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This dissertation is concerned with increasing the understanding
of self-organising systems by a detailed investigation of several simple
radiation absorbing models. We identify two important thermodynamic
functions, the rate of entropy production and the free energy, which can
be used to characterize the self-orpganising characteristics of the models.
In addition to the minimal behaviour usually associated with the rate of
entropy production we recognize a maximal behaviour. This mini-max
principle for the entropy production rate, recognized in the models, is
utilized as an evolutionary criterion for inanimate and animate systems.
It is also demonstrated that the evolutionary character of the force
dependent part of the entropy production rate for the models agrees with
the earlier prescriptions of Prigogine and Li. TFinally it is demonstrated
that the multi-level models exhibit a kind of kinetic phase change which

is accompanied by a population inversion in the models.

ii



ACKNOWLEDGEMENTS

T would like to thank Professor J. S. Kirkaldy for his inspiration

and guidance throughout the course of this work.

Financial support in the form of a National Research Council of

Canada Science Scholarship is gratefully acknowledged.

iidi



CHAPTER

CHAPTER

CHAPTER

1

2

2.1
2.2

2.3

2.4

2.5

2.6

3.1
3.2
3.3

3.4

TABLE OF CONTENTS

INTRODUCTION

ELEMENTS OF THE THERMODYNAMICS OF
IRREVERSIBLE PROCESSES

INTRODUCTION

GENERAL FORMULATION

THE LINEAR REGIME

2.3.1 Local Equilibrium

2.3.2 Forces and Fluxes

2.3.3 Ongager's Theory: The Reciprocal

Relations
2.3.4 Onsager's Variational Principle
2.3.5 Prigogine's Formulation of the.
. Minimal Principle

THE NON-LINEAR REGIME

ON A GENERALISED PRINCIPLE FOR ANALYTIC
SYSTEMS

NON-ANALYTIC SELF-ORGANISING SYSTEMS

QUANTIFICATION OF ORGANISATION
INTRODUCTION

DEFINITION OF ORGANISATION
SELF~ORGANISATION

COMPLEXITY AND DIFFERENTIATION

iv

16
19

23

27

29

32
32
32
34

37



CﬁAPTER 4
4.1
4,2
4.3
4.4

4'5

4.6

4.7

LINEAR RADIATION ABSORPTION PROCESSES

INTRODUCTION

DESCRIPTION OF THE SYSTEM

THE RATE EQUATIONS

THERMODYNAMIC FUNCTIONS

DETAILED BEHAVIOUR OF THE TWO LEVEL MODEL

4.5.1
4.5.2
4.5.3

4.5.4

4.5.5

4'5.6

Introduction

Thermodynamic Functions

The Free Energy Balance

The Force-~Flux Relations and the
Mini-Max Principle

Numerical Calculations

Discussion of Two Level Model

THE THREE LEVEL MODEL

4.6.1
4.6.2
4.6.3

4.6.4

Introduction

The Restricted Three Level Model

The Complete Three Level Model

. Discussion of Three Level Model

THE FOUR LEVEL MODEL

4,7.1
4,7.2
4.7.3
4.7.4

4.7.5

Introduction

The Model

Thermodynamic Functions

Steady State Values of the Parameters
Results and Discussion of the Four

Level Model

39
39
39
42
44
50
50
53

58
62

65
81
87
87
90

101
115
120
120
120
124

125

129



4,8 TWO LEVEL MODEL WITH FLOW 138

4.8.1 Introduction 138

4,8.2 Thermodynamic Functions 140

4.8.3 The Steady State 143

4,8.,4 Calculations and Discﬁssion 143

4,9 SUMMARY OF IMPORTANT CHARACTERISTICS OF THE 149

MODELS

CHAPTER 5 RADIATION ABSORBING MODELS WITH NON-LINEAR 151
EQUATIONS

5.1 INTRODUCTION ’ 151

5.2 DERIVATION OF THE SYSTEM EQUATIONS 152

5.3 THERMODYNAMIC FUNCTIONS 158

5.3.1 Free Energy 158

5.3.2 Entropy Production 159

5.4 OVERHAUSER TYPE INTERACTIONS ' 161

5.4.1 Introduction 161

5.4.2 Coupling of Electron and Nuclear Spins 162
5.4.3 The Rate Equations 163

5.4.4 Thermodynamic Functions and Discussion 165

CHAPTER 6 APPLICATIONS AND DISCUSSION OF THE THERMODYNAMIC
FORMALISM 170
6.1 INTRODUCTION 170
6.2 CAMPFIRE 172
6.3 THE BENARD INSTABILITY 173
6.4 THE EUTECTIC (EUTECTOID) REACTION 174

vi



6‘5

6.6

6’7

6.8
6.9

6.10
APPENDIX 1

APPENDIX 2

BIBLIOGRAPHY

THE MINI-MAX PRINCIPLE AND THE THEORY OF GAMES
6.5.1 Introduction
6.5.2 A Stochastic Electrical Model of
a Self-Organising System
6.5.3 A Thermodynamic Model of a Three
Person Game
ECOLOGICAL COMPETITION AND THE RATE EQUATIONS
FOR THE QUANTUM MODELS
COMPARISON OF THE QUANTUM MODEL EVOLUTION WITH
PRIGOGINE'S EVOLUTION CRITERION
THE QUANTUM MODELS AND SYMMETRY CHANGE
SOME FURTHER BIOLOGICAL RELATIONSHIPS

CONCLUSIONS

SOLUTIONS FOR THE THREE LEVEL MODEL

SOLUTIONS FOR THE TWO LEVEL MODEL WITH

PARTICLE FLOW

vii

181

181
181'
184
197
199
202

204

208
211

214

218



Table 4-1
4-2

4-3

4-9

4-10

4-11
4-12
4-13

4-14

Table 5-1

Table 6-1

LIST OF TABLES

Transition Probabilities Two Level Model

Sign of él and éz .

Values of System Variables at Limiting
Values of Parameters

Evolutionary Behaviour of A

Evolutionary Behaviour of éi

Two Level Model: Steady Values

Transition Probabilities Three Level Model

Steady System Variables for Limiting
Parametcré

Demonstration of Mini-Max Behaviour for
Restricted Three Level Model

Steady State Values for Limiting Cases of
System Parameters

Mini-Max Behaviour of the Three Level Model

Transition Probabilities Four Level Model

Mini-Max Behaviour of the Four Level Model

Enhancement of Polarization

Values of Free Energy for Various Values

of P1

Entropy Production Matrix To

viii

54

54

57

59
60
71
89

94

95

105

107

123

130

137

168

187



Current Matrices for Each Player
Game Matrices with aVa = Vb

Games Matrices for Various o

ix

188

190

191, 192



Fig. 3.1

Fig., 4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

LIST OF FIGURES

Schematic diagram of self-organising system

Schematic of Two Level Model

(a) Entropy production versus time for various
initial conditions

(b) Free energy versus time

(a) Entropy production and (b) free energy
versus time

Critical b/a. Free enecrgy versus time

Effect of changing b/a, (a) Entropy productio
versus time (b) Tree energy versus time

Change of level spacing. (a) Entropy producti
versus time (b) Free energy versus time

(a) Entropy production and free energy versus
time. At t = tc b éhanges from .1 to .15

(b) Entropy production and free energy versus
time. At t = te b changes from .1 to .05

(a) Entropy production and free energy versus
At t = tC a changes from .0l to .005

(b) Entropy production and free energy versus
time. At t = tC a changes from .01 to .015

(a) Entropy production in natural coordinates

(b) Free energy in natural coordinates

n

on

time,

36

51

67

68
69

70

73

74

76
77

78

79

80

82

83



4,10
4.11

4.12

4,13

4,14
4,15

4,16

4. 17

4.18
4.19

4,20

4,21
4.22
4.23
4.24
4,25

4,26

Radiation absorption versus time

Schematric 6f Three Level Model

(a) Entropy production versus time for different
initial conditions

(b) Free energy versus time

Entropy production and Free energy versus time
for different level spacings

Critical bl3/a13. Free energy versus time

Critical b13/313. Free energy versus time

(a) Entropy production versus time

(b) Free energy versus time

(a) Entropy production versus time

(b) Free energy versus time

(c) Radiant energy absorption versus time

Schematic of Four Level Model

Critical b14/a14' Free energy versus time

Parameter change (a) Entropy production
versus time (b) Free energy versus time

Enhanced polarization of nuclei in solution

Schematic of Two Level‘Model with Particle Flow

Entropy production and Free energy versus time

Entropy production and Free energy versus time

Entropy production and ¥ree energy versus time

Schematic of hypothetical photo-chemical

reaction system

x1

85

88

97

98

99

100

108

110
111
112
113
114
121
132
133
134
136
139
145
146
147

148



Fig. 5.1

5.2

Fig. 6.1

6.2

6.3

6.4

Schematric representation of binary interaction

Dynamic polarization in the model

Calculated and observed interface shapes for the

carbon tetrabromide~hexachloroethane eutectic
(a) Schematic eutectic phase diagram
(b) Model.lamellar‘eutectic interface
Model of self—organising‘system
Model network representing a three person

zero sum game

xii

154

167

176

177
177

182
185



CHAPTER 1

INTRODUCTION

Although there are still scientists who'maintain that self-
organisation, as exemplified by the life processes, cannot be described
within the scope of present physical principles (e.g., Elsasser, 1958;
and Polanyi, 1967 and 1968), there are others who have argued convincingly
that current theory is adequate for an inclusive description and theory
of self-organisation (e.g., Lotka, 1945; Schroedinger, 1944; Bertalanffy,
1950; and Prigogine and Wiame, 1946). It is with the aim of advancing
our understanding in this area, and sharing the convictions of the
latter authors, that we have undertaken a detailed investigation of
the self-organising characteristics of a number of simple thermodynamic
models.

The idea that the stable steady states of open thermodynamic
systems, and in particular living systems, are characterised by a
mini-max optimal state, rather than just a minimal state of the entropy
production rate was first offered by Lotka (1945). Kirkaldy has attempted
to locate the mini-max principle within the dissipation theorems of
irreversible thermodynamics and has discussed application of the principle
to both animate and inanimate systems (1964 IV; 1965 a, b; 1972).

