
A UNIFYING THEORY OF MULTI-EXIT

PROGRAMS

A UNIFYING THEORY OF MULTI-EXIT PROGRAMS

By

TIAN ZHANG, M.Eng., B.Eng.

A Thesis

Submitted to the Department of Computing and Software

and the School of Graduate Studies

of McMaster University

in Partial Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

McMaster University c© Copyright by Tian Zhang, September 2013

Doctor of Philosophy (2013) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: A Unifying Theory of Multi-Exit Programs

AUTHOR: Tian Zhang

M.Eng. (Computer Software and Theory)

Central South University, Changsha, China

B.Eng. (Computer Science and Technology)

Central South University, Changsha, China

SUPERVISOR: Dr. Emil Sekerinski

NUMBER OF PAGES: x, 121

ii

To my beloved family

Abstract

Programs have multiple exits in the presence of certain control structures, e.g., ex-

ception handling and coroutines. These control structures offer flexible manipulations

of control flow. However, their formalizations are overall specialized, which hinders

reasoning about combinations of these control structures.

In this thesis, we propose a unifying theory of multi-exit programs. We mechani-

cally formalize the semantics of multi-exit programs as indexed predicate transformers,

a generalization of predicate transformers by taking the tuple of postconditions on all

exits as the parameter. We explore their algebraic properties and verification rules,

then define a normal form for monotonic and for conjunctive indexed predicate trans-

formers. We also propose a new notion of fail-safe correctness to model the category

of programs that always maintain certain safe conditions when they fail, and a new

notion of fail-safe refinement to express partiality in software development.

For the indexed predicate transformer formalization, we illustrate its applications

in three models of multi-exit control structures: the termination model of exception

handling, the retry model of exception handling, and a coroutine model. Additionally,

for the fail-safe correctness notion and the fail-safe refinement notion, we illustrate

their applications in the termination model. Six design patterns in the termination

model and one in the retry model are studied. All the verification rules and design

patterns in the thesis have been formally checked by a verification tool.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Emil Sekerin-

ski. Without his firm support and patient guidance, this thesis could not have been

completed. I am also forever indebted to his generosity of funding me for Summer

School Marktoberdorf 2011 as well as international conferences, which offered me

great chances of discussing with researchers from all over the world.

I would also like to express my great appreciation to my supervisory committee

members. In particular, my numerous enlightening discussion with Dr. William M.

Farmer deepened my understanding of the underlying logics in formal methods. His

detailed remarks of this thesis were also tremendously helpful. Dr. Ryszard Janicki’s

critical suggestion on the choice of my thesis topic, as well as his insightful comments

on this thesis, are of great influence to my research.

To my external examiner Dr. Micheal Winter, I am tremendously grateful for his

positive review on this thesis and his helpful indication of the parts that required

further explanation. My special thanks to my fellow graduate students Ronald Eden

Burton, Bojan Nokovic, and Shucai Yao, for their constructive feedback in our group

meetings.

Last but not least, I want to thank my father Qiwei Zhang and my mother Hong

Xiang, for their unconditional love and never-ending patience.

iv

Contents

Abstract iii

Acknowledgements iv

Declaration of Academic Achievement ix

1 Introduction 1

2 Related Work 5

2.1 Towards Error-Free Programs . 5

2.2 Formalizations of Single-Exit Programs 7

2.3 Formalizations of Multi-Exit Programs 8

2.4 Stepwise Refinement . 10

2.5 Formalizations in Higher-Order Logic 11

2.6 Overview . 11

3 Basic Definitions 12

3.1 Lattices and Monoids . 12

3.2 States, Predicates, and Relations . 13

3.3 Indexed Predicates and Indexed Relations 16

3.4 Indexed Predicate Transformers . 17

v

3.5 Basic Multi-Exit Statements . 18

3.6 Composite Multi-Exit Statements . 19

3.7 Algebraic Properties . 22

3.8 Program Expressions . 23

3.9 Monotonicity and Junctivity . 25

3.10 Domains . 27

3.11 Total Correctness . 28

4 Recursion and Iteration 30

4.1 Ranked Predicates and Least Fixed Points 30

4.2 Recursion . 31

4.3 Iteration . 33

4.4 Discussion . 34

5 Normal Forms of Multi-Exit Statements 35

5.1 Normal Form of Monotonic Indexed Predicate Transformers 36

5.2 Normal Form of Conjunctive Indexed Predicate Transformers 39

5.3 Discussion . 43

6 Fail-Safe Correctness and Fail-Safe Refinement 44

6.1 Total Correctness . 47

6.2 Domains . 49

6.3 Fail-Safe Correctness . 50

6.4 Loop Theorems . 53

6.5 Fail-Safe Refinement . 54

6.6 Discussion . 63

vi

7 Design Patterns for The Termination Model 65

7.1 Design Patterns without Loops . 65

7.2 Design Patterns with Loops . 69

7.3 Discussion . 74

8 The Retry Model of Exception Handling 76

8.1 Total Correctness . 81

8.2 Verification Rules . 84

8.3 Example: Binary Search of Square Root 86

8.4 Discussion . 87

9 Coroutines 91

9.1 Overview . 91

9.2 Our Coroutine Mechanism . 93

9.3 Verification . 95

9.4 Discussion . 105

10 Conclusion 106

10.1 Multi-Exit Programs . 106

10.2 Future Work . 107

A Isabelle Formalization 108

vii

List of Figures

1.1 Flowcharts of Exception Handling and Coroutines 1

2.1 Exception Handling Mechanisms . 9

6.1 Symmetry on Two Exits . 45

7.1 Flowcharts of Three Design Patterns with Loops 70

9.1 Coroutines and Resumption Model 94

9.2 Flowcharts of Coroutine Statements 101

viii

Declaration of Academic

Achievement

Sekerinski, E. and T. Zhang (2009, September). Modelling finitary fairness in

Event-B (extended abstract). In J.-R. Abrial, M. Butler, R. Joshi, E. Troubit-

syna, and J. C. P. Woodcock (Eds.), Dagstuhl Seminar on Refinement Based

Methods for the Construction of Dependable Systems, 5 pages, pp. 152–156.

Leibniz-Zentrum fuer Informatik, Germany.

Sekerinski, E. and T. Zhang (2011). A new notion of partial correctness for

exception handling. In B. Bonakdarpour and T. Maibaum (Eds.), 2nd Interna-

tional Workshop on Logical Aspects of Fault-Tolerance, pp. 116–132.

Sekerinski, E. and T. Zhang (2012). Verification rules for exception handling in

Eiffel. In R. Gheyi and D. Naumann (Eds.), Formal Methods: Foundations and

Applications, Volume 7498 of Lecture Notes in Computer Science, pp. 179–193.

Springer Berlin / Heidelberg. (Awarded the best paper of Brazilian Symposium

on Formal Methods 2012.)

Sekerinski, E. and T. Zhang (2013, June). On a new notion of partial re-

finement. In J. Derrick, E. Boiten, and S. Reeves (Eds.), Proceedings 16th

International Refinement Workshop, Volume 115 of Electronic Proceedings in

ix

Theoretical Computer Science, pp. 1–14. Open Publishing Association.

Sekerinski, E. and T. Zhang (2013). Finitary fairness in action systems. In

Z. Liu, J. Woodcock, and H. Zhu (Eds.), Theoretical Aspects of Computing

ICTAC 2013, Volume 8049 of Lecture Notes in Computer Science, pp. 319–336.

Springer Berlin Heidelberg.

x

Chapter 1

Introduction

Formal correctness has been originally studied for single-entry, single-exit imperative

programs [Hoare, 1969; Tennent, 1976; Plotkin, 1981]. Certain control structures

introduce new challenges for correctness reasoning since they violate the single-entry,

single-exit abstraction of program blocks. Two examples are exception handling and

coroutines1:

body

handler

(a) Exception Handling

routine

coroutine

(b) Coroutines

normal exit exceptional exit invocation resumption

Figure 1.1: Flowcharts of Exception Handling and Coroutines

An exception handling mechanism is a dedicated control structure for detecting

1The two flowcharts do not represent all implementations of exception handling and coroutines.

1

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

and recovering errors [Garcia et al., 2001]. A coroutine generalizes a subroutine by

allowing multiple entry points for suspending and resuming execution at certain loca-

tions [Conway, 1963]. Both of them allow redirecting control flow away from normal

termination of a program block (two models are shown in Figure 1.1), which makes

them multi-exit control structures. In the above flowchart of coroutines, the arrows

going inside the program blocks indicate that the execution continues at the middle

of the program block instead of at the beginning.

The implementation of control structures employs control flow redirection. As-

sembly languages offer branch instructions to redirect control flow [AMD, 2012; Intel,

2013]. Some high-level programming languages, e.g., Fortran [ANSI, 1966], C [ISO,

1999], and C++ [ISO, 1998], provide goto as an unconditional branch statement.

The structured programming theorem points out that every Turing machine can be

reduced to a program in a language that only employs composition and iteration as

formation rules [Böhm and Jacopini, 1966], implying that goto is dispensable with

respect to theoretical expressivity. Dijkstra [1968] suggests removing goto statement

from “higher-level” programming languages since it complicates analysis and verifi-

cation of programs. This methodology is followed by languages like Java [Gosling

et al., 2013] and Python [Python Software Foundation, 2013]. Knuth [1974] advo-

cates another viewpoint: employing structured programming to reduce the reliance

on goto, but still reserving this statement for efficiency. C [ISO, 2011] and C++ [ISO,

2012] follow this methodology. Fortran adds restriction on goto statements in later

standards [ANSI, 1997]. Control structures are essentially usage of goto statements

under various restrictions.

Formal reasoning about correctness requires formal methods, i.e., mathematically

based languages, techniques, and tools for specifying and verifying systems. Formal

methods can dramatically enhance code quality and reduce (but not eliminate) the

2

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

reliance on testing [Clarke and Wing, 1996]. The stepwise refinement methodology

constructs programs in a top-down style, starting from abstract specifications and

working stepwise to concrete implementations [Back and von Wright, 1998]. Ev-

ery refinement step reflects some design decisions towards the final solution [Wirth,

1971]. Formalizations and refinement calculi of single-exit programs have been stud-

ied [Hoare, 1969; Dijkstra, 1975; Back and von Wright, 1998]. However, current

formalizations of multi-exit programs either are only applicable to a restricted range

of languages and control structures or do not support stepwise refinement.

In this thesis, we propose a unifying theory of multi-exit programs, which not

only gives a more abstract view on the manipulation of control flow, but also al-

lows all multi-exit controls structures to be combined and reasoned about in a single

framework. We restrict the work to imperative programs.

The thesis is organized according to the following structure.

• Chapter 2 summarizes related work;

• Chapter 3 gives basic formal definitions of indexed predicate transformers, then

proposes a refinement calculus and verification rules for them;

• Chapter 4 studies the rules for recursion and iteration;

• Chapter 5 defines a normal form of monotonic indexed predicate transformers

and a normal form of conjunctive ones;

• Chapter 6 first formalizes the termination model of exception handling, then

proposes the new notions of fail-safe correctness and fail-safe refinement;

• Chapter 7 studies six formal design patterns which illustrate the usage of fail-

safe correctness and fail-safe refinement;

3

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

• Chapters 8 formalizes the retry model of exception handling, and applies its

verification rules to a design pattern;

• Chapters 9 defines the semantics of a coroutine language, as well as its verifica-

tion rules;

• Chapter 10 concludes the thesis with a discussion.

• Appendix A gives an overview of the mechanical formalization.

All theorems and design patterns have been checked in theorem prover Isabelle [Nip-

kow and Paulson, 1992], so we use X to mark them, and allow ourselves to give only

proof sketches or leave out proofs completely2.

2The complete Isabelle formalization is available at http://www.cas.mcmaster.ca/~zhangt26/
thesis/

4

http://www.cas.mcmaster.ca/~zhangt26/thesis/
http://www.cas.mcmaster.ca/~zhangt26/thesis/

Chapter 2

Related Work

2.1 Towards Error-Free Programs

Software errors have caused loss of money, e.g., Ariane 5 [Dowson, 1997], even precious

lives, e.g., Therac-25 [Leveson and Turner, 1993]. In 2002, the US Department of

Commerce estimated that avoidable software errors cost the US economy 20 to 60

billion dollars each year [Reed et al., 2007].

One method to eliminate software errors is software testing, which executes a

program to find errors. It typically accounts for approximately 50% of the elapsed

time and more than 50% of the total cost [Myers, 2004]. Moreover, testing helps

to find errors but can never guarantee the correctness of programs [Dijkstra, 1970].

An example is that the binary search implementation of arrays in Java standard

class libraries was erroneous because of a potential integer overflow in computing the

average of two integers. The error has remained undetected for about nine years

because small sets of test cases are unlikely to include the large scale of inputs that

is necessary to produce the overflow [Bloch, 2006].

5

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Formal methods take a more mathematically based route towards error-free pro-

grams: they employ specification for describing a system with its desired properties,

and verification for checking the faithfulness of an implementation w.r.t. its specifica-

tion. Using them does not a priori guarantee correctness, but can reveal inconsisten-

cies, ambiguities, and incompleteness that might otherwise go undetected [Clarke and

Wing, 1996], so the testing workload required would be much less in their presence.

Formal methods are essential in, but not restricted to, safety-critic systems, e.g.,

railway and air traffic management systems [Bowen and Stavridou, 1993; Lecomte

et al., 2007], or software that requires high reliability, e.g., Microsoft Hyper-V hyper-

visor [Leinenbach and Santen, 2009].

Two well-established approaches to verification are model checking and theorem

proving. Model checking builds a finite model of a system and performs an exhaustive

state space search to check that the desired properties hold in that model. Theorem

proving expresses both the system and its desired properties in some mathematical

logic, which is given by defining a set of axioms and inference rules, then finds a proof

for the properties from the axioms of the system [Clarke and Wing, 1996].

Each method has its own advantages: model checking is completely automatic and

can provide counterexamples; theorem proving can directly deal with infinite state

spaces and scales more easily [Clarke and Wing, 1996]. In this thesis, we follow the

methodology of theorem proving, in particular for formalizing multi-exit programs,

and exploring algebraic properties of the formalization.

Formalizations of program semantics fall into three major categories: operational

semantics, denotational semantics, and axiomatic semantics [Schmidt, 1986]. Opera-

tional semantics [Plotkin, 1981] is defined by specifying an interpreter. Denotational

semantics [Tennent, 1976] is defined through mapping a program to its meaning,

6

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

a.k.a. denotation. Axiomatic semantics [Hoare, 1969] is defined by specifying prop-

erties about language constructs, instead of explicitly formalizing the meanings of

programs, then axioms and inference rules are employed for reasoning about these

properties. The three methods have different areas of application; here we focus on

axiomatic semantics in pursuit of a language-independent formalization of multi-exit

programs.

2.2 Formalizations of Single-Exit Programs

Hoare logic uses P{Q}R to represent “if assertion P is true before initiation of pro-

gram Q , then assertion R will be true on its completion”, but termination needs to

be proved separately [Hoare, 1969]. Dijkstra [1975] extends Hoare logic by taking ter-

mination into consider: wp(S ,R) is used to denote the weakest precondition for the

initial state of the system such that the execution of S guarantees proper termination

in a final state that satisfies the postcondition R. The function wp is called a “pred-

icate transformer” because it takes a postcondition as the parameter and calculates

the weakest precondition.

Predicate transformer semantics is integral to the B-method [Abrial et al., 1991]

and Event-B [Métayer et al., 2005], which are formal methods that support specifi-

cation, design, proof and code generation. B-method is for sequential programs and

Event-B is for concurrent programs. Cavalcanti and Woodcock [1998] proposes pred-

icate transformer semantics for the Z notation. Lamport [1980, 1990] extends Hoare

Logic and predicate transformers with concurrency.

7

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

2.3 Formalizations of Multi-Exit Programs

An exit is a possible way of transferring control out of a program block, corresponding

to outgoing arrows of statements in flowcharts, as in Figure 1.1. We consider pro-

grams with more than one exit to be multi-exit, e.g., programs written in languages

with exception handling and coroutines. The formalizations mentioned in Section 2.2

are only for single-exit programs, thus insufficient to reason about multi-exit control

structures.

Exceptions are rare circumstances that prevent a program from providing its speci-

fied standard service [Cristian, 1989], and exception handling deals with these cases in

a structured way in which the original design remains visible [Sekerinski and Zhang,

2011]. Various programming languages provide structured exception handling con-

structs, e.g., try-catch in C++ [ISO, 2012], try-catch-finally in Java [Gosling et al.,

2013], and do-rescue-end in Eiffel [Meyer, 1988]. Consequently, programs in these

languages have a normal exit and an exceptional exit. On normal termination with-

out exception, the execution continues on the normal exit. When an exception is

encountered, the control of execution would be passed to the proper handler on the

exceptional exit [Cristian, 1982].

The models for exception handling vary in languages. C++ and Java use the ter-

mination model, i.e., a try-catch(-finally) section terminates when its exception handler

terminates. The language Eiffel uses the retry model, i.e., the exception handler can

choose to retry the task [Meyer, 1987], so there is a retry exit that immediately directs

the execution to the beginning of the corresponding do section. The language Mesa

uses the resumption model, i.e., the exception handler can choose to resume the task

by directing the execution to the parts following where the exception was encountered

and raised [Mitchell et al., 1979].

8

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

body

handler

(a) Termination Model

body

handler

(b) Retry Model

body

handler

(c) Resumption Model

normal exit exceptional exit retry exit resume exit

Figure 2.1: Exception Handling Mechanisms

Cristian [1984] specifies a statement with one entry, one normal exit and addi-

tional exceptional exits with one precondition and one postconditions for each exit,

which is also advocated by Liskov and Guttag [2000]. It is followed by languages

like Ada [Luckham and Polak, 1980], Spec# [Barnett et al., 2005], and JML [Leavens

et al., 2006]. A different approach is advocated by Meyer [1997]: each method is

specified by one precondition and one postcondition only. The normal exit is taken if

the desired postcondition is established, and the exceptional exit is taken otherwise.

A coroutine communicates with adjacent peers as if they were input or output

subroutines [Conway, 1963], which makes it well-suited for implementing cooperative

tasks, iterators, and pipes. Coroutines are natively supported in Ruby [Flanagan and

Matsumoto, 2008], Lua [Ierusalimschy et al., 2005], Python [van Rossum and Eby,

2011; Ewing, 2012], and Go [Google, 2009]. However, the implementations differ in

semantics, the details of which is studied in [Moura and Ierusalimschy, 2009] and will

be summarized in Chapter 9. A coroutine can be suspended and resumed. When a

coroutine is suspended, it yields the control to resume the execution of the caller on

the resume exit.

Clint [1973] proposes a rule for proving the correctness of coroutines, which requires

9

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

one condition to hold every time the coroutine is entered, and one condition to hold

every time the coroutine exits. The two conditions serve as the bridges, linking up

the alternating executions of the coroutine and its caller, in a similar way of how a

loop invariant connects iterations of the loop. Clarke [1980] shows that the history

variable in the histogram example in [Clint, 1973] is unnecessary. Their rules do not

deal with termination.

2.4 Stepwise Refinement

The refinement relationship implies substitutability: if program S is refined by pro-

gram T , then substituting T for S would always preserve correctness [Back and von

Wright, 1998]. In other words, T maintains or reduces the nondeterminism in S by

providing the same or more implementation details. Thus, due to the transitivity

of the refinement relationship, stepwise refinement allows incremental development

from abstract specifications to concrete implementations, with the correctness pre-

served through each step. It corresponds to the software development process of

decomposing instructions of the given program into more detailed ones; the process

terminates when all instructions are expressed in terms of an underlying computer or

programming language [Wirth, 1971].

[Cristian, 1982] defines multi-exit programs by a set of predicate transformers, one

for each exit. As pointed out by King and Morgan [1995], this approach disallows

nondeterminism, an essential part of languages for specification and design. King and

Morgan [1995] trace the use of multi-argument predicate transformer, as a formal-

ization of multi-exit programs, to [Back and Karttunen, 1983]. However, according

to [King and Morgan, 1995], Back and Karttunen [1983] do not deal with refinement

and recursion. Double-exit predicate transformers are studied by King and Morgan

10

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

[1995], but are not extended to predicate transformers of arbitrary exits.

2.5 Formalizations in Higher-Order Logic

We propose indexed predicate transformer as a model for multi-exit programs, and

formalize it in higher-order logic HOL. Dijkstra’s guarded command language and

refinement concepts have been formalized in HOL [Harrison, 1998; Back and Wright,

1990]. The semantics of C and Boogie (an intermediate verification language) have

also been formalized in HOL [Cohen et al., 2009; Böhme et al., 2008]. Proof assistants

HOL Light [Harrison, 2011] and Isabelle [Nipkow et al., 2002] support theorem proving

in HOL. The semantics of Java and OCL have been formalized in Isabelle/HOL [von

Oheimb, 2001; Brucker and Wolff, 2002].

2.6 Overview

Current formalizations of exception handling [Luckham and Polak, 1980; Barnett

et al., 2005; Leavens et al., 2006; Tschannen et al., 2011] and coroutines [Clint, 1973;

Clarke, 1980] are restricted to their own programming languages or control structures.

Multi-argument predicate transformer [Back and Karttunen, 1983] is a higher-level

abstraction, but verification rules about refinement and recursion are not provided.

We propose a unifying theory based on indexed predicate transformers, providing a

comprehensive solution for formal reasoning about multi-exit programs.

11

Chapter 3

Basic Definitions

3.1 Lattices and Monoids

In this section, we give the definitions of a lattice and a monoid, following [Birkhoff,

1967] and [Howie, 1995].

Definition 3.1. (Section 1.1 of [Birkhoff, 1967]) A partially-ordered set (poset) P is

a set in which a reflexive, antisymmetric, and transitive binary relation ≤ is defined,

i.e., for all x , y , z ∈ P:

x ≤ x (reflexivity)

x ≤ y ∧ y ≤ x ⇒ x = y (antisymmetry)

x ≤ y ∧ y ≤ z ⇒ x ≤ z (transitivity)

Definition 3.2. (Section 1.4 of [Birkhoff, 1967]) A lattice is a poset in which any

two elements have a greatest lower bound (the meet, denoted by u) and a least upper

12

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

bound (the join, denoted by t), both of which are in L, i.e., for all x , y , z ∈ L:

x u y ∈ L x t y ∈ L (closure)

x u y ≤ x x u y ≤ y z ≤ x ∧ z ≤ y ⇒ z ≤ x u y (greatest lower bound)

x ≤ x t y y ≤ x t y x ≤ z ∧ y ≤ z ⇒ x t y ≤ z (least upper bound)

A lattice L is complete if and only if every subset of it has a join and a meet in L. A

lattice L is distributive if and only if for all x , y , z ∈ L, x u (y t z) = (x uy)t (x u z).

