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Abstract 

Since the late 1970s, the rapidly expanding literature subsumed under the activity-based 

paradigm has increased significantly our understanding of urban travel behavior and 

provided insights into new approaches to replace current models of urban travel 

demand-namely, the Urban Transportation Modeling System. A basic tenet of this 

paradigm is that decision-making occurs in a household context, taking into account 

interactions among household members. This differs, however, from the reality of 

activity-based research to date. With few exceptions, the decision-making unit in both 

empirical studies and modeling efforts is the individual, not the household. 

In this dissertation, it is argued that there is a need to develop activity-based travel 

demand forecasting models at the household level. To this end, a conceptual framework 

is proposed for modeling daily household activity-travel behavior. This framework is 

developed for the heads of five common household types and consists of two modules: 

Activity-Episode Generation and Activity-Episode Scheduling. The statistical models 

underlying the former module are discussed and estimated using data from a trip diary 

survey conducted in the Greater Toronto Area in 1987. The Activity-Episode Generation 

module is then implemented as an object-oriented simulation model. This model is used 

to evaluate the effects of a large-scale adoption of the compressed workweek on the daily 

number of out-of-home activity episodes for the heads of households in the Greater 

Toronto Area in 1986. 

111 



Acknowledgements 

Initially, I would like to thank my supervisor, Dr. Pavlos Kanaroglou, for his advice, 

support and friendship over the past five years. My decision to come to McMaster for 

doctoral work was motivated by my interest in modeling. Obviously, I made the correct 

choice. Pavlos, you have succeeded in opening my eyes to simpler realities! I would also 

like to thank the other members of my supervisory committee: Dr. Bill Anderson and Dr. 

Eric Miller. Both, along with Pavlos, have shown me the many wonders of integrated 

urban land-use and transportation models. 

Financial assistance for my doctoral work came from three sources. First, I would like 

to thank the Social Sciences and Humanities Research Council of Canada for supporting 

my research over a three-year period (award number: 752-96-1505). Second, I would also 

like to thank the Transportation Association of Canada for its support on two occasions. 

Finally, I appreciate being awarded an Ontario Graduate Scholarship for use during my 

first year of study. 

To my parents, both Scott and Maljaars, I say thank you for your unwavering support 

and encouragement. I would also like to thank two close friends for their willingness to 

listen to my ideas and offer advice: Mark Brown and Hanna Maoh. Finally, and most 

importantly, I am indebted to my wife, Marianne, for her positive outlook on life and 

limitless support that have helped me through the most challenging years of my life. I 

could not have done it without you, Mar! 

iv 



Table of Contents 

Ab stract ......................................................................................................................... .iii 

Acknowledgements ........................................................................................................ iv 

Table of Contents ............................................................................................................ v 

List of Tables ............................................................................................................... viii 

List of Figures ................................................................................................................ ix 

Preface ............................................................................................................................ x 

1 Introduction ............................................................................................................... 1 
1.1 Justification of Research Topic ......................................................................... 1 
1.2 Scope of Research Topic ................................................................................... 7 
1.3 Contents of Dissertation .................................................................................... 8 

2 Activity-Based Travel Analysis: A Review .............................................................. 11 
2.1 Introduction .................................................................................................... 11 
2.2 Empirical Findings .......................................................................................... 12 

2.2.1.1 Activity-Travel Patterns ........................................................ 12 
2.2.1.2 Activity-Time Allocation ...................................................... 14 
2.2.1.3 Activity Episodes .................................................................. 15 
2.2.1.4 Activity Scheduling ............................................................... 17 

2.3 Activity-Based Models .................................................................................... 18 
2.3.1 Utility-Maximization Models .............................................................. 18 

2.3.1.1 Definition ............ ' .................................................................. 18 
2.3.1.2 Kawakami and Isobe's Model ............................................... 18 
2.3.1.3 Ben-Akiva and Bowman's Model ......................................... 19 
2.3.1.4 Wen and Koppelman's Model.. ............................................. 21 

2.3.2 Computational Process Models ............................................................ 23 
2.3.2.1 Definition .............................................................................. 23 
2.3.2.2 STARCIffi.,D ........................................................................ 24 
2.3.2.3 SCHEDULER and GISICAS ................................................ 26 
2.3.2.4 SMASH ................................................................................ 28 
2.3.2.5 AMOS .................................................................................. 29 
2.3.2.6 PCATS ................................................................................. 31 

2.3.3 Microsimulation Models ...................................................................... 32 
2.3.4 Model Comparison .............................................................................. 34 

2.4 Conclusions .................................................................................................... 37 

v 



3 Modeling Daily Household Activity-Travel Behavior: A Conceptual Framework .... 38 
3.1 Introduction .................................................................................................... 38 
3.2 Empirical Example .......................................................................................... 40 
3.3 Conceptual Framework ................................................................................... 43 

3.3.1 Assumptions ........................................................................................ 43 
3.3.2 Overview ............................................................................................. 44 
3.3.3 Activity-Episode Generation Module ................................................... 46 
3.3.4 Activity-Episode Scheduling Module ................................................. .48 

3.3.4.1 Period Assignment Submodule ............................................. .48 
3.3.4.2 Tour Generation Submodule ................................................. 51 

3.4 Conclusions .................................................................................................... 55 

4 Household Activity-Episode Generation: Empirical Analysis .................................. 56 
4.1 Introduction .................................................................................................... 56 
4.2 Prior Research ................................................................................................. 64 
4.3 Models and Data ............................................................................................. 68 

4.3.1 Modeling Framework .......................................................................... 68 
4.3.1.1 Univariate Ordered Probit Model .......................................... 70 
4.3.1.2 Trivariate Ordered Probit Model ........................................... 71 

4.3.2 Data and Sample .................................................................................. 74 
4.4 Empirical Findings .......................................................................................... 76 

4.4.1 Variables and Model Specification ...................................................... 76 
4.4.2 Model Results ..................................................................................... 80 

4.4.2.1 Single, Non-worker Households ............................................ 80 
4.4.2.2 Single-worker Households .................................................... 83 
4.4.2.3 Couple, Non-worker Households .......................................... 86 
4.4.2.4 Couple, One-worker Households ........................................... 89 
4.4.2.5 Couple, Two-worker Households .......................................... 94 

4.4.3 Model Comparison .............................................................................. 97 
4.5 Conclusions .................................................................................................... 98 

5 Household Activity-Episode Generation: An Object-Oriented Simulation Model. .. 103 
5.1 Introduction .................................................................................................. 103 
5.2 Overview of Object-Oriented Modeling ........................................................ 105 

5.2.1 History .............................................................................................. 105 
5.2.2 Structural Modeling ........................................................................... 107 

5.2.2.1 Classes and Objects ............................................................. 107 
5.2.2.2 Relationships ...................................................................... 108 

5.2.3 Behavioral Modeling ......................................................................... 110 
5.2.4 Universal Modeling Language ........................................................... 110 
5.2.5 Advantages ........................................................................................ 111 

5.3 Household Activity-Episode Generation ....................................................... 114 
5.3 .1 Assumptions ...................................................................................... 114 
5.3.2 Model Structure and Behavior ........................................................... 115 

VI 



5.4 Simulations ................................................................................................... 122 
5.4.1 Data and Sample ................................................................................ 122 
5.4.2 Scenarios ........................................................................................... 123 
5.4.3 Results .............................................................................................. 125 

5.5 Conclusions .................................................................................................. 130 

6 Conclusions ........................................................................................................... 132 
6.1 Findings ........................................................................................................ 133 

6.1.1 Contributions to Travel-Behavior Theory .......................................... 133 
6.1.2 . Contributions to Travel-Behavior Modeling ...................................... 134 

6.2 Directions for Future Research ...................................................................... 136 

Appendix 1 Statistical Estimation Programs .............................................................. 13 8 

Appendix 2 Object-Oriented Simulation ModeL ....................................................... 154 

Appendix 3 Glossary ................................................................................................. 195 

Appendix 4 List of Acronyms .................................................................................... 197 

References ................................................................................................................... 200 

vii 



List of Tables 

Table 2.1 Characteristics of daily activity-based models ........................................... 35 

Table 4.1 Transport emission trends of air pollutants in the United States, 1988 
to 1997 ...................................................................................................... 58 

Table 4.2 Observed distributions of the daily number of out-of-home activity 
episodes by type ........................................................................................ 77 

Table 4.3 Independent variables used in the household activity-episode 
generation models ..................................................................................... 78 

Table 4.4 Model results for single, non-worker households ....................................... 81 

Table 4.5 Model results for single-worker households .............................................. 84 

Table 4.6 Model results for couple, non-worker households ...................................... 87 

Table 4.7 Model results for couple, one-worker households ...................................... 90 

Table 4.8 Model results for couple, two-worker households ...................................... 95 

Table 4.9 Model comparison based on predictive ability ........................................... 99 

Table 5.1 Daily number of out-of-home activity episodes estimated for the 
heads of five common household types in the Greater Toronto Area, 
1986 ........................................................................................................ 126 

Table 5.2 Impact of Scenario 1 on the daily number of out-of-home activity 
episodes estimated for the heads of five common household types in 
the Greater Toronto Area, 1986 ............................................................... 128 

Table 5.3 Impact of Scenario 2 on the daily number of out-of-home activity 
episodes estimated for the heads of five common household types in 
the Greater Toronto Area, 1986 ............................................................... 129 

Vl11 



List of Figures 

Figure 3.1 An example of household activity-travel behavior for a one-day 
period ........................................................................................................ 41 

Figure 3.2 General structure of the conceptual framework. ......................................... 45 

Figure 3..3 Activity-Episode Generation module ........................................................ .47 

Figure 3.4 Periods of the day for the heads of (a) couple, two-worker 
households and (b) couple, one-worker households ................................... 50 

Figure 3.5 Period Assignment submodule .................................................................. 52 

Figure 3.6 Tour Generation submodule ...................................................................... 54 

Figure 5.1 Basic uw., notation ................................................................................ 112 

Figure 5.2 Household class diagram ......................................................................... 116 

Figure 5.3 Person class diagram ............................................................................... 118 

Figure 5.4 Household activity-episode model structure ............................................ 120 

Figure 5.5 Interaction diagrams for couple, two worker households ......................... 121 

IX 



Preface 

The four substantive chapters of this dissertation (i.e. Chapters 2 to 5) are papers that 

have been prepared with the intention of submitting them to journals for publication. For 

this reason, there is some degree of repetition among the chapters, particularly in their 

introductions. Furthermore, all four papers are co-authored by Dr. Pavlos Kanaroglou and 

myself with Dr. Kanaroglou assuming an editorial role in their preparation. In other 

words, the content of this dissertation is my own. The destinations for the papers are as 

follows: 

Chapter 2: Activity-Based Travel Analysis: A Review 
Prepared for submission to Journal of Transport Geography 

Chapter 3: Modeling Daily Household Activity-Travel Behavior: A Conceptual 
Framework 
Prepared for submission to Transportation 

Chapter 4: Household Activity-Episode Generation: Empirical Analysis 
Submitted to Transportation Research B 

Chapter 5: Household Activity-Episode Generation: An Object-Oriented Simulation 
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1 Introduction 

1.1 Justification of Research Topic 

Since the late 1970s, the rapidly expanding literature subsumed under the activity-based 

paradigm has increased significantly our understanding of urban travel behavior and 

provided insights into new approaches to replace current models of urban travel 

demand-namely, the Urban Transportation Modeling System (UTMS). Unlike trip­

based approaches, the activity-based paradigm, more commonly known as activity 

analysis, recognizes explicitly that travel is a demand derived from the need to participate 

in out-of-home activities. In other words, discrete activities or patterns of activities are 

investigated, not trips. Jones et al. (1990) identify several features of the paradigm 

including recognition that decision-making occurs in a household context, taking into 

account interactions among household members. This differs, however, from the reality 

of activity-based research to date. 

With few exceptions, the decision-making unit in both empirical studies and 

modeling efforts is the individual, not the household. This does not mean that the 

household is excluded from such research. In fact, most empirical investigations 

recognize the importance of household attributes in defIning an individual's activity­

travel behavior. For example, the presence of children in the household has long been 

identified as an important constraint on such behavior and is, therefore, included as an 

1 
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explanatory variable in many studies (e.g. Bhat 1997, 1998a; Damm and Lerman 1981; 

Kitamura and Kermanshah 1983; Niemeier and Morita 1996). In the very few instances 

where the decision-making unit is the household, the sum of household activities is 

typically investigated, ignoring interactions among household members. Strathman et ai. 

(1994), for example, examine how household structure and other factors affect .a 

household's allocation of non-work activities to alternative types of trip chains. In terms 

of operational activity-based forecasting models, only Wen and Koppelman's (1998, 

1999) model is developed at the household leveL accounting explicitly for interactions 

among household members. Models that require an activity agenda, such as 

STARCIDLD (Recker et al. 1986a, 1986b), SMASH (Ettema et al. 1993, 1996) and 

SCHEDULER (Garling et al. 1989, 1998; Golledge et al. 1994), can, however, account 

implicitly for household interactions by altering agenda attributes. 

The conscious disregard for household decision-making in activity-based research to 

date is largely a pragmatic artifact of the past. Heggie and Jones (1978) identify four 

domains applicable to the classification of most activity-based studies based on 

assumptions concerning the decision-making process underlying travel-namely, (1) 

independence, (2) spatio-temporal linkages, (3) inter-personal linkages and (4) full 

interdependence. As noted by the authors, incorporating household interactions explicitly 

into research (Domains 3 and 4) is not only more realistic than assuming an individual 

makes activity-travel decisions independently (Domains 1 and 2), but is exceedingly 

difficult to do. This problem does not appear to be conceptual given the inclusion of the 

household in the frameworks underlying several operational and proposed activity-based 
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forecasting models (Garling et al. 1989; Recker et al. 1986a; Stopher et al. 1996; Wen 

and Koppelman 1998). It does, however, appear to be methodological because the 

statistical tools available for such a complex treatment of activity-travel behavior are 

virtually nonexistent1
• The lack of such tools is related directly to available computer 

techQ.ology. In other words, computer technology largely deftnes the boundaries of 

activity-based research, not to mention that of other ftelds. This is why such research to 

date has been mostly confmed to Domains 1 and 2 in Heggie and Jones' (1978) 

classiftcation. It has only been in very recent years that computer technology has 

improved to the point where researchers can develop and apply advanced statistical tools 

in activity-based studies (e.g. Bhat 1997, 1998a). Since such technology is no longer the 

impediment that it once was to research, the onus is now on researchers to develop 

statistical tools capable of analyzing the activity-travel behavior of households while 

accounting for interactions among household members. This comes at a time when the 

need to explicitly recognize the household as the primary decision-making unit in 

activity-based research has never been greater. 

In the industrialized world, transport is responsible for a large share of harmful 

environmental emissions of which the vast majority is from motor vehicles2
, particularly 

the automobile (DECO 1997a). In terms of amount, however, three trends are evident. 

First, transport emissions of several air pollutants have been decreasing in some 

1 Notable exceptions include structuIal equations models (Golob and McNally 1997) and nested logit 
models (Wen and Koppelman 1999). 
2 Major air pollutants emitted by motor vehicles include carbon monoxide (CO), carbon dioxide (C02), 

nitrogen oxides (NO,.), particulate matter (PM) and volatile organic compounds (VOC) (OECD 1997b). 
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industrialized countries since the late 1970s and early 1980s. In the United States, for 

example, carbon monoxide (CO), particulate matter (PM) and volatile orgaruc 

compounds (VOC) have all declined despite an increase in vehicle-miles traveled 

(VMTi. Second, transport emissions of carbon dioxide (C02), the primary greenhouse 

gas emitted by human activities, continue to increase in all industrialized nations as 

transport maintains its reliance on fossil fuels. Finally, in recent years, nitrogen oxides 

(NUx) appear to have leveled off in some countries. 

To date, the approach taken in most industrialized countries to reduce air pollution 

from transport has been to incite improvements in vehicle technologies by introducing or 

tightening vehicle emissions standards (OECD 1997b). These technologies either control 

emissions directly, such as catalytic converters4
, or improve vehicle fuel efficiency5. 

There is, however, growing concern that any gains made in reducing transport emissions 

of air pollutants will be reversed in the future for the following reasons (OECD 1997b; 

USDOT BTS 1998). First, vehicle fuel efficiency has remained virtually unchanged since 

the mid-1980s (OECD 1997b; USEPA OP 1999; USDOT BTS 1998). This means that 

future reductions in transport emissions from vehicle stock turnover will be almost 

nonexistent as the average fuel efficiency of the on-road fleet approaches that of new 

3 Between 1980 and 1996, VMT grew from 1.53 to 2.48 trillion in the United States for an increase of 63 
r!cent (USDOT BTS 1998). 

The use of catalytic converters, which is now mandatmy in North America and much of Europe, actually 
increases C~ emissions. 
5 Vehicle technologies that improve fuel efficiency, such as reduced vehicle weight, fuel injection and 
improved aerodynamics, generally reduce air pollutant emissions. However, there are some exceptions to 
this. For example, the use of higher air-fuel ratios and combustion temperatures actually increase NOx 

emissions. 
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vehicles6
. Second, the increasing popularity of less fuel-efficient light-duty trucks and 

sport utility vehicles, especially in North America, suggests the possibility that the 

average fuel efficiency of the on-road fleet may decline, thereby increasing emissions. In 

the United States, for example, such vehicles accounted for 40 percent of the light-duty 

.vehicle market in 1997, up from 10 percent in 1979 (USDOT BTS 1998). Moreover, their 

average fuel efficiency was 20.4 miles per gallon (mpg) as opposed to 28.5 mpg for 

automobiles (USDOT BTS 1998). Third, vehicular traffic continues to grow in all 

industrialized nations without any sign of leveling off (OECD 1997b). Eventually, this 

alone will offset any improvements in air quality from transport. More importantly, 

however, such growth will lead to more congestion in the absence of increased network 

capacity. In tum, emissions of several air pollutants will rise 7. 

The realization that technology alone will be unable to maintain, let alone further 

reduce transport emissions in the future has prompted many industrialized nations to 

consider using travel demand management (TDM), which consists of strategies that 

influence the demand for vehicular trave1. Such measures are increasingly necessary if 

these countries are to meet reductions in air pollutants set out in international agreements 

such as the 1997 Kyoto Protocol to the United Nations Framework Convention on 

6 In the United States, the average fuel efficiency of on-road automobiles increased from 13.8 miles per 
gallon (mpg) in 1976 to 21.2 mpg in 1991, for an average annual improvement rate of3.6 percent per year. 
In contrast, from 1991 to 1996, this rate decreased to 0.1 percent per year as mpg increased to only 21.3 
(USDOT FHW A 1997). 
7 Driving characteristics play an important role in emissions of air pollutants. Specifically, CO, CO2, PM 
and VOC emissions are highest when a vehicle is accelerating, decelerating or idling. Such conditions are 
synonymous with congestion. In contrast, NOx emissions increase with speed. 
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Climate Change8
. In the United States, the 1990 Clean Air Act Amendments (CAAA) set 

the stage for achieving such goals by emphasizing the role of TOM strategies in meeting 

mandated reductions in transport emissions. In turn, these amendments were the major 

motivation behind the Travel Model Improvement Program (TMIP), which is the most 

ambitious undertaking to date to replace current models of urban travel demand with 

those that are policy sensitive, and therefore, capable of evaluating such strategies. 

Under this program, activity-based replacements are favored (Barrett et al. 1995; 

Spear 1996). Moreover, to meet expectations concerning the accuracy and reliability of 

forecasts, it is imperative that such models be developed at the household leve~ taking 

into account interactions among household members. Two reasons are suggested for this. 

First, individual-level models are incapable of handling complex responses to TDM 

strategies. For example, a person who performs an activity during the evening commute 

may forgo the activity when working a compressed workweek. This response obviously 

favors the alternative work-schedule strategy. However, the individual-level model does 

not consider that this activity may be reassigned to another household member who also 

undertakes it after work. In this case, the TDM strategy would prove ineffective in 

reducing travel demand. Second, such models do not account for joint out-of-home 

activities-namely, activities in which more than one household member participates. 

This means that predictions of activity-travel behavior are likely to be inaccurate. For 

8 In this agreement, industrialized nations consented to reduce greenhouse gas emissions, notably CO2, to 
five percent less than 1990 levels by 2008 to 2012. 
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example, multiple out-of-home activities may be predicted for household members when, 

in fact, only one exists. 

1.2 Scope of Research Topic 

The need to explicitly recognize the household as the primary decision-making unit in I 

/ 
activity-based research is the fundamental motivation for this dissertation. Specifically, ! 

I 
the research topic investigated concerns the development of a daily model of houSehOld)i 

activity-travel behavior that captures explicitly interactions among household members. 

Obviously, such a task is an enormous undertaking. For this reason, the scope of the 

research is narrowly defmed, consisting of four objectives. First, activity-based research 

is reviewed. This includes both empirical fmdings and modeling efforts. Second, a 

conceptual framework for modeling daily household activity-travel behavior is developed 

for five common household types: single, non-worker; single-worker; couple, non-

worker; couple, one-worker; and couple, two-worker households. Third, the statistical 

models underlying the Activity-Episode Generation module of the conceptual framework 

are estimated. Finally, this module is implemented as an object-oriented simulation 

model and is used to evaluate the impacts of a specific TOM strategy (i.e. large-scale 

adoption of a compressed workweek). Details concerning each of these objectives are 

found in the following section. 
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1.3 Contents of Dissertation 

Chapter 2 reviews the progress of activity-based research to date. It differs from previous 

reviews in terms of its emphasis on activity-based models that have been developed to 

predict activity-travel behavior for a one-day period. These models are classified as 

utility-maximization models, computational process models and micro simulation models. 

In recent years, the number of activity-based models have increased given the fact that 

under TMIP such models are favored as replacements for UTMS (Barrett et al. 1995~ 

Spear 1996). For the sake of completeness, however, this chapter also summarizes 

empirical fmdings from activity-based research. These findings are classified according 

to the unit or process investigated: activity-travel patterns, activity-time allocation, 

activity episodes and activity scheduling. 

In Chapter 3, it is argued that activity-based travel demand forecasting models be 

developed that are capable of generating and scheduling activities-a sentiment that is 

shared by others (e.g. Bhat and Koppleman 1999). Moreover, these models must be 

developed at the household level, taking into account interactions among household 

members. To this end, a comprehensive conceptual framework for modeling daily 

household activity-travel behavior is proposed. Besides being developed at the household 

level, this framework is distinguished from those underlying the activity-based models 

reviewed in Chapter 2 by three features. First, it is developed for the heads of five 

common household types. Second, interactions between household heads are captured 

explicitly in the modeling framework for three of the household types. Finally, two 

activity settings are recognized: independent and joint activities. Such activities are 
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generated by the Activity-Episode Generation module and scheduled by the Activity­

Episode Scheduling module. 

Chapter 4 presents the empirical fmdings for the models underlying the Activity­

Episode Generation module of the conceptual framework. Specifically, the daily number 

of out-of-home activity episodes9 for non-work purposes is modeled for the heads of the 

five household types. To capture interactions between such househo members, a Jomt 

model is dev~ped, whicli accounts for both independent and J-oiiit acttVlty episodes. 

This model is applied to three of the five household types. A comparison of the results 

with those obtained from models that ignore household interactions suggests that daily 

activity episodes are determined jointly by household members. 

The Activity-Episode Generation module is implemented, using C++, as an object­

oriented simulation model. This is the topic of Chapter 5. Specifically, this chapter has 

two objectives. First, an overview of object-oriented modeling (OOM) is provided, 

including reasons for its use in computer simulation modeling besides its role as a 

common modeling language for researchers. Moreover, the Activity-Episode Generation 

model is used to demonstrate the concepts discussed. Second, this model is employed to 

evaluate the impact of a TOM strategy on the daily number of out-of-home activity 

episodes estimated for household heads in the Greater Toronto Area (GTA) in 1986. 

Specifically, the effects of a compressed workweek are evaluated for two scenarios. The 

first scenario assumes that all full-time workers adopting the strategy work a 10-hour day, 

9 An activity episode is a period of time characterized by a unifonn purpose and spatial setting. 



10 

whereas the second scenario applies to their day off. The simulation results demonstrate 

that the impact of the latter scenario is much greater than the former. 

Finally, Chapter 6 discusses the major findings of this body of work and suggests 

directions for future research. 



2 Activity-Based Travel Analysis: A Review 

2.1 Introduction 

In the late 1970s, travel behavior research entered a new paradigm. Activity-based travel 

analysis, more commonly known as activity analysis, seeks an understanding of travel 

behavior by recognizing explicitly that travel is a demand derived from the need to 

participate in out-of-home activities. In other words, discrete activities or patterns of 

activities are investigated, not trips. Since that time, the rapidly expanding literature 

subsumed under the paradigm has increased significantly our understanding of travel 

behavior and provided insights into new approaches to replace current models of urban 

travel demand-namely, the Urban Transportation Modeling System (UTMS). Several 

reviews of activity-based travel analysis have been written at various times in the past 20 

years, summarizing the state-of-the-art in such research (Bhat and Koppelman 1999; 

Damm 1983; Ettema and Timmermans 1997a; Fox 1995; Jones et al. 1990; Kitamura 

1988). Furthermore, the proliferation of activity-based research in recent years has led to 

the publication of several books on the subject (Ettema and Timmermans 1997b; Garling 

et al. 1998; Jones 1990; Stopher and Lee-Gosselin 1996). 

This chapter reviews the progress of activity-based research to date. It differs from 

previous reviews in terms of its emphasis on activity-based models that have been 

developed to predict activity-travel behavior for a one-day period. These models are 

11 
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classified as utility-maximization models, computational process models or empirical 

micro simulation models. In recent years, the number of activity-based models have 

increased given the fact that under the Travel Model Improvement Program (TMIP) such 
-------------------------------

models are favored as replacements for UTMS (Barrett et al. 1995; Spear 1996). For the 

sake of completeness, however, this chapter also summarizes empirical findings from 

activity-based research. These findings are classified according to the unit or process 

investigated: activity-travel patterns, activity-time allocation, activity episodes and 

activity scheduling. 

The remainder of this chapter is organized as follows. The next section reviews 

briefly empirical fmdings from activity-based research. Activity-based models are 

discussed thoroughly in the third section. Finally, the contributions of this chapter to 

activity-based research are summarized in the final section. 

2.2 Empirical Findings 

2.2.1.1 Activity-Travel Patterns 

Much activity-based research has focused on activity-travel patterns. Although the 

conceptualization of an activity-travel pattern is consistent among studies, researchers 

have used a variety of methods, which vary in complexity, to classify such patterns. In 

this chapter, an activity-travel pattern is defmed as a sequence of out-of-home activities 

undertaken over a period of time, such as a period of the day or the day itself Two 

themes have emerged from this line of research: classification of activity-travel patterns 
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and their association with explanatory factors, and variability in activity-travel patterns 

overtime. 

Household lifecycle has played an important role in activity-based research because 

of the complex constraints that children impose on the activity-travel patterns of adults. 

Kostyniuk and Kitamura (1982) examined the impact of this factor, along with household 

work-trip status and household role, on the evening activity-travel patterns of adult 

household members. Such patterns were classified according to whether they were made 

independently or jointly by household adults. The fmdings suggest that household 

lifecycle stage is related to several aspects of the evening activity-travel patterns of 

adults, particularly their type-that is, whether or not adults participate in out-of-home 

activities in the evening, and if so, whether such activities are undertaken alone or 

toget~er. Pas (1984) reports similar findings regarding the role of lifecycle on the daily 

activity-travel patterns of individuals. 

Several researchers have investigated variability in activity-travel patterns over time. 

Hanson and Huff (1982, 1988) and Huff and Hanson (1986) used the Uppsala, Sweden 

Household Travel Survey to investigate the activity-travel behavior of a sample of 

individuals over a 35-day period. Their findings suggest that both repetition and 

variability characterize the activity-travel patterns of individuals. However, the most 

important finding is that individuals exhibit more than one characteristic daily pattern. In 

related research, Pas and Koppelman (1986) investigated the determinants of day-to-day 

variability in the activity-travel behavior of individuals. Their findings indicate that 

individuals who have fewer household and employment-related constraints exhibit more 
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day-to-day variability in their activity-travel patterns. The work of Pas and Sundar (1995) 

support these earlier fmdings. 

2.2.1.2 Activity-Time Allocation 

Activity analysis adds a temporal dimension to travel behavior research. Two areas have 

been investigated in this regard: the amount of time spent pursuing particular activity 

types over a period of time such as a day, and the duration of a particular activity episode. 

The former area of research concerns activity-time allocation, whereas the latter concerns 

activity episodes. 

Many researchers have attempted to explain individuals' daily allocation of time to 

different activities (e.g. Becker 1965; Kitamura 1984a; Levinson and Kumar 1995). 

Others have investigated individuals' time allocation over longer periods (Golob and 

McNally 1997; Kumar and Levinson 1995). In these investigations, the activities are first 

classified. A common classification scheme is between mandatory and discretionary 

activities, which is most often a difference between work and non-work activities. For 

example, Kitamura (1984a) examined workers' out-of-home activity time allocation for 

non-work activities. The results indicate that auto-oriented individuals with a driver's 

license, more autos per driver and auto as the work-trip mode, tend to allocate more time 

to non-work activities. In contrast, work duration decreases the amount of time allocated 

to non-work activities. 

