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Abstract

In this thesis, we discuss some results on the distribution of points on the sphere, asymp-

totically when both the number of points and the dimension of the sphere tend to infinity.

We then give some applications of these results to some statistical problems and especially

to hypothesis testing.

The thesis is organized as follows. In Chapter 2, we discuss the properties of spherical

and elliptical distributions. Here there are most of the new contributions of the thesis,

especially the geometric characterization of elliptical distributions and the definition of

streched orthogonal matrices are not known in the literature, as far as the author knows.

Also, the generalizations from spherical to elliptical distributions of the theorems in this

section are original. The subsequent chapters are mainly about spherical distributions

and the results are recent but already known in the literature. In Chapter 3, we use the

results of Chapter 2 to study the distribution of correlation coefficients. Chapter 4 forms

the main part of this thesis and presents some results concerning the distribution of points

on the sphere in random packing problems. Chapter 5 connects the discussed problems to

the 7th Smale’s problem, while in Chapter 6 we mention some open problems of possible

future interest. Chapter 7 presents the Appendix, in which some technical tools, that are

pertinent to the discussions in the preceding chapters, are described.
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Chapter 1

Introduction

This thesis deals with a topic in stochastic geometry and multivariate analysis, namely,

the distribution of points on spherical objects. In particular, we discuss the distribution

of points on the sphere and its asymptotic behaviour as the number of points n or the

dimension p tend to +∞.

Stochastic geometry is a mathematical discipline in which one studies the relations between

geometry and probability theory. We refer to [11] for a detailed description of this field.

Multivariate analysis deals with probability distributions of more than one dependent

variable. We refer to [8] for a complete treatment of this subject.

The rest of this thesis is organized as follows. In Chapter 2, we discuss the properties

of spherical and elliptical distributions. In Chapter 3, we use those properties to study

the distribution of correlation coefficients. Chapter 4 forms the main part of this thesis

and presents some results concerning the distribution of points on the sphere in random

packing problems. Chapter 5 connects the discussed problems to the 7th Smale’s problem,

while Chapter 7 presents the Appendix, in which some technical tools, that are pertinent

to the discussions in the preceding chapters, are described.
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Chapter 2

Spherical and Elliptical

Distributions

In this chapter we present a brief description of some of the main properties and main

features of spherical and elliptical distributions.

2.1 Definitions

In multivariate analysis one of the most important distributions that plays a key role is

the Multivariate Normal Distribution. For developing inference with more flexibility, one

after considers more general models like spherical and elliptical distributions. In fact it is

quite natural to consider a class of densities whose contours of constant density have the

same elliptical shape as the Gaussian. The first extensions considered in the literature are

Spherical Distributions.

Definition 2.1.1. A m × 1 random vector X is said to have a spherical distribution

(see [8]) if X and HX have the same distribution for all m ×m orthogonal matrices H

(HT = H−1).

Remark 2.1.2. If X has a spherical distribution, then its pdf depends only on x′ · x.

Example 2.1.3. We now give some examples of Spherical Distributions:

• The Multivariate Normal Distribution Nm(0, σ2Im) with pdf

p(x) =
1

(2πσ2)
m
2

e

(
− 1

2σ2
x′·x
)

(2.1)

for x ∈ Rm;
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• the ε-Contaminated Normal distribution (orTwo-component Mixture Normal Dis-

tribution) with pdf

p(x) = (1− ε) 1

(2π)
m
2

e

(
− 1

2
x′·x
)

+ ε
1

(2πσ2)
m
2

e

(
− 1

2σ2
x′·x
)

(2.2)

for x ∈ Rm;

• the Multivariate t-distribution with n-degrees of freedom with pdf

p(x) =
Γ[1

2(n+m)]

Γ[1
2n](nπ)

m
2

1(
1 + 1

nx′ · x
)n+m

2

, (2.3)

for x ∈ Rm (called also Multivariate Cauchy Distribution when n = 1).

Remark 2.1.4. A natural way to generate spherical distributions is as follows. Let

X1, . . . ,Xm, Z > 0 be random variables such that given Z, X1, . . . ,Xm have indepen-

dent N1(0,Z) distributions. If Z has cdf G, then the joint pdf of X1, . . . ,Xm is

p(x1, . . . , xm) =

∫ +∞

0

(
2πZ

)−m
2
e
− 1

2ZT ·Z
Σmi=1x

2
i dG(Z),

which is spherical and it is indeed a scale mixture of Gaussians. Th class of Spherical

Distributions formed varying G is called Compound Normal Distributions. It follows that

X = Z
1
2 Y, where Y is Nm(0, Im) and Z and Y are independent, so that the values of

X can be generated by generating values of independent N(0, 1) variables and multiplying

them by values of an independent variable Z. If Z takes values 1 with probability 1−ε and

σ2 with probability ε, then X has the ε-contaminated normal distribution in (2.2). Also,

if n
Z is χ2

n, then X has the m-variate t-distribution with n-degrees of freedom in (2.3).

Now a further generalization are the so called Elliptical Distributions.

Definition 2.1.5. An m × 1 random vector X is said to have an elliptical distribution

(see [8]) with parameters the m×1-vector µ and a symmetric positive definite m×m-matrix

V if its density function is of the form

f(x) = cm(det(V ))−
1
2h
(

(x− µ)TV −1(x− µ)
)
, (2.4)

for some positive function h. If X has an elliptical distribution we denote it by Em(µ,V).

Example 2.1.6. We now list some key properties of the family of elliptical distributions:
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• Every spherical distribution is an elliptical distribution X ∼ Em(0, Idm).

• If Y has an m-variate spherical distribution and X = CY + µ, where C is a non-

singular m×m matrix, then X ∼ Em(µ,V) with V = CCT .

• For some other examples, one may refer to [8].

2.2 Parametrization of the Ellipsoid and Independence of

Radius and Angle

An interesting property of a spherically distributed vector X is that a transformation to

polar coordinates yields angles having the same distributions for all X.

Theorem 2.2.1. If X ∼ Em(0, Idm) with density function cmh(xTx) and X = Rω with

R > 0 and ω = f(θ1, . . . , θm−1) ∈ Sm−1 then R, θ1, . . . , θm−1 are statistically independent

with the distributions of θ1, . . . , θm−1 being the same for all X, p(θk) ∝ sinm−1−k θk and

R2 = XT ·X has its density function as fR2(y) = cmπ
m
2

Γ(m
2

) y
m
2
−1h(y) with y > 0; see [8].

Remark 2.2.2. This theorem, with a suitable modification, will work for general Rieman-

nian Manifolds ( not necessarily spheres) with proper definitions of radius and angles.

Proof. We now provide an outline on how it should work for elliptical distributions in

dimension m = 2.

We will consider just ellipsoids Ea,b of the form x2

a2
+ y2

b2
= R2, with R > 0, since one can

reduce to these by just rotating the coordinate axis. Now, the issue is how to properly

parametrize this geometric object. Since the axis are stretched one with respect to the

other, we are tempted to use a parametrization of the type x = ab cos(θ), y = ab sin(θ).

Since the axis should scale as R one can take a = Rα and b = Rβ, where α and β are two

constants independent of R. The problem here is that now it seems we have 3 parameters

α, β and R for a 2-dimensional object. But, these three parameters are dependent, because

R2 =
x2

a2
+
y2

b2
= R2β2 cos2(θ) +R2α2 sin2(θ),

which implies

1 = β2 cos2(θ) + α2 sin2(θ)

and so

β =
(1− α2 sin2(θ)

cos2(θ)

) 1
2
.
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So a natural parametrization of the ellipsoid for subsequent developments is:x = R2α
(

1−α2 sin2(θ)
cos2(θ)

) 1
2

cos(θ)

y = R2α
(

1−α2 sin2(θ)
cos2(θ)

) 1
2

sin(θ).

