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Abstract

We derive a single-letter lower bound on the minimum sum rate of multiple descrip-

tion coding with symmetric distortion constraints. For the binary uniform source

with the erasure distortion measure or the Hamming distortion measure, this lower

bound can be evaluated with the aid of certain minimax theorems. A similar minimax

theorem is established in the quadratic Gaussian setting, which is further leveraged to

analyze the special case where the minimum sum rate subject to two levels of distor-

tion constraints (with the second level imposed on the complete set of descriptions)

is attained; in particular, we determine the minimum achievable distortions at the

intermediate levels.

Key Words: Erasure distortion, Hamming distortion, mean squared error, minimax

theorem, multiple description coding, saddle point.
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Notation and abbreviations

pX Distribution of random variable X

pX(x) Probability of event that random variable X = x

H(X) Entropy of random variable X

mE Erasure distortion measure

mH Hamming distortion measure

S × Ŝ Cartesian space generated by S and Ŝ

⊕n Modula n sum
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Chapter 1

Introduction and Problem

Statement

In multiple description coding a source is encoded into several (say, L) descrip-

tions such that every subset of these descriptions can be used to reconstruct the

source (though the reconstruction distortion in general depends on which subset of

descriptions is used). Many coding schemes have been proposed for this problem

over the past three decades. Notable examples include the classical El Gamal-Cover

Gamal and Cover (1992) and Zhang-Berger Zhang and Berger (1987) schemes for the

two-description case as well as their extension to the general L-description case by

Venkataramani, Kramer, and Goyal R. Venkataramani and Goyal (2003). Special at-

tention Ahmed and Wagner (2012); R. Puri and Ramchandran (2005); S. S. Pradhan

and Ramchandran (2004); Tian and Chen (2010) has been paid to the case where

the distortion constraints are symmetric, i.e., the distortion constraints imposed on

the reconstructions from different subsets of descriptions of the same cardinality are

identical (see Fig. 1.1 for an illustration of the three-description case). In particular,
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Figure 1.1: System diagram for three-description coding with symmetric distortion
constraints.

Pradhan, Puri, and Ramchandran R. Puri and Ramchandran (2005); S. S. Pradhan

and Ramchandran (2004) developed a symmetric multiple description coding scheme

via an ingenious application of the binning technique; further improvements based on

structured codes and the splitting method can be found in Tian and Chen (2010).

In contrast, the converse results for the multiple description problem are relatively

limited. This is partly due to technical difficulties in handling dependencies among

different descriptions. In fact, it is already a highly sophisticated task to obtain a

tight single-letter bound even when the descriptions are asymptotically independent,

as evident from Ahlswede’s remarkable work on the characterization of the rate-

distortion region of two-description coding with no excess sum rate Ahlswede (1985).
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We shall show that non-trivial converse results for the multiple description prob-

lem can be obtained by augmenting the probability space through the introduction

of certain auxiliary remote sources. It is worth emphasizing that the use of auxiliary

remote sources is by no means a new idea. Indeed, this idea made its first appear-

ance in the seminal work of Ozarow on the solution of the Gaussian two-description

problem Ozarow (1980); since then, remote sources have played an essential role in

the derivation of several conclusive results on the information-theoretic limits of mul-

tiple description coding Chen (2009); Wang and Viswanath (2007, 2009). However,

although this idea has been widely used with great success, to the best of the au-

thors’ knowledge, in the context of multiple description coding1 only a special class

of remote sources (specifically, only those that can be generated by the given source

via additive Gaussian noise channels) have been exploited. A possible reason for this

situation is as follows: if this special class of remote sources are used, then one can

derive explicit bounds on the relevant multi-letter expressions by invoking certain

extremal inequalities (e.g., the worst additive noise lemma Diggavi and Cover (2001);

Ihara (1978) and certain variants of the entropy power inequality) that hinge upon

the properties of the Gaussian distribution. However, the use of such remote sources

and the associated extremal inequalities impose severe restrictions on the applicabil-

ity of this idea, rendering it essentially only useful for the quadratic Gaussian case2.

It will be seen that such extremal inequalities are in fact not needed for reducing

1The idea of using auxiliary remote sources in the converse arguments has also found applications
in multiterminal source coding (see, e.g., J. Wang and Wu (2010); S.Tavildar and Viswanath (2008);
Wagner and Anantharam (2008); Wang and Chen (2013)), joint source-channel coding (see, e.g.,
L. Song and Tian (2013); Z. Reznic and Zamir (2006)), and other network information theory
problems.

2Strictly speaking, this special class of remote sources and the associated extremal inequalities can
be used in the non-Gaussian setting, particularly when the mean squared error distortion measure is
adopted (see, e.g., (C. Tian and Diggavi, 2009, Theorem 5.3)); however, they incur an intrinsic loss
in the non-Gaussian setting and consequently the resulting bound is in general strictly suboptimal.

3
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multi-letter bounds to single-letter bounds (though they can be useful for evaluating

single-letter bounds in the quadratic Gaussian case) and there is greater flexibility in

choosing remote sources. As a consequence, this remote-source idea can be readily

applied in the non-Gaussian setting as well. It is worth mentioning that the converse

results in Fu and Yeung (2002); Zhang and Berger (1995) also involve certain auxil-

iary random objects. However, those objects do not appear to have a remote-source

interpretation3 and their relationship with the remote-source construction initiated

by Ozarow remains elusive.

In this work we derive a single-letter lower bound on the minimum sum rate of

multiple description coding with symmetric distortion constraints by exploiting the

aforementioned remote-source idea. It will be seen that our bounding technique is in

fact applicable to the asymmetric case as well. We choose to focus on the symmetric

case mostly because the resulting bound has a more compact expression; addition-

ally, from a practical perspective, it often suffices to consider symmetric distortion

constraints. Furthermore, we prove several minimax theorems, which are of interest

in their own right, and leverage them to evaluate this lower bound in some special

settings. Interestingly, the minimax theorem established in the quadratic Gaussian

case also enables us to obtain a new conclusive result on the information-theoretic

limits of Gaussian multiple description coding.

The rest of this paper is organized as follows. A single-letter lower bound on

the minimum sum rate of multiple description coding with symmetric distortion con-

straints is presented in Section 2. We show in Section 3 that, for the binary uniform

source with the erasure distortion measure or the Hamming distortion measure, this

lower bound can be evaluated with the aid of certain minimax theorems. Section

3Actually they are better interpreted as duplicate copies of the source.

4
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4 contains a similar minimax theorem in the quadratic Gaussian setting, which is

used to analyze the special case where the minimum sum rate subject to two levels of

distortion constraints (with the second level imposed on the complete set of descrip-

tions) is attained; in particular, we determine the minimum achievable distortions at

the intermediate levels. We conclude the paper in Section 5.

For any nonempty set A, we define 2A+ = {B : B ⊆ A, |B| > 0}, where |B| is

the cardinality of B. We write (X(1), · · · , X(n)) as Xn for any positive integer n

and set X0 = 0. Moreover, ⊕M and 	M are used to denote modulo-M addition

and subtraction, respectively, for any integer M ≥ 2. Let f(x, y) be an arbitrary

real-valued function with x ∈ X and y ∈ Y ; we define

arg max
x∈X

f(x, y∗) =
{
x ∈ X : f(x, y∗) ≥ f(x̃, y∗) for all x̃ ∈ X

}
,

arg min
y∈Y

f(x∗, y) =
{
y ∈ Y : f(x∗, y) ≤ f(x∗, ỹ) for all ỹ ∈ Y

}

for any (x∗, y∗) ∈ X × Y . Unless specified otherwise, we adopt the following conven-

tion:

N∑
i=1

αi log∞ =



−∞,
N∑
i=1

αi < 0

0,
N∑
i=1

αi = 0

∞,
N∑
i=1

αi > 0

.

