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ABSTRACT 

The purpose of this research has been to reassess the Ag-Mg system using the CALPHAD 

technique. Compared with previous assessments, we carry out the optimization by fitting 

calculations to the original data instead of second-hand information. Moreover, we use a 

two sub-lattice model and a four sub-lattice model based on compound energy formalism 

to simulate both first-order and second-order transformations between the FCC phase and 

the L12 phase. Undoubtedly, the CALPHAD technique has achieved a degree of maturity, 

but its deficiencies are regularly ignored. 

In this thesis, we develop an interval method based on Kantorovich’s idea to overcome 

the shortcomings of the CALPHAD technique. Both advantages and disadvantages of the 

interval method are discussed. We also present an example of the interval approach on 

thermodynamic optimization of the Ag-Mg melt. The results suggest that this method 

would be helpful as a pre-optimization tool. 
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1. Introduction 

Steels with low composition of inclusions are popularly termed ‘Clean Steels’, which is a 

topic of such great industrial interest. There are many studies focusing on the control of 

inclusions in the production of steel [1-7]. One of the prominent inclusions is 

2 3MgO Al O  spinel, a refractory material that has been researched in several significant 

publications [3,8-11]. These papers [6,7] suggested that the amount of 2 3MgO Al O  can 

be reduced by changing the activity of Mg in molten steel, implying that controlling such 

a thermodynamic property is crucial to develop clean steels. Based on the Ag-Fe partition 

technique, Gran et al. [12] proposed that the activity of Mg in the Fe-Mg system can be 

evaluated by measuring the activity of Mg in the Ag-Mg system. For greater details on 

the Ag-Fe partition technique, see refs. [13-15]. 

In order to compute such properties, we need to know the Gibbs energies of all the phases 

involved in the system as they can be used to derive various thermodynamic properties. 

Therefore, this thesis aims at performing a thermodynamic optimization of the Ag-Mg 

system. The principal objective of such an optimization is to determine the dependence of 

molar Gibbs energy of its phase on temperature, pressure and, in the case of solutions, 

composition. 

For a binary ideal solution   at 1 atm, its Gibbs energy can be described as: 
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   
ideal

(1) (2)
2 2 1 2 2 2 2 2 2( , ) (1 ) ( ) ( ) 1 ln 1 ln ,RS RS

G

G x T x G T x G T RT x x x x   



          
(1.1) 

where ( )RS i
iG   (i=1, 2) is defined as lattice stability that is equal to the difference of 

Gibbs energies between each component’s reference state (RS) and the phase  . It is 

crucial that the database of lattice stabilities be widely accepted [16,17]. In most 

situations, the solution is non-ideal, and an excess term would be introduced to reflect the 

interactions between atoms. As a simple illustration, let us examine the case where the 

phase   is a regular solution with a temperature-dependent interaction parameter: 

excess

(1) (2) ideal
2 2 1 2 2 2 2( , ) (1 ) ( ) ( ) (1 )( ) ,RS RS

G

G x T x G T x G T G x x A B T   



            (1.2) 

where A  and B  are parameters to be determined in order to obtain the value of the Gibbs 

energy. The most popular method to calculate these parameters is the CALPHAD 

(CALculation of PHAse Diagram) technique. Since it was proposed in the early 1970s, 

this technique has enjoyed  increasing popularity and has become a successful and widely 

applied tool in many areas of materials development [18]. This method is based on the 

utilization of the least squares method to calculate parameters of the Gibbs energy model, 

and it makes use of all available information about the system because the Gibbs energy 

model can be derived into many thermodynamic properties. Here is an example to 

illustrate the technique of CALPHAD: 
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     

  

L
2

2 2
LL exp L calc exp calc

2 2 2 2
1 1

Experiment 1 Experiment 2

2
L Lexp calc

2
1

Experiment 3

, , C , , C

, , C, C min C,

i j j

k

l m
H

i i i j j
i j

n
T
k k k

k

H H x T x T

T T x T

   

 

   



 



  

  

 



 

 

  


 C ,


 (1.3) 

where l , m  and n  are the numbers of experimental data for experiments 1, 2 and 3 

respectively. Experiment 1 is a measurement of the mixing enthalpies in the liquid phase, 

experiment 2 is a measurement of the chemical potential of the second component in the 

  phase, and finally experiment 3 is a measurement of the temperature on the liquidus. 

In addition, 
L H

i , 2
j

   and T
k  are statistical weights that are calculated by a 

combination of uncertainties from both experimental observations and conditions in a 

manner of uncertainty propagation (more details about the uncertainty propagation will be 

presented in the next chapter). Thus, the CALPHAD technique tries to calculate the best 

values of the parameters (
L
C


 and C
 

) by minimizing the weighted sum of squared 

differences between experimental and calculated values. 

To summarize, the first part of the thesis employ the CALPHAD technique to re-assess 

the Ag-Mg system. A complete literature review up to 2012 of the Ag-Mg system is 

presented in Chapter 2, where uncertainty analysis is discussed. Then, based on a good 

understanding of physical and chemical properties of this system, we formulate the Gibbs 

energies of all phases, and this modeling procedure is discussed in Chapter 3. Chapter 4 
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presents the results on comparison with experiments interpreted with statistical and 

thermodynamic viewpoints. Further, after discussing the statistical disadvantages of the 

CALPHAD technique in Chapter 5, we introduce an interval approach based on 

Kantorovich’s idea for thermodynamic optimization in Chapter 6 where both advantages 

and deficiencies of the method are described. Finally, a real thermodynamic optimization 

by applying the interval approach and its future applications is presented in Chapter 7. 

 

2. Literature review of the Ag-Mg system 

2.1. The importance of checking data from original literature 

The quality of experimental data plays a significant role in thermodynamic optimization. 

It is pointless to develop a Gibbs energy model if the selected data are far from their real 

values. The reasons for bad quality experimental data may come from poor sample 

preparation, human error and second-hand information. As optimizers, we cannot correct 

the first two situations, but we should pay more attention whenever using second-hand 

data. Such information can only be trusted if it is consistent with the original source. 

We have found more than 30 papers regarding the Ag-Mg system, and two of them 

should be first noted. A complete literature review up to 1984 has been presented in the 

paper by Nayeb-Hashemi et al. [19], and Figure 2-1 shows the phase diagram with 

selected experimental data. 
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Figure 2-1: Assessed Ag-Mg phase diagram by Nayeb-Hashemi et al. [19] 

 

Nevertheless, due to unfathomable reasons, enthalpies of mixing measured by Kawakami 

[20] were favorably biased according to their report [19]. Since 1984, new experimental 

data have been made available, and the modeling technique has been improved. Lim et al. 

[21] used literature data and their own calorimetric measurements to build a 

thermodynamic optimization of this system and the calculated phase diagram is shown in 

Figure 2-2. 
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Figure 2-2: Calculated Ag-Mg phase diagram by Lim et al. [21] 

 

Again, the enthalpies of mixing from Kawakami [20] were mistakenly reported in Lim’s 

paper. Indeed, we noted that those values reported in Lim’s paper are the same as those 

presented in Nayeb-Hashemi’s paper. In addition, some phase diagram data were cited in 

different positions when compared with the original papers, and there was even some data 

that was not reported by the experimenters. For instance, the phase-boundary data 

between Ag phase and β' phase in Figure 2-2 were not mentioned by Hume-Rothery et al. 

[22]. Based on this observation, it is very likely that Lim did not check the data from the 

original paper and used them directly from the second-hand information that was 

mistakenly reported. Therefore, it is necessary to review all experimental data from the 

original papers. 
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2.2. Phase diagram data 

Let us begin with phase diagram data. Żemcżużnyj [23] determined liquidus and solidus 

from 0 at% Mg to 100 at% Mg by thermal analysis. It is reported that the alloys were not 

stirred during the experiment, which can cause an incomplete reaction so that real 

information cannot be measured accurately. Moreover, four key invariant reactions were 

detected in this paper. One of them is the eutectic point ( 3Liquid AgMg +HCP_A3 ) 

that was reported as 742.15 K, but its real temperature may be a little higher based on the 

analysis above. 

The solvus of the Mg phase (HCP) was investigated by Hume-Rothery et al. [22], and 

they confirmed that the eutectic temperature ( 3Liquid AgMg +HCP_A3 ) lies between 

745.15 K and 748.15 K. Payne et al. [24] also detected this eutectic point at 745.15 K, 

which agrees well with Hume-Rothery’s report. Moreover, the HCP_A3 rich phase 

diagram data were determined by thermal analysis. According to Payne’s statement, the 

maximum uncertainty of temperature is 2 K. 

The Ag-rich side (i.e., FCC phase) of the phase diagram was determined by Andrews et al. 

[25] by using both cooling and heating experiments, and their compositions were 

measured by microscopic examination. From the paper [25], it was noted that a slight 
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amount of Mg was lost during the annealing process. Basically, the uncertainties for all 

data were provided by the authors. 

Schürmann et al. [26] measured phase diagram data on the solvus of the Mg phase and 

the stoichiometric compound 4AgMg  by microprobe analysis. In fact, their data were not 

numerically reported but graphically presented. Hence the data from Schürmann et al. 

were digitized from the graph. Kolesnichenko et al. [27] investigated the Ag-Mg system 

on the HCP_A3 phase by using local X-ray probe analysis, differential thermal analysis 

and scanning electron microscopy. According to Kolesnichenko’s report, the uncertainty 

of temperature is 2 K, and that of composition is 0.82 at% Mg. 

 

2.3. Thermodynamic properties 

Apart from phase diagram data, various thermodynamic properties have been made 

available in the following articles. 

The heat capacity of the AgMg (B2_BCC) phase was calorimetrically determined by 

Schübel [28] with 50 at% Mg. The maximum uncertainty of the heat capacity is 1%. The 

mixing enthalpies of the liquid phase at 1323.15 K were determined by Kawakami [20] 

using drop calorimetry. Based on electrochemical method, the chemical potentials of Mg 

in the FCC phase and the B2_BCC phase were investigated between 623.15 K and 823.15 

K by Kachi [29]. However, the author did not make a metallographic analysis to identify 
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the phases. In this case, the results are dubious as the phase of the sample may not be 

exactly correct in his report, especially for those data that are close to the phase 

boundaries. In addition, the order-disorder change between the FCC and the L12 phase 

was also detected by Kachi [29]. According to the paper [29], an inflection point of 

electromotive force was observed by heating and cooling the sample. Furthermore, the 

variation in the specific heat of 23.3 at% Mg showed a typical shape of a λ transformation, 

which indicates that it could be a second-order transition. The second-order phase 

transformation was also confirmed by Fujiwara et al. [30] through calorimetric study: a 

typical λ type transformation was observed in the specific heat of 25.4 at% Mg. Buckley 

et al. [31] identified the range of ordering in the L12 phase by electrical resistance 

measurements. However, the data were not provided as numerical values, but graphically 

displayed. Moreover, again the authors did not give any analysis about the uncertainty of 

the data. In this case, we estimated the data as well as the uncertainty by digitizing the 

graph. 

Trzebiatowski et al. [32] measured the chemical potential of Mg in the B2_BCC phase 

using the EMF method. According to the description, some samples were measured in 

Mg-rich side, which possibly belong to a two-phase region ( 3B2 _ BCC+AgMg ) 

according to the latest phase diagram (Lim et al. [21]). Robinson et al. [33] determined 

the heat of formation of the compound B2_BCC by tin-solution calorimetry at 273.15 K, 

and they provided the precision of their measurements. Gangulee et al. [34] compared the 
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heat of formation in a tin solution calorimeter on two parallel sets of specimens: one was 

quenched and the other was slowly cooled from 773 K to 273 K. Although a very small 

difference was observed, the slowly cooled alloys showed more short-range order than 

the quenched one did. The strong bond energy of the compound B2_BCC at temperatures 

below 273 K was confirmed by Jena et al. [35] as they obtained negative heat of 

formation that was calibrated by additions of tin. 

The activities of Mg in the liquid phase were determined by Gran et al. [12] using the 

vapor pressure method. During the experiment, only temperature and composition of Mg 

were experimentally determined, and other properties can be calculated based on the 

experimental information. In [12], the uncertainties about the temperature and the 

composition were proposed. 

 

2.4. Order-disorder transformation between the FCC and the L12 phase 

As introduced above, the order-disorder transition between the FCC and the L12 phase 

was suggested as a second-order transition according to the thermodynamic data [29-31]. 

However, this statement contradicts that in Hämäläinen et al. [36]. In their report [36], a 

discontinuity of the thermal expansion coefficient between the FCC and the L12 phase 

was detected, which may be associated with a first-order transition. Furthermore, their 

statement was supported by the crystallographic data [37-39] as they also suggested a 
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first-order transition. In fact, it is not easy to judge which paper should be more 

trustworthy because they all have evidence to support their reports. Therefore, the first-

order and second-order transitions will be taken into account separately during the present 

assessment. 

 

2.5. Data analysis 

It is crucial to assign statistical uncertainties to experimental observations and conditions. 

However, most analysts prefer to carry out uncertainties based on their experience and 

knowledge to the experiments rather than statistical calculation. In fact, for most 

measurements in practice, we have no choice but to estimate uncertainties non-

statistically because they just cannot be statistically calculated. To understand this point, 

it would be helpful to know how available methods for statistical calculation of 

uncertainty work. 