Another classification scheme employed by Golob and McNally (1997) consisted of 

three activity types: work, maintenance and discretionary activities. This study is 

particularly insightful because it considers interactions between husbands and wives. The 
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fmdings indicate that the amount of time allocated to out-of-home activities exhibits a 

hierarchy for both men and women-that is, work negatively affects the amount of time 

allocated to the other activity types and maintenance activity negatively affects the 

amount of time allocated to discretionary activity. 

2.2.1.3 Activity Episodes 

An activity episode is defmed as a period of time characterized by a uniform purpose and 

spatial setting. Over the course of a day, an individual participates in many activity 

episodes both in-home and out-of-home. For the most part, researchers have focused on 

out-of-home activity episodes because they are the ones that generate travel. Moreover, 

researchers have investigated many attributes of activity episodes including activity 

choice (e.g. Kitamura and Kermanshah 1983), duration (e.g. Bhat 1996a, 1996b; Ettema 

et al. 1995; Niemeier and Morita 1996), destination choice (e.g. Kitamura 1984b; Miller 

and O'Kelly 1983) and sequencing (e.g. Kitamura 1983; Kostyniuk and Kitamura 1984; 

O'Kelly and Miller 1984; Strathman et al. 1994). As well, some researchers have 

investigated several attributes jointly such as activity choice and duration (e.g. Bhat 

1998a; Damm 1980, 1982; Damm and Lerman 1981), activity choice and destination 

(e.g. Kitamura and Kermanshah 1984), activity choice and home-stay duration (e.g. 

Mannering et al. 1994) and mode choice and number of episodes (e.g. Bhat 1997). 

Finally, some researchers have reported results for several attributes that are investigated 

sequentially (e.g. Hamed and Mannering 1993; Kitamura et al. 1997). 

Kitamura and Kermanshah (1983) identified time-of-day and history dependencies of 

activity choice. For both home-based and non-horne-based choice, time-of-day has a 
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significant influence on activity engagement. History dependence has a more complex 

representation. Whether an individual has pursued an activity in the past influences his or 

her present activity choice in the home-based case. However, in the non-horne-based 

case, only activities pursued during the current trip chain (i.e. a sequence of out-of-home 

activity episodes that begin and end at home) influence activity choice. These findings 

are supported by later work (Kitamura et al. 1997). 

Hazard modeling is the main analytical tool used by researchers to investigate the 

duration of activity episodes. With the exception of work by Ettema et al. (1995), the 

factors investigated are those that can be obtained from either trip or activity diaries. 

Ettema et al. (1995) investigated factors that describe the process of activity scheduling, 

which is the subject of the next section. Their fmdings indicate that the time of day when 

an activity episode begins influences its duration. As well, factors such as the opening 

and closing times of activity sites and the priority that individuals assign to activity types 

influence activity episode duration. Similar to the findings for activity choice, the time 

spent in the same activity in the past influences its current duration. 

A considerable body of literature has developed concerning trip chaining (see Thill 

and Thomas [1987] for a review). This literature is related to activity analysis in that it 

concerns sequencing tendencies for out-of-home activity episodes. Kitamura (1983) 

found that there exists a consistent hierarchical order in activity sequencing in that 

activities, which are less flexible, tend to be pursued first. Strathman et al. (1994) show 

that the likelihood of forming complex commuting chains is higher for women, people 

who drive alone to work and workers from high-income households. Furthermore, 
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commuting during peak periods (i.e. morning and evening rush hours) shifts non-work 

activities away from the work commute. Household type is also shown to influence the 

propensity to form complex commuting chains with single working adults with preschool 

children having the highest propensity. 

2.2.1.4 Activity Scheduling 

Activity scheduling describes the process concerned with the explicit timing, sequencing, 

activity choice, duration, location and mode associated with all activity episodes engaged 

in over a particular period of time such as a day or a week. This process has received 

increasing attention in recent years as researchers attempt to develop models of all-day 

activity-travel behavior. Some researchers have investigated activity scheduling as a 

planning process, whereby individuals plan activities that they will undertake over the 

course ofa day or a week (e.g. Doherty and Miller 1997; Ettema et al. 1994; Hayes-Roth 

and Hayes-Roth 1979). The primary reason for such research is to identify heuristics that 

individuals use when scheduling their daily or weekly activities. For example, Ettema et 

al. (1994) show that individuals plan activities in the order in which they are to be 

executed. Moreover, the choice of activities, their location and sequence are found to be 

affected by the priorities that individuals assign them, as well as their duration, possible 

start and end times and travel times between locations. 



2.3 Activity-Based Models 

2.3.1 Utility-Maximization Models 

2.3.1.1 Definition 
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As mentioned at the outset of this chapter, activity-based models of all-day travel 

behavior can be classified as utility-maximization models, computational process models 

or empirical micro simulation models. Utility-maximization models are based on the 

specification of a utility function for the postulated choice process underlying daily 

activity-travel behavior. In all cases, such models are operationalized as nested logit 

models. Given the complexity of daily activity-travel behavior, the choice process is 

simplified to obtain models that can be readily estimated. Furthermore, use of the nested 

logit model assumes that the choice process is hierarchical. 

2.3.1.2 Kawakami and Isobe's Model 

Kawakami and Isobe (1990) developed the first utility-maximization model of daily 

activity-travel behavior. Recognizing that the decision-making process underlying such 

behavior is exceedingly complex, they made two simplifying assumptions to obtain an 

operational model. First, they assume that the decision-making process underlying daily 

activity-travel behavior can be converted to one involving a choice between activity­

travel patterns. Second, they limit their model to workers because the existence of work 

activity means that an individual's daily schedule can be divided into two branches: one 

before work and the other after work. 
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Given these assumptions, a worker's daily activity-travel behavior is conceptualized 

as resulting from a hierarchical choice process for each branch. At the first leve~ the 

worker decides whether to participate in discretionary activities (i.e. non-work activities). 

At the second leve~ an activity-travel pattern is chosen. Finally, at the third leve~ a 

destination is selected for the first activity in the pattern only despite the fact that some 

patterns contain two destinations. This implies that such activities must occur within the 

same zone. 

By analyzing the behavior of a sample of workers from Nagoya, Japan, Kawakami 

and Isobe identify four activity-travel patterns for the morning branch and seven for the 

evening branch. The patterns for each branch are distinguished from one another by the 

number of discretionary activities they contain (i.e. one or two) and by the frequency of 

temporarily returning home. By combining both sets of patterns, workers can choose 

between 28 alternatives. 

The primary problem with Kawakami and Isobe's model is that the two branches 

exist independently of one another. In reality, however, such behavior is interdependent 

(Kitamura and Kermanshah 1983). Furthermore, the model is of limited use in predicting 

the explicit timing of activities throughout the day given its crude conceptualization of 

time. 

2.3.1.3 Ben-Akiva and Bowman's Model 

Unlike Kawakami and Isobe (1990), Ben-Akiva and Bowman (1995; Ben-Akiva et al. 

1996) assume that an individual's daily activity-travel behavior can be decomposed into a 

set of home-based tours that are tied together by the choice of a daily activity pattern. 
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Specifically, their model is based on a series of hierarchical decisions, which are: choice 

of a daily activity pattern, choice of the primary tour time of day, choice of the primary 

tour destination and mode, choice of the time of day for secondary tours and choice of the 

destination and mode for secondary tours. 

The first decision in their model system is decomposed into three choices. The first 

choice is for the primary activity of the day. The alternatives for this decision are: home, 

work, school and other. The second choice involves the type of tour for the day's primary 

activity, which is defined by the number, purpose and sequence of activity stops. For 

example, Ben-Akiva and Bowman identify five such tours for work, including Home­

Work-Home (HWH) and Home-Work-Other-Work-Home (HWOWH). Finally, the third 

choice is for the number and purpose of secondary tours, which are defined as additional 

home-based tours made for the purpose of lower priority activities. Two purposes (i.e. 

time constrained and not time constrained) and three frequencies (i.e. 0, 1 and 2+) are 

identified, yielding a total of six alternatives for this decision. As a result of the 

decomposition, the daily activity pattern choice set for workers consists of 55 

alternatives, including the choice to remain home all day. Only 25 alternatives are 

identified for non-workers. 

For the time-of-day choices, Ben-Akiva and Bowman frrst divide the day into four 

periods: AM peak, PM peak, afternoon and evening. These periods are then used to 

defme 16 alternatives, each of which consist of one period for leaving home and one 

period for returning home. In the model, these alternatives define the timing of out-of­

home activities. Furthermore, for the destination and mode choices, six alternatives are 
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defmed for mode choice: drive alone, shared ride, combined transit and auto, combined 

transit and walking, walking and bicycling. 

Ben-Akiva and Bowman use a nested logit model to estimate the above decision 

structure using a sample of individuals obtained from a 1991 travel survey conducted in 

Boston. Furthermore, models are estimated separately for workers and non-workers. The 

model structure is attractive in that it recognizes explicitly interdependencies in activity­

travel behavior throughout the day. In practice, however, the complexity of the model 

system limited the extent to which these interdependencies could be incorporated in the 

estimated model. Other shortcomings of the model include the fact that secondary 

destinations are excluded from tours and that only one model is estimated for secondary 

tour choices. Also, Ettema and Timmermans (1997a) note that the conceptualization of 

timing in the model is weak. 

2.3.1.4 Wen and Koppelman's Model 

Wen and Koppelman (1998, 1999) recognize explicitly that decisions underlying daily 

activity-travel behavior are made within a household context. Specifically, two sets of 

hierarchical decisions comprise their mode~ which is developed for married couples 

without other adults or older children (i.e. 13 years and older) present in the household. 

The first set of decisions is formulated at the household level. First, household members 

generate collectively the number of maintenance stops to be undertaken on a given day. 

Second, these stops are then assigned to husbands and wives. For example, if the 

household generates two stops, either the husband or wife can undertake both stops, or 

one stop can be undertaken by each. Finally, household vehicles are allocated to these 
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members. This is defined in terms of the number of maintenance stops for which a 

vehicle is available. For example, if a wife is assigned two such stops, a vehicle may be 

available for one stop or two stops, or it may be entirely unavailable. Moreover, vehicle 

allocation is important only if the household has one vehicle. 

The second set of decisions is formulated at the individual level and is conditional on 

the ftrst set of decisions. For husband and wife, these choices include determining the 

number of home-based tours to be undertaken and assigning maintenance stops to these 

tours. In practice, however, husband and wife each choose an activity-travel pattern from 

one of two choice sets defined for workers and non-workers. The alternatives comprising 

each set emphasize the location of maintenance stops, if any, in the daily activity-travel 

pattern. Furthermore, leisure stops may be included in these patterns. The model is 

estimated using a nested logit model. 

Wen and Koppelman's model is noteworthy in that it considers explicitly interactions 

between household members in terms of their daily activity-travel behavior. Moreover, 

the model represents an important fIrst step in the development of future activity-based 

models at the household level. However, despite its unique features, the model has 

several shortcomings. First, it is limited to couples that do not engage in maintenance 

stops together, thereby ignoring joint activities. Second, although the nested logit model 

allows household decisions to be estimated simultaneously, it does not account for the 

ordinal nature of the fIrst decision-that is, the number of out-of-home maintenance 

stops. Finally, the conceptualization of timing is very weak in the model. 



2.3.2 Computational Process Models 

2.3.2.1 Definition 
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A common feature of the preceding utility-maximization models is that they specify 

factors that influence daily activity-travel behavior. For this reason, they can be easily 

estimated using data from traditional trip and activity diaries. However, as noted by 

others (Garling et al. 1994; Kwan and Golledge 1997), if the objective is to replicate the 

process that gives rise to observed behavior-namely, the activity-scheduling process­

then an alternative modeling approach must be used. Specifically, computational process 

models are used for this task. 

Computational process models are defined as production system models implemented 

as computer programs (Garling et al. 1994). Newell and Simon (1972) developed 

production systems as models of human problem solving. In essence, a production system 

model is a set of rules in the form of condition-action pairs that specify how a problem is 

solved. For example, if a task requires an individual to choose an alternative from a 

choice set, the rules may specify what information is searched under different conditions. 

Production system models usually distinguish between a long-term memory (L TM) and a 

short-term memory (STM). The former contains information about the solution space, 

whereas the latter contains information about the solution path. Furthermore, a control 

mechanism is often specified to determine which rule is implemented if multiple 

conditions are met. 
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2.3.2.2 ~~Jtll(7ll11Sl> 

ST ARCHll..D (Simulation of Travel! Activity Responses to Complex Household 

Interactive Logistic Decisions) is generally acknowledged as the first operational model 

of daily activity-travel behavior (Kitamura 1988; McNally 1997). It is based on the 

theoretical framework discussed in Recker et al. (1986a), the highlights of which are as 

follows. To begin, the day is divided into two periods: a planning period and an action 

period. During the planning period, activities are generated by the household and 

allocated to members for completion during a specified time interval. These activities, 

along with their salient attributes, form an individual's daily activity program. Such 

programs are synonymous with the activity agendas of more recent modeling efforts. 

Specifically, each activity comprising the activity program has an expected duration and 

desired location. Furthermore, the activity program also contains potential unplanned 

activities. Through a set of activity scheduling rules, the activity program is transformed 

into a set of feasible activity-travel patterns. Recker et al. recognize that this set of 

patterns will undoubtedly be quite large. Moreover, an individual may not be able to 

discriminate between the patterns. To overcome this problem, the authors postulate that a 

classification reduction process operates on the opportunity set to produce distinct 

alternatives. It is from these alternatives that an individual selects an activity-travel 

pattern, which is a manifestation of activity-travel behavior during the action period. 

STARCHll..D is implemented as a series of five modules (Recker et al. 1986b). The 

first module is supposed to simulate interactive household forces that give rise to the 

activity programs of household members. In practice, however, the module is simply a 
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data preparation routine that generates all required files for use by subsequent modules. 

For example, one such file, the Activity Program Data Array, contains an individual's 

activity program. In this file, each activity is described by its type, desired duration, 

preferred location and its spatial, temporal and transportation constraints. 

The second module uses a constrained, combinatorial algorithm to generate a set of 

feasible activity-travel patterns for the activity program provided. Furthermore, the 

module assigns a mode to each home-based tour. This implies that each tour is completed 

using a single mode, and therefore, a change in mode can occur only at home. The set of 

feasible patterns is then reduced to a set of representative activity-travel patterns (RAPs) 

by the third module. The procedure underlying this module is based on earlier work 

(Recker et al. 1985; Pas 1982). From this set, the fourth module identifies a set of non­

inferior RAPs. The reason for this is that the set generated by the third module is unlikely 

to be small enough for an individual to compare alternatives and choose the one that 

maximizes utility. Finally, the fifth module employs a multinomiallogit model to choose 

an activity-travel pattern from the choice set of non-inferior RAPs. 

Despite its comprehensiveness, ST ARCHILD has been criticized on many occasions. 

For example, Recker (1995) identifies four shortcomings of the model system. First, it 

provides no mechanism to accommodate household interactions. Instead, it models the 

activity-travel patterns of household members separately. Second, it relies on a heuristic 

solution procedure based on exhaustive enumeration and evaluation of all feasible 

solutions. Third, it treats time discretely and relies on pattern recognition algorithms to 

distinguish between simple temporal displacements of vastly similar solutions. Finally, 
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ST ARCHILD has no provision for addressing either activity or vehicle allocation 

decisions in a household context or for considering complex mode choice decisions, such 

as ridesharing. Kwan and Golledge (1997) suggest that the weakest features of the model 

are its acceptance of utility-maximizing assumptions and its use of a combinatorial 

algorithm to evaluate all feasible activity-travel patterns. A. further criticism is that 

ST ARCHILD does not model explicitly the duration and location of activities. In many 

respects, this shortcoming limits the model's usefulness in forecasting urban travel and 

predicting impacts from transportation-related policies. 

2.3.2.3 SCHEDULER and GIS/CAS 

SCHEDULER is based on the theory of activity scheduling proposed by Garling et al. 

(1989). Furthermore, it is interfaced with a geographical information system (GIS) for 

reasons that are self-evident in the following discussion (Golledge et al. 1994). In 

essence, the model schedules a set of activities that are retrieved from an individual's 

long-term calendar (LTC). The LTC serves SCHEDULER in the same manner as an 

activity program serves ST ARCHILD-that is, it stores a list of activities, along with 

their salient attributes. However, in the case of the LTC, the attributes for each activity 

include its duration and priority. The set of activities selected for scheduling is based on 

these attributes. 

Information concerning spatio-temporal constraints (i.e. feasible locations to perform 

activities and their opening hours) are obtained from a memory representation of the 

environment, which is known as the cognitive map (CMAP). The GIS provides factual 

information about the environment through buffering, overlaying and path selection 
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operations. After such information is retrieved, SCHEDULER sequences the activities 

based on temporal constraints. Next, the location for each activity is selected, taking into 

account the temporal sequencing of activities. If there are no temporal constraints, the 

location choices are based on a nearest-neighbor heuristic. A detailed schedule in finally 

formed using all the information in the CMAP and in the LTC. At this point, conflicts 

may be noted. These are resolved by changing the original sequence of the activities that 

are in conflict. The final schedule is stored in the short-term calendar (STC), which 

guides the execution of activities. 

Golledge et al. (1994) identify several shortcomings of the theoretical framework on 

which SCHEDULER is based. First, there are no guidelines on how priorities should be 

assigned to activities. Second, the opportunity sets for activity locations are defmed 

arbitrarily. For example, in the case study discussed in Golledge et al. (1994), a lO-mile 

buffer zone was used to delineate locations. Finally, the nearest-neighbor heuristics is too 

simplistic. Given the arbitrary nature of its assumptions, the usefulness of SCHEDULER 

as a predictive model is questionable. Moreover, a predictive model should account 

endogenously for activity duration. SCHEDULER does not. 

GISICAS (GIS-Interfaced Computational process model for Activity Scheduling) 

extends the SCHEDULER model in two ways (Kwan 1997; Kwan and Golledge 1997). 

First, an individual's home and work locations, as well as preferred and fixed destinations 

for non-work activities are included in the CMAP. Second, several new spatial search 

heuristics are incorporated in GISICAS to overcome the simplicity of the nearest­

neighbor heuristic used in SCHEDULER GISICAS is designed as a decision-support 
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system for Advanced Travel Information Systems (ATIS), and is therefore, an interactive 

activity-scheduling model. For this reason, it is of limited use in predicting the daily 

activity-travel behavior of individuals. 

2.3.2.4 SMASH 

Ettema et al. (1993, 1996) developed SMASH (Simulation Model of Activity Scheduling 

Heuristics) to simulate the daily activity-scheduling process. Conceptually, the model is 

based on the theories of Root and Recker (1983) and Garling et al. (1989). Furthermore, 

the latest version of SMASH integrates the attractive features of discrete-choice modeling 

and computational process modeling (Ettema et al. 1996). The following discussion is 

based on the latest version. 

Like STARCHILD, SCHEDULER and GISICAS, SMASH requires an agenda as 

input. Specifically, the agenda contains 31 activities and the following information for 

each activity: its possible locations, the number of times per day it can be performed, the 

available time slots within which it can be performed at each location, how often it is 

performed, its duration, its priority and the last time it was performed. Furthermore, it is 

assumed that the travel times between each activity site are known. 

The daily schedule is conceptualized as a sequence of activities performed at specific 

locations. The activity-scheduling process is depicted as the stepwise adaptation of the 

schedule by adding activities from the agenda. This differs from the previous version of 

SMASH, which incorporated two additional actions-namely, deleting an activity from 

the schedule and substituting an activity from the schedule with one from the agenda. 
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At each step of the activity-scheduling process, an individual must decide whether to 

stop the process or continue adding activities to the schedule. A two-tier nested logit 

model is used to represent this choice process. At the first level, the decision is whether to 

stop the scheduling process and accept the current state of the schedule as satisfactory or 

add another activity to the schedule. If the latter alternative is selected, a specific ADD 

operation must be chosen-that is, what activity is added, where does it take place and 

when does it take place. 

Like STARCIDLD, SCHEDULER and GISICAS, SMASH has limited potential in 

predicting urban travel demand and responses to transportation-related policies because 

of its reliance on an agenda. The model does, however, appear to replicate the activity­

scheduling process in considerable detail. 

2.3.2.5 AMOS 

AMOS (Activity MObility Simulator) is unique in that it predicts changes in daily travel 

behavior that result from changes in the travel environment. A prototype of AMOS has 

been implemented for the Washington, D.C. metropolitan area to predict traveler 

responses to select travel demand management (TOM) strategies. Discussions of AMOS 

can be found in Kitamura et al. (1996), Kitamura and Fujii (1998) and ROC (1995). 

Conceptually, AMOS works as follows. Given an initial activity-travel pattern, the 

model simulates an individual's adaptation process and finally determines how he/she 

will adapt to a new travel environment. However, before a behavioral change can occur, 

the individual must first recognize a change in the travel environment and perceive a need 

to modify his/her behavior. Given this, the search for a suitable modification begins with 
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the identification of possible response options. Once the individual identifies a response, 

or a preferred set of responses, the options are executed until a suitable activity-travel 

pattern is established. 

In practice, AMOS consists of four modules. The first module, the Baseline Activity­

Travel Pattern Analyzer, generates a baseline activity-travel pattern for an individual 

from an observed pattern contained in trip records found in a travel diary. Following 

logical consistency checks, the analyzer then identifies the types and durations of out-of­

home activities and determines, based on a set of rules, the types of constraints associated 

with any trips made. 

The second module, the Response Option Generator, generates and prioritizes a series 

of options that an individual is likely to consider when faced with changes in his/her 

travel environment. These options include trip chaining, changing mode, changing trip 

frequency and changing departure time. In addition, options can be defined using any 

combination of these options. A final option is to do nothing-that is, maintain the same 

activity-travel pattern. A neural network is used to determine which response options an 

individual will consider in the event of a change in the travel environment. 

The third module, the Activity-Travel Pattern Modifier, simulates the daily activity­

travel pattern for each option identified in the second module. A screening procedure, 

based on a set of rules, is used to eliminate any infeasible patterns. Finally, the fourth 

module, the Evaluation Routine, develops measures that determine how good a particular 

adjusted activity-travel pattern is. 
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2.3.2.6 PCATS 

PCATS (prism-Constrained Activity-Travel Simulator) (Kitamura et al. 1996; Kitamura 

and Fujii 1998) simulates the daily activity-travel behavior of individuals within time­

space prisms (Hagerstrand 1970). In defining these prisms, it is assumed that the day can 

be divided into two periods: open periods and blocked periods. Within open periods, an 

individual has the option of participating in out-of-home activities. In contrast, blocked 

periods define coupling constraints-that is, activities in which the individual must 

participate. An example of a blocked period is the period of time an individual spends at 

work. Furthermore, a distinction is made between activities undertaken during an open 

period and those pursued during a blocked period. The former activities are referred to as 

flexible activities while the latter ones are known as fixed activities. Time-space prisms 

are established in PCATS between blocked periods. It is assumed that an individual 

makes decisions regarding activity-travel behavior at the beginning of each open period. 

Moreover, these decisions are made sequentially based on past decisions. In other words, 

history dependencies are incorporated in the model (Kitamura and Kermanshah 1983). 

The decision structure within an open period is as follows. First, an individual must 

choose an activity in which to participate. In practice, this decision is implemented as a 

two-tier nested logit model. On the first tier, a decision is made between three broad 

categories of activities: in-home activity, activity at or near the location of the next fixed 

activity and general out-of-home activity. The second tier under in-home activity includes 

two choices: engage in out-of-home activity subsequently and do not engage in out-of­

home activity within the current open period. Six activity types comprise the second tier 
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under general out-of-home activity. Once an activity is chosen, a destination and mode is 

selected for it. These decisions are modeled using a nested logit model. Finally, the 

duration of the activity is ascertained. This process is repeated until no time remains in 

the open period. 

Unlike STARCIllLD, SCHEDULER, GISICAS and SMASH, PCATS does not 

require an activity agenda. For this reason, its potential for predicting urban travel 

demand and impacts from transportation-related policies is considerable. In fact, PCATS 

has already been used to evaluate the impacts of three TDM measures in Kyoto, Japan 

(Kitamura et al. 1997). 

2.3.3 Microsimulation Models 

Bhat (1998b) has developed a comprehensive micro simulation model of daily activity­

travel behavior for workers using home-based tours. Conceptually, the structure of 

CATGW (Comprehensive Activity Travel Generation for Workers) is based on the 

spatial and temporal fixity of work. Given this, a worker's daily activity-travel pattern 

consists of four sub-patterns: before morning commute pattern, work commute pattern, 

midday pattern and post-home arrival pattern. With the exception of the work commute 

pattern, the daily patterns may contain one or more tours. Furthermore, each tour may 

consist of one or more activity stops. Similarly, the morning and evening components of 

the work commute pattern may contain one or more stops. 

Bhat identifies three types of attributes for use in characterizing the daily activity­

travel patterns of workers. Pattern level attributes include the number of tours in each 
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pattern that can contain tours and the home-stay duration before the morning commute. 

Tour level attributes include travel mode, number of stops, home-stay duration before 

each tour in the before work and post-home arrival patterns, work-stay duration before 

each tour in the midday pattern and sequence of tour in the pattern. Stop level attributes 

include activity type, travel time to stop from previous stop, location of stop, activity 

duration and sequence of stop in the tour. 

The operational framework of CATGW is based on empirical analyses of activity 

diary data collected in Boston and Washington, D.C. From these analyses, Bhat 

concludes that work mode choice, the number of evening commute stops and the number 

of post-home arrival stops must be modeled jointly. Furthermore, this model begins the 

simulation of daily activity-travel behavior. Following this, for each of the non-work 

patterns, a joint model is used to model tour level attributes-namely, the presence or 

absence of a tour, mode used and number of stops. This is followed by the home/work­

stay duration for the tour. Conditional on the presence of a first tour, a second tour is 

modeled for each of these patterns. Next, stop level attributes are modeled for each tour. 

For each stop, activity type, activity duration and travel time to the stop are modeled 

jointly. This is followed by the location of the stop. 

Bhat identifies two important features of CATGW. First, its structure emphasizes 

spatial and temporal detail, while allowing for interactions across different times of the 

day. Second, CATGW models activity duration and travel time jointly to accommodate 

the joint nature of these choices. 
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2.3.4 Model Comparison 

Table 2.1 summarizes salient features of the daily activity-based models discussed in the 

preceding sections. Moreover, these features can be used to compare the usefulness of 

these models in terms of predicting urban travel demand, as well as the impacts from 

transportation-related policies, such as various TDM strategies. These features include 

the behavior unit for which the model is designed, a summary of activity attributes and 

two types of interrelationships. Furthermore, for those models that employ an activity 

agenda, agenda attributes are defined. These attributes, which are the same as those 

defined for activities, include timing, sequencing, activity type, duration, location and 

mode. 

In Table 2.1, inclusion of these attributes for activities is based on a very stringent 

criterion. Simply, the model must determine explicitly each attribute in such a way that 

the resulting activity-travel pattern represents both an accurate and precise account of 

daily activity-travel behavior. For example, the timing of activities is not included for 

Kawakami and Isobe's model nor Ben-Akiva and Bowman's model simply because its 

conceptualization is very crude in both models. In the former mode~ it is only known 

whether activities take place before or after work. In other words, the model does not 

specify their exact timing, which is a necessary prerequisite for activity-based models 

capable of predicting urban travel over a continuous time domain. In the latter model, the 

timing of activities is specified by 16 alternatives, each of which consists of one of four 

periods (i.e. AM peak, PM peak, afternoon and evening) for when the activity 

commences and one of four periods for when the activity ends. 



Table 2.1 
Characteristics of daily activity-based models 

Model Behavioral Unit Agenda AttributesB Activity Attributes 
Interrelationships 

Activities Household Members 

Utility-Maximization Models 
Kawakami and Isobe Workers S No No 
Ben-Akiva and Bowman WorkerslNon-workers S,A,M Yes No 
Wen and Koppleman Household Members A No Yes 

Computational Process Models 
STARCHILD WorkerslNon-workers A,D,L T, S, A,M Yes No 
SCHEDULER WorkerslNon-workers A,D T, S, A,L Yes No 
GISICAS WorkersINon-workers A,D,L T, S, A,L Yes No 
SMASH WorkerslNon-workers A,D,L T, S, A,L Yes No 
AMOS WorkersINon-workers T,S,M Yes No 
PCATS WorkerslNon-workers T, S, A, D, L, M Yes No 

Microsimulation Models 
CATGW Workers T, S,A,D,L,M Yes No 

B T = timing, S = sequencing, A = activity type, D = dmation, L = location, M = mode. 
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As shown in Table 2.1, only Wen and Koppelman's model predicts daily activity-

travel behavior for household members. All other models are designed to predict such 

behavior for individuals. Wen and Koppelman's model is noteworthy in that it is the only 

model to incorporate explicitly interactions among household members. However, it is 

one of two models in which interrelationships among activities over the course of a day 

are not modeled explicitly. 

In terms of activity attributes, computational process models appear to do a much 

better job in modeling them than utility-maximization models. However, the degree of 

separation is less than it seems because preferred locations are often specified for each 

activity comprising an agenda. Furthermore, computational process models that require 

agendas would be difficult to operationalize on a large scale because agendas would also 

have to be modeled for each individual. In addition, the greatest disadvantage of such 

models is that they do not model activity duration. 