The logarithm function is to base e throughout this paper.

5



Chapter 2

A Single-Letter Lower Bound

Let {S(t)}∞t=1 be i.i.d. copies of a generic source random variable S with distribution

pS. Let m : S × Ŝ → [0,∞] be a distortion measure, where S and Ŝ are, respectively,

the source alphabet and the reconstruction alphabet.

Definition 1. A sum rate R is said to be achievable subject to distortion constraints

[d] , (dA,A ∈ 2L+) if there exist encoding functions f
(n)
i : Sn → Ci, i ∈ L, and

decoding functions g
(n)
A :

∏
i∈A Ci → Ŝn, A ∈ 2L+, such that

1

n

L∑
i=1

log |Ci| ≤ R,

1

n

n∑
t=1

E[m(S(t), ŜA(t))] ≤ dA, A ∈ 2L+, (2.1)

where L = {1, · · · , L} and ŜnA = g
(n)
A (f

(n)
i (Sn), i ∈ A), A ∈ 2L+. The infimum over all

such achievable sum rates is denoted by R([d]). When the distortion constraints are

symmetric, i.e., there exists d , (d1, · · · , dL) such that dA = d|A| for all A ∈ 2L+, we

shall denote R([d]) by R(d).

6
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Note that R([d]) is the classical rate-distortion function when L = 1. Therefore,

we shall only consider the case L ≥ 2 in the rest of this paper.

The following result provides a single-letter lower bound on R([d]). Let P denote

the set of conditional distributions pZ|S with Z = (Z0, Z1, · · · , ZL) such that pZk−1|S

is physically degraded with respect to pZk|S, k = 1, · · · , L. Let P([d]) denote the set

of conditional distributions p[Ŝ]|S with [Ŝ] = (ŜA,A ∈ 2L+) such that the induced joint

distribution pS,[Ŝ] satisfies E[m(S, ŜA)] ≤ dA, A ∈ 2L+. Define

r([d]) = sup
pZ|S∈P

inf
p[Ŝ]|S∈P([d])

L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

I(Zk; ŜB,B ∈ 2A+|Zk−1),

where it is assumed that Z ↔ S ↔ [Ŝ] form a Markov chain.

Theorem 1. R([d]) ≥ r([d]).

Remark: It can be easily seen that, for the purpose of evaluating r([d]), there is

no loss of optimality in letting Z0 be independent of S and setting ZL = S.

Proof. To illustrate the key points in the argument (particularly the role of remote

sources), we shall first give a sketch of the proof for the case L = 2. Note that

log |C1|+ log |C2|

≥ H(f
(n)
1 (Sn)) +H(f

(n)
2 (Sn))

= H(f
(n)
1 (Sn), f

(n)
2 (Sn)) + I(f

(n)
1 (Sn); f

(n)
2 (Sn))

= I(Sn; f
(n)
1 (Sn), f

(n)
2 (Sn)) + I(f

(n)
1 (Sn); f

(n)
2 (Sn)). (2.2)

If the two terms in (2.2) are treated separately, then one will encounter difficul-

ties in obtaining a non-trivial single-letter lower bound on the second term, i.e.,

7
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I(f
(n)
1 (Sn); f

(n)
2 (Sn)). To address this issue, we introduce remote sources (Z0, Z1, Z2)

jointly distributed with the generic source random variable S such that Z0 ↔ Z1 ↔

Z2 ↔ S form a Markov chain, and define {Z0(t), Z1(t), Z2(t)}∞t=1 correspondingly. It

can be verified that

I(f
(n)
1 (Sn); f

(n)
2 (Sn))

= I(Zn
1 ; f

(n)
1 (Sn)) + I(Zn

1 ; f
(n)
2 (Sn))

− I(Zn
1 ; f

(n)
1 (Sn), f

(n)
2 (Sn)) + I(f

(n)
1 (Sn); f

(n)
2 (Sn)|Zn

1 ).

As a consequence, we have

log |C1|+ log |C2|

≥ I(Sn; f
(n)
1 (Sn), f

(n)
2 (Sn)) + I(Zn

1 ; f
(n)
1 (Sn)) + I(Zn

1 ; f
(n)
2 (Sn))

− I(Zn
1 ; f

(n)
1 (Sn), f

(n)
2 (Sn)) + I(f

(n)
1 (Sn); f

(n)
2 (Sn)|Zn

1 ). (2.3)

Dropping the last term in (2.3) yields the following lower bound

log |C1|+ log |C2|

≥ I(Sn; f
(n)
1 (Sn), f

(n)
2 (Sn)) + I(Zn

1 ; f
(n)
1 (Sn))

+ I(Zn
1 ; f

(n)
2 (Sn))− I(Zn

1 ; f
(n)
1 (Sn), f

(n)
2 (Sn)). (2.4)

The rationale here is that I(f
(n)
1 (Sn); f

(n)
2 (Sn)|Zn

1 ) might be smaller than I(f
(n)
1 (Sn);

f
(n)
2 (Sn)) for certain choices of Zn

1 , and consequently the resulting bound is tighter

than the one obtained by simply dropping I(f
(n)
1 (Sn); f

(n)
2 (Sn)). Let T be uniformly

distributed over {1, · · · , n} and independent of (Sn, Zn
0 , Z

n
1 , Z

n
2 ). It can be readily

8
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show that

I(Zn
1 ; f

(n)
i (Sn))

≥ I(Zn
1 ; Ŝn{i})

≥ nI(Z1(T ); Ŝ{i}(T ))

≥ nI(Z1(T ); Ŝ{i}(T )|Z0(T )), i = 1, 2. (2.5)

In contrast, it appears difficult to single-letterize I(Sn; f
(n)
1 (Sn), f

(n)
2 (Sn)) and

I(Zn
1 ; f

(n)
1 (Sn), f

(n)
2 (Sn)) in (2.4) simultaneously due to the opposite signs in front of

them. If Sn and Zn are jointly Gaussian, then one can overcome this difficulty by

invoking the entropy power inequality or the worst additive noise lemma; however,

such specialized methods are not suitable in the general setting. It will be seen that

this difficulty is actually not intrinsic and can be resolved through simple algebraic

manipulations. Indeed, we have

I(Sn; f
(n)
1 (Sn), f

(n)
2 (Sn))− I(Zn

1 ; f
(n)
1 (Sn), f

(n)
2 (Sn))

= I(Zn
1 , S

n; f
(n)
1 (Sn), f

(n)
2 (Sn))− I(Zn

1 ; f
(n)
1 (Sn), f

(n)
2 (Sn)) (2.6)

= I(Sn; f
(n)
1 (Sn), f

(n)
2 (Sn)|Zn

1 )

≥ I(Sn; Ŝn{1}, Ŝ
n
{2}, Ŝ

n
{1,2}|Zn

1 )

=
n∑
t=1

I(S(t); Ŝn{1}, Ŝ
n
{2}, Ŝ

n
{1,2}|Zn

1 , S
t−1)

=
n∑
t=1

I(S(t); Ŝn{1}, Ŝ
n
{2}, Ŝ

n
{1,2}, Z

n
1 , S

t−1|Z1(t))

≥
n∑
t=1

I(S(t); Ŝ{1}(t), Ŝ{2}(t), Ŝ{1,2}(t)|Z1(t))

9
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≥ nI(S(T ); Ŝ{1}(T ), Ŝ{2}(T ), Ŝ{1,2}(T )|Z1(T ))

≥ nI(Z2(T ); Ŝ{1}(T ), Ŝ{2}(T ), Ŝ{1,2}(T )|Z1(T )), (2.7)

where (2.6) is due to the fact that Zn
1 ↔ Sn ↔ (f

(n)
1 (Sn), f

(n)
2 (Sn)) form a Markov

chain. One can readily obtain the desired result by substituting (2.5) and (2.7) into

(2.4).