Here, R > 0 and θ ∈ [0, 2π]. We can now compute the Jacobian of the transformation as

JR,θ :=

(
∂x
∂θ

∂x
∂R

∂y
∂θ

∂y
∂θ

)
.

We then have |det(JR,θ)| = 2R3α2
(

1−α2 sin2(θ)
cos2(θ)

) 1
2
. We can use to rewrite the expression of

for Elliptical Distributions in (2.4) in Elliptical Coordinates. First (x− µ)TV −1(x− µ) =
x2

a2
+ y2

b2
= R2, so that by the change of variable formula, we get

f(x) = f(θ,R) =
cmh(R2)

R2α
(

1−α2 sin2(θ)
cos2(θ)

) 1
2

2R3α2
(1− α2 sin2(θ)

cos2(θ)

) 1
2
,

which simplifies to

f(x) = f(θ,R) = 2c2Rαh(R2). (2.5)

Then by Factorization Theorem, we readily obtain the independence of R and θ.

Remark 2.2.3. Here, we want to make some key observations from the last theorem

say. If X is spherically distributed, then X may be expressed as X = R(X)T (X), with

R(X) =
√

XT ·X and T (X) = X
R(X) being independent random variables. From the form

of the joint pdf, it is clear that T (X) is uniformly distributed on Sm. We will show below

that the uniform distribution on Sm is the unique distribution on Sm which is invariant

under orthogonal transformation (see [8] and [6]). This decomposition suggests a general

method of decomposing distributions with clear geometric properties.

This can be utilized for hypothesis testing problems for example. The radius-angle decom-

position suggests t(m − 1)-type tests for the angles and a χ2(1) test for the radius giving

more importance to the radius-test. This gives m-independent tests to reject the null hy-

pothesis. We believe this is especially useful in high dimensional analysis, because one can

do a single χ2(1) test before doing all the other tests instead of doing a χ2(m) that can be

computationally demanding when m is large. We will talk about applications in statistics

later on.
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2.3 Transformations which are invariant under an ellipsoid

Now, we have to find transformations that leave the ellipsoid invariant. Of course, they

are not anymore orthogonal matrices, since they will not respect the asymmetry of the

axis. It turns out that these transformations are Stretched Orthogonal.

Definition 2.3.1. A m ×m matrix Mθ;a,b is said to be a
b -Stretched Orthogonal, if it is

of the form

Mθ;a,b :=

(
cos(θ) a

b sin(θ)

− b
a sin(θ) cos(θ)

)
,

where a, b ∈ R and θ ∈ [0, 2π].

Remark 2.3.2. These matrices are not orthogonal, but they are if a = −b or a = b,

namely, when the ellipsoid reduces to a sphere.

Now we prove that these transformations leave the ellipsoid invariant.

Proposition 2.3.3. Let X = (X1, X2) and X′ = (X ′1, X
′
2) be such that X = Mθ;a,bX

′.

Then, x2

a2
+ y2

b2
= x′2

a2
+ y′2

b2
.

Proof. It is straight forward to show this, but we report it here for the sake of completeness.

By definition of Mθ;a,b, we have x = x′cos(θ) + y′ ab sin(θ) and y = −x′ ba sin(θ) + y′ cos(θ).

Now, substituting this in x2

a2
+ y2

b2
, we obtain:

x2

a2
+
y2

b2

=
1

a2

{
x′cos(θ) + y′

a

b
sin(θ)

}2
+

1

b2

{
− x′ b

a
sin(θ) + y′ cos(θ)

}2

=
1

a2

{
x′2cos2(θ) + 2x′y′

a

b
cos(θ) sin(θ) + y′

a2

b2
sin2(θ)

}
+

1

b2

{
x′2

b2

a2
sin(θ) + y′2 cos2(θ)− 2x′y′

a

b
cos(θ) sin(θ)

}
=

1

a2

{
x′2cos2(θ) + x′2 sin2(θ)

}
+

1

b2

{
y′2cos2(θ) + y′2 sin2(θ)

}
=

x′2

a2
+
y′2

b2
.

Now we define a norm which reflects the geometry of Ea,b as follows
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Definition 2.3.4. The a
b -Stretched Norm is defined as follows:

||X||V := XTV −1X.

Theorem 2.3.5. If X is an Elliptical Distribution with P (X = 0) = 0 and

r = ||X||V = (X′ ·X)
1
2 , T(X) =

X

||X||V
,

then T(X) is uniformly distributed on Ea,b; moreover, T(X) and r are independent.

Proof. We first prove that X and Y = Mθ;a,bX have the same distribution. In fact, since

f̃(y) = f(Mθ;a,by)det(Mθ;a,b), we have

f̃(y) = f(Mθ;a,by)det(Mθ;a,b)

= cmdet(M)(det(V ))−
1
2h
(

(y)TMTV −1M(y)
)

= cm(det(V ))−
1
2h
(

(y)TV −1(y)
)

= f(y).

Now, for any a
b -stretched orthogonal matrix Mθ;a,b, we have

T (Mθ;a,bX) =
Mθ;a,bX

||Mθ;a,bX||V
=

Mθ;a,bX

||X||V
= Mθ;a,bT (X),

so that T (Mθ;a,bX) and Mθ;a,bT (X) have the same distribution. We have established

before that X and T (X) have the same distribution, and so T (Mθ;a,bX) and T (X) have

the same distribution. Then, both T (X) and Mθ;a,bT (X) have the same distribution. Since

the uniform distribution is the unique distribution invariant under a
b -stretched orthogonal

transformation on Ea,b (see next section below), T (X) is uniformly distributed on Ea,b.

Hence, the theorem.

2.4 Uniqueness of the uniform distribution on Sm

Here we present a result by Kariya and Eaton (see [6]) which states that the uniform

distribution on Sm is the unique distribution which is invariant under orthogonal trans-

formations.

Theorem 2.4.1. Suppose Z ∼ Nm(0, Im), X ∼ Em(0, Idm) and U is the uniform distri-

bution on the sphere. Then, Z
R(Z) ∼

X
R(X) ∼ U, where R(X) =

√
Xt ·X.

Proof. Let T (X) = X
R(X) ∈ Sm. Then, T (gX) = gT (X) for every g ∈ O(n) and so

T (gX) ∼ T (X) ∼ gT (X). We just need to prove the uniqueness of invariant probability

13



measures on Sm. Suppose there exists a pdf q(x) which is not the uniform distribution

on Sm, then there exists a set A such that P (A) > 0 and where q(x) pdf is not constant.

But then there exists g ∈ O(n) such that P (gA) 6= P (A), which implies that q(x) is not

invariant for that particular g and this leads to a contradiction. hence, the result.

Remark 2.4.2. A similar proof works for every manifold where a group of symmetries

acts on it. For example a very similar argument leads to the uniqueness of the uniform

distribution on the ellipsoid among the stretched orthogonal transformations.

The result is used to generalize a well-known result for normal random variables.

Theorem 2.4.3. Let X ∼ Em(µ,V), with P (X = 0) = 0. If W = αT ·X
||X||V , where α ∈ Rm,

αT · α = 1 then

Y =
(m− 1)

1
2 W

(1−W2)
1
2

has the tm−1 distribution.

