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Chapter 1

Introduction

The original motivation for the study of slice knots, and the first definition,

was made by Ralph H. Fox and John W. Milnor in 1958; they were interested

in smoothing PL singularities of surfaces in 4-space which arise naturally

when considering complex hypersurfaces. The definition of a slice knot first

appeared in a paper by Fox and Milnor [6].

Slice knots are also intimately related with the failure of the Whitney

trick in 4-dimensions. The Whitney trick is used to remove intersections

of submanifolds which cancel algebraically: if there are paths between the

intersection points in each submanifold which form a loop, and if this loop

can be made to bound an embedded disk, then by isotoping across the disk,

the intersections can be removed. This works in higher dimensions, but in

dimension 4 the disks can only be immersed generically. The question of

improving these to embeddings is like trying to slice a knot.

Finally, slice knots are interesting because they enable us to make the set

of all knots into a group.

In this section we have some preliminaries, and some obstructions for a

knot being slice.
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Definition 1.1. A knot K ⊂ S3 is a topologically slice knot, if there is a

flat disk D2 contained in D4, such that K = ∂D2 = D2 ∩ S3. Such a disk is

called a slicing disk for K.

Here flat means that D2 has a neighborhood N that is a copy of D2 × I2

meeting S3 in ∂D2× I2 (of course, I2 = I × I, and this is just another disk).

Flatness is essential. Any knot K ⊂ S3 is the boundary of a disk D2

embedded in D4, which can be seen by taking the cone over the knot. See

[24, page 2].

Definition 1.2. A knot K ⊂ S3 is a smoothly slice knot if there is a smoothly

embedded disk D2 ⊂ D4 such that K = ∂D2 = D2 ∩ S3.

All the smoothly slice knots are topologically slice, because smoothly

embedded D2 is flat. But we can find examples of topologically slice knots,

which are not smoothly slice. All the knots with Alexander polynomial equal

to 1 are topologically slice (M. Freedman, 1980). See Example 3.5.

From now on, if we say a given knot K is slice, we will take that to mean

K is smoothly slice.

Example 1.3. If K is a knot which is symmetric with respect to a plane

R2 ⊂ R3, then K is slice because we can spin it through R4
+ about the axis

R2 to produce the desired flat disk. (We can spin a point x = (x1, x2, x3, 0)

of R3
+ about R2 according to the formula xθ = (x1, x2, x3 cos θ, x3 sin θ). The

4
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spin K∗ = {xθ : x ∈ K, 0 ≤ θ ≤ 2π} is a 2-sphere in R4.) So if K is a knot

in S3 and r : S3 −→ S3 is an orientation-reversing homeomorphism, then

K#rK is a slice knot. Here rK means the knot K with orientation reversed,

and rK means the mirror image of rK.

We can visualise a slice disk by making movies. If a knot is slice then it

bounds a disk D2 ⊂ D4 so that concentric 3-spheres move through (intersect)

it to produce either an ordinary nonsingular knot or link or a knot or link

with singularities corresponding to one of simple maximum or minimum or

saddle point.

Example 1.4. Stevedore’s knot, otherwise known as 61 in the standard knot

tables, is the simplest slice knot (other than the unknot). The following

movie shows how 3-spheres move through the slice disk (see [24, page 3]):

The slice disk is shown schematically below, of course in reality this is a

knotted disk in 4-space ([24, page 4]):

Example 1.5. Another example of a slice knot is the 8-crossing knot 88. Here

is the corresponding slice movie ([24, page 4]):
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Recall, if V is a Seifert matrix for a knot K, and ω ∈ C, with |ω| = 1,

then
σω(K) = sign

(
(1− ω)V + (1− ω−1)V T

)
∆K(t) = det(V − tV T )

And 4-ball genus of a knot K, denoted by g4(K), is the minimum genus

of an oriented surface F ⊂ D4, with ∂F = K.

We know that, a knot K is slice if and only if g4(K) = 0.

Also we know that if K is slice, its signature function σω(K) is identi-

cally zero. And its Alexander polynomial factors as f(t)f(t−1), for some

polynomial f(t) ∈ Z[t] [17, page 90]. So the determinant of slice knot

det(K) = |∆K(−1)| must be a square integer.

Now we want to use these facts to investigate which one of torus knots

cannot be a slice knot.

Proposition 1.6. The Alexander polynomial of a torus knot of type (p, q),

is given by the following formula:

∆T (p,q)(t) =
(t|pq| − 1)(t− 1)

(t|p| − 1)(t|q| − 1).

Proof. [17, pages 118–119]

Theorem 1.7. The torus knot T (p, q) is not slice unless p = ±1 or q = ±1.

Proof. Assume T (p, q) is slice. Then its signature function is identically zero.

It follows then, ∆T (p,q)(t) has no roots on unit circle. But roots of ∆T (p,q)(t)

are |pq|-th roots of unity that are not |p|-th or |q|-th roots of unity. Because

6
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gcd(p, q) = 1, |p|-th roots of unity are different from |q|-th roots of unity,

unless the root equals 1. Now, the number of |pq|-th roots of unity without

1, must be equal to the number of |p|-th and |q|-th roots of unity without 1,

so we can write:

|pq| − 1 = |p| − 1 + |q| − 1⇒ |pq| − |p| − |q|+ 1 = 0⇒
(|p| − 1)(|q| − 1) = 0⇒ p = ±1 or q = ±1

Corollary 1.8. The only slice torus knot is the unknot.

Definition 1.9. A knot K is called algebraically slice if for some Seifert

surface F of K, the Seifert pairing θ : H1(F ;Z)×H1(F ;Z)→ Z vanishes on

a submodule with half the rank of H1(F ;Z).

All the topologically slice knots are algebraically slice. As an example of

a knot that is algebraically slice but not topologically slice, let K = 77, then

K#K#K#K is the desired example.

Definition 1.10. The ribbon disk is the image α(D2) of an immersion

α : D2 −→ R3 whose only singularities are of the following form. Each

component of the singular set is the image of a pair of closed intervals in D2,

one with endpoints on the boundary of D2 and one entirely interior to D2.

Definition 1.11. A knot K is called a ribbon knot if it bounds a ribbon

disk.

7
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We can locally resolve a ribbon singularity into 4-space to get back a slice

disk. We can push a neighborhood of the singularity, into 4-space. Notice

that at singularity, one part of the ribbon disk contains an arc, whose pre-

image lies entirely in the interior of D2. So we push this part (shaded parts,

in the above figure) into 4-space, and we can remove the self-intersection. As

a result, we have:

Corollary 1.12. Every ribbon knot is slice.

But the reverse is a famous conjecture due to Fox, called the slice-ribbon

conjecture (Problem 1.33 in Kirby’s problem list [13]), and still is open.

Conjecture 1.13 (Slice-Ribbon Conjecture). Every slice knot is ribbon.

Proposition 1.14. The slice-ribbon conjecture is true for torus knots.

Proof. The only slice torus knot, is the unknot, which is ribbon.

As another obstruction for a knot to be slice, is the concordance genus.

Definition 1.15. Two knots K1 and K2 are called smoothly concordant if

there is a smooth embedding φ : S1 × [0, 1] −→ S3 × [0, 1], whose boundary

is (K1 × {0})
∐

(−K2 × {1}).

Proposition 1.16. A knot K is slice if and only if it is concordant to the

unknot.

Proof. Assume K is concordant to the unknot. The unknot bounds a disk.

The interior of this disk, union φ(S1 × [0, 1]) is the slice disk.

Conversely, assume K is slice. Consider a trivial knot in the interior of the

slice disk, it bounds a disk. Delete the interior of this disk, we can define an

embedding φ, whose image is the rest of the slice disk.

Definition 1.17. The concordance genus of a knot K, denoted by gc(K), is

the minimum genus of a surface in S3 whose boundary is a knot concordant

to K.

8
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Corollary 1.18. A knot K is slice if and only if gc(K) = 0.

Proposition 1.19. For a knot K, we have the following inequalities:

1

2
|σ(K)| ≤ g4(K) ≤ gc(K) ≤ g3(K)

And if K is slice, then σ(K) = g4(K) = gc(K) = 0.

These inequlities can be strict. For example, 0 = 1
2
|σ(41)| < g4(41) = 1,

1 = g4(62) < gc(62) = 2 and 0 = gc(61) < g3(61) = 1.

We have a binary operation on the set of all knots, called the connected

sum. By this operation, the set of knots, forms a monoid. But existence

of inverse element for each knot fails. To remove this problem, we define

an equivalence relation on knots. Then the set of equivalence classes form a

group, called the concordance group. The concordance group was introduced

in 1966 by Fox and Milnor.

Definition 1.20. If K1 and K2 are two knots, we write K1 ∼ K2 if K1 is

concordant to K2.

This is an equivalence relation, and it is not hard to check that.

Now we denote the set of equivalence classes by C, and consider the con-

nected sum, as a binary operation on C, i.e.