It has long been recognised that constrained dissipative systems
with appropriate initial conditions can spontaneously decrease their

entropy and increase their store of available energy as a steady state



minimum in the dissipation rate is approached (Prigogine and Wiame, 1946;
and Prigogine, 1955). This characteristic of self-organisation, as
applied to living systems, has'been designated by Prigogine and Wiame
(1946) as "dynamic efficiency". The maximal part of the principle,
emphasized in this contributién, adds a further essential dimension for
it designates the tendency of self-organising (e.g., living) systems to
spontaneously increase their intake of available energy as the system

" evolves towards stability with the environment (Kirkaldy, 1965 a and b).
This characteristic was, long ago, recognized by Bertrand Russell and
designated as '"chemical imperialism" (Russell, 1927).

The failure of the principle of minimum entropy production to
exactly predict the stable state has in the past been attributed to
non-linear effects, and alternative potential functions (e.g., the
local potential) (Glansdorff and Prigogine, 1964) and the thermo-kinetic
potential (Li, 1962 a, b, ¢, d) have been sought which have a unique
minimal behaviour. Such mathematical devices are unnecessary in the
mini-max formalism, for the approach to a stable steady state along a
given path must be a maximum or a minimum in the entropy production,
whether the system is linear or not.

Following is a brief outline of this dissertation:

Chapter 2 is a critical review of certain important aspects of
the thermodynamics of irreversible processes relevant to this study.

Chapter 3 discusses the concepts of "Organisation" and "Self-
Organisation" from a thermodynamic viewpoint.

Chapter 4 presents the results of a detailed study of several

radiation absorbing models. Although these models obey linear



differential equations they are highly non-linear thermodynamically.
Chapter 5 generalizes the results of Chapter 4 to include systems
with non-linear differential equations.
Chapter 6 reviews several unusual applications of the thermodynamic
procedures to inanimate and animate systems, and concludes by drawing a

series of analogies between vital and non-vital systems.



CHAPTER 2

ELEMENTS OF THE THERMODYNAMICS OF IRREVERSIBLE PROCESSES

2.1 INTRODUCTION

Classical thermodynamics is restricted to the analysis of idealized
reversible or quasi-reversible processes. Real processes such as the flow
of heat, the transport of mass or electrical charge, and chemical reaction
all lead to the irreversible production of entropy and form the subject
matter for the Thermodynamics of Irreversible Processes”.

Onsager, in 1931, established the statistical basis of the T.I.P.
Although there are critics of Onsager's formulation (esp. Truesdell, 1969),
his well known reciprocal relations form the basis of most other
formulations of the T.I.P. In 1940 Eckart derived a geﬁeral method for
calculating the rate of eﬁéropy production for various irreversible
processes (e.g., heat flow, diffusion, etc.), thus unifying a previously
unorganised set of equations. Tolman and Fine (1948) emphasized the
importance of the irreversible production of entropy and modified the
second law so that it could be'written as an equality rather than an
inequality. The monographs of De Groot (1952) and Prigogine (1955) have

made important contributions to the synthesis of the subject. More

henceforth called T.I.P.
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recently, books by Katchalsky (1964) and Trincher (1965) have discussed
important applications of the T.I.P. to biological problems. The récent
monograph by Glansdorff and Prigogine (1971) on the "Thermodynamic Theory
of Strﬁcture, Stability an& Fluctuations" describes the most recent
researches of Prigogine's groﬁp.

In view of these comprehensive works and of the review articles

by Davies (1956), Chester (1963), Ono (1961), and Caplan (1971), we will

not attempt to review the entire field of the T.I.P. Rather, we chose

to examine those specific areas of the discipline which are closely

. connected with our own study.

2.2 GENERAL FORMULATION

The argument begins with the definition of the extensive function,
S, the entropy of a system. The variation of the entropyv, dS, can be

defined as the sum of two terms

ds = deS + diS (2-1)
where deS is the entropy supplied to the system by its surroundings and
where diS is the entropy produced inside the system by irreversible
processes.

For a closed system which can only exchange heat with its

surroundings, the Carnot-Celsius theorem gives

o
w
L]
=&

(2-2)



where 3Q is the heat supplied to the system by its surroundings at an'
absolute temperature of T degrees. In an open system which can exchange
matter with the surroundings, in addition to heat deS contains another
term which represents the entropy change due to the exchange of matter.
Depending on the type of interaction between the system and its
surroundings the entropy flow term, deS, can be positive, negative or
‘zero. The second law of thermodynamics guarantees that the term d S,

i
due to the internal production of entropy, must always be non-negative,

For reversible processes diS is zero and

dS =d S = é% (2-3)
In the presence of irreversible processes diS is positive and
ds > ?% (2-4)

Classical thermodynamics is concerned mainly with relations (2-3) and
(2-4) and hence provides no other information about irreversible
processes than the direction of evolution. The T.I.P. requires the
calculation of the entropy production within the form of (2-1). When
it is possible to find such an expression many questions about the
evolution of irreversible systems can be answered. For an alternate
general viewpoint, consider a small system, A, which is enclosed in a

much larger system, B. If we assume that the global system, A + B, is

isolated then we can write



as = asP + as® > 0 (2-5)

The second law requires that
a;s* >0 and 45" >0 (2-6)

However, it is possible to have one of the terms in (2-5), say dSA,

negative 1if

asB > |as?| (2-7)
This result is of relevance to biological systems which attempt to
increase their structure (order) by surrendering entropy to the surroundings.

Schroedinger in "What is Life" (1944) emphasized the importance of

negentropy (negative entropy) to biological svstems in this way.

2.3 THE LINEAR REGIME

2.3.1 Local Equilibrium , -

let us assume that a given thermodynamic system is divided into
small but macroscopic regions.‘ At equilibrium all the thermodynamic
quantities, and specifically the entropy, are functions of the energy
of the subsystem E, the volume of the subsystem V and the mole number
nY of each species in the local volume. That is, § = S(E, V, nY). If
we now consider a globally non-equilibrium system it can be conjectured

that "local equilibrium" nonetheless prevails in each small section of



the system and that the local expressiomn, S = S(E, V, nY), remains true
for non-equilibrium systems. This means that the non-equilibrium
entropy depends only on the va?iables EV and nY and not on new variables
such as reaction rate or gradients.

Thus, we can write thé total differential of the entropy, dS,

according to the classical Gibb's formula

T -
ds = T + T dv EY ( T) dnY (2-8)

where T is the absolute temperature, P the pressure and y_ the chemical
potential of species y and E, V and nY are the local variables already
defined.

The domain of validity of this conjecture of Local Thermodynamic
Equilibrium (L.T.E.) is still not completely known from a microscopic
viewpoint. However, Prigogine (1949) has shown that the assumption of
L.T.E. is valid for gases which are characterized by a non-equilibrium

molecular distribution funection, £, which can be written
Y -
£ fo + fl (2-9)

where fo is the equilibrium distribution function and fl is the first
order correction. In addition, Prigogine (1949) also showed that L.T.E.
was valid in systems involving sufficiently slow chemical reactions. As
we shall see later, the results of most experiments agree with the
consequences of L.T.E. The exceptions being in processes such as

. shock waves evolving far from equilibrium.



2.3.2 Forces and Fluxes

In the thermodynaﬁics of irreversible processes it is assumed that
certain "forces'" and their conjugate "fluxes" exist. These forces‘are,
for example, temperature and chemical potential gradients with conjugate
flows of conservative quantities like energy and.mass. Empirically,
the fluxes and forces are not independent, combining in expressions such

as Fourier's law relating heat flow and temperature gradient
I =avT (2-10)

where A is the thermal conductivity, the Hartley-Fick law relating the

flow of matter to the chemical potential gradient

-
= -DVuy (2-11)

where D is the diffusion coefficient and Ohm's law relating the electrical

current and the potential gradient
Feyvu@ (2-12)

where y is the electrical conductivity. These relations are accurate
when the gradients are small and when only a single indenendent flux is
identifiable.

When two or more of these flows occur simultaneously in the
same region of space they interfere with each other and give rise to

cross effects. For example, when heat conduction and electrical
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conduction are occurring simultaneously, thermoelectric cross effects such
as the Peltier effect in which heat is evolved at an isothermal metal-metal
junction due to the flow of electrical current across the junction occur

(see Callen, 1948).

In the linear regime it is assumed that the forces and fluxes

are related by

Ji = Zk Lik Xk (2-13)

where Xk is the kth force, and Jk is the conjugate flux. If the off-
diagonal terms in (2-13) are non-zero, there exists a coupling between
two irreversible processes.

The identification of an appropriate set of fluxes and forces
is achieved by combining (2-8) with the differential form of the
conservation relations (mass, energyv, momentum, etc.) which yields
a bilinear expression for the rate of internal entropy production

(De Groot andMazur, 1962)

diS
£ = L Ji XL (2-14)
While this expression does not uniquely define the appropriate forces
and fluxes, it suggests at least one identification to the effect that
the forces are the gradients of intensive parameters in the entropy
representation and that the fluxes are proportional to the time rate of

change of the extensive parameters (Callen, 1960).

For example, in the case of heat flow the intensive parameter



11

is 1/T, and thus the force can be defined as

-+ 1 1 ->
X =V (71,-) =- =5 v (T) (2-15)
q T
If energy alone is being transported, we can write the flux Jq (i.e., %%)

as

L
> e >

J =1L X =--I10 ¢ (T 2-16
Tl YT 7D (2-16)

and by comparison with Fourier's law (2-10), identify the kinetic

coefficient L as
qq

=T X (2-17)

Since this representation is not unique, the problem of the identification

of forces and fluxes will be referred to again in the next section.

2.3.3 Onsager's Theory: The Reciprocal Relations

The reciprocal relations and'an equivalent variational principle
form the essence of Onsager's 1931 papers. We include here a brief
outline of the proof.

