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ABSTRACT:

Dynamical critical phenomena in iron were studied by
the technique of inelastic neutron scattering.

Over the range of wave vector and temperature mea-
sured the spin-wave energy varied as the square of the wave
vector and as the reduced temperature raised to the power
0.36%:0,03. The spin-wave damping diverged as the critical
temperature is approached from beloﬁ according to a sgimple
poWer law with exponent -0.96+0.10. The wave vector dependence
of the damping was proportional to fhe fourth power of the
wave vector. These fesults are in good agreement with the
predictions of dynamic scaling and hydrodynamic theory. Anoma-
lous damping was observed at the largest wave vector measured,

0.26 A—l; this is tentatively ascribed to the effect of a

Fermi surface minimum at wave vector 0.25 A—l.
The spin waves became over-critically damped a few’
degrees below the critical temperature. At the critical tem-

perature the scattering was diffusive in character with no
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‘éﬁiAéhce“of remnant spin waves; the energy width varied as

a simple power of the wave vector with the exponent predicted

by dynamic scaling. Above the critical temperature the width

agreed with the general prediction of dynamic scaling and with

the detailed numerical calculations of Résibois and Piette.
Below the critical temperature there|was no evidence

in the scatteringhof longitudinal spin fluctuations. This is

in accord with other observations on isotropic ferromagnets;

' such a result is not physically understood at the present time.
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CHAPTER I

INTRODUCTION

A. Introduction to Critical Phase Transitions

In recent years much interest has been shown in the study
of critical phase transitions. Experiments have shown that ferro-
naynets, antifergbmagnets, fluids, binary liquids, binary alloys,
superconductors, ferroelectrics and superfluids all behave,

‘near some transition temperature qualitatively and often quanti-
tatively, in anélogous ways. Because of the similarity in the na-
ture of the phase transitions of such diverse systems it is specu-
lated that the physical principles governing~phase transitions

are largely system independent.

This thesis reports on the study of one of these phase
tfansitions, the ferromagnetic transition in iron. In view of this,
the language and notation suitable for discussing magnetic proper-
ties will be adopted. It should not be forgotten however that this
is just one special case of a moré general problem. In fact one
ultimate aim of research into critical phenomena is to give
a theory which is set in sufficiently general terms as to include
all the many types of systems that show critical phase transitions.

Some 6f the known properties of ferromagnets are considered
first. A useful and powerful way of investigating magnetic sys-

tems is to apply a magnetic field H as an external probe and to
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observe the resultant magnetization M, defined as the magnetic
moment per unit vclume, which is the response of the system to
the pfobe. This is parametrized by the magnetic susceptibility
X that is a response function defined by

= aM -
X =3  ° | (r-1)

The response is said to be linear when x is independent of H.

| A typical sketch of the magnetization M plotted against
the temperature T for zefo magnetic field H is given in Figure
I-la., Figure I-la shows that above a certain temperature the mag-
netization is zero, while below that temperature there is a non-
zero magnetization which increases monotonically as the temperature
decreases. The temperature in question is known as the critical
temperature Tc. The existence of a quantity which is non-zero
below the critical temperature and zero'above it is a common feature
associated with all the different types of critical phase transi-
tions. The quantity is known generally as the order parameter
and is a measure of the amount and kind of ordering of the system;
for a ferromagnetic critical transition the magnetization M is
the order parameter. Below the critical temperature the system is
said to be in the ordered or the ferromagnetic phase while above
this temperature the system is in the disordered or paramagnetic
phase. 4 '

Figure I-lb gives a typical sketch of the magnetization M

plotted against themagnetic field H for different temperatures.

T+ shows that when the temperature is much greater than the critical
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. 4
temperature the isotherm of the'magnetization‘M plotted against

. the magnetic field H approaches a straight line. Thus the
susceptibility X is independent of the magnetic field which
is the same behaviour as for the non~interacting magnetic
system. This is expected since in this temperature range the
individual magnetic moments or spins are randomly qriented as
in a paramagnet.

As the temperature approaches the critical temperature
from above,the isotherm ceases to be a straight line. Close to
zero magnetic field its slope increases, and the susceptibili-
ty increases. 1In fact the slope becomes infinite at a tempera-
ture equal to the critical éemperature in zero magnetic field
so that the susceptibility becomes infinite. The increase in the
susceptibility is accompanied by the appearance of small regions
of correlated spins which increase in size as the critical
temperature is approached. The linear size of these regions is
known as the correlation range and is denoted by £. The regions
of correlated spin result in fluctuations in space of the
magnetization throughout the system. It is said that the
system possesses short range order. However the magnetization
of the system as a whole at and above the critical temperature
is zero in zero magnetic field, i.e. there is no long range
order. When the temperature is equal to the critical temperature,
and the magnetic field is equal to zero, the correlation range
¢ becomes infinite.

As the temperature is reduced from the critical tempera-

ture the large fluctuations in the magnetization ‘@ecrease, and-the -



correlation range £ also decreases. Now there is an excess Of
spins pointing in one direction compared with the other resulting
in a net magnetization of the system even in zero magnetic field
(Figures I-la and I-1b). When the temperature is much sméller
than the critical temperature the alignment is almost complete
and when the temperature is equal to zero all the spins are poin-
ting in the same direction.

Thus the ferromagnetic phase transition can be characterized
by the magnetization which goes to zero and by the susceptibility
and correlation length which diverge at the critical temperature
for zero magnetic field. Another physical quantity that charac-
terizes critical phase transitions is the specific heat which
also diverges at the critical temperature in zero magnetic field.

The first phenomenological theories of phase transitions
were by Van der Waals (1873) for the liquid-gas system and by
Weiss (1907) for a ferromagnet. Theée theories = are )
equivalent and were generalized by Landau (Landau and Lifshitz,
19695. They are now called mean-field theories. In a ferromagnet
it is assumed that the mean field acting on each magnetic'moment
due to its neighbours is proportional to the magnetization of the
system as a whole. However the quantitative predictions of
the mean-field theory do not agree with the experimental observa-
tions on magnetic systems.

More realistic descriptioné of interacting magnetic sys-

tems usually start from the Ising or the Heisenberg models. In



Athéuléiﬁg ﬁodel the magnetic moments or spins denoted by Si‘ are
situated on each of the lattice sites denoted by 2. The direc-
tion that each moment can point is only up or down along the z
axis. If an external magnetic field H is applied along the z

direction then the Hamiltonian HISING of the Ising model is given

by

‘ - Zz_.2 _ Z
Hrstng = in I SeSg4n ~ IHpH i Sy (1-2)

where Jn.is the exchange constant between the spins situated on
the lattice sites denoted by %2 and %+n, g is the Landé splitting
factor and uB is the Bohr magneton.

The Heisenbeﬁg model regards the magnetic moments as
being related to three component spin operators Ez situated on
each of the lattice sites denoted by %. It is assumed that the
energy is proportional to the scalar product of the operators.
The Hamiltonian HHEIS of the Heisenberg model is given by

: z
-z J_S,'S - gu H I S (1-3)
on n —% —4+n B 3 2

Hygrs =

-where Jn is the exchange constant between the spins situated on
the lattice sites denoted by & and 2+n, g'is the Land€ splitting
factor, ug is the Bohr magneton and H is the magnetic field
the direction of which defines the z axis.

Because of the relative simplicity of these Hamiltonians
compared to those belonging to other systems much effort has
been devoted to finding their solution. It is hoped that the

Ising and the Heisenberg models can be used not only to attempt to
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understand their magnetic phase transitions but also those of other

systems as well. For the majority of magnetic systems the Heisenberg

Hamiltonian is most appropriate. The theoretical predictions
from the Heisenberg model will bé compared with the experiments
presented in this thesis.

Fluid systems exhibit similar behaviour to the magnetic
systems and;can be described in terms of the lattice gas model
which is analogous to £he Ising model. This model considers that
the volume V of the fluid is partitioned into fixed cells of
volume v that is the size of the molecules and an occﬁpied cell
corresponds to the spin up case in the Ising model. In this case
one would find large fluctuations in the density very close to
the critical température and when the correlation length becomes
comparable to the wavelength of light, light is scattered strongly.
This phenomenon is called critical opalescence. Large fluctuations
in the magnetization of a ferromagnet near the critical temperature
scatter thermal neutrons strongly in analogy with critical
opalescence in a fluid system.

Since the Ising model gives a critical transition and can

be used to describe a number of real systems it was a great mile-
stone in the theory when the exact solution of two-dimensional
Ising model in zero magnetic field was obtained by Onsager (1944).
The solution did in fact show the existence of a critical bhase
transition at a non-zero temperature. This was significant since

the exact solution of the one-dimensional Ising model does not



yield a phase transition at‘a non-zero temperature (Ising, 1925).
Another important result of the solution of the two-dimensional
Ising model was that the magnetlzatlon, susceptibility and corre-
jation length varied as ch-Tl/Tc to the power 1/8, -7/4 and-l
respectively. .

A number of experiments on widely differing critical phase
transitions’showed that many physical properties varied as
|TC—T[/Tc raised to some power. These power laws were obeyed
over several decades of variation of (Tc—T) and strongly sugges-—
ted that the correct description of critical phenomena is in such
terms. Since Onsager's solution also gives results of the power-
law type it has become commen to describe critical processes in
this way with the exponents of the power laws known as critical
exponents.

| The critical exponent of the order parameter is ealled
g and it is usual to write the variation of the order parameter
near the critical temperature as eB, where € is the reduced tem-

perature defined by
| -7l

€ = Tc . (1-4)

Although the physical quantities jnvolved in the phase transitions
obey simple power laws in the vicinity of the critical temperature
they also contain other terms which are significant if the tem-
perature is sufficiently far away from the critical temperature.
However the range of validity of the power laws is usually large

(several decades of the reduced temperature). The width of this
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range is believed to be linked to thé range of interactions in
the critical system. For systems with short range interactions
(e.g.magnetic systems) the critical properties dominate when the
reduced temperature € is less than 0.1 wh;le for systems with
long rarnge interactions (e.g. superconductors, ferroelectrics)
the range of validity of the power laws is much more restricted.

The critical exponent B could be defined more accurately

as

B = lim
€+0

tn € " , (I-5)

Other important critical exponents aré for the suscepti-
bility X which varies as the reduced temperature to the power
-y and -Y' for temperatures above and below the critical temperature
respectively and for the correlation range & which varies
as the reduced temperature to the power -~v and -v' for temperatures
ayove and below the critical temperature respectively.

Unlike for the case of the one and two-dimensional Ising
models no exact solutions exist for the three-dimensional Ising
or Heisenberg models. However using series-expansion techniques
a number of critical exponents have been calculated that are quite
close to the experimental values. The critical exponent B waé
calculated to be 0.315 for the Ising model (Fisher, 1967) and
Als-Nielsen and Dietrich (1967) found 0.305+0.005 for the order-
disorder transition in the binary alloy B-brass. o

For the Heisenberg ferromagnet Stephenson and Wood (1970)
calculated that B = 0,38 and Ferer, Moore and Wortis (1971) cal-

culated that B = 0.373%#0.014. Experimental values are 0.367+0.008
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.féanﬁOAféls-Nielsen,'Dietrich,Kunmann and Passell, 1971),
0.38§10.005 for Fe from magnetization measurements (Arajs, Tehan,
Anderson and Stelmach, 1970), 0.342+0,004 for Fe using MOssbauer
effect (Preston, 1968) and 0.386 for Ni (Noakes and Arrott, 1968).

A further development in the understanding of critical
phenomena was the Scaling hypothesis suggesting that there exist
relations among éhe critical'exponents (Widom, 1965; Domb and Hunter,
1965; Kadanoff, 1966; Kadanoff et al. 1967; Halperin and Hohenberg,
1969). The Scalingvhypothesis is supported by considerable evi-
dence as well as by the exact prediction of the two-dimensional
Ising model and the approximate series;expansion calculations for
the three-dimensional Ising and Heisenberg models.

Recently a new theoretical approach was taken by Wilson and
Fisher (1972) who calculated critical exponents for the Ising and
Heisenberg models using renormalization group techniques for di-
mepsion d=4 - €w with €y small. For dimensions equal to or grea-
ter than four the critical exponents were found to be mean-field
exponents independent of €’ However below d=4 they were found
to vary continuously with eg. Wilson (1972) calculated the criti-
cal exponent Yy exactly to order e, to be 1.244 and 1.347 for the
three—dimensional Ising and Heisenberg models respectively. These
are close but not exactiy equal to 1.250 for the Ising model
(Moore,Jasnow and Wortis, 1969), and 1.375:0.010 (Bowers and Woolf,
1969) and 1.405%0,.020 (Ferer, Moorxe and Wortis) for the Heisenberg
model, obtained by series—-expansion methods.

An attractive feature of the theory of Wilson and Fisher
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is that it applies for a wide range of systems that exhibit
critical phase transitions. The only adjustable parameters are

the lattice dimensionality and the spin dimensionality. The latter
determines to which specific system the predictions apply.

The Ising model, superfluid 4He and the Heisenberg model corres-
pond to spin dimensionality of one, two and three respectively.

The general natuée of this theory is what one is looking for in a
theory of critical phase transitions because of the experimentally
observed similarity between the phase transitions of a wide variety
of systems. In fact this is the only general theory going beyond
Landau's simple mean-field theory that is applicable to many dif-
ferent systemé.

The magnetic phase transition is not only reflected in the
rapid changes with temperature near the critical temperature of
stétic quantities like magnetization and susceptibility'but'alsO'
in'the rapid changes in the spin dynamics. Therefore a complete
understanding of phase transitions necessitates the study of both
the static and dynamic properties.

When studying the dynamics of a system one is interested in
the time-~dependent as well as the space-dependent properties,.that
is the motion of the constituents of the system and also their
position or orientation. Because of the additional variable time,
the study of dynamic properties of systems is more difficult than
that of the static properties. As a consequence much less is known

about the time~-dependent aspects of critical phenomena.
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However what is evident from both experiment and theoxy
is that the dynamié properties are not system independent. For
example the theoretical predictions of the spin dynamics of the
Ising and the Heisenberg models are qualitatively different. This
is in contrast to the static properties predicted by the two models
that are qualitatively the same and are only quantitatively different.
As was seen before, the only difference between the predictions
of the static magnetic properties by the two models was the dif-
ferent numerical values of the critical exponents. However with
regard to dynamic properties the Ising model unlike the Heisen-
berg model predicts neither the existence of spin waves nor spin
diffusion. -

In order to learn more about the dynamical'aspects of cri-
tical phenomena there has been a great deal of interest in this
field in the last few years. The experiments presented.in this
thesis were performed in order to study the behaviour of the spin
dynamics in the vicinity of the critical phase transition in the
isotropic ferromagnet jron. Although iron is a metal and its
magnetic 4 electrons take part in electrical conduction its known
magnetic properties can be adequately described by the Heisen-
berg model.

In a ferromagnetic material that can be described by the
Heisenberg model the motion of the magnetic moments, unliké their
orientation,is correlated at all temperatures. This is because
the motion of each magnetic moment is influenced by the orien-

tation of its neighbours with which it interacts.
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At low temperatures in the ordered phase the elementary
excitations of a Heisenberg ferromagnet are propagativelmodes
called spin waves whose energy depends on their momentum in reci-
procal space. At temperatures much less than the critical tem-
perature there are not many spin wave modes present and the
probability of scattering between spin waves is small so that they
have a long lifeéime and a well defined energy. As the temperature
approaches the critical temperature from below ,the number of spin
waves increases and the scattering between spin waves becomes
more important; lifetimes decrease and the energy ceases to be
well defined. That is spin waves will be damped and in addition
their energies will change. At very high temperatures compared
with the critical temperature in the disordered phase there are
no propagative modes present, only diffusive modes.

As yet there exist no detailed theories of the spin dynamics
in the vicinity of the critical temperature. The Heisenberg
model gives predictions of the dynamic properties at temperatures
very small or very large compared to the critical temperature.
The only predictions concerning the behaviour of the spin dynamics
near the critical temperature are given by dynamic scaling which
attempts to generalize the static scaling approach to the case
of dynamic critical phenomena. Also most of the experiments
measuring the dynamic properties of magnetic materials have been
performed at temperatures very small or very large compared to
the critical temperature. Therefore it is not yet completely
understood how the spin dynamics changes near the critical tempera-

ture; the subject will be discussed further from a theoretical
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‘éﬁd.expéfimental viewpoint in Chapters II and IV.

