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stract

The main goal in many processes is to obtain consistent and reproducible
operation and end-quality properties. In this thesis the problem of product quality control
in batch and semi-batch processes is addressed. Unlike from much of the published
literature that uses first principles models, this thesis studies the end-quality feedback
control problem using only empirical Partial Least Squares (PLS) models. Several simple,

practical and effective regulatory control strategies are proposed.

The thesis consist of four main chapters: i) On-line control of a distributed end
quality property (particle size distribution, PSD) using mid-course correction strategies
(MCQ), ii) an inferential-adaptive control approach that combines on-line and batch-to-
batch control, iii) a novel reduced dimensional space control algorithm to obtain
complete manipulated variable trajectories (MVT) consistent with past operation, and iv)

incorporation of prior batch-to-batch information for batch analysis and monitoring.

In the first section, three on-line empirical MCC strategies are proposed for the
control of bimodal PSDs in emulsion polymerization systems. The performance of the
control strategies is evaluated using a detailed theoretical simulator. Control is applied
only when the predicted properties falls outside a statistically defined “no-control” region.
Each control strategy corresponds to a control objective: i) Control of second mode of the
distribution, i) control of the full bimodal PSDs and iii) control of relative distributions.

Advantages and disadvantages of each one of the control strategies are discussed.

In the second part a combined on-line and batch-to-batch control strategy is
presented. The approach extends MCC strategies used before to include multiple decision

and correction points, batch-to-batch information to reject batch-wise correlated
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disturbances, and an adaptive PLS approach to update the models from batch-to-batch to
overcome model error, changing process conditions and unknown disturbances. The
methodology is also illustrated with the control of PSD in emulsion polymerization. The
problem of regulation about a fixed set-point PSD in the face of disturbances, and the

problem of achieving new set-point PSDs are both illustrated.

In the third part a novel strategy for controlling end-product quality properties by
solving on-line for complete MV trajectories, for the remainder of the batch, is presented.
Control through the optimal solution for complete trajectories using empirical models is
achieved by performing the model inversion and the MVT reconstruction in the reduce
space of a latent variable model. The approach is illustrated with a condensation
polymerization example for the production of nylon and with data gathered from an

industrial emulsion polymerization process.

In the last section an extension of the multi-block multiway Principal Component
Analysis (MPCA) and MPLS approaches is introduced to explicitly incorporate batch-to-
batch trajectory information. It is shown that the advantage of using information on prior
batches for analysis and monitoring is often small. However it can be useful for detecting
problems when monitoring new batches in the early stages of their operation. The
approach is illustrated using condensation polymerization and emulsion polymerization

systems as examples.
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Batch and semi-batch processes are the main manufacturing process in many of
the specialty industries such as polymers, pharmaceuticals and bio-chemicals. In these
processes, it is often necessary to achieve tight final quality specifications. However,
batch process control is difficult because unmeasured disturbances can have a large effect
on the end-quality properties, on-line sensors for quality variables (or related quality
variables) are rarely available, batch processes are time varying, have finite duration, and

the ability to control the final product quality usually decreases as the reaction proceeds.

Disturbances affecting batch processes arise mainly from variations in raw
material properties, from impurities and from initialization errors. Large errors in
initialization and sequencing can be minimized through a high degree of automation,
plant operation by well-trained personnel and feedback control of easily measured
variables such as temperature, level and pressure. However, raw material variations and
process condition changes may still affect the process variable trajectories and the final
product qualities. In this situation, adjustments to the nominal trajectories have to be

performed to achieve the desired product qualities.

Several conirol strategies to obtain these adjustments based on detailed
fundamental models have been presented. Although these approaches are shown to be
successful for quality control (in simulation and in a few laboratory studies), they have
not found large acceptance in industry. This unacceptability comes from the fact that the
developing of detailed theoretical models requires accurate description of the

physicochemical, kinetic and heat transfer events that takes place during the process



(usually a time consuming and difficult task) and to the fact that to apply feed-back
control, frequent measurements on the controlled quality variables are usually required.
Moreover, there are situations, in which even if these theoretical models are available
they may not be accurate enough to model the effect of subtle (but significant) impurities
on the end-qualities due to model and parameter uncertainty and the possible absence of

measurements on the disturbances and on the current state of the process.

The main goal of this research is to develop control strategies that use less
demanding models and sensors, and yet still allow one to effectively monitor and control
final quality properties. In particular, practical control strategies based on easily

identifiable empirical models are proposed.

Empirical models obtained from process data (historical data with a few
complementary experiments) represent a large advantage when compared to theoretical
models because most of the data needed for their identification is usually available or

easily obtained. Moreover, to built and maintain an empirical model is relatively easy.

Among the available methods for empirical model identification, latent variable
methods such as Principal Component Analysis (PCA) and Partial Least Squares (PLS)
are considered. Compared to other empirical methods such as artificial neural networks
(ANNSs) or multivariable linear regression (MLR), these multivariate statistical methods
can effectively handle correlated data, replace missing data, and require only small
training sets. These advantages make the proposed control strategies more robust and

suitable for implementation.

The outline of the thesis is as follows: in Chapter 2 the important characteristics
of batch processes are summarized, and a literature overview of some of the significant
contributions made in the batch control area is given. Basic knowledge of empirical PLS

model building is also introduced.

In Chapter 3 is shown how with the use of simple within-batch mid-course

correction strategies based on easily identifiable empirical PLS models the otherwise
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extremely difficult control of a high dimensional end quality property can be achieved.
The control strategies are illustrated for the regulatory control of particle size distribution

(PSD) in emulsion polymerization using a detailed theoretical simulator.

In Chapter 4 a combined batch-to-batch and on-line control strategy based also on
simple empirical models is proposed. The control strategy incorporates information of
previous batches on the controllers by exploiting the repetitive nature of the batches and
the batch-to-batch correlation of the disturbances. Model parameter updating (batch-to-
batch adaptation) is also performed to relax the initial model building requirements, and
to overcome model error, changing process conditions and unknown disturbances. The
approach is illustrated with the PSD regulation about a fixed set-point in the face of

disturbances, and with the problem of achieving new set-point PSDs.

Chapter 5 introduces a novel methodology that allows control of the final product
quality by on-line adjusting of complete manipulated variable trajectories (MVT) without
increasing the complexity and number of experiments needed to build a model. The
method perform the control computation (model inversion and MVT reconstruction) in
the reduced latent variable space of an empirical PLS model. The methodology is
illustrated in a condensation polymerization system for the control of final average
molecular weight and amine concentration. Preliminary results are also shown for an

industrial emulsion polymerization process.

Multi-way principal component analysis (MPCA) and multi-way partial least
squares (MPLS) are well-established methods in batch analysis and monitoring. However,
they often do not explicitly exploit the information available from prior batches. Chapter
6 introduces an extension of these methods to explicitly incorporate batch-to-batch
information into batch monitoring. The approach is illustrated using condensation

polymerization and emulsion polymerization systems as examples.



Characteristics, Modeling and Control

in Batch Processes

This Chapter presents some of the particular features of batch processes that are
important for control and reviews some of the literature contributions to the batch control
area. It also presents some of the reasons for using empirical modeling and introduces the

basic ideas of Partial Least Squares (PLS).

2.1 Characteristics of batch process

Considerable knowledge and theory have been accumulated in designing,
operating and controlling continuous processes. However, such knowledge cannot readily
be used in batch/semi-batch operation because such processes have distinctive
characteristics, which make that the achievement of end-quality properties and their
adequate operation a challenging task. Among these characteristics we have (Bonvin

[1998]):

1. Integrating Process. In a batch/semi-batch process, unlike continuous system
there is no fixed operating point and therefore there is no static gain or time constant. The
chemical reactions proceed from an initial point towards a final stage in such a way that
any upset (disturbance) in the initial or in an intermediate condition would definitely
affect the subsequent operation. This is because the influence of disturbances is generally

cumulative until the end of the process. For example, small impurities in raw materials



can have a large impact on the end product properties. Once a disturbance that affects the

final product quality occurs, it is often difficult to introduce remedial corrections.

2. Time specific control action. In batch process, the ability to influence the
reaction typically decreases with time, therefore the upsets and disturbances have to be
detected early and corrective adjustments have also to be taken at early (or at most at
intermediate) stages of the processes in order for the compensation to be adequate.
Moreover, in certain type of reactions it is generally required to perform the corrective
adjustments at very specific time instants. For example, in order to control particle size
distribution in emulsion polymerization the corrective actions need to be applied at the

time when the nucleation take place (or before the nucleation is over).

3. Infrequent quality related measurements. Although process variables (such as
temperature and pressure) can be easily measured in most reactor systems, on-line
sensors for quality variable monitoring (especially those related to distributions and
chemical composition) can only be obtained on-line with the aid of expensive
instrumentation in a few research laboratories and are generally unavailable in industrial
settings. For example, distributed qualities are, in the best of the cases, determined by
taking a sample and analyzing it off-line using invasive and destructive methods. In this
situation a long delay time is often expected, which may lead to inadequate monitoring

and control schemes.

In addition to the above characteristics, all of which cause difficulties for the
monitoring and control of batch/semi-batch processes, it worth pointing out that there are

some features of batch processes that may aid in their monitoring and control.

4. Trajectory independent. In many situations, the main aim in batch operation is
to achieve certain quality specifications of the end product. Therefore, a batch process is
often considered satisfactory if the end-quality properties are achieved no matter what has
been the pathway followed by the process trajectories (as long as these do not violate any

constraints).



5. Repetitive behavior. Batch operation is repetitive. Therefore, it is expected that
the information gained from past baich runs can be used in improving the subsequent

ones, such as to design better trajectories or to reject correlated disturbances.

All of the above characteristics should be taken into account in identifying

process models and in designing control strategies.

2.2 Literature review on product quality control for batch
process

The research work related to quality control of batch process can be conveniently
broken into three classes depending upon the objectives of control. If the objective is to
search for unknown optimal operating trajectories for the manipulated variables that will
optimise some economic or final product quality objective, then this can be referred to as
optimisation. If the problem is to use an existing operating policy (with given nominal
manipulated variable trajectories) and to control the product quality about a given set-
point in the face of disturbances, then this can be referred to as regulatory control. If the
goal is to check whether the nominal trajectories are followed and that the reaction

variables are within the acceptable range, then this can be referred to as monitoring.

Each class can be further divided into three sub-classes according to the type of
information (measurements) used: within batch control, batch-to-batch control and the
combination of both. Within batch control, also referred as on-line control, is defined
here as the one of utilizing all measurements available from the start of the batch to
observe and assess the progress of the current batch (monitoring) or to adjust the
manipulated variables for the remainder of the batch to achieve the desired performance
for the current batch (regulation and optimisation). Batch-to-batch control, on the other
hand can be understood as the use of data collected on previously completed batches to
detect the disturbance behaviour in the system (monitoring) and/or to alter the operations
of the next batch so as to bring its final quality closer to a desired target and/or to

optimise some economic objective (regulation and optimisation).
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2.2.1 Open-loop optimal control or one time optimization

Considerable amount of literature has been devoted to the so-called open-loop
optimal control policies or one time optimization. Open-loop optimal control involves
basically the design of new operative conditions and manipulated variables trajectories to
achieve some optimal objective such as minimization of reaction time or cost using
(generally) a detailed mechanistic model. As the objective is design, the computation of
such process conditions is performed only one time off-line and no prediction or feed-
back is employed. In spite of such a large amount of work devoted to this approach, it has
not had a large impact in industry because it usually requires detailed theoretical models,
is computationally intensive and the results are highly dependent on the accuracy of the
models. Ponnuswamy et al. [1986] used temperature and initiator profiles to obtain
desired average molecular weight and conversion in minimum time (results were
corroborated experimentally) for the MMA polymerization. However, their optimal
trajectories lead to similar results to those obtained by isothermal operation. Chen and
co-workers [1986a, 1986b] and Wu et al. [1982] design optimal temperature (and initiator)
policies to obtain a desired conversion and average molecular weight in minimum time,
while Thomas and Kiparissides [1984] aim to obtain high conversion and desired number
and weight average molecular weights in minimum time for the MMA polymerization
(Experimental results are shown). Louie and Soong [1985a, 1985b] use a detailed
theoretical model to obtain narrow molecular weight distribution polymers by designing
optimal trajectories for the temperature, monomer and solvent injections. Their approach
was also evaluated experimentally. Similar approaches were taken by Hsu and Chen
[1987], Jang and Yang [1989], Vaid and Gupta [1991] among others. Open loop control
of particle size distributions has been addressed by Crowley et al. [2000] and Immanuel
et al. [2002] using sequential quadratic programming and genetic algorithms respectively.
Optimal trajectories taking into account process constraints were obtained by Chen and
Lee [1985, 1987}, Choi and Butala [1991], Butala et al. [1992], and Secchi et al. [1990],

among others. In some of these studies, experimental verification was also carried on.



2.2.2 Within batch control

On-line moniforing

Approaches to monitoring batch processes have focused on the use of three types
of models: fundamental mathematical models, artificial intelligence models and statistical

models.

The approaches using fundamental models are usually based on state estimation
methods, which combine a fundamental model of the process with on-line measurements
to provide on-line, estimates of the states of the system (Iserman [1984], Schuler and De
Haas [1986]). The preferred method that has been employed for a long time (since early
60’s, Seinfield [1970], Jazwinski [1970], MacGregor et al. [1986]) to perform such
estimation is the use of observers or Kalman filters. Kalman filters are employed because
they can reconstruct unobservable states and outputs of the system from process
measurements. After the filter is designed, the most likely status of the process can then
be evaluated using, for example, generalized likelihood ratio tests (Basseville [1988]).
King [1986] presented a use of this approach to detect hazardous batch reactor conditions.
In Kozub and MacGregor [1992b], stochastic disturbances arising from raw material
impurities and parameter variations were incorporated as extended states into the model
and estimator, and a scheme to monitor latex properties in the SBR emulsion
copolymerization was set-up (similar approaches has been taken by Gagnon and
MacGregor [1991], though in a continuous polymerization system). The main difficulty
of utilizing the fundamental model-based approach is that the developing of such detailed
model is time-consuming and difficult, and the filter may require considerable tuning

(Alvarez et al. [1990]).

In artificial intelligence methods, those based on rule-based expert systems
represent the process model by a set of qualitative and quantitative descriptions based on
the knowledge about the process. Quantitative analysis can be brought to these rule-based

expert systems through the use of probability theory or fuzzy logic (Petti et al. [1990],



Rojas and Kramer [1992]). Though these approaches do not require detailed models,
formulation of such rules may be just as difficult and time consuming. The use of neural
networks appeared in several publications for monitoring and fault detection
(Himmelblau [1992], Bakshi and Stephanopoulos [1993]). However, the main drawback

of this approach is that a training set with abundant faults must be available.

Fundamental model-based approaches and artificial intelligence approaches are
directional in that they build into their models or rules the possible faults or reasons for
deviations from normal behavior. Therefore, the detection and diagnostic abilities of
these approaches depend on prior knowledge and disturbances that may occur, since
these must be explicitly built into the estimator, or included as descriptions, or contained
in the training set. Events or disturbances that are not considered in the model may lead

to biased estimates and faulty diagnosis if they occur (Nomikos and MacGregor [1994]).

In the statistical approach, the use of multivariate statistical process control
methods based on multi-way Principal Component Analysis (MPCA) and multi-way
Partial Least Squares (MPLS) and their associated monitoring statistics (Nomikos and
MacGregor [1992,1994,1995a, 1995b], Kourti et al. [1995,1996]) have been commonly
used with industrial data for both the analysis of completed batches and for the on-line
monitoring of new batches (Kourti and MacGregor [1995], MacGregor and Kourti [1995],
Nomikos and MacGregor [1995a]). Nomikos and MacGregor [1994, 1995a, 1995b]
illustrated the detection of abnormal batches using several criteria such as the Q-statistic
(also known as square prediction error (SPE) or distance to the model in the X space
(DMODX)), the instantaneous SPE (for on-line monitoring) and the PCA or PLS score
plots or alternatively Hotelling’s T®. For on-line monitoring they proposed several
alternatives for filling in the future missing measurements in order to be able to analyze
the current batch in real time. Kourti et al. [1995, 1996] used multi-block methods
(MBPCA/MBPLS) to incorporate different initial conditions, modes of operation, and
prior processing conditions into the analysis and monitoring of batch processes. Kourti

and MacGregor [1995] give an overview of conventional monitoring charts (cumulative
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sum (CUSUM), exponentially weighted moving average (EWMA), Shewart, etc.) as well
as MPCA. The authors give applications on the monitoring and diagnosis of a continuous
and an industrial batch processes. Miller et al. [1993] and Kourti and MacGregor [1996]
suggested methods to detect variables that most contribute to an out of control signal in
multivariable charts (called contribution plots). The methods are illustrated on a
simulated process of a high-pressure low-density polyethylene reactor and several batch
industrial processes. Several other applications of MPCA and MPLS to batch processes
have also been reported (MacGregor et al. [1994], Nelson et al. [1996], Westerhuis et al.
[1999], Neogi and Schlags [1998], and Rénnar et al. [1998] among others).

The advantage of all these methods is largely due to the fact that the normal
operating data necessary for building the required model is always available, and to the
fact that the statistical control charts used for analysis and monitoring are easily
developed from these data. One of the main characteristics of such methods is that by
projecting the evolving within-batch measurement trajectories (on-line and possibly off-
line samples) into reduced dimensional spaces, the relevant information is kept and the
monitoring charts built on such reduced spaces are easy to visually inspect and to

interpret.

Within-batch regulatory control

Within-batch regulatory control strategies may be grouped in two different classes:
control strategies based on the theory of differential geometry and control strategies

based on non-linear model predictive control (NMPC).

The essential idea of differential geometry methods is to find an inverse
(generally an analytical one) of a nonlinear process. This is performed by means of
transformations to the states or control variables in such a way that the transformed
process is linear and linear control theory can be applied. Kravaris et al. [1989, 1990]
uses globally linearizing control (GLC) for the regulation of copolymer composition of

SAN and for the control of copolymer composition and average molecular weight in a
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VA/MMA solution reactor. Kozub and MacGregor [1992a] studied the control of many
end-quality properties (instantaneous copolymer composition, conversion and molecular
weight distribution) for styrene-butadiene (SBR) latex produced in a semi-batch emulsion
polymerization process; the non-linear control was based on a feedback linearization
scheme and the use of non-linear Kalman Filters. These methods are largely dependent
on the process model and conditions that must be satisfied, therefore differential

geometry control techniques may be difficult to implement on real processes.

In model predictive control, model predictions over a certain time horizon
(prediction horizon) are used to generate optimal control policies over another time
horizon (control horizon). The model used can be either detailed fundamental model or
empirical model. Garcia [1984] applies dynamic matrix control (DMC) and quadratic
DMC to a batch reactor. The non-linear model is linearized and updated as the states of
the process change and it is used to obtain the step response coefficients. The non-linear
model is used for prediction. Valappil and Georgakis [2001] used nonlinear model
predictive control in emulsion polymerization reactors for controlling the final particle
diameter, tensile strength and melt index. Crowley and Choi [1998] studied the on-line
control of the molecular weight distribution (MWD) and conversion on the free radical
polymerization of methyl methacrylate. Corrective control was obtained by solving a
sequential quadratic programming (SQP) problem. Reaction calorimetry has been used as
a non-invasive technique for estate estimation: Vicente et al. (2001) use a non-linear
controller to compute the feed rates of monomer and chain-transfer agent to be added to

the reactor to achieve a desired MWD,

Empirical model-based predictive control strategies have been based largely
around either artificial neural networks (ANN), regression models obtained through latent
variable methods (such as principal component regression (PCR) and partial least squares
(PLS)) or subspace models. An ANN application can be found in Tsen et al. [1996] for
the control of dispersity and MWD in batch emulsion polymerization. However, here

theoretical models are still used for generation of an extended data set, which is necessary
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to train the neural networks. Peterson et al. [1992] control the temperature and average
molecular weight in a batch solution MMA reactor using a nonlinear model predictive
control (NMPC) and a dynamic matrix controller (DMC). An example of using empirical
state-space models is given by Russell et al. [1998a] for the control of amine end group
concentration and number average molecular weight in batch polycondensation using the
trajectories of reactor and jacket pressure as manipulated variables. Contributions based
on latent variable modelling can be found in Kesavan, et al. {2000] for the control of
batch digesters, in Yabuki, et al. [2000] for the control of average particle diameter in an
industrial semi-batch process, and in Yabuki and MacGregor [1997] for the control of
weight-average molecular weight and degree of crosslinking in the SBR emulsion

process.

On-line optimisation

On-line optimisation can be seen as a general case of model predictive control.
Therefore, there is only a subtle (and sometimes no clear) distinction between
optimization and NMPC. In on-line optimization, instead of using the cost function
reflecting the quality of controller performance, which typically is in quadratic form, the
cost function is formulated to reflect also an economic objective, such as maximize the
yield of a product, minimize time for a given productivity, etc. Ruppen et al. [1997] uses
a theoretical model to perform an on-line time minimization and conversion control in an
experimental set-up using SQP at several time intervals. Their approach consists of
model identification (on-line parameter estimation) followed by the computation of the
optimal profiles on the basis of the identified model (estimation-optimisation task), while
Krothapally and Palanki [1997] calculate on-line optimal operating trajectories for the
batch polymerization of styrene and methyl methacrylate using ANN. Compared to
within batch regulatory control, few studies have been done in this area. This is largely
because to obtain reliable results from optimisation more detailed model and/or a huge

amount of computer work is required.
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2.2.3 Batch-to-batch control

There are essentially two ways to utilize the information from the previous
batches: either to use the information to update the parameter estimates of a model in
order to account for slow process changes and to overcome model error, or to directly use
the information for control if the batch-to-batch disturbances are reasonable highly batch-

to-batch correlated.

Batch-to-batch regulatory control

In many batch processes, information gained from the operation of immediately
prior batches may be useful in predicting the performance of the next batch. This implies
that variations in the disturbances (e.g. raw materials) are reasonably highly auto-
correlated from batch-to-batch and hence information gained from prior batches can be
used to predict at least some of the performance for the next batch. Industrial examples of
employing purely batch-to-batch regulation have been reported for the control of final
polymer quality using adjustments in the initial catalyst formulations (Box and Jenkins
(1970), Vander Wiel et al. [1992]). Clarke-Pringle and MacGregor (1998) use batch-to-
batch corrections of the manipulated variable nominal conditions trajectories for the
control of the molecular weight distribution (MWD) in linear polymers. The method uses
qualitative fundamental process knowledge and errors between the measured and desired
MWD at the end of the batch to update the manipulated variable trajectories for the next
batch. Iterative learning control (ILC) is a technigue that has been used extensively in the
control of mechanical systems (Moore [1998]) and is especially suited for repetitive
processes since it uses previous tracking error signals to adjust the manipulated variable
trajectories and/or initial conditions for the upcoming batch run. In the microelectronics
manufacturing, batch-to-batch control is known as run-to-run control. Edgar et al. [2000]
give a comprehensive survey on the applications, problems and algorithms for process
control in the semiconductor processing, while Bode et al. [2002] and Toprac et al. [2002]
use run-to-run linear model predictive control (LMPC) in the manufacture of

semiconduciors,
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Batch-to-batch optimisation

There is a large literature on batch-to-batch optimisation. Most of the approaches
use the previous batch information to update model parameters and then again perform
optimisation. The approaches using the concept of tendency models (Filippi-Bossy et al.
[1989], Rastogi et al. [1992]) use simplified reaction mechanism models, update the
estimates of the model parameters at the end of each batch, and then re-optimize the
trajectories for the next batch. Empirical (PLS-ANN) models were used by Dong and
McAvoy [1996] and Dong et al. [1996] to obtain input profiles that would achieve a
target conversion and molecular weight in minimum time by solving a SQP problem.
Model error was overcome using batch-to-batch adaptation. Crowley et al. [2001] use
batch-to-batch optimisation to achieve a new desired PSD target in an emulsion
polymerization system. The prediction is performed using a theoretical model but an
updated PLS model is used to ’correct the prediction by relating the manipulated variables
to the error from the theoretical model prediction and the measured distribution. An
illustration of combining empirical information and theoretical modeling is given by
Echavarria et al. (1995), who use experience and experimentation to estimate kinetic
constants and based on them use an off-line optimization algorithm to compute optimum
addition profiles in a emulsion copolymerisation process. Then this trajectory is
implemented, new data is collected, the parameters up-dated and a new input trajectory

(monomer flow rate) is again implemented.

Combined batch-to-batch, on-line control and optimization

Strategies which combine information about errors from past batches with
information from the current batch in order to adjust the MV trajectories to regulate
quality or to optimize some quality or economic objective function effectively combine

the goals of batch-to-batch, within-batch (on-line) control and optimization.