Consider an adiabatically insulated system which is defined by a
set of (local) extensive parameters Ai (r parameters such as volume,
mass, etc.) and assume that the va;iables take the values A? in equilibrium.

i

Then we can define a new set of local extensive variables N such that
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— -— e - -
a, = Ai Ai (1=1..... 1) (2-18)
At equilibrium, the local entropy is a function of the A; and if we assume

L.T.E. then we can write the local entropy as a function of the a's,

namely

S = S(al vedeees ar) (2-19)

The maximum value of S as defined by (2-~19) occurs at equilibrium,

that is

max S(O, 0, LI Y 0)

L
wm

0 (2-20)

For systems not too far from equilibrium, we write a Taylor expansion of
the entropy about the equilibrium state. If we retain the lowest non-

zero terms in the expansion, then for a deviation from equilibrium
AS S =S, =-%E 5 g, oa (2-21)
0 ., 2 "i"kPikkk

where terms linear in oy necessarily vanish, and where the

o = (-.a.z,:s_ )
11 = \3a, 3a
i 7] 0
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Differentiating (2-~19) and (2-21) with respect to time, we obtain the

parallel result that

d3a

ds _ 3s 'k . -
dt Zk 3ak at ~ szka . (2-22)
and
aas) _ ds _ ; -
dt - ar - FihiBi4%% (2-23)

Hence by comparison of (2—23) and (2~22) we can make the correspondence

that the Xk are given by

= =24
Xk Xigikai (2-24)

and the fluxes Jk are given by

Jk = (2-25)

These identifications, which are essential to Onsager's theorem, are
consistent with the results of the previous section where the forces Xk
were identified with the gradients of entropy representation intensive
parameters, and the fluxes were identified with the time rate of change of
the conjugate extensive quantities. Onsager's Theorem states that if the
Xi or the ay according to this identification are independent, then

the matrix of coefficients in (2-13) is symmetric, viz.
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Lik = Lki (2-26)

As Coleman and Truesdell (1959) point out, an arbitrary set of
fluxes and forces will not produce the Onsager reciprocal relations.
However, when a set of independent forces and fiuxes, matched to the
jnvariants of the system, are chosen on the ?asis of (2-24) and (2-25)
then the reciprocal relations are valid. (De Groot (1952) presents
several alternate choices of acceptable forces and fluxes.) The
experimental evidence cited by Miller (1960) supports this contention.

Onsager derived the reciprocal relations by considering fluctuations
(i.e., oy # 0) in an "aged" system, i.e., a system which has been isolated
for a sufficient time to be near equilibrium. He then assumed that
deviations from equilibrium (i.e., the ai) have a probability distribution

W(ai) of the Boltzmann form
W(al oo ar) dal cens dar

e(AS/KB) do, ... do
1 r

= — - (2-27)

§ o § dag..iide

- 00 -0

where KB is the Boltzmann constant and AS is defined by (2-21). For a
system fluctuating about equilibrium it was assumed that the principle
of microscopic reversibility holds. That is, under equilibrium conditions,
any molecular process and the reverse of the process occur at the same

rate. TFinally, Onsager made the key conjecture that on the average, the
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laws of decay of fluctuations are identical with the macroscopic laws of
relaxation (i.e., equatioh (2-13)), and that the fluctuating molecular
variables are éven functions of particle velocities. The argument then
leads directly to (2-26).

In the presence of an external magnetic field ﬁ or in a system
rotating with angular velocity, ﬁ, the reciprocal relations (2-27) must

be modified to read
-> = -> >
Lik(B’ W) = Lki(—B, -W) (2-28)

Casimir (1945) generalized Onsager's treatment to include odd
as well as even variables. Thus, if a; and @, are both even or both
odd functions of the molecular velocities, then the reciprocal relations
are given by (2-28). In the event that one variable is odd and one
even, the reciprocal relations gain a minus sign. The most general form

of the reciprocal relations can be written
> > >
Lik(B’ W) = eieiji(—B, -W) (2-29)

where €, = 1 for a, even and €, = -1 for o, odd.

i i i i

De Groot and Mazur (1954) extended Onsager's proof (which is
strictly valid only for scalar processes such as chemical reactions or
relaxation processes) to include vector processes (heat conduction,
diffusion) and tensorial processes (viscous flow). It should be noted

that in isotropic systems processes which interact through non-zero

cross-coefficients must have the same tensorial character
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(Curie's Theorem, e.g., De Groot and Mazur, 1962).

2.3.4 Onsager's Variational Principle (Onsager, 1931)

The kinetic entropy balance equation of an open system in which
dissipative processes are occurring is usually written (De Groot and
Mazur, 1962) as

d - diS

S + *
.- ) IR aa+ i (2-30)
v

where the entropy flux, 38’ is directly related to the flow of energy,
mass, momentum and charge across the surface bounding the system, and the
source term diS/dt is designated as '"the rate of entrony nroduction"
(usually abbreviated to "entropy production' or '"dissipation') which is
directly related to the irreversible processes (i.e., production of

low quality heat) which 1s occurring within the system. In the linear
phenomenological scheme of Onsager, the entropy production per unit
volume, o, is a positive definite bilinear function of the independent

forces and fluxes, viz,.

o = 5J.X, (2-31)
where

dis

~55 = §oav (2-32)
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and the fluxes and forces are related by the linear relations with constant

coefficients

X, = L.R,.J. 2-33
17 23Ry (2-33)
where the inverse form of the reciprocal relations

Rij = Rji ' (2-34)

are assumed to hold. Onsager noted that this physical behaviour could

be summarized completely in the variational principle

5§ (23,% - 1/2 EyB Ry 0 9p) dV = 0 (2-35)
v

(maximum)

where the variation is performed about equilibrium under the constraints
Xi = constant. That is, subject to (2-34), the Euler-Lagrange equation
for (2-35) is equation (2-33). The variation is to be understood
physically as due to fluctuations im the fluxes which transientlyv violate
thé relations (2-33).

Following Onsager, further constraints can be imposed on (2-35)

to define the steady state (dS/dt = constant). If the boundary fluxes

are fixed so that

§ 03, cnaa=0 (2-36)
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then in view of Xi = constant and (2-30) the variational principle becomes

5 § (55, R; 3, 3)) 4V = 0 (2-37)
A

(minimum)

which is a microscopic form of the principle of minimum dissipation.

Onsager also noted that under constraints on the internal fluxes

such that

( ¢ax) av= (5 Ry 3, 3,) AV (2-38)
v v

and holding Xi = constant, the variational principrle (2-35) becomes

s € (£3,X,) 4V = 0 (2-39)
v

(maximum)
Interpreting this macroscopically, Onsager states that "Restrictions
(on the internal fluxes) can only decrease the rate of entropy production
or cause no change" (ibid).

In summary, a macroscopic initial cqndition which can be constructed
out of cumulative fluctuations of one or more of the fluxes, with no change
in the forces at the system boundary, will be followed by a relaxation of
the system to a minimum in the entropy production rate. At the same time,

a system with internal constraints on fluxes, such as provided by sluggish
transient metastable states (Onsager illustrated this kind of constraint

by a crack in a crystal which is conducting heat) may tend toward a
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maximum in the entropy production as the internal constraints slowly relax
toward internal stability (for example as the crack, due to surface tension,
spheroidizes and anneals out). Thus the evolutionary path of a system
which is prepared at time t = 0, with appropriate internal and external
constraints will relax, within these constraints, along a path

which lies in general on a saddle surface of the entropy production rate

(Kirkaldy, 1964 IV; and 1965 a, b).

2.3.5 Prigogine's Formulation of the Minimal Principle

One of the most interesting reasons for studying the properties
of steady states comes from the realization that the state of an adult
living organism is that of a steady open system. Bertalanffy (1950)
maintained that living systems do not operate in violation of the second
law of thermodynamics éince they are "open' and thus able to surrender
their excess entropy to their surroundings. The entropy maximum
principle does not apply to the living system alone, but rather to the
totality of the living system and its environment. Prigogine and Wiame
(1946) have proved that:

(1) steady states in open systems are not defined by

maximum entropy but rather by the approach to minimum
entropy production,

(2) the entropy may decrease in such systems and

(3) that steady states with minimum entropy production

are usually stable.

This tendency to a minimum in the entropy production rate (concomitant

with an increase in the order of a system) has becen designated as



"dynamic efficiency" by Prigogine. In contrast to Onsager, Prigogine
has offered a proof of the principle of minimum entropy production* in
a continuum (macroscopic) formulation.

Consider a materially closed discontinuous (Prigogine, 1967)
system in which there are two independent irreQersible processes, the
simultaneous diffusive flow of matter and heat in a thin membrane. If

.the system is not too far from equilibrium we can write

[
]

L X +1L

X (2-40)
q qq q qm m

and

(]
i

L X +L X (2-41)
mq q mm m

where Jq and Jm are the heat and mass fluxes, respectively, and where

Xq and Xm are theilr conjugate forces. The qu, etc., are assumed to be

constant,
Following (2~14), we can write the entropy production as

diS

~dc - Jq%g + Jme > 0' (2-42)

Utilizing the linear relations (2-40) and (2-41) and Onsager's

reciprocal relations Lqm = Lmq’ we can write (2-42) as

The Principle of Minimum Entropy Production, hereafter, P.M.E.P.

20



21

d;s 2 2
—==L X°4+2L XX +1L X2>0 (2-43)
t q9q9°q mq q m mm’ m

Now let us assume that the force Xﬁ is constrained to some non-zero value.

Differentiation of (2-43) with respect to Xm leads to

5 948
e ——) = 2(1.m X + mexm)
m dt 149

2] =0 (2-44)

Since Jm = 0 for the stationary state (recalling that Xm is unconstrained

and the system is closed for mass) , the conditions

] diS
Jm = 0 and 'a'-i; (__CTE) =0 (2-45)

are completely equivalent provided the linear relations (2-40) and (2-41)

hold.
In the case of n forces Xl cooe Xn of which Xl cees Xk are kept

constant and where the system is closed for flows Jk+1 e Jn’ we have

for the stationary state (De Groot, 1952)
Jk+l = hee = J =0 (2-46)

These conditions are equivalent to the minimum conditions on the entropy

production



22

e 50 =0 (J=k+1l....n) (2-47)

The theorem can easily be rewritten in integral form for continuous

systems. The optimum is, in general, a minimum since diS/dt 1s a positive

definite quadratic form (e.g., (2-43)).

The P.M.E.P. has been examined by many authors. Gyarmati (1967)

has shown that the Prigogine principle is an alternative formulation of
Onsager's principle valid for the stationary case. Callen (1957) studied
the principle from the viewpoint of a microscopic density matrix and
concluded that "in the steady state of an irreversible process the density
matrix is such as to minimize the rate of entropy production'". Klein
and Meijer (1954); and Klein (1955, and 1958) examined the validity of
the P.M.E.P. by the use of specific models. They too concluded that if
the system is not too far from equilibrium, the P.M.E.P. predicts the
steady state. Denbigh (1952) demonstrated that in general the stationary
state of an open system is a state of minimum entropy production only
as an approximation when the system is very close to equilibrium.
Trincher (1961),although appreciating the usefulness of Prigogine's
Theorem, advises that care be taken in its application. In particular,
the P.M.E.P. is not valid during the phase of embryogenesis of a warm
blooded animal. In fact, in this phase there is a continuous increase
in the heat generated per unit mass of the differentiating organism
(1.e., d/dt(diS/dC) > 0).