Now we proceed to consider the general L-description case. Our proof is partly

based on the bounding technique developed in C. Tian and Diggavi (2009), which is

in turn inspired by the ideas in Ozarow’s celebrated work Ozarow (1980) as well as

Wang and Viswanath (2007, 2009).

We augment the probability space by introducing an auxiliary random vector

process {(Z0(t), Z1(t), · · · , ZL(t))}∞t=1. It is assume that {(Z0(t), Z1(t), · · · , ZL(t))}∞t=1

and {S(t)}∞t=1 form a joint stationary and memoryless process with (S(t), Z0(t), Z1(t),

· · · , ZL(t)) distributed according to pSpZ|S (with pZ|S ∈ P) for every t. Let f
(n)
i :

Sn → Ci, i ∈ L, and g
(n)
A :

∏
i∈A Ci → Ŝn, A ∈ 2L+, be arbitrary encoding and decoding

functions satisfying (2.1). By Han’s subset entropy inequality Han (1978),

1

(k − 1)
(
L
k−1

) ∑
A∈2L+,|A|=k−1

H(f
(n)
i (Sn), i ∈ A|Zn

k−1)

≥ 1

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A|Zn

k−1)

10
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for k = 2, · · · , L. Therefore, we have

L−1∑
k=1

1

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A|Zn

k )

≥
L∑
k=2

1

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A|Zn

k−1).

(2.8)

Note that

L∑
i=1

log |Ci| ≥
L∑
i=1

H(f
(n)
i (Sn))

≥
L∑
i=1

H(f
(n)
i (Sn))−

L−1∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A|Zn

k )

+
L∑
k=2

L

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A|Zn

k−1) (2.9)

≥ −
L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A|Zn

k )

+
L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A|Zn

k−1)

= −
L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A|Zn

k )

+
L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A|Zn

k−1)

+
L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A)

−
L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

H(f
(n)
i (Sn), i ∈ A)

11
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=
L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

I(Zn
k ; f

(n)
i (Sn), i ∈ A)

−
L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

I(Zn
k−1; f

(n)
i (Sn), i ∈ A), (2.10)

where (2.9) is due to (2.8). It can be verified that, for any k ∈ L and A ∈ 2L+,

I(Zn
k ; f

(n)
i (Sn), i ∈ A)− I(Zn

k−1; f
(n)
i (Sn), i ∈ A)

= I(Zn
k−1, Z

n
k ; f

(n)
i (Sn), i ∈ A)− I(Zn

k−1; f
(n)
i (Sn), i ∈ A) (2.11)

= I(Zn
k ; f

(n)
i (Sn), i ∈ A|Zn

k−1)

= I(Zn
k ; ŜnB,B ∈ 2A+|Zn

k−1)

=
n∑
t=1

I(Zk(t); Ŝ
n
B,B ∈ 2A+|Zn

k−1, Z
t−1
k )

=
n∑
t=1

I(Zk(t); Ŝ
n
B,B ∈ 2A+, Z

n
k−1, Z

t−1
k |Zk−1(t)) (2.12)

≥
n∑
t=1

I(Zk(t); ŜB(t),B ∈ 2A+|Zk−1(t)), (2.13)

where (2.11) is due to the fact that Zn
k−1 ↔ Zn

k ↔ (f
(n)
i (Sn), i ∈ A) form a Markov

chain, and (2.12) is due to the fact that Zk(t) ↔ Zk−1(t) ↔ (Zn
k−1, Z

t−1
k ) form a

Markov chain. Now let T be uniformly distributed over {1, · · · , n} and independent

of (Sn, Zn
0 , Z

n
1 , · · · , Zn

L). We have, for any k ∈ L and A ∈ 2L+,

n∑
t=1

I(Zk(t); ŜB(t),B ∈ 2A+|Zk−1(t))

= nI(Zk(T ); ŜB(T ),B ∈ 2A+|Zk−1(T ), T )

= nI(Zk(T ); ŜB(T ),B ∈ 2A+, T |Zk−1(T )) (2.14)

12
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≥ nI(Zk(T ); ŜB(T ),B ∈ 2A+|Zk−1(T )), (2.15)

where (2.14) is due to the fact that Zk(T ) ↔ Zk−1(T ) ↔ T form a Markov chain.

Combining (2.10), (2.13), and (2.15) gives

1

n

L∑
i=1

log |Ci| ≥
L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

I(Zk(T ); ŜB(T ),B ∈ 2A+|Zk−1(T )).

Moreover, one can readily verify the following facts:

• (S(T ), Z0(T ), Z1(T ), · · · , ZL(T )) and (S,Z0, Z1, · · · , ZL) are identically

distributed;

• (Z0(T ), Z1(T ), · · · , ZL(T ))↔ S(T )↔ (ŜA(T ),A ∈ 2L+) form a Markov chain;

• E[m(S, ŜA)] ≤ dA, A ∈ 2L+.

This completes the proof of Theorem 1.

In the proof of Theorem 1, remote sources are incorporated in a specific way to

facilitate the use of Han’s subset entropy inequality. It is worth mentioning that,

when the distortion constraints have a hierarchical structure, one can exploit remote

sources in a different manner as shown in Chen (2009). However, neither the method

in Chen (2009) not the one in the present work seems powerful enough to yield concep-

tually satisfactory single-letter lower bounds on weighted sum rates subject to general

distortion constraints. Establishing such bounds requires a deeper investigation and

is beyond the scope of this work.

When the distortion constraints are symmetric, we have the following simplified

(albeit potentially weakened) lower bound on the minimum sum rate. Let P(d) denote

13
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the set of conditional distributions pŜ|S with Ŝ = (Ŝ1, · · · , ŜL) such that the induced

joint distribution pS,Ŝ satisfies E[m(S, Ŝk)] ≤ dk, k = 1, · · · , L. Define

r(d) = sup
pZ|S∈P

inf
pŜ|S∈P(d)

L∑
k=1

L

k
I(Zk; Ŝk|Zk−1),

where it is assumed that Z ↔ S ↔ Ŝ form a Markov chain.

Corollary 1. R(d) ≥ r(d).

