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ABSTRACT

This thosis explores th{ rel:tion:hif betweon the recently
developed theoory of atoms in noloéulcs and the simple orbital models of
clectronic structure which form thoe basis of current chemical thxnkxng.
In so do;ng it provides a new viewpoint from wkich to stody many
¢ssontial chomical €oncepts: ?oncepts originating }rom Qualitative
orbital models, |

The formal aspects of tho theory of atoms in molecules are
Teviewod. Developed in the labozratory of Professor Bader, this‘thco:y
provides a Quantum mechanical defimition of an aton iz 2 moleocule and its
p—opc'tzes. It 2lso exploits the obsexvod topology of the clcc;:on
deasity to define moleculas strocture and its change.

Tke relationship between qualitative orbital moacls apd atomic
and bond critical propesties is analysed, fir;: Qualitatively angd
then quantitatively. The analysis stazts with a study of atomic
Pzopertics and the propc{tics of bond critical Points in diatomic
Eydrides and some simple ofganic molecules., A theoretical {ramework
is thcn'dcvclopcd within which .chemical cifects on molecular clectron
distributions gcan be studied: and interpreted.

This frapework is used in 2 stedy of sobstitvent effects on the
etkyl, vinwyl and cazbozyl groups, and thcn'app%icd to two other problens

= the interpretation of protonation energies of cacboayl compounds aad ag
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ation of the comcept of homozromaticity.
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INTRODUCTTON

Quantem cliemistry is an interdisciplinary subject in the fullest

e -

sonse of the word: it is not sioply 2 branch of physios and neither is
it just =a branch of chemistry. To justify this contention and to
approeciate i;:s consequences, -of ;hich muck more below, it is appropriate
to tazke a glance at the history of the theory of valence (Russell 1971).

The zoots of modern chemical theory lie ipn the experiments and
intcrprctat-ions of Lavoisier, Proost, Priostley and others in the late
cighteenth century, which colminated in Dalton's law of mnlfiplé
proportions. Berzelius stated this law in the words "In a simple series
of compounds made up of. the same elements, a ‘simp].c ratio exists between
_the weights of one and the fixed weight of the other clement.™ (Jaffe
1976, p.87) Dalton took a daring step fuxther and suggested that this
law coulcﬁ I?o explained by\—;bbilating that ecach chemical elc;xcnt
consisted of ome kind only of atoms ail alike, and that the atoms of
different eclements conld be distinguished by their characteristic
weight,

The ninetecenth century saw the slow dcvc-lc)pmcnt of a theory of
valence which was based cntirely on chemical experiment, which is to say
the study of chemical reactions. Physics had some indirect influence on
the development of valence “theory throwgh the essential role of
e-lcct:ochcmistry. but until the twenticth century mone of chcnistr;y was
understood in terms of a physical theory: the mechanisms holdipg
Dalton's (assumed ‘particulate) atoms togethex werxe assigned some

electrical origin, but defied any further insight into their origin and
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nature., The notion of a chemical bond was developed by Kekule,
Frankland, Butlerov and others inm ordex to zccount for and organise

chemical bohaviour, but there wss no physical undcrstanding underlying

the comcept. As Frankland said when he introduced the name “"bond”

"It is scarcely nocossary to remark that by this tezm [bond] I
do not intend to comvey the idea of any material connection
between the elements of 'a compound, the bonds actually holding
the atoms of = chcmicnl compound being, as regards theoir
nature, ntirely uoknown”. (qnotcd in Russe]l 1971, p.9Q)

Chemical atoms and bonds were: thus primary concepts in the sense
that they werec unobservable and that their nature or structure was

unknown. This did nothing to diminish their importance, however, for

they served as the central concnpfs around whick tho growing anumber and .

variety of chemical reaction wore organised, classified and thas

-

partially understood. . x

-

The early twentioth century saw the encroachment of physics into

ALY

valence theory with the beginnings of an ‘understanding of the electronic
structure of atoms. The implicatio:‘;s of the discovery of electrons and

atomic nuclei were different for chemistry and physics.-howclvcr,. with

- chemical the:ory devecloping along different lines from physical theoxy.

The distinction is apparent in the chcnical cmphasis of Lowis’ nodcl of

the atom and of the covalent bond.-wh:ch ¢ncompassed a g:cat many

c¢hemical phenomena 2nd yet’ vixi.c'h had only =z teavous relation to a

physical thcory,: of tlic atom, .

Thc development of quantum mcchanzcs hclpcd to b'*:.ng the two

types of theoxy closex togcthc‘, ,aod the Schrodmgc"' oquation has often

been claimed as the basis for the understanding of chemistry (oost

famously by Dirac), a statement that even Lewis accepted.” Valence theory

!
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became quantum chemistry. In recent docades methods have been developed

which azllow sccurate computer solutions of the Schrédinger equation

(Schacfer 1985) and the impact of these methods has beon soch that

— with ab initio clectronic structure thoory. If this was the case,
quantom chemistry would indeed be simply 2 brapeh of physics: bat it ig
not the casec and the Problems of understanding chemistry cammot be
roduced simply to numerical solutions of Schkrodinger's equation. '

What aspects of valence fhcory fall outside the rezlm of ap
initio electronic structure theory? From one berspective it could be
claimed that most do. To pick Up any organic or inorganic chemistry
tcxtbéok is to appreciate that cne of the principal prodlems of c¢hemical

theory is to find ways of tying together the massive amonnt of data that

consistont manper. kFVnrthcr, it becones immediately appazent that
the ompirical cﬁcmical notions of atoms and ‘boﬁds are absolutely
essontial to thisg central task of chemical theory, and that ab initio
clectronic structure th;:ory per se has little to say abont the problem.
A cooputer calculation on a molecnle produces ag eaerg® a wavefunction
%nd nowadays also possibly spectroscopic properties of the molecule.
This is nqot equivalent to undersstanding, in the sensc that wo cannot
(vsing ab initio .ollcctxonic structure theory alone) szy how the molecule
will =react with nucleopkiles oc clcc‘t:ophilcs. v;: c¢anpot suggest how

easily the molecnle will dissociate, znd we certainly ¢anagt know khow the

]
1



- 4
roplacemont of 2 CH group by a nitrogen atom (for iggg&ncc) fill altor
the chemical bebaviour of the molecule,. In short,{nlthough'electronic
struct;ro thoory can tell n; about the propertics of ar isolated molecule
or process, it does not provide any neans of xc;lting one molecnlé's
behavionur to that of another. Any thoory which claims to yield an
understanding of chemistry must make some éomment on this centrzl
problom._ Electronic structure theory cannot be synonymous with quantum
chemistry if the word "chemistxy™ is taken scriously;

In order to tackle the problem of understznding molecular
behaviour in the chemical sense just described, a serxies of qualitative
models of clect{‘nic structure have been developed from gquantum
mcchanics,‘mnintaining c¢h of Lowis’ emphasis and concepts. First came
resonanco thoory (althéﬁgh some aspocts of resomance theory werxe
developed from chemical oxpoeriment alone, with no xcfc;cncc to quanénm
mechanics, by Arndt (Rus;cll 1971)) and then a variety of'appronchcs
based on molecnlar orbital Ehcory using tke linear combination of atomic
orbitals (LCAO) approximstion, and particularly on Hickel theory.
Chemical concepts suck as atomic charge, bond order, conjugation and
electronegativity, wclc taken fro; their purely empirical background and
related to olements 6f simple orbital theories by Mulliken, Coulson and
others. In this way, theoretical chemistry became 2z combination of
expiricism and sinple\scmi—cmpi:ical orbitel models.” It remains that way
today.

