
COMBINATORIAL OPTIMIZATION

APPROACHES TO DISCRETE PROBLEMS

COMBINATORIAL OPTIMIZATION APPROACHES TO

DISCRETE PROBLEMS

By

MIN JING LIU, M.A.Sc, B.ENG.

A Thesis

Submitted to the Department of Computing and Software

and the School of Graduate Studies

of McMaster University

in Partial Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

McMaster University c© Copyright by MIN JING LIU, August 2013

Doctor of Philosophy (2013) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Combinatorial Optimization Approaches to Discrete

Problems

AUTHOR: MIN JING LIU

M.A.Sc, (Computational Engineering)

McMaster University, Hamilton, Canada

B.ENG., (Electrical Engineering)

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Antoine Deza, Dr. Frantisek Franek

NUMBER OF PAGES: xiii, 86

ii

To my parents

Abstract

As stressed by the Society for Industrial and Applied Mathematics (SIAM): Applied

mathematics, in partnership with computational science, is essential in solving many

real-world problems. Combinatorial optimization focuses on problems arising from

discrete structures such as graphs and polyhedra. This thesis deals with extremal

graphs and strings and focuses on two problems: the Erdős’ problem on multiplicities

of complete subgraphs and the maximum number of distinct squares in a string.

The first part of the thesis deals with strengthening the bounds for the minimum

proportion of monochromatic t cliques and t cocliques for all 2-colourings of the edges

of the complete graph on n vertices. Denote by kt(G) the number of cliques of order t

in a graph G. Let kt(n) = min{kt(G) +kt(G)} where G denotes the complement of G

of order n. Let ct(n) = kt(n)/
(
n
t

)
and ct be the limit of ct(n) for n going to infinity. A

1962 conjecture of Erdős stating that ct = 21−
(
t
2

)
was disproved by Thomason in 1989

for all t ≥ 4. Tighter counterexamples have been constructed by Jagger, Šťov́ıček and

Thomason in 1996, by Thomason for t ≤ 6 in 1997, and by Franek for t = 6 in 2002.

We present a computational framework to investigate tighter upper bounds for small t

yielding the following improved upper bounds for t = 6, 7 and 8: c6 ≤ 0.7445×21−
(

6
2

)
,

c7 ≤ 0.6869 × 21−
(

7
2

)
, and c8 ≤ 0.7002 × 21−

(
8
2

)
. The constructions are based on a

large but highly regular variant of Cayley graphs for which the number of cliques and

cocliques can be expressed in closed form. Considering the quantity et = 2

(
t
2

)
−1ct, the

iii

new upper bound of 0.687 for e7 is the first bound for any et smaller than the lower

bound of 0.695 for e4 due to Giraud in 1979.

The second part of the thesis deals with extremal periodicities in strings: we

consider the problem of the maximum number of distinct squares in a string. The

importance of considering as key variables both the length n and the size d of the

alphabet is stressed. Let (d, n)-string denote a string of length n with exactly d distinct

symbols. We investigate the function σd(n) = max {s(x)|x is a (d, n)-string} where

s(x) denotes the number of distinct primitively rooted squares in a (d, n)-string x. We

discuss a computational framework for computing σd(n) based on the notion of density

and exploiting the tightness of the available lower bound. The obtained computational

results substantiate the hypothesized upper bound of n− d for σd(n). The structural

similarities with the approach used for investigating the Hirsch bound for the diameter

of a polytope of dimension d having n facets is underlined. For example, the role

played by (d, 2d)-polytope was presented in 1967 by Klee and Walkup who showed

the equivalency between the Hirsch conjecture and the d-step conjecture.

iv

Acknowledgements

I would like to thank my supervisors, Antoine Deza and Frantisek Franek, who pro-

vided invaluable support and encouragement during my PhD studies. My special

thanks go to the members of the examination committee :Dr. A. Rosa, Dr. R. Jan-

icki, Dr. F. Hoppe and Dr. D. Froncek.

Thanks also to my colleagues who assisted me in my work and were excellent moral

support.

Finally, I would like to thank my parents for their support and encouragement.

v

Contents

Abstract iii

Acknowledgements v

List of Abbreviations and Symbols xii

1 Preliminaries 1

1.1 Graph . 1

1.2 Strings . 4

I Erdős’ conjecture 7

2 Introduction 8

2.1 Erdős’ Conjecture and earlier results 8

2.2 New results . 9

3 Constructing Counterexamples 11

3.1 Seed graphs . 11

3.2 Determining kt(G
d
X,F) . 13

3.3 Selecting Si(X,F) . 21

3.3.1 Computing Si . 21

vi

3.3.2 Computational speed-up . 24

3.3.3 Exploiting symmetry . 25

4 Computation results 28

4.1 New upper bounds for c6, c7 and c8 29

4.1.1 New upper bounds for c6 . 29

4.1.2 New upper bounds for c7 . 29

4.1.3 New upper bounds for c8 . 30

4.2 Conclusion and future work . 32

II On square-maximal strings 33

5 Introduction 34

5.1 Problem definition . 34

5.2 Earlier results and conjectures . 35

5.3 Previous computational framework 36

5.3.1 Structural properties of (d, n)-strings 37

5.3.2 Generating the required (d, n)-strings 42

6 Improving the original computational framework 45

6.1 The (d, n− d) table . 45

6.2 Efficient heuristics for lower bound when d > 2 46

6.3 Efficient heuristics for d = 2 . 47

6.3.1 A better bound using a smaller search space 48

6.3.2 Find a better bound by using prefix and suffix construction . . 50

6.4 Double Squares and their role . 52

6.5 Some details of the computational framework 55

vii

7 Computational results and discussion 58

7.1 Case when d = 2 . 58

7.2 Case when d > 2 . 59

7.3 Some interesting observations of the (d, n− d) table 60

7.4 Discussion of future work . 61

A Testing result for Ci with i = 4, to 8 63

viii

List of Tables

2.1 Results for the new graphs introduced 10

3.1 Possible positions for t = 5 and associated number of 5-cliques 17

3.2 Possible positions for t = 6 and associated number of 6-cliques 17

3.3 Possible positions for t = 7 and associated number of 7-cliques 18

3.4 The coefficients of ki(X,F) . 20

3.5 The coefficients of Si(X,F). 20

3.6 The coefficients of ki(X,F) for t = 8. 21

3.7 The coefficients of Si(X,F) for t = 8. 21

3.8 Ordering of the xi’s and corresponding coefficients for S4 26

3.9 Exploiting symmetry for (|X|, F) = (11, {3, 4, 7, 8, 10, 11}) 27

4.1 Si(X,F) and Si(X,F) for (|X|, F) = (10, {1, 3, 4, 7, 8}) 29

4.2 Si(X,F) and Si(X,F) for (|X|, F) = (11, {3, 4, 7, 8, 10, 11}) 29

4.3 Si(X,F) and Si(X,F) for (|X|, F) = (12, {1, 3, 4, 7, 8, 11, 12}) 31

5.1 An s-cover of a string abbabbaba . 40

6.1 (d, n− d) table . 46

6.2 a piece of (d, n− d) table . 47

6.3 Some square-maximal strings for n− 2 = 41 to 46 50

6.4 Some square-maximal strings for n− 2 = 47 to 51 50

6.5 Some square-maximal strings for n− 2 = 52 to 53 51

ix

6.6 Some square-maximal strings for n− 2 = 48 and 49 51

7.1 Square-maximal strings for n− d = 52 to 54 59

7.2 (d, n− d) table for d = 3 . 59

7.3 (d, n− d) table for d = 4, 5, 6 and 7 60

7.4 (d, n− d) table for d = 8, 9, 10 and 11 60

A.1 Testing result for C4 with selected patterns 66

A.2 Testing result for C5 with selected patterns. 70

A.3 Testing result for C6 with selected patterns. 74

A.4 Testing result for C7 with selected patterns. 78

A.5 Testing result for C8 with selected patterns. 82

A.6 the coloured (d, n− d) table . 83

x

List of Figures

1.1 A directed graph and an undirected one 1

1.2 A simple graph and a multi-graph 2

1.3 An illustration of the complete graphs K3 and K4 2

1.4 A graph G and its complement Ḡ . 3

1.5 A graph G with five cliques of order 3 and two co-cliques of order 3 . 3

1.6 A bipartite graph G . 4

3.1 The graph GX,F with |X| = 3 and F = {2} 12

3.2 The graphs G and G3 . 12

3.3 mi’s for S2 . 22

3.4 m’s for S3 . 23

3.5 Obtaining S3 using S2 . 24

3.6 Symmetry with |X| = 10 and F = {3, 4, 6, 7} 26

4.1 c+
t vs t for given (|X|, F) . 30

5.1 Comparing the numbers of s-covered and general strings 42

5.2 The computational framework in pseudo-code. 43

6.1 The improved computational framework in pseudo-code for σ−2 (n) . . 53

6.2 The computational framework using double square s-covers 57

xi

List of Abbreviations and Symbols

• x14x2: symmetric difference between x1 and x2.

• x1 ∪ x2: union of the sets x1 and x2, in case x1 and x2 are overlapping strings,

this represents the join of the strings (see page 40 for the full definition).

• x1 ∩ x2: intersection of the set x1 and x2.

• x ⊆ y: the set x is a subset of the set y, in case x and y are strings, this means

that x is a substring of y.

• x ⊂ y: the set x is a proper subset of the set y.

• |x|: the size (cardinality) of the set x, or, if x is a string, the length of the string.

• A \B: relative complement of B in A; that is, the set of all elements of A that

are not elements of B.

• Sd(n): set of all strings of length n with exactly d distinct symbols.

• s(x): number of distinct primitively rooted squares in a string x.

• σd(n): maximum number of distinct primitively rooted squares over all strings of

length n with exactly d distinct symbols; that is, σd(n) = max{s(x) | x ∈ Sd(n)}.

• A(x): the alphabet of the string x, i.e. the set of all symbols occurring in x.

xii

• a singleton, respectively pair, triple, or k-tuple in a string x refers to a symbol

occurring exactly once, respectively twice, three times, or k times, in x.

• x[i] for a string x referrers to the i-th symbol of the string x, in this work we

index strings starting from 0.

• .. represents the range operator, thus i..j represents all values for i inclusively

to j inclusively.

• xy for strings x and y denotes the concatenation of the two strings.

xiii

Chapter 1

Preliminaries

1.1 Graph

A directed graph is denoted D = (V,A) with V the set of its vertices and A the set

of its ordered pair of vertices. The pairs are called arcs, directed edges or arrows. For

example, the arc a = (x, y) ∈ A, a is directed from x to y. We also can say that y is

adjacent to x. A graph is undirected if none of its edges have an orientation, and is

denoted G = (V,E) with V the set of vertices of G and E its edges, i.e, if there is an

edge between vertex x and y, then (x, y) ∈ E. See Figure 1.1 for an illustration of a

directed (left) and an undirected (right) graph.

v1 v2

v3

v1 v2

v3

Figure 1.1: A directed graph and an undirected one

A loop is an edge (directed or undirected) which starts and ends on the same vertex.

1

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

A multiple-edge occurs if there exists more than one edge between two vertices. If a

graph contains loops or multiple-edges it is called a multi-graph. An undirected graph

without loop or multiple-edge is called simple graph. See Figure 1.2 for an illustration

of a simple graph (left) and multi-graph (right).

v1 v2

v3

v1 v2

v3

Figure 1.2: A simple graph and a multi-graph

A complete graph is a simple undirected graph such that any pair of distinct

vertices is connected by an edge. The complete graph on n vertices is denoted as Kn.

Thus K1 is just a single vertex and K2 is an edge.

Figure 1.3 shows the graph for K3 and K4.

v1 v2

v3

v4

v5

v6

v7

Figure 1.3: An illustration of the complete graphs K3 and K4

Given a graph G = (V,E), its complement Ḡ is the graph with the same vertices

as G but its edges correspond exactly to pairs of vertices non-adjacent in G. See

Figure 1.4 for an illustration of a simple graph G and its complement Ḡ.

2

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

v1

v3

v2

v4

v1

v3

v2

v4

Figure 1.4: A graph G and its complement Ḡ

A clique of order t of an undirected graph G = (V,E) is a subgraph of G with

t vertices forming a complete graph in G. A co-clique of order t of a graph G is a

clique of order t of the complement of G. For example, there are five cliques of order

3 and two co-cliques of order 3 in the graph G shown in Figure 1.5: {v2, v3, v5},

{v2, v3, v4},{v2, v4, v5},{v3, v4, v5} and {v3, v4, v6}; and {v1, v2, v6} and {v1, v5, v6}.

v1 v2

v3

v4v5

v6

Figure 1.5: A graph G with five cliques of order 3 and two co-cliques of order 3

A graph G is bipartite if its vertices can be split into two parts V1 and V2 such that

any edge in G connects a vertex of V1 and a vertex of V2. For example, see Figure 1.6

for an illustration of a bipartite graph G whose vertices can be split into two parts

3

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

V1 = (v1, v5, v6) and V2 = (v2, v3, v4) such that any edge of G crosses the dashed line

separating V1 and V2.

v1 v2

v3

v4v5

v6

Figure 1.6: A bipartite graph G

1.2 Strings

A string x over an alphabet A is a contiguous sequence of symbols drawn from the

non-empty finite set A. A(x) represents the sets of symbols occurring in x, and so

A(x) ⊆ A. Often, strings are referred to as words, in particular in the discipline of

Combinatorics on words. Both terms can be used interchangeably. We use indexing

to refer to the symbols of a string and use the array notation for that, i.e. for a string

x of length n, that is a string having n symbols, x[0] refers to the very first symbol of

x, x[1] to the second symbol of x, ..., x[n− 1] to the very last symbol of x. We could

easily index the symbols of a string starting with 1, but since the programs we used

in our research are written in C++ where strings are represented as character arrays

4

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

and their indexing starts from 0, we use the same convention throughout the thesis.

Thus, x[0], x[1], ..., x[n− 1] are the symbols of the string x of length n. If need be, we

can use the range symbol .. as in x[0..n− 1] indicating that the index ranges from 0

to n − 1. The notation x = x[0..n − 1] is used to indicate that x is of length n. A

substring (or a subword) is a contiguous subsequence of a string. For example, aabda

is a substring of the string bbaabda. In the range notation, x[i..j] is a substring of

x = x[0..n− 1] if 0 ≤ i ≤ j < n.

The basic operations with strings is concatenation, i.e. joining of the two se-

quences. We denote the concatenation by simply listing the strings in the order to

be concatenated. For instance, xy refers to a sequence x[0], x[1], ..., x[n − 1], y[0], ...,

y[m− 1] where x = x[0..n− 1] and y = y[0..m− 1]. A string y is said to be a prefix of

a string x if there exist a string k such that x = yk. If k is non-empty, we speak of a

proper prefix. If x is non-empty, we may call the prefix non-trivial. Similarly, a string

y is said to be a suffix of a string x if there exist a string k such that x = ky. If k is

non-empty, we speak of a proper suffix, and a non-empty suffix may be referred to as

a non-trivial suffix.