The dynamic behaviour of a system is reflected in its
energy spectrum which can be measured directly using the technique
of inelastic neutron scattering. The measurement is possible if
the energies involved are the same order as that of the neutron., .
The excitation.energies of a magnetic system due to the interaction
of the magnetic ﬁoments depends on the strength of the exchange
constant J given in equation (I- -3). As an approximate rule the'
excitation energies of magnetic systems increase with increasing
critical temperature. Reactors produce neutrons with energies
distributed about kBT, where the temperature T is approximately
375°K. Hence it is possible to use the method of inelastic neu-
tron scattering to measure dynamic critical phenomena in magnetic
materials whose critical temperature is approx1mate1y within aﬁ
order of magnitude of 375°K. Iron,of which the critical tempera-

ture is 1044°K (Noakes, Tornberg and Arrott, 1966), falls in this

range.

B. Organization of the Thesis

This thesis reports on experiments that measured the spin
dynamics in iron near the critical temperature using the technique
of neutron scattering.

Chapter TI discusses the theory needed to analyze the
experimental data and will include the neutron scattering.cross—
section, scaling hypothesis as well as the spin dynamics and wave-
vector-dependent susceptibility of Heisenberg ferromagnets near

the critical temperature. A historical survey of the measurements
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of the spin dynamics by neutron scattering, with special emphasis
on the experiments on iron, will also be given.

The description of the vacuum furnace, the exﬁerimental
techniques and the instrumental resolution will comprise chapter

III.

Chapter IV will present the results of the critical neutron
scattering éxperiments in iron. It is divided into two main
parts corresponding to temperatures less than and to temperatures
equal to or greater than the critical temperature. For temperatures
less than the critical temperature the observed behaviour of the
spin-wave energy, damping and the susceptibility will be discussed
in comparison with theoretical predictions and with other criti-
cal scattering experiments on ferromagnets. For temperatures
equal to or greater than the critical temperature there were no
spin-wave modes observed, only diffusive modes; the scatterlng
will be compared with ﬁhe theoretical predictions and with other

t

experiments.

In Chapter V the conclusions reached from the experimental

observations will be presented.



CHAPTER II

THEORY AND HISTORICAL SURVEY

A. Neutron Scattering Cross-section

Neutron scattering is a very useful technique in the study
of condensed ﬁatter because of the following basic properties:

a) the neutrons are neutral particles and can penetrate deeply
into solids in contrast with, for example, electrons,

b) neutrons are scattered by nuclei and by magnetic atoms; the
latter because neutrons have a magnetic moment,

c) the wavelength of thermal neutrons'is.of the samé oxrder of
magnitude as the distance between atoms, while their enexrgy -
is in the same range‘as that of elementary excitations in
solids, e.g. phonons and magnons. Thus, by measuring the
angular and energy distribution of scattered neutrons, one
can find information about the dynamics of materials.

The following discussion will include only the magnetic
scattering of neutrons, and it is assumed that the atoms arev
stationary on the sites of the crystal lattice.

The scattering cross-section of neutrons is calculated
using the first Born approximation with the incident and scattered
beam represented by plane waves. The use of this approximation
is justified because of the property a) above, which ensures

that the scattered neutron's wave function is small compared

16

e
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to the incident wave function.

The magnetic part of the interaction between the neutron

‘and the unpaired electrons in an atom is written as

- Iy ougo*Hy (1I-1)
L

where g is a vector whose components o% are the Pauli spin
matrices for the neutron. H; is the magnetic field of a single
electron, moving with velocity Vv, given by Dirac's theory of

i
the electron.

The unpaired electrons in an atom usually combine to give
non-zexro ofbital and spin angular momentuﬁ.  However, in the
following discussion of thé neutron scattering cross-section, it
is assumed that the orbital ‘angular momentum is quenched so that
it does not contribute to the scattering. This is a reasonable
assumption for the case of transition metals like iron.

Fox spin-only scattering by identical magnetic atoms of
spin S forming a Bravais lattice, the neutron scattering cross-=
section per unit solid angle @ and per unit outgoing neutron .
energy E is given by (Marshall and Lovesey, 1971)

%o 2 ! PP '
ToaE = (ﬁ—c-f) 7@ | I (6,5-0,0p)8%" (@) (11-2)
e .

where o, B = X,¥.2 and

S“B(Qrw>=>if Py zi‘ exp (iQ- (B_L-Bz.))<il8%|f><flsi||i>6(ﬁw+Ei-Ef) (11-3)

S% is the o component of the spin operator S on the lattice

site denoted by %. The first term in brackets in equation (II-2)

i TR R T
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has a numerical value of 0.292 b, and F(Q) is the atomic form
factor. Since it is assumed that the orbital angular momentum
is quenched, the Landé splitting factor g was taken to have its
spin only value of g = 2 when writing .equation (II-2).

#1Q and Hw which are the change in momentum and energy of

the scattered.neutron are defined by the momentum and enexgy

conservation laws,

Q=k-k'=1+g (I1-4a)

Ao = @2/2m (k2-k'?) (II-4b)

k and k' are the incident and scattered neutron wave vectors
respectively. I is a reciprocal lattice vector and q is a wave
vector that is restricted to the first Brillouin zone of the
target material. ﬁu is the o direction cosine of Q. li? and |£>
are the initial and final states of the target with correspon-=
ding energies E; and Eg. Pj is the probability that the target
spin system is in the initial state li>.

_ exp(—Ei/kBT) -
Pi = T exp(-E;/kgT) (11-3)
i

kB is Boltzmann'sconstant and T is the.absolute temperature.
Using equation (II-5), the expectation value of an operator A
is given by

<A> = i P; <i|ali> . ' (11-6)
i .

For an isotropic Heisenberg ferromagnet, whose Hamiltonian

was given in equation (1-3), not all the terms in the sum I of
af
equation (II-2) contribute to the cross-section. The ones that do
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ééﬁ‘bé foﬁnd from equation (II-3). Taking the z direction as
the direction of magnetization and substituting for s* and sY in
terms of spin creation and annihilation operators using the
relations

X

_ 1 .t - y _ 1 + o
S—-2-(S +S) andS—-é—i-(S S),

it is found that

s%%(g,0) = s*%(Q,w)6,

because if a = x or y, then for the matrix element <i|(s™+ s7)|f>
to be non-zero one must have £ = (i+l) or (i-1l), in which case
the matrix element

<ix1l|s®*|i> = 0,

Thus, S*2(Q,u) = s¥%(Q,uw) = s%*(g,w) = s%¥(Q,w) = 0.  (II-7)

Using similar arguments it can be shown that
s (Q,u) = -s¥*(Q,u) | (11-8)

so that the net contribution to the scattering from these terms

is zero. Therefore the only non-zero terms in the cross-section
are Szz(g,w), SXX(Q,w) and Syy(g,w). Furthermore in an isotro-
pic Heisenberg ferromagnet the directions x and y are equivalent
at all temperatures. Hence, utilizing the symmetry of the Heisen-
berg Hamiltonian fully, the cross-section given in equation

(ITI-2) can be written as

2 2 2 2 N R
Ty = (B |F@)) E1(1-82)5%2 (@, u)+ (1402) s¥* (Q,w) 1 (11-9)
m_cC

e
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In equation (II-3) the ¢ function can be written in inte-

gral representation

6(hw+Ei-Ef) = % [ dat exp(—it(ﬁm+Ei—Ef)/h)

so that equation (II-3) can be written as

s*®*(g,w) = % I exp(iQ: (Rg=Ry:)) J dt exp(~iwt)

2,'

w00

x I p,<i|sy exp (1HE/H) 8, exp (-iHt/1) | i> (II-10)
i

This was obtained by utilizing first the fact that
exp(itEf/H) is just a number so that it commutes with Sz. and
second the relation

exp (iHt/H) | i> =.exp(iEit/h)|i>
Using the definition of a time~dependent operatoxr
S%.(t) = exp(th/h)S%, exp (~i.Ht A1)

and equation (II-6), then equation (II-10) can be written as

[+

s** (@) =2 P exple: (Ry-Ry ) | at exp(-iut) <5} (0)Sh, ()7, (ZI-11)

o= 00

So that the neutron scattering cross-section (equation (II-9))
is directly proportional to the Fourier transform in time and

space of the time-dependent spin-spin correlation function

o o
<Sz(o) Sz,(t)>.
Neutron scattering is a suitable technique for studying
dynamic critical phenomena in magnetic systems because the rapid

change in the spin dynamics near T, is reflected in the time-
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"déééndeht'spin—spin correlation function.

Although equation (II-1ll) presents a very useful physical
picture, it is not always easy to calculate the time-dependent
spin-spin correlation function . To represent critical scattering
the Fourier transform in space of the spin-spin correlation

function is commonly used. The spatial Fourier transform s¥

q

o

of the spin operator S, is defined by

sg = i S%»exp(—igjga) - (II-12)
so that,summing over % and &',equation (II-11) becomes '
o
s**(Q,uw) = %J dt exp (-iwt) <sg<o) s‘j‘Q(tp. (II-13)
- == .

Equation (II-13) canlbe further transformed using linear
response theory (Kubo, 1957). Linear response theory considers
the neutron beam as a sinusoidally-varying magnetic field in
both space and time that perturbs the system. Using this theory
it is found that the neutron scattering cross-section can be
written in the form that will be used to interpret the experimen-
tal data presented in this thesis. This is (Marshall and Lovesey,

1971)

Kt W exp fw /kgT). .
k~ exp Hw/k T) -1

dzo
A0dE "

a2 2 2
(L2 |r(Q)| —
m_c (gug)

x 162X @F22 ) + ()X (@ Fy ). (1I714)

N is the number of spins in the system and the Bohr magneton

Mg is defined as eH/2 m.C . Fgu(w) is a spectral shape function

that depends on the energy #fw and the wave vector q that were
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defined by equations (II-4b) and (II-4a). It is an even function

of w and is normalized to unity.

®©
Fg“ (w)dw = 1 (II-15)

—co
qu(q), in equation (II-14),is a wave-vector-dependent suscepti-
bility and is fhe Fourier transform of the response function of
the spin system to a spatially varying magnetic field. The
Fourier transform of the magnetic field and the magnetization are
given by 1% (q) and M*(q) respectively and the susceptibility

x*%(q) is defined by the following relation
m%(q) = x**(a) B (@) (1I-16)

The form of the cross-section given by equation (1I-14) is
useful because, as will be shown later, Fga(w) and xaa(q) are
quantities which it is natural to calculate in theoretical treat-
ments that interpret the scattering in the vicinity of the criti-
cal temperature.

At small wavé vectors g, near the critical temperature

of iron, the neutron energy change Hw is much smaller than kBT

. W exp(hw/kBT) , kBT

" * exp Mu/KgT) -1 VR

hence integrating the cross-section (equation (II-14)) and

using equation (II-15), one finds that

[

dw

d2o k. T

« B ¢ y*® -

- 00
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Thus the wave~vector-dependent susceptibility xaa(q) can
be found experimentally by integrating the area under the energy
spectrum of scattered neutrons. If in addition, the.energy
of the neutron E is much greater than the energy change on

scattering #iw so that the static approximation conditions

k'(w) = k (rI-18a)
and .
qlw) = gqw=0) : (II-18b)

are satisfied, then equation (II-17) can be written as

do kBT

« _B ao
a‘ﬁ X ZX(

q) . (II-19)

Now integrating over w in equation (II-13) one obtains

do . S O o ‘
—-— L <8 S > I-20
an ” ql0)8_q(0) | (II-20)

so that xaa(q) is directly proportional to the Fourier transform
in space of the time-independent spin-spin correlation function.
The majority of the previous experiments on iron measured

%% near the critical temperature, however, the experiments re-

dzo

anae’

ported in this thesis measured

B. Scaling Hypothesis

The important assumption of the scaling hypothesis is that
thermodynamic and correlation functions describing the phése
transitions are homogeneous functions (Widom, 1965) . The dis-
cussion is started with a brief review of the properties of

homogeneous functions- (Stanley, 1971).
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A function f£(x) is by definition homogeneous if for all

values of the parameter A

£(Ax) = g(M)E(x). - (11-21)
A homogeneous function f{x) has the property that, if its
value at a point x = x as well as the functional form of g(A)
is known, the function is known everywhere. This follows because

every value of x can be written in the form Axo, and
f(Axo) = g(k)f(xo)

so that the value of f(x) at any point is related to f(xo) by a
simple change of scale that is in general not linear.
Furthermore the function g(\) must be of the form
g(a) = AP, (II-22)

A particular feature of homogeneous functions that will
be useful in later discussion is now described considering a

homogeneous function of two variables

O, ay) = APE,Y) o (11-23)
Since equation (II-23) is valid for all values of the para-
meter A (equation (II-21)), it holds for the particular choice
A= 1/Y, |
| L. Elx/y,1) = y-pf(x,y) . (11-24)
£ (x/y,1) is formally a function of two variables with the

second variable fixed at the value unity. Hence it can be de-~

noted by a function of a single variable, defining the function

F(x/y) = £ (X/n?‘,l) .



25

Hence

£(x,y) = yPF(x/y). (II-25)

Tn this thesis the scaling hypothesis as formulated by
Halperin and Hohenberg (1969) will be outlined because it is
suitable for interpreting critical neutron scatﬁering experiments
on magnetic systems.

The natural space to discuss the neutron scattering cross-
section and the spin dynamics of magnetic systems is momentum-
energy space. .The formulation of the scaling hypothesis will
also be given in momentum—-energy space. The coordinates in momen-
£um—energy space are the wave vector g and frequency w which
are the Fourier transforms of the coordinates r and t in position-
time space.

A variable that is a function of the cootdinates.of one
space can also be changed into a function of the coordinates of
the other space by Fourier transformation. The Fourier trans-
form in space for the spin operatof Sy is given by equation
(II-12). A property of Fourier transformation is that small wave
vectors g in momentum or reciprocal space correspond to large
distances in position or real space. Similarly large wave vectors
g in reciprocal space correspond to small distances in real space.

For diffusive type motion such as occurs above the critical

temperature the spin-spin correlation function in real space decays

monotonically with increasing distance between the spins. At
a particular temperature it has a characteristic length called

the correlation length &, that was discussed in Chapter I. The
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Féurier transform of the spin—spin_correlatioh function also
decays monotonically with increasing wave vector q in recipro-
cal space. At a particular temperature it has a characteristic

length in reciprocal space called the inverse correlation

length Kk, E E-;.

(i) Static scaling
Halperin aﬁd Hohenberg (1969) formulated static scalingv
by assuming that the inverse correlation length in reciprocal
space K, contains the dominant effects of critical fluctuations.
In zero external magnetic field, Kk; is assumed to go to zero at
Tc as
Ky « ¢V for T less than T, (I1-26a)

Ky = € for T greater than T, (I1I-26Db)

Halperin and Hohenberg discussed the significance of
the inverse correlation length k,; with the aid of a graph in
reciprocal space (Figure II-1) where the wave vector q forms
the ordinate and the»inverse correlation length Ky forms the
abscissa.

In Figure II-1, region I, where g is much smaller than
Ky and the temperature is less than the critical temperature; is
called the macroscopic or hydrodynamic region in the ordered
phase. This is because in real space it corresponds to phenomena
occurring over distances that are large compared to the corre-
lation length &. Similarly region III, where the temperature
is larger than the critical temperature, is the hydrodynamic

region in the disordered phase. Region II, where the temperature
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is approximately equal to the critical température but where
q is very much bigger than Kl,is called the critical region

‘which describes phenomena occurring over distances small compared

to &.
The static spin-spin correlation function Cza(q) is de-
1l
fined by
oo o o :
Cc = <5 (0)S 0)> II-2
o @) = ssglerslye) (11-27)

so that from equation (II-19) and (II-20) Cza(q) is directly
proportional to the susceptibility xad(q). '

The static scaling hypothesis assumes that the spin-spin
cofﬁelation function Cza(q) varies smoothly in the g-Kk; élane
(Figure II-1) except foi the singularity at the origin and that
it is determined by its limiting but different behaviour in the
above-mentioned three asymptotic regions. Furthermore since
the correlation function is assumed to be a homogeneous function,

it can be described by a function in the q-Ky plane that depends

only on the ratio Kl/q (equation(II-25)), given by

Cii(q) = q g (Kl/q) , T greater than To (I11-28a)
0.0, = -
CKl(q) = (Kl/q) , T less than Tc (II-28Db)

(y depends on the dimensionality of the system; for three dimen-
sions. y=2). For finite g therxe is no discontinuity at the critical
temperature so that g (o) = g (o).

Since the spln—spln correlation function C (q) depends

only on the ratio Kl/q (equations (II-28a) and’ (II»ZBb)), 1t
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seems reasonable that its functional form is determined by
whether q is much bigger or much smaller than the inverse corre-
lation range.Kl.

