |
) 2J‘§A,). _\)El (K',x%=o <An.({a"i\(J)})IHXI\AK.'({ai.(-J‘).}b :
x <o IJ | &K,;')_ . S RS

- . . ..,MK
Then equation (2.49) isAinsefteé';nto equation (2.27) and,

‘after an«appropriate functional inversion the=equation

CURG Ty gy A) 9(B) ‘ :
B = 2ﬂ“‘) *3 cef;” f_jo‘ )+ D;(Jé g ),)YJ': . .-
\ N N B N N - PR JRR -
‘ 1. - 2 . . : g '
t 3 E v, .+~h1ghef oreer terms ‘ - (2.50)

[N

'1s obtained. - The equilibrium conditions become

e B . ~ '

QEJ

- Em T sy

and - . . - O

aE - N o l‘\_“‘ . ‘.
— =0 . . .0 L {2.52)
oY ' SN

] ~ . L4 - "

i —~N
To avoid confusioh, this model w1ll be called the

. [

(MSB 69), with perhaps a more geheral potentlal V(JG, wxll be

called the symmetrlc VMI mpdel (VMIS) Kgaln 1t should be

‘

empha51zed that the quantlty,J( { represents not @nly centr;—

~

_fugal stretchlng but. also m;crosc0p1c degrees of freedom.

. N . ,
VI.' Results:of VMIA Model for Ground'State Band ° -

v

-\ . To test thlS model calculatlons have been performe&
A

for. a pair:of special cases. It is assumed that the “potentlal
' R . ¥ * IS . «

surface" can adeﬁuately be represented by a paraboloid. The‘

higher erder terms in equation (2.50) have been neglected,

 csmipu i Y
3
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The minimiéat@én implied in eguatidns. {2.51) and (2.52) is-

per formed as,féllowé, 5Elében.equally\spaced ValueS'of'Y are

chéseﬁ. " For each choice of vy, say Yy and for each J, the

L

. -, equation

.
v 2 .
. , B

EEJ (J(A) ,Y?i)' J' . - ’\* .
(5) Ay pa) =0 i=1,2,,..11 (2.53)
> JW Y s

»

%

. 1s solved. Because of the simple potential'surﬁace employed,

- Py

the derivative iﬁ~equa£ion (2.53) can be determined agaly—

’ticélly.'.The”keéulting equation is solved numerically

yielding the value for~J§?) apbropriate for the chdﬁce‘yi.

Now that‘jéﬁ) is given as a function of Y; it is

’

possible to define a new function of Yi®

»

E (v = E.P) v ) (2 54)
S AL TS A LR S L _ e

' wheretﬂgﬁ) is the root of eqguation (2.53). A suitable inter- -

pdlation procedure is used to define a’continuous function
Ej(?) based on EJ(Yi). The funct}on EJ(y) is plotted in Figure
2.3 for two choices of ‘the set of parémeters {dgA),C,D,E} as
;defined in equation (2.50). The interpolgtionhprocedﬁre used
to determine EJ(yf from EJ(y;), 1 < i< 11, mékes use of
spline functions (see Appendix D). This functional fit to
EJ(y)'“allows an analytic détermination of the.ﬁinimum.of

rE&(Y) with respect to vy.
\

The minima in Figure 2.3 represent the solutions
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Figure 2.3

0 | I T
Jh\\/ | .
S ’ '

40

3-0

- €,(8)

{Meav)
2-0

00

Energy levels of the VMIA model. Rqtational energies’
as a function of the asymmetry parameter y. . Case A
illustrates a y ""soft" nucleus and case B a relatively

y "hard” nucleus. Minima which represent VMIA solutions

are marked on the figure.  .2*-
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of equations {(2.50), (2.51) and {(2.52) as determined by the
variational procedure. Case A illustrates a y "soft" nucleus,
i.e. soft to asymmetric shaée change, and case B a reiati&ely
Yy "hard" nucleus. 1In case A for q;f J. = 8 the prolate
solution is obtained. However for J > Jé it is energetically
fdvourable for the nucleus to become axially ééymmetric. For
case B tbe instability occurs at J_ = i6. For J 2> J there
exists for each J a second minimum for which y N 0. The-transi-
tionssbetween these second minima as well aé those bgtgeen
the absolute minima are plotted on an\/-mz plot in Figure
2.4, Thé cﬁange from axially syﬁmétfic to asymmetric results
'in backbending behaviour. On this plot the second minima
appear as a straight line contribution gf the curve for J S’Jé-
Since the original VMIS model predicts a étraight line on the
Aélot, those higher minima have been named the "VMIS soldtions".
These "VMIS solutions" may have a physical interére—
tatioﬁ in terms of "forking". Forking is a JZrd,introduced
by G. Scharff-Goldhaber et ail (SMﬂ; 73) to describe some pe~.

}02 and Pdloo. Forking

culiar experiheg?al results in Pd

describes a phenomenon in which two rotationai bands both feed

with about equal intensity into‘a common lower band. What is
. ] .

ihteresting, is that the branch at lower energy displays

.backbeﬁding whereas the branch at higher’energy £follows the

. VQIS cufve (on an‘f~m2 plot). subsequently the Scharff-

Goldhaber et'al paéer was shown to be in error (GGR+ 74).

-However since then two other cases of forking haue been ob- -

e
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Figure 2.4

12 0t
100
Mev’l

8 O

60

: !
0 0-04 0-08 . O-12 : 016
hw)t  (Mey)® '

q]

.

‘Jsz plot of the energy levels of the VMIA model. These
are the same two cases as in Figure 2.3, The broken lines
. show. the higher enerqy "VMIS" solutions (y & 0) while the
.\ backbending part of the solid line shows the Yrast asym-

.metric solutions.
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. 126 . . 186 :
served: one in Ba {FCs+ 74) and the other in Os (WBB+ 73).

The data from these two nuclei are given in Figure 2.5. The
fact that the "forked" state follows along the straight line

lends credence to its interpretation in terms of the VMIA

model.
. ‘ 2 .

In Figure 2.4 the</-w® curves resume a steady rise

after the backbending point. This is in contrast to the data. _

However this is due to the fact that a parabolic potential

surface has been chosen. The results of a more realistic

potential are given in Figure 2.6.

VII The VMIA Model and the Gamma Band i

In the Davydov-Filippov model (DF 58) the lowest
eigenvectors of the rotor Hamiltonian for odd J's and the
'éecondvlowest eigenvectors for even J's form- a. sequence of
states interpreted as the y-band. From Figure 2.2 iﬁ can
be seen that for Y = w/12 these levels, J = 2‘;3,4',5;6' etc,
have é reasonably reguiar energy spacing. ‘The y4bapd'can
also be incorporated into the VMIA model.

éince the justification of this model is -based.on
the qéan;um?mechanical %a?iational principle, some compli-
cations arise for the even angular momentum states. This is

due to the fact thatthe lower even members of the y-band

are not Yrast states, i.e. there exist lower energy states /
of the same J. To pbtain the ground state using the variational

I
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‘jsz plot of 03186 and Ba;?ﬁ data showing forking. The

dotted lines correspond to the higher energy "forked"
' !

state.
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Figure 2.6
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Energies of the VMIA model for Er on an J—w? plot. The
dotted line corresponds to the results of the VMIA model -
with a more complicated potential than the paraboloid given
in egquation (2.50). -
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principle, the class of trial wavefunctions is unregtricted
except for requirements of Ao;malization., However to obtain
an excited state using the variational principle, it is nec-
essary to ensure that each member of the class of trial wave-
functions is orthoébnal to all tﬁe lower energy solutions of
the Hamiltonian. In the case of an Yrast state, this ortho-
gonality is guaranteed by the fact that states of different
Jvhave no errlap. On .the other hand, for an even member of
the y-band, say J = 2', it muét be ensured that each member
of tﬂe class of trial wavefunctions are orthﬁgonal to the state
wJ=2,of'the ground state band. |

The procedure used to obtain even vatates is as
follows., First the eqdilibrium value of y for the grouﬁd

state member of angular momentum J is obtained. This value

of y, written as Y30 is used in defining the operator R of

of equation (2.43). Then.all the eigenvectors (with angular
’momentum J) of the operator ﬁ _ are calculated. These

. J :
eigenvectors will be written w}g)(YJ), i=1,2,...8%

and N = J/2+1. NekXt the trial wavefunction

-1 a o3 ) (2.55)
L2 i YoM Vg '

is formed. The quantities a; represent ~the variational para-

meters. It is now guaranteed that for any choice of ai, wJ'M

is orthogonal to ¢§;)(YJ)- To ensure normalizatﬂgﬁ\we reguire
N 5 _ ,
L ojeylt =1 (2.56) .
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i

The variational condition is

1

§< > =0 (2.57)

subject to equation (2.56). Substituting equation (2.55)

into equation (2.57) we obtain

a.a. w(l) YU)lR Iw(J)

125 (y;)> = 0 (2.58)

subject to equation (2.56). Equations (2.56) and (2.57) are

combined using a Lagrange multiplier to yield

B w(i’( lle(J) Ya, - E a. = 0
._ JM Y3 j i
j=2
P .
‘ i=2,3,,..N-. (2.59)
Defining o {Q l
bl = a .y ' i=1,2,...N-1 (2.60)
and
T _ (i+1) (3+1)
Riy = Yy (YJ)IR Wau  Grg)> (2.61)

I R,. b..=E b,. (2.62)

The procedure for the even members of the y-band is

(1)

.now straight forward. From the elgenvectors w (YJ) the

matrix RT is formed using equation (2.61). Then the lowest

~
~

eigenenergy, RJ.(Y) of RT 1s calculated. This energy depends



on y. Finally RJ|(Y) is substituted for Rle) in equation
(2.50). The conditions (2.51) and {2.52) give the equilibrium
valuesngé) and YJ,.'In general Yy 7 Y- Had it been true
that Y g

=Yy then the somewhat elaborate projection procedure

outlined above would not be necessary. Instead the lowest

A

eigenvector of ﬁYJ would represent the Yrast member aﬁd the
second lowest eigenvector would represent the y-band member.
Orthogonality between the two states would be satisfied by
virtue of the fact that the (non-degenerate) eigenvectors of

a hermitian matrix are orthogonal. HOW;ver, in general, the
eqhilibrium values of y for the Yrast and y bands are differeht.

. The energy levels resulting from this calculation
are shown ié Figure 2.7. The ordinate, EJ(Y), is the same

guantity as was plotted in Figure 2.3. However in the present

case, both the y-band and the lowest thrée members of the

Fi

ground state band are plotted. The predicted energies are
given by the minima of the curves., As in Figure 2.3, a para-
bolic potential energy sﬁrface was used. It is important to
realize that the parameters appearing in the potential are the
same for both the ground state band and the Y-band.

The VMIA model gives predictions for both the energy
levels of the y-band as well as the backbending behaviour
of the ground state baﬁd. Moreover, the model gredicts that

the onset of backbending is sooner for the vy "soft" nuclei.

The‘"y softness" of a nucleus can be determined gquantitatively
] {

//j? . .- |



o

Energy levels of the y band from the VMIA model. The
minima of these curves gives the equilibrium value of

Yy as_ in equation (2.52).

f/‘\
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by measuring the energy of the y-bandhead; the léwer the
vy~bandhead relative to the dround state band, the "softer"
the nucleus with respect to vy deformaﬁf%n. The critical
- angular momentum, Jc' has been measured for several nuclei.
This makes it poésible to correlate Jc to y "softness'".

To do this an arEitrary ﬁnit of energy‘%ill‘be chosen,
say E. It is then c¢onvenient to express moments of inértia

in units of'B/E;. Then we can define

E:J = E;/E (2.63)
~J§A) =J§A)/(3/Eo) (2.64)
—-YC()A) =..-JZ)A)/(3'/EO). : ' (2.65)

Then equation (2.50) can be written

Rodv) . Zay — 2 - 2

7 = J (a) _(a) ‘ - (A) _7(&a)

5y = oy p TR v qiy-r M-I T (2066
Ly J -

All the quantities in the above equation are dimensionless. The

quantity g > 0 is the y softness parameter.. For the extreme

~ b 1 M

y soft case, g = 0 and the nucleus will backbend at J = 8.

To investigate the proposed correlation between back-

.bending and vy softness,:?éA), %ignd r were given fixed values, A
whereas q was allowed to yary; To fit the data shown in Figﬁré

2.8 ‘the values chosen were

and ’ ’ . (2.67)
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A

Each choice 'of values for &JéA), P, g, r} was inserted into

equation (2.66). This yields E for different Qalues of J.

J’
From this sequence of energies, the critical anguiar momentum,
J,r as well as the y "softness" (see caption to/Figure 2.8)
can be calculated. Then in Figure 2.8, Jc is plotted as a

Y )
function of y."softness". _ Each choice of g correspondf to a

different point on the theoretical curve. The‘experimentai

”

JC is plotted against the experimental y "softness" on the

same curvg:: Although there is considerable sgatter, the
proposed correlation does seem to be valid. It would be in-

I '
teresting to investi@ate whether or rot miecroscopic theories

o , o

give this result.

AN .
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/

Cérrelation between critical aﬂgular momentum and "y
stiffness". On the vertical axfs is plotted the eri-
tical angular momentum at whiéh the nucleus either back-
bends or at least displays an irregularity'ﬁn the J ver-
sus w” curve. The energy of the y bandhead relative to

the ground. state band energies is plotted on the hori-

zontal axis.
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CHAPTER 3

BOHR'S COLLECTIVE MODEL: THEORY ) '

.I. Introduction.

1. Motivation

A collective model of nuclear rotations and vibra-
tions was proposed by Aage Bohr (Boh 52) over two decades
ago. The theofy was refined in a subsequent paper (BM 53)
co~authored by Ben Mottelson and in later papers. Hawever
ifibroved very difficult to‘solve tﬁenSchroeAinger equation
resulting from the-model. As a result sevefal'simplifications
to the model had £o be made. Some of’theéé theories have
been described in Chapter 2.

Necessarily these simplified models lack some of the

physics contained in the original Bohr—-Mottelson collective

’ i

modéi. Ehis model treats rotations and vibrations on an equal
footing';hereas1m3§tsubsequent*models can handle one or the
other type of motion but no£ both. gThé Bohr~Mottelson (B-M)
model is able to tréat‘ro;ational-vibrational,coupiing in a
satisfactory manner. Moreover transitional nuclei can be
treated in this framework. In addition the B-M model is

fully quantuﬁ—mechanical» For exémple, éero-point motion

is an important'féature of this model. The .B-M model is

dynamic. It contains inertial as well as potential features.
L)
\ ’ ‘ , . ) /
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The VMIA model proposed in Chapter 2 suggests that
axial asymmetry is an important feature of nuclear structure
at high spin. As a separate check on this prediction, the
B-M model will be solved using a new numerical technique.
Of crucial.interést is the question of whether backbeﬁding

can result in the B-M model.

2. Previous Attempts to Solve the Collective Hamiltonian
A B

It has already been stated that the Bohr Hamiltonian
is difficult to solve. .ItTwas not until about fifteen years
~after the model's inception that a proper solution for low
spin states was given by Kumar and Baranger (KB 67). Using a
numerical method they were able to solve the Séhroedinger
equation fér states of.anguIar momentum J = 0,2,3 and‘4.
Because the equation becomes successively more Qifficult to
solve for the higher angular’momenta, they were not able to
go highg: tﬁan J=4. Later Gneuss'a?d co-workexrs (GMG 69, GG 71)
using a different method were able to obtain .solutions for’
J < 6. Subsequent sﬁlutions of the Bohr Hamiltonian generally
h;ve been ‘based either'on the method of Kuﬁér and Baranger
SK—B) or of Gneuss é%\al% .

In the K-B ﬁethod, the derivatives appearing in the
Hamiltonian are treated numerically using finite difference
methods. This approach leads naturally to a generalized

matrix eigenvalue problem which is solved numerically. The

method of Gneuss et al is quite different. The solution is



45

[ N
obtained by using a basis of five-dimensional harmonic oscil-
lator functions. éhe matrix elements‘of the potential (in
this bhasis) are calculated analytically using group theoretic
techniques. Compute¥ storage problems require that the size
of the basis be limited. The allowed basis set is inadequate
for J > 6.

éince these two prototype solutions, there has been
considerabl? effort expended in extending the range of solutions.
Of particular note is the work of Budnik and Seregin (BS 74).
Using a method similax to that of Gneuss et al they have solved
th4 Bohr collective Hamiltonian for J < 20. However they
are limited to .the Bohr inertial parameters and to simple

cEllective potentials. Also they have not investibated the

possibility of backbending in their model.

3. Outline of Method of Solution in This Work

In'this chapter a cgmpletely general method of solving
the Bphr Hamiltonian for J < 20 is described. The limit J = 20
was chosen for computational convenience. The method cah be
gséd for]yet higher angular momentum states. The method is
valid for arbitréry inertial functions and arbitrary potential
surfaces. The method is based on that of Kumar and Baranger.
For the higﬁer angulaf momentum states, the Hamiltonian matrix
becomes very laééé?indeed.(approximately-lQOOXIQOO). This
largé a matrix haslbeen maée tractable by the resurrection

of the Lanczos algorithm for obtaining a limited set of eigen-



values and eigenvectors of a matrix. The Lanczos algorithm
is a relatively fast '‘method of obtaining the extreme eigen-
v;lues and eigenvectors of very large matrices. Since in many
cases only the extreme eigensolutions are of physical interest,
this method is a very useful tocl in physics. In fact this

method is the key to our solution of the Bgh¥ Hamiltonian.
\\\\ .

=

II. Collective Model

l.: Definition of Collective Co-ordinates

... In the Bohr collecfive model, only the quadrupole modes

of motion are considered. The monopole mode is néq&ected be-
| ’ .
cause @t is normally at much higher energy due to the relative

|
incomp%essibility of nuclear matter. The isoscalar dipole

| _ ' ‘
mode is forbidden because of conservation of linear momentum.
| R

The octupole modes have negative parity and so are orthogonal
| R

| . .
to the positive parity quadrupole modes. Isovector modes are
| ‘

1 ) : .
normally ignored although they can be included (RGA 70).

1
I

; Insofar.as a collective model is being described,
indi jdual particle motion is not included explicitiy. Col-
‘lective states are understood to be due to the c&hereng motion
of many nucleons which can be described by relatively few
collective co-ordinates. 1In éart}cular the gquadrupole col-
lective model involves five collective co-ordinates. If the

) nucleﬁs is defo%med; it is convenient to deséribe its shape

in terms of "intrinsic" axes rotating with the nucleus. It fs'

élso convenient to take these bofz;fixed axes to be the |

’ . .
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principal axes of the nucleus. 1In this case the intrinsic

shape of the nucleus may be completely described by two co-
ordinates. However an additional three co-ordinates are re-
quired to describe the orientatiog of the intrinsic axes of

the nucleus. ‘ //
The orientation of the nucleus is described by spééi—

fying the three Euler angles 6, ez*and 65 required ko %ransform

from the laboratory-fixed co-ordinate syéteﬁ to the body7fixed

co-ordinate system. The shape of the nhucleus is given by

C e . 3 . " . C
specifying its radius as a function of angle in the intrinsic

éystem:
R(6,9) = R [1+Bcosy¥, (8,¢) + -bfj-il‘l (Y, (8,8)4Y,_,(6,9))] /
2
[ 7 Ro[1+B Y50 (0,00 + —é (Yop(8.0) + ¥, _5(6,0))] (3.1)

t
Clearly a pair of intrimsic cartesjan co-ordinates {BX,BY}

can be used instead of the.pair {8,§}. The connection between

pairs of co-ordinates is

ﬁ/ »
A /’
= { = i '
P ?x Bcosy \EY Bsiny (3.2)
or
_ ST 2 -1 ~
o=/ 82+ g2 ar:jtan (8,/8,) - (3.3)
Both pairs of co-ordinates wi e used in what follows. B and
- i * *
Yy are more conventional; however the cartesian co-ordinates

*Bx and BY are more useful for numerical calculations.

\
4y
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2. Schroedinger Egquation
f

In the co(}ective model, there are three contributions

to the enerqgy?
E=T7T + T ..+ V. (3.4)

The first term, T refers to the rotational Xinetic energy

rot'’
due to the time rate of changérof the Euler angles which
!

-

represent the rotation of the nucleus. Written in terms of

A .
.the dyramical variables

Trot =

N

. 2
L _J {B_,B.)8 . . (3.5)
v\J“ X"Ty' v ]

The second term, Tvib’ refers to the vibrational kinetic ener-
gy due to the nuclear change of shape around an equilibrium

shape. The vibrational energy can be written as

1 ' 1 .2 T
T .. 0= 5 B, B, + B __R B + 5 B By . £3.6)

Yy

.

The last term, V, represents the potential enexgy\35? to shape

)

changes. It is expressed in terms.of the shape co-ordinates

g

and B, but not their time derivatives:

X

.
-

‘.
"\ .
) Vo= VBB . Q (3.7)
\4 .