Proof. Let (S,Z, [Ŝ]) be jointly distributed according to pSpZ|Sp[Ŝ]|S with pZ|S ∈ P

and p[Ŝ]|S ∈ P([d]), where dA = d|A| for all A ∈ 2L+. Note that

L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

I(Zk; ŜB,B ∈ 2A+|Zk−1)

≥
L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

I(Zk; ŜA|Zk−1). (2.16)

Let Qk be uniformly distributed over {A : A ∈ 2L+, |A| = k}, k = 1, · · · , L; further-

more, it is assumed that (Q1, · · · , QL) and (S,Z, [Ŝ]) are mutually independent. We

have, for any k ∈ L,

∑
A∈2L+,|A|=k

I(Zk; ŜA|Zk−1)

=

(
L

k

)
I(Zk; ŜQk

|Zk−1, Qk)

=

(
L

k

)
I(Zk; ŜQk

, Qk|Zk−1) (2.17)

≥
(
L

k

)
I(Zk; ŜQk

|Zk−1), (2.18)

14
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where (2.17) is due to the fact that Zk ↔ Zk−1 ↔ Qk form a Markov chain. Substi-

tuting (2.18) into (2.16) gives

L∑
k=1

L

k
(
L
k

) ∑
A∈2L+,|A|=k

I(Zk; ŜB,B ∈ 2A+|Zk−1)

≥
L∑
k=1

L

k
I(Zk; Ŝk|Zk−1),

where Ŝk = ŜQk
, k = 1, · · · , L. In view of the fact that Z ↔ S ↔ Ŝ form a Markov

chain and the fact that E[m(S, Ŝk)] ≤ dk, k = 1, · · · , L, one can readily complete the

proof by invoking Theorem 1.

It can be seen that r(d) is obtained by taking the supremum over all permissible

remote sources from the class specified by P . Therefore, any choice of pZ|S from P

yields a valid lower bound on R(d). However, it is in general a challenging task to

find pZ|S that gives the tightest lower bound; indeed, due to the Markov constraint,

even the derivation of cardinality bounds on remote sources seems to be non-trivial.

Interestingly, as we shall show in the next two sections, such optimal pZ|S can be

determined in some special cases with the aid of certain minimax theorems.

15



Chapter 3

The Binary Uniform Source

In this section we shall evaluate r(d) for the binary uniform source (i.e., S = {0, 1}

and pS(0) = pS(1) = 1
2
) with two different distortion measures:

• m = mE, where mE is the erasure distortion measure with Ŝ = {0, 1, e} and

mE(s, ŝ) =


0, s = ŝ

1, ŝ = e

∞, (s, ŝ) = (0, 1) or (s, ŝ) = (1, 0)

• m = mH , where mH is the Hamming distortion measure with Ŝ = {0, 1} and

mH(s, ŝ) = s⊕2 ŝ for (s, ŝ) ∈ S × Ŝ.

To this end, we need the following two technical lemmas. Their proofs are relegated

to Appendix A and Appendix B, respectively.

16
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Let X = {0, 1, · · · ,M − 1} for some integer M ≥ 2, and let Y be an arbitrary

(finite)1 set. A channel pY |X : X → Y is said to be circularly symmetric C. C. Wang

and Poor (2007) if there exists a bijective function µ : Y → Y such that µM(y) = y and

pY |X(µx(y)|x) = pY |X(y|0) for all (x, y) ∈ X × Y , where µk denotes the k-times self-

composition of µ (with µ0 being the identity function). Similarly, a distortion measure

m : X ×Y → [0,∞] is said to circularly symmetric if there exists a bijective function

µ : Y → Y such that µM(y) = y and m(x, µx(y)) = m(0, y) for all (x, y) ∈ X × Y .

Note that the binary erasure channel with erasure probability δ (i.e., BEC(δ)) and the

erasure distortion measure mE are circularly symmetric with µ : {0, 1, e} → {0, 1, e}

given by µ(0) = 1, µ(1) = 0, and µ(e) = e; the binary symmetric channel with

crossover probability q (i.e., BSC(q)) and the Hamming distortion measure mH are

also circularly symmetric, and the associated µ : {0, 1} → {0, 1} are given by µ(0) = 1

and µ(1) = 0.

Lemma 1. Let pY |X : X → Y and pỸ |X : X → Ỹ be two circularly symmetric

channels. Moreover, let Y and Ỹ be the channel outputs induced by the uniform input

X via pY |X and pỸ |X , respectively. For any real numbers α and α̃, the maximum

value of the following optimization problem

max
pU|X
−αH(Y |U) + α̃H(Ỹ |U) (3.1)

is attained by some circularly symmetric channel pU |X : X → U with U = {0, 1, · · · ,M−

1} such that pU |X(u|x) depends on (x, u) only through u	M x for all (x, u) ∈ X ×U .

Here it is assumed that U ↔ X ↔ (Y, Ỹ ) form a Markov chain.

1For simplicity, we implicitly assume Y is a finite set; however, it will be clear that such an
assumption is inessential.
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Lemma 2. Let m : X × Y → [0,∞] be a circularly symmetric distortion measure

associated with some bijective function µ. Let pU |X : X → U and pŨ |X : X → Ũ be two

circularly symmetric channels with U = Ũ = {0, 1, · · · ,M − 1} such that pU |X(u|x)

and pŨ |X(ũ|x) depend on (x, u) and (x, ũ) only through u 	M x and ũ 	M x for all

(x, u) ∈ X × U and (x, ũ) ∈ X × Ũ ; moreover, pŨ |X is stochastically degraded with

respect to pU |X . Let U and Ũ be the channel outputs induced by the uniform input X

via pU |X and pŨ |X , respectively. For any real numbers α and α̃ such that α ≥ α̃ and

α ≥ 0, the minimum value of the following optimization problem2

min
pY |X :E[m(X,Y )]≤d

−αH(U |Y ) + α̃H(Ũ |Y ) (3.2)

is attained by some circularly symmetric channel pY |X : X → Y with the property

that pY |X(µx(y)|x) = pY |X(y|0) for all (x, y) ∈ X × Y. Here it is assumed that

(U, Ũ)↔ X ↔ Y form a Markov chain.

3.1 The Erasure Distortion Measure

This subsection is devoted to the evaluation of r(d) for the binary uniform source

with the erasure distortion measure. Without loss of generality, we assume dk ∈ [0, 1],

k = 1, · · · , L. Let α = (α1, · · · , αL), q = (q0, q1, · · · , qL), δ = (δ1, · · · , δL). Define

κ(α, q, δ) =
L∑
k=1

αk(1− δk)[Hb(qk−1)−Hb(qk)],

2Here we assume that the set of feasible solutions is non-empty.
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where Hb(q) = −q log q − (1− q) log(1− q). Moreover, define

ϕ∗(α, d) = max
q∈[0, 1

2
]L+1

min
δ∈D(d)

κ(α, q, δ),

ϕ∗(α, d) = min
δ∈D(d)

max
q∈[0, 1

2
]L+1

κ(α, q, δ),

where D(d) = [0, d1]× · · · × [0, dL].

Theorem 2. There exists a saddle-point solution (q∗, δ∗) in the sense that

q∗ ∈ arg max
q∈[0, 1

2
]L+1

κ(α, q, δ∗), (3.3)

δ∗ ∈ arg min
δ∈D(d)

κ(α, q∗, δ), (3.4)

where q∗ = (q∗0, q
∗
1, · · · , q∗L) and δ∗ = (δ∗1, · · · , δ∗L). If α1 ≥ · · · ≥ αL ≥ 0, then there

exists a saddle-point solution (q∗, δ∗) such that q∗0 ≥ q∗1 ≥ · · · ≥ q∗L, δ∗1 ≥ · · · ≥ δ∗L,

and q∗k−1 = q∗k whenever dk = 1, k = 1, · · · , L. Furthermore, if α1 > · · · > αL > 0,

then every saddle-point solution (q∗, δ∗) has the property that q∗0 ≥ q∗1 ≥ · · · ≥ q∗L.