Ideally, the most useful activity-based model for predicting urban travel demand, as 

well as impacts from TDM strategies, would be developed at the household level to 

capture interactions among household members in terms of their daily activity-travel 

behavior. Furthermore, this model would explicitly model all of the activity attributes 

shown in Table 2.1 while capturing interrelationships among activities over the course of 

the day. To date, no such model exis~ While all of the models shown in Table 2.1 
~-~-- ---~-~--=----~--

co~a:~_el~eII!s0:.~ id~ m~e~ ~C~TS an CATGW I me closest to it. .The 

development of such a model IS an Important area for future reJearch, partIcularly smce 

--------~----~~--~----~~~~----­activity-based models are envisioned as replacements for UTMS. ---------
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2.4 Conclusions 

This chapter has discussed the progress in activity-based research to date. Specifically, 

empirical fmdings pertaining to activity-travel patterns, activity-time allocation, activity 

episodes and activity scheduling are reviewed. In recent years, the latter two categories 

have witnessed the most activity. A possible reason for this is the need to develop 

activity-based models of urban trave~ which are favored as replacements for UTMS. To 

date, several such models exist. In this chapter, they are classified as utility-maximization 

models, computational process models and micro simulation models. This classification 

scheme represents the different approaches that have been used to obtain operational 

models. Furthermore, the models differ in terms of their complexity, the nature of their 

inputs (i.e. some models require an activity agenda) and the precision of their outputs. 

The models are compared according to a set of salient features that are defmed to assess 

their usefulness in predicting urban travel demand, as well as impacts from various TDM 

strategies. To date, no model has been developed that contains all of the features defined. 

Of those that exist, PCATS and CATGW come closest to the ideal model. From this 

comparison, it can be concluded that a promising area for future research is the 

development of an ideal activity-based model-that is, a household-level model that 

captures explicitly interactions among household members and models all activity 

attributes (i.e. timing, sequencing, activity type, duration, location and mode) while 

capturing interactions among activities over the course of a day. 



3 Modeling Daily Household Activity-Travel Behavior: 
A Conceptual Framework 

3.1 Introduction 

Jones et al. (1990) identify several features of the activity-based paradigm including 

recognition that decision-making occurs in a household context, taking into account 

interactions among household members. This differs, however, from the reality of most 

activity-based research to date. With few exceptions, the decision-making unit in both 

empirical studies and modeling efforts is the individual, not the household. Moreover, in 

the few empirical studies where the decision-making unit is the household, the sum of 

household activities is typically investigated, ignoring interactions among household 

members (e.g. Ma and Goulias 1997; Strathman et al. 1994; Vadarew and Stopher 

1996). In terms of operational activity-based models of urban travel demand, only Wen 

and Koppleman's (1998, 1999) model is developed at the household level, accounting 

explicitly for interactions among household members. However, as noted by Bhat and 

Koppleman (1999), models that employ an activity agenda can implicitly account for 

household interactions by altering agenda attributes. Examples of such models include 

STARCIllLD (Recker et al. 1986a, 1986b), SMASH (Ettema et al. 1993, 1996) and 

SCHEDULER (Garling et al. 1989, 1998; Golledge et al. 1994). A common feature of 

these models is that they do not generate activities, but instead, they simply schedule 

those that are provided in an agenda. From a pragmatic point of view, this feature limits 
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their ability to forecast travel and evaluate travel demand management (TDM) strategies 

for an urban area. 

In this chapter, it is argued that activity-based travel demand forecasting models be 

developed that are capable of generating and scheduling activities-a sentiment that is 

shared by others (e.g. Bhat and Koppleman 1999). Moreover, these models must. be 

developed at the household level, taking into account interactions among household 

members. Two reasons are suggested for this. First, individual-level models are incapable 

of handling complex responses to TOM strategies. For example, a person who performs 

an activity during the evening commute may forgo the activity when working a 

compressed workweek. This response obviously favors the alternative work-schedule 

strategy. However, the individual-level model does not consider that this activity may be 

reassigned to another household member who also undertakes it after work. In this case, 

the TOM strategy would prove ineffective in reducing travel demand. Second, such 

models do not account for joint out-of-home activities-namely, activities in which more 

than one household member participates. This means that predictions of activity-travel 

behavior are likely to be inaccurate. For example, multiple out-of-home activities may be 

predicted for household members when, in fact, only one exists. 

This chapter proposes a conceptual framework for modeling daily household activity­

travel behavior. Besides being developed at the household level, the framework is 

distinguished from those underlying other activity-based forecasting models by three 

characteristics. First, it is developed for the heads of five common household types for 

reasons that will be discussed. Second, interactions between household heads are 
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incorporated explicitly into the framework for three of the household types. Finally, two 

activity settings are recognized: independent and joint activities. Such activities are 

generated by the Activity-Episode Generation module and scheduled by the Activity­

Episode Scheduling module. 

The remainder of this chapter is organized as follows. The next section presents an 

empirical example of household activity-travel behavior taken from an activity-travel 

survey conducted in Portland, Oregon in 1994. This example demonstrates some of the 

underlying assumptions of the conceptual framework, which is described in-depth in 

section three. The contributions of this chapter to activity-based research are summarized 

in the final section. 

3.2 Empirical Example 

Figure 3.1 illustrates graphically an example of daily household activity-travel behavior 

constructed from data contained in the 1994 Portland Activity-Travel Survey. The 

household consists of four members: a working husband, a non-working wife and two 

school-age children. Furthermore, the household has one automobile and resides in a 

house in the suburbs. 

On the survey day, all members participate in out-of-home activities. The husband 

takes public transit to work, which means that the automobile is left at home for use by 

the wife. In fact, the wife participates in six out-of-home activity episodes while the 

husband is at work. Furthermore, these episodes form one home-based tour. Specifically, 

the wife undertakes two shopping episodes-one in the morning and the other in the 
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afternoon. After the morning episode, she picks up one of her sons (i.e. Child 2) and takes 

him to a religious activity. Once this activity is over, the wife returns briefly home to pick 

up her other son (i.e. Child 1). The wife then drops off both sons on her way to go 

shopping. Child 1 walks home after finishing shopping, whereas the wife picks up Child 

2 on her way home from shopping. In the evening, husband and wife participate in a joint 

out-of-home recreational activity. 

This empirical example demonstrates several aspects of daily household activity­

travel behavior that are incorporated in the conceptual framework discussed in the next 

section. First, only the activity-travel behavior of household heads needs to be considered 

for practical travel demand forecasting purposes. The reason for this is that the activity­

travel behavior of children manifests itself in that of their parents. As shown in Figure 

3.1, four of the six out-of-home activities undertaken by the wife were for her children. 

Second, complex interactions between household heads underlie their activity-travel 

behavior. For instance, in the above example, the wife may have required the automobile 

on the survey day to take Child 2 to a regularly scheduled religious activity. Third, 

household heads often participate in the same type of activity on more than one occasion 

over the course of a day. Each occurrence of an activity is known as an activity episode, 

which is defined as a period of time characterized by a uniform purpose and spatial 

setting. Finally, engagement in joint activity episodes, particularly in the evening, is an 

important aspect of the activity-travel behavior of household heads (see also Kostyniuk 

and Kitamura [1982]). 



3.3 Conceptual Framework 

3.3.1 Assumptions 
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The conceptual framework for modeling daily household activity-travel behavior is based 

on several assumptions. First, household members interact on a daily basis to generate 

and schedule collectively out-of-home activity episodes, which they undertake to fulfill 

household needs and individual desires. Second, this complex decision-making process is 

limited to non-work activities because work is assumed to be fixed in the short term. 

Furthermore, activity-based research has shown that work governs the activity-travel 

behavior of household members (e.g. Golob and McNally 1997). Third, only the activity­

travel behavior of household heads is considered for the reason given in the preceding 

section-that is, the activity-travel behavior of children manifests itself in that of their 

parents. As well, household heads undertake the vast majority of trips in urban areas. 

Fourth, daily household activity-travel behavior varies according to household type, 

which, for this framework, is defmed by the number of household heads and their work 

status. The types are: 

1. Single, non-worker households: one-person and single-parent households in which 

the person or parent does not work, 

2. single-worker households: one-person and single-parent households in which the 

person or parent works, 

3. couple, non-worker households: married or unmarried, male-female couples with 

or without children in which neither household head works, 
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4. couple, one-worker households: married or unmarried, male-female couples with 

or without children in which only one household head works, and 

5. couple, two-worker households: married or unmarried, male-female couples with 

or without children in which both household heads work. 

Interactions between household heads occur only in the latter three household types. 

The activity episodes generated in these households fall into one of two settings based 

solely upon the number of household heads participating in them. In other words, the 

presence of other household members, such as children, is not used to defme these 

settings. Activities undertaken by one household head are independent activities, whereas 

those undertaken by both household heads together are joint activities. The decision­

making process underlying household activity-travel behavior in single, non-worker and 

single-worker households is much simpler, resulting in independent activity episodes 

only. 

3.3.2 Overview 

Figure 3.2 presents the general structure of the conceptual framework. As can be seen, it 

consists of two modules: Activity-Episode Generation and Activity-Episode Scheduling. 

The ftrst module generates the daily number of out-of-home activity episodes undertaken 

by household heads in each of the ftve household types, whereas the second module is 

concerned with the explicit timing, sequencing, activity type, duration, location and mode 

for each episode. This module, in tum, consists of two submodules: Period Assignment 

and Tour Generation. 
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Both modules are influenced by a number of exogenous factors, which are classified 

as individual and household characteristics, urban land-use patterns, and transportation 

system characteristics. The first set of factors includes socio-demographic characteristics 

(e.g. household income, presence of children and age), work characteristics (e.g. work 

duration and work mode) and residential location. Empirical studies have shown that 

these factors influence activity-travel behavior. For example, the presence of children in 

the household has long been recognized as an important constraint on such behavior and 

is, therefore, included as an explanatory variable in many studies (e.g. Bhat 1997, 1998a; 

Damm and Lerman 1981; Kitamura and Kermanshah 1983; Kostyniuk and Kitamura 

1982; Niemeier and Morita 1996). Urban land-use patterns concern spatial distributions 

of activity sites in an urban area. Moreover, these patterns, along with transportation 

system characteristics, determine a household's accessibility to various types of out-of­

home activities. Transportation system characteristics include the structure of the road 

network, congestion and the availability of public transportation. 

3.3.3 Activity-Episode Generation Module 

Figure 3.3 shows the general structure of the Activity-Episode Generation module. 

Chapter 4 confirms the importance of mode choice for work on the daily number of out­

of-home activity episodes undertaken by household heads that work. Generally, 

commuting to work by public transit reduces the number of independent episodes, 

whereas driving to work alone increases their number. Furthermore, for couple, two­

worker households, commuting to work together is shown to increase the number of joint 
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episodes. The study also identifies other variables that influence household activity-

episode generation. These variables include household income, presence of children, age 

and work duration, to name a few. 

The module structure shown in Figure 3.3 varies according to household type. Mode 

choice for work is included for only three types: single-worker; couple, one-worker; and 

couple, two-worker households. Furthermore, for the heads of single, non-worker and 

single-worker households, the module generates independent episodes only. Joint out-of-

home activity episodes are generated, along with independent episodes, for the heads of 

couple, non-worker, one-worker and two-worker households. Moreover, for these 

household types, the module captures interactions between household heads. The models 

underlying the Activity-Episode Generation module are discussed thoroughly in the 

following chapter. 

3.3.4 Activity-Episode Scheduling Module 

3.3.4.1 Period Assignment Submodule 

The fact that activity-travel behavior generally occurs within distinct periods of the day 
-- --= '" ~--_-..c-

has long been recognized by researchers (e.g. Bhat 1998b; Damm 1980, 1982; Damm and 
=~~~=- =--

~'"--- :'~"'~-:---=-.:!...--::-_~::-::-...=...:...~.~~ __ ~~'2f.! 

Lerman 1981; Kostyniuk and Kitamura 1982; Landau et al. 1981). For this reason, the 

Activity-Episode Scheduling module divides the day into several distinct periods that 

vary according to household type. For the heads of single, non-worker and couple, non-

worker households, these periods correspond simply to morning, afternoon and evening. 

However, for the remaining household types, division of the day is based on the temporal 
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fixity of work. Figure 3.4 illustrates how the day is divided into periods for the heads of 

couple, one-worker and couple, two-worker households. Furthermore, the periods shown 

for the working heads of these household types are the same as those identified for the 

heads of single-worker households. 

For couple, two-worker households, each head's day is divided. into five periods: 

before home to work commute, home to work commute, during work, work to home 

commute and after work to home commute. In most instances, there will be a 

considerable amount of overlap between the respective periods for each household head. 

In fact, the modeling results discussed in Chapter 4 show that synchronization of the 

work schedules of household heads has a negative impact on the number of independent 

out-of-home activity episodes undertaken by male heads. As explained, one possible 

reason for this is that both working heads want to spend time together at home or 

participating in joint out-of-home activities. This fmding implies that the amount of 

overlap between the respective periods for each household head influences both the 

generation of out-of-home activity episodes and the assignment of joint episodes to 

periods of the day. 

For couple, one-worker households, the worker's work activity is used to divide the 

non-worker's day into three periods: before worker's home to work commute, while 

worker is at work and after worker's work to home commute. As shown in Figure 3.4b, 

periods 1 and 3 for the non-worker are synchronous with periods 1 and 5, respectively, 

for the worker. 
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The general structure of the Period Assignment submodule is shown in Figure 3.5. 

For couple, non-worker, one-worker and two-worker households, joint activity episodes 

are assigned to periods of the day before independent activity episodes. The reason for 

this is that joint episodes impose greater constraints on household heads than independent 

activity episodes because of the need to coordinate schedules. Furthermore, for the latter 

household types, such episodes are likely to occur after work (Kostyniuk and Kitamura 

1982). Once all joint episodes are assigned to periods of the day, independent activity 

episodes are assigned for each household head. This process is conditional based on the 

presence of one or more joint episodes in a period. For single, non-worker and single­

worker households, only independent episodes are assigned to periods of the day. 

3.3.4.2 Tour Generation Submodule 

After all out-of-home activity episodes are assigned to periods of the day for household 

heads, the explicit timing, sequencing, activity type, duration, location and mode for each 

episode must be determined. Moreover, the conceptual framework recognizes that two or 

more episodes assigned to a particular period may be undertaken successively. This is 

known as trip chaining (see Thill and Thomas [1987] for a review). Specifically, for each 

period, out-of-home activity episodes are organized into tours. A tour is defmed as a 

circuit of activity episodes that begins and ends at home. Furthermore, each episode takes 

place at a location that differs from that which precedes it. For working heads, a tour may 

also contain a sub tour, which is defined as a tour that begins and ends at work. For 

example, a worker may decide to eat lunch in a nearby restaurant at midday. 
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The general structure of the Tour Generation submodule is shown in Figure 3.6. As 

shown in the figure, for each tour, a mode is first chosen. Second, conditional on this 

choice, home/work-stay duration is determined. Third, beginning with the first activity 

episode, its type and duration are determined. Fourth, conditional on this, a location for 

the episode is chosen. Fifth, the travel time to the location is provided exogenously from 

a travel time matrix. Finally, if two or more activity episodes have been assigned to a 

period, they may be undertaken in the same tour. This is determined by returning to the 

third step. However, in this instance, the activity choice is two-tiered. On the first level, 

the choices are to pursue another out-of-home activity episode or return home (or to 

work). On the second level, activity types are defined for the first alternative. If any 

episodes remain after the first tour, additional tours are undertaken until all episodes for 

the period have been assigned to tours. 

The general structure of the Tour Generation submodule is modified in two situations. 

First, activities assigned to periods 2 and 4 for working heads are part of a home-based 

work tour. For this reason, such activities are pursued successively. In other words, the 

Tour Generation submodule is reduced to one of home/work-stay duration and the 

determination of successive episode attributes. The Activity-Episode Generation module 

determines the mode choice for work. Second, the Tour Generation sub module applies to 

both independent and joint out-of-home activity episodes. If, however, both types of 

episodes are assigned to a particular period, the submodule is modified to first determine 

the type of tour pursued. 
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3.4 Conclusions 

This chapter has discussed a comprehensive conceptual framework for modeling daily 

household activity-travel behavior. Besides being developed at the household leve~ the 

framework is distinguished from those underlying other activity-based forecasting 

models by three characteristics. First, it is developed for the heads of five common 

household types: single, non-worker; single-worker; couple, non-worker; couple, one­

worker; and couple, two-worker households. Second, interactions between household 

heads are incorporated explicitly into the framework for the latter three household types. 

Finally, two activity settings are recognized: independent and joint activities. 

The conceptual framework consists of two modules. The Activity-Episode Generation 

module generates the daily number of out-of-home activity episodes undertaken by 

household heads in each of the five household types. The models underlying this module 

are discussed thoroughly in Chapter 4. In contrast, the Activity-Episode Scheduling 

module is concerned with the explicit timing, sequencing, activity type, duration, 

location, and mode for each episode. In turn, two submodules comprise this module: 

Period Assignment and Tour Generation. 

The conceptual framework proposed in this chapter addresses the need to develop 

activity-based travel demand forecasting models that are capable of generating and 

scheduling activities at the household level, taking into account interactions among 

household members. Furthermore, the framework can be implemented using data that are 

readily available to most metropolitan planning organizations. For these reasons, the 

conceptual framework is an attractive alternative to existing activity-based models. 



4 Household Activity-Episode Generation: Empirical 
Analysis 

4.1 Introduction 

Since the late 1970s, the rapidly expanding literature subsumed under the activity-based 

paradigm has increased significantly our understanding of urban travel behavior and 

provided insights into new approaches to replace current models of urban travel 

demand-namely, the Urban Transportation Modeling System (UTMS). Unlike trip-

based approaches, the activity-based paradigm, more commonly known as activity 

analysis, recognizes explicitly that travel is a demand derived from the need to participate 

in out-of-home activities. In other words, discrete activities or patterns of activities are 

~!!:,d, not trips. Jones et al. (1990) identify several features of the paradigm""--
---=~.~~~ 

including recognition that decision-making occurs in a household context, taking into 

account interactions among household members. This differs, however, from the reality 

of activity-based research to date. 

With few exceptions, the decision-making unit in both empirical studies and 

modeling efforts is the individual, not the household. This does not mean that the 

household is excluded from such research. In fact, most empirical investigations 

recognize the importance of household attributes in defining an individual's activity-

travel behavior. For example, the presence of children in the household has long been 

identified as an important constraint on such behavior and is, therefore, included as an 
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explanatory variable in many studies (e.g. Bhat 1997, 1998a; Damm and Lerman 1981; 

Kitamura and Kermanshah 1983; Niemeier and Morita 1996). In the very few instances 

where the decision-making unit is the household, the sum of household activities is 

typically investigated, ignoring interactions among household members. Strathman et al. 

(1994), for example, examine how household structure and other factors affect a 

household's allocation of non-work activities to alternative types of trip chains. In terms 

of operational activity-based forecasting models, only Wen and Koppelman's (1998, 

1999) model is developed at the household leve~ accounting explicitly for interactions 

among household members. Models that require an activity agenda, such as 

STARCHILD (Recker et al. 1986a, 1986b), SMASH (Ettema et al. 1993, 1996) and 

SCHEDULER (Garling et al. 1989, 1998; Golledge et al. 1994), can, however, account 

implicitly for household interactions by altering agenda attributes. 

The conscious disregard for household decision-making in activity-based research to 

date is largely a pragmatic artifact of the past. Heggie and Jones (1978) identify four 

domains applicable to the classification of most activity-based studies based on 

assumptions concerning the decision-making process underlying travel-namely, (1) 

independence, (2) spatio-temporal linkages, (3) inter-personal linkages and (4) full 

interdependence. As noted by the authors, incorporating household interactions explicitly 

into research (Domains 3 and 4) is not only more realistic than assuming an individual 

makes activity-travel decisions independently (Domains 1 and 2), but is exceedingly 

difficult to do. This problem does not appear to be conceptual given the inclusion of the 

household in the frameworks underlying several operational and proposed activity-based 



Table 4.1 
Transport emission trends of air pollutantsa in the United States, 1988 to 1997 

CO C02
b NOx VOC PM 

Year 
Shared Amount" Amount Share Amount Share Amount Share Amount Share 

1988 77,819 73.9 10,577 49.2 9,601 44.0 773 24.2 
1989 73,365 78.2 10,642 50.1 8,624 42.7 770 24.2 
1990 66,429 76.4 405 30.5 10,231 48.1 7,952 41.9 754 24.9 
1991 70,256 79.2 397 30.2 10,559 49.5 8,133 42.6 763 25.9 
1992 68,504 80.0 402 30.2 10,660 49.4 7,774 41.5 758 25.4 
1993 68,974 80.4 407 29.9 10,749 49.3 7,819 41.4 731 25.4 
1994 70,655 78.8 422 30.5 10,949 49.6 8,110 41.6 728 25.6 
1995 63,846 78.9 431 30.8 10,732 49.8 7,354 39.4 681 23.8 
1996 62,917 76.5 445 30.8 10,569 49.8 7,166 40.9 665 23.2 
1997 60,795 76.6 447 30.5 10,519 49.2 6,949 39.9 666 23.6 

a Carbon monoxide (CO), carbon dioxide (C~), nitrogen oxides (NOx), volatile organic compounds (VOC) and particulate matter between 2.5 and 10 
microns in diameter (PM). 
b Emissions from fossil fuel combustion. 
" All emissions are measured in thousands of metric tons except for CO2, which is measured in millions of metric tons of carbon equivalents. 
d Contnlmtion of transport to total emissions, measured in percent 

Source: USEPA OAQPS (1998); USEPA OP (1999). 
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forecasting models (Garling et al. 1989; Recker et al. 1986a; Stopher et al. 1996; Wen 

and Koppelman 1998). It does, however, appear to be methodological because the 

statistical tools available for such a complex treatment of activity-travel behavior are 

virtually nonexistent 10. The lack of such tools is related directly to available computer 

technology. In other words, computer technology largely dermes the boundaries of 

activity-based research, not to mention that of other fields. This is why such research to 

date has been mostly confined to Domains 1 and 2 in Heggie and Jones' (1978) 

classification. It has only been in very recent years that computer technology has 

improved to the point where researchers can develop and apply advanced statistical tools 

in activity-based studies (e.g. Bhat 1997, 1998a). Since such technology is no longer the 

impediment that it once was to research, the onus is now on researchers to develop 

statistical tools capable of analyzing the activity-travel behavior of households while 

accounting for interactions among household members. This comes at a time when the 

need to explicitly recognize the household as the primary decision-making unit in 

activity-based research has never been greater. 

In the industrialized world, transport is responsible for a large share of harmful 

environmental emissions of which the vast majority is from motor vehiclesll, particularly 

the automobile (DECO 1997a). In terms of amount, however, three trends are evident, as 

illustrated in Table 4.1. First, transport emissions of several air pollutants have been 

10 Notable exceptions include structural equations models (Golob and McNally 1997) and nested logit 
models (Wen and Koppelman 1999). 
11 Major air pollutants emitted by motor vehicles include carbon monoxide (CO), carbon dioxide (C~), 
nitrogen oxides (NO,J, particulate matter (PM) and volatile organic compounds (VOC) (OECD 1997b). 
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decreasing in some industrialized countries since the late 1970s and early 1980s. In the 

United States, for example, carbon monoxide (CO), particulate matter (PM) and volatile 

organic compounds (VOC) have all declined despite an increase in vehicle-miles traveled 

(VMTi2
. Second, transport emissions of carbon dioxide (C02), the primary greenhouse 

gas emitted by human activities, continue to increase in all industrialized nations as 

transport maintains its reliance on fossil fuels. Finally, in recent years, nitrogen oxides 

(NUx) appear to have leveled off in some countries. 

To date, the approach taken in most industrialized countries to reduce air pollution 

from transport has been to incite improvements in vehicle technologies by introducing or 

tightening vehicle emissions standards (OECD 1997b). These technologies either control 

emissions directly, such as catalytic converters13
, or improve vehicle fuel efficiency 14. 

There is, however, growing concern that any gains made in reducing transport emissions 

of air pollutants will be reversed in the future for the following reasons (OECD 1997b; 

USDOT BTS 1998). First, vehicle fuel efficiency has remained virtually unchanged since 

the mid-1980s (OECD 1997b; USEPA OP 1999; USDOT BTS 1998). This means that 

future reductions in transport emissions from vehicle stock turnover will be almost 

nonexistent as the average fuel efficiency of the on-road fleet approaches that of new 

12 Between 1980 and 1996, VMT grew from 1.53 to 2.48 trillion in the United States for an increase of 63 
r:ercent (USDOT BTS 1998). 

3 The use of catalytic converters, which is now mandatory in North America and much of Europe, actually 
increases COa emissions. 
14 Vehicle technologies that improve fuel efficiency, such as reduced vehicle weight, fuel injection and 
improved aerodynamics, generally reduce air pollutant emissions. However, there are some exceptions to 
this. For example, the use of higher air-fuel ratios and combustion temperatures actually increase NOx 
emissions. 
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vehiclesl5
. Second, the increasing popularity of less fuel-efficient light-duty trucks and 

sport utility vehicles, especially in North America, suggests the possibility that the 

average fuel efficiency of the on-road fleet may decline, thereby increasing emissions. In 

the United States, for example, such vehicles accounted for 40 percent of the light-duty 

vehicle market in 1997, up from 10 percent in 1979 (USDOT BTS 1998). Moreover, their 

average fuel efficiency was 20.4 miles per gallon (mpg) as opposed to 28.5 mpg for 

automobiles (USDOT BTS 1998). Third, vehicular traffic continues to grow in all 

industrialized nations without any sign of leveling off (OECD 1997b). Eventually, this 

alone will offset any improvements in air quality from transport. More importantly, 

however, such growth will lead to more congestion in the absence of increased network 

capacity. In tum, emissions of several air pollutants will rise 16. 

The realization that technology alone will be unable to maintain, let alone further 

reduce transport emissions in the future has prompted many industrialized nations to 

consider using travel demand management (TDM), which consists of strategies that 

influence the demand for vehicular travel. Such measures are increasingly necessary if 

these countries are to meet reductions in air pollutants set out in international agreements 

such as the 1997 Kyoto Protocol to the United Nations Framework Convention on 

15 In the United States, the avemge fuel efficiency of on-road automobiles increased from 13.8 miles per 
gallon (mpg) in 1976 to 21.2 mpg in 1991, for anavemge ammalimprovement mte of3.6 percent per year. 
In contrast, from 1991 to 1996, this mte decreased to 0.1 percent per year as mpg increased to only 21.3 
(USDOT FHWA 1997). 
16 Driving characteristics play an important role in emissions of air pollutants. Specifically, CO, CO2, PM 
and VOC emissions are highest when a vehicle is accelemting, decelemting or idling. Such conditions are 
synonymous with congestion In contrast, No,. emissions increase with speed. 
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Climate Change 17. In the United States, the 1990 Clean Air Act Amendments (CAAA) 

set the stage for achieving such goals by emphasizing the role of TOM strategies in 

meeting mandated reductions in transport emissions. In tum, these amendments were the 

major motivation behind the Travel Model Improvement Program (TMIP), which is the 

mQst ambitious undertaking to date to replace current models of urban travel demand 

with those that are policy sensitive, and therefore, capable of evaluating such strategies. 

Under this program, activity-based replacements are favored (Barrett et al. 1995; 

Spear 1996). Moreover, to meet expectations concerning the accuracy and reliability of 

forecasts, it is imperative that such models be developed at the household leveL taking 

into account interactions among household members. Two reasons are suggested for this. 

First, individual-level models are incapable of handling complex responses to TOM 

strategies. For example, a person who performs an activity during the evening commute 

may forgo the activity when working a compressed workweek. This response obviously 

favors the alternative work-schedule strategy. However, the individual-level model does 

not consider that this activity may be reassigned to another household member who also 

undertakes it after work. In this case, the TOM strategy would prove ineffective in 

reducing travel demand. Second, such models do not account for joint out-of-home 

activities-namely, activities in which more than one household member participates. 

This means that predictions of activity-travel behavior are likely to be inaccurate. For 

17 In this agreement, industrialized nations consented to reduce greenhouse gas emissions, notably CO2, to 
five percent less than 1990 levels by 2008 to 2012. 
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example, multiple out-of-home activities may be predicted for household members when, 

in fact, only one exists. 

The need to explicitly recognize the household as the primary decision-making unit in 

activity-based research is the fundamental motivation for this chapter. Specifically, the 

daily number of out-of-home activity episodes18 other than work is modeled for the heads 

of five common household types. To capture interactions between such household 

members, a joint model is developed, which accounts for both independent and joint 

activity episodes. This model is applied to three of the five household types. A 

comparison of the results with those obtained from models that ignore household 

interactions suggests that daily activity episodes are determined jointly by household 

members. Consequently, predictive accuracy is improved by using household-level 

models. Furthermore, the models developed herein form the Activity-Episode Generation 

module in the household-level, activity-based travel demand forecasting system discussed 

in Chapter 3. 

The remainder of this chapter is organized as follows. The next section reviews 

briefly activity-based studies that have investigated interactions among household 

members. The statistical models and data used in the analysis of household activity­

episode generation are detailed in the third section. Moreover, development of the joint 

model is discussed in depth. Section four presents the empirical fmdings. The 

contributions of this study to activity-based research are summarized in the final section. 