The problem of taking chemical concepts and relating them to the

wavefunctions prodoced by today’s computerss has only zecexntly begun to be

solved, and it is this problem that is tackled in this thesis. One of
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the ‘motivations for the mapping of chomical concepts onto oloments of ab

initio electronic structure theory is to enable mwore reliable and more

accurate predictions to be made of the properties of related molecules

from a given calcnlatioﬁ. and to onable some prediction of the molecule's
reactivity to be made from the single point calculations which aro the
staple of . computatiopal molecular quantuom mechanics. This is what ig
deant by an "snderstanding” of a molecule’s eloctronic structure — the
calculation bocome more than simply a bhugely complicated w#vcfunction and
83 cnoxgy. It can be related to other calculations and to chemical
experiment: in short, it cnn\ﬁake its placoe as a part of chemistry,
Chapter 1 serves to review the cﬁ:renf state of the theory of
atoms in mo1ccnlcs, 2 theory which hes solved the problem of rclnging the
fundamental chemical concepts of atoms, bonds and molecplar stroctuze to
electronic strmeture theory and to chuqical ¢xperiment within a quantum
mechanical framework. The theory shows that atoms and bonds can be
defined ixm tcrmslof topological features of the molecular electron
distribution. Chapter 2 is primarily concermed with relating other
chemical conécpts, those currently based on simple orbital theorics, fo
the electron distrgbution and to the properties of the atoms and bonds of
Chapter 1. It further develops the framework witkin which chemical
problems can be discussed from ab initio calculations, and in Chapters 3

and 4 some applications of the theory are presented.



This chapter serves to introduce the theory of atoms in molecnles
and to critically ns;oss its current status, with an attempt to koep in
mind the basic problem I wish to tackle: how £o bottor apply the theory
of atoms in molecules to problems of interest to chomists. The chapter
aéfk as 2 background for the original work of this thesis by summarising
previous relevant work, as woll as irying to assess its scope =and
limitations.

Section 1.1 describes the ompiric#l basis of the theoxy by
showing how Vtho qualitative form, or topology, of molecular charge
-distributions can be propoxly described and analysed. This description
is carried out in texms of the gradiemt voctor field of the chacge
distxibntion, and in particolar the namberx, kind and connectivity of its
critical points., The analysis leads to a topOIOgicil dofinition of the
structural elements that make up molecules: atoms and boands. Section 1.1
2lso discusses how the Laplacian of the electronm distribution brings omut
the fine structurc that canmmot be so easily seon in the deansity itself.
In particnlar, the manner ip which topological features of - the Laplacian
ninic concepts of simple models of electromic struocture, snck as shell
structore and lonpe ptirs, is discuossed.

Pronpted by the identification of atoms in nolecunles with
pacticular bounded regions of space, Sectioz 1.2 asks whether suckh

Tegions can have quantum mechanical significance. The invedtigation of




7
this question pProvides the thooreticsl blsis for the dcfinition of atoms

in molecules, and involves a goncralisation of the variational Principle

‘to bounded rogions of throe dimensional position spaco. In classical

mochanics thke sction Principle can bo made to yield not only equations of
Dotion for dynamical systems but also consorvation laws and definitions
0f mochanicsl proporties of systems, by removing the constraint that
variations in the dynamical wariables have to vanish at the time end
points, Anllogonsly, .in dcfining Quantuom mechanical proporties for
bounded regioans of space a variational constraipt is removed, but for
stationary states it is renoved from t.hc space boundaries rathor than the
tine boundaries of th& system. It is found that the variational
princ:.ple can be tnambiguousliy’ ge ralised in this manner only to
particular regions of space, and that %set of soch regioms contains
the topologically defined atoms in odeddles. Section 1.2 also discusses
the regionmal forms of spoecial theorems satisfied by optimal
wavefanctions: the bypervirial theorem, the Hellmann-Feynman theoren,
tho. Ehrcnfcst thcorem and the virisl thoorem. Lastly,_ the definition of
atomic properties is considered, with ay emphasis on the czergy of an
atonm in a molecule,

The formalism developed in Soctions 1.1 and 1.2 zelies on the
availability of sccunrate polecular charge distrzibutions botk to justify
its undexlying assumptions and to be applied to particulaz zoblens of
interest., At the momont such distzibuntions are best obtained by ab
initio compni;tion. thovgh experimenta] denszitiecs ace becoming of
ﬁcccpta‘ble quality, Section 1.3 discusses tkhe accuracy of the

theozetical models unsed in the calculatioa of molecular clectron
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distributions. Almost all the olectron distribntions-annlyscd to date in ’
terms of the theory of atoms im molocnles have boen obtained from single

. detorminant wavofunctions constructed from 2 basis sot of atomic

-
-

orbitals, and calculated by the Roothasn—Hartreo—Fock solf—consistent
field brqcedn:e, 50 it is ossontial to know the oxtent to which such
distributions can be trnsteel. In particular, it ig only in the last
twenty or so yoars that calcnlatjons of sufficient iccnracy bave bocomes
available to justify with ressonzble cénfidonco the assomptions of the
thoory concorning the qualitative form adopted by ground state electron

'

distributions. A discussion of the basis set dependence of calculgted

properties of stoms in molecules is givon, completing the chapter,

1.1 THE TOPOLOGY OF MOLECTLAR CHARSE DISTRYBUTIONS

There aze only a2 few theorems concerping the gemeral form of the
eloctron distribution in nolecules (Smith 1982, Bader et al. 1981).
The Eato clectronuclear cosp condition (1957) states that the exact
charge density exhibits 2 cusp at p‘osi‘tions of the nuoeclei, as does
the exact Hartree—Fock (EF) demsity. Agn opper bound has been givenm for
the electrzon density at the nuclens of an atom by Boffmann-Ostenhof et
2]l (1978) in terms of the muclesr charge. At the other extrene ‘c;f
distance, the asyoptotic exact density falls off exponentially with
distance from the nuelej (Akizichs 1972). Apart from these "limiting
case” theorems, which apply to situations wheze the interelectroz
potential is unimportant, :nr kaowledge of the qualitstive features of

zolecular electzron distribetions is based c;-::i:cly on the obsezvation of

calculzted or expesipentzlly determined distributions,

——
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Experimental di:tribntioas from x-ray c:ystlllo;ruphy areo
curreontly less accurate thln thoso calculated directly from quantomo
mockanics for small ang medivm—-sizod molecules. Ronlistic theorotical
donsities have only beon available for study since the devolopmont of
computer programs for the calculstion of the eloctronic st:nctnro of

molecules, \so it is oaly in the 1last twonty years oxr so that

“soundly-based claims concerning the. forms of eloctron distributions -have

boon possible. Soction 1.3 deals vitg the npproximntions that have to be

main foatures of exact distributions corroectly, a2nd some obsorvations
that have boon made c¢oncerning qualitative foatures common to most or
all molecular charge donsitios gzre presented. I will show how those
obsexvations caﬁ be usod as a basis for e description of the stzgctore of

molecnles (Bader ot al 19792, 1981). Asn oxtension of this doscription to

¢ncozpass the concopt of structural change waad strpetpral stability has

also boen achieved (Bader et al 1979b, 1981). TIts direct relevance to
this thesis is limited, as structural changes only gppeer briefly, in
Chapter 4, and a discussion of stroctural change in molecules is thus

