
Learning effect, Time-dependent Processing Time and

Bicriteria Scheduling Problems in a Supply Chain

Jianbo Qian 1

Operations Management Area

DeGroote School of Business

McMaster University, Hamilton, Ontario, Canada.

September 17, 2013

1e-mail: qianj2@mcmaster.ca

Abstract

This thesis contains two parts. In the first part, which contains Chapter 2 and Chapter 3, we

consider scheduling problems with learning effect and time-dependent processing time on a single

machine. In Chapter 2, we investigate the earliness-tardiness objective, as well as the objective

without due date assignment consideration. By reducing them to a special linear assignment

problem, we solve them in near-linear time. As a consequence, we improve the time complexity

for some previous algorithms for scheduling problems with learning effect and/or time-dependent

processing time. In Chapter 3, we investigate the total number of tardy jobs objective. By

reducing them to a linear assignment problem, we solve them in polynomial time. For some

important special cases, where there is only learning effect OR time-dependent processing time,

we reduce the time complexity to quadratic time. In the second part, which contains Chapter 4

and Chapter 5, we investigate the bicriteria scheduling problems in a supply chain. We separate

the objectives in two parts, where the delivery cost is one of them. We present efficient algorithms

to identify all the Pareto-optimal solutions for various scenarios. In Chapter 4, we study the cases

without due date assignment; while in Chapter 5 we study the cases with due date assignment

consideration.

2

Acknowledgements

This thesis is dedicated to my daughter, Lily, and my wife, Youai, who are the main source of

my motivation for work.

I would like to express my gratitude towards my supervisor Dr. George Steiner, who has been

a strongly supportive advisor throughout my Ph.D study, who advised me on research topics as

well as enriched my ideas while encouraging me to explore on my own and work independently.

He has honed my research abilities, critical thinking and writing skills. I am especially grateful

for his patience and the amount of time he spent reviewing many revisions of my work. His

encouragement and faith in my abilities of research was the most important factor to complete

this thesis.

I would like to thank Dr. Abad, Dr. Hassini and Dr. Baki for their insightful comments on

my thesis. Their suggestions were crucial to the revision. I would also like to thank Dr. Abad,

Dr. Hassini, Dr. Parlar and Dr. Baba for their excellent classes, from which I learned greatly,

and their consistent help for my job and scholarship applications. The seminars organized by Dr.

Hassini and Dr. Huang were also very helpful in broadening my research scope. Finally, I would

like to thank Dr. Sandy Wu and Dr. Rui Zhang for their help during my study in McMaster

University.

3

Contents

Contents 4

1 Introduction and Literature Review 6

1.1 Machine Scheduling . 6

1.1.1 Machine Scheduling Models . 6

1.1.2 Algorithms in Machine Scheduling . 7

1.2 Variable Processing Times . 10

1.3 Supply Chain Scheduling . 12

1.3.1 Supply Chain Scheduling Models with Delivery Costs 13

1.3.2 Supply Chain Scheduling Models with Delivery Costs and Due Date As-

signment . 15

1.4 Bicriteria scheduling . 16

2 Fast Algorithms for Scheduling with Learning Effects and Time-dependent

Processing Times on a Single Machine 19

2.1 Assignment Problems on Permuted Monge Matrices 20

2.2 Applications to Solve Scheduling Problems . 21

2.2.1 Minimizing Earliness/Tardiness with Due Date Assignment 22

2.2.2 Scheduling Problems without Due Dates 32

3 Scheduling with Learning Effects and/or Time-dependent Processing Times

to Minimize the Weighted Number of Tardy Jobs on a Single Machine 36

3.1 The Unified Problem . 37

3.2 Minimizing Total Weighted Number of Tardy Jobs with Due Date Assignment . . 38

3.3 Fast Algorithms for Cases with Time-dependent Processing Time Effects Only . . 43

3.4 Fast Algorithms for Cases with Learning Effect Only 47

4

4 Bicriteria Scheduling with Batching Deliveries 50

4.1 Minimizing the Total Delivery Time on a Single Machine 52

4.1.1 1|φ|(z,
∑
D′j) . 52

4.1.2 1|φ, T |(z,
∑
D′j) . 53

4.2 Minimizing the Maximum Lateness on a Single Machine 54

4.2.1 1||(z,maxj Lj) . 55

4.2.2 1|T |(z,maxj Lj) . 56

4.3 Minimizing the Total Weighted Number of Tardy Jobs on a Single Machine 1||(z,
∑

j wjUj) 57

4.3.1 A Pseudo-polynomial time algorithm for 1||(z,
∑

j wjUj) 57

4.3.2 A Fully Polynomial Time Approximation Scheme for 1||(z,
∑

j wjUj) . . . 59

4.4 Minimizing the Total Delivery Time on Two Parallel Machines P2||
∑
D′j 61

5 Bicriteria Scheduling with Batch Deliveries and Due Date Assignments on a

Single Machine 63

5.1 The Problem with Uniform Due Date Assignment Costs 64

5.2 The Problem with Uniform Due Date Assignment and Tardy Costs 66

6 Summary and Future Research 68

Bibliography 71

A Notations 79

Keywords : Single-machine scheduling; learning effect; time-dependent, deteriorating effect;

due date assignment; positional penalties; polynomial-time algorithm.

5

Chapter 1

Introduction and Literature Review

In this chapter, we introduce some important concepts and background of the topics that we will

investigate in this report, as well as related previous research. Appendix A groups the notation

that we use in this thesis.

Scheduling is the process of deciding how to allocate scarce resources such as equipment,

labor and space to jobs, activities, tasks, or customers over time. It plays a crucial role in

manufacturing and service industries, as well as information processing environments. In a

typical scheduling problem, we are required to determine a schedule, which achieves certain

objective(s) within accompanying constraints. Scheduling problems that we will discuss in this

thesis are categorized as deterministic (as opposed to stochastic, where some data are random

variables) off-line (as opposed to online, where some data are unknown beforehand) scheduling,

where all data are deterministic and well-defined in advance.

1.1 Machine Scheduling

Inspired by the applications in production planning, deterministic off-line scheduling developed

into a more specific research area, deterministic off-line machine scheduling (machine scheduling)

from the late 1970s. It is concerned with assigning limited resources (called single or multiple

machines) to a set of tasks (called jobs) to optimize a given objective function. In other words,

jobs compete with each other for machine time. For comprehensive definitions, we refer readers

to the textbooks [10] and [70].

1.1.1 Machine Scheduling Models

In this subsection, we introduce the classical notation system for machine scheduling models and

related concepts that will be used in later chapters. In machine scheduling, models are classified

6

by the configuration of machines, the nature of jobs and the objective. By assumption, one

machine can only process one job at a time and one job can only be executed by one machine at

a time. In addition, a job can be started any time from the beginning (time 0) and can not be

interrupted during its processing (called non-preemptive).

Now we outline the three-field notation system, α|β|γ, which was established in [34] to describe

a machine scheduling model:

• α indicates the configuration of machines, i.e., the type and the number of machines. α = 1

specifies a single-machine environment. If there are multiple machines, it also refers to the

type of machines. For instance, α = P2 means a parallel machine environment consisting

of two machines;

• β denotes the nature of jobs, i.e., the restrictions and the constraints of processing a job. For

example, β = pmtn implies that preemption is allowed such that a job can be interrupted

during its processing and started over sometime later. We will put the due date assignment

methods, such as CON, DIF, SLK (their meaning will be given later in this chapter) here.

In particular, if β is left blank, this denotes the default setting, which means no restrictions

or the constraints of processing a job.

• γ specifies the objective, which usually needs to be minimized. For instance, γ =
∑
wjUj

means to minimize the weighted number of tardy jobs, where Uj = 1 if job j completes

later than the due date dj; otherwise Uj = 0, and wj is the tardiness penalty (weight) of

job j. We use (z,X) to denote a bicriteria Pareto-optimal objective, where z is the number

of batches, X is the delivery cost and could be measured by total delivery time, maximum

lateness, or total number of tardy jobs.

Using this notation system, the problem of minimizing the weighted number of tardy jobs on a

single machine can be denoted by 1||
∑
wjUj. For more machine scheduling models and relevant

results, we refer readers to the survey papers [51] and [14].

1.1.2 Algorithms in Machine Scheduling

The term algorithm is defined as a series of instructions for solving a given problem, in other

words, a step-by-step procedure for calculations, or a precise rule (or set of rules) specifying how

to solve certain problems. More precisely, an algorithm is an effective method expressed as a

finite list of well-defined instructions for calculating a function. The fundamental issue of an

algorithm is the efficiency for finding the optimal solution that is measured by the maximum

number of computational steps represented as a function of the input size of the problem in the

7

worst case, termed the running time. The term size refers to the length of a problem’s encoding.

We outline two encoding forms by the following example. Integer “6” is encoded as “110” in the

binary form and as “111111” in the unary form. Extending this example, a positive integer n is

at most blog2 nc+ 1 ones and zeros in binary encoding but exactly n ones in unary encoding.

These are central concepts in computational complexity theory, which is developed to study

the nature of algorithmic tractability of problems and is widely used in and forms the foundation

of computer science and combinatorial optimization. In computational complexity theory, the

major concern about a problem is whether it is NP-hard. Here the term “NP” represents “non-

deterministic polynomial time”. A decision problem (as opposed to an optimization problem) is

said to be in the class NP , if its “Yes” answer (but not necessarily the No answer) can be verified

by a reference algorithm in polynomial time of its size under binary encoding (polynomial time),

where a decision problem is seeking either a “Yes” or “No” answer. Simply speaking, “a problem

isNP-hard” means that “a problem is at least as hard as the hardest decision problem in the class

NP in terms of computational complexity”. Another related concept is NP-completeness. A de-

cision problem is NP-complete, if it is NP-hard and is in the class NP . The first NP-complete

problem given by [20] is the satisfiability problem, known as SAT: Is there a truth assignment

for a given boolean formula? In his famous paper, Cook [20] proved that SAT is NP-hard. This

result is fundamental, because it provides an easier way to prove a problem’s NP-completeness:

First the problem has to be shown to be in the class NP , which is comparatively easy, and

then a known NP-complete problem is shown to be reducible to this problem in polynomial

time. In contrast with the class NP , the class P , which stands for “polynomial time”, contains

all decision problems which can be solved by an algorithm in polynomial time. The question

“Is P = NP?” is a one-million prize problem announced by the Clay Mathematics Institute

of Cambridge, Massachusetts (CMI) in 2000 - http://www.claymath.org/millennium/P vs NP/

(July 29, 2008). In general, it is widely believed that P 6= NP [21, 28, 43, 68, 89].

We now outline the categorizations of algorithms used in machine scheduling. From the point

view of efficiency, all algorithms fall into the following three categories: polynomial, pseudo-

polynomial and nonefficient (we use it for the moment, since there is no generally accepted term

yet. It is usually exponential). Before giving the definitions, we introduce the “Big-O” notation.

A (non-negative) function T (n) is O(f(n)), iff there exists a constant c and a number X such

that for all n ≥ X, it is always true that T (n) ≤ cf(n). Given a problem, an algorithm to solve

it is called polynomial if its running time T (n) = O(nk), where k is a constant and the size of the

problem is polynomial in n under binary encoding. On the other hand, an algorithm is called

pseudo-polynomial if its running time T (n) = O(nk), where k is a constant and O(n) is the size

of the problem under unary encoding. Any algorithm with longer (higher order) running time

is called nonefficient. For example, an algorithm with running time T (n) = 2n is nonefficient,

8

where n is the size of problem under binary encoding. Recent developments on the details about

nonefficient time algorithms in combinatorial optimization are reviewed by Woeginger [97].

Based on computational complexity theory, an NP-hard problem is called NP-hard only

in the ordinary sense, iff it is solvable by a pseudo-polynomial algorithm. Otherwise, we call

it strongly NP-hard. From the following discussions, we will see their differences in the design

and analysis of algorithms. Regarding the accuracy of solutions provided, algorithms are divided

into three categories: exact, approximate and heuristic. An exact algorithm promises to deliver

an optimal solution no matter how long it takes. A heuristic algorithm, however, only provides

a solution fast, but there is no theoretical analysis for how good the solution is. It may be

very far away from the optimum in the worst case. An approximation algorithm is between

exact and heuristic algorithms. It provides a solution with a guaranteed approximation ratio

to the optimum in the worst case. Suppose π∗ is the optimal solution value for a minimization

problem. A fully polynomial (1+ε)-approximation algorithm finds a solution value π ≤ (1+ε)π∗

in polynomial time of problem size n, and 1/ε, where ε could be any given positive value.

For example, an algorithm that runs in O(n3/ε) time is such an algorithm. Since a (1 + ε)-

approximation algorithm represents a series of algorithms for all ε > 0, it is called a “fully

polynomial time approximation scheme” (FPTAS). The main advantage of an FPTAS is that

one can get a solution arbitrarily close to the optimal solution in polynomial time. An FPTAS

is about the trade-off between accuracy and efficiency. Other types of approximation algorithms

can be found in the textbooks [43] and [89].

As mentioned before, there is no pseudo-polynomial algorithm for any strongly NP-hard

problem, unless P = NP . Therefore, finding a pseudo-polynomial algorithm is the main ap-

proach for establishing that a problem is NP-hard in the ordinary sense. Due to the fact that

“the existence of an FPTAS for a problem implies the existence of a pseudo-polynomial algorithm

as well” [21], it is also impossible to find an FPTAS for a strongly NP-hard problem, unless

P = NP . For a problem which is NP-hard in the ordinary sense, an FPTAS is the best possible

theoretically. Since most problems in machine scheduling are NP-hard, the methodology used

in our thesis to study a problem will mainly go through the following stages. First, we will look

for an NP-hardness proof. If it can not be proven to be strongly NP-hard at the first stage, we

will try to develop a pseudo-polynomial algorithm to see if the problem is NP-hard only in the

ordinary sense. Once a pseudo-polynomial algorithm is obtained, we will try to convert it into

an FPTAS.

9

1.2 Variable Processing Times

Traditionally, the processing times of jobs are fixed, regardless of their positions in the sequence or

their starting time. In recent years, however, more and more researchers are investigating schedul-

ing problems with variable processing times of two types: learning effect and time-dependent

processing times.

Learning effect As early as in the 1930s, Wright [98] noticed that in the aircraft industry

the working costs per unit decreased with an increasing production output. He formulated the

so-called 80% hypothesis, stating that with every redoubling of output the unit processing time

decreases by 20%. This learning effect has huge impact in mass production. For example, it

was reported that in the semiconductor industry, the efficiency gains cause the price to drop by

10-30% [95]. Recently, a new proof of the impact of learning effect from a new car-assembly

plant was presented in [77].

Learning effects are important for production problems involving a significant level of human

activities, such as machine setup, machine cleaning, machine operating and controlling, machine

maintenance, machine failure removal, machine data reading/understanding/interpretation, and

all kinds of handwork. They are especially important when the production environment changes.

Such changes include, among others, new workers, investments in new machines or replacement

of equipment, workflow changes, and the acceptance of new jobs. Even small changes to the

production environment like a software update, a new design of the format of important docu-

ments, a new organization of the spare parts depot, cause learning effects. Every time a worker

needs to get used to a new circumstance a learning experience will occur. Since there are usually

high levels of such human involvements in scheduling environment which changes frequently, and

these activities are subject to learning, it is reasonable to consider learning effects in scheduling

problems [5].

Biskup [5] was the first to consider the learning effect in scheduling problems. He proposed

the following model:

p[j] = a[j]j
c, (1.1)

where p[j] and a[j], respectively, represent the actual processing time and “normal” processing

time (i.e., without learning effect) of the job at the jth position in the schedule, and c ≤ 0

represents the rate of learning. It is easy to verify that if c = log2 0.8 = −0.322, it corresponds to

the aforementioned 80% hypothesis. This effect is shown in Fig. 1 [6], where the x-axis represents

the number of products produced, and the y-axis represents the processing time needed.

10

Figure 1.1: The learning curve with a learning rate of 80% depicted in a normal and a double-

logarithmic coordinate system

If c > 0, then the model captures the effect of process deterioration [33]. Most researchers

used an equivalent model pir = pir
c, where r represents the position. Mosheiov [62] investigated

scheduling problems with learning effects described by (1.1) on parallel machines and Mosheiov

et al.[63] studied more general learning functions. A comprehensive survey about the learning

effect in scheduling problems can be found in [6]. Further reviews of scheduling models with

positional effects and learning were presented in [45, 46, 75].

Time-dependent processing time On the other hand, in some other practical situations,

the actual processing time of a job depends on its starting time. For example, Gupta et al. [36]

modeled a multiple loan repayment problem in financial management as this type of scheduling

problem. In steel production, steel ingots are to be heated to the required temperature before

rolling can begin. The time taken to heat depends on the size and current temperature of the

ingot, which further depends on the amount of time the ingot has been waiting to be processed.

Similarly, in fire fighting, the time required to control a fire is longer if the start of the fire fighting

effort is delayed. Some other empirical applications exist in hospital emergency room scheduling

and crime scene response scheduling for police [50].

This concept of time-dependent processing times was first introduced by Browne and Yechiali

[7]. The most commonly used model is

p[j] = a[j] + bS[j], (1.2)

where a[j] also denotes the “normal” processing time, b is a constant and S[j] denotes the

starting time of the job in the jth position. If b > 0, then it reflects deteriorating processing

time. Mosheiov presented a V-shape policy and a ∧-shape policy, respectively, in [59] and [60]

for scheduling deteriorating jobs. Some researchers used position-dependent bj [18]. However,

the problem usually becomes significantly harder in most of those cases. Gawiejnowicz gives a

11

comprehensive exposition of time-dependent models [29]. Cheng et al. also presented a concise

survey [18] for these problems.

These two types of variable processing time are usually considered separately. Lee [54] was

the first to consider them simultaneously. Wang [90] proposed the following model:

p[j] = (a[j] + bS[j])j
c, (1.3)

where p[j], S[j], b and c ≤ 0 all have the same meaning as before. It was followed by Wang

[92], Wang and Cheng [94], Wang et al. [91], Wang and Cheng [93].

This model reflects the following practical scenario: an operator obtains additional skills by

learning from experience, at the same time, the machine that he/she operates is subjected to

wear and tear, i.e., deteriorates with time [75]. A recent review by Janiak et al. focused on a

variety of models with this type of combined effects [46].

We can see that each of the above discussed cases of variable processing time is a special

case of this general model. If b = 0, we have the learning effect problem; if c = 0, we have the

time-dependent processing time problem.

1.3 Supply Chain Scheduling

Supply chain management has been one of the most important topics in operations management,

in both the manufacturing and the service sectors, since the eighties. Most of the supply chain

literature focuses on issues on the strategic level, using stochastic models. A recent survey

paper [88], however, suggested that over 11% of the U.S. Gross National Product is spent on

logistics, and for many products, the logistics costs more than 30% of the cost of goods sold.

Therefore, to improve the overall operational performance, it is necessary to study scheduling

models which consider inbound production and outbound deliveries simultaneously. Our research

deals with supply chain problems on the operational level, using deterministic models. This type

of scheduling was named supply chain scheduling by Hall and Potts [38].

In contrast with classical machine scheduling problems, in supply chain scheduling problems,

deliveries are also considered part of tasks. In other words, there are two decisions to be made:

How to process jobs on machines and how to deliver jobs to customers? Due to the fact that

delivering jobs in batches saves delivery costs and setup time, the delivery operation does bring

a new question: How to group jobs in batches for both production and deliveries? This connects

supply chain scheduling to batch scheduling, which is a well-studied research area in machine

scheduling. They are different, however, as delivery costs are not part of the usual objectives

in batch scheduling. Detailed discussions about batch scheduling can be found in the survey

12

paper [72]. From the view-point of computational complexity, how to group jobs in batches does

make some easy problems harder. For example, the problem of minimizing the total weighted

completion time on a single machine can be easily solved by sequencing all jobs in the weighted

shortest processing time order in polynomial time [70], but its supply chain scheduling counterpart

of minimizing the sum of the total weighted completion times and the batch-delivery costs on a

single machine is strongly NP-hard [38].