Proof. See Appendix C.

The following result is a direct consequence of Theorem 2.

Corollary 2. ϕ∗(α, d) = ϕ∗(α, d).

In view of Corollary 2, we shall simply denote ϕ∗(α, d) and ϕ∗(α, d) by ϕ(α, d).

Note that

ϕ(α, d) = κ(α, q∗, δ∗)
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for any (q∗, δ∗) satisfying (3.3) and (3.4).

Corollary 3. If α1 ≥ · · ·αL ≥ 0, then

ϕ(α, d) = max
k∈L

αk(1− dk) log 2.

Proof. In view of Theorem 2, we have

ϕ(α, d) = max
q: 1

2
≥q0≥q1≥···qL≥0

min
δ∈D(d)

κ(α, q, δ)

= max
q: 1

2
≥q0≥q1≥···qL≥0

κ(α, q, d).

Note that

κ(α, q, d) = α1(1− d1)Hb(q0)− αL(1− dL)Hb(qL)

+
L−1∑
k=1

[αk+1(1− dk+1)− αk(1− dk)]Hb(qk).

Therefore, to maximize κ(α, q, d) over q subject to the constraint 1
2
≥ q0 ≥ q1 ≥

· · · qL ≥ 0, one can safely set q0 = 1
2

and qL = 0; furthermore, one can eliminate q1

by setting

q1 =


1
2
, α1(1− d1) < α2(1− d2)

q2, otherwise
.

Note that the resulting expression is a linear combination of Hb(qk), k = 2, · · · , L−1,

plus a constant term. One can further eliminate q2 by setting q2 = 1
2

if the coefficient

in front of H(q2) is positive and setting q2 = q3 otherwise. By repeating this process,
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we will eventually obtain a vector q with the property that

qk =


1
2
, k < i

0, otherwise

for some i ∈ L. Maximizing κ(α, q, d) over all such q yields the desired result.

Recall that P(d) is the set of conditional distributions pŜ|S with Ŝ = (Ŝ1, · · · , ŜL)

such that the induced joint distribution pS,Ŝ satisfies E[m(S, Ŝk)] ≤ dk, k = 1, · · · , L.

Let Q denote the set of all possible conditional distributions pZ|S, where Z = (Z0,

Z1, · · · , ZL). Define

Γ∗(α, d) = sup
pZ|S∈Q

inf
pŜ|S∈P(d)

γ(α, pZ|S, pŜ|S),

Γ∗(α, d) = inf
pŜ|S∈P(d)

sup
pZ|S∈Q

γ(α, pZ|S, pŜ|S),

where

γ(α, pZ|S, pŜ|S) =
L∑
k=1

αk[I(Zk; Ŝk)− I(Zk−1; Ŝk)]

and it is assumed that Z ↔ S ↔ Ŝ form a Markov chain. Our main result in this

subsection is the following minimax theorem.

Theorem 3. For the binary uniform source with the erasure distortion measure,

Γ∗(α, d) = Γ∗(α, d) = ϕ(α, d).

Furthermore, every (pZ∗|S, pŜ∗|S) with the property that pZ∗k |S is a BSC(q∗k), k =
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0, 1, · · · , L, and pŜ∗k |S
is a BEC(δ∗k), k = 1, · · · , L, for some (q∗, δ∗) satisfying (3.3)

and (3.4) is a saddle-point solution in the sense that

pZ∗|S ∈ arg max
pZ|S∈Q

γ(α, pZ|S, pŜ∗|S),

pŜ∗|S ∈ arg min
pŜ|S∈P(d)

γ(α, pZ∗|S, pŜ|S).

Proof. Given any (pZ∗|S, pŜ∗|S) with the property that pZ∗k |S is a BSC(q∗k), k = 0, 1,

· · · , L, and pŜ∗k |S
is a BEC(δ∗k), k = 1, · · · , L, for some (q∗, δ∗) satisfying (3.3) and

(3.4), let us consider the following optimization problems

max
pZ|S∈Q

γ(α, pZ|S, pŜ∗|S), (3.5)

min
pŜ|S∈P(d)

γ(α, pZ∗|S, pŜ|S). (3.6)

Note that γ(α, pZ|S, pŜ∗|S) depends on pZ|S only through pZk|S, k = 0, 1, · · · , L. As a

consequence, (3.5) can be decomposed into the following sub-problems

max
pZ0|S
−α1I(Z0; Ŝ∗1),

max
pZk|S

αkI(Zk; Ŝ
∗
k)− αk+1I(Zk; Ŝ

∗
k+1), k = 1, · · · , L− 1,

max
pZL|S

αLI(ZL; Ŝ∗L),

which, in light of the fact that H(Ŝ∗k), k = 1, · · · , L, do not depend on pZ|S, are

equivalent to

max
pZ0|S

α1H(Ŝ∗1 |Z0), (3.7)
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max
pZk|S
−αkH(Ŝ∗k |Zk) + αk+1H(Ŝ∗k+1|Zk), k = 1, · · · , L− 1, (3.8)

max
pZL|S

−αLH(Ŝ∗L|ZL). (3.9)

By Lemma 1, the maximum values of (3.7), (3.8), and (3.9) are attained by pZk|S,

k = 0, 1, · · · , L, with the property that pZk|S is a BSC(qk) for some qk ∈ [0, 1
2
],

k = 0, 1, · · · , L. For such pZk|S, k = 0, 1, · · · , L, it can be verified that

L∑
k=1

αk[I(Zk; Ŝ
∗
k)− I(Zk−1; Ŝ∗k)]

=
L∑
k=1

αk[H(Zk−1|Ŝ∗k)−H(Zk|Ŝ∗k)]

=
L∑
k=1

αk
∑

ŝ∈{0,1,e}

pŜ∗k
(ŝ)[H(Zk−1|Ŝ∗k = ŝ)−H(Zk|Ŝ∗k = ŝ)]

=
L∑
k=1

αk
∑

ŝ∈{0,1}

pŜ∗k
(ŝ)[H(Zk−1|Ŝ∗k = ŝ)−H(Zk|Ŝ∗k = ŝ)]

=
L∑
k=1

αk
∑

ŝ∈{0,1}

pŜ∗k
(ŝ)[H(Zk−1|S = ŝ)−H(Zk|S = ŝ)]

=
L∑
k=1

αk(1− δ∗k)[Hb(qk−1)−Hb(qk)].

Therefore, we have

max
pZ|S∈Q

γ(α, pZ|S, pŜ∗|S)

= max
q∈[0, 1

2
]L+1

κ(α, q, δ∗)

= κ(α, q∗, δ∗)

= γ(α, pZ∗|S, pŜ∗|S).
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Similarly, since γ(α, pZ∗|S, pŜ|S) depends on pŜ|S only through pŜk|S, k = 1, · · · , L.,

we can decompose (3.6) into

min
pŜk|S

:E[mE(S,Ŝk)]≤dk
αkI(Z∗k ; Ŝk)− αkI(Z∗k−1; Ŝk)

for k = 1, · · · , L, which, in light of the fact that H(Z∗k), k = 0, 1, · · · , L, do not

depend on pŜ|S, are equivalent to

min
pŜk|S

:E[mE(S,Ŝk)]≤dk
−αkH(Z∗k |Ŝk) + αkH(Z∗k−1|Ŝk) (3.10)

for k = 1, · · · , L. We shall consider the following cases.