The assumptions above give rise to functional relations
between critical exponents,in particular that they can all be
expressed in terms of two or three fundamental exponents. ‘Two
relations are that the critical exponents of the susceptibility
x and of the inverse correlation range kK, below the critical

1
temperature are equal to the respective exponents above

Y=Y (II-292a)

vV . ‘ (II-29b)

v
Scaling hypothesis does not predict the basic two or three
critical exponents. However the relations predicted between
critical exponents are in good agreement with experiment for a
wide variety of systems. All the theoretical models commonly
used to describe .critical properties (c.f. Chapter I) give re-
sults in agreement with the scaling hypothesis. Hence the-

scaling hypothesis is believed to be correct and is useful in

the study of critical phenomena.

(ii) Dynamic scaling

Dynamic scaling, in analogy with static scaling, assumes

that the form of the dynamic correlation function is characterized

by its behaviour in the three limiting regions in Figure II-1l.
Halperin and Hohenberg defined the dynamic correlation

function Sza(q,w) of the neutron scattering cross-section
1 v
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(equation (II-2)) to be in the form

oo _2m o0 oa W
SK (q,w) = m——TaT CK (q)fK ,q (m——TaTQ (I1-30)
1 Ky 1 1’ 3

Siu(q,w) is the Fourier transform in time and space of the time~-
1

dependent spin-spin correlation function.
Comparing S (q,m) (equation (II-30)) with the neutron
scattering cross—sectlon in the form given by equation (11-14),

one finds that when 4iw is much less than kBT

FOtOL (w) =

1 o0 W

This was obtained using the result that Cza(q) is directly
1

proportional to xaa(q). Equations (II-31) and (I1-15) imply
that
1 dw £2¢  (—2-—) =1 (II-32)
wK1(q5 llq le(qs -

== 00
Equation (II-32) defines the characteristic frequency w, (a).
The dynamic scaling assumptions are:
a) The characteristic frequency is a homogeneous function

of g and Ky For the Heisenberg ferromagnet it was found to

be of the form (c.f. equation (II-25))
w, (q) =c g*/? £k /a) . €I-33)
l .

b) The dimensionless spectral weight function

d.(!

qu w ( 5

K

depends only on the quotient Kl/q and not on g and Ky separately
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oo W SO0, W '
. . = f . -
le,q (B:ITET) <y (EEITET) (II 34)
- g

The above scaling assumptions have an important consequence
on the frequency dependence of the dynamic correlation function
Sii(q,w): the shape of Sg:(q,w) will be the same along any
straight line ‘through the origin in the q-Kq plane apart from
a change in scale determined by equations (II-28a and b) and

(11-33).

C. Spin Dynamics

(1) Temperatures smaller than the critical temperature

For a Heisenberg ferromagnet at low temperatures the spin
fluctuations. are in the x—§ plane and are described by Spin-wave
theory. A spin wave is a propagative excitation with wave vec-
ﬁor q, and energy Eq. At limitingly low temperaturesy;pin-
wave theory is exact, but as the temperature is raised spin waves
become damped and their energy varies with temperature. To
describe the damping, a damping coefficient Fq for the spin
waves is introduced so that the time~dependent transverse spin-

spin correlation function can be written as

<Sx(o)Sx (t)> :
q —d (1I-35)

X X . _3 Y -
<Sq(o)S_q(o)>[exp(leq/K)+exp( leq/H)]exp( Pqt).

Comparing the Fourier transform in time of this spin-spin
correlation function with the neutron scattering cross-section
(equation II-14)) for 4w much less than kBT, the spectral shape

function sz(w) can be shown to have a double-Lorentzian form
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given by 1, 1L
Py (0) = ( ; 7+ +E2)2q+ —7 - (11-36)
- G " q

This form of the damping has been commonly used in the
past for interpreting experimental data. However Halperin and
Hohenberg (1969) have given a somewhat different expression

derived from hydrodynamic theory. They write

2
Y. E
XX q d9
F M {w) = (1X-37)
g mz-E 2,2 2E 2
( q) Yq Eq

For this expression the damping coefficient is denoted by Yq'
The double-Lorentzian expression (equation (II-36))

brought to a common denominator can be written as

2, 2 2
P (r 2+ +E
qlfg * ¢ q!

2 73
+ 2T +E
q q WHEy

2 L]

2 2
(w Eq) (w+Eq) + T )

When the spin-wave damping Pq is much smaller than the energy Eq

. . 2 2 .
and w is near resonance (i.e. w” = Eq) the expression becomes,

2T E. 2

VT %g 5.2 !
-E + 4T _°E
(W™=E,) q°q

which is just the Halperin and Hohenberg expression. Thus the

two spectral shape functions are nearly identical with

Yq = 2Pq if Pq is much smaller than Eq and with w near resonance.
In Figure II~2, the two spectral shape functions are

plotted for different values of the energy and damping coefficients

with the constraint that y_ = 2Tq for each pair of spectra.

q
Figure II-2 shows that both forms display a peak when w equals
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Figure II-2

‘Energy spectra predicted by the Halperin and Hohenberg (solid
line) and the double-Lorentzian (dashed line) spectral shape func-
tions for different values of the spin-wave energy and damping
coefficients. '
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* Eq’ éorresponding to spin-wave annihilation and creation, so
long as the damping is not too large compared to the energy.
Tt also shows that the width of the peaks depends on the damping
and the condition that the peaks are well resolved is that the
damping coefficient is less than the spin-wave energy.

Different theories use either the form (I1-36) or (II-37)
to describe the.damping. When analyzing the experiments the
two spectral forms will be individually fitted to the data. The
spin-wave energy and damping are expected to vary with tempera-
ture and the optimum values of the parameters for which the
appropriate spectral form best fits the data will be found for
each temperature. For well separated and sharp spin waves, the
spectral forms should give approximately the same values for the
damping and for the energy. However Figure II-2 shows that when
the damping becomes of the order Eq the two spectral forms are
different and therefore will not necessarily give the same values
for the corresponding fitted parameters.

Lowest order spin-wave theory, considering terms only up
to quadratic in spin operators (Holstein and Primakoff, 1940;
Dyson, 1956) gives that at low temperétures and in the long-

wavelength limit, for a cubic ferromagnet
_ 2

When terms only up to quadratic in spin operators are
. considered in the Hamiltonian, the solution yields no interaction

between spin waves. If there is no interaction between spin

oy



35

‘wéQés then they are not damped and their energy does not depend
on the temperature. Considering also terms of higher order than
quadratic in the Hamiltonian, the solution of spin-wave theory
does yield interactions between spin waves; it is called the
dynamical interaction.

Spin-wave theory gives the temperature variation of the

spin-wave energy“due to the dynamical interaction as
By (T) = E (o) (1 + cr>/?) (II-39)

The damping was calculated by Harris (1968) using pertur-
bation theory, for spin waves with energy less than kBT, taking
into account all two magnon processes for the dynamical interac-
tion. He predicts that thé spin-wave damping is proportional to

kT 5 kBT

B+ 2 n B - 0.05) (II-40)
779 2
Dgq Dq

q4T2(% an
the first term of which is the same as that obtained by Vaks,
Larkin and Pikin (1968).

The above results of spin-wave theory for the temperature
dependence of the energy and damping are not expected to be
valid near T, because the theory is effectively a low temperature
expansion for the spin-wave properties. Another reason for the
breakdown of spin-wave theory is that it ignores the kinematical
interaction (Dyson, 1956) between magnons. The origin oﬁ this
interaction is that no moré‘than 28 spin deviations can exist
on a single atom. The kinematical interaction is proportional

to exp(—J/kBT),where J is the exchange constant given in equation
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(I-3). It is not expected to be significant at low temperatures
(Dyson, 1956) and it cannot be expressed as a power series in
kBT.
Using another approach, namely hydrodynamic theory, Halperin
and Hohenberg predicted that the spin=wave energy and damping
in the hydrodynamic region below T, are given by

Ey = Dg? (II-41)

and
4

. 3
= . : II-42
Yq Y g ( )

Furthermore they calculated that the spin-wave constant

where pg igs a stiffness constant for variations in the direction
of the spin orientation. Close to T, the average magnetization
<M> is proportional to eB and the stiffness constant pg is propor-
tional to K,. Using equation (I1-26a)

D Ky s-B = e -B. (I1-43)

From equations (II-31) and (II-37) we have that

Wy - Ye/Eq
X d L -1+ E
. (qu 12 4 (rg/By

The dynamic scaling assumption b) (equation (II-34)) gives that

. K
fK (%—0 depends only on the quotient L
1 %q 4
. : 2
1 AL wi e B
D Kl .
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Using equations (II-26a) and (II-43), then near T,

2 -v'-B.

Y e« KI D=c¢ (II-44)

So far, in the discussion of the spin'dynamics below Tc’
~only spin fluctuations in the x-y plane have been considered.
According to spin-wave theory there are no spin fluctuations along
the direction of magnetization at very low temperatures. However
at higher temperatures there are also spin fluctuations in the z
direction. |

One possibility'iS'that the fluctuations in the z diréction
'decay monotonically‘with a cé&tain characteristic time that might
change rapidly near Tc. In this case the energy spectrum would be
a8 broad peak centered at zero energy and the width of the peak
wou;a'depend on the éharacteristic decay time of the fluctuations.

Another possibility is_that the fluctuations in the z
direction osciilate so they can propagate. If these oscillations
decay with time then they would give rise to damped waves. The
enexrgy spectrum would be qualitatively similar to that of the spin
£luctuations in the'xéy plane. However,tthe quantitative behaviour
of the spin fluctuations in the z direction would be different.
- Such fluctuations are known as second magnons since they can be
regarded as temperature oscillations in analogy with second phonons.
Forney and Jickle (1972) predicted that second magnons may
occur over a limited frequency range at temperatures well below
the critical temperature but not near T,. Gulayev (1965) and
Reiter (1968) have speculated their existence at higher tempera-
tures. As yet there is no experimental evidence to support

their existence at any temperature.
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s e s (1AL nTemperatures equal to or greater than the critical
S temperature

As mentioned in Chapter I, the magnetization in a ferro-
magnet above Tc is zero in zero magnetic field. Thérefore the
directions x, y and z are equivalent for systems with an isotro-
pic Hamiltonian like Heisenberg ferromagnets and the spin fluctua-
tions in all the directions are the same. |

Halperin and Hohenberg suggested that:

a) at temperatures equal to or greater than T, the spin dynamics

can be described using a spectral shape function that is given by

a Lorentzian

T (a)
FO%(w) = .2T d 5 (II-45)
q w” + FT (q)

b) the width parameter FT(q) is equal to the characteristic

frequency defined by equation (II-33)

. Tpla) = cq>’? £k, /q) (II-46)

c) at T, flk;/q) =1

.'. T'p (q) = cqs/z. | (Ix-47)
c ,

In the hydrodynamic region above Tor Halperin and

Hohenberg found that

f(nl/q) = (Kl/q)l/2 ' (II1-48)

. 1/2 2

.« . PT(q) = c K, q® = Aq (11-49)

1/2

and ¢ Ky is defined to be the spin-diffusion constant A.
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" Hence A should vary as the reduced temperature € to the power
v/2 (equation (II-26b)).

Résibois and Piette (1970) calculated the scaling function
f(Kl/q) between the critical region and the hydrodynamic region.
Just above T, there exist regions of correlated spin
although the net magnetization of the system is zero. In these
regions the spin fluctuations may possibly give rise to damped
spin waves in addition to the diffusive peak given in equation

(I1I-45). However as the regions of correlated spin decrease
rapidly with increasing temperature so would the damped spin-
wave component of the energy spectrum.

These predictions are for Heisenberg ferromagnets where
it is assumed that the spins are localized around the magnetic
atoms. Since iron is a metal and its magnetic 4 electrons take
part in the conductioh it would not be correct to assume that the
spins are localized. Recently, Hertz (1971) investigated the
properties of spih fluctuations at and above T, in itinérant
ferromagnets and came to the conclusion that they are identical
to those in a localized spin ferromagnet, namely that in the

5/2

critical region the characteristic frequency varies as q and

in the hydrodynamic region the spin diffusion constant A is
proportional to Kll/z.

Experimental results on iron bear out the predictions of
Hertz in as much as the metallic properties in iron are not -evi-
dent,since the spin waves at low temperatures and the critical

properties behave in a manner that might be expected for a

Heisenberg ferromagnet.
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D. Susceptibility

(1) Temperatures greater than the critical temperature

Above T in an isotropic ferromagnet all directions are
equivalent. The Ornstein-Zernike approximation as applied to
the Heisenberg ferromagnet (see Stanley, 1971) predicts that
for small wave vectors g with respect to the first Brillouin
zone boundary, the susceptibility x(g) is. given by
1

xl@~ =533
ry (Kl +q°)

where Ky is the inverse correlation length and ry is the

(I1-50)

effective interaction range of the time independent correlation
function. The asymptotic form of the time independent corre-

lation function is given by the Ornstein-Zernike approximation

i exp(-Klr)
2 r

1

(1i) Temperatures smaller than the critical temperature

<Sg‘°)sz'(°)> v » where r = I&f&'l, (II-Sl)

The low-temperature form of the neutron scattering
cross~section for a Heisenberg ferromagnet gives a transverse
susceptibility xxx(q), which varies as kBT/Dq2 if the thermal
energy kBT is much greater than the spin-wé#e energy qu. This
theory neglects the kinematical interaction and assumes that
all the terms higher than quadratic in spin operators in the
Hamiltonian are involved only in the renormalization of the

spin-wave constant D.

.« s Xxx(q) v kBT/DqZ . (II-52)
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A different form was predicted by Marshall and
Murray (1969) considering the kinematical as well as the
dynamical spin-wave interactions. They found that for the same

conditions as above
(@) v <%k T/pg’ (II-53)

Near chlongitudinal spih fluctuations may also exist.
Assuming that the z component of the spins have an inverse cor-
relation range Kq, then the longitudinal susceptibility xzz(q)

may have the Ornstein-Zernike form given in equation (II-50).

E. Historical Survey

The critical properties of iron have been studied by
neutron scattering more extensively than any other ferromagnet,
and in this section the highlights of earlier work are described.
The first observations of critical scattering of neutrons in
iron were by Palevsky and Hughes (1953), and by Squires (1954),
from the study of the transmission of long wavelength heutrons.
They found an anomalous increase in the total cross-section
near the critical temperature.

Wilkinson and Shull (1956) found additional diffuse
magnetic scattering near T, that was most intense at the smallest
angle measured and decreased with increasing angle. They found
that at a fixed angle the additional magnetic scattering-incréased
with temperature to a maximum in the vicinity of T, and then
decreased with increasing temperature. This appearance of a
pronounced maximum at T, in the small angle scattering suggested

that it arises from the spontaneous fluctuations in the magnetic
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moment density, which increases in mégnitude as T, is approached
(van Hove, 1954).

Jacrot, Konstantinovic, Parette and Cribier (1963) using
a polycrystalline specimen of iron and neutroné of wavelength
4,75 A measured the differential cross-section %% above T .

Tt was seen that if the static approximation is obeyed'
(equations (II-iBa and b)), the differential cross-section %%
is proportional to the susceptibility x(q) (equation (IIf19)).

Also sabove T, for the Ornstein-Zernike approximation, x (q) is

1
2(q2+K1
correlation lengt% Kk, cai be found directly by extrapolating

proportional to

-é) tequation (II-50)), SO thatthe inverse

the curve of the inverse scattered intensity plotted against
2
[«
Jacrot et al. observed that even at Tc the scattering
was inelastic and that the energy spectra of scattered neutrons

could be fitted satisfactorily by a Lorentzian,
) ,

Fy W) ~ Pﬁ? (I1-54)
with only a weak temperature variation of the spin-diffusion
coefficient A. Therefore the second condition (equation (II-18L))
of the static approximation probably does not hold. Neverthe-
less Jacrot et al. found K, directly, neglecting the inelas-

t1c1ty of the scattering. Their results were consistent w1th

the values of Kj found previously by Ericson and Jacrot (1960).
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Passell, Blinowski, Brun and Nielsen (1965) measured the small
angle scattering from a polycrystalline samplé of iron with
4.28 A neutrons above T_. In agreement with Jacrot et al.,
they found that the energy spectrum of the scattered neutrons

could be fitted satisfactorily by the function ———9——5—3
: w” + A%q

(equation (II-54)). They determined the Ornstein~Zernike corre-
lation function parameters K, and ry in a similar fashion to
Jacrot et al. However, they used the spectral form given above
(equation (II-54)) to correct for the inelasticity of the scat-
tering and obtained more accurate values of Kq e They observed
that the inverse of the resolution-corrected intensity plotted
against q2 deviated from a straight line at large wave vectors,
and concluded that the form of the susceptibility x(q) is only
a Lorentzian (equation (II-50)) at small wave vectors. This
deviation at large wave vectors did not affect their determina-
tion of k; and x{0). For the temperature range (T—Tc):greater
than 5°K they found that the inverse static susceptibility

2.2 _ Y
r;7) (T-T,)

x() ™t & ey
with y = 1.30+0.04.
Spooner and Averbach (1966) showed that the diffuse
magnetic scattering in a single crystal of iron is spherically
symmetric about the origin at large wavelengths. They measured

the scattering in the complete first Brillouin zone and ob-

tained the spin-correlation coefficients above T, from the
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" Pourier transformof the scattered intensity. Their treatment
neglects inelasticity and hence must be somewhat questioned,
although, with the short wavelength (1.38 A) neutrons they used,
the correction is not as large as was involved in the long wave-
length experiments.