Lee and coworkers [1996, 1999, 2000, 2001] combine the advantages of ILC and

MPC into a single framework. Information from past error tracking signals is used along
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with information from the current batch to control the process in real time. Contributions
in this area include Lee et al. [2001] for minimization of reaction time, Lee et al. [1996]
for the heat-up phase of a batch polymerization reactor, Chae et al. [2000] for the quality
tracking control of poly-methyl methacrylate, and Bonne and Jargensen [2001] for the
trajectory tracking of a fed-batch fermentation reactor. Bonvin et al. [2002] and
Srinivasan et al. [2003a, 2003b] have recognized that it is unrealistic to use detailed
theoretical models for the control and on-line optimization of batch processes. They
introduce a novel strategy in which the optimal structure of the parameterized inputs is
determined using, for example an approximated model and then measurements (off-line
and/or off-line) are employed to refine (update) them. Optimality is achieved by working

close to the constraints that are active,
2.2.4 Modeling for monitoring, control and optimization

Appropriate mathematical system representations are the key to perform
prediction and to compute manipulated variable adjustments in model-based monitoring,
control and optimisation techniques. Usually the models used can be divided into three

different types: fundamental models, empirical models and hybrid models.

Fundamental models

Fundamental models are also called first principle models, theoretical models or
white-box models. These models are developed based on conservation (mass, moment
and heat) theories and kinetic and thermodynamic principles. They are generally state
space models, described by a set of highly coupled nonlinear algebraic, partial and partial
differential equations, which require advanced numerical techniques for proper solutions
to be obtained in a considerable amount of time. The main advantage of this type of the
models is that they give a good understanding about the process and are well suited for a
wide range of process operations. Therefore they have been considered as the preferred
approaches in many studies. However, fundamental models are usually difficult and time

consuming to build for real industrial systems. Generally for a model to be realistic, only
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the part of the process that is most relevant to the control (and optimization) objectives is
needed to be modeled and a few physical and kinetic parameters then estimated based on

the process data.

For control purposes, a theoretical model is usually combined with Kalman filter
to estimate model parameters, states and outputs based on process measurements
(Jazwinski [1970], and MacGregor et al. [1986]). One of the advantages of Kalman filter
is that it gives the possibility to adequately represent process and operational disturbances
that are otherwise difficult to model and to measure (such as impurities) through
extended nonstationary stochastic states (MacGregor et al. [1986], Kozub and MacGregor,
[1992b], and Gagnon and MacGregor [1991]). If the model is good, then noisy
measurements can be efficiently filtered out. On the other hand, if the model is poor,

information-rich and accurate measurements are required to obtain acceptable estimates.

Empirical models

Empirical models are also called databased models or black-box models. These
models describe the relation between input and output through an empirical relationship
identified from a database, obtained from designed experiments and/or historical database.
The models can be developed using neural networks or multivariate statistical regression
methods. Compared to fundamental models, empirical models require little prior

knowledge and are easy to build. However, there are several common arguments:

1. Empirical models lack extrapolative power. Because the information of
empirical models comes mainly from the data used, they often can have good
interpolative capabilities; however they rarely can predict the process behavior outside
the range spanned by the data collected for model building. Obviously, such limitation
restricts the use of empirical model in solving the process optimisation problem, in which
new manipulated profiles may need to be determined. Although optimisation is a very
important problem, in many real industrial settings nominal trajectories for producing a

certain product are already fixed, and the main operational objectives are to monitor



17

and/or control the product quality about a given set-point in the face of disturbances
(regulatory operation). In this situation, the operation region is always around the

nominal conditions and extrapolative ability is not a critical problem.

2. Bonvin [1998] has pointed out that empirical models can only represent the
relationship between variables that are manipulated or measured and have no prediction
power for the variables not observed such as the heat of reaction. However, in many
situations there is no need to estimate such unmeasured variables. If the purpose is to
monitor the progress of the reactor, as long as the measurements reflect the influence of
the disturbances, the abnormal operation can be easily detected. In the case of regulatory
control of final product properties, the key is the relationship between manipulated
variables, disturbances (the information often contained in the measured variables) and
end product qualities. Any empirical model that adequately describes this relationship can

achieve good control performance.

Hyvbrid models

Hybrid models are also called grey-box models. These models combine the two
cases listed above. One type of hybrid models uses a simple model structure that is based
on some qualitative knowledge of the process or a simplified model but retains the
physical understanding of the system. The model parameters often are much easier to
identify compared to detailed fundamental models. Tendency modeling (Filippi-Bossy et
al. [1989], Rastogi et al. [1992]) can be classified in this type. Another type of hybrid
models uses a detailed fundamental model to generate training data for developing the
empirical model. An example can be found in Tsen et al. [1996], and in Krothapally and
Palanki [1997].

From fundamental models to databased models, we can see the conflict between
academic research and real industrial implementation. The research on fundamental
modeling and using it for process monitoring, control and optimisation has been carried

out since 1960s. In contrast to the large number of papers published, few have been
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reported on the real industrial implementation of control algorithms. This is largely
because: 1) to use a detailed fundamental model to solve an optimization problem is
computationally intensive and unlikely can be performed on-line; 2) no model can
perfectly describe the process and there always exist model error and uncertainty which
might influence the reliability of the model; 3) to develop appropriate theoretical models
is time consuming, and 4) to maintain the performance of the model generally requires
in-house expertise. In many chemical and pharmaceutical companies the profit is made
from the products they sell, and not directly from the engineering features they have
implemented in their processing plants. Any time and money spent at improving the
process has to pay off economically in the form of producing more or better products,
improved safety operation and/or better usage of resources (Friedrich and Perne [1995]).
Therefore, because of the high cost and uncertain profit of implementing a control system
based on fundamental model, the implementation of such control strategies is a risky

decision for many industries.

Empirical models and hybrid models use much simpler model structure and most
of the information comes directly from process measurements. Obviously these models
have more probabilities to be implemented in real industrial settings. The criticism
mainly is whether using the simple model structure is sufficient. This question evidently
is problem dependent. However, as mentioned before, in the case of monitoring and
regulatory control, databased models are often adequate. Moreover, there are certain
situations in which empirical models may be even better suited than the theoretical ones.
One classic example of these situations is the control of particle concentration and
particle size distribution (PSD) in emulsion polymerization [Kiparissides et al. [1981],
Crowley et al. [2000, 2001]), which is studied in Chapters 3 and 4. In emulsion
polymerization systems small variations in the impurity levels and in the surface
chemistry of the emulsifier can exhibit a large influence on the particle nucleation
(Penlidis et al. [1985], Huo et al. [1987]). Data on these impurities and surfactant
variations are never available, and even if they were, the theoretical models are still

insufficient to model their subtle effects on nucleation (Kiparissides et al. [1981], Penlidis
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et al. [1989]). Therefore, information on their effects must still come from measurements
made in the process, and the main requirement of any model for regulatory control is to
be easy to built and be flexible enough to use the available measurements to infer the
final quality. It will be shown in Chapter 3 and 4 that PLS methods are very suitable in
these situations because their excellent interpolation power and because their efficient

and flexible use of the information contained in process measurements.

2.3 Empirical modeling using latent variable methods

This thesis focuses on developing practical on-line monitoring and regulatory
control schemes for batch/semi-batch processes. Batch-to-batch information is also
effectively used. Latent variable methods, such as principal component analysis (PCA)
and partial least squares (PLS), are used for model building. Compared to other empirical
methods (i.e. neural networks or multivariate regression), the advantages of these
methods are: 1) they can effectively handle highly correlated data; 2) they are fast and
easy to build and update; 3) they do not require large training dataset; 4) they provide a
model for both the X and Y spaces; 5) they can easily detect outliers and handle missing
data; 6) they provide simple tools (e.g. Hotelling T? and square prediction error (SPE)) to
check the validity of the new coming data; and 7) they provide effective interpretation
tools, such as score plot, loading plot and contribution plot to help understand the process.
These advantages give the possibilities to implement these methods to real industrial

settings.

In industry, on-line process measurements (e.g. temperature, pressure, etc.) and
off-line quality measurements (usually at the end of the process) are routinely collected
and stored. Since the number of factors (movements in manipulated variables and
disturbances) that drive the system is usually much smaller than the number of measured
variables, there exist high correlation among the measured variables. It is well know that
this high correlation among variables causes ill-conditioning of the data matrices and
leads to poor parameter estimation when use ordinary linear regression. Qin (1997)

showed that a regular backpropagation training can result in large prediction error under
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correlated inputs and suggested using latent variable methods as a preprocessing step. In
the same paper, he also pointed out that neural networks lack capabilities on several
practical issues including detecting outliers, replacing missing data and checking the
validity of the new data and it would be beneficial to combine ANN models with
multivariate statistical models. Another drawback of neural networks is that they have
large number of model parameters and therefore generally need a lot of training

observations to avoid the overfit problem.

PCA and PLS are designed to handle multivariate data by projecting the
information contained in a set of highly correlated process variables onto low-
dimensional spaces defined by a few variables, known as principal components or latent

variables.

The mathematical representation of PCA is:

X=TV' +G =i‘ravg +G
a=1
where X is the input matrix (K x M ); I is the score matrix (K x A), which is the new
coordinates in the lower dimensional space; V is the loading matrix (M x 4), which is
orthonormal and is the basis to span the low dimensional space; and G is the residual
matrix (K x M ). K is the number of observations, M is the number of variables of the X
space and 4 is the number of principal components. T, and v,, a-th column vectors of T’
and V, are the score vector and loading vector of the a-th principal component
respectively. The score matrix I can be computed from I' = XV . Each score vector 1, is
a linear combination of original variables and v, is the corresponding combination
weights. The principal components are ordered in a way such that the amount of variance
described by each principal component decreases as the number of principal components
increases. The squared prediction error (SPE) for the k-th row of X is given by

M
SPE, =D Zim -

m=1
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A PLS model can be generally expressed as:

X=TPT+F
Y=TQ™+E
T=XW

where W is a (M x A) weight matrix that maximizes the covariance between T (K x 4)
and X (K x M, predictors), Q is a (R x A) matrix of regression coefficients (loadings) for
T forming a linear model for the response variables (Y, K x R), while P is a (M x 4)
loading matrix that forms a model for X. E and F are the error (noise) terms. R is the
number of response variables and A is the number of latent variables. Several algorithms
can be used to compute the matrices W, Q and P, among which NIPALS algorithm is the
most commonly used. For further details please refer to (Wold [1978], Krzanowski
[1987], Geladi and Kowalski [1986], Jollife [1986], Wold et al. [1987], Hoskuldsson
[1988], Geladi [1988], Geladi [1989], Jackson, [1991], Kourti and MacGregor [1995]).
Notice that it is the model for the X-space that allows PLS models to handle missing data,
check for outliers, monitor the process variables, and invert the model to yield new x

values that are consistent with past operating conditions.

PLS model can also be expressed in the conventional linear regression form:

Y =TQ" = XWQ" = XB
where B=WQ". B isan (M x R) regression coefficient matrix.

Batch process data consists of a three-dimensional data array containing the
different process variables (1,... ,N) across both the batch (1,...,K) and time dimensions
(1,..., L) as shown in Figure 2.1. Denote this data array as X(Kx N x L). To deal with
this three-dimensional data structure, multiway PCA/PLS is applied. Multiway PCA/PLS
collapses the “within-batch” dimensions (N and L) and creates a large unfolded data

matrix X(KxNL). Then normal PCA and PLS is performed on X. In this PCA/PLS model,
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each batch can be represented by a point in the score space spanned by the latent
variables. Since the dimension of the score space is much smaller than the original data

matrix, observing the batch behaviour in the score space is much easier.

For monitoring the batch process, generally a multiway PCA/PLS (MPCA/MPLS)
model is built using historical data collected when only common cause variation was
present and only good quality product has been obtained. For a new batch, its behaviour
can be compared with this model of good behaviour. This involves plotting the scores
and the SPE of new observations, and testing whether or not they are consistent with past
good behaviour. This is accomplished by establishing control limits for the monitoring
charts using the statistical properties of the training data. For on-line monitoring, a
missing data algorithm can be used at first to predict the future measurements and then
project the data onto the model defined by PCA/PLS. Many industrial applications for
monitoring have been reported using MPCA/MPLS approach.

N
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Figure 2.1 Unfolding of batch process data

A few attempts at using MPLS for the control of batch process are reported in
literature (Yabuki and MacGregor [1997], Kesavan et al. [2000]). The main criticism on
using PLS model for control is that its linear model structure may not be good enough to
describe the non-liner behaviour frequently found in batch processes. However, it should

be pointed out that in the case of regulatory control, since the main objective is to reject



23

disturbances about a nominal and fixed operating plant (usual situation in most industrial
practice), the process trajectories should not deviate too far from their nominal conditions.
Since batch PLS models are based on deviations from the mean (or nominal) trajectories,
and since the model provides a local linear model about every point along that trajectory,
it has rarely found that nonlinearities are a problem. If necessary, proper transformations
can be used to overcome slight nonlinearities or the use of a nonlinear PLS regressor
method employed. In this thesis, the use of empirical PLS models for regulatory control
of batch processes is further studied and extended. It is shown that even when some
processes are intrinsically highly non-linear (e.g. emulsion polymerisation), good

regulatory control performance can be achieved by using simple PLS models.
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Chapter 3

Control of PSDs using Mid-Coutrse

Correction Policies

The manufacture of emulsion polymers with consistent broad and bimodal
particle size distribution (PSD) through in situ particle nucleation in semi-batch reactors
is difficult due to the sensitivity of the particle nucleation phenomena to variations in
reactor conditions, impurities, and surfactant and initiator properties. This Chapter
presents several control strategies based on the use of readily available on-line and off-
line measurements. Partial least squares (PLS) models are used to extract the necessary
information from different sets of measurements to predict the final PSD. Using a
simulated styrene emulsion polymerization process as example, these control strategies

are shown to be effective, practical and with potential for industrial implementation.

3.1 Introduction

In emulsion polymerization, it is well known that one of the variables that
determine the final latex properties (stability, film forming ability, covering capacity,
“brushability”, viscosity, opacity and texture among others) is the PSD. Control of the
PSD can be very difficult since it is generated by the particle nucleation process, which is
highly non-linear, of short duration, and highly sensitivity to even the smallest change in

impurity concentrations, surfactant properties, temperature, efc.

One of the first attempts to control a PSD in batch processes is the work done by

Liotta et al. [1997]. These authors show how a bi-disperse distribution can be created and
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how it can be controlled to a limited extent through “competitive growth”. “Competitive
growth” exploits the fact that the weight fraction of polymer inside particles affects the
relative narrowing (standard deviation di\}ided by the mean) of a bidisperse PSD. They
point out that the key to manipulate the growth is to change the ratio of average number
of radicals for each particle population. To illustrate their approach, they built a semi
batch reactor facility for the emulsion polymerization of styrene and they tried to control
the relative broadening of distributions using the monomer feed rate as manipulated

variable (MV). However, no full matching of a predetermined target shape was attempted.

A theoretical study on PSD controllability in continuous systems done by Semino
and Ray [1995a, 1995b] showed that with an unbounded feed concentration of surfactant,
initiator or inhibitor and knowledge of reactor states, one can guarantee the controllability
of the PSD. Furthermore, they show how to extend the controllability region by using two
manipulated variables with opposite effects (i.e., inhibitor and initiator). They specifically
addressed the control of an unstabie continuous stirred tank reactor for the emulsion

polymerization of methylmethacrylate using single-input single-output (SISO) controllers.

Crowley et al. [2000] addressed the computation of surfactant feed profiles for
matching a PSD to a pre-specified target in the batch emulsion polymerization of styrene.
The manipulated variable was the surfactant feed profile in a 30 min span covering the
particle nucleation period. In effect the free surfactant concentration profiles were being
adjusted. They solved the optimization problem using sequential quadratic programming,
and compared the performance of different objective function norms. In their work, the
polymerization was limited to short reaction times (Interval I), in which with few
movements in the manipulated variable, the desired target can be achieved. It is important
to mention that at least in batch/semi-batch emulsion polymerization processes, this is the
first successful simulation attempt at matching a full PSD to a target distribution.
Recently, Immanuel et al. [2002] perform open-loop PSD control for an emulsion
copolymerization process using genetic algorithms. In these studies, however, a full

population balance model is needed to compute control actions, which may limit its
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applicability in real processes. Moreover, no on-line adjustment of manipulated variables

for disturbance rejection is performed.

In this Chapter a different approach to perform on-line control of the final PSDs is
taken. Recognizing that to control the highly sensitivity nucleation phenomena during its
short duration is extremely difficult using distributed parameter models, it is considered
on-line control strategies based on simple empirical models which use less demanding
on-line sensing to estimate the end result of the first nucleation stage and then make mid-
course corrections to influence the subsequent nucleation stages so that the final PSD is
controlled to its target. It is shown that various on-line and off-line sensors ranging from
very simple to more sophisticated combinations can effectively estimate the state of the
system between nucleations, and that the empirical models are easily developed to
compute mid-course corrections. All these characteristics represent considerable

advantages over alternative approaches.

3.2 Emulsion polymerization system
3.2.1 Base cases

An extensive model to simulate the styrene batch emulsion polymerization
process was developed by Crowley et al. [2000] and is used in this work for data
generation and model performance evaluation. This model, based also on the research of
Cohen et al. [1998] computes the PSD, particle number (N;), particle size, and it
incorporates detailed kinetic and physical-chemistry mechanisms such as aqueous phase
initiation, desorption, radical balances inside particles, and particle formation by micellar
and homogeneous nucleation. The complete description of the reaction mechanisms and

model parameters can be found in the original publications.

In the present study, two different target bimodal PSDs were generated using

different initial recipes and then promoting secondary generations of particles using shots
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of emulsifier at 150 min. The reaction was then carried out to 92% conversion. The

nominal recipes for the two PSD targets are shown in Table 3.1.

Table 3.1 Recipes used in the generation of bimodal PSD.

Species Recipe 1 (mol/D Recipe 2 {mol/l}
Water 23.611 23.460
Styrene 4.807 4,807
Initiator® 1.39x107 1.39x107
Emulsifier® 11.0x10° 20.0x107
Emulsifier® 0.032 0.045

*potassium persulfate, "sodium dodecyl sulfate, “injection at 150min (mol).

3.2.2 Disturbances affecting the PSD

In emulsion polymerization reactions, the main process variations arise from
different start-up conditions and changes in the quality of raw materials. The first type of
process variations can be controlled, to a certain extent, by a high degree of automation
(Yabuki and MacGregor [1997]). However, changes in the final quality due to raw
materials variations cannot be controlled using this policy. The main raw material
variations that affect the particle size distribution are those related to the characteristics of
the emulsifier, the initiator and impurities present in the monomer. However, since
impurities affect the polymerization in the same way as the initiator (Penlidis et al. [1985],
Huo et al. [1987]), the effect of impurities will be lumped into the effect of the initiator in
this study. This was also necessitated by the fact that the theoretical model used for

simulation did not consider impurity effects.

In emulsion polymerization processes, emulsifier activity is mainly controlled by
the particle surface coverage a, (ability of an emulsifier molecule to stabilize a polymeric
particle), while the initiator is controlled by its efficiency (f) or capacity to generate
radicals in aqueous phase, kg, (water soluble initiators). Variations in the emulsifier
coverage capacity and the number of radicals generated from the initiator decomposition
can arise from natural raw quality changes or from small contaminations due to
inappropriate storage, long storage (aging) or improper equipment cleaning. The principal

water-soluble impurity is dissolved oxygen, whose effect is an induction period at the
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start of the polymerization with little impact on the end-quality properties (Huo et al.
[1987]). On the other hand, organic impurities such as monomer inhibitor and trace
organic compounds change the number of radicals. Even small changes in the number of
polymer radicals or the emulsifier surface coverage (a;) will have a great effect on the
nucleation rate of particles and hence on the final PSD and particle concentration (N).
Therefore, when the polymeric particles are nucleated in situ (a procedure that is common

in the paint industry) control of PSD becomes essential.

In this simulation study, the major disturbances affecting the target PSD are
introduced through random batch-to-batch variations in the particle size coverage (a;) and
a lumped initiator decomposition efficiency (f*). This efficiency would represent
variations in the initial initiator charge, impurity variations, and parameter mismatch
arising from the aqueous phase decomposition constant (ks,), etc. Considering normal
variations in raw material qualities, the standard deviations of a;and f* are selected as 2%
and 4%. These normal operation standard deviations do not include the effect of raw
material variations due to contamination or different start-up conditions (i.e. due to
special causes). A control policy that overcomes these special cause disturbances is

developed in the following sections.

3.3 Manipulated variables

In the specific case of emulsion polymerization, potential manipulated variables
for the control of PSD are those related to free emulsifier concentration, the number of
radicals in the aqueous phase and monomer concentration inside the particles. The
possible set of manipulated variables includes the emulsifier, initiator, inhibitor and
monomer feed rates. In this research, we restrict control actions to shots of emulsifier
(i1, uz7) because they have an almost instantaneous effect on the free emulsifier
concentration and on the number of particles nucleated. Shots of initiator/inhibitor could
be alternative control actions. However, process measurements are needed earlier because
their dynamics over the PSD are slower than those of emulsifier shots. In order to be able

to both increase or decrease the number of particles nucleated (and hence affect the PSD
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in a negative or positive direction), the nominal emulsifier shot (u. ;) injected at 150min

will be adjusted slightly in a positive or negative direction.

3.4 Sensor selection and model building for PSD prediction

For the Case studies presented in this Chapter and in Chapter 4, partial least
square (PLS) models (linear and quadratic models) were employed to predict and then to
control the final PSD. This is adequate due to the fact that, in the range under study, the
effects of the manipulated variables (emulsifier adjustments at different times) on the
controlled variables (PSDs) are almost linear as shown in Appendix A. The slight
nonlinearities of the system, in such range, were properly taken into account by using
quadratic and interaction terms (when needed) in the manipulated variables as well as

simple transformations on the PSDs.

The data sets for model building are generated from the theoretical model of
Crowley et al. [2000] by introducing random variations in a,, f* and changes in the
manipulated variables (emulsifier shots at 30 and 150min) that resemble empirical
control actions taken by operators when the quality properties are not on target. The
measurements studied were various combinations of on-line discrete reactor and jacket
temperature profiles (x,,) and off-line measurements on particle diameter (D,), free
emulsifier concentration (S¢), and PSD (x,p). The measurements considered and their
sampling schedules are given in Table 3.2. Temperature values at every 10 min were used
for convenience, but if continuous measurements of Tj were available, they could be
incorporated in straightforward manner by augmenting the predictor matrix. In this work,
except in the Case study II, we assume that on-line PSD measurements are not available,
and that only one off-line (x,4) PSD measurement is made using a sample taken at 30 min.
and whose results are available at 150min. If more PSD measurements were available,
perhaps using on-line dynamic light scattering, etc., the methods proposed in this chapter
could easily use this additional information, and would provide improved results. In order
to simulate process conditions, white noise was added to all lumped process

measurements. As the measurements are discrete, it is assumed that filtering may be
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performed to reduce the effect of noise. As can be seen in Table 3.2, the noise level for
the jacket temperature (Tj) measurements is 6=0.1% (approximately + 323 x 0.001
~0.3°K); for Dp is (Yabuki and MacGregor [1997]) 6=0.576% (£ 60nm x 0.0057 ~0.35
nm), and for S¢ is 6=1% (+ 5 mmol/l x 0.01~.05mmol/l). In the case of the PSD
measurement (X,4), the noise has a correlation that depends on the instrument providing
the measurements. Therefore, noise structure identification was performed through
principal component analysis (PCA), as described in Clarke-Pringle [1999], using actual
repeated PSD measurements on a styrene latex sample by a dynamic light scattering
instrument. From the identified structure, correlated noise (with standard deviation
(5)=1.0) was generated and added to all intermediate PSD measurements (see Appendix

A).

Based on the five data sets shown in Table 3.2, each using a different combination
of the process measurements, five PLS models were built to predict the final PSD. These
PLS models were validated using the test set shown in Table 3.3. Predictions on the final
PSD (at 92% conversion, 1000min) were made at a batch time of 150min (14%
conversion) using all the indicated on-line and off-line measurements available at that
time. As an illustration of the predictive performance of the models, some results are
presented in Figures 3.1, 3.2 and 3.3 for Recipe 1 (Table 3.1). It was observed that all
models that include either the intermediate PSD or D, measurement have high predictive
power for the final PSD. For example model 1, which uses an intermediate off-line
measurement (x,g) of the PSD and on-line (x,,) jacket temperature measurements taken
between 10 and 150 min has a predictive power of 97.1%. Figure 3.1 shows observed (-)
and predicted (--) final PSDs for this model, using test batches 1 to 5 of Table 3.3.