Kirkaldy (1964 1V) has suggested that since Onsager's steady

state minimax principle of dissipation and Prigogine's P.M.E.P. share a
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common Euler-Lagrange equation, their configuration spaces may be combined
to form a single potential surface. Thus, a stable steady state may be
characterized by a saddle point in a configuration space including both
fluctuations and macroscopic relaxation.

Although we have sampled some of the aréas of linear irrevefsible
thermodynamics, we are still hampered by the constraint of linear force-

flux relations. In the next section we briefly discuss the non-linear

regime.

2.4  THE NON-LINEAR REGIME

Most advances in this area are due to Prigogine and his associates
so the reader is referred to the bibliography of the book by Glansdorff
and Prigogine (1971) for supélementary references.

A great deal of effort has been expended in trying to find a
variational principle free of the restrictions on the P.M.E.P. Kikuchi
(1961) and Kikuchi and Gottlieb (1961) have defined a function called the
"persistency" which takes a maximum in the steady state. Their method
of specifying the steady state (based on the path probability method of
Onsager and Machlup, 1953) is ‘valid for non-linear systems far from
equilibrium provided the stablg steady state exists.

Li, in a series of papers (1962 a, b, c), has defined a
"Thermokinetic Potential" which takes a minimum at the steady state in
non-linear systems. It is again specified that a stable steady state of
the system exists. Li (1962 d) also showed that the "persistency" of
Kikuchi and his own "thermokinetic potential’ agree with each other to

within a constant numerical factor.
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Following Prigogine let us examine the entropy production in

detail. We define the rate of entropy production, P, as

d,s
P=-3-=(oav=(zJxavso (2-48)

dt 1Y1%
v v

"and following Glansdorff and Prigogine (1954) we decompose the time change

do into two parts, namely

do dxc + dJo

Zkaka + EXdek (2-49)

Under the restrictive conditions of the previous section, it is a trivial

result that
1
do=do = E-do (2-50)

Thus, in the linear regime, we have the evolution principle

o,
Q
1}
o
Q
]
N[
&
A
o

(2-51)

Postulating mechanical equilibrium and time independent boundary conditions,

Glansdorff and Prigogine (ibid) showed that the inequality

dP = § dyoav < 0 (2-52)
v
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holds for the entire range of validity of the T.I.P. We will not here
give the complete proof. Rather we will illustrate the theorem with a
specific example. 1In particular, we choose the case of heat conduction

in a solid. Using the standard definition of heat flux Jq = W and

X
q

v (%) we write
X _(s, 8 -1
Yl S We ot (grad T 7) av
\'4

grad ( ) dv (2-53)

[}
<
=
!—‘

Integrating (2-53) by parts, where the surface integral is over

the surface © which bounds the svstem of volume V, we get the result that

9,P BT-l 1
5 =‘£wn e dn - 5 ( ) div II dv (2-54)
Q v

Since we are assuming time independent boundary conditions the surface

integral in (2-54) vanishes.

The equation of conservation of energy is

pC, g—f +divii=0 (2-55)

where p is the density and Cv the specific heat. Substituting for

div ﬁ in (2-54) we then obtain
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V

0% S Cy dT.2

\'
which is the required result since the specific heat Cv is positive in
the entire range of validity of the T.I.P.

We should emphasize that although the change in entropy production
associated purely with the time rate of change of the forces is negative,
nothing has been said about dP itself. While the statement that de <0
is an interesting criterion for the direction of change, dXP is not a
total diffefential (and hence a true potenﬁial function). Thus unless an
integrating factor can be found the result has little practical significance.
Li (1963), however, has succeeded in finding an integrating factor for
an interesting class of problems in heat conduction.

| Glansdorff (1960) has generalized the result (2-52) to include the
possibility of steady fluid flow in addition to the processes of chemical
reaction, heat flow and diffusion, which were considered in the earlier
contribution (Glansdorff anq Prigogine, 1954).
In 1964, Glansdorff and Prigogine constructed a general (and

more practical) evolution criterion by showing that they could find a

quantity ¢ such that
d¢ = 5‘dvmidxi <0 (2-57)

where the Ji and Xi include mechanical processes as well as the usual

fluxes and forces. The important point of this contribution is that while
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d¢ is not, in general, a total differential, it is possible to transform
(2-57) into a total differential in the neighborhood of the steady state.
The associated '"local potentials' depend not only on the thermodynamic
variables such as temperature and velocity but also on the steadv state
variables. Prigogine and co-workers have demonstrated the application
of this principle to the variational solution of problems in fluid
dynamics and heat flow (e.g., Schecter and Himmelbau, 1965; and
Glansdorff, 1966). Since there are classical methods available for
obtaining the same results, we must regayd these contributions as of

essentially mathematical interest.

2.5 ON A GENERALIZED MINIMAX PRINCIPLE FOR ANALYTIC SYSTEMS (J.S. Kirkaldy,

1972)

The P.M.E.P. and its various generalizations for non-linear systems,
whiéh contain the restrisétions to local equilibrium conditions, are
completely inadequate for the description of the broadest class of
self-organizing systems. A general principle, which allows excursions
outside of local equilibrium, will almost certainly have a mini-max
character. This was clearly suggested in the application of Onsager's
Microscopic Fluctuation Dissipation Theorem to the steady state. Reviewing
that theorem, as presented in section 2.3.4, we recognized two classes
of regression paths: those which occur when all fluxes are fixed at the
boundaries so relaxation must always be into the internal heat bath, and
those which occur without the boundary constraints but under internal
constraints which violate local equilibrium so relaxation must be at least

in part into the external heat baths. These two classes of paths led to
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minima and maxima in the dissipation, respectively.

The macroscopic pfinciples like P.M.E.P. assume unique flux-force
relations (or equivalently, local equilibrium) and thereby insist that
the regression is always into the internal heat baths. Hence their unique
minimal character.

The minimax imperative outlined above can be attributed, in general,
to every system's competitive tendency to simultaneously equilibrate
with its internal heat sources and sinks and with the external sources
and sinks. The local equilibrium condition, which is by no means general,
tends to block any paths of relaxation into the external sources and
sinks.,

If we conjecture that a generalized potential function of mini-max
character exists on the basis that very broad classes of stable steady
states exist, then its construction is essentially determined by its
tautologous character (an optimum must be either a maximum or a minimum)
and the mathematical analyticity (infiaite differentiability) which should
characterize a multivariate potential function defining stability in the
sense of the Le Chatelier Perturbation Principle (J.S. Kirkaldy,
unpublished M.S., 1972).

Specifiéally, for a system répresented by the set of system

variables (xi, yi) there must exist a multivariate complex function of

the variables Xy + iyi, of the form

m= E + in (2-58)

which is analytic (i.e., satisfying the Cauchy-Riemann (C-R) or Laplace
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differential equations). If the variables Xy yi are measured from an
origin at the steady state (°) then both £ and n are potential functions

of the form

2 2 -2 :
£=£°+A25=§——§x2+2——-§—~§-x.y +25424 . (2-59
axz i 9%. 9 i’i 3 2 71
i xi y yi
.and
2 2
2 2 % 5% 5 i74 A 271
Xy *1994 Yi
subject to
AL = An =0 (2-61)

In view of the C-R or the corresponding Laplace equations, (2-59)
and (2-60) represent a complementary pair of saddle surféces, with the
stable steady state defined by the saddle point at the origin.

We emphasize that this is an existence theorem only. In practice
it will be very difficult to i§entify the variables Xi0 ¥y which compliment
the functions g, n. Nonetheless, as we shall demonstrate in this thesis
via exact solutions for a number of specifie radiation—absorbing systems,

this basic analytic pattern is generated.

2.6 NON-ANALYTIC SELF~-ORGANISING SYSTEMS

For the thermodynamic description of the most general type of

evolutionary processes (morphogenesis or evolution in the biological world,
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for example) a further generalization is required. The most successful
early theoretical discussion of morphogenesis is due to Turing (1952),
who investigated the stability'of the non-linear differential equations
describing certain diffusive autocatalytic reactions. Prigogine and
co-workers (e.g., 1969) have éxpanded this development substantially
during the past few years. It has been found that for certain critical
values of the rate parameters that the solution of the differential
equatiqns branches.

+ The new branch (or branches), when attained as through a fluctuation,
necessarily involves a break in the symmetry of the main branch. Such
symmetry-breaking transitions have long been recognized in hydrodynamics
(e.g., Chandrasekhar, 1961) and in the field of phase transformations
(Kirkaldy, 1962). More recently, transitions of the type conceived by
Turing have been observed by Zhabotinski (1964), and Herschkowitz-Kaufman
(1970). Prigogine and co-workers have recently suggested the relevance
of this approach to the description of biological evolution (Nicolis,

1971; Prigogine and Ni;olis, 1971; and Prigogine et al., 1972).

Kirkaldy conjectured in 1965 that the hierarchy of symmetry-breaking
steps and intermediate relaxation processes which characterize morphogenesis
or biological evolution can be represented as a discontinuous path on a
saddle surface of the entropy production rate. The discontinuities are
conceived as dissipation-increasing steps which carry the path upwards
towards the saddle point while the intermediate relaxation processes carry
the path towards a succession of local minima. A somewhat analogous
description might be imnosed on the analytic representation given above by

associating the symmetry-breaking events with singularities in the potential
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surfaces.

We have searched without success for a comprehensive model of a
radiation-absorbing system which generates symmetry-breaking transitions
of the type described here; However, a three—lgvel model to be described,
which is capable of masing action, does appear to generate certain

qualitative features of such transitions.



CHAPTER 3

QUANTIFICATION OF ORGANISATION

3.1 INTRODUCTION

The meaning of the term "organisation' is both familiar and
elusive. Examples of organisations are the federal government, General
Motors and the Rotary Club. Biological systems from unicellular algae
to man are examples of organised systems of a different variety. It
may be said that atoms can be organised into molecules and that
molecules can be organised into multi-molecular complexes. These
- examples are all familiar and it is intuitively recognized that the
sygtems are "organised" in some fashion. Yet it is not at all obvious
what features of the systems suggest this designation. Furthermore, it
is not obvious how one should measure the relative 'organisation" of

the different systems.