Any nonvoid complete lattice L contains a bottom element ⊥ that satisfies ∀ x ∈

L.⊥ ≤ x and a top element > that satisfies ∀ x ∈ L. x ≤ > [Birkhoff, 1967].

Definition 3.3. (Section 1.1 of [Howie, 1995] A monoid is a set in which an asso-

ciative binary operation “·” is defined and an identity element e (the unit) exists, i.e.,

for all x , y , z ∈ M :

x · y ∈ M (closure)

(x · y) · z = x · (y · z) (associativity)

x · e = e · x = x (unit)

For example, all integers form a monoid structure with + as the operation and 0 as

the unit. Another monoid is the integers with operation × and unit 1.

If ∀ x . e · x = e we call e a left zero, and if ∀ x . x · e = e we call e a right zero.

3.2 States, Predicates, and Relations

In this section, we follow the definitions of [Back and von Wright, 1998]. In higher-

order logic, types are expressions that denote sets, and new types can be constructed

from existing types, e.g., Σ→ Γ represents the type of functions with inputs of type

Σ and outputs of type Γ. The Boolean type Bool consists of the truth values False

and True. As a special case, Σ → Bool represents the type of sets on Σ, with the

13

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

value interpreted as membership. We write the equality in definitions as =̂ instead

of as =, and we write the equality of truth values as ≡ instead of as =. Arithmetic

operators bind stronger than =, which itself binds stronger than Boolean operators,

which themselves bind stronger than ≡.

Theorem 3.1. X Truth values form a lattice with implication⇒ as the order relation,

conjunction ∧ as the meet, disjunction ∨ as the join, False as the bottom element,

and True as the top element. The lattice is complete, with set conjunction ∧s and set

disjunction ∨s being the meet and the join of sets. The lattice is also distributive as

∧ distributes over ∨ and vice versa. This extends to infinite distributivity, i.e., for

all c : Bool and b : Bool → Bool, in which Bool → Bool is a set of Bool :

c ∨ (∧sb) ≡ ∧s{c ∨ b | b ∈ b}

c ∧ (∨sb) ≡ ∨s{c ∧ b | b ∈ b}

We use lower case Greek letters (e.g., σ, γ) for program states, and corresponding

upper case Greek letters (e.g., Σ, Γ) for corresponding program state spaces. For

generality, we do not specify the inner structure of a program state, unless it is

necessary (e.g., for defining assignment statements).

A state predicate (abbreviated as predicate) of type PΣ is a function from Σ, the

type of a state space, to Bool , i.e.,

PΣ =̂ Σ→ Bool

The type of sets on Σ is also PΣ. We use lower case letters (e.g., p, q) for predicates.

On predicates, entailment ≤ is defined by pointwise extension:

p ≤ q =̂ ∀σ. p σ ⇒ q σ

Conjunction ∧, disjunction ∨, implication⇒, negation ¬, set conjunction ∧s , and set

disjunction ∨s are defined by the corresponding operations on Bool . For predicates

14

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

p, q : PΣ and state σ : Σ we have

(p ∧ q)σ =̂ p σ ∧ q σ

(p ∨ q)σ =̂ p σ ∨ q σ

(¬p)σ =̂ ¬(p σ)

p ⇒ q =̂ (¬p) ∨ q

and for predicate set p : P(PΣ) we have

(∧sp)σ =̂ ∧s {p σ | p ∈ p}

(∨sp)σ =̂ ∨s {p σ | p ∈ p}

The bottom and top predicates false and true represent the universally False and True

truth values:

false σ =̂ False

true σ =̂ True

The pointwise extension of a (complete, distributive) lattice is again a (complete,

distributive) lattice [Back and von Wright, 1998]. Therefore we have:

Theorem 3.2. X Predicates on PΣ with entailment ≤ as the order relation form a

complete distributive lattice, with false, true, ∧, ∨, ∧s and ∨s being the bottom, top,

meet, join, set meet, and set join operations, respectively.

A state relation (abbreviated as relation) is a function from Σ, the initial state

space, to a predicate on Γ, the final state space, i.e., a function of type Σ → PΓ,

which is isomorphic to (Σ× Γ)→ Bool , but more natural to write in HOL. We allow

the initial and final state spaces to be different. The empty relation ⊥, the universal

relation >, and the identity relation id are defined by

⊥σ γ =̂ False

>σ γ =̂ True

id σ σ′ =̂ σ = σ′

15

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Intersection ∩, union ∪, complement r , and composition ◦ can be defined straightfor-

wardly, but are not needed in this thesis; inclusion is defined by

r ⊆ r ′ =̂ ∀σ. r σ ≤ r ′ σ

3.3 Indexed Predicates and Indexed Relations

In this section we introduce indexed predicates and indexed relations, with the indices

being the names of exits. For a tuple t = (t1, . . . , tn), we write t i for selecting its

i -th element. An indexed predicate is a tuple (p1, . . . , pn) of predicates pi . We call

I = {1, . . . , n} its exit indices and write the type PΓ1 × · · · × PΓn of an indexed

predicate more concisely as PΓI
1. The exit nrl = 1 is the normal exit. Generally, every

imperative program block contains a normal exit, indexed nrl = 1. We specify other

exit indices later as we study more specific program languages. An indexed predicate

models a tuple of predicates on all exits, with P i corresponding to the predicates on

each exit i . We use upper case letters (e.g., P , Q) for indexed predicates.

On indexed predicates, entailment ≤ is again defined by pointwise extension:

P ≤ Q =̂ ∀ i .P i ≤ Q i

Conjunction ∧, disjunction ∨, implication ⇒, negation ¬, set conjunction ∧s , and

set disjunction ∨s are defined by the corresponding operations on PΓ. For indexed

1The proof assistant Isabelle does support dependent types, so in Isabelle we model both arbitrary
number of exits with the same state space, and various state spaces on exits of a fixed number. The
proofs in the thesis do not rely on the uniformity of the final state spaces, unless restricted by certain
constructs. Please refer to Appendix A for detailed discussion.

16

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

predicates P ,Q : I → PΓ and exit index i : I we have:

(P ∧Q) i =̂ P i ∧Q i

(P ∨Q) i =̂ P i ∨Q i

(¬P) i =̂ ¬(P i)

P ⇒ Q =̂ (¬P) ∨Q

and for P : P(I → PΓ) we have

(∧sP) i =̂ ∧s {P i | P ∈ P}

(∨sP) i =̂ ∨s {P i | P ∈ P}

The bottom and top elements of type I → PΓ are false and true respectively, defined

by

false i =̂ false

true i =̂ true

Again the result of pointwise extension is a (complete, distributive) lattice:

Theorem 3.3. X Indexed predicates on I → PΓ with entailment ≤ as the order

relation form a complete distributive lattice, with ∧, ∨, ∧s and ∨s being the meet,

join, set meet, and set join operations, respectively.

An indexed relation is a tuple (r1, . . . , rn) of relations with the same initial state

space but possibly different final state spaces, i.e., is of type (Σ→ PΓ1)×· · ·× (Σ→

PΓn). With exit indices I = {1, . . . , n} we write this more concisely as Σ
I→ PΓ. We

write >, ⊥, and id for the indexed relations that are universally >, ⊥, and id. We use

upper case letters (e.g., R) for indexed predicates.

3.4 Indexed Predicate Transformers

A indexed predicate transformer, which is a model of single-exit programs, is a func-

tion from PΓ, the type of a postcondition, to PΣ, the type of a precondition, i.e.,

17

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

of type PΓ → PΣ. An indexed predicate transformer is an extension for modelling

multi-exit programs. It is of type PΓI → PΣ, a function from PΣI , the type of

indexed postcondition, to PΣ, the type of a precondition. We use upper case letters

(e.g., S , T) for indexed predicate transformers.

3.5 Basic Multi-Exit Statements

First we define indexed predicate transformers for some basic multi-exit statements:

abort aborts execution, meaning it may terminate at any exit in any state or may not

terminate at all; stop, also known as magic, blocks execution, thus satisfies miracu-

lously any postcondition on any exit; jump i does not change the state and terminates

at exit i . With indexed predicate Q we define:

abort Q =̂ false

stop Q =̂ true

jump i Q =̂ Q i

We use skip as the abbreviation of jump nrl, thus skip Q = jump nrl Q = Q nrl .

Let G be an indexed predicate. The assumption [G] allows continuation at exit i

if G i = true. If continuation is possible at several exits, the choice is demonic, which

means that every choice must establish the corresponding postcondition. If continua-

tion is not possible, the assumption stops. The assertion {G} also allows continuation

at exit i if G i = true. If continuation is possible at several exits, the choice is angelic,

which means that at least one choice must establish the corresponding postcondition.

If continuation is not possible, the assertion aborts:

[G] Q =̂ ∧s {G i ⇒ Q i | i ∈ I }

{G}Q =̂ ∨s {G i ∧Q i | i ∈ I }

18

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

3.6 Composite Multi-Exit Statements

Now we define indexed predicate transformers for composite multi-exit statements.

Let S , T be multi-exit statements. The sequential composition S ;i T executes first

S and provided that S terminates at exit i , continues with T . The demonic choice

S u T establishes a postcondition at an exit if both S and T do. The angelic choice

S tT establishes a postcondition at an exit if either S or T does. We write f [i ← v]

for updating function f to evaluate to v at i :

(S ;i T) Q =̂ S (Q [i ← T Q])

(S u T) Q =̂ S Q ∧ T Q

(S t T) Q =̂ S Q ∨ T Q

In sequential composition, T Q is the weakest precondition for T to terminate with

Q , and it is also the postcondition of S on the ith exit.

Binary choice generalizes to choice over arbitrary sets. Let S be a set of predicate

transformers:

(usS) Q =̂ ∧s {S Q | S ∈ S}

(tsS) Q =̂ ∨s {S Q | S ∈ S}

The demonic choice over the empty set blocks, us ∅ = stop, and the angelic choice

over the empty set aborts, ts ∅ = abort.

We have that [false] = stop and that [true] = us{jump i | i}. Dually, we have

that {false} = abort and that {true} = ts{jump i | i}. For predicates p1, . . . , pk

and distinct i1, . . . , ik ∈ I we write i1 7→ p1, . . . , ik 7→ pk for the indexed predicate

that is p1 at i1, . . . , pk at ik , and false everywhere else. As a special case, i 7→ true

is the indexed predicate that is true for i ∈ I and false otherwise. In the case of

assertions and assumptions with only one predicate being true and all other false, the

continuation is deterministic, in the sense that [i 7→ true] = jump i = {i 7→ true}. If

19

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

only a predicate for the normal exit is specified, we write [p] for [nrl 7→ p] and likewise

{p} for {nrl 7→ p}.

Theorem 3.4. X Let p be a predicate and Q be an indexed predicate:

[p] Q = (p ⇒ Q nrl)

{p}Q = (p ∧Q nrl)

An update specifies a state change by one relation for each exit, each relation

relating the common initial state to the final state at each exit. Let R be an indexed

relation. The demonic update [R] allows continuation at exit i from initial state σ

if R i σ specifies some final states. The choice among all possible final states and

the choice among all possible exits are demonic. If continuation is not possible, the

demonic update stops. Dually, the angelic update {R} allows continuation at exit i

from initial state σ if R i σ specifies some final states. The choice among all possible

final states and the choice among all possible exits are angelic. If continuation is not

possible, the angelic update aborts:

[R] Q σ =̂ (∀ i .∀ γ.R i σ γ ⇒ Q i γ)

{R}Q σ =̂ (∃ i .∃ γ.R i σ γ ∧Q i γ)

We have that [⊥] = stop and that [id] = us{jump i | i}. Dually, we have that

{⊥} = abort and that {id} = ts{jump i | i}. Both updates [>] and {>} always

terminate in some state at some exit, with [>] making the choice among the exits

and among the states demonic and {>} making these choices angelic. In the case of

updates with only one relation being the identity and all other relations being empty,

the continuation is deterministic, in the sense that [i 7→ id] = jump i = {i 7→ id}. For

the case that only a relation for the normal exit is specified, we write [r] for [nrl 7→ r]

and likewise {r} for {nrl 7→ r}. We call them normal demonic update and normal

angelic update, respectively.

20

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Theorem 3.5. X Let r be a relation and Q be an indexed predicate:

[r] Q σ = (∀ γ. r σ γ ⇒ Q nrl γ)

{r}Q σ = (∃ γ. r σ γ ∧Q nrl γ)

For an indexed predicate G : PΣI , the lifting |G | : Σ
I→ PΣ is an indexed relation

that, for each exit i , is a partial identity relation:

|G | i σ σ′ =̂ G i σ ∧ σ = σ′

Assumptions and assertions can be expressed as demonic and angelic updates by

lifting their argument to an indexed relation:

Theorem 3.6. X Let G be an indexed predicate:

[G] = [|G |]

{G} = {|G |}

A multi-exit statement (or statement for short) S is an indexed predicate trans-

former that is constructed using only

1. basic multi-exit statements abort, stop, jump i , [G], {G}, [R], {R}, where i is an

exit index, G is an indexed predicate, R is an indexed relation, and

2. composite multi-exit statements S ;i T , us S, ts S, where S , T are statements

and S is a set of statements.

We write skip for the jump statement to the normal exit, and write ; for the normal

sequential composition:

skip =̂ jump nrl

S ; T =̂ S ;nrl T

Exception handling is expressed in terms of the statement raise i to raise exception i

and the statement try S on i do T to start with S and on exception i to continue with

21

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

T , otherwise to continue normally. With exceptions being exits, these are defined as:

raise i =̂ jump i if i 6= nrl

try S on i do T =̂ S ;i T if i 6= nrl

3.7 Algebraic Properties

For exit index i , indexed predicate transformers with ;i as composition on exit i and

jump i as unit form a monoid. For distinct exit indices i , j , we only have that jump i

is a left zero of ;j .

Theorem 3.7. X Let I be the exit indices and let S , T , U be indexed predicate

transformers. For any i , j ∈ I that satisfies i 6= j we have:

(S ;i T) ;i U = S ;i (T ;i U) (associativity)

S ;i jump i = S (right zero of ;i)

jump i ;i S = S (left unit of ;i)

jump j ;i S = jump j (left zero of ;i)

As the unit of a monoid is unique, we have that the unique unit of ;i is jump i .

To see that (S ;i T) ;j U 6= S ;i (T ;j U) in general, consider that i = nrl and j 6= nrl.

Rewriting using try statements, it is intuitive that try S ; T on j do U is in general

different from S ; try T on j do U . Assuming i , j 6= nrl and rewriting S ;j jump i as

try S on j do raise i we obtain the idiom of re-raising an exception; in this case, jump i

(or raise i) is neither unit nor zero.

The refinement relation is defined again by pointwise extension from predicates.

For indexed predicate transformers S , T we define:

S v T =̂ ∀Q . S Q ≤ T Q

Intuitively, refinement may reduce demonic choice and may increase angelic choice,

22

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

where the choice is between exits or states. For example, jump i u jump j v jump i .

This is captured by the lattice structure of indexed predicate transformers.

Theorem 3.8. X Indexed predicate transformers with v as the order relation, abort

as bottom, stop as top, u as meet, t as join, us as set meet, and ts as set join form

a complete distributive lattice.

3.8 Program Expressions

A value function of type Σ→ V is a total function from state space Σ to value type

V . However, before embarking on modelling statements in concrete programming

languages, we need to determine how to treat possible undefinedness in program

expressions. We distinguish terms in the underlying logic, here HOL, from program

expressions, here those of programming languages. A Boolean term, even one like

x/y > 0 and a[x] < k is always true or false. However, the program expressions

x/y > 0 and a[x] < k may not always yield a result. For program expression E its

definedness ∆E and value ‘E ’ are in part determined by the underlying machine; the

result of ∆E and ‘E ’ are terms. Since the value function can be complicated because

it involves definedness, for readability we write ‘E ’ u v if ∆E ≤ (λσ. ‘E ’σ = v σ),

which means that when E is defined at σ, the value ‘E ’σ equals v σ. Formally, a

program expression is a partial function, with its domain being the state space Σ,

and its range beingV . In Isabelle, the value of a partial function is None where it is

undefined.

We consider a subset of Java operators on Booleans and integers: assuming that

c is a constant, x a variable, E and F program expressions, and ≈ is =, < or another

relational operator, ◦ is +,−, or ∗, and | is div or mod (integer division and modulo),

23

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

we have

∆c = true ‘c’ u λσ. c

∆x = true ‘x ’ u λσ. x σ

∆(E and F) = ∆E ∧∆F ‘E and F ’ u ‘E ’ ∧ ‘F ’

∆(E or F) = ∆E ∧∆F ‘E or F ’ u ‘E ’ ∨ ‘F ’

∆(E and then F) = ∆E ∧ (‘E ’⇒ ∆F) ‘E and then F ’ u ‘E ’ ∧ ‘F ’

∆(E or else F) = ∆E ∧ (¬‘E ’⇒ ∆F) ‘E or else F ’ u ‘E ’ ∨ ‘F ’

∆(E ≈ F) = ∆E ∧∆F ‘E ≈ F ’ u ‘E ’ ≈ ‘F ’

∆(E | F) = ∆E ∧∆F ∧ ‘F ’ 6= 0 ‘E | F ’ u ‘E ’ | ‘F ’

∆(E ◦ F) = ∆E ∧∆F ∧

min ≤ ‘E ◦ F ’ ≤ max

‘E ◦ F ’ u ‘E ’ ◦ ‘F ’

where min and max are the smallest and largest machine-representable integers, op-

erators and and or evaluate both operands, and operators and then (conditional con-

junction, or conditional and, also written as ∧c) and or else (conditional disjunction,

or conditional or, also written as ∨c) evaluate conditionally. For example, with the

state being a pair of integers (l , u):

Theorem 3.9. X Assuming that min ≤ 0 ≤ l ≤ u ≤ max,

∆((l + u) div 2) = λ (l , u). l + u ≤ max

‘(l + u) div 2’ u λ (l , u). (l + u) div 2

and:

∆(l + (u − l) div 2) = true

‘l + (u − l) div 2’ u λ (l , u). l + (u − l) div 2

= λ (l , u). (l + u) div 2

That is, program expressions (l + u) div 2 and l + (u − l) div 2 have the same value

when defined, namely the term (l +u) div 2, but the latter one is always defined under

24

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

above assumption, whereas the former is not.

The distinction between terms in the logic and program expressions keeps the logic

simple, e.g., all familiar laws of the Boolean algebra like the law of the excluded middle

still hold, while allowing the capture of all restrictions of an underlying machine.

3.9 Monotonicity and Junctivity

We characterize different classes of statements. Indexed predicate transformer S is

monotonic if and only if Q ≤ Q ′ ⇒ S Q ≤ S Q ′ for arbitrary indexed predicates Q ,

Q ′. An immediate consequence is:

Theorem 3.10. X All basic statements are monotonic and all composed statements

preserve monotonicity.

By monotonicity of S we have that for arbitrary i , tri S ≤ tr S .

Positive “junctivity” properties are defined by distributivity over arbitrary, but

non-empty sets of indexed predicates. Indexed predicate transformer S is positively

conjunctive if and only if S (usQ) = ∧s{S Q | Q ∈ Q} and positively disjunctive if

and only if S (tsQ) = ∨s{S Q | Q ∈ Q} for arbitrary set Q 6= ∅ of indexed predicates.

Theorem 3.11. X Statements stop, jump i , assertion {G}, assumption [G], and

demonic update [R] are positively conjunctive. Sequential composition ;i and demonic

choice u preserve positive conjunctivity.

Angelic choice does not preserve positive conjunctivity in general. A dual theorem

holds for positively disjunctive statements.

Theorem 3.12. X Statements abort and jump i , assumption [G], assertion {G}, and

angelic update {R} are positively disjunctive. Sequential composition ;i and angelic

choice t preserve positive disjunctivity.

25

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Universal “junctivity” properties are defined by distributivity over arbitrary sets

of indexed predicates. Indexed predicate transformer S is universally conjunctive if

S (usQ) = ∧s{S Q | Q ∈ Q} and universally disjunctive if S (tsQ) = ∨s{S Q | Q ∈

Q} for arbitrary set Q of indexed predicates.

Theorem 3.13. X Any universally conjunctive indexed predicate transformer is pos-

itively conjunctive. Any positively conjunctive indexed predicate transformer is mono-

tonic.

It is easy to see that abort is not universally conjunctive by taking Q = ∅. As a

consequence, assertion {G} is in general not universally conjunctive either. Angelic

choice does not preserve universal conjunctivity. The relationship between universal

and positive “junctivity” can be stated more precisely by considering domains.

Theorem 3.14. X A indexed predicate transformer is universally conjunctive if and

only if it is positively conjunctive and terminating.

As an immediate consequence, stop, jump i , assumption [G], and demonic update

[R] are universally conjunctive. Also, sequential composition ;i and demonic choice u

preserve universal conjunctivity. Dually, we have:

Theorem 3.15. X A indexed predicate transformer is universally disjunctive if and

only if it is positively disjunctive and enabled.

The monoid and lattice structure are connected by following distributivity prop-

erties.

Theorem 3.16. X Let S be an indexed predicate transformer and T be a non-empty

26

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

set of indexed predicate transformers:

(usT) ;i S = us{T ;i S | T ∈ T}

S ;i (usT) v us{S ;i T | T ∈ T} if S is monotonic

S ;i (usT) = us{S ;i T | T ∈ T} if S is positively conjunctive

3.10 Domains

For multi-exit statements, the termination domain, written as tr S , identifies when

statement S does not abort. The termination domain on exit i , written as tri S

identifies when statement S terminates on exit i . The enabledness domain, written

as en S , identifies when the statement does not block. We say a indexed predicate

transformer S is terminating if tr S = true and that S is enabled (or strict) if en S =

true.

tr S =̂ S true

tri S =̂ S (i 7→ true)

en S =̂ ¬(S false)

The next theorem summarizes the basic properties of the domain operations.