In order to determine if the main process disturbances can be detected using only
the most inexpensive measurement (T}) model 5 was built. However its predictive power
is only 47.9% indicating that only using on-line T; measurements provides a poor
prediction of the final PSD. Figure 3.2 shows the predicted (-) vs. observed (--) PSD for
this model.
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Tabie 3.2 Measurements for model building

Model Measurements/{(c%) Noise level” Sampling times (min)
Mi PSD(*); Ti(0.1) . £ 03K 30; 10,20...150
M2 Dp?(0.576); Ti + 0.350m; 0.3°K. 110; 10,20...150
M3 Dp; PSD; Tj + 0.350m; *; 0.3°K 110; 30; 10,20...150
M4 Dp; S7(1); Tj + 0.35nm; .0005mol/L; 0.3°K 110; 20; 10,20...150
M5 Tj + 0.3°K 10,20...150

* correlated noise, “Yabuki and MacGregor [1997], "assumed, ‘using T;=323°K,
Dp=60nm and S=5mmol/] as base values.

Table 3.3 Test sets for prediction and control.

Test set Multiplicative factor Multiplicative factor Emulsifier shot at 150min

for a, (dm?) for f* (mol)

Base case 1 1 0.032
0 0.902 0.88 0.032

1 1.080 1.12 0.032

2 0.910 0.90 0.032

3 0.932 1.10 - 0.032

4 1.110 1.14 0.032

5 1.200 1.20 0.032

6 0.899 1.00 0.032

x10® Observed vs Predicted PSD

-0-Base Case |

Particle number distribution {mol/l-nm)

10 20 30 40 50 80
radius{nm}

Figure 3.1 Predicted (- -) vs. observed (-) PSD for model 1, Recipe 1. The number indicates
the test set in Table 3.3.
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Figure 3.2 Predicted (- -) vs. observed (-) PSD for model 5, Recipe 1. The number indicates
the test set in Table 3.3.

In order to measure model predictive performance, sum of squared prediction

errors (PRESS) was taken over the set of m test batches:
m n R 2

where 7 is the number of variables obtained from the segmented PSD (60 in this case),

and J the predicted PSD.

Figure 3.3 compares the PRESS of models 1 to 5 (using the different sensor sets
shown in Table 3.2) for Recipe 1 and 2 of Table 3.1. The worst performance is from
model 5, which uses only jacket temperature measurements (x,,). As seen before, models
that use a single off-line measurement of PSD or D, have good performance. As expected,
the best models are those that include the most complete set of measurements. Figure 3.3
also shows that the performance of the model is relatively independent of the recipe

employed and mainly relies on the measurement set used in model building.
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Figure 3.3 PRESS of Model 1-5 for Recipes 1 and 2
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3.5 Control studies
3.5.1 Control methodology.

In this study, the methodology employed to control the PSD is an extension of the
mid-course correction strategy for the control of high dimensional end-quality properties.
In this methodology, introduced by Yabuki and MacGregor [1997], Yabuki et al. [2000]
and Tsen et al. [1996], measurements are collected at early to mid-stages of the process
and an empirical model is employed to predict the end-quality properties. The
methodology is illustrated in Figure 3.4, where it can be seen that when a new batch is
being produced, on-line (x,,) (Jacket temperature) and off-line (x,p) (for example PSD)
measurements are collected until a decision time (8, /=1,2,..), where a prediction of the

final product quality (§,) (i.e. PSD) is then made on the basis that no future control

action will be taken (i.e. the manipulated variable will be equal to their nominal values

(un, Is un,Z})»

If the prediction ¥, at time & is outside a pre-determined no-control region

(section 3.5.2), then the empirical model is inverted to obtain the control correction



adjustments (u;, u;) (shots of emulsifier) required to force the end-quality properties back

to their target (section 3.5.3).

T _ T P g
Ty =X Xog] Predict §, Vi
with @ =g, I
// ;é;\\
At decision P \\\
time ¢, " §,fallsinside ™. Yes _
Process ‘\\\{)-control region? T R
[ - -
S~
u T
J No
Calculate u, €

Figure 3.4 Mid-Course Correction (MCC) Strategy

Notice that at the mid-course control point (8) almost any form of MV
modification can be used (not only discrete control actions such as emulsifier shots). For
example the profile of the base case addition rate of any component such as monomer,
water, initiator, etc. could be modified at the control point by manipulating a parameter
such as the slope, level or some other combination of parameters that will determine the
shape of the profile of the MV for the remainder of the batch. The modifications would

not alter the basic approach shown in Figure 3.4.
3.5.2 No-Control Region

With current automated batch sequencing and control systems, most batches seem
proceed satisfactorily with no additional corrections necessary (Yabuki and MacGregor
[1997]). Only if unusual disturbances occur is corrective action necessary to achieve the
final quality targets. Therefore, operating personnel usually prefer that corrections only
be made when they appear to be necessary. For this reason “no-control” regions were
introduced to define limits for normal behaviour within which any variation cannot be

distinguished from acceptable “common cause variation”.
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Because of the high collinearity among the quality measurements (PSD), the no-

control region will be defined in the low dimensional principal component space
(#,,-++,t ;) of the quality variables. To obtain this no-control region, principal component

analysis (PCA) is performed on all the “good” or “in-control” quality data (Y,) from the

historical data set.

A
Y, =TP' +E'=) t,p, +E' (3.2)

a=1
where T, P, and E’ are score, loading and residual matrices respectively, #, and p, are
score and loading vectors for the a-th principal component, and 4 is the number of

principal components.

Assuming that the principal components fl ot 4 are approximately normally

distributed (which is reasonable by the Central Limit Theorem (Montgomery [1994],
Draper [1997])), relating to linear combinations of variables), then the boundaries of the
region can be defined in the latent variable space by Hotelling’s T? statistic:

42 AN -D

2 _ Ja
d _Zs2 N(N - A)

a<i g

F,(A,N—A) (3.3)

where N= number of observations in the model training set; F,, = Critical value of the F

distribution with 4 and N-4 degree of freedom at the o level of significance, and Sﬁ =

variance of the score a.

For a predicted y, obtained from the model, its projection in the principal

component subspace (@7; =[t;.t5y,...1 4 1) can be computed as:

i) =9/P (3.4)
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A far A(N2 -1 R L. . eV _
If P F_ (4, N - 4) the predicted quality is outside the (1-0)*100 no
sl NWN-4) 7

control region, and hence a control action would be justified (a=0.05 in this study).

In the following examples, a normal operation region was determined as
described above when the process was subject to only normally occurring raw material
variations. Only 2 principal components, defining an ellipsoid, were required to
summarize the final bimodal PSD space (according to cross-validation tests). If the
predicted PSD falls outside this ellipse, then a statistically significant disturbance is
deemed to have affected the process and a corrective control action adjustment is called
for. In this case, the inferential PLS models built in the prediction section will be inverted
to calculate the mid course corrections required to bring the PSD back to the target. The
test data sets generated to evaluate the model prediction (Table 3.3) will also be used to
evaluate the control performance. In this test set, batches with large upsets in g, and f*

were included to provide a good test for the control methodology.

3.5.3 Control strategies

Three controls strategies that use different control actions are presented in this
Chapter and outlined in Table 3.4. In Case I, the objective is to control only the
secondary particle generation for Recipes 1 and 2 (Table 3.1) by adjusting the magnitude

of the emulsifier shot (u_,) made at 150min. Case II addressed the control of the full

bimodal PSD for Recipe 1 using two emulsifier shots (u,;,u,,) at 30min and 150min
respectively to affect each of the two nucleation periods. Finally, in Case III control of

relative distributions is attempted by adjusting the shot of emulsifier (u,,) at 150 min

and the overall reaction time (u:2 ). Table 3.4 also shows the models and the test batch

numbers that will be used to illustrate the prediction and control for each case. Detailed

discussions of the control strategies are presented in the following sections.



Table 3.4 Control studies performed

Case 1 Case II Case 11
Recipe land2 1 1
Control objectives Control of secondary Control of bimodal Control of relative
particle generation distribution distributions

Control actions

Conversion(%)
Total Reaction Time (min)
Model
Measurements
Sampling Time (min)
Test set for control (Table
3.3)

Emulsifier shot (u, ;) at 30

Emulsifier shot (ueojat =4 o isifier shot (2,2)

150min

at 150min
92 92
1000 1600
Ml1...M5 Mt M2
Table 3.2 PSD; Tj Dp; Tj
Table 3.2 20;10,20 20;10,20
1 oea 5 0’2’356

Emulsifier shot (¢, ,) at
150min and total

%
reaction time (u,, )

50
380
Mi, M2
Table 3.2
Table 3.2

1...5

3.5.4 Case I: Control of the secondary distribution.

In general, there is little that one can do to control the distribution of the first

generation of particles nucleated other than automating the charging and initial conditions

of the reactor as well as possible. However, once the first generation of particles has been

nucleated, one of the sensor sets and the models proposed in the last section can be used

to predict what the final PSD will be if no control action is taken. If this is outside the no-

control region defining normal or common cause variations, then the emulsifier shot at

150min can be adjusted so that the second mode of the final PSD can be controlled to the

target.

Control Algorithm:

The calculation steps for obtaining the amount of emulsifier shot needed are:

1) For a new batch, collect available on-line (x,,) and off-line (x5 process

measurements such as PSD, T, D, and Syup to time 150 minutes.

2) Denote these observations by x;, j=1,...,b in the PLS regression model:
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n n b . .
yi(uc,Z) =B +Bie s +j§§ﬂii+§xj =1,2,....n (3.5)

where 7 is the number of points measured in the final PSD (60 in this case).

3) Solve for control action u.; (emulsifier injection at time 150min) by

minimizing the deviation of the final J; from their target values Ysp ; in a least squares

sense if the predicted quality falls outside the acceptable control region in the score space:

2
min El(ysp, i uc’ 5 » (3.6)
42
The solution is given by:
noa
ZPnd
Y2 Ly (3.7)
2B v

where d; = Vp,i = ﬂlo z ﬂy+1x

Control results

Once the prediction for the final PSD is made and if it is determined that it falls
outside the no-control region, a mid-course correction is taken (In this example, the no-
control region is determined using only the secondary distribution to be controlled).
Table 3.5 shows the results of the control actions for the set of test batches (Table 3.3)
using the 5 different models and measurement sets defined in Table 3.2 and 3.4. As an
illustration of the control performance, Figures 3.5a and 3.6a show the score plots for the
controlled mode of the final PSD for model 1 and 5 (models 2, 3, and 4 have similar
performance to that of model 1). In each Figure, the five points (*) indicate what would

have happened if no control action has been taken, and the five points (o) indicate the
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mid-course control results. It is interesting to notice that the reduced latent variable space
is one-dimensional because the disturbances (g, f*) affect the quality PSD in basically
the same way. It is also important to notice that the control action acts in the same
direction as both disturbances. This is the main reason why only one manipulated
variable is used: From the theoretical point of view this makes sense. The performance of
the control corrections can also be illustrated in the space of the PSD as shown in Figures
3.5b and 3.6b. Three distributions are presented: the target distribution (-), the
distribution that would have occurred with no control action (---), and the distribution that

resulted from the mid-course correction (--)

We can see from these Figures that mid-course corrections using model 1 yield
excellent results since it controls the final PSD close to its desired target for all the test
sets. This is also true for models 2 to 4. In general, a model that uses PSD or D, together
with on-line T; measurements can both predict and control bad batches with excellent
results. However, as seen in Fig. 3.6a, model 5, which uses only information obtained
from on-line T; measurements cannot predict that observation 3 is not on target and the
resulting control action drives the PSD further from target. In practical situations, when a
prediction falls inside the no-control region (observation 3), no mid-course correction
should be taken, although for illustration purposes, we have shown what would have
happened if action had been inappropriately taken. The correction for test batch 5 is also

poor.

To compare the control performance with different models, the sum of squared
error (SSE) was computed on the tracked PSD (y) with respect to the PSD target (v;) in
the full space:

m R 2
SSE= 2 X (ylf ‘ysp,ij) SR
j=ti=l
where m is the number of test batches (5). In Figure 3.7, the performance of five models

is compared. We can see from this plot that models that use information directly related
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with particle generation have low SSE. The high SSE of model 5 shows that only using

jacket temperature cannot achieve good control.

Figures 3.8 and 3.9 illustrate the results obtained when this control strategy is
applied to the PSD obtained with Recipe 2. These figures indicate that the control results
are similar to those obtained with Recipe 1, and hence independent of the recipe
employed. Figure 3.8a shows the reduced spaced control region for model 3 (no-control
region determined using only the secondary distribution to be controlled), while Figure

3.8Db the control in the full space, and Figure 3.9 the SSE.

From the results obtained, it can be noticed that in this approach, the secondary
distribution is easily controlled since only one adjustment of the emulsifier shot (u.2) is
needed to move the distribution back towards the target. Because an emulsifier shot is
always performed, this approach has the advantage of not taking extra controller actions
and only the amount of emulsifier (u. ;) at the normal injection time (150min) needs to be
corrected to compensate for the effect of the disturbances. Therefore, the algorithm is
especially suitable when the second particle generation is greater or more important than
the first one (for example Figure 3.8b) and when the PSD intermediate measurements can
only be obtained with significant delay. However, in the case that the first generation is
of great concern as well, then control of both modes of the full distribution should be

attempted. This approach is presented in the next section.

Table 3.5 Moles of emulsifier to be injected at 150min for Case I, Recipe 1.

Test set Model 1 Model 2 Model 3 Model 4 Model 5

0.0301 0.0304 0.0301 0.0303 0.0294

0.0343 0.0346 0.0344 0.0344 0.0341

0.0344 0.0341 0.0343 0.0343 0.0314

0.0294 0.0303 0.0294 0.0298 0.0296

0.0272 0.0287 0.0272 0.0282 0.0260
Base Case: Emulsifier moles injected=0.032
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Figure 3.9 Control performance of model 1-5 for Case I, Recipe 2.
3.5.5 Case II: Control both modes of the bimodal distribution.

Control of the full distribution by regulating both the primary and secondary
particle generations was also studied. This is possible because the particle generation in
the emulsion polymerization of styrene takes approximately 25-35min (depending of the
formulation and type of process operation) so some measurements can be taken before
the first particle generation is over. The sampling time for the single measurements of the
particle diameter or the particle size distribution is now performed at 20min instead of
30min as can be seen in Table 3.4. The mid-course control actions now consists of using

the information available (Xon X,5) up to 20 minutes and computing the emulsifier

adjustments (u,,,u,,) to be performed at two time points, one (u,;) at 30 minutes to

compensate for disturbances in the first particle generation, and the other (u,,) at 150
minutes to ensure that the secondary generation is compensated for both the effect of the
disturbances detected and for the effect of the first adjustment (u,, ) made at 30 minutes.
Both corrective actions (u,,,u,,) are computed simultaneously at 30 min (i.e it is used

only one decision point and therefore one model at 30 min.) Note that in order to
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implement this policy one need to have a fast analyzer to obtain Dp or PSD in order to

use the results before the first nucleation period is over.

The algorithm for computing the emulsifier shots needed at 30 min and 150min is
similar to that of Case I. However, two control actions (instead of one) have to be
obtained from the following objective function:

1

) R 2
os .gl(J’sp,i RACIRIRY
e ot 2= (3.9)

5.4, u 20
c,l

where u.; and u ., are the amount of emulsifier to be injected at 30 and 150min

respectively.

As an illustration of the control obtained with this approach, the performance
using model 1 is shown in Figure 3.10. Figure 3.10a shows the predicted PSDs if no
control actions were taken (*) and those when control action was taken (o) in the
principal component score space for test batches 0,2,3 and 6 which led to too few
particles being nucleated in the first period. Only in this case will the control call for
additional emulsifier to be injected at the 30 minute interval. In the other test batches, too
many particles were nucleated and no compensation can be done to affect the first
particle generation since emulsifier cannot be removed from the reactor. Hence in test
batches 1, 4 and 5 the emulsifier shot (u. ;) at 30 minutes is zero. The results of all mid-
course corrections using this strategy are shown in Table 3.6. It is worth to mention that
these results are similar to those obtained in Case I. In spite of the good results obtained
with this approach (Case II), its main drawback lies in that samples have to be taken
earlier in the process and the analyses have to be on-line and fast. To overcome this
limitation, a more flexible approach to control the full PSD is described in the next

section.
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Table 3.6 Moles of emulsifier to be injected at 30 and 150min for Case IL.

Test set Model 1 Model 2

Injection time 30min 150min 30min 150min
0 0.0031 0.0314 0.0037 0.0333
1 0 0.0304 0 0.0307
2 0.6029 0.0316 0.0037 0.0332
3 0.0025 0.0323 0.0036 0.0330
4 0 0.0300 0 0.0291
5 0 0.0284 0 0.0290
6 0.0031 0.0326 0.0037 0.0336

Control Results
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Figure 3.10 Control results for Case II using model 1: Score plot for model 1. Batches
without control (*) and with control (o). Ellipse denotes no-control region. Final PSDs for
test batch 2: without control (— -), control correction (——), and target distribution ().

3.5.6 Case III: Control of relative distributions.

In this Case, rather than just controlling the secondary distribution to a specified
PSD regardless what happens to the first PSD generation (Case 1), it would be easier to
adjust the target for the second generation based on what was achieved in the first one, so
that the desired shape of the overall distribution was kept the same. In the earlier studies
(Case I and IT) one was effectively trying to control the absolute PSD, i.e., both the shape
of the distribution and the total number (or mol) of particles in each bin. Here we only
focus on controlling the shape and let the total amount of polymer vary slightly. This type

of control is recommended when the first particle generation is fast and there exists long
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delays in the process measurements. Two correction variables are chosen for this control

objective: an emulsifier shot (%, , ) at 150min and the total reaction time (uf,,2 ). The shot

of emulsifier controls the relative height of the two distribution peaks while the reaction

time adjusts the location of the peaks to match the target distribution.

Control computation

The key idea in this approach is to solve for the control actions and unknown
distribution simultaneously based on the information provided by the process
measurements. This is necessary because the final distribution will be determined from
the first nucleation. For example, if more particles are generated in the first generation,
then more particles will have to be generated in the second one in order for the overall
distribution shape to match that of the target. To perform this control the following steps

are needed:

1) Denote the available observations at time 150min by X;, j=I, .., b in the

regression model:

#

,\ « ,\ b .
Yi = Pio + Pite 2+ Pt o * 2 Piaa¥j G.10)

2) Solve for control action, u., (emulsifier shot at 150min), and u:ﬂ (time of

reaction) which will minimize the deviation J; from the target values Vepi using

constrained linear least-squares:
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r\_r_l%r_l} %”@z - d“; such that

Yspmaxl 2 Vspi i=1.p (G.1hH

ysp,maxz 2 Ysp,i i=p+l.m

ysp,maxl = ’ysp,maxz; and z290
where
EX A e,
3 7 ca2 + . X
By B -1 0 0 x 10 = 1j+2%j
n . ) i A
% : : e s Vsp i :
B i g g ... =1 : A by
\n,l n,2 ! '30+Z,5-2x-
(nx(n+2)) | Vsp,n | R =T A
((n+2)x1) oD

z is the vector containing the unknown distribution (y;...y,) and control actions u,,u,,;

d is a vector obtained from process measurements; r is the ratio of the desired peak
maxima of the first and second particle distributions, p is the interval at which the second
generation begins (in this case p=40), and Vg maxs a0d Y max2 are the maxima of the two

peaks in the target distribution.
Control results

Once it is determined that the prediction falls outside the no-control region, a mid-
course correction has to be taken. Table 3.7 shows the control actions implemented for
the test batches 1 to 5. Figure 3.11a shows the control region in the reduced latent
variable space for model 1, while Figure 3.11b shows uncontrolled and controlled PSD in
the full space. For comparison purposes, the final PSDs of Figures 3.11a and 3.11b has

been normalized according to:
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) \
yi=y [ﬁ"—}{ (3.12)

Ty

where y: represents the normalized fraction of particles at radius i (=1,...,n, n=60) of

the PSDs, y, the original fraction of particles, gy the area of the desired PSDs set-point

and g; the area of the achieved PSD for the k-th test batch. The area can be computed as:

a, = g‘y(z’)dz' .

The results of using this approach show that the shape of the full PSD can be

controlled without the disadvantages of the approach in Case II.

Table 3.7 Moles of emulsifier to be injected at 150 and end reaction time for Case III.

Model 1 Model 2
Test Set Shot at 150min End Time (min) Shot at 150min End Time (min)
1 0.0309 412 0.0310 412
2 0.0335 384 0.0327 393
3 0.0341 382 0.0339 384
4 0.0304 416 0.0307 414
5 0.0288 425 0.0284 422
o Comral Results 10X 108 _ Control of normalized PSD_
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Figure 3.11 Control results for Case IIT using model 1. a) Normalized score plot for model 1.
Observation without contrel (*) and with control (o). Ellipse denotes no-control region, and
b) Normalized final PSD for test batch 2: without control (---), with control (- ), and target

distribution (-).
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3.6 Fault detection

Even with only one off-line process measurement (for example the PSD obtained
from a sample taken at 30 min), it is possible to control the final PSD using mid-course
corrections in all the proposed strategies. However, with a single sample measurement
the control approach will be sensitive to any sensor fault. A bad measurement could
easily lead to the predicted final PSD lying outside the no-control region and result in an
inappropriate mid-course correction even when the batch is actually a good batch. This
can be avoided by using sets of measurements from different sensors as given in Table
3.2 (e.g. off-line PSD and on-line Tj). One can then always test for measurement

inconsistencies among different sensors.

PLS provides a powerful way of accomplishing this because, unlike normal
regression and neural network methods it provides a model for the regressor (i.e. sensor
response) space as well as giving a prediction of the final PSD (Burnham et al. [1999]).
Therefore, prior to using any measured data for control of a new batch, the square
prediction error (SPE) of the new vector of observations can be computed. This SPE
provides a measure of any inconsistency between the vector of measurements for the new
batch and the behavior of the set of measurements used to develop the PLS model (Kourti
and MacGregor [1996] and Nomikos and MacGregor [1994]).

This monitoring capability of the PLS model is illustrated in Figure 3.12 using
model 1 in Table 3.3. Batch 48 represents a good batch in which the measurements were
good and so its SPE in the upper plot in Figure 3.12 small and below statistical 95% test
limit. Batch 49 is a repeat of batch 48 but with a bias in the PSD measurement, while
batch 50 is also a repeat of batch 48 but with a bias in the T; measurements. In both cases
the SPE statistic clearly detects a measurement problem. An alternatively approach could
be to build a PCA model for each sensor separately. In this approach, each sensor would
be tested separately by computing the SPE of each specific sensor group from its own
PCA model. This is illustrated in the lower plots of figure 3.12. On the left is the SPE

plot for the PSD measurements while in the right is that from the Tj measurements. In all
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cases the faulty sensor was detected and the control would be suspended until the sensor

is fixed.

Figure 3.12 SPE for a good batch (48) in which exists analysis fault in process
measurements PSD (49) and T; (50)

3.7 Extensions to multi-modal distributions and model error.

PLS Models for the prediction of Multi-modal distributions can be obtained in the
same way as those described in section 3.5.5 for the bimodal case. However, in the case
of control, the number of emulsifier shots may potentially increase to the number of
dominant distribution modes (one emulsifier shot for every particle generation).
Therefore, information regarding the effect of every emulsifier shot (or other(s)
potentially manipulated variable(s)) on the particle generations has to be present in the
dataset used for model building. The computation of the control actions can basically
follow two different paths: 1) Obtain all control actions simultaneously in the same form
as that described in Case II (assuming that no disturbances other than those originally

present since the start of the reaction will affect the subsequent particle nucleations and
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that the information obtained from the available measurements can predict adequately
such incoming distributions), or 2) Obtain every control action from an independent
control computation (as will be described in Chapter 4). In the latter approach, it would
be necessary to build a model for every particle nucleation that would relate the control
action to the corresponding particle generation. The advantage of the second approach is
that it can account for new incoming disturbances as well as the effect of any previous

incorrect control actions that were taken.

In the case that new or larger disturbances affect the current batch than those
present in the dataset used for model building and control, it may be possible that the
prediction, and therefore, the control computation is inadequate. In this situation one
might be able to use the new incoming information (assuming that this incoming data has
information about the new disturbances affecting the process) in a recursive batch-to-

batch way. This issue is addressed in detail in Chapter 4.