Extending the β field, the three-field notation system can still be applicable in supply chain

scheduling. For instance, 1|∆|
∑
wjUj +zq indicates a supply chain scheduling model on a single

machine with the goal of minimizing the sum of the weighted number of tardy jobs and the

batch-delivery costs, where ∆ is the machine time needed to set up a new batch, q is the delivery

cost per batch and z is the number of batches.

1.3.1 Supply Chain Scheduling Models with Delivery Costs

In supply chain scheduling problems, the delivery costs are usually related to batching. Let us

look at this important concept:

Batching Batching is to decide how to schedule certain jobs consecutively. It is another

important research issue in scheduling theory and has a lot of practical motivations. For example,

in the chemical, food processing and fertilizer industries, engineering parts are divided into

different families such that machine setups are not needed between the production of parts

in the same family, using the principles of group technology [41]. In flow shops and other

multistage production systems, machine utilization may be improved by the batching of products

for transportation between machines where the transportation device is a bottleneck. There are

also applications where multiple jobs are naturally processed simultaneously in a batch, for

example the burn-in testing operation in semiconductor manufacturing [52] (such scenarios were

mostly investigated in the batching machine literature, which have different nature from our

research). When an order consists of many similar items for the same customer, batching just

the part of the order for delivery to this customer improves customer service, since the customer

does not have to wait until the entire order has been processed [39].

Potts and Kovalyov introduced the scheduling models that take into account logistics [71].

However, they considered only delivery time, not including delivery costs, in their model. Cheng

and Kahlbacher [11] were the first to study a machine scheduling model with delivery costs

consideration. Lee and Chen [53] further extended this model in [11] into one with a limited

delivery capacity.

Hall and Potts [38] were the first to introduce delivery costs into the objective, which can

13

be minimizing total delivery time, minimizing maximum lateness, or minimizing the weighted

number of tardy jobs on a single machine. In their models, however, they made the assumption

that tardy jobs are not delivered to customers. With this assumption, they were able to present

a pseudo-polynomial algorithm, either when jobs are for a single customer, or for a fixed number

of customers. Their algorithm becomes polynomial when all jobs have equal weights. Their

model, however, did not consider batch-setup time, which consumes machine time in most real

cases. Recently, Steiner and Zhang [85] investigate the problem in a model in which the tardy

jobs also get delivered.

In the same paper [38], Hall and Potts also studied other forms of objectives to minimize

the total scheduling and delivery costs. As it is a fairly new research area, there are relatively

few papers dealing specifically with scheduling problems in supply chains. Chen and Hall [16]

extended these problems to supply chains with assembly-type manufacturing systems. Dawande

et al. [22] extended them to distribution systems. Some of the issues studied in these papers

are related to previous work on coordinating production and distribution systems. We mention

here the paper by Williams [96], and the one by Lee and Chen [53], where they consider the

integration of transportation time and capacity issues with scheduling decisions. Li et al. [56]

studied the problem of minimizing the average job-arrival time, which includes the travel time to

the customers. Chen and Vairaktarakis [15] presented polynomial time solutions for the problem

of minimizing a convex combination of the mean arrival times and the total distribution cost,

where the latter includes fixed delivery costs and variable costs dependent on the delivery routes,

with a fixed number of customers. Pundoor and Chen [73] studied a model where the objective

is to minimize a linear convex combination of the maximum delivery tardiness and total delivery

costs. Selvarajah and Steiner [79, 80, 81] developed exact and approximation algorithms for

the supplier’s problem of minimizing the sum of the total weighted completion time and batch-

delivery costs. Agnetis et al. [2] investigated the problem of rescheduling to resolve conflicts

between the supplier’s and the manufacturers’ ideal schedules. Hall and Potts [39] studied

the coordination of scheduling and batch deliveries with various scheduling objectives, such

as minimizing total delivery time, minimizing maximum lateness, or minimizing the weighted

number of tardy jobs. Moreover, Hall et al. [40] edited a special issue focusing on the area of

supply chain coordination and scheduling, where Tang et al. [87] considered a production and

distribution model taking into account inventory control issues with one supplier and multiple

buyers. Manoj et al. [58] studied the decentralized and joint optimization problems of a model

with one manufacturer, one distributor, and several retailers in a just-in-time environment. The

most recent comprehensive survey paper was by Chen [17].

14

1.3.2 Supply Chain Scheduling Models with Delivery Costs and Due

Date Assignment

Before our literature review on this subject, let’s first introduce some concepts and background

for due date assignment.

Due date assignment In a flexible scheduling environment, the attainability of due dates and

the feasibility of schedules are both taken into consideration at the same time. Taking advantage

of this added flexibility may lead to improved overall system performance.

Meeting due dates has always been one of the most important objectives in scheduling and

supply chain management. Customers usually require that suppliers either meet contracted due

dates or pay large penalties. For example, [84] reported that the tardiness penalties in aerospace

industries may be as high as one million dollars per day for suppliers of aircraft components.

While traditional scheduling models considered due dates as given by exogenous decisions (see

Baker and Scudder [4]), in a more flexible and integrated system, they are determined by taking

into account the system’s ability to meet the quoted delivery dates. For this reason, numerous

recent studies have viewed due date assignment as part of the scheduling process and showed

how the ability to control due dates can be a major factor in improving system performance. In

order to avoid tardiness penalties, companies are under increasing pressure to quote attainable

delivery dates for customer orders. Naturally, longer due dates are easier to meet, but promising

delivery dates too far into the future may not be acceptable to the customer. At the same time,

shorter due dates increase the probability that the order will be delivered late. Thus there is an

important tradeoff between assigning relatively short due dates to customer orders and avoiding

tardiness penalties, which could be very substantial (see e.g.[84]). This creates the need for a

methodology that allows firms to quote attainable delivery dates and obtain efficient schedules

at the same time.

Many different due date assignment methods have been studied in the literature (see [30, 31,

32, 47] for extensive surveys). We briefly review four of the more commonly used methods below:

• The common due date assignment method (referred to as CON in short), in which all jobs

are assigned the same due date, that is dj = d for j = 1, ..., n, where dj denotes the due

date of job j and d ≥ 0 is a decision variable (see Panwalkar et al. [67]).

• The common due window assignment method (we will refer to this method as CONW),

where the scheduler can assign a single desired time window, [d, d = d + D], for the

completion time of each job, and the objective includes a linear penalty for both d and D

15

(see Liman et al. [57]). It is easy to observe that the CON method is a special case of the

CONW method when the penalty for the window length (D) is large enough.

• The slack due date assignment method (usually referred to as SLK), in which all jobs are

given a flow allowance that reflects equal waiting time (equal slacks), that is, dj = pj + s

for j = 1, ..., n, where pj is the processing time of job j and s ≥ 0 is a decision variable

(see Adamopoulos and Pappis [1]).

• The unrestricted due date assignment method (usually referred to as DIF), in which each

job can be assigned a different due date with no restrictions (see Seidmann et al. [78]).

Cheng and Kovalyov [12] studied a batch scheduling model which took into account due-date-

assignment costs. Their objective is to minimize the number of tardy jobs with batch-setup time

and a uniform assignable due date on grouped jobs, where jobs are divided into different groups

and jobs in the same group are identical. Changing the processing of jobs from one group to

another requires a sequence-independent batch-setup time, which depends on the groups. They

first developed a pseudo-polynomial algorithm for it and then converted it into an FPTAS. Their

model, however, does not consider batch-delivery costs as part of the objective.

A more complex model, with distinct assignable due dates, was studied by Shabtay and

Steiner [82]. In their model, each job has a contracted due date, and each job can be assigned an

arbitrary extended due date. The goal is to minimize the sum of the due-date-assignment costs

and the weighted number of tardy jobs with respect to the assigned due dates. They first gave

a strong NP-hardness proof for the general case and then presented two polynomial algorithms

for two important special cases: one with equal due-date-assignment costs and zero contracted

due dates and the other one with equal due-date-assignment costs, zero contracted due dates and

equal tardy penalties. Their model, however, does not include batching or delivery costs either.

There are some researchers who considered optimizing other scheduling objectives in this con-

text. Chen [13] studied a single-machine scheduling problem, where the objective is to minimize

the sum of earliness and tardiness penalties and delivery costs with a common assigned due date.

Yang [99] focused only on tardiness penalties with quoted delivery dates but without delivery

costs. In his paper, two problems are studied: one to minimize the total batch earliness and the

other one to minimize the largest batch earliness.

1.4 Bicriteria scheduling

Before the 1990s, the objective function in most scheduling problems contains only one per-

formance criterion. However, in many practical situations, quality is a multicriteria notion by

16

nature. For example, schedulers often need to meet the due date deadline in keeping high level

of customer service level on one hand, and to reduce various costs, such as holding cost and

transportation cost, on the other hand. These criteria almost always conflict with each other. If

only one criterion is taken into account, then the outcome tends to be unbalanced and biased, no

matter what criterion is considered. For example, if all the resources are set on keeping the costs

low, then the service level is likely to be low too, and vice versa. In order to reach an acceptable

compromise, it is necessary to measure the quality of a solution on all important criteria. This

observation has led to the development of the area of multicriteria scheduling.

Since objectives with two criteria are more common in practice and easier to tackle, we con-

sider only bicriteria scheduling problems. Suppose that f and g are the two performance criteria

that we want to take into account. Without loss of generality, we assume that these criteria are

to be minimized. Very likely there will be no schedule that minimizes both performance criteria

simultaneously, which implies that it is almost certain that we have to sacrifice on the quality

of one criterion. If f is far more important than g, then a natural choice is to find the optimum

value of f , and choose from among optimum schedules for f the one that performs best on g.

Such an approach is called hierarchical optimization or lexicographical optimization.

Lexicographical optimization is probably inappropriate if no criterion is preferable to the

other, since it may lead to an unbalanced schedule; or the second criterion can be greatly improved

at very little cost in the first criterion. In such cases, simultaneous optimization is a better

choice. Evans [26] and Fry et al. [27] distinguish three different approaches in simultaneous

optimization: a priori optimization, interactive optimization, and a posteriori optimization. In

a priori optimization, both criteria are integrated into one composite objective function F (f, g)

for some given function F , then an optimum solution is determined for this function as a whole.

F is usually linear, for example af + bg, where a and b are given constants that indicate the

relative importance of criterion f and criterion g [44].

This approach has two shortcomings. The first one comes from practice: it is usually hard to

know what this function F looks like. The scheduler may find it hard to express the preference

in a function F . The second drawback is that it is often hard to minimize the function F (f, g)

directly. There are two ways to avoid these drawbacks. The first one requires the scheduler’s

active involvement during the solution process. Given some solutions, the decision maker must

indicate which one is better, and if not satisfied yet, in which direction the search should continue;

this scenario is called interactive optimization. The second option is to solve the problem in a

roundabout way. The idea behind it is that we select from the set of solutions a subset that

contains an optimum solution for each reasonable composite objective function F that we can

think of. If the function F is known, then we compute the optimum solution in this set. If F is

not known, then we present this set to the decision maker and let him/her choose; this scenario is

17

called a posteriori optimization. Note that a posteriori optimization is clearly the most difficult

variant of the three approaches; if we can solve this problem, then we can solve the other two

as well, if we may assume that the function F specified by the decision maker beforehand in a

priori optimization will be reasonable. Therefore, we assume from now on that we consider the

a posteriori variant when we write simultaneous optimization without further specification.

18

Chapter 2

Fast Algorithms for Scheduling with

Learning Effects and Time-dependent

Processing Times on a Single Machine

The general problem we study may be stated as follows: n independent, non-preemptive jobs,

J = {1, 2, ..., n}, are available for processing at time zero and are to be processed on a single

machine. A schedule is defined by a job sequence π = ([1], [2], ..., [n]), where [j] represents the

job that is in the jth position in π for j = 1, 2, ..., n. Our objective is to determine a schedule

which minimizes a general unified cost function that is the sum of scheduling costs, that can be

expressed by using positional penalties. This unified cost function can be formulated as follows :

g(π) =
n∑
i=1

ξiη[i], (2.1)

where ξi is a positional, job-independent penalty for any job scheduled in the ith position for

i = 1, ..., n.

Our model is an adaptation from [55], where Leyvand et al. proposed a unified framework

for scheduling problems with controllable processing time, and solved it using an algorithm for

general linear assignment in O(n3).

The chapter is organized as follows. In Subsection 2.1, we present an O(n log n) optimization

algorithm to determine the optimal schedule for the 1 ||
∑
ξiη[i] unified problem. In the next

subsection, we present two groups of scheduling problems. In the first group, the objective

function includes costs for earliness, tardiness, makespan, and due date assignment. The second

group contains some additional classical scheduling problems. These include minimizing the

makespan, the sum of completion times, the variation of job completion times and the variation

of waiting times with controllable processing times. We show that, for four different due date

19

assignment methods and all scheduling problems without due date consideration, the objective

can be reformulated as a special case of (2.1), which enables us to solve this set of problems in

O(n log n) time. The last subsection contains a summary and our concluding remarks.

2.1 Assignment Problems on Permuted Monge Matrices

First we introduce two special types of matrices:

Definition 1 A matrix C = (cij)m×n is called a Monge matrix if it fulfills the following so-

called Monge property:

cij + crs ≤ cis + crj

for all 1 ≤ i < r ≤ m and 1 ≤ j < s ≤ n. C is said to be a permuted Monge matrix if its

rows and columns can be permuted respectively such that the resulting matrix is a Monge matrix.

Definition 2 A matrix C = (cij)m×n is called a product matrix if there exist two non-negative,

real vectors a = (a1, a2, ..., am) and b = (b1, b2, ..., bn), such that cij = aibj.

The following proposition establishes their relations:

Lemma 1 Every product matrix is a permuted Monge matrix.

(Permuted) Monge matrices possess many nice properties. For example, for the linear assign-

ment problem with a Monge cost matrix, the identity permutation, ε(i) = i for i = 1, ..., n, is a

simple optimal solution. We refer to [8], [25] and [24] for more applications of Monge matrices

in combinatorial optimization.

We will show that our problem can be reduced to a special linear assignment problem with

a product matrix as its cost matrix, therefore, it can be solved in O(n log n) time.

Define xij = 1 if job j is assigned to position i and xij = 0 otherwise. Our sequencing problem

then reduces to the following linear assignment problem:

min
n∑
i=1

n∑
j=1

ξiηjxij

s.t.
n∑
j=1

xij = 1, i = 1, 2, · · · , n

n∑
i=1

xij = 1, j = 1, 2, · · · , n.

20

xij ∈ {0, 1}, i, j = 1, 2, · · · , n.

By the Hardy-Littlewood-Polya inequality/principle [37], the objective function is minimized by

the following algorithm:

Algorithm 1 Step 1. Sort {ξi} in decreasing order and {ηj} in increasing order. For simplicity,

assume they are already sorted in this way, i.e., ξ1 ≥ ξ2 ≥ · · · ≥ ξn, η1 ≤ η2 ≤ · · · ≤ ηn.

Step 2. Let xii = 1 for i = 1, 2, · · · , n. Let xij = 0 for i 6= j. In other words, assign the i-th

job to the i-th position.

Therefore, we have the following result:

Lemma 2 The optimal sequence, denoted by π∗, can be obtained by solving a special linear

assignment problem requiring O(n log n) time.

In the next subsections we present various applications of our general approach to solve a

large set of important scheduling problems with variable processing times.

2.2 Applications to Solve Scheduling Problems

Let C[k] be the completion time of the kth job in the processing sequence whose processing time

varies according to (1.3). The following crucial equality is given in [90].

Lemma 3 Assume that the jobs are processed from time zero and there is no idle time between

them, then

C[k] =
k∑
j=1

(jc
k∏

i=j+1

(1 + bic))a[j] (2.2)

where
∏k

i=k+1(1 + bic) = 1 by definition.

Define

fjk = jc
k∏

i=j+1

(1 + bic) (2.3)

for j = 1, · · · , n and k = j+ 1, · · · , n, and fjk = 0 for other values of j and k. Then equation

(2.2) above can be rewritten as

C[k] =
k∑
j=1

fjka[j]. (2.4)

21

2.2.1 Minimizing Earliness/Tardiness with Due Date Assignment

In this subsection, we show how our unified method can be used to solve a large set of scheduling

problems involving due date assignment decisions.

Since the solution of due date assignment problems also includes the determination of the

due dates, a schedule for these problems is defined by a job sequence π = ([1], [2], ..., [n]) and a

due date assignment vector d = (d1, d2, ..., dn), and our objective is to determine the schedule

which minimizes various objective functions defined in the subsections below. Therefore, to also

show their dependence on the due dates, we re-define g(π) from (2.1) as g(π,d). Cases will be

considered by providing special forms of g(π,d).

Our objective is to find a job sequence π∗ = ([1], [2], ..., [n]) and a set of due dates d∗ =

(d∗1, d
∗
2, ..., d

∗
n) to minimize a cost function that includes the costs of earliness, tardiness, due date

assignment and makespan. For the CON, SLK and DIF due date assignment methods, it is

given by

g(π,d) = α
n∑
j=1

Ej + β
n∑
j=1

Tj + γ
n∑
j=1

dj + δCmax (2.5)

where for job j, Cj is the completion time; Ej = [dj − Cj]+ is the earliness; Tj = [Cj − dj]+

is the tardiness, (where [x]+
def
= max(0, x)). Cmax = max

j=1,...,n
Cj is the maximum completion time

(makespan) and α, β, γ and δ are nonnegative parameters representing the cost of one unit of

earliness, tardiness, due date and operation time, respectively.

In the case of the CONW method, the cost function to minimize is given by

g(π,d) = α
n∑
j=1

Ej + β
n∑
j=1

Tj + n (γ1d+ γ2D) + δCmax, (2.6)

where earliness is defined by Ej =
[
dj − Cj

]+
, tardiness is defined by Tj =

[
Cj − dj

]+
and

the term γ
∑n

j=1 dj in eq. (2.5), is replaced by the term γ1nd+ γ2nD.

It is easy to see that the jobs are processed from time zero and there is no idle time between

them, i.e., the condition of Lemma 3 is satisfied for all the due date assignment methods. There-

fore, (2.4) holds in all cases. Next we show that, under an optimal due date assignment strategy,

the scheduling cost can be reduced to the format of (2.1) for all of them.

Due date assignment problems have been extensively studied in the literature with various

forms of objectives. Among them, however, there are few results with learning effect or time-

dependent processing time. Below are these results as far as we know:

We notice they all use CON due date assignment method. In this paper, we both improve the

time complexity of and extend the first two, and extend the third one. Furthermore, for the first

time we present results with other due date assignment methods, i.e., CONW, DIF and SLK.

22

Problem Complexity Ref.

1
∣∣p[j] = a[j]j

c, CON
∣∣α∑Ej + β

∑
Tj + θ

∑
Cj O(n3) [5]

1
∣∣p[j] = a[j]j

c, CON
∣∣α∑Ej + β

∑
Tj + γ

∑
dj O(n3) [61]

1
∣∣p[j] = a[j] + bS[j], CON

∣∣α∑Ej + β
∑
Tj + γ

∑
dj O(n log n) [19]

Table 2.1: Summary of previous results on due date assignment and learning effect/time-

dependent processing time.

Preliminary results for the CON due date assignment method

The following result is given by Panwalkar et al. [67] for the CON due date assignment method.