POsiponed to that cheaptes, A topoiogical analysis of the Laplacian of

the electzon distridutior hss beez shown to yield chenically interesting

results (Bader and Essen 1984, Bader et &1 1984), zad is discussed ot the

ead of this sectioz.
The electron distzibutioz is a2 scalar field defined im » three
dimensiozel space. It is infinitely differentiable ¢vesywhese except =t

the positioms of 2uclei, wkere it khas o cusp end is mot Cifferentishle.
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In trying to identify and make rigorous the nofiéns of molecnlar
ltruotuo and struotnral stability it is the qralitative foatores of
oloctron distributions that need to be ohnncterisod — the topology,
to use the word 1nfo:nuny —_ and in particular those foaturos that are
common to 2ll ground state molocular chnrgo donsitio:. Thisg
charuota:isation is achioeved by investigating the nnnbcr of mexima,
®tinima, and othor stationary points tkat the distributions Possoss. The
first task is thus to classify the typos of stationary point that may
occux in & function of three variables,
Considor a gonoral scalar function p_(x), where x = (:1.::2,:3) is
2 coordinate in throe dimensional spaco. A stationary point, or critical
point, in such 2 famction is do'finod by the condition that its first
dexivatives a1l vanish:
ap/axi = 0, i=1,2,5 [1.1.1]
Tho difforent t¥pes of critical Point gro classified by their second
dorivatives, the collection of which forms 2 symmetric matzix called the
Hessian of P« The Hossian can be diszgonalised to ¥ield the theooa
Principal curvatores (the cigenvalues) and the corresponding principal
axos (:her eigonvectors) of P 8t the critical point. The ngmber of
Z0a=zero principal curvatures is called the rank of the critical point,
¥ost critical poiznts that oceur in Doleczler electron distcibutions are
of razk th-oee. (Critical points of zast less than th=ee are called

degeneczate critical points or sizgulearities, They ozly ocecns

3]

"eosteble stroetoros®™ =2a@d will be dizcnssed briefly in Chapter 4).
Eaxim=z (o= 3-seddles) kave theee 2egative primcipal curvatures, minmima

(o O-szddies) Eave three positive Prizcipal corvetures, and there zre
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//t'o intoznediste_types of critical points, which are clllod‘1-8ld4108,

which have one positive and two negative principal curvatures, and

2-saddles, whic@ have two positive and oﬂﬁ negative principnl".

curvatures. JIf the ;jggigg;g of & critical point is defined to be the

‘number of positive principal curvatures mings tho number of ncg:txvo

p:incipnl curvatuxes, then critical points can be class;fiod by their

rank and signatura, written as (rank, signatore).
A more complcto doscription of the form of & scalar field can bde

obtained by investigating the whole of its sradjent vogtor field (Bador

and Bontz 1975, Collard and Elll 1877). This can be done p:cto:zally by

plotting sots of exthogona] trajectories or f3x.) dggn; paths of p: those

curves whose tangont at overy point is the gradient vector of p., the

}1nos of stoopest ascent through thc field. Each and evexy such path

3

must start and finish at g critical point, or st infinity. Ia the
terminology of the subject, the starting point is called the o-limit set,

aﬂd‘the terminus .is the w-limit seot: though in the cases that arise whegn

p is the molecular eloctroa dxstrabntion, cachk set comprises oaly one

,- point. Tho a-limit sct is called the attractor of the path, and the

T,

c—l;nxt set_ the gepellor. The set of paths for which a critical point

acts as att'ucto' is called the stabTe nanifold, or ba sin. wh:le the sct

of paths for which a c—ztzcnl point acts as a :epellor is called the

ngstnblo menifold. Iz. throe—dineasional fields, (3,-3) critical points
(mazima) are global atiractors of the field, as they form the w—-limit set

for a collnct;on of trajectories, but do 20t form the e-limit set of any
trajectozy: they have ozly stable.manifolds. Miznima are global repellors

of the field, and: tke I~ and 2-saddle poiznts nct 2s attractors aad
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repellors to different dimensional menifolds. The nnstablo zanifold of a
(3,-1) critical point is & line consisting of two gradient paths, “eack of
which torminates (in stable strnctnros) at a maximgm, The stable
manifold of such a point is a surface of gradient paths which converge on
the critical point in\tho plane dofined by its two negative principal
cnrvgtures. -

This completes the classification’ of the stractural olements that
occur in (stable) scalar functions of threo dimensions. - The eleoctron
distribution h:s.boog'observod to show some comsistent charactcrist;cs
throughont a la:gc nomber and variety. of molecules, and this 2llows the
identification of the stroctural eolements of speh dzstributxons with

"chomical”™ concopts. The observations that form the basis for the

description of wmolegular structure come from the analysis of hundreds of

.moloculos. bzinly composed of bydrogen and second row clements but with

some third row elements also included, so whjlc their status is still ome

of empirical ¢xtrapolstions, the base for these extrapolatijons is large.
The following observations ha}? been found to hold for 2ll the

ground state molecular electron distributions studied to date, with the

exceptions noted: v

. -

Obsetvation 1. The only maxima in eléctron distribntions of

molecules occor at the positions of ancleij.

The converse of this, that the electzon distribution is a mox itom
N~

2t the position of ¢very noclens, holds in al] the ceses stodipd in this

thesis sad in the vaosge majoxity of "normal” chemical sitpations. Sone

" higkly clectronegative atoms bonded tdphyd:oscn. however, remove so wmmeh

chazge from the bydrogen atom thet there is no longer 2 maximmm ot the
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pozition of tho hydrogen nuclens. Examples given by Bader ot al (1979a)
are FH* und NoH*, This disappearance of the maximum at the nucleuns has
not been obs¥rved for any atom with a core density.

Observation 2, In those molecules to which structural formulae
hayc,boon nacontroversially assignod (the wvast majority of organic
molecules), in the neighbourhood of their equilibrium geometry, botween
each and overy pair of nuclei that have traditionally been considorcd to
be bonded one and only ome (3,-~1) critical point is found. The unstable
manifold of this peint forms a line conzocting the two nuclei.
Conversely, no (3.—%) ¢ritical point, (and no connecting unstable
manifold) is observed botween nnclei_shnt have not been considored as

bonded in nacontroversial stroctural formulaoe.

Some. calecnlations at inadequate basis sets have shown off-nuclear,

naxima at positions betweon the nmeloi, in apparent contravon;ion of
observation 1, These maxima have gll disappeared zs the quality of the
basis set was improved. In addition, it is shown in section 1.3 that

electron correlation should mitigate against the appearance of such
’ ~

off-noclens maxima as a result of correlation along the bond axis, so

that if observatiom 1 is true for HF densities it shonld also be trume for
\

exact densities.