3.8 Conclusions

Several approaches to the multivariate end quality property control in semi-batch
emulsion polymerization using mid-course correction policies were presented. The
feasibility of these approaches was demonstrated based on simulation studies on styrene
emulsion polymerization for the control of broad and bimodal particle size distribution

using different sets of on-line and off-line measurements.

The results show that off quality PSD due to raw material disturbances can be
controlled to a target distribution using off-line measurements of particle diameter and
free emulsifier concentration, and/or particle size distribution from a sample taken early
in the reaction together with on-line jacket temperature measurements. The manipulated
variables were emulsifier shots at some mid-points in the reaction and the total reaction
time. Since the approach is based on the use of readily available measurements, easily

developed empirical models, and only occasional control actions at a mid-point time, the
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approach could easily be implemented in industry. It appears to offer excellent control of

the final PSD with much less effort than alternative approaches.

Nomenclature

~

B = vector of estimated regression coefficient

o = standard deviation
a = significance level

A = number of principal components

ag = PSD area set-point
ay = PSD area for a test batch k£

E’ = residual matrix from PCA

F, = critical value of the F distribution
f* = lumped effective initiator efficiency
N = number of observations in the training set

P = loading matrix from PCA
p = loading vector from PCA

r =ratio of peak maxima between the first and second distribution
s = variance of the score a

T = score matrix from PCA
¢ = score vector from PCA

u = vector of control action adjustments.

x = vector of measurements and control actions
y = observed or tracked PSD

y* = normalized PSD

Yep = targetPSD

y = predicted PSD



z = vector of unknown particle size targets and control actions

index

b = number of process measurements

i = bin number from the distribution segmentation (at certain radius)
J = measurements

k = test batch

[ =time index

m = number of test batches
n = total number of distribution segments

p = interval at which the second nucleation begins

superscript

» = indicates that the variable is estimated

subscript

sp = set-points
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Within-Batch and Batch-to-Batch
Inferential-Adaptive Control of Batch

Reactors

The purpose of this chapter is to present a control strategy that combines within-
batch information from process variable trajectories and information from prior batches.
The approach extends mid-course correction (MCC) strategies presented in Chapter 3 by
including multiple decision and correction points, batch-to-batch information in the
controllers, and an adaptive Partial Least Squares (PLS) approach to update the models
from batch-to-batch. As with the approaches presented in Chapter 3, the scheme retains
the “no-control region” concept where control is taken at various stages during the batch
only if the projected error in the final quality is deemed to be statistically significant. The
methodology is applied to the control of particle size distribution (PSD) in emulsion
polymerization. The problem of regulation about a fixed set-point PSD in the face of

disturbances, and the problem of achieving new set-point PSDs are both illustrated.

4.1 Introduction

In spite of the success of data driven approaches, they are mainly dependent on
the quality of the training data used for identification. In the approaches taken before
(Yabuki and MacGregor [1997], Yabuki et al. [2000], Russell et al. [1988a], Kesavan et

al. [2000], Chapter 3), it is assumed that a training data set contains sufficient input
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movements and disturbance information to allow proper model identification. If the
above assumption is not accomplished, model error arising from low quality datasets (as
those arising from only historical data) or changing disturbances and process conditions
may degrade model prediction and control. For this, an important part of the control
strategies presented in this Chapter is adapting poor initial models using batch-to-batch

information.

The approach taken in this Chapter combines batch-to-batch and on-line batch
control. It avoids the use of theoretical models by making efficient use of the on-line
process trajectory data from the current and previous batches, as well as quality control
data from occasional samples collected during the batches. The data requirements to
build the models for this control are generally much less than with other empirical
approaches that have been used. The approach incorporates adaptive PLS model updating
at the end of the batch to overcome initial modelling errors and to adapt the model to new

conditions when new PSD targets are specified.

The system used to illustrate the control strategies is the same one used in Chapter
3 (styrene batch emulsion polymerization for the PSD control developed by Crowley et al.
[2000]). This theoretical simulator is used for data generation and control performance

evaluation.

4.2 Disturbances, manipulated and controlled variables

As mentioned in Chapter 3, in nucleated emulsion polymerization systems the
major disturbances affecting the PSD are those derived from raw material and/or reactive
impurity variations. Therefore, in the simulations, variations are introduced into the
emulsifier surface coverage potential (¢,) and the aqueous phase initiator dissociation
constant (k). Any water-soluble impurities present would have the effect of reducing
the apparent value of k44, From the set of potential manipulated variables, u. (injections

of initiator, inhibitor, monomer and emulsifier; reactor temperature), injections of
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emulsifier at different times were selected because they have the greatest and fastest

effect on the particle nucleation rate.

4.3 Control methodology

The following description extends the mid-course correction strategies presented
in Chapter 3 to include more than one decision point, model updating and batch-to-batch
control. In this approach, one or more decision times (8,, ] =1.2,...) are specified at
which control actions, involving a vector of manipulated variables (u,; /=1,2,... ), can be
taken. All the available information up to these decision times can be used in PLS models

to predict the final product qualities at the end of the batch. If the projection of these
predicted quality variables into a reduced dimensional latent variable space (#;,---,f,)

for the quality falls outside an acceptable region, then control action (u.)is taken. This is

repeated at each decision time &,

4.3.1 Prediction

Consider a PLS model for the batch process using the mean centred and scaled
data available at certain decision times & ( /=1,2,..) (For simplicity, only linear

modelling is considered, although non-linear models and control can also be used):

X, =TI, V] +E, wn
Y=T,Q] +F,

where the matrix X; denotes the data on all the variables available at the decision time 6,

to be used for prediction, Y denotes the multivariate quality space, I'; contains vectors of
new latent variables that captures most of the data variability (Hoskuldsson [1988], Wold
et al. [1989], Wold [1992], and Geladi and Kowalski [1986]), V; and Q; are matrices of

coefficients and E; and F; error matrices.
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The PLS model for any time & may include, in the matrix of regressor variables (X)), data
on the following variables from all the training batches: (7) on-line measurements on
process variables such as temperatures, flows, pressures, etc. (X0, ;) that are available up
to time &; (i) any measurement made off-line in a quality control lab or by an infrequent

analyser (Xof ;) (e.g. an average particle size or a particle size distribution) that is

T

cl,---ufz,_lj made at

available by time &; (iii) any control action changes uf pren] = [u

previous decision times 6, 6;...6,;, control action changes u.; made at the current

decision time & and under certain conditions future control actions u ol (B,
4 B

— futu
G113.. . Bong) Tor the current batch; (iv) any relevant information from immediately previous
batches (Xprior) that is useful for predicting the behaviour of the current batch (e.g.

deviations of the final quality variables from their set-points at the last batch y* M,

(k-1

deviations in X,

and xg‘f’ D from the last batch, or any control actions,u*™, taken

during the last batch). Which of these sets of variables is used, in any particular case, will
be discussed later in the control studies. The final product quality matrix, Y, contains, as

rows, the observations on each quality variable for each batch (y”) in the training set.

The prediction from the PLS model (4.1) at each decision time & for the final
vector of quality variables for the current batch can be rearranged and expressed in linear
regression form as:

$7 @) =x1B, 42

T _ 5T T T s T T
where X = [Xon,l 3 Xoﬂ A3 X priors L prev,l2 w cis Ly Sfuture, ] }

Again, which of these sets of variables is used, in any particular case, will be

discussed in the control studies section.
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4.3.2 Control computation

If it is determined that a control correction action at time & is needed (according

to the no-control region concept described in Chapter 3), this can be obtained using a
Linear Quadratic Regulator (LQR):

mingy_ ~96,) Qi -3 +u; Qzuc (43)
U

where $(6 ) is given by eq. (4.2), and u.is a vector of manipulated variables that will be

obtained by solving (4.3). Depending on the set of variables used for model building (eq.

4.2), u, may be composed of u, =u_; or u} =[ul; ui fune,]- Hard constraints can be

introduced in the manipulated variables (MV) u_,, <u, <u,,. if needed. The solution

cmin ~
to the LQR problem in (4.3) is easily obtained using optimisation. Alternatively, a

Minimum Variance Controller (MVC) can be used:

mingy -3, Qs v ~$6) (44)

L
together with a simple minimum variance detuning factor

u=0u, (4.5)

where u, is the computed and u is the implemented vector of control actions, and

0 <8 <1 is a detuning factor.

4.4 Adaptive model

If the model obtained from eq. (4.1) is based on a poor data set, it is possible that
model error lead to poor control actions and then to poor product quality. To overcome

this limitation, batch-to-batch model parameter adaptation is introduced.
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Using the training data set Y =Y, and x§°> = X,,; the initial (nominal) model

is given by equation (4.2).
Updating of such model with new batch data (k) is:

forabatchk (k=12.)

y*-1 x (k-1
y® =[ ; x (k) :_.l: / (4.6)
1 0T ’
y(k)T X; )
e

The updated model is:
§9T @) = =T

The model updating can be achieved by simply augmenting the X; and Y matrices
with the new data at the end of each batch and refitting the PLS model, or by using a
recursive exponentially weighted adaptive PLS algorithm (Dayal and MacGregor
[1997a,b]).

4.5 Control studies

The inherent flexibility of empirical models allows having several alternatives for
model building (different sets of variables used as regressors in eq. (4.2)). Selection of
the regressor vector depends on /) available measurements and ii) nature of the
disturbances affecting the system. To illustrate such flexibility and the effectiveness of
the methodology, within-batch and batch-to-batch control for an emulsion polymerization
process is presented. Case study I involves within-batch control of the PSD. It is shown
how an initially very poor model is improved using batch-to-batch adaptation while
rejecting different types of disturbances using only within-batch control. In case study II
both batch-to-batch and within-batch information is used for the PSD control. Batch-wise

constant disturbances are rejected while improving the quality of the models using batch-
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to-batch updating. Furthermore, a set-point change in the shape of the particle size
distribution is shown to be achieved within a few batches when starting with information
limited to a region around a completely different PSD set-point. These control case

studies gre summarized in Table 4.1.

Table 4.1 PSD Case studies and control strategies*®

Case Control Strategy Disturbance type
1 Within-batch only Batch-wise constant and batch-wise uncorrelated
i1 Batch-to-batch + within-batch Batch-wise constant and set-point change

*In both Case studies, batch-to-batch adaptation is performed.

4.6 Case Study I: On-line inferential control using batch-to
batch adaptation.

In the examples that follow, one off-line measurements, X,y (the average particle
diameter, Dp or the full PSD sampled at 20 min with a 10 min analysis time delay)
together with on-line jacket temperatures (T}), X,, are used to predict a final bimodal PSD.
As in Case II of Chapter 3, two emulsifier shot adjustments (u,;, 1.2) at ;=30 and =150
min (total reaction time is now 380 min) are performed; each one of these emulsifier
shots will be used to control one of the particle generations: a 30 min shot adjustment, u,;
for the first generation while an adjustment to the nominal shot at 150 min, u. > will be
made to control the second generation distribution. In this example it is assumed that a
fast analysis (10 minutes) can be performed or that an on-line PSD or Dp analyser is
available; in the case that it is not possible to obtain such rapid measurement at the 30
min interval, batch-to-batch control can be applied using emulsifier adjustments at the
beginning of the batch (6)=0min, as will be described in section 4.7). In this example we
first consider that the PSD measurement is error free and that the control corrective
actions computed from the algorithm (eq. 4.4) can be perfectly implemented (using, for
example, a precision metering pump). Measurements on T; have a normal random error
with standard deviation (o) of 0.1% (approximately £323 x.001 ~0.3°K), while the noise

for Dp is 6=1% (30nm x0.01 ~.3nm). The effect that measurement errors on the
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intermediate (grab sample) PSD measurements will have on control performance is
addressed in section 4.7.3. The disturbances considered are batch-to-batch variations in
emulsifier surface coverage (a;) and the aqueous phase initiator dissociation rate constant

(kuaq) with standard deviation equal to 2 and 3% respectively.

As shown in Case II of Chapter 3, the effect that the raw material disturbances
have on the end-quality properties (PSD) can be adequately predicted using on-line
process temperature measurements (Xo,7) and an intermediate off-line measurement X,q;
(either Dp or PSD) at a point early in the batch (i.e. a single decision point at =30 min
is used). To improve the prediction, the PSD space was linearized using a square root
transformation and the PLS model (with 5 LV) was extended with a quadratic and an
interaction term in the manipulated variables in order to handle some nonlinearities in the

effects of the manipulated variables.

At =30min §" =[u,, u,, x;’i xzﬁu W) (o) 1B 4.7
By using eq. (4.8) both emulsifier control actions, u.; and u», are determined

simultaneously at time ;=30 min using the MV objective function:

min v -390 Qb -3 4.8)

u.';,1 5uc,2
together with a detuning factor (3).

It should be mentioned that if disturbances were to enter into the system at
different times (other than at time &=0) during the batch or if more quality related
measurements were available at future times (off-line grab samples for PSD or Dp), then
a multi-decision point (8, /=1,2...) control scheme approach may be preferred. Such a

multi-decision point approach is illustrated in Case study II (section 4.7).

In order to evaluate the robustness of the methodology, a Monte Carlo study was

performed in which 40 different data sets were generated and used as a training set to
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obtain 40 slightly different nominal PLS models, each of which was used as the starting
point for the adaptive algorithm (eq. 4.6). The training data set is deliberately chosen to
be rather poor in information content. It consists of observations on 22 batches: 19
subject only to normal random variations in a,and k., and only 3 batches in which some
mid-course correction was performed. The PSDs from a typical training data set of 22
batches used for model building is shown in Figure 4.1a while the corresponding
projections of these PSDs in the two dimensional PCA latent variable space (section 3.5.2,
Chapter 3) for this Y data are shown in Figure 4.1b. Each point in the score plot (Figure
4.1b) corresponds to one of the distributions shown in Figure 4.1a, and summarizes its

important deviation from the average PSD (given by #,=t»=0 in Fig. 4.1b).

The models obtained from these data sets are rather poor since most of the batches
(19) contain little information other than on the correlation structure that exists during the
production of good batches subject to small disturbances. This data on the 19 batches is
used to define the “no-control” region. Only 3 batches (squares in Figure 4.1b) contain

any effects of the MVs.
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Figure 4.1 (a) PSDs of the training data set, solid curve is the target. (b) PSDs projected into
the PCA score space. Ellipse denotes no-contrel region, *’s results from nominal operation
conditions, and 0’s results with 2 movement in the MVs.
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To illustrate the control performance of the adaptive scheme (equations 4.6, 4.7
and 4.8) some results are presented in Figures 4.2 and 4.3. The averaged integral absolute
error (JIAE) is shown in Fig. 4.2 for all the different training data sets when the system is
affected by a constant batch-wise disturbance (bias) in a; (-28%) and kg (+20%). The
IAE is computed as

123 Id
Vs =Y

JAE =12 (4.9)
m

where m= number of Monte Carlo data sets and 7= number of variables arising from the
PSD segmentation (60 in this study). In Figure 4.2, (*) and (o) indicate the controller
IAE performance when a single intermediate off-line Dp or a single PSD measurement,
respectively is used as X,z along with the jacket temperature measurements up to 6,=30
min (X,,) in equation (4.7). It can be observed that better control is obtained when it is
possible to have a full PSD measurement. However, even a simple Dp measurement can
achieve reasonable performance, but at the expense of slower convergence. As an
illustration of the control of the final PSD for one of the training data sets (this result is
typical of the others) the progress of the PSD is shown in Figure 4.3a, while the progress
of control in the reduced principal component score space is shown in Figure 4.3b (each
PSD in Fig. 4.3a is summarized by a point in the score space of Fig. 4.3b). In Figures
4.3a,b it can be seen that control using the poor initial model (denoted by batch run
number 1) only performs slightly better than when no contro! action is taken (indicated as
batch zero (o). However, by using the adaptive control algorithm (equations 4.6, 4.7 and
4.8), after only a few batches (4-10) the control is almost perfect (In this example,
minimum variance tuning factor was kept 8=1 to show how even with a very large model
error, the control algorithm is successful. However, in practice is recommended to use

8<1 to achieve some robustness to model error. Alternatively the LQC in equation (4.3)
could be used.) Convergence of the parameters estimates (g) in the model (eq. 4.7)

corresponding to the linear effects of the two manipulated variables (u.; and u ;) on the
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PSD at the 60 different radii for the PLS model is shown in Figure 4.4 (similar
convergence for all other parameters is also achieved). The emulsifier shots values (u;

and u, ;) are shown in Figure 4.5 for the first 10 batches.
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batch run.
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Figure 4.5 Manipulated variable adjustments (emulsifier shots). Control actions: u.; at 30
min (0) and #,; at 150 mir (c).

The strategy proposed above is purely an on-line scheme (the adaptation is
performed off-line, but the control action uses only within batch information) and
therefore can reject both batch-wise uncorrelated as well as correlated disturbances. In
Figure 4.6, the PSD control, in the reduced dimensional space, is shown for a series of
batches suffering from frequent irregular changes (biases of different magnitudes) in the
raw materials affecting the emulsifier surface coverage potential a,. A single PSD (o)

measurement, taken at 20 min (xq4;), together with jacket temperatures (x,,) are used as
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predictors. In this Figure, it can be seen that the final PSD is controlled into the desired
target region for most of the batches. As the model improves, due to adaptation between
batches, the control is seen to improve. For example, only batches 3,5, 6 and 7 are outside
the control limits, but following the control scheme achieves acceptable control (inside

the “common cause variation” region) for all subsequent batches.
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Figure 4.6 Adaptive PSD control for frequent changes in a; (k4=1.2 k*daq) using an
intermediate PSD measurement. The ellipse denotes the target region.

To illustrate that the control methodology is independent of the number and type
of disturbances affecting the system, as long as these disturbances are detected by either
on-line or off-line measurements, an example involving multiple (batch wise repetitive)
disturbances and model mismatch in several parameters no present in the initial training
data set, (Table 4.2) is shown in Figure 4.7. In this Figure it can be seen that after a few
batches the control is satisfactory and that the model has been adapted to account for

different disturbances as well as for the parameter mismatches.
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Table 4.2 Disturbance magnitudes

Disturbance or parameter mismatch Factor*®
Critical micelle concentration {mol/}) 0.9
Propagation rate constant (/mol-s) 0.95
Particle surface coverage potential (a,, dm®) 0.8
Monomer partitioning aqueous/droplet 0.9
Chain transfer rate constant (//mol-s) 1.05
Diffusivity of monomer radical (cm®/s) 0.95
Agueous termination (/mol-s) 0.95
Buffer concentration (mol/f) 0.9
Aqueous phase initiator dissociation constant (k. s ) 1.2

*Multiplicative factor in nominal conditions.

- Target
* control

Particle population density (mol/l-nm)

r%%lius (n?%)
Figure 4.7 Adaptive PSD control with x,;~PSD. The number indicates the batch run
{Batch 0 is no control (-0-)).

Although on-line (within-batch) control is always desirable, when on-line sensors
are not available or the dynamics of the process are fast (for example the particle
nucleation period in vinyl acetate emulsion polymerization lasts only about 2-3 min),
then only batch-to-batch control is possible for the first particle generation. Therefore, in
the next section a combination of batch-to-batch and inferential on-line control is

proposed for this situation. Batch-to-batch information is used to control the first particle
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generation, while on-line control is applied for the secondary distribution. Since the

initial models are poor, batch-to-batch adaptation is also performed.

4.7 Case study II: Batch-to-batch and on-line inferential
control with batch-to batch adaptation.

In Case study I, two emulsifier adjustments (u.; and u.2) were simultaneously
calculated at time 6;=30 min, and implemented at ;=30 min and &=150 min
respectively to control the overall final PSD. In case study II, the adjustment to the shot
of emulsifier at 150 min (2.,) will be used to control the second generation of particles.
However, for the control of the first generation, the initial emulsifier concentration (i pat
6p=0 min) will now be adjusted based on information from prior batches. This approach

has the advantage that do not need fast analysis measurements in the PSD or Dp.

For this Case study, several alternatives for PLS models are possible. These
alternatives differ from one another in the regressors used in the models. In all
alternatives two PLS models are developed, one to control the first particle generation
and one for the second. For both models, the PSD space was linearized using a square

root transformation.

The first model to be applied at §=0 min to predict the final PSD related to the

first generation of particles (y ) can be based on the initial charge of emulsifier (i, the

deviation from the nominal recipe) and on information from previous batches such as the

first generation of the final PSD of the immediately previous batch (y¥™):

1=l un, v (4.10)

€,

However, if there exists long time delay in measuring the final PSD measurement

from the previous batch (y*™), eq. (4.10) cannot be used, but can be modified to include
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on-line (x®7P) and off-line (x(o’; ¥} measurements and control action »*? from the

previous batch (a quadratic term was also included to account for slight nonlinearities):

AT k-1 kT DT .2 k=182 2
§y =g uls” X x5 Uy (5010 (4.11)

Both of these equations should contain information on disturbances occurring in
the preceding batch. Before a new batch begins, an adjustment to the nominal initial
emulsifier concentration (u.9) is calculated by optimising a LQR or MV objective

function such as:

min(yy g, ~ 91 Wootg Ko s Ko N Qg =91 ot s Xen 5 Xor ) (4.12)
uc,()
A second PLS model is built to relate the emulsifier shot at 150 min (), the on-
line and off-line measurements taken during the current batch (k) and any initial
emulsifier adjustment (u.¢) made in the current batch, with the second generation of the

final PSD (yH ):

5}; = {uc,ﬂ uc,2 X:n X;}' uio]B (413)

The adjustment of the second emulsifier shot (u. ) is computed by using the MV

objective function:

min(yy g — Y1 GeosUens Xy Xop )}TQI (TS P CYT/ AP P SV ) (4.14)

uc.l
Equations (4.12) and (4.14) can be used in conjunction with the minimum
variance detuning factor (8) shown in eq. (4.5). Alternatively, a LQ control objective as

in equation (4.3) could be used.

Both of these models are updated from batch-to-batch as in equation (4.6), and

control actions are calculated only if the predicted PSDs fall outside their no-control
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region in the PCA score space. Clearly any control action (emulsifier adjustment) taken at
6p=0 min is based only on batch-to-batch information, using deviations in the first PSD
or process variable trajectories from the previous batch. At the second decision time
(6,=150 min), only information on the current batch, including the first control action .,
the on-line trajectory data (x,,) and off-line PSD measurements (x,4), i1s sufficient to
summarize the effect of disturbances coming from both prior batches and from the

current batch, and so control based only on within-batch information is performed.

In the following examples, it is assumed that an error free off-line PSD
measurement is taken at 40 min (X,g) and on-line Tj measurements (X,,) (every 10 min up
to 150 min with normal distributed random error 6=0.1%, approximately +323 x.001
~0.3°K) are available. (A study on the effect of noise in PSD measurement is addressed at
the end of this section). To test the sensitivity of the models, 20 slightly different data sets
were generated and used as training sets to obtain different nominal PLS models (eq. 4.11
and 4.13). Each training data set consists of 22 batches: 15 subject only to normal random
variations in a; and kg, and only 7 in which some mid-course corrections or initial

condition change was performed as well.

4.,7.1 Control for constant batch-wise disturbances

To illustrate the performance of the adaptive control scheme (eq. 4.6, 4.12 and
4.14), together with the effect of the minimum variance de-tuning factor (eq. 4.5) some
examples are shown. (In the examples that follow the minimum variance tuning factor is
applied only to the control action arising from equation 4.14, u,,). However, if needed, it
can also be applied to the initial emulsifier concentration adjustment or constraints in the
manipulated variables can be imposed. In this example, the system is affected by a
constant batch-wise disturbance in ay (-28%) and kg, (+20%). The averaged integral
absolute error (IAE) computed for all the different training data sets is shown in Fig. 4.8a

for two values of the de-tuning parameter (§=1 and 6=0.85) as a function of batch number.