Lemma 4 For the CON due date assignment method, there exists an optimal due date equal to

C[l∗], where

l∗ = max

(⌈
n(β − γ)

α + β

⌉
, 0

)
, and C[0] = 0 by definition. (2.7)

Note that the value of l∗, given by eq.(2.7), is independent of the job processing times and the

job sequence. Therefore, it is optimal for any job sequence and processing times, and substituting

(2.4), we obtain:

d∗j = d∗ = C[l∗] =
l∗∑
i=1

fil∗a[i] for j = 1, ..., n; (2.8)

E[j] =

{ ∑l∗

i=j+1 p[i] = C[l∗] − C[j] = C[l∗] −
∑j

i=1 fija[i] j = 1, 2, · · · , l∗ − 1

0 j = l∗, · · · , n

and

T[j] =

{
0 j = 1, 2, · · · , l∗

C[j] − C[l∗] =
∑l∗

i=1(fij − fil∗)a[i] +
∑j

i=l∗+1 fija[i] j = l∗ + 1, · · · , n

Therefore, by changing the order of summation, the total earliness can be expressed as

l∗∑
j=1

E[j] = (l∗ − 1)C[l∗] −
l∗∑
j=1

j∑
i=1

fija[i] =
l∗∑
i=1

(l∗fil∗ −
l∗∑
j=i

fij)a[i] (2.9)

and the total tardiness is

23

n∑
j=l∗+1

T[j] =
n∑

j=l∗+1

l∗∑
i=1

(fij − fil∗)a[i] +
n∑

j=l∗+1

j∑
i=l∗+1

fija[i]

=
l∗∑
i=1

((l∗ − n)fil∗ +
n∑

j=l∗+1

fij)a[i] +
n∑

i=l∗+1

n∑
j=i

fija[i]. (2.10)

By substituting eqs. (2.8)-(2.10) into eq. (2.5), we obtain that our scheduling cost, under

an optimal due date assignment strategy, denoted by d∗(π), for the CON due date assignment

method becomes:

g(π,d∗(π)) =
l∗∑
i=1

(
α(l∗ − 1)fil∗ − α

l∗∑
j=i

fij + β(l∗ − 1− n)fil∗ + β
n∑

j=l∗+1

fij + γnfil∗ + δfin

)
a[i]

+
n∑

i=l∗+1

(β
n∑
j=i

fij + δfin)a[i]. (2.11)

Note that if the upper bound of summation is less than the lower bound of summation, the

summation is 0. It is easy to observe that the objective g(π,d∗(π)) in eq. (2.11) is a special case

of g(π) in (2.1) with

ξi =

{
α(l∗ − 1)fil∗ − α

∑l∗

j=i fij + β(l∗ − 1− n)fil∗ + β
∑n

j=l∗+1 fij + γnfil∗ + δfin i = 1, · · · , l∗

β
∑n

j=i fij + δfin i = l∗ + 1, · · · , n
(2.12)

This equation becomes much simpler if there is only learning effect or only time-dependent

processing time. In fact, if there is only learning effect, we have b = 0, therefore fij is reduced

to ic. Thus the equation above becomes

ξi =

{
α(i− 1)ic + (γn+ δ)ic i = 1, · · · , l∗

β(n− i+ 1)ic + δic i = l∗ + 1, · · · , n
(2.13)

From this simplified formula, we can show that learning effect does affect optimal scheduling.

We now construct an example to demonstrate that the optimal sequence is different when the

learning effect is in place. By Lemma 2, it suffices to show that the ξi order sequence is different.

In our example, there are only 3 jobs, i.e., n = 3, a1 < a2 < a3. α = 1, β = 2, γ = δ = 0.

From Lemma 4, we have l∗ = 2. If the learning factor c = −2, using the equation above, we have

ξ1 = 0, ξ2 = 1/4 > ξ3 = 2/9. Therefore, by Lemma 2, in the optimal sequence, job 2 should

24

precede job 3. However, if there is no learning effect, i.e., c = 0, we have ξ1 = 0, ξ2 = 1 < ξ3 = 2.

In this case, job 3 should precede job 2 in the optimal sequence.

On the other hand, if there is only time-dependent processing time, i.e., c = 0, then fij is

reduced to (1 + b)j−i. Thus the expression above becomes

ξi =

(αl∗ + β(l∗ − n) + γn)(1 + b)l

∗−i − α
∑l∗

j=i(1 + b)j−i

+β
∑n

j=l∗+1(1 + b)j−i + δ(1 + b)n−i i = 1, · · · , l∗

β
∑n

j=i(1 + b)j−i + δ(1 + b)n−i i = l∗ + 1, · · · , n
(2.14)

Similar to the case of learning effect only, we can also construct an example to show that

time-dependent processing time does affect the optimal scheduling.

Preliminary results for the SLK due date assignment method

For fixed processing times, Adamopoulos and Pappis [1] showed that the CON and the S-

LK methods have similar properties and presented the following result for the SLK due date

assignment method.

Lemma 5 For the SLK due date assignment method, there exists an optimal slack allowance,

s∗, equal to C[l∗−1], where l∗ is given by eq. (2.7) if l∗ > 0; s∗ = 0 otherwise.

As a result, if we let h = l∗ − 1, j
′

= j − 1, for j = 1, · · · , n and substitute (2.4), we obtain

the following for any π = ([1], [2], · · · , [n]):

s∗ = C[h] =
h∑
i=1

fiha[i]; (2.15)

d∗[j] = p[j] + s∗ = p[j] +
h∑
i=1

fiha[i] for j = 1, ..., n; (2.16)

γ

n∑
j=1

d∗[j] = γC[h] + nγ

h∑
i=1

fiha[i] = γ

n∑
i=1

fina[i] + nγ

h∑
i=1

fiha[i] (2.17)

E[j] =

{
C[h] − C[j′] = C[h] −

∑j
′

i=1 fij′a[i] j = 1, 2, · · · , h
0 j = h+ 1, · · · , n

and

T[j] =

{
0 j = 1, 2, · · · , h+ 1

C[j′] − C[h] =
∑h

i=1(fij′ − fih)a[i] +
∑j

′

i=h+1 fij′a[i] j = h+ 2 · · · , n

25

Therefore, by changing the order of summation and substituting (2.3) for fhh, the total

earliness is

h∑
j=1

E[j] = hC[h] −
h−1∑
j′=0

j
′∑

i=1

fij′a[i] =
h−1∑
i=1

(hfih −
h−1∑
j=i

fij)a[i] + hc+1a[h], (2.18)

where for the last term we used hfhha[h] = hhc
∏h

i=h+1(1 + bic)a[h] = hc+1a[h]. Similarly, the

total tardiness is

n∑
j=h+2

T[j] =
n−1∑

j′=h+1

(
h∑
i=1

(fij′ − fih)a[i] +

j
′∑

i=h+1

fij′a[i])

=
h∑
i=1

(
n−1∑

j′=h+1

fij′ − (n− h− 1)fih)a[i] +
n−1∑
i=h+1

(
n−1∑
j′=i

fij′)a[i] (2.19)

By substituting eqs.(2.17)-(2.19) into eq.(2.5), we obtain that our scheduling cost, under

an optimal due date assignment strategy, denoted by d∗(π), for the SLK due date assignment

method becomes:

g(π,d∗(π)) =
h−1∑
i=1

(αhfih − α
h−1∑
j=i

fij + β
n−1∑
j=h+1

fij − β(n− h− 1)fih + γnfih + (γ + δ)fin)a[i]

+(αhc+1 + β(
n−1∑

j′=h+1

fhj′ − (n− h− 1)hc) + (γ + δ)fhn)a[h]

+
n−1∑
i=h+1

(β
n−1∑
j′=i

fij′ + (γ + δ)fin)a[i] + (γ + δ)nca[n]. (2.20)

It is easy to observe that the objective g(π,d∗(π)) in eq. (2.20) is a special case of g(π) in

(2.1) if we define the positional penalties by

ξi =

αhfih − α
∑h−1

j=i fij + β
∑n−1

j=h+1 fij − β(n− h− 1)fih

+γnfih + (γ + δ)fin i = 1, · · · , h− 1

αhc+1 + β(
∑n−1

j=h+1 fhj − (n− h− 1)hc) + (γ + δ)fhn i = h

β
∑n−1

j=i fij + (γ + δ)fin i = h+ 1, · · · , n− 1

(γ + δ)nc i = n

(2.21)

26

This equation becomes much simpler if there is only learning effect or only time-dependent

processing time. In fact, if there is only learning effect, we have b = 0, therefore fij is reduced

to ic. Thus the equation above becomes

ξi =

(αi+ γn+ γ + δ)ic i = 1, · · · , h− 1

αhc+1 + (γ + δ)hc i = h

β(n− i)ic + (γ + δ)ic i = h+ 1, · · · , n− 1

(γ + δ)nc i = n

(2.22)

Preliminary results for the DIF due date assignment method

The DIF due date assignment method to minimize earliness, tardiness and due date assignment

costs was studied by Seidmann et al. [78] and they presented the following lemma which defines

the optimal due date assignment strategy for a given π and non-variable processing times.

Lemma 6 For a given π and fixed processing times, the optimal due date assignment strategy for

the DIF due date assignment method is defined as follows: if γ ≥ β then set d∗[j] = 0; otherwise,

set d∗[j] = C[j] for j = 1, ..., n.

From Lemma 6, we can conclude that E[j] = 0 for j = 1, ..., n in an optimal solution for

our problem. Therefore, with an optimal due date assignment strategy as a function of π, after

substituting (2.4), eq. (2.5) becomes

g(π,d∗(π)) =

β
∑n

k=1 C[k] + δC[n] = β
∑n

k=1

∑k
j=1 fjka[j] + δC[n]

= β
∑n

j=1

∑n
k=j fjka[j] + δC[n] if γ ≥ β

γ
∑n

k=1 C[k] + δC[n] = γ
∑n

k=1

∑k
j=1 fjka[j] + δC[n]

= γ
∑n

j=1

∑n
k=j fjka[j] + δC[n] if γ < β.

Using (2.4) for C[n], this can be further written as

g(π,d∗(π)) =
n∑
j=1

(ε
n∑
k=j

fjk + δfjn)a[j], (2.23)

where ε = min(β, γ).

27

Again, as for the previous two due date assignment methods, it is easy to observe that the

objective g(π,d∗(π)) in eq. (2.23) is a special case of g(π) in (2.1) with

ξi = ε

n∑
k=i

fik + δfin for i = 1, ..., n. (2.24)

.

Preliminary results for the CONW due date assignment method

For fixed processing times, Liman et al. [57] presented the following result.

Lemma 7 [57] Calculate

l∗1 = min

(
max

(⌊
n(γ2 − γ1)

α
+ 1

⌋
, 0

)
, n

)
and l∗2 = max

(⌊
n(β − γ2)

β
+ 1

⌋
, 0

)
, (2.25)

where γ1, γ2 are from (2.6). If l∗1 < l∗2, then there exists an optimal d∗ equal to C[l∗1] and

optimal d
∗

equal to C[l∗2]; if l∗1 ≥ l∗2, then there exists an optimal window of zero length, so the

case reduces to the CON case with d∗ = d
∗
equal to C[l∗], where l∗ is calculated by eq. (2.7) using

γ = γ1, and C[0] = 0 by definition.

We note that the calculation of the indexes l∗1 and l∗2 in the above lemma depends only on

the unit-cost parameters and n, and it does not depend on the job processing times. This means

that we can determine, independently from the job processing times, which one of the above

two cases an instance falls into. According to Lemma 7, if l∗1 ≥ l∗2, then the optimal due-window

strategy is identical to the optimal CON strategy and therefore eqs. (2.8)-(2.12) hold for CONW

with γ = γ1. Otherwise, i.e., if l∗1 < l∗2, then the following holds for any π after substituting (2.4):

d∗ = C[l∗1] =

l∗1∑
i=1

fil∗1a[i], d
∗

= C[l∗2] =

l∗2∑
i=1

fil∗2a[i]; D = d
∗− d∗ =

l∗2∑
i=1

fil∗2a[i]−
l∗1∑
i=1

fil∗1a[i] (2.26)

E[j] =

{
C[l∗1] − C[j] = C[l∗1] −

∑j
i=1 fija[i] for j = 1, ..., l∗1 − 1

0 for j = l∗1, ..., n
; (2.27)

T[j] =

{
0 for j = 1, ..., l∗2

C[j] − C[l∗2] =
∑l∗2

i=1(fij − fil∗2)a[i] +
∑j

i=l∗2+1 fija[i] for j = l∗2 + 1, ..., n.
(2.28)

Therefore, after substituting (2.4) and changing the order of summation, the total earliness

is

28

l∗1∑
j=1

E[j] =

l∗1∑
i=1

(l∗1fil∗1 −
l∗1∑
j=i

fij)a[i] (2.29)

Similarly, the total tardiness is

n∑
j=l∗2+1

T[j] =
n∑

j=l∗2+1

l∗2∑
i=1

(fij − fil∗2)a[i] +
n∑

j=l∗2+1

j∑
i=l∗2+1

fija[i]

=

l∗2∑
i=1

((l∗2 − n)fil∗2 +
n∑

j=l∗2+1

fij)a[i] +
n∑

i=l∗2+1

(
n∑
j=i

fij)a[i] (2.30)

By substituting eqs. (2.26)-(2.30) into eq.(2.6), we obtain that our scheduling cost, under an

optimal due date assignment strategy, denoted by d∗(π), for the CONW due date assignment

method becomes:

g(π,d∗(π) =

l∗1∑
i=1

α(l∗fil∗1 −
l∗1∑
j=i

fij) + β((l∗2 − n)fil∗2 +
n∑

j=l∗2+1

fij) + n(γ1 − γ2)fil∗1 + nγ2fil∗2 + δfin

 a[i]

+

l∗2∑
i=l∗1+1

nγ2fil∗2 + β((l∗2 − n)fil∗2 +
n∑

j=l∗2+1

fij) + δfin

 a[i] +
n∑

i=l∗2+1

(
β

n∑
j=i

fij + δfin

)
a[i].

(2.31)

Note that g(π,d∗(π)) in eq. (2.31) is a special case of g(π) in (2.1) if the positional penalties are

defined by

ξi =

α(l∗fil∗1 −
∑l∗1

j=i fij) + β((l∗2 − n)fil∗2 +
∑n

j=l∗2+1 fij)

+n(γ1 − γ2)fil∗1 + nγ2fil∗2 + δfin for i = 1, ..., l∗1

nγ2fil∗2 + β((l∗2 − n)fil∗2 +
∑n

j=l∗2+1 fij) + δfin for i = l∗1 + 1, ..., l∗2

β
∑n

j=i fij + δfin for i = l∗2 + 1, ..., n.

(2.32)

This equation becomes much simpler if there is only learning effect or only time-dependent

processing time. In fact, if there is only learning effect, we have b = 0, therefore fij is reduced

29

to ic. Thus the equation above becomes

ξi =

α(l∗ − l∗1 + i− 1)ic + n(γ1 − γ2)ic + nγ2i
c + δic for i = 1, ..., l∗1

nγ2i
c + δic for i = l∗1 + 1, ..., l∗2

β(n− i+ 1)ic + δic for i = l∗2 + 1, ..., n.

(2.33)

Application of the Unified Optimization Algorithm According to the analysis above,

the objective function (2.5) or (2.6) can be written in the format of (2.1) for all four due date

assignment methods, and thus we can present the following optimization algorithm to solve the

problem for the earliness-tardiness objective:

Algorithm 2 A unified optimization algorithm for solving the 1
∣∣p[j] = (a[j] + bS[j])j

c, CONW
∣∣

α
∑
Ej + β

∑
Tj + n (γ1d+ γ2D) + δCmax and the 1

∣∣p[j] = (a[j] + bS[j])j
c, X

∣∣α∑Ej + β
∑
Tj +

γ
∑
dj + δCmax problems for X ∈ {CON,SLK,DIF}.

Step 1. (Apply this step only for the CON, CONW and the SLK methods) Calculate l∗ by eq.

(2.7) for the CON and the SLK methods and l∗1 and l∗2 by eq. (2.25) for the CONW method.

Step 2. Apply Algorithm 1 where ξi is calculated by eq. (2.12) for the CON method and the

CONW method if l∗1 ≥ l∗2, by eq. (2.32) for the CONW method if l∗1 < l∗2, by eq. (2.21) for the

SLK method and by eq. (2.24) for the DIF method.

Step 3. For the CON method, assign the due date according to eqs. (2.7)-(2.8). For the SLK

method, assign the due dates according to eqs. (2.15)-(2.16). For the DIF method, assign the

due dates according to Lemma 6. For the CONW method, if l∗1 ≥ l∗2 assign d∗ = d
∗

where d∗ is

calculated by eqs. (2.7)-(2.8) with γ = γ1; If l∗1 < l∗2, assign d∗ and d
∗
according to eq. (2.26).

We have the following result for this algorithm:

Theorem 1 Algorithm 2 solves the earliness-tardiness scheduling problems 1|p[j] = (a[j]+bS[j])j
c,

CONW |α
∑
Ej+β

∑
Tj+n (γ1d+ γ2D)+δCmax and 1

∣∣p[j] = (a[j] + bS[j])j
c, X

∣∣α∑Ej+β
∑
Tj+

γ
∑
dj + δCmax for X ∈ {CON,SLK,DIF} in O(n log n) time.

Proof. The correctness of the algorithm follows from Lemmas 2-4 and the preceding analysis.

Step 1 takes constant time and Step 3 requires O(n) time; Step 2 requires O(n log n) time, and

the calculation of ξi for i = 1, 2, · · · , n. We will show that this can be done in linear time.

Examine (2.12), (2.24), (2.21) and (2.32), we show that all the positional penalties can be

computed in linear time. The calculation of ξi includes the calculation of three types of expres-

sions: fim (m = l∗ or n in (2.12)),
∑l

j=m fij (m = l∗ + 1, l = n in (2.12)) and
∑l

j=i fij (l = l∗ or

30

n in (2.12)) for i of certain range (i = 1, · · · , l∗ or i = l∗ + 1 · · · , n in (2.12)), where m and l are

some fixed values depending on the due date assignment method used.

Let eij =
∏j

k=i+1(1 + bkc). Then fij = iceij by (2.3). Thus the calculation of fij and
∑

j fij

is reduced to the calculation of eij and
∑

j eij. We can do this with the following backward

recursions:

emm = 1 and {eim|1 ≤ i ≤ m} can be calculated by ei−1,m = (1 + bic)eim for i = m,m− 1, · · · , 1
in linear time.∑l

j=m emj =
∑l

j=m

∏j
k=m+1(1+bkc) can clearly be obtained in linear time, and using

∑l
j=m ei−1,j =

(1 + bic)
∑l

j=m eij for i = m,m − 1, · · · , 1, each of {
∑l

j=m eij|1 ≤ i ≤ m} can be calculated in

O(1) time from the previous value.∑l
j=l elj = 1 and using

∑l
j=i−1 ei−1,j = 1 + (1 + bic)

∑l
j=i eij for i = l, l − 1, · · · , 1, each of

{
∑l

j=i eij|1 ≤ i ≤ l} can be calculated in O(1) time from the previous entry. To demonstrate,

we show the first 2 rounds of these iterations below:

l∑
j=l−1

el−1,j = 1 + (1 + blc)
l∑
j=l

elj = 1 + (1 + blc),

l∑
j=l−2

el−2,j = 1 + (1 + b(l − 1)c)
l∑

j=l−1

el−1,j = 1 + (1 + b(l − 1)c)(1 + (1 + blc)).

Thus the overall computational complexity of the algorithm is O(n log n) indeed. Similar

arguments show that the calculations in (2.24), (2.21) and (2.32) can also be implemented in

linear time.