Assume that the data are normally distributed. Then a general way to evaluate statistical 

uncertainties is as follows. We use  

 1

n

i
i

mean

x
x

n



 (2.1) 
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to determine the mean from n  repeated data at the same conditions, and then we calculate 

the statistical uncertainty   (also called the standard deviation of measured values) by  

 
 2

1= .
1

n

meani
i

x x

n
 






 (2.2) 

It is meaningless to calculate such properties with a single or very few data. However, for 

most measurements in practice, repeated data are extraordinarily difficult to obtain 

because of two reasons. On one hand, some experimenters do not pay attention to the 

significance of replicating experiments. On the other hand, it is technically problematic to 

reproduce measurements under the same conditions, especially for some thermodynamic 

experiments. 

Even though we have found a great deal of data from the literature, none of it is 

satisfactory for determining statistical uncertainties. Nevertheless, it is still significant to 

consider the uncertainties in a proper way. It is essential to pay attention to the 

uncertainty analysis from the literature whenever the uncertainties are mentioned. 

However, for those papers without uncertainty analysis, we have to estimate uncertainties 

by careful analysis of their measurement practices. 

It should be emphasized that uncertainties in experimental conditions should also be taken 

into account. The method to calculate their statistical uncertainties is the same as 

previously discussed, but they also cannot be statistically calculated due to insufficient 
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data. Consequently, the estimation of uncertainties in experimental conditions is also 

based on the information from the paper and analysts’ experience. 

When uncertainties in both experimental observations and conditions (or variables) are 

concerned, based on an assumption that uncertainties in different variables are 

independent and uncorrelated, one can calculate the overall uncertainty   through the 

propagation of uncertainty formalism: 

     
1/2

22observation observation

1

/ ,
n

i i
i

y y x x


       
 

  (2.3) 

where observationy  is the function of independent variables ix , and n  is the number of 

variables. observationy  and ix  are uncertainties of experimental observation and 

conditions respectively. It is worth recalling the statistical weight w  of Eq. (1.3), which is 

related to the overall uncertainty  : 

 2w    (2.4) 

The uncertainties analyzed above only consider random error, which is a statistical 

fluctuation in the measured data due to the unpredictable variations of influential 

quantities. The value of the random error can be reduced by increasing the number of 

observations but cannot be removed. The other type of error is called systematic error, 

which is independent of numbers of observations and cannot be analyzed statistically. 

Nevertheless, the systematic error can be corrected by setting a specific weight to the data. 
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The purpose of weighting is to change the contributions for a set of equilibria: the default 

value of a weight is 1, which means nothing has changed; when it is greater than 1, such 

equilibria as an invariant reaction is treated as more important; and for some data that we 

do not trust as much, their weight would be assigned to be less than 1. 

The details about each data that we accepted as well as their uncertainties and statistical 

weights are given in Appendix I. 

 

3. Modeling 

There are four substitutional solutions (liquid, B2_BCC and HCP_A3) and two 

intermediate phases ( 3AgMg  and 4AgMg ) in the Ag-Mg system. The importance of 

choosing a suitable Gibbs energy model is well-known. In general, a good Gibbs energy 

model should satisfy the following four criteria: 

 Physical soundness 

 Applicable in a reasonable temperature/pressure range 

 Useful for multi-component systems 

 Simplicity 
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3.1. Modeling in liquid and HCP_A3 phases 

The liquid and HCP_A3 phases are treated by a substitutional-regular-solution model that 

is based on the assumption that atoms are randomly distributed in the solutions. The 

molar Gibbs energy is expressed as: 

 
srf θ id θ

m m

θ θ 0 θ θ 0 θ θ θ θ θ ex θ
m Ag Ag Mg Mg Ag Ag Mg Mg m( ln ln ) .

G G

G x G x G RT x x x x G    
 

 (3.1) 

The symbol θ  can be either liquid or HCP_A3 phase. 0 θ
AgG  and 0 θ

MgG  are standard Gibbs 

energy of Ag and Mg in a phase respectively. The excess term ex θ
mG  is used to describe 

the interactions between species, and it can be formulated by a Redlich-Kister series [40]: 

  ex θ θ
m Ag Mg Ag Mg Ag,Mg

0

,
v v

v

G x x x x L


   (3.2) 

where the parameter θ
Ag,Mg

vL  can be temperature dependent: 

 θ θ θ θ
Ag,Mg ln .v v v vL a b T c T T     (3.3) 

 

3.2. Modeling ordering in the L12 and the B2_BCC 

The order-disorder transition occurs when temperature or composition changes. Usually 

the ordered state becomes disordered when the temperature increases. According to the 
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information [29-32,34], the ordering state exists in the L12 and the B2_BCC phases. In 

order to simulate order-disorder transition, the model based on the compound energy 

formalism (CEF) is selected. The CEF was developed by Hillert and Staffansson [41] and 

was well described by Lukas et al. [42]. The structure of the phase can be implied by 

different sub-lattices. For the order-disorder transition, it requires at least two sub-lattices, 

and each sub-lattice is represented as a site of crystallographic structure. Figure 3-1 and 

Figure 3-2 show two possible ordering structures of the L12 phase, and they both can be 

described by a two sub-lattice model, but with different number of sites. 

 

 

Figure 3-1: A complete ordering structure of the L12 phase. 
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Figure 3-2: A partial ordering structure of the L12 phase. 

 

Figure 3-1 displays two different sub-lattices: one is completely occupied by Mg atoms; 

the other one is entirely occupied by Ag atoms. This structure can be modeled with two 

sub-lattices after the formula    1 1 2 2
Ag Mg Ag Mg0.25 0.75

Ag ,Mg Ag ,Mg
y y y y

, where 

  Ag,Mg; 1, 2j
iy i j   is the site fraction of i  in the j  sub-lattice. According to the 

structural information, the major component of the first sub-lattice should be Mg (i.e., 

1
Mg 1y  ) as its number of sites is 0.25, and the major component of the second sub-lattice 

is Ag (i.e., 2
Ag 1y  ) because its number of sites is 0.75. Nevertheless, if the structure is 

not complete ordered, then it would present the case shown in Figure 3-2, which can be 
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modeled as:    1 1 2 2
Ag Mg Ag Mg0.5 0.5

Ag ,Mg Ag ,Mg
y y y y

: the first sub-lattice is randomly occupied 

by both atoms; in the second sub-lattice, the center of four faces are occupied by a 

majority of Ag atoms. 

It should be emphasized that these two structures (Figure 3-1 and Figure 3-2) cannot be 

modeled with the same two sub-lattice model simultaneously, but they can be modeled 

with a four sub-lattice model: 

       1 1 2 2 3 3 4 4
Ag Mg Ag Mg Ag Mg Ag Mg0.25 0.25 0.25 0.25

Ag ,Mg Ag ,Mg Ag ,Mg Ag ,Mg
y y y y y y y y

. For this four sub-

lattice model, if the first sub-lattice is mainly occupied by Mg, while the other three sub-

lattices are mainly occupied by Ag, then this case corresponds to the structure in Figure 

3-1. If the first two sub-lattices are randomly mixed by Mg and Ag atoms, and the other 

two sub-lattices are mainly occupied by Ag, then this four sub-lattice model is used to 

model the second structure (Figure 3-2). 

Figure 3-3 displays the ideal ordering unit cell in B2_BCC phase: it is preferable that the 

corners be occupied by atoms Mg, and atoms Ag are located at the center of the cell. This 

phase is modeled with two sub-lattices:    1 1 2 2
Ag Mg Ag Mg0.5 0.5

Ag ,Mg Ag ,Mg
y y y y

. 
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Figure 3-3: The ordering structure of B2_BCC phase. 

 

To understand how the sub-lattice model is used, let us examine a case of a two sub-

lattice model:    1 1 2 2
Ag Mg Ag Mg

Ag ,Mg Ag ,Mg
y y y y

i j
. 

Here i  and j  are the numbers of the sites of each sublattice, which satisfy: 

 1.i j   (3.4) 

Accordingly, the overall composition of each component is related to their site fractions: 

 

1 2
Ag Ag Ag

1 2
Mg Mg Mg

,

.

x i y j y

x i y j y

   

   
 (3.5) 
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The molar Gibbs energy with two sub-lattices is divided into the same three parts as Eq. 

(3.1) and they are: 

     
   

srf θ 1 2 0 1 2 0 1 2 0 1 2 0
m Ag Ag Ag:Ag Ag Mg Ag:Mg Mg Ag Mg:Ag Mg Mg Mg:Mg

id θ 1 1 1 1 2 2 2 2
m Ag Ag Mg Mg Ag Ag Mg Mg

ex θ 1 1 1 1 2 2 2 2
m Ag Mg Ag Mg Ag,Mg:* Ag Mg Ag Mg *:Ag,Mg

0 0

,

ln ln ln ln ,

.
v vv v

v v

G y y G y y G y y G y y G

G RT i y y y y j y y y y

G y y y y L y y y y L
 

   

     

    

 (3.6) 

In order to describe the order-disorder transition, the total molar Gibbs energy total θ
mG  is 

calculated by combining both disordered and ordered Gibbs energies: 

 total θ dis θ ord θ
m m Mg m( ) .G G x G   (3.7) 

The term ord θ
mG  represents the contribution due to ordering of the disordered state, and its 

value equals zero when it is disordered, i.e., 1 2
Mg Mg Mgx y y  . Thus, this term can be 

described as: 

 ord θ ord θ 1 ord θ 1 2
m m Mg m Mg Mg Mg( ) ( )G G y G x y y     (3.8) 

Moreover, when the disorder is a stable state, total θ
mG  will have an extremum. 

The technique to model a four sub-lattice model is very similar to that of a two sub-lattice 

model, and they are mathematically equivalent. More details on this discussion can be 

found in [43]. 
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3.3. Modeling in AgMg3 and AgMg4 phases 

The two intermediate phases have been modeled in the same way as Lim et al. [21] did. 

AgMg3 and AgMg4 are treated as stoichiometric compounds that have no solubility 

ranges. They are both described with two sub-lattices: one sub-lattice is occupied by Ag 

only and the other is occupied by Mg only. 

 

 

4. Optimization 

4.1. Non-linear least squares method as a mathematical foundation of the 

CALPHAD technique 

The optimization is based on using the least squares method that was implemented in the 

built-in module PARROT [44] of Thermo-Calc software [45]. In principle, this method 

can be classified as linearity and non-linearity in terms of the relationship between the 

parameters and the model: if the model is linear with respect to the parameters, then it is 

linear least squares; otherwise, it is non-linear least squares. Nevertheless, when the 

statistical weight is considered, then even if the model is linear to parameters, it may be 

still result in non-linearity. A simple illustration of the working of the CALPHAD 
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technique was given by Eq. (1.3), and let us examine it again to discuss the reasons for 

non-linearity in the following subsections. 

 

4.1.1. Causes of non-linearity 

Uncertainties from independent variables: ix  

Independent variables are usually experimental conditions, such as temperatures and 

compositions when measuring the mixing enthalpy in experiment 1 of Eq. (1.3). 

According to Eq. (2.4), the statistical weight is given by Eq. (4.1): 

     
L

2 2
L LL calc L calc

2 22L exp
2

2

1
,

, , C , , C

H

i i

i

i

i i

i i

w

H x T H x T
H x T

x T


                 
   

   (4.1) 

It is clear that Eq. (4.1) is non-linear to parameters 
L
C


, and it will result in non-linear 

least squares after substituting this equation into Eq. (1.3). 

 

Phase diagram data between different phases 

Let us recall experiment 3 in Eq. (1.3) where the liquidus were measured. In the equation, 

calcT  is derived from the common tangent law, while the chemical potential of each 
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component in different phases sharing the same tangent is the same. To be more specific, 

it can be illustrated by the following equations that correspond to the case shown in 

Figure 4-1. 

 
LL L

1 2 1 2( , , C) ( , , C),x T x T
  
 

 (4.2) 

 
LL L

2 2 2 2( , , C) ( , , C).x T x T
  
 

 (4.3) 

 

 

Figure 4-1: A postulated binary phase diagram. 
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Actually, in addition to the measured temperature, only L
2x  is a known experimental 

condition, while 2x  is a hypothetical composition of the solidus at T. The reason for 

introducing such a hypothetical variable is to fulfill the common tangent law. Suppose 

that parameters C
 

 and 
L
C


 are already known, then there are only two unknown 

variables (i.e., 2x  and T ) in Eqs. (4.2) and (4.3). Thus, it is capable to calculate these 

unknown variables by solving these two equations. It is worth noting that 2x  appears in 

the entropy part, i.e., 2ln(1 )RT x  and 2lnRT x . As a result, 2x  and T both may be non-

linear with respect to parameters C
 

 and 
L
C


, and the deduction is given in Appendix II. 

 

Thermodynamic properties of heterogeneous mixtures 

Apart from the two cases above, there is another case for non-linear least squares. Again, 

for illustrative purposes, an example of how to calculate heat of formation in 

heterogeneous mixtures is presented below. Figure 4-2 displays the position where the 

heat formation was measured. Only composition L
2x   and temperature T are known 

experimental quantities. 
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Figure 4-2: Heat formation measured in a two-phase (β+L) region. 