As Kumar and Baranger have emphasized, the seven func-

tions~Jv(Bx,By)v =1,2,3, Bxx(Bx’Sy)' ,By)r B

B, (B, gy By By

and V(Bx,By) are apbitréry except for certain symmetry con-
ditions. K-B also note, however, that the;pairing-plus-

7 !
quadrupole model indicates that the most sensitive of the func-

tions is the potential energy funétion V(Bx,ﬁy). As a conse-
.

quence we will follow the lead of most investigators and rgstrict



the inertial functions to those originally given by Bohr (Boh 52):‘

_ 2.2, _2m (
‘/v = 4BR sin” (y 3 V) (3.8),
and
Bxx = Byy = B ' Bxy = 0 . (3.9)

Equations (3.8) and (3.9) were derived assuming small
déviations from sphericity. These inertial functions are the
simplest choice that satisfy all the required symmetry
broperties (KB 67). The main justification for ﬁsing the Bohr
inertial functions is simply that, for‘definiteness, some
chpice had to be made and the model has been remarkably success-
ful in explaining.a large range of data. Howéver, ultimately
it is hpped that suitable microscopic theories will be developed
which will calculate these inertial functions from first prin-
principles using ;ealistic interactions.

There is some experimental evidence in favqQur of a

quadratic dependence of the moments of inertia on the defor-

mation B. Diamond et al (DSS 64) have plotted the experimental

el

J=2
the experimental deformation B (determined from BE2(2+0) transi-

moment of inertia {(determined from E ) as a function of
tions). To a good approximation the experimental data points
lie on a parabolic curve. his agrees with eguation (3.8).
If it is assumed that a nuclelis behaves like an irrotational
fluid of constant density, en it is found that B = % o Rg.

The Diamond et al paper (DSS 64) demonstrates that the hydro-

o
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dynamical estimate for B is too small by a factor of about

\
N 22

1/{

\

six. An alternate method of determining B will be described
in the n;z;>chapter.
The next step is to quantize the expres%ibn for the
enerdgy (equation (3.4)). To do this the Pauli \(}au 33)
prescription. is used. Since the details of this process are
given elsewhere (KB 67, Eis 70) only thg results will be represen-

ted. The classical energy expression in equation (3.4) is

replaced by a collective Hamiltonian defined by

\\:‘
Hy= T, *+ T+ V. (}(10)
The rotational kinetic energy operator is ‘
SN - Ei— (3.11)
rot 2 v=1 %jv .
where the operators &l' 32 and 33 are the usual angular

L)

!
momentum operators with respect to the body-fixed co-ordinate

system. The vibrational kinetic operator is

~ 1 1 3 3 d 3 .
T,\ = = 5% { Q(R_/B. ) w5 + = Q(B_,B ) == (3.12-1)
vib 2B Q(BX,BY) 9B, x' Ty’ 9B By x'Ty’ 9B,
1,1 ) 4 3 1 ) . ) .
= - [ — B &5 + —s——— — sin3y ], (3.12-11)
2B 84 9 aR B3Sin3Y 8y oY

The first form of %vib is more convenient and QEI; be used in

this work. The volume element becomes

4 . - :
4/ dr = 51n62 Q(Bx,By)d61d62d63dedBy (3.13)

. [N
where the integration density is
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- 1382 - :
Q8,8 = 282 ¢ (36 - 62) . (3.14)
Written in terms of 8 and % the vglume element is

———m

t
dr = sinGZQ (e,y)delde d83dBdY (3.15)

2

where Q' (B,y) = 2 85/2 84 sin 3y

Ignoring for the moment rotational ‘degrees of freedom a vi-

brational wavefunction w(éx,ey) is normalized by

J V(8,8 V(BB AT = [ Ve (B, BV (8,8, )08, 8 )8 a8, = 1

3 (3.16)
\'(" 3

Using the Bohr Hamiltonian the Schroedinger equation

HB Yy = E ¢ (3.17)\
fﬁg:% be solved. Most of the rest of this chapter will be de-
e

vot8d to explaining how equation (3.17) is solved.

) 3( Matrix Elements of the Rotational Kinetic Energy \\\\////

'A conventional set of basis states for the operator

Trot will be given. First the operator Trot can be written as
- _ 2 ey a2 .1 22 22
T op =PI + lg-p)J3 + 5 {3, +30) (3.18)
where
1,1 1 - 11 1 ,1 1 s s sk
p = 3l— + ) . g =5 , * = { - Y {3.19-i,4ii,iii)
LAV 5 R PR B .
and
~ -~ .’ ~ ~ IA
J,=J, +1i43, , J_=J,-1iy9, (3.20)

A normalized basis state for Trot is
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_ /23+1 ‘
(818283|JMK)g— K(61,82,83) . (3.21)

Here‘DgK,is the usual Wigner rotational transformation matrix
according to the convention used by Davydov (Dav 66). In this
basis the matrix elements for the angular momentum operators

are well known (Dav 66):

(JMK|J3|JMK) = K (3.22-1i)
(IMK|JT, |IMK+1) = (JMR+1]T_|IMK) = /TSTKFD) (3-K) (3.22-ii)
- (IMK| T2} IMK) = J(I+1) (3.22-iii)
(See also Appendix B, Eguation (B.3)).. All other matrix elements

are zero.
Again the rotational wavefunctions are'symmetrized

according to the A representation of the D2 group. In equation

(B.12) the symmetrized and normalized function l¢iK> is de-

‘fined. It can be written

e > = —L — (|oMk) + (-1)7 |gM-K) ] (3.23)
MR ETIES ) '

where K must be even. Combining equations (3.18), (3.19),

"(3.22) and (3.23) we finally obtain

J oz J 2
<¢MK|Trot|¢MK> = p J(J+1) + (g-p)K (3.24)
J ~ J . 3,4 J
Cux-21Trot | Pux” = <Pux| Trot ! Puk-2”
= % r VIIF6,,) (3FK-1) (9-K+2) (3+KJ (3-K+1) ° (3.25)

All other matrix elements are zero.



4. - Separation of Variables

Equation (3.17) is a linear partial differential equa-

tion in five ~variables: 9 PREY Bg and By' ‘'Sinceé the eigen-

.

functions pf Toot

venient to expand the most general solution of equation (3.17)

form a'‘complete set of states, it is con-

as
¢ 4 J J ‘
Y = z a_. ¢M . - . {3.26)
. J’KSM KM K
quantities al, do 3 - 3
The quantities a), , do not depend on 8 = {(6,,6,,6,) because
+ KM N 1'72'73
A s . " J .
appedrs only in T op and not in T ., or V. The ?KMlS do, however),

i depend on Bx and By. Since ﬁBf 34 and 32"(the component of 3
along the space-fixed z-axis) all commute, an eigenstate of

HB,can be wrltten as leM where J and M indicate eigenvalues of’ 32
. 4

and J and ) labels all additional guantum members. In co- ordinate

representation the solution to equation (3.17) can be written

S J
-
Wagy (BB B) = L', (BB, oy 8y . 3.27)
AJM y K=0{2) AJK
J ) .
The notation ! is explained in Appendix B. A summation
K=0(2) )

over K is necessary because J3 does not, in general,'CSmmute
-w1tthB. The 1ntr1n51c wavefunctions AAJK(Bx’By) are inte-

.grated with respect to\the integration density QXBX,By)

-

Thus the normalization of the wavefunction in equation (3.27)

becomes

J Cope
¥ 2 :
. ! A ’ d = 1 . 3.28).
.K=§(2) J | AJKfo'éy’L Q8. /B, a8, By 4 (3.28)

Equation (3.27) is reminiscent of the, technique of
separ7ijon of'yériables uséd to solve partial_diffeféntial
/

- o
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equations. Since Trot'is coupled ‘to the rest of Hp through’

. Y
its dependence on Bx and By’ the solution of equation (3.17)
can not be separated into a. single product of a function of

§ and a function of (Bx,sy).’ ,

5. Expectation Value of the Hamiltonian,

' Equation (3.17) is equivalent to solving the variatio-

nal problem (KB 67)
S<plH_ |¢ > =0 ' (3.29-1)

‘subject to the constraint*

L]

<ply> = 1 (3.29-1ii)

for an arbitrary variation of the state ]w>. For angular

2 [

momentum J it is necessary to evaluate

~ ~ o~
Uraml Bl ¥aom™ = Vool Trot 1¥aam® * Vagm! Tvin!¥igm®

+ <waM|v]waM> . _ (3.30)
Using the form of equation f3.27) as well as equation (3.12-i),

A

% J*

A . | ]
Vyaml TyipVaow™="75 Idexdeydelde2d8381ne2o(Bx’By)E.AkJK'¢MK"
1 ] P J

“ 5T By  E car— QBB mp— L' A ¢
Q Bx'By =%,y 9B ' Tyt 98 ¢ TAJK SMK
~ 1 . f! * -
= - 35 L dg_dg_A { ' B ) L - =5 Q(B_,B.)
2B X AJK ﬁx y. =x,y'BBS X'y
9 - o,



by orthogonality of the rotation functions. Integrating by

parts yields (KB 67)

n ' (B rB)
<wAJMlTvib]w>\JM> 2B i Jj dedByQ(BxLEy) sﬁi,y aBS )
(3.32)

The advantage of integrating bj parts is that there is no longer
a mixture of first and second derivatives in BS. Instead there

are squares of first derivatives. A second advantage will be

~

demonstrated later: any matrix representation of TVib is mani- -

festly symmetric.

Thé other two terms in equation (3.30) are'simpler:

Wy ol Troe 1 ¥ram> . By J[ d8,d8,0(8, 8 )AXJK(BX.BY)
x* ;'IT

J
rot|¢MK>A K(Bx’By) ) (3.33)

Finally

2., '
(sx,ey)l VIB, /B, (3.34)

VgV I¥iam

> = X.,[J'dedeyO(Bi'By)lAAJK

III. Numerical Methods: Vibrational gnd Potential Energies

1. Grid in B-y Space

The integrations over 8 and By in equations (3:32),
(3.33) ahd (3.34) are each done numerically. The region of in-
tegritlon is shown .in Figure 3.1. ‘The theoretical range of B
is given bx:o < B< =, Because of symmetry reasons it ig suf-
'cient to ?onsider Y iﬁ the range qiygn/B. When written

in terms of Bx and By’ these relations become

1
i

|
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° < B, <> o < By < V3 B, - (3.35-i,ii)

Because bhe 1ntegratlons are done numerically, it is
m&%
necessary t¢ restrlct the reglon of 1ntegratlon tora finite’

=
N

Area.‘ The integration region is chosen to be an equilateral
triangle:whose sides are along thé Y=0 (BYEQ) and y=1/3
(By=/§ B,) lines. The length of the sides of the triangle
determine a maximum B value denoted as Bm. It is ‘assumed that
fég B>Bm, the wavefunction }s sufficiently small that it can
be ignored. The validity of this assumption will be checked
later.

The functions to be integrated are characterized by
tﬁeir values on a triangular grid. This grid is illustrated
in Figure 3.1. There are only 28 grid points in the diagram.
In the actual caiculatiqn-a finer grid with 190 érid points

is used,

2. Intég;ation Weights.

The 51mplest method of 1ntegrat1ng a fuhctlon defined
on the mesh in Figure 3.1 is to sum the value of éhe functlon
over all the gpld points and then multlplylng by a suitable
normaliéaﬁipn constant. However this pseudo-trapezoidal pro-
.cedure would be rather inaccurate. Instead the follow1ng method
is used to qaiculate'suitable integration weights.

The integfation rggibn in Figure 3.1 is composéd of
sméll_triangles'&hich/ﬁill be refe;réd to as minér triangles.

The minor triangles are grouped to form four major ﬁriangles

/
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Figure 3.1

>,
v

Grid points in B~y plan€ sho
figure illustrates a relativ
the numerical integration.

has ‘associated with it ten g

*

wing 4 major triangles. This
ely coarse grid for performing
Each of the four major triangles
rid points, A,B,C,...J.

—~

Fom

L
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each containing nine minoritriangles.-"An example of a ﬁajor
Friangle is the triangle §2~Gf/J2. Over each major triangle,
tﬁe‘inteérand is approximated by a cubic polynomial in approp-
riate variables. A diagrim of one major triangle_is sﬁown in
Figure 3.2. Each of the lO!grid points in this figure is

given cartesian co-ordinates relative to a system of co-ordinates
centred at the point E. A convenient unit of leng#h for this‘
co-ordinate system is chosen to be the side of a minor triangle.
Thus, the point A has co-ordinate (0,¥3); the point B has.
co-ordinates (-1/2,v3/2); etc.

; If the values of.the.integrand £(B ,By) at each.of

X

...f_ respectively, -then

the 10 grid points A,B,...J are £,. £ 3

BI
a 10 parameter chic polynomial in x and vy,
P3(x,y) = ax3+bx2y+cxy2+dy3+ex2+fky+gy2+hx+jy+k "{3.36)
can be determined which takes on ‘the same values as the inte-
grand f(Bx’By) at the 10 grid points. 1If the integrand is a
fairly smooth function, then Pj(x,Y) should be q'reasénabie

/approximation_to f(Bx,By) between the grid points.

m.There~ane,lﬂ_ggggitions on P3(x;y). For example, - if ‘<::\

f = P3 at the point A, then . .

- ’ 3VId+3g +V33+k=f,. (3.37)

There are 9 other similér conditions., Since ‘the éolynomial P3
has exactly 10 coefficients,'there will_nofmally be a unigue

solution for the coefficients a,b,..;k. A1l 10 equations of
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" Figure 3.2

o
ik

G . H - 1 J

Single major triangle with X-y co-ordinate system..
Each of the ten p01nts in a given major triangle.

can be given co-ordinates in a cartesian co-ordinate
system with origin located at point E.



. v » .
the form of equation (3.37) as wel] as the solutions for the

coefficients are given in Appendix E.
The cubic Py

is integrated ovex the region of a majar
triangle. The analytic result is

{

A .
= %%% [3/3 (d~b)+5 (3e+3gi8k) ] . ({3.38)

Substituting the expressions for the coefficients given in

equation (E.2) in Appendix E the integral becomes

- 33 ' -
§ = Tgp L4EatOfgtOf Of KEAE HOEHAE HOF 49 H4E,] . (3.39)

The x-y co-ordinate system in Figuré 3.2 was scaled so that
each minor triangle/h@d side’ 1. More generally each minor

triangle has side h. For this case equation (3.39) must be

modified to read - }
S ; 373 h2[4f +9f +9f +9f +54f +9f +4f +9f +9f +4£_] . (3.40)
160 © """AT"B TC TD E"F "G H I °J )

This yields the simple (as opposed to compbsite) cubic inte-

gration formula

dp _dp_f£1{B8_,B ) ¥ w f (3.41)
J’ X Y X y G=A,ZB' N o o ) .
Vihere. . o . /§ 2 ‘ \
. _ 3 h™x4 ’ .~
;f YA T Tiev (3.42—1).
: 2
o wo= 33 BX9 o © 0 {3.42-11)

B 160

'{ T - ' 7/,;
| /
/



/ If there is more than one major triangle in the tptal
- i
integration region, it is necessary to add the integratioﬂ\ '

weights for the grld points which belong to more than one major
trlangle For the cqse of 4 m&gor trlangles (28 grid points)
the comp051te cubic integration welghts, wa, shown in F;gurg 3.3
ére obtained. In this case h = Bm/G where Bm is the max;mum
balue of B. Given a set of appropriqte in;egration weights wa

/ -+ it is possible to integrate eguation (3.34) numerically to

obtain
' 2

) - ‘__ ]
. * <wAJM|VIwAJM> - i [waQaVa E‘IAAJK;QI ] (3:43)

‘ . '
where o labels the grid point in the mesh. "The normalization

] = l.. (3.44)

, ']y .
L [waQa L IAAJK;w . .

Q k

This technique of numerical integration is similar to

»

that used by Kumar and Baranger. The difference is that" they

used a quadraiic polynomial whereas we have used a cﬁbic.
}hgré are twp reasons for'using a cubic polynomial, The!first
reasoh %ﬁ that a cubic yields a higher order iﬁtegration algo-
rithm which therefore should be more accurate than an algo;
rithm based on a quadratic polynomial. A second reason is
related to the fact that a quadratic yiélds integration weights
éf which about one quarter are exactly zero. As will be‘bx—

plained in section V-1, zero integrézion weights lead to un-

pleasant numerical difficulties.
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" Figure 3.3

< h >

Numerical integration weights. To perform an integration
in the B~y plane, the vdlue of the integrand at a point
is multiplied by the corresponding weight. Here h is

the separation of adjacent grid points. In this case

h = Bm/G where B is the maximum value of B.
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3. Differentiétion Weights

The expectation value for %v (see equation {(3.32))

ib
contains derivatives wi£h respect to Bx and By. Both the dif-
ferentiatiéns and the integrations are to be performed numeri-
cally. For the moment it is assumed that the integration
region in the B-y plane consists of only one major-triangle.
The function to be differentiated, namely g(Bx,sy) = A
is approximated in the major triangle by a cubic pplyngmial
P;(x,y). The cubic.is expressed in the s;me x-¥ co-ordinate
system used previdusly, i.e.

P;(x,y) = axbex2y+cxy2+dy3+ex2+fxy+gy2+hx+jy+k (3.45)
(see Figpre 3.2). As in the'previous section, the polyngmial
P; is specified by the restriction that it take on~thé saﬁe,

valye as g(Bx,By) at the 10 grid points. For example the

condition at grid point A (see Figure 3.2) is

"33 d+3g+vV3+K (3.-46-1)

As previgusly, equation (3.46) along the 9 similar condi-
€ '

tions can be inverted to give the coefficients a,b,... in

- terms -of Jar9gec -

[}

. SPé('x,y) 8P3(x,y') ’
The derivatives — 3% and ——~§§——— are calculated

analytically and eQaluafed at each of the 10 points A,B,... .
For the point A(0,V/3, for example, g\ . - ! ) ?‘
¥, ' - '
9P, (x,Y)

s |a = 3¢ + Y3 £ + h " (3.47-1)

\

o

and

’
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2)P3 (XIY)

5 |a = 9d'+ 2v3 g .+ 3 . (3.47-i1)

Using the solution of the equasioné (3.46) (given by equations
(E.2) in Appendix E), the derivatives in eqguations (3.47) are

expressed in terms of éA' etc. For the point A(0,V/3), for

98

- example, this yields the relations

ap3;xIY) A= " 39t 39 % % % ~ % 9r ~ % 9% * % %
- . (3.48-1)
_ % i) | . (3.48-ii)

Equations (3.48) and the 9 pairs of similar relations are given

in Appendix E, equations (E.3).

In equation (3.32), the guantity 7
: S
S=X,Y S

must be evaluated., This guantity is related to the expression

A J
B 00y) 4 aps(x,y) 2
F(X,y) = (‘-———5')(—-——-) + (—-———BT———-) . (3.49)

The value of the function I'{x,y) at each of the 10 grid points

is given usiné'equation (3.48).' FO{\examplei at the point A

= (- 34 234 2L L
Tp= (39g * 39 + 795" 3%~ 39 * 39y

1 1 1 1
* 3(9 A" 98T 9% TTITIITI9% T 970" )

kY
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121 2 2 4 2 22 2
=55 9y * 12 ggt .-t 55957 379,95 7 3 Ip9% t ---
+ 69,9y * - - (3.50)

Similar relations can be given for FB,FC etc.
The coefficients in the above equation can be used

(A) | 1¢ g represents the 10x1l column matrix

=~ ~
~

to form a matrix

. with entries Ipr gt -+ 93¢ then equation (3.50) can be written

T (&)

PA =g (3.51)

2 g
Q

(&)

The matrix T

~

is taken to be symmetric. As a result the off-

diagonal matrix elements are one half ‘the coefficients in

equation (3.50). For example Tég) = Tégo = 3. For each
grid point B, C, ... a correspon@)ﬁg’matyix A(B), T(C), .

¢ !
is formed. These matrices can all be grouped into a three-

dimensional matrix R“where ]

- (@) ! _
\ | RGBY = TBY . / (3.52)

. The matrix elements of R are listed in Table 3.1.

b

Equation (3.51) expresses the vaiues»of the function

r{x,y) at the point A in terms of finite differences.
The integral o
rl- -
S = ‘I dx dy I'(x,y).
il
-z w I' = £ w R . (3.53
a=A,B,. a o o By a “aBy 9B gY ( )



Table 3.1

Mqtrix R

aBy
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Matrix ,

Element Integration Point (a) -~

(BY) .