As special cases, we have the following results, when there is only learning effect, or only

time-dependent processing times, respectively:

Corollary 1 The earliness-tardiness scheduling problems with learning effects 1|p[j] = a[j]j
c,

CONW |α
∑
Ej + β

∑
Tj + n (γ1d+ γ2D) + δCmax and 1

∣∣p[j] = a[j]j
c, X

∣∣α∑Ej + β
∑
Tj +

γ
∑
dj + δCmax for X ∈ {CON,SLK,DIF} are solvable in O(n log n) time.

Corollary 2 The earliness-tardiness scheduling problems with time-dependent processing times

1|p[j] = a[j] + bS[j], CONW |α
∑
Ej + β

∑
Tj +n (γ1d+ γ2D) + δCmax and 1|p[j] = a[j] + bS[j], X|

α
∑
Ej +β

∑
Tj + γ

∑
dj + δCmax for X ∈ {CON,SLK,DIF} are solvable in O(n log n) time.

It is easy to see that, if instead of makespan, we consider the total completion time in the

objective of Theorem 1, i.e., we replace δCmax with θ
∑
Cj, the same argument holds. The only

difference is that in the definition of ξi, we use θ
∑n

k=i fik instead of δfin. Therefore we also have

the following result:

31

Theorem 2 The earliness-tardiness scheduling problems 1|p[j] = (a[j]+bS[j])j
c, CONW |α

∑
Ej+

β
∑
Tj+n (γ1d+ γ2D)+θ

∑
Cj and 1

∣∣p[j] = (a[j] + bS[j])j
c, X

∣∣α∑Ej+β
∑
Tj+γ

∑
dj+θ

∑
Cj

for X ∈ {CON,SLK,DIF} are solvable in O(n log n) time.

Again, as special cases, we have the following results, when there is only learning effect, or

only time-dependent processing times, respectively:

Corollary 3 The earliness-tardiness scheduling problems with learning effects 1|p[j] = a[j]j
c,

CONW |α
∑
Ej + β

∑
Tj + n (γ1d+ γ2D) + θ

∑
Cj and 1

∣∣p[j] = a[j]j
c, X

∣∣α∑Ej + β
∑
Tj +

γ
∑
dj + θ

∑
Cj for X ∈ {CON,SLK,DIF} are solvable in O(n log n) time.

Corollary 4 The earliness-tardiness scheduling problems with time-dependent processing times

1|p[j] = a[j] + bS[j], CONW |α
∑
Ej +β

∑
Tj +n (γ1d+ γ2D) +θ

∑
Cj and 1|p[j] = a[j] + bS[j], X|

α
∑
Ej +β

∑
Tj +γ

∑
dj +θ

∑
Cj for X ∈ {CON,SLK,DIF} are solvable in O(n log n) time.

Our results both extend and improve Biskup’s [5] O(n3) time optimization algorithm to solve

the 1
∣∣p[j] = a[j]j

c, CON
∣∣ α∑Ej + β

∑
Tj + θ

∑
Cj problem, and Mosheiov’s [61] O(n3) time

optimization algorithm to solve the 1|p[j] = a[j] + bS[j], CON |α
∑
Ej +β

∑
Tj +γ

∑
dj problem.

2.2.2 Scheduling Problems without Due Dates

We show in this subsection that a large collection of other classical scheduling problems, which

do not involve due dates, can also be solved by applying Algorithm 2.

It is easy to see that the jobs are processed from time zero and there is no idle time be-

tween them, i.e., the condition of Lemma 3 is satisfied for all the objectives without due dates.

Therefore, (2.4) holds in all cases.

Below is a list of known results about scheduling problems for learning effect or time dependent

processing time without due date assignment consideration:

Makespan

Let us first consider the makespan minimization problem with variable processing times, de-

noted by 1|p[j] = (a[j]+bS[j])j
c|Cmax.

When k = n, (2.4) becomes:

Cmax = C[n] =
n∑
i=1

fina[i].

Thus we can write the objective using “positional” penalties to minimize

32

Problem Complexity Ref.

1
∣∣p[j] = a[j]j

c
∣∣Cmax O(n log n) [61]

1
∣∣p[j] = a[j] + bS[j]

∣∣Cmax O(n log n) [35]

1
∣∣p[j] = a[j]j

c
∣∣∑Cj O(n log n) [5]

1
∣∣p[j] = a[j] + bS[j]

∣∣∑Cj O(n log n) [66]

1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣Cmax O(n log n) [90]

1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣∑Cj O(n log n) [90]

1
∣∣p[j] = a[j]j

c
∣∣ δ1

∑∑
|Ci − Cj|+ δ2

∑
Cj O(n3) [61]

Table 2.2: Summary of previous results on learning effect/time-dependent processing time with-

out due date assignment.

g(π) =
n∑
i=1

fina[i], (2.34)

which is clearly in the format of (2.1) with ξi = fin for i = 1, ..., n. Therefore, the problem can

be solved in O(n log n) time by applying Algorithm 1. Thus we have the following result, which

extends previous results by Mosheiov [61] for the 1
∣∣p[j] = a[j]j

c
∣∣Cmax problem, and by Gupta

and Gupta [35] for the 1
∣∣p[j] = a[j] + bS[j]

∣∣Cmax problem.

Theorem 3 The 1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣Cmax problem is solvable in O(n log n) time.

Total completion time

Now consider 1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣∑Cj. From (2.4), we have

n∑
k=1

C[k] =
n∑
k=1

k∑
j=1

fjka[j] =
n∑
j=1

n∑
k=j

fjka[j]. (2.35)

For any scheduling sequence π = ([1], [2], ..., [n]), the objective value can be represented by

g(π) =
n∑
k=1

k∑
j=1

fjka[j] =
n∑
j=1

n∑
k=j

fjka[j]. (2.36)

This objective in eq. (2.36) is again a special case of the one in eq.(2.1) with ξj =
∑n

k=j fjk for

j = 1, ..., n. Therefore we have the following result, which extends the results of Biskup [5] for

the 1
∣∣p[j] = a[j]j

c
∣∣∑Cj problem, and those of Ng. et al. [66] for the 1

∣∣p[j] = a[j] + bS[j]

∣∣∑Cj

problem.

33

Theorem 4 The 1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣∑Cj problem is solvable in O(n log n) time.

We note that the above solution does not extend to the weighted completion time problem,

whose complexity remains unknown, since this objective function cannot be written using the

positional-penalty format.

Notice that our algorithm for both makespan and total completion time is equivalent to the

SPT algorithm in [90], since ξi is monotonically decreasing in i for both cases.

Sum and variation of completion times

Let us consider next the 1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣ δ1

∑n
k=1

∑n
l=k+1(C[l]−C[k])+δ2

∑n
j=1C[j] prob-

lem. Substituting (2.4), we obtain

n∑
k=1

n∑
l=k+1

(C[l] − C[k]) =
n∑
k=1

n∑
l=k+1

C[l] −
n∑
k=1

n∑
l=k+1

C[k]

=
n∑
l=1

l−1∑
k=1

C[l] −
n∑
k=1

(n− k)C[k]

=
n∑
l=1

(l − 1)
l∑

j=1

fjla[j] −
n∑
k=1

(n− k)
k∑
j=1

fjka[j]

=
n∑
j=1

n∑
l=j

(l − 1)fjla[j] −
n∑
j=1

n∑
k=j

(n− k)fjka[j]

=
n∑
j=1

n∑
k=j

(2k − n− 1)fjka[j]

Note that since fjk is increasing in k, each term is always non-negative. Adding (2.35), we

can rewrite our objective as follows:

g(π) =
n∑
j=1

(
δ1

n∑
k=j

(2k − n− 1)fjk + δ2

n∑
k=j

fjk

)
a[j]. (2.37)

The objective in eq.(2.37) also has the format of eq.(2.1) with ξj = δ1

∑n
k=j(2k− n− 1)fjk +

δ2

∑n
k=j fjk for j = 1, ..., n. Thus we obtain the following result, which both extends and improves

the results of Mosheiov [61], who provided an O(n3) time optimization algorithm to solve the

1
∣∣p[j] = a[j]j

c
∣∣ δ1

∑∑
|Ci − Cj|+ δ2

∑
Cj problem.

Theorem 5 The 1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣ δ1

∑∑
|Ci − Cj|+δ2

∑
Cj problem is solvable in O(n log n)

time.

34

As a corollary, we have the following new result, which establishes the polynomial solvability

of the variation of completion time problem with the time-dependent processing time:

Corollary 5 The 1
∣∣p[j] = a[j] + bS[j]

∣∣ δ1

∑∑
|Ci − Cj|+δ2

∑
Cj problem is solvable in O(n log n)

time.

Variation of job waiting times

Consider the 1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣ δ1

∑∑
|Wi −Wj| + δ2

∑
Wj problem, where the wait-

ing time of the jth job in the sequence is defined by W[j] =
∑j−1

i=1 a[j] for j = 1, 2, ..., n [3]. Since

W[j] = C[j−1], the argument above for sum and variation of completion times also carries over

to this section. The only difference is that ξi = δ1

∑n
k=i−1(2k − n− 1)fik + δ2

∑n
k=j−1 fjk in this

case. For the same reason as in the last section, each term is always non-negative. Thus, we

obtain the following result:

Theorem 6 The 1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣ δ1

∑∑
|Wi −Wj|+δ2

∑
Wj problem is solvable in O(n log n)

time.

As corollaries, we have the following new results for the corresponding learning effect problem

and time-dependent processing time problem.

Corollary 6 The 1
∣∣p[j] = a[j]j

c
∣∣ δ1

∑∑
|Wi −Wj| + δ2

∑
Wj problem is solvable in O(n log n)

time.

Corollary 7 The 1
∣∣p[j] = a[j] + bS[j]

∣∣ δ1

∑∑
|Wi −Wj|+δ2

∑
Wj problem is solvable in O(n log n)

time.

35

Chapter 3

Scheduling with Learning Effects

and/or Time-dependent Processing

Times to Minimize the Weighted

Number of Tardy Jobs on a Single

Machine

Similar to the previous chapter, the general problem we study in this chapter may be stated as

follows: n independent, non-preemptive jobs, J = {1, 2, ..., n}, are available for processing at

time zero and are to be processed on a single machine. A schedule is defined by a job sequence

π = ([1], [2], ..., [n]), where [j] represents the job that is in the jth position in π for j = 1, 2, ..., n.

Our objective is to determine a schedule which minimizes a general unified cost function that

is the sum of scheduling costs, expressed by using positional penalties, and tardiness penalties.

This unified cost function can be formulated as follows :

g(π) =
n∑
j=1

ξjη[j] +
n∑

j=l+1

ψ[j], (3.1)

where ξj is a positional, job-independent penalty for any job scheduled in the jth position,

and ψj is the penalty for job j if it is late, for j = 1, ..., n; l is a variable to be decided.

This chapter is organized as follows: In Section 1, we present an O(n4) optimization algorithm

to determine the optimal schedule for the unified problem. In Section 2, we present a group

of scheduling problems, where the objective function includes costs for total number of tardy

jobs, makespan, and due date assignment. We show that, for all different due date assignment

36

methods, the objective can be reformulated as a special case of (3.1), which enables us to solve

this set of problems in O(n4) time. Using dynamic programming techniques, we improve this

time complexity to O(n2) for some important special cases in Section 3 and Section 4.

3.1 The Unified Problem

We show in this section that our problem can be solved in O(n4) time by solving a linear

assignment problem. First we consider the case when l is given. For 1 ≤ i, j ≤ n, let us define

cij as

cij =

{
ξiηj for i ≤ l

ξiηj + ψj for l + 1 ≤ i ≤ n.
(3.2)

Our sequencing problem then reduces to the classical linear assignment problem of finding π

which minimizes
∑n

i=1 ci[i]. Since the calculation of the assignment costs depends on l, we denote

this assignment problem by P1(l). It is well known that a linear assignment problem can be

solved in O(n3) time (see Papadimitriou and Steiglitz [69]).

Therefore, we have the following result:

Lemma 8 The optimal sequence, denoted by π∗, can be obtained by solving a linear assignment

problem requiring O(n3) time for fixed l.

The results of our analysis are summarized in the following optimization algorithm:

Algorithm 3 The optimization algorithm for the solution of the 1 ||
∑
ξjη[j] +

∑
ψ[j] problem.

Step 1. Calculate the cij values by (3.2).

Step 2. Solve the assignment problem (P1(l)) to determine the optimal job sequence, and

denote the resulting optimal sequence by π∗ = ([1], [2], ..., [n]).

If l is not known, then we have to enumerate all l and run Algorithm 3 repeatedly as a

subroutine:

Algorithm 4

Initialization: Z∗ =∞, l = 0.

while l ≤ n do

Step 1 Apply Algorithm 3. Denote the optimal

job sequence by π∗(l) = ([1], [2], ..., [n]) and the minimum cost by Z∗(l).

37

Step 2. If Z∗(l) ≤ Z∗, then set Z∗ = Z∗(l), l∗ = l , π∗ = π∗(l).

Step 3. l = l + 1.

end

From Lemma 8, we can get the following result easily:

Theorem 7 Algorithm 4 solves the 1 ||
∑
ξjη[j] +

∑
ψ[j] problem in O(n4) time.

In the next sections, we present various applications of our general approach to solve a large

set of important scheduling problems with variable processing times.

3.2 Minimizing Total Weighted Number of Tardy Jobs

with Due Date Assignment

In this section, we show how our unified method can be used to solve a large set of scheduling

problems involving due date assignment decisions.

Similar to the previous chapter, we re-define g(π) from (3.1) as g(π,d). Cases will be consid-

ered by providing special forms of g(π,d).

Our objective is to find a job sequence π∗ = ([1], [2], ..., [n]) and a set of due dates d∗ =

(d∗1, d
∗
2, ..., d

∗
n) to minimize a cost function that includes the costs of tardiness, due date assignment

and makespan. For the CON, SLK and DIF due date assignment methods, it is given by

g(π) =
n∑
j=1

ψjUj + γ
n∑
j=1

dj + δCmax (3.3)

where γ is a nonnegative parameter representing the cost of one unit of due date, Uj is the

tardiness indictor (it is equal to 1 if job j is tardy and 0 if otherwise), and δ is a nonnegative

parameter representing the cost of one unit of makespan.

It is easy to see that the jobs are processed from time zero and there is no idle time between

them, i.e., the condition of Lemma 3 is satisfied for all the due dates assignment methods.

Therefore, (2.2) holds in all cases. Next we show that, under an optimal due date assignment

strategy, the scheduling cost can be reduced to the format of (3.1) for all of them. For the first

time, we present results with different due date assignment methods, including CON, DIF and

SLK, to minimize total number of tardy jobs.

In the following subsections, we will reduce the scheduling problem of each due date assign-

ment method to the format of (3.1), therefore they can all be solved in O(n4) time. For any

sequence π, let us define set E(π) as the set of on-time jobs under an optimal due date assignment

strategy, define the set of tardy jobs by T (π) =J \ E(π). Then the following lemma from [82] is

applicable to our problems (we omit the proof since it is rather straightforward):

38

Lemma 9 There is an optimal schedule in which the corresponding π sequences E(π) before set

T (π).

Let l = |E(π)| denote the number of early jobs in the optimal schedule, then we have E(π) =

{[1], [2], ..., [l]}.

DIF due date assignment method

By Lemma 9, we can schedule all the l early jobs before all the tardy jobs. For job j, if it is

early, its due date is at least as large as its completion time. Therefore, the optimal assignment

strategy is to let d∗[j] = C[j], for j = 1, · · · , l. On the other hand, if job j is tardy instead, then

it is best to set its due date as early as possible, i.e., let d∗[j] = 0 for j = l+ 1, · · · , n. From (2.4)

and (3.3), we have

g(π) =
n∑

j=l+1

ψ[j] + γ
l∑

k=1

C[k] + δC[n]

=
n∑

j=l+1

ψ[j] + γ
l∑

k=1

k∑
j=1

fjka[j] + δ
n∑
j=1

fjna[j]

=
l∑

j=1

(γ
l∑

k=j

fjk + δfjn)a[j] + δ
n∑

j=l+1

fjna[j] +
n∑

j=l+1

ψ[j].

We can see that this is indeed in the format of (3.1), where

ξj =

{
γ
∑l

k=j fjk + δfjn for j ≤ l

δfjn for l + 1 ≤ j ≤ n.
(3.4)

As in the previous chapter, this equation becomes simpler if there is only learning effect or

only time-dependent processing time. In fact, if there is only learning effect, we have b = 0,

therefore fjk in (2.3) is reduced to jc for every k. Thus the equation above becomes

ξj =

{
γ(l − j + 1)jc + δjc for j ≤ l

δjc for l + 1 ≤ j ≤ n.
(3.5)

On the other hand, if there is only time-dependent processing time effect, we have c = 0,

therefore fjk becomes (1 + b)k−j. Thus the equation above becomes

ξj =

{
γ(l − j + 1)

∑l
k=j(1 + b)k−j + δ(1 + b)n−j for j ≤ l

δ(1 + b)n−j for l + 1 ≤ j ≤ n.
(3.6)

39

CON due date assignment method

It can be easily seen that the optimal strategy is to assign C[l] to all d∗[j]. From (2.4) and (3.3),

we have

g(π) =
n∑

j=l+1

ψ[j] + nγC[l] + δC[n]

=
n∑

j=l+1

ψ[j] + nγ
l∑

j=1

fjla[j] + δ

n∑
j=1

fjna[j]

=
l∑

j=1

(nγfjl + δfjn)a[j] +
n∑

j=l+1

ψ[j] + δ
n∑

j=l+1

fjna[j].

We can see that this is indeed the format of (3.1), where

ξj =

{
nγfjl + δfjn for j ≤ l

δfjn for l + 1 ≤ j ≤ n.
(3.7)

If there is only learning effect, we have b = 0, therefore fjk is reduced to jc for every k. Thus

the equation above becomes

ξj =

{
nγjc + δjc for j ≤ l

δjc for l + 1 ≤ j ≤ n.
(3.8)

On the other hand, if there is only time-dependent processing time effect, we have c = 0,

therefore fjk becomes (1 + b)k−j. Thus the equation above becomes

ξj =

{
nγ(1 + b)l−j + δ(1 + b)n−j for j ≤ l

δ(1 + b)n−j for l + 1 ≤ j ≤ n.
(3.9)

SLK due date assignment method

Let h = l−1. From [83], also as it was shown in Lemma 5, we know that the optimal common

slack value is s∗ = C[h]. From (2.4) and (3.3), we have

40

g(π) =
n∑

j=l+1

ψ[j] + γ
n∑
j=1

(s∗ + p[j]) + δC[n]

=
n∑

j=l+1

ψ[j] + nγC[h] + γC[n] + δC[n]

=
n∑

j=l+1

ψ[j] + nγ
h∑
j=1

fjha[j] + (γ + δ)
n∑
j=1

fjna[j]

=
h∑
j=1

(nγfjh + (γ + δ)fjn)a[j] + (γ + δ)
n∑

j=h+1

fjna[j] +
n∑

j=l+1

ψ[j].

We can see that this is indeed of the format of (3.1), where

ξj =

{
nγfjh + (γ + δ)fjn for j ≤ h

(γ + δ)fjn for h+ 1 ≤ j ≤ n.
(3.10)

If there is only learning effect, we have b = 0, therefore fjk is reduced to jc. Thus the equation

above becomes

ξj =

{
nγjc + (γ + δ)jc for j ≤ h

(γ + δ)jc for h+ 1 ≤ j ≤ n.
(3.11)

On the other hand, if there is only time-dependent processing time effect, we have c = 0,

therefore fjk becomes (1 + b)k−j. Thus the equation above becomes

ξj =

{
nγ(1 + b)h−j + (γ + δ)(1 + b)n−j for j ≤ h

(γ + δ)(1 + b)n−j for h+ 1 ≤ j ≤ n.
(3.12)

Application of the Unified Optimization Algorithm According to the analysis above, the

objective function (3.3) can be written in the format of (3.1) for all three due date assignment

methods, and thus we can present the following optimization algorithm to solve the problem for

the earliness-tardiness objective:

Algorithm 5 A unified optimization algorithm for solving the 1
∣∣p[j] = (a[j] + bS[j])j

c, X
∣∣∑n

j=1 ψjUj+

γ
∑n

j=1 dj + δCmax problems for X ∈ {CON,SLK,DIF}.