18 An activity episode is a period oftime characterized by a uniform purpose and spatial setting. 



64 

4.2 Prior Research 

Very few studies have investigated interactions among household members in terms of 

their activity-travel behavior. Of those that have, the effects of one member's behavior on 

that of another are captured explicitly by joint modeling frameworks or implicitly through 

the use of variables in simpler models. In some instances, exogenous factors are shown to 

influence these interactions. 

Landau et al. (1981) postulate that the daily activity-travel behavior of household 

members arises from a sequential decision-making process whereby out-of-home 

activities are generated collectively by the household and then assigned to specific 

members for execution. For modeling purposes, they limit their study to households in 

which only the husband works and divide the day into four periods based on the 

husband's work activity. For the first stage of the sequential process, linear probability 

models are estimated for maintenance and leisure activities ignoring interactions between 

the two, which Golob and McNally (1997) have since shown to be important. For the 

second stage, conditional probability models are estimated separately for husband and 

wife by activity type and time period. A fundamental shortcoming of this model system is 

that it does not consider the number of out-of-home activity episodes undertaken by these 

household members, but instead, only whether such activities occur. Interactions between 

husband and wife are incorporated in the second-stage models by dummy variables that 

measure characteristics of the spouse's daily activity-travel behavior and by variables that 

measure the husband's temporal constraints-namely, the amount of free time before and 

after work. The research findings clearly demonstrate the importance of interactions 
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between household members in shaping their daily activity-travel behavior, suggesting 

that activity generation and allocation is a simultaneous process rather than a sequential 

one. Furthermore, there is evidence that leisure activities are executed jointly in the 

evemng. 

Kostyniuk and Kitamura (1982) address this phenomenon in their study of the 

evening time-space paths of household members. In fact, they select this period for 

investigation because it is a time when household members can participate together in 

out-of-home activities. They do, however, confine their empirical analysis to husbands 

and wives in households with at least one automobile. When these members pursue out­

of-home activities, their time-space paths are classified as to whether such activities are 

undertaken independently or jointly with a spouse. A path is considered joint if all or part 

of it is common for both husband and wife. Furthermore, such paths are classified 

according to the location where they become joint-specifically, at home or away from 

home (i.e. workplace or activity site). The fmdings indicate that interactions between 

husbands and wives in terms of their activity-travel behavior are influenced by several 

exogenous factors, notably household life-cycle stage, work-trip status and household 

role. For example, young couples without children are oriented toward joint activities 

with many paths involving contact points away from home. In contrast, the paths of 

husbands and wives in households with preschool and/or school age children consist of 

independent activities. With respect to work-trip status, households in which both the 

husband and wife work on a given day are characterized by joint activity engagement at 
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contact points other than home. Finally, wives are more likely to pursue joint activities 

than are husbands. 

Golob and McNally (1997) use a structural equations model to capture explicitly 

interactions between male and female household heads in terms of their participation in 

work, maintenance and discretionary out-of-home activities. The endogenous variables 

included in their model consist of total duration and total travel time for each activity 

type aggregated over a two-day period for each member. In terms of endogenous effects, 

the results indicate that male participation in work activity governs interactions between 

household heads. Specifically, it is shown that an increase in such activity leads to an 

increase in female maintenance activity and travel and to a decrease in female 

discretionary activity and travel. In terms of exogenous effects, the number of young 

children in the household is related to the substitution of work and maintenance activities 

between male and female household heads. Overall, the research findings suggest that 

gender roles play an important part in interactions between these household members in 

terms of their participation in specific out-of-home activities. 

Like Landau et al. (1981), Wen and Koppelman (1998, 1999) postulate a decision­

making process whereby households first generate out-of-home maintenance activities 

and then assign them to specific members for execution. However, unlike the previous 

work, Wen and Koppelman incorporate the number of such activity episodes in their 

modeling framework, which is a necessary prerequisite for operational activity-based 

forecasting models. Furthermore, they extend the household decision-making process to 

include the allocation of automobiles to household members, which is defined in terms of 
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the number of activity episodes for which an automobile is available. A three-tier nested 

logit model is used to implement the modeling framework, which, despite its advances 

over prior research, still has several shortcomings. First, it is limited to couples that do 

not engage in out-of-home maintenance activities together, thereby ignoring joint activity 

episodes. Second, although the nested logit model allows the household decisions to be 

estimated simultaneously, it does not account for the ordinal nature of the first decision­

that is, the number of out-of-home maintenance activity episodes. Finally, the model 

cannot be used for forecasting purposes because several of the independent variables are 

endogenous. 

From the research discussed in this section, several observations can be made 

regarding interactions among household members in terms of their activity-travel 

behavior. First, although such interactions exist among all household members, only 

those between household heads (i.e. both married and unmarried couples) need to be 

considered for practical travel demand forecasting purposes. The reason for this is that 

the activity-travel behavior of children manifests itself in that of their parents. For 

example, parents are largely responsible for taking their children to various activity sites, 

such as school. Second, the generation of out-of-home activity episodes other than work 

and their allocation to household heads for execution is a simultaneous process that is 

influenced by many exogenous factors including the presence of children in the 

household, work activity and household gender roles. This process, by its very nature, is 

based entirely upon interactions between these members. Third, engagement in joint 

activity episodes, particularly in the evening, is an important aspect of the activity-travel 
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behavior of household heads. These observations are incorporated in the modeling 

framework presented in the next section. 

4.3 Models and Data 

4.3.1 Modeling Framework 

For the research discussed herein, a number of assumptions are made. First, household 

members interact on a daily basis to generate collectively out-of-home activity episodes, 

which they undertake to fulfill household needs and individual desires. Second, this 

complex decision-making process is limited to non-work activities because work is 

assumed to be ftxed in the short term. Furthermore, activity-based research has shown 

that work governs the activity-travel behavior of household members (e.g. Golob and 

McNally 1997). Third, only interactions between household heads are considered for the 

reason given in the preceding section-that is, the activity-travel behavior of children 

manifests itself in that of their parents. As well, household heads undertake the vast 

majority of trips in urban areas. Fourth, household activity-episode generation varies 

according to household type, which, for this study, is defmed by the number of household 

heads and their work status. The types are: 

1. Single, non-worker households: one-person and single-parent households in which 

the person or parent does not work, 

2. Single-worker households: one-person and single-parent households in which the 

person or parent works, 
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3. couple, non-worker households: married or unmarried, male-female couples with 

or without children in which neither household head works, 

4. couple, one-worker households: married or unmarried, male-female couples with 

or without children in which only one household head works, and 

5. couple, two-worker households:.married or unmarried, male-female couples with 

or without children in which both household heads work. 

Interactions between household heads occur only in the latter three household types. 

The activity episodes generated in these households fall into one of two settings based 

solely upon the number of household heads participating in them. In other words, the 

presence of other household members, such as children, is not used to define these 

settings. Activities undertaken by one household head are independent activities, whereas 

those undertaken by both household heads together are joint activities. The decision­

making process underlying household activity-episode generation in single, non-worker 

and single-worker households is much simpler, resulting in independent activity episodes 

only. 

As mentioned, the objective of this research is to model the daily number of out-of­

home activity episodes for household heads in each of the five household types. For this 

task, two types of models are used both of which recognize the ordinal and discrete 

nature of the household decision-making process. These models are discussed thoroughly 

in the next two sections. 
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4.3.1.1 Univariate Ordered Probit Model 

The univariate ordered probit mode~ developed by McKelvey and Zavoina (1975), is 

used to model household activity-episode generation for the heads of single, non-worker 

and single-worker households. This model is based upon a latent regression, which is 

defined in this research as: 

(4.1) 

where y: is the propensity for the head of household h to undertake out-of-home activity 

episodes for a one-day period, Xh is a vector of exogenous variables, f3 is a corresponding 

vector of parameters and 8h is a random error term. 

The dependent variable y: is unobserved. Instead, what is observed is the actual 

number of out-of-home activity episodes that the household head participates in, denoted 

by Yh. The relationship between the two is defmed as: 

(4.2) 

where J is the maximum number of episodes that the household head can undertake. For 

J, there are J + 1 ordered responses corresponding to 0, 1, ... , J out-of-home activity 

episodes. These ordered responses are separated by threshold parameters defmed by the 

IlS. Furthermore, there are J + 2 parameters of which only J - 1 are estimated along with 

f3 because Ilo = -00, III = 0 and JlJ+I = +00. Additionally, J..l.o < III < ... < JlJ+I. 
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The random error term Eh is assumed to be normally distributed across household 

heads with a mean of zero and a variance of one. Given this assumption, it is possible to 

express (4.2) in probabilistic terms, thereby obtaining the univariate ordered probit 

model: 

(4.3) 

where Phj is the probability that the head of household h will participate in} out-of-home 

activity episodes and <P(.) is the cumulative standard normal density function. Estimates 

of ~ and J.L2, ... , J.LJ are found for the heads of single, non-worker and single-worker 

households using a program written in GAUSS that employs the maximum likelihood 

method. 

4.3.1.2 Trivariate Ordered ProbitModel 

A joint model is developed to model household activity-episode generation for the heads 

of couple, non-worker, one-worker and two-worker households. In the following 

presentation of the model's structure, for each household h, let} represent the number of 

out-of-home activity episodes that the male head undertakes independently during the 

day (j = 0, 1, ... , .1), let k represent the number of such episodes that the female head 

participates in (k = 0, 1, ... , K) and let / represent the number of out-of-home activity 

episodes that both heads undertake together (/ = 0, 1, ... , L). It should be noted, however, 

that in the case of one-worker households, j and k refer to working and non-working 

heads, respectively. The equation system can now be written as: 



Y;h = J31 Xxh + 8 1h , Y1h = j if J..I.l,i < Y;h ~ J..I.1,i+l 

Y;h =J32X2h +82h , Y2h =k ifJ..l.2,k <Y;h ~J..I.2,k+1 

Y;h = J33X3h + 83h , Y3h = I if J..I.3,1 < Y;h ~ J..I.3,1+1 
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(4.4) 

where Y;h' Y;h and Y;h are respectively the propensity for the male head of household h 

to engage in out-of-home activity episodes independently for a one-day period, the 

propensity for the female head to engage in such activity episodes and the propensity for 

both heads to undertake joint activity episodes. The observed number of independent out-

of-home activity episodes for the male head is represented by Ylh and for the female head, 

Y2h . .Y3h represents the observed number of joint episodes. The xs are vectors of exogenous 

variables. The J3s are corresponding vectors of parameters that are estimated along with 

the J..I.s for each equation. The random error terms 81h, E2h and E3h are assumed to be 

distributed identically and independently across households in accordance with the 

standard normal distribution. 

Male and female household heads interact to collectively make decisions regarding 

the choices in (4.4). From the analyst's point of view, these interactions are both 

observed and unobserved. For example, the heads of a couple, one-worker household 

may decide that the working head must leave the only household vehicle at home for use 

during the day by the non-working head. Such an arrangement would likely reduce the 

propensity for the working head to participate in independent out-of-home activity 

episodes, while increasing that of the non-working head. In other words, a negative 

association exists between the two choices. The analyst can easily capture such an 

interaction using dummy variables. In reality, however, interactions between household 
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heads will be mostly unobserved. For example, one household head may be actively 

involved with community organizations in the evening. If the other household head is to 

participate in out-of-home activity episodes during this period, he or she must do so 

independently. This arrangement precludes any joint out-of-home activity episodes. The 

key to capturing such unobserved interactions between household heads is to correlate the 

random error terms Elh, E2h and E3h. For this, a standard normal trivariate distribution 

function is specified such that: 

(4.5) 

Likewise, the corresponding cumulative density function is given as: 

(4.6) 

The ps represent the correlations between the random error terms. 

From (4.4) and (4.6), the joint probability that the male and female heads of 

household h will participate respectively in j and k independent out-of-home activity 

episodes, as well as I joint episodes is: 



Ph;1d = <I> 3 kJll.i+l - 131 X1h ), (Jl2.k"+1 - f3 2X2h ), (Jl3.1+1 - f33 X3h), PEIE2 ' PE:\E3' PE2&J­

<1>3 kJll.i - f31 Xlh),(Jl2.k-+l - f32 X2h),(Jl3.1+1 - f33X3h),PEI~ ,PE:\&3 ,PE2&3]­

<1>3 kJll.i+l - 131 X1h ), (Jl2.k" - f32 X2h), (Jl3.1+1 - f3 3X3h ), PEIE2 ' PE:\E3' P&2&J­

<1>3 [cJll.i+l - f31 Xlh)' (Jl2.k"+1 - f3 2X2h ), (Jl3.1 - f3 3X3h ),PEIE2' P&I&3' P&2EJ­

<1>3 kJlI.i - f3 IX1h ), (Jl2.k" - f32 X2h ), (Jl3.1 - f33 X3h)' P&I&2' P&IE3 ,PEl"J+ 

<1>3 [<JlI.i - f3I Xlh),(JlV - f32 X2h),(Jl3.1+1 - f33 X3h),PEIE2 ,P&I&3 ,P&2EJ+ 

<I> 3 kJll.i - f3I Xlh)' (Jl 2.k"+1 - f32 X2h)' (Jl3.1 - f3 3X3h ), PEIE2 ' PEIE3' P&2EJ+ 

<I> 3 [<Jll.i+l - 131 Xlh ), (Jl2.k" - f3 2X2h ), (Jl3.1 - f33X3h),PEI&2' PEIE3 ' PE2&J· 

74 

(4.7) 

This model is hereby known as the trivariate ordered probit model. The assumptions 

regarding the JlS for the univariate ordered probit model also apply here. This means that 

there are J + K + L - 3 threshold parameters to be estimated along with the f3s and ps. 

The parameters for the model are obtained by maximizing the log-likelihood function: 

where 

{
I if the heads of household h participate in j, k and I activity episodes, 

Zhjld = o otherwise. 

A program is written in GAUSS for this task. 

4.3.2 Data and Sample 

(4.8) 

The data for this research are derived from a trip diary survey that was conducted for the 

Ontario Ministry of Transportation during February and March 1987. The sample of 

households for this survey was selected from households that responded to a much larger 



75 

survey conducted in the Greater Toronto Area in 1986-that is, the 1986 Transportation 

Tomorrow Survey. The trip diary survey used a mail questionnaire to obtain socio­

demographic information on each household surveyed, including all members over the 

age of five. It also collected detailed information concerning the daily travel behavior of 

such members for a pre..,selected weekday. Complete questionnaires were obtained for 

1,948 households. 

Of this total, only 1,298 households were used in the present study because of a 

rigorous screening procedure. The original sample was fIrst classified by household type. 

Any household that did not fit into one of the five types identified for analysis was 

removed from the sample. Next, for household heads, the number of out-of-home activity 

episodes was recorded for each activity setting (i.e. independent and joint activities) by 

purpose. The trip diary identified six activity types besides work and home: shopping, 

entertainment/socializing/recreation, drop off/pick up passenger, personal business, 

school and other. Households were eliminated from the sample if a head went to school 

on the survey day. The reason for this is that schoo~ like work, is a mandatory activity 

that imposes constraints on discretionary activities. The number of out-of-home activity 

episodes was then totaled for the heads of each household type by activity setting. Once 

again, households were removed from the sample if the number of episodes undertaken 

independently or jointly by a head was considered an outlier. This decision ensured an 

adequate number of observations for each ordered response of the dependent variable. 

Finally, the sample was checked for missing data. Upon completion of the screening 

procedure, the sample consisted of210 single, non-worker households; 350 single-worker 
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households; 120 couple, non-worker households; 249 couple, one-worker households; 

and 369 couple, two-worker households. 

Observed distributions of the daily number of out-of-home activity episodes for the 

heads of these households are found in Table 4.2. Inspection of this table reveals some 

interesting (mdings. First, the non-working heads of couple, one-worker households are 

the most active, pursuing up to four independent episodes daily. Second, the male and 

female heads of couple, two-worker households appear to engage in a similar number of 

independent out-of-home activity episodes. Third, the heads of single, non-worker and 

single-worker households are more likely to engage in such episodes than the heads of 

the other household types. Finally, the heads of couple, non-worker, one-worker and two­

worker households are more likely to pursue out-of-home activities independently than 

together. 

4.4 Empirical Findings 

4.4.1 Variables and Model Specification 

The choice of independent variables for potential inclusion in the household activity­

episode generation models was guided by the findings from previous activity-based 

research and intuitive arguments regarding the effects of variables designed to capture 

interactions between household heads. The variables included in the final model 

specifications are found in Table 4.3, along with their definitions. The first group of 

variables measures socio-demographic characteristics of households and their heads, 

whereas the second group is defined only for those heads that work. A more detailed 



Table 4.2 
Observed distributions of the daily number of out-of-home activity episodes by type 

Number of Activity 
Episodes 

Ma/elWorker 
o 
I 
2 
3 

FemaleINon-worker 
o 
1 
2 
3 
4 

Joint 
o 
1 
2 

Single, Non-worker 

0.4619 
0.2810 
0.1714 
0.0857 

Single-worker 

0.5057 
0.2800 
0.1429 
0.0714 

Household Type 

Couple, Non-worker Couple, One-worker Couple, Two-worker 

0.5500 
0.2917 
0.1583 

0.7250 
0.2000 
0.0750 

0.7917 
0.1333 
0.0750 

0.6707 
0.2329 
0.0964 

0.3976 
0.2851 
0.1687 
0.0723 
0.0763 

0.8996 
0.0843 
0.0161 

0.5908 
0.2737 
0.0921 
0.0434 

0.5610 
0.2547 
0.1328 
0.0515 

0.8862 
0.0921 
0.0217 



Table 4.3 
Independent variables used in the household activity-episode generation models 

Variable 

Socia-demographic Characteristics 
Age 
Children S; 5 years present 
Children ~ 6 years, S; 10 years present 
Children ~ 6 years, S; 15 years present 
Female and children S; 5 years present 

Female and children ~ 6 years, S; 10 years present 

Household income 
Licensed and vehicle present 

Licensed female and vehicle present 

Licensed, one-vehicle household and vehicle 
unavailable while worker is at work 
Licensed, one-vehicle household and vehicle 
available while worker is at work 
Licensed and multiple-vehicle household 

Male licensed, female licensed and vehicle present 

Only male licensed and vehicle present 

Only worker licensed and vehicle present 

Reside in Metropolitan Toronto 

Work Characteristics 
Female and transit to work 
Part-time employment 

Definition 

Age of household head in years x 10-1 

1 if household contains children S; 5 years old; 0 otherwise 
1 if household contains children ~ 6 years old and S; 10 years old; 0 otherwise 
1 ifhousehold contains children ~ 6 years old and S; 15 years old; 0 otherwise 
1 ifhead of single-worker household is female and household contains children S; 5 years 
old; 0 otherwise 
1 ifhead of single-worker household is female and household contains children ~ 6 years 
old and S; 10 years old; 0 otherwise 
Annual household income in dollars x 10-4 
I if female head of couple, non-worker household is licensed and the household has a 
vehicle; 0 otherwise 
I ifhead of single, non-worker or single-worker household is a licensed female and the 
household has a vehicle; 0 otherwise 
I if non-working head of couple, one-worker household is licensed and the only household 
vehicle is unavailable for use while the working head is at work; 0 otherwise 
I if non-working head of couple, one-worker household is licensed and the only household 
vehicle is available for use while the working head is at work; 0 otherwise 
I if non-working head of couple, one-worker household is licensed and the household has 
more than one vehicle; 0 otherwise 
I ifboth heads of couple, non-worker household are licensed and the household has a 
vehicle; 0 otherwise 
I if only male head of couple, non-worker household is licensed and the household has a 
vehicle; 0 otherwise 
I if only working head of couple, one-worker household is licensed and the household has 
a vehicle; 0 otherwise 
I if household lives in Metropolitan Toronto; 0 otherwise 

I if head of single-worker household is female and takes public transit to work; 0 otherwise 
I if household head is employed part-time; 0 otherwise 



Work dmation 
Same work schedule as female 

Household heads commute together 

Tnmsit to work 
Multiple-vehicle household and drive alone to work 

One-vehicle household and drive alone to work 

Work duration of household head in minutes x 10-2 

1 if male head of couple, two-worker household has same work schedule as female head; 0 
otherwise 
1 ifheads of couple, two-worker household commute to work together in a household 
vehicle; 0 otherwise 
1 if household head takes public transit to work; 0 otherwise 
1 ifhousehold has more than one vehicle and household head drives alone to work; 0 
otherwise 
1 ifhousehold has only one vehicle and household head drives alone to work; 0 otherwise 
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account of these variables is given in the following section in reference to the models in 

which they are included. 

To ascertain whether or not daily out-of-home activity episodes are determined 

jointly by the heads of couple, non-worker, one-worker and two-worker households, two 

models were specified for each household type. The first specification, which is denoted 

• 
in this chapter as a joint model, captured any unobserved interactions between household 

heads by correlating the error terms in (4.4). For the second specification, these error 

terms were left uncorrelated by setting the ps in (4.7) to zero, which implies that the 

number of daily out-of-home activity episodes for each equation in (4.4) is determined 

independently. This specification is appropriately denoted as an independent model. For 

each household type, the two models were compared using the following likelihood ratio 

test statistic: 

- 2[L; (~) - L~ (~)] (4.9) 

which is X2 distributed with three degrees of freedom. L~ (~) and L; (~) are respectively 

the log-likelihood values from the joint and independent model specifications. 

4.4.2 Model Results 

4.4.2.1 Single, Non-worker Households 

Table 4.4 presents the model results for the heads of single, non-worker households. As 

can be seen, only three independent variables are found to influence significantly the 

propensity for household heads to engage in out-of-home activity episodes. This fact is 



Table 4.4 
Model results for single, non-worker households 

Variable 

Independent Activity Episodes for Non-worker 
Constant Term 

Socia-demographic Characteristics 
Age 
Household income 
Licensed female and vehicle present 

Threshold Values 
One and two activity episodes 
Two and three activity episodes 

SUMMARY STATISTICS 
n 210 

L·(O) -291.1 

L*(c) -257.5 

L* (fJ) -247.2 

- 2 [L* (c) - L* (fJ)] 20.6 

p2 0.0400 

Percent right 47.1429 
Expected percent right 35.6341 

81 

Coefficient t -statistic 

1.3867 2.804 

-0.2295 -3.360 
0.1516 2.373 
0.3041 1.776 

0.8009 8.692 
1.5522 11.417 
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reflected in the low value of p2, which is computed as follows for this model and those to 

be discussed: 

P
2 = 1- L* (13) 

L*(c) 
(4.10) 

where L* (13) is the value of the log-likelihood function at its maximum-that is, when it 

includes independent variables-and L*(c)is the value of the log-likelihood function 

when it includes only constant terms and threshold values (i.e. the J.1s). 

The effects of the socio-demographic characteristics are as anticipated. Age has a 

negative impact on the propensity for household heads to engage in out-of-home activity 

episodes. This is possibly due to the lower activity levels of older people, as suggested by 

Bhat (1997). The positive effect of household income on activity-episode generation is 

well documented in the activity-based literature (e.g. Bhat 1997; Strathman et al. 1994). 

With increasing income, there is likely more money available for participation in out-of-

home discretionary activities, particularly those involving entertainment and socializing. 

Female household heads with a driver's license and access to a vehicle are likely to 

engage in more out-of-home activity episodes than other household heads. Two factors 

account for this finding. First, vehicle ownership is much lower for single, non-worker 

households than for other household types. Second, the vast majority of household heads 

is female. The legal ability to drive coupled with vehicle ownership greatly enhances 

personal mobility, thereby reducing constraints associated with participation in out-of-

home activities. 
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Despite the low value of p2, the model performs reasonably well in terms of its 

predictive ability. Two measures are used for this assessment: percent right and expected 

percent right. The former statistic is dermed as: 

100 ( H ) Percent right = - LYh 
H h=l 

(4.11) 

where Yh is one if the highest predicted probability corresponds to the observed number of 

out-of-home activity episodes for the head of household h and zero otherwise. The latter 

statistic is measured as: 

100 ( H J J Expected percent right = - L L PIVY IV 
H h=1 j=O 

(4.12) 

where Phj is the predicted probability that the head of household h will participate in j 

out-of-home activity episodes, and Yhj is one if the head is observed to select j episodes 

and zero otherwise. The percent right and expected percent right for the model are 

respectively 47 and 36 percent. 

4.4.2.2 Single-worker Households 

The model results for the heads of single-worker households are found in Table 4.5. A 

total of eight explanatory variables are found to influence significantly the propensity for 

household heads to participate in out-of-home activity episodes. The overall goodness-of-

fit of the mode~ as indicated by a p2 value of approximately 0.116, is considerably higher 

than that for the heads of single, non-worker households. Furthermore, the model's 



Table 4.5 
Model results for single-worker households 

Variable 

Independent Activity Episodes for Worker 
Constant Term 

Socio-demographic Characteristics 
Age 
Household income 
Licensed female and vehicle present 
Female and children:s; 5 years present 
Female and children ~ 6 years, :s; 10 years present 

Work Characteristics 
Work duration 
Part-time employment 
Female and transit to work 

Threshold Values 
One and two activity episodes 
Two and three activity episodes 

SUMMARY STATISTICS 
n 

L*(O) 

L*(c) 

L*(fJ) 

-2[L* (c)-L* (fJ)] 

p2 

Percent right 
Expected percent right 

350 
-485.2 

-408.6 

-361.4 

94.4 

0.1156 

52.5714 
42.6454 
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Coefficient t-statistic 

1.8597 4.597 

-0.1193 -2.062 
0.1622 2.907 
0.2664 1.980 
1.2402 2.524 
0.7377 2.108 

-0.3641 -6.544 
-0.5982 -2.027 
-0.4678 -2.791 

0.9390 11.216 
1.7670 13.992 
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predictive ability is greater-that is, the percent right is 53 percent and the expected 

percent right is 43 percent. 

The effects of the fIrst three socio-demographic characteristics in Table 4.5 on the 

propensity for household heads to engage in out-of-home activity episodes are the same 

as those for the heads of siqgle, non-worker households. In addition, the presence of 

children in the household has a positive influence on the number of episodes undertaken 

by female heads. However, the magnitude of this effect depends on the age of children. 

SpecifIcally, the presence of young children in the household (Le. children less than six 

years old) has a greater impact on activity-episode generation than the presence of older 

children (i.e. children between six and ten years old). Moreover, children 11 years and 

older have no impact on this process. Two factors are responsible for this fInding. First, 

children are more likely to reside with female heads than male heads. Second, the daily 

number of episodes for dropping off or picking up children decreases with their age. For 

example, in single-worker households, it is highly likely that young children are dropped 

off and picked up at daycare on a regular basis. This activity ceases when the children 

attend school, thereby reducing the propensity for female heads to participate in out-of­

home activity episodes. 

Several work characteristics are found to have negative impacts on activity-episode 

generation. Work is perhaps the single most important constraint on this process because 

it determines the amount of time available for participation in discretionary activities both 

at home and abroad. As shown in Table 4.5, as work duration increases, the propensity to 

engage in out-of-home activity episodes decreases. Furthermore, there is a distinction 
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between full-time and part-time work. Specifically, the daily number of episodes is likely 

to be less for part-time workers than for full-time workers. This fmding indicates that 

part-time workers are more likely to engage in out-of-home activities on non-working 

days than on working days-an option that is not available to full-time workers. As well, 

part-time workers are more likely to have less money to participate in discretionary 

activities. Finally, commuting to work by public transit reduces the number of episodes 

for female heads who are more likely than male heads to use this mode for their work 

commutes. This finding demonstrates the importance of chaining activities to the work 

commute, particularly that in the evening. Public transit reduces this possibility because it 

imposes greater constraints on female heads than would be realized if they drove to work 

alone. 

4.4.2.3 Couple, Non-worker Households 

Table 4.6 presents the model results for the heads of couple, non-worker households. For 

the joint model, three variables are found to influence significantly the propensities for 

male and female heads to participate in independent out-of-home activity episodes. For 

male heads, age has a negative impact on the number of such episodes, as does the 

presence of children between the ages of six and 15. The latter finding suggests that male 

heads spend more time at home nurturing young school-age children than older ones who 

are more independent. However, when only children less than six years old are present in 

the household, male heads undertake more episodes independently possibly because 

female heads are the primary caregivers for very young children. For female heads, those 

with a driver's license and access to a vehicle are likely to engage in more independent 



Table 4.6 
Model results for couple, non-worker households 

Variable 

Independent Activity Episodes for Male 

Constant Term 

Socio-demographic Characteristics 
Age 
Children ~ 6 years, ~ 15 years present 

Threshold Values 
One and two activity episodes 

Independent Activity Episodes for Female 

Constant Term 

Socio-demographic Characteristics 
Licensed and vehicle present 

Threshold Values 
One and two activity episodes 

Joint Activity Episodes 

Constant Term 

Socio-demographic Characteristics 
Male licensed, female licensed and vehicle 
present 
Only male licensed and vehicle present 

Threshold Values 
One and two activity episodes 

Correlation Coefficients 

Male and female 
Female and joint 
Male and joint 

SUMMARY STATISTICS 
n 

L*(O) 

L*(c) 

L*(fJ) 

-2[L* (c)-L* (fJ)] 

p2 

Joint Model 

Coefficient t-statistic 

2.9620 6.785 

-0.4458 -7.356 
-1.9097 -2.657 

0.9663 6.785 

-0.7535 -4.774 

0.3849 1.698 

0.8807 5.355 

-1.3408 -4.474 

0.6052 1.675 
0.7584 2.113 

0.6615 4.316 

0.4356 3.657 
-0.3208 -2.023 
-0.0504 -0.333 

120 

-395.5 

-285.2 

-264.5 

41.4 

0.0726 
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Independent Model 

Coefficient t-statistic 

3.3673 4.309 

-0.5019 -4.463 
-2.3232 -2.854 

0.9764 6.738 

-0.7948 -4.034 

0.4583 1.760 

0.8702 5.326 

-1.4037 -4.607 

0.6967 1.914 
0.8311 2.277 

0.6615 4.314 

120 

-395.5 

-285.2 

-271.8 

26.8 

0.0470 
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out-of-home activity episodes than other female heads for reasons that have already been 

discussed. 