71

The control results on the final PSD is shown in Fig. 4.8b for one typical sequence of

batch control runs. In these figures, (x) represents the control performance achieved when

minimum variance control (MVC) action is taken (8=1); (o) when the control action is

detuned (6=0.85) and (-0-) what would happen if no control action is taken (indicated as

batch zero). The average magnitude of the control actions (detuned case, §=0.85) for the

20 datasets is shown in Figure 4.9.
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4.7.2 Control for PSD set-point change

So far the control performance has been illustrated for the case when the system is
affected by model error and disturbances around one target PSD (i.e. regulatory control).
Now we evaluate the performance of the adaptive schemes (eq. 4.6, 4.12 and 4.14) when
it is desired to achieve a completely new bimodal PSD using a model built from
operating data obtained around a very different initial PSD target. Figure 4.10 illustrates
the adaptive scheme for an extreme case. In this Figure the new target PSD is shown
together with the PSDs obtained from applying the minimum variance adaptive algorithm
(for batches 1,2,3 and 10). Also is shown the original target PSD (--) around which the
initial (nominal) model was developed. As can be seen in this Figure, the adaptive MVC

scheme (6=0.6) is able to achieve the desired target within a few batches.
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b8t
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radius {nim)

Figure 4.10 Performance of adaptive algorithm for a new PSD target. (—) Original target,
(e} achieved PSD and (—) desired target. The number indicates the batch ran.
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4.7.3 PSD measurement noise

In practice, the PSD measurement is also affected by measurement noise. This
noise has a correlated structure that depends on the instrument providing the
measurements. Therefore, noise structure identification was performed through PCA as
described in Clarke-Pringle and MacGregor [1998], on repeated laboratory PSD
measurements on one styrene emulsion latex sample. From the identified structure, new
correlated noise was generated and added to the intermediate PSD sampled at 40 min
(Appendix A). The IAE obtained from different magnitudes of noise in the PSD
(structural noise) and Tj (random noise) are shown in Fig. 4.11a for one data set of the
Case study II (batch-wise constant disturbance in a, and kg, and 3=0.85). In Figure 11b
the resulting PSDs are shown for the case in which 6=1.5% for the PSD noise and
0=0.3% for Tj (approximately +323 x.003 ~1°K). It is clear that the performance trends
are similar in all cases, but, as the measurement noises increase, the IAE from batch-to-
batch is more variable and settles around a higher value, and the PSD continues to bounce
around the target. The use of a no-control region that reflects the impact of these
measurement noises would prevent continued control actions from being implemented

based solely on noise once the PSD has attained the final no-control region.
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Figure 4.11 Effect of noise on the performance of the adaptive PSD control. (a) IAE with
different levels of noise. Batch zero is no control. (b) Control results for the final PSD when
the noise in the grab sample PSD, x,5 is 6=1.5%, and Tj 0=0.3% (+1°K using as base
T;=323K). The number indicates the batch run.

4.8 Conclusions

An inferential-adaptive methodology for the control of multivariate quality
properties in semi-batch processes is presented. The methodology can utilize information
both from previous batches and from the current batch to make adjustments to the
nominal manipulated variable values at several time intervals throughout the batch. PLS
latent variable models are able to easily incorporate the highly correlated process
measurements into the model, and to achieve adequate prediction and control of the high
dimensional product quality space. The data requirements for such a strategy are modest
and the models are easily built, making the approach suitable for industrial processes.
The adaptive algorithm was tested for the control of the full particle size distribution of
the final product in an emulsion polymerization process subject to batch-wise constant
and random disturbances, as well as for tracking changes in the PSD set-point. The
disturbances were shown to be easily rejected, and optimal process variable adjustments

necessary to achieve completely new PSD set-points were obtained.



Nomenclature

A = number of principal components

E = residual matrix from PLS

E’ = residual matrix from PCA

F = residual matrix from PLS

m = number of data-sets in Monte Carlo simulations
Q; = weighting matrix in the controlled variables
Q, = suppression movement matrix

Q = loading matrix for Y from PLS

t = score vector from PCA

u = vector of implemented manipulated variables

u, = vector of manipulated variables

Uprev = Vector of past manipulated variables

Ue-furure = VeEctor of future unknown manipulated variables
V= loading matrix from PLS

X = regressor matrix

x = regressor vector that includes on-line and off-line measurements, and control actions
X0 = vector of off-line measurements

Xon = vector of on-line trajectory measurements
Xprior = VEctor containing previous batch information
Y = quality matrix

y = quality variables

y = estimated quality variables

Greek symbols

¥ = matrix of regression coefficients

¢ = matrix of regression coefficients
8 = decision times

8 = de-tuning factor

I = score matrix from PLS

# = matrix of regression coefficients
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Index
a = latent variable index
] =time index

k = batch index

superscripi
" = indicates that the variable is estimated

* = indicates nominal conditions

subscript

sp = set-points
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Chapter 5
Trajectory Control in Batch Reactors

using Latent Variable Models

In this Chapter, a novel inferential strategy for controlling end-product quality
properties by adjusting the complete trajectories of the manipulated variables is presented.
Control through complete trajectory manipulation using empirical models is possible by
controlling the process in the reduce space (scores) of a latent variable model rather than
in the real space of the manipulated variables. Model inversion and trajectory
reconstruction is achieved by exploiting the correlation structure in the manipulated
variable trajectories captured by a Partial Least Squares (PLS) model. The approach is
illustrated with a condensation polymerization example for the production of nylon and
with data gathered from an industrial emulsion polymerization process. The data

requirements for building the model are shown to be modest.

5.1 Introduction

Control of product quality usually requires the on-line adjustment of several
manipulated variable trajectories (MVTs) such as the pressure and temperature
trajectories. Several approaches based on detailed theoretical models have been presented
before (see Chapter 2 for a review). However, many of these strategies are difficult to
implement because they are computationally intensive and/or require substantial model

knowledge.
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Empirical modelling, on the other hand, has the advantage of ease in model
building. Yabuki and MacGregor [1997] and the approaches presented in Chapter 3 and 4
used empirical models for the control of product quality properties, but in these
approaches the control action has been restricted to only a few movements in the
manipulated variables (injection of additional reactants) because in these cases these few
adjustments were enough to reject the disturbances and to achieve the desired end-
qualities. However, if the operation calls for adjustments to MVTs through most of the
duration of the process, another approach needs to be taken. The approach often used in
these cases is to segment the MV Ts into a small number of intervals (e.g. 5-10) and force
the behaviour of the MVTs over the duration of each interval to follow a zero or first
order hold. Control is then accomplished by manipulating the slope or the level (stair-
case parameterisation) at the start of each interval (decision points). Studies involving
this type of parameterisation can be found in Chin et al. [2000] and Russell et al. [1998a]
among others. However, in many batch processes such a stair-case parameterization of
the MVTs, just for convenience of the control engineers, may not be acceptable. The
operation of the batch may require, or historically be based on, smooth MVTs, and
converting them to stair-case approximations might represent a radical departure from
normal practice, with the implication that control schemes based on them will never be
implemented. Moreover, model inversion in the control algorithm would be usually
difficult with this approach (stair case parameterization) because a large number of highly

correlated control actions need to be determined at every decision point.

A solution to this problem comes from recognizing that within the range of
normal process operation all the process variable trajectories (both MVTs and measured
variables) are very highly correlated with one another, both contemporaneously (i.e. at
the same time period) and temporally (over the time history of the batch). This implies
that their behaviour can be represented in a much lower dimensional space using latent
variable models based on PCA or PLS. In this Chapter is shown that by projecting all the
process variable trajectory data into low dimensional latent variable spaces, all control

decisions can be performed on the latent variables, and the entire MVTs for the



79

remainder of the batch then reconstructed from the latent variable models. In this reduced
dimensional space, the data requirements for modelling and for model parameter
estimation are much less demanding, the control computation is easier, and the computed

MVTs are smooth and consistent with past operation of the process.

In spite of these inherent advantages in controlling the MVTs of batch processes
in a latent variable space, no literature has yet addressed this issue. Statistical controllers
for continuous processes (a binary distillation column simulator and the Tennessee
Eastman process) based on Principal Component Analysis (PCA) have been proposed
(Chen and McAvoy [1996], Chen et al. [1998], McAvoy [2002]) which express the
control objective in the score space of a PCA model, but the dimension of the

manipulated variable space is still small since no trajectories need to be computed.

The purpose of this Chapter is to introduce an inferential control strategy that
allows a much finer characterization and smoother reconstruction of optimal manipulated
variable trajectories than those obtained using staircase parameterisation, without
increasing the complexity and number of identification experiments needed for model
building. The outline of the Chapter is as follows: in section 5.2 the methodology is
introduced; in section 5.3, the control approach is illustrated with a condensation
polymerisation case study for the production of nylon and preliminary results are shown

for an industrial emulsion polymerization process.

5.2 Control methodology

5.2.1 Model building

The proposed methodology uses historical data bases and a few complementary
identification experiments for model building. The empirical model is obtained using
Partial Least Squares (PLS). However, other projection methods such as principal

component regression may also be applied.
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The database from which the PLS model is identified is shown in Figure 5.1. It
consists of a (K x M) response matrix Y and an originally three-dimensional array X,
which after unfolding (Nomikos and MacGregor [1995a], Kourti et al. [1995]) would
yield a (K x N) regressor matrix X where K is the number of batches. Each row vector of
Y, denoted as y', contains M quality properties measured at the end of each batch. Each

row vector of X, denoted as x, is composed of:
T T T T
X :[Xon xoﬁ" U, ]

where x&, =[xl x7 ,---x ] is a vector of the trajectories of / on-line process variables

on,2  ®ond

such as temperature and pressure obtained from on-line  sensors;

Xy = [xfﬁ,l Xonf,z --~xfff,,] is the set of any off-line measurements collected occasionally

on r variables during the batch, and u} =[u], ul,---ul ] is a vector of the trajectories of
. . . . T

n manipulated variables. As can be seen in Figure 5.1, X, ; =[X,,15°" %, ]1; and

xfm =Xy 157 s X0 ¢ |5 denotes, respectively, the row vector of observations obtained
from on-line measurements on the j-th variable, and from off-line measurements on the s-
th variable over the course of the batch, while uzm =[u, 1, U, ], denotes the trajectory

of the m-th MV. Here, £, g and w are, respectively, the number of on-line measurements,

off-line analysis and MV segments for the corresponding variable in each category. In the

. 7 . . .
following text x_, and x’; are combined into a single row vector x., =[x, X,,], and

then g7 =§xT uT}.
m <
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Figure 5.1 Unfolding of database for model building.

Full MVTs are obtained through trajectory segmentation as illustrated in Figure
5.2. The MVTs are segmented into a (possibly) large number of intervals (w) and control
decision points (8;, i=1,2,...) are selected. At each decision point (8,), final properties (y)
are predicted and the adjustments to the remaining MVTs (after this decision point) are
computed if the predicted final properties (¥ ) are not within desired specifications.
Notice that the segment size is not necessarily uniform and that decisions points may be
chosen arbitrarily but are assumed to be the same for each batch. (The decision points
will usually be selected using prior process knowledge.) In the limit, control action can be
taken at every segment (i.e. every segment would represent a decision point), but this is

almost never necessary, as a small number is usually adequate.
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Figure 5.2 Fine segmentation of MVTs and decision points.

The data-set used for model building consists of normal operating data as well as
data in which some changes in the manipulated variable trajectories (at each decision
point) has been performed. Linear PLS regression is then performed by projecting the
scaled (unit variance) data (expressed as deviations from their nominal conditions) onto

lower dimensional subspaces:

X=TPT +E

(5.1)
Y=TQ! +F

where the columns of T are values of new latent variables (T = XW ) that capture most
of the variability in the data, P and Q are the loading matrices for X and Y respectively,
and E and F are residual matrices. Non-linear PLS regression can also be used as will be
shown at the end of section 5.3.1 and in Appendix B. However, for simplicity, in the

following discussion linear models are assumed.

The control methodology used in this work consists of two stages: at
predetermined decision times (8, i=1,2,...) an inferential end-quality prediction using on-
line and possible off-line process measurements (x,) and MV Ts (u,.) available up to that
time is performed to determine whether or not the controlled end-qualities (y) fall outside
a pre-determined “no-control” region, and then if needed, control action is computed in

the latent variable space followed by model inversion to obtain the modified MVTs for
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the remainder of the batch that will yield the desired final qualities. This two-stage
procedure is repeated at every decision point (8,) using all available measurements on the
process variable and manipulated variable trajectories available up to that time. The
novelty of the proposed approach is that the control and the model inversion stage is
performed in the reduced dimensional space (latent variable or score space) of a PLS
model rather than in the real space of the MVTs. Due to the high correlation of
measurements and control actions, the true dimensionality of the process, determined by
the score variable space (¢, ¢=1,2,...,4) of the PLS model, is generally much smaller
than the number of manipulated variable points obtained from the MVT segmentation
(u.). Therefore, the control computation performed in the reduced latent variable space (t)
is much simpler than the one performed in the real space. In the following, the control
methodology is described for one control decision point (6;) during the batch. This is
simply repeated at each future decision point. Notice that although the method is
illustrated with an example in which the decision points are defined at fixed clock times
(6;, i=1,2,...), these decision points could easily be based on measured variables other
than time, such as specified values of conversion or energy production. This would be an
advantage on batches that do not have the same duration (due to, for example, seasonal
variations in cooling capacity and varying row material properties), since the process
trajectories can then be aligned using such indicator variables (Kassidas et al. [1998],
Nomikos and MacGregor [1995b], Kourti et al. [1996], Neogi and Schlags [1998]).

5.2.2 Prediction

For on-line end-quality estimation (§ ), when a new batch k is being processed, at

every decision point (8; #=1,2,...) 0< 8; <0 there exists a regressor row vector X'

composed of at least the following variables:

x' = {X‘; Eﬁi i=
(5.2)
T T T T
EX m,measured >0 X m, future ¢,implemented 0 u ¢ future g
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The regressor vector x consists of: all measured variables (Xm,measured) available up
to time §; (0< 0 <0;); unmeasured variables (X future) DOt available at 6;, but that will be
available in the future (8; < 6 <6); implemented control actions e implemented (0< 8 <0j);
and future control actions W guture, (8; < 6 <6 which will be determined through the
control algorithm. Note that at the model building stage, the Xg future and U fuure VECIOrS

are available for each baich.

To estimate whether or not the final quality properties for a new batch will lie
within an acceptable region, the prediction is performed considering W future = Ue,nominal
(i.e. assuming that the remaining MV trajectories will be kept at their nominal conditions)

using the PLS model:

gzresent = [XlTn u:]w = (5 3)
T T T T
[ mi,messured 265 Xm,ﬁmlre ¢, implemented *0; u ¢,nominal ]
~T 2T T
y =t present Q (54)

W and Q are projection matrices obtained from the PLS model building stage. The vector

of scores, Epmem , for the new batch is the projection of the x vector onto the reduced

dimension space of the latent variable model at time 6;, and § is the vector of predicted
end-quality properties. From the above equations, it can be noticed that changes in batch

*0; )

operation detected by measurements of the process variable trajectories (xm casared

or produced by changes in the MVTs (u s6; ) would produce changes in the

¢,implemented
scores (%msm) and therefore in the end-quality properties (i.e. changes in the end-
qualities can be detected through changes in the scores). From equation (5.3), it can also

be noticed that in order to compute épmm and y , it is necessary to have an estimate of

the unknown future measurements (X, sy ) from (8, < 8 <0). These can be imputed
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from the PLS model using efficient missing data algorithms available in the literature
(Nelson et al. [1996], Arteaga and Ferrer [2002]). Missing data imputation based on, for
example, conditional expectation or expectation/maximization (EM) are statistically
efficient estimators for the remaining portions of the batch trajectories, based on the PLS
model developed from data on completed batches (Garcia-Mufioz and MacGregor
[2003]). Alternatively, a multi-model approach in which a different model is identified at
every decision point can be used (Russell et al. [1998a]). The decision of one alternative
over other depends on the number of decision points and/or performance of the missing
data algorithm. In the example shown in this paper a single PLS model is used for
prediction and control, and the estimation of unknown future measurements is performed

using the PLS model and a missing data algorithm.

The “no-control region” can be determined in several ways, such as one that takes
into account the uncertainty of the model for prediction (Yabuki and MacGregor [1997]),
the product specifications, or quality data under normal (“in-control”) operating
conditions (Chapter 4). In this Chapter a simple control region based on product quality
specifications will be used. The issue of whether or not to use a “no-control” region is at

the discretion of the user, and is not essential to the control methodology presented here.

If the quality prediction is outside the “no-control” region, then a control action,

furure 1S needed.

and model inversion to obtain the MV Ts for the remainder of the batch uf
Obtaining the full MVTs consist of two stages: 1) computation of the adjustments
required in the latent variable scores At, followed by 2) model inversion of the PLS
model to obtain the real MVTs for the remainder of the batch. These two stages are

explained in the following sections.

5.2.3 Score adjustment computation

At every decision point (8;), the change in the scores (At) needed to track the

end-qualities closer to their set-points (ysp) can be obtained by solving (5.5):
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m;_;w_,m {§ _ysp)TQE{j;’ —ysp}+A€T@2A€ + /ITZ

At(G;)
st 97 = (At 4T pgen) Q7
A ) (5.5)
4 (dt+1t )
2 _ 3 present / a

T*=3—5
a=1 Sa

At SAESAL L

where AtT =t - %;mnt , Q1 is a diagonal weighting matrix, Q; is a movement

suppression matrix, T? is the Hotelling’s statistic, s? is the variance of the score f,, and A

is a weighting factor. Hard constrains in the adjustment to the scores (At ;, SAt <At )

are problem dependent and may or not need to be included. Soft constraints on At are
contained in the quadratic objective function. The soft constraint on the score magnitudes
through, Hotelling’s T? statistic, is intended to constrain the solution in the region where

the model is valid.

Equation (5.5) is a quadratic programming problem that can be restated as:

min — AtTHAt +£7 At (5.6)
=1

AL(6;)

H=0Q'Q,Q+Q; +Q;

ﬁ.T :(Qgpresem —ysp)TQEQ'*'gT Q3

present

where (5.7)
2 =o ]

At SAtS AL,
In the case of no hard constraints, the solution is easily obtained as:

AtT = —fTH! (5.8)
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The aim of eq. (5.8) is to obtain the change in the scores ( At) that would drive the
final quality variables closer to their desired set-points (ys). Due to the movement
suppression matrix (Q,) and/or A, the computed ( At) may not drive the process all the

way to their set-points.

Choosing ;=0 and A=0, gives the minimum variance controller, which, at each

decision point would force the predicted qualities (¥ ) to be equal to their set-points

(¥ = ¥ )atthe end of the batch:

Elél_} ();—ysp)TQl(&’"ysp)
1o (5.9)
st 37 = (At +Eppen)’ Q7

>

Three situations arise (for the unconstrained case) in finding a solution to (5.9)

depending on the statistical dimensions of ysp and At (Q,=I):
1. dim (At) = dim (Ysp)
In this situation a unique solution exists that can be directly obtained from (5.9):

AtT =y Q1) et (5.10)

2. dim (At) < dim (ysp)
In this case a least square solution is needed:

AT = (Y5 ~ threen: QQQ Q) (5.11)
3. dim (At) > dim (yep)

This case is a common situation. Although the number of variables to be used in

the control algorithm has been reduced to 4 latent variables, a projection from a lower to
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higher space is still required. In this situation eq. (5.9) has an infinite number of solutions.

Therefore, a natural choice is to select the At(8,)having the minimum norm-2:

min At” At

[

At(6,) (5.12)
st yspT =(At+ gpmm )TQT

and whose solution can be easily obtained as:

M=y, -t Q")QQ")'Q (5.13)

present

A detuning factor (0<6<1) may be included for this reduced space controller:

Ml =8yr -7 QT}QQ")'Q (5.14)

present
A At vector is computed at every decision point (6;).

Equations 5.10, 5.11 and 5.13 are consistent with the PLS model inversion results
found by Jaeckle and MacGregor [1998].

Notice that in this last situation (eq. (5.14)), the matrix QQ" has dimension m x m
(m being the number of quality properties). Therefore, in order to avoid ill-conditioned
matrix inversion, the quality properties should not be highly correlated. This poses no
problem since one can always perform a PCA on the Y quality matrix to obtain a set of
orthogonal variables (t) that can be used as new controlled variables. Alternatively, if it
is decided to retain an independent set of physical y variables, selective PCA (Jaeckle and
MacGregor [1998]) can be performed on the Y matrix to determine that subset of quality

variables which best defines the Y space.
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5.2.4 Inversion of PLS model to obtain the

Once the low dimensional (4 x I) vector At is computed via one of the control

r

algorithms described in the last section, it remains to reconstruct from th =AtT + %prem o

estimates for the high dimensional trajectories for the future process variables (X, fure )

and for the future manipulated variables (u gy ) Over the remainder of the batch. These

future trajectories can be computed from the PLS model (5.1) in such a way that their
covariance structure is consistent with past operation. If there were no restrictions on the

trajectories, such as might be the case for a control action at 8=0, then the model for the
X-space can be used directly to compute the x vector trajectory (x* =[x, u_]) for the

entire batch (Jaeckle and MacGregor [1998]) as:
x =t"PT (5.15)

However for control intervals at times 0, >0 the x vector trajectory
(x" zixz.,measured(o:e,) “;l:implemented(o:ﬂ,-) X::,fumre(ﬂize,) ucT,future(Oi:G,)] ) is composed of measured
process variables ( X messureaeo,) ) fOr the interval 0 < 8 <, and for the already
implemented manipulated variables ( uJypiementcans,) ) that must be respected when

computing the trajectories for the remainder of the batch (6; < 6 <0y).

T 5, T T
D enote S| —Exm,measured(ﬂ:ei) g'ac,impiememet.l(():(ii

y] the known trajectories over the time
interval (0:0,) that must be respected, X; =[Xg e 6,) Yesutureo,6,)] thE Temaining

trajectories to be computed, and P} and P, their corresponding loading matrices.

At times 8,>0, if x is directly reconstructed using (5.15) as x” =t"P” then

[x; x;1=[t"P] ¢'P)] (5.16)
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However, the computed t" P, will generally not be equal to the actually observed

T

trajectories at time 0; X =[X} ncanurcaon,) Reimprementcagny ] - Lnerefore, simply selecting

xJ =t"P] would not be correct as it does not account for what has actually been

observed for x| in the first part of batch.

Therefore, assume that the remaining trajectories (future manipulated variables

and measurements) are:
x; =(tT +a")P; (5.17)

where o"PJ is an adjustment to x, that accounts for the effects of discrepancy between
t"P7 and x| during the first part of the batch. (Selection of such a relationship will also

ensure that the correlation structure of the PLS model is kept.) However, we still wish to
achieve the computed value in score space t that will satisfy the overall PLS model.

Therefore, we must have:

T =[x{ xgl[“zl } =x{ W, +x, W, (5.18)
2

then W, =t —x{ W, (5.19)
Substituting x; =(t" +a")P; in (5.19):

T +a"PIW, =tT —x[ W,
Therefore

¢ +aDy =" —xTW)HE; W) (5.20)
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And by substituting (5.20) in (5.17) the remaining MVTs to be implemented are
obtained (6; <6 <0)):

x; =(t" —x{ W, )P, W,)"'P; (5.21)

It is easy shown that this equation reduces to the relationship in (5.15) when 6; =0

where there are no existing trajectory measurements or manipulated variables. The (4 x 4)
matrix P W, is nearly always well conditioned, and so there is no problem with

performing the inversion (Appendix B). This inferential control algorithm is then

repeated at every decision point (6;) until completion of the batch.

5.3 Case studies

5.3.1 Case study 1: Condensation polymerization

In the batch condensation polymerisation of nylon 6,6 the end product properties
are mainly affected by disturbances in the water content of the feed. In plant operation,
feed water content disturbances occur because a single evaporator usually feeds several
reactors (Russell et al. [1998a]). The non-linear mechanistic model of nylon 6-6 batch
polymerization used in this work for data generation and model performance evaluation
was developed by Russell et al. [1998b]. The complete description of the model and

model parameters can be found in the original publication.

This system was studied by Russell et al. [1998a,b] where several conirol
strategies including conventional control (PID and gain scheduled PID), non-linear model
based control and empirical control based on linear state-space models were evaluated. In
the data-based approach (Russell et al. [1998a]) control of the system was achieved by
reactor and jacket pressure manipulation. These two manipulated variables were
segmented and characterized by slope and level (stair-case parameterization) leading to

10 control variables. A total of 7 intervals (decision points) were used. An empirical state
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space model was identified from 69 batches arising from an experimental design in the 10
manipulated variables. Several differences between the control strategy proposed here
and the one used by Russell et al. [1998a] can be noticed, the most important being: (7)
the control is computed in the reduce latent variable space rather than in the real space of
the MVTs, (ii) only 2 decision points are needed to achieve good control; thereby
simplifying the implementation and decreasing the number of identification experiments

needed to build a model, and (7i7) a much finer MVT reconstruction is achieved.

Control obiectives and trajectory segmentation.

The control objective is to maintain the end-amine concentration (NH) and the
number average molecular weight (MWN) at their set-points to produce nylon 6,6 when
the system is affected by changes in the initial water content (W). The MVTs used to
control the end-qualities are the jacket and reactor pressure trajectories. These
manipulated variable trajectories are finely segmented every 5 min. starting at 35 min.
from the beginning of the reaction until 30 min. before the completion of the batch (total
reaction time 200 min), giving trajectories defined at 40 discrete time points in the
interval (35< 6 <170). The trajectories for the first 35min and the last 30min were fixed
for all batches. Two control decision points at 35 and 75 min. were found to be sufficient
for good control for the conditions used in this example. In order to predict NH, and
MWN, on-line measurements of the reactor temperature (Tr) and venting (v) are

considered available every two minutes.