Bally, Grabcev, Lungu, Popovici and Totia (1967)
measured the temperature variation of small angle scattering of
1.25 A neutrons by a polycrystalline sample of iron and found
that at very small wave vectors the scattering peaked at Tc '
while at large wave vectors the peak was not as sharp and it shif-
ted to higher temperatures. They determined K; and ry after
correcting for the inelasticity of the scattering and concluded
that the ornstein-Zernike time independent correlation function
(equation (II-51)) is only valid for distances greater than 15 A.
For smaller distances they claimed that the correlation has the
form <S£(o) Sz,(o)> « exp(lz'—zl/é) that agreed with the flndlngs
of Spooner and Averbach. The critical exponent y of the suscep-
tibility x (o) above the critical temperature was found to be
1.30+0.04.

Stringfellow (1968) using a scattering surface technique
near the forward direction, studied the spin dynamics from
low temperatures up to the critical temperature. He found that
in a polycrystalline iron specimen magnetized with a 3000 Oe
magnetic field, the spin-wave constant D could be described

satisfactorily using jtinerant electron theory up to 0.4 T,
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by ‘the expréssion D= Do—Dsz-Dsz/z. However above 0.4 T,, D
decreased considerably faster than was predicted. Stringfellow
found that the spin-wave cross-section increased with increa-
sing temperature up to 0.7 Tc'

A comprehensive experiment that measured the spin dy-
namics in iron glose to the critical temperature was perfbrmed
by Collins, Minkiewicz, Nathans, Passell and Shirane (1969).
They concentrated on very small wave vectors q both above and
below T, to try to satisfy the hydrodynamic condition, q
much smaller than the inverse correlation range K. The ex-
periment confirmed two of the dynamic scaling predictions of
Halperin and Hohenberg: firstly, the spin-wave constant D
is renormalized to zero energy as the reduced temperature €
to the power 0.37£0.03 and secondly,in the critical region
Kq much larger than Kl) the width parameter T'q (a) of.the dif-
fusive peak varies as gq to the power 2.7%0.3. ¢ Theory predicts
that the critical exponent (v'-B) of the spin wave constant D
is 0.31%0.10 and that TIp (gq) should vary as q to the power 2.5,
Since their measurementscbelow TC were at small wave vectors,
the broadening of the magnons due to the instrumental resolution
was comparable with or larger than their intrinsic width. Con-
sequently the experiment of Collins et al. was not able to
make any quantitative conclusions about the spin-wave daﬁping.

Above the critical temperature, they found that the spin-
diffusion constant A varied as the reduced temperature € to the

power 0.14%0.04 which is considerably smaller than the pre-

dicted value of 0.35:0.01 (equation (II-49) ,Bowers and Woolf,
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1969; Ferer, Moore and Wortis, 1971). However their findings
are in much closer agreement with those of Jacrot et al. (1963)
and Passell et al. (1965) who did not find any temperature de-
pendence of A at larger wave vectors. Above the critical
temperature, the susceptibility x (o) was found to vary

as the reduced temperature € to the power Yy = 1.30+0.06 in

good agreement with previous measurements. Another of the
findings of Collins et al. was the absence of a zero energy peak
below the critical temperature, that was expected from the longi-
tudinal spin fluctuations.

It should be mentioned that for a real ferromagnet, a
term corresponding to the dipole-dipole interaction should be
sdded to the Heisenberg Hamiltonian (equation (I-3)) that would
affect the predicted critical properties near T,. Considering
the dipole-dipole interaction, Holstein and Primakoff'(1940) found
that at low wave vectors the spin-wave energy ES becomes

2 4 .2 2,1/2
Eg = (D°q” + 4mM_sin quuBDq ) / , (I1-55)

eq is the angle between g and the z axis and Mg is the magne-
tization in zero magnetic field. M/ is predicted to vary
with temperature similarly to D. Thus it is expected that at
a given g the fractional shift of the spin-wave energy due to
the presence of dipole-dipole forces will be temperature.
independent.

Collins et al. found that at room temperature the dipole?

dipole interaction dominates the spin-wave energy at wave
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vectors less than 0.02 A-l. Arrott, Heinrich and Noakes (1972)

found from magnetization measurements that the dipole-dipole
interaction dominated the critical properties at * 0.1°K from
Tc' Since the determinations of the critical exponent Yy by
neutron scattering were at temperatures greater than 5°K above

1, it is not expected

Tc and at wave vectors greater than 0.02 A
that the resulting exponents would be affected. Also the ex-
periments reported in this thesis were at wave vectors greatex
than q = 0.14 A™1l, so that the results are not expected to be
affected by the dipole-dipole interaction.

The agreement between the values of the critical expo-
nent y of iron determined by the different neutron scattering
experiments is excellent, and the mean value of y is 1.30%0.03.
They also agree within experimental error with those found by
other techniques, namely 1.333%0.015 (Noakes, Tornberg and
Arrott, 1966), 1.33%0.03(Develey, 1965) and 1.33 (Arajs and
Colvin, 1964). The experimental values of Yy are close to.1l.347
predicted by Wilson (1972). However the theoretical predictions
of 1.375+0.010 (Bowers and Woolf, 1969) and 1.405+0.020 (Ferer,
Moore and Wortis, 1971), using high temperature series—expapsion
technique, are outside the .range of the experimental values of
¥; this discrepancy is not understood.

Résibois and Piette (1970) calculated numerically the
scaling function f(Kl/q) (equation (II-46)) of the width para-
meter above Tc for a Heisenberg ferromagnet and antiferromagnet.

They showed that the.width of the diffusive peak is proportio-
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nal to the hydrodynamic form K11/2q2 (equation (II-49)) only

when the ratio Kl/q is larger than 4.

Als-Nielsen (1970) re-analyzed the experiments above T,
of Collins et al. (1969), Bally et al. (1967) and of Passell et
al. (1965) using the scaling function calculated by Résibois

and Piette (1970). He found that:

a) The disagreement between the values of the critical exponent
of A predicted theoretically (0.35) and that found experimental-
ly by Collins et al. (0.14%£0.04) was because their measurements
were not in the hydrodynamic region. This was revealed by the
theoretical calculations of Résibois and Piette who defined more
precisely the extent of the hydrodynamic region. However the
measured width of the diffusive peak agrees with the predictions
of Résibois and Piette for the region outside the hydrcdynamic :
limit. The experiment in factgives strong support to the theory
of Résibois and Piette.

b) The apparent deviation from a straight line when plotting
the reciprocal intensity against q2 (Passel et al., 1965; Bally
et al., 1967) was because they corrected for the inelasticity

of the scattering assuming the hydrodynamic form of the energy
spectrum (equation (II-54)). Using f(Kl/q) calculated by
Résibois and Piette to correct for the inelasticity of the

data of Passell et al., Als-Nielsen (1970) found that X {a)
plotted against q2 is a straight line over the complete range

of wave vectors measured. Hence the Lorentzian form of x(q)
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(equation (II-50)) satisfactorily déscribes the scattering.
Therefore the conclusion of Spooner and Averbach (1966) and
Bally et al. (1967) that the Ornstein-Zernike form 6f the pair
correlation function breaks down at small distances is questio-
nable. |

c) The flatﬁess of the intensity maximum above T, at a fixed
scattering angle and the shift to highervtemperatures with in-
creasing g (Bally et al., 1967) is a direct result of the form
of £(k;/q).

Parette and Kahn (1971) verified experimentally the
prediction of Résibois and Piette for the form of f(Kl/q) for
larger values of Kl/q thén Als-Nielsen (1970). Their experi-
ment also indicated that in the hydrodynamic region,the spin-
diffusion constant A is proportional to Kll/Z as predicted by
Halperin and Hohenberg using dynamic scaling.

Recently there have been measurements of spin dynamics
by neutron scattering in other magnetic systems.

Passell, Als-Nielsen and Dietrich (1972) measured the
relaxation and renormalization of spin waves in the isotropic
Heisenberg ferromagnet EuO over a range of wave vectors be-.
low T,. Their results will be compared with the measurements
presented in this thesis later on. Minkiewicz, Collins, Nathans
and Shirane (1969) measured the critical and spin wave fiuc-
tuations in nickel. Tucciarone, Lau, Corliss, Delapalme
and Hastings (1971) performed extensive measurements in the

isotropic Heisenberg antiferromagnet RanFB' Schulhof, Nathans,
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Heller and Linz (1971) measured the spin dynamics in the uni-
axial antiferromagnet MnFZ. Collins and Saunderson (1970)
measured the spin dynamics in the ferrimagnet Fe304} Minkiewicz,
Gesi and Hirahara (1971) measured the critical neutron scat-
tering in the anisotropic ferromagnet MnP.

In the antiferromagnets it was observed that, for
finite waﬁe vectors, damped spin waves exist even at tempera-
tures slightly above the critical temperature. In contrast,
in ferromagnets and the ferrimagnet Fe304 it was observed that the
spin waves are renormalized to zero energy at the critical
temperature and in fact become over-critically damped at a tem-
perature slightly below the critical temperature.

Another difference was the absence of the diffusive
peak below the critical temperature'in the isotropic ferromag-
nets and Fe,0, that was clearly observed in‘the antiférromagnets
and in the anisotropic ferromagnet MnP.

At the critical temperature, the wave-vector dependence
of the width of the diffusive peak follows the predictions of
dynamic scaling in both ferromagnets and antiferromagnets. The
absence of any dynamic scaling prediction for ferrimagnets '
precludes the comparison of the results for Fe304 with the
theory, but it was observed that at the critical temperature
the wave-vector dependence of the width of the diffusive‘peak

was like that of the antiferromagnets.
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For temperatures greater than the critical tempera-
ture in RanF3 and MnF, the behaviour of the characteristic
frequency le(q) is consistent with the predictions of dynamic
scaling. The plot of le(q) against Kl/q at temperatures
greater than the critical temperature for RanF3 agreed well
with the theory of Résibois and Piette (1970) for antiferro-
magnets but not so well for MnF, (because the anisotropy has
to be taken into account).

In Ni above the critical temperature, Minkiewicz et al.
(1969).found that in the hydrodynamic region the spin-diffusion
constant A and the susceptibility X (o) are proportional
to the reduced temperature € to the power 0.44%0,07 and 1.58%0.05
respectively. Further Minkiewicz (1971) found that the inverse
correlation range Ky is proportional to the reduced temperature
to the power 0.9610.25., Thus for temperatures greatef than
'the critical temperature, all the critical exponents for Ni in
the hydrodynamic region appear to be anomalous when determined
by a scattering experiment performed at small energy transfers.
The relationships between the critical exponents however are

consistent with the scaling hypothesis.



CHAPTER III

EXPERIMENTAL APPARATUS AND TECHNIQUES

A. Specimen and Furnace

The specimen was a single crystal of irontof nominal
purity 99.99% and with a mosaic spread of less than 5 minutes.
It had a cylindrical shape of diameter 0.25 inches and length
1.5 inches. It was mounted with the [110] axis vertical,
which involved tilting the crystal 27 degrees from its cylin—
drical axis. Some of the general properties of iron are
listed in Table III-1.

In experiments measuring critical phenomena, as it has

- been indicated in Chapter II, physical quantities of interest
often diverge or go to zero as a function of the reduced tem-
perature, so that large fractional changes occur in these quan-
tities at temperatures very close to the critical temperature.
Thus it is desirable to build a furnace with a high degree of
temperature stability and specimen temperature uniformity
so that reliable results can be taken close to the criticai,
temperature Tc’

The difficulties in design arise in large part from
the necessity of having thin walls around the specimen iﬁ the
horizontal plane so that there is little scattering of neutrons
except by the iron sample. This precludes the possibility of

aéobtained from Metals Research Limited, Melbourn, Herts, England.

52



53

R SO T TR P L

Table III-1l. General Properties of Iron

Critical temperature® T, 1044.0°K

Crystal Structure: 0-1180°K b _ body centered cubic

Lattice constant: at room temperatureb 2.86645 A
at T.° | 2.898 A

Thermal neutron cross-section

Nuclear coherent scatteringd 10.6%+0.4 barns
Nuclear incoherent scatteringd 0.43 barns
Absorptiond for 25 meV neutrons 2.55+0.05 barns
Magnetic scattering length pe ' 0.60><10-l2 cm at 6=0
 0.35x107 2cm at 808 - 9,25 a7

as, Arajs and R. V. Colvin, J. Appl. Phys. 35, 2424 (1964).
J. E. Noakes, N. E. Tornberg, and A. Arrott J. Appl. Phys.
~ 37, 1264 (1966).

bW. B. Pearson, Vol. 2, A handbook of Lattice Spacings and
Structures of Metals and Alloys. Pergamon Press (1967).

cﬁ. Ridley and H. Stuart, J. Phys. D. (Appl. Phys.) 1,1291
1968). .

dNeutron Cross Sections, BNL 325, Second edition, Supplement
No. 2. Vol. II A.

€c. E. Bacon, Neutron Diffraction, 2nd. ed. Oxford (1962).
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surrounding the specimen by materiais with high thermal capa-
city to improve temperature stabilization. Since the furnace

is to be rotated about the vertical axis during the experiment,
it is desirable that the material in the neutron beam is the
same at any angular position. This can be achieved by construc-
ting the furnace in a cylindrical form. Another limitation is
that for the McMaster University spectrometers the middle of

the neutron beam is 6 inches above the spectrometer table. Thus
a very long cylindrical heater could not be used to minimize the
temperature gradient along the cylinder axis near the centre

of the cylinder.

The schematic diagram of‘the furnacé constructed to
meet the above requirements is shown in Figure III-l. It was
evacuated by an oil diffusion pump to prevent the sample from
oxidizing. The heater arrangement consisted of a vertical
cylindrical heater supplying most of the heat and two small
auxiliary heaters situated at the top and bottom of the former
to reduce the temperature gradient of the specimen. The power
to all the heaters was controlled by a proportional temperature
controller. '

The main heater element had a cylindrical form; height
6 inches, diameter 3.5 inches. Since the neutron beam passed
through the heater element, it had to be of thin materiai.‘.

At first 0.005 inches thick molybdenum foil was used. Sloté
were cut into the element to increase the resistance'to

approximately 0.1 Q.. However it was difficult to cut the slots



Figure III-1

Schematic diagram of the vacuum furnace, with the important
components numbered in the following order.

1.
20
3.
4.
5.
6.
7.
8.

9.

10.
ll.
12,
13.

14.

15.
l6.