Step 1. Apply Algorithm 4 where ξj is calculated by eq.(3.7) for the CON method, by

eq.(3.10) for the SLK method, and by eq.(3.4) for the DIF method.

Step 2. For the CON method, assign C[l∗] to all d∗[j]. For the SLK method, assign slack value

s∗ = C[l∗−1] to all jobs. For the DIF method, let d∗[j] = C[j] for j = 1, 2, · · · , l∗, and d∗[j] = 0 for

j = l∗ + 1, · · · , n.

By theorem 7, we have the following result for this algorithm:

41

Theorem 8 Algorithm 5 solves the 1
∣∣p[j] = (a[j] + bS[j])j

c, X
∣∣∑n

j=1 ψjUj + γ
∑n

j=1 dj + δCmax

problems for X ∈ {CON,SLK,DIF} in O(n4) time.

As special cases, we have the following results, when there is only learning effect, or only

time-dependent processing times effect, respectively:

Corollary 8 Algorithm 5 solves the 1
∣∣p[j] = a[j]j

c, X
∣∣∑n

j=1 ψjUj + γ
∑n

j=1 dj + δCmax problems

for X ∈ {CON,SLK,DIF} in O(n4) time.

Corollary 9 Algorithm 5 solves the 1
∣∣p[j] = a[j] + bS[j], X

∣∣∑n
j=1 ψjUj +γ

∑n
j=1 dj +δCmax prob-

lems for X ∈ {CON,SLK,DIF} in O(n4) time.

It is easy to see that, if instead of makespan, we consider the total completion time in the

objective of Theorem 8, i.e., we replace δCmax with θ
∑
Cj, the same argument holds. The only

difference is that in the definition of ξj, we use θ
∑n

k=j fjk instead of δfjn. Therefore we also have

the following result:

Theorem 9 The 1
∣∣p[j] = (a[j] + bS[j])j

c, X
∣∣∑n

j=1 ψjUj + γ
∑n

j=1 dj + θ
∑
Cj problems for X ∈

{CON,SLK,DIF} are solvable in O(n4) time.

Again, as special cases, we have the following results, when there is only learning effect, or

only time-dependent processing times effect, respectively:

Corollary 10 The 1
∣∣p[j] = a[j]j

c, X
∣∣∑n

j=1 ψjUj + γ
∑n

j=1 dj + θ
∑
Cj problems for X ∈ {CON,

SLK,DIF} are solvable in O(n4) time.

Corollary 11 The 1
∣∣p[j] = a[j] + bS[j], X

∣∣∑n
j=1 ψjUj + γ

∑n
j=1 dj + θ

∑
Cj problems for X ∈

{CON,SLK,DIF} are solvable in O(n4) time.

In the next two sections, we drop the makespan and the total completion time considerations,

i.e., δ = 0. The reason to do this is that our recursive relation can only be obtained in this way.

The objective function (3.3) now becomes:

g(π) =
n∑
j=1

ψjUj + γ
n∑
j=1

dj (3.13)

42

3.3 Fast Algorithms for Cases with Time-dependent Pro-

cessing Time Effects Only

In this section, we present quadratic-time algorithms for cases without learning effect (c = 0 in

(1.3)), using dynamic programming techniques. In this case (2.3) becomes:

fjk = (1 + b)k−j. (3.14)

In this section we assume that b ≥ 0, i.e., we have deteriorating processing times. Our method

is to give the recursive relation between the optimal scheduling cost, which contains a term a[j]

times some coefficient. To this end, we need to rewrite C[k] (2.4) and
∑k

j=1 C[j] in term of a[j] as

follows:

C[k] =
k∑
j=1

(1 + b)k−ja[j], (3.15)

for the ease of the following summation calculation, we change it to the following form:

C[j] =

j∑
i=1

(1 + b)j−ia[i], (3.16)

and

k∑
j=1

C[j] =
k∑
j=1

j∑
i=1

fija[i] =
k∑
j=1

k∑
i=j

fjia[j] =
k∑
j=1

k∑
i=j

(1 + b)i−ja[j] =
k∑
j=1

(1 + b)k−j+1 − 1

b
a[j],

(3.17)

where we changed the order of summation for the second equality. Note that each term is

always non-negative since we assume that b ≥ 0.

Since the unit penalty γ is same for each job j from (3.13), and the order of tardy jobs is

immaterial, we can assume that the early jobs are always sequenced in SPT order. We sort the

jobs in SPT order and decide which job to be early or tardy in a backward fashion. For the sake

of simplicity, suppose they are already sorted in this way.

Notice that in (3.15) and(3.17), the coefficient of a[j] is dependent only on the number of early

jobs after job j: k − j. In fact, aj has a “weight” of (1 + b)k−j (in other words, it contributes

(1 + b)k−j “times”) in the calculation of C[k]; it has a “weight” of (1+b)k−j+1−1
b

(in other words, it

contributes (1+b)k−j+1−1
b

“times”) in the summation
∑k

j=1C[j].

This enables us to design the following dynamic programming. Define w(j, k) to be the

minimum cost of scheduling jobs j, j + 1, · · · , n s.t. k of them are early, for 1 ≤ j ≤ n and

43

0 ≤ k ≤ n− j + 1. We have the following set of boundary conditions for all cases when all jobs

are tardy:

w(j, 0) =
n∑
i=j

ψ[i], (3.18)

and another boundary condition when j = n:

w(n, 1) = γan.

Now we investigate the recursive functions to calculate w(j, k) for the three due date assign-

ment methods:

DIF If job j is early, then there will be k− 1 early jobs among j + 1, · · · , n. The optimal due

date for job j is Cj. By (3.13) and (3.17), aj is counted γ (1+b)k−1
b

“times”. Therefore

w(j, k) = w(j + 1, k − 1) + γ
(1 + b)k − 1

b
aj;

otherwise, i.e., when job j is tardy, the optimal due date for job j is 0, thus

w(j, k) = w(j + 1, k) + ψj.

Therefore we have the following recursive equation:

w(j, k) = min{w(j + 1, k − 1) + γ
(1 + b)k − 1

b
aj, w(j + 1, k) + ψj}. (3.19)

CON By the due date assignment rule, each job is assigned the same due date, which is the

sum of the processing times of all the early jobs. Therefore, if job j is early, then it will be

counted n times. Thus

w(j, k) = w(j + 1, k − 1) + nγ(1 + b)k−1aj

by (3.13) and (3.15), and the fact that there are k−1 early jobs after job j; otherwise, i.e., when

job j is tardy,

w(j, k) = w(j + 1, k) + ψj.

Therefore, we have the following recursive equation:

w(j, k) = min{w(j + 1, k − 1) + nγ(1 + b)k−1aj, w(j + 1, k) + ψj}. (3.20)

44

SLK From [83], we know that the optimal common slack value is s∗ = C[l−1], where l is the

number of early jobs. In other words, the last early job does not contribute to the due date

assignment cost, but the other ones (the first l − 1) do. If job j is early and k ≥ 2, then

w(j, k) = w(j + 1, k − 1) + nγ(1 + b)k−1aj

by (3.13) and (3.15), and the fact that there are k− 1 > 0 early jobs after job j; if job j is early

and k = 1, then it is the last early job and thus

w(j, k) = w(j + 1, k − 1);

i.e.,

w(j, 1) = w(j + 1, 0) =
n∑

i=j+1

ψ[i];

if job j is tardy, we have

w(j, k) = w(j + 1, k) + ψj.

Therefore, we have the following recursive equation:

w(j, k) = min{w(j + 1, k − 1) + nγ(1 + b)k−1aj, w(j + 1, k) + ψj}. (3.21)

for k ≥ 2, and (for k = 1)

w(j, 1) = min{w(j + 1, 0), w(j + 1, 1) + ψj} = min{
n∑

i=j+1

ψ[i], w(j + 1, 1) + ψj}. (3.22)

From the analysis above, we can present the following algorithms:

Algorithm 6 The optimization algorithm for the solution of 1
∣∣p[j] = a[j] + bS[j], X

∣∣∑n
j=1 ψjUj+

γ
∑n

j=1 dj problems for X ∈ {CON,DIF}.
Initialization:

w(n, 1) := γan

For j From 1 To n do

w(j, 0) :=
n∑
i=j

ψ[i]

Recursion:

For j From n-1 Down To 1 Do

45

For k From 1 To n-j+1 Do

for CON:

w(j, k) = min{w(j + 1, k − 1) + nγ(1 + b)k−1aj, w(j + 1, k) + ψj}

for DIF:

w(j, k) = min{w(j + 1, k − 1) + γ
(1 + b)k − 1

b
aj, w(j + 1, k) + ψj}

Optimal solution value:

min{w(1, k)|0 ≤ k ≤ n}.

end

Algorithm 7 The optimization algorithm for the solution of 1
∣∣p[j] = a[j] + bS[j], SLK

∣∣∑n
j=1 ψjUj+

γ
∑n

j=1 dj problem.

Initialization:

w(n, 1) := γan

For j From 1 To n do

w(j, 0) :=
n∑
i=j

ψ[i]

Recursion:

For j From n-1 Down To 1 Do

w(j, 1) = min{w(j + 1, 0), w(j + 1, 1) + ψj} = min{
n∑

i=j+1

ψ[i], w(j + 1, 1) + ψj}

For j From n-1 Down To 1 Do

For k From 2 To n-j+1 Do

w(j, k) = min{w(j + 1, k − 1) + nγ(1 + b)k−1aj, w(j + 1, k) + ψj}

Optimal solution value:

min{w(1, k)|0 ≤ k ≤ n}.

end

46

In summary, we have the following result:

Theorem 10 Algorithm 6 solves the 1
∣∣p[j] = a[j] + bS[j], X

∣∣∑n
j=1 ψjUj +γ

∑n
j=1 dj problems for

X ∈ {CON,DIF} in O(n2) time. Algorithm 7 solves the 1
∣∣p[j] = a[j] + bS[j], SLK

∣∣∑n
j=1 ψjUj +

γ
∑n

j=1 dj problem in O(n2) time.

Proof.

The correctness of the algorithms follows from (3.16)-(3.21). For the time complexity, we

note that in both algorithms, the outer recursion j takes O(n) time, and the inner recursion k

also takes O(n) time. Therefore, the total time complexity is O(n2).

3.4 Fast Algorithms for Cases with Learning Effect Only

In this section, we present quadratic-time algorithms for cases without time-dependent effect

(b = 0 in (1.3)), or makespan consideration (δ = 0), using forward dynamic programming

techniques. In this case, we have

fjk = jc. (3.23)

from (2.3). As in the previous section, our method is to give the recursive relation for the

optimal scheduling costs, which contain a term a[j] times some coefficient. To this end, we need

to rewrite C[k] (2.4) in terms of a[j] as follows:

C[k] =
k∑
j=1

jca[j]. (3.24)

Similar to the discussion in the previous section, we can assume that the early jobs are already

sequenced in SPT order. Our goal is to decide which job to be early or tardy in a forward fashion.

Notice that in (3.24), the coefficient of a[j] is dependent only on the number of early jobs

before job j. This enables us to design the following forward dynamic programming algorithms.

CON Define w(j, k) to be the minimum cost of scheduling jobs 1, 2, · · · , j s.t. k of them are

early, for 1 ≤ k ≤ j ≤ n. We have the following set of boundary conditions when jobs 1, 2, · · · , j
are all tardy:

w(j, 0) =

j∑
i=1

ψ[i],

for 1 ≤ j ≤ n; and

47

w(1, 1) = a1.

If job j is early, then its processing time gets counted in the (common) due date of every job,

i.e., n times, and thus

w(j, k) = w(j − 1, k − 1) + njcaj

by (3.13) and (3.24), and the fact that there are k− 1 early jobs before job j; otherwise, i.e.,

job j is tardy, we have

w(j, k) = w(j − 1, k) + ψj.

Therefore, we have the following recursive equation:

w(j, k) = min{w(j − 1, k − 1) + njcaj, w(j − 1, k) + ψj}.

SLK As in the previous section, from [83], we know that the optimal common slack value is

s∗ = C[l−1], where l is the number of early jobs. In other words, the last early job does not

contribute to the due date assignment cost, but the other ones (the first l − 1) do. Due to

this special property, we do not have the same direct recursive equations as in the CON case.

However, we can still utilize those recursive equations to get a set of recursive equations for the

SLK case.

Let W (r) be the minimum cost to schedule jobs of 1, 2, · · · , n s.t. job r is the last early

one. By the above discussion and definition of w(j, k) in the CON part (in which the due date

assignment cost for the k early jobs are calculated recursively), we have

W (r) = min
0≤k≤r−1

w(r − 1, k) +
n∑

i=r+1

ψi

for 1 ≤ r ≤ n (we define w(0, 0) = 0, and the minimum cost to schedule jobs 1, 2, · · · , n is

given by

W = min
1≤r≤n

W (r).

From the analysis above, we are ready to present the following algorithm:

Algorithm 8 The optimization algorithm for the solution of 1
∣∣p[j] = a[j]j

c, X
∣∣∑n

j=1 ψjUj +

γ
∑n

j=1 dj problems for X ∈ {CON,SLK}.
Initialization:

48

w(1, 1) := γa1

For j From 1 To n do

w(j, 0) :=
i∑
i=i

ψ[i]

Recursion:

For j From 1 To n Do

For k From 0 To j Do

w(j, k) = min{w(j − 1, k − 1) + njcaj, w(j − 1, k) + ψj}

W (j) = min
0≤k≤j−1

w(j − 1, k) +
n∑

i=j+1

ψi

Optimal solution value:

For CON:

min{w(1, k)|0 ≤ k ≤ n}.

For SLK:

W = min
1≤j≤n

W (j).

end

In summary, we have the following result:

Theorem 11 Algorithm 8 solves the 1
∣∣p[j] = a[j]j

c, X
∣∣∑n

j=1 ψjUj +γ
∑n

j=1 dj problems for X ∈
{CON,SLK} in O(n2) time.

Proof.

The correctness of the algorithms follows from the analysis before them. For the time com-

plexity, we note that in both algorithms, the outer recursion j takes O(n) time, and the inner

recursion k also takes O(n) time. Therefore, the total time complexity is O(n2).

49

Chapter 4

Bicriteria Scheduling with Batching

Deliveries

We consider both the single machine model and the parallel machine model. We are given n

jobs N = {1, 2, · · · , n}. Our model consists of a production part and a distribution part. In

the production part, each job j ∈ N has a given processing time pj, sometimes with a due date

dj. The jobs must be executed on a machine without interruption. All jobs and machines are

available at time 0. In the distribution part, we assume that there are enough vehicles available.

Given a production schedule, we use the following notations:

Cj: the completion time of job j;

D′j: the delivery time of job j;

Lj = D′j − dj: the lateness of job j;

Uj: the indicator of tardiness, i.e., Uj = 1 if job j is late, and Uj = 0 otherwise;

Pj =
∑

j pj: the total processing time of the first j jobs;

φ: the upper bound of batch size, i.e., each vehicle can carry up to φ jobs in one shipment,

which is assumed to be a given constant;

T : the minimum time between any consecutive deliveries;

f : the transportation cost incurred by each shipment;

z: the number of batches;

∆: the batch setup time.

We have two objectives to optimize: the scheduling cost and the distribution cost. We use X

to denote the scheduling cost, where X may be total delivery time, maximum lateness, or total

number of tardy jobs, and Y = zf to measure the distribution cost.

Since our problem has two criteria, we have four different forms of this optimization problem:

(P1) To minimize αX + (1− α)Y , for some α ∈ [0, 1];

50

(P2) To minimize X subject to Y ≤ Y ′, where Y ′ is a given upper bound on the distribution

cost;

(P3) To minimize Y subject to X ≤ X ′, where X ′ is a given upper bound on the delivery

cost;

(P4) To identify the set of Pareto-optimal schedules (points) (X, Y), where a schedule S with

X = X(S) and Y = Y (S) is called Pareto-optimal if there does not exist another schedule S ′

such that X(S ′) ≤ X(S) and Y (S ′) ≤ Y (S), with at least one of these inequalities being strict.

In other words, to construct the efficiency frontier or the trade-off curve.

Of these four forms, (P1) is the easiest. The optimal solution of any of the other three forms

automatically gives the optimal solution of (P1). (P4), on the other hand, is the hardest. Its

optimal solution implies the optimal solution of (P1)-(P3).

In many bicriteria scheduling problems, the (P4) form is NP-hard [65]. In this thesis, however,

we can solve it in polynomial time, utilizing the special properties of batching.

Chen et al. [15], Hochbaum et al. [42], and Hall et al. [38] [39] all presented dynamic

programming methods to solve (P1) in polynomial time, for different objectives X. However,

the polynomial-time solvability of (P1) does not imply polynomial-time solvability of (P2), (P3)

or (P4).

Notice that the distribution cost Y depends only on z, the number of batches. We will use

z to measure the distribution cost instead of Y , for the sake of convenience. In each problem

we consider in this paper, we give an optimal solution value for every possible z, the number of

batches. The optimal solutions (schedules) can be found with standard backtracking techniques.

Some solutions might not be Pareto-optimal. For example, it might happen that both (z,X)

and (z− 1, X ′) are solutions given by our algorithms, but X ≥ X ′; therefore, the first one is not

Pareto-optimal. In that case, we simply remove it from the solution set.

In the standard three-field notation A |B|C, if φ appears in the B section, it means that the

upper bound constraint is imposed; if T appears in the B section, it means that the minimum

time between consecutive deliveries is imposed. We use (z,X) in the φ field to denote the P4-form

(Pareto-optimal) objective, where X could be
∑
D′j, maxLj, or

∑
Uj, and the delivery cost is

measured by total delivery time, maximum lateness, or total number of tardy jobs, respectively.

We include a straightforward optimality property for all the problems from [15].

Lemma 10 There exists an optimal schedule where the departure time of each shipment is the

completion time of the last job included in the shipment.

51

4.1 Minimizing the Total Delivery Time on a Single Ma-

chine

We use X = D′1 +D′2 + · · ·+D′n in this section. A set of jobs is in SPT (shortest-processing-time

first) order if the jobs are sequenced in a nondecreasing order of their processing times, and

jobs with equal processing times are sequenced in the order of their indices. According to this

definition, there is exactly one SPT order for a given set of jobs.

We have the following result, which enables us to focus on SPT order in this section:

Lemma 11 For problems 1||(z,
∑
D′j) and 1|φ, T |(z,

∑
D′j), there exists an optimal schedule in

which the jobs are sequenced in SPT order.

Proof. Consider an optimal schedule σ∗. First we sort the jobs of each batch in SPT order

without changing the cost. If the resulting σ∗ is not in SPT order, then we must have a job j

that is the last job in some batch B, and another job i that is the first job in the next batch

B′, where pj > pi. Consider a new schedule σ that is created by exchanging jobs j and i, and

forming delivery batches containing jobs B ∪ {i} − {j} and B′ ∪ {j} − {i}, where both batches

are delivered no later than their counterparts in σ∗. All other delivery batches are identical and

delivered at the same time in σ as in σ∗. Thus, the cost associated with σ is no more than

the cost associated with σ∗. Notice that the number of jobs in each batch remains the same,

therefore, the constraint of the batch size is not violated. Also notice that the new delivery time

will not violate the T constraint. After a finite number of such exchanges, an optimal schedule

is obtained, in which the jobs are sequenced in SPT order.