A concatenation of the same string, say uu, is often abbreviated as u2, uuu as u3

etc. A string that is not of a form up for any string u and any integer p ≥ 2 is called

primitive and has a similar role among strings as the prime numbers have among

numbers. A primitive string is a string that is not a self-concatenation of some other

string. For example, aaaa = a4 is not primitive while ab is primitive (a 6= b).

As indicated by the simplicity of the definition of a string, strings are very simple

mathematical objects, we can say basic objects with no structure. Therefore, the pe-

riodicity of strings is important for investigation of properties of strings, and strings

with high periodicities are of an interest to both mathematicians and computer sci-

entists. In its generality, periodicity refers to all kinds of repeats and repetitions in

5

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

strings. The most fundamental repetition is a square, or a string of the form uu. For

example, aabbaabb is a square where aabb repeat twice. u of a square uu is referred

to as the generator of the square, and the length of the generator, i.e. |u| is referred

to as the period of the square. A square uu is primitively rooted if its generator u is

primitive. For example, the square aabaab is a primitively rooted while the square

abababab is not.

There are very natural questions to ask: how many squares in a string can occur

and how many different types of squares a string can have. The second problem is

referred to in the literature as the problem of the maximum number of distinct squares.

Since the number of distinct non-primitively rooted squares is bounded by bn
2
c − 1,

Kubica et al, [21], it is worthwhile to investigate the number of distinct primitively

rooted squares in a string. To attack the problem of distinct squares computationally

is not an easy task. For instance, to find σ(n), the maximum number of distinct

squares over all strings of length n, one would have to generate nn−1 strings by using

the brute force search, for each compute the number of distinct squares, and find the

maximum of these values. For binary strings, it is just not feasible to use the brute

force approach beyond the length of approximately 32; the exact cutoff point depends

on the hardware platform and the operating system used.

In the second part of the thesis, we describe a computational framework we de-

veloped to compute the maximum number of distinct primitively rooted squares for

previously infeasible sizes, more than doubling the length that can be handled.

6

Part I

Erdős’ conjecture

7

Chapter 2

Introduction

2.1 Erdős’ Conjecture and earlier results

Denote by kt(G) the number of cliques of order t in a graph G having n vertices. Let

kt(n) = min{kt(G) + kt(G)} where G denotes the complement of G. The cliques in

G are referred to as co-cliques. We use t-cliques and t-co-cliques when we want to be

specific about their sizes. Let ct(n) = kt(n)/
(
n
t

)
and ct = limn→∞ ct(n). Viewing G

and G as a 2-colouring of the edges of the complete graph Kn, ct(n) can be interpreted

as the minimum proportion of monochromatic t-cliques over all 2-colourings of the

edges of Kn [7].

A conjecture of Erdős related to Ramsey’s Theorem [7], states that ct = 21−
(
t
2

)
. The

conjecture is true for t = 2. In 1959, Goodman [16] shows this conjecture holds for

t = 3. Franek and Rödl [13] showed that the original conjecture for t = 4 is true

for nearly quasirandom, and hence quasirandom graphs in 1992. Erdős and Moon [8]

showed in 1964 that a modified conjecture for complete bipartite subgraphs of bipartite

graphs is true. Sidorenko [22] showed that a modified conjecture for cycles is true.

In 1989, Thomason [23] disproved the conjecture for t ≥ 4 using an infinite sequences

8

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

of graphs based on a single underlying seed graph. Namely, Thomason obtained the

following results:

(a) c4 ≤ 0.976× 21−
(

4
2

)
= 0.976× 2−5,

(b) c5 ≤ 0.906× 21−
(

5
2

)
= 0.906× 2−9,

(c) ct ≤ 0.936× 21−
(
t
2

)
for t ≥ 6.

The underlying seed graphs used by Thomason are rather abstract and complicated

and one could try to use simpler seed graphs to produce potential counterexamples

to the Erdős’ Conjecture. Thomason [24] further improved in 1997 the upper bounds

for t = 4 and 5 to c4 ≤ 0.9693× 21−
(

4
2

)
and c5 ≤ 0.8801× 2−9. Franek and Rödl [14]

presented computer generated counterexamples obtaining the same upper bounds for

small t. The bounds were further improved to c6 ≤ 0.7446 × 21−
(

6
2

)
by Franek [10],

and ct ≤ 0.835× 21−
(
t
2

)
for t ≥ 7 by Jagger, Šťov́ıček, and Thomason [19].

Concerning the lower bound, see Conlon [2] for an improvement over Erdős’ original

application of Ramsey’s Theorem, and Giraud [15] who showed that c4 ≥ 0.695 ×

21−
(

4
2

)
.

2.2 New results

The construction used in [10] for t = 6 is based on the approach used by Franek and

Rödl [14] who tied the best upper bound for c4. We investigated a computational

framework to search for tighter upper bounds for small t. In particular, we verified

that the construction used in [10] for t = 6 also improves the previously known best

upper bound for t = 7 to c7 ≤ 0.7156× 21−
(

7
2

)
. Further investigations combined with

exhaustive search yields new bounds for bound for t = 6, 7 and 8 which are published

9

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

in [6]. Note that the best upper bound for c8 was obtained without a neighbouring

search for potentially tighter constructions. The computational framework includes

parallelization and use of heuristic searches. The following table indicates the results

achieved by our underlying seed graphs. In particular, new bounds are in bold font.

i Previous best bounds Our bounds

4 0.9693× 21−
(

4
2

)
0.97650× 21−

(
4
2

)
5 0.8801× 21−

(
5
2

)
0.88584× 21−

(
5
2

)
6 0.7446× 21−

(
6
2

)
0.74444× 21−

(
6
2

)
7 0.835× 21−

(
7
2

)
0.68690× 21−

(
7
2

)
8 0.835× 21−

(
8
2

)
0.70014× 21−

(
8
2

)

Table 2.1: Results for the new graphs introduced

10

Chapter 3

Constructing Counterexamples

We pursue the approach used in [10, 14] to improve the upper bound for ct for small t.

In particular, we consider graphs for which the number of cliques and co-cliques can

be expressed in a closed form as it allows a search for the ones exhibiting the lowest

numbers of cliques and co-cliques.

3.1 Seed graphs

We consider the following family of seed graphs where 4 denotes the symmetric

difference.

Definition 3.1 For a set X and F ⊆ {1, 2, . . . , |X|}, consider the graph GX,F whose

vertices correspond to all 2|X| subsets of {0, 1, . . . , |X|−1} and two distinct subsets xi

and xj of {0, 1, . . . , |X|−1} are connected by an edge in GX,F if and only if |xi4xj| ∈

F .

See Figure 3.1 for an illustration of the graph GX,F with |X| = 3 and F = {2}.

Note that GX,F = GX,F where F = {1, 2, . . . , |X|} \ F .

11

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

φ

{1}

{2}
{3}

{12}
{13}

{23}

{123}

Figure 3.1: The graph GX,F with |X| = 3 and F = {2}

As Thomason [23] and Franek and Rödl [10, 14], we use the seed graph GX,F to

produce an infinite sequence of graphs.

Definition 3.2 For a positive integer d and a graph G of order n, the graph Gd is

obtained by replacing each vertex of G by a d-clique; therefore Gd has dn vertices.

Besides the edges within the created d-cliques, there is an edge between two vertices vi

and vj of Gd if and only if an edge existed in G between the two vertices corresponding

to the d-cliques containing vi and vj for i 6= j.

Note that G1 = G. See Figure 3.2 for an illustration with d = 3 and G having 3

vertices and 2 edges. The new graph G3 has 9 vertices and 27 edges.

v1 v2

v3

v1 v2

v3

Figure 3.2: The graphs G and G3

12

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

3.2 Determining kt(G
d
X,F)

As it is complicated to count cliques in Gd
X,F directly, we introduce the notion of

(X,F)-tuples.

Definition 3.3 For m ≥ 1, An ordered m-tuple, 〈x0, x1, · · ·, xm−1〉 is an (X,F)-m-

tuple if xi ⊆ X and |xi| ∈ F for i < m, and |xi4xj| ∈ F for all i 6= j < m.

Lemma 3.4 For a given X and F , let Sm(X,F) denote the number of (X,F)-m-

tuples, and km+1(GX,F) denote the number of cliques of size m+ 1 in the graph GX,F .

We have:

km+1(GX,F) =
2n

(m+ 1)!
Sm(X,F).

Proof

Case m = 2; that is, we wish to show that k3(GX,F) = 2n

(3)!
S2(X,F). Let {a, b, c}

be a 3-clique in GX,F . One can check that 〈a4b, a4c〉 is an (X,F)-2-tuple and that

all the elements in the 2-tuple are mutually distinct. Since any permutation of two

elements in the 2-tuple forms an (X,F)-2-tuple, there are 2 distinct (X,F)-2-tuples.

While we choose a, we could have considered any of the vertices in the 3-clique to

determine those 2 (X,F)-2-tuples. Therefore the clique {a, b, c} determines 3× 2 = 6

distinct (X,F)-2-tuples. On the other hand, one can easily show that if 〈x0, x1〉 is an

(X,F)-2-tuple and if a ⊆ X, then {a, a4x0, a4x1} is a 3-clique in GX,F . Thus, there

are exactly 2n

(3)!
S2(X,F) 3-cliques in GX,F .

Case m = 3; that is, we wish to show that k4(GX,F) = 2n

(4)!
S3(X,F). Let {a, b, c, d} be

a 4-clique in GX,F . One can check that 〈a4b, a4c, a4d〉 is an (X,F)-3-tuple and that

all the elements in the triple are mutually distinct. Since any permutation of three

elements in the 3-tuple forms an (X,F)-3-tuple, there are 6 distinct (X,F)-3-tuples.

13

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

While we choose a, we could have considered any of the vertices of the cliques to deter-

mine those 6 (X,F)-3-tuples,. Therefore the clique {a, b, c, d} determines 4× 6 = 24

distinct (X,F)-3-tuples. On the other hand, one can easily show that if 〈x0, x1, x2〉

is an (X,F)-3-tuple and if a ⊆ X, then {a, a4x0, a4x1, a4x2} is a 4-clique in GX,F .

Thus, there are exactly 2n

(4)!
S3(X,F) 4-cliques in GX,F .

Case m = k; that is, we wish to show that km+1(GX,F) = 2n

(m+1)!
Sm(X,F). Let

{x0, x1, ...xm} be a (m+1)-clique inGX,F . One can check that 〈x04x1, x04x2, ..., x04xm〉

is an (X,F)-m-tuple and all the elements in this m-tuple are mutually distinct. Since

any permutation of those m elements in the m-tuple forms an (X,F)-m-tuple, there

are m! distinct (X,F)-m-tuples. While we choose x0, we could have considered any of

the vertices of the cliques to determine the m! (X,F)-m-tuples. Therefore the clique

{x0, x1, ..., xm} determines (m+ 1)×m! = (m+ 1)! distinct (X,F)-m-tuples. On the

other hand, one can easily show that if 〈x04x1, x04x2, ..., x04xm〉 is an (X,F)-m-

tuples and if a ⊆ X, then {a, a4x0, a4x1, ..., a4xm} is a m-clique in GX,F . Thus,

there are exactly 2n

(m+1)!
Sm(X,F) (m+ 1)-cliques in GX,F . �

Once we showed the relationship between the number of m-tuples and the number

of (m+1)-cliques, we present the closed formula for limd→∞
k4(Gd)+k4(Gd)(

nd
4

) in Lemma 3.5.

While this proof can be found in [12], we recall it as same ideas are used for larger t.

Note that c4 ≤ limd→∞
k4(Gd)+k4(Gd)(

nd
4

) .

Lemma 3.5 Consider the infinite sequence of graphs {Gd} for d ≥ 1 obtained from

a seed graph G of size n, we have

lim
d→∞

k4(Gd) + k4(Gd)(
nd
4

) =
24(k4(G)+k4(Ḡ))+36k3(G)+14k2(G)+k1(G)

n4
.

14

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

Proof Given n and d, we wish to determine the number of 4-cliques in Gd. We

consider the 5 possible positions of the 4 vertices forming a 4-clique in Gd:

• Assume that the 4 vertices belong to d-cliques arising from 4 distinct vertices in

G. Thus, there are d4k4(G) such 4-cliques in Gd. To simplify the presentation,

we use Q1(d) to denote this number.

• Assume that 3 vertices belong to d-cliques arising from 3 distinct vertices in

G and that the remaining vertex belong to one of these d-cliques. There are 3

ways to choose the d-clique with 2 vertices,
(
d
2

)
ways to choose the 2 vertices

within the clique, and the remaining 2 vertices can be chosen independently.

Thus, there are 3
(
d
2

)
d2k3(G) such 4-cliques in Gd. To simplify the presentation,

we use Q2(d) to denote this number.

• Assume that 2 vertices belong to d-cliques arising from 2 distinct vertices in G

and that the remaining 2 vertices belong to one of these d-cliques. There are

2 ways to choose the d-clique with 3 vertices,
(
d
3

)
ways to choose the 3 vertices

within the clique, and the remaining vertex can be chosen independently. Thus,

there are 2
(
d
3

)
dk2(G) such 4-cliques in Gd. To simplify the presentation, we use

Q3(d) to denote this number.

• Assume that 2 vertices belong to a d-clique arising from a vertex in G and that

the remaining 2 vertices belong to a d-clique arising from another vertex in G.

There are
(
d
2

)
ways to choose the two vertices in each of the d-cliques. Thus,

there are
(
d
2

)2
k2(G) such 4-cliques in Gd. To simplify the presentation, we use

Q4(d) to denote this number.

• Assume that all the 4 vertices belong to a d-clique arising from a vertex in G.

There are
(
d
4

)
ways to choose the 4 vertices in the d-clique. Thus, there are

(
d
4

)
t

15

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

such 4-cliques in Gd. To simplify the presentation, we use Q5(d) to denote this

number.

Thus,

k4(Gd) = Q1(d) +Q2(d) +Q3(d) +Q4(d) +Q5(d)

=
(
d
1

)4
k4(G) + 3

(
d
2

)(
d
1

)2
k3(G) + [2

(
d
3

)(
d
1

)
+
(
d
2

)2
]k2(G) +

(
d
4

)
k1(G)

= d4k4(G) + 3
(
d
2

)
d2k3(G) + [2

(
d
3

)
d+

(
d
2

)2
]k2(G) +

(
d
4

)
k1(G)

= d4k4(G) +
3

2
d4k3(G)O1(d) + [

2

3!
d4O2(d) +

1

4
d4O3(d)]k2(G) +

1

4!
d4k1(G)O4(d)

where O1(d) = d−1
d

, O2(d) = (d−1)(d−2)
d2

, O3(d) = (d−1)2

d2
, and O4(d) = (d−1)(d−2)(d−3)

d3
.