¥ A B C D E F G H I 3
AR 1217271 4727 4727|1727 {1727 | 1727 | 4727 ) 4727 4727 | 4/27
AB -11/3 4/9| -2/91-2/9 |-1/9 0 -2/31] -4/9| -2/9 | 0
AC -11/3 | -2/9| 4/9]| 0 -1/9 1 -2/9 o} -2/9| ~4/9 {-2/3
AD 11/6 | -2/9 2/9|-1/18| 1/18 -1/18 4/3 4/9 0 0
AE 0 -4/9| -4/91 2/9 |'0 2/9 0 8/9 8/9 | 0
AF 11/6 2/9| -2/9|-1/18] 1/18 -1/18 O 0 4/9 4/3
AG -11/27) 1/27|~2/27| 1/27{-1/54 1/27-1)/27 -2/27 1/27{-2/27
Al 0 0 1/9121/9 1/18 -1/9 | -2/3 | -5/9 | ~2/9 |.1/3
Al 0 1/9 0 |-1/9 1/18 1/9 1/3|-2/91{-5/9 |-2/3
AJ -11/27|-2/274 1/27{1/27 |-1/54 1/27 -2/27 1727 | -2/27{-11/27
BB 12 773 4731 473 1/3 0 3 473 1/3 0
BC -6 -5/3| -5/3]| 0 1/3 0 0 :2/3 2/3 0
BD -6 1/3| -4/3| 1/3 |-1/6 0 -6 -4/3 0 0
BE 0 10/3 8/3|-4/3 0 0 0 -8/3 | ~4/3 | ©
BF 3 5/3| -2/3| 1/3 {-1/86 0 0 0 -2/3 | 0
BG 4/3 1/18 4/91-2/9 1/18[ - 0 11/6 | 2/9 [ -1/18] ©
BH 0 0 -2/31~-2/3 |-1/6 0 3 5/3 1/3 0
BI 0 5/6| 0 2/3 {-1/6 o} -3/2 2/3 5/6 0
BJ -2/3 | =5/9| 1/9§-2/9 1/18/ 0 1/3 | -1/9 1/9 0\
CC 12 4/31 7/3] 0 1/3 4/3 0 1/3 4/3 3
CD 3 -2/3 5/3| 0 ~1/6 1/3 0 -2/3 0 0
CE 0, 8/31-10/3] 0 0 -4/3 0 -4/3 | -8/3 0
CF -6 -4/31 1/310 -1/6 1/3 {0 0 -4/3 |-6
CG -2/3 1/9| -5/971 0 1/18| -2/9 0 1/9 |~1/9 1/3
CH 0 0 5/6 |0 -1/6 2/3 0 5/6 2/3 |-3/2
CI 0 -2/3{ © 0 ' |-1/6 |-2/3 0 1/3 5/3 3
CJ 4/3 4/91 -1/18/ 0 1/18| -2/9 0 -1/18] 2/9 |11/6
DD 3 /3 4/317/3 1/3 1/3 12 i/37| -0 0
DE 0 -4/3| -8/3 ~10/3]| © -4/3 0 8/3 0 0
DF -3/2 2/3| 2/3|5/6 |-1/6 5/6 0 0 0 0
DG -2/3 -2/9 1| -4/9 1 4/9 |-1/9 {-2/9 -11/3 | -2/9 0 0
DH 0 0 2/3 |-5/3 1/3 | 2/3 |-6 -5/3 0 0
DI 0 1731 O 5/3 |-1/6 |-2/3 3 -2/3 0 0
DJ 1/3 | -2/9 1 -1/9 |~5/9 {1/18 1/9 {-2/9 1/9 0 0
EE 0 16/3 | 16/3 16/3 [ © 16/3 | © 16/3 [16/3 | o
EF 0 -8/3 | -4/3 I-4/3 0 -10/3 0 0 8/3 | 0
EG’ 0 2/9 8/9 |~4/9 0 8/9 0 -4/9 2/9. | 0
EH 0 0 | -4/318/3 0 -8/3 1 0 =-10/3 |-4/3 0
EI 0 -4/3 0 8/3 0 8/3 0 -4/3 -10/3 0
EJ 0 8/9 2/9 | 8/9 0 -4/9 0 . 2/9 0

(continged next page)

|-4/9



Table 3.1 {continued)
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Matrix . i
Element Integration Point (a) -
(By) . ‘
y A " B C. D E F . G H 1 J
FF ¥ | a3f 4dz30 i3 | a3l as ] o o | 4as3 | 12
FG 1/3 | -1/9 | -2/9f 179 | 1/18|-5/9 o .| o .| 179 | -2/3
FH | 0 o~ 1/3}-2/3 |-176 5/3. 0 0 |-2/3 3
FI 0 2/3] 0 2/3 | 1/3 |-5/3 0 0 |[-5/ -6
FJ ~273 =479 -2/9]-2/9 [-1/9 | 4/9 0 0 |-2/ ~11/3
- GG 4/27] 1727 4/727{4/27 | 1727 | 4/27|121/27% &/27| 1/27| 4/27
Y GH 0 0 |-2/9{-2/9 |=1/9 |-479 |-11/3 1| 4/9 |-2/9 | -2/3
GI 0 F1/181 o 2/9 | 1/18) 4/9 } 11/6 |-2/9 |-1/18| 4/3
GJ -2/27 | 1727 {.1/27)-2/27|-1/54 |-2727 |-11/27 1/27] 1/27]-11/27
HH 0 0 1/3| 4/3 | L/3 | 4/3 | 12 773 | 4/3 3
HI 0 0 0 |(-4/3 |-1/6 1-4/3 | -6 1/3 | 1/3 | -6
uJ 0 -0 Fi1s18| 479 | 1,18 2/9 | 4/3 |-1/18{-2/9 | 11/6
i 0 173 0 473 | 1/3 [ &4/3 | 3. [4/3 | 7/3 | 12
1J 0 -2/9 1 0 |-4/9 |-1/9 l|-2/9 |-2/3 |-2/9 | 4/9 |-11/3
JJ -4/27 | 4727 172714727 | 1727 | 4/27 | 4727 | 1/27] 4/27|121/27
. e
'
R '/

fr
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The integration weights, W+ are given by equation (3.42) with

h = 1. The above'equation has been derived in the case that

e

each minor triangle has side of length 1. If instead each minor
. - . x
AN M ’

triangle has side h, equation (3.53) is modified to read

] . t
—;Eifiz—)—)2 ifiififi)2} L (3.54)
. + = w R. d, g {3.54). .~
oY h2 By a aBy ‘B “y
given in equation (3.42). ' . .- .

-

The/above formula is valid if the integration region

consists of a siﬂ%le major triangle. If there are several major

+

;riangles, some .of the'weights must be added as was done for
Figure 3.3.- The function g(BX,By) has been used to represent

~
AAJK(BXIBY)3 Hence . | / ;
. 2 -
BAAJK(erﬁy) 1oy
88s 'h2 aBy

=

*
o« Rapy Arak; gPagk;yd (3433)

s=X,y

L4

Finally the expectation of the wvibrational kinetic energy can

be evaluated numerically to yield -

/
-
~ !

. 1 1 ; .
oL <Y [T . v > == S Iw Q{r R \ ) . '
AJM Vllb ‘}\JM 2B ‘h2 a o o SY G'BY ) ’
. %
x L (A

ki ehoxiy? L (3.56)

' ~ . .
IV. Numerical Methods: Rotational Energy

RS

l.? Boundary €onditions

o

The triangular grid in the B~y plane is illustfated/in

©

Figure 3.1. Ther€ are conditions on the wavefunction along each .

. of the three sides of ‘the triangle. :First we consider the

case J # 0: Along‘thé line‘y =.O'(0?Jequivalently18§ = 0)
the 1.a- "2 =~ - of SR A '“A Q\] ' As:a



/

-/

result, the rotational part of the Hgmiltonian becomes” axially

——

symmetric about the 3-axis and K becomes a good quantum number.

l

Another way to see this is, along the line"y = 0, the guantity
/ i . .

r in equation (3.19-iii) becomes egqual to zero. Hence the

.

matrix elements coupling different values of K (see eguation

. . : ¢ X
(3.25)) are zero. The rotational energy of the wavefunction

with good K becomes proportional to pJ(J+l)+(q—p)K2. tSee

equation (3.24).,)

152

j However near y = 0 the third moment of inertia approaches
éero:. N
% i ' . . N eSeereis
e = aBPsin?y 2 4335 : (3.57)

1

. L 4 4
-+

Hence g = 5= = as B, ~ 0'. The guantity p rémains well behaved.

Y

Using géuation (3.33), The dominagt term in the integrand of

£

ponent becomes

I
=

near f

Y
Also.Jg 2

R
™

& . -
near By —Kd.

finite it 1is

1

‘ . . o . S
the expression for the rotational energy of a given K#0 com3+

i
i

K2

: 2 .
Q(BX’BY)IAXJK(BX’BY)l 2%(5x:8y) ‘(3.58)

- 5/2; 2 2 :
) = 38 - o« = .
Q(Bx'ﬁy) 2B éy( B By) _ By near B, = 0

v

near By% 0. He'ncé_ _

I« K2|

: g 2 _ .
Kyax By BV 1778, - 13.59)
‘To keep the:expfession for the rotational ehergy

necessary that

Argk (BrY=0) = 0 if K #£ 0. (3:60),

Along the line y = w/3 the momént:of inertia'oé = 0.

P ) ' . . . @'I ]



. following bpundary conditions for J # 0:

70

To avoid a singularity in the energy the following conditions

hold: |

I+8 A)\JK(B,/Y ﬂ/3) AJK+2’(8 y=m/3)
(w/2 n/2,T)

(3:61)

K+20(n/2 TA2,T)

Kumar and Baranger have derived equations (3,61) (KB 67) using

compllcated symmetry arguments A new and simpler derivation

is given in Appendlx F.

At the origin 8 = D equation " (3.59) implies

Ay oy (8=0,7) (6=0,7=0) = 0 if K # 0 (3.62)

By ax

AJK(B 0,y=1/3) = 0 1if K# 0 . .(3.63)

‘Combining thig equation with equations (3.61) we obtain

% | ﬂ Ay JK= O(B O,y=n/3) = 0 . o (3.64)
Summarizing; T
AJK(B 0,7) = 0 for:all K. . © (3.65)

Collecting togethexr the above results, we obtain the

L -
g(B,Y=0) = 0 if K # 0 "(3.66-1)
VI'*'.SKO A)\JKI'B,Y=TT/3) - A)\JK+2('B'Y='"/3) (3 66—_11)
Dio(n/2,n/2,v) Di;zb(n/z,ﬂzz,n)
(8=0,y) = 0 for all . (3.66-iii)

AJK

‘o

For J=0, qone.@f,thg above arguments based on the

T .
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follows:

71

finiteness of the energy.apply. The only cgﬁdition is that the '

wavefunction be smooth. As a result

~d <«
an B=0 aBy g=0 :

Otherwise the wavefunction would have a cusp at

s
2. Structure of the Hamiltonian Matrix

The expressions for the expectation value of the energy,

equations (3.30), (3.33),.(3.43) and (3.56) are recast as

. . ~~
- \

R ]
)
H(K,a)(K“a')‘Bk'a'

= Z r A
Ka K'a' K

LV LMY A (3.68)

Here o and o' labél the grid points in the £~y plane. ‘The

subscgripts for the total angular momentum J, z component M and -

3

additional quantum numbers’ A have been dropped for the sake of

compactness. ) T -0

/
The Hamiltonian consists of three parts:

rot - ‘ vib

H(Kla) (K‘,a|) = T(K,a) (K‘.’O,') +"T(K'a) (K‘(al) + V(K’a).(K|’a|) (?.69)
- _rot ) B g
where the moments of inertia «f (BX,B f_in T ot are ‘evaluated

at the grld p01nt o. Equatlon (3.70) is diagonal with respect,/

" to aa' since no derlvatlve w1th respectto B or By are in-

vplved in this term. : . o R
. ‘ \ N N
vib ) 1 1 .
Pk k0,a) T %k 25 7 L O Rpoo (3.71) _
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\.

where this term is diagonal with respect to KK' since the

-

vibrational term has no dependence on the. Euler angles. Finally,

i

V(K,u}(K',a]) N <SKK' éaa' Yo % Vo : (3'7??
where.vOl is the value of V(Bx,By) at the grid point a. The

normalization condition (equation (3.44)) becomes
. ‘ .

z. z A F,: i oy A, . =1 (3.73)
K,(I'K',O.' K(l (KIQ) (K ) KO, .o
where )
F(K,q) (%o ,(1') = GKK' 60.(1' w(}, QU.. . : (3.74)
L .
) y The ordered piirs (K,a) where o ranges over the grid
points and K = (0),2,4,6,...J are ordered so K varies most

t can be arranged in

slowly. Then the qua#tiiies H(K o) (K", ')
: . 4 | M. ! '

a matrix as inm Figure!3.4. Since theé matrix elements vanish

unless K?= K',K'x2, t Hamiltonian matrix H is block tri-

-~

diagonal. The off-diagonal blocks (for which K = K‘iZ)'afe
themselves diagonal blbcks. They contain only rotational matrix
elements. The vibrational matrix elemeﬁts are contained in

: E : . . : .
the diagonal blocks. he potential matrix elements all lie \
along the main diqgoné’w ' ' ’ ' C f

. The,ﬁoundary)c nditions allow.the dimensignality of H

to be reduced slightly., Because of the condition given by
. \
equation {(3.66-1), certain terms in the summation in eqguation
- v‘ -

" (3.68) are zero, AS a result the rows in H corresponding to

. _ \
» grid points on the y=0 hine can be removed. Since the matrix

|
/



K

-‘73
— K':O K':J ——
st s 0 |l-
» » ’ . .'
K=O - . [ » L]
. . O
K=2 )
0 .
K= 4 o)
— - —‘
1. 0 .
|
’ /
| -
v
. O
| e
=J v ~ N + . .
o |
(/ \ "' 5 ] . !

~

Block structure of Hamiltonian matrix. Most of the m
in this matrix are zero. The matrix elements which,
do not vanish are indicated by dots.

atrix elements
in general,

A

A



H is symmetric, the corresponding columns also must be remobed.

Similarly the qondiéion‘at the origin (equation (5.66-iii))

©

allows one row and, one column tG be removed from the K = K' = 0

block. ‘The matrix H could be truncated.even. further if the | .

H
A !

conditions in equation K {3.66-1i) were used. This 'was not done

because if it, were, H would no longer be block tri-diagonal.

-~
=

It .is %ésential for H to be bloek tri-diagonal for the methods

-~
x

"described in the following section to'be valid.

In the actual calcﬁlatiohs, 190 grid points were used.

- The u?e of equatio .(3.66—iii) reduces the dimensionality of
i

.. . .
the K=0 block to 189. After the use of equation (3.66-1i), the

dimensionalities of the K # 0 blocks are each reduced to 171.°
The calculations have been limited to J.< 20. For the worst
case, namely J = 20, there are. 1l0 K # 0 components and hence

the dimensionality of H is 189+10x171 = 1899.

V. Construction and Diagonalization of the Hamiltonian

1. Construction of the eigenvalue equation
The basic variational equation to be solved (see

equation (3.29)) is

AZ. *
§ I A

: =0 . ET I
K,a K', a2 0% Bk, 0 (k"0 Px'd - (3.75-1)

Kl‘q.l . -

The normalization constraint is
" . L

* .

z z A

K,a X', o' " K@ F(K'a)(K'VG') AKfa' =1 (3.75-11)
. G : : y
where co _ | | *
Flk,a) (k' ,a*) = k" Saa’ Yo % - (3.75-iii)-
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. Roman letters i,j are introduced to represent the ordered pairs

(K,a), ie. i 2 .(K,a). Then the above equations become
» ~ *" 0 - -
) ;_ Ai Hij Aj = 0 - {3.76~-1)-
ij =
with . )
. 4 ‘ﬁ- * . - i
i'Ai F. A, = l'. | ‘ {3.76-11)

Use has been made of the fact that‘F(K,a)(k',a') is dlagong}.
Using the Lagrange multiplier technigque the above two .equations

Ve

yield‘the generalized eigenvalue equation

IH A, =EF, A . (3.77) ®

To diagonalize matrices as large as '1899x1899 as re;
quireg for the J = 20.case, it is wise tq use, the Lanczos-:
alg;rithm {Whi 72;WiI'65). However, this algorithm is dsed to
fsoiVe the'standard’eigqnvalué problem, not the generalized

eigenvalué problem. Equation (3.77) can be converted into

. g -, . . ) . e e
an ordinary eigenval7e equation with the following substitutions:

H.. = H,./VF.F. (3.78)
1) i3 .

ij
and _
A, = /F] A, VA _ (3.79)A

Then‘equation; (3.77) and (3176—ii) become . respectively

[ Ly Ry =ER © (3.80-1)

and

=1 . , (3.80-ii)
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It is.now clear why the Kumar and Baranger integration
weights can not be used. Abput one guarter of the integration
‘Weighté they used were exactly zero. This would cause equa-
tion (3.78) to be nonsense. Using ; cubic numéfical integra-
tiog formula, all the weights W, are positive. _Unfoftunately
the integration densities 2, become zero at the y = 0 and

Yy = /3 boundaries. From eqﬁation (3.75-ii) it can be seen

~ ’
~

that~ some of. the F,.in equation (3.78) will beé zero. This

problem is diéqussed in the next section.

2. Divergence of Matrix Elements.of H

In ghe previous section it was noted tha; matrix
~elgmen£s oé g, cérresponding to grid points on the y= 0 and
Yy = 1n/3 iines, bécpme infiniée.- To alleviate this problem,.
ﬁge integrations in the B—y_plane are performed within a slighp—
1y'smaller region. This triangular integ%atioﬁ region is
seéarated £rom the.y = 0 and y = 7/3 lines by an amount e.
This is illustrated in Figure 5.5. Within the slightly .
smaller integfation region, the valué of the integration dgp— :‘
’ sity at'eéch grid:point, Q&L is positive. uence.the matrix:

elements of H are all finite. It is found that a reasonable
s ~ | )

\ .

“value for ¢ «is € = 0.08 h = 0.0042 B -

3. Lanczos Algorithm

* - . !
About twenty-five years ago, Lanczos ~(Lan 52) proposed

a procedure for tri—diagonaliéEyLaéErices. Unfortunately

this procedure is numerically unstable,necessitafing the use

» .
i

i - - H
. f
{



- PROLATE = -

)

Grid poiﬁts shoWwing cut-of £ parémeter €. This 'diagram iqﬁnot to
scale. ' . -
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of reorthogonalizationﬁ Since’then, to tri-diagonalize ma-
Frices, the Lanczos algorithm {Wil 65) has been replaced by the
Householder methéd (Hou 64) which is more effic}ent./Recently
Sebe and Nachamkin (SN 69) and Whitehead (Whi 72) have res-
surected the Lanczos algorithm for use in a slightly ‘different
context with widespread applications in science. In ‘this new
context the Lanczos procedure is used to célculate the highést
few and the lowest few eigensolutions of very large matrices.
Although the intermediate eigensolutions caﬁ not be calculated
in this method, this is compensated for by the fact that the
procedure is very fast. |

Thé Lanczos algorithm is aﬁ iterative:procedure. For

‘ ;
a symmetric'mat;ix this procedure, affer r iterations, Qenerates
an‘rXf symmetrié tri—diagoﬂal matrix gr' Thé extreme few
eigenvalués of‘tzvir ééproximate the_e%treme few eigenvalues |
of:the original matr;x. The approximation impr?ves'aétgr each.
iteration. The very highest and the very lowest eigeﬁvéluesA
converge after a sméll nﬁmber éf itefa;ion steps. The' next to
fhe extremé eigenvalues cbnverge after a éew'ﬁofe iteration
. X .

steps, etc. The upper snd lower ends of thg*spectrum normally
coﬁvegge at akhout the same rate although this coﬁld be affected
by the density of eigenvalues: In particular isolated eigen-~
valués converge rather rapidly. . ,

It was found that the convérgence of the lowest eigeﬁ~
.values of the_Ham}ltonién matrix E'yas slow. To rectify this

problem, the Lanczos procedure was used to.evaluate the eigen-

-
]
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solutions of the inverse matrix H L. THe eigenvalues of H are

just the reciprocals of the eigenvalués of E-l and the eigen-

vectors of the two matrices are identical. The states of

physical interest correspond to the lowest eigensolutiéns of

Y

at

or the highest eigensolutions of ﬁ_l. The zero of the

energy scale is given so that H is positive definite. The

p
i"! is bounded below by zero and above by 1/E

-~

where E is the lowest eigenvalue of H. Then the eigensolutions:

spectrum of

~

of physical interest, namely the highest few eigenvalues of

‘ﬁ~l are well separated. Hence they converge relatively rapidly.

~

It is found that 30 iter3tions is sufficient to give the

highest three eigenvalues, of ﬁ—l accurate to six significant

A

figures for all cases considered.