For joint episodes, two variables are defined to capture interactions between male and 

female heads in terms of their mobility constraints. As shown in Table 4.6, both of these 

variables have significant positive effects on the propensity for household heads to 

participate in such out-of-home activity episodes. Moreover, their coefficient values are 

as anticipated. Specifically, male and female heads who are both licensed and have 

access to a vehicle are likely to engage in more joint episodes than household heads who 

do not have access to a vehicle. Furthermore, households in which only the male head is 

licensed and has access to a vehicle realize the greatest number of such episodes. The 

reason for this is that female heads depend on male heads for mobility. 

The joint model is compared to the independent model in Table 4.6. A likelihood 

ratio test statistic of 14.6 with three degrees of freedom rejects the null hypothesis that all 

the correlation coefficients are zero. In other words, the number of daily out-of-home 

activity episodes is determined jointly by the heads of couple, non-worker households. 

However, as shown in the table, only two of the three correlation coefficients are 

significant. The error terms for the number of independent episodes undertaken by male 

and female heads are positively correlated. This indicates a positive unobserved 

interaction between household heads. In contrast, the error terms for the number of joint 

episodes and the number of independent episodes undertaken by female heads are 

negatively correlated. This suggests a substitution effect between the two activity 

settings-that is, unobserved interactions that increase the propensity for female heads to 
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participate in independent activity episodes decrease the propensity for household heads 

to undertake joint episodes. Incorporating unobserved interactions between male and 

female heads in the modeling framework improves considerably the overall goodness-of­

fit of the model. The value of p2 is 0.073 for the joint mode~ which is considerably 

higher than a value of 0.047 for the independent model. 

4.4.2.4 Couple, One-worker Households 

The model results for the heads of couple, one-worker households are presented in Table 

4.7. Five explanatory variables are found to influence significantly the daily number of 

out-of-home activity episodes undertaken independently by working heads. Age has a 

negative impact on such episodes, as does work duration. In contrast, household income 

increases the propensity for working heads to participate in independent episodes. The 

effects of the two work mode variables are as expected. Commuting to work by public 

transit reduces the number of independent activity episodes, whereas driving to work 

alone increases them. The magnitude of the latter effect depends on household vehicle 

ownership. Specifically, working heads who are members of multiple-vehicle households 

are likely to participate in more independent episodes than are those who are members of 

one-vehicle households. The reason for this is that vehicle constraints are much greater in 

one-vehicle households than in multiple-vehicle households. 

Five socio-demographic characteristics are found to have significant positive effects 

on the propensity for non-working heads to participate in independent out-of-home 

activity episodes. As indicated in Table 4.7, such heads are responsible for dropping off 

and picking up young children (i.e. six to 10 years old) at school. Those who reside in 
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Table 4.7 
Model results for couple, one-worker households 

lointModel Independent Model 
Variable 

Coefficient t-statistic Coefficient t -statistic 

Independent Activity Episodes for Worker 

Constant Term 0.9676 1.864 0.9569 1.760 

Socia-demographic Characteristics 
Age -0.2349 -3.553 -0.2378 -3.1515 
Household income 0.1167 2.347 0.1187 2.348 

Work Characteristics 
Work duration -0.1895 -3.011 -0.1848 -2.825 
Transit to work -0.6227 -1.785 -0.6031 -1.699 
Multiple-vehicle household and drive alone to 
work 0.3231 1.884 0.2914 1.675 

Threshold Values 
One and two activity episodes 0.9749 8.481 0.9679 8.465 

Independent Activity Episodes for Non-worker 

Constant Term -0.6431 -3.782 -0.6563 -3.846 

SOCia-demographic Characteristics 
Children ~ 6 years, S; 10 years present 0.4229 2.297 0.4271 2.309 
Reside in Metropolitan Toronto 0.4635 2.868 0.4694 2.902 
Licensed, one-vehicle household and vehicle 
unavailable while worker is at work 0.7866 3.462 0.8049 3.538 
Licensed, one-vehicle household and vehicle 
available while worker is at work 1.4691 5.179 1.4906 5.260 
Licensed and multiple-vehicle household 1.0268 5.606 1.0356 5.637 

Threshold Values 
One and two activity episodes 0.8247 9.561 0.8237 9.562 
Two and three activity episodes 1.4799 12.659 1.4779 12.655 
Three and four activity episodes 1.9157 13.571 1.9134 13.559 

Joint Activity Episodes 

Constant Term -1.5534 -9.808 -1.5542 -9.841 

Socio-demographic Characteristics 
Children S; 5 years present 0.4777 2.063 0.5042 2.150 
Only worker licensed and vehicle present 0.4662 1.974 0.4614 1.923 

Threshold Values 
One and two activity episodes 0.8942 4.663 0.9054 4.639 

Correlation Coefficients 

Worker and non-worker 0.1242 1.396 
Non-worker and joint -0.0132 -0.245 
Worker and joint -0.4417 -3.477 

SUMMARY STATISTICS 
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n 249 249 

L*(O) -947.8 -947.8 

L*(c) -650.8 -650.8 

L* (fJ) -599.9 -605.8 

- 2 [L* (c) - L* (fJ)] 101.7 90.0 

p2 0.0781 0.0691 
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Metropolitan Toronto are likely to undertake more independent episodes than are those 

who do not live there. Two factors account for this. First, commercial and retail densities 

are much higher in Metropolitan Toronto than elsewhere in the Greater Toronto Area 

(GTA). Second, personal mobility is much greater in Metropolitan Toronto than in the 

remainder of the GT A because of convenient public transit, Which includes a subway 

system. The remaining three variables are defined to capture constraints relating to the 

availability of household vehicles while the worker is at work. The reference category 

consists of unlicensed non-working heads and households without a vehicle, as well as a 

combination of the two. The values of the coefficients are as expected. Specifically, the 

availability of a vehicle in a one-vehicle household greatly enhances the propensity for 

the licensed non-working head to undertake independent out-of-home activity episodes. 

This indicates that the vehicle has most likely been left at home exclusively for this 

purpose. Further evidence to support this finding is suggested by the coefficient for non­

working heads who reside in multiple-vehicle households-that is, such heads participate 

in fewer activity episodes despite the fact that they always have access to a vehicle. 

Finally, a non-working head in a one-vehicle household without access to a vehicle while 

the working head is at work can use the vehicle to participate in independent out-of-home 

activity episodes only when the working head is at home. This constraint is reflected in 

the value of the coefficient for this variable-that is, it is the smallest of the three 

coefficients. 

Two variables are found to influence significantly the propensity for household heads 

to participate in joint out-of-home activity episodes. The presence of young children (i.e. 
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less than six years old) in the household has a positive effect on the number of such 

episodes. One possible reason for this is that the non-working head may require relief 

from the responsibilities of childcare. Thus, both household heads undertake out-of-home 

activities together. Alternatively, both heads may need to be present at some activity 

involving young children, such as a doctor's appointment. As shown in Table 4.7, the 

second variable also has a positive influence on joint episodes. Specifically, households 

in which only the working head is licensed and has access to a vehicle realize the greatest 

number of episodes for reasons that have already been given. 

The joint model is compared to the independent model in Table 4.7. A likelihood test 

statistic of 11.8 with three degrees of freedom rejects the null hypothesis that all the 

correlation coefficients are zero. In other words, the number of daily out-of-home activity 

episodes is determined jointly by the heads of couple, one-worker households. However, 

as shown in the table, only one of the correlation coefficients is significant. The error 

terms for the number of joint episodes and the number of independent activity episodes 

undertaken by working heads are negatively correlated. This suggests a substitution effect 

between the two activity settings-that is, unobserved interactions that increase the 

propensity for working heads to undertake independent episodes decrease the propensity 

for household heads to engage in out-of-home activity episodes together. The overall 

goodness-of-fit of the joint model as measured by p2 is 0.078, which is higher than that 

for the independent model. 



94 

4.4.2.5 Couple, Two-worker Households 

Table 4.8 presents the results for the heads of couple, two-worker households. Five 

independent variables are found to influence the number of independent out-of-home 

activity episodes undertaken by male household heads. The effects of age, household 

income, work duration and commuting to work by public transit are the same as 

discussed for the working heads of other household types. Moreover, the same variables 

are found to influence the propensity for female heads to participate in independent 

episodes. Synchronization of the work schedules of male and female heads has a negative 

impact on the number of out-of-home activity episodes undertaken independently by 

male heads. A possible reason for this is that both working heads want to spend time 

together at home or participating in joint out-of-home activities. If their work schedules 

are not the same, male heads have more freedom to engage in independent episodes. 

Besides the explanatory variables already mentioned, driving to work alone is found 

to have a positive influence on the number of episodes undertaken independently by 

female heads. However, the magnitude of this effect depends on household vehicle 

ownership. Specifically, female heads who reside in one-vehicle households are likely to 

undertake more independent episodes than are those who live in multiple-vehicle 

households. One possible explanation for this is that female heads who reside in the 

former household type are responsible for the majority of household maintenance 

activities, such as grocery shopping, which are chained to the work commute. For the 

latter household type, such activities can be shared more equitably because constraints 

involving vehicle allocation are virtually nonexistent. Alternatively, vehicles may be 
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Table 4.8 
Model results for couple, two-worker households 

IointModel Independent Model 
Variable 

Coefficient t -statistic Coefficient t -statistic 

Independent Activity Episodes for Male 

Constant Term 1.6750 4.108 1.5989 3.786 

Socio-demographic Characteristics 
Age -0.2288 -3.690 -0.2070 -3.293 
Household income 0.0688 1.977 0.0662 1.908 

Work Characteristics 
Work duration -0.2330 -4.595 -0.2329 -4.371 
Transit to work -0.5709 -2.484 -0.5649 -2.348 
Same work schedule as female -0.2401 -1.939 -0.2430 -1.853 

Threshold Values 
One and two activity episodes 0.9457 11.421 0.9413 11.396 
Two and three activity episodes 1.5693 12.958 1.5744 12.862 

Independent Activity Episodes for Female 

Constant Term 0.9586 2.299 1.0129 2.410 

Socio-demographic Characteristics 
Age -0.1612 -2.363 -0.1442 -2.182 
Household income 0.1019 2.962 0.1012 2.956 
Children s: 5 years present 0.4944 2.783 0.5161 2.747 

Work Characteristics 
Work duration -0.2551 -5.091 -0.2797 -5.394 
Transit to work -0.6468 -3.053 -0.6045 -2.757 
One-vehicle household and drive alone to work 0.4780 2.085 0.4291 1.780 
Multiple-vehicle household and drive alone to 
work 0.2887 2.002 0.3025 2.015 

Threshold Values 
One and two activity episodes 0.8651 10.978 0.8627 10.926 
Two and three activity episodes 1.7003 13.356 1.7323 13.327 

Joint Activity Episodes 

Constant Term -1.2155 -12.543 -1.2152 -12.555 

Socio-demographic Characteristics 
Children s: 5 years present -0.8153 -1.901 -0.8141 -1.901 

Work Characteristics 
Household heads commute together 0.5206 2.146 0.5138 2.129 

Threshold Values 
One and two activity episodes 0.8380 6.041 0.8383 6.049 

Correlation Coefficients 

Male and female 0.3909 6.060 
Female andjoint 0.0331 0.542 
Male and joint 0.0103 0.198 
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SUMMARY STATISTICS 
n 369 369 

L*(O) -1428.4 -1428.4 

L*(c) -931.6 -931.6 

L*(fJ) -850.8 -866.0 

- 2[L* (c)- L* (fJ)] 161.6 131.1 

p2 0.0867 0.0703 
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allocated to the female heads of one-vehicle households for the explicit purpose of 

undertaking particular activities on a specific day. For example, the female head may 

have a doctor's appointment after work. 

Two variables are found to influence the propensity for household heads to engage in 

joint out-of-home activity episodes. The presence of young children (i.e. less than six 

years old) in the household has a negative effect on the number of such episodes. The 

reason for this is that working parents want to spend time at home with young children 

after work. In contrast, commuting to work together in a vehicle has a positive impact on 

the number of joint episodes for obvious reasons. 

The joint model is compared to the independent model in Table 4.8. A likelihood test 

statistic of 30.4 with three degrees of freedom rejects the null hypothesis that all the 

correlation coefficients are zero. In other words, the number of daily out-of-home activity 

episodes is determined jointly by the heads of couple, two-worker households. However, 

as shown in the table, only one correlation coefficient is significant. The error terms for 

the number of independent episodes undertaken by male and female heads are positively 

correlated, indicating a positive unobserved interaction between household heads. The 

overall goodness-of-fit of the joint model as measured by p2 is 0.087, which is much 

higher than that for the independent model. 

4.4.3 Model Comparison 

The joint and independent models estimated for the heads of couple, non-worker, one­

worker and two-worker households are also compared based on predictive ability. Three 
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measures are used for this task: percent right, expected percent right and aggregate 

probability. The ftrst two statistics are computed in a manner similar to those deftned in 

(4.11) and (4.12), respectively. In comparison, the latter measure is obtained from 

predicted probabilities as follows: 

A 1 H 

Pjkl = - 2:P 191c1 
H 11=1 

(4.13) 

where PJ~ is the aggregate probability that male/working and female/non-working heads 

undertake respectively j and k independent out-of-home activity episodes, as well as I 

joint episodes. For each household type, the aggregate and observed probabilities are 

compared using a correlation coefficient. The results of the model comparison are found 

in Table 4.9. For each household type, all three measures conftrm that the joint model 

predicts more accurately than the independent model. 

4.5 Conclusions 

This chapter demonstrates the importance of recognizing the household as the primary 

decision-making unit in activity-based research. SpecifIcally, the number of daily out-of-

home activity episodes for non-work purposes is modeled for the heads of ftve common 

household types. The models used for this purpose recognize the ordinal and discrete 

nature of the household decision-making process. For the heads of single, non-worker 

and single-worker households, the univariate ordered probit model developed by 

McKelvey and Zavoina (1975) is used. However, to account for interactions between 



Table 4.9 
Model comparison based on predictive ability 

Number of Activity Observed and Predicted Probability 
Episodes Couple, Non-worker Households Couple, One-worker Households Couple, Two-worker Households 

MJVr F/Nb Joint Obs. Joint Ind. Obs. Joint Ind. Obs. Joint Ind. 

0 0 0 0.3750 0.3441 0.3153 0.2610 0.2455 0.2432 0.3659 0.3521 0.3046 
0 0 1 0.0667 0.0693 0.0530 0.0281 0.0329 0.0251 0.0379 0.0372 0.0335 
0 0 2 0.0417 0.0404 0.0294 0.0040 0.0071 0.0050 0.0081 0.0088 0.0081 
0 1 0 0.0417 0.0708 0.0860 0.1647 0.1642 0.1704 0.0949 0.1156 0.1303 
0 1 1 0.0083 0.0063 0.0148 0.0281 0.0198 0.0152 0.0081 0.0119 0.0133 
0 1 2 0.0000 0.0022 0.0082 0.0040 0.0040 0.0028 0.0000 0.0029 0.0032 
0 2 0 0.0167 0.0164 0.0314 0.0964 0.0954 0.1032 0.0461 0.0458 0.0671 
0 2 1 0.0000 0.0008 0.0055 0.0120 0.0111 0.0087 0.0108 0.0044 0.0063 
0 2 2 0.0000 0.0002 0.0030 0.0000 0.0022 0.0015 0.0000 0.0011 0.0015 
0 3 0 0.0281 0.0377 0.0424 0.0190 0.0129 0.0247 
0 3 1 0.0040 0.0043 0.0035 0.0000 0.0011 0.0021 
0 3 2 0.0000 0.0008 0.0006 0.0000 0.0003 0.0005 
0 4 0 0.0321 0.0364 0.0432 
0 4 1 0.0040 0.0042 0.0035 
0 4 2 0.0040 0.0008 0.0006 
1 0 0 0.1000 0.1436 0.1670 0.0602 0.0774 0.0779 0.0976 0.1099 0.1283 
1 0 1 0.0250 0.0304 0.0289 0.0040 0.0034 0.0084 0.0081 0.0115 0.0139 
1 0 2 0.0167 0.0177 0.0161 0.0040 0.0004 0.0017 0.0054 0.0027 0.0033 
I -1 0 0.1167 0.0661 0.0472 0.0562 0.0663 0.0612 0.0894 0.0730 0.0635 
1 1 1 0.0083 0.0071 0.0083 0.0040 0.0028 0.0057 0.0081 0.0076 0.0064 
1 1 2 0.0083 0.0027 0.0046 0.0000 0.0003 0.0011 0.0054 0.0018 0.0015 
1 2 0 0.0167 0.0251 0.0176 0.0482 0.0439 0.0389 0.0298 0.0413 0.0350 
1 2 1 0.0000 0.0015 0.0032 0.0000 0.0018 0.0035 0.0027 0.0041 0.0032 
1 2 2 0.0000 0.0004 0.0017 0.0000 0.0002 0.0006 0.0027 0.0010 0.0007 
1 3 0 0.0321 0.0189 0.0163 0.0217 0.0166 0.0138 
1 3 1 0.0000 0.0008 0.0014 0.0027 0.0015 0.0011 
1 3 2 0.0000 0.0001 0.0003 0.0000 0.0004 0.0002 
1 4 0 0.0241 0.0200 0.0167 \0 

\0 



1 4 1 0.0000 0.0008 0.0014 
1 4 2 0.0000 0.0001 0.0003 
2 0 0 0.0667 0.0564 0.0902 0.0361 0.0272 0.0301 0.0217 0.0264 0.0403 
2 0 1 0.0250 0.0120 0.0152 0.0000 0.0005 0.0032 0.0000 0.0027 0.0043 
2 0 2 0.0083 0.0071 0.0084 0.0000 0.0000 0.0006 0.0000 0.0006 0.0010 
2 1 0 0.0167 0.0428 0.0258 0.0281 0.0276 0.0253 0.0298 0.0247 0.0213 
2 1 1 0.0000 0.0053 0.0045 0.0000 0.0005 0.0024 0.OQ54 0.0026 0.0021 
2 1 2 0.0000 0.0022 0.0025 0.0000 0.0000 0.0004 0.0000 0.0006 0.0005 
2 2 0 0.0417 0.0264 0.0097 0.0120 0.0202 0.0165 0.0271 0.0176 0.0122 
2 2 1 0.0000 0.0019 0.0017 0.0000 0.0003 0.0015 0.0000 0.0018 0.001l 
2 2 2 0.0000 0.0006 0.0010 0.0000 0.0000 0.0003 0.0000 0.0004 0.0003 
2 3 0 0.0080 0.0093 0.0070 0.0081 0.0091 0.0049 
2 3 1 0.0000 0.0002 0.0006 0.0000 0.0008 0.0004 
2 3 2 0.0000 0.0000 0.0001 0.0000 0.0002 0.0001 
2 4 0 0.0120 0.0106 0.0072 
2 4 1 0.0000 0.0002 0.0006 
2 4 2 0.0000 0.0000 0.0001 
3 0 0 0.0136 0.0100 0.0201 
3 0 1 0.0027 0.0010 0.0021 
3 0 2 0.0000 0.0002 0.0005 
3 1 0 0.0108 0.0126 0.01l3 
3 1 1 0.0027 0.0013 0.001l 
3 1 2 0.0000 0.0003 0.0002 
3 2 0 0.0108 0.01l3 0.0066 
3 2 1 0.0027 0.0011 0.0006 
3 2 2 0.0000 0.0003 0.0001 
3 3 0 0.0000 0.0077 0.0027 
3 3 1 0.0000 0.0007 0.0002 
3 3 2 0.0000 0.0002 0.0000 

SUMMARY STATISTICS 

Percent right 38.3333 37.5000 24.8996 24.0964 36.3144 35.5014 
Expected percent right 19.2359 18.4311 14.4885 14.4745 19.9763 18.6084 
rO 0.9738 0.9386 0.9939 0.9909 0.9947 0.9749 -0 

0 



a Independent activity episodes for male or worker. 
b Independent activity episodes for female or non-worker. 
° Correlation between observed and predicted probability. 

-o -
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household heads, as well as independent and joint out-of-home activity episodes, a joint 

model is developed for couple, non-worker, one-worker and two-worker households. 

This model, known as the trivariate ordered probit model, is an important contribution to 

the discrete choice literature. 

The models are estimated using data from a trip diary survey conducted in the Greater 

Toronto Area in 1987. As expected, the composition of significant explanatory variables 

differs for each of the household types, reflecting their inherent differences. Furthermore, 

the model results for couple, non-worker, one-worker and two-worker households 

suggest that household heads determine jointly the number of daily out-of-home activity 

episodes. Additional analysis reveals that the joint models predict more accurately than 

the independent ones. 



5 Household Activity-Episode Generation: An Object­
Oriented Simulation Model 

5.1 Introduction 

In the future, the models for predicting travel demand in urban areas will be radically 

different from those today. Most importantly, they will be activity-based (Barrett et al. 

1995; Miller 1996; Spear 1996). In other words, patterns of activities will be modeled, 

not discrete trips. Furthermore, the complex interactions between travel demand and 

land-use patterns will be treated endogenously within the modeling frameworks 

(Kitamura et al. 1996; Miller and Salvini 1998; Stopher et al. 1996). Today, only state-

of-the-art integrated urban land-use and transportation models incorporate such 

interactions. Finally, such models will be implemented as micro simulations, whereby 

travel demand is simulated over time as an aggregate outcome from the actions of 

decision-making units (Goulias 1997; Kitamura et al. 1996; Miller 1996; Miller and 

Salvini 1997, 1998; Stopher et al. 1996). These decision-making units include households 

and their members. 

Presently, work is underway on several activity-based micro simulation models of 

urban travel demand. They include: ILUTE (Integrated Land-Use, Transportation and 

Environment modeling system) (Miller and Salvini 1997, 1998), SMART (Simulation 

Model for Activities, Resources and Travel) (Stopher et al. 1996) and SAMS (Sequenced 

Activity Mobility Simulator) (Kitamura et al. 1996). Models such as these are inherently 
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complex and their development in an acceptable timeframe requires the cooperative and 

cumulative efforts of many researchers who may be from various disciplines. Effective 

communication among these researchers is possible only through a common modeling 

language. 

As noted by Jackson (1994), the field of computer and information science has made 

considerable progress in formalizing a method for tackling complex problems for which 

solutions require the participation of many individuals. This method is known as object­

oriented modeling (OOM). It is based on objects, not algorithms. The key to OOM is 

identifying objects from the vocabulary of a problem. Although this task can be quite 

complicated, for activity-based micro simulation models there is a one-to-one mapping of 

objects in the simulated world to objects in the real world. It is argued in this chapter that 

OOM provides a common modeling language for researchers who are developing future 

travel demand models. Furthermore, OOM is especially useful in computer simulation 

modeling because its constructs are readily implemented using an object-oriented 

programming (OOP) language such as C++ or Java. In other words, the direct linkage 

between OOM and OOP facilitates software development. 

The objectives of this chapter are twofold. First, an overview of OOM is provided, 

including reasons for its use in computer simulation modeling besides its role as a 

common modeling language for researchers. An actual object-oriented simulation model 

is used to demonstrate the concepts discussed. This model generates the daily number of 

out-of-home activity episodes undertaken by the heads of five common household types. 

Moreover, it is the Activity-Episode Generation module of a household-Ieve~ activity-
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based travel demand forecasting system discussed in Chapter 3. This model alone 

demonstrates two important advantages of OOM-modularity and incremental 

development. Second, the household activity-episode generation model is used to 

evaluate the impact of a travel demand management (TOM) strategy on the daily number 

of out-of-home activity episodes estimated for household heads in the Greater Toronto 

Area (GTA) in 1986. Specifically, the effects of a compressed workweek are evaluated 

for two scenarios. The first scenario assumes that all full-time workers adopting the 

strategy work four 10-hour days, whereas the second scenario applies to their day off. 

The results demonstrate that the impact of the latter scenario is much greater than the 

former. 

The remainder of this chapter is organized as follows. The next section provides an 

overview of object-oriented modeling. The household activity-episode generation model 

is described in the third section. Moreover, the Universal Modeling Language (UML) is 

used to document the structural and behavioral characteristics of the model. Section four 

presents the scenarios and simulation results. The contributions of this study to activity­

based research are summarized in the final section. 

5.2 Overview of Object-Oriented Modeling 

5.2.1 History 

Over time, software engineers have had to model increasingly complex systems. To deal 

with this complexity, the traditional algorithmic approach to software design has been 

replaced by an object-oriented one whose roots can be traced to the development of the 
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SIMULA programming language in the 1960s (Dahl and Nygaard 1966). Object-oriented 

modeling gained momentum in the 1970s with the development of the Smalltalk 

language whose concepts have influenced the design of almost every subsequent object­

oriented programming language (Booch 1994). Today, OOM is the accepted standard in 

the design of increasingly complex software applications. 

Over the years, numerous texts have been written on the subject (Booch [1994] 

contains a classified bibliography of such texts). Moreover, many of these texts describe 

different approaches to OOM. For example, between 1989 and 1994, the number of such 

approaches increased from fewer than 10 to more than 50 (Booch et al. 1999). These 

approaches fueled the so-called method wars throughout most of the 1990s. The 

dominant approaches that emerged included Booch (Booch 1994), OOSE (Object­

Oriented Software Engineering) (Jacobson et al. 1992) and OMT (Object Modeling 

Technique) (Rumbaugh et al. 1991). Furthermore, many of these approaches included 

graphical languages for visualizing their constructs. Fortunately, the confusion caused by 

these alternative approaches ended in 1997 when th~ Object Modeling Group adopted the 

Universal Modeling Language as the standard approach to OOM (Booch et al. 1999). 

Given this development, the remainder of this section draws upon three texts that 

describe the UML approach (Booch et al. 1999; Quatrani 1998; Rumbaugh et al. 1999). 

The following discussion is not meant to offer a definitive account of this rich approach 

to OOM. Instead, it covers basic concepts of object-oriented modeling and the UML. 
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5.2.2 Structural Modeling 

Object-oriented modeling consists of both structural modeling and behavioral modeling. 

The former is concerned with the organization of a system. Specifically, structural 

modeling identifies classes and their relationships to one another from the vocabulary of 

a problem. 

5.2.2.1 Qasses and Objects 

Classes are the basic building blocks of an object-oriented model. A class is a description 

of a set of objects that share the same attributes, operations and relationships to other 

objects. In other words, a class is not an individual object, but instead it represents a set 

of objects. Classes are associated with the nouns of a problem. For example, in the 

household activity-episode generation model to be discussed in section 5.3, there is a 

household class. This class has several attributes, which are its quantifiable properties. 

These include income and number of vehicles. The operations of a class defme what it 

can do-that is, they capture behaviors. For example, the household class can generate 

activities. Combining attributes and operations within a class is known as encapsulation. 

Encapsulation is an important property of OOM because it promotes information 

hiding, whereby the internal details of a class are hidden from view. These details include 

both attributes and the implementation of operations. Information hiding is achieved by 

specifying a class interface, which is simply a collection of its operations. Furthermore, 

the interface must include operations to set and retrieve data values for attributes of the 

class. In this manner, the integrity of a class is preserved because its attributes are directly 
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accessible only to it. In other words, other classes cannot inadvertently alter its attributes. 

Furthermore, encapsulation allows new attributes and operations to be added to a class 

without affecting those that already exist. Through encapsulation, classes are virtually 

self-contained entities. 

Objects are individual instances of the classes to which they belong-that is, they are 

tangible entities, whereas classes are not. Furthermore, objects possess three properties: 

identity, state and behavior. Identity distinguishes an object from all other objects. When 

an object is created, its identity is established and maintained until it is destroyed. The 

state of an object is defined by the current values of its attributes. As these values change, 

so does the object's state. In other words, an object's state is dynamic because of its 

behavior. Behavior is how an object interacts with other objects. 

5.2.2.2 Relationships 

Classes do not stand alone in an object-oriented model. Instead, they collaborate with 

other classes in many ways. Three types of relationships define how classes stand in 

relation to one another: generalization, association and dependency. 

Generalization defines a hierarchical relationship between a more general superclass 

and a more specialized subclass. For this reason, it is often referred to as an is-a-kind-of 

relationship. From section 5.3, for example, the class single-worker household is a kind 

of household. Through generalization, a subclass or child inherits all of the attributes and 

operations of its superclass or parent. Furthermore, a subclass is distinguished from its 

superclass by its own distinctive attributes and operations. This property of OOM is 

known as inheritance. It not only reduces complexity and repetition, but it promotes 
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polymorphism, which is another important property of OOM. Polymorphism means that 

operations of the same name can be implemented differently for various classes and that 

attributes of the same name can have different data structures. Through polymorphism, 

operations and attributes of a superclass can be overridden by a subclass. 