Since limd→∞Oi(d) = 1, for i = 1, 2, 3, 4, we have:

lim
d→∞

k4(Gd)(
nd
4

) = lim
d→∞

∑
Qi(d)(
nd
4

)
= lim

d→∞
d4k4(G)+ 3

2 d4k3(G)O1(d)+[2
3!

d4O2(d)+
1
4 d4O3(d)]k2(G)+ 1

4!
d4k1(G)O4(d)(

nd
4

)
= lim

d→∞
d4[k4(G)+ 3

2 k3(G)O1(d)+[2
3!

O2(d)+
1
4O3(d)]k2(G)+ 1

4!
k1(G)O4(d)]

(nd)4

4!
(nd−1)(nd−2)(nd−3)

(nd)3

=
limd→∞ d4[k4(G)+ 3

2
k3(G)O1(d)+[2

3!
O2(d)+ 1

4
O3(d)]k2(G)+ 1

4!
k1(G)O4(d)]

limd→∞
(nd)4

4!
(nd−1)(nd−2)(nd−3)

(nd)3

=
limd→∞ k4(G) + 3

2
k3(G) + [2

3!
+ 1

4
]k2(G) + 1

4!
k1(G)

limd→∞
n4

4!

= lim
d→∞

4! ∗ [k4(G) + 3
2
k3(G) + [2

3!
+ 1

4
]k2(G) + 1

4!
k1(G)]

4! ∗ n4

4!

= lim
d→∞

24k4(G) + 36k3(G) + 14k2(G) + k1(G)

n4

which completes the proof. �

16

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

A similar method can be used for t ≥ 5. Tables 3.1, 3.2 and 3.3 show the possible

positions of the t vertices forming a t-clique for t = 5, 6, and 7. We use {a1, a2, a3, ...}

to denote the possible positions with ai denoting the the number of vertices of the t-

cliques in the same d-clique arising from a vertex in G. For example, in Table 3.1, the

case: {1, 1, 1, 2} means that 4 vertices are in d-cliques arising from 4 distinct vertices

of G and the remaining vertex is in one of these d-cliques.

Cases Q(d)

{1,1,1,1,1}
(
d
1

)5
k5(G)

{1,1,1,2} 4
(
d
2

)(
d
1

)3
k4(G)

{1,1,3} or {1,2,2} [3
(
d
3

)(
d
1

)2
+ 3
(
d
2

)2(d
1

)
]k3(G)

{1,4} or {2,3} [2
(
d
1

)(
d
4

)
+ 2
(
d
3

)(
d
2

)
]k2(G)

{5}
(
d
5

)
k1(G)

Table 3.1: Possible positions for t = 5 and associated number of 5-cliques

Cases Q(d)

{1,1,1,1,1,1}
(
d
1

)6
k6(G)

{1,1,1,1,2} 5
(
d
2

)(
d
1

)4
k5(G)

{1,1,1,3} or {1,1,2,2} [4
(
d
3

)(
d
1

)3
+
(

4
2

)(
d
2

)2(d
1

)2
]k4(G)

{1,1,4} or {1,2,3} or {2,2,2} [3
(
d
4

)(
d
1

)2
+ 3 ∗ 2

(
d
3

)(
d
2

)(
d
1

)
+
(
d
2

)3
]k3(G)

{1,5} or {2,4} or {3,3} [2
(
d
1

)(
d
5

)
+ 2
(
d
2

)(
d
4

)
+
(
d
3

)(
d
3

)
]k2(G)

{6}
(
d
6

)
k1(G)

Table 3.2: Possible positions for t = 6 and associated number of 6-cliques

17

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

Cases Q(d)

{1,1,1,1,1,1,1}
(
d
1

)7
k7(G)

{1,1,1,1,1,2} 6
(
d
2

)(
d
1

)5
k6(G)

{1,1,1,1,3} or {1,1,1,2,2} [5
(
d
3

)(
d
1

)4
+
(

5
2

)(
d
2

)2(d
1

)3
]k5(G)

{1,1,1,4} or {1,1,2,3} or {1,2,2,2} [4
(
d
4

)(
d
1

)3
+ 4 ∗ 3

(
d
3

)(
d
2

)(
d
1

)2
+ 4
(
d
2

)3(d
1

)
]k4(G)

{1,1,5} or {1,2,4} or {1,3,3} or
{2,2,3}

[3
(
d
1

)2(d
5

)
+ 3 ∗ 2

(
d
1

)(
d
2

)(
d
4

)
+ 3

(
d
1

)(
d
3

)(
d
3

)
+

3
(
d
2

)2(d
3

)
]k3(G)

{1,6} or {2,5} or {3,4} [2
(
d
1

)(
d
6

)
+ 2
(
d
2

)(
d
5

)
+ 2
(
d
3

)(
d
4

)
]k2(G)

{7}
(
d
7

)
k1(G)

Table 3.3: Possible positions for t = 7 and associated number of 7-cliques

Tables 3.1, 3.2 and 3.3 yield the following lemma.

Lemma 3.6

lim
d→∞

k5(Gd) + k5(Gd)(
nd
5

) =
120(k5(G)+k5(Ḡ))+240k4(G)+150k3(G)+30k2(G)+k1(G)

n5
.

lim
d→∞

k6(Gd) + k6(Gd)(
nd
6

) =
720(k6(G)+k6(Ḡ))+1800k5(G)+1560k4(G)+540k3(G)+62k2(G)+k1(G)

n6
.

lim
d→∞

k7(Gd) + k7(Gd)(
nd
7

) =
5040(k7(G)+k7(Ḡ))+15120k6(G)+16800k5(G)+8400k4(G)+1806k3(G)+126k2(G)+k1(G)

n7
.

Setting G = GX,F in lemmas 3.5 and 3.6 , and substituting km(GX,F) by

Sm−1(X,F) using lemma 3.4 yield the following lemma.

Lemma 3.7 Given a pair (|X|, F),

18

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

lim
d→∞

k4(Gd
X,F) + k4(Gd

X,F)(
d2n

4

) =
S3(X,F)+S3(X,F̄)+6S2(X,F)+7S1(X,F)+1

23n
,

lim
d→∞

k5(Gd
X,F) + k5(Gd

X,F)(
d2n

5

) =
S4(X,F)+S4(X,F̄)+10S3(X,F)+25S2(X,F)+15S1(X,F)+1

24n
,

lim
d→∞

k6(Gd
X,F) + k6(Gd

X,F)(
d2n

6

)
=

S5(X,F)+S5(X,F̄)+15S4(X,F)+65S3(X,F)+90S2(X,F)+31S1(X,F)+1

25n
,

lim
d→∞

k7(Gd
X,F) + k7(Gd

X,F)(
d2n

7

)
=

S6(X,F)+S6(X,F̄)+21S5(X,F)+140S4(X,F)+350S3(X,F)+301S2(X,F)+63S1(X,F)+1

26n
.

Tables 3.4 and 3.5 give the coefficients of ki and Si with different values of t.

These entries can and were computed by hand.

19

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

t k1 k2 k3 k4 k5 k6 k7 k8

4 1 14 36 24

5 1 30 150 240 120

6 1 62 540 1560 1800 720

7 1 126 1806 8400 16800 15120 5040

8 1 254 5796 40824 126000 191520 141120 40320

Table 3.4: The coefficients of ki(X,F)

t S1 S2 S3 S4 S5 S6 S7

4 7 6 1

5 15 25 10 1

6 31 90 65 15 1

7 63 301 350 140 21 1

8 127 966 1701 1050 266 28 1

Table 3.5: The coefficients of Si(X,F).

We notice the following relations between the computed coefficients of ki and Si

given in Tables 3.4 and 3.5. Given t, let αi,t, respectively βi,t, denote the coefficient

of ki(X,F), respectively Si(X,F), we have

αi,t = (αi,t−1 + αi−1,t−1)× i.

βi,t = βi,t−1 × (i+ 1) + βi−1,t−1,

Such relation between the coefficients of ki and Si could be used to determine a

closed formula for ci with i ≥ 8. We calculated the coefficient of ki and Si by hand

for t = 8 and the obtained values follow the same relation, see Tables 3.6 and 3.7 for

the coefficients αi,8 of ki and βi,8 of Si.

20

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

t k1 k2 k3 k4 k5 k6 k7 k8

8 1 254 5796 40824 126000 191520 141120 40320

Table 3.6: The coefficients of ki(X,F) for t = 8.

t S1 S2 S3 S4 S5 S6 S7

8 127 966 1701 1050 266 28 1

Table 3.7: The coefficients of Si(X,F) for t = 8.

3.3 Selecting Si(X,F)

We should now select a pair X and F potentially yielding a new upper bound for ci.

The method used to compute Si is essentially the one used in [12].

3.3.1 Computing Si

Computing S1(X,F)

Given X and F , we need to determine the number of 1-tuples in GX,F . Consider 〈x0〉

with x0 ⊆ X. We can generate all possible |x0| ∈ F , and then S1(X,F) is deter-

mined via S1(X,F) =
∑
|x0|∈F

(|X|
|x0|

)
. For example, for |X| = 10 and F = {1, 3, 4, 6},

S1(X,F) =
(

10
1

)
+
(

10
3

)
+
(

10
4

)
+
(

10
6

)
.

Computing S2(X,F)

Consider 〈x0, x1〉 with x0 and x1 distinct subsets of X and let m0 = |x0 \ x1|, m1 =

|x1 \ x0| and m01 = |x0 ∩ x1|. We have m0 + m01 = |x0|, m1 + m01 = |x1|, and

m0 +m1 = |x04x1|. See Figure 3.3 for an illustration of the relationship of those mi’s

via a set diagram.

21

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

m0 m01 m1

x0 x1

Figure 3.3: mi’s for S2

If 〈x0, x1〉 is a (X,F)-2-tuple, see Definition 3.3, the following conditions must be

satisfied: |x0|, |x1| and |x04x1| ∈ F . Thus, we determine

S2(X,F) =
∑

proper m′is

(|X|
m0

)
·
(|X|−m0

m1

)
·
(|X|−m0−m1

m01

)

for all possible 〈m0,m1,m01〉 by generating all the possible combinations of {m0,m1,m01}

satisfying the conditions on |x0|, |x1| and |x04x1|.

Computing S3(X,F)

Consider 〈x0, x1, x2〉 with x0, x1 and x2 distinct subsets of X and let m012 = |x0 ∩

x1 ∩ x2|, m01 = |x0 ∩ x1| \ m012, m02 = |x0 ∩ x2| \ m012, m12 = |x1 ∩ x2| \ m012,

m0 = |x0 \ (x1 ∪ x2)|, m1 = |x1 \ (x0 ∪ x2)|, and m2 = |x2 \ (x0 ∪ x1)|. See Figure 3.4

for an illustration of the relationship of those mi’s via a set diagram.

By Definition 3.3, the following conditions must be satisfied: |xi| ∈ F for i = 0, 1, 2,

|x04x1| ∈ F , |x04x2| ∈ F , |x14x2| ∈ F , and |x0 ∪ x1 ∪ x2| ≤ |X|. Restating these

conditions in term of mi’s give: m0+m01+m02+m012 ∈ F , m1+m01+m12+m012 ∈ F ,

m2 +m12 +m02 +m012 ∈ F , m0 +m02 +m1 +m12 ∈ F , m0 +m01 +m2 +m12 ∈ F ,

m1 +m01 +m2 +m02 ∈ F , and m0 +m1 +m2 +m01 +m02 +m12 +m012 ≤ |X|. Thus,

22

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

x0 x1

m0 m1m01

x2

m2

m02 m12

m012

Figure 3.4: m’s for S3

we determine

S3(X,F) =
∑

proper m′is

(|X|
m0

)
·
(|X|−m0

m1

)
·
(|X|−m0−m1

m01

)
· · ·

by generating all the possible combinations of mi’s satisfying these conditions.

Computing Si(X,F) for i ≥ 4

Similarly to the determination of S2(X,F) and S3(X,F), we consider all ordered i-

tuples 〈x0, x1, x2, ..., xi−1〉 of distinct subsets of X satisfying the associated conditions

of the mi’s to compute

Si(X,F) =
∑

proper m′is

(|X|
m0

)
·
(|X|−m0

m1

)
·
(|X|−m0−m1

m01

)
· · ·

Note that the number of potential propermi’s increases quickly as to compute Si(X,F),

we need to consider (2i− 1) possible mi’s. The intermediate computation of binomial

coefficients is performed using dynamic Pascal triangle structure.

23

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

3.3.2 Computational speed-up

As outlined in the previous section, the main step of the computation is the determi-

nation of Sj(X,F) and Sj(X, F̄) for j = 1, 2, . . . , i − 1 which is achieved by finding

all the m’s satisfying some given conditions and computing the sum of the corre-

sponding binomial coefficients. This process has an O(2i|X|) worst-case complexity

and therefore additional techniques are needed to make the computations tractable.

The main idea is an incremental approach illustrated by the following example under-

lying how the computations performed for Sj till j = i− 1 can be exploited to obtain

Si. The approach is essentially based on the simple remark that Figure 3.4 can be

obtained from Figure 3.3 by adding one more circle as illustrated in Figure 3.5.

x0 x1

m0
∗ m1

∗m01
∗ m0 m1m01

x2

x0 x1

m2

m02 m12
m012

Figure 3.5: Obtaining S3 using S2

Considering a proper m∗ = 〈m∗0,m∗1,m∗01〉 for S2, we can generate a proper m =

〈m0,m1,m2,m01,m02,m12,m012〉 for S3 via the equalities m0+m02 = m0
∗, m1+m12 =

m1
∗ and m01 + m012 = m01

∗ combined with following constraints: 0 ≤ m0 ≤ m0
∗,

0 ≤ m1 ≤ m1
∗, and 0 ≤ m01 ≤ m01

∗. Since |x2| ∈ F , m2 can be determined through

m2 = z − m12 − m02 − m012 for z ∈ F . Finally, to check the symmetric difference

constraints among the xi’s, it is enough to check |x04 x2| ∈ F and |x14 x2| ∈ F .

In general, the determination of proper m’s can be performed incrementally. Given

24

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

a proper m∗ for Si and the associated product of binomial coefficients

Y ∗ =
(|X|
m0
∗

)(|X|−m0
∗

m1
∗

)(|X|−m0
∗−m1

∗

m∗2

)(|X|−m0
∗−m1

∗−m2
∗

m3
∗

)
· · ·

and the corresponding proper m for Si+1 and product of binomial coefficients

Y =
(|X|
m0

)(|X|−m0

m1

)(|X|−m0−m1

m2

)(|X|−m0−m1−m2

m3

)
· · ·

we have:

Y = Y ∗ ·
(
m0
∗

m0

)(
m1
∗

m1

)
· · ·
(
m01···i∗

m01···i

)(|X|−m0
∗−m1

∗−m01
∗−···

mi

)
.