Theorem 3.17. X Let S , T be statements, G be an indexed predicate, R be a relation,

i , j be two different exit indices:

tr abort = false tr stop = true tr jump i = true

tri abort = false tri stop = true tri jump i = true

trj jump i = false

en abort = true en stop = false en jump i = true

tr [G] = true tr {G} = ∨s{G i | i}

en [G] = ∨s{G i | i} en {G} = true

27

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

tr (S ;i T)⇒ tr S en (S ;i T)⇒ en S

tr (S u T) = tr S ∧ tr T tr (S t T) = tr S ∨ tr T

en (S u T) = en S ∨ en T en (S t T) = en S ∧ en T

tr [R] = true tr {R} = (λσ. ∃ i , γ.R i σ γ)

en [R] = (λσ. ∃ i , γ.R i σ γ)) en {R} = true

Statement stop blocks execution, hence en stop = false, and stop “terminates

orderly” by refusing execution, hence tr stop = true.

3.11 Total Correctness

Hoare’s total correctness assertion [[p]] S [[q]] states that under precondition p, state-

ment S terminates with postcondition q . This is now generalized to indexed postcon-

ditions.

Definition 3.4. Total correctness assertion [[p]] S [[Q]] states that under precondition

p, statement S terminates with postcondition Q, i.e.,

[[p]] S [[Q]] =̂ p ≤ S Q

The next theorem summarizes the basic properties of total correctness; they extend

those in [Cristian, 1984; King and Morgan, 1995]:

Theorem 3.18. X Let p be any predicate, Q be any indexed predicate, G be any

indexed predicate, R be an indexed relation, and S, T be statements:

[[p]] abort [[Q]] ≡ p = false

[[p]] stop [[Q]] ≡ True

[[p]] jump i [[Q]] ≡ p ⇒ Q i

[[p]] [G] [[Q]] ≡ p ⇒ (∧s{G i ⇒ Q i | i ∈ I })

28

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

[[p]] {G} [[Q]] ≡ p ⇒ (∨s{G i ∧Q i | i ∈ I })

[[p]] S ;i T [[Q]] ≡ ∃ h. [[p]] S [[Q [i ← h]]] ∧ [[h]] T [[Q]]

[[p]] S u T [[Q]] ≡ [[p]] S [[Q]] ∧ [[p]] T [[Q]]

[[p]] [R] [[Q]] ≡ p ⇒ (λσ. ∀ i γ.R i σ γ ⇒ Q i γ)

[[p]] {R} [[Q]] ≡ p ⇒ (λσ. ∃ i γ.R i σ γ ∧Q i γ)

Definition 3.5. A precondition p and an indexed postcondition Q can specify a set

of statements {S | [[p]] S [[Q]]}, in which any S is monotonic. We denote the set meet

of this set as bp,Qc:

bp,QcQ ′ = if Q ≤ Q ′ then p else false

Apparently it is monotonic and it is refined by any statement in the set {S | [[p]] S [[Q]]},

so it is the least specified statement of given p and Q.

Theorem 3.19. X Let p be a predicate and Q be an indexed predicate,

[[p]] bp,Qc [[Q]]

∀ S . [[p]] S [[Q]]⇒ bp,Qc v S

29

Chapter 4

Recursion and Iteration

Recursion is suitable for solving problems when each solution is dependent on the

same problem of smaller instances [Graham et al., 1994], and iteration repeats a

block of statements. Back and von Wright [1998] study recursion and iteration rules

for single-exit programs. We extend them to multi-exit programs, starting from giving

the definitions of ranked predicates and least fixed points.

4.1 Ranked Predicates and Least Fixed Points

Definition 4.1. (Section 18.1 of [Back and von Wright, 1998]) A well-founded set is

a poset (W ,≤) in which every non-empty subset of W has a minimal element, i.e., if

∀X ⊆W .X 6= ∅ ⇒ (∃ x ∈ X .∀ y ∈ X . y ≮ x)

Definition 4.2. Let {pw | w ∈ W } be a collection of predicates that are indexed by

the well-founded non-empty set W such that w < w ′ ⇒ pw ≤ pw ′. A predicate in

such a set is called a ranked predicate. A ranked predicate pw is often written as the

30

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

conjunction of an invariant expression p and a variant expression v:

pw =̂ (λσ. p σ ∧ v σ = w)

p<w =̂ ∨s {pw ′ | w ′ ∈W ∧ w ′ < w}

Thus, p holds if some ranked predicate holds, while p<w holds if some ranked predicate

with a “lower rank” than that of pw holds.

Definition 4.2 essentially follows Section 20.2 of [Back and von Wright, 1998],

except that the well-founded set W is required to be non-empty here, since it no

longer requires defining p as the disjunction of all pw , and in practice the set is non-

empty anyway.

A well-founded set does not have a chain that decreases infinitely, so ranked pred-

icates can be used to guarantee the termination in recursion or iteration.

Definition 4.3. Let A be a complete lattice and f a monotonic function on A, i.e.,

f ∈ A →m A, then the least fixed point a in A is denoted as µ f . The least element

that satisfies f a = a, i.e., ∀ a ′ ∈ A. f a ′ = a ′ ⇒ a v a ′.

Knaster-Tarski theorem guarantees the existence of the least fixed point, and it is

given by us{x | x ∈ A ∧ f x v x} [Tarski, 1955].

4.2 Recursion

Theorem 4.1. X Assume that W is a well-founded set, f is a monotonic function

on monotonic indexed predicate transformers, and {pw | w ∈ W } is a collection of

ranked predicates with ranks of type W , then the following holds:

(∀w ∈W . {pw} ; S v f ({p<w} ; S))⇒ {p} ; S v µ f

Proof. Assume that {pw} ; S v f ({pw} ; S) holds for all w ∈W . First we show that

(∀w ∈W . {pw} ; S v µ f) (*)

31

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

by well-founded induction, as follows. The induction assumption is (∀ v . v < w ⇒

{pv} ; S v µ f):

{pw} ; S

v 〈assumption〉

f ({∧s{pv | v ∈W ∧ v < w}} ; S)

= 〈homomorphism property of assertion, distributivity〉

f (us{{pv} ; S | v ∈W ∧ v < w})

v 〈induction assumption, monotonicity〉

f (us{µ f | v ∈W ∧ v < w})

v 〈empty join gives abort, otherwise µ f , monotonicity〉

f (µ f)

= 〈fold fixed point〉

µ f

Thus,

{p} ; S

= 〈definition of p〉

{∨s{pw | w ∈W }} ; S

= 〈homomorphism property of assertion, distributivity〉

ts {{pw} ; S | w ∈W }

v 〈(*) above〉

µ f

32

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

4.3 Iteration

Definition 4.4. Let S be a monotonic indexed predicate transformer. We define

strong iteration on the ith exit, through least fixed point:

Sωi =̂ (µX · S ;i X u jump i)

and we write Sω as the abbreviation of Sωnrl.

Theorem 4.2. X Let S be a statement and let pw with w ∈ W be a collection of

ranked predicates with ranks of type W . Assume that (W ,≤) is a well-founded set,

then

(∀w ∈W . [[pw]] S [[Q [i ← p<w]]])⇒ [[p]] Sωi [[Q [i ← p]]]

Proof. For any w ∈ W , according to the assumption, [[pw]] S [[Q [i ← p<w]]]. For any

Q ′, when Q [i ← p] ≤ Q ′,

({pw} ; bp,Q [i ← p]c) Q ′

= 〈sequential composition, least specified statement〉

{pw} p

= 〈assertion, ranked predicates〉

pw

≤ 〈assmption, total correctness〉

S (Q [i ← p<w]) ∧ pw

≤ 〈sequential composition, monotonicity〉

((S ;i ({p<w} ; bp,Q [i ← p]c)) Q ′) ∧ (Q ′ i)

= 〈definition of jump i , demonic choice〉

((S ;i ({p<w} ; bp,Q [i ← p]c)) u jump i) Q ′

and when Q [i ← p] � Q ′

({pw} ; bp,Q [i ← p]c) Q ′

= 〈sequential composition, least specified statement〉

33

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

false

≤ 〈definition of false〉

((S ;i ({p<w} ; bp,Q [i ← p]c) u jump i) Q ′

Then ∀w ∈W . {pw} ; bp,Q [i ← p]c v (S ;i ({p<w} ; bp,Q [i ← p]c)) u jump i , and

∀w ∈W . {pw} ; bp,Q [i ← p]c v (S ;i ({p<w} ; bp,Q [i ← p]c)) u jump i

= 〈function application〉

∀w ∈W . {pw} ; bp,Q [i ← p]c v (λX . S ;i X u jump i) ({p<w} ; bp,Q [i ← p]c)

⇒ 〈Theorem 4.2〉

{p} ; bp,Q [i ← p]c v µ (λX . S ;i X u jump i)

⇒ 〈least specified statement, iteration〉

[[p]] Sωi [[Q [i ← p]]]

4.4 Discussion

Recursion allows reasoning about recursive programs. In Theorem 4.1, w is the size

of an instance, and f is how the solutions to smaller instances can be combined into

a solution of larger instance (the recursive function body). Theorem 4.2 will be used

implicitly for proofs of theorems in Chapters 6 to 9.

34

Chapter 5

Normal Forms of Multi-Exit

Statements

Normal forms facilitate construction of correct programs in a variety of aspects. Hoare

et al. [1987] gives a normal form to show the completeness of algebraic laws of straight-

line programs with bounded nondeterminism; it also implies the completeness of re-

finement laws, since refinement can be expressed in terms of equality and nondeter-

ministic choice, i.e., S v T ≡ S = S uT . Hoare et al. [1993] expresses compilation of

Dijkstra’s guarded command programs as a reduction to a normal form. Von Wright

[1994] proposes a normal form of programs with (unbounded) demonic and angelic

nondeterminism; the normal form relies on a sequential composition of (abstract) an-

gelic and demonic update statements. Abrial [1996] gives a normal form for programs

with demonic nondeterminism to justify the specification constructs of the B method.

Kozen [1997] proves that all while programs can be transformed into a normal form

with only a single while-loop, using the Kleene algebra with tests and commutativity

conditions. Back and von Wright [1998] study systematically normal forms for various

classes of programs, including those with demonic and angelic nondeterminism. Ying

35

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

[2003] gives a normal form of probabilistic programs in the framework of [Back and

von Wright, 1998]. Borba et al. [2004] proposes a normal form for object-oriented

programs, which is illustrated with provably-correct refactoring.

The normal forms given in this chapter use sequential composition on the normal

exit only. According to the symmetry of exits, a normal forms exists using sequential

composition on any other exits.

5.1 Normal Form of Monotonic Indexed Predicate

Transformers

Every multi-exit statement is a monotonic indexed predicate transformer by defini-

tion. We show that the converse also holds, that every monotonic indexed predicate

transformer can be equivalently expressed as a multi-exit statement. It turns out that

only normal angelic update, normal sequential composition, and demonic update are

needed to express any monotonic indexed predicate transformer. The following the-

orem and its proof generalize those of [Back and von Wright, 1998] for single-exit

statements.

Theorem 5.1. X Let S be a monotonic indexed predicate transformer. Then there

exists a relation r and an indexed relation R such that S = {r} ; [R].

Proof. Assume that S : PΓI → PΣ is a monotonic indexed predicate transformer.

Define relation r : Σ → P(PΓI) and indexed relation R : PΓI
I→ PΓ as follows,

where P is any indexed predicate of type PΓI :

r σ P =̂ S P σ

R i P γ =̂ P i γ

36

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Then, for arbitrary indexed predicate Q and arbitrary state σ0 we have:

({r} ; [R]) Q σ0

≡ 〈definition of sequential composition〉

{r} (Q [nrl← [R] Q])σ0

≡ 〈definition of demonic update〉

{r} (Q [nrl← (λσ. ∀ i γ.R i σ γ ⇒ Q i γ)])σ0

≡ 〈Theorem 3.5, definition of R〉

(∃P . r σ0 P ∧ (∀ i γ.P i γ ⇒ Q i γ))

≡ 〈definition of r , definition of ≤〉

(∃P . S P σ0 ∧ P ≤ Q)

≡ 〈(**)〉

S Q σ0

The step (**) is shown by mutual implication:

(∃P . S P σ0 ∧ P ≤ Q)

⇒ 〈S is monotonic, context says P ≤ Q〉

(∃P . S Q σ0 ∧ P ≤ Q)

⇒ 〈weakening〉

(∃P . S Q σ0)

⇒ 〈quantifier rule〉

S Q σ0

For the reverse implication we have:

(∃P . S P σ0 ∧ P ≤ Q)

⇐ 〈witness P = Q〉

S Q σ0 ∧Q ≤ Q

≡ 〈reflexitivity〉

S Q σ0

37

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Together it is shown that S = {r} ; [R].

As a consequence, any monotonic indexed predicate transformer can be expressed

as a statement. For example, the least statement bp,Qc specified by p and Q can be

written in normal form as

bp,Qc = {p} ; [(λ i σ γ. p σ ∧Q i γ)]

The normal form {r} ; [R] can be interpreted as a simple two-player game [Back and

von Wright, 1998]: given an initial state, first the angel chooses an intermediate exit

and an intermediate state. Then, for any possible intermediate exit and intermediate

state, the demon choses the final exit and final state. An interesting observation is

how the intermediate state space is constructed in the proof. The precondition is of

type PΣ, the indexed postcondition is of type PΓI , and the intermediate condition

is of type P(PΓI). That is, an intermediate state is a set of final states. Given initial

state σ, the angel first picks an indexed predicate P of type PΓI such that S P σ

holds and then the demon picks at each exit i a final state γ such that P i γ holds.

To illustrate this with a concrete example, consider statement S with two exits, a

normal and an exceptional exit, I = {nrl, exc}, and we write (q1, q2) as an abbreviation

of {nrl 7→ q1, exc 7→ q2}. Recalling that skip = jump nrl, we define raise = jump exc

and S = skipt raise. The weakest precondition of S is S (q1, q2) = (q1 ∨ q2). The

normal form of S is {r}; [R] such that r p (q1, q2) ≡ p = (q1 ∨ q2) and R = (r1, r2)

where r1 (q1, q2) γ1 ≡ q1 γ1 and r2 (q1, q2) γ2 ≡ q2 γ2. From any precondition p, the

normal angelic update {r} = {(r ,⊥)} always exits normally. However, intuitively it

can choose to go to the intermediate state (p, false), which represents either exiting

normally with postcondition p or exiting exceptionally with false, it can also choose to

go to the intermediate state (false, p), which represents either exiting normally with

postcondition false or exiting exceptionally with p, or it can choose to establish any

38

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

(q1, q2) where p = (q1 ∨ q2). In case of (p, false), the next statement, [(r1, r2)], forces

r1 to be chosen (r2 is ⊥ due to false, according to the definition) and S exits normally

with p, as skip does. In case of (false, p), the next statement, [(r1, r2)], forces r2 to

be chosen (r1 is ⊥ due to false, according to the definition) and S exits exceptionally

with p, as raise does.

As a second example, consider statement S defined by S = skipu raise. The

weakest precondition of S is S (q1, q2) = (q1 ∧ q2). The normal form of S is {r}; [R]

such that r p (q1, q2) ≡ p = (q1 ∧ q2), and R = (r1, r2) where r1 (q1, q2) γ1 ≡ q1 γ1,

r2 (q1, q2) γ2 ≡ q2 γ2. From any precondition p, the normal angelic update {r} =

{(r ,⊥)} exits normally. It can choose to go in the state (p, p) or it can choose to

establish (q1, q2) where p = (q1 ∧ q2). In case of (p, p) in the intermediate state, the

next statement, [(r1, r2)] can choose r1 and exit normally with p, as skip does, or

choose r2 and exit exceptionally with p, as raise does.

In principle, sequential composition at exit other than nrl, angelic update, demonic

choice, and angelic choice are not necessary to express an arbitrary monotonic indexed

predicate transformer. Still, we consider them for symmetry reasons and to be able

to define concrete programming constructs in terms of those.

5.2 Normal Form of Conjunctive Indexed Predi-

cate Transformers

Statements stop, jump i , assumption [P], and demonic update [R] are universally

conjunctive, and sequential composition ;i and demonic choice u preserve universal

conjunctivity. We show that in turn every universally conjunctive indexed predi-

cate transformer can be expressed by a statement consisting only of normal demonic

39

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

update, with one relation for each exit.

Lemma 5.1. X If S is a universally conjunctive indexed predicate transformer, then

for all indexed predicates Q and all states σ:

S Q σ ≡ ∧s{P | P ∧ S P σ} ≤ Q

Proof. When S Q σ = True:

∧s {P | P ∧ S P σ} ≤ Q

≡ 〈splitting ∧s〉

Q ∧ (∧s{P | P ∧ S P σ ∧ P 6= Q}) ≤ Q

≡ 〈∧-elimination〉

True

When S Q σ = False:

(∧s{P | P ∧ S P σ} ≤ Q

⇒ 〈S is monotonic, Theorem 3.13〉

S (∧s{P | P ∧ S P σ} ≤ S Q

≡ 〈definition of conjunctivity〉

(∧s{S P | P ∧ S P σ} ≤ S Q

⇒ 〈definition of ≤〉

(∧s{S P | P ∧ S P σ}σ)⇒ S Q σ

≡ 〈definition of ∧s〉

(∧s{S P σ | P ∧ S P σ})⇒ S Q σ

≡ 〈definition of ∧s , assumption S Q σ = false〉

true⇒ false

≡ 〈lattice property〉

False

Thus we know that S Q σ ≡ {P | P ∧ S P σ} ≤ Q

40

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Theorem 5.2. X Let S be an universally conjunctive indexed predicate transformer.

There exists a unique indexed relation R such that S = [R].

Proof. Let I be the exit indices of S . For arbitrary i ∈ I we define:

R i σ = ∧s{P i | P ∧ S P σ}

Then we calculate for any indexed predicate Q :

[R] Q σ

≡ 〈definition of R, definition of demonic update〉

∀ i . (∀ γ. (∧s{P i | P ∧ S P σ}) γ ⇒ Q i γ)

≡ 〈definition of ≤ on predicates〉

∀ i . ∧s {P i | P ∧ S P σ} ≤ Q i

≡ 〈definition of ≤ on indexed predicates〉

∧s {P | P ∧ S P σ} ≤ Q

≡ 〈Lemma 5.1〉

S Q σ

This shows that [R] = S . For uniqueness we have:

[R] = [R′]

≡ 〈antisymmetry〉

[R] v [R′] ∧ [R] w [R′]

≡ 〈definition of demonic update, definition of ≤, definition of v〉

∀ i .R i ⊇ R′ i ∧ R i v R′ i

≡ 〈antisymmetry〉

∀ i .R i = R′ i

≡ 〈equality of tuples〉

R = R′

41

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Lemma 5.2. X If S is conjunctive, then [tr S] ; S is universally conjunctive.

Proof. For arbitrary predicate S , we show that [tr S] ; S is terminating:

tr ([tr S] ; S)

= 〈definition of tr 〉

([S true] ; S) true

= 〈definition of sequential composition〉

[S true] (true[nrl← S true])

= 〈definition of assumption〉

S true⇒ (true[nrl← S true]) nrl

= 〈simplification of function update〉

S true⇒ S true

= 〈lattice property〉

true

Thus with Theorem 3.11, [tr S] ; S is universally conjunctive by definition.

Theorem 5.3. X Let S be an arbitrary positively conjunctive indexed predicate trans-

former. Then there exists a unique predicate p and a unique indexed relation R such

that S = {p} ; [R].

Proof. It is easily seen that we must choose p = tr S :

S = {p} ; [R]

⇒ 〈congruence〉

tr S = tr ({p} ; [R])

≡ 〈from definitions〉

tr S = (p ∧ tr [R])

≡ 〈from definitions〉

tr S = p

42

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

By Lemma 5.2 we have that {p} ; [R] is universally conjunctive. Then we can conclude

by Theorem 5.2 that some indexed relation R exists such that [tr S] ; S = [R], and by

the proof of that theorem, R i σ = ∧s{P i | P ∧ S P σ}. Then we have for arbitrary

indexed predicate Q :

({tr S} ; S) Q

≡ 〈from definitions〉

({tr S} ; [tr S] ; S) Q

≡ 〈definition of ;, assertion, assumption〉

tr S ∧ (tr S ⇒ S Q)

≡ 〈lattice property〉

tr S ∧ S Q

≡ 〈definition of tr S 〉

S true ∧ S Q

≡ 〈S is monotonic by Theorem 3.13〉

S Q

Thus S = {p} ; [R] for p and R as above.

5.3 Discussion

The normal forms not only give a uniform specification for certain categories of state-

ments, but also show the equivalence between all statements and monotonic indexed

predicate transformers by mutual inclusion (Theorems 3.10 and 5.1). From the next

chapter on these two terms will be used interchangeably.

43

Chapter 6

Fail-Safe Correctness and Fail-Safe

Refinement

In this section we study programs that use exception handling with termination model

semantics, as followed by C++ and Java [ISO, 2012; Gosling et al., 2013]. We model

statements with termination model semantics as double-exit predicate transformers

with a normal exit and a single exceptional exit, i.e., the exit indices being I =

{nrl, exc}. Correspondingly, we write (q1, q2) as an abbreviation of {nrl 7→ q1, exc 7→

q2}. Thus, the meaning of total correctness becomes

[[p]] S [[q1, q2]] ≡ Under precondition p, statement S terminates and

– on normal termination q1 holds finally,

– on exceptional termination q2 holds finally.

In addition to the statements defined in Chapter 3, we define a few more statements

that are commonly used in programming languages. We define ; ; as the abbrevi-

ation of ;exc, the exceptional composition, and raise as the abbreviation of jump exc,

which terminates exceptionally without changing the state. The common try S catch T

44

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

statement with body S and handler T is just a different notation for exceptional com-

position. The statement try S catch T finally U with finalization U can be defined in

terms of sequential and exceptional composition. The finalization U is executed either

after S succeeds, after S fails and T succeeds, or after S fails and T fails, in which

case the whole statement fails whether U succeeds or fails; see Figure 6.1.

try S catch T =̂ S ; ; T

try S catch T finally U =̂ (S ; ; (T ; ; (U ; raise))) ; U

skip

(a) skip

raise

(b) raise

S

T

(c) try S catchT

S

T

U

U

(d) try S catchT finallyU

normal exit exceptional exit

Figure 6.1: Symmetry on Two Exits

The assignment statement x := E is defined in terms of an update statement that

affects only component x of the state space. For this we assume that the state is a

tuple and variables select elements of the tuple.