• q∗k−1 ≥ q∗k and αk ≥ 0: In this case pZ∗k−1|S is stochastically degraded with

respect to pZ∗k−1|S. Therefore, it follows from Lemma 2 that the minimum value

of (3.10) is attained by pŜk|S with the property that pŜk|S is a BEC(δk) for some

δk ∈ [0, dk].

• q∗k−1 < q∗k and αk ≥ 0: Since the objective function in (3.10) depends on

pZ∗k−1,Z
∗
k |S only through pZ∗k−1|S and pZ∗k |S, there is no loss of generality in assum-

ing that pZ∗k |S is physically degraded with respect to pZ∗k−1|S. As a consequence,

we have

H(Z∗k−1, Z
∗
k |Ŝk) = H(Z∗k−1|Ŝk) +H(Z∗k |Z∗k−1),

which, together with the fact thatH(Z∗k−1, Z
∗
k |Ŝk) = H(Z∗k |Ŝk)+H(Z∗k−1|Z∗k , Ŝk),
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implies

− αkH(Z∗k |Ŝk) + αkH(Z∗k−1|Ŝk)

= αkH(Z∗k |Z∗k−1, Ŝk)− αkH(Z∗k−1|Z∗k).

Since H(Z∗k−1|Z∗k) does not depend on pŜk|S, it follows that (3.10) is equivalent

to

min
pŜk|S

:E[mE(S,Ŝk)]≤dk
αkH(Z∗k |Z∗k−1, Ŝk). (3.11)

It is obvious that the minimum value of (3.11) is attained when pŜk|S is a

BEC(δk) with δk = 0.

• αk < 0: This case can be converted to the case αk > 0 by switching the roles of

Z∗k−1 and Z∗k .

In summary, the minimum values of (3.10) for k = 1, · · · , L are attained by pŜk|S,

k = 1, · · · , L, with the property that pŜk|S is a BEC(δk) for some δk ∈ [0, dk], k =

1, · · · , L. For such pŜk|S, k = 1, · · · , L, it can be verified that

L∑
k=1

αk[I(Z∗k ; Ŝk)− I(Z∗k−1; Ŝk)]

=
L∑
k=1

αk(1− δk)[Hb(q
∗
k−1)−Hb(q

∗
k)].

Therefore, we have

min
pŜ|S∈P(d)

γ(α, pZ∗|S, pŜ|S)
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= max
δ∈D(d)

κ(α, q∗, δ)

= κ(α, q∗, δ∗)

= γ(α, pZ∗|S, pŜ∗|S).

This completes the proof of Theorem 3.

Corollary 4. For the binary uniform source with the erasure distortion measure,

r(d) = max
k∈L

L

k
(1− dk) log 2.

Proof. It is easy to see that

L∑
k=1

L

k
I(Zk; Ŝk|Zk−1) = γ(α∗, pZ|S, pŜ|S)

for pZ|S ∈ P , where α∗ = (α∗1, · · · , α∗L) with α∗k = L
k
, k = 1, · · · , L. Since P ⊆ Q, we

must have r(d) ≤ Γ∗(α
∗, d), which, together with Theorem 5 and Corollary 3, implies

r(d) ≤ max
k∈L

L

k
(1− dk) log 2. (3.12)

Let (q∗, δ∗) be an arbitrary saddle-point solution satisfying (3.3) and (3.4) with α =

α∗. By Theorem 2, such a saddle-point solution exists and has the property that

q∗0 ≥ q∗1 ≥ · · · ≥ q∗L. Now construct (pZ∗|S, pŜ∗|S) with the property that pZ∗k |S is a

BSC(q∗k), k = 0, 1, · · · , L, and pŜ∗k |S
is a BEC(δ∗k), k = 1, · · · , L; in particular, since

q∗0 ≥ q∗1 ≥ · · · ≥ q∗L, we can construct pZ∗|S such that pZk−1|S is physically degraded
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with respect to pZk|S, k = 1, · · · , L. Since pZ∗|S ∈ P , it follows that

r(d) ≥ min
pŜ|S∈P(d)

γ(α∗, pZ∗|S, pŜ|S).

By Theorem 3 and Corollary 3,

min
pŜ|S∈P(d)

γ(α∗, pZ∗|S, pŜ|S)

= γ(α∗, pZ∗|S, pŜ∗|S)

= φ(α∗, d)

= max
k∈L

L

k
(1− dk) log 2.

Therefore, we have

r(d) ≥ max
k∈L

L

k
(1− dk) log 2, (3.13)

Combining (3.12) and (3.13) completes the proof of Corollary 4.

Note that r(d) has the following simple interpretation. Since the reconstruction

distortion based every k descriptions is no greater than dk, according to the rate-

distortion function of the binary uniform source with the erasure distortion measure,

the total rate of every k descriptions is at least (1 − dk) log 2, which implies R(d) ≥
L
k
(1− dk) log 2; maximizing L

k
(1− dk) log 2 over k ∈ L yields r(d).

Now consider the case R(d) = L
`
(1 − d`) log 2 for some `. Since R(d) ≥ r(d), it

follows that L
k
(1− dk) ≤ L

`
(1− d`), i.e.,

dk ≥
k

`
d` +

`− k
`
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for all k 6= `. Particularly, in the no excess sum rate case R(d) = (1 − dL) log 2, we

have

dk ≥
k

L
dL +

L− k
L

(3.14)

for k = 1, · · · , L− 1. Interestingly, the lower bounds in (3.14) are in fact achievable

via a simple time-sharing scheme. Specifically, we partition nL source samples into

L segments, each of length n; a lossy source code of rate (1 − dL) log 2, which is

optimal for the binary uniform source with the erasure distortion measure, is used to

encode these segments separately such that the resulting distortion for each segment

is dL (here optimal encoding is trivial in the sense that one simply keeps n(1 − dL)

source samples3 for each segment); let description k contain the encoding output

for segment k, k = 1, · · · , L. Clearly, the sum rate of this scheme is (1 − dL) log 2;

moreover, this scheme has the property that the reconstruction distortion based on

every k descriptions is k
L
dL + L−k

L
, k = 1, · · · , L. It is worth mentioning that, in the

current setting, this scheme is essentially equivalent to the one described in (Ahmed

and Wagner, 2012, p. 1331).

We are now in a position to give a more conceptual explanation of the ideas that

lead to the proof of Corollary 4. As pointed out earlier, the lower bound in Corollary

4, which is derived through rather sophisticated analysis, is almost a trivial one4. In

a certain sense, it is not the result but the proof strategy that is important, and we

basically use the binary uniform source with the erasure distortion measure as a toy

example to illustrate this strategy, which will be used repeatedly in the subsequent

3We assume that n(1− dL) is an integer.
4See (Ahmed and Wagner, 2012, Section IV) for stronger converse results in certain special cases.
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part of this paper to obtain more non-trivial results. Note that the definition of

Γ∗(α∗, d) is almost identical with that of r(d) except that no Markov ordering is

imposed on remote sources for Γ∗(α
∗, d). This relaxation is crucial since it decouples

remote sources and enables us to decompose the problem of maximization over pZ|S

into sub-problems of maximization over pZk|S, k = 0, 1, · · · , L. Indeed, our results

indicate that the relaxed version has the advantage of being amenable to saddle-

point analysis and evaluation. Interestingly, it turns out that the Markov ordering is

automatically satisfied by the saddle-point solution of the relaxed minimax problem

and consequently Γ∗(α∗, d) = r(d). In this way, we have determined the optimal

choice of remote sources and obtained a more explicit expression of r(d).