While the worst-case complexity remains exponential due to the usual combinatorial

explosion, the computational speed-up is significant for sizes we are considering.

3.3.3 Exploiting symmetry

An additional computational speed-up is obtained by exploiting the inherent sym-

metries of the mi’s. For example, consider |X| = 10 and F = {3, 4, 6, 7} and the

determination of S2. As illustrated in Figure 3.6, proper 〈m0,m1,m01〉 for S2 with

m0 6= m1 yields another proper 〈m1,m0,m01〉. Since the associated product of bino-

mial coefficients for 〈m0,m1,m01〉 and 〈m1,m0,m01〉 are identical up to permutations,

it is enough to compute one and count it twice.

25

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

x0 x1

m0 m1m01

〈m0 = 1,m1 = 2,m01 = 5〉

x0 x1

m0 m1m01

〈m0 = 2,m1 = 1,m01 = 5〉

Figure 3.6: Symmetry with |X| = 10 and F = {3, 4, 6, 7}

In general, one can fix the order of the xi’s and take into account multiplicities by

multiplying by the corresponding coefficients. For example, for S4, see Table 3.8 for

the coefficients corresponding to the different orderings of the xi’s.

Ordering Coefficient

|x0| > |x1| > |x2| > |x3| 4!

|x0| > |x1| > |x2| = |x3| 2
(

4
2

)
|x0| > |x1| = |x2| > |x3| 2

(
4
2

)
|x0| = |x1| > |x2| > |x3| 2

(
4
2

)
|x0| > |x1| = |x2| = |x3|

(
4
3

)
|x0| = |x1| > |x2| = |x3|

(
4
2

)
|x0| = |x1| = |x2| > |x3|

(
4
3

)
|x0| = |x1| = |x2| = |x3| 1

Table 3.8: Ordering of the xi’s and corresponding coefficients for S4

As the size of the symmetry group increases with i, the computation gains in-

crease accordingly as illustrated in Table 3.9 giving the number of proper instances

before/after exploiting the symmetries to compute S4, S5 and S6 with (|X|, F) =

(11, {3, 4, 7, 8, 10, 11}). For S7, the average ratio over all computations is about 1 %.

26

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

i # instances # instances ratio

(initial) (exploiting symmetry)

4 15,668 1,813 3.0%

5 377,196 17,625 0.5%

6 9,104,496 160,626 0.08%

Table 3.9: Exploiting symmetry for (|X|, F) = (11, {3, 4, 7, 8, 10, 11})

27

Chapter 4

Computation results

We developed a code written in C++ to determine the Si’s given X and F and per-

formed an exhaustive search over all (|X|, F) for |X| = 9, 10, 11 and 12 for t = 6

and 7. The computation was run using Intel Quad core Q9550. We first run our code

to re-compute previously known values given in [12, 14, 10] as testing and verifica-

tion and to estimate the efficiency of the code. The computation of S1, . . . , S6 for all

pairs (|X|, F) considered in [12, 14, 10] yields the same values while requiring only

a tiny fraction of the computation time previously required. As further testing and

verification, we computed S1, . . . , S7 for full families because for such trivial family

{1, 2, . . . , |X|} the number of i-tuples can be expressed using Lemma 3.4 with a closed

formula Si = (2|X|−1)!

(2|X|−i−1)!
. The computed values coincide with the ones given by the

closed formula..

28

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

4.1 New upper bounds for c6, c7 and c8

4.1.1 New upper bounds for c6

The best results were achieved with t = 6 by (|X|, F) = (10, {1, 3, 4, 7, 8}) yielding

c6 ≤ 0.74444 × 21−
(

6
2

)
, see Table 4.1. Note that the same upper bound is achieved

with (|X|, F) = (10, {3, 4, 7, 8, 9}).

i Si(X,F) Si(X, F̄)

1 505 518

2 125,010 135,726

3 14,562,090 17,463,606

4 726,780,600 1,028,265,840

5 13,191,935,400 26,106,252,480

Table 4.1: Si(X,F) and Si(X,F) for (|X|, F) = (10, {1, 3, 4, 7, 8})

4.1.2 New upper bounds for c7

The best results were achieved with t = 7 by (|X|, F) = (11, {3, 4, 7, 8, 10, 11}) yielding

c7 ≤ 0.6869×21−
(

7
2

)
, see Table 4.2. Note that the same upper bound is achieved with

(|X|, F) = (11, {2, 5, 6, 9, 10}).

i Si(X,F) Si(X, F̄)

1 1,002 1,045

2 490,050 556,842

3 113,148,090 146,860,362

4 11,590,147,800 17,896,958,640

5 506,500,533,000 950,437,303,200

6 14,677,396,549,200 21,359,851,904,160

Table 4.2: Si(X,F) and Si(X,F) for (|X|, F) = (11, {3, 4, 7, 8, 10, 11})

29

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

4.1.3 New upper bounds for c8

Starting from t = 8, exhaustive search and computation become intractable even with

the introduced computational speed-up. Therefore, we tried a guided local search us-

ing heuristics.

Search algorithm 1

We first noticed the following two patterns, shown in Figure 4.1, when plotting the

upper bound c+
t as a function of t for a given F and |X| = 10, 11, 12. The left curve

appears to be more common for larger c+
4 while the right one appears to be more

common for smaller c+
4 . Consequently, we simulate via partial computation the value

for c4 and reject (|X|, F) returning values larger than a predetermined threshold. This

approach was used for t = 8 and relatively small |X| as it became intractable for large

|X|.

t

c+
t

t

c+
t

Figure 4.1: c+
t vs t for given (|X|, F)

30

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

Search algorithm 2

Represent the pair (|X|, F) as the characteristic vector of F as a subset of {1, 2, . . . , |X|},

one can notice some patterns among the (|X|, F) achieving the best results for t = 6

and 7; that is, the best (|X|, F) for t = 6, respectively t = 7, are obtained with

(|X|, F) = [1011001100], respectively (|X|, F) = [00110011011]. Extrapolating that

such patterns remain valid for at least the few values of t, we restrict our search

to (|X|, F) = [. . . 11001100 . . .] when searching for a new upper bound for c8. This

search algorithm, combined with the previous one, yielded an improved upper bound

c8 ≤ 0.7002× 21−
(

8
2

)
for (|X|, F) = (12, {1, 3, 4, 7, 8, 11, 12}), see Table 4.3.

i Si(X,F) Si(X,F)

1 2,027 2,068

2 2,030,562 2,158,860

3 986,934,042 1,120,464,444

4 223,874,343,000 279,763,013,640

5 21,997,023,741,000 32,608,321,954,560

6 868,195,804,568,400 1,762,344,151,444,800

7 23,207,044,770,478,800 47,296,455,155,389,440

Table 4.3: Si(X,F) and Si(X,F) for (|X|, F) = (12, {1, 3, 4, 7, 8, 11, 12})

See Table 1 in the Appendix for results obtained via a few other seeds. Note that

we tried the (|X|, F) yielding the best bounds for c5, c6, c7 and c8 as seeds for t = 9

but were unable to improve the upper bound for c9.

31

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

4.2 Conclusion and future work

We introduced a computational framework to search graphs potentially yielding im-

proved upper bounds tightening the known counterexamples to the 1960 Erdős’ Con-

jecture on multiplicities of complete subgraphs. We described significant computa-

tional speed-up allowing the determination of new upper bounds for t = 6, 7 and 8.

We believe further investigation of the best, or near-best, graphs could help to refine

the heuristics in order to tackle higher instances of t.

32

Part II

On square-maximal strings

33

Chapter 5

Introduction

5.1 Problem definition

In Chapter 1, we introduced the notion of strings, concatenation, string indexing,

squares, primitive strings, and primitively rooted squares, and briefly introduced the

problem. In this chapter we describe the problem in more details and give its back-

ground and history.

We start with notation: for integers d and n so that 2 ≤ d ≤ n, the strings of

length n with exactly d distinct symbols are referred to as (d, n)-strings. For instance,

aabbcdd is a (4,7)-string. An integer function σd(n) signifying the maximum number

of distinct primitively rooted squares over all (d, n)-strings, is thus defined as σd(n) =

max{s(x)|x is a (d, n)-string}, where s(x) denotes the number of distinct primitively

rooted squares in a string x. An integer function σ(n) = max{ s1(x) : |x| = n} where

s1(x) is the number of distinct squares in a string x is thus the maximum number

of distinct squares over all strings of length n and so the problem of the maximum

number of distinct squares is thus a determination of the value σ(n) for any n. This

is not an easy combinatorial problem and the chances of ever solving it by providing a

34

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

closed formula are very slim. That is why most researchers really aim for reasonable

lower and upper bounds of the function σ(n).

5.2 Earlier results and conjectures

Fraenkel and Simpson in 1998 showed that the number of distinct squares in a string

of length n is bounded from above by 2n and gave a lower bound of n− o(n) asymp-

tomatically approaching n from below for primitively rooted squares for infinitely

many values of n, [9]. Their proof relied on a theorem by [3], describing the mutual

configurations of three squares.

After a few years, in 2005, Ilie provided a simpler proof [17] avoiding the theo-

rem of Crochemore and Rytter. In 2007, he presented an asymptotic upper bound

2n − Θ(log n), [18]. In 2011, Deza, Franek and Jiang proposed a d-step approach

to this problem for primitively rooted squares, [4]. They introduced the size of the

alphabet, d, as a parameter in addition to the usual length of the string and in-

stead of the function σ(n) investigated the function σd(n). They conjectured that

σd(n) ≤ n − d and provided a strong supporting evidence for the bound. They in-

vestigated the fundamental properties of the function σd(n), introduced the (d, n− d)

table where the value σd(n) is the entry at the d-th row and the (n − d)-th column.

They showed the critical role played by the main diagonal of the (d, n− d) table and

hence (d, 2d)-strings.

In [5], Deza, Franek and Jiang introduced a computational framework for deter-

mining σd(n) values based on their investigation of the properties of σd(n) in [4]. As

mentioned in Chapter 1 in the brief introduction of the problem, a computational

approach relying on brute force is not applicable for strings of length beyond approx-

imately 32. They introduced the notion of s-cover, the basic tool for reduction of the

35

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

search space. They were able to determine all the values of σ2(n) for n ≤ 53 and

σ3(n) for n ≤ 41. It seems intuitively clear that that σd1(n) ≥ σd2(n) for d1 < d2, as

for the given length a smaller alphabet gives a bigger freedom to create more squares;

that is why most of the researchers in the field consider the case of the binary alpha-

bet the hardest and most important. However, Deza, Franek, and Jiang discovered a

counter-intuitive fact that σ2(33) < σ3(33). Their effort lead to a slight improvement

of the universal upper bound of Fraenkel and Simpson to σ2(n) ≤ 2n− 66 for n ≤ 53.

Our contribution is an improvement of the sophistication of the computational

framework introduced in [5], providing a significantly better efficiency and faster ex-

ecution, allowing to carry out the computations for much higher values of n and d,

doubling the reach of the method.

5.3 Previous computational framework

Our aim is to calculate the value of σd(n) for given d and n. Without any reduction

of the problem, dn strings would have to be generated and for each of them, the

number of distinct primitively rooted squares computed. Thus, the search space

increases exponentially. There are some obvious simplifications - for instance, a string

and a string that is created by permuting its alphabet have the same number of

distinct primitively rooted squares, so in fact we can “only” generate dn−1 strings

by fixing the very first character. Moreover, we could only generate strings whose

first occurrences of symbols are in lexicographic order. For instance, a string cbbacbba

has the same number of distinct primitively rooted squares as the string abbcabbc.

In the former, the first occurrence of c precedes the first of occurrence of b, which

precedes the first occurrence of a, so such string could be safely ignored. Despite all

such improvements, and we will use all of them, the essential exponential nature of

36

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

the problem cannot be avoided. Therefore, we want to avoid generating full strings

that cannot be square-maximal, i.e. we must develop methods and techniques for

determining from a partially generated string if it has any chance to be completed to

a square-maximal one, and if not, abort its completion.

The computational framework used in [5] relies on the properties of s-cover to

reduce the search space. In the following subsection, we describe how the s-cover is

used to simplify the generation of the pool of possible square-maximal strings.

5.3.1 Structural properties of (d, n)-strings

We present two notions associated with (d, n)-strings in this section. One is the so-

called core vector, and the other is the s-cover. Both of them figure in necessary

conditions guaranteeing that the generated string x satisfies s(x) > σ−d (n) for a given

lower bound denoted as σ−d (n). The basic setup is as follows: use some heuristics to

obtain quickly and cheaply a lower bound σ−d (n) for σd(n). Then utilizing the s-cover

and the core vector, generate only the strings that are not guaranteed to give a lower

value than σ−d (n), thus the closer the lower bound σ−d (n) is to the real value of σd(n),

the better. Note that this approach can still generate strings with fewer than σ−d (n)

distinct primitively rooted squares, but the ones who are in an early stage guaranteed

to have fewer than σ−d (n) distinct primitively rooted squares are not completed. We

have to start with definitions of the notions needed. Since we are only computing the

number of distinct primitively rooted squares, for the sake of simplicity, by square we

really mean a primitively rooted square.

Definition 5.1 [5]

1. For a square S occurring in a string x, its core is the set of indices formed by

the intersection of the indices of all its occurrences in x.

37

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

2. For a string x of length n, ki(x) is the number of non-empty cores of squares of

x containing i for i = 0, .., n− 1. The vector k(x) = [k0(x), k2(x), .., kn−1(x)] is

referred as the core vector of x.

The motivation behind the definition is simple. One of the biggest problems with

estimating s(x) is the fact that there is no obvious way to apply induction. One

can see that there is no obvious relationship between s(x) + s(y) and s(xy) as the

concatenation xy of x and y can both reduce the number of distinct squares (we

cannot count the same type of square in x and in y twice), and increase the number

of distinct squares by creating new squares not existing in either x or y. So, there is

no apparent way to reduce the length of the string for the induction step. One way to

apply reduction to a (d, n)-string is to “remove” one symbol from x: either remove it

and concatenate the leftovers which results in a (d, n− 1)-string (if the original string

did not have any singletons), or replace it by a wholly new symbol which results in a

(d+ 1, n)-string. If the number of distinct squares destroyed by this process is known

to be less or equal to k, then s(x) ≤ σd(n−1)−k in the former and s(x) ≤ σd+1(n)−k

in the latter case. Both values σd(n − 1) and σd+1(n) are in the (d, n − d) table to

the left of the d, n − d entry, and so this approach is conducive to the computation

of the entries in the (d, n − d) table in the fashion of dynamic programming. The

co-ordinate ki(x) of the core vector for x tells us how many distinct squares would be

destroyed if we “removed” the i-th symbol of x.