With x being a variable and e being a relation, the relational assignment x := e

modifies component x of the state space to be e and leaves all other components

of the state space unchanged; the initial and final state spaces are the same. The

nondeterministic relational assignment x :∈ e modifies component x of the state space

45

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

to be any element of the set e. Provided that the state space consists of variables x ,

y we define:

x := e =̂ λ (x , y). λ (x ′, y ′). x ′ = e (x , y) ∧ y ′ = y

x :∈ e =̂ λ (x , y). λ (x ′, y ′). x ′ ∈ e (x , y) ∧ y ′ = y

The (deterministic) assignment x := E fails if program expression E is undefined,

otherwise it succeeds and assigns the value of E to x . The nondeterministic assign-

ment x :∈ E fails if E is undefined, otherwise it succeeds and assigns any element of

the set E to x , the choice being demonic:

x := E =̂ {∆E ,¬∆E} ; [x := ‘E ’]

x :∈ E =̂ {∆E,¬∆E} ; [x :∈ ‘E’]

The check statement check B terminates normally if Boolean expression B is defined

and evaluates to True, and terminates exceptionally if B is undefined or evaluates to

False.

check B =̂ {∆B ∧ ‘B ’,¬∆B ∨ ¬‘B ’}

The conditional statement if B then S else T fails if B is undefined, otherwise continues

with either S or T , depending on the value of B :

if B then S else T =̂ {∆B ,¬∆B} ; (([‘B ’] ; S) u ([¬‘B ’] ; T))

if B then S =̂ if B then S else skip

The while loop while B do S , in which B is a Boolean expression and S is a statement,

is defined as the least fixed point of λX . if B then(S ;X) with respect to the refinement

ordering, i.e.,

while B do S =̂ (µX · if B then(S ; X))

In general we have the following sub-conjunctivity property:

S (q1, q2) ∧ S (q ′1, q
′
2)⇐ S (q1 ∧ q ′1, q2 ∧ q ′2)

46

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

As a direct consequence of sub-conjuctivity we get following sub-separation property:

S (q1, true) ∧ S (true, q2)⇐ S (q1, q2)

Unfortunately the direction of the implication does not allow the reasoning to be

separated in general: we would like from S (q1, true) (succeeding with q1 or failing

in any state) and S (true, q2) (succeeding in any state or failing with q2) to deduce

S (q1, q2). For any universal conjunctive statement S separation holds:

S (q1, true) ∧ S (true, q2) = S (q1, q2)

Statements abort, stop, skip, raise, assumption [q1, q2], and demonic update [r1, r2] are

positively conjunctive. Sequential composition, exceptional composition, and demonic

choice preserve positive conjunctivity. The assertion {g1, g2} is conjunctive only if q1

excludes q2, i.e., q1 ∧ q2 = false. Angelic choice and angelic update are in general not

conjunctive either. Since separation is a desirable property, in this section we mainly

consider conjunctive statements; all of the statements considered in the following

theorems are conjunctive.

6.1 Total Correctness

Suppose the state space of p is a tuple with x as an element, e.g., (x , . . .), we write

p[x\v] for the predicate resulted from replacing free variable x by the value of ex-

pression v whenever evaluating predicate p, i.e., λ (x , . . .). p (v (x , . . .), . . .). The next

theorem states the basic properties of total correctness, most part of it as the instan-

tiation of Theorem 3.18 for double-exit programs.

Theorem 6.1. X Let p, q1, q2, g1, g2 be predicates, r1, r2 be relations, B, E, E be a

program expressions, and S, T be statements:

[[p]] abort [[q1, q2]] ≡ p = false

[[p]] stop [[q1, q2]] ≡ True

47

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

[[p]] skip [[q1, q2]] ≡ p ⇒ q1

[[p]] raise [[q1, q2]] ≡ p ⇒ q2

[[p]] [g1, g2] [[q1, q2]] ≡ p ≤ (g1 ⇒ q1) ∧ (g2 ⇒ q2)

[[p]] [r1, r2] [[q1, q2]] ≡ (∀σ. p σ ⇒ (r1 σ ≤ q1) ∧ (r2 σ ≤ q2))

[[p]] x := E [[q1, q2]] ≡ (∆E ∧ p ≤ q1[x\‘E ’]) ∧ (¬∆E ⇒ q2)

[[p]] x :∈ E [[q1, q2]] ≡ (∆E ∧ p ⇒ ∀ x ′ ∈ ‘E’. q1[x\x ′]) ∧ (¬∆E⇒ q2)

[[p]] S ; T [[q1, q2]] ≡ ∃ h. [[p]] S [[h, q2]] ∧ [[h]] T [[q1, q2]]

[[p]] S ; ; T [[q1, q2]] ≡ ∃ h. [[p]] S [[q1, h]] ∧ [[h]] T [[q1, q2]]

[[p]] S u T [[q1, q2]] ≡ [[p]] S [[q1, q2]] ∧ [[p]] T [[q1, q2]]

[[p]] check B [[q1, q2]] ≡ (∆B ∧ ‘B ’ ∧ p ⇒ q1) ∧

(∆B ∧ ¬‘B ’ ∧ p ⇒ q2) ∧

(¬∆B ∧ p ⇒ q2)

[[p]] if B then S else T [[q1, q2]] ≡ [[∆B ∧ ‘B ’ ∧ p]] S [[q1, q2]] ∧

[[∆B ∧ ¬‘B ’ ∧ p]] T [[q1, q2]] ∧

(¬∆B ∧ p ⇒ q2)

We immediately get following consequence rule for any statement S :

(p ′ ⇒ p) ∧ [[p]] S [[q1, q2]] ∧ (q1 ⇒ q ′1) ∧ (q2 ⇒ q ′2)⇒ [[p ′]] S [[q ′1, q
′
2]]

For conjunctive statement S we have also:

[[p]] S [[q1, q2]] ∧ [[p ′]] S [[q ′1, q
′
2]]⇒ [[p ∧ p ′]] S [[q1 ∧ q ′1, q2 ∧ q ′2]]

Separation arises as a special case:

[[p]] S [[q1, true]] ∧ [[p]] S [[true, q2]]⇒ [[p]] S [[q1, q2]]

48

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

6.2 Domains

For statements with two exits, the termination domain includes the normal termi-

nation domain, written as nr S , and the exceptional termination domain, written as

ex S :

tr S =̂ S (true, true)

nr S =̂ trnrl S = S (true, false)

ex S =̂ trexc S = S (false, true)

en S =̂ ¬S (false, false)

As a corollary of sub-conjunctivity, we have nr S ∧ex S ⇐ ¬en S for any statement S .

This can be strengthen to nr S ∧ ex S ≡ ¬en S if S is conjunctive. The next theorem

summarizes the basic properties of the domain operations, part of which being an

instantiation of Theorem 3.17.

Theorem 6.2. X Let S , T be double-exit predicate transformers, q1, q2 be predicates,

r1, r2 be relations, x be a variable, and E, B be program expressions, we have the

following theorem as instantiation of Theorem 3.17 for double-exit statements:

tr abort = false tr stop = true tr skip = true tr raise = true

nr abort = false nr stop = true nr skip = true nr raise = false

ex abort = false ex stop = true ex skip = false ex raise = true

en abort = true en stop = false en skip = true en raise = true

tr [g1, g2] = true nr [g1, g2] = ¬g2

ex [g1, g2] = ¬g1 en [g1, g2] = g1 ∨ g2

tr (x := E) = true tr (x :∈ E) = true

nr (x := E) = ∆E nr (x :∈ E) = ∆E

ex (x := E) = ¬∆E ex (x :∈ E) = ∆E⇒ (λσ. ‘E’σ = ∅)

en (x := E) = true en (x :∈ E) = ∆E⇒ (λσ. ‘E’σ 6= ∅)

49

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

tr (S ; T)⇒ tr S tr (S ; ; T)⇒ tr S

nr (S ; T)⇒ nr S nr (S ; ; T)⇐ nr S

ex (S ; T)⇐ ex S ex (S ; ; T)⇒ ex S

en (S ; T)⇒ en S en (S ; ; T)⇒ en S

tr (S u T) = tr S ∧ tr T nr (S u T) = nr S ∧ nr T

ex (S u T) = ex S ∧ ex T en (S u T) = en S ∨ en T

tr [r1, r2] = true nr [r1, r2] = (λσ. (∀ γ2.¬r2 σ γ2))

ex [r1, r2] = (λσ. (∀ γ1.¬r1 σ γ1)) en [r1, r2] = (λσ. (∃ γ1. r1 σ γ1) ∨

(∃ γ2. r2 σ γ2))

tr (check B) = true nr (check B) = ∆B ∧ ‘B ’

ex (check B) = ¬∆B ∨ ¬‘B ’ en (check B) = true

tr (if B then S else T) = (∆B ∧ ‘B ’⇒ tr S) ∧ (∆B ∧ ¬‘B ’⇒ tr T)

nr (if B then S else T) = ∆B ∧ (‘B ’⇒ nr S) ∧ (¬‘B ’⇒ nr T)

ex (if B then S else T) = (∆B ∧ ‘B ’⇒ ex S) ∧ (∆B ∧ ¬‘B ’⇒ ex T)

en (if B then S else T) = ∆B ⇒ (‘B ’ ∧ en S ∨ ¬‘B ’⇒ en T)

6.3 Fail-Safe Correctness

The notion of total correctness assumes that any possible failure has to be anticipated

in the specification; the outcome in case of failure is specified by the exceptional

postcondition, an implementation may not fail in any other way: a rather optimistic

point of view. We propose a new notion of fail-safe correctness, which weakens the

notion of total correctness by allowing also “true” exceptions. For orderly continuation

after an unanticipated exception, the restriction is that in that case, the state must

not change. Partial correctness does not guarantee termination [Back and von Wright,

1998]. In Sekerinski and Zhang [2011] we use “partial correctness” instead of “fail-safe

50

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

correctness” for lack of a better name.

For example, database transactions can be explained in terms of fail-safe correct-

ness: either a transaction succeeds, establishing the desired postcondition, or it fails

and the original state is restored. Another example for fail-safe correctness is the

recovery block for software fault tolerance [Horning et al., 1974; Randell, 1975]: a list

of alternative implementations is attempted in given order. If one alternative fails,

the original state is restored and the next attempted, until either one succeeds or

all fail. The design of class methods in robust object-oriented programs also follows

the principles of fail-safe correctness: if a method fails, it must at least establish the

object invariant as the alternative postcondition, such that program execution can

continue and methods of the object may still be called.

We introduce following notation:

〈|p|〉 S 〈|q1, q2|〉 ≡ Under precondition p, statement S terminates and

– on normal termination q1 holds finally,

– on exceptional termination p or q2 holds finally.

Both total correctness and fail-safe correctness guarantee termination when the pre-

condition holds. If 〈|p|〉 S 〈|q1, false |〉 holds, then statement S does not modify the state

when terminating exceptionally, and we write this more concisely as 〈|p|〉 S 〈|q1|〉. Let

p, q1, q2 be predicates:

〈|p|〉 S 〈|q1, q2|〉 =̂ p ⇒ S (q1, p ∨ q2)

〈|p|〉 S 〈|q1|〉 =̂ p ⇒ S (q1, p)

Total correctness implies fail-safe correctness, but not vice versa. The very definition

of fail-safe correctness breaks the duality between normal and exceptional postcondi-

tions that total correctness enjoys. This leads to some curious consequences that we

will explore.

51

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Theorem 6.3. X Let p, q1, q2, g1, g2 be predicates, r1, r2 be relations, B, E, E be

program expressions, and S, T be statements:

〈|p|〉 abort 〈|q1, q2|〉 ≡ p = false

〈|p|〉 stop 〈|q1, q2|〉 ≡ True

〈|p|〉 skip 〈|q1, q2|〉 ≡ p ⇒ q1

〈|p|〉 raise 〈|q1, q2|〉 ≡ True

〈|p|〉 [g1, g2] 〈|q1, q2|〉 ≡ (p ∧ g1 ≤ q1)

〈|p|〉 [r1, r2] 〈|q1, q2|〉 ≡ (∀σ. p σ ⇒ (r1 σ ≤ q1) ∧ (r2 σ ≤ p ∨ q2))

〈|p|〉 x := E 〈|q1, q2|〉 ≡ ∆E ∧ p ⇒ q1[x\‘E ’]

〈|p|〉 x :∈ E 〈|q1, q2|〉 ≡ ∆E ∧ p ⇒ ∀ x ′ ∈ ‘E’. q1[x\x ′]

〈|p|〉 S ; T 〈|q1, q2|〉 ≡ ∃ h. 〈|p|〉 S 〈|h, q2|〉 ∧ [[h]] T [[q1, p ∨ q2]]

〈|p|〉 S ; ; T 〈|q1, q2|〉 ≡ ∃ h. [[p]] S [[q1, h]] ∧ [[h]] T [[q1, p ∨ q2]]

〈|p|〉 S u T 〈|q1, q2|〉 ≡ 〈|p|〉 S 〈|q1, q2|〉 ∧ 〈|p|〉T 〈|q1, q2|〉

〈|p|〉 check B 〈|q1, q2|〉 ≡ ∆B ∧ ‘B ’ ∧ p ⇒ q1

〈|p|〉 if B then S else T 〈|q1, q2|〉 ≡ [[∆B ∧ ‘B ’ ∧ p]] S [[q1, p ∨ q2]] ∧

[[∆B ∧ ¬‘B ’ ∧ p]] T [[q1, p ∨ q2]]

The raise statement miraculously satisfies any fail-safe correctness specification by

failing and leaving the state unchanged. The rules for assignment and nondetermin-

istic assignment have only conditions in case the expression is defined; in case the

expression is undefined, the assignment fails without changing the state, thus satisfies

the fail-safe correctness specification automatically. Likewise, the check statement

and the conditional have only conditions in case B is defined. If B is undefined,

the statement fails without changing the state. We immediately get the following

consequence rule for any statement S :

〈|p|〉 S 〈|q1, q2|〉 ∧ (q1 ⇒ q ′1) ∧ (q2 ⇒ q ′2)⇒ 〈|p|〉 S 〈|q ′1, q ′2|〉

52

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Like for total correctness, this rule allows the postconditions to be weakened; however,

it does not allow the precondition to be weakened.

For S ; T and try S catch T let us consider the special case when q2 ≡ false:

〈|p|〉 S ; T 〈|q1|〉 ≡ ∃ h. 〈|p|〉 S 〈|h|〉 ∧ [[h]] T [[q1, p]]

〈|p|〉 try S catch T 〈|q1|〉 ≡ ∃ h. [[p]] S [[q1, h]] ∧ [[h]] T [[q1, p]]

The fail-safe correctness assertion for S ; T is satisfied if S fails without changing

the state, but if S succeeds with h, then T must either succeed with the specified

postcondition q1, or fail with the original precondition p. For the fail-safe correctness

assertion of try S catch T to hold, either S must succeed with q1, or fail with h, from

which T either succeeds with q1 or fails with the original precondition p.

6.4 Loop Theorems

Let pw be ranked predicates in which w ∈W is a well-founded set. The fundamental

rules for total correctness and fail-safe correctness of loops are as follows:

Theorem 6.4. X Assume that B is a Boolean program expression, q2 is a predicate

and S is a statement. Assume that pw for w ∈W is a ranked collection of predicates.

Then

∀w ∈W . [[pw ∧∆B ∧ ‘B ’]] S [[p<w , q2]]

⇒[[p]] while B do S [[p ∧∆B ∧ ¬‘B ’, (p ∧ ¬∆B) ∨ q2]]

and

∀w ∈W . 〈|pw ∧∆B ∧ ‘B ’|〉 S 〈|p<w , q2|〉

⇒〈|p|〉 while B do S 〈|p ∧∆B ∧ ¬‘B ’, q2|〉

These theorems separate the concerns of the two exits: on the normal exit, both

rules are similar as with one exit, except that the postconditions include the defined-

ness of the guard B . On the exceptional exit, the rule for total correctness is the

53

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

same as its counterpart with one exit [Back and von Wright, 1998]; on the exceptional

exit, it states that if the loop body S exits exceptionally with postcondition q2, then

the loop exits exceptionally with postcondition p ∧ ¬∆B (failure of the guard) or q2

(failure of the loop body).

6.5 Fail-Safe Refinement

Formal specification techniques allow expressing idealized specifications, which ab-

stract from restrictions that may arise in implementations. However, partial imple-

mentations are universal in software development due to practical limitations. In

software development, specifications are meant to be concise by stating abstractly

only the intention of a program rather than elaborating on a possible implementa-

tion. However, practical restrictions can prevent idealized specifications from being

fully implemented. In general, there are three sources of partiality in implementa-

tions: there may be inherent limitations of the implementation, some features may

intentionally not (yet) be implemented, or there may be a genuine fault.

As an example of inherent limitations of an implementation, consider a class for

the analysis of a collection of integers. The operations are initialization, inserting

an integer, and summing all its elements. Assume that int is a type for machine-

representable integers, bounded by min and max, and machine arithmetic is bounded,

i.e., an overflow caused by arithmetic operations on int is detected and raises an

exception, as available in x86 assembly language [Intel, 2013] and .NET [Microsoft,

2013b]. We define:

class IntCollection

bag(int) b

invariant inv : ∀ x ∈ b. min ≤ x ≤ max

method init()

54

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

b := []

method insert(n : int)

b := b + [n]

method sum() : int

result :=
∑

x ∈ b · x

This specification allows an unbounded number of machine-representable integers to

be stored in the abstract bag b, which is an unordered collection that, unlike a set,

allows duplication of elements, The empty bag is written as [], the bag consisting

only of a single n as [n], union of bags b, b ′ as b + b ′, and the sum of all elements of

bag b as
∑

x ∈ b · x . (A model of bags is a function from elements to their number

of occurrences in the bag.) However, in an implementation, method init (object

initialization) and insert may fail due to memory exhaustion at heap allocation (and

raise an exception), and method sum may fail due to overflow of the result (and

raise an exception). Even if the result of sum is machine-representable, the iterative

computation of the sum in a particular order may still overflow. Hence no realistic

implementation of this class can be faithful. Still, it is a useful specification because

of its clarity and brevity. Obviously, using mathematical integers instead of machine-

representable integers in the specification would make implementations even “more

partial”.

The second source of partiality is intentionally missing features. The evolutionary

development of software consists of anticipating and performing extensions and con-

tractions [Parnas, 1978]. Anticipated extensions can be expressed by features that

are present but not yet implemented. Contractions lead to obsolete features that will

eventually be removed. In both cases, implementations of features may be missing. A

common practice is to raise an exception if a feature is not yet implemented. Here is a

recommendation from the Microsoft Developer Documentation for .NET [Microsoft,

55

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

2013a]:

static void FutureFeature()

{
// Not developed yet.

throw new NotImplementedException();

}

The third source of partiality is genuine faults. These may arise from the use

of software layers that are themselves faulty (operating system, compilers, libraries),

from faults in the hardware (transient or permanent), or from errors in the design

(errors in the correctness argument, incorrect hypothesis about the abstract machine).

Our goal is to contribute to a method of program refinement that allows for par-

tial implementations that guarantee “safe” failure if the desired outcome cannot be

computed. For program statements S (the specification) and T (the implementa-

tion), the total refinement of S by T means that either T terminates normally and

establishes a postcondition that S may also establish on normal termination, or T

terminates exceptionally and establishes a postcondition that S may also establish on

exceptional termination. As a relaxation, fail-safe refinement allows T additionally

to terminate exceptionally provided the initial state is preserved. The intention is

that the implementation T tries to meet specification S , but if it cannot do so, T

can fail safely by not changing the state and terminating exceptionally. When apply-

ing fail-safe refinement to data refinement, an implementation that cannot meet the

specification and fails may still change the state as long as the change is not visible

in the specification.

The exception handling of the Eiffel programming language provided the inspira-

tion for fail-safe refinement [Meyer, 1997]: in Eiffel, each method has one entry and

two exits, a normal and an exceptional exit, but is specified by a single precondition

and single postcondition only. The normal exit is taken if the desired postcondition

56

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

is established and the exceptional exit is taken if the desired postcondition cannot be

established, thus allowing partial implementations. In Eiffel, the postcondition must

be evaluated at run-time to determine if the normal or exceptional exit is taken (and

hence must be efficiently computable). Fail-safe refinement is more general in the

sense that it does not require that a postcondition to be evaluated at run-time, as

long as faults are detected at run-time in some way. Fail-safe refinement is related to

this notion of fail-safe correctness in the same sense as total refinement is related to

total correctness.

Retrenchment also addresses the issue of partial implementations, but with state-

ments with one entry and one exit [Banach et al., 2007]: the refinement of each

operation of a data type requires a within and a concedes relation that restrict the

initial states and widen the possible final states of an implementation. Compared to

retrenchment, fail-safe refinement does not require additional relations to be speci-

fied. Fail-safe refinement is more restrictive in the sense that initial states cannot be

restricted and the final state cannot be widened on normal termination. In fail-safe

refinement, the caller is notified through an exception of the failure; retrenchment is

a design technique that is independent of exception handling.

In Sekerinski and Zhang [2012] we use “partial refinement” for fail-safe refinement

for lack of a better name. The term “partial refinement” has been introduced in [Back,

1981] for statements with one exit. There, partial refinement allows the domain of

termination to be reduced. In this thesis, fail-safe refinement requires termination,

either on the normal or exceptional exit. Partial refinement in [Jeffords et al., 2009]

refers to transition system refinement with a partial refinement relation; the approach

is to construct fault-tolerant systems in two phases, first with an idealized specification

and then adding fault-tolerant behaviour. Here we use fail-safe refinement specifically

for statements with two exits.