To simplify notation we define the matrix A = TR

AW

can be a very large matrix; in the present work A can have’

=

dimensionality as large as.1899x1899.  The procedure for f&n—_‘
ding the'éigensolutions of the symmetric nxn matrix is as

‘= follows. first lvl>,san arbitrary normal;zed'vector of di-
mensionality n, is chosen. A new (unnormalfzed) vecéor Ju, >

1
'is obtained by the matrix multiplication, of Jvy> with A:

~

lu,> = A|v1>.. _{3.81)
But lul> can be decomposSed into two components:

|ul> = [vl><vl|ul§ + Bl|v2>. {3.82)

"

“1 . " - » .
° Hare |v2> has also been normalized. Clear1y§|v2> is orthogonal
to Lvl>; (We assume |vl>.is not an eigenvector of A. )} Definind

~ ’ ' M * “ .
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<

<vllul>, equation (5.81) can be written
A]vl> = ayfvy> + Bylvy> (3.83,1)

This process can. be continued, yieldihg for the ith iteration

S

.a new orthogonal vector lv > and two new coeﬁficients'a. and

i+l N

By ‘
A|y2> = 31|v1> + QZJV2> + 82|v3> (3.83,2)

where {v3> is. orthogonal to [Vl> and to |v2>.by similar argu-

nents.
vE ’ ' TN .
A]v3> = 32|v2> + a3|v3> + 53|v4> . F,83,3)
. ~ N
There is no term involving ]vl> because ¥ -
N . Vs

wvylalvy> = <vglalvy> = ay<vglvy>Te By avglvy> = 0
This prdcess is finally terminated with the nth vector ]vn>

o

associated with the space of the nxn matrix A to give

Alvn> = > + anlvn>. * (3.83, n)

Bn-l'vn—l \
The vectors |v,> form an orthonormal basis in which A is sym-

metric and ;ri—diagonal:'

. L ' _ i
) <yi[A|vi> = aj <Viil|A|V'>" 8

<Viik|A|vi> =0 if k > 2 . (3.84)

The arucial point of the Lanczos algorithm is‘thaﬁ
it is 'not necessary £§ carry out all n iterations given in
equétion {(3.83) in order to find the physicaily }nteresting.'
solutions...It is stsib;e té stop after r<n stepg yielding

the tri-diagonal rxxr matrix M: defined below.
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If r is sufficiently laxge, the extreme eigenvalues of A

(3.85)

r /,~\>
’ o
are

<

virtually the same as the extreme eigenvalues of M_. Moreover,

the extreme eigenvectors of A are simply related to the extreme

~
~

25.

routine task.

~

~
~

eigenvectors of Mr' In actual practice r is never larger than

Diagonalizing a symmet;ic tfidiagonal 25x%25 matrix is a

Whitehead (Whi 72) has suggested the following technique

gg\;:ied convergence for the highest eigensolut{ons.
' no

x lzed vector is chosen. Then  this vector is multiplied
several times by the matrix A. (1(/,
4 o g

. . . : ! ./
preiterations is a reasonable choice.)

!

A random

t

t has been found thath spch

After normaligzation

AN
N
.

AN

the resultant vector is qséd as vecgtor lvl> in equations (3.83).

The preiteration has the effect of building into |v1> large

-

components of the highest‘éew eigenvectors of A.

~

Because the Lanczos algorithm is numerically unstable,

the sequence of vectors ]vl>, |v2>;... |vr> may not all be

orthogonal to each other.;, This instability réquires that each

new vecﬁor.[vi> be made explicitly orthogonal to all the

previously calculated vectors |v1>, |v2>; ces |vi—l>'

L4

r-

The

*k.

]
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¢ N\ . -
Q

Gram-Schmidt process is uUsed to obtain the required orthogonality.
The Lanczos algorithm consists of two basic procedures.
The first consits of evaluation of inner products such as

<vlful>. To minimize round-off error, these sums_must be done

/

tiplica-

*

Alvy>. The

very carefully. The second basic procedure is th

N

tion of the vector by a matrix, for example, |ui>
Diraé notation of quantum mechanics has been used in t
vious equations to illustrate the fact that the above equation
can bg regéided as an éperator eéuatlon Given an initial state
|v1>'1t is necessary only to be able to evaluatekthe'resultant‘
state |u,> after the action of A on |vy>. Very ofkep it is

_hot necessary to do the matrix multiplication explicitly. That

n - .
Y is, it may not be necessary to calcélate 2 Aaa‘ <%'|vl> ]
. Cat=1 ,
@ = 1,2,...n to obtain the components of [u >. As a result, time

‘and storage size is reduced. 1In the present work, the matrix
elements Aaa' are not used, nor are they known. Moreover, they
could not be conveniently calculated. Avoiding a matrix malti--
plicaéion is eépegially useful if the matrix is Spafse {contains
a large'number of ﬁeroes). ' ‘

In summary, the Lanczos_algorithm ﬁas two main advgn—
tages. First, it can deal with very large matrices in a
reasonable amount of time. SecOnd,'storage requirements are
reduced since it is not necessary to deal with all n2 matrix

-

elements.’
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‘ %
4. Solution of Linear Equatio e R

As has been stated, the use of the Landzos algorithm

requires ths\jvéluation of a new vector by the operation of a
.matrix on a g'ben vector. In the present application, the
gnatrix is §~l. Given a prescribed arbitrary vector y, it is

necessary to calculate

(3.86)

:
@i
|

<

H ™ is a prohibitije task. Ko (Ko 74) has pointed out that
equation (3.86) is équivalent to solv}ng the syﬁtem of linear

inhomogeneous equations

2l

X =y . ' . (3.87)

Ko (Ko,7;) has shown that since the coefficient matrix, g, is

block-tri—diagg%al, equations (3.87) can be readily solved using

a special technique. The Lanczos algorithm is modified to use

(3.87) as a basic\step iggjféen used to evaluate the highest

few eigensolutions of g;l. However, at no tiﬁe are the matrix k“l
X . . , ,;il

elements of H ¥ even known or used.

~

’:§$€hanging the notation slightly, we wish to solve equation
" {3.87):

\ x = f ' (3.88)

wmi

where f is one of the La#czos vectors v, The matrix

ami

is a



gd.’

-

<

block matrix. Its block structure (for e;§§\g) is illustrated
in Figure 3.4. The first (upper-left) sub-matrix on the
diagonal has-%imensionality 183XI89 . It is represented by

-

Gl. The rest of the sub-matri&%s on the diagonal are each-
171x171. They are %&présented by G, m = 2,3,...M.
‘ The vectors f and x can each be broken up into a group

of sub-vectors. Each .sub-vector corresponds to a particular °

block. This is written - -

- () £ (1)) .
S (2 e
- ‘\"g - -
X =/ and £ = 1. - (3.89)
-,',? N . :
_ ( 1t £ (M)
t -3 \;" J ) k~ J

The sub-vectors (1) and-f(lx each have 189 components. The
rest of the sub- ectors .each’ have 171 components. The only Lt

other sub-matrices with non-vanishing elements are those ad-

L3

jacent to the diagonal sub-matrices. 'The sﬁper—diagonal sub;

matrices are represenfed by Cm,m=l,2,...M with C adjacént to

Gl’ C2 adjacent to Gz, etc. The first such matrix is not square:

/
it has dimensionality 189x171. The rest of the matrices

-

Cm m?2,3,;..M-l'are square and:are also diagonal. They each
[4 > . .

have dimensiohality 171x171. Although gl has more rows than-

columns, it closely resembles a diagonal matrix. Each column

in Cl contains exactly one non-zero matrix element. For these

f

N
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non-zero matrix elements, the row index increases monotonically ¥
‘with increasing column index. This kind of sub-matrixycan be

described as "pseudo-diagonél".

e

The system of linear equations in equation (3.8&) s

solved using block matrix techniques. Since the matrix is

[t ee] |

block tri-diagonal, considerable simplification results. The

mefhod of solution is analogous to that used for an ordinary

>

- {péh-block) tri-diagonal matrix: Gaussian elimination followed

-

by back substitution. The manipdﬁatioﬁs aré‘performed on the
. . PR

sub-matrices iﬁtac instéad”of on individual matrix.E}ements.

. This block matrix technique isgdescribed'by Isaacson and Keller
(IK 66) for a ﬁon-symmetric Slock tri-diagonal ﬁagrix with
square sub-matrices én the main diagonal. The matrix E is
much less. general than the block.@atrix considerga by Isaacson
and Keller.A First, E is symmetric. Second, thé super and

' \
sub-diagonal sub—matﬁices are either diagonal or "pseudo-diagonal".

* These two factors cause even more simplification.

~
=)

-
A sequencé of matrices D and E_ are defined as

follows: . "
(189x189) Dy = G, . | | (3.90) |
(189x189) E, = 2111 B ' . (@-e1)
(171%171) Dy = G, - S'JILL By . (3.92)
(171x171) §m= 2;\1 ' o s . ML1 {3.93)
. (l7le7l) bR 2m+l = Sm+l /— Sm Em ~mj ’ A'... ) (3.94)
fg T(171x171) - 'g = D% - ' (3.95)

=
g
°y

~



.ddcts. It does not involve multlpllcatlon of two matrlces or

- . . .
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The dimensionalities of the above matrices are given at the

— N

\left. Next a sequence of auxiliary sub-véctors i8 defined: s
SETIALL I T et e _ (3.96-1)
" (2) - - 2) . T (1 g
a7y |y = E, (£¢2) "fi\l( {) (3.96-ii)
m) . m m ¢ .
;(171) x( ).= Em(f( ) Sm—l ¥( )), m-= 3,4,...M . (3.9§—111)
! ‘ - X
The dimensionalities of the above sub-vectors is given at left.
&
Finally the solution is obtained: ’
(171) x M) = M) : L. (3.97-1)
171 x™ = y™ g o o (L o Mo1, M=2, ...2 . {3.97-id)
89y D =y _p o k) (3.97-1i1)

In terms of computer time, the most costly part of the whole
process is the evaluatlon of the sub- matrlx inverses in equatlons
(3.90) to (3.95). For the most cumbersome case, namely J = 20,
there are eleven inverses,to be%calculated. Fortunately these

inverses depend only on H. They do not depend on the Lanczos

A ~

vector f which will be different for each 1terat10n of the Lanczos

3

procedure. As a result, the matrix inverses are calculated

and stored once befoxe the iteration. process begins. For each /

~re,
iteration, the quantities y(m) and 5( m) have to be calculated.

However this involves only vector addition, multiplication'

of sub-matrices by sub-vectors and the evaluation of inner pro-

L

L3

even worse, matrix mnver310n Hence each 1terat10n step can be

done relatively qurpkly. -
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VI. Electromagnetic Multipolé Moments

1l: Electric Quadrupole Moments

\( N

Information on the nuclear wavefunction can be gained by

measuring the electrgmagnetic properties of the nucleus. Life-
times of states which are unstable to gamma-ray emission can
/be measured. The magnitude and sometimes the sign of the elec-,

& X
tric moments can be measured. It i%‘also possible to deduce. the

’

average nuclear shape fYom measurements. of transition raﬁes’

~
-

: (Cli 71)0 ' -
Sincg,the’Bohr collective moé:T\gs based on quadrupole
shape co-ordinates, the electric quadrupole moment is particular-

ly easy to calculate. The electric gquiadrupole moment operator

\

7 5" 2y (s ) | (3.98)
. e r L]
p p, <M p’¢p -

is

where the sum is over the co-ordinates of the protons with the

/

co-ordinates expressed in polar cs-ordhnates in the laboratory

be

system. It is convenient to express the electric quadfupole
operatoi in terms of qguadrupole operators Q defined in the

. ) e
body-fixed principal axis system. If a collective wavefunction

has definite B and vy, then it has definite quadrupdle moments.

pissuming a uniform charge distribution they are, to first order

in B,
.Q;(B,Y) = <gy|Qy,l8Yy> - %_T?e‘z\abia\cgs‘y (3.99-1)
Q (B/Y) = 1<§y|6‘2,;1’i'87> =0 - o (3.?9:;1)
0L (B.y) = sgvld),, oy = drear? BB Y | T apeniiy)

V2 . |
, f
| . i

A
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Using the well known transformation properties of spheri-
cal tensors the expectation value of 62u can be ‘expressed in

terms of Q_{8,y) and Q,(B,y). The result is (KB 67)
, .

-M u M' '
. _J’

where the reduced matrix element is defined as

A~ | 1 k A . )
adM]Q. Iatamrs =] 2 2901 GgllolIrrars (3.100)
2y 2

<

g Qo> = -1)Y VZEFDI 257+ D) (3.101)

. J 2 Jl ' <
<z [[-—K 0 ]<AAJK|QO|AAJ'K> AT

" K KO
/ -

J .2 ' T+
) {[-x—z 2 i)]<AXJK+2IQ21AA'J'K?-+( ) {

]
<AAJK|02|AA'J:K+2>}}

6f’experimenta1 interest is the spectrpscopié\guadrupole-
moment. It is defined as follows:
kd -

- ‘. |

) Q(AI) =V lg% <AJM=J|62b|AJM=J>. (3.102)

4

Using equations (3.100) and (3.101) and inserting explicit

~algebraic expressions for the 3-j symbols, the spectroscopic

guadrupole moment can be wrthen //A
’ ' /Ten (g 20 "
Q()\J) = T ["'J'O J]<)\J|1Q2IIXJ>
= Isﬂ. -1 ' 2 ' "_
= //—g‘ [(20+3) (J+1) ] z [(3K‘—J(J+l))<AAJK|QO|A%JK>

K.

rd ) ]
+ /6(1+8K0)(J~K—l)TJ—K)(J+K+1YTJ+K+2)'<AAJK*2|Q2|AAJK>} (3.103)
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2. Gamma-ray Transitjon Rates /
Another quantity of eiperimental interest is the lifetime

of a state. The lifetime is mérely the reciprocal of the transi—

tion rate. A very 1mportant transitlon in the collective model

is the transition J+2 -~ J whére initial and final states‘%ave

[

positive parity. Thls transition is of E2 multipolarity. The

\
following expression gives the transition rate:
T _ 4w w, > g
= —— — . ' .
Tiioo3 = 755 ‘o) B(E2;A'J+2 ~ AJ) (3.104)

where w is the angular fréquéncy of the emitted photon. The

R

symbol B(E2;)'J+2 » AJ) represents the reduced transition pro-

bability. It is defined by E

B{E2;\'J'»)\J) = 33%13/ L |<AJM|62r[x'J'y'>|2 . (3.105)
| M,M '

Combining equations (3.100) and (3.105), the rdﬁuced transi-

tion probability can be written in terms of the reduced matrix W

element as follows:

1

B{(E2;A'J'+AJ) = U RAESY
/

|<aratflo ] 1aa>1? . 7 (31106)

-~

Usinq equation -{3.101), tHe duced transition probability is
given by (KB 67)

B(E2; A\'J+2+AJ) ="[(23+2) {23+3) (23+4) (23+5)] % ~ (3.107)

x (Z' [VB(J+K+2) (J+K+1) (J-K+1) (0-K+2) <A IQ |A . '
X i AJK AVIK” ®

+ VIFS = {/(J TR=1) (I-K) (F-KF 1) (0-K+2) <A Q;iAA.J+2K>

>}1) .

AJg+2r

+ J(J+k+1)(J+K+2)(J+K+3)(J+K+4) <Axe|°2|Ax '3+2 K+2
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The integrations over B and y in eguations (3.101), (3.103)

and (3.107) ére done numerically. For example

»

' .3 2 3 2
QO(B,Y) £ Irel RO Bcosy = TTTeZR9 Bx . (3.108)
Hence ‘; v .
1 .

Praxl I8y gk : _
= | as ds o(8.,8)A (8,8 ) 3-ezr 28 A (8,68 )
= x Ty Px Ty AR Rk Py’ A o Tx UA'I'K' YPx'Py
=3 2R %5 (w O A ) a., .. ) - (3.109)

47 fo) o “ee TAJKja "x'a TA'I'K';a '

03

The numerical integration weights w . are given in Figure 3.3.

P

1/

In the case that the rotor Hamiltonian is axially symmetric, 3

K becomes a good quantum number. Then for an intra-band transi-

tion,‘equation (3.107) simplifies to

_ _ 3(J+K+2) (J+k+1) (J-K-1) (J-K+2) 2 .
B(E2;J+2,K+0K) = HFyarn 2ot Bres——— 195 1% (3.110-1)
I3 . ’ \
where ' \ J
|}
Qx = <AAinooIAAJK>‘ (3.110-1ii)
o ' e

If the limiting case of a r%gid rotor is assumed, then Qg be-
comes independent of J. This is the usual approximation made
for a rotational band. The transition rates within the band
have the simple dependence on J qiven by equation (3.110—1);
An important special case of this\model involves the ground
state band. The transitions within a K=0 band of an axially

symmetric rigid rotor are

B(E2;J+2+J) = 3 fd+l) (J+2)

2
7 T2o+3) 123557 1930l

(3.111)
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-

" where QJo does not depend on J. In the ne#t chapter, equation
(3.111Y will be compared with the more general case given by
eﬁﬁation’(3.107).

So, far very little has been said about magnetic ?ipole
transitions. Ml transitions are forbidden for purely céllec—
tive transitions of second order in‘even-even nuclei;because

of the high degree~of symmetry present (WJ 56}.

fe

-



‘CHAPTER 4

BOHR'S COLLECTIVE MODEL: RESULTS

'}
I., 6 Test of Method: Spherical Harmonic Oscillator

)// 1. Energy Levels

To test the accuracy of the numerical methdy outlined

in the previoﬁs chapter, the Bohr collective Hamiltgnian is
solved for two extreme cases: a spherical oscillator and a‘well-
deformed prolate rotor. In both cases the Bohr inertial func;
tions are used. The two cases are distinguished by the choice
of the collective potential energy V(8,y). ?

An idealized model of a "vibrational" nucleus is obtained
by substituting into the Bohr collective Hamiltonian. the po-
tential ’

c g (4.1)

, vVi(B,y) =,
The resg}ting energies, wavefunctions and electrémagnetic moments'
are known analytically (Bes 59). Thege ﬁnalytic }esults are
given here to allow a pompariéon Qiph the numerical method.
The Yrast energies for even J are given by

L4

J+3

E; = (—7_ + m +-(m—l)6J0)m | (4.2)
where . - ' . w =.YC/B . ’ {4.3) -

and m = 1,2,3 for the Yrast state, first excited state and
second excited state réspectively. The stiffness parameter €

-’ '

-~ e -

- 92 . ' >
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is defined in equation {4.1). The inertial parameter B is de-
fined in equations (3.8) and (3.9). Following Kumar and Baran-
ger the values B = 100 Mev—l and C = 100 Mev were chosen. -

In addition to B and C, there are three numerical para-
métefs: £, Ng and Bm. e 1s the cut-off parametersdefined in .
Chapter 4, Section V-2. Since the sodutigns are rather insensi-
tive to €, no further discussion of this parameters is presentéd..
N _is the number of grid points used in the mesh. .Eﬁérgies of
a harmonic oscillator for different angular momenta aée plotted
in %i ure 4.1, It is found that‘a mesh consisting of 190 grid
poinFs is fine enough: N%Fmally the deviation(éigy tﬂe exact
value is largest for the first excited state above the Yrast state.
The maximum deviation from the analytic result is l.5%.8m‘is the
makiﬁum value of B used in the mesh in the B~y plage. For each
J, the optimal value of B is differ?nt. This point is illus-,

~

trated in Figure 4.2. ' -

-~

Yy .
‘Analytic expressions feor the wavefunctions can be given

(KB 67). For example the intrinsic wavefunctijons for J = 0,
J = 0' respectively are

51/4 2

_ dw _ 18
AJ:Q(B'Y) = (-Fr EXP( 5 ;5 ) (4.4)
5.1/4 2 2
- (25w - 28 -1 B
AJ=OJB,y) = ( - } (1 3 b2)exp( 3 b2) (4.5X
where 14 -

b = (BC) . ' {(4.6)

3

The plot of these expressions are compared with the plot of

the wavefunctions obtained numerically in figures 4.3 and ¢.4,.

v

» \
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Energy levels of a harmpnic oscillator. The three lowest
g ?D

energies for J = 0, 10, and 20 are calculated using meshes

of different fineness. The analytically known exact

result is also given.

y
L 4 .
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Energy levels of a harmonic oscillator. The same energy

m -

levels asy in Figure 4.1 except the maximum value\gf B, B
is varied while the nhmber of grid points is kept constant

(= 190). The arrows mark the optimal value of Bm for

J =0, 10, 20.
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Figure 4.3
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Wayefunction of J=0 state of harmonic oscillator. This is a

contour-plot of A_k=0(BrY)
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Figure 4.4

analytic

- ~—-—--numer/ical method

Wavefunction of J=0'" state of harmonic/ oscillator. As in
, Figure 4.3 this is a contour plot of AJ=0.(B,Y)-

/

/
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Again values of B = 100 Mev-l and C. = 100 MeV were chosen.