By this lemma, without loss of generality, we can assume in this section that the jobs are

indexed in SPT order so that p1 ≤ · · · ≤ pn.

4.1.1 1|φ|(z,
∑
D′j)

We consider the case without transportation timing constraints in this subsection. By Lemma

10 and Lemma 11, the following dynamic programming algorithm finds an optimal schedule for

1|φ|(z,
∑
D′j).

Algorithm 9 Let V (j, z) be the minimum total delivery time of scheduling jobs {1, · · · , j} in z

batches, such that each batch contains at most φ jobs.

Initial condition: V (j, z′) = +∞ for j > z′c and V (j, z′) = 0 for j = 0, and z′ ≤ z.

Optimal solution values: V (n, z); z = 1, 2, · · · , n.

Recursive equation:

52

V (j, z) = min{V (j − h, z − 1) + hPj + hz∆|h = 1, · · · ,min(c, j)}

Theorem 12 Algorithm 9 solves the 1|φ|(z,
∑
D′j) problem in O(n2) time.

Proof. From Lemma 10, we know that the departure time of the last shipment is always

Cj = Pj+z∆, regardless of the size of the last shipment. This implies that the delivery time of all

the jobs in the last shipment is Pj+z∆. In the recursive equation, the value function is computed

by trying every possible size of the last shipment. Given that the size of the last shipment is h

(i.e., the last shipment delivers jobs j − h + 1, j − h + 2, · · · , j), the delivery cost contributed

by the last shipment is hCj = hPj + hz∆, which is its contribution to the total delivery time.

This proves the correctness of the recursive relation and hence the optimality of the algorithm.

There are O(n2) states in this DP, and it takes no more than O(φ) time to calculate the value

for each state. Sorting the jobs in SPT order takes O(n log n) time. Therefore, the overall time

complexity of Algorithm 9 is bounded by O(n2).

4.1.2 1|φ, T |(z,
∑
D′j)

The transportation timing constraint makes the problem more complicated. We need additional

variables to keep track of when the next transporter is available. We introduce a state variable

u which specifies the last job that is delivered immediately after its processing is completed,

and a state variable v that specifies the number of subsequent deliveries. Thus, the transporter

performs its last delivery in the (partial) schedule at time Pu + (z − v)∆ + vT , where z is the

total number of batches used. We present the following dynamic programming algorithm. Our

method is an adaptation from the one in [39].

Algorithm 10 Let V (j, u, v, z) be the minimum total delivery time of scheduling jobs {1, · · · , j}
in z batches, where the last delivery when a job completes processing occurs at time Pu+(z−v)∆

and there are v subsequent deliveries, so that the batch containing job j is delivered at time

Pu + (z − v)∆ + vT , where v ≤ j − u, u ≤ j, and u = j if v = 0.

Initial condition (we require that the first delivery cannot happen before T here):

V (j, j, 0, z′) =

{
0 if j = 0

jPj 0 < j ≤ c, Pj < T

for z′ ≤ z.

Optimal solution value:

min{V (n, u, v, z)|1 ≤ u ≤ n, 0 ≤ v ≤ z ≤ n}

53

.

Recursive equations:

V (j, j, 0, z) = min{V (i, u, v−1, z−1)+(j−i)(Pj+z∆)|0 ≤ u ≤ i < j, j−i ≤ c, 1 ≤ v ≤ min{i−u+1, j}}

for Pj ≥ T , where V = b(Pj − Pu)/T c; and

V (j, u, v, z) = min{V (i, u, v−1, z−1)+(j−i)(Pu+vT+(z−v)∆)|0 ≤ u ≤ i < j, j−i ≤ c, v > V }.

Theorem 13 Algorithm 10 solves 1|φ, T |(z,
∑
D′j) in O(n4) time.

Proof. The initial condition considers all possible first batches that are delivered before

time T . In the first recurrence equation, a delivery occurs at time Pu and then at each T time

units until time Pu + (v − 1)T , and then another delivery for batch {i + 1, · · · , j} occurs at

time Pj + z∆ ≥ Pu + (z − v)∆) + vT . The second recurrence equation represents the case

where deliveries are previously scheduled at times Pu, Pu + T, ..., Pu + (v − 1)T , and then batch

{i+ 1, · · · , j} is delivered at time Pu + (z − v)∆) + vT < Pj + z∆. Combined with Lemmas 10

and 11, the correctness of the theorem is proved.

Now let’s prove the time complexity. By definition, j, u, v, z ≤ n. Consequently, the first

recurrence relation with u = j and v = 0 requires O(φn2) time for each j and z. The second

recurrence relation requires O(φ) time for each j, u, z and v. O(n2) values are calculated in the

first recurrence and O(n4) values are calculated in the second recurrence. Therefore, the overall

time complexity of Algorithm 2 is O(n4).

4.2 Minimizing the Maximum Lateness on a Single Ma-

chine

We use X = maxj Lj in this section. A set of jobs are in EDD (earliest-due-date first) order if

the jobs are sequenced in a nondecreasing order of their due dates.

When dealing with due-date-related objectives, such as maximum lateness, total number of

tardy jobs, or total tardiness, EDD rule is commonly used. However, if the batch size constraint

is imposed, EDD is not necessarily optimal. Below is a counter-example for 1||(z,maxj Lj):

There are 4 jobs to be scheduled, where p1 = p2 = p4 = 1, p3 = 2, and d1 = 2, d2 = 6, d3 =

d4 = 5, and c = z = 2. It is easy to verify that the only schedule for each job to be on time is to

54

schedule job 1 and 2 in the first batch, job 3 and 4 in the second batch. However, the EDD rule

is violated in this batch schedule (d2 > d3, but job 2 is scheduled before job 3.)

Fortunately, we can still apply the EDD rule if there is no batch size constraint. We have the

following result, which enables us to focus on EDD order in this section:

Lemma 12 For problems 1||(z,maxj Lj) and 1|T |(z,maxj Lj), there exists an optimal schedule

in which the jobs are sequenced in EDD order.

Proof. Consider an optimal schedule σ∗. First, we sort the jobs of each batch in EDD order,

without changing the cost. If the resulting σ∗ is not in EDD order, then we must have a job j

that is the last job in some batch B, and another job i that is the first job in the next batch B′,

where dj > di. Consider a new schedule σ that is created by moving job j from B to B′, and

forming delivery batches containing jobs B−{j} and B′∪{j}, where both batches are delivered

no later than their counterpart in σ∗. All other delivery batches are identical and delivered at

the same time in σ as in σ∗. Only job j is delivered later in σ than in σ∗. However, since jobs j

and i are delivered at the same time in σ and dj > di, we have Lj(σ) < Li(σ) = Li(σ
∗), which

establishes that σ is another optimal schedule. Thus, the cost associated with σ is no more than

the cost associated with σ∗. After a finite number of such exchanges, an optimal schedule is

obtained, in which the jobs are sequenced in EDD order.

4.2.1 1||(z,maxj Lj)

By Lemma 12, without loss of generality, we assume that the jobs are indexed in EDD order, so

that d1 ≤ · · · ≤ dn. The following dynamic programming algorithm finds an optimal schedule

for this problem.

Algorithm 11 Let V (j, z) be the minimum delivery cost of scheduling jobs {1, · · · , j} in z batch-

es.

Initial condition: V (j, z′) = 0 for j = 0; V (j, z′) =∞ for j = 1, 2, · · · , n and z′ ≤ z.

Optimal solution value: V (n, z).

Recursive equation:

V (j, z) = min{max(V (j − h, z − 1), Pj + z∆− dj−h+1)|h = 1, · · · , j)}

Theorem 14 Algorithm 11 finds an optimal schedule for 1||(z,maxj Lj) in O(n3) time.

Proof. From Lemma 10, we know that the departure time of the last shipment is always

Cj = Pj + z∆, regardless of its size. This implies that the delivery time of all the jobs in the

55

last shipment is Pj + z∆. In the recursive relation, the value function is computed by trying

every possible size of the last shipment. Given that the size of the last shipment is h (i.e., the

last shipment delivers jobs j − h + 1, j − h + 2, · · · , j), the maximum lateness in the last batch

is Pj + z∆− dj−h+1, which is the lateness of job j − h+ 1, by the EDD assumption. This proves

the correctness of the recursive relation, and hence, the optimality of the algorithm. There are

O(n2) states in this DP, and it takes no more than O(n) time to calculate the value for each state.

Sorting the jobs in EDD order takes O(n log n) time. Therefore, the overall time complexity of

Algorithm 2 is bounded by O(n3).

4.2.2 1|T |(z,maxj Lj)

By Lemma 12, without loss of generality, we also assume that the jobs are indexed in EDD order,

so that d1 ≤ · · · ≤ dn. As in subsection 4.1.2, we also introduce additional variables u and v,

which have the same meaning. Our method is an adaptation from the one in [39].

Algorithm 12 Let V (j, u, v, z) be the minimum maximum lateness of scheduling jobs {1, · · · , j}
in z batches, where the last delivery when a job completes processing occurs at time Pu+(z−v)∆

and there are v subsequent deliveries, so that the batch containing job j is delivered at time

Pu + (z − v)∆ + vT , where v ≤ j − u, u ≤ j, and u = j if v = 0.

Initial condition:

V (j, j, 0, 1) = Pj − d1,

for j > 0 and Pj < T .

Optimal solution value:

min{V (n, u, v, z|1 ≤ u ≤ n, 0 ≤ v ≤ z ≤ n}

.

Recursive equations:

V (j, j, 0, z) = min{max{V (i, u, v−1, z−1), Pj+z∆−di+1}|0 ≤ u ≤ i < j, 1 ≤ v ≤ min{i−u+1, V }}

for Pj ≥ T , where V = b(Pj − Pu)/T c; and

V (j, u, v, z) = min{max{V (i, u, v − 1, z − 1), Pu + vT + (z − v)∆− di+1}|0 ≤ u ≤ i < j, v > V }

56

The interpretation of this algorithm is similar to subsection 4.1.2. In both cases of the

recursive relations, the maximum lateness in the last batch {i+ 1, · · · , j} occurs for the first job

i+ 1, which has the earliest due date.

Theorem 15 Algorithm 12 solves 1|T |(z,maxj Lj) in O(n5) time.

Proof. The initial condition considers all possible first batches that are delivered before

time T . In the first recurrence equation, a delivery occurs at time Pu and then at each T time

units until time Pu + (v − 1)T , and then another delivery for batch {i + 1, · · · , j} occurs at

time Pj + z∆ ≥ Pu + (z − v)∆) + vT . The second recurrence equation represents the case

where deliveries are previously scheduled at times Pu, Pu + T, ..., Pu + (v − 1)T , and then batch

{i+ 1, · · · , j} is delivered at time Pj + z∆ < Pu + (z − v)∆) + vT . Combined with Lemmas 10

and 12, the correctness of the theorem is proved.

By definition, j, u, v, z ≤ n. Consequently, the first recurrence relation with u = j and v = 0

requires O(n3) time for each j and z . The second recurrence relation requires O(n) time for

each j, u, z and v. Therefore, the overall time complexity of Algorithm 12 is O(n5).

4.3 Minimizing the Total Weighted Number of Tardy Job-

s on a Single Machine 1||(z,
∑

j wjUj)

In this section, we assume that the late jobs are not delivered. We refer to [85] and [86] for the

tardy job delivery case.

We use X =
∑

j wjUj in this section. As in the previous section, without loss of generality,

we assume that the jobs are indexed in EDD order, so that d1 ≤ · · · ≤ dn.

First we present a pseudo-polynomial time algorithm, then we convert it to a FPTAS.

4.3.1 A Pseudo-polynomial time algorithm for 1||(z,
∑

j wjUj)

Our algorithms in this subsection are adapted from those by Brucker and Kovalyov [9].

Let W ∗(z) be the optimal objective value for the problem when the number of early batches is

z, and let B be a positive integer, serving as a parameter for our algorithm. In this subsection, we

present a dynamic programming algorithm DP (B) which either solves the problem or establishes

that W ∗(z) > B, for 1 ≤ z ≤ n.

Our dynamic programming is a forward one. When we work on job j, we have three choices:

• job j is scheduled to be late,

57

• job j is added as the last one in the last early batch if it can be completed by the earliest

due date in that batch,

• job j is assigned to a new batch if it can be completed before its due date dj.

In our algorithm, the completion time of the last early job is the objective function value,

while the weighted number of late jobs X =
∑

j wjUj and the earliest due date d in the last early

batch are state variables.

Now we state DP (B) formally. Define Cj(W,d, z) as the minimum completion time of the

last early job subject to j jobs are scheduled, the weighted number of late jobs is equal to W ,

there are z number of early batches, and the earliest due date in the last early batch is equal to

d. A formal statement of this dynamic programming algorithm is as follows.

Algorithm 13 DP(B)

Step 1: Initialization:

Number jobs in EDD order.

Set Cj(W,d, z) = ∞ for all j = 0, 1, · · · , n, z = 1, · · · , n,W ∈ {−wmax,−wmax + 1, · · · , B},
where wmax = max{wj|j = 1, · · · , n}, and d ∈ {d1, · · · , dn}.

Set C0(0, d, z) = 0 for all d ∈ {d1, · · · , dn}.
Set j = 1.

Step 2:Recursion:

Compute the following for all W ∈ {0, · · · , B} and d ∈ {d1, · · · , dn}:

Cj(W,d, z) = min

Cj−1(W − wj, d, z)

Cj−1(W,d, z) + pj if Cj−1(W,d, z) + pj ≤ dj, Cj−1(W,d, z) + pj > 0

K if d = dj,

(4.1)

where K = min{Cj−1(W, i, z−1)+pj +∆|Cj−1(W, i, z−1)+pj +∆ ≤ dj, i ∈ {d1, · · · , dj−1}}.
If {d1, · · · , dj−1}} is empty, then we set K =∞.

If j = n, go to Step 3; otherwise set j = j + 1 and repeat Step 2.

Step 3: Optimal solution value:

If Cn(W,d, z) = ∞ for all W ∈ {0, · · · , B} and d ∈ {d1, · · · , dn}, then W ∗(z) > B; Other-

wise, define

W ∗(z) = min{W |n(W,d, z) <∞,W ∈ {0, · · · , B}, d ∈ {d1, · · · , dn}},

58

then use standard backtracking techniques to find the corresponding optimal schedule.

The performance of this algorithm is given below:

Theorem 16 In O(n3B) time, Algorithm 13 either finds the optimal solution W ∗(z) ≤ B, or

finds out that W ∗(z) > B.

Proof. Algorithm DP(B) runs in O(n3B) time because there are n different values of j and

z, B + 1 different values of W and n different values of d. We now prove the correctness of this

algorithm.

Note that the three values in the right hand side of the recursion equation correspond to

the three possible scheduling choices for each job j. It is easy to see from the general principles

of dynamic programming that at Step 2 of the algorithm, all possible objective values W (z) ≤
B have been constructed. At Step 3, if Cn(W,d, z) = ∞ for all W ∈ {0, · · · , B} and d ∈
{d1, · · · , dn}, then there are no solutions with value W (z) ≤ B, i.e. W ∗(z) > B, which proves

necessity; On the other hand, if Cn(W,d, z) <∞ for some W and d, then W ∗(z) is the optimal

objective value among those obtained at Step 2. Thus, the sufficiency is also proved.

Apparently, if we choose B to be WΣ, where WΣ =
∑
wj is the sum of all weights, then

DP (B) solves our problem in O(n3WΣ) time. Therefore, the problem with equal weights is

solved by DP (n) in O(n4) time.

4.3.2 A Fully Polynomial Time Approximation Scheme for 1||(z,
∑

j wjUj)

We now present a fully polynomial approximation scheme for the problem. For our problem in

this section, an algorithm Aε is a (1+ε)-approximation algorithm iff we have W (z) < (1+ε)W ∗(z)

for all instances and all z, where W ∗(z) represents the optimal solution value when the number

of early batches is z and W (z) denotes the value of the solution given by the algorithm. Recall

that a family of approximation algorithms {Aε} defines a fully polynomial approximation scheme

if, for any ε > 0, Aε is a (1 + ε)-approximation algorithm whose complexity is polynomial in n

and 1/ε.

Consider the problem of minimizing the maximum weight of late jobs max{wj|j is late} to

schedule the jobs in z batches. Let W 0(z) (we will show how to compute it later) be the minimal

solution value of this problem and let I0
z be the set of late jobs in the corresponding schedule.

If I0
z is empty, then this schedule is optimal for the original problem and we have W ∗(z) = 0.

Suppose that I0
z is not empty. Then consequently we have W 0(z) > 0 and W ∗(z) > 0. Let I∗z

be the set of late jobs in an optimal schedule for the original problem with z batches. Then the

following chain of relations holds:

59

W 0(z) ≤ max{wj|j ∈ I∗z} ≤
∑
j∈I∗z

wj = W ∗(z) ≤
∑
j∈I0z

wj ≤ nW 0(z).

Thus we have W 0(z) ≤ W ∗(z) ≤ nW 0(z). We set δ′ = εW 0(z)/n and define scaled weights

w′j = bwj/δ′c for j = 1, 2, · · · , n. We now define a procedure Aε as follows. We apply DP (n2/ε)

to our problem with scaled weights, which provides an optimal solution value V ′(z) =
∑

j∈Iz w
′
j

where Iz is the set of late jobs. Aε chooses Iz as a solution for the original problem, i.e. the

solution value of Aε is W ′(z) =
∑

j∈Iz wj. Using the inequalities bxc ≤ x < bxc+ 1, we have

V ′(z) ≤ W ∗(z)

δ′
≤ nW 0(z)

δ′
,

and

W ′(z) ≤ δ′V ′(z) + nδ′ ≤ W ∗(z) + nδ′ ≤ (1 + ε)W ∗(z).

The inequalities above show that Aε is a (1 + ε)-approximation algorithm for the original

problem and the former inequalities show that nW 0(z)/δ′ = n2/ε is a valid upper bound for the

optimal value V ′(z) of the scaled problem. This implies that the running time of Aε is O(n5/ε).

Therefore, the family of algorithms {Aε} forms a fully polynomial approximation scheme for all

z.

What remains to do is to show how to calculate W 0(z). Let (il, · · · , in) be a sequence of jobs

in nonincreasing order of their weights: wil ≥ · · · ≥ win . We can see that W 0(z) = wim+1 where

m is the maximum index k for which all jobs il, · · · , ik can be scheduled early in z batches. If

m = n then W 0(z) = 0.

To find the index m, we can perform a binary search in the range 1, · · · , n, where for each

trial value k we ask the question “can all jobs il, · · · , ik be scheduled early in z batches?”. It is

shown by Hochbaum and Landy [42] that this question can be answered in O(n) time as follows.

Renumber the jobs so that dil ≤ · · · ≤ dik . If we sort the jobs according to nondecreasing

dj-values in a preprocessing step then this renumbering can be done in O(n) time. Schedule

jobs in order 1, · · · , k to the end of the current schedule. Assume that j − 1 jobs have already

been assigned. If jobs 1, · · · , j can be scheduled early by adding j to the last batch, then do

so. Otherwise, if jobs 1, · · · , j can be early by starting a new batch containing only job j, and

the total number of batches does not exceed z, then do so. If neither, then we can conclude

that there is no schedule in which jobs 1, · · · , k can be early in z batches. By maintaining the

value of the completion time of the last job and the value of the earliest due date in the last

batch, each iteration of this recursive subroutine can be done in constant time. Since the number

60

of iterations of this procedure is at most k, the question can be answered in linear time in n.