[K1] + [K2] = [K1#K2]

Theorem 1.21. C is an abelian group.

Proof. We know that the zero element in C, is the set of all slice knots. Also

we know that for a knot K, K#rK is slice, so −[K] = [rK]. The fact that

C is abelian, is obvious.

The group C is called the (smooth) concordance group. Fox and Milnor

showed that this group is infinitely generated.

9
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Proposition 1.22. If K is reversible and amphicheiral knot which is not

slice then [K] ∈ C is an order 2 element.

Proof. By the assumption, K = rK, so [K] = −[K], and 2[K] = 0. K is not

slice, so [K] 6= 0, then the order of [K] is 2.

Example 1.23. 41 is not slice, because det(41) = 5, which is not a perfect

square, but it is reversible and amphicheiral, so the order of [41] is 2.

Theorem 1.24. Every knot K with σ(K) 6= 0 represents an element of

infinite order in C.

Proof. Murasugi proved that σ(K1#K2) = σ(K1) + σ(K2). If Kn is n times

connected sum of K with itself, then σ(Kn) = nσ(K) 6= 0. So Kn is not

slice, and [Kn] = n[K] 6= 0. So K is an element of infinite order.

Example 1.25. σ(31) = −2, where 31 is the right-hand trefoil, so the right-

hand trefoil represents an element of infinite order in C.

Definition 1.26. A square matrix N is null-cobordant, if it is congruent to

a matrix of the form

[
0 N1

N2 N3

]
, where Ni are square matrices of the same

size.

Definition 1.27. For matrices A1 and A2, we define the block sum A1⊕A2 =[
A1 0

0 A2

]
. We say square matrices A1 and A2 are cobordant, if A1 ⊕ (−A2)

is null-cobordant.

Levine defined a homomorphism φ : C −→ Z∞ ⊕ Z∞2 ⊕ Z∞4 , by assigning

to the concordance class of a knot, the cobordism class of any Seifert matrix

of that knot. He proved that φ is surjective [16].

Recent work of Cochran, Orr and Teichner [4], has revealed a deeper

structure to the knot concordance group. In that work a filtration of Ctop,

the topological concordance group, by subgroups is defined (1997):

. . . ⊂ F2 ⊂ F1.5 ⊂ F1 ⊂ F.5 ⊂ F0 ⊂ Ctop

10
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It is shown that F0 corresponds to knots with trivial Arf invariant, F.5

corresponds to knots in the kernel of φ, and all knots in F1.5 have vanishing

Casson-Gordon invariants. Using von Neumann η-invariants, it has been

proved that each quotient is infinite. In fact, Cochran, Harvey and Leidy

proved that

∀n rank(Fn/Fn.5) =∞

This work places Levine’s obstructions and those of Casson-Gordon in the

context of an infinite sequence of obstructions, all of which reveal a finer

structure to Ctop.

If K is slice, then ∀n ∈ 1
2
N K ∈ Fn. This filtration measures how far

algebraically a knot is from being topologically slice.

Another filtration is as follows [11]:

. . . ⊂ G3.5 ⊂ G3 ⊂ G2.5 ⊂ G2 ⊂ G1.5 ⊂ C

If K is slice, then K ∈ Gn. This filtration measures how far geometrically

a knot is from being slice. P. Horn proved that:

∀n ≥ 2 rank(Gn/Gn.5) =∞

These results show that, slice knots are fairly rare in the set of all knots.

For more details about concordance group, see [19].

1.1 Casson-Gordon Invariants

We begin by reviewing the linking form on Tor(H1(M)) for an oriented 3-

manifold M . If x and y are curves representing torsion in the first homology,

then lk(x, y) is defined to be (d ∩ y)/n ∈ Q/Z, where d is a 2-chain with

boundary nx. Intersections are defined via transverse intersections of chains,

and of course one must check that the value of the linking form is independent

11
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of the many choices in its definition. For a closed oriented 3-manifold the

linking form is nonsingular in the sense that it induces an isomorphism from

Tor(H1(M)) to Hom(Tor(H1(M)),Q/Z).

Such a symmetric pairing on a finite abelian group, l : H × H → Q/Z,

is called metabolic with metabolizer L if the linking form vanishes on L× L
for some subgroup L with |L|2 = |H|.

Let Mq denote the q-fold branched cover of S3 branched over a given knot

K, and let M̄q denote 0-surgery on Mq along K̃, where K̃ is the lift of K to

Mq. Here q will be a prime power.

Let x be an element of self-linking 0 in H1(Mq) and suppose that x is

of prime power order, say p. Linking with x defines a homomorphism χx :

H1(Mq) → Zp. Furthermore, χx extends to give a Zp-valued character on

H1(M̄q) which vanishes on the meridian of K̃. In turn, this character extends

to give χ̄x : H1(M̄q) → Zp ⊕ Z. Since x has self-linking 0, bordism theory

implies that the pair (M̄q, χ̄x) bounds a 4-manifold, character, pair, (W, η).

More generally, for any character χ : H1(Mq) → Zp, there is a corre-

sponding character χ̄ : H1(M̄q) → Zp ⊕ Z. This character might not extend

to a 4-manifold, but since the relevant bordism groups are finite, for some

multiple rM̄q the character given by χ̄ on each component does extend to a

4-manifold, character pair, (W, η).

Let Y denote the Zp × Z cover of W corresponding to η. Using the

action of Zp × Z on H2(Y ;C) one can form the twisted homology group

H t
2(W ;C) = H2(W ;C) ⊗C[Zp×Z] C(t). (The action of Zp on C(t) is given by

multiplication by e2πi/p.) There is a nonsingular hermitian form on H t
2(W ;C)

taking values in C(t). The Casson-Gordon invariant is defined to be the

difference of this form and the intersection form of H2(W ;C), both tensored

with 1
r
, in W (C[t, t−1]) ⊗ Q. (In showing that this Witt class yields a well-

defined obstruction to slicing a knot, the fact that Ω4(Zp ⊕ Z) is nonzero

12
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appears, and as a consequence one must tensor with Q to arrive at a well

defined invariant, even in the case of χx in which it is possible to take r = 1.)

Definition 1.28. The Casson-Gordon invariant τ(Mq, χ) is the class (H t
2(W ;C)−

H2(W ;C))⊗ 1
r
∈ W (C(t))⊗Q.

The main theorem of [2] states:

Theorem 1.29. If K is slice, there is a metabolizer L for the linking form

on H1(Mq) such that, for each prime power p and each element x ∈ L of

order p, τ(Mq, χx) = 0.

The proof shows that if K is slice with slice disk D, then covers of B4 \D
can be used as the manifold W , and for this W the invariant vanishes.

13





Chapter 2

Slice-Ribbon Conjecture for

2-bridge Knots

In this section we summarize the paper by Paolo Lisca [18]. He applies Don-

aldson’s theorem on the intersection forms of definite 4-manifolds to charac-

terize the lens spaces which smoothly bound rational homology 4-dimensional

balls.

Definition 2.1. Let Q>1 denote the set of rational numbers bigger than 1,

and define maps f, g : Q>1 −→ Q>1 by setting, for p
q
∈ Q>1, p > q > 0,

(p, q) = 1,

f

(
p

q

)
=

p

p− q
, g

(
p

q

)
=
p

q′

where p > q′ > 0, qq′ ≡ 1 (mod p) . Define R ⊂ Q>1 to be the smallest

subset of Q>1 such that f(R) ⊂ R, g(R) ⊂ R, and R contains the set of

rational numbers p
q

such that p > q > 0, (p, q) = 1, p = m2 for some m ∈ N
and q is of one of the following types:

1. mk ± 1 with m > k > 0 and (m, k) = 1.

2. d(m± 1), where d > 1 divides 2m∓ 1 and

15
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3. d(m± 1), where d > 1 is odd and divides m± 1.

So if p
q

is a positive number, in following way we can say whether it belongs

to R or not. If p is not a perfect square, then p
q
/∈ R. Otherwise, list all the

numbers of the above three types. Then, first add all the numbers of the form

p− q, then for each number q of the new list, find all q′ such that p > q′ > 0,

qq′ ≡ 1 (mod p), and add them to the list. Do the same thing with these new

numbers. After finitely many steps, this algorithm terminates. Now look at

the denominator of p
q
, if it is in the list, then p

q
∈ R.

Example 2.2. We want to see, whether 25
12
∈ R or not. First, 25 = m2 is a

perfect square, so we continue the algorithm. Now list all the q’s satisfying

the above definition. We have q = 4, 6, 9, 11, 14, 16, 18, 19, 21, now apply f

and g to all the fractions 25
q

. Notice that f
(

25
18

)
= 25

7
, so add 7 to the above

list. If we apply f and g to the new list, we get nothing new. So the algorithm

terminates. Since 12 does not belong to this list, so 25
12
/∈ R.