3.2 The Hamming Distortion Measure

In this subsection we shall evaluate r(d) for the binary uniform source with the

Hamming distortion measure. Without loss of generality, we assume dk ∈ [0, 1
2
],

k = 1, · · · , L. Define

η(α, q, δ) =
L∑
k=1

αk[Hb(qk−1 � δk)−Hb(qk � δk)],

where q � δ = q(1− δ) + (1− q)δ. Moreover, define

φ∗(α, d) = max
q∈[0, 1

2
]L+1

min
δ∈D(d)

η(α, q, δ),

φ∗(α, d) = min
δ∈D(d)

max
q∈[0, 1

2
]L+1

η(α, q, δ).
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We say that (q∗, δ∗) is a saddle-point solution if

q∗ ∈ arg max
q∈[0, 1

2
]L+1

η(α, q, δ∗), (3.15)

δ∗ ∈ arg min
δ∈D(d)

η(α, q∗, δ). (3.16)

Theorem 4. If α1 ≥ · · ·αL ≥ 0, then there exists a saddle-point solution (q∗, δ∗) such

that q∗0 ≥ q∗1 ≥ · · · ≥ q∗L, δ∗1 ≥ · · · ≥ δ∗L, and q∗k−1 = q∗k whenever dk = 1
2
, k = 1, · · · , L.

Furthermore, if α1 > · · · > αL > 0, then every saddle-point solution (q∗, δ∗) has the

property that q∗0 ≥ q∗1 ≥ · · · ≥ q∗L.

Proof. See Appendix D.

The following result is a direct consequence of Theorem 4.

Corollary 5. φ∗(α, d) = φ∗(α, d) when α1 ≥ · · ·αL ≥ 0.

In view of Corollary 5, we shall simply denote φ∗(α, d) and φ∗(α, d) by φ(α, d)

when α1 ≥ · · ·αL ≥ 0. Note that

φ(α, d) = η(α, q∗, δ∗)

for any (q∗, δ∗) satisfying (3.15) and (3.16).

Corollary 6. If α1 ≥ · · ·αL ≥ 0 and dk = 1
2

for all k 6= i and k 6= j (with i < j),

then

φ(α, d) =


αi[log 2−Hb(di)], αi(1− 2di) log

(
1−di
di

)
≥ αj(1− 2dj) log

(
1−dj
dj

)
αj[log 2−Hb(dj)], αi(1− 2di)

2 ≤ αj(1− 2dj)
2

αi[log 2−Hb(q
† � di)] + αj[Hb(q

† � dj)−Hb(dj)], otherwise

,
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where q† is the unique solution of

αi(1− 2di) log
(1− q � di

q � di

)
= αj(1− 2dj) log

(1− q � dj
q � dj

)

for q ∈ (0, 1
2
).

Proof. It follows from Theorem 4 that

φ(α, d) = max min
δ∈D(d)

η(α, q, δ),

where the maximization is taken over those q such that 1
2
≥ q0 = · · · = qi−1 ≥ qi =

· · · = qj−1 ≥ qj = · · · = qL ≥ 0. As a consequence, we have

φ(α, d)

= max
(q0,qi,qj): 1

2
≥q0≥qi≥qj≥0

min
(δi,δj)∈[0,di]×[0,dj ]

αi[Hb(q0 � δi)−Hb(qi � δi)] + αj[Hb(qi � δj)−Hb(qj � δj)]

= max
(q0,qi,qj): 1

2
≥q0≥qi≥qj≥0

αi[Hb(q0 � δi)−Hb(qi � di)] + αj[Hb(qi � δj)−Hb(qj � dj)]

= max
qi∈[0, 1

2
]
αi[log 2−Hb(qi � di)] + αj[Hb(qi � δj)−Hb(dj)].

Invoking Lemma 6 in Appendix D completes the proof of Corollary 6.

Our main result in this subsection is the following minimax theorem.

Theorem 5. For the binary uniform source with the Hamming distortion measure,

Γ∗(α, d) = Γ∗(α, d) = φ(α, d)
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when α1 ≥ · · ·αL ≥ 0. Furthermore, every (pZ∗|S, pŜ∗|S) with the property that pZ∗k |S

is a BSC(q∗k), k = 0, 1, · · · , L, and pŜ∗k |S
is a BSC(δ∗k), k = 1, · · · , L, for some (q∗, δ∗)

satisfying (3.15) and (3.16) is a saddle-point solution in the sense that

pZ∗|S ∈ arg max
pZ|S∈Q

γ(α, pZ|S, pŜ∗|S),

pŜ∗|S ∈ arg min
pŜ|S∈P(d)

γ(α, pZ∗|S, pŜ|S).

Corollary 7. For the binary uniform source with the Hamming distortion measure,

r(d) = φ(α∗, d),

where α∗ = (α∗1, · · · , α∗L) with α∗k = L
k

, k = 1, · · · , L.

The proofs of Theorem 5 and Corollary 7 are omitted due to their similarity to

the proofs of Theorem 3 and Corollary 4.

Now consider the case R(d) = L
`
[log 2 −Hb(d`)] for some ` (note that ` = 1 and

` = L correspond to the no excess marginal rate case and the no excess sum rate

case, respectively). By leveraging Corollary 7 and Corollary 6, one can establish the

following lower bounds on dk for k 6= `:

dk ≥
1

2
− 1

2

√
k

`
+

√
k

`
d`, k < `

dk ≥ min
{
d ∈ [0,

1

2
] :
L

k
(1− 2d) log

(1− d
d

)
≤ L

`
(1− 2d`) log

(1− d`
d`

)}
, k > `.

In particular, we have

d1 ≥
1

2
−
√

2

4
+

√
2

2
d2 (3.17)
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when ` = L = 2. For the two-description problem, it is known Zhang and Berger

(1987) that R(d) = log 2−Hb(d2) if and only if

d1 ≥
√

2− 1

2
+ (2−

√
2)d2.

Note that, for d2 ∈ [0, 1
2
],

√
2− 1

2
+ (2−

√
2)d2 −

(1

2
−
√

2

4
+

√
2

2
d2

)
=

3
√

2− 4

4
+

4− 3
√

2

2
d2

≥ 0,

where the inequality is strict unless d2 = 1
2
. Therefore, the lower bound in (3.17) is

loose except for the degenerate case d2 = 1
2
.
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Chapter 4

The Quadratic Gaussian Case

In this section we shall consider the quadratic Gaussian case, where pS is a Gaussian

distribution (with mean zero and variance λ) and m(s, ŝ) = (s−ŝ)2 for (s, ŝ) ∈ R×R,

and evaluate r(d) in this setting. Without loss of generality, we assume dk ∈ (0, λ],

k = 1, · · · , L.