Proof. Since for every X ∼ Em(µ,V), T (X) is uniformly distributed on Ea,b and W

is a function of X just through T (X), we can assume without loss of generality that

X ∼ Nm(0, Im) and take αT = (1, 0, . . . , 0). Then Y is the ratio between a standard

normal and a χ2(m− 1) (see for example [5]), and hence it has the tm−1 distribution.
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Chapter 3

The Distribution of Correlation

Coefficients

In this section we will discuss correlation coefficients and their distributions. We will see

their relation with spherical and elliptical distribution, but we shall deal only with spherical

distributions and the treatment concerning elliptical distribution is left for future work.

Here, we follow closely the presentation of [3].

3.1 Definitions

If the (m× 1)-random vector X has covariance matrix Σ = (σi,j)i,j , the correlation coef-

ficients between two components of X, say Xi and Xj , is defined by

ρij =
σi,j√
σiiσjj

=
Cov(Xi, Xj)√
V ar(Xi)V ar(Xj)

.

By Cauchy-Schwartz inequality, we have |ρij | ≤ 1 and ρij = +1,−1 if and only if Xi and

Xj are linearly related. Correlation coefficients are hence a measure of linear dependence

between Xi and Xj .

Now let X1, . . . ,XN be N independent observations of X, and let

S =
1

N − 1
ΣN
i=1(Xi − X̄) · (Xj − X̄)T .

Then, the sample correlation coefficient between Xi and Xj is

rij =
sij√
siisjj

.
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Remark 3.1.1. If the random sample is from a multivariate normal distribution with all

parameters unknown, then rij is the maximum likelihood estimate of ρij.

Remark 3.1.2. It is well known that in this case ρij = 0 if and only if Xi and Xj are

independent. This, in fact, characterizes the multivariate normal distribution.

Let X = (X1, · · · ,Xp) = (xij)n×m be an n×m random matrix. We shall assume:

Assumption (A): the columns X1, · · · ,Xp are independent n-dimensional random vec-

tors with a common spherical distribution (which may depend on n) and P (X1 = 0) = 0.

The condition P (X1 = 0) = 0 is to ensure that the correlation coefficients are well de-

fined. Let rij be the Pearson correlation coefficient of Xi and Xj for 1 ≤ i < j ≤ p. Then,

Rn := (rij)p×p is the correlation matrix of X, and Ln is the coherence of the random

matrix defined as follows:

Definition 3.1.3. The coherence of the random matrix X is defined as

Ln := max
1≤i<j≤p

|rij |, (3.1)

namely, it is the largest magnitude of the off-diagonal entries of the sample correlation

matrix Rn.

3.2 Properties

In the following we discuss the exact distribution of the sample correlation coefficients

under not too strong assumptions. We look now at a single sample correlation coefficient.

Let us consider N pairs of variables (X1, Y1), . . . , (XN , YN ) and form the sample correlation

coefficient

r =
ΣN
i=1(Xi − X̄)(Yi − Ȳ )[

ΣN
i=1(Xi − X̄)2ΣN

i=1(Yi − Ȳ )2
] 1

2

,

where X̄ = 1
NΣN

i=1Xi and Ȳ = 1
NΣN

i=1Yi. If we assume that the X’s are independent of

the Y’s, the normality assumption is not important as long as one set of these variables

has a spherical distribution. Let us set 1 = (1, . . . , 1)T and {1} = {k1, k ∈ R}.

Theorem 3.2.1 (Kariya-Eaton, 1977). Let X = (X1, . . . , XN )T and Y = (Y1, . . . , YN )T ,

with N > 2, be two independent random vectors, where X has a m-variate spherical
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distribution with P (X = 0) = 0 and Y has any distribution with P (Y ∈ 1) = 0. If

r =
ΣN
i=1(Xi − X̄)(Yi − Ȳ )[

ΣN
i=1(Xi − X̄)2ΣN

i=1(Yi − Ȳ )2
] 1

2

,

then

T := (N − 2)
1
2

r

(1− r2)
1
2

has the tN−2 distribution

Proof. See [8] for the details.

Remark 3.2.2. We believe a similar theorem works if one requires X to be just elliptical.

Remark 3.2.3. The correlation coefficient r can be seen as the cosine of the angle between

the two vectors X and Y.

Remark 3.2.4. The case when the vectors are normally distributed is a special case of

the previous theorem.

Corollary 3.2.5. In the hypotheses of Theorem 3.2.1, the pdf of r is

p(r) =
Γ(N−1

2 )(1− r2)
N−4

2

π
1
2 Γ(N−2

2 )
, −1 < r < 1.

Equivalently, r2 has the beta distribution with parameters 1
2 and N−2

2 , namely, r2 ∼
B(1

2 ,
N−2

2 ).

Proof. The required result follows by the fact that p(r) = (N − 2)
1
2

r

(1−r2)
1
2

has the tN−2

distribution and the change of variable formula.

Remark 3.2.6. Although {rij ; 1 ≤ i < j ≤ p} are pairwise independent, they are not mu-

tually independent. In fact, recalling R = RN = (rij)p×p, the probability density function

of R is given by

h(R) = Bn,p · (det(R))(N−p−2)/2 (|rij | < 1, i < j) (3.2)

for 1 ≤ p < N , where BN,p :=
Γ(N

2
)p

Γp(N
2

)
is an (explicit) normalizing constant (see page 148

from [8] ). Obviously, h(R) is not a product of functions of individual rij’s, the entries of

R, and so {rij ; 1 ≤ i < j ≤ p} are not mutually independent.
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The distribution of the correlation coefficients rij in the small sample cases are as

follows.

Corollary 3.2.7. Under Assumption (A), the following holds for all 1 ≤ i < j ≤ p:

(i) When N = 2, rij has the symmetric Bernoulli distribution, i.e., P (rij = 1) = 1/2;

(ii) When N = 3, rij has the density f(r) = 1
π

1√
1−r2 on (−1, 1);

that is, r2
ij follows the arcsine law on [0, 1];

(iii) When N = 4, rij follows the uniform distribution on [−1, 1];

(iv) When N = 5, rij has the density f(r) = 2
π

√
1− r2 for |r| ≤ 1; that is, rij follows

the semi-circle law.

3.3 Limiting laws of coherence

In this section discuss limiting distributions of some random variables, in particular the

Pearson correlation coefficients rij . Historically, the most used tools to prove asymptotic

results in probability have been the Chen-Stein Method, the Large Deviation Principle

and Strong approximations. We describe these methods in Chapter 7.

In [3], a different approach is developed to derive the limiting distributions of Ln.

Assuming the Xi’s have the spherical distribution, the authors find an interesting and

useful property of the correlation coefficients {rij ; 1 ≤ i < j ≤ p}.

Remark 3.3.1. A first very simple asymptotic result can be given as

fN (w) =
1√
N
· 1√

π

Γ(N−1
2 )

Γ(N−2
2 )
·
(

1− w2

N

)N−4
2

→ 1√
2π
e−w

2/2 (3.3)

as N → ∞ for all w ∈ R. This shows that WN converges to N(0, 1) in distribution as

N → ∞. Set (xij)N×p := (X1, · · · ,Xp). It is basically an application of the central limit

theorem for i.i.d. random variables and the Slutsky theorem. However this does not give

any information about the speed of convergence.

Motivated by the applications in statistics and signal processing, we are especially

interested in the ultra high dimensional case. More specifically, we consider three different

regimes:

(i) the sub-exponential case: 1
N log p→ 0;

(ii) the exponential case: 1
N log p→ β ∈ (0,∞);

18



(iii) the super-exponential case: 1
N log p→∞.