Data generation

A PLS model with 5 latent variables (determined by cross-validation) was built
from a data set consisting of 45 batches in which the initial water content (W) was
randomly varied. In 30 of the batches some movement in the MVT (at the two decision
points) was performed (some of these batches would normally be available from

historical data). The effect that the number batches used for identification of the PLS
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model has on control performance is discussed at the end of this section and in Appendix
B.

Prediction

The first step is to evaluate the performance of the PLS model prediction with
different missing data algorithms at each decision point. Several missing data algorithms
were tested and as an illustration some results are shown in Figure 5.3 and in Figure 5.4.
The predicted trajectories, made using the available data up to the first decision point
(6/~35min), for venting (v) and reactor temperature (Tr) when the process is affected by a
disturbance of —10% (mass) in the initial water content are shown in Figures 5.3. Each
predicted trajectory is obt;dned using: (-x-) expectation-maximisation (EM), (-O-)
iterative-imputation (IPM), (---) single component projection (SCP), and (-0-) projection
to the plane using PLS (PTP) method (Arteaga and Ferrer [2002], Garcia-Mufioz and
MacGregor [2003]). As judged from this example and many similar simulations, all the
missing data algorithms provide reasonable estimates of the trajectories, except perhaps
the SCP method. In Figure 5.4 predictions of the final qualities made at the first decision
point (6/=35min) using the IMP approach are shown when the initial water content
randomly varies for 15 batches in the range of £10% (mass). As can be seen in Figure 5.4,
the predicted final quality properties (at 8=200min) (o) made using the PLS model at the

first decision point (6;/=35min) are in good agreement with the observed values (o).
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Figure 5.3 PLS model predictions of the MVTs made at the first decision point (35min)
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Figure 5.4 Observed (o) and predicted (0) end-quality properties using PLS model.

Slight improvement in the predictions at high MWN and NH; values can be
obtained with a non-linear quadratic PLS model (Appendix B). However, the linear PLS
model is very good in the target region (mid-values) and adequate in the extremes.

Moreover, the control performance obtained using linear PLS model and that obtained
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using a non-linear quadratic PLS model, for the conditions used in this example, were

found to be quite similar (Appendix B).

Estimation and model prediction assessment

One of the advantages of using PLS models for control it is that it provides a
powerful way to asses the validity of the PLS model for trajectory estimation of the
missing measurements, and for quality prediction, and it enables one to detect sensor
failures, etc. Therefore, prior to computing new control trajectories, the square prediction
error (SPE) of the new vector of measurements should be computed at each decision
point. This SPE provides a measure of any inconsistency between the measurements and
imputed missing values for the new batch and the behavior of the set of measurements
used to develop the PLS model (Nomikos and MacGregor [1995b]). If the SPE is larger
that a statistically determined limit (Nomikos and MacGregor [1994]), the quality
prediction and the control computation from the PLS model should be considered to be
unreliable. In this situation, it might be preferable not to recompute the MVTs at the

current decision point, but simply continue to apply those from the last decision point.

Regulatory Control

At each decision time (8;) a prediction of the final quality is made. If it is
determined that control action is needed any of the control algorithms given by equations
(5.5) through (5.14) can be used to compute a correction, At, in the latent variable score
space, and then the new manipulated variable trajectories for the remainder of the batch
can be reconstructed from equation (5.21). The performance of the linear minimum
variance controller algorithm (equation (5.14) and (5.21) with 8=1.0) is shown in Figure
5.5. The final quality properties of the 15 batches shown in Figure 5.4 that are affected by
disturbances in the initial water concentration are shown with and without control. An
“in-control” region (dotted lines) was defined considering that the final product is
acceptable if their predicted values lie in the specified ranges 48<NHp< 50.6 and
13463<MWN<13590. In Figure 5.5, the o’s show what happens if no control action is
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taken and the o’s show the end qualities obtained after contro! is performed. As can be
seen in this Figure, the proposed control scheme corrects all batches and brings the final
quality into the acceptable region. Figure 5.6 shows the jacket and reactor pressure MV Ts,
for runs 1 and 15 together with their nominal conditions. In this Figure, (—) represents
the MVTs computed to reject a disturbance of —10% in the initial mass of water, and (- -
-} those needed to reject a disturbance of +10%. Their nominal conditions of the MVTs
are indicated with (---). Note that the controller computes new MVTs that are very
smooth and consistent with their behavior during past operations. This consistency with
past operation is, of course, forced to be true through use of the PLS model for MVT

reconstruction (eq. 5.17 and 5.21).
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disturbance is —10% mass in W, and (- - -) when disturbance is +10% in W.

In this section the performance of the control algorithm is shown in the case that a

set-point change (or new product design) is desired within the region of validity of the

PLS model. No disturbances in W are included in this example, but, if present, the on-

line control algorithm will easily reject them as illustrated before. The desired quality

properties (0) and those obtained by using eq. (5.14) and (5.21) with 6=1 (o) are shown

in Figure 5.7 for three different set-points. In Figure 5.8 the MVTs needed to achieve

such set-points are shown. It can be seen that the performance of the algorithm in

achieving the desired final quality set-points is very good (Fig. 5.7), and that the MVTs

computed by the controller are smooth and very consistent with the shape of the

trajectories from past operation.



98

Set-Pcint Change Resulls

T

48}

46 L ]

End Amine Concentration (NH2)
dno

3
2 Y o .

$ H 1 L {

1 | 1 i J
128 13 131 132 133 134 135 136 137 138 139
Number Average Molecular Weight (MVWN) x 10"

Figure 5.7 Set-point change. (o) Desired, (1) achived qualities using the control algorithm
(eq. (5.14) and (5.21)) and (*) Nominal operating point.

Manipulated Variable Trajectory . Manipulated Variable Trajectory
a5l T : : : : : . . - . ;
BN 1 .
AW 45
2001 J
2 Z w
£ 150 e
8 a’ 35
- £
g 100 1 s
q G 30+
o
© 5
501
25
0 . . . . . .
0 25 50 75 100 125 150 WS 200 20 . ; ‘ . : : :
Tie (mi [} 25 50 75 100 125 150 175 200
ime (min) Time (min)

Figure 5.8 Manipulated variable trajectories for set point change. The number indicates the
set-point change shown in Figure 5.7, and (- - -) the nominal MVT.
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Discussion

Several practical issues may affect (to some extent) the performance of the
proposed control algorithm. Some of them are briefly discussed here and more details are

given in Appendix B.

The number of latent variables is generally decided by cross-validation methods

at the model building stage. It was observed that too large a number of components (with
respect to that obtained by cross-validation) may promote an ill-conditioned P, W,

inversion at the second decision point. This problem can be easily overcome by using a
pseudo-inverse procedure based on singular value decomposition as shown in Appendix
B. For the simulation system studied no significant degradation in performance is

obtained by using a different number of PLS components.

The influence of using different missing data imputation algorithms was also
studied. All the algorithms give adequate control performance. Those based on EM, IMP
and PTP perform slightly better than the one in which SCP was used.

In the previous examples, a total of 45 batches (30 with a movement in the MV Ts
at the two decision points) were used for model identification. However, adequate control
performance (all test batches falling inside the “in-control” region of Figure 5.5) was
achieved using as few as 15 batches (10 in which some experiment in the MVTs was
performed). This illustrates that the data requirements for PLS model building are modest.
However, if the model has been identified using very limited or uninformative batch data-
sets (as those arising from only historical data), batch-to-batch model parameter updating
can be performed at the end of each new completed batch to improve the quality of the
model parameter estimates, prediction and control for the upcoming batch (Flores-

Cerrillo and MacGregor [2003]). Details are given in Appendix B.
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To assess the impact of measurement noise on the performance of the algorithm,
different levels of random noise were added to the on-line measurements of reactor
temperature (T;) and venting (v). It was found that adequate control performance (test
batches falling inside the “in-control” region of Figure 5.5) is achieved with noise levels
up to 35% in temperature and venting rate, respectively. The noise level here represents
the percentage of the noise variance over the true variations of the temperature and
venting rate changes observed in the training set. 35% noise level approximately
represents variations in temperature of +2°K and venting rate of +42g/s (1 standard
deviation, see Appendix B for details). For larger levels of noise (50%, for example) the
control performance is slightly degraded because the random error added to the
measurements becomes quite large when compared with the true variations in the MVs.
A no-control region that reflects the impact of these measurement noises may be obtained
by propagating such measurement errors with the PLS model as suggested in Yabuki and
MacGregor [1997]. This would prevent control actions from being implemented based

solely on the uncertainty arising from noise.

The control methodology outlined in section 5.2 can be easily extended to cases in
which a non-linear PLS model and control is needed. This is achieved by simply
modifying eq. (5.12) (case 3, dim (At) > dim (ysp)) to take into account the non-linear
nature of the PLS algorithm. For example, in the case of a quadratic PLS model, eq. (5.12)

can be restated as:
min At? At
[S
Ae) (5.22)
st yspT =uTQT

where uT = .461 + ﬁZ(AE +§present)T + i33 (AgT +%gresent)2‘

This equation can be easily solved for At using quadratic programming (or

nonlinear least squares in the case of no constraints), and the MVTs can be reconstructed
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in the same way as described in section 5.2.4. From the simulation study, the control
performance of the quadratic PLS model is quite similar to that obtained using the linear
PLS model (see Appendix B). This is not surprising because, in the region under study,
the process is only slightly non-linear. However, if larger disturbances affect the process

a non-linear PLS approach may be better suited.

Finally, a preliminary method to handle hard constraints in MVT is proposed in

Appendix B.

5.3.2 Case study 2: Feasibility study on industrial data for an emulsion

polymerisation process

Data

In this feasibility case study, industrial data for an emulsion polymerisation
processes is used. The original data-set consists of 53 batches obtained from an
experimental design in which the initial conditions and/or process variable trajectories
were altered. No intermediate quality measurements were available during the reaction.
However, final product physical properties (FP) and final product quality properties (FQ)
are available at the end-of the process for most of the batches. Figure 5.9a shows the
actual process variable trajectories that comprise the training data set (X), while Figure
5.9b shows the 6 quality properties (Y matrix), corresponding to these batches. In Figure
5.9a, it can be noticed that i) the process trajectories were aligned by using an indicator
variable, the reaction extent (every interval represents a 0.5% increase in the reaction
extent) since every batch had a different end reaction time, and that ji) some of the
trajectories contain a noticeable level of noise. It was decided not to perform any pre-
treatment such as filtering or smoothing on the process trajectories in order to test the
performance of the prediction and control algorithm under this situation. It can also be
seen in Fig 5.9b that FP-1 and FP-2 are highly correlated therefore, to avoid an ill

condition matrix inversion in the control computation stage, FP-2 was removed and only
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5 end quality properties controlled. Removing FP-2 poses no problem since by
controlling FP-1 and the other quality variables we are controlling FP-2 indirectly.
Alternatively, we can perform PCA on the quality property matrix (Y) and control the
corresponding principal components instead of the actual properties. For poetry reasons
no further details can be given regarding the nature of the process frajectories, initial

conditions or product specifications.
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Figure 5.9 (a) Original process variable trajectories. Every interval represents 0.5% of
reaction extent; (b) original quality properties

From the original data, 49 batches were used as a training data-set, while 4
batches were used as testing set. These four batches were selected to span different
regions of the space far from the origin as can be seen in Figure 5.10. In this Figure the
projection of all batches in the first two PLS dimensions (t;-t,) is shown. Batches 6,12,16
and 46 were removed from the dataset and used as test data. The 8 process variable
trajectories are manipulated variables and each one of them is segmented in 200 intervals
(every interval represents 0.5% of reaction extent). Therefore the data matrix used for
model building consists of segmented MVTs [X] and initial conditions [Z] (regressor
matrices), and the matrix of 5 physical and quality properties [Y]. The identified PLS
model consists of 5 latent variables (obtained by cross-validation) that fits 76.8% of the X
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space and 69.9% of the Y space. Based on cross-validation, 51.7% of the Y space can be
predicted.
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Figure 5.10 t;- t, PLS space for the batches used in the training data-set. Batches 6,12,16,
and 46 were removed from the original data set and used as test data.

Control objectives

The batch data in this study was the result of open-loop batch runs collected under
different initial conditions and different MV Ts. There was no possibility of implementing
the resulting controller on the batches. Therefore, this data is simply used to test the
feasibility of the prediction and control algorithms. One of the existing batch runs is
taken as the nominal conditions and the final physical and quality variables (y) measured
from it selected as the targets (set-points). Others batch runs with different initial
conditions and different MVTs are then selected as initial disturbance conditions for a
new batch. If no corrective action is taken to adjust the MV Ts then the batch will follow
the actual MV Ts implemented throughout its duration, and the final quality (y) will be
the measured values for that batch. Control is to be applied after a batch has reached

10% of completion (based on reaction extent).

Direct evaluation of the controller is not possible, but indirect validation can be
obtained by comparing how close the recomputed MV Ts follow the nominal MVTs from
10% of reaction extent until the end of the batch. Since the first 10% of the history of the
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new batch is different from the nominal MVTs, then to achieve the desired final qualities
(qualities of the nominal batch), one should not expect the recomputed MVTs to exactly
follow those for the nominal batch, but they should be close to them. Notice that if the
control algorithm is actually implemented, it would pose no problem to re-compute the

MVTs at several decision points and not only at one as show here.

Prediction

To evaluate the performance of the PLS missing data algorithms, the total percent
relative RMSE for all the qualities properties (5 in this study) is shown in Table 5.1 over
the K=4 batches that compose the testing data set:

2
5 K o
%RMSE = %z%\/z[uj x100

-1 k=1 Yix

where yy, is the i-th observed end-quality property for batch kand p,, its predicted value.

As an illustration of the missing measurement reconstruction (at 10% of reaction
extent using the EM approach), Figure 5.11 is shown for batch 12, where it can be

noticed that the trajectory estimation is satisfactory in spite of the high level of noise.

Table 5.1 Performance of missing data algorithms for prediction: total percent relative
RMSE for all 5§ end quality properties.

Algorithm EM IMP SCP PTP-PLS
%RMSE 7.9 7.2 9.8 6.8
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Figure 5.11 Performance of the missing data algorithm for reconmstruction of process
measurements. The prediction is performed at 10% of reaction extent (every interval
represents 0.5% of reaction extent). () estimated trajectory using the EM algorithm and
(—) observed trajectories (scaled units).

Control

As an illustration of the control performance using the proposed scheme (equation
5.10 and 5.21 with 6=1.0), results for one testing batch (batch 12) are shown. Figure 5.12
shows the measured final values of the y variables (o) for the batch when no control was
taken, their predicted values at 10% of completion if no control were taken (*), the target
values (), and the expected quality properties obtained if control action were performed
(¥). Since a2 minimum variance strategy was used (eq. 5.10 and 5.21), the values of the
expected end quality properties resulting from the control algorithm will match their
targets (o), (since these values were computed using simply the PLS model with the
imputed MVT adjustments obtained from model inversion using the same PLS model.) A

better way to evaluate the reasonableness of the control is to inspect the MVTs obtained
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from the control algorithm. Figure 5.13 shows nominal trajectories (), the current

trajectories that would give “out-of-control” qualities (---) and the MVTs obtained from
the control algorithm (—) (at 10% of reaction extent) that would drive the predicted

physical and quality properties to the desired targets. In this Figure, notice that MVTs
obtained from the control algorithm after 10% of completion are quite close to their
nominal conditions and exhibit the desired shapes. It seems reasonable to assume that if
these new trajectories were to be implemented, they would drive the process closer to the
desired end-quality values, simply because the new MVTs are much closer to the nominal
conditions than those when no control is performed. Note that they should not match the
nominal trajectories exactly because they must also compensate for the first 10% of the
batch being run at the wrong conditions. Furthermore, since the trajectories are highly
correlated with one another, there are various trade-offs among the MVTs that might give
quite similar final quality values. In summary, although the control could not actually be
tested, these results indicate that the controller is behaving very much as one might

expect and are providing the incentive for its implementation.
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Figure 5.12 Control results (control action taken at 10% of completion of the batch). Target
(), predicted qualities (*), observed values if no control action is taken (o) and expected
quality properties if control action were performed (k).
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Figure 5.13 Manipulated variable trajectories (computed at 10% of reaction extent from the
beginning of the process). () nominal conditions; (-—) current trajectories that would give
“out-of-control” qualities and (—) MVTs obtained from the control algorithm (equation
5.10 and 5.21, with 5=1.0).

5.4 Conclusions

A novel control strategy for final product quality control in batch and semi-batch
processes is proposed that recomputes, on-line, the entire remaining trajectories for the
MVs at several decision points. In spite of the fact that the resulting controller solves for
the high dimensional manipulated variable trajectories (MVTs), the control algorithm
involves solving for only a small number of latent variables in the reduced dimensional
space of a PLS model. The high dimensional manipulated variable trajectories are then
solved by inverting the PLS model. The only requirement of this approach (as with any
other control algorithm that recomputes the MV Ts) is that the lower level control scheme
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can accept and track the computed modified trajectories. The strategy uses empirical PLS
models identified from historical data and a few complementary experiments. The
algorithm is illustrated using a simulated condensation polymerisation process and data
obtained from an industrial emulsion polymerisation setting. Since smooth and
continuous MV trajectories can be obtained, the approach seems well suited for use in
processes and mechanical systems (robotics) where such smooth changes in the MVs are

desirable.

Nomenclature

A = number of principal components
E = residual matrix
/= number of on-line measurements for the j-th variable
F = residual matrix
g = number of off-line analysis for the s-th variable
K= number of batches
! = number of trajectories for the on-line variables
M= number of quality properties
n = number of trajectories for the manipulated variables
P = loading matrix
p" = loading vector
Q; = weighting matrix in the controlled scores
Q, = score suppression movement matrix
Q" = projection matrix from PLS
r = number of the off-line variables
? = variance of a score
T = score matrix
£ = score vector
= yector of estimated scores

t

present

u. = vector of manipulated variables trajectories



Ue, cuture = vector of future control actions (6; <6<0))

Ue, implemented = Vector of implemented control actions (0<8<0))

W = projection matrix
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x = regressor vector that includes on-line and off-line measurements, and control actions

X = unfolded regressor matrix of process trajectories (MVTs and measurements)

X = three dimensional array

Xm = vector of total measurements (on-line and off-line)
Xm, future = Vector of unmeasured variables at time 6, (6,<6<6;)

Xm, measured = vector of measured variables at time 6, (0<6<0;)

Xofr = vector of off-line measurements

Xon = vector of on-line trajectory measurements

Y = matrix of quality properties
y = vector of quality variables

y = vector of estimated quality variables

Greek symbols

A = weighting factor

0 = time / decision time

8 = de-tuning factor

o = proportionality vector

B = coefficients for the PLS inner relation

Index

a = latent variable index
i = time index

J,s,m = variable index

k = batch index

f= final batch time
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Chapter 6
Multivariate Analysis and Monitoring
of Batch Processes using Batch-to-

Batch Information

Multiway principal component analysis (MPCA) and multiway partial least
squares (MPLS) are well-established methods for the analysis of historical data from
batch processes, and for monitoring the progress of new batches. In this Chapter, an
extension of the multi-block MPCA/MPLS approach is introduced to explicitly
incorporate batch-to-batch trajectory information while keeping all the advantages and
monitoring statistics of the traditional MPCA/MPLS. It is shown that the advantages of
using information on prior batches for analysis and monitoring is often small, but it can
be useful for detecting problems when monitoring new batches in the early stages of their
operation. The approach is illustrated using condensation polymerization and emulsion

polymerization systems as examples.

6.1 Introduction

Multi-way PCA and PLS for the analysis, monitoring and prediction of final
product quality in batch processes were first introduced by Nomikos and MacGregor
[1992, 1994, 1995a, 1995b]. They illustrated the detection of abnormal batches using

several criteria such as the Q statistic (also known as square prediction error (SPE) or
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distance to the model in the X space (DMODX)), the instantaneous SPE (for on-line
monitoring), and the PCA or PLS score plots or equivalently Hotelling’s T statistic.
Kourti et al. [1995, 1996] used multi-block methods (MBPCA/MBPLS) to incorporate
different initial conditions, modes of operation, and prior processing conditions into the
analysis and monitoring of batch processes. In this Chapter is proposed a variation of
these multi-block methods to incorporate more efficiently previous batch-to-batch

information.

Recently, Dorsey and Lee [2001] proposed a monitoring framework based on
state-space models to take into account batch-to-batch variability more explicitly than the
MPCA and MPLS methods. The approach first uses MPCA to exiract the time and
covariance structure of the data within batches, and then uses sub-space identification to
obtain a state-space model for these principal components. However, the proposed
methodology is useful mainly for detecting batch-to-batch variations only in the score
space obtained from the MPCA model. By modeling only the score space (obtained by
MPCA), the identified state-space model accounts only for the batch-to-batch variation in
the score space of the normal (in-control) runs. Since the PCA score space is completely
orthogonal to the SPE space of the MPCA model, then any charts based on the model
states or innovations will not be able to detect faults that are detected primarily in the
SPE space by the MSPC methods (e.g. faults that introduce totally new latent variables or
PCs as opposed to those that simply induce larger variations in the existing PCs). Faults
that affect both the score and SPE space of the MPCA model might be detected if their
effect on the score space is strong enough. The shortcoming of their proposed monitoring
methodology results from the fact that all information on the space orthogonal to the PCA
score space (i.e. the SPE space) is lost. Furthermore, subspace methods for system
identification usually require more training batches to build the state space models than is

normally required to establish multivariate PCA/PLS models.

This Chapter introduces a modified MPCA/MPLS procedure that, besides
retaining all the advantages of the MPCA/MPLS methods for batch analysis and on-line



112

monitoring also enables one to incorporate a summary of prior batch trajectories and
performance. The approach and potential benefits to be gained from it are illustrated
based on simulations of two batch polymerizations processes: the condensation

polymerization of nylon and the emulsion polymerization of styrene.

6.2 MPCA and MPLS monitoring using batch-to-batch
information

6.2.1 Preliminaries

An important question concerns “when data from prior batches would be useful
for the analysis and monitoring of future batch processes?” Clearly, a minimum
requirement is that they contain some information on effects that will have an influence
on the performance of the future batches. This implies that there must exist some
autocorrelation in important performance variables from batch-to-batch. Such a situation
would arise if a common source of raw materials is being used for successive batches and
the materials from this source have some characteristics (e.g. impurity concentrations,
surface chemistry properties, etc.), which change slowly with time. Then one could
expect the performance of future batches to be related to that of recent past batches. If no
such batch-to-batch carry-over effect due to common disturbances is present, then the
value of incorporating prior batch information into MPCA or MPLS analysis or

monitoring schemes would be negligible.
6.2.2 Incorporation of batch-to-batch information into MPCA/MPLS

To capture information in prior batches, one could directly use the final quality
measurement matrix (Y) taken on the product from previous batches. These data can be
easily incorporated into a matrix Z and then existing multi-block approaches used for the
analysis and monitoring of batch processes (Kourti et al. [1995]). However, this may not
always be possible. The product quality data for the last batch *D) may not be
available from the quality control laboratory before the next batch is started. Furthermore,

not all the product quality data are measured for every batch, and even those that are
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measured may have considerable measurement error and may not be sufficient to capture
all the relevant information from past batches. Therefore, in this Chapter is proposed to

use the final PCA or PLS scores values (¢,,¢,..2,) from prior batches to summarize the

histories of prior batches. The idea is then to include these summarizing scores from prior
batches into a matrix Z. A multi-block MPCA or MPLS (MBPCA/MBPLS) is then used
to combine this batch-to-batch information (Z matrix) with the trajectory data (X) for the
current batches (k). The structure of the resulting data matrices is illustrated in Figure 6.1.

Each row, x; , of the X matrix consists of measurements on all the process variables at all

time intervals for the k™ batch, and the corresponding row z[ of the Z matrix contains

score values for each of the past r batches, that is

ZE - [tik—l) , tl(k—2) . ’tgk——r) ;t;k—l) , t;k—2) . t;k—r) . _;tflk—l) , tik—-Z) . ’tik—r)] (61)

Once the multi-block model has been built, this lagging of the prior batch scores
in the Z matrix poses no problem, and the analysis and monitoring is easily accomplished
with existing multi-block MPCA/MPLS approaches (Kourti et al. [1995]). However, a
problem arises at the model building stage, when, in order to build the MBPCA or
MBPLS model, one needs complete data for both the Z and X matrices for all batches in
the training data. But the score values from prior batches needed to form the Z matrix
will not be available until after the model has been built. Faced with this dilemma, the

following iterative training approach to build the model is proposed.