Definition 5.2 defines a notion of density for a string. Note that it depends on the

availability of the lower bound σ−d (n). A more proper way would be to define t-density

and then talk of σ−d (n)-density. But since it is not used in any other context, for the

sake of simplicity we use it as “density” knowing that it depends on whatever kind of

σ−d (n) we have available.

38

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

Definition 5.2 A singleton-free (d, n)-string is dense, if its core vector k(x) satisfies

ki(x) > σ−d (n) − s(x[1 .. i − 1]) −mi for i = 1, ..., n, where mi = max{σd′(n − i) :

d− |A(x[1..i− 1])| ≤ d′ ≤ min(n− i, d)}.

Again, the motivation behind this definition is straightforward. If a string is dense,

any “removal” of any symbol of x will destroy too many distinct squares. Thus, for a

string that is not dense, a “removal” of a symbol will result in a loss of too few distinct

squares and so the maximum number of distinct squares for such a string will not

exceed σ−d (n). Also note that the definition of density uses two quantities, the exact

number of distinct squares for x[0..i−1] and just an estimate of the maximum number

of distinct squares for x[i + 1..n − 1]. This is no coincidence. When a string will be

partially generated, we will be able to compute the density of the part that is generated

so far and reject the string if it is not dense, thus eliminating the generation of its

completion, that would be hopeless anyway. This all is formalized in the following

lemma whose proof is given in [5].

Lemma 5.3 [5] If a (d, n)-string x is not dense, then s(x) ≤ σ−d (n).

An s-cover is a generalization of a cover of a string and hence of the structure

of the string. Therefore, the elements of the s-cover are substrings of x and their

union gives the whole x. Deza, Franek and Jiang in [5] used the s-cover to represent

the structure of a dense string and instead of generating strings, they generated the

required s-covers whose unions are the strings.

We can encode a square as a triple (s, e, p) where s is the starting position of the

square, e is the ending position of the square, and p is its period. E.g. abab in a string

ababaa can be encoded as (0, 3, 2). In fact, we could only use a pair (s, p) or (s, e) to

uniquely encode a square as e = s+ 2p− 1. We use the triple (s, p, e) for convenience

in discussions of the framework, however in the computer programs it is really coded

39

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

as (s, p).

For the upcoming definition of the s-cover, we must first properly define what we

mean by the union of substrings. First, it is not referred to as union but rather as

a join of substrings. Second, the usual symbol for set union ∪ is used, as it is clear

from the context if a set union is meant or a join of substrings.

Let x = x[0..n − 1] and let 0 ≤ i ≤ j < n, 0 ≤ k ≤ m < n]. Then the join of

x[i..j] and x[k..m] denoted as x[i..j] ∪ x[k..m] is defined only when j ≥ k and equals

x[min{i, k}..max{j,m}].

Definition 5.4 ([5]) An s-cover of a string x = x[0..n−1] is a sequence of primitively

rooted squares {Si = (si, ei, pi)|1 ≤ i ≤ m} if

1. for any 1 ≤ i < m, si < si+1 ≤ ei + 1 and ei < ei+1.

2.
⋃

1≤i≤m
Si = x;

3. for any occurrence of square S in x, there is 1 ≤ i ≤ m so that S is a substring

of Si, denoted by S ⊆ Si.

The table 5.1 illustrates an s-cover {(0, 3, 5), (1, 3, 6), (2, 3, 7), (5, 2, 9)} of a string

x = abbabbaba.

string x a b b a b b a b a

s1 a b b a b b

s2 b b a b b a

s3 b a b b a b

s4 b a b a

Table 5.1: An s-cover of a string abbabbaba

A string that has an s-cover is referred to as s-covered. It is clear that from the

condition (2) in the definition, an s-covered string must be singleton free.The following

40

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

lemma shows that an s-cover of a string is unique and that we hence can speak of the

s-cover of a string.

Lemma 5.5 ([5]) If a string admits an s-cover, then the s-cover is unique.

Lemma 5.6 ([5]) If a string admits an s-cover, then the string must be singleton

free.

The two lemmas that follow help us narrow down the search space.

Lemma 5.7 ([5]) If a singleton-free square-maximal (d, n)-string x does not have an

s-cover, then σd(n) = σd(n− 1).

Lemma 5.8 ([5]) If a square-maximal (d, n)-string has a singleton, then σd(n) =

σd−1(n− 1).

Thus, we can divide the set of all the square-maximal (d, n)-strings into three

parts:

• Part 1: All the singleton-free not s-covered square-maximal (d, n)-strings.

• Part 2: All the singleton-free square-maximal s-covered (d, n)-strings.

• Part 3: All the square-maximal (d, n)-strings that have singletons.

From lemma 5.7 and 5.8, it is easy to see that the upper bound of σd(n) is already

known for Part 1 and Part 3. Since we always make sure that the value of an available

σ−d (n) is at least equal to max { σd(n−1), σd−1(n−1) }, we only need to generate the

strings from Part 2. This is how the search space is significantly reduced. To gage

the significance, we generated a few sets of (d, n)-strings and compared the numbers

of s-covered and not s-covered, see Figure 5.1.

41

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

d = 2, n = 10 Covered: 154 not Covered: 357

d = 2, n = 15 Covered: 4074 not Covered: 12,309

d = 2, n = 20 Covered: 109,437 not Covered: 414,850

d = 3, n = 10 Covered: 183 not Covered: 9,147

d = 3, n = 15 Covered: 21,681 not Covered: 2,353,420

d = 3, n = 20 Covered: 1,908,923 not Covered: 578,697,523

Figure 5.1: Comparing the numbers of s-covered and general strings

Thus, we only need to generate the s-covers of the strings to be generated during

the computations. We also know that s(x) ≤ σ−d (n) if the string x is not dense from

lemma 5.3, so we really only need to generate the s-covers whose union will be dense.

5.3.2 Generating the required (d, n)-strings

Previously, we discussed why it is sufficient to only generate s-covered strings that

are dense as a pool of possible square-maximal strings whose number of distinct

primitively rooted squares can exceed the value of σ−d (n). This is utilized in the

computational framework of [5] where all such s-covers are generated one square at a

time. In fact, the s-covers must satisfy even more stringent conditions. Firstly, they

cannot have consecutive adjacent squares. Secondly, we can check after each square is

generated if the density condition is satisfied, and if not, there is no reason to continue

with the generation of the complete s-cover. For a given d and n, we generate the

first square, then we extend the partial s-cover by generating the next square and

checking the density. All the generated strings are generated using the so-called

restricted growth algorithm making sure that the introduction of previously unused

symbol follows the lexicographic order as we discussed previously. This is achieved by

checking the frequency of occurrences of all symbols and their first occurrences. Once

the length n is reached, we compute the number of distinct primitively rooted squares

in the string using the Crochemore partitioning algorithm-based program of Franek,

42

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

Jiang and Weng [11]. The same program is also used to compute the core vector for

checking the density. A simple pseudo-code of the computational framework is shown

below in Figure 5.2.

• Step 1: Set the first square is S1 = (s1, e1, p1), with s1 = 1 and p1 = 1. Let
j = 2.

• Step 2: Fill the pattern of S1, and count the frequency occurrence of each
symbol.

• Step 3: Generate the next square Sj = (sj, ej, pj) by sj = sj−1 + 1.

• Step 4: Fill the pattern of Sj.

• Step 5: Check the validity of Sj. If it is not valid, clear the pattern in Sj and
go to Step 4. If the maximum length has been reached, go to Step 6, else go to
Step 3 and increment j = j + 1.

• Step 6: Check the value of s(x).

• Step 7: If all the strings have been generated, then go to Step 8, else update
the value of σ−d (n) and go to Step 2 with p1 = p1 + 1.

• Step 8: Output the value of σ−d (n) as the value for σd(n).

Figure 5.2: The computational framework in pseudo-code.

In Step 5 we need to check the validity of the partially generated s-cover, i.e.

whether we can add Sj to it. What we must check, whether the string which will be

the join of all squares in the s-cover will be dense. In a sense, we must predict and that

is not an easy task: in general it is not true that if a prefix of a string is not dense than

the whole string would not be dense. Why? Because when generating the remaining

part of the string we might add distinct squares that start in the prefix (though they

end in the remaining part) and this will make the prefix dense. However, it is true for

the partially generated string up to the beginning of Sj, as we are guaranteed by the

property of the s-cover that no square will be created that starts before Sj and ends

43

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

past the ej−1. Thus, the program of Franek, Jiang and Weng [11] is used to compute

the core vector of y =
⋃

1≤i≤j

[0..ej] and that is used for checking the density of y.

44

Chapter 6

Improving the original

computational framework

In this section we describe efficient heuristics for the computation of the lower bound

σ−d (n). Let us explain and justify the term “efficient”. By efficient we really mean

a heuristics that in a majority of cases gives the actual value of σd(n). The heuristics

we actually used for this project were derived from the properties of σd(n) function

as revealed by the (d, n− d) table and they were really efficient in our sense as they

provided the right values except in two or three cases.

6.1 The (d, n− d) table

We use (d, n − d) table to record the values of σd(n), [4]. The rows of the table

are indexed by d, and the columns are indexed by n − d. Each cell contains the

corresponding value of σd(n). We can observe how some of the properties of the

function σd(n) propagate through the table. Table 6.1 only shows the upper-left

corner of the potentially infinite (d, n − d) table for d < 11 and n − d < 11. The

45

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

values in bold represent the main diagonal, i.e. the values of the type σd(2d). The

up-to-date values can be found on the website of Mei Jiang [20]

n− d
d 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 .

2 1 2 2 3 3 4 5 6 7 7 .

3 1 2 3 3 4 4 5 6 7 8 .

4 1 2 3 4 4 5 5 6 7 8 .

5 1 2 3 4 5 5 6 6 7 8 .

6 1 2 3 4 5 6 6 7 7 8 .

7 1 2 3 4 5 6 7 7 8 8 .

8 1 2 3 4 5 6 7 8 8 9 .

9 1 2 3 4 5 6 7 8 9 9 .

10 1 2 3 4 5 6 7 8 9 10 .

11

Table 6.1: (d, n− d) table

6.2 Efficient heuristics for lower bound when d > 2

In the previous chapter, we introduced the computational framework for computations

of the values of σd(n). We also discussed the role of the available lower bound σ−d (n)

and the advantages of having a lower bound as close to the actual value as possible

as we only need to generate the strings that have a chance of having more distinct

primitively rooted squares than σ−d (n). In this chapter, we discuss some efficient

heuristics for finding a better σ−d (n).

From table 6.2, it is clear that σd(n) ≥ σd−1(n− 2) + 1, σd(n) ≥ σd−1(n− 1) and

σd(n) ≥ σd(n− 1). For the proof, refer to [4]. This is depicted in Table 6.2.

46

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

.. .. n− d− 1 n− d

..
d− 1 σd−1(n− 2) σd−1(n− 1)
d .. σd(n− 1) σd(n)
..

Table 6.2: a piece of (d, n− d) table

We can simply set σ−d (n) = max {(σd−1(n−1), σd−1(n−2)+1, σd(n−1)}, provided

that we have obtained the three values involved first. This motivates our method of

filling in the values of the table in the fashion of dynamic programming, i.e. left-

to-right and top-to-down. Though one can experiment, and we did, with various

heuristics, we found this to be the most efficient and satisfactory one. In particular,

we tried the same heuristics as for d = 2 (described below), and several of its varia-

tions, but it is much more computationally extensive and did not provide any better

estimates.

6.3 Efficient heuristics for d = 2

When d = 2, we have σd(n−1) ≤ σd(n). Thus, we could simply set σ−d (n) = σd(n−1).

But this really does not help too much. As a consequence of the Fraenkel-Simpson

result, we know, see [5], that 0 ≤ |σd(n) − σd(n − 1)| ≤ 2 and 1 ≤ |σd+1(2d + 2) −

σd(2d)| ≤ 2, and so we would have a big gap between the lower bound and the actual

value, since we believe that for the vast majority of entries, σd(n) = σd(n − 1) + 1

and it costs significant computation to reject the value σd(n − 1) + 2 in comparison

to rejecting the value σd(n − 1) + 1. There are some other heuristics that can help

get a tighter σ−2 (n).

47

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

6.3.1 A better bound using a smaller search space

We performed many computational tests for small n’s and produced the corresponding

sets of square-maximal strings and investigated them. From these results we derived

several heuristic rules that help get a better lower bound. The rules are listed below

as Rule 1, Rule 2, and Rule 3.

• Rule 1: The string must be balanced over every prefix.

By “balanced” we mean the following: denote the string as x. Let xi denote the

prefix of x of length i. The frequencies of a’s and b’s in xi are denoted by fi(a)

and fi(b), respectively. For a predefined constant c, determined empirically, it

is required that |fi(a)− fi(b)| ≤ c for 1 ≤ i ≤ n.

• Rule 2: The s-cover of the string must contain squares with periods bounded

by a predefined constant, also determined empirically.

Note that this significantly reduces the computational costs of generating the

s-cover.

• Rule 3: The string must not contain triples of consecutively occurring symbols

(i.e. aaa or bbb).

When we checked the square-maximal strings of small length, the differences of

the frequencies of two symbols were quite small. This lead us to formulate Rule

1. Similarly, when investigating the s-covers of the strings, we noticed that they

consisted mostly of shorter squares. This lead us to formulate Rule 2. Though we

found some square-maximal strings containing aaa’s or bbb’s, the investigation of the

strings revealed that for every σ2(n) there was a square-maximal string exhibiting no

aaa’s or bbb’s. This lead to Rule 3.

48

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

It is quite obvious how these rules simplify the computations. If Rule 1 is used, a

lot of strings are rejected during the generation early on when the balance is violated.

If Rule 2 is used, many s-covers are also rejected during the generation early on and

the program’s looping is highly reduced. If Rule 3 is used, again, many strings will

be rejected early on.

Denote by L2(n) the set of all s-covered (2, n)-strings satisfying those three rules,

then we can set σ−2 (n) = max{σ2(n− 1), max
x∈L2(n)

s(x)}.

During the computation, we first computed max
x∈L2(n)

s(x) separately. Then run the

generation program setting the initial value of σ−2 (n) to max{σ2(n− 1), max
x∈L2(n)

s(x)}.

Although the program has been run twice, overall total running times have improved.

We also noticed following fact presented here as remark with a simple proof.

Remark 6.1 Let the predefined constant in Rule 1 be c. If a string x satisfies Rule

1 and Rule 3, then c ≤ d|x|/3e+ r where r is the reminder of |x|/3.