 

In order to calculate the heat of formation in the two-phase region, we need to combine 

the information from both phases. In principle, the overall Gibbs energy LG   in a two-

phase region is calculated by using the lever rule conditions, which gives: 

 L
2 2

L L L
L L2 2 2 2

L L
2 2 2 2

,
x x

x x x x
G G G

x x x x


  
 

 

 
  
 

 
 (4.4) 

where L
2

L

x
G  and 

2x
G 

  are defined as the Gibbs energy of liquid and   phases at the 

corresponding composition respectively, and 
L

2 2
L
2 2

x x

x x

 



 


 as well as 
L L
2 2

L
2 2

x x

x x








 are 
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described as the amount of contribution from the liquid phase and   phase respectively. 

As mentioned before, 2x  and L
2x  are unknown experimental conditions, but they can be 

calculated by solving Eqs. (4.2) and (4.3). Argued similarly as in the second case, 2x  and 

L
2x  would be non-linear to the optimized parameters C

 
 and 

L
C


. Thus, Eq. (4.4) is also 

non-linear to C
 

 and 
L
C


 after substituting 2x  and L
2x  into the equation. Moreover, it is 

obvious that the formalism of heat of formation is non-linear to C
 

 and 
L
C


 as well. 

 

4.1.2. Choosing an initial approach 

Before optimizing parameters, it is necessary to determine their initial values. Of course, 

this work can be successful only if the model is correctly chosen. Good initial values 

make the convergence process faster, which means a minimum can be reached efficiently 

through the sum of squares. Poor initial values may need more time for convergence, or 

they may diverge, especially for non-linear least squares. However, it is not an easy job to 

find satisfactory initial values. 

In general, there are two methods to determine initial values. One is based on the 

information from previous assessments; the other is based on the optimizers’ experience 

and knowledge when they try to optimize a new system. Actually, this work can be very 

time-consuming if the initial values are not well-selected. In addition, this problem can be 
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more serious to those inexperienced optimizers who usually determine initial values by 

guessing. 

In the present study of assessing the Ag-Mg system, initial values of parameters were 

chosen based on the assessment of Lim et al. [21], where some additional constraints 

were used to avoid the calculation of unreasonable values. 

 

4.2. Assessment procedure and results 

The liquid phase was initially optimized, and the values of parameters were temporarily 

constrained by certain ranges when B2_BCC phase was considered. During the 

optimization of B2_BCC phase, the ordered state remained stable to its melting 

temperature, which verified the statement by Jordan et al. [46]. During the assessment to 

the FCC and the L12 phase, two possible types of order-disorder transition were 

considered: first and second order. We selected a four sub-lattice model 

       0.25 0.25 0.25 0.25
Ag,Mg Ag,Mg Ag,Mg Ag,Mg  to describe this phase that contains a 

first-order phase transformation. In this case, the FCC phase was split into two phases that 

presented two composition sets. The composition set can be understood in this way: the 

number of phases that split from one phase is equal to the number of composition sets of 

this phase. Thus, one phase is always disordering, and the other is always ordering. When 

the transition becomes second order, some additional constraints should be added to 



Master’s Thesis – C. Dai          McMaster University – Materials Science and Engineering 

[28] 

 

sustain the optimization’s best fit with available experimental data. A second-order 

transition means that the order parameter gradually decreased to zero by increasing the 

temperature, and thus only one composition set is required to simulate this transition. We 

chose a two sub-lattice model    0.5 0.5
Ag,Mg Ag,Mg  instead of using 

   0.25 0.75
Ag,Mg Ag,Mg  as the latter cannot reproduce the available data. It should be 

noted that the disordered phase and the ordered phase belong to the same phase. In order 

to distinguish these two states, we need to add some additional constraints on 

experimental data. As explained before, whether a phase is disordered or ordered can be 

identified by the site fraction, and this can be further understood by using a two sub-

lattice model    1 1 2 2
Ag Mg Ag Mg

Ag ,Mg Ag ,Mg
y y y y

i j
, where the order parameter s  is defined as: 

  22 1
Mg Mg .s y y   (4.5) 

A state is disordered when s=0, and a state is completely ordered when s=1, and a state is 

partially ordered when 0<s<1. Thus, the information of the order parameter was included 

to distinguish between disordered and ordered states. 

In addition to the phases discussed above, the thermodynamic description of HCP_A3, 

3AgMg  and 4AgMg  phases are the same as Lim et al. [21] reported. An updated table of 

parameters for all phases is listed in Appendix III. The calculated phase diagrams of the 
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two cases discussed above are shown in Figure 4-3 and Figure 4-4. In addition, the 

invariant temperatures are listed in Table 4-1. 

 

 

Figure 4-3: The calculated Ag-Mg phase diagram from the present assessment, where the order-

disorder transition is first-order. 
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Figure 4-4: The calculated Ag-Mg phase diagram from the present assessment, where the order-

disorder transition is second-order (dashed line). 

 

Table 4-1: The invariants of the Ag-Mg system. 

Invariant equilibrium T(K) [19] T(K) [21] T(K) (This work)

Liquid FCC+B2_BCC  1032.45 1033 1032.37 

Liquid B2_BCC  1093.15 1093 1093.14 

3AgMg Liquid+B2_BCC 765.15 764 765.29 

3Liquid HCP+AgMg  745.15 745 743.28 

4 3AgMg HCP+AgMg  − 742 738.61 
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4.2.1. Equilibria with the liquid 

Figure 4-5 shows the calculated mixing enthalpy with experimental data that contain 

reasonable uncertainties. As we can see, the calculation crosses through most data. 

 

 

Figure 4-5: The calculated enthalpy of mixing at 1323 K, compared with experimental data [20]. 

 

In Figure 4-6 the activities of Mg were calculated at temperatures that are much higher 

than the melting point of all compositions. Although the measured data at different 
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temperatures are close to each other, the activity of Mg is a little higher at lower 

temperatures. 

 

 

Figure 4-6: The calculated activity of Mg in the liquid. The dashed line was calculated at 1573 K that 

corresponds to , the solid line was calculated at 1673 K that corresponds to  [12]. 

 

Compared with the phase diagram data that was collected from many papers, the liquidus 

and solidus were well reproduced by these calculations (Figure 4-7). 
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Figure 4-7: The calculated phase diagram for the liquid in equilibrium with FCC, B2_BCC, AgMg3 

and HCP_A3 compared with experimental data. The experimental data for the liquidus and solidus 

are from  [23]  [25]  [22]  [24]  [21]. 

 

4.2.2. Equilibria with B2_BCC phase 

In Figure 4-8, the curve of the calculated heat capacity is a little higher than the measured 

data, but with acceptable ranges. 
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Figure 4-8: The calculated heat capacity in B2_BCC phase, compared with experimental data [28]. 

 

Figure 4-9 shows the chemical potentials of Mg calculated at several different 

compositions for the purpose of comparing with experimental data. Even though some 

calculated curves are not perfectly consistent with the experimental data, the overall 

tendency of data is properly simulated. 
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Figure 4-9: The calculated chemical potential of Mg in B2_BCC phase, compared with the 

experimental data [29]. 

 

The heat of formation in B2_BCC phase was calculated at 273.15 K, as displayed in 

Figure 4-10. Although it may not be a sound idea to use data at such a low temperature, 

the result shows a reasonable agreement. 
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Figure 4-10: The calculated heat of formation in B2_BCC phase, compared with the experimental 

data [33]. 

 

4.2.3. Equilibria with the FCC and the L12 phase 

The FCC and the L12 phase have an order-disorder transformation that could either be 

first-order or second-order. Figure 4-11 shows a magnification of the region where the 

transition is first-order. The fit to the phase diagram data is good, and a peritectoid 

transformation was calculated, i.e., 2FCC+B2_BCC L1 . 
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Figure 4-11: The calculated first-order transition line together with experimental data:  [30],  [31]. 

 

When the transition is treated as second-order, the order parameter s can be calculated by 

Eq. (4.5), as shown in Figure 4-12. As temperature increases from 300 K, s gradually 

decreases to zero, which means that the state becomes disordered. 
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Figure 4-12: The calculated order parameter s for different compositions from 300 K to 700 K. 

 

According to the information obtained from Figure 4-12, we are able to determine the 

second-order transition line between the FCC and the L12 phase, as shown in Figure 4-13. 
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Figure 4-13: The calculated second-order transition line of the order-disorder transition between the 

FCC and the L12 phase. 

 

In Figure 4-14, the calculated chemical potentials of Mg in the FCC phase for different 

compositions have reproduced the basic features, i.e., the values steadily decline as the 

temperature increases. 
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Figure 4-14: The calculated chemical potential of Mg in FCC phase, compared with the experimental 

data [29]. 

 

5. The conclusions of the assessment: can we do better? 

All available data were carefully scrutinized and analyzed, and their uncertainties were 

reasonably estimated. This contribution should be helpful in future assessments that 

contain the Ag-Mg system. Furthermore, based on the thermodynamic description of the 

present assessment, most experimental data were satisfactorily reproduced. More 

importantly, we successfully described first- and second-order transformations by 

employing a four sub-lattice and a two sub-lattice model respectively. 
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The CALPHAD technique was employed during the present assessment. Undoubtedly, it 

demonstrated a powerful ability for thermodynamic optimization. In fact, almost all 

methods in a real world have their advantages and disadvantages; just as a coin has two 

sides, so does the CALPHAD technique. During the assessment, we have found three 

deficiencies that are usually ignored by others. 

The first problem was already mentioned in the data analysis of Section 2.5: statistical 

uncertainties are minimally visible due to insufficient repeated data. However, 

uncertainties should always be taken into account during optimization. They are usually 

estimated by assigning error bars. In general, an error bar is represented by an 

experimental data with two bounds. If the data distribution follows a normal distribution, 

then the central point of the error bar is treated as the most probable data. Nevertheless, it 

is a serious mistake to use error bars if uncertainties cannot be statistically calculated. 

Without enough repeated data, there would be no way to determine the data distribution, 

and it is unreasonable to treat an experimental point as a central point of an error bar. 

Another problem presented by the CALPHAD technique is how to choose a sound model, 

which was briefly mentioned at the beginning of Chapter 3. Even though we have some 

criteria for a good model, sometimes there is not enough information to help us to make 

the right decision. In other words, it might be not be problematic that a model can be 

replaced by another if they both can reproduce available data. However, it does not mean 

that both of them can be accepted. Thus, it is necessary that more criteria be considered. 
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The last problem is related to the algorithm of least squares. As explained in Subsection 

4.1.2, initial values of parameters are always requisite and important, but they are usually 

determined under the condition of uncertainty. Moreover, it is difficult to judge whether 

the initial values are appropriate or not. 

To solve the first problem, we recommend that the experimenters create many repeated 

experimental data, so that statistical uncertainties can be calculated. However, this 

solution may not be realistic, as it is too difficult to achieve in practice. For the other two 

problems, the availability of more information should help to decide the model and 

parameter values. Therefore, instead of improving the CALPHAD technique, an 

alternative idea is proposed to focus on solving these outstanding problems. 

 

6. Non-statistical modeling 

6.1. Kantorovich’s idea 

Non-statistical modeling is based on Kantorovich’s idea [47]; instead of calculating 

statistical uncertainties, experimental data can be represented by reasonable finite 

intervals that describe all possible values of observation. Compared with the traditional 

error bar, each interval is constrained by an upper bound and a lower bound, as shown in 

Figure 6-1. An obvious difference is that there is not a central point between two bounds 

of the intervals. The reason for using intervals to describe data can be derived from the 
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definition of the interval: it is a finite scale that contains all possible experimental 

observations at the same experimental conditions, so all points in this range are equally 

treated. In other words, the interval does not care about data distribution because all types 

of distribution are likely in it. Thus, the interval can be estimated without statistical 

calculation, and this overcomes the first problem where error bars are wrongly used. 

 

 

Figure 6-1: Error bars (a) and intervals (b). 

 

6.2. Methodological aspects 

Intervals cannot be applied to least squares because a unique experimental point does not 

exist. Thus, we need to find a method that is specific to the characteristics of the interval. 
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Before introducing the method, let us first identify what conditions should be satisfied in 

order to obtain satisfactory parameters. According to the definition of interval, possible 

experimental data should exist between the two bounds. Moreover, the data can be 

simulated by a model. Based on these two prerequisites, if the calculations of the model 

satisfy the constraints of all intervals, then the model’s parameters should be accepted. 

From a mathematical viewpoint, this relationship can be described by inequalities. Let us 

examine a case of Figure 6-1 (b), which gives us the following: 

 
 
 

1 1 1

2 2 2

,C ,

,C .

y f x y

y f x y

 

 



  (6.1) 

Here,  f x  is a selected model and C


 are parameters. If all inequalities are fulfilled, 

then C


 are feasible parameters. When it is graphically represented, the calculations of the 

model must cross through all the intervals. Actually, it is possible that there might be 

more than one line that meets with this requirement, as shown in Figure 6-2. As each line 

is calculated from a model with a set of parameters, different lines imply different sets of 

parameters that may constitute a feasible region of parameters. 
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Figure 6-2: Different lines cross through intervals. 

 

The next section will present the algorithm to solve those inequalities in order to obtain a 

feasible region of parameters. We offer a preliminary explanation of the following 

expressions: 

 A feasible region consists of all feasible values of parameters if they exist; 

otherwise, it would be empty. 

 The number of parameters of the model is called the dimension of the feasible 

region. For example, if there is only one parameter, then a feasible region is a line 

segment in one dimension where the axis is the parameter itself; if there are two 
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parameters, then a feasible region would be a polygon in two dimensions where 

each axis can be one of the parameters; if there are three parameters, then a 

feasible region would be a polytope in three dimensions. 