Theorem 2.3. If K is a slice knot whose double branched cover is a lens

space L, then |H1(L;Z)| is a perfect square.

Proof. Corollary 3 on p. 213 of [22] implies that the 2-fold branched cover Σ2

of any knot K has finite H1(Σ2) with order given by |∆K(−1)| = | det(K)|.
If K is slice, then ∆K(t) = f(t)f(t−1) for some f(t)Z[t], hence |H1(Σ2)| =

det(K) is a square integer.

We know that the double branched cover of a 2-bridge knot K(p, q)

is the lens space L(p, q). By the Theorem 2.3, if K(p, q) is ribbon, then

|H1(L(p, q);Z)| = p is a perfect square, say m2.

Example 2.4. A twist knot with t full twist in it (a twist knot is a Whitehead

double of the unknot), is a 2-bridge knot K(4t+ 1, 2). Since 4t+ 1 must be

a perfect square, we conclude that t = u(u − 1). In [2], by computing the

signature, we see that the only twist knots that are slice, correspond to t = 0

(the unknot) and t = 2 (61).
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If K(p, q) is a 2-bridge knot, the following theorem, and the corollary after

that, prove the slice-ribbon conjecture for 2-bridge knots.

Theorem 2.5. Let p > q > 0 be coprime integers. Then, the following

statements are equivalent.

1. The lens space L(p, q) smoothly bounds a rational homology ball.

2. There exist:

• A surface with boundary Σ, homeomorphic to a disk if p is odd

and to the disjoint union of a disk and a Möbius band if p is even

and

• A ribbon immersion i : Σ −→ S3 with i(∂Σ) = K(p, q).

3. p
q

belongs to R.

Corollary 2.6. Let p > q > 0 be coprime integers with p odd. Then, the

following statements are equivalent:

1. p
q

belongs to R;

2. K(p, q) is a ribbon knot;

3. K(p, q) is a smoothly slice knot and

4. L(p, q) smoothly bounds a rational homology ball.

In particular, the slice-ribbon conjecture holds for 2-bridge knots.

The proof of Theorem 2.5 is based on the following idea. The 2-fold

cover of B4 branched along a slicing disk for K(p, q) is a smooth rational

homology ball with boundary the lens space L(p, q) (see [23]). If a lens

space L(p, q) smoothly bounds a rational homology ball W (p, q), one can

form a smooth negative definite 4-manifold X(p, q) by taking the union of

−W (p, q) with a canonical 4-dimensional plumbing P (p, q) bounding L(p, q).

17
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Since X(p, q) is negative definite, Donaldson’s celebrated theorem [5] implies

that the intersection lattice QX(p,q) of X(p, q) is isomorphic to the standard

diagonal intersection lattice Dn, where n = b2(X(p, q)). Therefore there is

an embedding of intersection lattices QP (p,q) ↪→ Dn, and since −L(p, q) =

L(p, p− q) smoothly bounds the rational homology ball −W (p, q), for some

n′ there is an embedding QP (p,p−q) ↪→ Dn′ as well. The existence of both

embeddings gives constraints on the pair (p, q) which eventually lead to the

proof of Theorem 2.5.

We briefly mention the combinatorial machinery, which is used in the

paper, to prove Theorem 2.5.

Let D denote the intersection lattice (Z, (−1)), and let Dn be the or-

thogonal direct sum of n copies of D. Fix generators e1, . . . , en ∈ Dn such

that

ei.ej = −δij, i, j = 1, . . . , n

Observe that the group of automorphisms Aut(Dn) contains the reflections

across each hyperplane orthogonal to an ei as well as all the transforma-

tions determined by the permutations of {e1, . . . , en}. Given a subset S =

{v1, . . . , vn} ⊆ Dn, we define

ES
i := {j ∈ {1, . . . , n}|vj.ei 6= 0}, i = 1, . . . , n
Vi := {j ∈ {1, . . . , n}|ej.vi 6= 0}, i = 1, . . . , n

pi(S) := |{j ∈ {1, . . . , n}| |ES
j | = i}|, i = 1, . . . , n

Let v1, . . . , vn ∈ Dn be elements such that, for i, j ∈ {1, . . . , n},

vi.vj =


−ai ≤ −2 if i = j

0 or 1 if |i− j| = 1

0 if |i− j| > 1

(2.0.1)

for some integers ai, i = 1, . . . , n.

Let S = {v1, . . . , vn} ⊆ Dn be a subset which satisfies (2.0.1). We define

the intersection graph of S as the graph having as vertices v1, . . . , vn, and an

18
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edge between vi and vj if and only if vi.vj = 1 for i, j = 1, . . . , n. The number

of connected components of the intersection graph of S will be denoted by

c(S).

We shall say that an element vj ∈ S is isolated or final if it is, respectively, an

isolated vertex or a leaf of the intersection graph, and it is internal otherwise.

Given elements e, v ∈ Dn with e.e = −1, we shall denote by πe(v) the

projection of v in the direction orthogonal to e:

πe(v) := v + (v.e)e ∈ Dn

Two elements v, w ∈ Dn are linked if there exists e ∈ Dn with e.e = −1 such

that

v.e 6= 0 and w.e 6= 0

A set S ⊂ Dn is irreducible if, given two elements v, w ∈ S, there exists a

finite sequence v0 = v, . . . , vk = w ∈ S such that vi and vi+1 are linked for

i = 0, . . . , k − 1. A set which is not irreducible is reducible.

Definition 2.7. A subset S = {v1, . . . , vn} ⊆ Dn is good if it is irreducible

and its elements satisfy (2.0.1).

Definition 2.8. Given a subset S = {v1, . . . , vn} ⊆ Dn, define

I(S) :=
n∑
i=1

(−vi.vi − 3) ∈ Z

Lemma 2.9. Let S = {v1, v2, v3} ⊂ D3 =< e1, e2, e3 > be a good subset with

I(S) < 0. Then, up to applying to S an element of Aut(D3) and possibly

replacing (v1, v2, v3) with (v3, v2, v1), one of the following holds:

(1) (v1, v2, v3) = (e1 − e2, e2 − e3,−e2 − e1)

(2) (v1, v2, v3) = (e1 − e2, e2 − e3, e1 + e2 + e3)

(3) (v1, v2, v3) = (e1 + e2 + e3,−e1 − e2 + e3, e1 − e2)
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Moreover,

(p1(S), p2(S), c(S), I(S)) =


(1, 1, 1,−3) in case (1)

(0, 2, 2,−2) in case (2)

(0, 1, 2,−1) in case (3)

In particular (a1, a2, a3) ∈ {(2, 2, 2), (2, 2, 3), (3, 3, 2)}.

Proof. See [18, pages 435–436].

Given integers a1, . . . , an ≥ 2, we shall use the notation

[a1, . . . , an]− := a1 −
1

a2 −
1

. . . −
1

an

and for any integer t ≥ 0 we shall write

(. . . , 2[t], . . .) := (. . . ,

t︷ ︸︸ ︷
2, . . . , 2, . . .)

Lemma 2.10. Let p > q ≥ 1 be coprime integers, and suppose that p
q

=

[a1, . . . , an]− and p
p−q = [b1, . . . , bm]−, with a1, . . . , an ≥ 2 and b1, . . . , bm ≥ 2.

Then,
n∑
i=1

(ai − 3) +
m∑
j=1

(bj − 3) = −2

Proof. See [18, page 437].

Definition 2.11. A subset S = {v1, . . . , vn} ⊆ Dn such that

vi.vj =


−ai ≤ −2 if i = j

1 if |i− j| = 1

0 if |i− j| > 1

(2.0.2)

for i, j = 1, . . . , n will be called standard.
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Lemma 2.12. Suppose that n > 3, and let Sn = {v1, . . . , vn} ⊆ Dn be a good

subset such that ESn
i = {s} for some i, s ∈ {1, . . . , n}. Then,

1. vs is internal,

2. for some 1 ≤ j ≤ n we have Vs = {i, j}, ESn
j = {s − 1, s, s + 1} and

|vs−1.ej| = |vs.ej| = |vs+1.ej| = 1 and

3. for some t ∈ {s− 1, s+ 1} the set

Sn−1 := Sn \ {vs, vt}∪ {πej(vt)} ⊂ < e1, . . . , ei−1, ei+1, . . . , en > ∼= Dn−1

is good, |ESn−1

j | = 1 and I(Sn−1) = I(Sn) + 2 + vs.vs.

Moreover, if Sn is standard then so is Sn−1.

Proof. Since ESn
i = {s}, if |Vs| = 1, then vs is linked with no other elements

of Sn. And this is impossible, because Sn is irreducible. So |Vs| ≥ 2, if

|Vs| > 2, the set obtained from Sn by replacing vs with πei(vs) would still

satisfy (2.0.1), but it would consist of n independent vectors contained in

the span of the n− 1 vectors e1, . . . , ei−1, ei+1, . . . , en, giving a contradiction.