3.2  DEFINITION OF ORGANISATION

We first point out the fact that "organisation" and "order" are
not synonymous (although they are related). The disorder of a system
is indexed by its entropy (or the order is indexed by its negentrdpy).
A highly ordered system will have a small entropy (e.g., a crystal) while
a disordered system will have a large entropy (e.g., a gas). Klein (1953)

has pointed out that "organisation" and 'negentropy" are rarely equivalent

32
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from considerations of the third law of thermodynamics, viz., "at absolute
zero all (perfect crystalline) states éf the same thermodynamic system have
the same entropy". For example, a mixture of atoms of H, C, O, and S, may
at zero degrees be in the form of a simple crysta}line solid, or alternatively
the same atoms may be arranged in a biochemical molecular crystal. The
bio-molecular thermodynamic state is more "organised" according to our
conventional notions than is the simple solid system. Klein also

shows that a large entropy does not exclude the possibility of a high
degree of organisation. Reconsider the difference between the
"organisation" of the thermodynamic state of a bio—molecule'aﬁd”that of

its crystallized constituent atoms when considered at absolute zero.

Since the entropies of the states are the same the missing factor must

lie elsewhere, Considering the bond energies required to maintain a
complex biochemical structure it is easily seen that there will be a

large difference in the zero point energies of the two systems. It seems
reasonable therefore to include an energy term in the definition of
organisation. In an isothermal system at constant volume, the logical
candidaté for the measure of organisation is the Helmholtz free energy

of the system

A=1U-TS (3-1)

where U is the internal energy, S is the entropy and T is the absolute
temperature. At absolute zero the organisation is to be measured purely .
by the energy term while for non-zero temperatures the organisation is

measured by the sum of the energy and T times the negentropy. In other
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words, organisation is defined as the available energy of an isothermal

system. Because it includes the negentropy, it is a non-conservative

quantity.

3.3 SELF-ORGANISATION

Self-organisation implies a spontaneous increase in the free
energy of a system under fixed external conditions. In general, the
term applies to thermally and materially open systems irreversibly
interacting with fixed environments. Schroedinger (1944) long ago pointed
out the significance of a flow of negative entropy from the environment
into a biological system in order to maintain its viability and also
suggested the importance of an energy flow via the energy content of

food.

For a simple input-output irreversible system the entropy balance

can be written (Kirkaldy, 1964 a, b)

= SN RN S S (3-2)

where the J's represent total fluxes. of entropy. Similarly, we can

write a free energy balance

- =J, -J + — (3-3)

where diA/dt represents the rate of creation of free energy within the

system. Since energy U is conserved in the universe, we also have
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aw =9 -~y (3-4)

in in out out
s _ (JU - JA - (JU - JA - ;_diA
dt T T T dt
d.A
in out 1l i
Is =5 T Ta (3-5)

- =T (3-6)

In Qords, the dissipation of free energy is associated with a loss of
information, the energy part of A always being conserved.

The very general definitional relation (3-6) is not to be
confounded with the thermodynamic relation for systems which are isothermal

with their surroundings (Denbigh, 1951), viz,,

d,S
T . _
"™ T3t (3-7)

for here there is the further condition that all

J,==-TJ, or J, =0 ’ (3-8)
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The meaning of the free energy balance for an open system can be
clarified further by means of the schematic flow diagram shown in

Figl 3. l.

in out
JA A JA
Free Energy >» System utilizing part —{Free Energy

Source of flows to increase Sink
(decrease) its
organisation (at a

te dA
rate HF)

Low quality heat created
in dissipative processes
(heat sink)

Fig. 3.1 Schematic Diagram of Self-Organising System

This figure, in agreement with equation (3-3), states that the
system utilizes part of the incoming free energy (Jiﬁ) to increase its
own organisation (at a rate %%) returning excess free energy and other
waste material to the surroundings (JXUt) while depositing low quality
heat‘(— T 2%%) into the heat sink. It is clear from this that the
complete description of the state of a self-organising sysfem requires

the specification of two internal quantities: the free energy (A(t)),
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which measures the evolution of organisation, and the dissipation rate
(the rate of entropy production in the universe due to processes occurring
within the system).

These ideas are consistent with those of Schroedinger (1944),
von Bertalanffy (1950), and Blum (1951). The latter regards the basic
source of free energy of nourishment for the biological world as the free
energy contained in the solar radiation which is "fixed" or trapped on

earth by the green plants.

3.4 COMPLEXITY AND DIFFERENTIATION

We anticipate that some readers will find our definition of
organisation as too restrictive since it seems at first sight to be
incapable of dealing quantitatively with morphogenesis and differentiation
and the resulting changes in complexity of the system. In our view, the
problem grises through a misunderstanding of the operational meaning of
the term complexity; Complexity arises through progressive morphogenesis
and differentiation and can be indexed by the progressive loss of microscopic
‘symmetry elements. This concept, like the number of symmetry elements
in crystallography, does not map monotonically into any of the state functionms.
The crystallographic state of simple isothermal equilibrium systems can, in
principle, be uniquely defined by the free energy minimum principle. The
symmetry is in this context a derivable quantity. Note, however, that
conjectured symmetries are an essential aid for minimization of the

amount of computation required in predicting stable and metastable

thermodynamic states.
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Analogously, we suppose that optimization of our proposed complex
state function (of two variables) is, in principle, sufficient to uniquely
define stable and metastable steady states, including the symmetry
elements. Again, however,'conjectured symmetries will be a necessary
part of economic and tractable solutions to préblems of kinetic stability.
Indeed, in approaching the problems of biological morphogenesis and
-differentiation, it would appear necessary to invoke empirical rules
of symmetry evolution. For example, evolutionary progress might, in the
broadest sense, be regarded as a monotone function of the decrement of
microscopic symmetry (differentiation). Such developments are beyond
the scope of this thesis.

In conclusion, it is our program to describe organisation.and
self-organisation in terms of the evolution of free energy (A(t)) and of

the'dissipation rate (or rate of entropy production).



CHAPTER 4

LINEAR* RADIATION .ABSORPTION PROCESSES

4,1 INTRODUCTION

This chapter is concerned with the thermodynamic behaviour of an
interesting class of radiation absorbing systems. A general model is
first introduced along with a series of definitions and short derivations.
The properties of this general class are then explored by a systematic
study of two, three and four level systems. The model is finally extended
to include the'effects of a non-constant number of particles. The
connections with a number of physio=-chemical and bioclogical phenomena are
explored. The treatment is patterned after Klein's (1958) elementary

quantum-mechanical description of a two-level radiation absorption process.

4,2 DESCRIPTION OF THE SYSTLEM

We consider an ensemble of N identical systems (or partiélés),
each system having an average bounded energy. TFurthermore, each system

has a finite set of quantized states which are accessible to it, and it

Here, linearity refers to the order of the differential equations, not
to the order of the flux-force relations. By-and-large, these models

correspond to non-linearity in the thermodynamics of irreversible

processes,

39
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is immersed in a heat bath which is maintained at a temperature T. The
ensemble is irradiated with radiation including resonant frequencies,

v = (Ej - Ek)/h’ where h is Planck's constant and Ej and Ek are the
energies of any two allowed states of each particle. Particles are
assumed to be non-interacting, which is to say that, the ensemble is dilute
in the sense that the volume available to each particle is large compafed
to the range of interparticle forces.

| After Thomsen (1953), we introduce the following definitions:»

(1) Probabilities The probability that a system (particle), which is

in state'k, chosen at random from the ensemble at any instant is denoted

as Py. Each particle must be in éome allowed state so
'Ek Pk =1 | (4-1)

It follows, therefore, that the average energy of the ensemble is given

by

ESystem =N (zk Pk ek)' (4-2)

where the ek are the energies of the allowed particle states as measured

~ from the lowest lying state.

(2) Transition Probabilities Each particle undergoes transitions

between different allowed states due to interactions with the heat bath
or interaction with the radiation. In this section we use the symbol,

Aij(z 0), to denote the conditional transition probability per unit time



41

of a particle going from state i to state j, due to interactions with the
heat bath. Thus, Pikijdt is the probability of a particle originally in
state 1 going to state j in the time dt. Aii is defined as zero for all 1i.
Similarly, we use the symbol rij(z 0) to denote the conditional transition
probability per unit time of a particle going from state 1 to state’j

due to interactions with the radiation. rii is defined as zero for all
1. It is understood that the numerical specification of the transition
probabilities requires the computation of matrix elements (first order
theory) of the form |<j|V2§t|i>|2 where ngt is the operator representing
the interaction between states | i>and | 3 >.

Following Fermi's Golden Rule (Baym, 1969), it is assumed that

the interactions with the radiation field are symmetric, i.e.

rij = rji (4-3)

and that the principle of microscopic reversibility yields

My e"Be? = Ay e PE3 (4-4)
where 8 = l/KBT and € ej arer the energies of the states involved (see
for example, Klein and Meijer, 1954; Cox, 1950 and 1955; Mathews

et al., 1960). The assumption that the resgrvoir is maintained in
equilibrium at temperature T (the reservoir is assumed to be so large
that interactions with the particle system do not significantly affect

its equilibrium) guarantees the result (4-4) for Fermi-Dirac and
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Bose-Einstein statistics as well as Maxwell~Boltzmann statistics

(Mathews et al., ibid).

4,3 THE RATE EQUATIONS

From the definitions given above it follows that the probability
of a transition out of state i, in time dt, is given by summing*
Pi(kij + Fij)dt over all j. Similarly, the probability of a transition

into state 1 is given by summing, Pj()\ji + Pji)dt over all j. Thus the

net change in Pi in dt is

dp, = L.P. (X

1 $£3Py1 + Pji)dt - ZjPi(xij + Fij)dt

or

dI’i

1_-._(.1.E=zj[1>j(xji+rji) -Pi(xij+l‘-ij)] (4-5)

2
1

Equation (4-5) may be written in matrix form as

.1'1 =AP (4-6)

It is implicit in the definitions that the particles are of the
Maxwell-Boltzmann type (Mathews et al., ibid; and Meijer, 1956) ; however,
for systems of independent particles (e.g., dilute system of electrons)

such a result is still valid.
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or
Pi zj(Ajin - AijPi) | (4-7)
where
Py
p=|® (4-8)
Py

31 ¥ Ty (4-9)

and

Aij = Aij + Fi_j (4-10)

This system of equations may, with appropriate initial conditions,

be solved by the method of characteristics (cf. Appendix 1).

In the steady state all éi are zero and the set of linear

differential equations (4-6) reduces to a set of M linear algebraic

equations of the form

(4-11)

which may be solved for the steady values of the probabilities.
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Equation (4-1) reduces (4-6) to a set of M = 1 linearly independent

differential equations.