 A vertex of a feasible region represents values of a set of parameters. Its 

corresponding calculation of the model should touch at least one bound of the 

intervals, but the calculation may not satisfy all the inequalities. 

 An extreme vertex of a feasible region also represents values of a set of 

parameters, and its corresponding calculation of the model satisfies all the 

inequalities. 

 An outlier is defined as a bad experimental value, and it would generate no 

feasible region. 

 

6.3. Algorithmic and computational aspects 

The calculation of feasible values of parameters is an NP-hard (Non-deterministic 

Polynomial-time hard) problem [48]. Although some methods were discussed by Walter 

et al. [49], it is very inconvenient to use them practically. In this section, we will propose 

an approach that is more efficient and effective to determine feasible values of parameters. 

A complete procedure of the method is described below: 



Master’s Thesis – C. Dai          McMaster University – Materials Science and Engineering 

[47] 

 

Step 1 is to determine a reasonable interval for each observation by data analysis. This 

work requires all available information, such as knowledge of equipment, experimental 

procedures and analytical experience, to help with the estimation. 

Step 2 is to choose a suitable model to simulate the data. As described before, the 

calculation of the model is supposed to be constrained by the two extreme bounds of each 

observation, and this relationship can be represented by inequalities. 

Step 3 is to obtain values of vertices by calculating intersections of all inequalities. 

Suppose that there are n different linear inequalities, and each inequality contains m 

different unknown parameters (note that 
2


n
m ). In order to calculate the m parameters, 

we need at least m equations. How do we obtain the equations? All inequalities are 

changed into equalities, which means that the inequality symbols are simply changed to 

equality symbols. Then we randomly select m different equalities from n equalities to 

constitute simultaneous equations and calculate a vertex that consists of m parameters. 

The number of vertices is determined by the number of combinations of equalities C(n, 

m): 

 
!

( , ) .
( )! !

n
C n m

n m m



 (6.2) 
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It should be mentioned that not all combinations can be accepted. The calculation of 

simultaneous equations cannot proceed if the solution is an empty set. For the 

convenience of the following description, we suppose that k  vertices are obtained. 

Step 4 is to find the extreme vertices. The reason for finding extreme vertices is that the 

values of some vertices may not satisfy all the inequalities. Thus, we need to substitute 

the values of k  vertices back into the model to compare their calculations with all the 

inequalities to find those extreme vertices. If j  ( 1j ) extreme vertices are obtained, 

then go to step 5; otherwise, we proceed to step 6 when there is no extreme vertex. 

Step 5 is to construct a feasible region graphically when the number of parameters is no 

more than three. The reason will be discussed in Subsection 6.5.2. 

Step 6 is to find outliers and reassign their intervals. A Simplex algorithm [50] is 

employed to find outliers by enlarging their intervals to approach the calculation. Thus, 

there will be only one set of feasible parameters in the final result. It is worth noting that a 

badly selected model may also lead to no feasible region. This statement will be discussed 

later. 

This algorithm has been implemented in MATLAB script-language during the present 

study, and this program will be discussed in Appendix IV. 
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6.4. Practical implementations of non-statistical modeling 

A simple illustration of implementing non-statistical modeling of imaginary experimental 

data is described in this section. Figure 6-3 shows a transition of the experimental data 

from the description of individual points to intervals. 

 

 

Figure 6-3: The original data (a) and the intervals (b). 

 

Let us assume that a linear function y a b x    ( a  and b  are parameters) is used to 

simulate the data. Then we will have three sets of inequalities: 

  ,  1, 2,3 .i i iy a b x y i      (6.3) 

Changing inequality symbols to equality symbols gives six equations: 
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 ,i ia b x y    (6.4) 

 .i ia b x y    (6.5) 

With two parameters and six equations, the number of combination is 

6!
(6,2) =15

(6 2)!2!



C . After calculating 15 sets of simultaneous equations, there are 12 

vertices as shown in Figure 6-4. However, only six of them are extreme vertices that can 

constitute a feasible region. 

 

 

Figure 6-4: A feasible region of parameters a and b. 
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6.5. Methodological advantages and computational disadvantages of non-statistical 

modeling 

Non-statistical modeling is able to avoid the problem of calculating statistical uncertainty, 

which makes use of insufficient experimental data possible. In addition, not only are no 

initial values of parameters required in this method, but it may also provide a feasible 

region of parameters. Furthermore, this method is helpful to determine a suitable model, 

as we know that a feasible region exists only if all inequalities are satisfied. Thus, the 

calculations of the model must meet with all inequalities. With this criterion, we may find 

a more satisfactory model. 

However, recalling that almost all methods have their limitations, so does this method: its 

disadvantages are described in the following three cases. 

 

6.5.1. Non-linear inequalities 

A non-linear inequality means the selected model is non-linear to unknown parameters. 

So far, we have not found a method to overcome the problem of non-linear inequalities 

because it is a very difficult mathematical problem, but it is meaningful to discuss its 

complexity. The feasible region for linear inequalities is always a convex polytope that 

consists of flat planes, except in the case of a one-dimensional feasible region. By using 

the available program, the extreme vertices are convenient to find. However, it would be 
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a disaster for non-linear inequalities. Some studies [51,52] have shown that a feasible 

region for non-linear inequalities would be an irregular and even discontinuous 

hypersurface, which means that separate feasible regions might exist. For illustrative 

purposes, Figure 6-5 gives two imaginary feasible regions that are created from two 

groups of data, and the overlaps are the intersections between the two regions. 

 

 

Figure 6-5: A hypothetical feasible region for non-linear inequalities and the overlaps are striped 

areas. 
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6.5.2. Multidimensional problems 

The visualization of a feasible region requires the construction of extreme vertices by 

using different methods with regard to the particular dimension of a feasible region. In 

principle, it is easy to imagine a graph visualized in one-, two- and three-dimensions. 

However, it would be unnatural to visualize a picture in four- or even higher-dimensional 

spaces. Some attempts toward data visualization in high dimensions were discussed in 

[53,54]. 

 

6.5.3. Uncertainties in experimental conditions 

In non-statistical data treatment, uncertainties in experimental conditions can also be 

treated as finite intervals. As a result, it is not hard to imagine that each data can be 

represented as a rectangle. Figure 6-6 is an example to show data described as a rectangle. 

Here, it is essential to define what the criterion of a good model is when the calculations 

of the model cross through a rectangle. In Figure 6-6, there are five lines, and all of them 

are calculated from an imaginary model. The differences among these lines are described 

below: 

Line (1): 1 1 1 1 , ,  we have x x x y y y      , which means it can cross through anypart of 

the rectangle, or even just touch a corner. 
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Line (2) (the dotted line): 1 1 1 1 , ,  we have  y y y x x x      , which means when 

1 1,y y y    , the inequality 1 1x x x   must be always satisfied. 

Line (3) (the long-dash line): 1 1 1 1 , ,  we have  x x x y y y      , which means the 

inequality 1 1y y y   must be always satisfied when 1 1,x x x    . 

Lines (4) and (5): 

1 1 1 1 1 1 1 1 , ,  we have  ,  and  , ,  we have  x x x y y y y y y x x x              . 

Which line should be chosen as a good calculation? The answer is that all of them are 

satisfactory to obtain feasible values of parameters. According to the definition of the 

interval and rectangle data, any values in the region are possible data that should be 

equally treated. Therefore, feasible values of parameters can be obtained if the model 

crosses through any part of the rectangle. 
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Figure 6-6: Experimental data in a description of a rectangle, with five calculated lines. 

 

As the description of experimental data has changed, the feasible region should be 

constructed in a different way. The first step is to generate a feasible region from one 

rectangle that is the union of all feasible parameters; then the final feasible region is the 

intersection of all feasible regions previously obtained. In order to have a better 

understanding, Figure 6-7 is an example of two experimental data that are described by 

non-statistical treatment (x axis is defined as an experimental condition and y axis is 

defined as an experimental observation). 
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Figure 6-7: An assumed example with uncertainties in both experimental conditions and observations. 

 

For simplification, a linear model is used to simulate the data: 

 ,y a b x    (6.6) 

where a  and b  are two unknown parameters. According to the criterion defined above, 

feasible values of a  and b  can be obtained if they satisfy the following inequalities: 

    1, 2 ,  we have  1 3,  and  3, 4 ,  we have  2 4.x a b x x a b x             (6.7) 

Solving Eq. (6.7) requires infinite calculations because the inequalities will be checked 

for every single point of the range of x. This algorithm cannot be implemented by a 



Master’s Thesis – C. Dai          McMaster University – Materials Science and Engineering 

[57] 

 

program, due to the limitation of the computational technique. Fortunately, the present 

example is unique because the feasible region can be obtained by just solving 4 

inequalities. At first, the feasible region for each rectangle is the union of all feasible 

parameters, and then the final feasible region is the intersection of the previous two 

feasible regions. Figure 6-8 shows the final feasible region that is not a convex polygon 

but a concave polygon. 

 

 

Figure 6-8: A concave feasible region. 
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6.6. Interval analysis: non-thermodynamic examples 

Kantorovich’s idea was initially proposed to solve economic problems, and it has been 

studied during the past half-century. The difference between interval based estimation and 

statistical point estimation (i.e., least squares estimates) was compared by Zhilin [55]. The 

author concluded that the non-statistical estimation performs comparably to statistical 

point estimation in the case of interval errors and insufficient information on data 

distributions. In another paper [56], Zhilin put forward a method to find outliers. 

Moreover, this method was applied to image geometric correction of satellite images. In 

another study from Spivak [57], experimental data was found to enjoy a better description 

with interval data because they can be analyzed without any statistical characteristics of 

the measurements. In addition, he gave an example about the determination of the kinetic 

constants for olefin dehydrogenation that is based on interval estimation. According to 

Pomerantsev et al. [58-61], experimental data are classified into four types: reliable 

observations, doubtful outliers, significant boundaries and absolute outliers. The method 

used to distinguish these types of data was named as a simple interval calculation (SIC). 

Meanwhile, they suggested that all kinds of errors, such as errors in predictors, errors in 

response, errors in calibration data, and errors in prediction data, should be included 

during data analysis. An example of the prediction of gasoline “Octane Rating” was 

illustrated by applying the SIC method. 
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Although none of the studies described above can present a sound method to calculate a 

feasible region of parameters, the understanding of interval and data analysis is quite 

beneficial and helpful to the present study. 

 

7. Non-statistical description of the excess Gibbs energy of the liquid phase in the 

Ag-Mg system 

This study marks the first application of non-statistical modeling to thermodynamic 

optimization. The Ag-Mg system is selected again because it was assessed by the 

CALPHAD technique in the present work. However, only the liquid phase can be 

analyzed here due to the limitations of non-statistical modeling that were previously 

explained. 

 

7.1. Analysis of experimental data 

The thermodynamic data for the liquid phase are mixing enthalpy measured by 

Kawakami [20] and activity of Mg measured by Gran et al. [12]. Even though they were 

analyzed in Chapter 2, data analysis in non-statistical modeling is different from 

traditional analysis. The following two Subsections are good examples to illustrate how to 

apply a non-statistical treatment to the experimental data. 
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7.1.1. Enthalpy of mixing measured by Kawakami 

Figure 7-1 shows a schematic diagram of the Calvet-type calorimeter that was used in 

Kawakami’s experiment. In order to achieve a better evaluation of experimental data, the 

experimental procedure should be fully understood. At the very beginning, Ag was placed 

in crucible A and Mg was placed in the tube container B. When the temperature of the 

furnace reached the required temperature (i.e., T=1323 K), both Ag and Mg melted. After 

remaining for sufficient time, the porcelain tube D was moved to let the molten Mg fall 

into the crucible A to mix with the molten Ag. The temperature variation was measured 

by a thermo-couple. 

 

Figure 7-1: A schematic diagram of the Calvet-type calorimeter. 
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The results are graphically shown in Figure 7-2: 

 

 

Figure 7-2: Mixing enthalpy in liquid Ag-Mg alloys. 

 

In order to assign reasonable intervals to all experimental data, we need make use of all 

available information. During sample preparation, there may have been some errors in 

samples’ weights because the weight balance is not absolutely accurate, and its accuracy 

was ±0.02 g. As for the uncertainty of the temperature, it was affected by two aspects: 

before mixing the two metals, the accuracy of the thermo-couple was ±5 Ԩ; after the 
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mixing, some heat was released, and the temperature variation was detected by the 

thermo-couple, but its accuracy would be ±10 Ԩ	because it may not be very sensitive to 

the temperature change. The mixing enthalpy was calculated by using the information of 

the calorimeter, i.e., its heat capacity whose accuracy was assumed to be about ±10%. 

The uncertainties discussed above are random errors, but in order to provide an interval 

that contains all possible data, the systematic errors should also be included. Mg is easy to 

oxidize and volatilize, and this problem would become even worse at higher temperatures. 

During the experiment, the temperature could be as high as 1323 K. Thus, some amount 

of Mg was lost, which potentially caused the measured heat to be less than the real heat, 

and this loss was assumed as 5%. 

Even though the uncertainties in experimental conditions were analyzed, they cannot be 

taken into account due to the limitations explained in Subsection 6.5.3. Figure 7-3 shows 

the data in a description of intervals. 
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Figure 7-3: Mixing enthalpy in intervals at 1323 K. 