Now, we shall state the main results of this section. The results presented below show that

the limiting behaviour of LN differs significantly in these different regimes and exhibits

interesting phase transition phenomena.

Theorem 3.3.2 (Sub-Exponential Case). Suppose p = pN satisfies log p
N → 0 as N →∞.

Then under Assumption (A), we have:

(i) LN → 0 in probability as N →∞;

(ii) Let TN = log(1− L2
N ). Then, as N →∞,

NTN + 4 log p− log log p (3.4)

converges weakly to an extreme distribution with the distribution function F (y) =

1− e−Key/2 , y ∈ R and K = 1/
√

8π;

• (law of large numbers) √
N

log p
LN → 2 (3.5)

in probability as N →∞.

We now consider the exponential case.

Theorem 3.3.3 (Exponential Case). Suppose p = pN satisfies log p
N → β ∈ (0,∞) as

N →∞. Then under Assumption (A), we have:

(i) LN →
√

1− e−4β in probability as N →∞;

(ii) Let TN = log(1− L2
N ). Then, as N →∞,

NTN + 4 log p− log log p (3.6)

converges weakly to the distribution function

F (y) = 1− exp
{
−K(β)e

y+8β
2

}
, y ∈ R, where K(β) =

( β

2π(1− e−4β)

)1/2
. (3.7)

Finally, we turn to the super-exponential case where (log p)/N →∞.
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Theorem 3.3.4 (Super-Exponential Case). Suppose p = pN satisfies log p
N →∞ as N →

∞. Let TN = log(1− L2
N ). Then under Assumption (A), we have:

(i) LN → 1 in probability as N →∞. Further, N
log pTN → −4 in probability as N →∞.

(ii) As N →∞,

NTN +
4N

N − 2
log p− logN (3.8)

converges weakly to the distribution function F (y) = 1 − e−Key/2 , y ∈ R with K =
1√
2π
.

Remark 3.3.5. Knowing the distribution of the correlation coefficient is a key part of the

proof of the limiting distribution results. The starting step in the proofs of the theorems

presented above is the Chen-Stein method (see Chapter 7) which requires the evaluation

of two quantities: P (rij ≥ C) and P (rij ≥ C, rkl ≥ C). By using the explicit density

of the correlation coefficients, one is able to evaluate the first probability precisely. The

pairwise independence gives P (rij ≥ C, rkl ≥ C) = P (rij ≥ C)2 for {i, j} 6= {k, l}. In

other words, the evaluation of the second quantity is reduced to the study of the first one.

This greatly simplifies some of the technical arguments. Moreover, with the understanding

of the pairwise independence among {rij ; 1 ≤ i < j ≤ p} and the exact distribution of rij

the authors of [3] have been able to get the limiting distribution of LN for the full range

of values of p and to fully characterize the phase transition phenomena in the limiting

behaviours of the coherence (Theorems 3.3.2, 3.3.3 and 3.3.4).

3.4 Applications of the limiting laws of coherence

As mentioned before, the limiting laws of coherence have a wide range of applications.

Here, we discuss briefly two applications, one in high-dimensional statistics and another

in signal processing.

3.4.1 High-dimensional statistics

A typical hypothesis testing in high dimensional statistical inference is the following. Let

Y1, . . . ,Yn be a random sample from a p-variate spherical distribution with covariance

matrix Σp×p = (σij). We wish to test the hypotheses that Σ is diagonal, i.e.,

H0 : σi,j = 0 for all |i− j| ≥ 1 vs. Ha : σi,j 6= 0 for some |i− j| ≥ 1. (3.9)
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In the Gaussian case, this is the same as testing for independence. The asymptotic distri-

bution of LN can be used to construct a convenient test statistic for testing the hypotheses

in (3.9). For example, in the case log p = o(N1/2), an approximate level α test is to reject

the null hypothesis H0 whenever

L2
N ≥ N−1

(
4 log p− log log p− log(8π)− 2 log log(1− α)−1

)
.

It follows directly from Theorem 3.3.2 that the size of this test goes to α as N →∞.

3.4.2 Signal processing

Compressed sensing is an active and fast growing field in signal processing. An important

problem in compressed sensing is the construction of measurement matrices XN×p which

enables the precise recovery of a sparse signal β from linear measurements y = Xβ using

an efficient recovery algorithm. Such a measurement matrix X is typically randomly

generated because it is difficult to construct deterministically. The best known example

is perhaps the N × p random matrix X whose entries xi,j are iid normal variables

xi,j
iid∼ N(0, N−1). (3.10)

A commonly used condition is the mutual incoherence property (MIP) which requires

the pairwise correlations among the column vectors of X to be small. Write X =

(X1, · · · ,Xp) = (xij)N×p with xij satisfying (3.10) and let L̃N := max1≤i<j≤p |r̃ij |, where

r̃ij :=
(Xi − µi)(X− µj)
||Xi − µi||||X− µj ||

,

1 ≤ i, j ≤ p. It has been shown that the condition

(2k − 1)L̃N < 1 (3.11)

ensures the exact recovery of k-sparse signal β in the noiseless case where y = Xβ (see [3]),

and stable recovery of sparse signal in the noisy case where

y = Xβ + z. (3.12)

Here z is an error vector, not necessarily random (see [3] and the references therein). The

limiting laws derived in [3] can be used to show how likely a random matrix satisfies the

MIP condition in (3.11).
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Chapter 4

Distributions of Angles on Spheres

The distribution of distances between two random points on a unit sphere or other geo-

metric objects has a wide range of applications including geometric probability, physics,

statistics, machine learning and many others, and it has been well studied in different set-

tings. In general, the angles, areas and volumes associated with random points, random

lines and random planes appear in the studies of stochastic geometry; (see Stoyan and

Kendall [11] and Kendall and Molchanov [7]).

In this section, we consider the empirical law and extreme laws of pairwise angles among

a large number of random unit vectors. More specifically, let X1, · · · ,XN be random

points independently chosen with the uniform distribution on Sp−1, the unit sphere in

Rp. The N points X1, · · · ,XN on the sphere naturally generate N unit vectors
−→

OXi, for

i = 1, 2 · · · , N, where O is the origin. Let 0 ≤ Θij ≤ π denote the angle between
−→

OXi and
−→

OXj for all 1 ≤ i < j ≤ N.
In the case of a fixed dimension p, the global behaviour of the angles Θij is captured by

its empirical distribution

µN =
1(
N
2

) ∑
1≤i<j≤N

δΘij , N ≥ 2. (4.1)

When both the number of points N and the dimension p grow, it is more appropriate to

consider the normalized empirical distribution

µN,p =
1(
N
2

) ∑
1≤i<j≤N

δ√p−2(π
2
−Θij)

, N ≥ 2, p ≥ 3. (4.2)
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In many applications, it is of interest to consider the extreme angles Θmin and Θmax

defined by

Θmin = min{Θij ; 1 ≤ i < j ≤ N}, (4.3)

Θmax = max{Θij ; 1 ≤ i < j ≤ N}. (4.4)

We discuss below both the empirical distribution of the angles Θij , 1 ≤ i < j ≤ n, and

the distributions of the extreme angles Θmin and Θmax as the number of points n 7→ ∞,

while the dimension p is either fixed or growing with n.

Here, following the work of Cai, Fan and Jiang [2] we investigate the asymptotic behaviours

of the random angles {Θij ; 1 ≤ i < j ≤ N}. It is shown that, when the dimension p is

fixed, and as n 7→ ∞, the empirical distribution µN converges to a distribution with the

density function given by

h(θ) =
1√
π

Γ(p2)

Γ(p−1
2 )
· (sin θ)p−2, θ ∈ [0, π].