Condition (4-11) is equivalent to the statement that in the steady
state transitions between any two states occur with equal frequency in

both directions. That is, for every i and j

AyiPy = AyyPy (4-12)
This condition (4-12) is commonly referred to as detailed balance,

4.4 THERMODYNAMIC FUNCTIONS

The definition and construction of the thermodynamic functions

requires some care. We begin with the usual definition of the entropy

(configurational part) per particle

S,& «K L.P.1InP 4-13
¢ = gFsPytny (4-13)
where it is recognized that

lim P, laP, > 0 : (4-14)

P 0
3

It is readily seen that when one of the Pj = 1, the entropy assumes its

minimum value, namely zero. Evidently, the entropy is a maximum when all

P, are equal,

3
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To calculate the Helmholtz free energy, A, arbitrarily define the
energy of the lowest lying state to be the zero reference state, and

evaluate the free energy per particle as

A=1U-~- TSC (4-15)

‘where SC is the configurational entropy, T is the absolute temperature

(temperature of the reservoir) and the internal energy per particle is

U

EiPiei (4-16)
where the sum is taken over all states. This may be rewritten as
U= KBTZPilnai (4-17)

where oy is the Boltzmann factor for transitions from level 1 to the
lowest level and is given by
eiB

oy =e (4-18)

where B = l/KBT. Using (4-18), we can rewrite (4-4) as

_ ~B(ez - €4)
Xij = e h| i Aji

or
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Aij = ajiAji (4-19)

The simplest case we can consider is pure relaxation into the

heat bath (i.e., Aij 4 0, Pij‘= 0). Then, in the steady state we require,

as usual, that equation (4-11) be valid. For an example, consider a

two level model. In the steady state the condition holds that

A21Pl = A12P2 .(4—20)

and employing (4-19), we have the result that

®12212%1 = 210% (4-21)

or

- = eBle2 —e1)p | -
P, = 1/0,P, =& P, = a,P, (4-22)
which is just the result we would get if the system were in equilibrium

with the heat bath. (Of course, in the absence of external forces, i.e.,

rij = 0, the system will try to equilibrate with the heat bath and when

e

all i = 0 the system will have equilibrated.)

The free energy for the system is now written as



o
i

N(U - TS)

i1

NKBTZiPilnaiPi

N(KBTZ P, lna, + KBTZPilnPi)
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(4-23)

The calculation of the entropy production rate is carried out

for a system of particles with two levels.

The generalisation to

multi-level systems is obvious from the form of the solution. Recalling

that Pij = rji we set
Pp=Tor =T
and from (4-19) we have
A1 = %2%12
or
INCICH IS Y
@, = e

Thus, we may write the equations for the time evolution as

(4-24)

(4-25)

(4-26)
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dP1
i (xlz + I‘)Pl + (x21 + I‘)P2
= - (Alz + F)Pl + (alz)\12 + I‘)P2
= - EE& (4-27)
dat
The rate of entropy production of the system, éi’ is evaluated

as the rate of change of entropy of the universe attributable to

processes occurring within the system, viz.,

: df d3
s, = (G0 + (3P (4-28)
particles Bath
Proceeding to evaluate these two texrms separately we ha-e
4 (s, = -NK” é—-(P inP, + P,1nP,)
it °C pdt “ 171 272
= —NKB Plln(Pl/PZ) (4-29)
Secondly, the heat bath gains an entropy
€, - €
= b -
AS = T =T (4-30)

for each transition down in the particle system and this has a probability

A. At in time At. gimilarly, the heat bath loses an entropy

Pod12t12



Ae :
AS = T (4-31)

for each upward transition in the particle system with a probability

Plklet in time At. The net entropy gain in the heat bath is

_ oy Ae e oy
AS = N T ulZAIZPZ klzPl)At (4 32)

In the limit as At becomes small

ds _ . he _ an
e = N 7= (a50,P) = ApP)) (4-33)
Bath

Adding (4-29) and (4-33) and substituting (4-27) we get

i dt Bath dt

Ae
= N FE (agphgpPy = AppPy) = NRp[=(hyy + TPy

+ (ul?_x12 + r)P2]1n(P1/P2) (4-34)

After rearrangement we obtain

O, nP o, P
© 122 12°2
S1 = NKB{XlZPl 7 1) 1n( P )
1 1
)
+ FPlcf— - 1)1n(P2/P1)} (4-35)

1

49
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It is evident that éi is positive definite since it is the sum of terms

of the form (X - 1)1nX > 0 for X > 0.

It is obvious that for a multilevel system (4-35) generalizes to

o , ki
8, = NRB{Z [Aijkc——F—io - 1)1n(-—1—10
j>k

kj k(P /P l)ln(Pj/Pk)]} (4-36)

Further results will be derived as they are required for the

discussion of each particular model.

4,5 DETAILED BEHAVIOUR OF THE TWO LEVEL MODEL

4,5.1 Introduction

This model of an irreversible process was originally proposed and
investigated by Klein (1958) with a view to testing the range of validity
of the principle of minimum entropy production. We have found it to be
a very useful vehicle for investigating the minimax principle, as described
in Chapter 2, and the relationship bétween the self-organising properties
and the dissipative properties of a "photo-synthetic" system. Extensions
to more realistic models will be introduced in later sections.

Referring to Figure 4.1, we have a system consisting of ny + n, = N,
weakly interacting particles and each particle is in one of two possible
energy states which are separated by an energy Ae. It is assumed that the

entire system is in good thermal contact with a heat bath at temnerature
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T, and is irradiated with monochromatic radiation of the resonant frequency

v such that

hv = Ae (4=37)

The various transition probabilities are defined in Table 4-1, with the

usual Boltzmann factor

o= eAE/KBT (4-38)

KB being the Boltzmann constant. b may be controlled by changing the

intensity of the radiation. Note that in the table the probability of

coupling between the particles and the radiation is symmetric in accord

with Fermi's Golden Rule (ibid).

The occupation probabilities are defined as

P, = ni/N (4-39)

or

Pl + P2 =1 (4-40)

thus

Lop o _p - __ 2 -
it P11 =Py = -t (4-41)
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The time evolution of the occupation probabilities is evidently

defined by the conservation equation

. l _
| Sl (aa + b)P2 - (é + b)Pl
= - P2 (4-42)
which has the obvious solution

_ Kt , o5 o, _ Kt
Pl(t) = Pl(O) e + Pl (L-e )

S s, Kt
=P+ (Pl(O) - Pl) e (4-43)

where K = aa + a + 2b, Pl(O) = Pl(t = 0), and Pi is the steady value of

Pl.
It is easily shown that P1 (and hence PZ) are monotonic functions

of time, the actual evolution being determined by the initial conditions

as shown in Table 4-2.

4,5.2 Thermodynamic Functions

The rate of entropy production of the system is

diS

‘ ds §
S, 25— = (37 + (52 (4-44)
i t de particles de Bath ’
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Table 4-1

Transition Probabilities Two Level Model

Transitions Probability per unit time of transition
from between levels, due to interaction with
levels
Heat Bath Radiation
12 a b
21 aq b
Table 4-2
Sign of Pl and P2

As Function of Initial Conditions

Initial Condition Sign of 131 or 132
[s) S . »
P1 > Pl P1 <0 < P2
o S L] .
Py <Py Py>0>7p,




55

where

ds Ae

D) = NK. (=—=)(aaP, - aP,)

dt Bath B KBT 2 1l

= NK, (1na)(aaP2 - aPl) (4-45)

and

<%% o= %1':' (8¢

particles

d
= - NKB it (PllnP1 + lean) (4-46)

or combining (4-45) and (4-46) (see section 4.4)

Si = NKB [aPl(aPZIP1 - 1)1n(aP2/Pl)

+ b2 (B,/P) = DIn(P,/Py)] 2 0 (4-47)

In the steady state all Pi = 0, so solving (4-40) and (4-42),

we obtain the steady values

+

Pi = (aa + b)/(ac + a + 2b)

and (4-48)

S .

P (a + b)/(aa + a + 2b)

N



56

The steady state rate of entropy production is

(éi)s = N (A%)(aaPz - aPl)

K

= (B ab _ -
NP GTar e - D Inae20 (4-49)

which is an increasing (and bounded) function of the radiation of intensity

b.

The Helmholtz free energy (organisation) of the system is from

section 4.4

A = NK (P 1nP, + P,lnaP,) (4-50)
The steady value of A is also a monotonically increasing (and bounded)
function of the radiation intensity b, From the above, it can be seen
" that if the radiation to the svstem is increased, both the steady state
dissipation and the stored free energy will increase. It can be
concluded that the system utilizes part of the available energy from the
environment to increase its internal organisation.

Table 4-3 is a summary éf the behavigur of the system variables,
Pl’ éi’ and A as functions of the system coupling parameters a and b.

It should be noted from Table 4-3, that the saturation value of

the free energy, which is the maximum possible value

Ab—m = NKBTIZ In (a/4) (4-51)
a constant
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will be positive for a > 4. Thus, if the level spacing Ae is such that

Ae > ZKBT 1n 2, the saturation free energy will be positive. The equilibrium

free energy is given by

Ao = NK;T In (a/o + 1) ' (4-52)

a constant

and is always negative. Thus at saturation, the system will always
accumulate free energy with respect to the equilibrium state and the free
energy will be positive if Ae > ZKBT In 2. (This is a kind of
statistical uncertainty principle since, if levels one and two are
separated by a Ae < KBT’ their fluctuations will ensure that they are
always equally populated. It is therefore only meaningful to talk about
increasing the population of level two when it is possible to distinguish
between the two levels.) The evolution of A as it approaches the steady
state (increasing or decreasing) is indicated in Table 4-4.

The behaviour of the time evolution of the entropy production

rate is given in Table 4-5.