\This gives an oscillator Iength§§§ B = 0.1. In both cases Bm

wag taken to be 0.45 although not all the B-y sector is shown.
The deviation of the numerical wavefunction from the correspon-
.ding analytic wavefunction is most sévere near the Y = 0 and’

y = w/3 boundaries, especiglly when B is small.It is clear

that eﬁergies are obta;ned more reliably than wavefunctions.

, , .
Finally, analytic expressions for the B(E?)'g can be

éiven. Some examples are > 4
B(E2; 2+0) = —— &% z%R 4p¥ =z 1 (4.7-1)
321 0.
B(E2; 2+0') = % T (4.7-ii)
B{E2; 2+2') = 2T (4.7-iii)
B(E2; 4+2) = 2T . - 8L (4.7-1iv) °

To compare our results with those of KB, we have considered the
same situation; namely 2 = 50, RO = 6 fm and, as before, b = 0.1,

Table 4.1 gives the results:

AN

Table 4.1 .
B{E2)'s for Harmonic Oscillators _ .
T?ansition * This method Kp _ .;Lact
’ | (ez—barnz) ( (ez—barnz) je2~barn2)
2+0 0.0910 0.0915 0.0923
2 + 0 " g.0375 0.0382 0.0369
2' + 2 0.1836 . 0.1854 0.1847
4 +~ 2 +0.1836 0.1854 . . 0.1847

e
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The maximum deviation of our results from the analytic
result is 1.6%. It is fortunate that the quantities of direct /f”\\\
experimental interest, nagelyiene;gieé and ttansition rates, are .
obtained much more accarately than'the.wavefunction. The inaccura-
cies in the wavefangtion are, in some sense, "smeared’cutl\ig///

evaluating expectation values such as energies and electromagne-
. . 5

tic moments.

* II. Test of Method: Deformed Prolate Rotor

The ?ther test case investigated is that of a well-
- deformed érolate rotor.’ The collective potential has a fairly
deep minimum at B = 0.314 and y = 0. This'is a stringent test
‘on the accuracy of our procedure for the following reason. A
'common method of solving the Bohr collective Hamiltonian in-
.. cludes expandlng the wavefunctlon in the basis of elgensgates of .
a harmonic oscillator. Because the wavefunction of a well-
deformed rotor is quite different from a harmonic oscillator,
a large number’ of ba51s ‘states is requlred For computational
reasons there is a maximum size for thé& ba81s.'If the solution
/\ has not converged by the time that the size the basis has
v/‘f;;reased to ;ts computational limit, the method has failea.
Our numerical methed does not suffef from this specific conver-,
gence difg?bulty . HoWever there is a related difficulty. If
the rotor is well-defor ed, it 1s§necessary to use a large B

Since the maximum number of grid points is 190, this means that ;

he mesh becomes relatively coarse. If the intrinsic wavefunc-
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Figure 4.5

55 .9l 13 6 iI90

v

Energy levels ofﬂé.prolate rotor. The lowest three energies for
g =20, 10 and 20 are calculated as a function of the number of

grid points per K component. Reasonable .convergence is obtained
for the finest mesh., . ° v
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tion ha§ a lot of structure, the numericah differentiations

and intégrations will be inaccurate. . o

The actual potential used is similar to that of Myers and

.

Swiatecki (MS _66).

' - ' 3 2
ViB,y) = _:12_ cg? + (hy - h;(B/a) cos3ylexp(~ 8 /a®)
3 i
- V,B” cos 3y (4.8)
where C = 150 Mev, ho = 13 Mev, hl = 11 Mev, Vl = 20 Mev and
a= 0.3 fm, The;éohr inertial parametéré are used with B = 100
Mev—l.

The energy levels are plotted in Figure 4.5 as a function
df grid size. It can be seen that 190 grid points give reaéonable
convergence.‘Jahe energies also depend, ‘'to a certaigﬁextent, on
the value of Bm“ This is shown in Figure 4.6.

For even angular ﬁomentum J, the intrinsic wavefunction
has components with K = 0,2,4,....J. For odd 5, the components are
K= 2,4,6,...J-1. If the collective gotential favours a prolate
solution, the probability that the wavefunction has a large K
is small. As a result, it is a good approximation to restrict
the wav%ﬁpnction to having K components no higher than some maxi-

mum K, say K In all the results presented gn this section,

max’

Kmax = 8 (instead of J). Tﬁat this "is a good approximation can
, ] .

be seen by examining Table 4.2.

\

N
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Figure 4.6

~

- (Mevs) \ |
el

Ty G AN

Energy levels of a prolate rotor. The same energy levels as in
Figure 4.5 except the maximum value of B, B, is varied while the

number of grid points is kept constant (=190). : .
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g Table-4.2
Probability that Wavefuhction Has J3 = K
0. 2 4 6 8

10 0.9181 0.0810 0.0909 0.0000 0.0000
10! 0.2732 0.7088 0.0178 0.0002, 0.0000
10" 0.7718 0.2236 0.0046 o.ogpo 0.0000
20 0.6753i{ 0.3031 . 0.0208 0.0008 0.0000

- & R . -~
20! 0.7781 0.1942 0.0256 0.0020 0, 0001
20" 0.3723 0.4646 0.1517 0.0110 0.0004

IIXI. Features of Band Crossing

Préctically.all theories of backbending involve a cros-
sing of the ground state band_yith another band having a larger
effective moment of inertia. Such theories differ in their in-
terﬁretatiod of the nature of this second band. The severity of
the irregularity at the backbending point {on an\ﬂ—w2 plot) is
increased when the difference betwéen the effective moments of
inertia of the two bands is increased- The severity of the back-
bend:;g is also enhanced if there is very little mixing between
the two bands. The amount of mixing is also connected with the
transition rate (for emission of gamma rays) as the nucleus de-
gxcites along the Yrast states at the band crossing. It is ex-

pected that very little mixing will result in a-retardation of the

transition rate.
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There are several different explanations of the nature
of\the e@gond band. It is difficult to choose between these
thearies because of the paucxty of data on the low spin members
of this postulated second band. It is expeeted that such statz?f’ ¢~\>
will be weakly fed by a-gamma ciscade after a (HI,xn) reactio
Beeaqse of the (Ah) factor in the E2 trans;tlon rate. éndrews \
et.al. (ky§+ 74) have argued that backbendiné is an artifact ’
of the feeding following (HI,xn) reactions. If it were possible
to measure the energies of all the sxaees'ip bath bands, each ’
band would be well behaved (with no backbending) on an ‘/jmz /
plot. Since the so-called Yrast band is not a band at all but
is in fact two bands, backbending .is observed.

The above arguments arefbomplﬁcated somewﬁat by the pre—‘

sence of the B-band., Backbending in the B—Bqnd has been observed
154 156 R .

in Ga~ and Dy (WGG+ 73, KBB+ 73, AWG+ 74, 'LBD+ 74). It is

hypothesized that the backbending in the B—bana ;s caused by a

cress;ng of the B-band with a higher "third band" or "super band"f

Unfortunately the states in tﬁis band below the crossing point

are not observed. This "three band theory" also postulates that

the sup epd first crosses the B—bang'and thens at higher

spin, cfosses the>ground state band. Because the super band

. and the ground state band intersect at a slight angle, states in

both bands both above and below the crossing are fed. Hence it

i1s possible to trace the ground state band through the crossing.

As a result, the ground state band does not backbend.

»
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Most theories describe the second band (in the case of

154 156
Y

Gd , D the third band) in microscopic terms. In this

thesis, we iqyestigake a possible collective nature to this band.
. o , A
Central to the whole concept is the role of gamma da%gifif;zh

(deviation from axial.symmetry).

L4

IVv. Choice of Inputs

1, Inertial Parameter “\

The Bohr collective Hamiltonian has, as inputg, several
inertial functions as well as a potential function. As stated
before, this investigation has used the Bohr intertial functions
which contain a single parameter B. To obtain a value for B,use 1is
m%de of a semi-empirical relation developed by Grodzins kGro 62) .
Grodzins observed that throughout the periodic table for even-even
nuclei, thereqig a relationshié between the transition rate of the

gamma decay J = 2 + J = 0 and the excitation energy of the J = 2

state. Stated mathematically, this relationship 1is

. ) T(2+0) = ((3:1)x10'0 gY2%/a (4.9)
- where the excitation energy E is in Mev's and’the transition réte
in sec-l. For the rare earth nuclei ,a better value is
T(2+0) = ({(3.5:0.5)x1070 £%2% A . (4.10)
] — .

Assuming that the nucleus behaves as an axially symmetric

»

rigid rotor, the Bohr model predicts the transition rate. Using

equations (3.104), (3.111) and (3.99-i), we have

82 s 2. 4.2

T(2+0) = 5%6; o (ga) 2°r_Yg° . (4.11)

Comparing equations (4.10) and (4.11).Xields

' E = —4230 (4.12)

B A
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Since the excitation energy of a rigid axially symmetric ro-

tor is E = 2x32, we finally obtain
+ 6BRB
_ al/3 Y o
B = 1150 Me . {4.13)

THis equation is used to define B in all the results that follow.

2. Potential Surface

o For the specific nuclei discussed in the‘next few sections,
collective potential surfaces have been determined so as to give
a gualitative fit to the availg?le data. I£ is difficult in prac-
tice to find the potential which should give an almost exact ;
fit to the data although such a potential should exist in prin-
ciple. For each nucleus, the important data are the energies

of he J=2, J=4, J=2' and J=0' states as well as the criticél
angular momentum, JC, at which the nucleus displays backbending.
In, this model; backbending is asqfibed to a sudden éhape change
resulting from phe crossing of two collective bands. Inﬁorder
for backbeﬁdiqg to take piace, it is necessary that there not

be a great deal of mixing between the two bands. In order

for th%s to be the case, it was found necessary to use a poten-

tial surface with two minima.

: f
In most cases, the data indicates approximate axial

3
symmetry for the lowest states in the ground state band. This

suggests the potential surface has a minimum on either the

prolate or oblate axis._ The Bohr Hamiltonian has the symmetry

that if V{B,y) 1is replaced by V(B,n/B—}),‘ the eigenenergies
. : |

are unchanged. This means that it is impossible to distinguish

N

between even-even prolate or oblate nuclei in this model. Hence

9
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there is no loss of generality to take one of the two minima

Al

to lie a}ong the prolate axis. -
~For the second minimum,'two possigilitiéé are investiga-
ted. In one case the second minimum is taken to lie in the re-
gion Qf maximal axial asymmeéﬁy ly = n/G). The rationale for
this comes from the stuég of the VMIA model. By becoming
axially asymmetric, the nﬁqieus can take advantage Qf the 3/4
factor in.the energy described in equation (2.48). The argument
against such a choice for .the second minimum is that normal
Stnutinsky calculations do not predict a minimum here. However
more- modern Strgtinsky calculations (which“&hclude the Coriolis
N

field'using a term le) indicate the possibifity of an asymme-

'\
e

tric m1n§mum. *, e

. P \\"&-—__,_
The other situation investigated is a poéential having

a second minimum on the oblate axis.{In this case there is

no facfor of‘3/4 to enéouragq:ihé nuclghs to move éver to the

second minimum. Hence to get backbending, it is necessgif that

the second (oblate.) minimuﬁ have a larger f associated with it

.than the first minimum; A situakdion similar to this haskg}ready
been invéstigated by Ross and Nogami (RN 73). In their simple
strétching model there was a B degree of freedom but no y degree
af freedom. By using a two minima potential, they_qbtainéd_pacfl
bending. However to avoid quantum—meéhanic;l mixiﬁg between the

4

two_minima,"the two minima had to 'be well éeparated. ‘As a re-

!

sult, unrealistically>largg transition rates were predicted be-

tween states above the backbending point. This’problem is not
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as sérious in our work because the two minima can be wé&l
separated in the y direction. 1In fact, using a second oblate %

minimum was suggested by Ross and Nogami. \ ' L

N
The 8 corresponding to the first minimum is mainly

determined by the energy of.the J=2 state. The energj of the B

bandhead gives information about the curvature of thg/potential

in the B direction. Ihformation on the "stiffnessJ of the .poten-
tial is also obtained by the slope of the experimental }/—wz

at w = 0. TPhe energy of the y bandhead gives information on

the curvature of the potential in the y~direction. Finally the

B of the second m}nimum is detérmined so th%t the two bands

cross at the experimentally known critical angular momentum.

e

,/—'gv/’_‘i

The data puts strong constraints on the potential surface.
However it is still not uniquely determined.
V. Erle4

1. Energy Levels
164 '
r

E ig investigated in this work because there is a
large amount of experimental data gﬁailable on tﬁis nucleus. The
"Yrast band" is known as high as J = i8 (LKD 73). (Backbending
occurs at Jc = 14:) Also the energies of the lowest few members
of both the y and B-bands have been measured (Sak 70) .

The two minima potential surface illustfétea in Figure
4,7 was used in the col;ective Hamiitonian. One minimum lies
on the prolate axis and the second minimum lies in.the region of

.maximum asymmetry. .The calculated energies of certain members

of the ground, y and B bands are compared with experiment in

|
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Figure 4.7
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Figure 4.8. On the whole, the agreement is reasenably éood.
The vy bana head energy is well reproduced. However the even
spin members of the y bandqare displaced slightly downward
refativé to the odd spin members. This is due to repulsion be-
tween members of the v and B bangs having the same angular %o- a
mentum. The calculated excitation energies of the £ band
members are lower than the experimental energles.

In Figure 4. 9, the energies of the three bands are plot—

ted as a function of J(J+l). On this kind of a plot, a rigidg

rotor yields a straight line. =It can be seen that the vy band

crosses the ground ttate band between J =

explained in Section III, the crossing is

2 and J = 4. \As was

T

ue to {he fact that (/ N
the asymmetric .shape becomes energetlcally moere fa%Q ab han

the prolate ehape at sufficiently high spiir. A 'second reason‘for

Y ¢
the crossing is that in the B~y plape the asymmetric minimum

P .
is located at a larger £ than tbé'prolate minimum. For example, —_
the J = 2 state of the ground'state band has an expectation

value v <82>‘= 0.339. ,Tﬁe J = 2' state of the y band has

//<B2> = 0.388. The staggerlng of the even and odd dpin men-
‘bers of the Y band is greatly enhanced abov% the backbending

p01nt. In féct for J > 7 and J odd, E; > Ej, , in the ¥ band.
Hence xf an even J state in the y band above the backbending
,/"

pgint is populated this state will decay via a’‘aJ = 2 cascade

/f/rEsulting in the emission of "stretched" E2 photons since

a transition to a lower odd state would be of multipolarity E4.
Furthermore, if a high odd state is populated, it will prefepen-

tially decay to an even state with AJ = #1, by an E2 transition.



Energy levels of Erlsq. The energy levels obtained by

solving the Bohr Hamiltonian with the collective poten-
tial shown in Figure 4.7 are given and compared to
experiment. Only states belonging to the "Yrast band",

the B band or the y band are shown.

A

S
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Figure 4.8
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Band crossing in Er16 . . The same calculated energies
-shown in Figure 4.8 are plotted as a function of J(J+1).
On this kind of plot, an axially symmetric figid rotor

‘appears as a stfaight line. It can be seen that the

Y band and the ground band cross.

/
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Figure 4.9
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The energies of the Yrast states are shown on an....o—w2
plot in Figure 4.10. The backbending is predicted to occur at
L -

the correct angular momentum, J = 14. However the theoretical

¢

bacernding is not as pronounced as the experimental backbending.

In all the results for Er164, the wavefunction has been limited

to having K-components no higher than K = 10. (See Section II.)

max

To check the accuracy of this approximation, some of the calcu-

lations were repeated but with Kmax = g. In each case the re-

sults differ by no more than the width of an ink line on the
%lot/ The only exception t? this is the case J = 16. The point

corresponding to.J = 18§, Kde'= B is added to the graph in

Figure 4.10. [ ' SN

<

2. Wavefunctions and Transition Rates

In our’model, backbending results from a sudden change

of the shape of the nucleus in the "Yrast band".  This can be

seen by comparing, for Yrast states above and? bel¢w the backben-
ding point, the distfibution of probability of thé nucleus having
the” shape given by (B,y). The probabilit digtriibulion is
given for Yrast states‘J = 14 and Jd = lé 6L~d. .11 and 4.i2.
‘The B(E2)'s in the“Y;ast band are show Figure 4.13.
For comparison, the corresponding B(E2)'s for a rigid rotor are
given. It canrbe seen that the calculated B(E2) does increase
faster than the B(E2) of a rigid rotor, especially above J, = 14.

However for all J,the B(E2)'s agree to within a factor of 2.
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l’/\\ Figure 4.10

120
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Experiment

- 1 | | C
0-04 0-08 0-12

2 2
(hw) Mev

‘ﬂ—wz plot for Erlsd. The same energies as in Figure 4.8 are plotted
on an,J—w2 plot. The isclated point corresponds to the calculatidn
in which the wavefunction is limited to K < Kygyx = 8. For the

rest of the calculated points, Kpax = 10.

L 4

7]
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Figure 4.1l 9

«00001 ‘01 001 8=.74

Shape probability for J = 14 state of Er164. Contour
plot of the square of the modulus of the wavefunction
times the- integration density as a function of 8 and Y.
An integration has been performed over the three Euler
angles. The X marks the expectation value of (B,Y)-
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) Figure 4.12
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Shape probability for J l6 state of Erlsq. See

cgeption to Figure 4.11. .

i}



B(E2)

J+2=>J

(e? b?2)

117

Figure 4.13

1 | | 1 } L t
O 2 4 6 8 10 | 2 i 4 | &
\ .
(e J

B(E2)'s for

line.

The das

1 ‘
‘The calculated B(E2)'s are. given by the soliad
d line gives the B(E2)'s for a rigid rotor.
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VI, Er162
162 . . L .
Er is the first nucleus for which backbending behaviour
w33 observed. Energies are known experimentally as high as J = 20
(SHJ+ 73). The y bandhead is alsoc known (Sak 70). A contour

map of'thebpoteﬁtia} surface.used in this calculation is'shoyﬁ,,
in Figure 4.14. Again a two minima pgtential is used: one ‘'mini-
mum on the prolate axis’and a second minimum in the axia}ly
asymmetric region. The calcglated and experimental energies-of

3 .
the Yrast states and the lowest few members of the y band are
162

given in'Fiéure 4.15. 1In the calcula?ions for Er ’ Kmax = 8.
Finally an-Jiwz plot for Erl62 is give; in Figure 4.16.
‘
VII. 05182,
1. Energy Levels. . o

In the Os region, nuclei are less, deformed and more trén§}-
. tional.in nature. This is indicated by low-lying y bands. (GG 71). ™ _

For this reason, a two minima potential for which the second
.. - ‘ i S

minimum is on the oblate axis has been employed. A contour map
of this potentiad is given in Figure 4.17. 1In order for back-
benﬂing to occur, it is necessary that the oblate minimum’ be

located at a‘considerably larger £ than the prolate minimum. This

—

. has important implications for the transition.rates (as will-be

- !
.shown-later). ' 7 | \
" - ' ‘
Calculated and experimental levels are given in Figure \

\ ' .

4.18. For, angular momentum J > 12, the band based on the oblate

\

‘minimum lies lower. The Yrast band agrees reasonably well with
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Figure 4.15
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data. However the y band is predicted to lie at too high an

a2

energy.
' > - f -
The band crossing is also illustrated in Figure 4:19. k
The results are also shown on an‘ﬂ—w2 plot in Figure 4—20,—

- Because the wavefunction may be concentrated in the oblate re-

gion, it was found that the number of K components to the wave-

function could not be limited. Hence in all cases for 03182,
K = J.
max
“\x . ) .
. . ~
2. ransition Rates /ﬂj .

Tﬁe B(E2)'s between even Yrast states’afe calculated and
plotted in Figure 4.21. The remarkable feature of the graph is
. the sharp drop in the B(E2; 12+10) transition. This is-due to
the fact that the J.= 10 state is primarily prolate Qhereas the
J - 12 state is primarily oblate. Although experimental measure-
. ments of lifetimes in high spiﬂ states have largg uncertainties
asséciated with tﬂem, tﬁere does noé seem to be any systematic
evidence for a\dramatic drop in the B(E2)'s at the backbending
point. This is evidence against a prolate-oblate minima poten-
tial. If a slightly different potential with a iower,barrier
between prolate and oblate minima were to be uéed, the droﬁnin
B(E2) would be lesg pronounced: An examinatioﬂ'of the spectra
in Figure 4.18 shows_thgt lowe#ing the oblate-prolate potential : "
~barrier in the v f 0 region would improve'the resuits. Thus the

Yrast levels which aré calculated to be too high for J > 8

wquld be pushed down by more mixing. 'Furthermorq, the y band-



Eand crossing in 05182. The same calculated energies as '

in Figure 4.18 are plotted as a function of J(J+1). The
.band based on.the oblate minimum crosses! the band based on

the prolate minimum.
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Figure 4.19
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'The same energies as in Figuig 4.18 are
plot.
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Figure 4.21

B(E2)
(J+2>J)

(e 2b?)