Therefore |Vs| = 2, i.e. Vs = {i.j} for some j 6= i. If |vs.ej| > 1, then

we get a contradiction as before by replacing vs with πei(vs). Hence, we

conclude |vs.ej| = 1. Since ESn
i = {s}, and |Vs| = 2, if vk is linked with vs,

then vk.ej 6= 0. If vs is isolated, vs.vs+1, or vs.vs−1 is zero. Say for example

vs.vs+1 = 0, then vs+1.ej = 0, so we cannot find any sequence to link vs to

vs+1, contradiction to the assumption of irreducibility.

We need to show that vs is not final. By contradiction, suppose e.g.

that vs.vs−1 = 0 and vs.vs+1 = 1 (the discussion in the case vs.vs−1 = 1,

vs.vs+1 = 0 is similar). Let l ≥ 1 be the largest natural number such that

the set {vs, . . . , vs+l} has connected intersection graph. If as+1, . . . , as+l = 2,

since |vs.ej| = 1, and vs.vs+1 = 1, so |vs+1.ej| = 1, and because as+1 = 2, some

entry of vs+1, other than i-th entry is ±1. Similarly we can conclude that each

of vs+2, . . . , vs+l, also has two nonzero entry equal to ±1. Because of (2.0.1),
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two successive elements must have one nonzero entry in common, and one

nonzero entry in a position, different from the others, so | ∪li=1 Vs+i| = l + 2.

Since Sn is irreducible and ESn
i = {s}, this gives a contradiction. Therefore

as+h > 2 for some 1 ≤ h ≤ l. Choose h to be as small as possible. Then,

it is easy to verify that for some k ∈ {1, . . . , n}, Vs+h ∩ Vs+h−1 = {ek} and

|vs+h.ek| = 1. Since | ∪h−1
i=0 Vs+i| = h + 1, it follows that by eliminating the

vectors vs, vs+1, . . . , vs+h−1 and replacing vs+h with πek(vs+h) one obtains a

set of n−h independent vectors contained in the span of n− (h+ 1) vectors.

This contradiction shows that vs must be internal, i.e. vs−1.vs = vs.vs+1 = 1.

Now observe that, since ESn
i = {s}, we must have j ∈ Vs−1 ∩ Vs+1. If

as−1 = as+1 = 2 then vs−1.vs+1 = 0 implies Vs−1 = Vs+1, and it is easy

to verify that either n = 3 or S is reducible. If as−1, as+1 > 2 then, since

clearly |vs−1.ej| = |vs+1.ej| = 1, one gets a contradiction by eliminating vs

and replacing vs−1 and vs+1, respectively, with πej(vs−1) and πej(vs+1). We

conclude that either (i) as−1 > 2 and as+1 = 2 or (ii) as+1 > 2 and as−1 = 2.

By symmetry, it suffices to consider the case as+1 > 2 and as−1 = 2. Since

|vs−1.ej| = |vs+1.ej| = 1, we have vs−1.πej(vs+1) = 1. Therefore the elements

of the set

Sn−1 := {v1, . . . , vn} \ {vs, vs+1} ∪ {πej(vs+1)}

satisfy (2.0.1). Moreover, the formula I(Sn−1) = I(Sn) + 2 + vs.vs is straight-

forward to check. Since ESn
i = {s} we have ESn

j = {s− 1, s, s+ 1}, therefore

the only vectors linked to vs are vs−1 and vs+1. Since vs−1 and πej(vs+1) are

linked to each other, it follows easily that Sn−1 is irreducible. The fact that

if Sn is standard then so is Sn−1 is evident from the definition of Sn−1.

Proposition 2.13. Suppose that n ≥ 3, and let S = {v1, . . . , vn} ⊆ Dn be a

good subset such that I(S) < 0 and p1(S) > 0. Then,

1. S is standard,

2. |vi.ej| = 1 for every i, j = 1, . . . , n and
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3. If n ≥ 4 there exist h, t ∈ {1, . . . , n} and s ∈ {1, n} such that

ES
h = {s, t}, as = 2 and at > 2

Proof. See [18, page 440].

Definition 2.14. Let S = {v1, . . . , vn} ⊆ Dn be a subset satisfying (2.0.1)

and such that |vi.ej| = 1 for every i, j = 1, . . . , n. Suppose that there exist

1 ≤ h, s, t ≤ n such that ES
h = {s, t} and at > 2. Then, we say that

the subset S ′ ⊂ < e1, . . . , eh−1, eh+1, . . . , en > ∼= Dn−1 defined by S ′ = S \
{vs, vt}∪{πeh(vt)} is obtained from S by a contraction, and we write S ↘ S ′.

Moreover, we say that S is obtained from S ′ by an expansion, and we write

S ′ ↗ S.

Definition 2.15. Let S ′ = {v1, . . . , vn} ⊆ Dn, n ≥ 3, be a good subset,

and suppose there exists 1 < s < n such that C ′ = {vs−1, vs, vs+1} ⊆ S ′

gives a connected component of the intersection graph of S ′, with vs−1.vs−1 =

vs+1.vs+1 = −2, vs.vs < −2 and ES′
j = {s−1, s, s+1} for some j. Let S ⊂ Dm

be a subset of order m ≥ n obtained from S ′ by a sequence of expansions

by final (−2)-vectors attached to C ′, so that c(S) = c(S ′) and there is a

natural 1 − 1 correspondence between the sets of connected components of

the intersection graphs of S and S ′. Then, the connected component C ⊂ S

corresponding to C ′ ⊂ S ′ is a bad component of S. The number of bad

components of S will be denoted by b(S).

Theorem 2.16. Suppose that n > 3 and S = {v1, . . . , vn} ⊆ Dn is a good

subset with no bad components and such that p1(S) = 0, p2(S) > 0 and

I(S) < 0. Then, there exist i, s, t ∈ {1, . . . , n} such that the set

S ′ = S \ {vs, vt} ∪ {πei(vt)} ⊂ < e1, . . . , ei−1, ei+1, . . . , en > ∼= Dn−1

is good. Moreover, I(S ′) ≤ I(S), b(S ′) ≤ 1 and if b(S ′) = 1 then vs.vs < −2

and I(S ′) ≤ I(S)− 1.
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Proof. See [18, pages 446–447].

Proposition 2.17. Suppose that n ≥ 3, and let S = {v1, . . . , vn} ⊆ Dn be

a good subset with no bad components such that I(S) < 0. Then, |vi.ej| ≤ 1

for every i, j = 1, . . . , n.

Proof. See [18, pages 447–449].

Proposition 2.18. Suppose that n ≥ 4, and let S = {v1, . . . , vn} ⊆ Dn be

a good subset with no bad components such that I(S) < 0. Then, for some

i, s, t the set

S ′ = S \ {vs, vt} ∪ {πei(vt)} ⊂ < e1, . . . , ei−1, ei+1, . . . , en > ∼= Dn−1

is good and has no bad components. Moreover, either (I(S ′), c(S ′)) = (I(S), c(S))

or

I(S ′) ≤ I(S)− 1 and c(S ′) ≤ c(S) + 1

Proof. See [18, pages 449–451].

Corollary 2.19. Suppose that n ≥ 3, and let Sn = {v1, . . . , vn} ⊆ Dn be a

good subset with no bad components and such that I(Sn) < 0. Then I(Sn) ∈
{−1,−2,−3}, there exists a sequence of contractions Sn ↘ Sn−1 ↘ · · · ↘ S3

such that, for each k = 3, . . . , n−1 the set Sk is good, has no bad components

and we have either (I(Sk), c(Sk)) = (I(Sk+1), c(Sk+1)) or

I(Sk) ≤ I(Sk+1)− 1 and c(Sk) ≤ c(Sk+1) + 1

Moreover:

1. If p1(Sn) > 0 then I(Sn) = −3, Sn is standard and one can choose

the above sequence so that I(Sk) = −3 and Sk is standard for every

k = 1, . . . , n− 1 and

2. If I(Sn) + c(Sn) ≤ 0 then S3 is given, up to applying an automorphism

of D3, by either (1) or (2) in Lemma 2.9, if I(Sn) + c(Sn) < 0 then the

former case occurs.
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Proof. See [18, pages 451–452].

Theorem 2.20. Let n ≥ 3, and let Sn = {v1, . . . , vn} ⊆ Dn be a standard

subset such that I(Sn) < 0. Then, I(Sn) ∈ {−1,−2,−3} and there is a

sequence of contractions Sn ↘ · · · ↘ S3 such that for every k = 1, . . . , n− 1

the set Sk is standard and I(Sk) ≤ I(Sk+1).

Proof. See [18, pages 454–456].

Now we identify the strings (a1, . . . , an) corresponding to standard subsets

S ⊂ Dn with I(S) ∈ {−1,−2,−3}. These results will be used to prove

Theorem 2.5.