1) An initial MPCA or MPLS is carried out on the X matrix. The scores for each
batch from this model are then used to provide initial estimates of the scores for prior

batches to be included in the Z matrix, as illustrated in Figure 6.1.

2) The Z matrix is then weighted, if desired, relative to the X matrix (e.g. block
scaling) and an augmented [Z X] matrix is used to perform another PCA or PLS to obtain
a complete model incorporating both the prior batch information and the current batch

data. (If one does not wish to discard the first » batches, then a missing data algorithm
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(e.g. Nelson et al. [1996]) can be used to account for the unknown prior batch

information arising from the lagging of the first » batches.)

3) Repeat (2) until convergence of the scores (T) is achieved:

(Z;~Zy) =2 | <&, where i is the iteration number. In the examples considered in

this work, convergence of the scores was achieved using direct-substitution in a few

iterations.

4) At convergence, the final models that can be used for monitoring, analysis and

prediction are given by:

For PCA:
[ZX]=TVT +E" (6.2)
For linear PLS:
[ZX]=TP' +E
(6.3)
Y=TQT +F

Each low dimensional (1 x @) row of the (k x a) score matrices I' or T
(I =[Z X]V and T =[Z X]W ) provides all the statistically significant information on the
relationships among the prior batch histories (rows of Z) and the time histories of all the
variables in the current batch (rows of X). Separate loadings and scores for the Z and X

matrices in a multi-block scheme then can be obtained directly from the above MPCA or
MPLS models (Westerhuis et al. [1998]).

Notice that the iterative scheme is only necessary for model building. Once the
model is identified, the iterative scheme is not needed and monitoring, analysis and
prediction can be performed in the same way as is done in normal MPCA and MPLS

methods. For example, for each new batch, the history of prior batches (rows of Z), and

the process trajectory (a new row, x,,, of X) are both available to calculate the score
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values 1,,t,..4,. Therefore, the use of the proposed approach (Figure 6.1) will allow one

to efficiently incorporate prior batch information into a single model for both the analysis
of completed batches and for the on-line monitoring of new ones. Moreover, all the
benefits and statistical analysis tools of the conventional MPCA and MPLS methods will
be retained. The approach can also be easily extended in cases that a non-linear PLS
method is needed (Wold et al. [1989], Frank [1990], Wold [1992], Berglund et al. [1997]).
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Figure 6.1 MPCA monitoring scheme using batch-to-batch information.

For analysis or monitoring, several different combinations of the matrices shown
in Fig. 6.1 can be used. To monitor only batch-to-batch changes, the Z matrix contains all
the necessary information. Multivariate control charts based on Z alone would be
sufficient for detecting changes in the autocorrelation structure of the batch-to-batch
behavior such as might arise from changing feedstocks of raw materials. Using the X
matrix alone would allow one to analyze and monitor only the within batch changes.
Using both the Z and X matrices allows for complete treatment of both batch-to-batch
and within batch changes within the same MBPCA/MBPLS model.

6.2.3 Model Building: Selection of number of lags

After convergence of the lagged-scores (Z) has been achieved, the number of

significant lags (number of prior batches, 7, used in the Z matrix) can be determined by
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inspecting the values of the loadings for the lagged scores in Z (p,). If the loadings on all
the scores in Z for all batches beyond a certain lag are small, then these lags can be
dropped and the model reiterated again until convergence. To illustrate this, an example
is shown in Figure 6.2a and 6.2b (Case study 1, section 6.3.3, for the emulsion

polymerization of styrene for large positive batch-to-batch correlation (¢=0.9) and for

small batch-to-batch correlation (¢ =0.2) respectively.) In Figure 6.2a, it can be seen that
only the two loadings p{i™, p®™® (from the first principal component, t;) associated with

the immediately preceding batch (k-1) are large indicating that only one lag (and two
scores (T), eq. (6.1)) need to be used in model building. Moreover, the method can also
detect when the incorporation of previous batch information would be of little value, as
shown in Figure 6.2b, where it can be seen that the values of p, are small for the previous

scores at all past lags (since the correlation from batch-to-batch is low, ¢ =0.2).

Loadings of the Z matrix Loadings of the Z matrix
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Figure 6.2 Selection of the number of significant lags for model building. (a) large (¢ =0.9)
and (b) small (¢ =0.2) degree of batch-to-batch correlation (Case I, section 6.3.3).

6.3 Off-line analysis and on-line monitoring studies
6.3.1 Systems
The approach is illustrated using two simulated polymerization systems, one is the

condensation polymerization of nylon 6,6 and the other is the emulsion polymerization of

styrene. It is important to notice that the usefulness of the previous batch information for
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on-line monitoring will be greater in early stages of the process, since in later stages most
of the information is contained in the on-line measurements taken from the current batch
(k). For many industrial processes, as those used here for illustration purposes, the main
sources of disturbances occur at the start of the process due to initial charge conditions or
impurities property variations in the raw materials. Therefore a monitoring scheme
containing batch-to-batch information may be useful in providing a more consistent and
faster detection of early disturbances (as long as these have a degree of batch-to-batch
correlation). In what follows a brief description of the systems and conditions on which

the monitoring studies were performed is presented.

Condensation Polyvmerization

The first process considered here is the batch condensation polymerization of
nylon 6,6. A detailed theoretical model for this process was developed by Russell et al.
[1998b] and is used in this work. Details about the model and model parameters are
described in the original publication. The focus of this study will be on the initial
polymerization stage of the batch, from the initialization of the process to the opening of
the vent valve (around 35 min). This is because the decision when to open the vent valve
is key to control the achievable product quality (Russell et al. [1998b]). Besides, the
results of this initial polymerization stage are indicative of the complete batch since the
main source of disturbance is the fluctuation of the feed water (W) (a single evaporator

usually serves several reactors (Russell et al. [1998a])).

For on-line monitoring, measurements include reactor pressure, steam jacket
pressure, reactor temperature and vent rate. However, steam jacket and reactor pressure
are considered here as manipulated variables that remain at their initial set points during
the early phase and so are not included in X (If variations exist in these variables, their
trajectories should be included in the X matrix). Moreover, at the initial heating stage the
vent readings are zero because the vent valve is close. Therefore, the available on-line
information comes from the reactor temperature readings, T; (every 15s). The end quality

variables are amine end groups (NH,) on the polymer molecules and the number average
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molecular weight (MW) at the end of the reaction (200min). The quality and process
measurements are corrupted by normally distributed random error with magnitudes
reported in Table 6.1. As can be seen in this Table, the noise level for the reactor
temperature measurements (T,) is 6=0.1% (approximately * 450 x 0.001 =0.5°K); for
NH; is 6=0.1% (% 49.7umol/Kg x 0.001 ~0.05pmol/Kg), and for MW is ¢=0.3%
(£ 13500g/mol x 0.003 ~40g/mol).

Emulsion Polymerization

A non-linear model, with simple kinetics, to simulate the styrene emulsion
polymerization was developed by Lynch and Kiparissides [1981], and is used in this
work. This model, originally developed for tubular reactors with full recycle, has been
adapted for use in batch and semi-batch processes. For a complete description of the
model and model parameters the reader is referred to the original publication. The focus
of this study will be on the initial polymerization stage of the batch, from the
initialization of the process up to 40 min. This is because the particle generation is of
short duration and early detection of abnormal conditions of the batch would allow one to
take faster corrective action. Moreover, the results of this initial polymerization stage are
indicative of the complete batch because once the particle generation is over there is
almost no further change in the number of particles. The main source of disturbance
considered in this study is variation in the surface chemistry properties of the emulsifier.
In particular, these surface chemistry variations affect the surface covering potential (a;)
of the emulsifier. This disturbance has a great effect on the number of micelles formed
and hence on the number of polymer particles nucleated (Np), as well as on the resulting
conversion. On-line reactor (Tr) and jacket temperature (Tj) measurements are
considered to be available every minute. The end-quality variables are conversion (C)
and number of particles (Np) at the end of the batch (480min). The quality and process
measurements are corrupted by normally distributed random error with magnitudes
reported in Table 6.2. As can be seen in this Table, the noise level for the reactor and

jacket temperature measurements (T, and T; respectively) is 6=0.05% (approximately
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+323 x 0.0005 ~0.2°K); for Dp is (Yabuki and MacGregor [1997]) 6=0.5% (£ 400nm x
0.005 ~2 nmy); for C is 6=0.1% (£ 92%x 0.001 ~0.1%), and for Np 0=0.1% (= 5x10%x
0.001 ~5x10'"particles/l). Notice that due to the low sampling rate of the on-line

measurements some filtering can be performed.

Table 6.2 Measurement noise for emulsion
Table 6.1 Measurement noise for

) system
condensation system
- Measurements g Noise level®
Measurements o% Noise level” g 0/; 02K

X Tr 01 + 05K X o ' Y

- + 9. T 0.05 + 0.2°K
v NH, 0.1 & 0.05umoVKg I 0.1 + 0.1%
— MW . 0.3 + 40g/m01 Y Np 0.1 ¥ 5)(1016
using T,=450°K, NH,=50pmol/Kg, and D, 0.5 + 2nm

MW=13500g/mol as base values " 5
using T~T=323°K, Dp=400nm, C=92% and

Np=5x10" as base values

Data History Generation

For the condensation polymerization system, 200 batches were used to generate
the normal data history used as a training set, while in the case of emulsion
polymerization 150 batches were generated. However, adequate MPCA/MPLS models
can be built with many fewer batches (Nomikos and MacGregor [1995a], Kourti et al.
[1996]). For both systems, the normal batch history was generated by assuming that the
disturbances, d (W for condensation polymerization and g, for emulsion polymerization),

vary from batch-to-batch in a correlated manner according to the autoregressive model:
de=¢d, , +&; (6.4)

where & represents normal distributed random error and ¢ the degree of batch-to-batch
correlation. Two types of correlation are studied for each system: Strong (¢ =0.8 for
condensation and ¢=0.9 for emulsion) and weak correlation (¢ =0.2 for both systems).

For each type of correlation, a training set was generated.
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6.3.2 Case studies

Several case studies for the off-line analysis of completed batches and for the on-
line monitoring of new batches were performed in both systems for low and high batch-
to-batch correlation in the disturbances. Process faults or upsets were introduced
including changes in the batch-to-batch correlation structure, slow drifts and short-lived
up-sets. For the sake of brevity, only some of these case studies are presented as shown in
Table 6.3 for the high correlation structure where the benefits of inclusion of prior batch
information in the model are more evident. In the cases studies, normal MPCA/MPLS
(using no information on prior batches) and the proposed approach (MBPLS/MBPCA

with prior batch information, Z matrix) are compared.

Table 6.3 Monitoring case studies*®

Case Studies Off-line On-line
1. Change in correlation Emulsion e
2. Small drift Condensation Condensation
3. Short-lived upset mm Emulsion

*For strong (¢=0.9 and ¢=0.8) and weak (¢=0.2) batch-to-batch correlation in disturbances.

6.3.3 Detection of changes in correlation from batch-to-batch

The purpose of this section is twofold: 1) to show that a proper SPC monitoring
method based on MPCA/MPLS should not alarm for changes in batch-to-batch
correlation if these changes are not important to product quality (final product quality
only depends on the magnitude of the disturbances not on their time order or equivalently
their batch-to-batch correlation structure) and 2) to show that, if needed, changes in

correlation can be easily detected using previous batch information.

In this example, a change in the degree of correlation, of the testing data set, from
$=0.9 to ¢=0.2 is performed (eq. 6.4) at batch 26 for the emulsion polymerization

system (the variance of & was adjusted as described in Dorsey et al. [2001] to keep the

total variance of the raw material qualities at the same level).



121

In Figure 6.3a, batch-to-batch evolution of the final quality properties (C, Np) is
shown for this example using a Hotelling’s T. chart (Tracy et al. [1992]). Figure 6.3b

shows the corresponding batch-to-batch evolution of the SPE, (Qy statistic) obtained by
performing normal MPLS on the batch data only (no inclusion of previous batch
information) together with their 95 and 99% confidence limits (Nomikos and MacGregor
[1994,1995a]). Note that the SPE, does not detect the change in the degree of correlation.
However, this is what should happen because, as can be seen in Figure 6.3a, the end
quality properties are clearly still in a state of statistical control. Any method that alarms
in this situation (Dorsey and Lee [2001]) is misleading as a monitoring method for the
health of the batches. It is stressed this point because a recent publication (Dorsey and
Lee [20017) has used the lack of detection of this change in batch-to-batch correlation
structure by MPCA/MPLS as a negative result for these methods. However, as shown
above, it is clearly a positive feature if the objective is to monitor the health of the

batches.
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Figure 6.3 Off-line batch-to-batch monitoring of the emulsion polymerization system for a
change in the batch-to-batch correlation structure of the disturbances at batch 26. a)
Hotelling’s T* for the final quality data (C, Np). b) SPE, (Q,) on X data using normal MPLS.

Changes in the disturbance correlation structure, although usually not important
for product quality can be important, and should be monitored, if the disturbance
correlation structure is being used somehow in a batch-to-batch control algorithm (Chin

et al. [2000]). In that case the manipulated variables set-points are being changed for new
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batches based on assuming a previously identified disturbance autocorrelation structure.
If this autocorrelation structure were to change suddenly the batch-to-batch control
scheme based on the assumed value should lead to poor results and degrade quality. In
this situation, changes in the batch-to-batch correlation can be detected simply by
performing PCA on the Z matrix of previous batch scores (Figure 6.1) and monitoring
their SPE, (Q; statistic) and/or Hotelling’s T7. In this case, it may be necessary to include
enough lags (#) to allow for adequate modeling of the batch-to-batch correlation structure.
The detection of a change in the correlation structure of the emulsion process at batch 26

from 6=0.9 to $=0.2 when the number of lags =10, is shown in Figure 6.4.

Oversl Q_ Statistic

$=0.9 $=01.2 a,

BPE - For new Pracess Data

25
Batch number

Figure 6.4 SPE, for detection a change in correlation from ¢ =0.9 to ¢ =0.2 (change at batch
26) using =10 lags.

Another simple alternative to detect changes in the degree of correlation is by
fitting a time series model (for example AR(1), to the scores (t) obtained from the normal
MPLS model on [X Y]. The estimated value of ¢ would then represent the degree of
correlation. Change in the correlation structure of new incoming batches can be

monitored using a simple Shewhart chart on the residuals () of such time series model

gF =tk et (6.5)
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and confidence limits established based on the variance of the residuals. This is illustrated
in Figure 6.5 for the case in which the first principal component (¢;), of the normal MPLS

is modeled.
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Figure 6.5 Monitoring of residuals (§) for t; from normal MPLS. Change in correlation
from ¢ =0.9 to ¢=0.2.

6.3.4 Detection of a slow drift in the water content of the salt (W) over many

batches

Off-line Analysis

In this example, the objective is to detect a slow drift of the product quality for the
condensation polymerization process when there is a slow drift in the initial water content
(W) of the incoming batch, as well as a common cause batch-to-batch correlation of

$#=0.8 in W. It is expected that, by using batch-to-batch information, faster detection of

the drift will be achieved since, as can be seen in Figure 6.6a, W is progressively getting
worse over many batches (drift begins at batch 26). In Figure 6.6b, a Hotelling’s T? chart
for monitoring the batch-to-batch evolution of the end-quality properties (NH;, MW) is
shown for the 50 batches, while in Figure 6.6¢ and 6.6d the t; score obtained from normal
MPLS and MBPLS (using both X and Z) respectively is shown. In these Figures, a
statistically significant out of control region {at o=0.01 significance level) is detected
only at batch number 50. Note that including information (Z) on previous batches did not

improve the time to detection (Figure 6.6d). This result shows that the use of such prior
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batch information is of limited value once one has complete information on the current

batch.

A faster detection of this type of events would be beneficial because would allow
one to correct for the disturbance before the quality properties are off-specifications. The
simplest way to detéct small drifts, trends or mean shifts is by the use of a cumulative
Hotelling’s T2 (y) obtained from either multi-block or normal MPLS. Two alternatives
are shown: Crosier [1988] proposed computing Hotelling’s T> at each observation and

then computing the cumulative of the scalar distance T as:
v, = max{(), Wi +7; - 77} (6.6)

This multivariate CUSUM scheme signals an out-of control situation when y; >A.
The limit % and the parameter 7 where chosen as suggested by McNeese et al. [1991]:
n=c/2and h=4.50 . Altematively a finite-horizon cumulative Hotelling’s T? (y;) may

be used (Dorsey and Lee [2001]):

k
vi= D17 6.7
i=k—r+1
where # is the number of previous batches over which the summation is taken. Figure
6.7a shows the CUSUM on Hotelling’s T* (y;) obtained from eq. (6.6) while in 6.7b ;
obtained from eq. (6.7) with =10 for normal MPLS. It can be seen that, in both

approaches, the small drift can be detected around batch 47, slightly earlier than with the
direct use of Hotelling T2 (Fig. 6.6¢ and 6.64).
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Figure 6.6 a) Disturbance trend for water content (W), b) Hotelling’s T* on the batch final

quality data (Y), ¢) t; score from MPLS, and d) t; score from MBPLS
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Figure 6.7 Detection of drift with cumulative Hotelling’s T* (). (a) Equation (6.6) and (b)

Equation (6.7) with =10 for normal MPLS.
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In this section we have considered the use of previous batch information in the
detection of changes in batch-to-batch correlation and for the detection of slow drifts for
the case in which the batches have already been completed (off-line analysis). In the next
section, the usefulness of prior batch information in the on-line monitoring of new

batches is investigated.

On-line monitoring

In on-line monitoring, at any time during the batch, future unknown
measurements need to be estimated. Nomikos and MacGregor [1994], [1995a] proposed
three alternatives to estimate such measurements, and found that the approach that uses a

missing data algorithm was generally superior and so is used here.

In this example, the slow batch-to-batch drift in the initial water content (W)

together with a common-cause batch-to-batch correlation (¢ =0.8), as shown in Figure

6.6 is also used to illustrate the effect that the inclusion of previous batch information (Z
matrix, Figure 6.1) has on the on-line monitoring of new batches. The on-line ¢; score
plots from the MBPLS using prior batch information is shown in Fig. 6.8a for batches 1
(normal operation condition), 47 (out of 95% CI), and 50 (out of 99% CI). The on-line £;
score plot obtained from normal MPLS without use of prior batch information for the

same batches is shown in Figure 6.8b (note the difference in scales from both figures).
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Figure 6.8 t; on-line monitoring for detection of drift with ¢ =0.8. (a) MBPLS with prior
batch information. (b) normal MPLS.

From this Figure it is evident that with the incorporation of batch-to-batch
information in the on-line monitoring scheme, smaller and more consistent confidence
intervals are obtained. Detection of the abnormal situation caused by the slow drift in the
inlet water concentration is also achieved faster. As shown in Figure 6.8a, by
incorporating information on previous batches, the starting t; score values for each
successive batch slowly rises and by batch 47 to 50 it is evident that a fault is present
almost from the first sample point. Without the information on prior batches to confirm
this gradual batch-to-batch trend, the detection of the problem takes longer as seen in
Figure 6.8b.

The importance of the previous batch information (Z matrix) can be scaled-up or
scaled-down, allowing for increased sensitivity on batch-to-batch abnormalities. The
effect of scaling-up the Z matrix is illustrated in Figure 6.9 for the same case as discussed
in Figures 6.6, 6.7 and 6.8 (slow drift upset in the condensation polymerization system.)
To allow for a direct comparison, normalization of the scores and confidence limits (CI)

has been performed:

et aro CI
Y999, CT’ 99% CI
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Three cases are shown: (i) normal MPLS with no prior batch information (*); (i1)
MBPLS including prior batch information, Z, (+) (unit variance scaling in the Z matrix,
scaling factor (SF=1)) and (iii) MBPLS when the Z matrix is up-weighted by a factor of
2 (SF=2). Figure 6.9 also more clearly demonstrates the use of prior information (Z) in
on-line monitoring. Note that, by the end of the batch, all methods end up giving
approximately the same normalized score values and indicating an out of control situation.
This is consistent with what was shown in the previous section on off-line analysis.
However, with the use of prior batch information (Z) this slow batch-to-batch drift in the
water content of the feed is detected much earlier in the batch. The prior batch
information (Z) essentially gives the MBPLS a head start by giving initial score values
close to the final score values of the previous batch, whereas, the regular MPLS approach

has to start again from scratch and learn from the early data from each new batch.

L'; On-line monitoring
T
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Figure 6.9 Normalized on-line score plots and the effect of scaling-up the Z matrix.
Normaiized t; plot for batch 50 (¢ =0.8). (*) normal MPLS, (+) MBPLS (unit variance
‘LS with SF=2 in the Z matrix.

scaling in the Z matrix, scaling factor (SF)=1), and (o} I

Use of Coniribution plots in assessing past batch information

In on-line monitoring of new batches, once an out of control signal is detected,
contribution plots (MacGregor et al. [1994], Kourti and MacGregor [1995]) can be

inspected to determine to what extent previous batches, (¢;...#, scores in the Z matrix) and
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on-line measurements within the current batch (x data) are contributing to such a signal.
The contribution plot for the t; score plot in Figure 6.9 at time interval 4 (99% control
limit violated) for batch 50 (SF=2 in Z matrix) is shown in Figure 6.10. The contribution
plot clearly shows that if is the variation in prior batch scores that are contributing to the

alarm and not the temperature measurements (Ty) in the early part of the current batch.

Carffribution plot for batch 50 up te tims 4
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=
a

1

tu—,l tz.k-l Ty Ty Trs  Tna

Figure 6.10 Contribution plot to component 1 up to time 4. Abnormal batch for slow drift
case (batch 50).

6.3.5 Detection of a short-lived upset in a single batch

In this case, the objective is to show that for a short-lived upset in the current
batch (affecting the end-quality properties of that batch), the use of batch-to-batch
information will not add any benefit to an on-line monitoring scheme or off-line analysis.
A Monte Carlo simulation study was performed, in which 50 different testing datasets
with correlation ¢ =0.9 were generated for the emulsion polymerization system. In every
new testing dataset a short-lived upset (arising from surfactant variations affecting ay)
was introduced at batch 40. Results from the Monte Carlo simulation are shown in Table
6.4. The average times to detection of the upset indicated by an out of control signal in
the t; score (at 0=0.05 and 0.01 probability limits) are seen to be even a little slower by

including batch-to-batch information than when this is not included.
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Table 6.4 Monte Carlo simulation results for short-lived upset.

(The numbers indicate the average time to detection of the fault.)
MBPCA MPCA
Cl 95% 99% 95% 99%
Average 13.8 23.24 9 18

From the Monte Carlo simulation study, two examples are shown to illustrate

more clearly the effects of incorporation of previous batch information (Z matrix) into
the model to detect this type of faults. In Figure 6.11a is shown the off-line t; monitoring
for a realization of the Monte Carlo study, while in Figure 6.11b is shown its normalized
on-line t; score for batch 40 from (x) normal MPCA, (*) MPCA with prior batch
information (unit variance scaling, SF=1) and (0) when the Z matrix has been up-

weighted (SF=2). In Figure 6.12 is shown the off-line t; for another realization of the

Monte Carlo study together with their normalized on-line t; score for batch 40.
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Figure 6.11 Detection of short-lived upset with¢ =0.9. (a) off-line i: monitoring. (b) &;’ on-

line mounitoring for batch 40. (x) MPCA, (*) multi-block MPCA (unit variance scaling in the
Z matrix, scaling factor (SF)=1), and (¢) MPCA with SF=2.
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Figure 6.12 Detection of short-lived upset with¢ =0.9. (a) off-line t; monitoring. (b) t; on-

line monitoring for batch 40. (x) MPCA, (*) multi-block MPCA (unit variance scaling in the
7. matrix, scaling factor (SF)=1), and (¢} MPCA with SF=2.