Specimen

Main heater

Electrode and support for main heater

Teflon vacuum seal and electrical insulation

Auxiliary heater :

Copper cylinder

Specimen support

Radiation shields

Chromel-Alumel thermocouple measuring
specimen temperature

Swagelock fitting

Flange '

Cooling pipe

Thermocouple providing reference signal to
temperature controller

Thermocouple acting as sensor to cut power
to furnace in case of overheating

0 ring vacuum seal :

Vacuum line to diffusion pump.
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and cracks always appeared, decreasing the lifetime of the ele-

ment. The element was replaced in the later part of the

'experiment by Kanthall Al strip 3 mm wide and 0.33 mm thick wired

in a parallel arrangement of 15 strips with resistance 0.1 Q.
Electrical conductors from outside the furnace to
the main heater were iron rods 3/8 inches diameter. They also
acted as mechanical supports for the heater (Figure III?l).
They were of large diameter so that their electrical resistance
was very small compared with that of the heater element. The ™
rods were secured vertically in the 1lid of the furnace by a
set of teflon rings that acted as an insulator and held the O
ring for the vacuum seal. - As the heater resistance was very
small a large stepdown transformer (220 V primary, 14 V secon-
dary; 2 KVA) was placed after the temperature controller.
The two auxiliary heaters situated above and below
the main heater cylinder were of Kanthall Al wire. Their
resistance was 25 , with each having a Separate variable
transformer power supply connected to the temperature controller,
The power to the auxiliary heaters could be adjusted independent-
ly to minimize the axial temperature gradient in the specimen.
The auxiliary heater terminals were 1/8 inch diameter
brass rods secured into flanges ﬁsing nylon Swagelock fittinng
The nylon fittingslacted both as insulator and as vacuum‘seél.
The flanges were attached by screws near the base of the furnace
using O rings for vacuum seals (Figure 'III-1). All the O ring

seals on the furnace were water cooled.
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 Even with auxiliary heaters the thermal radiation inci-
dent on the specimen is not completely isotropic. To further
reduce the temperature gradient, the specimen was mounted inside
a hollow copper cylinder 2.5 inches long, 1.25 inches diameter
and 1/16 inches thick that was enclosed at both ends. Ther-
mal conductivity made the temperature of the copper cylinderAmore
uniform so that it radiated the specimen with more isotropic
radiation than that incident from the heaters. The copper cy-
linder with the specimen inside was attached on the end of a
ceramic tube fixed to the bottom of the furnace. The ceramic
tube had a low thermal conductivity so that the sample was
thermally isolated from the outside.

The heaters were enveloped by five cylindrical
stainless steel shields whose axes weré along that of the
main heater, and by six shields positioned above and below the
heatefs (Figure III-1l). The 0.002 inches thickness of the shields
at the side did not attenuate the neutron beam to any significant
extent. The power dissipated in the furnace, with the speci-
men temperature around 800°C was approximately 0.8 KW and as
a consequence the outside wall was quite hot. It was constructed
of stainless steel and at the height of the neutron beam thé |
wall thickness was ﬁachined down to less than 0.02 inches.

The temperature of the specimen was measured using an
ungrbunded Chromel-aAlumel thermocouple enclosed in a 1/8 inches
diameter stainless-steel sheath. There were altogether four
‘such thermocouples inside the furnace; of these two were in

thermal contact with the sample. The cold junctions of all the
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£ﬁérmoéoﬁples were kept at 0°C by an ice-point reference unit
that was stable to better than 0.1°K over long periods.

The voltage of the specimen thermocouple was measured
using a six-digit D.C. differential voltmeter. The absolute
accuracy of the instrument was 4 uV corresponding to an
accuracy of the temperature measurement of 0.1°K. The amplified
output of the efror signal, from the balance voltage of the
voltmeter, was fed into a chart recorder to give a record of
the specimen temperature during an experiment.

The temperature waslcontrolled by a proportional tem-
perature controller (Figure III-2) with a continuously variable
setpoint between 15 mV and 35 mV {v 650°K to ~ 1150°K). The
setpoint could be set with an accuracy of 4 uV (0.1°K). The
feedback signal to the temperature cohtroller was provided by
a Chromel-Alumel thermocouple, which was positioned between
the main heater and the copper cylinder enclosing the specimen
so that it could monitor the incident radiation.. The powex
input to the heaters was varied by the controller in proportion
to the difference between the thermal emf. of the feedback
thermocouple and the setpoint voltage. When the difference was
zero the power to the heaters had a pre-set constant value.'
With this arrangement the stability of the specimen temperature
near T, was 0.2-0.3°K over 24 hours and the response-time to
a change in the setpoint was less than 1 minute.

There were three safety trips that could switch off

the power to the heaters. These trips were installed to protect
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fhé'crYStal and the furnace from a deteiioration of the vacuum,
.a decrease in the water flow to cool the O ring seals, and from
overheating of the crystal. 1In iron there is é phasé tran-
sition at ~ 1180°K, i.e. only approximately 136°K above T,.

This is a .b.é.c to f.c.c. phase transition and if the tempera-
ture was raised above this value the single crystal would be
ruined. The temperature sensor for this trip was the fourth

- Chromel-Alumel thermocouple.

The temperature gradient in the speéimen'was measured
before the start of the experiment. A Chromel-Alumel differential
thermocouple was used to measure the temperature across the
sample. Near T, it was found that the auxiliary heaters were
required to provide about 4% of the total power each. This gave 2.

temperature gradient of the specimen which was approximately

‘0.2°K.

B. Triple Axis Spectrometer

The experiment was performed using the McMaster Univer-
sity. E2triple axis spectrometer (Figure III-3) (Brockhouse,
deWit, Hallman and Rowe, 1968) installed at the NRU reactor,
Chalk River.

The spectrometer has the unusual feature of a double
monochromatox situated within the reactor wall in which the
monoenergetic beam of neutrons is reflected in succession
from two matched parallel copper crystals.

The monochromator crystals were deformed by bending to

increase their reflectivity without increasing appreciably
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- their mosaic widths (Dymond and Brockhouse, 1970). The mono-
energetic beam emerged parallel to but displaced from the
incident beam so that fast neutron contamination should be
greatly reduced. Since the direction of the monochromatic beam
is independent of wavelength, the specimen position is fixed
and, as a result, the design of the spectrometer is simplified.

A‘coppef analysing crystal and two 3He detectors are
all mounted inside a boron/paraffin shielding drum. The analy-
ser crystal was deformed in the same way as the monochromator
crystals to increase its reflectivity. The detectors view
the analysing crystal ; one counts the Bragg scattered neutrons
giving the signal, the other the diffusely scattered neutrons
and approximates the background. The angular acceptance of
the Soller slit collimators before and after the specimen are
variable depending on the resolution required. A fission coun-
ter situated before the specimen table is used to monitor the
incident beam flux. The spectrometer control was semi-automatic
employing an IBM 0-24 card punch " as a card reader. The
cards for the particular scans were produced by a large com-.
puter.

The spectrometer was operated in the constant Q mode
(Brockhouse, 1961). This consists of fixing the scattering
vector Q at a point in reciprocal space and varying w to measure
the energy distribution of scattered neutrons. A reciprocal
lattice diagram showing a point on such a scan (in which ||

of the incident neutrons is varied) is given in Figure III-4.



(002) (112)

\¢1-085,1:085,0-0)

~ (110) PLANE b.c.c. LATTICE
Figure III-4

Vector diagram of a Constant Q scan in reciprocal space. ki, k

e = s cir, of
and ki, k¢ are the initial and final wave vectors of the incident
and scattered neutrons respectively. It shows that in this scan

only the direction of k' changes while both the direction and
magnitude of k change .
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If Q is along the [110] direction of the reciprocal lattice,:

then in the k-k' plane Q is given by

Q = k sin ¢y + k' sin (¢+y)
where ¢ is the scattering angle and ¥ is the angle between k
‘and the [001] direction which defines the orientation of the
specimen, If |k| is varied, then ¥ and ¢ must be adjusted to

keep Q fixed. This was calculated by means of a computer program.

C. Measurement of the Critical Temperature

The critical temperature T, was determined by measuring
the scattering as a function of temperature of the specimen
(Figure III-5). Tc was t;ken to be the intersection of the lines
of best fit to the scattered intensities at the two sides of
the maximum intensity. The spectrometer was set ét w = 0 and
g= 0.04 A—l, The low value of g was chosen because at higher
values the peak broadens out and shifts to higher temperatures

(Bally et al., 1967). At q = 0.04 A~

the temperature shift of
the peak from true T, should be less than 0.1°K (Als-Nielsen,
19703. Smaller wave vectors were not used because as g approaches
zero the intensity of the (110) Bragg reflection becomes much
greater than the critical scattering. T, was measured this-

way several times during the experiment and no appreciable

changes in its value were detected. It was reproducible to
within 0.4°K every time.

It is clear that in experiments involving critical

phenomena one is primarily interested in measuring the reduced
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tempergtﬁre rather than the absolute temperature. Having cali-
brated the thermocouple at the critical temperature as described
above, it was assumed that near Tc the change in temperature
corresponding to a change in thermal emf. is the same as that
given in the tables. Since most of the measurements were taken
for the reduced temperature less than 0.03, this assumption
should be'reaséhable and errors due to lack of absolute calibra-
tion of the thermocoﬁples should be small compared to errors
due to temperature fluctuations of the specimen. For measure-
ments further away from Tc the accuracy in the temperature was

not as important.

D. Instrumental Resolutién

Neutron scattering experiments measure the intensity
of scattered neutrons for a given momentum and energy transfer
‘hg and HYiw respectively. This requires setting the mohochromator,
specimen, scattering and analyser angles BM’ X: ¢, and eA
(Figure III-3) respectively in such a way that the probability
of detection of scattered neutrons is the highest at the point

go rW, 1n Q-w space. Qo and w, are glvgn by the equations

i ' T
k = P k =
o dMsInSM o) aAsinBA

Q. =Xk , Hw

- 1!
Q =k ~ K

2 2 2
o (1 /2m)(ko -k )

where dM and dA are the spacings between the atomic planes
of the monochromator and analyser respectively from which the

reflection occurs.
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However the presence of finite collimation and finite
mosaic spread of the monochromator and analyser crystals allows
less probable neutrons to be detected at the same settings. The
resolution function of the instrument is the probability of
detection of neutrons as a function of AQ and Aw, when the
instrument has been set to measure a scattering process corres-
ponding to the point Q, rw, in Q-w space.

Cooper and Nathans (1967) derived én analytic expression
for the form of the instrumental resolution function R(go,wo:
Ag,Aw) assuming that both the monochromator and analyser reflec-
tion probabi;ities and the collimator transmission probability
can be approximated by Gaussian functions.

Tt is assumed that imperfect crystals have a Gaussian.
mosaic block distribution. The Gaussian mosaic spread parameter
N is defined as the angle of mis-set of the crystal to give a
probability of reflection of exp (- %) times the optimum proba-
bility. The individual monochromator and analyser crystals had
a mosaic spread of 0.0038 radians. Since the monochromator
was two identical crystals in parallel orientation, its effec-
tive horizontal mosaic spread was smaller (Dymond) than that
of the individual crystals. The Gaussian mosaic spread para-

meters of the monochromatoxr (nM) and of the analyser (nA) were:

0.0029 radians

Horizontal: 10

MH
nAH = 0,0038 radians
Vertical : vy = Nay = 0.0038 radians.
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“fhe characteristic divergence angle o of the collima-
tors is defined so that the probability of transmission of a
neutron with a divergence angle of o radians is exp(- %)
times the optimum probability. The total acceptancé angle a
of a collimatbr is the ratio of the slit opening to the length.
The transmission function of an ideal collimator is triangular.
However, because of imperfections in the Soller slit system and
scattering from the walls, the transmission function is nearly
a Gaussian (Sailor, Foote, Landon and Wood, 1956).
| If a Gaussian is fitted to a triangular function at the
center and at half widths one finds (Tucciarone et al., 1971)
that the relation between the characteristic divergence angle
o and the total acceptancé angle o' is
a = 0.425 o' . (I11-1)

Using equation (III-1l), the characteristic divergence

éngles for the four collimators Cor Ca, C3, Cy4 (Figure III-3)

that were used in the experiment are the following :

Horizontal: oy = 0.0425 radians
0y, = 0.0053 radians
d3 = 0,0053 radians
0y = 0.0425 radians
Vertical : Bo = 0.0425 radians
By = 0.0071 radians
By = 0.0106 radians
By = 0.10 radians
where the subscripts_o, 2, 3, 4 refer to the in pile, mono-

chromator to specimen, specimen to analyser and analyser to
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. e . detectoriregions respectively (Figure III-3).

Using the theory of Cooper and Nathans (1967) and the
above-mentioned parameters of the E2 spectrometer, the resolu-
tion ellipsoid was calculated near the (110) reciprocal lattice
point in the region of Q@ and w at which the experiments were
performed, for the case of almost elastic scattering. It was
found to have one of its larger axes in the quOl]—w plane,
inclined with réspect to the [001] and w directions (cf. Figure
III-6). One of the smaller axes was along the ([110] direction
and the second long axis was along the z direction.

For the resolution correction to be carried out meaning-
fully, it is necessary to know the resolution ellipse with some
precision. The theoretical form of the resolution function
for the parameters of the E2 spectrometer was compared with
the experimental form, as mapped out at the (110) refléction
in the q[llO]_m and q[001]-w planes. They fitted well in both
planes. Figure III-6 shows the experimental resolution function
in the dio01]~% plane and the comparison with the theoretical
form at half-height. All the measurements of the critical scat-
tering from iron were at non-zero but small g and w. It seems
most reasonable to assume that if the calculated resolution
function is correct at the Bragg position, then it should also
be correct for small g and w thus giving confidence to the
accuracy of the resolution corrections.

The effect of the finite resolution is that if the cross-
section is expressed in terms of S(Q,w) (equation (11-3)), then
the scattering intensity I(Q,w) at the instrumental setting

Q, ¥, is given by the integral
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Figure III-6

ConStant E scans to measure the extent of the resolution ellipse
in the qioo1]~® plane at the (110) Bragg peak (top). Comparison
of the experimental and theoretical half-height contours of the

resolution ellipse (bottom) .



71

PPN NI AR 1Y

“:'.jfvz(‘éo,&o) =I S(Q,0IRIQ ,u i (Q-Q,) s (w-u,))dQdu.

The résolution correction of the data involved the
prediction of the exéerimental line shape by numerical inte-
gration of the cross-section over the resolution function, This
was performed using a large computer. The computer program
calculated the resolution function at each value of Q and w
where the data was obtained. The numerical integration was
performed with the limits placed at some appropriate low con-
tour of the resolution ellipse, to make the integration
just over the values that contribute significantly to the in-
tensity. Detailed least squares fits were made to compare the
predicted and experimental intensities. Figure III-7 shows the
best fit of the resolution broadened theoretical cross-section
(solid line) to the experimental data (open circles). The
dashed line is the theoretical cross-section (equation (II-3))
before the numerical integration over the resolution ellipse.

The filled circles represent a magnon of zero width broadened

by the instrumental resolution. The solid line was obtained

by convoluting curves denoted by the dashed line and the full

circles,
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Figure III-7

The best fit of the resolution-broadened theoretical cross sec-
tion (solid line) to the data points (open circles). The solid
line can be obtained by convoluting the dashed line (theoretical
cross-section) with the filled circles (magnon of zero width
broadened by the instrumental resolution).



CHAPTER IV

EXPERIMENTAL RESULTS AND DISCUSSION

A. General Considerations

The measurements of the energy distribution of
magnetically scattered neutrons from iron were taken at wave
vectors near the (110) crystal reflection, along the ([110]
direction. | |

Since the magnon dispersion surface is periodic in
reciprocal space; in principle it could be measured about
any reciprocal lattice point. The measurements were not taken
in the forward direction (i.e. about the T = 0 reciprocal
lattice vector) because there, at a given wave vector g, the
maximum energy transfer that can be realized by neutron scat-
tering is 2Eqg/k, so that parts of the frgquency spectrum of
the scattering cannot be observed. The iron crystal studied
had a»body centered cubic structure so that the closest reci-
procal lattice point to the origin is (110). The neutron
scattering cross-section given by equation' (II-2) is proportio-
nal to the square of the magnetic form factor F(Q). FI(Q)
decreases rapidly with increasing Q,hence it is not desirable
to measure the scattering about a reciprocal lattice point

further than (110) from the origin.
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Shirane, Minkiewicz and Nathans (1968) found the
magnon dispersion curves of iron to be iéotropic at room tem-~

perature up to the largest wave ?ector measured, g = 0.6 A—l
The [110] direétion wgs choggn i;m;;éfQQénce t§ the other sym-
metry directions for the reasons that follow. Near T, the
magnon and transverse phonon energies in the wavelength range
covered in the ﬁresent measurements are approximately equal.
Thus, it is highly desirable to use a method of measurement
that is not sensitive to scattering by the transverse phonons.
This can be accomplished by using the fact that the cross-
section for phonon scattering contains the term (Q°£)2 where

g is the polarization vécﬁor of the phonon mode. By definition,
transverse modes have their polarization vector § perpendicular
to their wave vector g along symmetry directions. Therefore,
when Q is parallel to g, which for the present measurements
corresponds to Q along [110], the scattering cross-section for
transverse phonons is zero.

It was shown in Chapter III that the resolution ellip-
soid has one of its smaller axes alonj the [110] direction, so
that even at the smallest wave vectors measured, it was effec-
tively zero at the (110) reciprocal lattice point. Consequently
the observed spectra did not have any contribution to their

intensity from the Bragg peak.