These Tables 4-4 and 4-5 show that in the range, Piq > Pl > Pi,
the free energy, A, is a monotonically increasing function of time and
concomitantly the time rate of change of the entropy production rate can

be either positive or. negative, The final approach to the steady state

is often characterized by an increasing entropy production rate,

4.5.3 The Free Energv Balance

The time rate of change of the free energy dA/dt, and hence A, may



Table 4-4

Evolutionary Behaviour of A

As a Function of Initial Condition

d
Range of Pl Sign of T (A)
e
P1 > qu negative
p¥d 5> p. > PS positive
1 - 1~-"1 .
P, < PS negative
1 1




Table 4-5

Evolutionary Behaviour of éi

As a Function of Initial Condition

Range of Py Sign of %E (éi)
P1 > Piq *% negative
Piq > Pl > Pi * either + or -
1/2 < P1 < Pi * either + or -
Pl < 1/2 negative

* by "either" we mean that the actual sign of the time rate of
change of the entropy production rate depends upon the actual
values of the parameters, a, b, and until these values as well
as Pl are known, nothing precise may be said about the 'sign"
of ~4_(S)

dt 1
%

pd = equildbrium value of P

1 13 PS = steady value of P

1 1’
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be alternatively calculated from the balance equation for the free energy

equation
d.A
dA = i
dt =~ ,{ Ia ds + i& (4-53)
surface :

d,A :
where 3A is the outward flow of free energy and sz is the free energy
produced within the system. We have

.+_ - -
- j; 3, * s = n@e)be, - 2, (4-54)
surface
and
i iv _
== T =-TS, (4-55)

where (Si) is given by (4-47). Substituting (4-47) and (4-54) into
(4-55) and performing the time integration (it is assumed that this is

a legitimate procedure as A is defined for all t), we obtain

t

AA = jﬂ (%%) dt = A(t) - A (t = 0)
0

= NKBT{Pl(t) In Pl(t) + Pz(t) lna Pz(t)

- Py(t = 0) 1n P (t = 0)

+ Pz(t =0) 1ln « Pz(t = 0)} (4-56)
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which agrees with (4-50) up to a constant term. This result is consistent

with the conclusions of Chapter 3 concerning free energy dissipation.

4.5.4 The Force-Flux Relations and the Mini-Max Principle

Let us now examine in more detail the behaviour of the terms in

(4-47). It is usual to regard the entropy production rate as the sum of

- two, or more, bilinear terms of the form

d,s
T I S JX, (4-57)

where Ji’ Xi are the generalized fluxes and forces, respectively, In our

model we may consider the term
NKB aP1 (ulePl - 1) 1In (aPZ/Pl) (4-58)

as describing a process of ‘pure thermal relaxation into the heat bath

with a flux

NKy aP; (aP, /P, = 1) (4-59)
and a driving force
in (aPZ/Pl) (4-60)

which expresses the deviation from the equilibrium populations of levels

one and two. Similarly we may consider the term
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P
2 .
NKBb Pl ‘FI - 1) 1In (PZ/Pl) (4-61)

as a radiation-induced diffusion process. In this case we have as a

flux

)
NKBb Pl (FI -1) (4-62)
and as the driving force
In (P2/P1) (4-63)

which measures the deviation from the saturation populations.

The distinctivé behaviour of these two terms in the entropy
production rate is illustrated by the typical example shown in Figure
(4.3). Ve see that for the initial condition chosen (equilibrium) the
diffusion term is monotonically increasing and the thermal term is
monotonically decreasing. Thus, the dissipation rate may be regarded as
a competition between the two processes mentioned above, one tending
towards a maximum and one tending towards a minimum, the sum function
taking, in general, a maximal or minimal steady state. (This helps to
explain the equivocal character of éi as shown in Table 4-5.) The

behaviour of the free energy for the same example 1s also indicated in

Figure 4.3. The free energy can be decomposed into two terms

A=A +A (4-64)
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such that
Al = NKB(Pl 1In Pl) ’ (4-65)
Az = NKB(P2 1n aPz) (4-66)

From the figure it is evident that the processes which increase the
population of level two also increase the free energy.

The foregoing lends itself to a new and rather profound
thermodynamic interpretation of the steady state (Kirkaldy, 1972). It
is a balance between forces trying to simultaneously equilibrate the
system with the free energy sources and with the heat sink. Note that

P2
at saturation, P1 = PZ’ so X2 = In §I-= 0, and at equilibrium Pl = q P2

so Xl = 1ln o 5% = 0. Balanced, non-zero values of these two competing
forces characterize the steady state, and this must lie between the two
extremes irrespective of the initial conditions. The sign and relative
strengths of the two forces during evolution, leading from the initial
conditions, specify the minimal or maximal character of the steady state.
When o + 1 (i.e., Ae/KBT + 0) expression (4-47) can be linearized

to yield the conventional quadratic form of the linear theory of

irreversible thermodynamics, viz.

P P
s N 2 2 2 2
Si N NKB {aPl(ai;; -1 + bPl("P-l- - 1)} . (4-67)

It is readily scen by differentiating (4-67) with respect to time that the
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mini-max character of éi is retained in the linear limit, viz., for systems
close to equilibrium (i.e., b << 1) the time derivative of (4-67) becomes

d 5 Pz .

T PN NKB{a(a‘T;; - 1)[2(x = 1) + P,1} P, (4-68)
which can be either positive or negative.

It is worth noting from equation (4-68) and the Pi(t) that if the
initial condition is P; > Pi (in the direction of equilibrium with the
heat sink, then the subsequent relaxation is maximal. If Pg < Pi
(in the direction of equilibrium with the source) then the relaxation is
minimal. These initial conditions are equivalent to those which appear
in Onsager's mini-max theorem (2.3.4) and Prigogine's minimal theorem
(2.3.5). This can be seen by first preparing the system with b fixed and
a = 0 which specifies an initial state at saturation., Returning a to its
non-zero value, the system relaxes towards a minimum in the entropy
production. These two operations are equivalent to an internal fluctuation
towards upper level occupancy and § S div J ° ndA=0 (Onsager) or Xn
unconstrained (Prigogine) during subsequent relaxation. On the other hand
if the system is momentarily prepared with b = 0, which is the incremental
equivalent of Onsager's continuum constraint (2-38), then the subsequent

relaxation is towards a maximum in the entropy production.

4.5.5 Numerical Calculations

The time evolution of the above model was studied in detail for
many sets of parameters and initial conditions. We find, with Klein,
that for many combinations of parameters and initial conditions, the

steady state rate of entropy production assumes a minimum or very nearly
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minimum value. However, there are also many arrangements where the system
tends to a maximum in the entropy production rate as the system approaches
the steady state. The behaviour of the free energy curves is found in
most instances to complement that of the entropy production curves.

It is seen from an examination of Fig. 4.2 (a) and Fig. 4.2 (b)
that quite different behaviour results from the different initial conditions.
-In case (3) of Fig. 4.2 (a), a purely minimal approach to the steady
state is obtained while in cases (1) and (2), the final approach to the
steady state is along a maximal path. The curves for the free energy
in Fig. 4.2 (b) show a similar behaviour, fhese particular results are,
of course, consistent with the general statements made in Table 4-4 and
Table 4-5. We conclude that -in any case where the magnitude of P2
increases towards its steady value, both the entropy production rate and
the accumulation of free energy assume maximal behaviour.

Fig. 4.3 shows the competitive tendency of the two terms in the
entropy production rate. In this example, the thermal relaxation term
shows maximal behaviour and the diffusion term shows minimal behaviour
as the system approaches the steady state. For the free energy decomposed
into two terms, one term increases and one term decreases as the system
approaches the steady state. .

Fig. 4.4 illustrates another interesting property of the two level
system, We see that there is a minimum ratio of b/a necessary in order
that the system have a positive free energy in the steady state, The
larger is b, the further is the system away from equilibrihm, which must

be the case for a positive free energy,

Table 4-6 contains the steady values of the entropy production
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Fig. 4.2 (a) Entropy nroduction versus time for various initial conditions,

The parameters were a = ,0l, a = 30., and b = .1,
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Fig, 4.2 (b) Frce enerpgy versus time. Conditions same as in 4.2 (a).
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Fipg, 4.4 Critical b/a. Free energy versus time for svstem initially in

equilibrium, Parameters were a = .01, a = 30., and b/a = 1, 2, 3 and 4,
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rate and the free energy for a wide range of parameters. It is apparent
that both the rate of entropy production and the free energy increase
with increasing b/a ratio, at fixed a. For decreasing the ratio b/a
with fixed b, the rate of entropy production increases but the free
energy decreases.

In Fig. 4.5, we see again the effect of changing the b/a ratio
for fixed b. The results are in agreement with the conclusions of
Table 4-6. It is worth noting that for b/a = 100 the system is virtually
in equilibrium with the energy source and we have a purely minimal
approach to the steady state. Indeed, we can say, in general, that
processes of relaxation toward complete equilibrium with either the
energy source or the heat sink result in a purely minimal behaviour of
the entropy production rate.

We see in Fig. 4.6 the effect of changing the level spacing
‘while maintaining a constant b/a ratio. While the entropy production
rate increases with increasing spacing, the free energy does not.
Indeed, the free emergy is maximized for an intermediate value of the
level spacing.

In Fig. 4.7 and Fig. 4.8, we see the effect of changing the
b/a ratio during the time evolution of the system. From Fig. 4.7 (a)
(b), we see that increasing b/a (fixed a) gives rise to subsequent
maximal behaviour of both the rate of entropy production and the free
energy while decreasing b/a (fixed a) gives rise to subsequent minimal
behaviour. In contrast, we see from Fig. 4.8 (a) that increasing b/a
(b fixed) gives rise to subsequent maximal behaviour for both the entropy

production rate and the free energy. The entropy production, however,
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shows a net decrease. From Fig. 4.8 (b), we see that decreasing the
ratio b/a (b fixed) leads to subsequent minimal behaviour for both the
entropy production rate and the free energy.

Fig. 4.9 shows a plot of the entropy production rate and the free
energy in "natural" coordinates. These coordinﬁtes are a measure of the
deviation of the system variables from their steady state values. The
.origin representing the steady state. Both curves attempt to give a
three dimensional representation. The coordinates for the entropy

production curve are
. e vSy7/a \S S ~Kt
[s; - (5)) ]/(Si) y 1n (Pl/Pl) and e
where K = aa + a + 2b. The coordinates for the free energy are
A-2/5, 1@/} ana e

where K is as previously defined., It is seen that for varying initial
conditions the functions éi and A may follow either minimal or maximal
paths which lie on a kind of saddle surface. From an examination of

the corresponding curves in Fig. 4.9 (a) and Fig. 4.9 (b), we see that

the entropy production rate ané the free energy behave in the same fashion.