 

7.1.2.  Activity of Mg measured by Gran, Song and Sichen 

In order to obtain a realistic estimation of uncertainty, we should be fully aware of the 

experimental process. According to [12], there are two techniques to measure the activity 

of Mg. The first one is the vapor pressure method, as shown in Figure 7-4. During the 

experiment, the molten Mg was heated at a high temperature where Mg was evaporated 

and dissolved in the molten Ag, and its vapor pressure can be calculated by Eq. (7.1): 

 10 Mg 10

7626
log (bar) 10.7 1.63 log (K).

(K)
P T

T
     (7.1) 
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This process would reach equilibrium after remaining for enough time. In addition, Mg 

and Ag mixed homogeneously to liquid at very high temperature. After cooling, the 

mixture was analyzed by ICP-AES analysis (Inductively Coupled Plasma-Atomic 

Emission Spectrometry) to obtain the chemical composition. 

 

 

Figure 7-4: The setup used in the vapor pressure method. 

 

Figure 7-5 shows the equipment used in the second technique, which is a gas equilibrium 

technique. In this experiment, the vapor pressure of Mg was not only monitored by the 
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temperature, but also regulated by the pressure of CO. Finally, the chemical composition 

of the sample was also characterized by ICP-AES analysis. 

 

 

Figure 7-5: The setup used in the gas equilibrium technique. 

 

The activity of Mg was calculated by Eq. (7.2): 

 Mg
Mg 0

Mg

,
P

a
P

  (7.2) 
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where MgP  is the pressure of Mg in Ag-Mg melt that was obtained by the pressure 

formulas described above, and 0
MgP  is the saturated vapor pressure of Mg that was 

calculated by: 

 0
10 Mg

6778
log (atm) 4.928 .

(K)
P

T
   (7.3) 

For the convenience of calculation, the activity of Mg is converted into the excess 

chemical potential of Mg in the liquid phase: 

 ex Liquid
Mg R ln ,Mg

Mg

a
T

x


 
   

 
 (7.4) 

where Mgx  is the measured chemical composition. Figure 7-6 shows the original data 

from the paper. 
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Figure 7-6: Excess chemical potential of Mg in the liquid phase:  at 1673 K,  at 1573 K [12]. 

 

After that, we will determine the intervals of ex Liquid
Mg . According to the information from 

[12], the uncertainty of the temperature was proposed as ±10 K, and the uncertainty of the 

chemical composition was assumed to be ±10%. As introduced above, the activity of Mg 

was calculated by combining those two pressure equations: Eq. (7.1) and Eq. (7.3). Thus 

it is necessary to consider the accuracy of the pressure equations. Unfortunately, there is 

no available information about uncertainty analysis for these empirical equations. In this 

case, we compared their calculations with available experimental data to estimate an 

approximate uncertainty as ±10%. Finally, Figure 7-7 shows the data in a description of 

intervals.  
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Figure 7-7: The excess chemical potential of Mg in the liquid phase, where the solid intervals are at 

1673 K, and dashed intervals are at 1573 K. 

 

7.2. Choosing a suitable model or formalism for the liquid phase 

The basic criteria for a good model were discussed in Chapter 3, but they cannot help us 

to determine the exact number of parameters in a model. In this case, we can only decide 

which type of the model is most appropriate. 

In previous assessments of the Ag-Mg system, the substitutional-regular-solution model 

was used to simulate the data in the liquid phase. The difference among these assessments, 
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including the assessment of the present work, is the description of the excess Gibbs 

energy. A general formula was presented by Eq. (3.2). 

 

7.3. Finding feasible regions of interaction parameters for various excess Gibbs 

energy models 

One of the advantages of non-statistical modeling is its ability to judge whether or not a 

model is satisfactory. Thus we can apply this method to different descriptions of the 

excess Gibbs energy model to find the most acceptable one. 

Let us start with the simplest case where only one parameter 0A  is chosen: 

 ex Liq
AgMg Ag Mg 0.G x x A   (7.5) 

Thus, the functions for mixing enthalpy and excess chemical potential of Mg are Eq. (7.6) 

and Eq. (7.7) respectively. 

 

mix Liq
AgMgmix Liq mix Liq

AgMg AgMg

Ag Mg 0 ,

G
H G T

T

x x A


  



 

 (7.6) 

and 
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ex Liq
AgMgex Liq ex Liq

Mg AgMg Mg
Mg

2
Mg 0

(1 )

(1 ) .

G
G x

x

x A




  


 

 (7.7) 

Feasible values of parameter 0A  can be obtained if it satisfies the following inequalities 

(7.8) and (7.9): 

  
upper

mix Liq mix Liq
AgMg Ag Mg 0 AgMg

lower

,
i

i i

H x x A H
  

           
 (7.8) 

and 

  
upper

ex L 2 ex L
Mg Mg 0 Mg

lower

(1 ) ,
j

j j

x A 
  

           
 (7.9) 

where i and j are the number of experimental data for each measurement. 

The result of the program shows no feasible region after calculating inequalities (7.8) and 

(7.9). The reasons for this result of no feasible region may come from three aspects: first, 

the selected model is not good enough to simulate experimental data; second, the ranges 

of some intervals are too small to cover all possible data; third, the existence of outliers. 

According to the analysis of data, the last two reasons are less possible than the first one. 

Thus, it is recommended to select another model to test. 
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In addition to the parameter 0A , a composition-dependent parameter 1A  is introduced to 

the model: 

   ex Liq
AgMg Ag Mg 0 Ag Mg 1 .G x x A x x A    (7.10) 

Again, we have the following inequalities after derivation: 

    
upper

mix Liq mix Liq
AgMg Ag Mg 0 Ag Mg 1 AgMg

lower

,
i

i i

H x x A x x A H
  

            
 (7.11) 

and 

    
upper

ex Liq 2 ex Liq
Mg Mg 0 Mg 1 Mg

lower

(1 ) 1 4 .
j

j j

x A x A 
  

             
 (7.12) 

After the calculation, Figure 7-8 and Figure 7-9 show two feasible regions calculated 

from inequalities (7.11) and (7.12) respectively. 
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Figure 7-8: A feasible region of parameters A0 and A1 based on Kawakami’s data. 

 

 

Figure 7-9: A feasible region of parameters A0 and A1 based on Gran’s data. 
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We need to compare the two feasible regions to find the overlapping region where all 

inequalities are satisfied. Apparently, there is no intersection between the two feasible 

regions (Figure 7-10), which means we still have to test another model. 

 

 

Figure 7-10: The two feasible regions have no overlapping area. 

 

The excess Gibbs energy can also be temperature dependent, but it is worth noting that 

the mixing enthalpy is independent of temperature if the excess Gibbs energy is linear to 

temperature. Thus, there is no need to consider a case where the model is: 

  ex Liq
AgMg Ag Mg 0 0 .G x x A B T    (7.13) 
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Its derivation to the mixing enthalpy is the same as Eq. (7.6) that was confirmed that no 

feasible region exists. In addition, for the model of Eqs. (7.14) and (7.15), their 

derivations to the mixing enthalpy are the same as Eq. (7.11), which means that its 

feasible region of A0 and A1 is the same as it shown in Figure 7-8, and it does not care 

about B0 that can be any value. However, the descriptions of the excess chemical potential 

of Mg should be changed, and they are expressed by inequalities (7.16) and (7.17) that 

correspond to Eqs. (7.14) and (7.15) respectively. 

     ex Liq
AgMg Ag Mg 0 0 Mg 11 2 ,G x x A B T x A      (7.14) 

    ex Liq
AgMg Ag Mg 0 Mg 1 11 2 .G x x A x A B T      (7.15) 

      
upper

ex Liq 2 ex Liq
Mg Mg 0 0 Mg 1 Mg

lower

(1 ) 1 4 ,
j

j j

x A B T x A 
  

               
 (7.16) 

     
upper

ex Liq 2 ex Liq
Mg Mg 0 Mg 1 1 Mg

lower

(1 ) 1 4 .
j

j j

x A x A B T 
  

               
 (7.17) 

Figure 7-11 and Figure 7-12 display the feasible regions by separately solving inequalities 

(7.16) and (7.17). Comparing the feasible regions between Figure 7-8 and Figure 

7-11tells us that the value of A1 is always positive in Figure 7-11 but is negative in Figure 

7-8. Thus there is no intersection for this model (i.e., Eq. (7.14)). Although the values of 
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A1 can be negative in Figure 7-12, the values of A0 are a little lower than that in Figure 

7-8. 

 

 

Figure 7-11: A feasible region of parameters A0, A1 and B0 based on Gran’s data. 
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Figure 7-12: A feasible region of parameters A0, A1 and B1 based on Gran’s data. 

 

As a result, a good model may exist by combining the two models above. Eq. (7.18) 

contains four unknown parameters, which could enhance its ability to simulate Gran’s 

data better. 

      ex Liq
AgMg Ag Mg 0 0 Mg 1 11 2 .G x x A B T x A B T        (7.18) 

Therefore, a feasible region may exist if inequalities in Eq. (7.19) are all satisfied. 

      
upper

ex Liq 2 ex Liq
Mg Mg 0 0 Mg 1 1 Mg

lower

(1 ) 1 4
j

j j

x A B T x A B T 
  

                 
 (7.19) 
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According to the result of the program, a feasible region was obtained by solving the 

inequalities of Eq (7.19). However, it is difficult to visualize because it is a four 

dimensional polytope. Figure 7-13 is an imaginary sketch showing how two feasible 

regions overlap. Even though the overlapping area cannot be graphically described, the 

program is able to identify whether or not a point belongs to the region. Moreover, a very 

important feature of the program is that it can calculate all extreme vertices of a feasible 

region. As explained above, the feasible values of B0 and B1 were only constrained by 

inequalities (7.19) because the model is linear to temperature. Nevertheless, the feasible 

values of A0 and A1 were limited by both inequalities (7.11) and (7.19). The strategy to 

find feasible values in the overlap is as follows: first, B0 and B1 were fixed by using the 

information of the extreme vertices; then various values of A0 and A1 from the feasible 

region of Figure 7-8 were tested by the program to examine if they also belong to the 4-D 

feasible region. Through trial and error, we have found five sets of parameters that are 

feasible for both Kawakami’s and Gran’s data, and they are reported in Table 7-1. 
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Figure 7-13: A sketched 4-D overlapping feasible region. 

 

Table 7-1: Possible sets of parameters of A0, A1, B0 and B1. 

Parameter Feasible values (J/mol) 
A0 -49700 -49800 -49900 -50000 -50100 
A1 [-1900, -1810] [-2850, -2200] [-3150, -2300] [-3050, -2450] [-2800, -2650]
B0 -10.24 -10.24 -10.24 -10.24 -10.24 
B1 14.26 14.26 14.26 14.26 14.26 

 

In order to prove the feasibility of the values reported in Table 7-1, we can compare their 

calculations with the experimental data. A set of parameters was randomly selected and 

substituted into Eq. (7.18), where 0 49700A   , 1 1810A   , 0 10.24B    and 1 14.26B  . 

Then we have: 
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      ex L
AgMg Ag Mg Mg49700 10.24 1 2 1810 14.26 .G x x T x T         (7.20) 

Thus, the mixing enthalpy and excess chemical potential of Mg are described as Eqs. 

(7.21) and (7.22) respectively: 

   mix Liq
AgMg Ag Mg Mg49700 1810 1 2 ,H x x x     (7.21) 

and 

     ex Liq 2
Mg Mg Mg(1 ) 49700 10.24 1 4 1810 14.26 .x T x T            (7.22) 

Figure 7-14 shows the calculation of Eq. (7.21) with intervals of mixing enthalpy, and the 

calculation crosses through all intervals. 

 

Figure 7-14: The calculated mixing enthalpy at 1323 K, compared with estimated intervals. 
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Figure 7-15 shows the calculation of Eq. (7.22) with intervals from excess chemical 

potential of Mg. The solid line was calculated at 1673 K, and it crosses through all 

intervals that were measured at 1673 K. The dashed line was calculated at 1573 K, and it 

also crosses through all intervals that measured at 1573 K. 

 

 

Figure 7-15: The calculated excess chemical potential of Mg, compared with estimated intervals; the 

solid line is calculated at 1673 K, and the dashed line is calculated at 1573 K. 
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Therefore, a four-parameter substitutional-solution model is recommended to describe the 

liquid phase of the Ag-Mg system by using non-statistical modeling. Although it is likely 

that a feasible region can also be obtained if more parameters are included, it is not a 

good idea to use many parameters on the liquid phase of a binary system. 

 

7.4. Inapplicability of the interval approach for a full-fledged thermodynamic 

optimization 

During the study of this method, we found that there are too many difficulties to deal with. 

The three most difficult problems were described in Section 6.5, and they are very 

common in thermodynamic optimization. 

First, it is natural and important to consider uncertainties in experimental conditions, but 

it is not allowed in the interval approach. Even if they are set to zero, the model is usually 

non-linear to parameters when it is used to describe data that is measured in the mixtures 

or phase diagram data, and a non-linear model cannot be solved by the interval approach. 

Moreover, some phases may require many parameters due to complicated transitions, and 

thus it would be a problem to visualize a high-dimensional feasible region. Last but not 

least, the sub-lattice model cannot be used in the interval approach because the site 

fractions cannot be calculated. 
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7.5. Using the interval approach as a pre-optimization tool for detecting 

incompatible sets of experimental data, identifying outliers within individual sets 

and finding initial approximations 

Even though a full-fledged thermodynamic optimization cannot be fulfilled by the 

interval approach alone, it can be treated as a pre-optimization tool for the traditional 

CALPHAD technique. In other words, the interval approach plays a role in 

thermodynamic optimization if the data is measured in a single phase and the model is 

relatively simple, such as a substitutional-solution model. 