57

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

We relax total refinement to fail-safe refinement and study its application. Fail-safe

refinement of double-exit predicate transformers S , T is defined by:

S @∼ T =̂ S u raise v T

This implies that on normal exit, T can only do what S does. However, T may fail

when S does not, but then has to preserve the initial state. For example, in such a

case T would still maintain an invariant and signal to the caller the failure. Note that

the types of S and T require the initial state space to be the same as the final state

space on exceptional exit. Partial refinement is related to fail-safe correctness in the

same way as total refinement is related to total correctness:

Theorem 6.5. X For double-exit predicate transformers S , T :

S v T ≡ ∀ p, q1, q2. [[p]] S [[q1, q2]]⇒ [[p]] T [[q1, q2]]

S @∼ T ≡ ∀ p, q1, q2. 〈|p|〉 S 〈|q1, q2|〉 ⇒ 〈|p|〉T 〈|q1, q2|〉

Proof. Here we give proof only for the second one. Unfolding the definitions yields:

∀ q1, q2. (S (q1, q2) ∧ q2) ≤ T (q1, q2)

≡ ∀ p ′, q ′1, q
′
2. p
′ ≤ S (q ′1, p

′ ∨ q ′2)⇒ p ′ ≤ T (q ′1, p
′ ∨ q ′2)

This is shown by mutual implication. For any p ′, q ′1 and q ′2, by letting q1 and q2 to be

q ′1 and p ′∨q ′2 respectively, it is straightforward that the left side implies the right side.

Implication of the other direction is more involved: for any p and q1, letting p ′, q ′1 and

q ′2 to be S (q1, q2)∧q2, q1 and q2 respectively gives us (S (q1, q2)∧q2) ≤ S (q1, S (q1, q2)∧

q2 ∨ q2)⇒ (S (q1, q2)∧ q2) ≤ T (q1, S (q1, q2)∧ q2 ∨ q2). Since S (q1, q2)∧ q2 ∨ q2 = q2,

we have (S (q1, q2) ∧ q2) ≤ S (q1, q2)⇒ (S (q1, q2) ∧ q2) ≤ T (q1, q2), which reduces to

S (q1, q2) ∧ q2 ≤ T (q1, q2), thus the left side is implied.

Total refinement implies fail-safe refinement (in the same way as total correctness

implies fail-safe correctness):

58

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Theorem 6.6. X For predicates p, q1, q2 and double-exit predicate transformers S ,

T :

[[p]] S [[q1, q2]]⇒ 〈|p|〉 S 〈|q1, q2|〉

S v T ⇒ S @∼ T

In addition to stop as top element, fail-safe refinement has also raise as top element:

Theorem 6.7. X For double-exit predicate transformers S , T :

S @∼ raise

S @∼ stop

The fact that S@∼raise may be surprising, but it does allow for intentionally missing

features, the second source of partiality discussed earlier on. Like total refinement,

fail-safe refinement is a preorder, as it is reflexive and transitive:

Theorem 6.8. X For double-exit predicate transformers S , T , U :

S @∼ S

S @∼ T ∧ T @∼ U ⇒ S @∼ U

Fail-safe refinement is not antisymmetric, for example stop@∼ raise and raise@∼ stop,

but stop 6= raise. With respect to fail-safe refinement, sequential composition is mono-

tonic only in its first operand, while demonic choice and conditional statement are

monotonic in both operands:

Theorem 6.9. X For statements S , S ′, T :

S @∼ S ′ ⇒S ; T @∼ S ′ ; T

S @∼ S ′ ∧ T @∼ T ′ ⇒S u T @∼ S ′ u T ′

∧ if B then S else T @∼ if B then S ′ else T ′

59

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

However, S @∼ S ′ does not imply T ; S @∼ T ; S ′ in general, since T might modify

the initial state on normal exit. Similarly, S @∼ S ′ implies neither S ; ; T @∼ S ′ ; ; T nor

T ; ; S @∼ T ; ; S ′.

For data refinement, which makes the data structure more concrete while the

correctness is maintained in all circumstances and for all purposes [He et al., 1986],

we extend the refinement relationships to allow two double-exit predicate transformers

on possibly different state spaces. We extend the definition of data refinement with

double-exit predicate transformer, e.g., [Gardiner and Morgan, 1991; von Wright,

1994], which uses an representation operation to link concrete and abstract spaces,

to two postconditions. Suppose S : PΣ × PΣ → PΣ and T : PΓ × PΓ → PΓ are

double-exit predicate transformers on Σ and Γ respectively, and r : Σ → PΓ is the

abstraction relation from Σ to Γ. Then we define:

Tr =̂ [r] ; ((T ; {r−1}) ; ; {⊥, r−1})

The composition (T ;{r−1}); ;{⊥, r−1} applies the angelic update {r−1} to the normal

outcome of T , terminating normally, and applies {r−1} to the exceptional outcome of

T , terminating exceptionally. This can be equivalently expressed as (T ; ; {⊥, r−1}) ;

{r−1}. The demonic update [r] maps the states in Σ to states in Γ. Then, after

executing T , {r−1} and {⊥, r−1} map the states back to Σ from states in Γ, on each

exit. In other words, Tr is the projection of T on PΣ× PΣ→ PΣ through relation

r . Now we can define total data refinement and partial data refinement between S

and T through r as:

S vr T =̂ S v Tr

S @∼r
T =̂ S @∼ Tr

Note that here we could not define S @∼r
T as (S ; [r]) ; ; [r] @∼ [r] ; T , due to the

restriction of @∼ that on both sides the initial state space must be the same as the

exceptional state space, which [r] ; T obviously does not satisfy.

60

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Example: Limitation in Class Implementation

Now let us revisit the introductory example of the class IntCollection. We consider

an implementation using a fixed-size array. Using dynamic arrays or a heap-allocated

linked list would be treated similarly, as an extension of a dynamic array and heap

allocation may fail in the same way as a fixed-sized array may overflow. Since repre-

senting dynamic arrays or heaps complicates the model, we illustrate the refinement

step using fixed-sized arrays. Let SIZE be a constant of type int:

class IntCollection1

int l , int[] a

invariant inv1 : 0 ≤ l ≤ SIZE ∧ len(a) = SIZE ∧
(∀ x . 0 ≤ x < l ⇒ min ≤ a[x] ≤ max)

method init1()

l := 0 ; a := new int[SIZE] ;

method insert1(n : int)

l , a[l] := l + 1, n ;

method sum1() : int

int s , i := 0, 0 ;

{loop invariant linv : 0 ≤ i ≤ l ∧
s =

∑
x ∈ [0..i) · a[x] ∧min ≤ s ≤ max)}

while i < l do

s , i := s + a[i], i + 1 ;

{s =
∑

x ∈ 0..l − 1 · a[x] ∧min ≤ s ≤ max, inv1}
result := s

The state spaces of classes IntCollection and IntCollection1 are bag(int) and int× int[]

respectively. The invariant that links the state spaces is b = bagof (a[0..l − 1]),

where bagof converts an array to a bag with the same elements. The statement

a := new int[SIZE] might fail due to heap allocation failure. Writing sn for n times

repeating sequence s , allocation of an integer array is define as:

x := new int[n] =̂ [true, true] ; x := [0]n

61

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

where [true, true] might succeed or fail. Here the three methods refine those in class

IntCollection respectively, formally init @∼rel
init1, insert @∼rel

insert1, and sum @∼rel1

sum1, in which the relations are given as rel b (l , a) ≡ b = bagof (a[0..l − 1]) and

rel1 (b, result) (l , a, result′) ≡ b = bagof (a[0..l − 1]) ∧ result = result′, since result is

part of the state space in sum1. We only give the proof sketch of the third one.

Using body and loop as the abbreviations of s , i := s + a[i], i + 1 and while i <

l do s , i := s + a[i], i + 1 respectively, and defining B = (λ(s , i , l , a, result) · i < l),

linvw = (linv ∧ (λ(s , i , l , a, result) · w = l − i)), we have ∆B = true and:

[[linv ∧∆B ∧ B]] body [[linv<w , linv]]

According to Theorem 6.4 we have

[[linv ∧ (λ(s , i , l , a, result) · s = 0 ∧ i = 0)]] loop [[linv ∧∆B ∧ ¬B , linv]]

and linv ∧ ∆B ∧ ¬B ⇒ s =
∑

x ∈ 0..l − 1 · a[x]. We require that the exceptional

postconditions must be independent of result since no value will be returned in failures.

With the correctness rule for sequential composition we know that for arbitrary q1,

q2:

[[(λ(l , a, result) · q1 (l , a,
∑

x ∈ 0..l − 1 · a[x])) ∧ q2]] sum1 [[q1, q2]]

Since for arbitrary q ′1, q ′2,

sum (q ′1, q
′
2) =(λb, result ·q ′1 (

∑
x ∈ b · x , b) ∧min ≤

∑
x ∈ b · x ≤ max) ∧ q ′2

by definition we know that sum @∼rel1
sum1.

Furthermore, inv1 (l , a) ∧ rel b (l , a) ⇒ inv b, which means that the original in-

variant inv is preserved by the new invariant inv1 through relation rel . In sum1,

local variables s and i would be erased on both exits, thus in exceptional termination

caused by arithmetic overflow inside the loop, the original state (l , a) remains the

same, maintaining the invariant on exceptional exit.

62

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Example: Incremental Development

Another use of fail-safe refinement is to express incremental development. When each

of two programs handles some cases of the same specification, then their combination

can handle no fewer cases, while remaining a fail-safe refinement of the specification:

S @∼ if B then T else raise∧S @∼ if B ′ then T ′ else raise

⇒S @∼ if B then T else (if B ′ then T ′ else raise)

Moreover, for conditional disjunction ∨c, we have

if B then T else (if B ′ then T ′ else raise)

= if B ∨c B ′ then(if B then T else T ′) else raise

which allows the combination of more than two such programs in a switch-case style,

since the right-hand side is again in the “if . . . then . . . else raise” form. With more

and more such partial implementations combined this way, ideally more cases can be

handled incrementally.

6.6 Discussion

We introduced fail-safe correctness for modelling programs that can fail “safely”, and

fail-safe refinement for the description of programs that are unable to fully implement

their specifications. Using double-exit predicate transformers for the semantics of

statements allows us to specify the behaviour on both normal and exceptional exits.

King and Morgan [1995] as well as Watson [2002] present a number of rules for total

refinement, although using different programming constructs: S > T , pronounced “S

else T ”, can be defined here as Su(T ;raise), the specification statement x : [p, q1 > q2]

with frame x can be defined here as {p} ; [q1, q2], where q1, q2 lifts predicates q1, q2

to relations over x , the exception block [[S]] with raise H in its body, where H is the

exception handler, can be defined here as S ; ; H . This allows their total refinement

63

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

rules to be used here. However, the purpose of fail-safe refinement is different and we

would expect different kinds of rules needed.

For two sources of partiality, inherent limitations of an implementation and in-

tentionally missing implementation, the two examples in Section 6.5 illustrate how

fail-safe refinement can be used to help in reasoning. For the third source of par-

tiality, genuine faults, the approach needs further elaboration. In next chapter, we

apply the notions of fail-safe correctness to three design patterns for fault tolerance,

rollback, degraded service, and recovery block. These ideas can be carried over to

fail-safe refinement.

Implementation restrictions are also addressed by IO-refinement, which allows the

type of method parameters to be changed in refinement steps [Boiten and Derrick,

1998; Banach et al., 2007; Derrick and Boiten, 2001; Mikhajlova and Sekerinski, 1997;

Stepney et al., 1998]. Fail-safe refinement and IO-refinement are independent of each

other and can be combined.

64

Chapter 7

Design Patterns for The

Termination Model

In this section we illustrate the use of total correctness and fail-safe correctness with

six design patterns, and three of them are with loops. These patterns are studied

in [Sekerinski, 2011], providing fault-tolerant solutions for different problems.

7.1 Design Patterns without Loops

Rollback

When a statement fails, it may leave the program in an inconsistent state, for example

in one in which an invariant does not hold and from which another failure is likely,

or in an undesirable state, for example one in which the only course of action is

termination of the program. We give a pattern for rolling back to the original state

such that the failure is masked, meaning that is it not visible to the outside. Rolling

back relies on a procedure backup, which makes a copy of the state, and a procedure

restore, which restores the saved state. We formalize this by requiring that backup

65

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

establishes a predicate k , which restore requires to roll back, and which the attempted

statement, called S , has to preserve in case of failure. The backup may consist of a

copy of all variables in main memory or secondary storage, or a partial or compressed

copy, as long as a state satisfying k can be established. The attempted statement

S does not need to preserve k in case of success, e.g., can overwrite the backup of

the variables. We let statement T do some “cleanup” after restoring to achieve the

desired postcondition.

Theorem 7.1. X Let k, p, q be predicates and let backup, restore, S , T be state-

ments. If

〈|p|〉 backup 〈|p ∧ k |〉 (establishes k from p or fails with p)

[[k]] restore [[p]] (restores p from k)

[[p ∧ k]] S [[q , k]] (establishes q or fails with k)

〈|p|〉T 〈|q |〉 (establishes q or fails with p)

then:

〈|p|〉 backup ; try S catch (restore ; T) 〈|q |〉

Procedure backup may either fail with p or succeed with p ∧ k , but restore must

always succeed. The cleanup T must either succeed with q or fail with its precondition

p. Thus it can be implemented by raise, which would be an example of re-raising an

exception.

Degraded Service

Suppose that two or more statements achieve the same goal, but some statements are

preferred over others—the preferred one may be more efficient, may achieve a higher

precision of numeric results, may transmit faster over the network, may achieve a

higher sound quality. If the most preferred one fails, we may fall back to one that is

66

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

less desirable, but more likely to succeed, and if that fails, fall back to a third one,

and so forth. The least preferred one may simply inform the user of the failure. We

call this the pattern of degraded service. In the formulation below degraded service

is combined with rollback such that each attempt starts in the original state, rather

than in the state that was left from the previous attempt. Hence, all alternatives have

to adhere to the same specification, but try to satisfy that by different means. In case

all attempts fail, the failure is propagated to the user.

Theorem 7.2. X Let k, p, q be predicates and let backup, restore, S1, S2 be state-

ments. If

〈|p|〉 backup 〈|p ∧ k |〉 (establishes k from p or fails with p)

[[k]] restore [[p ∧ k]] (restores p from k)

[[p ∧ k]] S1 [[q , k]] (establishes q or fails with k)

[[p ∧ k]] S2 [[q , k]] (establishes q or fails with k)

then:

〈|p|〉 backup ; try S1 catch (restore ; try S2 catch (restore ; raise)) 〈|q |〉

The theorem readily generalizes to more than two attempts.

Recovery Block

The recovery block specifies n alternatives together with an acceptance test [Horning

et al., 1974]. The alternatives are executed in the specified order. If the acceptance

test at the end of an alternative fails or an exception is raised within an alternative,

the original state is restored and the next alternative attempted. If an acceptance test

passes, the recovery block terminates. If the acceptance test fails for all alternatives,

the recovery block fails, possibly leading to alternatives taken at an outer level. Here

is the originally suggested syntax of [Randell, 1975] and a formulation with try-catch

67

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

statements [Sekerinski, 2011]; B is the acceptance test:

ensure B backup ;

by S1 try (S1 ; check B)

else by S2 catch

else by S3 restore ;

else raise try (S2 ; check B)

catch

restore ;

try (S3 ; check B)

catch (restore ; raise)

The acceptance test does not have to be the complete postcondition; that would be

rather impractical in general. However, suppose that we know that alternative Si

terminates with qi , if it succeeds. If we can devise a predicate Bi such that qi ∧ ‘Bi ’

implies the desired postcondition q , then Bi is an adequate acceptance test for Si ;

for this each alternative has to have its own acceptance test, a possibility already

mentioned in [Randell, 1975]:

Theorem 7.3. X Let k, p, q, q1, q2, q3 be predicates, let B1, B2, B3 be program

expressions, and let backup, restore, S1, S2, S3 be statements. If

〈|p|〉 backup 〈|p ∧ k |〉 (establishes k from p or fails with p)

[[k]] restore [[p ∧ k]] (restores p from k)

[[p ∧ k]] S1 [[q1 ∧ k , k]] (establishes q1 or fails with k)

[[p ∧ k]] S2 [[q2 ∧ k , k]] (establishes q2 or fails with k)

[[p ∧ k]] S3 [[q3 ∧ k , k]] (establishes q3 or fails with k)

q1 ⇒ ∆B1 q1 ∧ ‘B1’⇒ q

q2 ⇒ ∆B2 q2 ∧ ‘B2’⇒ q

q3 ⇒ ∆B3 q3 ∧ ‘B3’⇒ q

68

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

then:

〈|p|〉
backup ;

try (S1 ; check B1)

catch

restore ;

try (S2 ; check B2)

catch

restore ;

try (S3 ; check B3)

catch (restore ; raise)

〈|q |〉

More generally, partial acceptance tests in form of additional check statements can

be carried out anywhere within an alternative, rather than only at the end; failure

should be detected early such that resources are not wasted.

The theorem is a consequence of degraded service with rollback, generalized to

three attempts, by replacing S1 by S1 ; check B1, The conclusion follows immedi-

ately provided that [[p ∧ k]] S1 ; check B1 [[q , k]], . . . hold. Given [[p ∧ k]] S1 [[q1 ∧ k , k]],

q1 ⇒ ∆B1, and q1 ∧ ‘B1’⇒ q , . . . this follows by the rules for total correctness asser-

tions.

7.2 Design Patterns with Loops

Repeated Attempts

Failures may be transient, e.g., because environmental influences, unreliable hardware,

or temporary usage of resources by other programs. In such cases, a strategy is

to repeat the failing statement, perhaps after a delay. In the pattern of repeated

attempts, statement S is attempted at most n times, n ≥ 0. When S succeeds, the

69

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

n > 0

n = 0

S

n := −1
T

n := n−1

raise

p′

+
p∧
n > 0

−

−

+

q∧
n > 0

q∧
n = −1

h∧
n > 0

p∧
n > 0

p∧
n ≥ 0

p∧
n = 0∨
q∧
n = −1

pq

p

p′ = p ∧ n ≥ 0∨
q ∧ n = −1

(a) Repeated attempts

backup

n > 0

n = 0

S

n := −1

restore

n := n−1

raise

p′

p

+
p ∧ k∧
n > 0

−

−

+

q∧
n > 0

q∧
n = −1

k∧
n > 0

p ∧ k∧
n > 0

p ∧ k∧
n ≥ 0

p ∧ k∧
n = 0∨
q∧
n = −1

pq

p

p

p

p′ = p ∧ k ∧ n ≥ 0∨
q ∧ n = −1

(b) Repeated attempts with
rollback

Bool
done :=

false

B′

¬done

S

done :=
true

T

raise

p′

p

+ pw ∧∆B ∧ ‘B’∧
¬done

−

−

+

q∧
¬done

q∧
done

h≤w∧
¬done

p<w
¬done

p∧
¬done∨
q∧
done

pq

p

p

p

B ′ = ¬done ∧c B
p′ = p ∧ ¬done∨

q ∧ done

(c) Conditional retry

normal exit exceptional exit

Figure 7.1: Flowcharts of Three Design Patterns with Loops

whole statement succeeds, if S fails n times, the whole pattern fails, see Figure 7.1.

Theorem 7.4. X Let p, q be predicates that are independent of integer variable n,

let S , T be statements that do not assign to n, and let ra be defined by:

ra = while n > 0 do

try (S ; n := −1)

catch (T ; n := n − 1) ;

if n = 0 then raise

70

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

If

[[p]] S [[q , h]] (establishes q from p or fails with h)

[[h]] T [[p]] (establishes p from h)

then:

〈|p|〉 ra 〈|q |〉

Proof. Let

loop = while n > 0 do

try (S ; n := −1)

catch (T ; n := n − 1)

and let

p ′ = n ≥ 0 ∧ p ∨ n = −1 ∧ q

v ′ = (λ (n, σ). n + 1)

l ′ = (λ n n ′. n < n ′)

B ′ = n > 0

S ′ = try (S ; n := −1)

catch (T ; n := n − 1)

q ′2 = n ≥ 0 ∧ p

then

(∀w ∈W . [[p ′w ∧∆B ′ ∧ ‘B ′’]] S ′ [[p ′<w , q
′
2]])

From Theorem 6.4, we have

[[p ′]] while B ′ do S ′ [[p ′ ∧∆B ′ ∧ ¬B ′, (p ′ ∧ ¬∆B ′) ∨ q ′2]]

thus

[[n ≥ 0 ∧ p ∨ n = −1 ∧ q]] loop [[n = 0 ∧ p ∨ n = −1 ∧ q , n ≥ 0 ∧ p]]

so

〈|p|〉 ra 〈|q |〉

71

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Repeated Attempts with Rollback

This pattern is a special case of the last one. It assumes that if S fails, T can re-

establish the original state. This can be achieved by rolling back, provided that an

initial backup is made, see Figure 7.1.

Theorem 7.5. X Let p, q be predicates in which integer variable n does not occur,

let S , backup, restore be statements that do not assign to n, and let rr be defined by:

rr = backup ;

while n > 0 do

try (S ; n := −1)

catch (restore ; n := n − 1) ;

if n = 0 then raise

If

〈|p|〉 backup 〈|p ∧ k |〉 (establishes k from p or fails with p)

[[k]] restore [[p ∧ k]] (restores p from k)

[[p ∧ k]] S [[q , k]] (establishes q or fails with k)

then:

〈|p|〉 rr 〈|q |〉

The requirement on S is now weakened, as in case of failure S has only to preserve

the backup k ; S does not have to preserve k in case of successful termination.

Proof. Let S , T , p, q , h in Theorem 7.4 be S , restore, p∧k , q and k here, respectively,

then the conclusion is straightforward.

72

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Conditional Retry

Instead of attempting a statement a fixed number of times, we may need to make

attempts dependent on a condition. However, that condition has eventually to be

become false. In the pattern of conditional retry, we ensure termination of attempts

by requiring that the handler decreases a variant, see Figure 7.1. This pattern mimics

the rescue and retry statements of Eiffel [Meyer, 1997].