B. Method of Data Analysis

After correcting for the instrumental resolution the

experimental results were analysed using the spectral shape
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functions given by equations (II-36) and (II-37) with

the spin-wave energy Eq replaced'by qu (equations (II-38) and
(I1-41)). The spin-wave damping parameter Yq was included both

as a constant and as Y'q4 (equation (II-42)). For the latter

case the damping varies over the resolution volume and the numeri-
cal integration does ﬁot yield exactly the same parameters as in
the former cése.

The spectral shape functions were designated as Al and A2
for the Halperin and Hohenberg form with and without the explicit
wave-vector dependence of the damping respectively and similarly
as Bl and B2 for the double-Lorentzian form. Substituting in
equations (II-36) and (II-37) for the spin-wave energy and damping,
the mathematical expressions for the four spectral shape func-

tions are as follows:

yrginZqt
Al Foo(w) = ——5g3 5 8.2 3
q (w“=D*q*) % + y'“q°D*q
. ¥ D2’
Az Fo(w) = —5—5—3—3 734
d (w“-D%gq™)“ + yq D°q
e 0.5 I'g” 0.5 T'gqt
Bl FT%w) = +
g (w—Dq2)2+I“2q8 (w+Dq2)z+I"2q8
0.5 T . o.5r1
B2  F ' (w) = g * s -
! (w-Dg“) “+T, (wtDg®) “+T

Before the cross-section could be fitted to the expeérimen-
tal data, the magnitude of the background scattering had to be
determined. Since it was sometimes an appreciable fraction of
the intensity of the observed spectra of scattered neutrons, its

estimation had to be made with care.
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At most temperatures the spin-wave spectrum was broad so
that the magnon creation and annihilation peaks merged and the
wings on the high energy side of the peak had not levelled out
completely before disappearing under the longitudinal acoustic
phonon (Figure IV-1). This precluded an accurate determination
of the backgroundmat each of the temperatures.

It waé determined at lower temperatures where the creation
and annihilation spin-wave peaks are quite narrow and well separa?
ted. The energy spectra of scattered neutrons were measured star-
ting at negative energies so that the background could be the
average over the largest possible number of data points. The
counts between the creation and annihilation peaks were constant
except for statistical fluctuations and the intensity was approxi-
mately the same as at the wings of the magnon peaks at the
hiéher'temperatures. This gave confidence that the true background
was being measured and that it did not change significantly with
temperature. The background was measured for each wave vector
at which the spin dynamics were studied and was found to decrease
with increasing wave vector.

As well as a background independent of energy transfer,
there was a small narrow peak centered at w=0 with full width
at half maximum intensity less than 1 meV. This scattering is
independent of wave vector and of specimen teﬁperature and‘is'
believed to arise from incoherent elastic scattering in the
iron specimen. Its intensity could be most accurately determined

at low temperatures where it was well separated from the spin
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Figure IV-1
The energy spectra of scattered neutrons at q = 0.20 A-l and

0.26 A-l showing the position of the longitudinal acoustic pho-
non peak (labelled LA phonon) with respect to the magnon peak.
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waves. Both these "background" scatterihg coptributions were
subtracted from the scattering before detailed quantitative
analysis was performed on the data.

The fitting of the theoretical cross-section to the experi-
mental data will now be described. For each of the sﬁectral
shape functions there were two adjustable parameters, correépon—
ding to the spin-&ave energy and the damping e.g. D and v' for
the form Al. For each spectrum the initial values of these
parameters were estimated from the raw data. Using these values a
resolution-corrected cross-section was computed and its area
normalised to the observed spectral distribution. A goodness of
fit parameter F can be defined by the equation:

; N (1, (n)-Ig-I, (n)l} 2

F = o= ) . (Iv-1)
N-M n=1 Io(n)

for the N data points of the spectrum. Io(n) and Ic(n)'are the
individﬁal observed and calculated intensities, Ig is the back-
~ground and M is the number of fitted parameters (three in this
case). Best values of the spin-wave parameters were obtained by
minimizing F. The minimization was performed separately at each
temperature and at each wave vector. The total range of F for the
optimum parameters of the spin-wave energy and damping was frdm
0.4 to 0.2 and its value showed no systematic variation with
temperature. The average values of F for the four spectral shape

functions with which the data were analysed are as follows.

1.23

Al F = 0.96 Bl F

A2 F 1.08.

i

.1.00 B2 F

I
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Thé‘éverégé value from all the spectral forms was F=1.07.

A perfect fit of a theoretical curve to the data for a
counting experiment is expected to give F = 1.0 since the errors
are random and the standard error in an individual intensity is
equal to its square root. The average values of F from each of
the four spectral forms are not different from 1.0 at the .05
significance 1evei, which indicates that the basic cross—sectipns
we have used (equations (1I1-36) and (II-37)) are satisfactory
descriptions of the_experimental data. Also the difference between
the individual values of F from the spectral forms Al, A2 and Bl,
B2 is not statistically significant at the 0.05 level so that it
has not proved possible on this basis a}one to discriminate be-
tween them.

The estimation of the errors of the fitted parameters was
based on the Snedecor F test for equality of variance. When the
F value of a particular fit for about 25 degrees of freedom is 5/3
times the minimum value then, assuming that the errors are normally
distributed, at the .05 level of significance the error in the fit
is two standard errors. Tf it is assumed also that the error in
the fit varies linearly with the ratio of the values of F, then
when F is 4/3 times the minimum value the error in the fitted.
parameters is one standard error. The errors in the parameters
of the spin-wave energy and damping were determined by setting
one of them at its optimum value and varying the other. The
deviation of the varied parameter from its optimum value for which

F is 4/3 times its minimum value was taken to be the standard
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error of the parameter.

Since all the four spectral shape functions could be
fitted to the experimental line shapés equally satisfactorily,
emphasis will be placed on the results obtained using the form

Al and the differences where significant will be pointed out with

the results from the other forms.

C. Spin Dynamics Below the Critical Temperature

(i) General description of the results

Extensive measurements of the energy distribution of scat-

tered neutrons were carried out at the wave vectors q = 0.20 A-l
and 0.26 A-l for reduced temperatures between € = 0.067 and
e = 0.,005. In addition,measurements were also made at g = 0.14,

0.17 and 0.23 A—l at selected temperatures.

| In Figure IV-2 is given the température variation of the
measured energy spectra at q = 0.20 A—l for reduced temperatures
between € = 0.0407 and € = 0.0067. As the critical temperature
is approached, the spin-wave energy decreases and the width in-
creases until the magnon creation and annihilation peaks merge
into a single broad peak centered at w=0. Figure IV-3 shows
the wave-vector variation of the measured energy spectra at
e = 0.018. Included in the diagrams are the theoretical lines
of best fit using the spectral shape function Al.

From Figure IV-3 it can be seen that the integrated

intensity decreases while the spin-wave energy and width increa-

ses rapidly with increasing wave vector g. This tends to smear out
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Figure IV-3

The scattering at € = 0.018 as a function of wave vector q. The

spin-wave energy and width increase rapidly while the integrated

intensity decreases with increasing gq. The solid lines represent
the fitted line shape. : :
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t+he magnon peak for the largest wave vectors. In fact, no
'accﬁréte measurements were made for g greater than 0.26 A—l
because the‘scattered intensity was too low. Figure IV-1 shows
the energy spectra at q = 0.20 and 0.26 A_l for ¢ approximately
equal to 0.04 including the longitudinal acoustic phonon peaks
(labelled LA).  Since in Figure TV-2 it was seen that the magnon
peaks increése iﬁ energy with decreasing temperature, no measure-
ments were made for € greater than 0.07 because the magnon would
merge with the phonon peak and the location of the magnetic
scattering could not be determined accurately encugh to provide

useful information.

(ii) Spin-wave energy

It was found that the data could be fitted satisfactorily
as;uming that the spin-wave energy is given by Eq = Dq?f The
variation of the spin-wave energy with temperature is shown in
Figure IV-4. The values of the spin-wave constant D were obtained
using the spectral shape function Al. A complete list of the
spin-wave energy and damping parameters found using the four
different spectral shape functions is given in Tables IV-1
and IV-2. Figure IV-4 shows that at each wave vector the spin-
wave energy tends towards zero as the critical temperature Te
is approached. \

It is perhaps more illuminating to plot the spin—wa&e
constant D against tﬁe reduced temperature € on a log-log
scale (Figure IV-5). 1In the temperature range € = 0.067 to

€ = 0,005 the values of D fell on the same straight line of

slope 0.36%0.03 for all the wave vectors measured. This shows
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The variation of the spin-wave energy qu with temperature in
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¢“£;51e'Ig:ITLd%esolution—corrected values of the spin-wave
constant and the spin-wave damping parameter
found using the spectral shape functions Al and A2
Al A2

q(Afl) € D (meV A%)  y'(meV aY)y  D(mev a%) yq(mev)
0,14 0.0409 96.7%3.3 910+ 372 94.3% 3.7 0.35%0.17
0.14 0.0314 88.9%2.9 1241% 372  85.8% 3.1  0.48%0.17

- 0.14 0.0182 74.4%2.9 17601 370 70.7¢ 2.9 0.66+0.17
0.14 0.0093 59.112;3 2792+ 310 55.4% 2.5 1.16+0.29
0.17 0.0577 103.8%2.9 360+ 236 102.4% 2.9 0.29%0.21
0.17 0.0183 77.1%£3.1 1740+ 410 73.6% 3.7 1.550.41
0.17 0.0099 60.4%£3.7 2895+ 744 56.2 3.7 2.69t0.66
0.20 0.0667 110.0%2.1 '232% 145 108.8+ 2.1 0.37+0.29
0.20 0.0580 108.4%3.5 517+ 186 106.3% 3.7 0.79%0.35
0.20 0.0407 97.2%£3.1 744t 160 95.1%+ 3.3 1.24£0.29
0.20 0;0305 91.8:2,3 943+ 149 89.3+ 2,1 | l.57t0.25
0.20 0.0227 79.4£2.5 1323+ 186 76.9% 2.9 2.23%0.37
0.20 0.0173 72.8%2.9 1760+ 270 70.1% 2.7 2.98%0.50
0.20 0.0129 65.3%1.9 1861+ 207 62.5 2.5 3.31+0.41
0.20 0.0097 56.2t2.7 2609i 370 , 53.8% 2.9 4.47£0.62
0.20 0.0067 39.3%5.3 3528+ 614 34.3% 4.1 7.03%£1,00
0.20 0.0053 29.8+7.4 550011200 26.9+15.5 10.2 +5.5
0.23 0.0580 100.5%£2.5 314 91 99,3t 2.1 0.90%0.3
0.23 0.0181 79.8%5.4 1613+ 455 76.9% 5.0 4.90:0.6
0.23 0.0095 62.0%9.1 2399 993  60.0% 8.3 7.00£2.5

(continued next page)
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-1 AL 4 2

gla ™) € D(meV A°) y'({mev) A®) D(meV A") Yq‘(mev)
0.26 0.0659 98.4% 4.1 310£110 97.0%4.0 1.410.12
0.26 0.0580 101.0% 4.5 455165 98.5i4.5 1.984+0.83
0.26 0.0398. 93.5% 2.5 540+£124 | 92.0+2.5 2.44+0.58
0.26 0.0308 91.4% 4,5 609#165 85.0%4.0 2.65+0.83
0.26 0.0229 80.2i 3.7 7031174 79.0%4.0 3.31%:0.79
0.26 0.0175 74.4% 3.7 930+186 72.5i3.5‘ 4,30+0.91
0.26 0.0128 65.3% 4.1 1035%250 63.7+4.1 4,76x1.24
0.26 0.0098 62.0¢ 2.9 1260+250 60.2%3.1 5.4610.62
0.26 0.0073 46 .0 7.4 1640620 46.3%4.6 7.20%1.50
0.26 0.0053 39.7£10.6 2006827 43.0+5.4 7.9012.28
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Table IV-2 Resolution-corrected values of the spin-wave
constant and the spin-wave damping parameter
found using the spectral shape functions Bl and B2

Bl B2
q(A—l) € D (meV Az) 'Y (meV A4) D (meV A2) Pq(meV)
0.14 0.0409 93.5% 3.3 488+215 91.0 2.9 0.20%0.08
0.14 0.0314 84.8% 3.5 7031281 8l.7+ 3.3 0.27+0.12
0.14 0.0182 67.0% 3.3 8891186 64.1+ 3.1 0.37+0.08
0.14 0.0093 49.8% 2.5 1005+186 47.1% 2,1 0.43:0.04

0.17 0.0577 102.6% 2.9 2072120 101.3%f 3.1 0.1910.12

0.17 0.0183 69.5% 4.8 893+223 66.2t 4.1 0.79+0.16
0.17 0.0099 53.8% 4.4 1249289 50.0% 3.7 1.07x0.25
0.20 0.0667 - - 107.9% 2.0 0.25%0.17

0.20 0.0580 106.3% 2.9 294% 87 104.2% 3,3 0.4810.19

0.20 0.0407 93.9% 3.3  443£103 91.8% 3,3  0.72£0.19
0.20 0.0305 87.7+ 3.3  546:120  84.8% 2.9  0.870.17
0.20 0.0227 72.6% 3.3 695116 69.9+ 2.9  1.18£0.17
0.20 0.0173 64,94 4.1 885165 62.0% 3.5  1.45%0.21
0.20 0.0129 56.9t 3.5 848137 54.6% 2.5  1.43%0.17
0.20 0.0097 50.9% 3.3  972¢145 48.4%+ 2.9  1.6120.17
0.20 0.0067 39.9% 2.7 918116 38.3+ 3.1  1,55%0.19
0.20 0.0053 40.1% 3.7 918157 38.3t 2.5  1.55%0.21
0.23 0.0580 99.2: 2.1  182% 58 97.8+ 2.1  0.52:0.14
0.23 0.0181 74.0% 4.1 893256 70.7+ 6.2 2.5 0.7
0.23 0.0095 57.1#11.6 1117393 55,8+10.3 3.0 *1.2

(continued next page)
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D (meV Az)

' (meV A4)

q(a” € D (meV A%) Tq (meV)

0.26 0.0659 97.6%3.9 186 70 96.4t4.1 0.91+0.37
0.26 0.0580 .99.2%4.6 261t 91 97.1%4.6 1.20%0.46
0.26 0.0398 91:0i2.5 290t 62 89.3+2.5 1.36%£0.66
0.26 0.0308 84.0%4.8 347+ 91 81.9+5.0 1.61%0.45
0.26 0.0229 76.1%4.6 426+128 74.0%4.1 | 1.94+0.54
0.26 0.0175 68.9%4.8 496t 99 67.0;4.1 2.32%0.45
0.26 0.0128 58.9%5.2 509+108 57.5%4.5 2.40%£0.50
0.26 0.0098 56.2%5.0 ‘567+£137 54.6t2.5 2.32+0.37
0.26 0.0073 43.8%5.8 562+137 42.615.4 2.65%+0.62
0.26 0.0053 41.4%5.6 546165 40.1%5.4 2.650.66
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that the effect of the ferromagnetic phase transition on the spin
dynamics is to renormalize the spin-wave energy to zero as T, is
approached and that the temperature variation of D is'given by a
simple power law with critical exponent 0.36x0.03.

The dynamic scaling hypothesis of Halperin and Hohenberg
(1969) predicts that in the hydrodynamic region (g much sméller
than the inverse correlation length Kl) below Tc’ D varies as €
to the power (v'-8) (equation (II-43)), where v' and B represent
respectively the critical exponents describing the temperature
dependence of the spin-spin correlation range £ and the magneti-
zation. The experimental values for B in iron are 0.389+0.005
from magnetization measurements (Arajs, Tehan, Anderson and
Stelmach, 1970) and 0.342+0.004 using M8ssbauer effect (Preston,
1968). Since Arajs et al. measured the magnetization directly,
their value of the critical exponent B is used in the comparison
of the dynamic scaling prediction with our result. As yet, there
exists no experimental determination of Vv'. Assuming the re-
sult of the static scaling hypothesis, namely that v' =V and
taking the average of the experimental values of v determined by
Passell et al. (1965), Bally et al. (1967) and by Parette and
Kahn (1971) which is v = 0.70£0.10, then v'-8 = 0.31£0.10.
This agrees with our experimental result. Using the value of
B by Preston, V'-B = 0.36+0.10 which also agrees with our fesult.

The line of best fit to the values of the spin—ﬁave constant
D (dashed line) found by Collins et al. (1969), at smaller wave

vectors than were used in the present experiment is in-
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‘cluded in Figure IV-5. Both their critical exponent 0,37:0.03f
and their absolute values of D agree very well with our results.