Lemma 2.21. Let n ≥ 3 and let Sn = {v1, . . . , vn} ⊆ Dn be a standard subset

such that I(Sn) = −3. Suppose vi.vi = −ai for i = 1, . . . , n. Then, the string

(a1, . . . , an) is obtained from (2, 2, 2) via a finite sequence of operations of the

following types:

(1) (s1, s2, . . . , sk−1, sk) 7→ (s1 + 1, s2, . . . , sk−1, sk, 2)

(2) (s1, s2, . . . , sk−1, sk) 7→ (2, s1, s2, . . . , sk−1, sk + 1)

It follows that either (a1, . . . , an) or (an, . . . , a1) is of the form

(ck + 1, 2[ck−1−1], ck−2 + 2, . . . , c3 + 2, 2[c2−1],

c1 + 2, 2[c1+1], c2 + 2, . . . , ck−1 + 2, 2[ck−1])

(c1 + 1, 2[c1+1])

for some integers c1, . . . , ck ≥ 1 and k ≥ 3.

Proof. See [18, page 457].

Lemma 2.22. Let n ≥ 4, and let Sn = {v1, . . . , vn} ⊆ Dn be a standard

subset such that I(Sn) = −2. Suppose vi.vi = −ai for i = 1, . . . , n. Then,

either (a1, . . . , an) or (an, . . . , a1) is of one of the following types:

(1) (2[t], 3, 2 + s, 2 + t, 3, 2[s]) , s, t ≥ 0

(2) (2[t], 3 + s, 2, 2 + t, 3, 2[s]) , s, t ≥ 0
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Proof. See [18, pages 457–459].

Lemma 2.23. Let n ≥ 4, and let Sn = {v1, . . . , vn} ⊆ Dn be a standard

subset such that I(Sn) = −1. Suppose vi.vi = −ai for i = 1, . . . , n. Then,

either (a1, . . . , an) or (an, . . . , a1) is of one of the following types:

(1) (t+ 2, s+ 2, 3, 2[t], 4, 2[s]) , s, t ≥ 0

(2) (t+ 2, 2, 3 + s, 2[t], 4, 2[s]) , s, t ≥ 0

(3) (3 + t, 2, 3 + s, 3, 2[t], 3, 2[s]) , s, t ≥ 0

Proof. See [18, pages 459–460].

Lemma 2.24. Let p > q ≥ 1 be coprime integers, and suppose that p
q

=

[a1, . . . , an]−, where either (a1, . . . , an) or (an, . . . , a1) is of the form

(ck + 1, 2[ck−1−1], ck−2 + 2, . . . , c3 + 2, 2[c2−1],

c1 + 2, 2[c1+1], c2 + 2, . . . , ck−1 + 2, 2[ck−1])

(c1 + 1, 2[c1+1])

for some integers c1, . . . , ck ≥ 1 and k ≥ 3. Then, if p is odd K(p, q) bounds

an immersed ribbon disk, if p is even the 2-component link K(p, q) bounds the

image under a ribbon immersion of the disjoint union of a disk and a Möbius

band.

Proof. See [18, pages 461–462].

Lemma 2.25. Let p > q > 0 be coprime integers, and suppose that p
q

is equal

to one of the following:

(1) [2[t], 3, 2 + s, 2 + t, 3, 2[s]]− , s, t ≥ 0

(2) [2[t], 3 + s, 2, 2 + t, 3, 2[s]]− , s, t ≥ 0

Then, if p is odd K(p, q) bounds a ribbon disk, if p is even the 2-component

link K(p, q) bounds the image under a ribbon immersion the disjoint union

of a disk and a Möbius band.
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Proof. See [18, pages 463–464].

Lemma 2.26. Let p > q > 0 be coprime integers, and suppose that p
q

is equal

to one of the following:

(1) [t+ 2, s+ 2, 3, 2[t], 4, 2[s]]− , s, t ≥ 0

(2) [t+ 2, 2, 3 + s, 2[t], 4, 2[s]]− , s, t ≥ 0

(3) [3 + t, 2, 3 + s, 3, 2[t], 3, 2[s]]− , s, t ≥ 0

Then, if p is odd K(p, q) bounds a ribbon disk, if p is even the 2-component

link K(p, q) bounds the image under a ribbon immersion of the disjoint union

of a disk and a Möbius band.

Proof. See [18, pages 465–466].

Lemma 2.27. Suppose that ai ≥ 2 for i = 1, . . . , n, are integers and

[a1, . . . , an]− =
m2

mk ± 1
, (m, k) = 1, 0 < k < m

Then,

[2, a1, . . . , an, an+1]− =
(2m− k)2

(2m− k)m± 1
, [a1+1, a2, . . . , an, 2]− =

(m+ k)2

(m+ k)k ± 1

Proof. See [18, page 467].

Lemma 2.28. Let n ≥ 3 and let Sn = {v1, . . . , vn} ⊆ Dn be a standard

subset such that I(Sn) = −3. Suppose vi.vi = −ai for i = 1, . . . , n. Then,

[a1, . . . , an]− = m2

mk+1
, for some integers m, k with 0 < m < k and (m, k) = 1.

Proof. See [18, page 467].

Lemma 2.29. Let n ≥ 4, and let Sn = {v1, . . . , vn} ⊆ Dn be a standard

subset such that I(Sn) = −2. Suppose vi.vi = −ai for i = 1, . . . , n. Then,

either [a1, . . . , an]− or [an, . . . , a1]− is of one of the following forms:

1. m2

m2−d(m−1)
, where d divides 2m+ 1 or
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2. m2

m2−d(m−1)
, where d is odd and divides m− 1.

Proof. See [18, page 468].

Lemma 2.30. Let n ≥ 4, and let Sn = {v1, . . . , vn} ⊆ Dn be a standard

subset such that I(Sn) = −1. Suppose vi.vi = −ai for i = 1, . . . , n. Then,

either [a1, . . . , an]− or [an, . . . , a1]− is of one of the following forms:

1. m2

d(m+1)
, where d is odd and divides m+ 1,

2. m2

d(m+1)
, where d divides 2m− 1 or

3. m2

m2−d(m+1)
, where d is odd and divides m+ 1.

Proof. See [18, pages 468–469].

2.1 Proof of the Main Theorem

Now we can prove Theorem 2.5. We first show that (2) implies (1). Let

us assume that (2) holds. Let Σ̃ ⊂ B4 be a smoothly embedded surface

obtained by pushing the interior of Σ inside the 4-ball. It is easy to check

that (regardless of the parity of p) the inclusion S3 \ ∂Σ̃ ⊂ B4 \ Σ̃ induces a

surjective homomorphism

φ : H1(S3 \ ∂Σ̃;Z) −→ H1(B4 \ Σ̃;Z)

such that the homomorphism H1(S3 \ ∂Σ̃;Z) −→ Z/2Z defining the 2-fold

cover L(p, q) −→ S3 branched along ∂Σ̃ = K(p, q) factors through H1(B4 \
Σ̃;Z) via φ. Therefore, the cover L(p, q) −→ S3 extends to a 2-fold cover

W −→ B4 branched along Σ̃. We may assume that the distance function from

the origin B4 −→ [0, 1] restricted to Σ̃ is a proper Morse function with only

index-0 and index-1 critical points. This implies that W has a handlebody
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decomposition with only 0-, 1- and 2-handles (see e.g. [3, pages 30–31]).

Therefore, from

b0(W )− b1(W ) + b2(W ) = χ(W ) = 2χ(B4)− χ(Σ̃) = 1

we deduce b1(W ) = b2(W ). On the other hand, since b1(∂W ) = 0 and

H1(W,∂W ;Q) ∼= H3(W ;Q) = 0 the homology exact sequence of the pair

(W,∂W ) gives b1(W ) = 0, so it follows that H∗(W ;Q) ∼= H∗(B
4;Q), and (1)

holds.

Now we show that (1) implies (3). Assume that Part (1) of the statement

holds. It is a well-known fact that if p
q

= [a1, . . . , an]− the lens space L(p, q)

smoothly bounds the 4-dimensional plumbing P (p, q). The intersection form

of P (p, q) is negative definite. Hence, since L(p, q) ∼= L(p, p − q), if L(p, q)

smoothly bounds a rational homology 4-ball W (p, q) we can construct the

smooth, negative definite 4-manifolds

X(p, q) = P (p, q) ∪∂ (−W (p, q)), X(p, p− q) = P (p, p− q) ∪∂ W (p, q)

By Donaldson’s theorem on the intersection form of definite 4-manifolds [5],

the intersection forms of X(p, q) and X(p, p− q) are both standard diagonal.