On the other hand, when the dimension p grows with N , it is shown that the limiting

normalized empirical distribution µN,p of the random angles Θij , 1 ≤ i < j ≤ N is

Gaussian. When the dimension is high, most of the angles are concentrated around π
2 .

The results provide a precise description of this concentration and thus give a rigorous

theoretical justification to the belief that “all high-dimensional random vectors are almost

always nearly orthogonal to each other”.

In addition to the empirical law of the angles Θij , we also consider the extreme laws

of the random angles in both the fixed and growing dimension settings. The limiting

distributions of the extremal statistics Θmax and Θmin are derived.

4.1 Fixed dimension p and N 7→ +∞

We begin with the limiting empirical distribution of the random angles.

Theorem 4.1.1 (Empirical Law for Fixed p). Let the empirical distribution µN of the

angles Θij, 1 ≤ i < j ≤ N , be defined as in (4.1.1). Then, as N → ∞, with probability

one, µN converges weakly to the distribution with density

h(θ) =
1√
π

Γ(p2)

Γ(p−1
2 )
· (sin θ)p−2, θ ∈ [0, π]. (4.5)

In fact, h(θ) is the probability density function of Θij for any i 6= j (Θij ’s are identically
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distributed). Due to the dependency of Θij ’s, some of them are large and some are small.

More details are presented in subsequent sections.

Remark 4.1.2. Theorem 4.1.1 says that the average of these angles asymptotically has

the same density as that of Θ12.

Remark 4.1.3. Notice that when p = 2, h(θ) is the uniform density on [0, π], and when

p > 2, h(θ) is unimodal with mode θ = π
2 . Theorem 4.1.1 implies that most of the angles

in the total of
(
N
2

)
angles are concentrated around π

2 . This concentration becomes stronger

as the dimension p grows since (sin θ)p−2 converges to zero more quickly for θ 6= π
2 . In

fact, in the extreme case when p → ∞, almost all of
(
N
2

)
angles go to π

2 at the rate
√
p.

This can be seen from Theorem 4.2.1 later.

We now consider the limiting distribution of the extreme angles Θmin and Θmax.

Theorem 4.1.4 (Extreme Law for Fixed p). Let Θmin and Θmax be as defined in (4.3)

and (4.4) respectively. Then, both N2/(p−1)Θmin and N2/(p−1)(π −Θmax) converge weakly

to a distribution given by

F (x) =

1− e−Kxp−1
, if x ≥ 0,

0, if x < 0,
(4.6)

as N →∞, where

K =
1

4
√
π

Γ(p2)

Γ(p+1
2 )

. (4.7)

The above theorem says that the smallest angle Θmin is close to zero, and the largest

angle Θmax is close to π as N grows. This makes sense from Theorem 4.1.1 since the

support of the density function h(θ) is [0, π].

Remark 4.1.5. In the special case of p = 2, the scaling of Θmin and π−Θmax in Theorem

4.1.4 is N2. This in fact can also be seen in a similar problem. Let ξ1, · · · , ξN be i.i.d.

U [0, 1]-distributed random variables with order statistics ξ(1) ≤ · · · ≤ ξ(N). Set Wn :=

min1≤i≤N−1(ξ(i+1) − ξ(i)), which is the smallest spacing among the observations of ξi’s.

Then, by using the representation theorem of ξ(i)’s through i.i.d. random variables with

exponential distribution Exp(1) (see, for example, Arnold et al. [1]), it is easy to check

that N2WN converges weakly to Exp(1) with probability density function e−xI(x ≥ 0).
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4.2 Both p 7→ +∞ and N 7→ +∞

It is helpful to see how the density changes with dimension p:

hp(θ) =
1√
p− 2

h
(π

2
− θ√

p− 2

)
=

1√
π

Γ(p2)

Γ(p−1
2 )
√
p− 2

·
(

cos
θ√
p− 2

)p−2
, θ ∈ [0, π] (4.8)

which is the asymptotic density of the normalized empirical distribution µn,p defined in

(4.2); in fact, we have the asymptotic approximation

hp(θ) ∝ exp
(

(p− 2) log
{

cos
( θ√

p− 2

)})
≈ e−θ2/2. (4.9)

The following result shows that the empirical distribution of the random angles, after suit-

able normalization, converges to a standard normal distribution. This is clearly different

from the limiting distribution given in Theorem 4.1.1 when the dimension p is fixed.

Theorem 4.2.1 (Empirical Law for Growing p). Let µN,p be as defined in (4.2). Assume

limN→∞ pN =∞. Then, with probability one, µN,p converges weakly to N(0, 1) as N →∞.

Theorem 4.2.1 holds regardless of the speed of p relative to n when both go to infinity.

Remark 4.2.2. The theorem implies that most of the
(
N
2

)
random angles go to π

2 very

quickly. Take any γp 7→ 0 such that
√
pγp 7→ ∞ and denote by nN,p the number of the

angles Θij that are within γp of π
2 , i.e., |π2 − Θij | ≤ γp. Then

nN,p

(N2 )
7→ 1. Hence, most of

the random vectors in the high-dimensional Euclidean spaces are nearly orthogonal.

An interesting question is:

”Given two such random vectors, how fast is their angle close to π
2 as the dimension

increases? “

The following result answers this question.

Proposition 4.2.3. Let U and V be two random points on the unit sphere in Rp. Let Θ

be the angle between
−→
OU and

−→
OV. Then

P (|Θ− π

2
| ≥ ε) ≤ K√p(cos ε)p−2 (4.10)

for all p ≥ 2 and ε ∈ (0, π2 ), where K is a universal constant.

Under the spherical invariance, we can think of Θ as a function of the random point

U only.
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Remark 4.2.4. One can see that, as the dimension p grows, the probability decays ex-

ponentially. In particular, take ε =
√

(c log p)/p for some constant c > 1. Note that

cos ε ≤ 1− ε2

2 + ε4

24 and so

P

(
|Θ− π

2
| ≥

√
c log p

p

)
≤ K√p

(
1− c log p

2p
+
c2 log2 p

24p2

)p−2

≤ K ′p−
c−1
2 (4.11)

for all sufficiently large p, where K ′ is a constant depending only on c. Hence, in the high

dimensional space,

Θij ∈ [π/2−
√

(c log p)/p, π/2 +
√

(c log p)/p

with high probability. This provides a precise characterization of the statement mentioned

earlier that “all high-dimensional random vectors are almost always nearly orthogonal to

each other”.

We now turn to the limiting extreme laws of the angles when both N and p 7→ ∞.

For the extreme laws, it is necessary to divide into three asymptotic regimes (as earlier

in Chapter 3): sub-exponential case 1
p logN → 0, exponential case 1

p logN → β ∈ (0,∞),

and super-exponential case 1
p logN →∞. The limiting extreme laws are different in these

three regimes.

Theorem 4.2.5 (Extreme Law: Sub-Exponential Case). Let p = pN →∞ satisfy logN
p →

0 as N →∞. Then:

(i) max1≤i<j≤N |Θij − π
2 | → 0 in probability as N →∞;

(ii) As N → ∞, 2p log sin Θmin + 4 logN − log logN converges weakly to the extreme

value distribution with distribution function F (y) = 1 − e−Key/2 , y ∈ R and K =

1/(4
√

2π ). The conclusion still holds if Θmin is replaced by Θmax.