Association defines a relationship between two classes that are connected in some 

meaningful way. When a class participates in an association, it performs a specific role in 

that relationship. For example, two classes, worker and firm, define a relationship 

whereby a worker playing the role employee is associated with a firm playing the role of 

employer. Such a plain association between two classes represents a relationship between 

peers-that is, both classes are conceptually at the same level and no one is more 

important than the other (Booch et al. 1999). Sometimes, however, it is necessary to 

model a wholelpart relationship in which one class (i.e. the whole) contains other classes 

(i.e. the parts). This type of association is called aggregation. It represents a has-a 

relationship. From section 5.3, for example, the class single-worker household contains 

class worker. 

The final type of structural relationship is dependency. It defines a using relationship, 

which means that one class uses another class in one of its operations. For example, in an 

activity-based micro simulation model, a household class would likely contain both an 

automobile class and a person class. In turn, the person class would use the automobile 

class. In other words, a household may have an automobile, which is used by its members 

to undertake out-of-home activities. 
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5.2.3 Behavioral Modeling 

Behavioral modeling is concerned with the dynamic aspects of a system-that is, its 

functionality. Specifically, behavioral modeling focuses on interactions among objects. 

Booch et al. (1999) derme an interaction as a behavior that consists of a set of messages 

exchanged sequentially among a set of objects to accomplish a specific purpose. Whereas 

classes are the nouns of a problem, interactions are the verbs. 

Objects that participate in an interaction must be connected by links. In general, a link 

is an instance of an association. In other words, a link can exist between two objects only 

if their classes are connected by an association relationship. Links derme the paths over 

which messages can be sent between objects. Booch et al. (1999) define a message as the 

specification of a communication between objects that conveys information with the 

expectation that activity will ensue. For the most part, messages consist of calls in which 

one object (i.e. the sender) invokes an operation of another (Le. the receiver). This action 

may return information to the sender. 

5.2.4 Universal Modeling Language 

As mentioned, the Universal Modeling Language is now the standard approach to object­

oriented modeling in the software industry. The main reason for this is that it unifies the 

strengths of the three dominant approaches that emerged during the method wars­

namely, Booch, OMT and OOSE. Readers interested in the UML should consult Booch 

et al. (1999) and Rumbaugh et al. (1999) for a discussion of its vocabulary and rules. 
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The UML is a graphical modeling language with rich semantics. Figure 5.1 illustrates 

some of its basic notation. Furthermore, diagrams play an important role in the UML. 

Those that are most important to the discussion of OOM in this chapter are class 

diagrams and interaction diagrams. The former are used for structural modeling and the 

latter, behavioral modeling. A class diagram shows a set of classes and their 

relationships. In contrast, an interaction diagram shows an interaction, consisting of a set 

of objects and their links, including messages sent between them. Moreover, there are 

two types of interaction diagrams: sequence diagrams and collaboration diagrams. A 

sequence diagram emphasizes the time ordering of messages, whereas a collaboration 

diagram is concerned with the structural organization of objects that send and receive 

messages. These diagrams are isomorphic, meaning that one can be transformed into the 

other. Examples of class diagrams and interaction diagrams are found in section 5.3. 

5.2.5 Advantages 

Object-oriented modeling using the UML offers many advantages over the traditional 

algorithmic approach to computer simulation modeling. First, OOM provides a common 

modeling language for researchers. As mentioned, the UML is a standard modeling 

language with rich semantics. In addition, Rational Rose 98, a computer aided software 

engineering (CASE) tool, supports the UML and can, therefore, be used to facilitate 

model development. 

Second, it is much clearer conceptually to think of objects than algorithms. This is 

particularly true for activity-based microsimulation models. In such models, there is a 
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Class: Object: 

Name Name: Class Name 

Attributes Attributes 

OperationsO OperationsO 

Generalization: Aggregation: 

Superclass Whole 

7( .. 
/ '\ I I 

Subclass1 Subclass2 Part1 Part2 

. 

Association: Interaction: 

Name 
Message 

I 
Class1 r~ Ro~1 Class2 

I 
object1 : ~ object2 : 

Class1 Unk Class2 

Figure 5.1 
Basic UML notation. 
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one-to-one mapping of objects in the simulated world to objects in the real world. This 

alone reduces the inherent complexity of the problem. Furthermore, there is explicit 

recognition of object identity. For example, workers who undertake activities during the 

evening commute are the same workers who move and age. 

A third advantage of obje~t-oriented modeling is modularity. Given their complexity, 

activity-based micro simulation models are likely to be developed by a team of 

researchers. To facilitate development in a reasonable timeframe, several modules may 

be developed simultaneously-for example, residential mobility and activity-travel 

behavior. In this example, many classes are likely to be the same for both modules. 

However, each one can be developed independently. Any new attributes and operations 

specified for one module can be added to the classes without affecting the other module. 

This is due to encapsulation. 

Incremental development is a fourth advantage of OOM. This implies that all 

modules need not be specified for the simulation model to be used effectively. For 

example, an activity-based micro simulation model may be developed initially without 

operations for updating attributes of people over time, such as age. However, such 

operations can be added easily at a later date. 

Finally, OOM allows different modules or models to be substituted for one another 

and their results compared without compromising the integrity of the simulation model. 

For example, the results from two model specifications for generating the daily number 

of out-of-home activity episodes are compared using the household activity-episode 

generation model described in the next section. 
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5.3 Household Activity-Episode Generation 

5.3.1 Assumptions 

Several assumptions underlie the household activity-episode generation model discussed 

in this section. First, household members interact on a daily basis to generate collectively 

out-of-home activity episodes, which they undertake to fulfill household needs and 

individual desires. Second, this complex decision-making process is limited to non-work 

activities because work is assumed to be fixed in the short term. Furthermore, activity­

based research has shown that work governs the activity-travel behavior of household 

members (e.g. Golob and McNally 1997). Third, only interactions between household 

heads are considered because the activity-travel behavior of children manifests itself in 

that of their parents. As well, household heads undertake the vast majority of trips in 

urban areas. Fourth, household activity-episode generation varies according to household 

type, which is defmed by the number of household heads and their work status. The types 

are: 

1. single, non-worker households: one-person and single-parent households in which 

the person or parent does not work, 

2. single-worker households: one-person and single-parent households in which the 

person or parent works, 

3. couple, non-worker households: married or unmarried, male-female couples with 

or without children in which neither household head works, 
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4. couple, one-worker households: married or unmarried, male-female couples with 

or without children in which only one household head works, and 

5. couple, two-worker households: married or unmarried, male-female couples with 

or without children in which both household heads work. 

Interactions between household heads occur only in the latter three household types. 

The activity episodes generated in these households fall into one of two settings based 

solely upon the number of household heads participating in them. In other words, the 

presence of other household members, such as children, is not used to defme these 

settings. Activities undertaken by one household head are independent activities, whereas 

those undertaken by both household heads together are joint activities. The decision­

making process underlying household activity-episode generation in single, non-worker 

and single-worker households is much simpler, resulting in independent activity episodes 

only. 

5.3.2 Model Structure and Behavior 

Several classes comprise the household activity-episode generation model. These classes 

fall into two hierarchies-one for households and the other for persons. Figure 5.2 shows 

the household class hierarchy. The household class is the superclass for this hierarchy. 

Furthermore, it is both a base class and an abstract class. A base class is the most 

generalized class in a class hierarchy. In other words, it has no superclass. In comparison, 

an abstract class is one that has no instances-that is, objects are not created for the class. 

Such classes are used to promote inheritance, which means that they will be followed by 
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subclasses. In other words, abstract classes reduce repetition in OOM by containing 

attributes and operations that are common for its subclasses. In the simulation model, 

only objects of the household subclasses are instantiated. 

The household class has several attributes and operations, which are inherited by each 

of its su\lclasses. The attributes include household income, the number of children in the 

household less than six years old, the number of children between the ages of six and 10, 

the number of children between the ages of 11 and 15, the number of household vehicles 

and residential location. Chapter 4 shows that these attributes, along with those defmed 

for other classes in the simulation mode~ influence household activity-episode 

generation. The operations defmed for the household class comprise its interface. They 

include a constructor, a destructor, the ability to set attribute data and the ability to 

generate the daily number of out-of-home activity episodes for household heads. The fIrst 

two operations are defmed for all classes. A constructor creates an object and a destructor 

destroys it. The third operation is necessary because of information hiding. From Figure 

5.2, it can be seen that the fInal operation, generate Activities, is implemented differently 

for each household subclass. The details concerning these implementations are 

documented thoroughly in Chapter 4. 

Figure 5.3 shows the person class hierarchy. The person class, like the household 

class, is both a base class and an abstract class. Its attributes and operations are inherited 

by its subclasses-namely, the worker class and the nonworker class. The attributes 

include age, possession of a driver's license, employment status and sex. The interface of 

the person class includes operations to set and retrieve data values for these attributes. 
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Figure 5.3 
Person class diagram. 
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The worker class is distinguished from the nonworker class in that it has two additional 

attributes: work duration and work mode. Because of this, the operation setPersonData is 

implemented differently than that which is inherited. Furthermore, additional operations 

are specified to retrieve data values for these attributes. 

The household subclasses are distinguished from one another in terms of their 

members, as is shown in Figure 5.4. For example, the singleNonworker class contains 

one non-worker from class nonworker, whereas the coupleTwoworker class contains two 

workers from class worker. More importantly, these relationships are aggregations, in 

which household subclasses represent wholes and person subclasses, parts. Figure 5.4 

documents all structural aspects of the household activity-episode generation model 

including multiplicity, which is the number of objects connected across an instance of an 

association. 

The behavioral aspects of the simulation model are illustrated by means of the 

example shown in Figure 5.5. Specifically, this figure documents the interaction among 

one instance of class coupleTwoworker and two instances of class worker for the 

generateActivities operation. The interaction is illustrated by means of a sequence 

diagram, as well as a collaboration diagram. In both diagrams, object h, which is an 

instance of class couple Twoworker, passes sequentially three messages to object m, 

which is an instance of class worker. These messages invoke, respectively, the operations 

getAge, getWorkDuration and getWorkMode of object m. Each operation returns a data 

value to object h. This process is then repeated for object f, which is another instance of 

class worker. The data values returned to object h are then used, along with data values 
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A. Sequence Diagram 
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for household attributes, to compute the daily number of out-of-home activity episodes 

undertaken by the heads of household h. Similar interactions are observed for the 

generateActivities operations of the remaining household subclasses. 

5.4 Simulations 

5.4.1 Data and Sample 

The household activity-episode generation model discussed in the previous section is 

operationalized for households in the Greater Toronto Area. Three sources of data were 

used for this: a trip diary survey that was conducted in 1987 for the Ontario Ministry of 

Transportation, the 1986 Census of Canada for Ontario and a 1986 survey of the 

Canadian labor force (Statistics Canada Household Surveys Division 1989). 

The sample of households for the trip diary survey was selected from households that 

responded to a much larger survey that was conducted in the GTA in 1986-that is, the 

1986 Transportation Tomorrow Survey. The trip diary survey used a mail questionnaire 

to obtain socio-demographic information on each household surveyed, including all 

members over the age of five. It also collected detailed information concerning the daily 

travel behavior of these members. Completed questionnaires were obtained for 1,948 

households. 

Of this total, only 1,298 households were used to calibrate econometric models for 

predicting the daily number of out-of-home activity episodes for household heads. These 

episodes correspond to non-work activities only. Details concerning the household 

screening procedure, econometric models and empirical results are documented in the 
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preceding chapter. The calibrated econometric models are used to implement the 

generateActivities operation of each household subclass. The sample of households that 

form the objects in the simulation model consists of 210 singleNonworker households, 

350 singleWorker households, 120 coupleNonworker households, 249 coupleOneworker 

households and 369 coupleTwoworker households. 

In order to predict the total number of daily episodes undertaken by household heads 

in the Greater Toronto Area, each household subclass was given a weight. These weights 

were computed from all three data sources. The total number of households in the GT A 

was given by the 1986 Census of Canada for Ontario. Moreover, this total was 

subdivided into three types: one-person households, husband-wife households and lone­

parent households. The first and third types were aggregated to form single-head 

households, whereas the second type corresponded to couple-head households. The 1986 

survey of the Canadian labor force was used to subdivide these household types into the 

subclasses found in the simulation model. This was possible given detailed labor force 

information based on household composition. Finally, the total number of households in 

the GTA for each household subclass was divided by the corresponding number of 

observations to obtain the weights used in the simulation model. 

5.4.2 Scenarios 

The primary reason for developing activity-based micro simulation models is to increase 

the policy sensitivity of urban travel demand modeling. Specifically, such models will be 

capable of evaluating various travel demand management strategies, which are designed 
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to manipulate the demand for travel. Among these strategies are those corresponding to 

alternative work schedules. Many studies have documented the importance of work to 

daily activity-travel behavior (e.g. Golob and McNally 1997). Plane (1995) identifies four 

types of alternative work schedules. The ftrst corresponds to flexible work hours in which 

employees choose their own schedules. in the context of constraints established by 

employers. For example, workers may begin work any time between 6:30 and 9:30 AM. 

Second, employees work a ftve-day week, but daily starting and ending times are spread 

over a wider time period than usual. This is known as staggered work hours. The third 

alternative is a four-day or compressed workweek in which employees work the same 

number of hours as usual, but report to work only four times per week. The ftnal work 

schedule corresponds to part-time work. 

Given the importance of alternative work schedules to travel demand management, 

the object-oriented simulation model discussed in this chapter is used to evaluate the 

effects of a large-scale adoption of the compressed workweek on the daily number of out­

of-home activity episodes for the heads of households in the Greater Toronto Area in 

1986. Specifically, two scenarios are investigated by making three assumptions. First, 

only full-time workers can adopt a compressed workweek. Second, for those who do, 

they must work four lO-hour days. Finally, all such workers work on the same days and 

have the same day off. Scenario 1 corresponds to a workday for full-time workers 

adopting the strategy, whereas Scenario 2 corresponds to the day off. In reality, it is 

highly unlikely that all such workers will work on the same days and have the same day 

off. However, the scenarios are very useful in that they deftne the limits for observed 
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behavior. Furthermore, for each scenario, the proportion of full-time workers adopting a 

compressed workweek is varied. Specifically, results are obtained assuming that five, 10, 

15 and 20 percent of all full-time workers in the GTA adopt the strategy. These workers 

are selected randomly. Moreover, each successive proportion builds upon that which 

precedes it. 

As mentioned, the generateActivities operation for each household subclass is 

implemented using an econometric model. More importantly, two model specifications 

are provided for three subclasses-namely, coupleNonworker, coupleOneworker and 

couple Twoworker households. The first specification considers explicitly interactions 

between household heads when estimating the daily number of out-of-home activity 

episodes for the household. For comparative purposes, the second specification ignores 

these interactions. Scenario results are obtained for both specifications. Furthermore, the 

first specification gives rise to a joint model of household activity-episode generation, 

whereas the second gives rise to an independent one. 

5.4.3 Results 

Table 5.1 documents the daily number of out-of-home activity episodes predicted for 

each scenario. Furthermore, the total number of episodes is given for a base run of each 

model. These runs serve as points of departure for evaluating each scenario. As can be 

seen from the table, the total number of episodes predicted for the base run of the joint 

model is less than that predicted for the independent model. The same is true for the 

results obtained for each scenario. This finding suggests that the independent model 



Table 5.1 
Daily number of out-of-home activity episodes estimated for the heads of five common household types in the Greater Toronto 
Area, 1986 

Percentage of Full-time Base Scenario 1 Scenario 2 

Workers JointB Independentb Joint Independent Joint Independent 

0 1,788,714 1,791,110 
5 1,780,865 1,782,834 1,861,674 1,866,589 
10 1,768,086 1,769,790 1,922,807 1,929,187 
15 1,757,845 1,759,157 1,993,012 2,001,255 
20 1,744,414 1,745,472 2,057,319 2,067,377 

B Joint model. 
b Independent model. 

-tv 
0\ 
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overpredicts the daily number of out-of-home activity episodes. As expected, the number 

of such episodes decreases for Scenario 1 and increases for Scenario 2. 

Detailed results for Scenario 1 are summarized in Table 5.2. As can be seen for both 

models, the number of episodes undertaken by household heads decreases steadily as the 

proportion of full-time workers adopting a compressed workweek increases. However, 

these decreases are less than expected. For example, even with 20 percent of full-time 

workers working a compressed workweek, the reduction in episodes is only about 2.5 

percent. Decreases are observed for all applicable activity-episode categories-namely, 

one, two and three episodes. Moreover, these reductions increase with the number of 

episodes undertaken. Returning to the previous example, occurrences of one episode are 

reduced by approximately one percent, two episodes, three percent; and three episodes, 

six percent. A comparison of the results for the independent model to those obtained for 

the joint model yields an interesting finding. Not only does the independent model 

overpredict the total number of episodes; it also overpredicts the impact of Scenario 1. In 

other words, the impact of the compressed workweek is greater for the independent 

model than the joint model. This has the potential to misinform the decisions of planners. 

Results for the second scenario are found in Table 5.3. As can be seen for both the 

joint and independent models, the number of episodes undertaken by household heads 

increases with the proportion of full-time workers adopting a compressed workweek. 

More importantly, these increases are several times greater than the reductions observed 

for Scenario 1. For example, a 20 percent adoption rate increases the daily number of 

episodes by approximately 15 percent, which is six times greater than the corresponding 



Table 5.2 
Impact of Scenario 1 on the daily number of out-of-home activity episodes estimated for the heads of five common household 
types in the Greater Toronto Area, 1986 

Percentage of Full-time Percentage Change from Base 

Workers o Episodes 1 Episode 2 Episodes 3 Episodes 4 Episodes All Episodes 

Joint Model 
5 0.198 -0.198 -0.531 -0.956 0.020 -0.439 
10 0.490 -0.468 -1.235 -2.966 0.008 -1.153 
15 0.736 -0.709 -1.921 -4.263 0.020 -1.726 
20 1.060 -1.054 -2.760 -6.029 0.032 -2.477 

Independent Model 
5 0.203 -0.212 -0.564 -0.987 0.008 -0.462 
10 0.502 -0.488 -1.294 -3.019 0.000 -1.190 
15 0.756 -0.742 -2.014 -4.341 0.012 -1.784 
20 1.089 -1.091 -2.877 -6.122 0.008 -2.548 

-N 
00 



Table 5.3 
Impact of Scenario 2 on the daily number of out-of-home activity episodes estimated for the heads of five common household 
types in the Greater Toronto Area, 1986 

Percentage of Full-time Percentage Change from Base 

Workers o Episodes 1 Episode 2 Episodes 3 Episodes 4 Episodes All Episodes 

Joint Model 
5 -1.290 0.025 3.455 16.257 0.008 4.079 
10 -2.413 0.182 6.435 29.379 0.008 7.497 
15 -3.687 0.288 9.888 44.556 0.008 11.422 
20 -4.870 0.491 12.896 58.541 0.008 15.017 

Independent Model 
5 -1.322 -0.034 3.499 17.204 0.012 4.214 
10 -2.456 0.094 6.468 30.951 0.024 7.709 
15 -3.750 0.156 9.966 46.809 0.044 11.733 
20 -4.951 0.319 13.033 61.422 0.044 15.424 
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reduction for the ftrst scenario. Furthermore, occurrences of one, two and three episodes 

are observed to increase at an increasing rate. Once again, the results for the independent 

model are compared to those obtained for the joint model. As expected, the independent 

model overpredicts the impact of Scenario 2. 

5.5 Conclusions 

The development of activity-based micro simulation models of urban travel demand is 

undoubtedly a complex task. To facilitate such development in a reasonable timeframe, 

researchers require a powerful tool that not only simpliftes complexity, but also increases 

communication among them. This chapter has argued that object-oriented modeling is 

one such tool. In fact, it is used everyday by software engineers in the design of complex 

computer applications. OOM is based on objects, not algorithms, and is thus consistent 

with how humans understand the world around them. In other words, OOM enhances the 

conceptual clarity of research problems. For example, in an object-oriented, activity­

based micro simulation model there is a one-to-one mapping of objects in the simulated 

world to objects in the real world. In both worlds, these objects possess identities, states 

and behaviors. In OOM, the coupling of state and behavior within an object is known as 

encapsulation. This property, along with inheritance and polymorphism, makes OOM a 

very powerful modeling tool. Furthermore, the constructs of OOM are easily visualized 

by means of an object-oriented modeling language, such as the UML. Moreover, this 

language is now the standard approach to OOM in the software industry. 
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Basic concepts of OOM are discussed in this chapter. Furthermore, an actual 

simulation model is used to demonstrate them. This model is the Activity-Episode 

Generation module of a household-level, activity-based travel demand forecasting system 

discussed in Chapter 3. Specifically, it generates the daily number of out-of-home activity 

episodes for the heads of five common household types. The model is used to evaluate 

the effects of a large-scale adoption of the compressed workweek on the daily number of 

episodes undertaken by the heads of households in the Greater Toronto Area in 1986. The 

fmdings suggest that the TDM strategy may not achieve the results desired by planners. 

In fact, it is highly likely that a large-scale adoption of the compressed workweek will 

maintain the status quo or even increase travel within an urban area. The reason for this is 

that workers have more time on their day off to pursue out-of-home activities. 

Furthermore, the results also demonstrate the importance of incorporating explicitly 

household interactions in model specifications. Specifically, models that do not are likely 

to overpredict the impact ofTDM measures, thereby misinforming planners. 



6 Conclusions 

Activity analysis is now the dominant force in travel behavior research. The reason for 

this is that it recognizes explicitly that travel is a demand derived from the need to 

undertake out-of-home activities. As discussed in Chapter 2, two streams of research 

characterize the activity-based paradigm. The fIrst seeks to further our understanding of 

travel behavior by investigating the activities people participate in. The intent of such 

research is to develop a comprehensive theoretical understanding of travel behavior, 

which can inform the development of future travel demand forecasting models. On the 

other hand, the second stream seeks to develop such models today based on existing 

theory. In recent years, activity in this stream has grown for a number of reasons-the 

most important of which is the Travel Model Improvement Program (TMIP). Under this 

program, activity-based models are favored as replacements for existing travel demand 

forecasting models, such as the Urban Transportation Modeling System (UTMS) (Barrett 

et al. 1995; Spear 1996). 

This dissertation contributes signifIcantly to both streams of research. SpecifIcally, it 

represents a pioneering effort to emphasize household decision-making in daily activity­

travel behavior-an area that has been largely neglected by researchers in favor of 

individuals as decision-making units. Chapter 1 presents both theoretical and practical 

arguments in favor of household decision-making. Moreover, the fmdings discussed in 

Chapters 4 and 5 confirm that the household is the appropriate decision-making unit for 
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understanding and modeling travel behavior. The contributions of this research to travel­

behavior theory and travel-behavior modeling are discussed in the following section. 

6.1 Findings 

6.1.1 Contributions to Travel-Behavior Theory 

The most important contribution of the research discussed in this dissertation to travel­

behavior theory is that decisions concerning the daily activity-travel behavior of 

household heads occur within a household context. Furthermore, the nature of this 

decision-making process varies according to household type. 

Single, non-worker and single-worker households contain only one household head. 

Obviously, this implies a relatively simple decision-making process in the sense that 

another household head is not considered regarding out-of-home activities. In other 

words, a single individual makes all decisions. Furthermore, the household head 

participates in independent activities only-as defined in the context of this research. 

By comparison, the decision-making process for couple, non-worker, one-worker and 

two-worker households is far more complex. Two reasons account for this complexity. 

First, such households by their very nature have two heads. Second, these heads can 

participate in out-of-home activities together (i.e. joint activities) or by themselves (i.e. 

independent activities). As documented in Chapter 4, the decision-making process for 

such households is characterized by complex interactions between household heads. In 

couple, non-worker households, there is a positive interaction between male and female 

heads for independent activities. For females, there is also a substitution effect between 
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such activities and joint activities. By comparison, there is a substitution effect between 

independent and joint activities for workers in couple, one-worker households and a 

positive interaction between male and female heads for independent activities in couple, 

two-worker households. 

A second important contribution of this research to travel-behavior theory concerns 

the impact of Travel Demand Management (TDM) strategies on daily travel behavior. 

Theoretically, such strategies are designed to reduce traffic during peak periods. The 

results obtained from an experiment designed to simulate the effects of a large-scale 

adoption of the compressed workweek on the daily number of out-of-home activities 

undertaken by household heads suggests that such strategies may produce undesired 

results. In fact, the results discussed in Chapter 5 for the compressed workweek imply 

that this strategy is likely to increase daily traffic. 

6.1.2 Contributions to Travel-Behavior Modeling 

The research discussed in this dissertation makes two important contributions to travel­

behavior modeling. First, the trivariate ordered probit model was developed to model 

daily household activity-episode generation for the heads of couple, non-worker, one­

worker and two-worker households. Second, the merits of using object-oriented modeling 

(OOM) to develop activity-based forecasting models were discussed and demonstrated. 

Both contributions are reviewed in tum. 

The trivariate ordered probit model is based on the univariate ordered probit model 

developed by McKelvey and Zavoina (1975). The model was employed in the research 
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discussed herein to capture interactions between household heads in terms of the daily 

number of out-of-home activity episodes (i.e. both independent and joint) each head 

participates in. The results obtained from the trivariate ordered probit models estimated 

for each of the household types above confirm that household decision-making underlies 

the daily activity-travel behavior of household heads. Furthermore, the results discussed 

in Chapters 4 and 5 demonstrate that the model performs better than an independent one 

in terms of predictive ability. The primary shortcoming of the model is that it takes a 

considerable time to converge using the estimation software found in Appendix 1. 

Activity-based models are inherently superior to aggregate travel demand models, 

such as UTMS, because they are developed for decision-making units such as households 

and their members. Obviously, this implies that such models will be implemented as 

micro simulations. It is argued in Chapter 5 that the timely development of activity-based 

micro simulation models is possible only through a common modeling language such as 

OOM. Furthermore, DOM is especially useful in computer simulation modeling because 

its constructs are readily implemented using an object-oriented programming (OOP) 

language such as C++ or Java. The direct linkage between OOM and OOP promotes 

software development. 

Implementation of the Activity-Episode Generation module, discussed in Chapter 2, 

as an object-oriented simulation model did, however, reveal an important shortcoming of 

OOM. Specifically, multivariate probability distributions, such as the trivariate normal, 

are virtually impossible to implement using existing OOP languages. Furthermore, such 

distributions are presently unavailable from commercial software vendors. GAUSS, a 
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matrix programming language, offers a solution to this problem. Moreover, a commercial 

interface is now available for GAUSS and c++ (i.e. Mercury GE). This interface allows 

the user to combine the merits ofOOM with the number-crunching ability of GAUSS. 

6.2 Directions for Future Research 

The research discussed in this dissertation represents an initial step towards developing 

an activity-based forecasting model. The conceptual framework described in Chapter 2 

underlies this model. Obviously, an immediate point of departure for future research is 

development of the Activity-Episode Scheduling module. This module is concerned with 

the explicit timing, sequencing, activity type, duration, location and mode for each 

activity episode generated by the Activity-Episode Generation module. It is anticipated 

that each of these episode attributes will generate a number of research questions. 

Another avenue that requires further investigation is joint activities. In the context of 

activity scheduling, a question that needs to be addressed is how do independent and joint 

activity episodes interact if they are assigned to the same period of the day? The answer 

to this question is important because predictive accuracy depends on it. In other words, 

incorrect sequencing of such episodes will lead to overpredictions and underpredictions 

of urban travel during specific periods of the day. 

Finally, it is important that the trivariate ordered probit model be estimated for other 

data sets-especially, those containing larger samples. Such an endeavor would further 

travel-behavior theory by determining whether the results reported in this research hold 

for different spatial and temporal contexts. If they do not, then an additional set of 
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research questions are generated. For example, in terms of activity-episode generation, 

why have interactions between household heads changed over time? 