There are two corollaries of these obscrvations:

Corollazvy 1, (3,+1) critical points only occur inside a ring.
The unstable manifold of the (3,+1) point forms a surface, the vertices
of which axe nnclei and the eodges of which are unstable manifolds of

(3,~-1) eritical points.

Cozrollarv 2. Minima only occur imside & cage. The unst¢able
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manifold of the minimmm form; a volume, the boundin'g surfaces of which
arge the\nnst.ablo manifelds of the (3, +1) c:itxcai points, the vertices of
.. which are nuclei, lx&‘_ the odges of which are the unstable manifolds of
" the (3,-1) eritical points,

‘i‘ho quelitative form of electron distributions is thus extremoly
simple. The lack of off-nuclens maxima is the ,most obvious example of
this simplicity, another is that "d:anb.‘g.c bonds* do not show up in the
electron density as two Iine;. linking the "bonded™ nuclei as may have
been suspocted: 'ins.toad' only ome line is ever seen. The observations
Teflect the fact. that the topology of the elcctroa distribution is
Eovorned largely by tkhe nnclear—oloct:on attraction, with the
interelectron potentigl mak:.ng quantitative changes, but usnally not
qualitative ones. In many c¢ases, the structuore of the gradient vector
field of the nunclear potantul is the same as that of the electron
distribotion for the same nuc_lcar geometry (Tzl ot al 1980). Exceptions
do occur, for instance in some ring and cage stroctorés. An example is
totrahedrane at its equilibrium geometry where the cage ‘in the electronm
distribution gppears in t_ha nuclenr_ potential field as a single point
— a degenorate critical point. The reason for this is simple to see.,
No minima can eccuxr in the electron nuclear potential (V o)+ Wwhich

satisfios Poisson'’s ¢quation everywhere bot at the nuclear positions xc'

3 - = —

V() = ) s(=X) , . [1.1.2)
A minirmm has ‘threc positive Principal ¢usvatores, and so must have a
Laplacinn\x:eate: than zero, in contravention of this equnation.

The formal definitions of the clemodhs of molecnlar structure can

now be givexm. 4 nucleuws and its basin form an atom. - ¥an the
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aeighbourhood of an equilibrium goometry, two atoms are said tq bo bonded
if their nuclei are linked by tho uastable manifold of 2 (3,-1) eritical
point. This criticgl point is called ; bond ngig » and its unstable
manifold 2 hLond path. Iz the more general situation of goomotrios far
from equilibrium, to which the notioms of chemical bonds are less
applicable, tho unstable manifold is called an iE;l.o;aggiog lire (Badex
and Ess®n 1984) Tke collection of bond paths is said to form the
moloculay graph of the system. The stable nanifold of a bond poiﬁt is
called the igto;atomié surface, as it is a dividing surface botween the
two atomic basins.

A sinéia picture” is, it is said, worth a thousand words, and so
examples of molecular charge demsities and their topoiogical foutura§ aze
shown on the following page. Figures 1.1.14to 1.1.3 and tke captions aim
‘to flesh out the formal definitions of the above paragraph by providiﬁg
examples of how eclectron distributions can be portrayed, and of thoir
topological features.

The definition of elements of molccﬁlar structure shows that the
most basic qualitative concopts.of chemistry have anmalogues in tho
topological features of observed charge distribotions, this being =
rcsplt of the impoitanco of the nnclear—electron pot?ntial ig determining
the qualitative aspects of such distributions. Traditionally, atoms have
~also been assigned propezties in oxder to explain Ehp bekavionz of
molecules in terms of their structure. The most inpofta;t of these
\aunic propc:tics are valeacies and ocloctronegativities, which are
dbpro:imatcly transforable betweon ntoms, and atomic charges, which are

more dependent on the enviromment of the atom. What propexties can be
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Figure 1.1.1
o

Three views of the charge donsity in ethen;. taken from Bader et
al (1981). The left hand sido of each figure is a rolief diagram which
corxesponds to tﬁo contour ﬁap to its right., The values of the contours
increasc from the outermost one inwards in steps of 2x10%, 4x105, and
8x10® with n beginning at -3 and increasing in steps of ganity. This sect
;f contours is used throughout the thesis for maps of the electron
density,

Figore (a) shows the clectron density in the molecular plane of
‘ethone. The maxims are the cazbon and hydrogen ngclei.

Figure {b) shows the density through a plane perpendicular to
the molecular plane, and containing the carbon nuoclei:  the 'ﬁ" planec.
Again, the carbon nuclei appear as moxima.

figufc {c) shows the density in the plane bisecting the two
carbor noclei. In this projection the molecular plane is wertical. Th;
contours of the demsity in Figgre (¢) are thos clongated in the "x"

Plane, showing the greater amount of electron density in that plane.
. :

\
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Figore 1,1.2

The gradient vector field oflthe electron donsity in the
noloculax p1:no¥o£ othene (see Figure 1.1.1.(2)), taken from Badﬁr et al
(1981). Each li:o reprosents a trajectory of Vp(x); a line of steepest
ssoont through the electron density. . .

In Figure (a) only those trajoctories which originato at infinity
gnd termimpate at the positions of nuclei are shown. Thc set of
t:a;ectories vhick torminate at a given nucleus (attxactor) dofines the
basin of that attractor.

Figure (b) is tho same as Figure (a) oxcopt that the trajoctories
whichk terminate and originate at (3,-1) critical points are indicated by
heavy lines. The position of the (3,-1) critical peint is indicated by a
full cifele. The pair of trajectories whick terminate at each. (3,-1)
critical point (originating at infinity) are part of tho intorntomio
sorface it defines, and marck the boundaries of the atoms. 'Iho pair of
trajoctories that originate at the (3,-1) critical point (taéminating at
the npnclei) define‘t?e bond pnthsf and together make up the molecular
graph. )

lFign:o\(c) ;hovs the interctomic surfaces and the bond paths

superimposed on z contons map of the ¢loctron density of the molocnlar

plane of ethene.

-
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Figure 1.1.3

The molecular g3epk of fluworoethene superimposed on a contour map
of the electron demsity in ‘the molecular plane, from Slee (1986). As in

cthene, the only maxima occar at the nuclei, which are marked with their

~chemical symbols. The "zidges”™ between bonded nucloi are the bond paths

and the lowest point on the ridge is the (3,-1) critical point) also
called -the bond point. The interztomic surface dividing neighbovring
atomic basins consists of the lines of stoepest descent from the boad

point(
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assigned to the “topological® atoms defimed sbove? To what extent do
these properties mipic those oxpected on the basis of traditional
podols? These qnestions are taken up in Soctions 1.2 and 1.1, and for
the mon;nt I shall torn to another topic and investigate the question of
thethc¥ éther besic qualitative concopts of chemistry also find analogues

in the electron distribantion.