In this case, both Θmin and Θmax converge to π/2 in probability. The above extreme

value distribution differs from that in (4.6) where the dimension p is fixed. This is obviously

caused by the fact that p is finite in Theorem 4.1.4 and goes to infinity in Theorem 4.2.5.

Corollary 4.2.6. Let p = pN satisfy limN→∞
logN√

p = α ∈ [0,∞). Then, p cos2 Θmin −
4 logN+log logN converges weakly to a distribution with cumulative distribution function

exp{− 1
4
√

2π
e−(y+8α2)/2}, y ∈ R. The conclusion still holds if Θmin is replaced by Θmax.

Now, we turn our attention to the exponential case.
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Theorem 4.2.7 (Extreme Law: Exponential Case). Let p = pN satisfy logN
p → β ∈ (0,∞)

as N →∞. Then:

(i) Θmin → cos−1
√

1− e−4β and Θmax → π−cos−1
√

1− e−4β in probability as N →∞;

(ii) As N → ∞, 2p log sin Θmin + 4 logN − log logN converges weakly to a distribution

with distribution function

F (y) = 1− exp
{
−K(β)e(y+8β)/2

}
, y ∈ R, (4.12)

where K(β) =
(

β
8π(1−e−4β)

)1/2
. The conclusion still holds if Θmin is replaced by

Θmax.

Remark 4.2.8. In contrast to Theorem 4.2.5, neither Θmax nor Θmin converges to π
2

under the case (logN)/p → β ∈ (0,∞). Instead, they converge to different constants

depending on β.

Theorem 4.2.9 (Extreme Law: Super-Exponential Case). Let p = pN satisfy logN
p →∞

as N →∞. Then:

(i) Θmin → 0 and Θmax → π in probability as N →∞;

(ii) As N → ∞, 2p log sin Θmin + 4p
p−1 logN − log p converges weakly to the extreme

value distribution with the distribution function F (y) = 1 − e−Key/2 , y ∈ R, with

K = 1/(2
√

2π). The conclusion still holds if Θmin is replaced by Θmax.

Remark 4.2.10. It can be seen from Theorems 4.2.5, 4.2.7 and 4.2.9 that Θmax becomes

larger when the rate β = lim(logN)/p increases. They are π/2, π − cos−1
√

1− e−4β ∈
(π/2, π) and π when β = 0, β ∈ (0,∞) and β =∞, respectively.

Remark 4.2.11. Set f(β) = π − cos−1
√

1− e−4β. Then, f(0) = π/2 and f(+∞) = π,

which corresponds to Θmax in (i) of Theorem 4.2.5 and (i) of Theorem 4.2.9, respectively.

So the conclusions in Theorems 4.2.5, 4.2.7 and 4.2.9 are all consistent.

Remark 4.2.12. As discussed in Chapter 4 and in [3], Cai and Jiang considered the

limiting distribution of the coherence of a random matrix and the coherence is closely

related to the minimum angle Θmin. In the current setting, the coherence LN,p is defined

by

LN,p := max
1≤i<j≤N

|rij |, (4.13)
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where rij are as defined in Chapter 3. The proofs of the results in Theorems 4.2.5, 4.2.7

and 4.2.9 can be essentially reduced to the analysis of LN,p := max1≤i<j≤N rij. This

maximum is analysed by modifying the proofs of the results for the limiting distribution of

the coherence LN,p in Cai and Jiang (2012). The key step in the proofs is the study of

the maximum and minimum of pairwise i.i.d. random variables {rij ; 1 ≤ i < j ≤ N} by

using the Chen-Stein method. It is noted that {rij ; 1 ≤ i < j ≤ N} are not i.i.d. random

variables (see Chapter 3), and so the standard techniques of analysing the extreme values

(see the Chapter 7) of {rij ; 1 ≤ i < j ≤ N} do not apply.
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Chapter 5

Connection to the 7th Smale’s

Problem

The results on random angles presented in the preceding chapters may be used to study

a number of open deterministic problems in mathematics and physics (see [2]). We will

discuss here in particular about their relation to the seventh Smale’s problem. This part

is mainly based on a paper by Steven Smale [10].

Smale’s problems are a list of eighteen unsolved problems in mathematics that was pro-

posed by Steve Smale in 1998 republished in 1999. Smale composed this list in reply to

a request from Vladimir Arnold, then president of the International Mathematical Union,

who asked several mathematicians to propose a list of problems for the twentyfirst century.

Arnold’s inspiration came from the list of Hilbert’s problems that had been published at

the beginning of the twentieth century. The list of problems is the following:

1. The Riemann Hypothesis

2. The Poincare’ Conjecture

3. Does P = NP?

4. Integer zeros of a polynomial of one variable

5. Height bounds for diophantine curves

6. Finiteness of the number of relative equilibria in celestial mechanics

7. Distribution of points on the 2-sphere

8. Introduction of dynamics into economic theory
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9. The linear programming problem

10. The closing Lemma

11. Is one-dimensional dynamics generally hyperbolic?

12. Centralizers of diffeomorphisms

13. Hilbert’s 16th Problem

14. Lorentz Attractor

15. Navier-Stokes Equations

16. The Jacobian Conjecture

17. Solving polynomial equations

18. Limits of intelligence

We concentrate here just on the seventh one and demonstrate that it is closely connected

with the work presented in the preceding chapters.

5.1 Distribution of points on the 2-sphere

Let VN (x) = Σ1≤i<j≤N log 1
||xi−xj || , where (x1, . . . , xN ), are distinct points on the 2-sphere

S2 ⊂ R3, and ||xi−xj || is the distance in R3. Denote by VN := minx VN (x). The problem

is

Can one find (x1, . . . , xn) such that VN (x)− VN ≤ c logN,

where c is a universal constant?

This problems comes from complexity theory and it is related to the question of finding a

good starting polynomial for a homotopy algorithm for realizing the Fundamental Theorem

of Algebra. A (x1, . . . , xN ) is called an N -tuple of elliptic Fekete points. The function VN

as a function of N satisfies

VN = −1

4
log

4

e
N2 − N

4
logN +O(N).

It is also natural to consider potential of the form

VN (x, s) = Σ1≤i<j≤N log
1

||xi − xj ||s
,
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with VN (s) := minx VN (x, s), x as before and 0 < s < 2. For s = 1, we recover the Coulomb

potential and V (1) corresponds to an equilibrium position of N electrons constrained to

lie on the 2-sphere. One may also consider higher dimensional spheres Sp−1. The difficulty

of the problem is represented by the high number of symmetries and of saddle points that

the function VN (s, x) may have.
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Chapter 6

Open Problems and Future

Directions

• What about Areas or Volumes?

One can study the asymptotic distribution of Areas and Volumes of triangles on the

sphere as the dimension and/or the number of points go to +∞.

• What happens for a General Manifold, Riemannian or not?

We can try to prove the asymptotic results in [3] and [2] for general manifolds, not

necessarily spheres, but for example for ellipsoids or tori or other manifolds.

• Does the domain of attraction change with curvature?

We saw that asymptotically the distribution of a point tends to one of the three

extreme distributions. Is the type of distribution related to the sign of the curvature

of the manifold?

• Does the Curvature play a role in the Chebishev Inequality?

Is it possible that the curvature of the manifold plays a role in the rate of convergence

of the asymptotic results?
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Chapter 7

Appendix: Technical Tools

Sophisticated approximation methods such as the Chen-Stein method, large deviation

bounds and strong approximations are the key ingredients in the proofs of the main results

in the literature for the cases when the dimension p is not too high. Even if it is not clear

if these same tools can be used to derive the limiting distributions of the coherence Ln

for the three regimes considered in Chapters 4 and 5, we think we should briefly mention

them for the sake of completeness.