Appendix 1 

Statistical Estimation Programs 

138 



139 

1* ********************************************************************* 
ORO.PRG 
This program estimates an ordered probit model. Input to the model consists of two 
matrices: an Nxl matrix of values for the dependent variable and an NxK matrix of 
values for the independent variables. 
********************************************************************* *1 

new; 
format Irdn 1,0; 
library maxlik; 
#include maxlik.ext; 
maxset; 

title = "Ordered Probit Model'" - , 

1* Generation of dummy variable matrix for the dependent variable *1 

print; 
print "Would you like to generate a dummy variable matrix for the dependent variable?"; 
print "Enter 1 for YES or 0 for NO:"; 
z = con(I,I); 
print; 

ifz .eq 1; 
print "How many observations does your sample contain?"; 
s = con(I,I); 
print; 
load dep[s, 1] = c:\gauss\ord\data\dep.csv; 
dim = maxc( dep)+ 1; 
zmat = zeros(s,dim); 
ct = 1; 
do while ct .Ie s; 

col = dep[ct, 1]+1; 
zmat[ct,col] = 1; 
ct = ct+l; 

endo; 
save path = c:\gauss\ord\data; 
save zmat; 

else; 
loadm zmat = c:\gauss\ord\data\zmat; 
s = rows(zmat); 

endif; 

1* Generation of GAUSS data set for the independent variables *1 



print "Would you like to generate a GAUSS data set for your independent variables?"; 
print "Enter 1 for YES or 0 for NO:"; 
i = con(I,I); 
print; 

ifi .eq 1; 
print "How many independent variables does your data set contain?"; 
v = con(I, 1); 
print; 
load ind[s,v] = c:\gauss\ord\data\ind.csv; 
create xmatl = c:\gauss\ord\data\indvar with var, v, 8; 
writer( xmat 1 ,ind); 
closeall xmat 1 ; 
print; 

endif; 

1* Selection of independent variables *1 

open xmatI = c:\gauss\ord\data\indvar; 
r = rowsf(xmatI); 
c = colsf(xmatI); 
xmat2 = readr(xmatl,r); 
print "Your data set contains" ;; c;; " independent variables."; 
print; 
xv = ones(r, 1); 
print "How many independent variables would you like analyzed?"; 
ivarl = con(I,I); 
print; 
print "Enter the numbers corresponding to these variables:"; 
ct = 1; 
do while ct .Ie ivarI; 

ivar2 = con(I, 1); 
ivar3 = xmat2[.,ivar2]; 
xv = xv-ivar3; 
ct = ct+I; 

endo; 
print; 

1* Starting values for the parameter vector *1 

load dep[r,I] = c:\gauss\ord\data\dep.csv; 
dim = maxc( dep )-1; 
mu = ones(dim,I); 
bt = zeros(cols(xv),I); 
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if dim .ge 2; 
ct = 2; 
do while ct .Ie dim; 

mu1 = mu[ct,1]+O.5; 
mu=mulmul; 
ct = ct+1; 

endo; 
mu = mu[(rows(mu)-dim+1):rows(mu),.]; 

endif; 

print "Would you like to alter the initial values of the mu parameters?"; 
print "Enter 1 for YES or ° for NO:"; 
m = con(l, 1); 
print; 

ifm .eq 1; 
ct = 1; 
print "Enter the values: II ; 
do while ct .Ie dim[l,I]; 

mu1 = con(l,l); 
mu=mulmu1; 
ct = ct+1; 

endo; 
mu = mu[(dim+1):rows(mu),.]; 
print; 

endif; 

xO =btlmu; 

1* Generation of GAUSS data set for input to PROC LPR *1 

dsetl = zmat~xv; 

r = cols(dsetl); 
create dset2 = c:\gauss\dset with var, r, 8; 
writer( dset2, dset 1); 
c10seall dset2; 

output file = c:\gauss\ord\output\results.out reset; 
call maxprt(maxlik("dset" ,O,&lpr,xO)); 
format Irdn 9,3; 
load nllike = c:\gauss\ord\output\nllike; 
load c1like = c:\gauss\ord\output\cllike; 
print; 
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print "The naive log-likelihood is " ;; n1like ;; II. II; 
print; 
print "The log-likelihood at convergence is II ;; cllike ;; II."; 
output off; 
closeall; 
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/* ********************************************************************* 
PROCLPR 
This procedure computes the current value of the log-likelihood function. 
********************************************************************* */ 

proc lpr(p,dset); 
local cll, cl2, dep, xl, rI, bI, mI, prob, cllike, n1like; 
cll = cols(zmat); 
cl2 = cols(xv); 
dep = dset[.,I:cll]; 
xl = dset[.,(cll+I):cols(dset)]; 
rl = rows(bt); 
bI = p[I:rI,I]; 
mI = p[(rI + I ):rows(p), I]; 
mI = OlmIIIOOO; 
prob = probm(xI,bI,mI); 
cllike = sumc(sumc(dep.*ln(prob))); 
n1like = rows( dep). *In(I ./cols( dep )); 
save path = c:\gauss\ord\output; 
save prob, cllike, n1like; 
retp( cllike); 

endp; 

/* ********************************************************************* 
PROCPROBM 
This procedure computes the probability matrix. 
********************************************************************* */ 

proc(I) = probm(xI,bI,mI); 
local dI, diI, pI, p2; 
dil = dim+I; 
p2 = zeros(rows(xI),I); 
dl = 0; 
do while d I .Ie dil; 

ifdI .gt 0; 
pI = cdfn(mI[dI + I]-xI *b I)-cdfn(mI [dI]-xI *bI); 

else; 



pI = cdfn(ml[dl+l]-xl *bl); 
endif; 

p2 = p2 .... pl; 
dl=dl+l· , 

endo; 
p2 = p2[.,2:cols(p2)]; 
retp(p2); 

endp; 
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1* ********************************************************************* 
TRIORD.PRG 
This program estimates a trivariate ordered probit model. Input to the model consists of 
two matrices: an Nx3 matrix of values for the three dimensions and an NxK matrix of 
values for the independent variables. 
********************************************************************* *1 

new; 
format Irdn 1,0; 
library maxlik; 
#inc1ude maxlik.ext; 
maxset; 
title = "Trivariate Ordered Probit Model"; 

1* Generation of dummy variable matrix for the dependent variable *1 

print; 
print "Would you like to generate a dummy variable matrix for the dependent variable?"; 
print "Enter 1 for YES or 0 for NO:"; 
z = con(I,I); 
print; 

ifz .eq I; 
print "How many observations does your sample contain?"; 
s = con(I,I); 
print; 
load dep[s,3] = c:\gauss\triord\data\dep.csv; 
dim = maxc(dep); 
diml = dim[I,I]+I; 
dim2 = dim[2, 1]+ 1 ; 
dim3 = dim[3,1]+I; 
zmat = zeros(s,diml * dim2*dim3); 
ct = 1; 
do while ct .Ie s; 

colI = (dep[ct,2]. *dim.3) + (dep[ct,3]+ I); 
co12 = dep[ct,l].*dim2.*dim3; 
colfm = coll+co12; 
zmat[ct,colfm] = 1; 
ct = ct+l; 

endo; 
save path = c:\gauss\triord\data; 
save zmat; 

else; 
loadm zmat = c:\gauss\triord\data\zmat; 



s = rows(zmat); 
endif; 

1* Generation of GAUSS data set for the independent variables *1 

print "Would you like to generate a GAUSS data set for your independent variables?"; 
print "Enter 1 for YES or 0 for NO:"; 
i = con(I,I); 
print; 

ifi .eq 1; 
print "How many independent variables does your data set contain?"; 
v = con(I,I); 
print; 
load ind[s,v] = c:\gauss\triord\data\ind.csv; 
create xmatl = c:\gauss\triord\data\indvar with var, v, 8; 
writer(xmat 1 ,ind); 
closeall xmat 1 ; 
print; 

endif; 

1* Selection of independent variables for each dimension *1 

open xmatl = c:\gauss\triord\data\indvar; 
r = rowsf(xmatl); 
c = colsf(xmatl); 
xmat2 = readr(xmatI,r); 
print "Your data set contains II ;; c;; II independent variables. "; 
print; 
ctl = 1; 
xvI = ones(r,I); 
xv2 = ones(r, 1); 
xv3 = ones(r,I); 
do while ctl .Ie 3; 

ct2 = 1; 
print "How many independent variables would you like analyzed for the"; 

ifctl .eq I; 
print ctl ;; list dimension of your model?"; 

elseif ctl .eq 2; 
print ctl ;; lind dimension of your model?"; 

else; 
print ctl ;; "rd dimension of your model?"; 

endif; 
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ivarl = con(I,I); 
print; 
print "Enter the numbers corresponding to these variables:"; 
do while ct2 .Ie ivar I; 

ivar2 = con(1,I); 
ivar3 = xmat2[.,ivar2]; 

ifctl .eq I; 
xvI = xvl-ivar3; 

elseif ctl .eq 2; 
xv2 = xv2-ivar3; 

else; 
xv3 = xv3-ivar3; 

endif; 

ct2 = ct2+1; 
endo; 
print; 
ctl = ctl+l; 

endo; 

1* Starting values for the parameter vector *1 

load dep[r,3] = c:\gauss\triord\data\dep.csv; 
dim = maxc(dep); 
diml = dim[l, 1]-1; 
dim2 = dim[2, 1 ]-1; 
dim3 = dim[3,I]-I; 
mul = ones(diml,I); 
mu2 = ones( dim2, 1); 
mu3 = ones( dim3, 1); 
btl = zeros(cols(xvI),I); 
bt2 = zeros(cols(xv2),I); 
bt3 = zeros(cols(xv3),I); 
crl = 0; 
cr2=0; 
cr3 =0; 
ctl = 1; 
do while ctl .Ie 3; 

if(ctl .eq 1) .and (diml .ge 2); 
ct2 = 2; 
do while ct2 .Ie diml; 

mull = mul[ct2,I]+0.5; 
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mul = mullmull; 
ct2 = ct2+1; 

endo; 
mul = mul[(rows(mul)-diml+1):rows(mul),.]; 

endif; 

if(ctl .eq 2) .and (dim2 .ge 2); 
ct2 = 2; 
do while ct2 .Ie dim2~ 

mu22 = mu2[ct2,1]+O.5; 
mu2 = mu2lmu22; 
ct2 = ct2+1; 

endo; 
mu2 = mu2[(rows(mu2)-dim2+1):rows(mu2),.]; 

endif; 

if(ctl .eq 3) .and (dim3 .ge 2); 
ct2 = 2; 
do while ct2 .Ie dim3; 

mu33 = mu3[ct2,1]+O.5; 
mu3 = mu3lmu33; 
ct2 = ct2+1; 

endo; 
mu3 = mu3[(rows(mu3)-dim3+1):rows(mu3),.]; 

endif; 

ctl = ctl+l; 
endo; 
print "Would you like to alter the initial values of the mu parameters?"; 
print "Enter I for YES or 0 for NO:"; 
m = con(I,I); 
print; 

ifm .eq I; 
ctl = 1; 
do while ctl .Ie 3; 

ct2 = 1; 
print "Enter the values for dimension ";; ctl;; ":"; 
do while ct2 .Ie (dim[ctl, 1]-1); 

mu = con(I,I); 

ifctl .eq I; 
mul = mullmu; 

elseif ctl .eq 2; 

147 



mu2 = mu2lmu; 
else; 

mu3 = mu3lmu; 
endif; 

ct2 = ct2+1; 
endo; 
print; 

ifctl .eq 1; 
mul = mul[(diml+ 1):rows(mul),I]; 

elseif ctl . eq 2; 
mu2 = mu2[(dim2+1):rows(mu2),I]; 

else; 
mu3 = mu3[(dim3+1):rows(mu3),I]; 

endif;' 

ctl = ctl+l; 
endo; 

endif; 

print "Would you like to alter the initial values of the correlation parameters?"; 
print "Enter 1 for YES or 0 for NO:"; 
c = con(1,I); 
print; 

ifc .eq 1; 
ct = 1; 
do while ct .Ie 3; 

ifct .eq 1; 
print "Enter the value for the correlation between "\ 
print "dimensions 1 and 2:"; 
crl = con(l, 1); 

elseif ct .eq 2; 
print "Enter the value for the correlation between "\ 
print "dimensions 2 and 3:"; 
cr2 = con(1,I); 

else; 
print "Enter the value for the correlation between "\ 
print "dimensions 3 and 1:"; 
cr3 = con(I,I); 

endif; 
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print; 
ct=ct+I; 

endo; 
else; 
endif; 

xo = htllmu 1 Iht21mu21ht31mu31crlI cr21cr3 ; 

1* Generation o(GAUSS data set for input to PROC LPR *1 

dsetl = zmat-xv I-xv2-xv3; 
r = cols(dsetl); 
create dset2 = c:\gauss\dset with var, r, 8; 
writer( dset2, dset 1); 
closeall dset2; 

output file = c:\gauss\triord\output\results.out reset; 
call maxprt(maxlik(1IdsetII , O,&lpr,xO)); 
format/rdn 9,3; 
load nllike = c:\gauss\triord\output\nllike; 
load cllike = c:\gauss\triord\output\cllike; 
print; 
print liThe naive log-likelihood is II ;; nllike ;; II. II; 
print; 
print liThe log-likelihood at convergence is II ;; cllike ;; II. II; 
output off; 
closeall; 
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1* ********************************************************************* 
PROCLPR 
This procedure computes the current value of the log-likelihood function. 
********************************************************************* *1 

proc lpr(p,dset); 
local ell, c12, cl3, cl4, dep, xl, x2, x3, rI, r2, r3, r4, r5, r6, hI, mI, h2, m2; 
local h3, m3, c1, c2, c3, prob, cllike, nllike; 
cll = cols(zmat); 
c12 = cols(xvI); 
cl3 = cols(xv2); 
cl4 = cols(xv3); 
dep = dset[.,l:clI]; 
xl = dset[.,(cll+I):(clI+cl2)]; 
x2 = dset[.,(cll +c12+ I):(cll +cl2+c13)]; 
x3 = dset[.,(clI+cI2+cI3+I):cols(dset)]; 



rl = rows(btl); 
r2 = rows(mul); 
r3 = rows(bt2); 
r4 = rows(mu2); 
r5 = rows(bt3); 
r6 = rows(mu3); 
bl =p[l:rl,l]; 
ml = p[(rl+I):(rl+r2),I]; 
ml =0ImlI1000; 
b2 = p[(r1+r2+1):(rl+r2+r3),I]; 
m2 = p[(rl+r2+r3+1):(rl+r2+r3+r4),I]; 
m2 = OIm2IIOOO; 
b3 = p[(rl +r2+r3+r4+ 1): (rl+r2+r3+r4+r5), 1]; 
m3 = p[(rl +r2+r3+r4+r5+ I ):(rl +r2+r3+r4+r5+r6), 1]; 
m3 = 01m311000; 
cl = p[(rows(p)-2),I]; 
c2=p[(rows(p)-I),I]; 
c3 = p[rows{p), 1]; 
prob = probm(xl,x2,x3,bl,b2,b3,ml,m2,m3,cI,c2,c3); 
cllike = sumc(sumc(dep.*ln(prob»); 
nllike = rows(dep).*ln(I.lcols(dep»; 
save path = c:\gauss\triord\output; 
save prob, cllike, nllike; 
retp( cllike ); 

endp; 
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/* ********************************************************************* 
PROCPROBM 
This procedure computes the probability matrix. 
********************************************************************* */ 

proc(l) = probm(xl,x2,x3,bl,b2,b3,ml,m2,m3,cl,c2,c3); 
local dl, d2, d3, dil, di2, di3, pI, p2, zl, z2, z3, z4, z5, z6; 
dil = diml+l; 
di2 = dim2+ I; 
di3 = dim3+I; 
p2 = zeros(rows(xl), I); 
dl = 0; 
do while d I .Ie dil; 

d2=0; 
do while d2 .Ie di2; 

d3 = 0; 
do while d3 .Ie di3; 

zl =ml[dl+I]-xl*bl; 



z3 = m2[d2+I]-x2*b2; 
z5 = m3[d3+I]-x3*b3; 
pI = cdftvn(zI,z3,z5,cI,c2,c3); 

ifdI .gt 0; 
z2 = mI[dI]-xl *bI; 
pI = pI-cdftvn(z2,z3,z5,cI,c2,c3); 

endif; 

ifd2.gt 0; 
z4 = m2[d2]-x2*b2; 
pI = pl-cdftvn(zl,z4,z5,cI,c2,c3); 

endif; 

ifd3 .gt 0; 
z6 = m3[d3]-x3*b3; 
pI = pI-cdftvn(zI,z3,z6,cI,c2,c3); 

endif; 

if(dl .gt 0) .and (d2 .gt 0) .and (d3 .gt 0); 
pI = pI-cdftvn(z2,z4,z6,cI,c2,c3); 

endif; 

if(dl .gt 0) .and (d2 .gt 0); 
pI = pI +cdftvn(z2,z4,z5,cl,c2,c3); 

endif; 

if(dl .gt 0) .and (d3 .gt 0); 
pI = pI+cdftvn(z2,z3,z6,cI,c2,c3); 

endif; 

if(d2 .gt 0) .and (d3 .gt 0); 
pI = pl+cdftvn(zl,z4,z6,cl,c2,c3); 

endif; 

p2 = p2-pl; 
d3 = d3+1; 

endo; 
d2 = d2+1; 

endo; 
dl=dl+l; 

endo; 
p2 = p2[.,2:cols(p2)]; 
retp(p2); endp; 
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1* ********************************************************************* 
PRED.PRG 
This program computes the following predictive diagnostics for use with joint and 
independent trivariate ordered probit models: percent right (raw classification), expected 
percent right and observed and predicted probabilities for the choice set. The input to the 
program consists of three matrices: an NxK matrix of observed choices, and NxK matrix 
of probabilities estimated with the joint model and an NxK matrix of probabilities of 
estimated with the independent model. The output consists of one file, "pred.out." 
***********************************~********************************* *1 

new; 
loadm z = c:\gauss\triord\data\zmat.fmt; 
loadm ip = c:\gauss\triord\data\pind.fmt; 
loadm jp = c:\gauss\triord\data\pjoint.fmt; 
r = rows(z); 

1* Calculation of percent right *1 

prj 1 = maxc(jpl); 
prj2 = z. *jp; 
prj3 = sumc(prj21); 
pril = maxc(ip'); 
pri2 = z. *ip; 
pri3 = sumc(pri21); 
ctj = 1; 
incjl = 0; 
do while ctj .Ie r; 

ifprjl[ctj,l] .eqprj3[ctj,I]; 
incjl = incjl+l; 

endif; 

ctj = ctj+ 1; 
endo; 
incj2 = incj lIr* 100; 
cti= 1; 
incil = 0; 
do while cti .Ie r; 

ifpril[ct~ 1] .eq pri3[ct~ 1]; 
incil = incil+l; 

endif; 

cti = cti+l; 



endo; 
inci2 = inciI/r*100; 

1* Calculation of expected percent right *1 

eprj = sumc(sumc(prj2))* 100/r; 
epri = sumc(sumc(pri2))*100/r; 

1* Calculation of observed probabilities *1 

op = sumc(z).Ir; 

1* Calculation of estimated probabilities *1 

epj = sumcGp).Ir; 
epi = sumc(ip ).Ir; 

1* Generation of "pred.out" *1 

output file = c:\gauss\triord\output\pred.out reset; 
format Irdn 7,4; 
print "PRED.OUT"; 
print; 
print "Percent right for the joint model is II ;; incj2 ;; "."; 
print "Percent right for the independent model is II ;; inci2 ;; "."; 
print "Expected percent right for the joint model is II ;; eprj ;; ". "; 
print "Expected percent right for the independent model is II ;; epri ;; ". "; 
print; 
print; 
print liThe observed probabilities are: "; 
print; 
print op; 
print; 
print; 
print liThe estimated probabilities for the joint model are: "; 
print; 
print epj; 
print; 
print; 
print liThe estimated probabilities for the independent model are: "; 
print; 
print epi; 
output off; 
closea1l; 

153 



Appendix 2 

Object-Oriented Simulation Model 
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HOUSEHOLD.H 

#ifndefHOUSEHOLD H 
#define HOUSEHOLD H 
#include <iostream.h> 
#include <fstream.h> 
#include <iomanip.h> 

class Household 
{ 
public: 

HouseholdO; 
-HouseholdO; 
void setHouseholdData(int v,float ~int c5,int clO,int cl5,int r); 
void generateActivitiesO; 

protected: 

}; 

int numberOtV ehicles; 
float income; 
int numberOfChildrenS; 
int numberOfChildrenlO; 
int numb erOfChildren I 5; 
int residentialLocation; 

#endif 
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HOUSEHOLD.CPP 

#include "Household.h" 

Household: :HouseholdO 
{ 
} 

Household: :-HousehpldO 
{ 
} 

void Household::setHouseholdData(int v,float ~int cS,int clO,int cIS,int r) 
{ 

} 

numberOtV ehic1es = v; 
income = i; 
numberOfChiidren5 = cS; 
numberOfChildrenlO = cIO; 
numberOfChiidrenI5 = cIS; 
residentialLocation = r; 

void Household: :generateActivitiesO 
{ 

return; 
} 
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SINGLENONWORKER.H 

#ifndef SINGLENONWORKER H 
#define SINGLENONWORKER H 
#include "Household.h" 
#include "Nonworker.h" 

class SingleNonworker:public Household 
{ 
public: 

SingleNonworker(Nonworker *n); 
~SingleNonworkerO; 

void generateActivitiesO; 
private: 

Nonworker *nw; 
}; 

#endif 
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SINGLENONWORKER.CPP 

#include "SingleNonworker.h" 

SingleNonworker:: SingleNonworker(Nonworker *n) 
{ 

nw=n; 
} 

SingleNonworker: :-SingleNonworkerO 
{ 
} 

void SingleNonworker: :generateActivitiesO 
{ 

} 

float a = nw->getAgeO; 
float xl = al10; 

float x2 = incomell 0000; 

intx3; 
int g = nw->getGenderO; 
int I = nw->getDriversLicenceO; 
if((g = I) && (1 = 1) && (numberOtVehicles > 0» 
{ 

x3 = 1; 
} 
else 
{ 

x3 = 0; 
} 

double betaX = 1.3867 + (-0.2295 * xl) + (0.1516 * x2) + (0.3041 * x3); 

of stream outSNWACT("c:\\gauss\\actgen\\data\\SNWACT.TXT",ios::app); 
outSNWACT« setw(15)« betaX« endl; 
outSNW ACT.closeO; 

return; 
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SINGLEWORKER.H 

#ifndef SINGLEWORKER H 
#define SINGLEWORKER H 
#include "Household.h" 
#inc1ude "Worker.h" 

class SingleWorker:public Household 
{ 
public: 

SingleWorker(Worker *w); 
-SingleWorkerO; 
void generateActivitiesO; 

private: 
Worker *wkr; 

}; 

#endif 
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SINGLEWORKER.CPP 

#include ISingleWorker.h" 

SingleWorker:: SingleWorker(W orker *w) 
{ 

wkr=w; 
} 

SingleWorker::-SingleWorkerO 
{ 
} 

void Single Worker: :generateActivitiesO 
{ 

float a = wkr->getAgeO; 
float xl = alIO; 

float x2 = incomellOOOO; 

intx3; 
int g = wkr->getGenderO; 
int I = wkr->getDriversLicenceO; 
if«g = 1) && (I = 1) && (numberOfVehicles > 0» 
{ 

x3 = 1; 
} 
else 
{ 

x3 =0; 
} 

int x4; 
if«g = 1) && (numberOfChildren5 > 0» 
{ 

x4= 1; 
} 
else 
{ 

x4=0; 
} 

int x5; 
if«g = 1) && (numberOfChildrenIO > 0» 
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} 

{ 

} 
x5 = 1; 

else 
{ 

x5 =0; 
} 

float wd = wkr->getWorkDurationO; 
float x6 = wd/l00; 

int x7; 
int e = wkr->getEmploymentStatusO; 
if(e = 1) 
{ 

x7 = 1; 
} 
else 
{ 

x7=0; 
} 

int x8; 
int wm = wkr->getWorkModeO; 
if«g = 1) && (wm = 1)) 
{ 

x8 = 1; 
} 
else 
{ 

x8 = 0; 
} 
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double betaX = 1.8597 + (-0.1193 * xl) + (0.1622 * x2) + (0.2664 * x3) + (1.2402 * 
x4) + (0.7377 * x5)+ (-0.3641 * x6) + (-0.5982 * x7) + (-0.4678 * x8); 

of stream outSWACT("c:\\gauss\\actgen\\data\\SWACT.TXT",ios::app); 
outSWACT« setw(15)« betaX« endl; 
outSWACT.closeO; 

return; 



COUPLENONWORKER.H 

#ifndefCOUPLENONWORKER H 
#define COUPLENONWORKER H 
#include "Household.h" 
#include "Nonworker.h" 

class CoupleNonworker:public Household 
{ 
public: 

CoupleNonworker(Nonworker *m, Nonworker *f); 
-CoupleNonworkerO; 
void generateActivitiesO; 

private: 

}; 

Nonworker *nm; 
Nonworker *nf; 

#endif 
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COUPLENONWORKER.CPP 

#include "CoupleNonworker.h" 

CoupleNonworker: :CoupleNonworker(Nonworker *m, Nonworker *t) 
{ 

nm=m; 
nf=f; 

} 

CoupleNonworker: :-CoupleNonworkerO 
{ 
} 

void CoupleNonworker: :generateActivitiesO 
{ 

float am = nm->getAgeO; 
float xl = amJIO; 

int x2; 
if«numberOfChildrenlO > 0) II (numberOfChildrenI5 > 0» 
{ 

x2 = 1; 
} 
else 
{ 

x2=0; 
} 

intx3; 
int If = nf->getDriversLicenceO; 
if«lf= 1) && (numberOtVehic1es > 0» 
{ 

x3 = 1; 
} 
else 
{ 

x3 = 0; 
} 

int x4; 
int 1m = nm->getDriversLicenceO; 
if «1m = 1) && (1f= 1) && (numberOtVehic1es > 0» 
{ 
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} 

x4= 1; 
} 
else 
{ 

x4=0; 
} 

int x5; 
if«lm = 1) && (1f= 0) && (numberOfVehic1es > 0» 
{ 

x5 = 1; 
} 
else 
{ 

x5 =0; 
} 

double jBetaXm = 2.9620 + (-0.4458 * xl) + (-1.9097 * x2); 
double jBetaXf= -0.7535 + (0.3849 * x3); 
double jBetaXj = -1.3408 + (0.6052 * x4) + (0.7584 * x5); 

of stream outCNWACTJe'c:\\gauss\\actgen\\data\\CNWACTJ.TXT",ios::app); 
outCNWACTJ« setw(15) «jBetaXm« setw(15) «jBetaXf« setw(15)« 
jBetaXj« endl; 
outCNW ACTlc1oseO; 

double iBetaXm = 3.3673 + (-0.5019 * xl) + (-2.3232 * x2); 
double iBetaXf= -0.7948 + (0.4583 * x3); 
double iBetaXj = -1.4037 + (0.6967 * x4) + (0.8311 * x5); 

of stream outCNWACTI(lc:\\gauss\\actgen\\data\\CNWACTI.TXT",ios::app); 
outCNW ACTI « setw(15) « iBetaXm « setw(15) « iBetaXf« setw(15) « 
iBetaXj «endl; 
outCNW ACTI.c1oseO; 

return; 
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COUPLEONEWORKER.H 

#ifndefCOUPLEONEWORKER H 
#define COUPLEONEWORKER H 
#include "Household.h" 
#include "Worker.h" 
#include "Nonworker.h" 

class CoupleOneworker:public Household 
{ 
public: 

CoupleOneworker(Worker *w, Nonworker *n); 
~CoupleOneworkerO; 
void generateActivitiesO; 

private: 

}; 

Worker *wkr; 
Nonworker *nw; 

#endif 
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COUPLEONEWORKER.CPP 

#include ICoupleOneworker.h" 

CoupleOneworker: :CoupleOneworker(W orker *w, Nonworker *n) 
{ 

} 

wkr=w; 
nw=n; 

CoupleOneworker: :~CoupleOneworkerO 
{ 
} 

void CoupleOneworker: :generateActivitiesO 
{ 

float awkr = wkr->getAgeO; 
float xl = awkrll 0; 

float x2 = income/I 0000; 

float wd = wkr->getWorkDurationO; 
float x3 = wd/IOO; 

int x4; 
int wm = wkr->getWorkModeO; 
if(wm== I) 
{ 

x4= I; 
} 
else 
{ 

x4=0; 
} 

int x5; 
if «numberOtVehicles > I) && (wm = 0» 
{ 

x5 = I; 
} 
else 
{ 

x5 =0; 
} 
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int x6; 
if (numberOfChildrenlO > 0) 
{ 

x6 = 1; 
} 
else 
{ 

x6=0; 
} 

int x7 = residentialLocation; 

int x8; 
int In = nw->getDriversLicenceO; 
if ((In = 1) && (numberOfVehicles = 1) && (wm = 0» 
{ 

x8 = 1; 
} 
else 
{ 

x8 =0; 
} 

int x9; 
if ((In = 1) && (numberOfVehicles = 1) && (wm != 0» 
{ 

x9 = 1; 
} 
else 
{ 

x9=0; 
} 

int xl0; 
if ((In = 1) && (numberOfVehicles > 1» 
{ 

xlO = 1; 
} 
else 
{ 

xlO = 0; 
} 
int xll; 
if(numberOfChildren5 > 0) 
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} 

{ 

} 
xlI = I; 

else 
{ 

xlI = 0; 
} 

int x12; 
int lw = wkr->getDriversLicenceO; 
if«(lw = I) && (In = 0) && (numberOfVehicles > 0» 
{ 

xl2 = 1~ 
} 
else 
{ 

xl2 = 0; 
} 

doublejBetaXw= 0.9676 + (-0.2349 * xl) + (0.1167 * x2) + (-0.1895 * x3) + (-
0.6227 * x4) + (0.3231 * x5); 
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double jBetaXn = -0.6431 + (0.4229 * x6) + (0.4635 * x7) + (0.7866 * x8) + (1.4691 
* x9) + (1.0268 * xlO); 
double jBetaXj = -1.5534 + (0.4777 * xII) + (0.4662 * xI2); 

of stream outCOWACTJ(lc:\\gauss\\actgen\\data\\COWACTITXT",ios::app); 
outCOWACTJ« setw(15) «jBetaXw« setw(15) «jBetaXn« setw(15)« 
jBetaXj «endl; 
outCOWACTlcloseO; 

double iBetaXw = 0.9569 + (-0.2378 * xl) + (0.1187 * x2) + (-0.1848 * x3) + (-
0.6031 * x4) + (0.2914 * xS); 
double iBetaXn = -0.6563 + (0.4271 * x6) + (0.4694 * x7) + (0.8049 * x8) + (1.4906 
* x9) + (1.0356 * xlO); 
double iBetaXj = -1.5542 + (0.5042 * xlI) + (0.4614 * xI2); 

of stream outCOW ACTI("c:\ \gauss\ \actgen\ \data\ \COWACTI. TXT",ios: :app); 
outCOWACTI« setw(15)« iBetaXw« setw(15)« iBetaXn« setw(15)« 
iBetaXj «endl; 
outCOW ACTI.closeO; 

return; 