e,

The Toﬁo;ggx of the Laplaciag of the Charge Distribution,

The discnssiqn‘above'shorcd that the most basic concepts of

-
-chemistry find their anzlogues in the charge distribution, and that the
inflnence of the nuclear—electron attraction is too great for more subtle
strxuctoral features to be evident in. the topology of the éha:go density.
If wo are to look for density.analoguos of other, less gross, chemical
concepts thore are two alternatives, both of which will be pursued in
this thesis. One is to' look at éuantitativc chaages . in atomic and
critical properties and to relate such changes to chemical concepts. A
second is to look at 2 field related to the chargo dnnsity‘rhich reveals
nore of the fine structure of the moiecnle. This second possibility can
be pursued by a stody of the Laplacian of the chnrgo density, which acts
50 as to magnify the unecvennesses in the electron distribution and to
reveal features which arze not apparent.in the dc;sity itself. Taking
derivatives of z fupetion increases the nnnpcr of nodes, of mazima and of
_ninina in that function. The second derivative of a fonetion f(z) that
falls monotonically to =zexo az = goes to infizity (a2 one dimeasional
azalogue of a charge distribution) mry show maxima and mininma, as well as

Positive and negative valoes, whkich tell us abount the 1local
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inhomogencities in £(x). Such a function and its socond derivative are
shown sohenltica_lly 'in Figure 1.1._4. If tﬁe second derivative is
positive, then the valge of f at x is less than its s&verage at
noighbonring points, while if tho second derivative is negative i‘(x) is
greater ir valune than the average of neighbouring points. In a rogion of
positive f"(x) f may be called “locally depleted” or "locally diluted”,
and conversely in a region of negative f"(x), f may be called "locally
compressed” or "looally cdncontrated". These names will bo used on
occasicn t:in-oughout this thesis when discussing the Laplacian ;f the
oloctron density, sometimes’ with the prefix "locally® dropped. The
procise moaning -of the term is simply to -indicato the sign of the
Laplacian of" the charge density.

It is the prirposo of this soction to describe the form taken by
the Laplacian of the chafée-donsity in molecules. It is coavenmiont to
dogfine the nogative of the Laplacian distribution,

L(z) = =V2p(x)
for then 2 region whero charge is "locally compressed” has a positive
valce of L, while if charge is locally depleted L is negative, w?.ich is
podagogically more satisfying thanm to discuss V3ip directly., The
Laplacian for am isolated oxygea atom is shown in Figure 1.1.5. It takes
the form of a series of concentric shelils. .If wo coasider a gpherical
"I.aplacian. shell™ to consist of a region where L(x) is positive
(indicated by dashed contonz Iinc-s) surzounded by a region where L(xz) is
2egative (indiczted by comtingpous coatonr Iines), then the nmaber of
anlacia-n shells is ogual to the =zumb = of shells that aze pactially oz

fully occupied within the orbital model of electronic stzucturze. This

e —————
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Figure 1.1.4

A monotonically decaying, but somowhat wneven function £(x) is

sbown in Figure (a). Topologically, it bas only a single mazimum at =0

Ilnd s0 is indistinguishable from a smoother fonction whore f£(z) is
concave upwarsds for a1l valoes of x.

Figure }b) shows qualitatively the second derivative of £(zx),
£"(x). Tho unevenness in £(x) shows up in the topological description of
f"(x). The region botween T3 and x4 has a nogative second derivative,
and this corresponds to the “lump” in f(x). The minirum in f"(x) at z.

"~ is the point whero the curvature of £(x) is most pronounced. The regions
'ith‘positjva second. dorivative correspond to values of x whozre f is
concave upwards, and the maxima in £"(z) at x; 3nd z; show whose this
cutvatuze is 2ost pronounced.

The Laplaciarn of the charge density magnifies the unevennesses in
p in just the same way as the second derivative of a single valued
fuaction suck as f(x). Thus, regions where the Laplacian is negative can

be thoogkt of as *lumps” i; the electron distzibution in just the sanme
way that the cegiom between X2 and x4 dis & "lump”™ in £(z), and the

2aximz and minima of the Laplacian show where the nnevenness in p is most

pronounced.
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Figure l.i.S

Reliof map. of the .charge donsity of tho oxygen ntoQ‘and the
negative of its Laplacian (L{x)), from Bader et al {1984),

i As in the onq-diﬁcnsional cese of Figore 1.1.4, p is radially a
monotonically decaying functionm, and_tOpologically exhibits bot a_singio
mazximum at the nucleus. L{x) bzihgs out the gnevenness in p: dts "fine
stroctore®™. The .rogions of positive L(x) coxrrespond to’"chnrgq
concontration” and those of ne.gntive L{x) to "charge depletion®™., The

sholl structuro of the Oxygen atom is brought ont topologically by this

function. There are two concentric shells, each consisting of a region

- of positive L surrhundad by 2 region of negative L. This highlighting of

atomic shell structpre by ‘the Laplacian of the olectron density has beoen
found to hold for nost of the atoms in the periodic table (Smith et al

1985). *

N



AR




T e i ————

23
equality, first explored by Bader and Essén: (f§84) has since been
investigated by Smith and aﬁorkors‘ (1985) who found it to hold for
-almost a1l the atoms of the po::odic table, am; to be a more reliable
1nd1cator of shell structure than the commonly used‘ radial distribution
function. Both of these functioms differ from the npumber of part-ially
occupied electromic shell; only fo: some of the lor group nnmbe:
transition mctnl elements, but the _Laplacian picks up the existence of
tho. partially occupied shell at'a smaller atomic aomber.

The .identification of the number of Laplacian shells with the

number of partially occupied electronic sholls :ep:rcsents another

donsity-based analogue of a chemical model. 'I‘hc analogn‘c was extended. to

molecolar Laplacianm distribetions by Bader and Essen (1984) and by

Bader et al (1984). The Laplazian of some simple molecules is shown im

Figures 1.1.6. to 1.1,10. Let us now discunss ‘thesc cxamples. It should
be born in mind that, while there are very fow known .oxcoptions to “the
observations made concerning the topology of p, the topology of L is more
varie._blc from molecule to molecule. Theze ar/c/howevcr, enough

consistencies im the its behaviour to make it pcidagogically usefal to

N
v

state some general observations first, even él‘mugh ‘\‘:l:u:s;c:j are not
nniycrsal. and to point out exceptions as we proceed.

. A common feature of the examples is that azound each atom the
nnnbc" of identifiable Laplacian shells remains the same as for the
isolated atom. The ome excoption is lithiom .in methyl 1ithi;1n. (Figure
1.1.6) whicl‘t ioscs its second shell. This is c:pectcd on the basis of
sizple ozbital models of che:ucal bonding, which suggest that this bogd

shouwld be ionic¢c. Thus the litkipgm is cssentially a Lit ion, axnd
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© Figore 1.1.6

Contour map of tke Laplacian of the electron dehsity in methyl

lithiunm, takon from a 6-316**/6-316** wavefunction supplied by

P. J. MacDovgall. The solid lines indicete regions where L(x) is’

nogative and the dotted lines regions where L(x) is positive. The most

noticeable feature of this diagram is that lithinm bas oaly one Laplacian

shell. This reflects the fact thnt it has essentially Iost its outer

‘valenco electron to the methyl group zad can be conszdered as an Lit jon.