Hence, suppose that the intersection lattice of X(p, q) is isomorphic to Dn

and the intersection lattice of X(p, p − q) is isomorphic to Dn′ . Clearly, the

intersection lattices H2(P (p, q);Z) ∼= Zn and H2(P (p, p − q);Z) ∼= Zn′ have

bases {v1, . . . , vn} and {w1, . . . , wn′} which satisfy (2.0.2). Therefore, via the

embeddings P (p, q) ⊂ X(p, q) and P (p, p − q) ⊂ X(p, p − q) we can view

the above bases as standard subsets S ⊂ Dn and S ′ ⊂ Dn′ with associated

strings (a1, . . . , an) and (b1, . . . , bn′), where [b1, . . . , bn′ ]
− = p

p−q . We may

assume without loss of generality that I(S) < 0. Then, by Theorem 2.20 and

Lemma 2.9, Lemma 2.28, Lemma 2.29 and Lemma 2.30 it follows that (3)

holds.
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Finally, we show that (3) implies (2). Suppose that (3) holds, i.e. p
q
∈ R.

Then, since applying finitely many times the functions f and g of Defini-

tion 2.1 amounts to changing K(p, q) by an isotopy or a reflection, we may

assume that p = m2 and q is of one of the three types given in Definition 2.1.

We consider various cases separately.

First Case: (q = mk ± 1, with m > k > 0 and (m, k) = 1) In view of

Lemma 2.21 and Lemma 2.24, it suffices to show that the string of coefficients

of the continued fraction expansion of p
q

is obtained from (2, 2, 2) via a finite

sequence of operations as in Lemma 2.21. Since m2−(mk∓1) = m(m−k)±1

and either m ≥ 2k or m ≥ 2(m − k), up to replacing k with m − k (and

K(p, q) with its mirror image K(p, p−q)) we may assume m ≥ 2k. If m = 2k,

since (m, k) = 1 we must have m = 2, k = 1 and p
q

= [2, 2, 2]−. If m > 2k,

arguing by induction on m we may assume

(m− k)2

(m− k)k ± 1
= [a1, a2, . . . , an]−

where (a1, a2, . . . , an) is obtained from (2, 2, 2) as described above. But in

view of Lemma 2.27 we have

m2

mk ± 1
= [a1 + 1, a2, . . . , an, 2]−

so we are done.

Second Case: (q = d(m − 1), where d > 1 divides 2m + 1) It suffices

to show that (2) holds for K(p, p − q). Since d(m − 1) < m2, we have

2m+ 1 > d > 1, and d must be odd because it divides 2m+ 1. Therefore we

can write d = 2s+ 3 for some s ≥ 0 and 2m+ 1 = d(2t+ 3) for some t ≥ 0.

Then m = 2st+ 3s+ 3t+ 4, and as in the Lemma 2.29

m2

m2 − d(m− 1)
= [2[t], 3, s+ 2, t+ 2, 3, 2[s]]−

Therefore (2) holds by Lemma 2.25 (1).
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Third Case: (q = d(m+ 1), where d > 1 divides 2m− 1) Arguing as in

the previous case, we can write d = 2s+ 3 and 2m− 1 = d(2t+ 3) for some

s, t ≥ 0. Then, m = 2st+ 3s+ 3t+ 5 and

m2

d(m+ 1)
= [t+ 2, 2, s+ 3, 2[t], 4, 2[s]]−

which implies (2) by Lemma 2.26 (2).

Fourth Case: (q = d(m + 1), where d > 1 is odd and divides m + 1)

Since d(m+1) < m2 we have m+1 > d > 1, therefore we can write d = 2s+3

and m+ 1 = d(t+ 2) for some s, t ≥ 0. Then

m2

d(m+ 1)
= [t+ 2, s+ 2, 3, 2[t], 4, 2[s]]−

and (2) holds by Lemma 2.26 (1).

Fifth Case: (q = d(m − 1), where d > 1 is odd and divides m − 1)

As before, it suffices to prove that (2) holds for K(p, p − q). We can write

d = 2s+ 3 and m− 1 = d(t+ 1) for some s, t ≥ 0. Then

m2

m2 − d(m− 1)
= [2[t], s+ 3, 2, t+ 2, 3, 2[s]]−

and (2) holds by Lemma 2.25 (2). This concludes the proof.
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Chapter 3

Slice-Ribbon Conjecture for

3-stranded Pretzel Knots

In this section we summarize the paper by Joshua Greene and Stanislav

Jabuka [9]. They use Lisca’s approach [18] on 3-stranded pretzel knots. Thus,

let P (p, q, r) denote the 3-stranded pretzel knot with p, q and r half-twists in

its strands. They further assume that p, q, r are odd and that |p|, |q|, |r| ≥ 3.

In the case when any of p, q or r equals ±1, the corresponding pretzel knot

P (p, q, r) is a 2-bridge knot, and so Lisca’s results [18] apply. The main result

of their article is the next theorem:

Theorem 3.1. Consider the pretzel knot P (p, q, r) with p, q, r odd and with

|p|, |q|, |r| ≥ 3. Then P (p, q, r) is slice if and only if either

p+ q = 0 or p+ r = 0 or q + r = 0

and in each of these cases P (p, q, r) is a ribbon knot. All other pretzel knots

P (p, q, r) are of infinite order in the smooth knot concordance group.

Corollary 3.2. The slice-ribbon conjecture is true for 3-stranded pretzel

knots P (p, q, r) with p, q, r odd.
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Proof. If min{|p|, |q|, |r|} ≥ 3, the corollary follows from theorem 3.1. If

instead min{|p|, |q|, |r|} = 1, the resulting P (p, q, r) is a 2-bridge knot, in

which case the corollary follows from the work of Lisca [18].

Remark 3.3. When min{|p|, |q|, |r|} = 1 one direction of Theorem 3.1 still

holds. Namely, if either of p + q, q + r or p + r is zero, then P (p, q, r) is

still slice. However the other direction of Theorem 3.1 no longer holds: for

example, the knot P (23,−3, 1) is ribbon according to [18].

Corollary 3.4. Let P (p, q, r) be a pretzel knot with p, q, r odd and with

Alexander polynomial ∆P (p,q,r)(t) = 1. Then P (p, q, r) is slice if and only

if P (p, q, r) is the unknot.

Proof. By [17, pages 56–57], we know that

∆P (p,q,r)(t)
.
=

1

4

(
(pq + qr + rp)(t2 − 2t+ 1) + t2 + 2t+ 1

)
So the Alexander polynomial of P (p, q, r) is trivial precisely when pq + qr +

rp = −1. If min{|p|, |q|, |r|} = 1, say r = 1 for concreteness, this equa-

tion implies that p = −1 or q = −1, and thus P (p, q, r) is the unknot. If

min{|p|, |q|, |r|} ≥ 3 we can use theorem 3.1. Without loss of generality,

suppose that q + r = 0. Then the equation pq + qr + pr = −1 reduces to

qr = −1, which is impossible for |q|, |r| ≥ 3.

Example 3.5. If K = P (3,−7,−5), then ∆K(t)
.
= 1, so by Freedman’s result,

K is topologically slice. This knot is not the unknot, so by Corollary 3.4 is

not smoothly slice.

Let G be a finite weighted graph. Let w(v) denote the weight of a vertex

v of G. Order the vertices of G in an arbitrary manner and let vi denote

the i-th vertex. We denote the incidence matrix A = AG associated to G

with respect to such an ordering. Assume from now on that G is a tree or a

forest. To such a weighted graph G we shall associate a smooth 4-manifold

with boundary W (G) by plumbing together 2-disk bundles over S2 according
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to instructions read off from G. Namely, for each vertex v of G we pick a

disk bundle D(v) → S2 with Chern class c1(D(v)) = w(v). Given two such

disk-bundles D(v1) and D(v2), we plumb them together if and only if the

vertices v1 and v2 are connected by an edge of G. The intersection form of

the resulting 4-manifold W (G), expressed in terms of the basis of the spheres

S2 used in its construction, is the incidence matrix of G.

Given a pretzel knot P (p, q, r) ⊂ S3 with min{|p|, |q|, |r|} ≥ 3, let Y (p, q, r)

denote the 3-manifold obtained as the 2-fold cover of S3 branched along

P (p, q, r). These 3-manifolds are Seifert fibered spaces with three singular

fibers and their plumbing descriptions are obtained according to the following

recipe. Find continued fraction expansions of p
p−1

, q
q−1

and r
r−1

:

p

p− 1
= [p1, . . . , pi]

− ,
q

q − 1
= [q1, . . . , qj]

− ,
r

r − 1
= [r1, . . . , rk]

−

Let G = G(p, q, r) be the weighted graph as figure below, then

Y (p, q, r) = ∂W (G(p, q, r)).

Let X be a closed, smooth, oriented 4-manifold. H2(X;Z)/Tors is iso-

morphic to the free Abelian group Zb2(X). By Donaldson’s Theorem [5], if

the intersection form

QX : (H2(X;Z)/Tors)⊗ (H2(X;Z)/Tors) −→ Z

is negative definite, thenQX is diagonalizable. We refer to the pair (Zb2(X), QX)

as a lattice. By saying that QX is diagonalizable, we mean that the lattice

35



M.Sc. Thesis - Homayun Karimi McMaster - Mathematics and Statistics

(Zb2(X), QX) is isomorphic to the standard negative definite lattice (Zb2(X),−Id)

of the same dimension.