Proof Group any three continuous symbols in the string x, the difference of the

frequencies of a’s and b’s will be equal to 1. There are b|x|/3c groups of substrings

with length 3 if we counted the groups from the beginning of the string, and left 0, 1

or 2 symbols at the end (i.e. the remainder r). Thus the maximum value of c will be

equal to d|x|/3e+ r. �

In real practice, we used to set the value of c by c = min{dn/3e + r, c∗} during

the string generation, where n is the length of the string to be generate, and c∗ is a

predefined empirically determined constant. By decreasing c∗ we were able to narrow

down the set L2(n).

49

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

6.3.2 Find a better bound by using prefix and suffix con-

struction

We used the previous heuristics to find the values of σ2(n) for n−2 ≤ 53. The running

times for n−2 > 53 were simply too long and the program runs were not terminating.

Thus we begun to investigate the runs for smaller lengths trying finding some useful

information among those square-maximal strings.

The tables 6.3, 6.4 and 6.5 show some of the square-maximal strings for n−2 = 41

to 46, n− 2 = 47 to 51, n− 2 = 52 to 53,

n− 2 Square-maximal String
41 aabaababaababaabaababaababaabaababaabaababb
42 aabaababaababaabaababaababaabaababaabaababbb
43 aabaababaababaabaababaababaabaababaabaababbab
44 aabaababaababaabaababaababaabaababaabaababbabb
45 aabaababaababaabaababaababaabaababaabaababbabba
46 aabaababaababaabaababaababaabaababaabaababbabbab

aabaababaababaabaababaababaabaababaabaababbabbaa

Table 6.3: Some square-maximal strings for n− 2 = 41 to 46

n− d Square-maximal String
47 ababbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbbbabaa
48 ababbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbbbabaaa
49 ababbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbbbabaaba
50 ababbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbbbabaabaa
51 ababbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbbbabaabaab

Table 6.4: Some square-maximal strings for n− 2 = 47 to 51

50

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

n− d Square-maximal String
52 aababbabbbabbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbbba
53 aababbabbbabbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbbbab

Table 6.5: Some square-maximal strings for n− 2 = 52 to 53

From those three tables we can see that all the square-maximal strings displayed

contain the same prefix. The common prefix is marked by the bold font. For example,

all the strings for n− 2 = 41 to 46 contain the same prefix

aabaababaababaabaababaababaabaababaabaababb.

The square-maximal string for given d and n may not unique. Table 6.6 also

shows other square-maximal strings for n− 2 = 48, 49.

n− d Square-maximal String
48 ababbabbbbabbbbbabbbbabbbbbabbbbabbbabbbbabbbabbbb
49 aababbabbbbabbbbbabbbbabbbbbabbbbabbbabbbbabbbabbbb

Table 6.6: Some square-maximal strings for n− 2 = 48 and 49

Again, we can see from this table that all the displayed square-maximal strings con-

tain the same suffix, also denoted in bold. In particular, all the strings for n− 2 = 48

and 49 contain the same prefix ababbabbbbabbbbbabbbbabbbbbabbbbabbbabbbbabbbabbbb.

Thus, it is a reasonable guess that if x is a square-maximal (2, n)-string, then xa,

xb, ax or bx could also be square-maximal (2, n+ 1)-strings. We can ignore the case

bx, since all the strings that we generate must start with a. Although such strings

may not be really square-maximal strings for a given n, they might still help find a

better lower bound σ−2 (n).

If we want to use the prefix and suffix construction to generate the next candidate

string for the computation of L2, there are several cases that need to be discussed.

• if the (2, n)-string x starts with aa, we could use xa and xb.

51

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

• if the (2, n)-string x starts with ab, we could use ax, xa and xb.

Denote by P2(n− 1) the set of (2, n− 1)-strings obtained by the above two rules,

then we can set σ−2 (n) = max {σ2(n− 1), max
x∈L2(n)

s(x), max
x∈P2(n)

s(x)}.

Consider we already have a list of square-maximal (2, n − 1)-strings. Every time

we read one string from this list and generate the candidate (2, n)-string by using the

above two rules. Then we could check the number of the squares in the candidate

string, and update σ−2 (n). Note that the value for σ2(n) only can be σ2(n − 1),

σ2(n−1)+1, or σ2(n−1)+2. If σ−2 (n) = σ2(n−1)+2, we can terminate the program

immediately. We could say σ2(n) = σ2(n − 1) + 2 and the candidate string is one of

the square-maximal (2, n)-string. If we get σ−2 (n) = σ2(n− 1) + 1 after check all the

possible candidate strings, then we need to check the string x in L2(n). If for some

string x ∈ L2(n), s(x) = σ2(n − 1) + 2, we could terminate the program and output

the result. If we still get σ−2 (n) = σ2(n − 1) + 1, the brute force search need to be

used. In real practice, most of time we could have obtained σ−2 (n) = σ2(n − 1) + 1

or σ−2 (n) = σ2(n − 1) + 2 when we build P2(n). So to compute P2(n) first will be a

better choice. A pseudo-code of combined heuristics is also shown below:

6.4 Double Squares and their role

We have discussed several heuristics in order to find a better value σ−d (n) to speed

up the computations. As discussed previously, all the generated s-covers should yield

dense strings. A double square may help us reduce the search space even further.

Definition 6.2 A pair of primitively rooted squares (s, e, p) and (s, e′, p′) form a dou-

ble square if s′ = s, p < 2p′ < 2p.

52

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

• Step 1: Read a string from the list of square-maximal (2, n− 1)-strings.

• Step 2: Using prefix or suffix construction, generate (2, n)-strings.

• Step 3: Count the number of squares in the new strings, and update σ−2 (n).

• Step 4: If σ−2 (n) = σ2(n− 1) + 2, go to Step 8; if σ−2 (n) < σ2(n− 1) + 2, go to
Step 5.

• Step 5: Read the next string from the list of square-maximal (2, n− 1)-strings.
if no string can be read, go to Step 2; else go to Step 6.

• Step 6: Generate x which satisfied the rule of L2(n) with known σ−2 (n). If all
the strings in L2(n) has been checked, go to Step 9.

• Step 7: Check the value of s(x). if s(x) = σ2(n − 1) + 2, go to Step 8; if
σ−2 (n) < σ2(n− 1) + 2, go to Step 6.

• Step 8: σ2(n) = σ2(n− 1) + 2, and output the result.

• Step 9: Update σ−2 (n) and run a brute force search, and output the result.

Figure 6.1: The improved computational framework in pseudo-code for σ−2 (n)

In simple terms, a double square consists of two primitively rooted squares uu

and UU starting at the same position with the smaller square being bigger than the

generator of the larger square, i.e. |U | < |uu| < |UU |.

For example: abaaba is a prefix of a string x = abaababaabbabba, and the squares

abaaba and abaababaab both start at the same position 0. Thus we call the pair

(abaaba, abaababaab) a double square.

Definition 6.3 A double square s-cover is an s-cover whose first square is the larger

square of a double square.

Lemma 6.4 Let a string x start with a double square (uu, UU). Then there are

a primitive string t, a non-empty proper prefix c of t, and integers a and b so that

uu = (tac)2 and UU = (tactb)2.

53

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

Proof Since |U | < |uu| < |UU |, the first U overalaps with the second u. Let v denote

this overlap. Then u = vv̄ for some v̄ and U = uv.

U = uv = vv̄v and vU = vvv̄v. Since u is a prefix of vU = vvv̄v, then u must be

a prefix of vvv̄, and so u = vmc′ for some m ≥ 1 and some prefix c′ of v. c′ must

be a proper non-empty prefix, for otherwise u would not be primitive. Let t be the

primitive root of v, i.e. t is primitive and v = tb for some b ≥ 1 (b = 1 if v is primitive

and hence its own primitive root). Then u = tbmc′. Either c′ is a proper non-empty

prefix of t, or c′ = tpc′′ for some p ≥ 1 and some proper non-empty prefix c′′ of t. In

the former case, let a = bm and let c = c′, in the latter case, let a = bmp and c = c′′.

Therefore, u = tac and U = tcv = tctb. It is clear that a ≥ b. �

Lemma 6.5 If a string x admits an s-cover that is not a double square s-cover, then

s(x) ≤ σd(n− 1) + 1.

Proof Let {Sj | 1 ≤ j ≤ m} be the s-cover of x = x[0..n− 1] and let y = x[1..n− 1].

Since S1 is not a double square, s(y) ≥ s(x)−1. We also have s(y) ≤ σd(n−1). Thus

s(x) ≤ σd(n− 1) + 1. �

Denote by L∗d(n) the set of (d, n)-strings that admit a double square s-cover and

satisfy all the conditions described in section 6.2. Recall that

σ−2 (n) = max{σ2(n− 1), max
x∈L2(n)

s(x), max
x∈P2(n)

s(x)}

and

σ−d (n) = max{σd−1(n− 1), σd−1(n− 2) + 1, σd(n− 1)} when d > 2

.

From Lemma 13 in [5] we have σd(n) ≤ σd(n− 1) + 2. Thus the value for σd(n)

only can be σd(n− 1), σd(n− 1) + 1 or σd(n− 1) + 2. There are two cases that need

54

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

to be considered during the generation of the s-cover:

• σ−d (n) = σd(n− 1): We want to find a string x so that s(x) > σ−d (n). We know

that max
x∈L∗d(n)

s(x) ≤ σd(n−1)+1. So σd(n) = σ−d (n−1) or σd(n) = σ−d (n−1)+1.

We still need to generate the set of all special s-covered (d, n)-strings.

• σ−d (n) > σd(n− 1): We want to find a string x so that s(x) > σ−d (n) + 1. If the

string does not admit a double square s-cover, then s(x) ≤ σ−d (n) + 1. Thus we

only need to generate L∗d(n). Thus, in this situation we can generate a double

square s-cover and due to Lemma 6.4 this is computationally way cheaper as

for S1 we only need to generate t and vary a, b, and c, rather than generating

all possible generators for S1.

6.5 Some details of the computational framework

The modified generation proceeds by extending a partially built s-cover in all possible

ways. In the following, we discuss all the steps:

1. When d = 2

We obtain σ−2 (n) as described in the previous section. There are three cases to con-

sider:

• Case 1: σ−2 (n) = σ2(n− 1) + 2.

Since σ2(n) ≤ σ2(n − 1) + 2, we have the value of σ2(n) and there is no need

to compute any further. In addition, every square-maximal string must be in

L2(n) or P ∗2 (n).

• Case 2: σ−2 (n) = σ2(n− 1) + 1.

55

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

In this case σ−2 (n) > σ2(n− 1). We already obtained a string x so that σ2(x) =

σ2(n − 1) + 1 either in L2(n) or P ∗2 (n). and we want to check whether there

exists a string x′ so that s(x′) = σ−d (n) + 2. By Lemma 6.5 we could use

the double square to speed up the program: if we can generate a string with

s(x) = σ2(n − 1) + 2 by generating only double square s-covers, then σ2(n) =

σ2(n− 1) + 2, otherwise, σ2(n) = σ2(n− 1) + 1.

• Case 3: σ−2 (n) = σ2(n− 1).

In this case, we cannot use Lemma 6.5 to speed up the program. We still need

to generate the set of all special s-covered (2, n) -strings.

2. When d > 2

We obtain σ−d (n) as described in the previous section. Sometimes we do not know all

the required values σd−1(n−1), σd−1(n−2) and σd(n−1) during the real computation.

But we may still use some properties of (d, n − d) table to find a suitable value for

σ−d (n). Denote L∗d(n) is the set of (d, n)-strings that admit a double square s-cover

and satisfy all the conditions from the previous section.

There are two cases need to be discussed during the string generation:

• σ−d (n) = σd(n − 1): We want to find a string x with s(x) > σ−d (n). However,

we cannot use Lemma 6.5 to reduce the size of the search space. We need to

generate the set of all special s-covered (d, n)-strings.

• σ−d (n) > σd(n−1): The value of σd(n) can only be σd(n−1)+1 or σd(n−1)+2.

If we could find a string x with s(x) = σd(n − 1) + 2 by generating all double

square s-covers, then s(x) = σd(n− 1) + 2, otherwise, s(x) = σd(n− 1) + 1.

Another aspect we need to mention: if we know only the value of σd−1(n− 2) and

σd(n− 1), and σd−1(n− 2) = σd(n− 1), then σ−d (n) is at least equal to σd(n− 1) + 1.

56

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

We still can generate the double square s-covers for this case.

A pseudo-code of the modified version of the computational framework for using

double square s-covers is shown in Figure 6.2.

• Step 1: Set the first square is S1 = (s1, e1, p1), with s1 = 1 and p1 = 1. Let
j = 2.

• Step 2: Fill the pattern of S1, and make sure it is a double square, then
count the frequency occurrence of each symbol.

• Step 3: Generate the next square Sj = (sj, ej, pj) by sj = sj−1 + 1,

• Step 4: Fill the pattern of Sj.

• Step 5: Check the validity of Sj. If it is not valid, clear the pattern in Sj and
go to Step 4. If the maximum length has been reached, go to Step 6, else go to
Step 3 and increment j = j + 1.

• Step 6: Check the value of s(x).

• Step 7: If all the strings have been generated, then go to Step 8, else update
the value of σ−d (n) and go to Step 2 with p1 = p1 + 1.

• Step 8: Output the value of σ−d (n) as the value for σd(n).

Figure 6.2: The computational framework using double square s-covers

57

Chapter 7

Computational results and

discussion

In previous work, Deza, Franek and Jiang already found the values of σ2(n) for n ≤ 53

and σ3(n) for n ≤ 41 [5]. We presented an improved version of the computational

framework in chapter 6. The improved framework was also implemented in C++ as

the original one and also incorporates the current work of Mei Jiang [5]. This code

has been run on two desktops; one with AMD Phenom II*6 1055T and the other with

Intel Quad core Q9550. Note that this is quite an achievement of the streamlining

of the framework and the whole code as similar computations for runs performed by

Andrew Baker [1] had to be performed on the facilities of the Shared Hierarchical

Academic Research Computing Network (SHARCNET:www.sharcnet.ca).

7.1 Case when d = 2

We computed the values of σd(n) till n − 2 = 68. The table 7.1 shows the square-

maximal strings and the value of σ2(n) for n − 2 = 52 to 54. The up-to-date values

58

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

can be found on the web at [20].

n− d σd(n) Square-maximal String
52 41 aababbabbbabbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbbba
53 42 aababbabbbabbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbbbab
54 43 aababbabbbabbabbbabbbbabbbabbbbabbbbbabbbbabbbbbabbbbaba

Table 7.1: Square-maximal strings for n− d = 52 to 54

We used the same prefix to find the square-maximal strings for n − 2 = 52 to 54,

n − 2 = 55 to 56, n − 2 = 58 to 61, n − 2 = 62 to 64 and n − 2 = 65 to 68.