- w ) es m o ow P

-l - =~
ov""——.-

-

182

B(E2)'s for Os See caption to Figure 4.13.
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head energy which is calculated to be too high would also be
lowered if the y barrier height were lowered.

VIII. Comparison of Variable Moment of Inertia Models with

Bohr's gollective. Model
e

« l. Mathematical Statement of VMI Mocdel

The conventional statement of the VMIS model has been
given in equations (2.9). However certain conceptual difficul-
ties arise from this statement of the model when the Thieberger
prescription is used. {The Thieberger prescription is a method
of determining the VMIS potential V(J). It wiil be described
later in this section.) Hence it is necessary to give a more

mathematical statement of the VMIS model.

First we define a function f mapping ordered pairs into

the real, numbers:

{

£r WJSUgy e £ S, = WL L G 08y g )
N 2418)

A

_The goal is to define the energy as a function of angular momen-

A
tum. " Hence we define

J (J+1) (s)

E: J + E(J) = + vid:®hH (4.15)
2@}85 J
where Jés) is the root of the equation
hJ(J(S)) =0 , (4.16)

where hJ(j(s% is defined by

ho (8 = ——-(—)—af TSNS (4.17)
~ . J a3y S J
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Equations (4.16) and (4.17) define a function

Lo -»J}S) =~/(J) . (4.18)

Define the function g to be the inverse function of the function

J.

. g =L, (4.19)

-

We also define a vector vélued function u mapping the real num-

bers into ordered pairs. That is, we define

=4

s+ JI0 - doo = . (4.20)

Finally we can properly define the energy as a function of angu-

lar momentum as the composition of f with u as follows:

E(J) = foul(J). (4.21)
This equation correspands to equation (2.9-1i). Equation (4.16)
corresponds to the equilibrium condition given in equation

(2.9-ii).

2. Thieberger (Thi 72) Prescription for Obtaining V(J)

From the expression for the VMIS energy, it is possible
to derive an auxiliary quantity w, which can be interpreted
as the angular frequency. It should be noted that so far, J is
simply a real number; it has not yet been restricted to integer

values. We define a function

~

E: % + E(x) so that E{(YT@+1))= E(J). °  (4.22)
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Then we define a function w: J + w(J) so that

_4E
@0 = Jx|x = /IEEFT . (4.3
' ! 3
Combining eguations (4.22) and (4.23),
wig) = $EL) o o 4.24)
arI{3+1)
from equations {4.20) gnd (4.21) we obtain
A
dE(J) _ ., of S) akg) | of (S) |
e A (6 NASRIIEE R §is) 7o )

However the quantity in square brackets is zero from equations

(4.16) and {(4.17). Hence

of (s) aJ
Cwelgy = 2B ) 43
99 &(S) J VARGESS)
_ 1 agw+l)) . dd
l 2J§ s) aJ AyTEF)
L g+1) ~ (4. 26)
= S * .
Js

Equations (4.16) and (4.17) can be written

. S) ’ '
I+, dV(xﬁ ) =0 . {4.27)

-'2(‘?;5))2' ad {8

JJ<s)

Combining this with equation (4.26) yields the interesting re-

4

lation

av J'ShHt oo
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Substituting equation (4.18%) we obtain

s)'y \ ®
WS L = g n? .29
ad ' '
This equation can be integrated to yield the VMIS potential

energy

. ‘J(S) . T

“ ! t 1

vidlSh v gish - J Llwg WS )12 L @0
’ ¢
. _— A8) ’
. . ©
In chapter 2, section II-2, the quantities oﬂand w

appearing in theJ—w2 plot were defined. For purposes of

reference we fepeat equation (g.10-1i):

my = —9B (2.10-1)

advJ{J+1)

>
In this equation E is the experimental energy. Equatién
(2.10-i) js equivalent to eqguation (4.23) (with #f set equal to
l). As result, the following procedure due to Thieberger'

(Thi 72)\gan be followed. w as a function of aﬁgqlag momentum

~

-

can be determined from the‘experimental energy levels. This
function is then insefged into equation (4.30) Qo yield the VMIS
potential energy. In-principie:this process 1is exact.‘If the
VMIS potential is inserted into the VMIS equatiéns (equations
(2.9), or, equivalentl;? eqﬁétioﬁs {4.20) and (4.16)) "the pre-
'dicted energies.should agree exaétly with experiment. It should
élsoiﬁe noted that equation (4;26) agrees with the definition

for given in equation {(2.11).

X,
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However ‘there is a difficulty in that the experimental

energy‘lévels are known only for discrete angular momentum J.
y
This problem was mentioned in chapter 2, section Ii-2. It ;s
necessary to perform some interpolation before the derivative(
in equation (2.10-i) can be evaluated.
~In the original staéement of the VMIS model (MSB 69) the

simple guadratic potential V(\ﬂs)) = %’C(uﬂS)fJﬁS))z was used.

Using equation (4.29) we obtain

BTN ARES S I N Y TS O L (4.31)
or written less carefullyéf ' . ‘ !
(8) _ ((s) 1 2
JE =Sy Wt (4.32)

Hence the simple- quadratic VMIS modél predicts a strJight line
on an»ﬂ-wz plot. If the energy levels.of a nucléus can be
aqéurétely described by the quadratic VMIS model, then when the
éxperimentally determined moment of inertia (see equation (2.11))
is plotted as .a function. of the squ%;e of the experimentally
‘deEermined angular velocity (see equation (2,10-i)) a straight
line should result. This"assuﬁeé the derivative in equéfion
(2mi0—i) is evalﬁated exactly. If the Stockholm interpolation
prescription is used (see equations (2.12)—(2.18), only an
approximate -straight line is obtained on an‘_/--w2 plot.

R

3. Compar{son_of VMIS V(J(Sb_tq the Potential Energy in the
Collective Model : ’

Y

For each angular momentum J, the .Bohr collective model

has been solved yielding by and E_. It is thus possible to cal-

J

’



133 -

.’j

AN

s

culate. the expectation value of the potential energy<leV|¢J> .

The zero of the energy scale has been chosen to be the .expecta-

tion value of the potential energy for the J=0 state. Hence w
A

define the guantities VJ by .

vy o= <wJ|V|wJ> - <wJ=OIV|wJ=O?f (4.33)
Another quantity of interest is the expectation value of the sum
of the potential energy and vibrational energy. Hence we

define'UJ by

| UJ'=<wJITvib+V]wJ> - <wJ=O|Tvib+vIwJ=O> . (4.34)

A

The quantities Vs and UJ are compared with V(Jgs)) where
V(Vﬂs))is obtained using the Thieberger prescription. To ob~
tain V(:ﬁs)), #irst the Bohr Hamiltonian is solved for each
angular momentum to yield Egr J=0,2,4,... . Then E; is
plott?d as a function of YJ{Jd+1). Using a spline function (se#
Appendix D) these discrete points are interpblated Zielding
a smooth cur&e. The spline fuiction is-differentiated analy-
tically and the derivative evaluated at each point vJ(J+1)
where J is integral. This yiélds wy @s can be seen from
equation (4.24). (This method is different from thé conventional /
procedure in whicﬁ the deri&ativg dE/dVJI (J+1) is evaluated half-
way between the discrete angular momenta.)

Using equation (4.30Y the VMIS potential can be written
as

J

V(\pés)) = T AV
even J'=2

(4.35)



where
- (S)
: avy = vt
Y
I I ¥
2
Y3y-2
- and R
YJ =z

After some a%geb}a we obtain

AV_ = E_-E

l - —-—
J 3 Egep 7 5 lugyy “Jsza—z)'
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) (s)
V*JJ—z)
A(S) .
w? Qﬁ%—— dy (4.36)
. y .
VIEGFLY . ' ' (4.37)

}

{4.38)

Since w. was calculated previously, we can Aow calculate V(‘ﬂs))

J

by using equation {4.35). The quantities o

J are also used to

calculate the moment of inerta at discrete y(= YJ{J+1) , J
. / .

integral) by

, H

J

3

ol

.

. /I fug - (4.39)

In Chapter II it was explainéd that the variable moment

of inertia-aws) described all

changes in the intrinsic wave-

function including microscopic degrees of freedom. ‘ﬂs) is

4

not simply proportional to 82

. Hence %: is misleadiggfto think
£

of V(gﬂs)) as giving information on the ‘potential surface. To

obtain some insight ih;o VLJ(S)), it will be compared with the

quantities VJ

from the solution of the Bohr

and U (equations (4.33) and (4.34)) obtained

Hamiltonian. The collective poten-

tial used in the Bohr Hamiltonian corresponds to a qualitative

164

fit to Er . It 4is plotted in Figure 4.7. The quantities



' \) 135
Eq g0 Uy and V(JGS)) are plotted as a function of J@S) in
Figure 4.22. On the graph, V(JéS) has been labeled Vi, . It

can be seen that the expectation value of the collective poten-

v

tial, Vv is not at all’ well approximated by V VMIS In fact,

JI
for small J, VJ is Sllghtly negative. However the expectation

/ . /
value of the sum of the vibrational kinetic energy and the potential
energy, UJ, is reasonably well approximated byVVMIS ,esgecially at

(S))

N .
VMIS model represents not only potential energy but also vibra-

lower spins. Hence it can be concluded that V(J in .the a

?l
tional energy (vibrational energy resembles somewhat zero-point '

energy) .
|

<

4."Potential Energy" in the VMIA Model o

¢ -
In this subsection the V(J(A),Y) appearing in the VMIA ™\
model 'will be calculated. The.Thieberger preéscription does
not”apply in this case. In fact, there is a whole class of po-

Q(A)

tential surfaces VL. ,Y) which will predict the sa?e energy

levels»’{)a An example is & potential which is 1dentlcal to the
V(\HS)) in the cﬂs) dlrectlon but having a deep minimum in the
v direction-at y.= 0. That: is, VLﬁ(S)) is essentially a special
case of V(J(A) ,y) |

To allow a comparison between Vk) ,Y) and the expec—-
tation of the collective potential the following restrlctlon
i§ applied. For each angular momentum J, the equlllbrlumlvalue

of v, Yy is taken to be the same as the effective value of v.

obtained from the solution wJ of the Bohr Hamiltonian.

¢
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S
3 Y57 Vymrs’ I) ana

are defined by equations (4.33), (4.34), (4.35),

VMI-type "potential energies". V

VVMIA
(4.39) and (4.46) respectively.

A



Figure 4.22
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" using equations (4.41) §hd (4.42).. Equation (4.43) defines o
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In what follows, mathematical rigor will be sacrificed

for brevity. We recall that the VMIA model gives an energy

R_(y.)
_ - J''g (A)
EJ = W + V(\/J ,YJ:) . (4.40) A
J ,

The equilibrium conditions (seé'equations (2.51), (2.52) are

dr_{vy.) '
1 Jg_J N =0 . (4.41)
2B dvg ARIRLEN
J -,
. . |
and L
~ RJ(YJ)

A .
- + =0 . (4.42)
2 [‘OﬁA) 12 a]§“ Y5 .

The angular frequency can be obtained from the eneréy levels
in the same manner as before, i.e.

*
#

dE

W = ——J . .(4.43)
avJ (J+1) .
Hence ’
_ 0By g-(B)  ¥Eg dy -

U.)J = ——-zA—) . X + X om—

307 |3,y ayI @+l  ay a/3 (3+1)
\—> +¥RM)

2J)JA 8/TTIFLY |,

(4.44)

24 sy

in terms of the energy levels E_ obtained by solving the Bohr

J
Hamiltonidn.’ Also Y5 is calculated by using wavefunctions obtained

by solving the colieétive Hamiltonian. Hence equation (4.44)

/
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defines.JgA). In all cases, derivatives of functions defined

only at discrete points are calculated by first interpolating

9
Y.
RN

the function with 4 spline function.
Parenthetically, it should be noted that the moment ¢f

inertia obtained from the data, i.e._Jg, is not the same éé/Jgﬁj.
/f

*

The former has been given in equation (2.11) as \\\\)
J. = AT ;. : (4.459 1"

f

Combining this e&uation with equation (4.44) we obtain

3R, (
g = 2\/(A r—T———” =T / Yy J(A)
J VI (T+1)

unless Yy = 0 for éll J: < .
Yhe ordered pair LJ;A),JB) is-éow known for all J. These

ordered pair; are first plotted in the ‘fA)—anlane‘@ndothen

coénecté&:by straight lines. The VMIA potential V(wﬂA),y) is

then calculated by numerically integrating equations (4.41) and

(4.42) along(the’straight lines. Since we have ‘defined JﬂA)

and y as functions of J, we can define |
~ _ (a)
% Voura () = V(I v (4.46)
' V has been included on the plothin Figure 4.22.

VMIA
It is interesting that for the high spin states,

B

close to the vibrational plus“potentialieneijyz U

VVMIA i1s very -

J



A
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EXTENSION OF THE BOHR HAMILTONIAN SOLUTION
TO ODD PARTICLE NUCLEI

I. Introduction

~

Bohr (Boh 52) discussed odd, particle systems in his
riginal paper. In this mode}, the extra-core particle(s) move (s)
a.deformeé potential well formed by the even-even core .
Bedause both céllective and single particle degrees of freedom
involved, this is called.the unified model.

The,unified model contains all the qompléxities {eg.

g and vibrations) that the quadrupole collective ﬁodel possesses,
In-addit‘on, the w\LefunctiOn of the extra particle (or particles)
moving in\a rotating potential must be considered. As a result
the Schroedinger equatjion resulting from this ﬁodel becomes ex-
tremely difficult to solve. Hence several approximations have

to be made.

. :
The first approximation usually made is the adiabatic

-~ +

approximation wki h states that the single particle motion is

~

much faster thaﬂqthe collective (i.e. co-operative) motibn.

" Often it is further assumed that the potential well is static

’

in the dy-fixed frame. .This assumption eliminates rotation-

L d

vibration coupling. e
“ . \

The: third appfoximation usually made is to choose a de-

formed potential which is axially symmetric (about one of the

: . 139
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body-fixed axes. This can be considered a Coriolis effect.
The resulting wa&efunction consists of a mixture of components
with different angular momenta along the symmetry axis of the
potential. The Coriolis effects can be very important, especial-
ly for the high spin states. |

Kerman (Ker 56) was the first to perform an actual
calculation with this model. He assumed a rigid axially sym-
metric core wavefunction. This implies that the core cannot
have a component of angular momentum along its symmetry axis.

With these approximations, the Hamiltonian for the core plus

one particle system becomes

& Fa)
H=1T +.Hp (5.1)
where n A ~ A
. (5,-3)%  (5.-5,)°2
T = 1 71 + 2 "2 (5.2)
rot 2. 2.4 :
and ’ - '
~ ﬁ2 2 N
= - — V© + 'Y, . .
Hp 73T V{X,Y ?) {5.3)

The Laplacian and the potential are each expressed in_ co-ordi-

nates in the body-fixed frame. The rotational energy can be

rewritten
- 1 g2 72 1 22 _n2
Trot =3 (J J3) + 37 (j 33) + T, (5.4)
where
A _ 1 5o ~on
Te = - 37 (J,3_ +3_3,) . (5.5)

An unsymmetrized basis state for the Hamiltonian in
. - . - ~
equation (5.¥3 is ]JMK)[XQ> Eggge X,> is an eigenstate of Hy

[
‘1
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\with eigenvalue EQ and where Q4 is the odd particle(s) compo-

1)

nent of angular géﬁentum alpny the symmetry axis. Then the

3 ~ -J
diagonal matrix elements of H are

E =

1
sa = 23 | (5.6)

2 1 22 ~/2
J(I+1)-K") + 353 [<XQ|3 IXQ> Q<) + Eq
The\condition that the rotor wavefunction be axially symmetric

impijes K = @. If the basis state is symmetrized with respect

to the A representation of the D2 group, there is an additional

contribution to the diagonal term when K = %. The off-diagonal
matrix elements of ﬁ are
o ~ \ —
<JK'Q' [H|JKQ>= <JK'Q'|T_|IKQ> ~——
=3 Ty (gt -
- 5/ eow KL <Xou ) 133 1Xe>S 00210 ka1 . (5.7)

183

Kerman (Ker 56) applied the above equations to W and ob-

tained re;§onab1y good agreement with data.

The Coriolig term can be ;ery important in these typés of
calculations. Stephens et.al. (SDL+ 72, SDB+ 73, GSD 73) have
emphasized that Coriolis effects become especially important
for high spin states. By gxamining equation (5.7), it can be
seen that the Coriolis matrix elements are largest when J is large
and K{=Q) is smafl. If the intrinsic stlate can be. approximated

as having good angular momentum j, then the last term in equa-

tion (5.7) becomes

Koy ld x> & <3015 130> =~/ (372) (3Ia+l) . (5.8)

This matrix element is large when j is large as in, for example,
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113/2 neutrons and hll/z protons. According to the Stephens

theory, the Coriolis matrix element is strong enough to decouple

the odd particle from the core. That is, the particle aligns

its angular momentum aiong the,directioSTE} rotation of the core,
A ‘

In this case the members of a rotz;ional band wi1ll have angular

the'usuq- J, J+1, J+2,... .

a model in which the core is still rigid but alloweé to be

momaenta J, J+2, J+4, ... instead

* Meyef ter Vehn et.al. (MSD 74 5) have investigated

axially asymmetric, Also only the Afrepresentation of the D2
group is considered. Better agreemeny to experimental spectra

is obtained with the asymmetric core.-

'y

/
II. Model Calculation Single Nilsson Orbital .

4 .
1. Hamiltonian for 0dd Parficle System

In most previous calculations, the odd’?article wavefunc-
tion has been restricted to the A representation of the D2 group
(see Appendix A). In this section we describe a simple model
to investigate whether the B represent;tions exist at-sufficient-
ly loQ energy to be of physical interest. This work §¥ still
under investigation and only preliminary results are presented
in this thesis. fhe full dynamicé of the (asymmetric) core
1s included (B and y vibrations, :otation—viqgation coupling,
etc.). However to simplify the calculation, the Coriolis ef-
fects are ignored. Since Coriolis e%fects are important, this
must be considered a very crude model. Nonetﬁeless, it should

be possible to gain some understanding of the role of the B

representations.
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The particle~plus-core Hamiltonian is written

Hpc = Trot + Tvib + VBY + Hp (5.9)
where A o~ 2
X 3 (3,-3,)
T = I (5.10) °
rot v=1 2 v BIY

j&(ﬁ,y) are the usual Bohr inertial functions and where Hp is

the intrinsic Hamiltonian. Using the definitions

.
W

=1 = - i -
Iy = 3 fJ +J) , 3 5 (J, J_) etc. (5.11)

équation (5.10) can be written

) _ 22 22 22 22 1 22 22 1 ~2 .22
Top = P(IT-I3+3°-15) + 5 x{J{+30) + 3 r(3;+30)
_ A A A oA _ ~ oA aooa ~ _'.‘ 2 (5.12)
r(J+3++J_3_) p(J+3_+J_3+) + q(J3 33)
where p, g and r are defined in equation (3.19). Our approxi-

mation is to restrict the intrinsic wavefunction to have good
angular momentum along the 3-axis. Hence the intrinsic wave- x~~¢

function is an eigenflunction of the operator 53 with eigen- v

\

value 1. This implies the matrix elements of §¢ in the model

spdace are all zerof This leads to a model rotational Hamiltonian

o (m) _ p(32—3§

rot

2 1

+3 ‘ﬁg) + q(33‘53)2 + 5 r(33+3f) . (5.13)

In order to simplify the symmetry arguments, is is further

_assumed that the intrinsic wavefunction has good angular momentum

I

»
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2. Symmetry of Intrinsic Wavefunctioh: A Representation
o . |
First we note the transformation propsrties of the in-

trinsic wavefunction under the Operatiods.of the bz group (see

Appenaix A):

2.3 L oy d 43 ' :
o Ci¥g = 1 7 XZg ‘
R T R I R e
) Ch¥g = (=1} Xﬂﬁ"“ii'l4 i,1ii,4i4)
; 203 | pmqyR o '
, C3XQ - ( l) ~ XQ -
\{ ‘ ‘ n .
An unsymmetrized particle-plus-rotor state is &\¢
| DT alowox] ;
o> = L z IMK>X2 . o 5
JIM Q‘=_j Kews KQ 0 ) \
N . \ \

Appiying to ]wJM> the prOJectlon operator appropriate to the A |

representatlon and then norma1121ng, we obtaln the s{ate

N 2,

A J J 2 R ﬁ
v > = — . F - & g (L+cy 3 VI9MKIXS  (5.16)
- 2/5 Q:—j K=~J . '

~

M\_l

=

_..J_'.... _ K—Q ' J _ J"'j _ J .
277 Q=3 K-'E»J \duKQ(l'*( 1) )'[I_JMK).XQ*-( 1) |JM K)?(—Q]' (5_1"‘1)

This ylelds the\sondltlon K-Q even for the A representatlon

By relabellng the summation™index equatlon (5.17) can be (/
written

AL, 30 )y 0-3 0 s3 s (1) 97 j
ijM>‘- — LI\ gt o) L IMK) Xa+ (-1) | oM-K) XZ ]

(5.18)
In this mo@e%,qalculation, only one valde of @ is considered.