Sliceness obstruction: Let K ⊂ S3 be a knot and let Y be the 2-fold

cover of S3 branched along K. Let W be any smooth negative definite 4-

manifold with ∂W = Y . If K is slice, then the lattice (Zb2(W ), QW ) must

embed in the standard negative definite intersection lattice of equal rank,

that is, there must exist a monomorphism φ : Zb2(W ) → Zb2(W ) such that

QW (α, β) = −Id(φ(α), φ(β)) for any α, β ∈ Zb2(W ) ∼= H2(W ;Z)/Tors.

Obstruction from Heegaard Floer homology: Assume that Y is

a rational homology three-sphere, equipped with a spinc structure t. We

define a numerical invariant d(Y, t) for Y , which is the minimal degree of any

non-torsion class in HF+(Y, t) coming from HF∞(Y, t), see [20].

Let K ⊂ S3 be a knot and let YK denote the 2-fold cover of S3 branched

over K. If K is slice, then the order of H2(YK ;Z) is a square and there exists

a subgroup V ⊂ H2(YK ;Z) of square root order such that d(YK , s) = 0 for

each s ∈ V . The subgroup V is the image of the restriction induced map

H2(WK ;Z)→ H2(YK ;Z), where WK is the rational homology ball obtained

by a 2-fold cover of D4 branched over the slicing disk for K.

Now we can sketch the proof of main theorem of this section, i.e. Theorem

3.1. By the following symmetries of pretzel knots

P (p, q, r) = P (r, p, q), P (p, q, r) = P (r, q, p) P (p, q, r) = P (−p,−q,−r)

we can assume that p and r are positive. When q > 0 the signature of

P (p, q, r) is nonzero, and so P (p, q, r) cannot be slice. Thus we turn to the

case of p, r ≥ 3 and q ≤ −3.

Proposition 3.6. Consider the pretzel knot K = P (p, q, r) with p, r ≥ 3 and

q ≤ −3 and all three of p, q, r odd. If K is slice then there exists an integer

λ ∈ Z such that

−q = pλ2 + r(λ+ 1)2
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Proof. See [9, pages 9–12].

For now let K ⊂ S3 be any slice knot and let YK be its 2-fold branched

cover. Assume that YK bounds a negative definite plumbing X associated to

a weighted graph G (which we assume is a forest) with n vertices. Let WK

be the rational homology 4-ball obtained by a 2-fold cover of D4 branched

over the slicing disk for K.

Let f̃1, . . . , f̃n ∈ H2(X;Z) be the basis represented by the n 2-handles

of X and let f1, . . . , fn ∈ H2(X, YK ;Z) be the basis of their Poincaré duals.

Furthermore, let e1, . . . , en ∈ H2(X;Z) be the basis of the Hom-duals of

f̃i : ei(f̃j) = δij. With respect to these choices of bases, the restriction

induced map γ : H2(X, YK ;Z) → H2(X;Z) is represented by the matrix G.

The long exact sequence of the pair (X, YK)

0→ H2(X, YK ;Z)
G−→ H2(X;Z)

δ−→ H2(YK ;Z)→ 0

allows us to identify H2(YK ;Z) with the cokernel of G (via δ).

Theorem 3.7. With K,YK ,WK , X,G, {f̃1, . . . , f̃n}, {f1, . . . , fn}, and {e1, . . . , en}
as above, there exists a map H2(X ∪YK WK ;Z) → H2(X;Z) whose matrix

representative A (with the given choices of bases) leads to a factorization

G = −AAt with the additional property that (after identifying H2(YK ;Z) with

coker G) the image H2(WK ;Z)→ H2(YK ;Z) is isomorphic to (imA)/(imG)

(via δ).

Proof. See [9, pages 12–13].

We now return to the case of K = P (p, q, r) and G the weighted graph.

In this case we denote YK by Y (p, q, r). The matrix A whose existence is
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asserted by theorem 3.7 is determined.

A =



1 −1 0 0 . . . 0 0 0
0 1 −1 0 . . . 0 0 0
0 0 1 −1 . . . 0 0 0
0 0 0 1 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −1 0 0
0 0 0 0 . . . 1 −1 0
0 0 0 0 . . . 0 1 −1
λ λ λ λ . . . λ+ 1 λ+ 1 λ+ 1


The i-th row of A, for i = 1, . . . , p + r − 1 has a 1 in its i-th column, a −1

in its (i+ 1)-st column and zeros elsewhere. The (p+ r)-th row of A has λ’s

in its first p columns and (λ + 1)’s in its remaining r columns. An explicit

calculation shows that indeed the factorization G = −AAt holds. Theorem

3.7 also tells us that the subgroup V ⊂ H2(Y (p, q, r);Z) is isomorphic to

(imA)/(imG) via the map δ : H2(X;Z) → H2(Y (p, q, r);Z). This makes it

easy to find an upper bound on the number of vanishing correction terms

d(Y (p, q, r), s) for s ∈ V . Towards this goal, pick v = Ax ∈ imA. The term

vtG−1v simplifies to

vtG−1v = −xtAt(AAt)−1Ax = −xtAt(At)−1A−1Ax = −|x|2

showing that

d(Y (p, q, r), s) = max
Ax∈Chars(G)

p+ r − |x|2

4
(3.0.1)

The requirement that v = Ax be characteristic translates into a condition on

x itself:

v = Ax is characteristic ⇔ vi ≡ Gii (mod 2),∀ i

⇔
∑

j Aijxj ≡
∑

j A
2
ij (mod 2), ∀ i

⇔
∑

j Aijxj ≡
∑

j Aij (mod 2), ∀ i (3.0.2)
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Since det(A) is odd (up to sign, it is the square-root of the knot determinant),

the matrix A is invertible (mod 2), and so the vector x (mod 2) is uniquely

determined by this condition. On the other hand, taking xi ≡ 1 (mod 2) ∀ i,
clearly satisfies this equation, so it must be the unique solution. Combining

(3.0.1) with (3.0.2) we see that the only way for d(Y (p, q, r), s) to be zero for

a given s ∈ V is that the corresponding x = (x1, . . . , xp+r) have coordinates

xi ∈ {±1} for all i = 1, . . . , p+ r. While there are 2p+r such vectors v = Ax

in imA, there are significantly fewer equivalence classes of these vectors in

V = (imA)/(imG). To see this, define l : Zp+r → Z by l(x) = x1 + · · · +
xp+r. Observe that the first p + r − 1 columns of At generate the kernel

of l, showing that any two vectors v = Ax and v′ = Ax′ with x′ = x + y

and y ∈ Kerl ⊂ imAt belong to the same equivalence class in V . Finally,

the functional l, when restricted to the set {x ∈ Zp+r|xi ∈ {±1}}, only

takes on p + r + 1 distinct values, showing that there can be at most that

many characteristic covectors in v ∈ V with vanishing correction terms. But

according to obstruction from Heegaard Floer homology and the result of

proposition 3.6, there need to be at least |Coker(At)| = | det(At)| = |pλ +

r(λ+ 1)| vanishing correction terms. Now we can establish that

|pλ+ r(λ+ 1)| > p+ r + 1

when p, r ≥ 3, unless λ = 0,−1. We have then proved

Proposition 3.8. Let P (p, q, r) be a pretzel knot with |p|, |q|, |r| ≥ 3 and all

three p, q, r odd. If P (p, q, r) is slice then either p + q = 0 or q + r = 0 or

p+ r = 0.

Proposition 3.9. Any pretzel knot P (p, q, r) with either p+q = 0 or q+r = 0

or p+ r = 0 is ribbon.

Proof. Without loss of generality (by the symmetries of pretzel knots) we can

assume that q+ r = 0. If a knot K can be turned into an (m+ 1)-component
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unlink by attaching m bands to it for some m ≥ 1 then K is ribbon. A

pretzel knot P (p, q, r) with q+r = 0 can easily be isotoped to a 2-component

unlink after attaching a single band. See [9, pages 14–15].

These two propositions prove the first part of Theorem 3.1. The rest of

the theorem, is proved at the end of the paper [9].
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Chapter 4

Further Results

4.1 Lecuona Results

Ana G. Lecuona has proved the slice-ribbon conjecture for a large family of

Montesinos knots [14], and has found a necessary, and in some cases sufficient,

condition for sliceness inside the family of pretzel knots P (p1, . . . , pn), with

one pi even [15]. In this section, we briefly discuss about her results.