We determined that σ2(n) = n − 15 when 63 ≤ n ≤ 68 and σ2(n) = n − 14 when

58 ≤ n ≤ 62, all slight improvements of the previous universal bounds.

7.2 Case when d > 2

By using the modified version of computational framework as described in this thesis,

we were able to compute some additional values of σd(n); the results are shown in the

following tables:

n− d
d 32 33 34 35 36 37 38 39 40 41 42

3 25 26 26 27 28 29 30 31 32 33 34

Table 7.2: (d, n− d) table for d = 3

59

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

n− d
d 24 25 26 27 28 29 30 31 32 33 34

4 19 20 21 22 22 23 24 25 25 26 27

5 19 20 21 22 23 23 24 25 26

6 19 20 21 22 23 24

7 19 20 21 22 23 24 25

Table 7.3: (d, n− d) table for d = 4, 5, 6 and 7

n− d
d 20 21 22 23 24

8 17 18

9 17 18 19

10 17 18 19 20

11 17 18 19 20 21

Table 7.4: (d, n− d) table for d = 8, 9, 10 and 11

We were also able to determine the values of σ14(21) = 19, σ15(21) = 19, σ16(21) = 19,

and σ15(22) = 20.

7.3 Some interesting observations of the (d, n − d)

table

All the known values as of writing this thesis of the (d, n−d) table are shown in [20].

Here we briefly summarize some interesting observations:

• First, we coloured the cells which cannot use the double square heuristics in

(d, n − d) table. Figure A.6 in Appendixes shows the colouring pattern when

n − d < 36. Those coloured cells form several oblique lines when n − d < 30.

Note that the number on each oblique line forms an arithmetic sequence with

60

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

the consecutive terms equal to 1. For example, σd(2d + 1) line and σd(2d + 3)

line. We could guess σ12(32) = 17, and σ8(30) = 18, etc.

The coloured pattern shows a little difference for σ3(35) and σ3(36). In both

cases, we cannot use the double square heuristics. However, those two values

were increased by 2 not by 1 on the oblique lines. We still can apply the double

square heuristics when we compute σ4(37) and σ4(38).

If we only consider the value of σd(n) with n− d < 30, we could guess those six

lines following the rule of arithmetic sequence. But it requires a long time to

compute the rest of blank cells.

• When n − d < 30, the uncoloured cells also form several oblique lines, and

the numbers on each oblique line also form an arithmetic sequence with the

consecutive terms equal to 1. For example, σd(2d+ 2) line, σd(2d+ 4) line. We

may guess σ16(38) = 20 and σ16(39) = 21 if they follow the same rule.

• If σd(n−1) = σd−1(n−2) = σd−1(n−1), then σd(n) = σd(n−1)+1. Most of cases

happen at the left side of the coloured oblique line. If the values in the cell of the

coloured oblique line always increase by 1 is true, and σd(n−1) = σd−1(n−2) =

σd−1(n−1) and σd−1(n−1) has been coloured, then σd(n+1) = σd−1(n−1)+1 =

σd−1(n− 2) + 1. Since σd(n+ 1) ≥ σd(n) ≥ σ−d (n) = σd−1(n− 2) + 1. Thus we

could get σd(n) = σd−1(n− 2) + 1.

7.4 Discussion of future work

We presented the values of σd(n) in a (d, n−d) table which could help us to illustrate

properties of the σd(n) function. Then we explored some structural properties of

square-maximal strings and combined those with Antoine, Franek and Jiang’s work

61

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

[5] to narrow down the search space. Currently, we are trying to compute more results

with bigger d and n. The use of the heuristics introduced in the previous chapter help

us a lot to speed up the program. However, there still exist some cases that cannot

use the heuristics to narrow down the search space, and the computation time for

those cases is getting extremely large. For example, the computation time for σ4(36)

is nearly 126 hours, while the computation time for σ4(37) is 28 seconds. This is

caused by the fact that we could not use the double square s-cover when computing

σ4(36), while we could use it for σ4(37). Thus, it is imperative to find some other

heuristics to deal with those cases when the double square s-cover cannot be applied.

Recall the use of prefix and suffix construction for d = 2; there may exist some

common string structures that can be used to generate square-maximal strings or

to obtain a higher σ−d (n). On the other hand, we know that when d increases, the

complexity of generating the required strings increases exponentially. Hence, it may

not be possible for such structures to exist.

62

Appendix A

Testing result for Ci with i = 4, to 8

The following tables shown the result for different (X,F) family. And the odd row

record the value of Ci, the even row record the value of Ci with family (X,F).

|X|

Pattern 8 9 10 11 12 13

0011001100 1.13574219 1.01171875 0.985961914 0.988203477 0.992839565 1.00856694

1.10429955 1.01244998 0.990583271 0.990583271 0.993627459 1.00895621

1011001100 1.28100586 1.02922606 0.976899028 0.981060773 0.989830071 1.0064073

1.21611595 1.02034855 0.97881791 0.982690584 0.990410786 1.0067391

00110011100 1.01172042 0.976899028 0.990705401 1.10362923 1.35268079

1.01244831 0.97881791 0.989232015 1.10067049 1.35000702

1011001110 1.02952385 0.980664253 1.00323346 1.12227589 1.37098021

1.02056575 0.97979483 1.00095846 1.11908785 1.36824149

0011001101 0.984628886 0.981060773 0.991888113 1.0354308

0.988975167 0.982690584 0.991536526 1.03459036

0011001111 0.976501197 1.00323346 1.19816476

0.978155732 1.00095846 1.19411079

1011001101 0.976501197 0.977259677 0.993698146 1.03879866

0.978155732 0.978155732 0.9931526587 1.03790855

Continued on next page

63

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

1011001111 0.981169432 1.02038656 1.2239581

0.980024934 1.01729667 1.21966597

00110011001 0.985961914 0.98900395 1.00085492

0.988204461 0.989584666 1.00091371

00110011101 0.992266204 1.12041712 1.44370894

0.990662947 1.11722907 1.44071369

00110011011 0.979586568 0.993384663 1.0668259

0.981080607 0.992817046 1.06566577

00110011111 1.00553703 1.22249763 1.87204384

1.00313364 1.21820551 1.86784465

10110011001 0.979586568 0.9872274 1.00077168

0.981080607 0.987603351 1.00077514

10110011101 1.00553703 1.1402746 1.46339556

1.00313364 1.13685966 1.46033748

10110011011 0.976501197 0.996404774 1.07215569

0.977260005 0.995641245 1.07094442

10110011111 1.02345503 1.25003951 1.90278896

1.02023527 1.24550721 1.89851915

001100110001 0.992485575 1.00648551

0.993256112 1.00682031

001100111001 1.10501292

1.10203314

001100110101 0.992113329 1.03998978

0.991745492 1.03909068

001100110011 0.988723755 1.00073242

0.989287314 1.00073528

001100111101 1.20015347

1.19607956

Continued on next page

64

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

001100111011 1.12188936

1.11868047

001100110111 0.993672609 1.07351042

0.993088943 1.07229016

001100111111 1.22457121

1.22025934

101100110001 0.989549875 1.00455682

0.990113435 1.00483451

101100111001 1.12374813 1.3831028

1.12053924 1.38031746

101100110101 0.993986093 1.04353345

0.993424555 1.04258504

101100110011 0.987013824 1.00087142

0.987372418 1.00081864

101100111101 1.22603167

1.22171981

101100111011 1.14190197

1.13846598

101100110111 0.996760078 1.07911159

0.995980298 1.0778399

101100111111 1.25227632

1.24772409

0011001100001 1.00855966

1.00894874

0011001101001 1.03547636

1.03463513

0011001100101 1.0008548

1.00091357

Continued on next page

65

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

0011001100011 1.00648009

1.00681472

0011001101101 1.06688342

1.06572266

0011001101111 1.07356805

1.0723472

1011001100001 1.00640188

1.00673352

1011001101001 1.03884488

1.037954

1011001100101 1.00077168

1.00077514

1011001100011 1.00455143

1.00482893

1011001101101 1.07221332

1.07100146

1011001101111 1.07917456

1.07790224

Table A.1: Testing result for C4 with selected patterns

66

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

0011001100 1.64294434 1.05883789 0.905601501 0.920398147 0.95145267 1.02806488

1.4422704 1.06854648 0.937057157 0.937057157 0.956756186 1.03065581

1011001100 2.07093906 1.11152285 0.886526036 0.901127503 0.943189267 1.02107755

1.64743435 1.0585006 0.900162114 0.912778417 0.947099479 1.02327373

00110011100 1.058838 0.886526036 0.948289626 1.30324776 2.13100996

1.06854637 0.900162114 0.938713676 1.28343068 2.11213623

1011001110 1.11160141 0.908805624 0.995021358 1.37006841 2.20408733

1.05850049 0.903623561 0.979794163 1.3484831 2.18463861

0011001101 0.902649402 0.901127503 0.959170491 1.11068933

0.932256107 0.912778417 0.956848968 1.10503498

0011001111 0.885833698 0.995021358 1.59081704

0.897767649 0.979794163 1.56332478

1011001101 0.885833698 0.890881679 0.963287215 1.11843094

0.897767649 0.897767649 0.959747036 1.11247834

1011001111 0.910506458 1.06029295 1.68782318

0.903482151 1.03915152 1.65835795

00110011001 0.905601501 0.939063275 1.00401167

0.920428218 0.942974064 1.0044235

00110011101 0.958177668 1.36152484 2.43824039

0.946974524 1.33989113 2.41683573

00110011011 0.891475171 0.962201681 1.20281799

0.901335349 0.958357023 1.19506784

00110011111 1.00946286 1.68211997 4.01820908

0.992648106 1.65259078 3.98612699

10110011001 0.891475171 0.934923535 1.00385899

0.901335349 0.937475391 1.00390511

10110011101 1.00946286 1.43264499 2.51614085

0.992648106 1.40927483 2.4941754

Continued on next page

67

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

10110011011 0.885833698 0.970354167 1.21673035

0.890892446 0.965263061 1.20865642

10110011111 1.08004683 1.78854166 4.16391977

1.05727751 1.75699066 4.1310669

001100110001 0.950323635 1.02163258

0.955509748 1.0238671

001100111001 1.30831564

1.28831394

001100110101 0.959930845 1.1247456

0.957507646 1.11866836

001100110011 0.938138485 1.00366306

0.941934755 1.0037012

001100111101 1.59826003

1.57059729

001100111011 1.36695465

1.34513805

001100110111 0.963104275 1.22431807

0.959160395 1.21612023

001100111111 1.68992303

1.66022495

101100110001 0.942264477 1.01526468

0.946060171 1.01710896

101100111001 1.37549822 2.24072002

1.35373003 2.22093049

101100110101 0.964189809 1.13284167

0.960550408 1.12646961

101100110011 0.934155635 1.00406393

0.936590374 1.00373203

Continued on next page

68

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

101100111101 1.69562623

1.66599211

101100111011 1.4389729

1.41541379

101100110111 0.971420595 1.23908756

0.96622764 1.23056065

101100111111 1.79738575

1.7656595

0011001100001 1.02806348

1.03065427

0011001101001 1.11070933

1.10505386

0011001100101 1.00401167

1.00442349

0011001100011 1.02163163

1.02386605

0011001101101 1.20284439

1.19509312

0011001101111 1.22434447

1.21614552

1011001100001 1.02107661

1.02327268

1011001101001 1.11845101

1.11249731

1011001100101 1.00385899

1.00390511

1011001100011 1.01526373

1.01710791

Continued on next page

69

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

1011001101101 1.21675675

1.2086817

1011001101111 1.23911808

1.23058994

Table A.2: Testing result for C5 with selected patterns.

70

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

0011001100 3.75463867 1.29962158 0.764137268 0.831030083 0.860959751 1.07542521

2.64658214 1.37267149 0.91637198 0.91637198 0.887034996 1.08844422

1011001100 5.15943325 1.4615983 0.744442503 0.787430871 0.844477544 1.05813184

2.76985814 1.22335798 0.813008828 0.84871549 0.863689423 1.06909643

00110011100 1.2996216 0.744442503 0.906574674 1.72834927 4.10813343

1.37267147 0.813008828 0.862400354 1.62617257 3.99641879

1011001110 1.46162837 0.817719245 1.03008148 1.92310213 4.37128719

1.22335797 0.795091169 0.955976433 1.80951447 4.25469267

0011001101 0.760373532 0.787430871 0.899600397 1.27947767

0.903738192 0.84871549 0.888356921 1.25061629

0011001111 0.744513802 1.03008148 2.45692938

0.805299098 0.955976433 2.30900079

1011001101 0.744513802 0.765934053 0.906984454 1.2943036

0.805299098 0.805299098 0.890137923 1.26408043

1011001111 0.823244758 1.2182199 2.76629258

0.791751134 1.11094514 2.60393576

00110011001 0.764137268 0.833050913 1.01891786

0.831520402 0.852239287 1.02107901

00110011101 0.95254279 1.89752947 5.0812162

0.893452133 1.78360609 4.94981885

00110011011 0.744962024 0.90609014 1.49887112

0.788981328 0.886900737 1.45908592

00110011111 1.09588979 2.75079098 10.8668026

1.00733241 2.5878517 10.6379605

10110011001 0.744962024 0.826433963 1.01891688

0.788981328 0.839050281 1.01926292

10110011101 1.09588979 2.1058764 5.36855646

1.00733241 1.98066514 5.23217978

Continued on next page

71

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

10110011011 0.744513802 0.923175255 1.52896967

0.7661201 0.898167406 1.48756696

10110011111 1.31219744 3.10553143 11.5561778

1.18969804 2.92727695 11.3184268

001100110001 0.85841642 1.06025944

0.883906373 1.07150171

001100111001 1.74410978

1.64063532

001100110101 0.901406649 1.31524438

0.889694744 1.28400616

001100110011 0.830960512 1.01833653

0.849587675 1.01862259

001100111101 2.48065632

2.33148075

001100111011 1.9147145

1.79948977

001100110111 0.908146649 1.55563566

0.888505612 1.51320447

001100111111 2.77617861

2.61198368

101100110001 0.842387143 1.04437561

0.861037811 1.05359986

101100111001 1.94031438 4.478168

1.82542538 4.35915372

101100110101 0.909040963 1.33065745

0.891742797 1.2980783

101100110011 0.824624555 1.01944749

0.836661449 1.01788614

Continued on next page

72

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

101100111101 2.79168702

2.62807455

101100111011 2.12743852

2.00082107

101100110111 0.925542579 1.58801017

0.900064071 1.54391142

101100111111 3.13672817

2.95709646

0011001100001 1.0754249

1.08844382

0011001101001 1.27948541

1.25062276

0011001100101 1.01891786

1.02107901

0011001100011 1.06025925

1.07150145

0011001101101 1.49888194

1.45909523

0011001101111 1.55564648

1.51321378

1011001100001 1.05813164

1.06909618

1011001101001 1.29431135

1.26408692

1011001100101 1.01891688

1.01926292

1011001100011 1.04437542

1.05359961

Continued on next page

73

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

1011001101101 1.52898049

1.48757627

1011001101111 1.58802377

1.54392327

Table A.3: Testing result for C6 with selected patterns.