7.1 The Chen-Stein Method

The Chen-Stein Method was first introduced by Stein in [9]. It is a very well developed and

useful tool for proving convergence in distribution to special distributions like Gaussian or

Poisson. Recent applications involve Random Matrix Theory (see for example [12]). The

importance of this method is due to the fact that the Central Limit Theorem does not give

any indication of the rate of convergence to the Gaussian distribution while Chen-Stein

Method does.

The pdf of the standard normal ρ(x) = 1√
2π
e−

x2

2 can be viewed as a solution to the ODE

ρ′(x) + xρ(x) = 0,

which in weak form becomes ∫
R
ρ(x)

(
f ′(x)− xf(x)

)
= 0

for any test function f . Equivalently, one can say that if X ∼ N(0, 1), then

E
[
f ′(X)−Xf(X)

]
= 0.
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It turns out that the converse is also true.

Theorem 7.1.1. A random variable X is distributed as a standard normal X ∼ N(0, 1) if

and only if it satisfies E[f ′(X)−Xf(X)] = 0, for all continuous and piecewise differentiable

f : R→ R with E[|f ′(Z)|] < +∞ for Z ∼ N(0, 1).

Proof. Suppose X ∼ N(0, 1), then

E
[
f ′(X)−Xf(X)

]
=

1√
2π

∫
R
f ′(x)e−

x2

2 − 1√
2π

∫
R
xf(x)e−

x2

2 =

=
1√
2π

∫
R
f ′(x)e−

x2

2 − 1√
2π

∫
R
f ′(x)e−

x2

2 +
[ 1√

2π
f(x)e−

x2

2

]+∞

−∞
= 0.

Conversely, suppose E[f ′(X)−Xf(X)] = 0 for all continuous and piecewise differentiable

f : R→ R with E[|f ′(Z)|] < +∞ for Z ∼ N(0, 1). Then this equation holds in particular

for

ft(x) = e
x2

2

∫ x

−∞

(
I{y≤t} − Φ(t)

)
e
−y2
2 dy,

where Φ(t) is the cdf of a standard normal and t is fixed. Then

f ′t(X) = Xft(X) + I{y≤t} − Φ(t)

and so, for all t ∈ R we get

E
[
f ′t(X)−Xft(X)

]
= P(X ≤ t)− Φ(t) = 0,

which implies that X ∼ N(0, 1).

Remark 7.1.2. The relation between ODEs and convergence of random variables makes

it possible to use in this context methods from functional analysis and differential equations

such as the Lyapunov-Schmidt Decomposition.

In fact, more is true, as seen below.

Theorem 7.1.3 (Stein’s Continuity Theorem). Let Xn be a sequence of real random

variables with uniformly bounded second moment and let G ≡ N(0, 1). Then, the following

are equivalent:

• E
[
f ′(XN ) − XNf(XN )

]
→ 0 whenever f : R → R is continuous and piecewise

differentiable f : R→ R with E[|f ′(Z)|] < +∞ for Z ∼ N(0, 1);
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• XN converges in distribution to G.

The above theorem gives only a qualitative result, but its proof is very quantitative

(see [12]). In fact, using this type of ideas, one can prove a series of theorems which are

basically Central Limit-type Theorems along with a rate. We state here the Berry-Esséen

Theorem in the case of independent and identically distributed random variables (see [9]).

Theorem 7.1.4. Suppose Xi, i = 1, . . . , N , are iid random variables with E[Xi] = 0,

E[X2
i ] = 1 and E[|Xi|3] <∞, for i = 1, . . . , N . Then, for N ∈ N and all x ∈ R, we have

∣∣∣P( 1√
N

ΣN
i=1Xi ≤ t

)
− Φ(t)

∣∣∣ ≤ 9E[|Xi|3]√
N

.

Remark 7.1.5. Another well known use of Chen-Stein Method is for Poisson Approxi-

mation. The general procedure is similar to the one for the normal distribution. We also

want to emphasise that with this method one can relax the hypothesis of independence.

7.2 Large deviations

The theory of large deviations deals with probabilities of rare events that become expo-

nentially small as a function of some parameter. This theory has applications in many

different fields, mainly in statistics. Here, we present a brief overview of this theory mainly

through the example of the sum of independent and identically distributed Gaussian ran-

dom variables (see [14] for more details).

7.2.1 Sum of iid Gaussian Random Variables

The pdf of a Gaussian random variable X is of the form

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R,

where µ = E[X] is the mean of X and σ2 = E[(X −µ)2] is its variance. We are interested

here in the distribution of the sum of N iid Gaussians:

SN = ΣN
i=1Xi,

which takes the formula

pSN (x) =

∫
R
dx1 . . .

∫
R
dxNδ

(
ΣN
i=1 −Ns

)
p(x1, . . . , xN ),
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where p(x1, . . . , xN ) is the joint pdf of the Xi’s. One can easily get pSN from this formula

using the method of moment generating functions. What we want to underline here is

that the pdf will have this general form:

pSN (s) ≈ e−NI(s)

with

I(s) =
(x− µ)2

2σ2
.

This form is common to several other cases such as the exponential and binomial, but

each distribution will have its own form of I(s).

Remark 7.2.1. We will be more precise in the meaning of the approximation sign ≈,

but it actually means that the dominant behaviour of p(SN ) is exponentially decaying in

N , with all other terms being subexponential in N . This type of integral expressions play

an important role in a lot of different fields in mathematics like stationary phase (saddle

point method), Fourier Integrals, PDEs and dynamical systems, just to cite a few.

Hence from pSN (s) ≈ e−NI(s) we deduce that p(Sn) decays to 0 exponentially fast with

N whenever I(s) is positive. But I(s) ≥ 0 and I(s) = 0 if and only if s = µ = E[Xi].

Therefore, pSN → δ(s− µ) in this limit.

7.2.2 The Large Deviation Principle

The general exponential form pSN (s) ≈ e−NI(s), is the founding result of large deviation

theory and it arises in several contexts and for many stochastic processes also and not just

for iid sample. The rigorous theory needs many deep concepts of topology and measure

theory that go beyond the scope of this thesis. So, we will present simpler but less formal

definitions.

Definition 7.2.2. We say that a random variable SN or its pdf p(SN ) satisfy a large

deviation principle (LDP) if the following limit exists:

lim
N→+∞

− 1

N
ln pSN (s) = I(s).

I(s) needs to be a function, not everywhere zero, and it is called the rate function.

Basically, a pdf p(SN ) satisfies a large deviation principle (LDP) if it is of the form

pSN (s) = e−NI(s)+o(N)
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for large N . For this reason, often this theory is said to estimate probability at a logarith-

mic scale. The rigorous mathematical definition is due to Varadhan and we refer to [13]

for a deeper explanation of this concept.

We now state two of the main theorems of this theory.

Theorem 7.2.3 (Gärtner-Ellis Theorem). Define

λ(k) := lim
N→+∞

1

N
ln E[eNkSN ].

If λ(k) is differentiable in k, then

• SN satisfies an LDP, namely limN→+∞− 1
N ln pSN (s) = I(s);

• the rate function I(s) is given by the Legendre-Fenchel Transform of λ(k):

I(s) = sup
k∈R
{ks− λ(k)}.

Remark 7.2.4. Typically, λ(k) does not exist when a pdf p(SN ) does not satisfy a LDP.