¢

"~ Therefore, the appropriate wavefunction for the A representation

L.
-/
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B » i I{ '

P 1 Y | y J-3 3 -
Voma>= — - L a [|IMKIX] + {-1) | IM-K) X .} (§.19)
MO s g ly K Q . Q

where the sum is ower K- even. It should be noted that both
positive and negative KM%Qlues must be considered ,in cofrtrast

to the éven-evén nucleus case,

~

3. Symmetry of Intrinsic Wavefunction: B Representation

d .
Of 'the three B representations of" the D, group, only

the B2 representation will be considered. This is because an
) ¢

intrinsic state(in the 82 representation is even under time
~— . [y
. ‘ 3 .
reversal (as is the case for the A represéntation, but not Lhe//fb" X

B, or Bz,representationsf.

- The procedure-to obtain, a state 'in the %abrepresentatiop
is similar to that followed for the A representation. Equation
(5.16) is modified to

B 3
2 L

J
|y - 1 e 2
M 5 dKQ(l c

+C
7 1 "2
R [ |
= = P L g =(-1)"70) [ omK)x)
2YZ Q=-3 K=-J '

o3 i
c, )JJMK)XQ {5.20)

- (-1)977 | aM-K) %3 (5.21)

FQ] ‘

Hence K-Q must be odd for” the B, répresentation. The final

-
-

result is o
B. - pad . : .
2 _ 1 7 j T~ | by - i
|y = =1 a, [ |IMK) X2~ (-1) |IM-K) X2 ] . (5.22)
M - T k= - %k ~a Q

r"
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an N N

~ {m)

v
4. Matrix Elements of ¥
rot . ) .

The matrix elemgfAts have the same form between basis 4

" states of the A representa%ién (equation (5.19)) and between
states of the 52 represeniation (equation (5.22)). As a result,
we need only describe the evaluation of the matrix élements fér

the A representation. The wavefunction lw§M§> has been ex-

. . A
pressed in a basis of states |¢JMQK> where
. \ —- . ¢ +
|¢A > LloMK)X) + -177 I fam-x)x3 ) . (5.23)
In this basis, the dlégonal matrix elements of Té?i are
(m) ) L2 o2 02
JMQKITrot|¢JMQK>’ plJ (I+1) =K #j (3+1) -0 ) +q (X-0) © . (5.24)

The off-diagonal matrix elements are
. “!‘5‘ .

<P (m)

JMQK—2|Trot|®

oK " % eV TTR=1) (9-K+2) (0K (5-F+1). (5.25)

The eigenfunctions of Hpc are obtained as in the even-even case

except .the rotational kinetic energy matrix elements are given

by equation (5.23) instead of (3.24) and (3n25). \ i <
. . L4 4 . i hd !

L

III. Results of Model Calculation

Using a potential energy surface with a single minimum

-
~

on the prolate axis, Hpc is solved for angulér momentum states

J = 1\/2, 13/2, .s. 21/2. The intrinsic wavefunction is restric-
ted 'to having good j =-11/2 aﬁd good R = 11/2. Wavefunctions
., I . .

of both the A and B, representations are chosen. To limit the

time required to do the computation, it was necessary to restrict
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the number of K-components. For the A representation the wave-
gg?qgidn was restricted to having K = 7/2, 11/2 and 15/2 since
Kféyggst bé even. Fér 5 ='19(2, the respective probabilities
of the wavefunction having those K—componénts are 2%, 91% and
7%. It is expected that if the wavefunction were allowed to

have additional K-components (for example K = 3/2 and K 19/2)

,these additional K-components would appear.with low probability.

The K-components for which K ¥ R are most probable because

of the last term in equation (5.24). For the B, reprgsentation,

the wavefunction was restricted to having K = 9/2 and 13/2

since K-Q must ‘be odd. o

The energy levels obtained from this calculation are

" shown on Figure 5.1.° In all cases the Yrast state is of the

A ‘representation. It is very- significant that, in geﬁera}, the

state of -the B2 representatién lies lower in energy than the

first excited state of the A representation. Hence this model

calculation indicates tha€'stat§s of the B, representation are

2

of physical inteﬁeét.. -~ . ' 1&

‘For purposes of comparison; the experimental energies

151

of the 11/2% band of Ga (SWJ . 75) are given in Figure 5.2.

For J = 13/2, 15/2, 17/2 and 21/2 there is a state at only

.slightly higher energ§ than the Yrast state. It may be poséible

to explain these non-Yrast stéte§ using wavefunctions of the B2
representation. No aﬁtempt was

made to choose a potential .
151 '

energy -V(8,y) to fit the G4d ata. In fact the calculated

spectra’'is considerably less {Compressed than the experimental
. P .

.
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Calculated energy levels for A and B representations. The

*x

energy levels are obtained by solving the Hamiltonian

. , . . Y
given in equation {(5.9) except Trot is given by equation

(5.13) instead of equation {5.10).
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Figure 5,2

. . . ¢ \ )
Some experimental energy levels of GdlSI. Only positive

parity levels are given.” The tentative identifications
are indicated by asterisks.
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spectra. Also the eXperimentalfspeétra show staggering, pro-
bably due to Coriolis effects., ‘\E‘. |

?hefe %re ;everal ﬁmprovements that can be made to
the calculation described in this chapter. One possible calcu-
lation is to do a fuli Coriolis—~coupled calculation with a
rigid éxia{}y-asyﬁmetric rotor as /heyer ter Vehn has done.
HSwever, both>the .A and B representations must be,conéidered
iné&ead of just the A representation. A more ambitious caléu;
latQQP i; to solve the‘full Hamiltonian given in equation gg.g).
/HOWevér many #echnicjl problems woula have to be solwved befofe

'

\
such a calculation would become possible.

il



- E CHAPTER 6
\’.
SUMMARY AND DISCUSSION

-

Recent advances in expergmental technigque have made

a

. possible the'investigation of nfuclfar systems in high spin

(J%tates. This experimental wor ceived great impetus when

the phenomenon of backbendiﬁg-was first observéd (JRH i2).
Several theoretical/moéels have been proposed to understand
this so-called phase tfansition: In this thesis, two, collec-
tive models for high’spin states have been given. The pre-
dictiéns of these -models havg been-calculétea and compared
with each other as well as with.experimentl The basic idea
of both these models is that nﬁciei become axially asymmétric
in high spin states.

iIn Chapter 2; sgmezof gf; early models of the,spgétrg

N . Lo

v “

of even-even nuclei were briefly described. This 1is' not meant

.to be an exhaustive 'list of previous models. It has been shown

that in all_éqseé, the earlier modeis became inadequate for
high spin. One model’ which ié\;EIid\£Q£;§Ei? as high as

J % 10 is the Variable Momegg;of Inertia (VMI) model of

Mariscotti, Scharff-Goldhaber.and Buck {(MSB 69). i “Qdel'

9

has'been described in considerable detail, since it‘formea a

basis for a more generalized theory developed by Smith and

Volk#v (SV 73). The conventional statement of the VMI model

has been given.in:Chapter 2. A more mathematical statement

*

151
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1
*

of this model has been developed in Chapter 4. 'In Chapter 2,

the concept of backbending has been defined. It has been shown
b4

that nuclear states above the backbending'point could not be
adequately described b& the original VMI model. However this
model has been very successful in giving the éhérgy levels of
the states below the béckbending point. The fact that this two
‘parameter model leads to an excellent description of five or

more pieces ,of data suggests that there is a deep underlying

)

princip;e involvedl This thesis has described how the VMI

model is a result of the variational principle of gquantum-

0

., mechanics. Hence the VMI model is more than just another phenomeno-.

~

logical theory. It has a firm basis in quantum-mechanics.

Furthermore, it has been shown that thé original VMI model is
onli one of a class of VMI type theories arising from the.
variational principle. . ' .

- ’One such theéry, namel§ the VMTA theory, has been
de;bribed in detail. This model is a generalization of the origi-
nal VMI theory in that the model includes the possibility of-
gxial as?mmetryf Moreover ‘the amount of axial asymmetry
(described by the quantity y) depends on the angular momentum

of the state, it h;s beep shown that above some critical

angular momentum Jc, the nucleus can further régaqg its rotational
energy by becoming axially asymmetric. Tﬁ{s iméliés that for

J < Jc' %~ 0 whereas for J > Jc; Y~ n/6. it has been

Yg
shown that\this gain in energy is sufficient to cause backben- v

ding. The VMIA model predicts that the axially symmetric

k3

* »
‘~-n/l.‘.; - .
.- LY

4
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solution {y % 0) persists above the critical angelar mome ntum
albeit at higher energy. $ ese predicted additional etate§/
may explain "forking" whici has been observed experimentally
in Ba126 and\OslBG.

The VMIA model has been extended in this thesis to
allow the calculation of the lower members of the y band.
A projectien technique has been used to ensure that the states
“in the\y band are orthogonal to states in the ground state
band. . The y bandhead gives information on the "Y:itiffness"
of the nucleus. This is of considerable importance because
in our model, backbending is related to y deformation. {E has
been shown that the experimental é;itical "backbending" gﬁgular
momentum is.higher for the more "y-stiff" nuclei.

There are several ambiguities connected with the
VMIA model arising f£0m the fact that it is net fully guantum-
mechanicalX. In part;cular there is the gquestion of the nature .
of the states in the y band for J > J‘. This difficulty af’rises
from the fact’'that for J > J , the. members of the Yrast‘band

are as axlally aﬂymmetrlc as the lower vy band members A second

possible objectlon to the VMIA model is that the model does ngt
dlsplay in an.unambigucus fashion the rqle of band cr0551ng.
A third objection is that the model inhipits the effect of

L)

the mixing of states and hence the backbendlng occurs

suddenly.
- " In order to inveezzgate these deficiencies, the conse-
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quences of the fully quantum-mechanical Bohr-Mottelson coliective
model (Boh 52, BM 53) were examined since this model allows .
for the possibility of non-axial deformation and band crossing
as well as oﬁher rotaﬁion-vibration effects. In order to
investigase the backbending phenomenon, it is necessary to be
able to solye tE Bohr Hamiltonidn for spins as.hféh as J % 20.
This poses a technijcal problem of cons é,ﬁble magnitude. A

new method of solution has been developed which is valid for

.
arbitrary potential surfaces and arbitrary inertial functions.
The method involves convegting'theSChroedinger equation into ag
system of coupled differential equations. Using fin{ﬁg_difference
techniques thé system is transformed into a matrix éigenvalue
.equéfion.' Because the dimensionality of the matri¥ to be diago-
nalized can be as large as 1899x1899, it has been found
?xpédient to use the Lanczos algorithm to pgrform the diagonali-
zation. . ® -

Th}é method of solving the Bohr Hamiltonian has been
tested forwthe cases of a harmonic oscillator and a ‘well deformed
prclate rotor and has beeﬁ found to be suffiqiently accurate.
Suitable collective potential surfaces have been determined
which give an approximate fit to the data for the nuclei

164 162 182
r , Er

E E and Os . In each of the three cases, the critical

/
angular momentum for backbending agrees with experiment. In
\ . \

addition to the (backbending) ground state band, the data fitted

included the y band and in the case of Er164, the g-band. -~
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In Er164 and Er162, a two minima collective potential

has been used: one minimum on lhefpﬁQL?te axis and one minimum
in the asymmetric region. It has been found that at the cri-
ticél angular moméntum, the Yr;st States become more asymmetric.
Essentiallf whét happens is that the y band crosses the ground
S€Zte band and thus becomes the."Yrast band".. Because the odd
J members of the y band are displéced upward in energy with

respect to the even J members, the.odd J memhers are not ex-—

pected to be readily observed experimemtally.
182

b

A~§§o minima potential also has been used for Os
However in

his case one minimum~is on the prolate axis and

the second minimum is on the oblateNaxis. Again a sudden shape
change is .calculated for a critical angular mo%entum. As a
separate check on the model, B(E2)'s have been calculated

using the collective wavefunctions obtained from solving the

Bohr Hamiltonian. Since the lifetime data have large_experi-

mental. uncertainty for high spin states, no direct compar\son
has bgen made to the data. The calculated B(E2)'s agree with
the rigid rotor estima£e to within a factor of two and conse——
quent are in qualitative agreement with experiment.

d y‘comparing’{%e variable moment of inertia model with
the Bohr collective model, it has been possible to ihvest%gate
the potential V appearing in thé variable moment of inergaa‘f’
model. It has been found that this V cofresponds to the sum-
of vibrational and potential energies rather than to just

-the ‘potential  enerqgy.

“ } L -
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Preliminary results have been presented for the calcu-

lation of the spectra of odd particle nuclea within the framework

of the Bohr collective model. It has been suggested that some

151 ’

states of Gd can be explained as arising from a wavefunction’

of the 82 representation of the D2 group. This 1is guite sig-/

nifibant since normally orily the A representdtion is considered
\ .
for solutions of the Bohr collective mgdel. However, more N

.elaborate calculations will have to be performed before the

L
role of the B representations is”?understood in detail..

~
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APPENDIX A

. D. :GROUP

. .. 2

SRR -
.- . 2 2 2 .

T@@ set of transformation operators {E,cl,cz,c3} form

-

,TL-L~/~”i;@hgrQEp under coméosition. The symbol ci iS'fhe ogrator qf
. ' rotation_ by 1 radians abaut the v-axis where v = 1,2,3. ”ﬂ'r/ﬂ
— The symbol-E stands for.the:identitf operator. This group is
called the D, gfosgi: ;tipas four oné—dim?nsional irreduciblé <::
‘representations: A, By, Bz,‘B3. The character table of the

N °

group is given' in Table A.l. )

(X

?abxe A.l: “Charaétex Table of,D2 Group -
D; " E Cf cg ' C%)
A 1 1 1 . 1
7 B, 1 -1 S 1
!§2 1° -1 1 ~1
B, 1 ;1 -1 [ -1

- : / L .
A ggﬁeral element af the above matrix will be represen-
¢+ R’ ¥ o ’ . o . .
ted by P, where R stands for a particular representatloﬁg

4

' - ps
',A” Bl, B2 or 83. The symbol v denotes the group elemént by
Epdicating the axis of rotation (v = 0 correspdnds to the \
idenfity element) . ' C

_ L . ' . \
, 157 . : 8
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THE QUANTUM-MECHANICAL ASYMMETRIC.ROTOR . .

% ' APPENDIX B

~The Hamiltonian for an aéymmetric rigid rotor can

be expressed as.

ook |

=ad?+p3f+cd? ° (B.1)

wpene's. , = 1,2,3 are the angulaf momentum operagsigNiﬁouQ; N\
the three pfinciple axes fixed 1in thenrétorﬁkbOQy—fixed axes) « ‘
Thg rotatignal pa éters are related to the principle moments
of inertia gy

‘ Cateead, vt =24, el

5 ‘(B.Z)

3
Because the state of a rigid rotor can be described

complete%x‘by'three‘Euler angles, 0, 6, and 0, , the operators
; :

2 3

Jv are written in terms of these Euler angles. A general

~

asymmetric rotor Yavefunction <91656?

in terms of the Wigner rotation matrix

JM> can be'expanded

. J )
functions PMK(61’82’65)'

3

. . s . ) /
— . The D;K functionsare eigenfunctions of the angular momentum

- ~

\) operatoprs: . ) ) ’/f’
T - ‘ ) A2 . w ~

3 n 09 o e . ol
J DMK&21,82,63);~ J(J+1)DMK(61,82, 3) ' (B./3-1)
3, 0 (6 e- e.r = X D] (6 .e "0 )‘ o ?ﬁ éiii)
CU3 TMKRP1EP27 937 Tee TMk L Y27030 o :

X

P J )

e Jz(Dﬁx‘exféz'Qg’ = M (B.3-iii)

.J . '
D . {6.,6,,6,)
MK Y1/ Y2793

« . .
- . * .
. 4 .
“ " . .
C? . N Al . .
= . . Y . S
. «. L . . .
«

58 T
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" Here 32 is the componeﬁt_of J along the z-axis in the space-

fixed co-ordinate system.

J , . o . . .
The DMK(81,82,33) satisfy the integral relation
%\“’.}% 8n2 .
]!D 61,82,83)| ine deld82d83 = 55F - (B.4)
u _ : _ ‘
Hence It is convenient to define normalized angular momentum
states by
o
. _ J+l AY
(6,,6,,05|IMK) = /g‘_’“iﬂz Mx(el,ez,e > (B.5)

. - -
s .

For each of the symmetfy operations ogﬂthe D2 group,
>

the operatorSJ elther change sign or remain invariant. In
agrasn.

addltlon the roﬁatlonal parameters a, b and c are invariant

I

under op&ratlons of the D

5 group. As a result the asymmetric
Yotor Hamlitonlan, R, remalns‘lnvariant under operatiégs of
. ) i - * N R ) -
the D roup. This allows the eigenstates%of R to be classi-
2 9 p : :

fied by the irreducible represéntations of tge D2 group. The,

Hamiltonian will have no matrix elements between states of

-

different representations.

The most general eigenstate of R {with total angular « |

momentum J and z-component® M) can be. written as

.I J 'l /
b..> = L 4, |IMK) .
IMT Tl K

-~

~

For conc1seness the Euler angle notation has béen omitted.

A -

An elgenstate of representatlon R is obtained by actlng on
\‘

_the é}ate [w > with the prOJectlon operator

4
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’ !Q‘\
! " ~ 3 *
; | ' 6,z t pRc?. (B.7)
R ) v=0 Y .
(See ApﬁendiX'A for notation.) For the casgtof the A repre-
+ v
sentation this yields the state
id
: )
.- J ' ‘ ,
lwA >= " d_ (1 +< 2 C 2, C 2)IJMK). '(B/é)
JM K 1 7 2 3 :
| a
Using the Davydov -(Dav 66) convention for the Dik
matrices, D2 operations on the function D;K give . \$ . <:
2 J _ 4, 5 \J . J .
2 .3 _ , 1 J-K .J N
C,° Dy = (-1) Dy-k (B.9-1ii)""\
- 2 . J _ ., K _J .
C3 Dyk —\( }) Dk . (B.9-1iii)

i /

[ Assuming that J *s integral and combining equations (B.5)
. . T . . N . , . )
(B.8) and (B.9), .the rotor state is

-

J
J : (dp+ (=107 )

. 3 » ) ‘J
M g S []IMK) +(=1)9{aM-K) ). (B.10)
K

gu> = i (1+(-1)7)

K=0 0

This equation indicates that K must be even for the A represen-

tation. if K=0, J must be even. Hence J=1 is forbidden. If

. . ) p
the wavefunction is ‘symmetric about the ziaxré, then K=0 and ‘Jﬁ

<«

hence J is even.

Eguation (B.10) can be written

A i 3.
-_— ' >
IwJM? K=g(2) ?JK'¢MK (B.11)

where



/ ' ' . 1sl
. 1 I :
|4>J- > = —————— [|JgMK)+(-1)" |IM-K) )] _J - (B.12)
SN X § E N I -
and’/ o
\‘ . ajg = 22 (a, + (-1)7a-x) . (B.13)
: s VIR :

The prime denotes summation over even K only. The lower limit
of the sum is 0 or 2 if J is even or odd respectively. It |
turns out tha£ the A representation is the only rép;esentégion
which allows J=0 for positive parity states. As a result, in

" this hodel,the ground state of an even-even nucleus must be

S~

in.the A representation.

éffﬁ\ The rotor energies and coefficients a are determined

JK
by diagonalizirig the rotor Hamiltonian R in thé basis formed
from states defined by equation (B.12). Since J and‘M e good
quantum'huﬁbers, only.the’x guantum numbgr is mixed in the-
matri{ diagonalization. For a given ahgulgr momentum J, the
tdifferent maénetic substate§ {given by M) are all degenerage.‘
Hepée the quantum number M can be ignored: For angﬂIar.

momentuﬁ J, the dimensionality of the matrix ié_J/2+l if

J-is even and (J-1)/2 if J.is odd.

\

.

’ 4 . ~
!

.
.
. , -
. .
. . ’
. * -
& . ) *
. . :
. . N ~
) P
* H
’ a N -
N
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APPENDIX C

SYMMETRfES OF THE BOHR COLLECTIVE HAMILTONIAN

Most discussions of the symmetry of the Bopf Hamil-
tonian (eg, KB 67) have followed algné the.llne originally
given by Bohr (Boh 52). IA this ﬁethod, it is obﬁerved'thgt
»there are 24 different ways of attaching a right-handed set
of axes EP agsphergidal nucleus and hence 24 different ways
of defining B, y and thekthree Euler anélés. Each of the
24 configufations)of the principle axes can be generated
bnyepeated application of the three symmetry operators

"

R R. and R3. 'R, is a rotation by m about the z-axis.