One of advantages of the interval approach is its ability to detect incompatible sets of 

experimental data. The different sets of data are first solved by the interval approach 

separately to calculate a feasible region for each set, and in an ideal case, an overlap is 

obtained from them. However, an overlap might not exist due to the reasons discussed in 

section 7.3. If we are very confident about the selected model and the assigned 

uncertainties, then it is possible that there are at least two conflicting data that can be 

determined by the area of the feasible region. 

Another benefit of the interval approach is its ability to detect outliers with individual sets. 

If outliers are not removed before the calculation, then it is very likely that there is no 

feasible region. Furthermore, it means that some inequalities are not satisfied, and they 

correspond to the intervals that have no intersection with the calculation of the model. 

The method of finding outliers is to gradually expand the range of the intervals until the 
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calculation crosses through all intervals. More discussion about this method can be found 

in [55,56]. 

As mentioned in Subsection 4.1.2, it is always troublesome to determine initial values of 

unknown parameters in the traditional CALPHAD technique. However, through the 

interval approach, any points in a feasible region of parameters are good initial values of 

unknown parameters. 

 

Conclusions 

The present thesis was set out to re-assess the Ag-Mg system using the CALPHAD 

technique and has obtained a good agreement between calculated and experimental data. 

The results suggest that a four-sublattice model is employed to model a first-order 

transition between the FCC and the L12 phase, and a two-sublattice model is used to 

simulate a second-order transition in the same phase. It is however, noted from the 

discussion of the CALPHAD technique that the deficiencies of this technique should not 

be ignored. 

The interval approach provides an alternative idea for thermodynamic optimization, and it 

overcomes the shortcomings of the CALPHAD technique: reasonable uncertainties can be 

estimated without statistical calculation; the number of unknown parameters for 

substitutional-solution model can be approximately identified; good initial values of 
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unknown parameters can be determined from a feasible region if it exists; and outliers can 

be found if a feasible region does not exist. However, throughout the study, we also found 

that this method is limited to particular problems. 

For the CALPHAD technique and the interval approach, it is not recommended to judge 

that one method is better than the other because their respective advantages exist in 

particular situations. Thus, a promising approach is to comprehensively combine both of 

them for thermodynamic optimization.
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Appendix I 

Phase Diagram Data 

Phase at% Mg at% Mg Temp 
(K) 

∆Temp
(K) 

Weight References 

3

Liquid

HCP+AgMg


 

HCP 96.00 0.10 
745.00 1.00 

1.5 
Lim et al. [21] 

Liquid 82.00 0.10 
AgMg3 77.00 0.10 

3AgMg

Liquid+B2_BCC

 AgMg3 77.00 0.10 
764.00 1.00 B2_BCC 65.00 0.10 

Liquid 77.00 0.10 

4

3

AgMg

HCP+AgMg


 

HCP 96.00 0.10 742.00 1.00 
AgMg4 80.00 0.10 
AgMg3 77.00 0.10 

3AgMg

Liquid+B2_BCC

 B2_BCC 65.43 0.50 765.15 0.50 

Żemcżużnyj [23] 

Liquid 77.43 0.50 
AgMg3 77.00 0.50 

3

Liquid

AgMg +HCP


 

HCP 96.00 0.50 742.15 0.50 
0.5 Liquid 82.70 0.50 

AgMg3 77.00 0.50 

2

Liquid

L1 +B2 BCC


 

Liquid 50.00 0.50 1093.15 0.5 

1.5 

B2_BCC 50.00 0.50 

2

Liquid

L1 +B2_BCC


 

2L1  0.2815 0.50 
1029.15 0.5 Liquid 0.3410 0.50 

B2_BCC 0.3740 0.50 

2

Liquid

L1 +B2_BCC


 

2L1  29.3 0.40 1032.45 0.40 
Andrews et al. [25]Liquid 33.40 0.20 

B2_BCC 35.5 0.40 

3

Liquid

HCP+AgMg


 

HCP 96.10 0.10 744.15 1.50 Hume-Rothery et al. 
[22] 

Liquid 82.00 0.10 
AgMg3 77.00 0.10 

3

Liquid

HCP+AgMg


 

HCP 96.10 0.20 745.15 2.00 
Payne et al. [24] Liquid 82.44 0.20 

AgMg3 77.00 0.20 

4AgMg  HCP 96.00 0.82 738.15 2.00 Kolesnichenko et al. 
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AgMg3 77.00 0.82 [27] 
AgMg4 80.00 0.82 

Liquidus: 
Liquid & FCC 

33.28 0.50 1039.15 0.50 

1 Żemcżużnyj [23] 

32.37 0.50 1047.15 0.50 
32.25 0.50 1048.15 0.50 
31.70 0.50 1053.65 0.50 
30.20 0.50 1059.65 0.50 
29.50 0.50 1065.15 0.50 
29.23 0.50 1066.15 0.50 
28.90 0.50 1068.15 0.50 
28.15 0.50 1076.65 0.50 
27.10 0.50 1083.65 0.50 
26.80 0.50 1083.15 0.50 
26.55 0.50 1087.15 0.50 
22.06 0.50 1109.65 0.50 
19.84 0.50 1121.15 0.50 
15.59 0.50 1145.15 0.50 
12.35 0.50 1160.65 0.50 
10.60 0.50 1171.15 0.50 
7.11 0.50 1188.65 0.50 
3.03 0.50 1210.65 0.50 
1.57 0.50 1220.85 0.50 
1.00 0.50 1227.15 0.50 

Solidus: 
FCC & Liquid 

27.10 0.50 1043.15 0.50 
26.80 0.50 1043.15 0.50 
26.55 0.50 1045.15 0.50 
22.06 0.50 1082.15 0.50 
19.84 0.50 1095.15 0.50 
15.59 0.50 1103.15 0.50 
12.35 0.50 1141.15 0.50 
10.60 0.50 1153.15 0.50 
7.11 0.50 1172.15 0.50 
3.03 0.50 1201.15 0.50 
1.57 0.50 1211.15 0.50 

Liquidus: 
Liquid & B2_BCC 

48.60 0.50 1091.15 0.50 
47.56 0.50 1089.65 0.50 
47.37 0.50 1089.65 0.50 
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44.79 0.50 1082.15 0.50 
44.65 0.50 1081.15 0.50 
43.20 0.50 1078.15 0.50 
43.00 0.50 1076.15 0.50 
42.80 0.50 1077.15 0.50 
41.08 0.50 1067.65 0.50 
40.13 0.50 1061.65 0.50 
39.58 0.50 1061.15 0.50 
39.40 0.50 1061.15 0.50 
39.00 0.50 1055.65 0.50 
38.40 0.50 1053.15 0.50 
37.40 0.50 1048.15 0.50 
37.10 0.50 1044.15 0.50 
35.40 0.50 1036.15 0.50 
35.20 0.50 1035.15 0.50 
34.60 0.50 1031.65 0.50 
76.65 0.50 779.65 0.50 
75.70 0.50 800.65 0.50 
75.00 0.50 805.65 0.50 
74.80 0.50 811.15 0.50 
72.02 0.50 871.65 0.50 
69.32 0.50 923.15 0.50 
69.00 0.50 923.15 0.50 
68.50 0.50 943.15 0.50 
66.80 0.50 965.15 0.50 
66.04 0.50 982.65 0.50 
65.43 0.50 989.15 0.50 
64.64 0.50 1005.15 0.50 
64.30 0.50 1005.15 0.50 
63.20 0.50 1019.15 0.50 
62.25 0.50 1028.65 0.50 
60.38 0.50 1055.15 0.50 
58.68 0.50 1068.15 0.50 
56.55 0.50 1080.15 0.50 
55.40 0.50 1083.15 0.50 
54.68 0.50 1085.15 0.50 
52.70 0.50 1088.65 0.50 
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51.70 0.50 1090.65 0.50 

Solidus: 
B2_BCC & Liquid 

62.25 0.50 945.15 0.50 
60.38 0.50 993.15 0.50 
58.68 0.50 1031.15 0.50 
56.55 0.50 1058.15 0.50 
55.40 0.50 1069.15 0.50 
54.68 0.50 1071.15 0.50 
52.70 0.50 1081.15 0.50 
51.70 0.50 1087.15 0.50 
48.60 0.50 1086.15 0.50 
47.56 0.50 1079.15 0.50 
47.37 0.50 1078.15 0.50 
44.79 0.50 1063.15 0.50 
44.65 0.50 1065.15 0.50 
43.20 0.50 1059.15 0.50 
43.00 0.50 1056.15 0.50 
42.80 0.50 1056.15 0.50 
41.08 0.50 1045.15 0.50 
40.13 0.50 1041.15 0.50 
39.58 0.50 1041.15 0.50 
39.40 0.50 1039.15 0.50 
39.00 0.50 1035.15 0.50 
38.40 0.50 1035.65 0.50 

Liquidus: 
Liquid & AgMg3 

82.47 0.50 746.15 0.50 
81.60 0.50 751.15 0.50 
79.49 0.50 760.15 0.50 
79.10 0.50 759.65 0.50 

Liquidus: 
Liquid & HCP 

99.00 0.50 922.15 0.50 
97.56 0.50 904.65 0.50 
93.60 0.50 874.15 0.50 
90.65 0.50 839.15 0.50 
85.30 0.50 766.65 0.50 

B2_BCC & L12 

27.20 0.27 613.85 3.00 

1 Kachi [29] 
27.20 0.27 633.96 3.00 
27.20 0.27 647.35 3.00 
27.20 0.27 663.28 3.00 
27.20 0.27 613.83 3.00 
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27.20 0.27 623.88 3.00 
27.20 0.27 633.94 3.00 
27.20 0.27 644.83 3.00 
27.20 0.27 654.88 3.00 
27.20 0.27 663.26 3.00 

B2_BCC & FCC 

27.20 0.27 694.27 3.00 
27.20 0.27 711.88 3.00 
27.20 0.27 718.56 3.00 
27.20 0.27 747.88 3.00 
27.20 0.27 762.96 3.00 
27.20 0.27 803.17 3.00 
27.20 0.27 829.95 3.00 

Solidus: 
FCC & Liquid 

6.38 0.40 1177.04 3.00 

1 Andrews et al. [25]

13.38 0.40 1126.27 3.00 
16.67 0.40 1105.64 3.00 
24.92 0.40 1059.29 3.00 

Liquidus: 
Liquid & FCC 

4.79 0.40 1211.15 0.50 
9.42 0.40 1187.45 0.50 
14.18 0.40 1161.25 0.50 
20.40 0.40 1123.55 0.50 
23.96 0.40 1100.75 0.50 
28.63 0.40 1067.55 0.50 

Liquidus: 
Liquid & B2_BCC 

33.84 0.40 1036.15 0.50 
38.50 0.40 1063.05 0.50 
39.68 0.40 1071.75 0.50 

FCC 

26.40 0.33 728.56 4.00 
26.80 0.33 832.78 4.00 
27.10 0.33 912.69 4.00 
27.20 0.33 1015.15 4.00 

L12 & B2_BCC 
27.60 0.33 569.74 4.00 
27.40 0.33 644.40 4.00 

FCC & B2_BCC 

28.00 0.33 728.67 4.00 
28.10 0.33 832.87 4.00 
28.10 0.33 914.49 4.00 
28.90 0.33 1014.40 4.00 
36.10 0.33 913.27 4.00 
36.50 0.33 833.42 4.00 
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37.50 0.33 753.60 4.00 

B2_BCC 

36.00 0.33 1009.65 4.00 
38.10 0.33 975.92 4.00 
39.00 0.33 754.56 4.00 
41.20 0.33 568.89 4.00 

Solvus: HCP 99.10 0.01 573.15 1.50 

1 
Hume-Rothery et al. 

[22] 
HCP 

99.01 0.08 731.20 2.50 
98.81 0.08 731.04 2.50 
97.91 0.08 731.02 2.50 
97.51 0.08 731.37 2.50 
96.91 0.08 731.54 2.50 
96.51 0.08 727.74 2.50 
96.95 0.08 747.81 2.50 
96.52 0.08 745.18 2.50 
96.92 0.08 765.26 2.50 
97.52 0.08 784.84 2.50 
97.92 0.08 804.27 2.50 
99.02 0.08 814.90 2.50 
98.82 0.08 836.27 2.50 
99.03 0.08 854.44 2.50 
99.41 0.08 875.07 2.50 
96.53 0.08 728.15 2.50 
96.93 0.08 732.15 2.50 
97.53 0.08 713.15 2.50 
97.93 0.08 673.15 2.50 
98.83 0.08 673.15 2.50 
99.04 0.08 616.15 2.50 
99.21 0.08 579.15 2.50 
99.42 0.08 874.65 2.50 
99.05 0.08 854.15 2.50 
98.84 0.08 836.65 2.50 
97.94 0.08 805.15 2.50 
97.54 0.08 785.15 2.50 
96.94 0.08 766.15 2.50 
96.54 0.08 746.15 2.50 