The L-maxima are indicated by solid squeres and the (3,-1)
critical points by solid triangles. Only the crit;cal points disbussed
in the toxf,are explicitly shown, thougk the positions of other critical
points can be seon from the coa;oufs..eThoICH bond shows .an L-maximum ot
the cazbon cnd-and z (3,—1)-;:i£icn1 point ;losez to, the hydrogen
nuclens, as is wsual for IH bonds. The carbon atonm nlso‘has‘n maximum in
the CLi bonding rcgiOn. AlthOngh there is 2 hole in the vnlcncc shell of
the carbdon atom facing away from the CH bond, there is 2o snch bole on

the side facing away from the CLi boad.

- .






Figure 1,1.7 _ -

Belief diagrams of the density and its Luplagian for the water
molecule, from Bader ot al (1984). -

Figure (a) shows the Cov symmetry plane, in which the density has
2 single maximom at the oxygen nuclens, and. looks very much like the
isolﬁ;cd o:yghn atqm of Figure 1.1.5. The Lqplacian shows the
differences between the two distributions that are not apparent from the
density alome. L{x) has two maxima in.the valence shell of the oxygon.
atom, above and below the mdlecular plane. These correspond to the
positions of "lone pairs” in the VSEPR zodel, Botwoen the two maxima are
saddle points which are (3,~1) L-critical peints.

Figure (b) shows the molecular plane of the water molccnie; The
density shows the maxima at the nuclei and the ridges of donsity.that are
the bond paths linking the oxygen and hydrzogen noclei. L{x) has 2 more
complicated structure. The valence sholl of the oxygen atoms has lo;al
maximum along each of the bond p#ths to bkydrogen. What appeaxrs as the
third maximem is another view of the (3,-1) criticzl point shown in
Figure (a). Thisrmakcs clc;: the general observation that bonded charge

conceatrations are smeller iz valme than nonbonded charge concentrations.
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Figore 1.1,8

A contonr map of the Laplacian of the olectron distribution for
the ammonia molcculc. in a plage containing the nitrogen muclens and one

hydrogen nucleus. The nitrogen atom has a maximum for each NH bond and a

corresponds to the arzangement of lone Pairs on the basis of Lewis models
or the VSEPR theory, and isg analogous to the water molecnle shown in

Figufc 1.1.7.
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Figure 1.1.9

Figure (&) shows the Lap{ncian in’ the molecular planme of ethene.
Eack carbomn atom has ; mazimmm associatod with each bond, and each bon&
also has 2 (3,-1) critical point, -

FigurcA(b) ;hgws the Laplacien in fhc % plane of ethene. The
mexima associate@ with the CC bond occtr in this plane as wﬁll.' There
are no maxima associated with thcl"x cloud”, but there are (3,+1)
critical points sbove Qnd below each carbon atom which can be used to
study the changes in off-azis density. These critical points are

indicated by solid eircles.

—







ey

Figure 1.1.10
Figore (a) shows the Laplacian for the molecnlar plano of

fornaldohzdo. The (by now familiar) maxima Occur around the carbon atom

r

~in the valence shell, ome associated with eack bond. The topology of L

around the oxygen ;tom is intcrestinsz there are two maxims (solid
squares) in tho "lone pair®™ regions of the VSEPR model and one smaller
maximum associated with the CO bomd. The values of L at these L~maxima
axe indicated in atomic units (ao's). Linking these maxims are (3,-1)
¢ritical po;nts. ‘ |
Figuore (b) shows tho Laplacian in the yx plane of formaldehydo.
There are no non-bonded maxim# around the oxygen atom in this plane, only
saddle points., VWithin the VSEPR model this corczespoads to a2 sp2
bybridised oxygen atom. The (3,+1) critieal points associated with the =
bond in ethens np;;ar in tho formaldehyde molecnlc'as well: above and
below botk the carbon and the oxygen nuclei. The wvalpe oflL at the
oxygen (3,+1) critical point i? positive, while that at the carbogn (3,+1)

point is negative, corresponding to the expected polarity of the w boand.
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consequently has only one shell. The Laplacian shells are distorted from
sphorical symmetry by the lower syemétry of their environment, and withinp
each siell izolated critical points appear. It is convenient to label

these as critical points inm L{(x)} rather than in V3p(x). The Laplacian

-

shell of most iﬁtercst to us in fiﬁdtng analogues of chomical models is
the valence shSll, and from now om I will restrict my discossion to
this. Iz particular, I '111 look gt the posztivo L region of the valence

sholl (10, dashod contours), =as this provides =21l the information
J

A nec¢od. This region was called the "valence shell charge concentration®™

by Bader et al (1985), abbreviated to VSCC.

"

First consider the ar:angemont-of maxima in L in the VSCC. The
oxygoen of water is §hotn in relief in Figure 1.1.7. It has four maxima
(in L) in its VSCC,;onodclose to oachﬁbond path. and two, nbove'and below
the Eg;cénlarlplanc, on radii po;ntzng into the non—bonded :cgion,‘ﬁﬁo
arrangemont being. roughly tetrahcdral Thc positions of.thc Irmaxzmal
around o:ygon coxrespond closcly to the anticipated positzons of the 1onc
pairs and the bonded pa;rs within the Valence Shell Elcctron Palr
chuls;on (VSEPR) model of molecular goometry (611105pze, 1972) The
nnglc_bctwccn tho "bonded L-—maxima® is 103,19, 'hzle thnt bg&suen the
nonbonded L—mgzzna or "lone pazé L-mazima” is 138.3° (Bader et al 1984).

-

The analogy between maxima in L{x) and VSEPR concopts. in pa*tzcula— the
T

idoz of lome pairs, is parxticularly strlklng since no features of
clcct*oa densities have beer fonnd p< ev:ously which correspond to these
aotions.

Acmonia follows the same pattemn as éatc:, with eacﬁ.bond sho:ing

-

an L-maxzizum at each end, and witk ome "lone pair" on nitrogen in the
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appropriate position, Figuio 1.1.8 shows the Laplecian in a plane of the
ammonis molecule as a ?ontou: map. Etheno‘(Fignrc 1.i.9) shows two
L;naxina in the molecular plane along the bond plth. bﬁt there are =no
L-nnxinl abovo and -below the plans of the nuclei. There is no diffora;co
in the topology of the Lcélaoiln in the bonding region between ethane and
ethone. Formaldehyde (Figure :;1 10) again eoxhibits two L-Xaxima for
cech bond pathk and the Oxygen shows L-maxima in the molecular plane, at
angles of 107.4° to ;ho-OC bond, in npﬁroximstely the position oxpscted
for the VSEPR lono pairs in this molecule. (VSEPR snggokts that- the lone
pairs on the ns:i;od sp2 oxygon vill. occupy more “space thnn thc bondod
pair, and so the angle bctvcen _them rill opexn ont to moxe thnn 1200,
closing the angle with the CO §ond to Iess than 12Q9),

| Thus, in the case of ¢ bonds and lome pairs at loast, the anslogy

betwoen Lowis olcctron -pair concopts as refined by the VSEPR thoory and

thc fopology of the Laplacian bolds well, although 2o L-maxima occur

'hzch correspond to the x bonds of simple orbital models. Bader et al

(1984) have ;Pown thnt the analogy is more generzl, and persists in such

c¢ompounds as CIF3 in a variety of goometries, as well as SFy and C1F5. A .

lracont study -of three membe*od :ing systems by Crener and Kraka' (1985a,

b) bhas e:tondod tho correspondonces between VSEPR copcepts anQ the
topology of the Laplacian to these systems also.