From the above Figures, it can be seen that even in cases in which the disturbance,
at batch 40, have the same direction as that of previous batches and these batches follows
a trend, the benefit of incorporation of previous batch information is marginal (Figure
6.11). Moreover, if the disturbance breaks the trend, the detection will be much slower
(Figure 6.12). Therefore, the use of batch-to-batch information will not add any benefit to

an on-line monitoring scheme or off-line analysis for the detection of this type of upset.
6.3.6 Application of previous batch information in inferential prediction

In emulsion polymerization processes, on-line measurement of the quality
properties (for example, Np, Dp, particle size distribution, MW, MWD, conversion) is
frequently not available. Moreover, in certain situations (for example input saturation in
cooling) the on-line measurements (T;, T;) may not be enough to capture the effect that
disturbances may have on the end quality properties, limiting the prediction and control
performance. In this section, it is shown how with the incorporation of previous batch
information inferential prediction of end quality properties can be improved. (In this
example a different recipe and conditions to those used in the examples presented before

is employed. This is done to promote input saturation on Tj, which will lead to too few
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information to infer the end-qualities from only on-line measurements). Three different
historical data-bases, with different degree of batch-to-batch correlation, were generated:

strong (¢ =0.9), medium (¢ =0.5) and weak (¢ =0.2). Three testing data sets consisting of

60 batches were also generated: the first 25 batches keep the correlation from their
corresponding training set, but at batch 26 a drift is induced as shown in Figure 6.13.
Four different PLS models were built considering different availability of i) on-line T;
and T, measurements, and ii) Dp and C on-line analysis made at 20min. These four
models are shown in Table 6.5. In this Table is shown the SPE, of the end quality
properties for each one of the models and for each one of the correlations for all the
batches composing the festing data set. It can be seen that the smallest SPE, is obtained
by models that use an on-line end quality related measurement (Dp, C). These models are
model 1 (MPLS ([T; T; Dp C] Y)) and model 2 (multi-block MPLS ([Z T; T; Dp C] Y)).
However, these models are frequently not possible to be obtained due to the requirement
of the Dp and C on-line measurements. Model 3 (PLS ([T; T;] Y)) represents the most
common situation in which only exits available temperature measurements. However,
this model has the largest SPE, indicating that an inferential control scheme based on
such a model would be poor. Model 4 (proposed approach) only uses for the prediction of
the end quality properties Tj and T, measurements but with the inclusion of previous
batch information ([Z T; T;] Y). This model obtains better prediction that the one in
which previous batch information is discarded (model 3). In Table 6.5, it can also be seen
that as the degree of batch correlation is smaller, the usefulness the Z matrix is lower.

This corroborates the conclusions drawn in previous sections.
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Figure 6.13 Testing data set with drift. (a) Conversion, (b) Np. (-) ¢ =0.9, () ¢ =0.5 and

(..)$=0.2.

Table 6.5 Effect of the incorporation of previous batch information for different degrees of

correlation
Strong (¢ =0.9) Medium (¢ =0.5) Weak (¢ =0.2)
Models Measurements | SPE C SPENp | SPEC SPE Np SPEC | SPENp
1) MPLS T;,T.Dp,C 0.00163  0.00387 0.00225 0.00504 0.00211 0.00504
2) Multi-block MPLS  #-4T;, T.Dp.C  0.00142  0.00314 0.00215  0.00482 0.00207 0.00491
3) MPLS T, T, 0.00364  0.00919  0.00357 0.00825 0.00346 0.00824
4) Multi-block MPLS 6, Ty T 0.002744  0.00675 0.00335  0.00772 0.00340 0.00802

6.4 Summary and Conclusions

The use of information from previous batches has often been of use in the

optimization of batch processes. These batch-to-batch control and optimization methods

utilize the repetitive nature of batch processes to learn about the effects of past

optimization moves and hence to achieve better operating trajectories. In these problems

prior batch information is essential. However, benefits of using information from

previous batches to aid in the monitoring of existing batch processes that are being

operated about a fixed set of manipulated variable trajectories is less certain. This latter

problem was addressed in this Chapter.
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An explicit procedure is presented for the incorporation of information from prior
batches into multivariate statistical process control schemes based on multi-way
PCA/PLS for monitoring batch processes. The approach involves incorporating the
scores values, summarizing the operation of immediately preceding batches, into the
MSPC scheme for the current batch. At the model building stage, this is shown to require
an iterative scheme to develop the necessary PCA/PLS models. These models can then be
use in the same straightforward (non-iterative) manner, as regular MSPC approaches to

monitor new batches.

Simulations on two batch polymerization systems are used to demonstrate the
method and to illustrate its potential. It is shown that, for off-line analysis or monitoring
at the end of each batch, incorporating prior batches using this method provides little
advantage over the usual MPCA/MPLS methods based on only the current batch data. In
on-line monitoring, by incorporating prior-batch information, smaller and more
consistent control limits and scores for the early stages of the process and faster upset
detection of abnormal process conditions may be achieved. However, since the past
batch information is more important at early stages of the batch and generally vanishes as
more on-line measurements are available, only those process that have limited
information at the beginning of the batch would benefit much from this methodology.
Moreover, for processes that are only weakly batch-to-batch correlated or that suffer from

random batch-to-batch disturbances, no benefit should be expected.

Nomenclature

A = number of principal components (scores or latent variables)

d = disturbance

E = residual matrix from PLS
E* = residual matrix from PCA
T = residual matrix from PLS

h = adjustable parameter (eq. 6.6)

n = number of batches



P = loading matrix from PLS
p = loading vector from PLS

7 = number of past batches (lags)

T = score matrix from PLS

t = score vector from PCA/PLS
t* = normalized score

V= loading matrix from PCA
X = regressor matrix

Y = quality matrix

y = quality variables

z = vector of previous scores

7. = matrix containing previous scores

Greek symbols

w, = cumulative Hotelling’s T

¢ = sample standard deviation

1= adjustable parameter (eq. 6.6)

¢ = degree of batch-to-batch correlation
¢ = random error

I" = score matrix from PCA

o = significance level

Index
a = latent variable index

k = batch index or total number of batches
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Large amounts of process data are usually available in industry. This type of data
has been exploited, for example, in the analysis and monitoring of batch processes.
However, its use in batch control has been addressed to a less extent. The general
objective of this thesis was to investigate the use of process data and latent variable
methods for quality control in batch and semi-batch processes. In particular several
practical control strategies were proposed based on PLS models identified from historical

data and a few designed experiments.

The following problems were addressed: i) on-line inferential control of a
distributed end quality property, namely particle size distribution (PSD), ii) development
of an inferential strategy that combines batch-to-batch control, on-line information and
model parameter updating, iii) reduced space control of batch processes using full
manipulated variable trajectories consistent with past operation, and iv) incorporation of
prior batch-to-batch information for analysis and monitoring. In as follows, the work
done in each area is summarized, the contributions outlined, some conclusions are drawn,

and some future work is proposed.

In Chapter 3 the problem of disturbance rejection to control broad and bimodal
PSDs in emulsion polymerization using mid course corrections (MCC) was addressed.
Three strategies were presented: i) control of second mode of the distribution, i) control
of the full bimodal PSDs, and iif) control of relative distributions. Each one of these
alternatives has advantages and disadvantages and selection of one over the other mainly

depends on the availability of intermediate quality related measurements. The
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manipulated variables were emulsifier shots at some mid-points during the reaction and
the total reaction time. These control actions were selected considering the fast dynamics
that the emulsifier has on the particle nucleation. Adjustments in the amount of emulsifier
are applied only when the predicted properties falls outside a statistically defined “no-
control” region. This region delimits the variability present in normal operation to
perform compensation only when a significant disturbance affects the process. The
adequacy of these strategies was demonstrated based on simulation studies on a detailed
theoretical simulator. These studies show that very good control is obtained. Since the
approach is based on the use of readily available measurements, easily developed
empirical models, and only occasional control actions at a mid-point time, the approach

can be attractive for industry.

Chapter 3 has extended previous mid-course correction strategies to the control of
high dimensional end-quality properties in a non-trivial problem. To the knowledge of
the author, this is the first study in which full PSDs are successfully controlled on-line in
polymerization processes. The approach can also be easily used in cases that many
distributed quality properties such as molecular weight distribution and/or multimodal

PSDs need to be controlled as well.

Chapter 4 proposes a control strategy that combines within-batch information
from process variable trajectories and information from prior batches. Information from
past batches is used in two forms: i) for model parameter updating to overcome model
error, changing process conditions and unknown disturbances and #i) to feed-forward past
measurements into the controller for the current batch to exploit the repetitive nature of
the batch operation and to develop a batch-to-batch control algorithm. In the first part of
that Chapter, the flexibility and easy maintenance of empirical models is illustrated for
the within-batch control of bimodal PSDs in emulsion polymerization. It is shown how an
initially very poor model is improved using batch-to-batch adaptation while rejecting
different types of disturbances. Manipulated variables are emulsifier injections at two

time intervals, each one to control a particle distribution. In the second part, both batch-



138

to-batch and within-batch information is used for the PSD control. Batch-wise constant
disturbances are rejected while improving the quality of the models using batch-to-batch
model updating. Batch-to-batch control is employed for controlling the first generation
distribution using an initial condition (emulsifier concentration) as manipulated variable,
while the second distribution is controlled with the within-batch control scheme using an
emulsifier shot at a mid-point during the batch. A set-point change in the shape of the
particle size distribution was also studied. The desired distribution is achieved within a
few batches when starting with information limited to a region around a completely
different PSD. In all approaches very good control performance is achieved in a few
batches in spite of the initial large model error and the limited amount of measurements.
Monte Carlo studies were also carried on to evaluate the robustness of the methodology.
Several other practical aspects as measurement noise and off-line analysis delays were
also consider. The data requirements for the strategy are modest and the models are easily

built, making the approach suitable for industrial processes.

Chapter 4 has extended the mid-course correction strategies presented in Chapter
3 by including multiple decision and correction points, batch-to-batch information in the
controllers, and an adaptive Partial Least Squares (PLS) approach. It is shown how batch-
to-batch control can be easily performed and how new PSDs can be achieved. Some
previous approaches in the literature have achieved new desired PSDs, but by using

computationally intensive strategies based on theoretical distributed parameter models.

Chapter 5 presents a novel inferential control strategy that allows a much finer
characterization and smoother reconstruction of the full manipulated variable trajectories
(MVTs) than those obtained using staircase parameterisations, and that reduces the
complexity and number of identification experiments needed for model building. This is
possible by formulating the control strategy in the reduced dimensional space of a latent
variable model, and then reconstructing the MVTs for the remainder of the batch using
the structure of the model. The novelty of the approach relies precisely in that the control

and the model inversion stage is performed in the reduced dimensional space of a PLS
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model rather than in the real space of the MV Ts. The strategy consists of three parts: 7)
prediction of the product quality using an estimate of unknown future measurements
obtained with any of the missing data algorithms available in literature. (Here several
missing data algorithms were evaluated and most of them show adequate performance); i7)
a control adjustment in the latent variable score space where the statistical dimensions of
the end qualities and scores have to be taken into account, and iii) reconstruction of the
MVTs by inverting a PLS model while respecting the already implemented control
actions and the observed process measurements. The control strategy was illustrated for
disturbance rejection and set-point change (product design) for the control of number
average molecular weight and amine end concentration in a condensation polymerization
system. For robustness in implementation, several aspects were also studied, such as
control performance using small data sets, large levels of measurement noise and
different number of latent variables than those selected by cross-validation. In all cases
the methodology obtained adequate results. Preliminary results are also shown for an
industrial emulsion polymerization process. In this example, although the MVTs obtained
from the control algorithm could not be implemented, the shape and magnitude of the
computed MVTs seemed to be very reasonable and consistent with observed trajectories

for the nominal batches.

This Chapter is probably the most innovative chapter of the thesis. It is the first
empirical model based control methodology that is able to readjust the entire MVTs at
each control point throughout the batch. Furthermore, it provides a smooth and almost
continuous reconstruction of these trajectories that is consistent with past plant operation.
This by itself represents a large advantage compared to other approaches that assume, just
for computation convenience, that such trajectories can be represented by a stair-case
parameterization. This characterization might represent a radical departure from normal
practice, with the implication that control schemes based on them cannot be implemented.
Furthermore, the control strategy do not need large data sets to build the models and do
not suffer from numerical problems that may arise when determining simultaneously the

large number of highly correlated control actions. Further work in this area includes an
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explicitly handling of hard constraints. It would also be interesting to investigate the
application of the methodology to other systems; especially in robotics were it seems that,

for adequate operation, smooth MVTs need to be implemented.

Chapter 6 explored the use of prior batch data in the analysis and on-line
monitoring of batch processes. A modified MPCA/MPLS procedure to explicitly
incorporate batch-to-batch trajectory information while retaining all the advantages and
monitoring statistics of the traditional MPCA/MPLSA was proposed. The method

involves the use of the final PCA or PLS scores values (#,7,..4,) from prior batches to

summarize all variables and time histories of prior batches. Then, these scores are
combined with the trajectory data for the current batches by again performing
MPCA/MPLS. At the model building stage, the method needs iterative training to obtain
the scores values. However, once the model is identified, the iterative scheme is not

needed and monitoring, analysis and prediction can be performed in the same way as is

done in normal MPCA and MPLS methods.

Multivariate control charts based on prior scores alone were shown to be
sufficient for detecting changes in the autocorrelation structure of the batch-to-batch
behavior (such as might arise from changing feed-stocks of raw materials.) The process
data matrix alone was shown to be sufficient to analyze and monitor only the within
batch changes (conventional MPCA and MPLS). Using both allowed for complete
treatment of both batch-to-batch and within batch changes within the same
MBPCA/MBPLS model. The approach was illustrated using two simulated
polymerization systems, the condensation polymerization of nylon 6,6 and the emulsion
polymerization of styrene. Several studies for the off-line analysis of completed batches
and for the on-line monitoring of new batches were performed in both systems and
compared with MPCA/MPLS. The results show that incorporation on previous batch
information for on-line monitoring does provide a more consistent and faster detection of
early disturbances (as long as these have a degree of batch-to-batch correlation).

However, the advantage of inclusion of such information is often small and it vanishes in
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later stages since most of the information is already contained in the on-line

measurements taken from the current baich.

In summary, the thesis has presented several novel control and monitoring
strategies for batch processes based on empirical PLS models that are easily obtained
from a combination of existing data and a modest amount of experimentation. The

strategies should all be easy to implement and maintain in an industrial environment.
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Effect of MV on PSDs and PSD

measurement noise

The objective of this Appendix is twofolds: 1) to show that the effects of the
manipulated variables (MV) over the particle size distribution (PSD), in the range under
study, are almost linear and, 2) to show the levels of noise added to the intermediate PSD

measurement.

Effect of MV on PSDs

For all the case studies shown in Chapter 3 and 4, the slight non-linearities (in the
range studied) of the system were taken into account by using quadratic and interaction
terms (when needed) in the manipulated variables as well as the square root
transformation on the final PSDs. As example, in Figure A.1 is shown the effects that the
emulsifier adjustment ., (emulsifier adjustment at 150min, Chapter 3 and 4) has on the
central bin (number of particles at certain radius) of the second mode of the final PSD
(square root transformation has been applied in this PSD), while in Figure A.2, it is
shown the effects of . (initial emulsifier concentration adjustment, Chapter 3) on the
central bin of the first mode of the final PSD (remember that each mode of the final PSD
is generated by a corresponding emulsifier shot ( u> or u.0)). As can be seen in such
Figures, the dependency of the controlled variables on the manipulated ones is almost
linear. The slight non-linearity shown in Figure A.2 (and corroborated by correlated

residuals in Figure A.3, dotted line) can be further lessened by including into the model
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the quadratic term of the manipulated variable (). By adding such term, the regression

coefficient is closer to unity (R=0.9993) and the residuals become uncorrelated as can be

corroborated in Figure A3.
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PSD Measurement Noise

In practice, the PSD measurement is also affected by measurement noise. This
noise generally has a correlated structure that depends on the instrument providing the
measurements. Therefore, noise structure identification was performed through PCA as
described in Clarke-Pringle and MacGregor [1998], on repeated laboratory PSD
measurements on one styrene emulsion latex sample. From the identified structure, new
correlated noise was generated and added to the intermediate PSD of the case studies
shown in Chapter 3 and 4. Figure A.4 shows the intermediate PSD for a level of noise of
6=1% (Chapter 3 and 4) while in Figure A.5 6=1.5% (Chapter 4).
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realization with noise. realization with neise.



Effect that Several Variables has on the

Reduced Space Control Performance

The purpose of this Appendix is to detail the discussion given in Chapter 5
(section 5.3.1) on the effect that several variables has on the performance of the reduced

space controller.

Effect of number of latent variables (LV)

To illustrate the effect that the number of LV has on control performance some
results are presented in Table B.1. In this Table is shown the root mean squared error
(RMSE, eq. (B.1)) for different number of components on the 15 batches (K) shown in
Figure 5.4 (regulatory control). It can be observed that the RMSE is not largely increased
by using a lower number of components to those obtained by cross-validation method (5
in this case). However, when using 6 and 7 components the error in MW increases

considerably. This is because using a too large a number of components may promote an
ill-conditioned P, W, inversion at the second decision point. This problem can be easily

overcome by using a pseudo-inverse procedure based on singular value decomposition
(MATLAB function pinv). The results of using the pseudo-inverse are also shown in
Table B.1, where it can be seen that by using this simple procedure the robustness of the

algorithm is increased.
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X
Z(yik =~ Vep it )2
RMSE,; = k=l X i=12 B.1)

where y; are the qualities for the £-th batch obtained after control is performed.

Table B.1 Effect of number of LV in control performance: RMSE.

# Components NH; MW NH,-pinv. ~ MW-pinv
4 0.33 23.6 - -
5% 0.34 15.6 - -
6 0.49 141.1 0.45 17.6
7 0.43 60.9 0.43 30.0
8 0.64 9.2 0.40 23.7

*gbtained by cross-validation

Effect of missing data algorithm

Different missing data algorithms were tested to see their effect on control
performance. Table B.2 shows the RMSE for each one of the missing data algorithms in
controlling the 15 batches shown in Figure 5.4 (regulatory control). From this Table, it
can be noticed that all the algorithms give adequate control performance. Those based on

EM, IMP and PTP perform slightly better than the one in which SCP was used.

Table B.2 Missing data algorithms on control performance: RMSE.

Algorithm NH2 MW
EM 0.38 18.2
IMP 0.34 15.6
SCP 0.38 219

PTP-PLS 0.38 16.2
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Effect of number of batches used in model building

In the previous examples a total of 45 observations were used as training set 1o
built the PLS model used for prediction and control. In this section, it will be shown that
adequate control performance (all test batches falling inside the in-control region shown
in Figure 5.5) can be achieved using much less number of batches. To illustrate this,
Table B.3 presents the RMSE for the 15 batches shown in Figure 5.5 (regulatory case
study) when using a different number of batches to train the models. From this Table, it
can be noticed that the control performance is very good using even only 15 batches. This
illustrates that the data requirements for PLS model building are modest. However, if the
model has been identified using very limited or uninformative batch data-sets (as those
arising from only historical data), batch-to-batch model parameter updating can be
performed at the end of each new completed batch to improve the quality of the model

parameter estimates, prediction and control. An example is shown later in this Appendix.

Table B.3 Effect of number of batches on control performance: RMSE.

# of batches NH2 MW
45 0.34 15.6
30 0.30 13.8
20 0.37 18.0
i5 0.38 16.9

Effect of measurement noise

In order to determine the effect of noise on control performance, different levels
of random noise were added to the on-line measurements of reactor temperature (Tr) and
venting (v) as shown in Table B.4. It was found that adequate control performance (test
batches falling inside the “in-control” region of Figure 5.5) is achieved with levels up to
35% in temperature and venting rate, respectively. The noise level here represents the

percentage of the noise variance over the true variations of the temperature and venting
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rate changes observed in the training set. 35% noise level approximately represents

variations in temperature of £2°K and venting rate of £42g/s (1 standard deviation, Table

B.4). For larger levels of noise (50%, for example) the control performance is slightly

degraded because the random error added to the measurements becomes quite large when

compared with the true variations in the MVs. This Table shows that even large levels of

noise have little effect on the performance of the controller. To better illustrate the

random noise level added to the temperature and venting measurements, Figures B.1a and

B.1b are shown (50% of noise has been added). In these Figures (---) represents the

measurements (temperature and venting respectively) used for model building and (—)

the level of noise.

Table B.4 Effect of number of measurement noise on control performance: RMSE.

% noise T, Noise level v Noise level NH, MW
level* (c%) T, K)** (c%) v (g/s)** RMSE RMSE

15 0.25 +1.3 8.3 +28.8 0.80 264

25 0.32 +1.6 10 +34.7 0.80 373

35 0.37 +1.9 12 +41.7 0.73 283

50 0.45 +2.3 15 +52.1 0.89 38.1

*respect to the variation in training set. **T,=500°K and v=350 g/s used as base values.
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Figure B.1a-b Example of noise level added to process measurements (35% respect to

training set). (a) temperature and (b) venting. {--) represents noise measurements used for

model building and (—) the level of noise.
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Extension to non-linear PLS models

The control methodology outlined in section 5.2 can be easily extended to cases in
which a non-linear PLS model and control is needed. This is achieved by simply modify,
for example, eq. (5.12) (case 3, dim (At) > dim (yp)) to take into account the non-linear
nature of the PLS algorithm. In the case of a quadratic PLS model, eq. (5.12) can be
restated as:

min At” At
[egri
AHG}) B2)

T _ TAT
st Yo =u Q

where u’ = §, + (At +t p,mm)T + fy(AtT + Gﬁmm)z . Once obtained the values of At,

the reconstruction of the MVT can be performed as described in section 5.2.4. As an
illustration, some results using quadratic PLS are shown in Table B.5. In this Table it can
be seen that the control performance of the quadratic PLS model (measured by RMSE on
the 15 batches shown in Fig. 5.4) is similar to that obtained using the linear PLS model.
This is not surprising because, in the region under study, the process is only slightly non-

linear. However, if larger disturbances affect the process a non-linear PLS approach may

be better suited.
Table B.5 Non-linear PLS modelling
Linear PLS Quadratic PLS
NH, MW NH, MW
RMSE 0.34 15.6 0.36 14.9
Model Adaptation

As it is not always possible to identify a model from a data-set in which there

exits enough information to determine the effect of disturbances and MVT on the end-
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qualities, it is necessary to have a mechanism to improve gradually a poor model as more
batches are being produced. One of the simplest ways to do this is by continuously update

the model parameters at the end of each batch as shown in Chapter 4:
k-1 k-1
y¥ o = Y3 XD = Xer
for a new batch &:
k-1 k-1
Yo - {Y( )} X® {X‘ ’}
y® < B.3)
[Y("’lx‘k)] PIS_ p®) Wb o
the updated model is:

x® - p®7 g%
y® - po®7 4 p®

(B.4)

where (tr) indicates the immediately previous training data set.

To show the performance of the adaptive controller algorithm, a subset of the
data-set used in the previous example consisting of only 10 observations was used to train
an initial model. In Figure B.2, it is shown preliminary results for the performance of the
controller (eq. 5.21, 8=1, control action taken at 35 and 75min) when the system is
affected by a constant batch-to-batch disturbance in the initial water content (W). In this
Figure is shown (*) what happen if control action is not taken, (%) achieved qualities if
no adaptation is performed (indicated with 1) and the end-qualities using the adaptive
scheme (). In Figures B.3a and B3.b, it is shown the effect of adaptation on the MVTs

for batches 1 (no adaptation, original training data), 3 and 10.
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Figure B.2 Control results. (*) End-quality properties without control, (%) control without
adaptation and (0) control with adaptation (equation 5.21).
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Figure B.3a-b Manipulated variable trajectories for batch 1,3 and 10 when the process is
affected by a batch-to-batch repetitive disturbance.

Constraint handling

In spite of that MV constraints are implicitly taken into account by the structure of

the PLS model, it would be undoubtedly beneficial if the algorithm can explicitly take
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them into account. In this last section, it is proposed a preliminary algorithm to explicitly
handle hard constraints in the inputs. This algorithm still needs to be evaluated.

Alternatively, the full optimization approach may be taken.

From eq. (5.21) the optimal adjustments to the manipulated variable trajectories

(MVT) are obtained ( xg ). In the case of input saturation, x, will be composed of

xg = [x; CY , where x; are the part of the trajectories, computed from (5.21), that can

be implemented, while C are those that would hit a constraint. In spite of hitting a
constraint, we still wish to achieve the computed value in the score space t that will

satisfy the overall PLS model. Therefore:

Wl
' =[x, ; CI'| W} [=x{ W, +x;'W, +CTW, (B.5)
WC
then x, W, =tT —xJW, ~C"W, (B.6)

Also we want to maintain the correlation in the PLS model:
x, =T +a)P7 (B.7)
Substituting (B.7) in (B.6):
T +a"P W, =tT —x] W, ~CTW,
Therefore (" +a™) =" —x] W, -CTW,)@®,"W,;)™" (B.8)

And by substituting (B.8) in (B.7) the new MVTs that can be implemented are

obtained (i.e. those trajectories that try to compensate for the effect of the constraints):

X, = (T —x{ W, -CTW,)®,"W,;)'P,” (B.9)