102 1
R2 and R3 will be defined later in this appendix. It is tHZn

asserted that the wavefunctiom is invariant under each of

these symﬁetry operations;'i.e.

R. v =+ i 1,2,3. -{C.1) -
This method is restrictive in that Fhe B representadions of

\ :
-/

the'D2 group are ruled out a priori.

»

is more geﬁéral. Attention is focussed on the symmetr
; . .

"
~

oberations of the Hamiltonian,'.HB (see equation.(j.r4$).

eigenstates of ﬁ are then Classifiedﬁés irreducible re--

B

. A -
presentations .of the appropriate sylmmetry group. There an
+ } R - *

several symmetry operations of Hy. ' Three of these are the .

'same as the three symmetry operations of the asymmetric
. / . .

) 162 ‘.

A
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rotor. Dénoted by clz, cz-2 and 932 the correspqonding symmetry

-

operators rotate the body-fixed co-ordinate system about each

of the principle ax€s of the)spheroidal nucleus..

2

The effect of the ¢perator év on the angular méhen—,

//r,tum operators &S already. Peen descrlbed in Append1x‘® To v
" see the effect of cv2 on the shape co- ordlnates g and v, it
is necessary .to egamine equatlon (3.1) which defines 8 and vy.

From this equation it can be seen that the three-semi-axes of

the spheroid are given by

. R =‘RD(1 + /‘%F B COSQ? Y + gl)) (C.2-1)

. 1 3
1) ’
. v _ 5 qu _
Ry = Boﬂl_+_v 17 B cos({ o5 - (C.2-ii)
- 5 ' _
33 = Rofl + /<4 B co yv (C.2=1ii1i)

It can_be seen that rotation by T about each-of the three axes
does not affect elther.B or y. . Hence T .b,'v and the three

~moments of 1nert1a./ (8 Y) (411 of which depend on B and Y

~

. only) are unaffected by this transformatlon Therefore, Hy is

1nvar1ant under the transformatlons glven by cv?. Since these
L}

-~ three operators, alqnq wlth the 1dent1ty operator, form the bé

group, the methods of Appendlx B can be employed. For the
<

even-even casgyilt appears that the A representatlon of the
Vo -

D2 group is the only repregentatlon ‘'0of physical interest gr
b . : ; . ]

thg{low.Lying states because of the nature of the .intrinsic .

state of the nucieus (see DV,72). However, in an odd particle
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l64
system, the B‘representations may play a role.

Another symmetry operator of H_ is‘R., the rotation

B 2
-~ ~ !\ ~ :
byyn/2;about the 3-axis. Under Rz, Ji - J2, J2 -> Jl'
J3 - J3. By: examining equation (C.2), it can be seen.tha

~

y + -y. The transformation y + -y affects the moments of

inertia‘uk(ﬁ,y) in the following way:

'Jl(B,Y) = 4B8‘2sin‘2.-‘(.y - %—Ti) -+ 4Bstin2 (Y.+'%-"l.) =
Sy 8,y = aBs®sid?(y - 30 o 4Bé_2sin2(y + 2Ly 2
vé(B'Y) =.AB825in%Y'*.4B sin Y </ (B,v)
S 3 32 . . 0
Hence under th Trop = I mJ-T§—?§ {%\invaFiang. Moreover

v=1

the operator y - -y does not alter T In order that the.

z
E vib’®
potentlal energy operator, V does not destroy the symmetﬁ?

it is necessary that‘V(B,y) = V(B,=v). slnce each of Qrot’

vib

4

classify the eigenfunctions of Hy as havihg either even or od

parlty under. R Both possibilities imply K is even (KB 67).

T. .. and V is invariant under Rz,‘so is ﬁB' It is possible to§/

This is compatlble w1th the A and Bl-representaﬂéons but not

with the .B and By representatlons. //

2
Another symmetry operator of HB is the operator R3~
whlch is a rotation of n/2 about the 3-axis followed by a

rotatlon of n/2 about the l axis. This corregponds to a [

cyclioal'permutation)of.the axes. Under this‘transformation,

J

N

1 3¢ _J2 > Jl' &3 f J2 and y » vy +-2w/3; Under R3, HB

is invariJﬁE\siojided the collective potential has the property

+~ J

v
P

»
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~

VIB,Y) = V(B,y + 2n/3).

The éymmetry'operators R2 and R3 ‘have been included

for completeness, The wavefuncgion will not be chssifiéd*

by .its properties under the Rz-or"R3 symmetry operators.

" Only ir;edugﬁble-representations of the D, group will be

o

employed.



APPENDIX D

BRIEF DESCRIPTION OF SPLINE FUNCTIONS

In this appendix, spline functiéns (Rei 67) will be
dgéined. A spline funétionlf(x) is used to ints;polaﬁe or
_\\igooth a function y({x) which is known only at discrete point}"
X4 i=20,1,2,...n. We define‘yi.= y(xi). The interval ongwhich

tpe spline is to be defined is divided up inﬁo several (not
necesgari}y equal) sub-intervals. The éndpéin£s of the sub-
intervals are calléd the knots of the gpline. Within each sub-
interval,‘the spline is defined to be eqﬁél to a pdiynomial.
However, infgeneral,.the pquﬁomiél is different for each sub-
ﬂ"interval.. Each of the polynomia%; must have the same degree.

Another restriction on.the spline is that f ¢ C2. In particular

;/;Epgs means that f(x), £'{(x) and £f"(x) are contihuoué at each
of the knots. Althoﬁgh.the_pOIQnomials of the spline_can have

) any degree greater than ;wb,.the mosp common degree is threef

In this. thesis, only cubic splines_héve.been‘used. '
Often the value of the finction at the discrete points
is not-known with infinite piecisioﬁ. In this'case splines cén

be ugeé to "smooth" the fpnctionﬁ The condition that the

spline f be a éood approximation "to the given fﬁnc;ion y 1Is

’ 2
n f(xi) Yl .

r ) T<1 (D2 1)
=0 973 C .

.where dyi gives the relative uncertainty of the valge'yi.- If”-
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A

the knots of the spline are taken to be the values Xs

Il ———
i=290,1,2,...n, then there is a large class of cubic splines
satisfying condition (D.l). The particular spline chosen is
the one which minimizes the quantity
X .
n 2 .
(£" {x)) "~ dx.
X
o
t
o .
AN



APPENDIX E
NUMERICAL IN’.I‘EGRAT:{ON AND DIFFERENTIATION WEIGH'I:S
- . . /
The 10 coefficients of the polynomial P3(x,y) dis-
cussed in-Chapter 3, Section III-2, are related to the func-

tion values at the grid points as follows: -

i) Point A (0,V3): !
3/3d + 3g + V3 3 + k = £y ’ (E.1-1)
1i) Point B {- i, i%):
1 3.0 3 3/3 1 /3 3
g a + ) b - g € + 5 d + 7 e 2 £f + 7 g
( ~
1 V3 _ N
-3 h+ 53+ k=fy (g.l ii)
ii1) point ¢ (&, X3):
. 2 2
@1 V3 . -3 3v3 1 V3 3 1
. §-a+—§b+-§-c+—§—d+a—e+-——zf+zg+.-§-h
b 3 i
I35 K, = fC (E.l—%ll)
'ib) ' Point D (-1,0):
- a+e-h+k = fD ) (E.1-1v)
»v)"”. 'Point E (0,0):
k = fE , : ' (E.1-wv)
vi) Point F (1,0):
a+e+h+k=fg ~ (E.1-vi)

;/f

168
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vii) Point G (- %, - Kg-): )
_l%ag—.g—g/gb-%c—%@d+%e‘+%@f+%g
’—%h—‘g]+k= fq | (E.l-vi1)
viii) - Point H (- %r - ﬁ%): L
- % a - f% b - % c - 3§§ d + % e + ﬁ% £ + % g
- % h - %% j + k = fH ) E.T—v111)
ix) Point I (%, - ﬁ%): . ', .
‘% a - —% b + % c - E%E a + % e - ﬁ% f fﬂ%_q + % h
- Z% j + k = gl ‘ (E.1-1x)
X) Point J (%, - Zg)
2% a - géz b + % c - égz d + % e - E%E'f + % g
'+ 2 h '.%% j o+ ko= £y (E.1-x)

The solution of the above system of equations gi&es the

polynomial coefficients in terms of the, grid point function
pi ' . ‘ //
Galues as fqllows:

: \\fﬁl-! + 3f, = 3E TES L (E.2-1)

b= 2f - 4fy + 26, - fo 4+ £, 4 £, - £, (E.2-ii)
- _ _ 1 _ 1 1 .1 s
c= -2f 4+ 2f, + 2f - 2f, - F £, - F £+ 5 £+ 5 £, (E.2-11d)
. - 4 . - ' 1 !
3/3 d = 5 f, * 2y - 26, PRy v 2f 4 £ - £ - 5 fu
1 1 "
\@ f1 ~ % fy . (E.2-iv)
- TN,



K

D E 'F

/3£ =- £+ £, ¢ gﬂ - £

6 g = 2f; + 2f€§— £, - 6fg

1 !

2 h = —fD + fF t 3 fC - fH
=- -2

3/5J £, + 3fy + 3, - 5 &

k = fg

. Using egquations (E.
‘can be written in terms'of

tion III-3) as:

170

(E.2~-V)
(E.2-v1i)
- fF + 2fH + 2fI (B.Z-v11)
FE. - = f T (B.2-viii)
13 g :
3 1 3 1 .
D - —2" fF + E fG - E fH + 'i‘ fJ (E.2/r-1x)
(E.2-X%)

2) the partial deqixatives of P;(x,y)

|
the funcgian g{x,y) |{see Chapter 3,
« \ )

1
PIe¥ L e g 42 g -2g-Ltg 42 (E.3-1)

o 9% A 9p 93¢ ¥ 39 7~ 2 9% 7 3 96* 93 . (3}
fo! - 5
P 5 (%, ¥) . gL g:'—ld - g 1 g. + £ gx= Ly -°l-g ) . (E.3-ii)

\\———3§:::JA 9 “A B cC. 2°D F G 9 73
N :
[ | '
oy (x,¥) o, Sy g o bg oLy (eo3-iid)
57 ls =9 &% 9% T %% T % 7 %% 2 9 7 3 95
1
/
3P (x,¥) . . '
37 . 2 2 P S -2 = -
— v ls =@ 9% *T29% 73% 3% 3 9 T3 % T g Je
‘ 1 1 T 3
I + _é_ gI ’—'g gJ) (E.}".‘.LV) )
3P, (Xpy) ¢ : :
3 _ : - 1 21 =
Sl = -9t 9c Iy T 295 Y9 " 39% 2% %% PV
. \ .
oP (x,y)\ -
3 _ 2 1 2 1 2 1 1 .
57 lc =59 3% 3% 3%, 3% 370 9 .
1 1 e / —vi
| tE9yt TE 95) . (E.3-vi) ,
aP. (x,Y) ' .
3 (% 3 N S | - + L E.3- 'LL,/
3% p="2%" ?gE 59 ~ 3 9% " 9" %1 3.gJ‘f . V}_
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O

9G

(E.3=-viii)

dy (E.3-1ix)

(E.3-x1i1i)

(E.3-x1i1)

1 .
.91 ~ 3 93 (BE.3-xivVv)

E.3-
(E.3-xv) .
&
1
5 9¢
(E.3-xvi)
(BE.3-xvii)
1
18 9
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APPENDIX F

BOUNDARY CONDITIONS AT y = n/3

There is a relationship among the different K-components
of the intrinsic wavefunction along the y = /3 boundary. The

condition is

V1+8§ A _(B,y=n/3) A {(B,y=7/3
K0 X = X2 K= 0,2,...0-2 . (F.1)
DKO(H/2,ﬂ/2,ﬂ) DK+20(H/2,N/2,H) .

This condition will be proved in this appendix.
The rotational kinetic energy has already been giVen

by equation (3.18):

T 2 1 2
~ _ /\2 _ ~ 1 ~ /\2 . .
cot = P ITH Agmp)IyT o+ 5 0 (I I ) (F.2)
1l ,1 1 1 1.1 1 . C s
where p = (Jr + jf)' Q=57 ., ¢ =35 - 7r>- (F.3-1i,211i,111)
. 4 1 2 - &3 1 1 T2 |

The Bohﬁ’moments of inextia are

2 . 2 2
S, (B,Y) = 4Bg"sin (v - 55 V) . (F.4)
It is observed that
\ .
S, (Biy = 1/3) =0 . (F.5)
As a result, the inertial parameters p and r. become infinite !

at the oblate (y = u/3) boundary. This property of tﬁé iner-
tial parameters leads to the condition given by‘equation (éil)
It is coﬁvenient to define
‘ s = /3 ~-vy. . (F.6)
Near the oblate boundary the moment of inertia~aéout the

2-axis is approximately

173 j
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4
. o apg? 2 s << 1. (F.7)

J

Thus, ian the same limit the angular momentum operator coefficients

in equation {(F.2) are proportional to s72,

»

b« 1/{4B82s2), (q-p)a-1/4B8%s%),r « -1/ (aBe2s?). (F.8-i,4ii,1ii)

Near vy = n/3, the following relation is approximately valid:
T n P /(488252) s << 1 (F.9)
rot ¥ “rot ’
where . . -
~ _ l A2 l /\2 _ l ;\2 /\2 ”
Trot =79 ~ 393 -5 Uy 90 (F.10)

The rotational energy has.been given in equation (3.33)

as
VTN LS I *
AIM! “rot 'Y AIM! K, K" ]l dBXdBy Q(BX'BY)AAJK‘(Bx'By)
J A J
<Ok 1o oMk B gk (B By - (F.11)
For s << 1, arot a l/s2 and Q(Sx’sj) ='2BS/2By(3Bi - 85) « s.

In order to avoid a 1l/s singularity in the integrand of equation
(F.1l1l) as s =~ O+, it is necessary that the coefficient of the
l/s term be zero. This implies that

* J . t J
sz' AXJK.(8,y—ﬂ/3)<¢MK|]Trot|¢MK>AAJK(B,Y—ﬁ/3) =0 . (F.12)

Using the analytic expressions for the rotational matrix
elements {equations (3.24), (3.25)) and simplifying the notation

somewhat, the following cond:ition is obtained: . . i
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J J-2
1 2,,2 _ 1 J
r' (J(J+1)-K")A, - Lt T A, A = 0 (F.13)
k=0(2) ¢ K 3 K=0(2) K K+2 "K TK+2
where N

J _ :

Tygen = ¥ 1+6, ) (THR+2)(J+K+1) (T-K) (J-K-1) . (F.14)

For vy = /3, - (8,y = 1/3) = “é(B,Y =1/3). As a -

~

result the operator Tr is axially symmetric about the 2-axis.

ot

If K2 represengts the quantum number specifying angular momentum

4
A

about the 2-axis, then ]@J > 1s an eigenfurnction of T

K2 rot”
Moreover sinceng =0 at vy = w/3, it is necessary that K2 = 0,
This can be stated mathematicgally as
~ J J , .
Trot|®K2=0> = E|¢K2=O> s ¢ 1 L% {F.15)

J

_n” 1s also an eigenfunc-
K2-0

. ~ X . . ~
Since T . is proportional to Trot’|¢

tion of %‘

rot’ =

~ J J

+ ] = ' > <« <

Tioel®% =0> = E'l¢x o s ~< 1 . (F.16)

2 2
Hence
. E = E'/(48%s?) . (F.17)

For the. energy E to be finite, it is necessary that E' = 0. As

a result equation (g.15) becomes

~t J
‘ Trot|¢K2=0> =0 ; ;,(3'18)
J - - J '
K =0> can be expressed! in terms ST the usual
2

basis in which the 3—axis 1is the quantization axis. Let U be

The state |¢

the rotation operator which rotates a state by Euler angles
{w/2,n/2,m). (This is equivalent to the variable change X -~ Z,

Y >~ X, Z + Y¥Y). Then equation (F.18) becomes
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T o U]¢K 0> = 0 (F.19)
d JA\' . —
o <¢K|1r0 U|¢K o = 0- (F.20)
For definiteness we assume J > 2 and J is even.. For states |,

appropriate to the 2 representation of the D, group, the relevant

values for K are K 0,2,...3. There are three cases for equa-
tion '(F.20). g
Case (i) K=0: Inserting a complete set of states between the

operators in equation (F.20) for this case we obtain

~~
' - J ot J
<¢K=0lTrotl¢K=0><¢x=olU|®K=o>
< J J 4 J o= D .
+ ¢K=OlTroti?K=2><®K=2IUI®K=0’ =0 (Fr.21).

where only K=0 and K=2 states give non-vanishing matrix elements.

Using the A represéntation state

-

le2s = —E2——— (Jak> + (-1)7|g-k>)

K /571+6K05

N .
fxe

(already given in equation (B.12)) the matrix elements of U can
[

be written

-

1

A A -
<oy uley LIK[UJIK ) +{IK|U|a-K* ) 1/ TTFS, T (176, )

J n w .
[(Dyk (5030 “)+DK K.(2 2,ﬂ)]//(l+dK0)(l+6K. )

\\ 0
3
% w{(iiiifgq)(1+6x.o) o (F.22)

using the ggct that J,K and K' are all even.: Equatibn (F.21)

becomes
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\
% JLI+1)DY, - % Ty, vZ D, = 0 (F.23) //////

00 20

ng Dgo

-“:——3——- = J(J+l) . (F.24)
V2 Dyo ) .

Henceforth explicit reference to the Euler angles (n/2,n2,7)

in the DiK' functions is suppresséd.
Case (ii) K = J: For this case eqguation (f.20) becomes
J ot J . J N |
Cag | Trop | ¥kay” Pkag 10190
J ~t J R N I
t<OpeglTror | 9kago2” < Pkeg-2 V%0 = O (F.25) -
1 = J 1 . J J .
79 Y2 D30 - § Ty.05 Y2 D50 = 0 (F.26)
J J J 2
Ti-2g Pgo _ Ty-ag! (F. 27)
DJ 2J : '
J-20 .
If J > 4, there is a case (iii), 2 ~ K ¢ J=-2: )
\ N .
J o0 N SRS ORI Jao J . J Soad
R L L L LN P LR MUY L L M
PR RPe J RS AEROR | _
, T o 19k 27Ok U195 = O (F.28)
<
1 2 J )
7 [0+1)-K1/2 Dy = g Ty ¢ Y27 Dy_pg
1 Cab J _
= 8 Tkxa2 Ve Dring = O - (F.29)
) J J ‘- J J
TS - ) - T D
+ + - - .
. KK 2J K*f? - 209 (3+1) -k?] - Ksz K-20 o 30
N DKO DKO ¢1+6K2
Define a set of quaniLitjes Lg by
A Y * J J
' _ L+dkp Tek+2 Px+20
L, = — (F.31)
K 5 DJ
Y]



‘ £
Then from equation (F.24),
LO = J(J+1). (F.32)
Equation (F.27) implies
o nd 2 .
Lo, (TJ_2J) / (4J) . (F.33)

ju
o
<
&
+
[
!
=
!

2 52
s+l - k- 0, ). (F.34)

li

Consider the quantity X defined by

J

J-2 7 A 2
X s & (LA - KKt2 K+2, (F.35)
K=0 2/T
J 2 J 2
J-2 (T ) (T ) J-2
2 . K-2K 2 J-2J 2 . J
= L. .A + L (L, + —————)A + A - ) T A A )
ofo * L) kT T, S P S R
(F.36)

Substituting equations (F.32), (F.33) and (F.34) into

(2.36), X becomes

X = J(J+1)A2 + J;? [J(J+l)—x2]A2 + JA2 - J;? TJ A A
0 - K J - KK+2 TK'K+2
K=2 K=0
J 2 9 J-2 3
= I' [J(J+1)-K“}Al - ' T A_A . (F.37)
K=0 K K=0 KK+2 K K+2

By comparing equation (F.13) with equation (F.37) it can be seen
that X = 0. X has been defined in equation (F.35) as a sum Of

squares, each term in the sum must vanish i1dentically; 1e
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J

T A .
C VIp A, - —REE K2 20 k= 0)2,4,...0-2 (F.38)
2YL
K
This yields the desired boundary conditions for y = 71/3:
Y1+4 A A
J KO “K = K+2 K= 0,2,...J-2 . (F.39)
DKO(N/2,ﬂ/2,n) DK+20(ﬂ/2,n/2,n)

These boundary conditions have been derived using the simple
principle that the energy must be ?1nite. The rather complicated
symmetry arguments used ‘by Kumar and Baranger 1In their original
derivation of these boundary conditions are not required although

some elegance may be lost.
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