Theorem 7.6. X Let p, q be predicates in which Boolean variable done does not

occur, let S , T be statements that do not assign to done, let v be an integer expression,

and let cr be defined by:

cr = Bool done := false ;

while¬done ∧c B do

try (S ; done := true)

catch T ;

if ¬done then raise

If

[[∆B ∧ ‘B ’ ∧ p ∧ (λσ. v σ = w)]] S [[q , h ∧ (λσ. v σ ≤ w)]]

(establishes q , or fails with h while not decreasing v)

[[h ∧ (λσ. v σ = w)]] T [[p ∧ (λσ. v σ < w)]] (restores p and decreases v)

∆B ∧ ‘B ’ ∧ p ⇒ (λσ. v σ > 0) (v is positive on entrances of the loop body)

then:

〈|p|〉 cr 〈|q |〉

Proof. Let

loop = while¬done ∧c B do

try (S ; done := true)

catch T

73

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

and let

p ′ = ¬done ∧ p ∨ done ∧ q

v ′ = (λ (k , σ). (k , v σ))

l ′ = (λ (k , n) (k , n ′). k < k ′ ∨ (k = k ′ ∧ n < n ′))

B ′ = ¬done ∧c B

S ′ = try (S ; done := true)

catch T

q ′2 = ¬done ∧ p

then

(∀w ∈W . [[p ′w ∧∆B ′ ∧ ‘B ′’]] S ′ [[p ′<w , q
′
2]])

From Theorem 6.4, we have

[[p ′]] while B ′ do S ′ [[p ′ ∧∆B ′ ∧ ¬B ′, (p ′ ∧ ¬∆B ′) ∨ q ′2]]

thus

[[¬done ∧ p ∨ done ∧ q]] loop [[¬done ∧ p ∨ done ∧ q ,¬done ∧ p]]

so

〈|p|〉 cr 〈|q |〉

7.3 Discussion

The correctness rules of loops allow formal reasoning about this control structure

with total correctness and fail-safe correctness. The form of these correctness rules

are intuitive. They give a way to reduce the reasoning about loops to the reasoning

about guards and loop bodies.

The formalization of the three loop design patterns gives some further evidence

on the usefulness of total correctness and fail-safe correctness notations, in addressing

74

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

“unanticipated” exceptions; its practicality subject to the category of failures that

can be detected, which is not addressed here.

75

Chapter 8

The Retry Model of Exception

Handling

The Eiffel language also has multiple exits for exception handling, but it does not use

the termination model. The Eiffel exception handling mechanism is of interest because

of two methodological aspects. First, it is combined with the specification of methods

by pre- and postconditions that are evaluated at run-time. When a precondition does

not hold, it is the caller’s fault and an exception is signalled in the caller. When

a postcondition does not hold, it is the callee’s fault and an exception is signalled

in the callee. If the callee cannot establish the desired postcondition by alternative

means, the callee propagates the exception to the caller. The second methodological

aspect in Eiffel is that an exception handler may retry a method, in which case

execution continues at the beginning of a method. The rescue and retry statements

combine catching an exception with a loop structure, thus requiring a dedicated form

of correctness reasoning. The exception handler has to ensure that the precondition

of the method holds, independently of where the exception in the body occurred, as

76

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

in following fragment:

meth

require

pre

do

body

ensure

post

rescue

handler

retry

end

Here, the rescue section is invoked if post does not hold at the end of body . The retry

statement will restart the method, hence handler has to re-establish pre. Unlike in

the termination model and the resumption model, the retrying model of exception

handling leads to a loop structure [Buhr and Mok, 2000; Yemini and Berry, 1985]. In

this section we are concerned with the correctness theory of exception handling in the

retrying model of Eiffel.

We present verification rules for total correctness that take these two aspects into

account. The rules handle normal loops and retry loop structures in an analogous

manner by defining loops in terms of strong iteration. Here we have statements with

three exits, i.e., with three kinds of “sequential composition”, one for each exit; three

kinds of strong iteration are defined correspondingly. It also allows Eiffel’s mechanism

to be slightly generalized.

Nordio et al. [2009] proposes verification rules of Eiffel statements, but termination

is not considered in the rules about the retry loop structure. We extend these rules

by considering total correctness, which necessitates loop variants for normal loops

and retry variants for methods with a retry statements. Loop variants were originally

77

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

considered in Eiffel, but not retry variants [Meyer, 1997]. Nordio et al. [2009] justifies

the rules with respect to an operational semantics; here we derive the rules from a

(denotational) predicate transformer semantics. Another difference is the linguistic

form for retrying. Eiffel originally has a retry statement which can appear only in

the exception handler. Nordio et al. [2009] proposes instead to have a retry variable,

a Boolean variable which determines if at the end of an exception handler the body

is attempted again. Tschannen et al. [2011] uses this form of retrying for translat-

ing Eiffel into the Boogie intermediate verification language. Here we consider retry

statements, as they are of interest on their own and as the current versions of Eiffel-

Studio (version 7) and SmartEiffel (version 2.3) only support retry statements. As a

consequence, all statements have three exits, the normal, exceptional, and retry exit.

The work in this chapter originated in an effort to identify and formalize design

patterns for exception handling; the conditional retry pattern in Section 7.2 is a

simpler form of retrying in Eiffel. The formalization in this chapter covers specifically

the Eiffel mechanism of retrying.

We consider a core language of statements with three exits, namely normal, ex-

ceptional, and retry exit, i.e., the exit indices being I = {nrl, exc, ret}. We also write

(q1, q2, q3) as an abbreviation of {nrl 7→ q1, exc 7→ q2, ret 7→ q3}. On the basis of the

statements defined in Chapter 3, we define some more statements that are used in

Eiffel. We define raise as the abbreviation of jump exc, and retry as the abbreviation

of jump ret. The retry sequential composition S ;ret T continues with T on retrying

termination of S .

For local variable declarations, let x0 be the initial value of variables of type X 1:

local x : X (q1, q2, q3) =̂ q1[x\x0]

1Implicit state space conversion to precondition for readability.

78

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

The rescue statement do S rescue T end starts with body S and if S terminates nor-

mally, the whole statement terminates normally. If S terminates exceptionally, han-

dler T is executed. If T terminates normally or exceptionally, the whole state-

ment terminates exceptionally. This is captured by U = S ;exc (T ; raise). If T

terminates retrying, S the whole rescue statement is attempted again. Intuitively

U ωret = skipuU u (U ;ret U) u (U ;ret U ;ret U) . . . repeats zero or more times. How-

ever, do S rescue T end repeats indefinitely when T terminates retrying and may only

terminate normally or retrying. This is captured by U ωret ;ret stop, hence:

Definition 8.1. In do-rescue-end statement, on retry exit the execution will be redi-

rected to the beginning of the do section unconditionally, so there exists an implicit

loop structure. We define:

do S rescue T end =̂ (S ;exc (T ; raise))ωret ;ret stop

This kind of exception handling differs from try S catch T = S ;excT in two respects:

there is no loop structure in a try-catch statement and normal termination of handler T

leads to normal termination of the whole statement but to exceptional termination in

do S rescue T end. This means that in Eiffel the handler cannot contain an alternative

computation to establish the desired postcondition, but must instead direct the body

S to attempt that, typically by setting a corresponding variable and retrying.

In retry model, with x being a variable and e being a relation, the relational

assignment statement x := e is defined in terms of an update statement that affects

only component x of the state space. For this we assume that the state is a tuple

and variables select elements of the tuple. The (Eiffel) assignment x := E , where E

is now a program expression, terminates normally if E is defined, in which case the

value of E is assigned to x , and terminates exceptionally if E is undefined, without

changing any variables. The statement check B only evaluates Boolean expression B

79

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

without changing any variables and terminates exceptionally if B is undefined or its

value is false. The statements if B then S end and if B then S else T end also terminate

exceptionally if B is undefined. Here we redefine these statements for Eiffel:

x := e =̂ λ (x , y). λ (x ′, y ′). x ′ = e ∧ y ′ = y

x := E =̂ [∆E ,¬∆E , false] ; x := ‘E ’

check B =̂ [∆B ∧ ‘B ’,¬∆B ∨ ¬‘B ’, false]

if B then S end =̂ ([∆B ∧ ‘B ’,¬∆B , false] ; S) u

[∆B ∧ ¬‘B ’,¬∆B , false]

if B then S else T end =̂ ([∆B ∧ ‘B ’,¬∆B , false] ; S) u

([∆B ∧ ¬‘B ’,¬∆B , false] ; T)

Immediately we have that check B = if B then skip else raise end and if B then S end =

if B then S else skip end as consequences.

The loop from S until B loop T end first executes S and then, as long as B is false,

executes T , and repeats that provided T terminates normally. If S or T terminate ex-

ceptionally, the whole loop terminates immediately exceptionally. If S or T terminate

retrying, the whole loop terminates immediately retrying.

from S until B loop T end =̂ S ;

([∆B ∧ ¬‘B ’,¬∆B , false] ; T)ω ;

[∆B ∧ ‘B ’,¬∆B , false]

Eiffel does not allow retry statements in the body S of do S rescue T end. Above

definition permits those, with the meaning that the whole statement is attempted

again immediately.

80

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

8.1 Total Correctness

We start with two universal rules, generalizing analogous ones for single-exit state-

ments. In a correctness assertion, the precondition can be strengthened and any of

the three postconditions weakened.

p ′ ⇒ p

[[p]] S [[q1, q2, q3]]

(q1 ⇒ q ′1) ∧ (q2 ⇒ q ′2) ∧ (q3 ⇒ q ′3)

⇒[[p ′]] S [[q ′1, q
′
2, q
′
3]]

Also, correctness assertions of a statement can be conjoined, thus allowing proofs to

be split.

[[p]] S [[q1, q2, q3]]

[[p ′]] S [[q ′1, q
′
2, q
′
3]]

⇒[[p ∧ p ′]] S [[q1 ∧ q ′1, q2 ∧ q ′2, q3 ∧ q ′3]]

The first of these follows from the monotonicity of S and the second from the con-

junctivity of S . The correctness rules for Eiffel statements are:

Theorem 8.1. X Let p, q1, q2, q3, g1, g2, g3 be predicates, B, E be program expres-

sions, and S, T be statements:

[[p]] abort [[q1, q2, q3]] ≡ p = false

[[p]] stop [[q1, q2, q3]] ≡ true

[[p]] skip [[q1, q2, q3]] ≡ p ⇒ q1

[[p]] raise [[q1, q2, q3]] ≡ p ⇒ q2

[[p]] retry [[q1, q2, q3]] ≡ p ⇒ q3

[[p]] [g1, g2, g3] [[q1, q2, q3]] ≡ (p ∧ g1 ≤ q1) ∧ (p ∧ g2 ≤ q2) ∧ (p ∧ g3 ≤ q3)

[[p]] x := E [[q1, q2, q3]] ≡ (∆E ∧ p ≤ q1[x\‘E ’]) ∧ (¬∆E ⇒ q2)

[[p]] S ; T [[q1, q2, q3]] ≡ ∃ h. [[p]] S [[h, q2, q3]] ∧ [[h]] T [[q1, q2, q3]]

81

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

[[p]] S ;exc T [[q1, q2, q3]] ≡ ∃ h. [[p]] S [[q1, h, q3]] ∧ [[h]] T [[q1, q2, q3]]

[[p]] S ;ret T [[q1, q2, q3]] ≡ ∃ h. [[p]] S [[q1, q2, h]] ∧ [[h]] T [[q1, q2, q3]]

[[p]] S u T [[q1, q2, q3]] ≡ [[p]] S [[q1, q2, q3]] ∧ [[p]] T [[q1, q2, q3]]

[[p]] check B [[q1, q2, q3]] ≡ (∆B ∧ ‘B ’ ∧ p ⇒ q1) ∧

(∆B ∧ ¬‘B ’ ∧ p ⇒ q2) ∧

(¬∆B ∧ p ⇒ q2)

[[p]] if B then S else T [[q1, q2, q3]] ≡ [[∆B ∧ ‘B ’ ∧ p]] S [[q1, q2, q3]] ∧

[[∆B ∧ ¬‘B ’ ∧ p]] T [[q1, q2, q3]] ∧

(¬∆B ∧ p ⇒ q2)

(∀w ∈W · pw ⇒ S (p<w , q2, q3))⇒ (p ⇒ Sω (p, q2, q3))

(∀w ∈W · pw ⇒ S (q1, p<w , q3))⇒ (p ⇒ Sωexc (q1, p, q3))

(∀w ∈W · pw ⇒ S (q1, q2, p<w))⇒ (p ⇒ Sωret (q1, q2, p))

The first of these rules states that if under pw statement S terminates normally

while decreasing the rank of pw , then under q1 statement S terminates eventually

with q1; if S terminates exceptionally with q2 or retrying with q3, then Sω terminates

likewise. Similarly, the last of these rules states that if under pw statement S termi-

nates retrying while decreasing the rank of pw , then under q2 statement S terminates

eventually with q3; if S terminates normally with q1 or exceptionally with q2, then Sω

terminates likewise.

For the loop from S until B loop T end, we assume that the postconditions are of a

particular form: at normal termination, the loop invariant holds, B is defined and

true. At exceptional termination, either the exceptional postcondition of S or T

holds (in case S or T failed), or the invariant holds and B is undefined (in case the

evaluation of B failed). On retrying termination, the retrying postcondition of S or T

holds (in case S or T executed retry). The role of S is to establish the loop invariant,

82

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

here p ′:

[[p]] S [[p ′, q2, q3]]

[[p ′w ∧∆B ∧ ¬‘B ’]] T [[p ′<w , q2, q3]]

⇒[[p]] from S until B loop T end [[p ′ ∧∆B ∧ ‘B ’, q2 ∨ (p ′ ∧ ¬∆B), q3]]

Recall that p ′w = p ′∧v = w where p ′ is the invariant, v is the variant, and w ∈W . In

Eiffel, variants are integer expressions and the well-founded set W of their values are

non-negative integers. For integer variants, we have the following rule, where w > 0:

[[p]] S [[p ′, q2, q3]]

[[p ′ ∧ v = w ∧∆B ∧ ¬‘B ’]] T [[p ′ ∧ v < w , q2, q3]]

⇒[[p]] from S until B loop T end [[p ′ ∧∆B ∧ ‘B ’, q2 ∨ (q1 ∧ ¬∆B), q3]]

Theorem 8.2. X The rule for do S rescue T end requires that progress towards ter-

mination is made whenever S or T exits retrying; termination here means normal

termination if S terminates normally or exceptional termination if T terminates nor-

mally or exceptionally:

[[pw]] S [[q1, tw , p<w]]

[[tw]] T [[q2, q2, p<w]]

⇒[[p]] do S rescue T end [[q1, q2, q3]]

For integer variants, we have following rule, where w > 0:

[[p ∧ v = w]] S [[q1, t ∧ v = w , p ∧ v < w]]

[[t ∧ v = w]] T [[q2, q2, p ∧ v < w]]

⇒[[p]] do S rescue T end [[q1, q2, q3]]

Here p is the retry invariant and v is the retry variant.

83

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

8.2 Verification Rules

In Eiffel, each method is specified by a single precondition and single postcondition

only. The normal exit is taken if the desired postcondition is established and the

exceptional exit is taken if the desired postcondition cannot be established. Thus

the situations under which an exceptional exit is taken is implicit in the method

specification and a “defined” outcome is always possible, even in the presence of

unanticipated failures. Since methods never terminate retrying, and some statements

only terminate normally, we introduce two abbreviations:

[[p]] S [[q1, q2]] =̂ [[p]] S [[q1, q2, false]]

[[p]] S [[q1]] =̂ [[p]] S [[q1, false]]

In Chapter 7, we proposed to restrict the exceptional postcondition in case the speci-

fied postcondition cannot be established. Since classes typically have a class invariant,

the class invariant should hold even at exceptional termination, as otherwise the pro-

gram is left in an inconsistent state and a subsequent call to the same object may

fail. (As a consequence, if re-establishing the class invariant cannot be guaranteed,

the class invariant needs to be weakened appropriately.) More generally, let p be the

condition that holds before a call to method m with body local x : X do S rescue T end,

where p captures the computation that has been made by the whole program up to

this point. We then require a call to m either to terminate normally with the desired

postcondition q1 or terminate exceptionally with p:

[[p]] local x : X do S rescue T end [[q1, p]]

That is, in case of failure, the method may leave the state changed, but has to undo

sufficiently such that p holds again. This regime allows then failures to be propa-

gated back over arbitrarily many method calls. From the correctness theorems for

statements, we get immediately following theorem.

84

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Design Pattern: Repeated Attempts

Theorem 8.3. Where p, q1 are predicates that are independent of x and p ′w is a

collection of ranked predicates, if

p ∧ x = x0 ⇒ p ′

∀w ∈W . [[p ′w]] S [[q ′1, tw , p
′
<w]] (decreases the variant on retry exit)

∀w ∈W . [[tw]] T [[p ′, p ′, p ′<w]] (decreases the variant on retry exit)

p ′ ⇒ p

q ′1 ⇒ q1

Then

{p}

local x : X do S rescue T end

{q1, p}

For integer variants, we have following rule, where w > 0:

Theorem 8.4. Where p, q1 are predicates that are independent of x and p ′w is a

collection of ranked predicates, if

p ∧ x = x0 ⇒ p ′

∀w > 0. [[p ′ ∧ v = w]] S [[q ′1, t ∧ v = w , p ′ ∧ v < w]]

(decreases the variant on retry exit)

∀w > 0. [[t ∧ v = w]] T [[p ′, p ′, p ′ ∧ v < w]] (decreases the variant on retry exit)

p ′ ⇒ p

q ′1 ⇒ q1

85

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Then

{p}

local x : X do S rescue T end

{q1, p}

8.3 Example: Binary Search of Square Root

Suppose the task is to compute the approximate non-negative integer square root of

n, which is a non-negative integer itself, such that result2 ≤ n < (result +1)2 using

bounded arithmetic2. Assume that the result must be between l and u. The loop

from until u − l = 1 loop

m := l + (u − l) div 2

if n < m ∗m then u := m else l := m end

end

maintains the invariant p ≡ 0 ≤ l < u ∧ l2 ≤ n < u2. The statement m :=

l +(u−l) div 2 will establish m = (l +u) div 2 and never fail, according to Theorem 3.9.

However, the if statement will fail if m∗m > max. Since necessarily n ≤ max, we know

that in case of failure n < m ∗m, thus after assigning u := m the loop can continue.

We use the abbreviation {ret : q1} for {false, false, q1}. The full implementation with

annotation is as follows:

sqrt(n, l , u : INTEGER) : INTEGER

{p}
local

m : INTEGER

{retry invariant: p}

2The Eiffel Standard [Ecma International, 2006] and Meyer [1997] suggest that an arithmetic
overflow leads to an exception. SmartEiffel (version 2.3) does raise an exception, but EiffelStudio
(version 7) does not. However, the example can be expressed in EiffelStudio by first formulating a
class for safe arithmetic, see http://www.cas.mcmaster.ca/~zhangt26/thesis/

86

http://www.cas.mcmaster.ca/~zhangt26/thesis/

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

{retry variant: u − l}
do

{loop invariant: p}
{loop variant: u − l}
from until u − l = 1 loop

m := l + (u − l) div 2

{p ∧m = (l + u) div 2}
if n < m ∗m then u := m else l := m end

{p, p ∧m = (l + u) div 2 ∧ n < m2}
end

{p ∧ u − l = 1}
result := l

rescue

{p ∧m = (l + u) div 2 ∧ n < m2}
u := m

{p}
retry

{ret : p}
end

{result2 ≤ n < (result +1)2}

Note that the retry loop only needs to decrease the variant on the retry exit.

8.4 Discussion

In this chapter we have derived verification rules for the retrying mechanism of Eiffel

exceptions. Beside the contribution of total correctness rules, the novel aspects of the

derivation are that we started with a weakest exceptional precondition semantics and

defined both normal loops and retry loops through strong iteration. We did not study

the fail-safe correctness and fail-safe refinement of Eiffel since the retry mechanism

was the main focus.

87

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

The statements considered include the check statement, but we have not discussed

ensure and require method specifications. Since these are evaluated at run-time in

Eiffel, they are restricted to be program expressions (extended with the old notation).

However, since these are evaluated program expressions they have be treated like the

check statement. It is straightforward to extend the approach for method correctness

accordingly.

We have neither considered dynamic objects, therefore no method calls, nor other

features of Eiffel like inheritance. However exception handling is largely independent

of other features and the treatment here carries over to a more general setting. We

have not considered fail-safe correctness and fail-safe refinement in this retry model,

since our main focus is the retry loop.

Strong and weak iteration are appealing because of their rich algebraic structure.

However, we have not explored the resulting algebraic properties of rescue and retry

statements. For example, following theorems can be shown to hold:

do skip rescue S end = skip

do raise rescue retry end = abort

An interesting consequence of our definition of statements is that retry statements

can also appear in the main body of a method, not only the exception handler.

Theorem 8.2 supports this use. With this, the binary search of the square root

example can be rewritten without the from / until loop, using only the retry loop:

sqrt2(n, l , u : INTEGER) : INTEGER

{p}
local

m : INTEGER

{retry invariant: p}
{retry variant: u − l}
do

88

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

m := l + (u − l) div 2

{p ∧m = (l + u) div 2}
if n < m ∗m then u := m else l := m end

{p, p ∧m = (l + u) div 2 ∧ n < m2}
if u − l > 1 then retry end

{p ∧ u − l = 1, ret : p ∧ u − l > 1}
result := l

rescue

{p ∧m = (l + u) div 2 ∧ n < m2}
u := m

{p}
retry

{ret : p}
end

{result2 ≤ n < (result +1)2}

Nordio et al. [2009] proposes to replace the retry statement with a retry variable in

order to avoid the third exit. Below is their example of safe division, with annotation

to show termination of the retry loop; the example shows that the third exit does not

cause further complications:

safe division (x , y : INTEGER) : INTEGER

local

z : INTEGER

{retry invariant: (y 6= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0))}
{retry variant: 1− z}
do

result := x div(y + z)

{(y = 0⇒ result = x) ∧ (y 6= 0⇒ result = x div y), y = 0 ∧ z = 0}
rescue

{y = 0 ∧ z = 0}
z := 1

{y = 0 ∧ z = 1}
retry

89

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

{ret : y = 0 ∧ z = 1}
end

{(y = 0⇒ result = x) ∧ (y 6= 0⇒ result = x div y)}

90

Chapter 9

Coroutines

9.1 Overview

Conway [1963] proposes the concept of coroutines, which is defined as “subroutines

all at the same level, each acting as if it were the master program when in fact there

is no master program”. The entry point of a subroutine is always its beginning, while

the entry point of the main routine or a coroutine is always the point where it last

exited [Knuth, 1968].