Therefore, we establish the following result:

Proposition 1 The problem of minimizing the maximum weight of late jobs such that there are

z early batches can be solved in O(n log n) time for any fixed z.

Proof. Sorting n jobs by their weights can be done in O(n log n) time. The binary search for

the value of m requires O(log n) steps, where each step can be done in O(n) time by the analysis

above. Thus, the overall time complexity is O(n log n).

We can summarize the above results in the following theorem:

Theorem 17 Aε solves the problem 1||(z,
∑

j wjUj) in O(n5/ε) time. Therefore, {Aε} forms a

fully polynomial approximation scheme for all z for the problem 1||(z,
∑

j wjUj).

4.4 Minimizing the Total Delivery Time on Two Parallel

Machines P2||
∑
D′j

We change our subject from single machine to uniform parallel machines in this section. We

consider two machines only, but our algorithms extend to any fixed number of machines. Similar

to the argument in the case of a single machine, we may assume that the jobs are indexed in

SPT order.

Let q1 and q2 be the processing speed of machine 1 and 2, respectively. Then the processing

time of job j on machine 1 is pj/q1, and pj/q2 on machine 2. We can rewrite the total delivery

time
∑
D′j on machine 1 in terms of pj and q1 as follows: given a batching schedule, for job j, let

wj be the number of jobs within or after the batch which j belongs to, then the processing time

of job j is counted wj times in
∑
D′j. Therefore the total delivery time on machine 1 is given by

∑
j

D′j =
∑
j

wjpj
q1

.

The same equality holds for machine 2, except that q1 is replaced with q2. Define V (j, k, z)

to be the minimum total delivery time of scheduling jobs n− j−k+1, n− j−k+2, · · · , n, which

are the j + k longest ones of jobs 1, 2, · · · , n, in z batches where j jobs of them are on machine

1, and k jobs are on machine 2.

Our dynamic programming algorithm works backwards. From the argument above, we know

that the delivery time contributed by each job in the last batch on machine 1 is j times its

processing time, and k times on machine 2. In other words, each job in the last batch on machine

61

1 is counted j/q1 times, and k/q2 times on machine 2. Jobs in other batches are counted fewer

times than those in the first batch on the same machine. To minimize the total delivery time,

by the Hardy-Littlewood-Polya inequality, we need to put the shortest jobs in the first batch on

machine 1, if j/q1 > k/q2; and in the first batch on machine 2, if otherwise. Longer jobs will be

put in later batches. Therefore, we have the following algorithm:

Algorithm 14 Initial condition:

V (j, 0, z′) = V (0, k, z′) = +∞

for j > z′c and k > z′c (recall that φ is the upper bound of the batch size) for z′ ≤ z;

V (j, 0, 1) = ∆ +
n∑

l=n−j+1

pl/q1

for j ≤ c; and

V (0, k, 1) = ∆ +
n∑

l=n−k+1

pl/q2

for k ≤ c.

Optimal solution value:

min{V (j, k, z)|j + k = n}.

Recursive equation:

V (j, k, z) =

{
min1≤i≤min{c,j}{V (j − i, k, z − 1) + ∆ + j

∑n−j−k+i
l=n−j−k+1 pl/q1} if j/q1 > k/q2

min1≤i≤min{c,k}{V (j, k − i, z − 1) + ∆ + k
∑n−j−k+i

l=n−j−k+1 pl/q2} otherwise

Here we try every possible size i of the last batch on both machines, and add its total

processing time of the jobs, which are the i shortest among jobs n − i − j + 1, · · · , n, in this

batch.

Theorem 18 Algorithm 14 finds an optimal schedule for P2||
∑
D′j in O(n3) time.

Proof. The proof of optimality follows from Lemmas 10 and 11, and the explanation of the

recursive equation above Algorithm 14. By definition, j, k, z ≤ n. Consequently, there are O(n3)

states. Each recursion takes on O(φ). Therefore, the overall time complexity of Algorithm 2 is

O(n3).

Note: There is another interpretation of our model. Instead of parallel machines, we can

consider the machines as different suppliers to the same client (such as a manufacturer).

62

Chapter 5

Bicriteria Scheduling with Batch

Deliveries and Due Date Assignments

on a Single Machine

In this chapter, we study supply chain scheduling problems with the DIF assumption where

arbitrary due dates are allowed to be assigned to jobs individually.

Shabtay and Steiner [82] studied a single-machine scheduling problem, in which each job has

a contracted due date and can be given an arbitrary assigned due date. Their goal is to find

a schedule which minimizes the sum of due-date-assignment costs and the weighted number of

tardy jobs with respect to the assigned due dates, but their model does not include batching

or delivery costs. They provide a strong NP-hardness proof for the general case and present

polynomial algorithms for two special cases: one with zero contracted due date and a uniform

due-date-assignment cost for all jobs and one with uniform contracted due date, equal due-date-

assignment costs and equal tardiness penalties (weights) for all jobs. Our problem is essentially

the bicriteria version of their problem.

We use Aj for the contracted due date for job j, which is the original due date required

by the customer. Let Dj denote the assigned due date of job j. Let Rj = max{Dj − Aj, 0}
be the extended time units on Aj, and λjRj be the due-date-assignment cost, where λj is the

due-date-assignment cost per extended time unit. If all Aj are equal, then we use notation A to

represent the common contracted due date, i.e., Aj = A. Let wj be the tardiness penalty and

Cj be the batch completion time of job j.

In the standard three-field notation A |B|C, we use (z,
∑
λjRj +

∑
wjUj) in the C field to

denote the P4-form (Pareto-optimal) objective, and we add Aj and DIF to the B field to show

the contracted due date and the distinct due date assignment method, respectively. We assume

63

that the batch setup time is ∆.

Our goal is to find a schedule which is Pareto-optimal in the sense that one criterion is to

minimize the sum of the due-date-assignment costs and the weighted number of tardy jobs, and

the other criterion is to minimize the batch-delivery costs, denoted by 1|A,DIF|(z,
∑
λjRj +∑

wjUj). There are three levels of decisions to be made in this problem:

(1) determining a job sequence;

(2) grouping the sequence into batches;

(3) assigning due dates to each job individually.

Suppose that we are given a schedule σ, where the first two scheduling decisions have been

made but no due date has been assigned to any job yet. Since we know the sequence and the

batches, we know the number of batches z(σ) and the batch-delivery costs z(σ)q. We need to

determine Dj(σ) for each j, which minimizes the cost
∑
λjRj(σ) +

∑
wjUj(σ).

The rest of this chapter is organized as follows. In the first section, we study the case with

a uniform due-date-assignment cost. We show that it is NP-hard only in the ordinary sense

by presenting a pseudo-polynomial algorithm, which requires only polynomial time when all

processing times are equal. In the next section, we present a polynomial algorithm for the case

with equal due-date-assignment costs and equal tardiness penalties.

5.1 The Problem with Uniform Due Date Assignment

Costs

When all due date assignment costs are equal, i.e., λj = λ for all j, we have the following

proposition first developed by Shabtay and Steiner [82].

Proposition 2 For any given schedule σ, the optimal due date assignment is

Dj(σ) =

{
A, if Cj(σ) ≤ A or Cj(σ) > A+

wj

λ

Cj(σ), if A < Cj(σ) ≤ A+
wj

λ

. (5.1)

Proposition 2 also implies the following useful observation.

Proposition 3 For the 1|A,DIF|
∑
λRj +

∑
wjUj + zq problem, there is an optimal schedule

in which A +
wj

λ
is an upper bound for the assigned due date of each job j ∈ J . Furthermore,

job j is tardy, with an assigned due date Dj(σ) = A, in an optimal schedule σ if and only if

Cj(σ) > A+
wj

λ
.

We consider 1|A,DIF |(z,
∑
λRj +

∑
wjUj) in this section. It is known that the problem

1|A,DIF |
∑
λRj +

∑
wjUj + zq, where q is the cost for each batch, is NP-hard in the ordinary

64

sense. Therefore, the best we can hope for its bicriteria version is to find a pseudo-polynomial

algorithm.

Before presenting such an algorithm, we have the following properties for optimal schedules:

Lemma 13 There is an optimal schedule for the 1|A,DIF |(z,
∑
λRj +

∑
wjUj) problem where

all tardy jobs are delivered at the end in a single batch, either by themselves or together with

some early jobs.

Proof. Moving tardy jobs from earlier batches to the last batch never increases the cost.

Lemma 14 There is an optimal schedule for the 1|A,DIF |(z,
∑
λRj +

∑
wjUj) problem where

all early jobs are sequenced in SPT order.

Proof.

Suppose otherwise, i.e., there exist two jobs i and k with pi > pk that are early in consecutive

batches in schedule σ with batch-completion times Ci(σ) < Ck(σ) . By Propositions 2 and 3, we

can assume that Di(σ) ∈ {A,Ci(σ)}, Dk(σ) ∈ {A,Ck(σ)}, Ci(σ) ≤ wi

λ
+A and Ck(σ) ≤ wk

λ
+A.

Let σ′ be a new schedule in which we exchange jobs i and k. Then we have Ci(σ
′) = Ck(σ) and

Ck(σ
′) = Ci(σ)− pi + pk < Ci(σ). It is apparent to see that all early jobs in σ (excluding job i)

remain early after such an exchange. If Ci(σ
′) ≤ wi

λ
+ A, then we can let job i be early. In this

case, the due-date-assignment cost will not increase because job i and job k have the same λ. If

Ci(σ
′) > wi

λ
+A , then it is better to set Di(σ

′) = A and let job i be tardy. In this situation, the

cost will be reduced by at least

λ[Di(σ) +Dk(σ)]− λ[Di(σ
′) +Dk(σ

′)]− wi
= λ[max{A,Ci(σ)} −max{A,Ck(σ′)}] + [λmax{A,Ck(σ)} − λA− wi]

≥ λ[max{A,Ci(σ)} −max{A,Ck(σ′)}] + [λmax{A,Ck(σ)} − λCi(σ′)]

≥ 0.

Note that the number of jobs in every batch stays the same after we make the exchange

mentioned above. After we complete such exchanges for all such pairs in consecutive batches,

we can obtain the desired SPT sequence for all early jobs.

Algorithm 15 Let V (j, i, z, t) be the minimum cost for processing and delivering jobs 1, 2, · · · , j
using z deliveries, where the completion time of the last early batch is t and there are i jobs in

that batch.

Initial condition:

V (0, 0, z′, t) = 0

65

for z′ ≤ z.

Optimal solution value:

min{V (n, i, z, t)|0 ≤ t ≤ P, 0 ≤ i ≤ n}

.

Recursive equations:

V (j, i, z, t) = min

V (j − 1, i, z, t) + wj

V (j − 1, i, z − 1, t− pj) + ∆ + λmax{0, t− A} if t ≤ A+
wj

λ

V (j − 1, i− 1, z, t− pj) + λimax{0, t− A} − λ(i− 1) max{0, t− pj − A}
if t ≤ A+

wj

λ

In the recurrence equation, the first row corresponds to the case when job j is tardy and delivered

in the last batch; the second row holds when job j starts a new (early) batch; while the last row

is for the case when job j is appended to the last early batch.

Theorem 19 Algorithm 15 solves the problem 1|A,DIF |(z,
∑
λRj +

∑
wjUj) in O(n3P) time.

Proof. The correctness follows from the explanations of the recurrence. There are n3P

number of states, and each recurrence takes constant time. Therefore, the total time complexity

is O(n3P).

5.2 The Problem with Uniform Due Date Assignment

and Tardy Costs

We consider 1|A,DIF |(z,
∑
λRj +

∑
wUj) in this section.

Lemma 13 and Lemma 14 still hold in this section, besides, we have the following properties

for optimal schedules:

Lemma 15 There is an optimal schedule for the 1|A,DIF |(z,
∑
λRj +

∑
wUj) problem where

all early jobs are scheduled to finish before or at w/λ+ A.

Proof. w/λ+ A is an upper bound for any assigned due date.

Lemma 16 There is an optimal schedule for the 1|A,DIF |(z,
∑
λRj +

∑
wUj) problem where

the early jobs are the shortest jobs.

66

Proof.

It follows from Proposition 3 and Lemma 13 that there exists an optimal schedule where the

early jobs are delivered in batches before or at w
λ

+ A and the tardy jobs (if any) are delivered

after w
λ

+ A in a single batch. Suppose that there are an early job i and a tardy job k with

pi > pk in a schedule. Then exchanging the position of job i and k may reduce the schedule cost

by λ(pi − pk) and can not lead to an increased cost. Exchanging all such pairs will generate an

early job set as claimed.

By Lemmas 13-16, we can design the following dynamic programming algorithm for the

problem 1|A,DIF |(z,
∑
λRj +

∑
wUj):

Algorithm 16 Let V (j, z) be the minimum cost for processing and delivering early jobs 1, 2, · · · , j
using z deliveries, for Pj + z∆ = p1 + p2 + · · ·+ pj + z∆ ≤ A+ w

λ
. Let V ′(j, z) be the minimum

cost for processing and delivering jobs 1, 2, · · · , n using z early deliveries, where the last early job

is j.

Initial condition:

V (0, z′) = 0

for all z′ ≤ z.

Optimal solution value:

min{V ′(j, z)|0 ≤ j ≤ n}

.

Recursive equations:

V (j, z) = min
k
V (j − k, z − 1) + λkmax{Pj + z∆− A, 0},

for Pj + z∆ ≤ A+ w
λ

, and

V ′(j, z) = V (j, z) + w(n− j).

In the recurrence equations, for V (j, z), we try every possible size of the last batch; For V ′(j, z),

since job j is the last early job, all jobs j + 1, · · · , n are tardy. Therefore, their tardy costs are

added in the equation.

Theorem 20 Algorithm 16 solves the problem 1|A,DIF |(z,
∑
λRj +

∑
wUj) in O(n3) time.

Proof. The correctness follows from the explanations of the recurrence. There are n2 number

of states, and each recurrence takes O(n) time . Therefore, the total time complexity is O(n3).

67

Chapter 6

Summary and Future Research

Our main contributions include using a unified framework to tackle an extensive range of schedul-

ing problems with learning/deteriorating effect Generalize many previous results; improving the

time complexity of some previous algorithms; and investigating scheduling problems with batch-

ing from a multi-criteria perspective.

In Chapter 2, we presented a very simple and fast solution algorithm for a large number

of unrelated scheduling problems using a common product matrix representation of their cost

functions. Table 6.1 contains a summary of these results. Similar solutions, which exploit the

special structure of the underlying linear assignment problems, were presented in [55] and [48] for

certain related scheduling problems with some convex controllable processing times. Somewhat

surprisingly, the fastest known solutions for these problems with linear control functions still

require O(n3) time, since they lead to general linear assignment models. It remains a topic for

future research whether these latter problems can also be solved by faster assignment algorithms.

Our future research for Chapter 2 is to solve 1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣∑wjCj in polynomial

time, or prove that it is NP-hard.

Table 6.2 contains a summary of our results on total number of tardy jobs objective from

Chapter 3.

It remains an open problem whether there exists a O(n2) time algorithm for the DIF due

date assignment method with learning effect only. Another challenge is to design a O(n2) time

algorithm for the case of δ > 0, i.e., to consider the makespan.

It is interesting to note that by considering the learning/deteriorating effect, we do not

have to sacrifice the speed of our algorithms. In fact, our time complexity is the same as the

corresponding problems without learning/deteriorating effect. We consider only the simplest

form of learning/deteriorating effect. It is another interesting topic for Chapter 2 & 3 as a future

research.

68

Problem Complexity Ref.

1
∣∣p[j] = (a[j] + bS[j])j

c, CON
∣∣α∑Ej + β

∑
Tj + γ

∑
dj + δCmax O(n log n) Theorem 1

1
∣∣p[j] = (a[j] + bS[j])j

c, SLK
∣∣α∑Ej + β

∑
Tj + γ

∑
dj + δCmax O(n log n) Theorem 1

1
∣∣p[j] = (a[j] + bS[j])j

c, DIF
∣∣α∑Ej + β

∑
Tj + γ

∑
dj + δCmax O(n log n) Theorem 1

1
∣∣p[j] = (a[j] + bS[j])j

c, CONW
∣∣α∑Ej + β

∑
Tj + n (γ1d+ γ2D) + δCmax O(n log n) Theorem 1

1
∣∣p[j] = (a[j] + bS[j])j

c, CON
∣∣α∑Ej + β

∑
Tj + γ

∑
dj + θ

∑
Cj O(n log n) Theorem 2

1
∣∣p[j] = (a[j] + bS[j])j

c, SLK
∣∣α∑Ej + β

∑
Tj + γ

∑
dj + θ

∑
Cj O(n log n) Theorem 2

1
∣∣p[j] = (a[j] + bS[j])j

c, DIF
∣∣α∑Ej + β

∑
Tj + γ

∑
dj + θ

∑
Cj O(n log n) Theorem 2

1
∣∣p[j] = (a[j] + bS[j])j

c, CONW
∣∣α∑Ej + β

∑
Tj + n (γ1d+ γ2D) + θ

∑
Cj O(n log n) Theorem 2

1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣Cmax O(n log n) Theorem 3

1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣∑Cj O(n log n) Theorem 4

1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣ δ1

∑∑
|Ci − Cj|+ δ2

∑
Cj O(n log n) Theorem 5

1
∣∣p[j] = (a[j] + bS[j])j

c
∣∣ δ1

∑∑
|Wi −Wj|+ δ2

∑
Wj O(n log n) Theorem 6

Table 6.1: Summary of results in Chapter 2

We summarize our results on bicriteria scheduling problems with batching from Chapter 4 &

5 in Table 6.3

Our future research for Chapter 4 &5 is to investigate the total tardiness objective.

69

Problem Complexity Ref.

1
∣∣p[j] = (a[j] + bS[j])j

c, CON
∣∣∑ψjUj + γ

∑
dj + δCmax O(n4) Theorem 8

1
∣∣p[j] = (a[j] + bS[j])j

c, SLK
∣∣∑ψjUj + γ

∑
dj + δCmax O(n4) Theorem 8

1
∣∣p[j] = (a[j] + bS[j])j

c, DIF
∣∣∑ψjUj + γ

∑
dj + δCmax O(n4) Theorem 8

1
∣∣p[j] = (a[j] + bS[j])j

c, CON
∣∣∑ψjUj + γ

∑
dj + θ

∑
Cj O(n4) Theorem 9

1
∣∣p[j] = (a[j] + bS[j])j

c, SLK
∣∣∑ψjUj + γ

∑
dj + θ

∑
Cj O(n4) Theorem 9

1
∣∣p[j] = (a[j] + bS[j])j

c, DIF
∣∣∑ψjUj + γ

∑
dj + θ

∑
Cj O(n4) Theorem 9

1
∣∣p[j] = a[j] + bS[j], CON

∣∣∑ψjUj + γ
∑
dj O(n2) Theorem 10

1
∣∣p[j] = p[j] = a[j] + bS[j], DIF

∣∣∑ψjUj + γ
∑
dj O(n2) Theorem 10

1
∣∣p[j] = p[j] = a[j] + bS[j], SLK

∣∣∑ψjUj + γ
∑
dj O(n2) Theorem 10

1
∣∣p[j] = a[j]j

c, CON
∣∣∑ψjUj + γ

∑
dj O(n2) Theorem 11

1
∣∣p[j] = a[j]j

c, SLK
∣∣∑ψjUj + γ

∑
dj O(n2) Theorem 11

Table 6.2: Summary of results in Chapter 3

Problem Complexity Ref.