Another very important result is Varadhan’s Theorem. This theorem is concerned with

the evaluation of a functional expectation of the form

WN (f) = E[eNf(SN )] =

∫
R
pSN (s)enf(s)ds.

If we assume that SN satisfies a LDP with rate function I(s), we can get

WN (f) ≈ eN supN [f(s)−I(s)],

which is called Laplace approximation and it is justified because corrections are subexpo-

nential in N .

Theorem 7.2.5 (Varadhan’s Theorem). If λ[f ] := limN→+∞
1
N lnWN (f), then we have

λ[f ] = sup
R
{f(s)− I(s)}.

Varadhan proved this result for a large class of random variables not necessarily iid.

We refer to [15] and [13] for a more detailed and rigorous discussion of this topic. The two

theorems are indeed connected basically by noticing that we get one from the other upon

choosing f(s) = ks.
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7.3 Strong Approximations

Strong approximations in Probability and Statistics are results that describe the closeness

almost surely of random processes such as partial sums and empirical processes to certain

Gaussian processes. As a result, strong laws such as the law of the iterated logarithm and

weak laws such as the central limit theorem (see Central Limit Theorems) follow.

Let X1,X2, . . . be a sequence of iid random variables. Let SN = ΣN
i=1Xi be defined as

before. If the mean µ = E[X1] exists (finite), then the strong law of large numbers states

that SN/N → µ, almost surely, as N → +∞. As before the question is: at what rate

does this convergence take place? This question was answered, in 1941 by Hartman and

Wintner, who proved the Law of the Iterated Logarithm (LIL). If, in addition, the variance

σ2 of X1 is finite, then

lim sup
N→+∞

SN −Nµ
σ
√

2N ln lnN
→a.s. 1 (7.1)

lim inf
N→+∞

SN −Nµ
σ
√

2N ln lnN
→a.s. −1. (7.2)

Questions of this type and extensions of this result can be found in the more general

context of random processes. We refer to [4] for a detailed exposition of the subject.

7.4 The Semicircle Law

Here, we give a brief overview of the semicircle law in the context of random matrix

theory. In particular we will discuss the Wigner semi-circle law for Wigner matrices. We

will follow the presentation of [12].

Definition 7.4.1. A Wigner Hermitian matrix ensemble is a random matrix ensemble

Mp = (ξij)1≤i,j≤p of Hermitian matrices (thus, ξij = ξji) in which the upper-triangular

entries ξij, i > j, are iid complex random variables with mean zero and unit variance, and

the diagonal entries ξii are iid real variables, independent of the upper-triangular entries,

with bounded mean and variance.

Remark 7.4.2. An important special case of Wigner Hermitian Matrix includes real

symmetric matrices, as the ones treated in the preceding chapters.

Since the operator norm of Mp is of order O(
√
p) (see [12]), it is natural to work with

the normalized matrix 1√
pMp. Given any p× p Hermitian matrix Mp, we can form the

(normalized) empirical spectral distribution (or ESD for short) as
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µ 1√
p
Mp

:=
1

p

p∑
j=1

δλj(Mp)/
√
p, of Mp, where λ1(Mp) ≤ . . . ≤ λp(Mp) are the eigenvalues

of Mp, including multiplicity.

Remark 7.4.3. The ESD is a probability measure, which can be viewed as a distribution

of the normalized eigenvalues of Mp. When Mp is a random matrix ensemble, then the

ESD µ 1√
p
Mp

is now a random measure, i.e. a random variable taking values in the space

Pr(R) of probability measures on the real line. Basically, the distribution of µ 1√
p
Mp

is a

probability measure on probability measures.

Now, we consider the behaviour of the ESD of a sequence of Hermitian matrix ensem-

bles Mp as p→∞.

Definition 7.4.4. A sequence of random ESDs µ 1√
p
Mp

converge in probability (resp.,

converge almost surely) to a deterministic limit µ ∈ Pr(R) if, for every test function

ϕ ∈ Cc(R), the quantities
∫
R ϕ dµ 1√

p
Mp

converge in probability (resp. converge almost

surely) to
∫
R ϕ dµ.

We can now state the Wigner semi-circular law.

Theorem 7.4.5 (Semicircular Law). Let Mp be the top left p× p minors of an infinite

Wigner matrix (ξij)i,j≥1. Then, the ESDs µ 1√
p
Mp

converge almost surely (and hence also

in probability) to the Wigner semi-circular distribution

µsc :=
1

2π
(4− |x|2)

1/2
+ dx.

Proof. See [12].

Remark 7.4.6. The semi-circular law is an analogue of the central limit theorem, with the

semi-circular distribution taking on the role of the normal distribution. Of course, there is

a striking difference between these two distributions, in that the former is compactly sup-

ported while the latter is merely subgaussian. One reason for this is that the concentration

of measure phenomenon is more powerful in the case of ESDs of Wigner matrices than it

is for averages of iid variables. We refer to [12] for a more detailed explanation.

7.5 Extreme value distributions

In statistics, the Fisher-Tippett-Gnedenko theorem (also the Fisher-Tippett theorem or

the Extreme value theorem) is a general result in extreme value theory regarding asymp-

totic distribution of extreme order statistics. The maximum of a sample of iid random
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variables, after proper renormalization, converges in distribution to one of three possible

distributions, the Gumbel distribution, the Fréchét distribution, or the Weibull distribu-

tion. Credit for the extreme value theorem (or convergence to types theorem) was given

to Gnedenko (1948), previous versions were stated by Fisher and Tippett and by Fréchét.

One may refer to Chapter 8 of Arnold et al. [1] for a detailed exposition of this topic. The

role of the extremal types theorem for maxima is similar to that of central limit theorem

for averages.

Theorem 7.5.1. Let (X1, X2 . . . , XN ) be a sequence of independent and identically-distributed

random variables, and let MN = max{X1, . . . , XN}. If a sequence of pairs of real numbers

(aN , bN ) exists such that each aN > 0 and limN→∞ P
(
MN−bN
aN

≤ x
)

= F (x), where F is

a nondegenerate distribution function, then the limit distribution F belongs to either the

Gumbel, the Fréchét or the Weibull family.

These distributions can all be grouped into the family of generalized extreme value

distributions.

Definition 7.5.2. The generalized extreme value distribution has cumulative distribution

function

F (x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

for 1 + ξ(x−µ)/σ > 0, where µ ∈ R is the location parameter, σ > 0 the scale parameter,

and ξ ∈ R the shape parameter. For ξ = 0, the expression is formally undefined and is

understood as a limiting case. The density function is, consequently,

f(x;µ, σ, ξ) =
1

σ

[
1 + ξ

(
x− µ
σ

)](−1/ξ)−1

exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

again, for 1 + ξ(x− µ)/σ > 0.

Example 7.5.3. The shape parameter ξ governs the tail behaviour of the distribution. The

sub-families defined by ξ = 0, ξ > 0 and ξ < 0 correspond, respectively, to the Gumbel,

Fréchét and Weibull families, whose cumulative distribution functions are displayed below.

• Gumbel or type I extreme value distribution (ξ = 0) with

F (x;µ, σ, 0) = e−e
−(x−µ)/σ

for x ∈ R;

• Fréchét or type II extreme value distribution (ξ = α−1 > 0) with

F (x;µ, σ, ξ) = e−((x−µ)/σ)−α for x > µ;
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• Reversed Weibull or type III extreme value distribution (ξ = −α−1 < 0) with

F (x;µ, σ, ξ) = e−(−(x−µ)/σ)α x ≤ µ,

where σ > 0.
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