HCP & AgMg4 
99.01 0.08 577.69 2.50 
98.81 0.08 614.76 2.50 
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97.93 0.08 614.74 2.50 
97.52 0.08 615.07 2.50 
96.94 0.08 614.67 2.50 
96.56 0.08 614.95 2.50 
95.97 0.08 615.17 2.50 
95.46 0.08 615.35 2.50 
94.90 0.08 615.01 2.50 
97.51 0.08 672.07 2.50 
96.93 0.08 671.65 2.50 
96.59 0.08 671.93 2.50 
96.92 0.08 692.59 2.50 
96.00 0.08 727.40 2.50 
95.40 0.08 727.00 2.50 
94.93 0.08 726.66 2.50 
96.06 0.08 728.15 2.50 
96.54 0.08 673.15 2.50 
96.97 0.08 694.15 2.50 
97.56 0.08 673.15 2.50 
97.92 0.08 616.15 2.50 
98.82 0.08 616.15 2.50 
99.02 0.08 579.15 2.50 

HCP & Liquid 

94.99 0.08 745.26 2.50 
96.57 0.08 756.22 2.50 
96.95 0.08 776.30 2.50 
97.52 0.08 795.32 2.50 
97.93 0.08 814.15 2.50 
98.84 0.08 847.90 2.50 
99.02 0.08 860.25 2.50 
99.03 0.08 868.39 2.50 
99.41 0.08 886.13 2.50 
99.42 0.08 893.09 2.50 
99.43 0.08 886.15 2.50 
99.05 0.08 861.65 2.50 
98.86 0.08 848.65 2.50 
97.93 0.08 815.15 2.50 
97.55 0.08 795.65 2.50 
96.98 0.08 777.15 2.50 
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96.54 0.08 756.65 2.50 

Liquidus: 
Liquid & HCP 

94.76 0.05 878.90 2.00 

1 Payne et al. [24] 

94.76 0.05 881.15 2.00 
89.89 0.05 821.65 2.00 
89.88 0.05 824.64 2.00 
85.53 0.05 773.72 2.00 
85.53 0.05 778.22 2.00 

Liquidus: 
Liquid & AgMg3 

81.11 0.05 752.83 2.00 
81.11 0.05 754.33 2.00 

HCP 

99.30 0.06 572.32 2.50 
98.85 0.06 672.35 2.50 
98.67 0.06 673.01 2.50 
98.16 0.06 722.94 2.50 
97.82 0.06 722.09 2.50 
97.54 0.06 722.72 2.50 
97.40 0.06 753.36 2.50 
98.10 0.06 775.26 2.50 
97.52 0.06 775.07 2.50 
98.14 0.06 793.96 2.50 
98.62 0.06 812.07 2.50 
99.15 0.06 833.19 2.50 
99.55 0.06 855.03 2.50 
99.00 0.06 855.60 2.50 
99.50 0.06 873.72 2.50 

Liquid & HCP 

97.40 0.06 793.73 2.50 
98.10 0.06 812.64 2.50 
97.50 0.06 810.93 2.50 
98.10 0.06 833.58 2.50 
98.60 0.06 855.43 2.50 
99.10 0.06 873.55 2.50 
99.60 0.06 896.91 2.50 

HCP & 4AgMg  

99.80 0.06 472.33 2.50 
99.60 0.06 472.24 2.50 
99.30 0.06 472.14 2.50 
99.10 0.06 572.99 2.50 
98.80 0.06 572.90 2.50 
98.30 0.06 672.16 2.50 
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98.10 0.06 672.84 2.50 
97.00 0.06 722.57 2.50 
96.50 0.06 722.39 2.50 

Solvus: HCP 
99.88 0.16 473.15 2.50 

1 
Schürmann et al. 

[26] 

99.20 0.16 574.24 2.50 
98.09 0.16 672.61 2.50 

AgMg4 
80.00 0.16 474.24 2.50 

0 80.00 0.16 573.69 2.50 
80.00 0.16 673.69 2.50 

HCP & AgMg4 
82.40 2.18 723.15 2.00 

1 

Kolesnichenko et al. 
[27] 

82.00 2.18 673.15 2.00 

AgMg3 & 4AgMg  

81.40 2.18 673.15 2.00 
0 

80.35 2.18 673.15 2.00 
78.50 2.18 673.15 2.00 1 
80.30 2.18 743.15 2.00 

0 80.34 2.18 723.15 2.00 
77.80 2.18 673.15 2.00 

AgMg3 & B2_BCC 
70.00 2.18 673.15 2.00 

1 
75.80 2.18 673.15 2.00 

AgMg4 80.00 1.00 673.15 2.00 1 

AgMg3 
76.80 2.18 723.15 2.00 

0 75.80 2.18 757.15 2.00 
78.20 2.18 720.15 2.00 

FCC 
15.45 0.38 499.55 22.96

1 Fujiwara et al. [30]17.91 0.38 522.74 30.19
23.11 0.38 648.37 3.75 

FCC 
23.00 0.20 641.74 1.20 

1 Buckley et al. [31]
24.30 0.20 652.29 1.20 
25.50 0.20 662.69 1.20 

FCC 
24.30 0.20 628.40 2.00 
25.50 0.20 641.74 2.00 
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Thermodynamic Properties 

Phase 
at% 
Mg 

at% 
∆Mg 

Temp 
(K) 

∆Temp
(K) 

Enthalpy
(J/mol) 

∆Enthalpy
(J/mol) 

Weight References 

Liquid 

25.10 0.13 1323.15 15.00 -8236.30 6.589E+02

1 Kawakami [20] 

29.50 0.15 1323.15 15.00 -11517.009.214E+02
41.90 0.21 1323.15 15.00 -12335.009.868E+02
53.40 0.27 1323.15 15.00 -12711.001.017E+03
54.20 0.27 1323.15 15.00 -12004.009.604E+02
57.50 0.29 1323.15 15.00 -12263.009.810E+02
64.60 0.32 1323.15 15.00 -10643.008.514E+02
72.20 0.36 1323.15 15.00 -10032.008.026E+02
73.70 0.37 1323.15 15.00 -8144.00 6.515E+02
84.00 0.42 1323.15 15.00 -7044.30 5.636E+02

Phase 
at% 
Mg 

at% 
∆Mg 

Temp 
(K) 

∆Temp
(K) 

Activity 
(Mg) 

∆Activity
(Mg) 

Weight References 

Liquid 

27.80 2.78 1673.00 5.00 1.530E-02 1.530E-03

1 Gran et al. [12] 

27.50 2.75 1673.00 5.00 1.840E-02 1.840E-03
13.60 1.36 1673.00 5.00 7.530E-03 7.530E-04
33.30 3.33 1673.00 5.00 4.290E-02 4.290E-03
40.70 4.07 1673.00 5.00 5.770E-02 5.770E-03
32.00 3.20 1673.00 5.00 2.730E-02 2.730E-03
38.40 3.84 1673.00 5.00 4.160E-02 4.160E-03
26.00 2.60 1673.00 5.00 1.620E-02 1.620E-03
32.20 3.22 1673.00 5.00 2.160E-02 2.160E-03
34.50 3.45 1673.00 5.00 3.010E-02 3.010E-03
45.10 4.51 1573.00 5.00 6.590E-02 6.590E-03
26.50 2.65 1573.00 5.00 1.860E-02 1.860E-03
19.90 1.99 1573.00 5.00 1.170E-02 1.170E-03
0.29 0.03 1773.00 5.00 1.600E-04 1.600E-05
0.27 0.03 1773.00 5.00 1.600E-04 1.600E-05
0.36 0.04 1823.00 5.00 2.000E-04 2.000E-05
0.33 0.03 1823.00 5.00 2.000E-04 2.000E-05
0.32 0.03 1823.00 5.00 2.000E-04 2.000E-05

Phase 
at% 
Mg 

at% 
∆Mg 

Temp 
(K) 

∆Temp
(K) 

Cp 
(J/mol*K)

∆Cp 
(J/mol*K)

Weight References 

B2_BCC 50.00 1.00 373.15 5.00 24.64 2.464E-01 1 Schübel [28] 
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50.00 1.00 473.15 5.00 26.07 2.607E-01
50.00 1.00 573.15 5.00 26.94 2.695E-01
50.00 1.00 673.15 5.00 27.74 2.774E-01
50.00 1.00 773.15 5.00 28.83 2.883E-01
50.00 1.00 873.15 5.00 29.58 2.958E-01

Phase 
at% 
Mg 

at% 
∆Mg 

Temp 
(K) 

∆Temp
(K) 

Mur 
(J/mol) 

∆Mur 
(J/mol) 

Weight References 

B2_BCC 

51.52 0.52 633.72 3.00 -5339.66 1.930E+02

1 Kachi [29] 

51.52 0.52 642.96 3.00 -5940.69 1.930E+02
51.52 0.52 654.65 3.00 -6218.89 1.930E+02
51.52 0.52 669.70 3.00 -6644.07 1.930E+02
51.52 0.52 683.08 3.00 -7074.50 1.930E+02
51.52 0.52 693.16 3.00 -7830.37 1.930E+02
51.52 0.52 702.36 3.00 -8116.45 1.930E+02
51.52 0.52 721.59 3.00 -8685.98 1.930E+02
51.52 0.52 743.26 3.00 -8775.21 1.930E+02
51.52 0.52 749.16 3.00 -9386.73 1.930E+02
51.52 0.52 767.59 3.00 -10273.831.930E+02
51.52 0.52 789.32 3.00 -10835.491.930E+02
51.52 0.52 799.38 3.00 -11433.891.930E+02
51.52 0.52 812.80 3.00 -12179.261.930E+02
49.78 0.50 632.32 3.00 -26457.571.930E+02
49.78 0.50 683.15 3.00 -25528.731.930E+02
49.78 0.50 738.15 3.00 -24123.911.930E+02
49.78 0.50 811.48 3.00 -23279.981.930E+02
48.97 0.49 631.48 3.00 -35160.041.930E+02
48.97 0.49 666.48 3.00 -34947.381.930E+02
48.97 0.49 716.48 3.00 -34711.091.930E+02
48.97 0.49 807.32 3.00 -34016.661.930E+02
48.97 0.49 813.15 3.00 -34322.531.930E+02
48.97 0.49 831.48 3.00 -33821.061.930E+02
47.00 0.47 622.32 3.00 -35489.541.930E+02
47.00 0.47 633.98 3.00 -35392.401.930E+02
47.00 0.47 659.82 3.00 -35509.231.930E+02
47.00 0.47 662.32 3.00 -35426.531.930E+02
47.00 0.47 674.82 3.00 -35328.071.930E+02
47.00 0.47 682.32 3.00 -35158.731.930E+02
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47.00 0.47 689.82 3.00 -35146.921.930E+02
47.00 0.47 716.48 3.00 -35026.151.930E+02
47.00 0.47 741.48 3.00 -34829.241.930E+02
47.00 0.47 759.82 3.00 -34879.121.930E+02
47.00 0.47 784.82 3.00 -34760.981.930E+02
47.00 0.47 798.98 3.00 -34817.421.930E+02
47.00 0.47 816.48 3.00 -34789.861.930E+02
47.00 0.47 831.48 3.00 -34687.461.930E+02
44.22 0.44 632.32 3.00 -35867.601.930E+02
44.22 0.44 672.32 3.00 -35804.591.930E+02
44.22 0.44 715.65 3.00 -35736.331.930E+02
44.22 0.44 778.98 3.00 -35400.271.930E+02
44.22 0.44 818.98 3.00 -35652.321.930E+02
44.50 0.45 622.32 3.00 -36592.231.930E+02
44.50 0.45 633.15 3.00 -36575.161.930E+02
44.50 0.45 658.98 3.00 -36613.231.930E+02
44.50 0.45 662.32 3.00 -36765.511.930E+02
44.50 0.45 674.82 3.00 -36509.531.930E+02
44.50 0.45 688.98 3.00 -36565.971.930E+02
44.50 0.45 716.48 3.00 -36365.131.930E+02
44.50 0.45 741.48 3.00 -36325.741.930E+02
44.50 0.45 758.15 3.00 -36299.491.930E+02
44.50 0.45 785.65 3.00 -36334.931.930E+02
44.50 0.45 798.98 3.00 -36156.401.930E+02
44.50 0.45 816.48 3.00 -36286.361.930E+02
44.50 0.45 831.48 3.00 -36183.971.930E+02
43.17 0.43 633.98 3.00 -37440.251.930E+02
43.17 0.43 665.65 3.00 -37311.601.930E+02
43.17 0.43 688.98 3.00 -37196.081.930E+02
43.17 0.43 706.48 3.00 -37089.751.930E+02
43.17 0.43 738.98 3.00 -37038.551.930E+02
43.17 0.43 771.48 3.00 -36908.591.930E+02
43.17 0.43 803.15 3.00 -36858.711.930E+02
40.02 0.40 633.98 3.00 -37991.591.930E+02
40.02 0.40 653.98 3.00 -37802.561.930E+02
40.02 0.40 678.15 3.00 -37843.261.930E+02
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40.02 0.40 706.48 3.00 -37798.621.930E+02
40.02 0.40 729.82 3.00 -37840.631.930E+02
40.02 0.40 783.15 3.00 -37677.851.930E+02