COUPLETWOWORKER.H 

#ifndefCOUPLETWOWORKER H 
#define COUPLETWOWORKER H 
#include "Household.h" 
#include "Worker.h" 

class CoupleTwoworker:public Household 
{ 
pUblic: 

CoupleTwoworker(Worker *m, Worker *f); 
-CoupleTwoworkerO; 
void setHouseholdData(int v, float ~int c5,int clO,int cI5,int r, int s); 
void generateActivitiesO; 

private: 

}; 

Worker *wkrm; 
Worker *wkrf; 
int sameWorkSchedule; 

#endif 
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COUPLETWOWORKER.CPP 

#include "CoupleTwoworker.h" 

CoupleTwoworker::CoupleTwoworker(Worker *m, Worker *f) 
{ 

} 

wkrm=m; 
wkrf= f; 

CoupleTwoworker: :~CoupleTwoworkerO 
{ 
} 
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void CoupleTwoworker::setHouseholdData(int v,tIoat ~int cS,int clO,int cIS,int r, int s) 
{ 

} 

numberOfV ehicles = v; 
income = i; 
numberOfChildrenS = cS; 
numberOfChildrenlO = cIO; 
numberOfChildrenIS = cIS; 
residentialLocation = r; 
sameWorkSchedule = s; 

void CoupleTwoworker: :generateActivitiesO 
{ 

float am = wkrm->getAgeO; 
float xl = ami 1 0; 

float x2 = incomelIOOOO; 

float wdm = wkrm->getWorkDurationO; 
tIoat x3 = wdm/lOO; 

int x4; 
int wmm = wkrm->getWorkModeO; 
if(wmm= 1) 
{ 

x4 = 1; 
} 
else 
{ 

x4=0; 



} 

int x5 = sameWorkSchedule; 

float af= wkrf->getAgeO; 
float x6 = a£l10; 

int x7; 
if (numJ:>erOtt:hildren5 > 0) 
{ 

x7= 1; 
} 
else 
{ 

x7=0; 
} 

float wdf = wkrf->getWorkDurationO; 
float x8 = wdf/lOO; 

int x9; 
int wmf = wkrf->getWorkModeO; 
if(wmf= 1) 
{ 

x9 = 1; 
} 
else 
{ 

x9=0; 
} 

int xlO; 
if «numberOtVehicles = 1) && (wmf= 0» 
{ 

xlO = 1; 
} 
else 
{ 

xlO = 0; 
} 

int xlI; 
if «numberOtVehicles > 1) && (wmf= 0» 
{ 
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} 

xlI = 1; 
} 
else 
{ 

xlI = 0; 
} 

int x12; 
if(wmm=2) 
{ 

x12 = 1; 
} 
else 
{ 

x12 = 0; 
} 

double jBetaXm = 1.6750 + (-0.2288 * xl) + (0.0688 * x2) + (-0.2330 * x3) + (-
0.5709 * x4) + (-0.2401 * x5); 
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double jBetaXf= 0.9586 + (-0.1612 * x6) + (0.1019 * x2) + (0.4944 * x7) + (-0.2551 
* x8) + (-0.6468 * x9) + (0.4780 * x1O) + (0.2887 * xlI); 
double jBetaXj = -1.2155 + (-0.8153 * x7) + (0.5206 * xI2); 

of stream outCTWACTJ("c:\\gauss\\actgen\\data\\CTWACTITXT",ios::app); 
outCTWACTJ« setw(15) «jBetaXm« setw(15) «jBetaXf« setw(15)« 
jBetaXj« endl; 
outCTW ACTJ .closeO; 

double iBetaXm = 1.5989 + (-0.2070 * xl) + (0.0662 * x2) + (-0.2329 * x3) + (-
0.5649 * x4) + (-0.2430 * x5); 
double iBetaXf= 1.0129 + (-0.1442 * x6) + (0.1012 * x2) + (0.5161 * x7) + (-0.2797 
* x8) + (-0.6045 * x9) + (0.4291 * x1O) + (0.3025 * xlI); 
double iBetaXj = -1.2152 + (-0.8141 * x7) + (0.5138 * xI2); 

of stream outCTWACTI("c:\\gauss\\actgen\\data\\CTWACTI.TXT",ios::app); 
outCTWACTI« setw(15)« iBetaXm« setw(15)« iBetaXf« setw(15)« 
iBetaXj« endl; 
outCTW ACTl.closeO; 

return; 



PERSON.H 

#ifndefPERSON H 
#define PERSON H 

class Person 
{ 
public: 

PersonO; 
-PersonO; 
void setPersonData(int g,float a,int ~int e); 
int getGenderO; 
float getAgeO; 
int getDriversLicenceO; 
int getEmploymentStatusO; 

protected: 

}; 

int gender; 
float age; 
int driversLicence; 
int employmentStatus; 

#endif 
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PERSON.CPP 

#include "Person.h" 

Person: :PersonO 
{ 
} 

Person: :-PersonO 
{ 
} 

void Person::setPersonData(int g,float a,int I,int e) 
{ 

} 

gender = g; 
age = a; 
driversLicence = I; 
employmentStatus = e; 

int Person: :getGenderO 
{ 

} 

int g; 
g = gender; 
returng; 

float Person: :getAgeO 
{ 

} 

float a; 
a = age; 
return a; 

int Person: :getDriversLicenceO 
{ 

} 

int I; 
I = driversLicence; 
return I; 

int Person: :getEmploymentStatusO 
{ 

int e; 
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} 

e = employmentStatus; 
return e; 
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NONWORKER.H 

#ifndefNONWORKER H 
#define NONWORKER H 
#include "Person.h" 

class Nonworker:public Person 
{ 
public: 

NonworkerO; 
~NonworkerO; 

private: 
}; 

#endif 
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NONWORKER.CPP 

#include "Nonworker.h" 

Nonworker::NonworkerQ 
{ 
} 

Nonworker:: .... NonworkerO 
{ 
} 
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WORKER.H 

#ifndefWORKER H 
#define WORKER H 
#include "Person.h" 

class Worker:public Person 
{ 
public: 

WorkerO; 
~WorkerO; 
void setPersonData(int g,float a,int ~int e,float wd,int wm); 
float getWorkDurationO; 
int getWorkModeQ; 

private: 

}; 

float workDuration; 
int workMode; 

#endif 
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WORKER.CPP 

#include "Worker.h" 

Worker: :WorkerO 
{ 
} 

Worker::~WorkerO 

{ 
} 

void Worker::setPersonData(int g,tloat a,int Lint e,tloat wd,int wm) 
{ 

} 

gender = g; 
age = a; 
driversLicence = I; 
employmentStatus = e; 
workDuration = wd; 
workMode = wm; 

tloat Worker: :getWorkDurationO 
{ 

} 

floatwd; 
wd = workDuration; 
return wd; 

int Worker: :getWorkModeO 
{ 

} 

intwm; 
wm = workMode; 
return wm; 

179 



MAIN.CPP 

#inc1ude <iostream.h> 
#include <fstream.h> 
#include "Household.h" 
#inc1ude II SingleNonworker.h" 
#include ISingleWorker.h" 
#include ICoupleNonworker.h" 
#include "CoupleOnew:orker.hll 
#inc1ude ICoupleTwoworker.h" 
#inc1ude "Person.h" 
#inc1ude "Nonworker.h" 
#include "Worker.h" 

void mainO 
{ 

if stream inSNW("SNW. TXT "); 
int v; 
float i; 
int c5; 
int cIO; 
int cI5; 
int r; 
int g; 
float a; 
int 1; 
int e; 

while (linSNW.eofO) 
{ 

} 

inSNW» v» i» c5 » cIO » cI5 » r» g» a» 1» e; 
inSNW.eatwhiteO; 
Nonworker n; 
n. setPersonData(g,a,~e); 
SingleNonworker hhld(&n); 
hhld.setHouseholdData(v,i,c5,cIO,cI5,r); 
hhld.generateActivitiesO; 

inSNW.c1oseO; 

ifstream inSW("SW. TXT"); 
float wd; 
int wm; 
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while (!inSW.eot{) 
{ 

} 

inSW» v» i» c5» clO» cI5» r» g» a» I» e »wd »wm; 
inSW.eatwhiteO; 
Workerw; 
w.setPersonData(g,a,I,e,wd,wm); 
SingleWorker hhld(&w); 
hhld.setHouseholdData(v,~c5,cl0,cI5,r); 
hhld.generateActivitiesO; 

inSW.closeO; 

if stream inCNW("CNW. TXT"); 
intgmw; 
floatamw; 
int lmw; 
int emw; 
int gfn; 
float afn; 
int Ifn; 
int efn; 

while (!inCNW.eot{) 
{ 
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inCNW» v» i» c5 » cl0» c15 »r» gmw» amw» lmw» emw 
» gfn» afn» Ifn» efn; 

} 

inCNW.eatwhiteO; 
Nonworker m, f; 
m. setPersonData(gmw,amw,lmw,emw); 
f setPersonData(gfn,afn,lfn,efn); 
CoupleNonworker hhld(&m,&t); 
hhld.setHouseholdData(v,~c5,c 1 O,cI5,r); 
hhld.generateActivitiesO; 

inCNW.c1oseO; 

ifstream inCOW("COW. TXT"); 

while (!inCOW.eot{) 
{ 

inCOW» v» i» c5 »clO» cI5 »r» gmw» amw» lmw» emw 
» wd » wm » gfn » afn 



} 

} 

» lfn » efn; 
inCOW.eatwhiteO; 
Workerw; 
Nonworker n; 
w.setPersonData(gmw,amw,lmw,emw,wd,wm); 
n.setPersonData(gfn,afn,lfn,efn); 
CoupleOneworker hhld(&w,&n); 
hhld. setHouseholdData(v,~c5,c 1 O,c I5,r); 
hhld.generateActivitiesO; 

inCOW.c1oseO; 

if stream inCTW("CTW. TXT"); 
int s; 
floatwdm; 
intwmm; 
float wdf; 
intwmf; 

while (!inCTW.eof() 
{ 

} 

inCTW» v» i» c5 » cIO» cI5 » r» s» gmw» amw» lmw» 
emw »wdm» wmm» gfn 

» afn» lfn » efn » wdf» wmf; 
inCTW.eatwhiteO; 
Workerm; 
Workerf; 
m. setPersonData(gmw,amw,lmw,emw, wdm, wmm); 
fsetPersonData(gfn,afn,lfn,efn,wdf,wmf); 
CoupleTwoworker hhld(&m,&f); 
hhld.setHouseholdData(v,~c5,clO,c15,r,s); 
hhld.generateActivitiesO; 

inCTW.c1oseO; 
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1* ********************************************************************* 
ACTGEN.PRG 
This program estimates the number of daily out-of-home activity episodes for the heads 
of five common household types in an urban area. Input to the program consists of eight 
ftles: SNWACT.TXT, SWACT.TXT, CNWACTlTXT, CNWACTI.TXT, 
COWACTJ. TXT, COWACTI. TXT, CTW ACTJ. TXT and CTW ACTI. TXT. 
********************************************************************* */ 

new; 
{snw} = snwhhldO; 
{sw} = swhhldO; 
{cnwj,cnwi} = cnwhhldO; 
{cowj,cowi} = cowhhldO; 
{ctwj,ctwi} = ctwhhldO; 
format Ird 10,0; 
outwidth 256; 
output file = c:\gauss\actgen\output\resultsh.txt reset; 
screen off; 

1* Hardcopy output *1 

print liThe results for single, non-worker households are: "; 
print; 
print snw; 
print; 
print; 
print liThe results for single-worker households are: "; 
print; 
print sw; 
print; 
print; 
print liThe results for couple, non-worker households are:"; 
print; 
print cnwj; 
print; 
print cnwi; 
print; 
print; 
print liThe results for couple, one-worker households are: "; 
print; 
print cowj; 
print; 
print cowi; 
print; 



print; 
print "The results for couple, two-worker households are:"; 
print; 
print ctwj; 
print; 
print ctwi; 
print; 
print; 
outp~t off; 
screen on; 

1* File output *1 

colI = cols(snw); 
co12 = cols( sw); 
col3 = cols( cnwj); 
col4 = cols(cowj); 
col5 = cols( ctwj); 
colv = colllco12lcoI3IcoI4IcoI5; 
maxcol = maxc(colv); 

if colI .It maxcol; 
diff = maxcol-coll ; 
diffm = zeros(l,dift); 
snw = snw-diffm; 

endif; 

if co12 .It maxcol; 
diff= maxcol-coI2; 
diffm = zeros(l,dift); 
sw = sw-diffm; 

endif; 

if col3 .It maxcol; 
diff = maxcol-coI3; 
diffm = zeros(3,dift); 
cnwj = cnwj-diffm; 
cnwi = cnwi-diffm; 

endif; 

if col4 .It maxcol; 
diff = maxcol-coI4; 
diffm = zeros(3,dift); 
cowj = cowj-diffm; 
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cowi = cowi-diffm; 
endif; 

if colS .It maxcol; 
diff = maxcol-coI5; 
diffm= zeros(3,diB); 
ctwj = ctwj-diffm; 
ctwi = ctwi-diffm; 

endif; 

output file = c:\gauss\actgen\output\resultsf.txt reset; 
screen off; 
print snw; 
print sw; 
print cnwj; 
print cnwi; 
print cowj; 
print cowi; 
print ctwj; 
print ctwi; 
output off; 
screen on; 

cIs; 
end; 
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1* ********************************************************************* 
PROC SNWlllILD 
This procedure estimates the daily number of out-of-home activity episodes for the heads 
of single, non-worker households. 
**********************************************************************1 

proc(l) = snwhhldO; 
local bx, w, m, prob, hhld, nhhld, result; 
load bx[] = c:\gauss\actgen\data\snwacttxt; 
w= 1036; 
m = {0,0.8009, 1.5522, 1000}; 
{prob} = uprob(bx,m); 
hhld = w*prob; 
nhhld = round(hhld); 
format Ird 10,0; 
outwidth 256; 
output file = c:\gauss\actgen\output\snwhhld.txt reset; 



screen off; 
print nhhld; 
output off; 
screen on; 
{result} = ustats(nhhld); 
retp(result); 

endp; 
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1* ********************************************************************* 
PROCSWHHLD 
This procedure estimates the daily number of out-of-home activity episodes for the heads 
of single-worker households. 
********************************************************************* *1 

proc(l) = swhhldO; 
local bx, w, m, prob, hhld, nhhld, result; 
load bx[] = c:\gauss\actgen\data\swact.txt; 
w= 660; 
m = {0,0.9390,1.7670,1000}; 
{prob} = uprob(bx,m); 
hhld = w*prob; 
nhhld = round(hhld); 
format Ird 10,0; 
outwidth 256; 
output file = c:\gauss\actgen\output\swhhld.txt reset; 
screen off; 
print nhhld; 
output off; 
screen on; 
{result} = ustats(nhhld); 
retp(result ); 

endp; 

1* ********************************************************************* 
PROC CNWHHLD 
This procedure estimates the daily number of out-of-home activity episodes for the heads 
of couple, non-worker households. 
********************************************************************* *1 

proc(2) = cnwhhldO; 
local bxsj, bxsi, w, mlj, m2j, m3j, ml~ m2i, m3i, clj, c2j, c3j, cli, c2i, c3i; 
local prob, hhld, nhhldj, nhhldi, resultj, resulti; 



load bxsj[] = c:\gauss\actgen\data\cnwactj.txt; 
load bxsi[] = c:\gauss\actgen\data\cnwacti.txt; 
bxsj = reshape(bxsj,rows(bxsj)/3,3); 
bxsi = reshape(bxsi,rows(bxsi)/3,3); 
w= 1522; 
mlj = {0,0.9663,1000}; 
m2j = {0,0.8807,1000}; 
m3j = {0,0.6615,1000}; 
mli = {0,0.9764,1000}; 
m2i = {0,0.8702,1000}; 
m3i = {0,0.6615,1000}; 
clj = 0.4356; 
c2j = -0.3208; 
c3j = -0.0504; 
cli = 0; 
c2i = 0; 
c3i = 0; 
{prob} = tprob(bxsj,mlj,m2j,m3j,clj,c2j,c3j); 
hbld = w*prob; 
nhhldj = round(hbld); 
format Ird 10,0; 
outwidth 256; 
output file = c:\gauss\actgen\output\cnwhbldj.txt reset; 
screen off; 
print nhhldj; 
output off; 
screen on; 
{resultj} = tstats(nhhldj,mlj,m2j,m3j); 
{prob} = tprob(bxsi,ml~m2~m3i,cli,c2i,c3i); 
hhld = w*prob; 
nhhldi = round(hbld); 
output file = c:\gauss\actgen\output\cnwhbldLtxt reset; 
screen off; 
print nhhldi; 
output off; 
screen on; 
{resulti} = tstats(nhhldi,mli,m2i,m3i); 
retp(resultj,resulti); 

endp; 
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/* ********************************************************************* 
PROC COWHHLD 
This procedure estimates the daily number of out-of-home activity episodes for the heads 
of couple, one-worker households. 
********************************************************************* */ 

proc(2) = cowhhldO; 
local bxsj, bxsi, w, mlj, m2j, m3j, mli, m2i, m3i, clj, c2j, c3j, cli, c2i, c3i; 
local prob, hhld, nhhldj, nhhldi, resultj, resulti; 
load bxsj[] = c:\gauss\actgen\data\cowactj.txt; 
load bxsi[] = c:\gauss\actgen\data\cowacti.txt; 
bxsj = reshape(bxsj,rows(bxsj)/3,3); 
bxsi = reshape(bxsi,rows(bxsi)/3,3); 
w= 1367; 
mlj = {0,0.9749,1000}; 
m2j = {0,0.8247, 1.4799, 1.9157, 1000}; 
m3j = {0,0.8942,1000}; 
mli = {0,0.9679,1000}; 
m2i = {0,0.8237, 1.4779, 1.9134, 1000}; 
m3i = {0,0.9054,1000}; 
clj = 0.1242; 
c2j = -0.0132; 
c3j = -0.4417; 
cli = 0; 
c2i = 0; 
c3i = 0; 
{prob} = tprob(bxsj,mlj,m2j,m3j,clj,c2j,c3j); 
hhld = w*prob; 
nhhldj = round(hhld); 
format Ird 10,0; 
outwidth 256; 
output file = c:\gauss\actgen\output\cowhhldj.txt reset; 
screen off; 
print nhhldj; 
output off; 
screen on; 
{resultj} = tstats(nhhldj,mlj,m2j,m3j); 
{prob} = tprob(bxsi,mli,m2i,m3i,c1i,c2i,c3i); 
hhld = w*prob; 
nhhldi = round(hhld); 
output file = c:\gauss\actgen\output\cowhhldLtxt reset; 
screen off; 
print nhhldi; 
output off; 



screen on; 
{resulti} = tstats(nhhldi,m1i,m2i,m3i); 
retp( resultj,resulti); 

endp; 
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/* ********************************************************************* 
PROC CTWHm..D 
This procedure estimates the daily number of out-of-home activity episodes for the heads 
of couple, two-worker households. 
********************************************************************* */ 

proc(2) = ctwhhldO; 
local bxsj, bxsi, w, m1j, m2j, m3j, m1i, m2i, m3i, clj, c2j, c3j, c1i, c2i, c3i; 
local prob, hhld, nhhldj, nhhldi, resultj, resulti; 
load bxsj[] = c:\gauss\actgen\data\ctwactj.txt; 
load bxsi[] = c:\gauss\actgen\data\ctwacti.txt; 
bxsj = reshape(bxsj,rows(bxsj)/3,3); 
bxsi = reshape(bxsi,rows(bxsi)/3,3); 
w= 1207; 
m1j = {0,0.9457, 1.5693, lOOO}; 
m2j = {0,0.8651,1.7003,1000}; 
m3j = {0,0.8380,lOOO}; 
mli = {0,0.9413,1.5744,lOOO}; 
m2i = {0,0.8627,1.7323,lOOO}; 
m3i = {0,0.8383,lOOO}; 
clj = 0.3909; 
c2j = 0.0331; 
c3j = 0.0103; 
cli = 0; 
c2i = 0; 
c3i = 0; 
{prob} = tprob(bxsj,m1j,m2j,m3j,c1j,c2j,c3j); 
hhld = w*prob; 
nhhldj = round(hhld); 
format /rd 10,0; 
outwidth 256; 
output file = c:\gauss\actgen\output\ctwhhldj.txt reset; 
screen off; 
print nhhldj; 
output off; 
screen on; 
{resultj} = tstats(nhhldj,m1j,m2j,m3j); 
{prob} = tprob(bxsi,m1i,m2i,m3i,cli,c2i,c3i); 



hhld = w*prob; 
nhhldi = round(hhld); 
output file = c:\gauss\actgen\output\ctwhhldi.txt reset; 
screen off; 
print nhhldi; 
output off; 
screen on; 
{resuhi} = tstats(nhhldi,mli,m2i,m3i); 
retp( resultj ,resulti); 

endp; 
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1* ********************************************************************* 
PROCUPROB 
This procedure computes probabilities for the univariate ordered probit model. 
********************************************************************* *1 

proc(I) = uprob(bx,m); 
local dI, dil, pI, p2; 
dB = rows(m)-I; 
p2 = zeros(rows(bx), 1); 
dl = 0; 
do while dl .Ie diI; 

ifdl .gt 0; 
pI = cdfn(m[dl+l]-bx)-cdfn(m[dl]-bx); 

else; 
pI = cdfn(m[dl+l]-bx); 

endif; 

p2 = p2-pl; 
dl = dI+I; 

endo; 
p2 = p2[.,2:cols(p2)]; 
retp(p2); 

endp; 

1* ********************************************************************* 
PROCTPROB 
This procedure computes probabilities for the trivariate ordered probit model. 
********************************************************************* *1 

proc(l) = tprob(bxs,ml,m2,m3,cI,c2,c3); 



local bxl, bx2, bu, dl, d2, d3, dil, di2, diJ, pI, p2, zl, z2, z3, z4, z5, z6; 
bxl = bxs[.,l]; 
bx2 = bxs[.,2]; 
bu = bxs[.,3]; 
dil = rows(ml)-l; 
di2 = rows(m2)-I; 
di3 = rows(m3)-I; 
p2 = zeros(rows(bxl), I); 
dl = 0; 
do while d I .Ie dil; 

d2=0; 
do while d2 .Ie di2; 

d3 =0; 
do while d3 .Ie di3; 

zl = ml[dl+l]-bxl; 
z3 = m2[d2+1]-bx2; 
z5 = m3[d3+1]-bu; 
pI = cdftvn(zl,z3,z5,c1,c2,c3); 

ifdl .gt 0; 
z2 = ml[dl]-bxl; 
pI = pl-cdftvn(z2,z3,z5,cI,c2,c3); 

endif; 

ifd2.gt 0; 
z4 = m2[ d2]-bx2; 
pI = pl-cdftvn(zl,z4,z5,cI,c2,c3); 

endif; 

ifd3 .gt 0; 
z6 = m3[d3]-bu; 
pI = pl-cdftvn(zl,z3,z6,cI,c2,c3); 

endif; 

if(dl .gt 0) .and (d2 .gt 0) .and (d3 .gt 0); 
pI = pl-cdftvn(z2,z4,z6,cl,c2,c3); 

endif; 

if(dl .gt 0) .and (d2 .gt 0); 
pI = pl+cdftvn(z2,z4,z5,cI,c2,c3); 

endif; 

if(dl .gt 0) .and (d3 .gt 0); 
pI = pl+cdftvn(z2,z3,z6,cI,c2,c3); 
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endif; 

if(d2 .gt 0) .and (d3 .gt 0); 
pI = pl+cdftvn(zl,z4,z6,cl,c2,c3); 

endif; 

p2 = p2-pl; 
d3 = d3+1; 

endo; 
d2 = d2+1; 

endo; 
dl = dl+1; 

endo; 
p2 = p2[.,2:cols(p2)]; 
retp(p2); 

endp; 
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/* ********************************************************************* 
PROCUSTATS 
This procedure computes totals for the univariate ordered probit model. 
********************************************************************* */ 

proc(l) = ustats(nhhld); 
local total; 
total = sumc(nhhld); 
total = reshape(total, l,rows(total)); 
retp( total); 

endp; 

/* ********************************************************************* 
PROCTSTATS 
This procedure computes totals for the trivariate ordered probit model. 
********************************************************************* */ 

proc(l) = tstats(nhhld,ml,m2,m3); 
local dl, d2, d3, total, ctl, ct2, ct3, nl, n2, diml, dim2, dim3, joint, v, mv; 
local diff, diffm; 
dl = rows(ml); 
d2 = rows(m2); 
d3 = rows(m3); 
total = sumc(nhhld); 



1* Computation of totals for dimension one *1 

n2=0; 
ctl = I; 
ct2 =d2*d3" , 
do while ctl .Ie dl *d2*d3; 

nl = total[etl:et2, 1]; 
nl = sume(nl); 
n2 =n2-nl; 
etl = ct2+1; 
et2 = ct2+(d2*d3); 

endo; 
diml = n2[1,2:eols(n2)]; 

1* Computation of totals for dimension two *1 

dim2 = 0; 
etl = I; 
do while etl .Ie d2*d3; 

n2=0; 
et2 = ctl; 
ct3 = ct2+d3-1; 
do while et2 .Ie dl *d2*d3; 

nl = total[ et2:et3, 1]; 
nl = sumc(nl); 
n2 =n2+nl; 
et2 = ct2+(d2*d3); 
et3 = ct3+(d2*d3); 

endo; 
dim2 = dim2-n2; 
etl = ctl +d3; 

endo; 
dim2 = dim2[1,2:eols(dim2)]; 

1* Computation of totals for dimension three *1 

dim3 = 0; 
ctl = I; 
do while etl .Ie d3; 

n2=0; 
et2 = ctl; 
do while et2 .Ie dl *d2*d3; 

nl = total[ et2, I]; 
n2 =n2+nl; 
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ct2 = ct2+d3; 
endo; 
dim3 = dim3-n2; 
ctl =ctl+l; 

endo; 
dim3 = dim3[1,2:cols(dim3)]; 

/* Results matrix * / 

v = dlld2ld3; 
mv = maxc(v); 

if dl .It my; 
diff= mv-dl; 
diffm = zeros(l,diff); 
diml = diml-diffm; 

endif; 

ifd2.1t my; 
diff = mv-d2; 
diffm = zeros(1,diff); 
dim2 = dim2-diffm; 

endif; 

ifd3 .It my; 
diff = mv-d3; 
diffm = zeros(l,diff); 
dim3 = dim3-diffm; 

endif; 

total = dimlldim2ldim3; 
retp(total); 

endp; 
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activity episode 
A period of time characterized by a uniform purpose and spatial setting. 

activity-episode generation 
The process whereby household heads decide collectively how many out-of-home 
activity episodes each head will participate in over a given period of time. 

activity-episode scheduling 
The process whereby household heads make decisions concerning the explicit timing, 
sequencing, activity type, duration, location and mode for each out-of-home activity 
episode to be undertaken over a given period of time. 

couple, non-worker household 
Married or unmarried, male-female couples with or without children in which neither 
household head works. 

couple, one-worker household 
Married or unmarried, male-female couples with or without children in which only 
one household head works. 

couple, two-worker household 
Married or unmarried, male-female couples with or without children in which both 
household heads work. 

household head 
An adult member of a household who is responsible for its maintenance. 

independent activity 
An activity undertaken by one household head. 

joint activity 
An activity undertaken by two household heads together. 

single, non-worker household 
A one-person or single-parent household in which the person or parent does not work. 

single-worker household 
A one-person or single-parent household in which the person or parent works. 

subtour 
A tour that begins and ends at work. 

tour 
A circuit of out-of-home activity episodes that begins and ends at home. 
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AMOS 

ATIS 

CAAA 

CASE 

CATGW 

CMAP 

GIS 

GISICAS 

GTA 

ILUTE 

LTC 

LTM 

OMT 

OOM 

OOP 

OOSE 

PCATS 

RAP 

SAMS 

SMART 

SMASH 
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Activity MObility Simulator 

Advanced Traveler Information System 

Clean Air Act Amendments 

Computer Aided Software Engineering 

Comprehensive Activity Travel.Generation for Workers 

Cognitive MAP 

Geographical Information System 

GIS-Interfaced Computational process model for Activity 
Scheduling 

Greater Toronto Area 

Integrated Land-Use, Transportation and Environment 
modeling system 

Long-Term Calendar 

Long-Term Memory 

Object Modeling Technique 

Object-Oriented Modeling 

Object-Oriented Programming 

Object-Oriented Software Engineering 

Prism-Constrained Activity-Travel Simulator 

Representative Activity-travel Pattern 

Sequenced Activity Mobility Simulator 

Simulation Model for Activities, Resources and Travel 

Simulation Model of Activity Scheduling Heuristics 



STARCHILD 

STC 

STM 

TDM 

TMIP 

UML 

UTMS 

VMT 

Simulation of Travell Activity Responses to Complex 
Household Interactive Logistic Decisions 

Short-Term Calendar 

Short-Term Memory 

Travel Demand Management 

Travel Model Improvement Program 

Universal Modeling Language 

Urban Transportation Modeling System 

Vehicle-Miles Traveled 
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