Tkeze is omne excoption to the analogy tﬁich should be noted. In
bonds betwsen carbon and vory cleciroanegative elemonts thore is often no
L-mn:xnnn at the hotoroztom end of the boad. Instead z critical point of
lower sigaatnze in L is sometizes found, as in the cose éf meathyl

flgoride.
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The value of L at its maxima are 1ndicated in Figure 1.1.10 for
fo:naldchydo. It can be seen that ¥lone pair” L-maxima Possess much
larger values ‘than bonded L-maxima, » rc;uit thet applies to all the
other examples as r;ll. Also, within a bond, the relative valoes of
L appear to indicate tho polarity of that bond with the critical point of
larger L being at the negative end of the bond.

Let us now turn our ationtion to other features of the topology
of the VSCC. There are saddle points’&f both‘(B.EI) and (3,+1) types
thet link the L-maxims. No L-minims are found in genoral, as the VSCC is
& radial eraxinnm 50 that all critical poznts 1nH;hc VSCC havc at least
ono negative eigenvalue. As an cxamplo. the critical points above and
bolow the molecular plane in ethone, c¢lose to cack carbon atom, are
(3,+1) L-critical points and so represent radial L-maxima, but L-minima
in the VSCC surface. It shonld be noted that L is nogative at these
points: i:ho Q\ralencc shell of carbon has ‘bocn disrn;k‘ed enough to
break the continmous region of pos1t1vc L that surrounds the bare carbon
Atom: The romnants of a "shell™ still romain, however, 2s L has g2 radial
ma;imum at this distance even though it is negative in value., There are
no L-mazima above and below the pianc that corrxespond to the e bond"
which cnphasxscs the fact that the ¢ and n distributions occupy the
samo - rcgzon of ‘space: there is no spatially separate nm cloand (Counisen et
al 1952). 1Instead, the (3,+1) critical ﬁoints appear to be the only
L-c:itical.points whick may carcy irformation about the behaviour of
the density in the g Plane off the interngclear azis. These critical
points arce stndioa for z series of_cthenes in Chapter 3.

The © plane of formaldebyde shows that (3,+1) L-czitical points

-

e o —
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are present }gain. in a similar arrangement to those in ecthene above
‘and below the carbon and ox;gon. At the oxygen end the valge of L is
pos;tive. while at the carbon ead it is ncgat;ve, reflect1ng the expectcd
polarisation of the m bond. Thus. the (3 +1) cx:txcal points do seem to
igdifatc the existence and polarity of n bonds. Fdr this reason I will
refer to them as 'x crit;cal points” in L.

The study of the topology of the Laplacian is at an ca:ly stege,
and there are many areas of potentisl interest to be explored. ¥or
example, no szgn1f1canco has yet been assigned to the many basins it
oxhibits, and only the most obviously significant cr;t:cal points have
been 1nvcstxgatcd- the L-maxima in the VSCC and thc (3,+1) L-critical
points 1n'the n plane of nnsatnrated systenms. Fﬁrthcr, slthough ‘2 theory
has been devclopci/whzch shows the quantam mechanical significance of
atomic basins, no ;;:h theory has yet been developed vhichréhows that any
particular significance is to be attached to tcpqlogical festures of the

“Laplacinn. The :clatibnship-batwccn chemical concepts and the gxgiacian

| .
is still at an empirical, observational level, although further studies

of the corxrespondence between "the two may ¥ield wvsluable insight into

molocular Teactivity (Bader and MacDougall 1985). The formal quantnm

theoretical basis for the study of the topological elements of the chargc

distribution itself is, however, thoroughly developed and is presented in

the following section.
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1.2 TM&A&M@,

The definition of the atom as a bounded region of space Prompts
the qnest:on whetker such a rogion can have no‘chanical Properties
nssigned( to 1t. This section develops the formal basis for the
dofznition of Tegional properties by gonerelising the variational
Principle and the bypozrvirial thoo:om to apply to bounded regions of
space, together wzth the virial thoorem and t{he Ehrenfest forco 1law. It
is shown that only for regions over vhzch Vap integrates to zero do- the

virial theorem. and the cxpression for thc variation of tnergy

functional have ap Tnambignous form, It is slso shown that the total

distinct regioms of spaco in a mcam.ngful Danner if the cncrgy is defined

in tcms of the wvirial theoram.-

Only for regions over which the integral of V2p vanishes can sach
an energy be uniquely defined, and hence spch regions are called gu:.sntum
subsvstcmg, 2 nanme that 'n':ll be used throughont the section for
¢onvenience, even though the demonstration of their uniguepess . takes
place towaxd the ead. In the f:amcwork of nolocnlar qua:;tm:: mechanics,
the only guantunm snbsystcms that contain a single nuclens are observed to
be thc topologically defined atoms described in Section 1.1, and so the
results of this section const:tnta the qruantpm mechanical basis for the

E 1
definition of ap atom in a molecule rpd its  Properties. These results

have all boen derived_ . ;{tw/;onsly_(S:c'b:eni]: and Bader 197s, Bader ang

Ngnycn—Dnng 1981),. although tkhe derivations Prosented hoze nre slightly
d:.ffo'-ent to the original appx oach 'I'hc time—dependent case has also

been studied by = gono*alxsatmn of the Schwingers's Principle of
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stationary action (19§1) to bounded regions of space (Srebrenik et al
1978): ngain qunntmn subsystems are the only regions to vhich tho
principle generalises in an unambignous manner. As only stationary state
problems occur in this thesis will not discunss the time-—dependent case.

To demonstrate the variational properties unique  to quantum
stbsystoms I will firsf Teview the way in which variational or stat:onary
principles can be used to derive special thoorems, snch 28 conservation
laws, that are satisfio_d by dynamical systems. The ways in which the
Schr;dinger ¢quation, the hypervirial theorem, the Ehrenfest force law,
the Hellmapn-Feynman theorem and the virial theorex for 2 total systenm
are derived from the variational principle are then reviewad, - Tho
variation of a projection of the energy functiomal onto =z bounded rogion
of space is outlined, and the regional forms of the thoorems satisfiagd by
varistional wavefunctions axe ;icrived. These rogional theorems are also
approasched from anéthoi angle, starting from a3 local doscr}ption of a
system based on the equationm of continnity (Messiah 1967, v. 1, p.121).

‘The definition of the énergy of an atom in a molecule is dzscnssed to
-

finish the section,

——

Variational Principles apd their Generalisations. in Clagsical Mechanics.