This indicates that to at least q = 0.26 At

in iron the spin-
wave energy can be expressed as qu to within a few degrees below
the critical temperature. The temperature variation of D does
not follow the prediction of spin-wave theory (equation (11-39)).
This is only to be expected since the temperatures used were
higher than those where spin-wave theory is applicable.

Fitting the data with the four different spectral shape
functions resulted in small differences in the corresponding
values for D (Figure IV-6, Tables IV-1 and IV-2). The observed
difference was systematic, the greatest being the spectral shape
functions Al and B2 where the average difference was 1.5 times
the standard error. In particular, a) the spin-wave énergies
found using the spectral forms Bl and B2 were smaller by about
one standard error than those found using the corresponding
forms Al and A2 and b) The slope of D plotted against e was stee-
per (0.39+£0.03) fox the log-log plot from the former compared to
(0.36+0.03) obtained from the latter (Figure IV-6).

However, the values of D from each of the four spectral
forms fell on the same straight line for all the wave vectors
measured. Thus the general conclusions concerning the tempera-
ture and wave-vector variation of D given above apply to all

the different spectral forms used.
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This behaviour is similar to that found by Passell et al.
{1972) for EuO when they analysed their data in a similar fashion
using the forms A2 and B2.

As the critical temperature is approached, the values of
D become less accurate because of the increasing ratio of the
magnon width to i;s energy. When the magnons were almost over=-
critically damped, D and Y were highly correlated for the spectral
shape functions Al and A2 and the fitting was more sensitive to
the product Dy than to their individual values. However for €
greater than 0.01, the correlation was much less and D and Y
could be separated more satisfactorily. The correlation was much
less pronounced using the forms Bl and B2, For e less than
0.005 the magnons were over-critically damped at q = 0.20 and
0.26 A_l and it was no longer possible to extract any physically
méaningful values of D and Y. ' |

Our critical index of D (0.36x0.03) is equal within ex-
perimental errors to that found in Ni (0.39:0.04) by Minkiewicz

et al. (1969) and in EuO (0.33) by Passell et al. (1972).

(iii) Spin-wave damping

The second parameter determined from the data below T,
was that of the spin-wave damping. The damping parameter gives
the energy width of the magnon spectra. When the spin-wave
energy is much greater than its width, the damping term is equal
in magnitude to the width. However the dependence is complicated

when the magnons start to become critically damped since the

energy spectra become asymmetric (Figure I1-2).
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e fng”yariation of the spin-wave damping Y'q4 with tem-
perature is shown in Figure IV-7. The values of the spin-wave
damping parameter vy' were obtained using the spectral shape func-
tion Al and are given in Table IV-l. Figure‘IV—7 shoWs that
the damping tends to diverge at the critical temperature.
In Figure IV-8, the spin-wave damping parameter Y"is

plotted against the reduced temperature € on a log-log scale.
1

Of interest is the temperature variation of y', at q = 0.20 A~
for € between 0.06 and 0.005, to which a straight line of slope
-0.96:0.10 can be fitted. Thus v' tendé to diverge at the
critical temperature T, . with critical exponent -0.96%0.10
Halperin and Hohenberg predicted, using dynamic‘scdling,
that in the hydrodynamic reéion the critical exponent of the
damping parameter Y' is -(v'+B) (equation (IV-44)). The experi-
mental values of v and B, with B from Arajs et al. (1970), yield
-(§'+B) = -1.09+0.10 which agrees within experimental efror
with our result. If B is taken from Preston (1968), then
-(V'+B) = 1.04%0.10 which is also in agreement with our result.
However, for g = 0.26 A-'1 in the same temperature range, Y' varies
only as € to the power -0.67+£0.12. Although it seems that at
this wave vector the divergence of v' can still be described
by a simple power law, the value of the resulting critical ex-
ponent is smaller than that predicted by dynamic scaling.
In Figure IV-9 the spin-wave damping parameter r' ié
plotted against the reduced temperature € on a log-log scale.
The values of r' were found using the spectral shape function

Bl and are listed in Table IV-2. The temperature variation of P',
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Figure IV-7

Variation of the spin-wave damping v' q4 with temperature in the
vicinity of T, at the different wave vectors measured.
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Figure IV-8

The spin-wave damping parameter Yy' plotted against € on a log-log
scale. The linear fit shows that y' diverges at Tg with dif-
ferent critical exponents at g = 0.20 A=l and 0.26 a~l, The
critical exponent of y' at q = 0.20 a~l is -0.96%0.10.
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for q = 0.20 A-l, appears to have a change in slope when €
equals approximarely 0.015 which is close to the temperature
where the spin waves start to become critically damped
(Figure IV-2). There also seems to be a change in slope at about
the same temperature for g = 0.26 A_l; however it is less de-
finite. A possib;e explanation is thgt the form Bl is sensitive
to the boundary between the hydrodynamic and the critical regions
(Figure II-1) and the change in slope corresponds to this
boundary. From the definitions of the hydrodynamic and critical
regions in Chapter II it seems reasonable to take the boundary
between them at q approximately equal to K;. Since the inverse
correlation range K, is proﬁortional to the reduced temperature'
¢ raised to the power v' (equation (11-26a)), one would expect
the change in slope to occur at a larger value of € for q = 0.26
A—l than for g = 0.20 A l. Because of the experimental uncertaln-
ties in r', this possibility cannot be ruled out.
Another possibility is that the description-of the data
given by spectral form Bl is not as satisfactory as that given
by the form Al. This, in fact, is the simplest interpretation of
the data and so must be looked upon in the first instance as the
most likely interpretation. This is discussed further in Chapter V.
Figure IV-9 shows that when the reduced temperature € is
_greater than 0.015, the slope of the spin-wave damping parameter
I'' plotted against € on a log-log scale is ~0.87+0.12 for q = 0.20

a~Y and -0.69%0.12 for g = 0.26 a~l. These critical exponents
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égkéé wiéhin experimental errors with those obtained using the
spectral form Al for the corresponding wave vectors; however .

they are smaller than -(v'+8) = 1.09 predicted by dynamic scaling.
When € is less than 0.015, there was a marked difference in the
temperature variation of the spin-wave damping obtained from the
spectral shape-functions Al and Bl. While ¥' continued to diverge
with the same criﬁical exponent as for € greater than 0.015, T’
remained approximately constant as the spin waves were becoming
critically damped. AS expected the temperature variation of

the damping did not follow the prediction of spin-wave theory:
given in equation (II-40). However, as shown below, spin¥wave
theory is correct in assigning the q4 term as the dominant wave-=
vector dependence.

Figure IV-8 shows that at q = 0.14, 0.17, 0.20 and 0.23 A—l,
vy' determined using the spéctral shape function Al was the same
within experimental error at each of the temperatures measured,
indicating that the spin-wave damping is proportional to q4 in
accordance with the predictions of hydrodynamic theory (equation
(11-42)). gimilarly, using the form Bl the damping was found

to be proportional to q4 for q between 0.14 and 0.23 A—l. However

this wave-vector dependence breaks down suddenly at q = 0.26 A_l
for both spectral shape functions because the values of y' and
I'' determined at 0.26 A—l were significantly lower than at the
smaller wave vectors. Thus, at g = 0.26 A_l neither the wave-
vector nor the temperature'dependence of the spin-wave damping

follows the predictions of the hydrodynamic theory oXx of dynamic

scaling.
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A possible source of the sudden change in the wave-vector
dependence of thé damping at q = 0.26 A—l is a change in the
screening of the electrons when the magnon wave vector equals
twice an extremal Fermi surface radii in the same direction. Ai-
though the Fermi surface in iron is not completely known, several
of the extremal :adii were measured by Gold et al. (1971) using the
de Haas—van‘Alphen effect.

Since all the spin waves were measured in the [110]
direction we are only interested in the projection of the Fermi
surface on the (110) plane. Of the several pairs of Fermi sur-
fades perpendicular to the (110) plane, there was one with an ex—'

l; This was the neck of the minority

tremal diameter of 0.25 A~
spin surface VIb (notation of Gold et al.) whose axis is along
the [001] direction. Our results suggest that for wave vectors

1

q less than 0.25 A ~, these electrons contribute significantly

to the spin-wave damping, but for larger wave vectors they are
unable to follow the spin-wave motion and do not contribute
towards the damping.

The values of Yq and Fq found using the spectral forms A2
and B2 were equal within'experimental error to the corresponding

Y'q4 and P'q4

(Tables IV-1 and IV-2). Hence, none of the above
conclusions,regarding spin~-wave damping, were altered when the
results were analysed using the spectral shape functions in which
the wave-vector dependence of the damping was not explicitly

included.
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It was seen in Chapter II that the predictions of dy-
namic scaling for the spin-wave energy and damping were only
applicable in the hydrodynamic regibn. As yet the boﬁndary for
the hydrodynamic region below To is not known. It could be
tentatively assumed that the boundary between the hydrodynamic
and the critical regions is at g approximately equal to K, and
that Ky has the same values below Tc as above. Thus q = K; when

¢ n 0.035 for q=0.14 A", € ~ 0.06 for g=0.20 A™' and € ~ 0.08 for

q=0.26 A—;. On this basis, it appears that most of the measurements
were made outside the hydrodynamic region. Thus, the experimental
results indicate that the spin dynamics of iron follow the pré-
dictions of hydrodynamic théory even outside the expected range of
validity of that theory. There is in fact no breakdown of the
hydrodynamic predictions for q less than 0.26 A_l, at least until
the spin waves become over-critically damped. |

It is interesting to compare our observations with those
of Passell, Als-Nielsen and Dietrich (1972) for the Heisenberg
ferromagnet EuO. They analysed their data using the spectral
shape functions A2 and B2, put for the spin-wave damping they
only presented their results obtained with the form A2. Their
findings are substantially the same as ours, namely that the tem-
perature variation of the spin-wave energy and damping is not
very different from what is expected in the hydrodynamic région.
However they found that the wave vector variation of the damping

was considerably less than q4.
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(iv) Susceptibility

The intensity at a given ¢ integrated over all w is pro-
portional to the wave-vector-dependent susceptibility'x(q)
(equation (II-17)). The integrated intensity was determined for
all the spin waves measured and the calculation of errors consi-
dered the statistical fluctuation of the individual counts as
well as theverror in the background. The integration was over
the resolution-broadened spectrum; however the effect of the
resolution is only expected to change the areas under the spec-
trum by a small amount.

In Figure IV-10 the wave-vector-dependent transverse
susceptibility x(q) is plotﬁed against the reduced temperature €.
It shows that X (q) increases with increasing temperature for all
wave vectors up to € = 0.005. However at all temperatures x ()
décreases.rapidly with increasing q.

In Chapter II there were two different predictions for
the form of x(q). Firstly, the low-temperature form for the
neutron scattering cross-section for a Heisenberg ferromagnet
gives a susceptibility x(q) which varies as kBT/Dq2 (equation
(£1-52)) when the thermal energy kBT is very much greater than
the spin-wave energy qu. In the vicinity of T kBT is approxi-
mately 80 meV. The spin waves measured had energies less
than 7 meV; hence the above condition is satisfied for all.
the data. If the above form of x(g) was valid at temperatures
approaching Tor then the intensity should increase rapidly since

.D is being renormalized to Zzero.
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Figure IV-10

The transverse susceptibility x(q) plotted against € below Ti.
x {q) increased with increasing temperature at all wave vectors
up to the highest temperature measured.
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Sécbndly, Marshall and Murray (1968) predicted that
x (q) varies as <SZ>kT/Dq2 (equation (II-53)). <s? is propor-
tional to the magnetization which in a zero magnetic field

vi-8 (equation (II-43)).

varies as aB near T, and D varies as €
Both theory and experiment give that B equals approximately
(v'-B), hence <Sz> is expected to have almost the same tempera-
ture variation as D so that in this case x(q) should depend on
the temperature only weakly.
Plotting x(q)Dq?/T against € on a log-log scale (Figure
IvV-11) shows that when € is geater than 0.01 data points appear
to be independent of temperature within experimental error soO
that x(g) appears to have a form similar to that predictéd by
the low-temperature theory (equation'II—52)). Howevér for tem-
peratures closer to T, this behaviour changes and the curve turns
downwards. This change corresponds to the temperature region
where the spin waves are becoming critically damped. Figure
Tv-11 also shows that up to the wave vector q = 0.23 a~t
x(q) is proportional to q—2 within experimental errors as expec=
ted, but at q = 0.26 a~t x (q) appears to have a value somewhat
lower than would be predicted by the q—2 law. This could pos-
sibly be related to the anomaly observed in the spin-wave daméing.
x(g) in iron was measured below 0.7 T by Collins et al.
(1969) and by Stringfellow (1968) . They also observed that
x(q) increased with increasing temperature ; however their

measurements were somewhat different from those of our experi-

ment.
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The measurements of Collins et al. were similar to
ours, but at smaller wave veétors. They found that x(q) ap-
peared to be proportional to T/q2 below 0.7 To» whichlis similar
to the temperature behaviour of the form of X(q) predicted by
Marshall and Murray (equation (rr-53)), and is close to our
observations. |

Stringfellow, used a scattering-surface technique to
measure the spin—wavezscattering cross-section below 0.7 Tc‘
He found that X‘qqu decreased linearly with increasing

T<8“>
temperature. Since the slope was quite small, his result was

close to the prediction of Marshall and Murray and to the obser-
vation of Collins et al. |

The approximate limit of validity of the.theory of Marshall
and Murray is 0.7 T, and it appears that it 'is in satisfactory
agreement with the experiments. However, it has already been
seen that neitﬁer predictions of spin-wave theory concerning
the temperature dependence of the magnon energy and damping are
in accord with the experiments near Te Thus it is not.entifely
surprising that our observation of the temperature variation
of x(q) is somewhat different from the prediction of Marshall.
and Murray and from the experiments at lower temperatures.

There was no evidence of a zero energy diffusive peak be-

low Tc. The theoretical spectral shapé functions fitted well
~ the complefe spectrum at all temperatures with no systematic
difference at zero energy that may be expected if there was a

narrow unresolved central peak present (Figures Iv-2 and IV-3).
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From the accuracy of the experiment it was estimated that if .
a diffusive peak does exist, its intensity is less than 3% at

1 1

o oo
qg=0.20 A and less than 5% at g = 0.26 A of the intensity

of the magnon peak, assuming that it extends no further than 2.0
meV.

It is of course entirely possible that an extremely broad
central peak exigfs at all temperatures; we would have no way
of observing such a peak; The absence of the diffusive peak
agrees with the observations of Collins et al. (1969) at very
small wave vectors in Fe, Minkiewicz et al. (1969) in Ni and
Passell et al. (1972) in EuO. Hence, this feature appears to be

characteristic of isotropic ferromagnets which differentiate

them from antiferromagnets and from anisotropic ferromagnets.

D. Spin Dynamics Cloée to and Above the Critical Temperature

Extensive measurements of the energy distribution of scat-
tered neutrons were carried out for the temperature range
(Tc-l.7)°K to (Tc+118)°K at the same wave vectors as below Tc »
namely at ¢ = 0.20 and 0.26 A_l . In addition measurements were
also made at q = 0.23 A_l at several temperatures similar to
below Tc' The scattering at wave vectors greater than g = 0.26
A-l was only measured at Tc for g = 0.29 A—l where already the
péak intensity of the spectrum was less than the background, and
in order to obtain an accuracy that was comparable with that

1

at ¢ = 0.26 A~ the counting time required was twice as long.

Figure Iv-12 shows the variation of the spectrum of scat-

1

tered neutrons with temperature above T, at g = 0.20 A”~ which
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Figure IV-12

The scattering at g = 0.20 a1 plotted as a function of tempera-
ture above T,. The solid lines represent calculated peak shapes
using the Lorentzian spectral form given in equation (IV-2).