74

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

0011001100 15.6404266 2.37059021 0.696735144 0.920512664 0.752163892 1.18718318

8.27349231 2.80058627 1.28837345 1.28837345 0.857900071 1.24297615

1011001100 22.1876428 2.98765358 0.711478173 0.822064501 0.725645876 1.15071341

6.82405159 2.01978382 0.997448181 1.09710481 0.804185414 1.19729334

00110011100 2.37059021 0.711478173 1.03019869 2.6289092 9.39849212

2.80058627 0.997448181 0.88178303 2.17219888 8.75251054

1011001110 2.98767323 0.90870003 1.31557684 3.16582034 10.3807005

2.01978381 0.850303513 1.02968145 2.63725011 9.6907159

0011001101 0.695896624 0.822064501 0.859414859 1.65001429

1.25432295 1.09710481 0.818095197 1.52341927

0011001111 0.715527013 1.31557684 4.37059648

0.973946433 1.02968145 3.6526678

1011001101 0.715527013 0.776602063 0.870780334 1.67659519

0.973946433 0.973946433 0.808762628 1.54466694

1011001111 0.925617297 1.81970393 5.33644353

0.833299377 1.364722 4.51184068

00110011001 0.696735144 0.705137931 1.0771821

0.926017727 0.783941904 1.08673365

00110011101 1.2070841 3.08917633 12.6414473

0.950258662 2.5621775 11.8344726

00110011011 0.686897717 0.876547311 2.13275819

0.832096345 0.802127276 1.95416083

00110011111 1.56594785 5.28246286 35.8400854

1.17350418 4.45688941 34.0837426

10110011001 0.686897717 0.696791459 1.0787578

0.832096345 0.750273183 1.08070269

10110011101 1.56594785 3.67405025 13.7679673

1.17350418 3.07389143 12.9135422

Continued on next page

75

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

10110011011 0.715527013 0.906241085 2.19347162

0.778801067 0.809988765 2.00762511

10110011111 2.20441979 6.47025741 39.4810632

1.63011402 5.52452958 37.6117935

001100110001 0.747840965 1.15669522

0.85125974 1.20480902

001100111001 2.67418484

2.2093656

001100110101 0.862977484 1.73408593

0.819908447 1.59569

001100110011 0.701641407 1.07745014

0.778280095 1.07905684

001100111101 4.44286089

3.71613225

001100111011 3.13994121

2.60458748

001100110111 0.880459358 2.27149127

0.804374506 2.07873465

001100111111 5.3628926

4.52814559

101100110001 0.722149352 1.12319192

0.798523606 1.16232659

101100111001 3.2169761 10.7127856

2.68004203 10.0048569

101100110101 0.874692381 1.76153105

0.811009858 1.61789974

101100110011 0.693704183 1.08103307

0.74493175 1.07485364

Continued on next page

76

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

101100111101 5.41697415

4.58319551

101100111011 3.74489034

3.13495951

101100110111 0.910647958 2.33787749

0.812632312 2.13750287

101100111111 6.58222951

5.6254442

0011001100001 1.18718309

1.242976

0011001101001 1.65001746

1.5234212

0011001100101 1.0771821

1.08673365

0011001100011 1.15669516

1.20480893

0011001101101 2.13276269

1.9541637

0011001101111 2.27149578

2.07873752

1011001100001 1.15071335

1.19729325

1011001101001 1.67659836

1.54466888

1011001100101 1.0787578

1.08070269

1011001100011 1.12319186

1.1623265

Continued on next page

77

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

1011001101101 2.19347613

2.00762798

1011001101111 2.33788387

2.13750718

Table A.4: Testing result for C7 with selected patterns.

78

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

0011001100 128.253372 8.74427414 0.984892964 1.46973936 0.76409625 1.48263866

47.0188292 9.89135676 2.9070464 2.9070464 1.1366751 1.69877705

1011001100 177.349806 11.698255 1.14482783 1.24099043 0.727891007 1.41279771

30.5008442 6.02887988 2.06435626 2.32864316 1.00833879 1.59024969

00110011100 8.74427414 1.14482783 1.69418359 4.85224618 25.4785317

9.89135676 2.06435626 1.23185136 2.94332529 21.5456009

1011001110 11.6982784 1.7355304 2.45188644 6.41986737 28.532693

6.02887988 1.50976054 1.38407573 4.05119094 25.1784271

0011001101 0.998159357 1.24099043 1.01838178 2.56338501

2.80795618 2.32864316 0.89485069 2.0498735

0011001111 1.16379499 2.45188644 9.2217146

1.9966276 1.38407573 5.84790891

1011001101 1.16379499 1.15413189 1.03765705 2.6128971

1.9966276 1.9966276 0.849579972 2.07523724

1011001111 1.7935309 4.04439457 12.4660823

1.44865945 2.08648501 8.28184404

00110011001 0.984892964 0.711222611 1.32008891

1.51783247 0.994210804 1.35141245

00110011101 2.46024615 6.17635356 37.4849793

1.32820181 3.84976994 32.1670893

00110011011 1.02899109 1.07870786 3.66951922

1.30599217 0.838105238 2.9061203

00110011111 3.49581873 12.2367316 142.863565

1.73634595 8.07911251 128.610796

10110011001 1.02899109 0.703380536 1.32936735

1.30599217 0.904478732 1.33195894

10110011101 3.49581873 7.94287674 41.4514504

1.73634595 5.12729344 36.6509938

Continued on next page

79

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

10110011011 1.16379499 1.12818721 3.79592895

1.17518474 0.81883598 3.00117096

10110011111 5.76536453 16.6459974 165.224865

2.93388737 11.4951773 149.405456

001100110001 0.759071059 1.42919586

1.12380178 1.61362908

001100111001 4.98410401

3.02728062

001100110101 1.0261544 2.7666588

0.896880874 2.19228448

001100110011 0.707434748 1.33286925

0.983357571 1.33314024

001100111101 9.45380211

6.01753665

001100111011 6.32971522

3.95157077

001100110111 1.08686359 4.02085095

0.840857349 3.18334815

001100111111 12.5111951

8.28483629

101100110001 0.724103144 1.36548379

0.997485558 1.51257451

101100111001 6.57632804 29.6979321

4.15575306 26.2014815

101100110101 1.045811278 2.81735814

0.852332083 2.22411896

101100110011 0.700140914 1.34578013

0.89385866 1.31648419

Continued on next page

80

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

101100111101 12.7411016

8.48803641

101100111011 8.19025662

5.30622818

101100110111 1.13708601 4.16182279

0.821945843 3.29056775

101100111111 17.0994919

11.8532381

0011001100001 1.48263862

1.69877695

0011001101001 2.56338671

2.0449879

0011001100101 1.32008891

1.3514245

0011001100011 1.42919584

1.61362902

0011001101101 3.66952161

2.90612112

0011001101111 4.02005334

3.18334897

1011001100001 1.41279769

1.59024963

1011001101001 2.6128988

2.07523779

1011001100101 1.32936735

1.33195894

1011001100011 1.36548377

1.51257445

Continued on next page

81

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

|X|

Pattern 8 9 10 11 12 13

1011001101101 3.79593134

3.00117178

1011001101111 4.16182661

3.29056929

Table A.5: Testing result for C8 with selected patterns.

82

P
h
.D

.
T

h
esis

-
M

IN
J
IN

G
L

IU
M

cM
aster

-
C

om
p
u
tin

g
an

d
S
oftw

are

n− d
d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
2 2 3 3 4 5 6 7 7 8 9 10 11 12 12 13 13 14 15 16 17 18 19 20 20 21 22 23 23 23 24 25 26 27
3 3 3 4 4 5 6 7 8 8 9 10 11 12 13 13 14 14 15 16 17 18 19 20 21 21 22 23 24 24 25 26 26 27
4 3 4 4 5 5 6 7 8 9 9 10 11 12 13 14 14 15 15 16 17 18 19 20 21 22 22 23 24 25 25 26 27
5 3 4 5 5 6 6 7 8 9 10 10 11 12 13 14 15 15 16 16 17 18 19 20 21 22 23 23 24 25 26
6 3 4 5 6 6 7 7 8 9 10 11 11 12 13 14 15 16 16 17 17 18 19 20 21 22 23 24
7 3 4 5 6 7 7 8 8 9 10 11 12 12 13 14 15 16 17 17 18 18 19 20 21 22 23 24 25
8 3 4 5 6 7 8 8 9 9 10 11 12 13 13 14 15 16 17 18
9 3 4 5 6 7 8 9 9 10 10 11 12 13 14 14 15 16 17 18 19
10 3 4 5 6 7 8 9 10 10 11 11 12 13 14 15 15 16 17 18 19 20
11 3 4 5 6 7 8 9 10 11 11 12 12 13 14 15 16 16 17 18 19 20 21
12 3 4 5 6 7 8 9 10 11 12 12 13 13 14 15 16 17
13 3 4 5 6 7 8 9 10 11 12 13 13 14 14 15 16 17 18
14 3 4 5 6 7 8 9 10 11 12 13 14 14 15 15 16 17 18 19
15 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 16 17 18 19 20
16 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 17 18 19
17 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 18
18 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19
19 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 20
20 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20
21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Table A.6: the coloured (d, n− d) table

83

Bibliography

[1] A. Baker. Computational and Structural Approaches to Periodicities in Strings. PhD thesis,

McMaster University, 2013.

[2] D. Conlon. On the Ramsey multiplicity of complete graphs. Combinatorica, 32(2):171–186,

2012.

[3] M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient string searching. Al-

gorithmica, 13:405–425, 1995.

[4] A. Deza, F. Franek, and M. Jiang. A d-step approach for distinct squares in strings. In

Proceedings of the 22nd annual conference on Combinatorial pattern matching, CPM’11, pages

77–89, Berlin, Heidelberg, 2011.

[5] A. Deza, F. Franek, and M. Jiang. A computational framework for determining square-maximal

strings. In J. Holub and J. Žďárek, editors, Proceedings of the Prague Stringology Conference

2012, pages 111–119, Czech Technical University in Prague, Czech Republic, 2012.

[6] A. Deza, F. Franek, and M. J. Liu. On a conjecture of Erdős for multiplicities of cliques. Journal

of Discrete Algorithms, 17:9–14, 2012.

[7] P. Erdős. On the number of complete subgraphs contained in certain graphs. Publications of

the Mathematical Institute of the Hungarian Academy of Sciences, 7:459–464, 1962.

[8] P. Erdős and J. W. Moon. On subgraphs on the complete bipartite graph. Canadian Mathe-

matical Bulletin, 7:35–39, 1964.

[9] A. S. Fraenkel and J. Simpson. How many squares can a string contain? Journal of Combina-

torial Theory, Series A, 82(1):112–120, 1998.

84

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

[10] F. Franek. A note on Erdős’ conjecture on multiplicities of complete subgraphs – lower upper

bound for cliques of size 6. Combinatorica, 22(3):451–454, 2002.

[11] F. Franek, M. Jiang, and C.-C. Weng. An improved version of the runs algorithm based on

crochemore’s partitioning algorithm. In Proceedings of Prague Stringology Conference 2011,

PSC’11, pages 98–105, 2011.

[12] F. Franek and V. Rödl. Disproving Erdős’s conjecture on multiplicities of complete subgraphs

using computer. Technical report, McMaster University, 1988.

[13] F. Franek and V. Rödl. Ramsey problem on multiplicities of complete subgraphs in nearly

quasirandom graphs. Graphs and Combinatorics, 8:299–308, 1992.

[14] F. Franek and V. Rödl. 2-colorings of complete graphs with a small number of monochromatic

k4 subgraphs. Discrete Mathematics, 114:199–203, 1993.

[15] G. Giraud. Sur le problème de goodman pour les quadrangles etla majoration des nombres de

ramsey. Journal of Combinatorial Theory, Series B, 27(3):237–253, 1979.

[16] A. W. Goodman. On sets of acquaintances and strangers at any party. American Math Monthly,

66:778–783, 1959.

[17] L. Ilie. A simple proof that a word of length n has at most 2n distinct squares. Journal of

Combinatorial Theory, Series A, 112(1):163–164, 2005.

[18] L. Ilie. A note on the number of squares in a word. Theoretical Computer Science, 380(3):373–

376, 2007.

[19] C. Jagger, P. Šťov́ıček, and A. Thomason. Multiplicities of subgraphs. Combinatorica, 16:123–

141, 1996.

[20] M. Jiang. Table of σd(n) values: http://optlab.mcmaster.ca/jiangm5/ research/square.html/,

2012.

[21] M. Kubica, J. Radoszewski, W. Rytter, and T. Waleń. On the maximum number of cubic

subwords in a word. European Journal of Combinatorics, 34:27–37, 2013.

85

Ph.D. Thesis - MIN JING LIU McMaster - Computing and Software

[22] A. F. Sidorenko. Cycles in graphs and functional inequalities. Mathematical Notes, 46:877–882,

1989.

[23] A. Thomason. A disproof of a conjecture of Erdős’s in ramsey theory. Journal of the London

Mathematical Society, 39(2):246–255, 1989.

[24] A. Thomason. Graph products and monochromatic multiplicities. Combinatorica, 17(1):125–

134, 1997.

86

	Abstract
	Acknowledgements
	List of Abbreviations and Symbols
	Preliminaries
	Graph
	Strings

	I Erdős' conjecture
	Introduction
	Erdős' Conjecture and earlier results
	New results

	Constructing Counterexamples
	Seed graphs
	Determining kt(GdX,F)
	Selecting Si(X,F)
	Computing Si
	Computational speed-up
	Exploiting symmetry

	Computation results
	New upper bounds for c6, c7 and c8
	New upper bounds for c6
	New upper bounds for c7
	New upper bounds for c8

	Conclusion and future work

	II On square-maximal strings
	Introduction
	Problem definition
	Earlier results and conjectures
	Previous computational framework
	Structural properties of (d,n)-strings
	Generating the required (d,n)-strings

	Improving the original computational framework
	The (d,n-d) table
	Efficient heuristics for lower bound when d > 2
	Efficient heuristics for d = 2
	A better bound using a smaller search space
	Find a better bound by using prefix and suffix construction

	Double Squares and their role
	Some details of the computational framework

	Computational results and discussion
	Case when d=2
	Case when d > 2
	Some interesting observations of the (d,n-d) table
	Discussion of future work

	Testing result for Ci with i=4, to 8