Here we have obtained maximal behaviour for increasing P, as the system

approaches the steady state in agreement with earlier conclusions,

4.,5.6 Discussion of Two Level Model

Although the model is very elementary, it nonetheless exhibits
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many qualitative features of a photosynthetic system. The primary process

in photosynthesis may be fepresented schematically by the equation
A+ hvZa* (4-69)

where the radiation field creates a high energy product (A*) from a low
free energy reactant (A). The material A* is then used to drive chemical
reactions which produce the carbohy&rates necessary for the growth of the
green plant (Rabinowitch and Govindjee, 1969). The production of A* in
(4-69) represents an increase in the free energy content of the
photosynthetic system which is, of course, supplied by the radiation
field. The entropy production of our model corresponds to the heat-
producing processes occurring as the reaction (4-69) proceeds.

Two further interesting features of the model are, that it
requires a minimum radiation intensity before it can accumulate free
energy, and it shows satu;ation effects, both of which have analogies in
photosynthetic systems.

There are many non-biological exsmples of processes corresponding
to our system. We might, for example, consider a dilute solid solution |
of a paramagnetic ion which is placea in a magnetic field and then
irradiated. For a more concrete illustration let us examine Fig. 4.10.
Fig. 4,10 (&) is a copy of Bloembergen's Fig. 4 (1949) in which a crystal
of Can has been placed in a constant magnetic field and irradiated with
an r.f. field. At time zero, the power of the r.f., field.is reduced and

19

Fig. 4.10 (a) represents the r.f. absorption by the F*~ spins as the

system relaxes toward equilibrium with the heat bath. Fig. 4.10 (b) shows
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the analogous behaviour of our two level model. At time zero, the
radiation coupling is halved. Then the graph shows the subsequent absorption
'of radiation as the system relaxes toward tﬁermal equilibrium,
The main results of this section are the following:
(1) the entropy production has a mini-max character; that is, it may

either increase or decrease as the system approaches the steady

state

(ii) for certain sets of parameters and initial conditions, an

increasing rate of dissipation parallels an increasing free energy

(iii) in order that the system have a positive free energy (self-
organisation) the ratio b/a must exceed some minimum value

(i.e., the system must tend to a state far from equilibrium)

(iv) for a fixed b/a ratio the free energy optimizes for an

intermediate value of the level spacings.
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4.6 THE THREE LEVEL MODEL

4.6.1 Introduction

This is an extension of the two level model discussed in section
4,5. The model is analysed .in two parts: the first part deals with a
restricted number of transitions, the second part removes this restriction.

The model is represented schematically in Fig. 4.11. For clarity
the only radiative transitions shown couple levels one and three. The
transition probabilities indicated in Fig. 4.12 are defined in Table
4-7. The model is composed of a system of N weakly interacting particles
which are in good thermal contact with a heat bath at temperature T° (K).
Each particle has three accessible energy states and in the general model
transitions are possible between any pair of states. The system is
irradiated with monochromatic beams of radiation of a resonant frequency,
v, where hv = E3 - El’ etc., and is allowed to evolve in time for various
initial conditions and sets of parameters.

If n, represents the number of particles in energy state i, we

may write .
n, +n, +n, =N (4-70)
The occupation probabilities of the various levels may then be defined as

P, = ni/N - (4=71)
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Table 4-7

Transition Probabilities Three Level Model

Transitions Probability per unit time of tramsition
from between levels, due to interaction with
levels
Heat Bath Radiation
1+2 a9 b12
*
21 2312%12 b2
23 323 by3
32 353%3 P23
1-+3 ayq b13
31 313%13 b3
%

aij are Boltzmann factors, such that

%y = exp((Ej - Ei)/KBT)
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with

P, +P +P =1 (4-72)

and

dPl dP2 dP3

i Tt =0 (4-73)

4.6,2 The Restricted Three Level Model

We first specialize the model to oné where

b

23 =P

13 = 812 = 0 (4-74)

Utilizing these restrictions in Table 4~7, we can write the rate

equations which govern the time evolution as

dP

- —_l'. = - - —
Py E2gp = (rapy = a3 = byg) By + (apy04,)
+ (a13u13 + b13) P3 (4-75)
.,
Py =qc = (a39) Py + (mapymy)) Py (4-76)
. dp
P, = —3

3 5qc = (a3 Fbyg) Py + (majqmy = byg) Py (4-7D)
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The exact solution of equétions (41]5 to 4-77) 1is given in
Appendix 1 in terms of arbitrary initial conditions and parameters
(transition probabilities). These solutions show that all the occupation
probabilities approach their steady state value; asymptotically with the
time.

The steady state occupations Pi are found by setting dPi/dt =0
“in 4-75 to 4-77 and solving the resulting algebraic equations. We

obtain for these steady state values

< .

P} = ay, (a;40,3 ¥ b;9)/K

25 = (a..0i, + b ) /K  (4-78)
o = (273013 + by3

PS

3 = %yp (a5 Fbyg)/K

where K = @19 (al3a13 + b13) + (a13a13 + b13) + @19 (al3 + b13).

It is interesting to note that in the steady state

P (4-79)

o s
N = W
It

which is just the ratio that would obtain at equilibrium. This states
that the degrees of freedom not coupled directly to the external driving
force are effectively decoupled from that force (i.e., b13) at the steady

state. The values Pi and Pg are not, however, the equilibrium values.



92

It is apparent that the steady state occupation of level three (Pg) has

increased over its equilibrium value (equilibration with the heat bath

S

with P9 = 23 + al3)), while Pl and Pg have decreased from their

1
equilibrium values. Thus the radiation has pushed particles into the

als/(l + a

. highest energy state and depleted levels one and two.
Utilizing the evaluations introduced earlier in this chapter,

we write the rate of entropy production Si as

: 12 2 12 2
8; = NKB{alzPl( P -1 In (5 )
1 1
o, P
13°3 13 3
+ P.(——-1) 1n ()
13°1 P1 Pl
P3 P3
b 3P1(§—-— 1) 1n (5—9} (4-80)
1 1
and the Helmholtz free energy as
A= NKBT{PllnPl + P,lna, P, + P31naP3} (4-81)

Using (4-78) it is seen that Si’ given by (4-80), reduces at

the steady state to

oS pS
© .8 3¥3 %y403
(8,07 = NKy{a, 4P 1( o5 -1 In (g oS )
L3 P
PS Pg
( -1 In ()} (4-82)
b,3%1 S o8

1l 1
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That is to say the entropy production associated with the uncoupled
transition vanishes at the steady state.

Table 4-8 summarizes tﬁe steady state values of the system
variables, namely, the occupation probabilities, the entropy production
rate and the free energy, for'various limiting values of the system
parameters. We note from the Table that even in the case of saturation
between levels 1 and 3 it is necessary to add the additional sufficient
restriction that 613 > 9 to assure that the steady free energy be
positive.

Exact solutions for many sets of parameters and initial conditions
have been evaluated and a selection of results will now be presented.

The mini-max behaviour of this model is shown clearly in Table 4-9.
initially the system was in equilibrium with the heat bath. After
illumination the system immediately begins to store free energy (gained
from the radiation field) and the various terms in the entropy production
rate begin to change. It is apparent that terms which couple directly

to the driving force are unambiguous in their behaviour. The term, D2,
which results from coupling ?o the heat bath, increases steadily as the
system moves further from equilibration with the heat bath. On the other
hand, the term D3, resulting from coupling to the radiation field, decreases
as the system approaches equilibrium with the energy source. The remaining
term which couples with the heat bath but not directly with the energy
source is ambiguous in nature, first increasing and then decreasing (it is
zero in the steady state). Thus, it is apparent that evolutionary paths
exist along which the entropy production rate may increase or decrease as

the system approaches its steady state.
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Demonstration of Mini-Max Behaviour for Restricted Three Level Model

Table 4-9

Time p1** . pa*  p gttt
(/NKp) (/NRp)  (/NKp)  (/NK,T)

0 0.0 0.0 .314 0.00
1 0.0 046 .161 .0559
2 .000009 .085 .125 .106
3 .000012 .106 +113 134
4 .000014 <117 .104 <148
5 .0000152 ,123 .101 .156
6 .0000155 .125 .0994 «159
7 .0000155 .126 .0986 161
8 .0000155 .127 .0983 .162
9 .0000154 ,127 ,0982 " .163
10 .0000152 .128 .0981 .163

E3S

The system was initially in equilibrium and then
at t = 0 was illuminated with radiation coupling

levels one and three. The system parameters were:

219 = +001; a;3 = 013 byy = .15 oy, = 55 0y = 10
and @) 4 = 50
Dl =

Pl(a12 2/P l)ln(oz12 2/P )

D2 = a4 1(a]3P3/P 1)1n(a13P3/P )

D3 b3 1(5/? l)ln(P /P )

n

AA

A(t) - A(t=0)

95
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In Fig; 4.12 we see the effect of various initial conditions on the
temporal evolution of the system. It is apparent that the behaviour is
not simple, although certain tfends can be identified. With respect to
the rate of entropy production (Fig. 4.12 (a)), depending upon the initial
conditions, the behaviour can‘be maximal or minimal as the system approaches
the steady state and either maximal, minimai or mixed for shorter times.
Indeed, there is no such criterion for anticipating each of these kinds
of behaviour. Similar ambiguous behaviour occurs with respect to the
free energy, as may be seen in Fig. 4.12 (b). However, it is generally
the case that the free energy shows a net increaée for initial conditions
such that the highest energy state is underpopulated with respect to its
steady value. Otherwise, the free energy shows a net decrease. Of
particular significance is the purely maximal evolutionary behaQiour of
the entropy production rate for case (A) of Fig. 4.12 (a). This also
occurs with a net increase in free ‘energy and a maximal approach of the
free energy to the steady state (case (A) of Fig. 4.12 (b)).

The effect of relative spacing between the levels is to be seen
in Fig. 4.13. Both the rate of entropy production and the free energy
show an increase when level two is "moved" from near level one to near
level three. The evolutionary paths are similar in shape in both cases
but the absolute values of the entropy production rate and the free .

. energy have been shifted.

Fig. 4.14 shows the effect on the free energy of changing the ratio
of b13/al3. The system was initially in equilibrium and at time zero
radiation fields of various strengths were turned on, As in the two

level model, a certain minimum b/a ratio is required to obtain a positive
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Fig. 4.12 (a) Entropy production versus time for different initial conditions.

The parameters were a, = .01, 3y = 0.0, ayq = 01, b12 = b23 = 0.0, @y, = 5.0,
a23 = 10, The initial conditions were: curve A, Pl = ,0645, P7 = ,2868; curve B,
Pl = ,897, Pz = ,036; curve C, Pl = ,554, P2 = ,248 and curve D, Pl = ,770,

P, = ,030,
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