Coroutines are closely related to multiple-pass algorithms, which have better com-

prehensibility and lower space requirements compared to one-pass algorithms [Knuth,

1968]. Applications of coroutines include business data processing, text processing,

simulation, and various kinds of data structure manipulation [Marlin, 1980].

Coroutines have been implemented in various programming languages, e.g., Sim-

ula [Dahl and Nygaard, 1966], Modula-2 [Gurevich and Morris, 1988], Python [van

Rossum and Eby, 2011], fibers in .NET [Shankar, 2003], etc. However, most of them

implement coroutines on top of existing programming structures, which in general

prevents making full use of coroutines [Barclay, 2009].

91

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Unlike subroutines, which have a unified basic semantics across languages, the

semantics of coroutines vary in implementations. With respect to control transfer

mechanism, coroutine facilities can be divided into completely symmetric ones as in

Simula [Dahl and Nygaard, 1966], and asymmetric ones as in Python [van Rossum

and Eby, 2011]. As pointed out by [Moura and Ierusalimschy, 2009], symmetric

coroutine mechanisms provide a single control-transfer operation for resume/resume

mechanism, in which coroutines can resume each other; asymmetric ones provide

two control-transfer operation for call/detach mechanism, in which a caller calls a

coroutine and the callee can detach during execution. Coroutine implementations

also vary on first-classness (a coroutine being a first-class object) and stackfulness (a

coroutine being able to be suspended within its nested calls).

Moura and Ierusalimschy [2009] also prove that symmetric coroutines and asym-

metric ones are equally powerful with respect to theoretical expressivity, while asym-

metric coroutines are easier to manage and understand. However, first-classness as

well as stackfulness can enhance the expressive power.

A generator is a coroutine that returns a value each time [van Rossum and Eby,

2011]. Generators are commonly used as implementation of iterators. Generators and

coroutines can simulate each other by using returning variables to replace common

variables and vice versa.

Below is a generator of the Fibonacci sequence. In the generator body, the yield

statement gives the control back to the caller, and when the caller calls the coroutine

again, it is resumed right after the last exit point.

92

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

def fg() :

x , y = 0, 1

for x in range(9) :

yield x

x , y = x + y , x

print(list(fg()))

Running the program would output “[0, 1, 1, 2, 3, 5, 8, 13, 21]” as the result.

Clint [1973] and Clarke [1980] prove the correctness of asymmetric coroutines using

one core rule:

R′{exit c}P ′ ` P{Q1}R

P ′{call c}R′ ` R′&P{Q2}R
P{(

˜
x) c coroutine Q1; Q2}R

Here P ′ must hold whenever the coroutine is entered, and R′ must hold whenever

the coroutine exits. It is similar to loop invariants and rely/guarantee conditions in

πoβλ [Collette and Jones, 1995]. Clint [1973] uses history variables in proofs, and

Clarke [1980] shows how to avoid using history variables in proofs of simple coroutines.

However, their verification rules do not consider termination. The correctness of the

rule itself relies more on intuition than formal semantics. In this chapter we attempt

to consider termination by applying total correctness rules for loop, and developing a

new semantics of coroutine on the basis of data refinement.

9.2 Our Coroutine Mechanism

For simplicity, we choose a language that excludes exception handling and nested

coroutine calls. The coroutines in our language are:

1. Asymmetric (caller and callee). We assume that subroutines can all create

93

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

instances of a coroutine, but each subroutine has exclusive access to all coroutine

instances created by itself.

2. Non-first-class (coroutines not treated as first-class objects), for simplicity.

3. Non-stackful (cannot be suspended from within nested functions), since nested

coroutine calls are not allowed.

In this chapter we do not consider exception handling, so we only use value expres-

sions. Also we only consider coroutines with only one yield statement, which is the

most common usage in practice. It simplifies the verification rules, and the potential

of extending our verification rules to coroutines with multiple yield statement will be

discussed at the end of this chapter.

caller

callee

(a) Coroutine

body

handler

(b) Resumption Model

normal exit exceptional exit invocation resumption

Figure 9.1: Coroutines and Resumption Model

Coroutines and the resumption model of Mesa [Mitchell et al., 1979] allow en-

trance of a program block in the middle, as shown in Figure 9.1. Consequently, the

isolation between a program block and its context is breached, and to reason about

the correctness we will need a different approach for the specification and verification

of coroutines.

First we define our own notations of subroutines and coroutines as:

94

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

subroutine subroutine name

local local variable list

common common variable list

create instance name : coroutine name

· · ·
invoke coroutine name

· · ·
end

coroutine coroutine name

local variable list

common common variable list

· · ·
yield

· · ·
end

No parameter is passed in our coroutine mechanism. Result parameters can be simu-

lated by declaring them as common variables and initializing them at the beginning

of the coroutine. One implicit restriction is that the common variables of a caller and

of its callees must match in types.

9.3 Verification

We start by studying two programs with coroutines, both for summing up all elements

in an read-only global array a:

subroutine sum1 subroutine sum2

local int i := 0 local int i := 0

common s := 0 common s := 0

create do : dosum1 create do : dosum2

95

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

while i < len(a) do while i < len(a) do

invoke do invoke do

i := i + 1 i := i + 1

end end

coroutine dosum1 coroutine dosum2

local int j := 0 local int j , ss := 0, 0

common s common s

while j < len(a) while j < len(a)

j , s := j + 1, s + a[j] j , ss := j + 1, ss + a[j]

yield yield

end s := ss

end

The expected results are the same: assigning the summation to the common vari-

able s on the termination of sum1 or sum2. However, their intermediate states are

different: with rules in [Clint, 1973] and Clarke [1980], to guarantee the correctness,

sum1 only needs to know that for any n ∈ [0..len(a)):

[[i = n ∧ s =
∑

x ∈ [0..i) · a[x]]] dosum1 [[i = n ∧ s =
∑

x ∈ [0..i] · a[x])]]

Similarly, sum2 only needs to know that for any n ∈ [0..len(a)):

[[i = n ∧ ss =
∑

x ∈ [0..i) · a[x]]] dosum2 [[i = n ∧ ss =
∑

x ∈ [0..i] · a[x]]]

However, this makes ss visible to the caller, which reveals the implementation de-

tails of dosum2. These two papers assume that a subroutine is bounded to only one

coroutine, so it is acceptable to have the local variables of coroutine visible to the

subroutine. However, as we want to generalize our mechanism to allow a coroutine

to be reused by multiple subroutines, each with their own instance, and to allow a

routine to create and call instances of multiple coroutines, proper information hiding

is necessary. Besides, we want to have verification rules that takes termination into

consideration. The first goal is from the caller’s perspective: the local state of the

96

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

callee should not be directly visible, but some knowledge must be available (as nec-

essary in the second solution); the second goal is from the callees’ perspective: the

coroutine needs to show its total correctness to the caller.

Assuming that the state spaces of caller local variables, of common variables, and

of callee local variables are Σ, Σc, and Σ′ respectively. In this chapter we assume all the

initialization of local variables is done at the beginning of subroutines and coroutines,

to reduce the effort of formalizing state spaces and their conversions. Thus the state

space of the subroutine is (Σ,Σc), the coroutine is a predicate transformer on (Σc,Σ
′),

and only its effect on Σc is visible to the caller.

Caller’s Perspective

Single-exit predicate transformer semantics suffices for reasoning about the correctness

of the caller. It is an special case of indexed predicate transformer semantics in

Chapter 3 with writing q as the abbreviation of Q on domain {nrl 7→ q}.

The total correctness theorems of single-exit statements are as following:

Theorem 9.1. Let p, q, g be predicates on Σ, b, e be value functions, and S, T be

statements:

[[p]] abort [[q]] ≡ p = false

[[p]] stop [[q]] ≡ true

[[p]] skip [[q]] ≡ p ⇒ q

[[p]] x := e [[q]] ≡ p ≤ q [x\e]

[[p]] S ; T [[q]] ≡ ∃ h. [[p]] S [[h]] ∧ [[h]] T [[q]]

[[p]] S u T [[q]] ≡ [[p]] S [[q]] ∧ [[p]] T [[q]]

[[p]] if b then S else T [[q]] ≡ [[b ∧ p]] S [[q]] ∧ [[¬b ∧ p]] T [[q]]

The while loop while b do S , in which b is a Boolean value function and S is a

97

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

statement, is defined as the least fixed point of λX . if b then(S ; X) with respect to

the refinement ordering, i.e.,

while b do S =̂ (µX · if b then(S ; X))

Theorem 9.2. Assume that b is a Boolean value expression, p is a predicate and S

is a statement. Assume that pw for w ∈W is a ranked collection of predicates. Then

∀w ∈W . [[pw ∧ b]] S [[p<w]]⇒ [[p]] while b do S [[p ∧ ¬b]]

Now the only missing piece in the puzzle is the semantics of invoke. To reason

about the semantics of coroutines, one possible method is to map all the states to

a global state space (Σ,Σc,Σ
′), and project all predicate transformers to the space.

However, since in this part we reason from the caller’s perspective, this would again

reveal implementation details of the coroutine, when it is necessary to state that the

coroutine local state is maintained through in the subroutine. Besides, when extended

to reasoning with stackful coroutines, the global state space would explode and be

too complicated to model and reason about.

We propose an alternative. When the details of the callees are hidden, the caller

knows their effect on the common variables, and it also knows how many invocations

have been completed, a ghost variable IC , as the invocation counter. It is initialized

to be 0 and increased by 1 during each invocation. We consider a IC common variable

(part of Σc), since it is readable to the caller and writeable to the callee. Since the

caller knows what the callee is supposed to do each time, there is a relation connecting

common variables and coroutine local variables, r ∈ Σc ↔ (Σc,Σ
′), which should be

a bijection. Then from the caller’s point of view, all it needs to know is:

∀ n ≥ 0. [[p ∧ IC = n]] invoke co [[q ∧ IC = n + 1]]

For example, any program that calls the Fibonacci sequence generator, only needs to

98

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

know is that (assume F is the Fibonacci sequence):

∀ n ≥ 0. [[result = F (n) ∧ IC = n]] invoke fg [[result = F (n + 1) ∧ IC = n + 1]]

Then we only need to prove that the callee, which is a predicate transformer on

(Σc,Σ
′), is a data refinement of the specification through some relation r , which is

visible to the callee but invisible to the caller.

Callee’s Perspective

The semantics of coroutines is more complicated as yield is present, which leads to two

exits: coroutines exit normally at the end, or by the yield statements. Correspondingly,

there are two entries: a coroutine is entered normally at the beginning, or resumed

after the yield statement. However, this is transparent to the caller. Thus, we consider

each invocation of a coroutine as single-entry single-exit to the caller, similar to a

subroutine, only that the semantics can vary on different invocations. Besides, the

program counter of the last exit point, should be invisible to the caller. We use an

implicit variable EL, local to the coroutine, as the exit label that records the last exit

point. With l possible exit points, the range of EL is 0..l + 1, with 0 as the initial

value, implying normal entrance (starting), 1..l for the l possible exit points, and l +1

for normal termination. In this thesis we only consider coroutines with only one yield

statement for simplicity, so l = 1 and EL ∈ 0..2.

To verify that a coroutine implements a coroutine specification, we need to define

the semantics of a coroutine body first. We formalize a coroutine statement as a

predicate pair transformer, i.e., of type PΣ × PΣ → PΣ × PΣ. For each q1 and

q2, S (q1, q2) calculates the weakest preconditions p1 and p2, such that if p1 holds

on normal entry of S or if p2 holds on resume entry of S , then S either terminates

normally with q1 or terminates on resume exit with q2.

99

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

We assume that fst (q1, q2) =̂ q1 and snd (q1, q2) =̂ q2 being the first and second

element of a pair. The coroutine version of sequential composition connects on two

exits to two entries:

S ;c T =̂ λ (q1, q2). S (T (q1, q2))

To allow skipping resume entry, assignments are defined using single-entry single-exit

predicate transformer:

x :=c e =̂ λ (q1, q2). ((x := e) q1, q2)

To encapsulate the two exits and make the coroutine only appear as single-entry single-

exit predicate transformer to the caller, we add cobegin and coend statements at the

beginning and the end of a coroutine. On the entry of a coroutine, cobegin will switch

the execution to the resume exit unless EL = 0. On resume entry, most statements will

do nothing and terminate on resume exit, until an yield statement catches the control

flow EL = 1 and switch to normal exit. After that the execution continues on normal

exit, and will be switched to resume exit on the next yield statement encountered. At

the end of the coroutine, a coend statement always switches to normal exit.

cobegin =̂ λ (q1, q2). ((λσ.EL = 0) ∧ q1 ∨ (λσ.EL 6= 0) ∧ q2)

coend =̂ λ (q . (EL := 2) (q , q))

Additionally, since we do not consider exceptional handling, we assume that a corou-

tine does not change the state when resumed after termination (EL = 2).

After being encapsulated by cobegin and coend, there is a normal entry and two

exits. The resume exit being blocked by coend, which makes it single-entry single-exit

predicate transformer. Then with proper relation r , we can define the semantics of

invoke as:

invoke co = [r] ; cobegin ;c co ;c coend ;{r−1}

Here IC (combined with the common variables) serves like a backup of the coroutine’s

local state. [r] restores the coroutine local state, and {r−1} does the “backup” again.

100

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

The idea is similar to data refinement in Chapter 6.

The yield statement is the only point where the control switches from normal to

resume or vice versa. On normal entry, yield redirects the control to the resume exit

unconditionally. On resume exit, yield redirects to normal entry when EL = 1. At the

beginning of the coroutine, an additional cobegin statement will direct the control to

the resume exit. Then statements will be skipped until a coend statement redirects

the control back to normal exit unconditionally.

yield =̂ EL := 1 ;c(λ (q1, q2). (q2, (q1 ∧ EL = 1) ∨ q2))

The control flow of some coroutine statements is illustrated in Figure 9.2:

x := e

(a)
x := e

cobegin

(b)
cobegin

coend

(c)
coend

S

T

(d) ;c

S

T

(e) ;cn

normal exit resume exit

Figure 9.2: Flowcharts of Coroutine Statements

Then we formalize conditional statements. On resume entry of ifc b thenc S , the

execution is pass on to the resume entry of S . If it contains the yield statement, then

it would be caught when EL = 1, otherwise skipped.

ifc b thenc S =̂ λ (q1, q2). (b ⇒ fst (S (q1, q2)) ∧ ¬b ⇒ q1, snd (S (q1, q2))

The loop is again defined on the basis of conditional statement and least fixed point:

S ;cn T =̂ λ (q1, q2). S (fst(T (q1, q2)), q2)

whilec b doc S =̂ (µX · ifc b thenc(S ;cn X))

The definition of loop uses ;cn, which connects two statements on normal entry and

101

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

exit only, instead of ;c. The modification is to let the yield statement terminate the

loop on resume exit. If ;c would be used, when the loop body terminates on resume

exit, on the next iteration it will be caught on the resume entry of the yield statement

again, then the loop can be non-terminatingsince it cannot exit properly on yield

statements. So by using ;cn, at the end of each iteration, if the execution is on resume

exit, then the loop terminates on resume exit immediately, instead of continuing to

the next iteration on resume entry. We assume that ;c has higher priority than ;cn,

which is useful to bind the loop body tighter.

The proof about the loop does not require rules about ranked predicates. Using

the least fixed point property (µx · f x) = f (µx · f x), we can unwind the loop and

reason. For normal cases in which the loop body yield each time, unwinding twice is

enough.

Now we take a look back at the second solution sum2. The correctness of the

subroutine is straightforward:

subroutine sum2

local int i := 0

common s := 0

create do : dosum2

{loop invariant : i ≤ len(a) ∧ i = IC ∧ (i < len(a)⇒ s = 0) ∧
(i = len(a)⇒ s =

∑
x ∈ [0..len(a)) · a[x]))}

while i < len(a) do

{i < len(a) ∧ i = IC ∧ s = 0}
invoke do

{i = IC − 1 ∧ (IC < len(a)⇒ s = 0) ∧
(IC = len(a)⇒ s =

∑
x ∈ [0..len(a)) · a[x]))}

i := i + 1

{i = len(a) ∧ s =
∑

x ∈ [0..len(a)) · a[x])}
end

102

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

The correctness of invoke do relies on reasoning inside the coroutine. Here we have

dosum2 with three versions of proof notes: on starting (normal exit of cobegin), during

execution (resume exit of cobegin and resume entry of coend), and on terminating of

the coroutine (normal entry of coend).

The bijection relation between subroutine state and coroutine state is

r = λ (IC , s)(s ′, j , ss ,EL). IC = j ∧ s = s ′ ∧ ss =
∑

x ∈ [0..j) · a[x] ∧

(j = 0⇒ EL = 0) ∧ (0 < j < len(a)⇒ EL = 1) ∧ (j = len(a)⇒ EL = 2)

On normal entry len(a) > 0 can be deduced from the precondition of invoke.

[[IC = 0 ∧ s = 0]]

[r] ;

{s = 0 ∧ j = 0 ∧ ss = 0 ∧ EL = 0}
cobegin ;c

{s = 0 ∧ j = 0 ∧ ss = 0 ∧ EL = 0, false}
ifc j < len(a) thenc

{s = 0 ∧ j = 0 ∧ ss = 0 ∧ EL = 0, false}
j , ss := j + 1, ss + a[j] ;c

{s = 0 ∧ j = 1 ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 0, false}
yield ;cn (switch)

{false, s = 0 ∧ j = 1 ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1}
while j < len(a) (skipped)

j , ss := j + 1, ss + a[j] (skipped)

yield (skipped)

s := ss (skipped)

{false, s = 0 ∧ j = 1 ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1}
coend

{s = 0 ∧ j = 1 ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1}
{r−1}
[[IC = 1 ∧ s = 0]]

103

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

For any 0 < n < len(a),

[[IC = n ∧ s = 0]]

[r] ;

{s = 0 ∧ j = n ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1}
cobegin ;c

{false, s = 0 ∧ j = n ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1}
ifc j < len(a) thenc (skipped)

j , ss := j + 1, ss + a[j] ;c (skipped)

yield ;cn (switch)

{s = 0 ∧ j = n ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1, false}
ifc j < len(a) thenc

j , ss := j + 1, ss + a[j] ;c

{s = 0 ∧ j = n + 1 ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1, false}
yield ;cn (switch)

{false, s = 0 ∧ j = n + 1 ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1}
whilec j < len(a) doc (skipped)

j , ss := j + 1, ss + a[j] ;c (skipped)

yield ;cn (skipped)

{false, s = 0 ∧ j = n + 1 ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1}
s := ss (skipped)

coend

{s = 0 ∧ j = n + 1 ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1}
{r−1}

1[[IC = n + 1 ∧ s = 0]]

For normal termination of the coroutine:

[[IC = len(a) ∧ s = 0]]

[r] ;

{s = 0 ∧ j = len(a) ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1}
cobegin ;c

{false, s = 0 ∧ j = len(a) ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1}
ifc j < len(a) thenc (skipped)

j , ss := j + 1, ss + a[j] ;c (skipped)

yield ;cn (skipped)

104

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

whilec j < len(a) doc (skipped)

j , ss := j + 1, ss + a[j] ;c (skipped)

yield ;cn (skipped)

{s = 0 ∧ j = len(a) ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1, false}
s := ss

{s = 0 ∧ j = len(a) ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 1, false}
coend

{s = ss ∧ j = len(a) ∧ ss =
∑

x ∈ [0..j) · a[x] ∧ EL = 2}
{r−1}
[[IC = len(a) ∧ s =

∑
x ∈ [0..j) · a[x]]]

9.4 Discussion

In this section we studied the verification rules of coroutines. We not only presented

the rules, but also showed how the rules themselves can be deducted from formal

semantics. Our rules take termination into consideration.

A possible extension is to consider coroutines with multiple yield statements. How-

ever, in that case it would be necessary to define the syntax of coroutine, since the

labelling of yield statements would be dependent on that. Then the semantics of each

yield needs to be conditional on comparison of the current EL and the label of the

yield statement.

Another possible extension is to introduce nested coroutine calls and stackfulness.

The double-entry double-exit internal representation can be convenient, because each

coroutine call inside a coroutine can be directly treated as a double-entry double-exit

predicate transformer, with its own exit label.

105

Chapter 10

Conclusion

10.1 Multi-Exit Programs

The work in this thesis models the semantics of multi-exit programs as indexed pred-

icate transformers, studies its algebraic properties and verification rules, then instan-

tiate them for several semantic models: the termination model in exception handling,

the retry model in exception handling, and a coroutine model. The instantiated ver-

ification rules are illustrated with examples, and the termination model is illustrated

with six design patterns.

An alternative of using indexed predicate transformers is to encode the exit index

into the state and model programs as predicate transformers with the state as the ar-

gument, which we have not pursued. The advantage of indexed predicate transformers

is that the state spaces on exits can be different. This is useful for statements like

local variable declaration, which either succeed and add variables into the state space,

or fail and leave the state space unchanged. Besides, having separate postconditions

may be methodologically stronger and syntactically shorter.

106

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

10.2 Future Work

Our work could be extended in several aspects.

1. The normal form of disjunctive statements is unimplementable, but nevertheless

of theoretical interest.

2. Fail-safe refinement rules for loops and recursive procedures can be useful. Be-

sides, common programming languages provide named exceptions and state-

ments with several exits. A generalization of fail-safe refinement to multiple

exits is worth exploring.

3. Data refinement in Chapter 6 is a generalization of forward data refinement to

two exits. Forward data refinement is known to be incomplete; for the predicate

transformer model of statements, several alternatives have been studied, e.g.,

[Gardiner and Morgan, 1993; von Wright, 1994]. It remains to be explored how

these can be used for partial data refinement.

4. For simplicity of the theory itself, we directly define the semantics in most

chapters, and the examples are converted by hand in formalization; only in

Chapter 9 we defined the syntax (which is a mixture of syntax and logical

terms) and the conversion from syntax to semantics. It would facilitate the

conversion of examples if a full conversion is formalized.

5. Also, our formalization of coroutines allows it to be supplemented with an ad-

ditional exit for exception handling. Adding the support of stackfulness is also

useful for implementing recursive algorithms like traversal of trees.