Stntxona:y principles Provide 2 concise nnd genexal rny of
expreossing the physical laws governing thc behaviour of a particular
system, whether that system be described by classical, xelativistic, or
quantuxm mechanics and whother it be particulate oz continuous in nature
(Hoiseiwitsch 1966, EKatz 1965, Yourgran and Mandelstam 1968). As

prologue to the (non-relativistic quantam) variatiomal Principle I will

o~
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roview briefly ‘the derivation the equations of motion for a classical
system of particles ::on the actionm Principle aad show how the momentum
of such a systom can be dofined and the c¢onservation laws derived from

the variatiopa]l approach (Eatz 1965, Chapter 1). The philosophky and
techniqncs of this section are very similar to those used to define
properties and specisl theorems for .Tegions of space withxn quantuom
mechanics, |
The classical action principle states that the generelised
coordinates (g) and conjugate momenta (p) of a classical system behave
such as to make the "action integral™
W= jﬁtf, = jﬁt'(pdq/dt - H(g,p,t)) o | [1.2.1]
Qtationhry with respect to any variation of the p’'s and q's. JL is the
Lagrangian of the system, and although it can be taken as thc fundamental
dynanical quantity, it is more appropriate in the Dresent context to take
the related quantity H, the Hamiltonian of the system, as fundamantal
H is simply the sunm of kimetic and Potential energies of the system for
conservative systems, which cover all cases of interest to the present
work. The problem of finding a differential copdition such that this
integral is made stationary (;.e. of finding the equations of motion of
the system) can be solved using the caleulus of variations. In this
¢ase, troating the q's and P's as independent variables, the calculation

goes as follows:
= 5[at (pdgrat - Hequp.t)) = o
= J.dt (5pdq/dt - 5paH/ap + pd(5q)/dt - 5qaH/aq)

¢,
= far sptagsat ~ am/ap)+ sl - [atcaprat + am7a9)8q [1.2.2]

If we require the variation of q to vamish at the time end-points theaz
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Hamilton's equations of motion follow:

J @B/3p = aq/dt —3H/3q = dp/dt {1.2.3]

A goneralisation of this resnlt is obtained if the condition that
5q=0 at the time end-points is Telaxed, The condition for the eqnatzons
of motion to pe satisfied is now that the vmriation of the action
integral yield only contributions from the tmo end-points, rather thap
that it bpe statiopary. The pnrpose of this 8oneralisation jis that 1t
permits the der;vatxon of conservatzon laws as woll ag cquntxons of

motion directly from the action Principle. Also, dypamical quantitics

can be dofined in terms of different choices of gcnorators of

variations. One example gives the ossentials, The gonornlisod action

Principle roads that, when the °quations of motion are satisfied,

8W = P(ty)8q(ty) ~ p(ty)8q(ty) [1.2.4]

Supposc.'c‘choosc Position in Space 8s the generalised coordinates and

Y

choose a constant translation as the varistionm:
v -

8q(t,) = 5q(ty) = 5q [1.2.5]
. then the actiop principle yiclds *
W = (p(t5) - p{ty))8q [1.2.6]

Now, if the ;ction integral is invariant with respect to 8q, which is the
¢asc when the problem bas translational syzmotry, 5W.=ust v;nish and
hence plty) = p{ty): nomenteom js conserved 8s a2 consequence of the
invariance of the actzon iategral to 2 shift in coordinate origin. If a
time=dopendent translation is considored instend, then equation {1. 2’31

shows that the difference in Domontum at the time end~points is
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"gonorated” by the motion. In cases whore B is known, but p is not, this
can sorve to define the ‘momentum of the system. Other _dynamical'
properties of the system and other conservation laws can be derived by

the same app:oa‘ using other choices for the veriationm.

Specification of the equations of motion (2nd, in quantum

. mechanics, the commutation relations) sexves to define the mechanics of

the system as completely 2s does the action principle, yet the lattor hag
the property that all the dynamics of a system can be seen to unfold from
&8 single postunlate. This unity is a not incomsiderable advantage: in
the late nineteen forties it was the development of an action principle
forzulation of rolativistic qna.ntum mechanics indcpcndently by Feynman,
Sch':.nge: and Tomonaga that laid the foundations for the correct
formulation of quantum electrodynamics (Schringer 1958)._ All
formmlations of mcchan:z.cs are equivalent, but some are more equivalent

than others.

The All-Space Veariational Principle in Quantum Mechanics,

The non—relativistic, timo=-indepondent Sch:;dinger cquation can
be derived from s variational principle (see, eg, Epstein 1974a). In this
case there is no need to impose the requirement that ';ariations vanish at
infinity, as all nomaliscablo wavefunctions vanish there anyway, so
no surface contributions to the varciation can arise. A variety of
formolations of the variational principle ex igt, but this; is not =z
survey of the ncthod and so0 it will suffice to take a single approach.

The expectation valpe of the Hamiltopian is written as

E[$] = Id-r $*(B-2)$ = (4, (B-1)) [1.2.7]
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where for molecular problems H is the electronic Hamiltonian for aa N

‘electron system in the field of N& nuclei:

H= Ib +.Vh° + vco + Vnn =T<+YV [1.2.8]

A is a Lagrange nultiplier. and a scalar product notation is boing used
&8s it is convenient in the treatment of the quantum machanzcs of ragioas

of space. The scalar product has the properties that
. *
(G‘io‘j) = (éj'a’i) = a (‘i"j) [1.2-9]

where q is a number. Throughont this chapter the N-eclectron wavefunction
$ will bo chosen to be normalised to unity.
E[$] is varied by 2pplying au operator & to the state vector. If
5 is considered to be a neral variation of ¢, which alters some or all
of 3 set—of-paramrters dg~Which ¢ ‘depends, then the variation of the
cncrg} functiopal ié dcfﬁ/pd as
SELSY = (84, (B-0)$) + (4, (B-1)5) [1.2.10]

The variatiomal principle states that the correct ¢ is that for

which

SE[$]1 = 0 [1.2.11]

o - [1.2.12]

or equivalently, (8%, (B-1)9) +'(§.(H—i)6§)

©or, using the bermiticity of H

0 ' [1.2.13]

(82, (B=2)$) +° ((B-2)$,8¢)

The expression for the varistion of the enezgy functional can
bc‘vrittcn in another way which, although not of immediately apparent
asefulness, will be of uwse later. If 8¢ is 2 walid vazriation of the

wavefunction, then so is 5'¢=i5¢. RBeplacing 8 by &' in equation [1.2;12}
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and dividing by i, enables the varistional Principle to be written as
SE = —(84, (B-2)4) + (4, (B-2)5¢) = 0 [1.2.14]

Schrodinger $ equation can be derived from oqnatzon [1.2.13]) if
it is noted that the variations of ¢ and of $°* can be treated as
independent. This occurs because the qnantzty 5§ is a complex fnnctzon
comprised of two resl valued fnnctions. (34)p and (84)1: ocach of which
caz be independently varied. An alternmative to viewing (5‘)2 and (50)1
as the independent variables is to wiew (5¢) and (8*) as the independent

quantities (Epstoin 1974a). The Schrodxngcr equations follow;
B = 34, H* = 24° ‘ [1.2.15]

The variational Principle also leads to the bhypervirial theorem

(erschfoldor 1960, Epstein 1974a), a'goncrnl result which states that

the expectation values of commutators of 2 broad class of observables
with the Hamiltonian vanish. The bypervirial theorem contains as special
cases the wvirial theorem, and Ehrenfest's foree law for g statiopary
state, | .

A sécczal class of variations is of particular 1ntcrest- tkose

whzch rcsult from the application of &0 operator & on ¢ dofiged by

0 that tke hermitiang conjugate of § jis given by

© 5% = —iead [1.2.17]

It coa be seen that (1+8) is a unitary operator, as the sccond‘o:dc:

temms in ¢ can be ignored:

A e