FCC 

6.00 0.06 627.29 3.00 -65657.061.930E+02
6.00 0.06 638.17 3.00 -66304.761.930E+02
6.00 0.06 662.46 3.00 -66648.601.930E+02
6.00 0.06 678.37 3.00 -67142.591.930E+02
6.00 0.06 702.66 3.00 -67645.461.930E+02
6.00 0.06 717.73 3.00 -67979.531.930E+02
6.00 0.06 730.28 3.00 -68788.041.930E+02
6.00 0.06 740.33 3.00 -68957.741.930E+02
6.00 0.06 762.95 3.00 -68981.731.930E+02
6.00 0.06 781.35 3.00 -70114.531.930E+02
6.00 0.06 812.33 3.00 -71260.671.930E+02
6.00 0.06 846.63 3.00 -73046.501.930E+02
6.60 0.07 627.36 3.00 -63430.541.930E+02
6.60 0.07 638.24 3.00 -63919.201.930E+02
6.60 0.07 663.36 3.00 -64582.001.930E+02
6.60 0.07 678.44 3.00 -64757.031.930E+02
6.60 0.07 703.56 3.00 -65419.841.930E+02
6.60 0.07 717.79 3.00 -65912.051.930E+02
6.60 0.07 740.39 3.00 -66890.261.930E+02
6.60 0.07 763.01 3.00 -67073.291.930E+02
6.60 0.07 780.59 3.00 -67728.091.930E+02
6.60 0.07 813.24 3.00 -68557.931.930E+02
9.04 0.09 628.27 3.00 -61045.881.930E+02
9.04 0.09 638.31 3.00 -61374.611.930E+02
9.04 0.09 664.28 3.00 -61720.231.930E+02
9.04 0.09 679.35 3.00 -62213.331.930E+02
9.04 0.09 703.65 3.00 -62398.141.930E+02
9.04 0.09 718.72 3.00 -62732.201.930E+02
9.04 0.09 729.59 3.00 -63538.941.930E+02
9.04 0.09 739.64 3.00 -63867.671.930E+02
9.04 0.09 762.27 3.00 -63573.591.930E+02
9.04 0.09 780.67 3.00 -64865.431.930E+02
9.04 0.09 813.32 3.00 -65854.301.930E+02
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9.04 0.09 845.97 3.00 -67002.211.930E+02
15.50 0.16 626.82 3.00 -53092.261.930E+02
15.50 0.16 639.39 3.00 -52946.551.930E+02
15.50 0.16 653.62 3.00 -53756.841.930E+02
15.50 0.16 663.68 3.00 -53449.421.930E+02
15.50 0.16 693.84 3.00 -53799.481.930E+02
15.50 0.16 713.11 3.00 -53978.951.930E+02
15.50 0.16 730.68 3.00 -54951.831.930E+02
15.50 0.16 749.11 3.00 -55130.421.930E+02
15.50 0.16 777.58 3.00 -55796.771.930E+02
15.50 0.16 793.49 3.00 -56131.731.930E+02
15.50 0.16 818.61 3.00 -56794.531.930E+02
21.93 0.22 683.97 3.00 -47268.311.930E+02
21.93 0.22 694.86 3.00 -47597.931.930E+02
21.93 0.22 708.25 3.00 -48089.261.930E+02
21.93 0.22 717.48 3.00 -47780.961.930E+02
21.93 0.22 724.17 3.00 -48106.141.930E+02
21.93 0.22 749.29 3.00 -48768.941.930E+02
21.93 0.22 763.52 3.00 -49420.191.930E+02
21.93 0.22 798.68 3.00 -50411.731.930E+02
21.93 0.22 833.01 3.00 -51561.421.930E+02

Phase 
at% 
Mg 

at% 
∆Mg 

Temp 
(K) 

∆Temp
(K) 

H 
(J/mol) 

∆H 
(J/mol) 

Weight References 

B2_BCC 

39.00 0.10 273.15 0.50 -16568.643.766E+02

1 

Robinson et al. 
[33] 

43.90 0.10 273.15 0.50 -17698.328.368E+01
45.80 0.10 273.15 0.50 -18116.728.368E+01
49.00 0.10 273.15 0.50 -18367.768.368E+01
50.30 0.10 273.15 0.50 -18284.081.255E+02

0.05 
51.50 0.10 273.15 0.50 -18367.761.255E+02
52.00 0.10 273.15 0.50 -18242.244.184E+01
54.80 0.10 273.15 0.50 -17907.528.368E+01

B2_BCC 
50.10 0.10 273.00 1.00 -18744.322.092E+02

0.1 Jena et al. [35] 50.10 0.10 195.00 1.00 -18618.802.092E+02
50.10 0.10 78.00 1.00 -17907.522.092E+02

Phase 
at% 
Mg 

at% 
∆Mg 

Temp 
(K) 

∆Temp
(K) 

Mur 
(J/mol) 

∆Mur 
(J/mol) 

Weight References 

B2_BCC 42.00 0.04 873.15 3.00 -39655.479.649E+01 0.1 Trzebiatowski et al.
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44.00 0.04 873.15 3.00 -37436.319.649E+01 [32] 
45.50 0.05 873.15 3.00 -38188.909.649E+01
47.00 0.05 873.15 3.00 -36297.789.649E+01
48.10 0.05 873.15 3.00 -35603.099.649E+01
49.30 0.05 873.15 3.00 -32959.399.649E+01
50.50 0.05 873.15 3.00 -32399.789.649E+01
51.30 0.05 873.15 3.00 -31975.249.649E+01

0.01 

51.70 0.05 873.15 3.00 -31898.059.649E+01
52.40 0.05 873.15 3.00 -30836.719.649E+01
54.20 0.05 873.15 3.00 -29331.549.649E+01
56.70 0.06 873.15 3.00 -27787.789.649E+01
57.40 0.06 873.15 3.00 -27710.599.649E+01
61.10 0.06 873.15 3.00 -25915.969.649E+01

Phase 
at% 
Mg 

at% 
∆Mg 

Temp 
(K) 

∆Temp
(K) 

H 
(J/mol) 

∆H 
(J/mol) 

Weight References 

FCC 

8.85 0.28 273.15 1.00 -4311.00 1.180E+02

1 
Gangulee et al. 

[34] 
8.85 0.28 273.15 1.00 -4429.27 1.180E+02
8.85 0.28 273.15 1.00 -4577.12 1.180E+02
15.99 0.28 273.15 1.00 -7748.03 1.180E+02

 

Appendix II 

Let us examine a case where the Gibbs energy models for liquid and   phases are 

described as follows: 

L L RS L L RS L L L L L L L
2 1 2 2 2 2 2 2 2 2(1 ) ( ln (1 ) ln(1 )) (1 ) ,G x G x G RT x x x x x x A            (Ⅱ-1) 

RS RS
2 1 2 2 2 2 2 2 2 2(1 ) ( ln (1 ) ln(1 )) (1 ) .G x G x G RT x x x x x x B                      (Ⅱ-2) 

Then Eqs. (4.2) and (4.3) can be derived into: 
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 RS RS L L L
1 2 2 1 2 2ln(1 ) ln(1 ) ,G RT x x B G RT x x A             (Ⅱ-3) 

 RS RS L L L
2 2 2 2 2 2ln (1 ) ln (1 ) .G RT x x B G RT x x A             (Ⅱ-4) 

Calculate 2x  firstly by solving the two equations above, and we have: 

RS L RS L L L RS RS
1 2 2 2 1 2

2

ln (1 )1
1 1 4exp

2

G G RT x x A G G B
x

RT

 


                   
(Ⅱ-5) 

or 

RS L RS L L L RS RS
1 2 2 2 1 2

2

ln (1 )1
1 1 4exp

2

G G RT x x A G G B
x

RT

 


                   
(Ⅱ-6) 

Apparently, 2x  is non-linear to parameters A  and B . T  can be obtained by substituting 

2x  into Eq. (Ⅱ-4), then we have: 

 
RS L RS L
2 2 2 2

2
L
2

(1 ) (1 )
,

ln

G G x A x B
T

x
R

x

 



       
  (Ⅱ-7) 

which must be non-linear to parameters A  and B  as well as 2x  is non-linear to 

parameters A  and B . 

 



Master’s Thesis – C. Dai          McMaster University – Materials Science and Engineering 

[101] 

 

Appendix III 

Phase Thermodynamic parameters of the model (J/mol) Reference

Liquid 

 Ag, Mg  
0 Liq

Ag,Mg

1 Liq
Ag,Mg

50999.87 13.09

3999.69

L T

L

  

 
 

This 
work 

AgMg3 
0.23 0.77(Ag) (Mg)  

0 AgMg3 298 FCC_A1 298 HCP_A3
Ag:Mg Ag Mg0.23 0.77 21600 12.8G H H T     

Lim et 
al.[21] 

AgMg4 
   

0.2 0.8
Ag Mg  

0 AgMg4 298 FCC_A1 298 HCP_A3
Ag:Mg Ag Mg0.2 0.8 20458 13.36G H H T     

Lim et 
al.[21] 

B2_BCC 

  31
Ag, Mg Va  

0 B2_BCC
Ag,Mg

1 B2_BCC
Ag,Mg

3 B2_BCC
Ag,Mg

29454.82 28.88

34253.87 29.29

33400 59.99

L T

L T

L T

  

  

 

 
This 
work 

(Ag,Mg)0.5(Ag,Mg)0.5Va1 
0 B2_BCC

Ag:Mg

0 B2_BCC
Mg:Ag

32152.29 13.22

32152.29 13.22

G T

G T

  

  
 

This 
work 

FCC 

  11
Ag, Mg Va  

0 FCC
Ag,Mg

1 FCC
Ag,Mg

3 FCC
Ag,Mg

59997.86

17194.59 30.84

9

L

L T

L T

 

 



 
This 
work 

L12 
(first-
order) 

(Ag,Mg)0.25(Ag,Mg)0.25 (Ag,Mg)0.25(Ag,Mg)0.25Va1 
0 L12 0 L12 0 L12 0 L12

Ag:Ag:Ag:Mg Ag:Ag:Mg:Ag Ag:Mg:Ag:Ag Mg:Ag:Ag:Ag

0 L12 0 L12 0 L12
Ag:Ag:Mg:Mg Ag:Mg:Mg:Ag Ag:Mg:Ag:Mg

0 L12 0 L12 0 L12
Mg:Ag:Ag:Mg Mg:Ag:Mg:Ag Mg:Mg:Ag:Ag

0
Mg:Mg:Mg:A

9971.51

6647.6711

G G G G

G G G

G G G

G

    

 

    
L12 0 L12 0 L12 0 L12

g Mg:Mg:Ag:Mg Mg:Ag:Ag:Ag Ag:Mg:Mg:Mg 9971.51G G G    

This 
work 

L12 

(second-
order) 

(Ag,Mg)0.5(Ag,Mg)0.5Va1 
This 
work 
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0 L12
Ag:Mg

0 L12
Mg:Ag

7290

7290

G

G

 

 
 

HCP_A3 
  0.51
Ag, Mg Va  

0 HCP_A3
Ag,Mg 22618 14.63L T    

Lim et 
al.[21] 

 

Appendix IV 

The interval approach has been implemented in MATLAB, and its GUI (graphical user 

interface) is shown in Figure IV-1. 

 

 

Figure IV-1: The graphical user interface. 
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The program starts with clicking the button Input Data, and we use the data from 

Kawakami [20] as an example, which is reported in Table IV-1. 

 

Table IV-1: Input data 

Mgx  T (K)
mix Liq

AgMg
Upper

H  (J/mol) mix Liq
AgMg

lower

H  (J/mol) 

0.2514 1323 -7140.4 -9697.06 

0.295 1323 -10266.8 -13123.7 

0.4192 1323 -11085.3 -14051.8 

0.5341 1323 -11436.5 -14462.9 

0.5425 1323 -10851.5 -13650.8 

0.5748 1323 -11150.9 -13851.2 

0.6461 1323 -9631.76 -12086.6 

0.7225 1323 -9146.71 -11507.1 

0.7368 1323 -7346.75 -9472.39 

0.8403 1323 -6408.44 -8188.57 

 

For the present program, the Redlich – Kister formalism (i.e., Eq. (3.2)) is chosen as the 

default Gibbs energy model that can be composition and temperature dependent. The 

basis function is a table of available parameters of the model, and the number indicates 

the number of rows of the table (The table is shown in Figure IV-2). 
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Figure IV-2: A table of available parameters, when the number of the basis function is 5. 

 

According to the definition of the program, H stands for the mixing enthalpy that 

corresponds to the property of the input. The next step is to determine the exact Gibbs 

energy model by choosing the numbers from the table of basis functions. As we are 

interested in a sub-regular model (i.e., Eq. (7.10)), the numbers 1 and 2 are chosen 

(Figure IV-3). 
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Figure IV-3: A sub-regular model is determined by selecting the numbers 1 and 2 from the table of 

basis functions. 

 

Click the button Calculate and you will receive a message that tells you whether or not a 

feasible region exists (Figure IV-4). In the present case, we have obtained a feasible 

region. 
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Figure IV-4: A message from the program: the feasible region exists. 

 

Then we can plot this feasible region on the screen (Figure IV-5), where parameters a and 

b respectively stand for the parameters A0 and A1 of Eq. (7.10). 
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Figure IV-5: Plot the feasible region. 

 

The program has a particular feature that can identify whether a point belongs to the 

feasible region. Moreover, it would save much time to find satisfactory initial values of 

parameters by using this method. 

Figure IV-6 shows a case where A0=-49000 and A1=-1500. After the test, this set of 

parameters was confirmed to belong to the feasible region. 
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Figure IV-6: Test a point whether or not belongs to the feasible region, where A0=-49000 and A1=-

1500. 

 

Figure IV-7 shows a case where A0=-49000 and A1=-3500, and this point does not belong 

to the feasible region after the test. 
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Figure IV-7: Test a point whether or not belongs to the feasible region, where A0=-49000 and A1=-

3500. 
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