107

Appendix A

Isabelle Formalization

The theorems and patterns are formalized and verified in Isabelle 2011-1, in which

the sets and predicates are of the same type, so all the predefined theorems of sets

are directly available. However, from Isabelle 2012 on, the set is no longer typed as a

mapping to Boolean type, so we chose not to migrate.

The Isabelle mechanization uses shallow embedding, which defines the semantics

directly. It follows the formalization in this thesis closely, however there are two differ-

ences. First, some notations are different, either to distinguish from other notations

(to speed up the automatic reasoning for implicit types in Isabelle), e.g., using [[R]] in

Isabelle for demonic update [R] to distinguish from [G], which represents assumption

[G]. Secondly, the formalization of indexed predicates and indexed relations in Chap-

ter 3 allows the state spaces on arbitrary number of exits to be different. To model

arbitrary number of potentially different state spaces, dependent types are required.

However, Isabelle does not support this feature, so in the Isabelle proofs, for theorems

in Chapters 3, 4, and 5, we model arbitrary number of exits with the same state space;

for theorems in Chapters 6, 7, 8 and 9, we model potentially different state spaces on

exits of a fixed number. The proofs in the thesis do not rely on the uniformity of the

108

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

final state spaces, unless restricted by certain constructs, e.g., loop on exit i requires

the initial state space to be the same as the state space on exit i .

The complete Isabelle formalization is available at http://www.cas.mcmaster.

ca/~zhangt26/thesis/. It contains more than 500 theorems.

109

http://www.cas.mcmaster.ca/~zhangt26/thesis/
http://www.cas.mcmaster.ca/~zhangt26/thesis/

Bibliography

Abrial, J.-R. (1996). The B-book: assigning programs to meanings. New York, NY,

USA: Cambridge University Press.

Abrial, J.-R., M. K. O. Lee, D. Neilson, P. N. Scharbach, and I. H. Sørensen (1991).

The B-method. In VDM Europe (2), pp. 398–405.

AMD (2012, September). AMD64 architecture programmer’s manual volume

3: General-purpose and system instructions. http://support.amd.com/us/

Embedded_TechDocs/24594.pdf.

ANSI (1966). ANSI Fortran X3.9-1966.

ANSI (1997). ANSI/ISO/IEC 1539-1:1997: Information technology — programming

languages — Fortran — part 1: Base language.

Back, R. (1981). On correct refinement of programs. Journal of Computer and System

Sciences 23 (1), 49 – 68.

Back, R. and J. Wright (1990). Refinement concepts formalised in higher order logic.

Formal Aspects of Computing 2 (1), 247–272.

Back, R.-J. and J. von Wright (1998). Refinement Calculus: A Systematic Introduc-

tion. Springer-Verlag.

110

http://support.amd.com/us/Embedded_TechDocs/24594.pdf
http://support.amd.com/us/Embedded_TechDocs/24594.pdf

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Back, R.-J. R. and M. Karttunen (1983). A predicate transformer semantics for

statements with multiple exits.

Banach, R., M. Poppleton, C. Jeske, and S. Stepney (2007). Engineering and theoret-

ical underpinnings of retrenchment. Science of Computer Programming 67 (2–3),

301 – 329.

Barclay, D. (2009, April). A language of coroutines. Dissertation, Bachelor of Science

in Computer Science with Honours, The University of Bath.

Barnett, M., K. Leino, and W. Schulte (2005). The Spec# programming system:

An overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean

(Eds.), Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,

Volume 3362 of Lecture Notes in Computer Science, pp. 49–69. Springer Berlin /

Heidelberg.

Birkhoff, G. (1967). Lattice theory. In Colloquium Publications (3 ed.), Volume 25.

Amer. Math. Soc.

Bloch, J. (2006, June). Extra, extra - read all about it: Nearly all binary searches

and mergesorts are broken. http://googleresearch.blogspot.com/2006/06/

extra-extra-read-all-about-it-nearly.html.

Böhm, C. and G. Jacopini (1966, May). Flow diagrams, Turing machines and lan-

guages with only two formation rules. Commun. ACM 9 (5), 366–371.

Böhme, S., K. R. Leino, and B. Wolff (2008). HOL-Boogie – an interactive prover for

the Boogie program-verifier. In TPHOLs ’08: Proceedings of the 21st International

Conference on Theorem Proving in Higher Order Logics, Berlin, Heidelberg, pp.

150–166. Springer-Verlag.

111

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Boiten, E. and J. Derrick (1998). IO-refinement in Z. In Proceedings of the 3rd BCS-

FACS conference on Northern Formal Methods, 3FACS’98, Swinton, UK, UK, pp.

3–3. British Computer Society.

Borba, P., A. Sampaio, A. Cavalcanti, and M. Cornélio (2004). Algebraic reasoning

for object-oriented programming. Science of Computer Programming 52 (1-3), 53 –

100.

Bowen, J. and V. Stavridou (1993). Safety-critical systems, formal methods and

standards. Software Engineering Journal 8 (4), 189–209.

Brucker, A. and B. Wolff (2002). A proposal for a formal OCL semantics in Is-

abelle/HOL. In V. Carreño, C. Muñoz, and S. Tahar (Eds.), Theorem Proving

in Higher Order Logics, Volume 2410 of Lecture Notes in Computer Science, pp.

147–175. Springer Berlin / Heidelberg.

Buhr, P. and W. Mok (2000, sep). Advanced exception handling mechanisms. Software

Engineering, IEEE Transactions on 26 (9), 820 –836.

Cavalcanti, A. and J. Woodcock (1998). A weakest precondition semantics for Z. The

Computer Journal 41 (1), 1–15.

Clarke, E. M. (1980). Proving correctness of coroutines without history variables.

Acta Informatica 13, 169–188.

Clarke, E. M. and J. M. Wing (1996). Formal methods: state of the art and future

directions. ACM Comput. Surv. 28 (4), 626–643.

Clint, M. (1973). Program proving: Coroutines. Acta Informatica 2, 50–63.

Cohen, E., M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,

W. Schulte, and S. Tobies (2009). VCC: A practical system for verifying concurrent

112

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

C. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel (Eds.), Theorem Proving

in Higher Order Logics, Volume 5674 of Lecture Notes in Computer Science, pp.

23–42. Springer Berlin / Heidelberg.

Collette, P. and C. B. Jones (1995). Enhancing the tractability of rely/guarantee

specifications in the development of interfering operations. In Proof, Language and

Interaction, chapter 10, pp. 275–305. MIT Press.

Conway, M. E. (1963, July). Design of a separable transition-diagram compiler. Com-

mun. ACM 6, 396–408.

Cristian, F. (1982, june). Exception handling and software fault tolerance. Computers,

IEEE Transactions on C-31 (6), 531 –540.

Cristian, F. (1984). Correct and robust programs. IEEE Trans. Software Eng. 10 (2),

163–174.

Cristian, F. (1989). Exception handling. In Dependability of Resilient Computers, pp.

68–97.

Dahl, O.-J. and K. Nygaard (1966, September). SIMULA: an ALGOL-based simula-

tion language. Commun. ACM 9 (9), 671–678.

Derrick, J. and E. Boiten (2001). Refinement in Z and Object-Z, Foundations and

Advanced Applications. Formal Approaches to Computing and Information Tech-

nology. Springer.

Dijkstra, E. W. (1968, March). Letters to the editor: Go To statement considered

harmful. Commun. ACM 11 (3), 147–148.

Dijkstra, E. W. (1970, August). Structured programming. In Software Engineering

Techniques, pp. 65–68. NATO Science Committee.

113

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation

of programs. Commun. ACM 18 (8), 453–457.

Dowson, M. (1997). The Ariane 5 software failure. SIGSOFT Softw. Eng. Notes 22 (2),

84.

Ecma International (2006, June). Eiffel: Analysis, Design and Programming Language

(2nd ed.). Standard ECMA-367. Ecma International.

Ewing, G. (2012, January). Syntax for delegating to a subgenerator. http://www.

python.org/dev/peps/pep-0380/.

Flanagan, D. and Y. Matsumoto (2008). The Ruby programming language (First ed.).

O’Reilly.

Garcia, A. F., C. M. F. Rubira, A. Romanovsky, and J. Xu (2001). A comparative

study of exception handling mechanisms for building dependable object-oriented

software. Journal of Systems and Software 59 (2), 197 – 222.

Gardiner, P. and C. Morgan (1991). Data refinement of predicate transformers. The-

oretical Computer Science 87 (1), 143 – 162.

Gardiner, P. and C. Morgan (1993). A single complete rule for data refinement.

Formal Aspects of Computing 5 (4), 367–382.

Google (2009). Go programming language. http://www.golang.org.

Gosling, J., B. Joy, G. Steele, G. Bracha, and A. Buckley (2013, February). The

Java language specification, Java SE 7 edition. http://docs.oracle.com/javase/

specs/jls/se7/jls7.pdf.

114

http://www.python.org/dev/peps/pep-0380/
http://www.python.org/dev/peps/pep-0380/
http://www.golang.org
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Graham, R. L., D. E. Knuth, and O. Patashnik (1994). Concrete Mathematics: A

Foundation for Computer Science (2nd ed.). Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc.

Gurevich, Y. and J. Morris (1988). Algebraic operational semantics and Modula-2.

In E. Börger, H. Büning, and M. Richter (Eds.), CSL ’87, Volume 329 of Lecture

Notes in Computer Science, pp. 81–101. Springer Berlin / Heidelberg.

Harrison, J. (1998). Formalizing Dijkstra. In J. Grundy and M. Newey (Eds.), The-

orem Proving in Higher Order Logics, Volume 1479 of Lecture Notes in Computer

Science, pp. 171–188. Springer Berlin / Heidelberg.

Harrison, J. (2011, January). HOL Light tutorial (for version 2.20). Technical report,

Intel JF1-13.

He, J., C. Hoare, and J. Sanders (1986). Data refinement refined resume. In B. Robi-

net and R. Wilhelm (Eds.), ESOP 86, Volume 213 of Lecture Notes in Computer

Science, pp. 187–196. Springer Berlin Heidelberg.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun.

ACM 12 (10), 576–580.

Hoare, C. A. R., I. J. Hayes, H. Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,

I. H. Sorensen, J. M. Spivey, and B. A. Sufrin (1987, August). Laws of programming.

Commun. ACM 30 (8), 672–686.

Hoare, C. A. R., H. Jifeng, and A. Sampaio (1993). Normal form approach to compiler

design. Acta Informatica 30, 701–739.

Horning, J., H. Lauer, P. Melliar-Smith, and B. Randell (1974). A program structure

for error detection and recovery. In E. Gelenbe and C. Kaiser (Eds.), Operating

115

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Systems, Volume 16 of Lecture Notes in Computer Science, pp. 171–187. Springer

Berlin / Heidelberg.

Howie, J. M. (1995). Fundamentals of semigroup theory. Clarendon Press.

Ierusalimschy, R., L. H. de Figueiredo, and W. Celes (2005, July). The implementation

of Lua 5.0. Journal of Universal Computer Science 11 (7), 1159–1176.

Intel (2013, March). Intel R©64 and IA-32 architectures software developer’s manual,

volume 2 (2a, 2b & 2c): Instruction set reference, a-z. http://download.intel.

com/products/processor/manual/325383.pdf.

ISO (1998, September). ISO/IEC 14882:1998: Programming languages — C++.

ISO (1999). ISO/IEC 9899:1999: Programming Languages — C.

ISO (2011). ISO/IEC 9899:2011: Programming Languages — C.

ISO (2012, February). ISO/IEC 14882:2011 Information technology — Programming

languages — C++.

Jeffords, R., C. Heitmeyer, M. Archer, and E. Leonard (2009). A formal method

for developing provably correct fault-tolerant systems using partial refinement and

composition. In A. Cavalcanti and D. Dams (Eds.), FM 2009: Formal Methods,

Volume 5850 of Lecture Notes in Computer Science, pp. 173–189. Springer Berlin

Heidelberg.

King, S. and C. Morgan (1995). Exits in the refinement calculus. Formal Asp.

Comput. 7 (1), 54–76.

Knuth, D. E. (1968). The art of computer programming, volume 1: fundamental

algorithms. Redwood City, CA, USA: Addison Wesley Publishing Company, Inc.

116

http://download.intel.com/products/processor/manual/325383.pdf
http://download.intel.com/products/processor/manual/325383.pdf

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Knuth, D. E. (1974). Structured programming with go to statements. ACM Comput.

Surv. 6 (4), 261–301.

Kozen, D. (1997, May). Kleene algebra with tests. ACM Trans. Program. Lang.

Syst. 19 (3), 427–443.

Lamport, L. (1980). The ‘Hoare logic’ of concurrent programs. Acta Informat-

ica 14 (1), 21–37.

Lamport, L. (1990, July). win and sin: predicate transformers for concurrency. ACM

Trans. Program. Lang. Syst. 12, 396–428.

Leavens, G. T., A. L. Baker, and C. Ruby (2006). Preliminary design of JML: a behav-

ioral interface specification language for Java. SIGSOFT Softw. Eng. Notes 31 (3),

1–38.

Lecomte, T., T. Servat, and G. Pouzancre (2007, August). Formal methods in safety-

critical railway systems. Ouro Preto, Brazil. 10th Brasilian Symposium on Formal

Methods.

Leinenbach, D. and T. Santen (2009). Verifying the Microsoft Hyper-V hypervisor

with VCC. In A. Cavalcanti and D. Dams (Eds.), FM 2009: Formal Methods,

Volume 5850 of Lecture Notes in Computer Science, pp. 806–809. Springer Berlin

/ Heidelberg.

Leveson, N. and C. Turner (1993, jul). An investigation of the Therac-25 accidents.

Computer 26 (7), 18 –41.

Liskov, B. and J. Guttag (2000). Program Development in Java: Abstraction, Speci-

fication, and Object-Oriented Design (1st ed.). Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc.

117

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Luckham, D. C. and W. Polak (1980, April). Ada exception handling: an axiomatic

approach. ACM Trans. Program. Lang. Syst. 2 (2), 225–233.

Marlin, C. (1980). Coroutines, Volume 95 of Lecture Notes in Computer Science.

Springer Berlin / Heidelberg.

Métayer, C., J.-R. Abrial, and L. Voisin (2005). Event-B Language, in RODIN Project

Deliverable 3.2.

Meyer, B. (1987). Eiffel: programming for reusability and extendibility. SIGPLAN

Not. 22 (2), 85–94.

Meyer, B. (1988). Eiffel*: A language and environment for software engineering. The

Journal of Systems and Software.

Meyer, B. (1997). Object-Oriented Software Construction (2nd ed.). Prentice-Hall.

Microsoft (2013a). Notimplementedexception class. http://msdn.microsoft.com/

en-us/library/system.notimplementedexception.aspx.

Microsoft (2013b). Overflowexception class. http://msdn.microsoft.com/en-us/

library/system.overflowexception.aspx.

Mikhajlova, A. and E. Sekerinski (1997). Class refinement and interface refinement

in object-oriented programs. In FME ’97: Proceedings of the 4th International

Symposium of Formal Methods Europe on Industrial Applications and Strengthened

Foundations of Formal Methods, London, UK, pp. 82–101. Springer-Verlag.

Mitchell, J. G., W. Maybury, and R. Sweet (1979, Apr). Mesa language manual.

Technical report, Xerox Research Center, Palo Alto, California.

118

http://msdn.microsoft.com/en-us/library/system.notimplementedexception.aspx
http://msdn.microsoft.com/en-us/library/system.notimplementedexception.aspx
http://msdn.microsoft.com/en-us/library/system.overflowexception.aspx
http://msdn.microsoft.com/en-us/library/system.overflowexception.aspx

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Moura, A. L. D. and R. Ierusalimschy (2009, February). Revisiting coroutines. ACM

Trans. Program. Lang. Syst. 31, 6:1–6:31.

Myers, G. J. (2004, June). The Art of Software Testing (2nd ed.). Wiley.

Nipkow, T. and L. Paulson (1992). Isabelle-91. In D. Kapur (Ed.), Automated

Deduction—CADE-11, Volume 607 of Lecture Notes in Computer Science, pp. 673–

676. Springer Berlin / Heidelberg.

Nipkow, T., M. Wenzel, and L. C. Paulson (2002). Isabelle/HOL: a proof assistant

for higher-order logic. Berlin, Heidelberg: Springer-Verlag.

Nordio, M., C. Calcagno, P. Müller, and B. Meyer (2009). A sound and complete

program logic for Eiffel. In W. Aalst, J. Mylopoulos, N. M. Sadeh, M. J. Shaw,

C. Szyperski, M. Oriol, and B. Meyer (Eds.), Objects, Components, Models and

Patterns, Volume 33 of Lecture Notes in Business Information Processing, pp. 195–

214. Springer Berlin Heidelberg.

Parnas, D. L. (1978). Designing software for ease of extension and contraction. In

Proceedings of the 3rd international conference on Software engineering, ICSE ’78,

Piscataway, NJ, USA, pp. 264–277. IEEE Press.

Plotkin, G. D. (1981). The origins of structural operational semantics. Journal of

Logic and Algebraic Programming 60, 60–61.

Python Software Foundation (2013, May). The Python language reference. http:

//docs.python.org/3/reference/.

Randell, B. (1975). System structure for software fault tolerance. In Proceedings of the

international conference on Reliable software, New York, NY, USA, pp. 437–449.

ACM.

119

http://docs.python.org/3/reference/
http://docs.python.org/3/reference/

Ph.D. Thesis - Tian Zhang McMaster University - Computing and Software

Reed, M., C. George, and W. H. I. Wa (2007, February). UNU-IIST annual report

2006. Technical report, United Nations University International Institute for Soft-

ware Technology.

Schmidt, D. A. (1986). Denotational semantics: a methodology for language develop-

ment. Dubuque, IA, USA: William C. Brown Publishers.

Sekerinski, E. (2011). Exceptions for dependability. In L. Petre, K. Sere, and

E. Troubitsyna (Eds.), Dependability and Computer Engineering: Concepts for

Software-Intensive Systems—a Handbook on Dependability Research, pp. 11–35. IGI

Global.

Sekerinski, E. and T. Zhang (2011). A new notion of partial correctness for exception

handling. In B. Bonakdarpour and T. Maibaum (Eds.), 2nd International Workshop

on Logical Aspects of Fault-Tolerance, pp. 116–132.

Sekerinski, E. and T. Zhang (2012). Verification rules for exception handling in Eiffel.

In R. Gheyi and D. Naumann (Eds.), Formal Methods: Foundations and Applica-

tions, Volume 7498 of Lecture Notes in Computer Science, pp. 179–193. Springer

Berlin / Heidelberg.

Shankar, A. (2003, September). Implementing coroutines for .NET by wrap-

ping the unmanaged fiber API. http://msdn.microsoft.com/en-us/magazine/

cc164086.aspx.

Stepney, S., D. Cooper, and J. Woodcock (1998). More powerful Z data refinement:

Pushing the state of the art in industrial refinement. In J. Bowen, A. Fett, and

M. Hinchey (Eds.), ZUM ’98: The Z Formal Specification Notation, Volume 1493

of Lecture Notes in Computer Science, pp. 284–307. Springer Berlin Heidelberg.

120

http://msdn.microsoft.com/en-us/magazine/cc164086.aspx
http://msdn.microsoft.com/en-us/magazine/cc164086.aspx

Ph.D. Thesis - Tian Zhang McMaster - Computing and Software

Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics 5, 285–309.

Tennent, R. D. (1976, August). The denotational semantics of programming lan-

guages. Commun. ACM 19 (8), 437–453.

Tschannen, J., C. A. Furia, M. Nordio, and B. Meyer (2011). Verifying Eiffel programs

with Boogie. In BOOGIE workshop.

van Rossum, G. and P. J. Eby (2011, June). Coroutines via enhanced generators.

http://www.python.org/dev/peps/pep-0342/.

von Oheimb, D. (2001). Hoare logic for Java in Isabelle/HOL. Concurrency and

Computation: Practice and Experience 13 (13), 1173–1214.

von Wright, J. (1994). The lattice of data refinement. Acta Informatica 31 (2), 105–

135.

Watson, G. (2002). Refining exceptions using King and Morgan’s exit construct. In

Software Engineering Conference, 2002. Ninth Asia-Pacific, pp. 43–51.

Wirth, N. (1971). Program development by stepwise refinement. Commun.

ACM 14 (4), 221–227.

Yemini, S. and D. M. Berry (1985, April). A modular verifiable exception handling

mechanism. ACM Trans. Program. Lang. Syst. 7 (2), 214–243.

Ying, M. (2003). Reasoning about probabilistic sequential programs in a probabilistic

logic. Acta Informatica 39 (5), 315–389.

121

http://www.python.org/dev/peps/pep-0342/

	Abstract
	Acknowledgements
	Declaration of Academic Achievement
	Introduction
	Related Work
	Towards Error-Free Programs
	Formalizations of Single-Exit Programs
	Formalizations of Multi-Exit Programs
	Stepwise Refinement
	Formalizations in Higher-Order Logic
	Overview

	Basic Definitions
	Lattices and Monoids
	States, Predicates, and Relations
	Indexed Predicates and Indexed Relations
	Indexed Predicate Transformers
	Basic Multi-Exit Statements
	Composite Multi-Exit Statements
	Algebraic Properties
	Program Expressions
	Monotonicity and Junctivity
	Domains
	Total Correctness

	Recursion and Iteration
	Ranked Predicates and Least Fixed Points
	Recursion
	Iteration
	Discussion

	Normal Forms of Multi-Exit Statements
	Normal Form of Monotonic Indexed Predicate Transformers
	Normal Form of Conjunctive Indexed Predicate Transformers
	Discussion

	Fail-Safe Correctness and Fail-Safe Refinement
	Total Correctness
	Domains
	Fail-Safe Correctness
	Loop Theorems
	Fail-Safe Refinement
	Discussion

	Design Patterns for The Termination Model
	Design Patterns without Loops
	Design Patterns with Loops
	Discussion

	The Retry Model of Exception Handling
	Total Correctness
	Verification Rules
	Example: Binary Search of Square Root
	Discussion

	Coroutines
	Overview
	Our Coroutine Mechanism
	Verification
	Discussion

	Conclusion
	Multi-Exit Programs
	Future Work

	Isabelle Formalization