1 |c| (z,
∑
D′j) O(n2) Theorem 12

1 |c, T | (z,
∑
D′j) O(n4) Theorem 13

1||(z,maxj Lj) O(n3) Theorem 14

1|T |(z,maxj Lj) O(n5) Theorem 15

1||(z,
∑

j Uj) O(n3B) Theorem 16

1||(z,
∑

j wjUj) O(n5/ε) Theorem 17

P2 |c| (z,
∑
D′j) O(n3) Theorem 18

1|A,DIF |(z,
∑
λRj +

∑
wjUj) O(n3P) Theorem 19

1|A,DIF |(z,
∑
λRj +

∑
wUj) O(n3) Theorem 20

Table 6.3: Summary of results in Chapter 4 and 5

70

Bibliography

[1] Adamopoulos, G.I. and Pappis, C.P., (1996), Single Machine Scheduling with Flow Al-

lowances, J. of the Oper. Research Society, 47, 1280-1285.

[2] Agnetis, A., Hall, N.G. and Pacciarelli, D., (2006), Supply chain scheduling: Sequence

coordination. Discrete Applied Mathematics, 154(15):2044–2063.

[3] Bagchi, U.B., (1989), Simultaneous Minimization of Mean and Variation of Flow-Time and

Waiting Time in Single Machine Systems, Oper. Research, 37, 118-125.

[4] Baker, K.R. and Scudder, G.D., (1990), Sequencing With Earliness and Tardiness Penalties:

A Review, Oper. Research, 38, 22-36.

[5] Biskup D., (1999), Single-machine scheduling with learning considerations, European Journal

of Operational Research, 115: 173-178.

[6] Biskup D., (2008), A state-of-the-art review on scheduling with learning effects, European

Journal of Operational Research, 188, 315-329.

[7] Browne S. and Yechiali U., (1990), Scheduling Deteriorating Jobs on a Single Processor,

Operations Research, 38, 495-498.

[8] Burkard, R.E., Klinz, B., Rudolf, R., (1996), Perspectives of Monge properties in optimiza-

tion, Discrete Applied Mathematics, 70, 95-161.

[9] Brucker, P. and M.Y. Kovalyov, (1996), Single machine batch scheduling to minimize the

weighted number of late jobs. Mathematical Methods of Operations Research, 43:1-8.

[10] Brucker, P., (2001), Scheduling Algorithms. Springer-Verlag New York, Inc., 3rd edition.

[11] Cheng, T.C.E. and Kahlbacher, H.G., (1993), Scheduling with delivery and earliness penal-

ties. Asia-Pacific Journal of Operational Research, 10:145-152.

71

[12] Cheng, T.C.E. and Kovalyov, M.Y., (1996), Batch scheduling and common due-date assign-

ment on a single machine. Discrete Applied Mathematics, 70(3):231-245.

[13] Chen, Z.-L., (1996), Scheduling and common due date assignment with earliness-tardiness

penalties and batch delivery costs. European Journal of Operational Research, 93(1):49-60.

[14] Chen, B., Potts, C.N. and Woeginger, G.J., (1998), A review of machine scheduling: Com-

plexity, algorithms and approximability. In Handbook of Combinatorial Optimization, Edited

by D.-Z. Du and P.M. Pardalos, 3:21-169.

[15] Chen, Z.-L. and Vairaktarakis, G.L., (2005), Integrated scheduling of production and dis-

tribution operations. Management Science, 51(4):614-628.

[16] Chen, Z.-L. and Hall, N.G., (2007), Supply chain scheduling: Conflict and cooperation in

assembly systems. Operations Research, 55(6):1072-1089.

[17] Chen, Z.-L., (2010), Integrated production and outbound distribution scheduling: Review

and extension. Operations Research, 58(1):130-148.

[18] Cheng, T.C.E., Ding, Q. and Lin, B.M.T., (2004), A concise survey of scheduling with

time-dependent processing times, European Journal of Operational Research, 152, 1-13.

[19] Cheng, T.C.E., Kang, L., and Ng, C.T., (2004), Due-date assignment and single machine

scheduling with deteriorating jobs, Journal of the Operational Research Society, 55, 198-203.

[20] Cook, S.A., (1971), The complexity of theorem-proving procedures. In Proceedings of the

3rd ACM Symposium on the Theory of Computing, pages 151-158.

[21] Cook, W.J., Cunningham, W.R., Pulleyblank, W.R. and Schrijver, A., (1998), Combinato-

rial Optimization. J. Wiley.

[22] Dawande, M., Geismar, H.N., Hall, N.G. and Sriskandarajah, C., (2006), Supply chain

scheduling: Distribution systems. Production and Operations Management, 15(2):243–261.

[23] Deı̆neko, V.G. and Filonenko, V.L., (1979). On the Reconstruction of Specially Structures

Matrices. Aktualnyje Problemy EVM i Programmirovanije, Dnepropetrovsk DGU (in Rus-

sian).

[24] Deı̆neko, V.G., Shabtay, D. and Steiner, G., (2010), On the asymptotic behavior of subtour-

patching heuristics in solving the TSP on permuted Monge matrices, Journal of Heuristics,

1-36.

72

[25] Deı̆neko V.G., Steiner, G. and Xue, Z., (1995), Robotic-Cell Scheduling: Special Polynomi-

ally Solvable Cases of the Traveling Salesman Problem on Permuted Monge Matrices, Journal

of Combinatorial Optimization, 9, 381-399.

[26] Evans, G.W., (1984), An overview of techniques for solving multiobjective mathematical

programs. Management Science, pages 1268-1282.

[27] Fry, T.D., Armstrong, R.D. and Lewis, H., (1989), A framework for single machine multiple

objective sequencing research. Omega, 17(6):595-607.

[28] Garey, M.R. and Johnson, D.S., (1979), Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Co., New York, NY.

[29] Gawiejnowicz, S., (2008), Time-Dependent Scheduling. , Berlin: Springer.

[30] Gordon, V., Proth, J.M. and Chu, C.B., (2002), A Survey of the State-of-the-Art of Common

Due Date Assignment and Scheduling Research, European J. of Oper. Research, 139, 1-25.

[31] Gordon, V., Proth, J.M. and Chu, C.B., (2002), Due Date Assignment and Scheduling:

SLK, TWK and Other Due Date Assignment Models, Production Planning and Control, 13

(2), 117-132.

[32] Gordon, V., Proth, J.M. and Strusevich, V.A., (2004), Scheduling with Due Date Assign-

ment, in Leung, J.Y-T. (ed.), Handbook of Scheduling, CRC Press, Boca Raton, FL, 21-1 –

21-22.

[33] Gordon, V., Potts, C.N., Strusevich, V.A. and Whitehead, J.D., (2008), Single machine

scheduling models with deterioration and learning: handling precedence constraints via pri-

ority generation, Journal of Scheduling, 11, 357-370.

[34] Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G., (1979), Optimization

and Approximation in Deterministic Sequencing and Scheduling: a Survey, Annals of Discrete

Mathematics, 3, 287-326.

[35] Gupta, J.N.D. and Gupta, S.K., (1988). Single facility scheduling with nonlinear processing

times, Computers and Industrial Engineering, 14, 387-393.

[36] Gupta, S.K., Kunnathur, A.S. and Dandapani, K., (1987), Optimal repayment policies for

multiple loans. Omega, 15(4):323-330.

[37] Hardy, G.H., Littlewood, J.E. and Pólya, G., (1952), Inequalities, (2nd ed.), Cambridge

Univ. Press, Cambridge.

73

[38] Hall, N.G. and Potts, C.N., (2003), Supply chain scheduling: Batching and delivery. Oper-

ations Research, 51(4):566-584.

[39] Hall, N.G. and Potts, C.N., (2005), The coordination of scheduling and batch deliveries.

Annals of Operations Research, 135(1):41-64.

[40] Hall, N.G., Lei, L. and Pinedo, M., editors. . (2008), Special Issue on Supply Chain Coor-

dination and Scheduling Annals of Operations Research (161).

[41] Ham, I., Hitomi, K. and Yashida, T., (1985), Group technology applications to production

management. Kluwer-Nijhoff Pub.(Boston and Hingham, MA, USA).

[42] Hochbaum, D.S. and Landy, D., (1994), Scheduling with batching: minimizing the weighted

number of tardy jobs. Operations Research Letters, 16(2):79-86.

[43] Hochbaum, D.S., editor. (1996), Approximation Algorithms for NP-Hard Problems. PWS

Publishing Company.

[44] Hoogeveen, H., (2005), Multicriteria scheduling. European Journal of Operational Research,

167(3):592-623.

[45] Janiak, A. and Rudek, P., (2006). in Scheduling in Computer and Manufacturing Systems,

Inst. Informat., Automat. and Robotics, Wroclaw, Poland, 26-38.

[46] Janiak, A., Krysiak, T. and Trela, R., (2011). Scheduling problems with learning and ageing

effects: a survey. Decision Making in Manufacturing Services 5, 19-36.

[47] Kaminsky, P. and Hochbaum, D., (2004), Due Date Quotation Models and Algorithms, in

Leung, J.Y-T. (ed.), Handbook of Scheduling, CRC Press, Boca Raton, FL, 20-1 – 20-22.

[48] Koulamas, C., Gupta, S. and Kyparisis, G.J., (2010), A unified analysis for the single-

machine scheduling problem with controllable and non-controllable variable job processing

times European Journal of Operational Research 205 (2), 479-482.

[49] Kovalyov, M.Y., (1995), Improving the complexities of approximation algorithms for opti-

mization problems. Operations Research Letters, 17:85-87.

[50] Kunnathur, A.S. and Gupta, S.K., (1990), Minimizing the makespan with late start penal-

ties added to processing times in a single facility scheduling problem. European Journal of

Operational Research, 47(1):56-64.

74

[51] Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. and Shmoys, D.B., (1993), Sequenc-

ing and scheduling: Algorithms and complexity. In Handbooks in Operations Research and

Management Science, Edited by S.G. Graves et al., 4:445-552.

[52] Lee, C.Y. and Uzsoy, R., and Martin-Vega, L.A., (1992), Efficient algorithms for scheduling

semiconductor burn-in operations. Operations Research, pages 764-775.

[53] Lee, C.Y. and Chen, Z.-L., (2001), Machine scheduling with transportation considerations.

Journal of Scheduling, 4:3-24.

[54] Lee, W.C., (2004), A Note on Deteriorating Jobs and Learning in Single-Machine Scheduling

Problems, International Journal of Business and Economics 3 (1), 83-89.

[55] Leyvand, Y., Shabtay, D. and Steiner, G., (2010), A Unified Approach for Scheduling with

Convex Resource Consumption Functions Using Positional Penalties, European Journal of

Operational Research 206(2), 301-312.

[56] Li, C.L., Vairaktarakis, G. and Lee, C.Y., (2005), Machine scheduling with deliveries to

multiple customer locations. European Journal of Operational Research, 164:39-51.

[57] Liman, S.D., Panwalkar, S.S. and Thongmee, S., (1998), Common Due Window Size and

Location Determination in a Single Machine Scheduling Problem, J. of the Oper. Research

Society, 49, 1007-1010.

[58] Manoj, U.V., Gupta, J.N.D., Gupta, S.K. and Sriskandarajah, C., (2008), Supply chain

scheduling: Just-in-time environment. Annals of Operations Research, 161:53-86.

[59] Mosheiov, G., (1992), V-Shaped policies for scheduling deteriorating jobs, Operations Re-

search, 39(6), 979-991.

[60] Mosheiov, G., (1996), ∧-Shaped policies for scheduling deteriorating jobs, Journal of the

Operational Research Society, 47, 1184-1191.

[61] Mosheiov, G., (2001), Scheduling problems with a learning effect, European Journal of

Operational Research, 132, 687-693.

[62] Mosheiov, G., (2001), Parallel machine scheduling with a learning effect, Journal of the

Operational Research Society, 52(10), 1165-1169.

[63] Mosheiov, G. and Sidney, J.B., (2005), Note on scheduling with general learning curves to

minimize the number of tardy jobs, Journal of the Operational Research Society, 56, 110-112.

75

[64] Mosheiov, G, (2005). A note on scheduling deteriorating jobs. Mathematical and Computer

Modelling, 41, 883-886.

[65] Nagar, A., Haddock, J. and Heragu, S., (1995). Multiple and bicriteria scheduling: A liter-

ature survey. European journal of operational research, 81(1), 88-104.

[66] Ng, C.T., Cheng, T.C.E. and Bachman, A., (2002). Three scheduling problems with dete-

riorating jobs to minimize the total completion time. Information Processing Letters, 81(6),

327-333.

[67] Panwalkar, S.S., Smith, M.L. and Seidmann, A., (1982), Common Due Date Assignment

to Minimize Total Penalty for the One Machine Scheduling Problem, Oper. Research, 30,

391-399.

[68] Papadimitriou, C.H., (1994), Computational Complexity. Addison-Wesley, Reading, MA.

[69] Papadimitriou, C.H. and Steiglitz, K., (1982), Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ.

[70] Pinedo, M., (2001), Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, 2nd

edition.

[71] Potts, C.N. and Kovalyov, Y.M., (1980) Analysis of a heuristic for one machine sequencing

with release dates and delivery times. Operations Research, 28:1436-1441.

[72] Potts, C.N. and Kovalyov, Y.M., (2000), Scheduling with batching: A review. European

Journal of Operational Research, 120:228-249.

[73] Pundoor, G. and Chen, Z.-L., (2005), Scheduling a production-distribution system to op-

timize the tradeoff between tardiness and total distribution cost. Naval Research Logistics,

52:571-589.

[74] Rachaniotis, N.P. and Pappis, C.P., (2006). Scheduling fire-fighting tasks using the concept

of “deteriorating jobs”. Canadian Journal of Forest Research, 30(3), 652-658.

[75] Rustogi, K. and Strusevich, V.A., (2012). Simple Matching vs Linear Assignment in Schedul-

ing Models with Positional E¡èects: A Critical Review. European Journal of Operational

Research, 222, 393-407.

[76] Rustogi, K. and Strusevich, V.A., (2012). Single machine scheduling with general positional

deterioration and rate-modifying maintenance. European Journal of Operational Research,

40(6), 791-804.

76

[77] Sáenz-Royo, C., and Salas-Fumás, V., (2012), Learning to learn and

productivity growth: Evidence from a new car-assembly plant, Omega,

http://www.sciencedirect.com/science/article/pii/S0305048312000849.

[78] Seidmann, A., Panwalkar, S.S. and Smith, M.L., (1981), Optimal Assignment of Due Dates

for a Single Processor Scheduling Problem, International J. of Production Research, 19, 393-

399.

[79] Selvarajah, E. and Steiner, G., (2006) Batch scheduling in a two-level supply chain - a focus

on the supplier. European Journal of Operational Research, 173(1):226-240.

[80] Selvarajah, E. and Steiner, G., (2006), Batch scheduling in customer-centric supply chains.

Journal of the Operations Research Society of Japan, 49(3):174-187.

[81] Selvarajah, E. and Steiner, G., (2009), Approximation algorithms for the supplier’s sup-

ply chain scheduling problem to minimize delivery and inventory holding costs. Operations

Research, 5(2):426-438.

[82] Shabtay, D. and Steiner, G., (2006), Two Due Date Assignment Problems in Scheduling a

Single Machine, Oper. Research Letters, 34, 683-691.

[83] Shabtay, D. and Steiner, G., (2007), Optimal Due Date Assignment and Resource Allocation

to Minimize the Weighted Number of Tardy Jobs on a Single Machine, Manufacturing &

Service Operations Management, 9(3), 332-350.

[84] Slotnick, S.A. and Sobel, M.J., (2005), Manufacturing lead-time rules: Customer retention

versus tardiness costs, European J. of Oper. Research, 169, 825-856.

[85] Steiner, G. and Zhang, R., (2009), Approximation algorithms for minimizing the total

weighted number of late jobs with late deliveries in two-level supply chains. Journal of

Scheduling, 12(6):565-574.

[86] Steiner, G. and Zhang, R., (2011), Minimizing the weighted number of tardy jobs with due

date assignment and capacity-constrained deliveries. Annals of Operations Research, 191(1):

171-181.

[87] Tang, J., Yung, K.-L., KaKu, I. and Yang, J., (2008), The scheduling of deliveries in a

production-distribution system with multiple buyers. Annals of Operations Research, 161:5-

23.

77

[88] Thomas, D.J. and Griffin, P.M., (1996), Coordinated supply chain management. European

Journal of Operational Research, 94:1-15.

[89] Vazirani, V.V., (2003), Approximation Algorithms. Springer, Berlin, German.

[90] Wang, J.B., (2006), A note on scheduling problems with learning effects and deteriorating

jobs, International Journal of Systems Science, 37, 827-833.

[91] Wang, L.Y., Wang, J.B., Guo, W.J., Huang, X. and Feng, E.M., (2007), Two single-machine

scheduling problems with the effects of deterioration and learning, International Journal of

Advanced Manufacturing Technology, 46, 715C720.

[92] Wang, J.B., (2007), Single-machine scheduling problems with the effects of learning and

deterioration, Omega, 35, 397-402.

[93] Wang, J.B. and Cheng, T.C.E, (2007), Scheduling problems with the effects of learning and

deterioration, Asia-Pacific Journal of Operational Research, 24(2), 245-261.

[94] Wang, X.L. and Cheng, T.C.E, (2007), Single-machine scheduling with deteriorating jobs

and learning effects to minimize the makespan, European Journal of Operational Research,

178, 57-70.

[95] Webb, G.K., (1994), Integrated circuit (IC) pricing, High Technology Management Research,

5(2), 247-260.

[96] Williams, J.F., (1981), A hybrid algorithm for simultaneous scheduling of production and

distribution in multi-echelon structures. Management Science, 29:77-92.

[97] Woeginger, G.J., (2008), Open problems around exact algorithms. Discrete Applied Math-

ematics, 156:397-405.

[98] Wright, T.P., (1936), Factors affecting the cost of airplanes, Journal of Aeronautical Sci-

ences, 3, 122-128.

[99] Yang, X.G., (2000), Scheduling with generalized batch delivery dates and earliness penalties.

IIE Transactions, 32:735-741.

[100] Yang, D. L. and Kuo, W. H., (2009). Single-machine scheduling with both deterioration

and learning e¡èects. Annals of Operational Research, 172, 315-327.

78

Appendix A

Notations

• J = {1, ...n} : the set of jobs;

• pj : the “normal” processing time of job j;

• a[j]: the actual processing time of the job at the j-th position;

• c: the rate of learning;

• b: the rate of deteriorating;

• S[j]: the starting time of the job at the j-th position

• dj : the due date of job j;

• [d, d]: assigned due date time window in the CONW method;

• wj : the tardiness penalty (weight) of job j;

• Dj : the assigned due date of job j in the DIF problems, which is a decision variable;

• ξi: a positional, job-independent penalty for any job scheduled in the ith position;

• η[j] : a certain parameter of job j

• α : the cost of one unit of earliness;

• β : the cost of one unit of tardiness;

• γ : the cost of one unit of due date and operation time;

• Aj : the contracted due date of job j;

79

• A : the common contracted due date, i.e., Aj = A, ∀j ∈ J ;

• Rj = max{Dj − Aj, 0}: the extended time units by Dj on Aj;

• λj : the due-date-assignment cost per extended time unit of Rj;

• λ : the uniform due-date-assignment cost per extended time unit of Rj, i.e., αj = α, ∀j ∈ J ;

• λjRj : the due-date-assignment cost of job j;

• Cj : the completion time of job j, which is defined by the batch-completion time of the

same batch;

• Uj : the tardiness indicator of job j: Uj = 1, if job j is tardy and Uj = 0 otherwise;

• C(i) : the batch-completion time of batch i;

• d(i) : the batch-due date of batch i;

• ∆ : the batch-setup time before processing the first job in each batch;

• z : the number of batches in a schedule;

• T : the minimum time between any two consecutive deliveries;

• φ : the maximum number of jobs in a single batch (delivery);

80