There does not appear to be any shoulders that could be attributed
to remnant spin waves.
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was representative of the data at thé other wave vectors. The
energy spectra showed a broad peak, centered about w= 0,and
even near T, there was no definite shoulder that could be attri-
buted to remnants of spin-wave excitations. |

The frequency dependence of the scattering could be fit-
ted satisfactofily over the entire temperature range with a

Lorentzian spectral shape function (equation (11-45))

T'plQ)

F (w) =
q w2+FT2(

(1v-2)
q)

where TT(q) is the characteristic frequency or the width para-
meter. The fitting procedure wés exactly the same as for the
scattering below Toe The background was taken into account in
the same way as for the data at lower temperétures. The inten-
sity at the wings of the distribution went smoothly down to a
level equal to that assigned as the background level, indicating
that the assumption of a temperature-independent background in-
troduced earlier is in fact quite satisfactory. The wave-vector
dependence of the width parameter FT(q) was not included explicitly
when fitting the resolution-corrected cross-section (equation
(IV-2)) to the obserwved intensity. Theories given in Chapter -
II predict that the q dependence of PT(q) changes from PT(q) =

c qs/2 (equation (II-47)) on going from the critical region to
PT(q) = C Kll/2q2 (equation (II-49)) in the hydrodynamic region.
According to Résibois and Piette (1970) and verified experimen=-

tally by Parette and Kahn (1971) the hydrodynamic region does
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not start until the ratio Kl/q is greater than 4. At the highest
temperature where the scattering was measured, (Tc+1l8)°K,

1 1

oL o
Ky = 0.34 A ~ which for g = 0.20 A

yields the ratio Kl/q = 1.7.
Hence, although our measurements start in the critical region,
they do not extend into tﬁe hydrodynamic region. Nevertheless
there still could be a change in the g dependence of PT(q) and
although it would be possible to use some iterative method to make
(at least approximately) such a correction to the spectral shape
function, the data of part C indicates that the use of a constant
FT(q) over the resolution function does not introduce any large
errors. The values of FT(q)_are given in Table IV-3.

The F value, the statistical measure of the quality of
fit (equation (IV-1)) was on the average 1.2 . The total range
of F was from 0.6 to 2.0 and it varied randomly with temperature.
We observed no shoulders in the spectra at‘or just above Tq which
could be due to remnants of spin waves. Collins et al. observed

weak shoulders at q = 0.15 A_l

up to (Tc+3)°K however they were
not statistically significant.. Thus it appears that there are
no propagative excitations above T in iron.

It should be noted that we observed that the scattering
changed its character from a critically-damped spin wave at
(Tc—5)°K to a mode that, within the accuracy of the experiment,
appeared completely diffusive at (Tc-l.7)°K. In between the
scattering was a broad peak centered at w = 0 with definite

shoulders indicating a propagative nature. It was not possible

to asgsign meaningfully to the spectra a spin-wave energy or damping



111

R D AT TR TR Uy L/

Tabié'IV;3' Resolution-corrected values of the width of the
diffusive peak found neglecting the wave vector
dependence of the width

gl (1T )oKk To(@ mev)  q7h) (T K Tylq) (meV)

0.20  -1.7  2.40 £ 0.30  0.26  -1.6  5.75 t 1.34
0.20 0.0  2.31 £ 0.30  0.26  =0.8  4.96 * 1.24
0.20 0.2 2.11 & 0.29  0.26 0.0  4.70 & 1.45
0.20 3.2 . 2.13 £ 0.21  0.26 3.2 3.90 £ 0.80
0.20 6.8  1.72 & 0.17  0.26 7.1 4.10 % 0.45
0.20  12.3  1.55 & 0.15  0.26  11.8 3,60  0.70
0.20  17.4  1.65 ¢ 0.21  0.26  15.1  3.20 £ 0.60
0.20 29.4  1.37 £ 0.19  0.26 18.3  3.20 % 0.80
0.20 41.9  1.12 + 0.15  0.26  29.1  2.80 & 0.60
0.20  56.4  1.12 £ 0.15  0.26  41.7  2.90 & 0.60
0.20 77.9  1.28 % 0.17  0.26  57.0  2.40 % 0.35
0.20  118.8 1,20 & 0.17  0.26  77.4  2.85 % 0.40

0.26 117.9 2,80 £ 0.45

0.23 ~0.8 3.85 £ 0.87
0.23 0.2 3.47 ¢ 0.50 0.29  =0.3 6.00 £ 0.83
0.23 11.4 2,73 = 0.50
0.23 27.9 2.34 + 0.45
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and also the spectra could not be fitted satisfactorily by a

Lorentzian form (equation (IV-2)).

Figure IV-13 shows Tn (g) plotted against q on a log-log

c
scale for g between 0.20 A_l and 0.29 A-l. FT (q) varies as q
c

to the power 2,8:0.3 with a proportionality constant equal to

c' A 200 meV AZ'B_(c.f. equation (£I-47)). This critical
exponent is equal within experimental error to the prediction of
dynamic scaling (eqﬁation (I1I-47)) for Heisenberg (Halperin and
Hohenberg) and itinerant (Hertz, 1971) ferromagnets. It also
agrees'favourably with the value of 2.7%0.3 found by Collins

et al. in Fe at smaller wave vectors and is close to the value
of 2.46:0.25 observed by Miﬂkiewicz et al. (1969) in Ni. Als-
Nielsen (1970) fitted the éata of Collins et al. at T, to a

5/2

q power law and came to the conclusion that their values of

FT (q) could also be fitted satisfactorily by c qs/2 where
c z 130 meV A5/2. This is shown on the dashed line in Figure
Iv-13; it also gives a satisfactory £it to our data.

In Figuré Iv-14 FT(q) is plotted against (T-Tc) for
q = 0.20, 0.23 and 0.26 A"~ and it shows that the width of the
diffusive peak narrows markedly with increasing temperature in
the vicinity of T, then it slowly levels out at the higher
temperatures. This in fact is exactly the qualitative behaviour
predicted by Résibois and Piette (1970). The dynamic scaling
prediction (equation (11-46)) for the width of the zero energy

peak above T, was given in Chapter II. Résibois and Piette (1970)

calculated theoretically that the scaling function f(Kl/q) de-
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Figure IV-13

PTc(q) plotted against q on a log-log scale. The data have been
cofrected for instrumental contributions to the width. The solid
line is the best fit to the data and its slope is 2.8:0.3. The
dashed line is the bést fit to the data of Collins et al. Dynamic
scaling predicts the slope to be 2.5.
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creases with increasing Kl/q from unity at Kl/q = 0 until a
minimum value is reached at Kl/q equal to approximately 1.0,
After this, it slowly increased until Kl/q is equal to or larger
than 4 when the asymptotic form f(Kl/q) n (Kl/q) 1/2 (equation
TII-48)) is attained.

Figure IVf;S shows FT(q)/P (q) plotted against Kl/q where
T (q) = c'qz'8 is the width of the diffusive peak at T, and the
vaiues of k, are from the line of best fit to the experlmental
values found by Bally et al. (1967). The scaling function f(Kl/q)
calculated by Résibois and Piette (1970) is also included in
Figure IV-15, and the agreement with our experimental results
is very good. Figure TV-16 shows T (q)/F (q) plotted against

l/q with Kq from the line of best fit to the experimental

values found by Passell et al. (1965) and Parette and Kahn (1971)
respectively. Again, there is good agreement between our
experimental values and the theoretical scaling function.

1t should be noted that the spin dynamics at and above
T, were not anomalous at q = 0. 26 A l. The reason why there is
an anomaly below T, but not above is not understood.

Analysis of the data was also made at five different

temperatures with a q2 wave-vector dependence in the width para-

meter. The corresponding spectral shape function was

Fq(w) 2 124 °
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Figure IV-16
PT(q)/PTc(q) plotted against k1/q above T.. The solid curve is
the theoretical scaling function f£(x1/9q) calculated by Résiboils

and Piette.
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Table IV-4. Resolution-corrected values of the width para-
meter of the diffusive peak found assuming
that the width is proportional to the square
of the wave vector.

g™l (T-T ) °K Fé(mev a?)
_o.éo . 0.0 55.8 * 5.8
0.20 3.2 51.7 t+ 5.8
0.20 29.4 31.8 ¢+ 4.1
0.20 56.4 27.3 + 3.7
0.20 118.8 28.9 + 4.1
0.26 0.0 67.4 * 16.5
0.26 3.2 55.8 + 10.8
0.26 29.1 40.5 t 9.0
0.26 57.0 34.3 ¢ 5.0
0.26 117.9 40.5 + 6.2
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fﬁé“resﬁlting cross-section when broadened by the instrumeﬁtal
resolution fitted the scattering eqﬁally well as the spectral
form (equation (IV-2)) without the explicit wave-vector depen-
dence of the width parameter. The optimum values of Féqz (Table
IV-4) were on the average smaller by 25% of the standard exrror
than the respective PT(q). Since the difference was independent
of temperatﬁre ouf conclusions were left unchanged.

Figure IV-17 shows that x(g) was the largest at T = T,
and at all Wave vectors decreased with increasing temperature,
the decrease being fhe greatest near Tc' At éll temperatures
x{q) decreased with increasing q. It is more instructive to
plot the product x(q)(q2+K12) against temperature (Figure IV-18);
the values of k, are from Bally et al. (1967). The resultant
products are equal within the experimental errors at the dif-
ferent wave vectors and have a weak temperature variation near
Tc ,but increase at a faster rate at higher temperatures. In
Chaptei II, it was shown that x(q)(q2+K12) is proportional to

—ii (equation (II-50)), where rq is the Ornstein-Zernike intexr-

xr
action range. Our result for the temperature variation of ry

is consistent qualitatively with that of Bally et al. (1967)
and of Passell et al. (1965). In Figure IV-19, X(q)(q2+K12)

is plotted against temperature, with the values of Ky from Passell

et al. (1965) and from Parette and Kahn (1971). The resulting
temperature variation of ry agreed with that of the previous

experiments of Passell et al. and Bally et al.
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Figure IV-19

x(q)(q2+K12) plotted against temperature above T _, The values

of k] are from Passell et al. (top) and from Parefte and Kahn
(bottom). x(q)(q2+nlz)is directly proportional to l/r12 where rj
is the effective inté&raction range of the Ornstein-Zernike
correlation function.
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CHAPTER V
CONCLUSIONS

The spin dynamics 6f iron in the vicinity of the cri-
tical tempefature was measured by the technique of neutron
spectroscopy in order to study the magnetic pgése transition.

It was found that most of the experimental results
agreed with theory for the critical properties of a Heisen-
berg ferromagnet. This result is in accord with the empirical
observations that in general the spin dynamics of iron at low
temperatures behave in a'manner that may be expected for a
Heisenberg ferromagnet, and that the metallic properties
~are not evident.

Another important observation was that the behaviour
of various quantities describing the critical spin dynamics
could be interpreted in terms of simple power laws. The ex-
ponents extracted from these power laws can be used to
describe the behaviour of dynamic as well as static quan-
tities near the critical temperature. Hence our data tends
to support the proposition that critical exponents are a
powerful way of describing critical phase transitions.

Below the critical temperature the spin-wave energy
and damping were studied extensively and the results indicate

that they behaved as predicted in the long wavelength limit

123
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even at wave vectors that were oufside the expected range of
validity of the theory.

The wave-vector variation of thé spin-wave énergy was
in accord with the predictions of spin-wave and hydrodynamic
theories. The spin-wave energy was observed to be renormalized
to zero as the critical temperature was approached and its
temperature variation could be described in terms of a power
law. The critical exponent of the spin-wave constant was '
0.36:0.03, which agrees with the predicted value of 0.31%0.10
from dynamic scaling hypothesis. Our value is the same within
experimental error as has been observed for europium oxide
and for nickel. Our data is also in accord with earlier measure-
ments in iron.

In order to study the spin-wave damping, theoretical
line shapes were fitted to the observed scattered neﬁtron spec-
tra. The damping was included as a parameter on which the
width of the line depended. There were two such theoretical
spectral shape functions fitted; one a double-Lorentzian form
that has been commonly used in the past for interpreting ex-
perimental data, and another form derived by Halperin and
Hohenberg from hydrodynamic theory.

When fitting to the experimental data the average of
the minimum F values, which measures the goodness of fif, was
smaller for the Halperin and Hohenberg spectral forms than

for the double-Lorentzian form. However the difference was not
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significant at the 0.05 level. Nevertheless for five out

of the thirty magnons, o which the theoretical cross-section
was fitted, the minimum value of F obtained using the Halperin E
and Hohenberg form was smaller, at 0.05 significance level,
than that obtained using the double-Lorentzian form but never
higher. This evidence from the least squares fitting is

not overWhelming put it indicates that the Halperin and Hohen-—
berg spectral form is somewhat better than the double-
Lorentzian form in representing the experimental data.

The hydrodynamic theory prediction that the spin-wave
damping is proportional to q4 adequately described our results
for both spectral shape functions for wave vectors between
0.14 A~T and 0.23 a~l. However the temperature dependence
of the damping of the two spectral shape functions was markedly
different.

The temperature variation of the damping found using
_ the Halperin and Hohenberg spectral form was continuous over
the complete temperature range and could be described by a
power law variation. In contrast the temperature variation of
the damping found using the double-Lorentzian form was more
complicated and it had a discontinuity of slope near the re-
duced temperature € = 0.015. At temperatures below this
value the damping varied similarly to that found using the

Halperin and Hohenberg form, but at temperatures above the



PR AR R 1Y

126

Ve g
I

damping‘remained approximately constant.

Generally in physics preference is given to the
theoretical expression that gives the simplest description of
the experimental results. Hence our results indicate that
the spectral shape function predicted by Halperin and Hohen-
berg not only is somewhat better in representing the
data,but is aléo more useful than the double-Lorentzian form
in describing the critical properties of the spin dynamics of
iron.

For the Halperin and Hohenberg spectral form at a

wave vector of 0.20 N

the damping varied as the reduced
temperature to the power -0.96+0.10. This critical exponent
was in satisfactory agreemert with the predicted value of
-1.09+0.10 from dynamic scaling. Spin-wave damping in iron

" has not been previously measured and the results obtained for
the wave-vector and temperature dependence constitute a notable
success for the theory.

The spin waves became over-critically damped a few
degrees below the critical temperature, so that it is not
possible to measure the temperature variation of the spin-wave
energy and damping right up to the critical temperature.
However the simple power law variations were observed to hold
over a range of reduced temperature of more than a decade.

The critical exponent v' of the correlation range below

the critical temperature can be determined from the experimental
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critical exponent of the spin-wave energy and damping using
a relation between critical exponents given by dynamic scaling

hypotheses (equations (II-43) and (II-44)). It is found that

v = 0.66 * 0.05 .
This is equal within error to both the experimental and theo-
retical values of the critical exponent v of the correlation
range above the critical temperature. The critical exponent
v' has not been found previously for iron and the equality
with v agrees with a prediction of static scaling.

Measurements at wave vector 0.26 A"l

show anomalous
damping both with respect to wave-vector dependence and tempera-
ture dependence. This is believed to be caused by the changé

in the electron screening at the region of the Fermi surface

_ where the extremal diameter is 0.25 A'-1 in the [110] direction.
This was the only §bserVation which coﬁld not be explained
without invoking:the metallic properties of iron.

The transverse susceptibility below the critical tempera-
ture increased with increasing temperatdre. However at non-
zero wave vectors the susceptibility did not seem to vary
rapidly as the critical temperature was approached from below.

No evidence was found to support the existence of
a diffusive mode below the critical tehperature. It was esti-
mated that if it does exist, it is very much less intense than
the spin-wave modes. This is in accord with previous obser-

vations on isotropic ferromagnets.
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At temperatures equal to and above the criticél tem-
perature there was only a diffusive peak present with no
evidence of remnant spin waves. At the critical temperature
the width of the diffusive mode was found to vary as the
wave vector g to the power 2.8+0.3, in agreement with the pre-
dictions of dynamic scaling and with earlier measurements in
nickel. Our data is also in satisfactbry agreement With the
earlier measurements in iron. Above the critical temperature
the temperature and the wavé—vector dependence of the width
of the diffusive mode supported the theoretical scaling func-
tion of Résibois and Piette (1970). It was also found that
the susceptibility was adequately described by the Ornstein-
Zernike form.

The experimental results showed that»the ferromagnetic
phase transition in iron is reflected'in a rapid chahge of
the spin dynamics near the critical temperature. This is in
accord with observations in other systems and indicates that a
study of the dynamical properties of a spin system near the
critical temperature will give useful information about the
critical phase transition. .

From the available experimental observations it appears
that the detailed behaviour of the spin dynamics near the
critical temperature is different for the various types.of
magnetic systems. This contrasts with the observation that

in general the static properties of magnetic phase transitions
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are systen independent. Although the details are different,
a common feature of the various magnetic systems studied so
far is that in general the observed behaviour of the spin dy-
namics is in accord with dynamic scaling predictions for a
Heisenberg Hamiltonian. The predictions of dynamic scaling
are also consistent with the theory of critical spin fluctua-
tions in magnetic systems, above the critical temperature,

of Résibois and Piette. Although the underlying principles
of the dynamic scaling hypothesis have not been justified
theoretically, it is nevertheless useful in the study of the

critical magnetic phase transitions.
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