Montesinos links are defined as the boundary of 2-dimensional plumbings

with star-shaped plumbing graphs. A star-shaped graph is a connected tree

with a distinguished vertex v0 (called the central vertex) such that the degree

of any vertex other than the central one is ≤ 2. In a weighted star-shaped

graph Γ each vertex represents a twisted band, that is a D1-bundle over

S1, embedded in S3, with the number of half-twists given by the weight of

the vertex. Bands are plumbed together precisely when the corresponding

vertices are adjacent. The result of this plumbing construction is a surface

BΓ ⊂ S3 whose boundary MLΓ is, by definition, a Montesinos link. For

another definition see [1, chapter 12].

Since S3 = ∂D4, we can push the interior of BΓ into the interior of D4. It

follows that the double covering of D4 branched over BΓ is the 4-dimensional

41



M.Sc. Thesis - Homayun Karimi McMaster - Mathematics and Statistics

plumbing MΓ, obtained by plumbing D2-bundles over S2 according to the

graph Γ, which defined the Montesinos link. The boundary YΓ := ∂MΓ is a

Seifert space (see [21] for a proof) with as many singular fibers as legs of the

graph Γ. A leg of a star-shaped graph is any connected component of the

graph obtained by removing the central vertex. The involution u that defines

the covering MΓ → D4 ' MΓ/u, turns the Seifert space YΓ into the double

covering of S3 branched along the Montesinos link MLΓ. Restricting our

attention to three-legged star-shaped graphs Γ, it is well known [1, chapter 12]

that the Seifert space YΓ is the double covering of S3 branched along exactly

one Montesinos link (up to link isotopy). In [14], she studies the family P of

all three-legged connected plumbing graphs Γ such that:

1. I(Γ) :=
∑n

i=0(ai − 3) < −1, where by −a1, . . . ,−an she denotes the

weights of the vertices of Γ, and

2. the central vertex has weight less or equal to −3 and every non central

vertex has weight less or equal to −2.

Theorem 4.1. Consider Γ ∈ P. The Seifert space YΓ is the boundary of a

rational homology ball W if and only if there exist a surface Σ and a ribbon

immersion Σ # S3 such that ∂Σ = MLΓ and χ(Σ) = 1.

Corollary 4.2. The slice-ribbon conjecture holds true for all Montesinos

knots MLΓ with Γ ∈ P.

Proof. Let Γ ∈ P be such that the knot MLΓ ⊂ S3 is slice. Let D2 ↪→ D4 be

a smooth slicing disc for MLΓ and W the 2-fold cover of D4 branched along

D2. It is well known [12, Lemma 17.2] that W is a rational homology ball

and that ∂W = YΓ. It follows immediately from Theorem 4.1 that the knot

MLΓ is ribbon.

Given nonzero integers p1, . . . , pn the pretzel link P (p1, . . . , pn) is obtained

by taking n pairs of parallel strands, introducing pi half twists on the i-th
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pair, with the convention pi > 0 for right-hand crossings and pi < 0 for

left-hand crossings, and connecting the strands with n pairs of bridges. If

more than one of the pi is even or if n is even and none of the pi is even

then P (p1, . . . , pn) is a link. In all other cases it is a knot. Inside the family

of pretzel knots P (p1, . . . , pn) we limit our considerations to those with one

even parameter and moreover we fix n ≥ 3 and |pi| > 1 for all i. Note that

if n ≤ 2 or if n = 3 and one of the pi satisfies pi = ±1, then the pretzel knot

is a 2-bridge knot.

Consider the following set:

E = {a,−a− 2,−(a+ 1)2

2
, q1,−q1, . . . , qm,−qm}

where m ≥ 0, a, |qi| ≥ 3 odd and a ≡ 1, 11, 37, 47, 49, 59 (mod 60). The main

result of [15] is the following.

Theorem 4.3. Let K = P (p1, . . . , pn) be a slice pretzel knot with one even

parameter and such that {p1, . . . , pn} * E. Then, the n-tuple of integers

(p1, . . . , pn) can be reordered so that it has the form

1. (q1,−q1 ± 1, q2,−q2, . . . , qn
2
,−qn

2
) if n is even,

2. (q0, q1,−q1, . . . , qn−1
2
,−qn−1

2
) if n is odd.

Proposition 4.4. The slice-ribbon conjecture holds true for pretzel knots of

the form P (p1, p2, p3) where p1, p2, p3 ∈ Z and {p1, p2, p3} * E.

Proposition 4.5 (Ribbon Algorithm). Let K = P (p1, . . . , pn) be a pretzel

knot and let pn+1 := p1. While for some j ∈ {1, . . . , n} it holds pj = −pj+1,

we reduce the number of parameters to n − 2 and repeat with the the knot

P (p1, . . . , pj−1, pj+2, . . . , pn). If at the end of the sequence of reductions we

are left with a pretzel knot with exactly one parameter or with two parameters

a and b satisfying a = −b− 1, then K is ribbon.
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Proof. On a pretzel knot K, whenever there are two adjacent strands p1 and

p2 with the same number of crossings but of opposite signs, we can perform

the ribbon move shown in figure below, which simplifies the pretzel knot

yielding the disjoint union of an unknot and a new pretzel knot K ′. The

knot K ′ is equal to K without p1 and p2. Therefore, if n is odd and after the

sequence of reductions the set of parameters defining K consists of only one

integer, we have that after performing n−1
2

ribbon moves on K we obtain the

disjoint union of n+1
2

unknots. Thus, K is ribbon. On the other hand, if n

is even and after the sequence of reductions the set of parameters defining

K consists of exactly two integers a and b satisfying b = −a − 1, then after

performing n
2
− 1 ribbon moves on K, we obtain, since P (a,−a − 1) is the

unknot, the disjoint union of n
2

unknots. Thus again, K is ribbon.

Corollary 4.6. Let K = P (p1, . . . , pn) be a pretzel knot satisfying the as-

sumptions of Theorem 4.3. Then the above Ribbon Algorithm shows that for

certain orderings of the parameters, K is slice.

4.2 Potential Counterexamples for the Slice-

Ribbon Conjecture

We briefly discuss about a source of generating potential counterexamples for

the slice-ribbon conjecture. For details, see [8].

Theorem 4.7 (Property R). If 0-framed surgery on a knot K ⊂ S3 yields

S1 × S2 then K is the unknot.
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This theorem was proved by David Gabai [7].

Problem 1.82 in Kirby’s problem list [13] conjectures a generalization

to links: If surgery on an n-component link L yields the connected sum

#nS
1 × S2, then L becomes the unlink after suitable handle slides.

In [8] by studying a family of knots that might be counterexamples to the

generalized property R conjecture, another family of links denoted by Ln,k has

been introduced, which are a generalization of the previous family. And they

show that Ln,k is slice [8, pages 23–25]. The authors do not know whether

Ln,k is ribbon except in the special cases n = 0, 1 or k = 0 or (n, k) = (2, 1).

This method appears to be the only currently known source of potential

counterexamples to the slice-ribbon conjecture (for knots or links).

4.3 Some Open Questions

Casson and Gordon [2] observed that if K(p, q) is a smoothly slice knot then p

is a perfect square. Moreover, they proved that if the 2-bridge knot K(m2, q)

is ribbon then

2

m2

m2−1∑
s=1

cot
( πs
m2

)
cot
(πqs
m2

)
sin2

(πrs
m

)
= ±1, r = 1, . . . ,m− 1 (4.3.1)

Casson and Gordon [2, page 188] used (4.3.1) to show that if a 2-bridge knot

K(m2, q) is ribbon and m ≤ 105 then m2

q
belongs to R.

Question 4.8. If (4.3.1) implies that the knot K(m2, q) is smoothly slice?

Question 4.9. Is there any element of order 4 in C?

In [10], the following theorem has been proved:

Theorem 4.10. All 2-bridge knots of 12 or fewer crossings have smooth

concordance order 1, 2 or ∞.
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The results of [18] identify all the slice 2-bridge knots, that is all 2-bridge

knots of concordance order 1. We know that the signature of a knot is additive

under the connected sum, so every knot with nonzero signature has infinite

order in the smooth concordance group (cf. Theorem 1.24). All the 2-bridge

knots are invertible. So if a 2-bridge knot K(p, q) is equivalent to its mirror

image, which happens for instance if p|(q2 + 1), and if it is not slice, then it

must have concordance order 2.

Question 4.11. What can we say about the concordance order of 2-bridge

knots with more than 12 crossings?

Conjecture 4.12. If {p1, . . . , pn} ⊂ E (see [15]), then the pretzel knot

P (p1, . . . , pn) is not slice.

Conjecture 4.13. The pretzel knots P (p1, . . . , pn) with |pi| > 1 for all i, that

are ribbon, are precisely those detected by the algorithm in Proposition 4.5.

Question 4.14. For n ≥ 2, k 6= 0 and (n, k) 6= (2, 1), is Ln,k (see [8]) a ribbon

link? Are the slice knots made by band-summing its components always

ribbon? Are they ever ribbon?

And finally, the old and famous slice-ribbon conjecture (Conjecture 1.13),

is it true in general, or we can find a counterexample for it?
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