First recall the definition of α, δ, D(d), γ(α, pZ|S, pŜ|S), Γ∗(α, d), and Γ∗(α, d) in

Section 3.1. Let

ω(α, θ, δ) =
L∑
k=1

αk
2

log
(λθk−1 + λδk − θk−1δk

λθk + λδk − θkδk

)
,

where θ = (θ0, θ1, · · · , θL). Moreover, define

ψ∗(α, d) = max
θ∈[0,λ]L+1

min
δ∈D(d)

ω(α, θ, δ),

ψ∗(α, d) = min
δ∈D(d)

max
θ∈[0,λ]L+1

ω(α, θ, δ).
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We say that (θ∗, δ∗) is a saddle-point solution if

θ∗ ∈ arg max
θ∈[0,λ]L+1

ω(α, θ, δ∗), (4.1)

δ∗ ∈ arg min
δ∈D(d)

ω(α, θ∗, δ). (4.2)

Theorem 6. If α1 ≥ · · ·αL ≥ 0, then there exists a saddle-point solution (θ∗, δ∗)

such that θ∗0 ≥ θ∗1 ≥ · · · ≥ θ∗L, δ∗1 ≥ · · · ≥ δ∗L, and θ∗k−1 = θ∗k whenever dk = λ,

k = 1, · · · , L. Furthermore, if α1 ≥ · · · ≥ αL > 0, then every saddle-point solution

(θ∗, δ∗) has the property that θ∗0 ≥ θ∗1 ≥ · · · ≥ θ∗L.

Proof. See Appendix E.

The following result is a direct consequence of Theorem 6.

Corollary 8. ψ∗(α, d) = ψ∗(α, d) when α1 ≥ · · ·αL ≥ 0.

In view of Corollary 8, we shall simply denote ψ∗(α, d) and ψ∗(α, d) by ψ(α, d)

when α1 ≥ · · ·αL ≥ 0. Note that

ψ(α, d) = ω(α, θ∗, δ∗)

for any (θ∗, δ∗) satisfying (4.1) and (4.2).

Corollary 9. If α1 ≥ · · ·αL ≥ 0 and dk = λ for all k 6= i and k 6= j (with i < j),

then

ψ(α, d) =


αi

2
log
(
λ
di

)
, αi(λ− di)dj ≥ αj(λ− dj)di

αj

2
log
(
λ
dj

)
, αi(λ− di) ≤ αj(λ− dj)

αi

2
log
[

(αi−αj)(λ−dj)

αi(di−dj)

]
+

αj

2
log
[

αjλ(di−dj)

(αi−αj)(λ−di)dj

]
, otherwise

.
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Proof. See Appendix F.

We say that pY |X : R → R is an additive Gaussian noise channel with parameter θ

(i.e., AGNC(θ)) if Y = λ−θ
λ
X+

√
θ(λ−θ)
λ

N , where θ ∈ [0, λ] and N is a zero-mean unit-

variance Gaussian random variable independent of X. It can be readily verified that,

for any θ and θ̃ with λ ≥ θ ≥ θ̃ ≥ 0, there exist additive Gaussian noise channels pY |X

and pỸ |X with parameters θ and θ̃, respectively, such that pY |X is physically degraded

with respect to pỸ |X .

The following result is essentially the scalar version of (Liu and Viswanath, 2007,

Theorem 8).

Lemma 3. Let X be a Gaussian random variable with mean zero and variance λ.

Moreover, let pY |X : R → R and pỸ |X : R → R be two additive Gaussian noise

channels with parameters θ and θ̃, respectively. For any real numbers α, α̃, and d

such that α ≥ α̃ ≥ 0 and d ∈ (0, λ], the maximum value of the following optimization

problem

max
pU|X :E[(X−E[X|U ])2]≤d

αI(U ;Y )− α̃I(U ; Ỹ )

is attained by some additive Gaussian noise channel pU |X : R → R with parameter

δ ∈ [0, d]. Here it is assumed that U ↔ X ↔ (Y, Ỹ ) form a Markov chain.

The following minimax theorem is the counterpart of Theorem 3 in Section 3.1

and Theorem 5 in Section 3.2.

Theorem 7. For the quadratic Gaussian case,

Γ∗(α, d) = Γ∗(α, d) = ψ(α, d)

36



M.A.Sc. Thesis - Shuo Shao McMaster - Electrical Engineering

when α1 ≥ · · ·αL ≥ 0. Furthermore, every (pZ∗|S, pŜ∗|S) with the property that pZ∗k |S

is an AGNC(θ∗k), k = 0, 1, · · · , L, and pŜ∗k |S
is an AGNC(δ∗k), k = 1, · · · , L, for some

(θ∗, δ∗) satisfying (4.1) and (4.2) is a saddle-point solution in the sense that

pZ∗|S ∈ arg max
pZ|S∈Q

γ(α, pZ|S, pŜ∗|S),

pŜ∗|S ∈ arg min
pŜ|S∈P(d)

γ(α, pZ∗|S, pŜ|S).

Proof. The proof is similar to that of Theorem 3 with Lemma 3 playing the roles of

Lemma 1 and Lemma 2. The details are left to the interested reader.

The following result is a simple consequence of Theorem 6 and Theorem 7. Its

proof is similar to that of Corollary 4 and thus is omitted.

Corollary 10. For the quadratic Gaussian case,

r(d) = ψ(α∗, d),

where α∗ = (α∗1, · · · , α∗L) with α∗k = L
k

, k = 1, · · · , L.

In view of Corollary 9 and Corollary 10, one can obtain an explicit expression of

r(d) when only two levels of distortion constraints are imposed.

Corollary 11. If dk = λ for all k 6= i and k 6= j (with i < j), then r(d) = Ri,j(di, dj),

where

Ri,j(di, dj) =


j
2i

log
(
λ
di

)
, dj ≥

(
j
i
d−1
i −

j−i
i
λ−1
)−1

1
2

log
(
λ
dj

)
, dj ≤ j

i
di − j−i

i
λ

j
2i

log
[

(j−i)(λ−dj)

j(di−dj)

]
+ 1

2
log
[

iλ(di−dj)

(j−i)(λ−di)dj

]
, otherwise
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The following theorem can be deduced from the results in (S. S. Pradhan and

Ramchandran, 2004, Section IV).

Theorem 8. 1. If dk = λ for all k < ` and dk ≥
(
k
`
d−1
` − k−`

`
λ−1
)−1

for all k > `

(with ` < L), then

R(d) ≤ L

2`
log
( λ
d`

)
. (4.3)

2. If dk ≥ k
L
dL + L−k

L
λ for all k < L, then

R(d) ≤ 1

2
log
( λ
dL

)
. (4.4)

3. If L
`
d` − L−`

`
λ < dL <

(
L
`
d−1
` − L−`

`
λ−1
)−1

for some ` < L and

dk = λ, k < `,

dk ≥
L(k − `)(λ− d`)dL + `(L− k)(λ− dL)d`
k(L− `)λ− L(k − `)d` − `(L− k)dL

, ` < k < L,

then

R(d) ≤ L

2`
log
[(L− `)(λ− dL)

L(d` − dL)

]
+

1

2
log
[ `λ(d` − dL)

(L− `)(λ− d`)dL

]
. (4.5)

Remark: One can write (4.3), (4.4), and (4.5) compactly as R(d) ≤ R`,L(d`, dL).

Combining Corollary 10, Corollary 11, and Theorem 8 yields the scalar version of

(Wang and Viswanath, 2009, Theorem 4), which determines the minimum sum rate

of symmetric Gaussian multiple description coding subject to two levels of distortion

constraints (with the second level imposed on the complete set of descriptions).
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Corollary 12. If dk = λ for all k 6= ` and k 6= L (with ` < L), then R(d) =

R`,L(d`, dL).

The following result provides a partial converse for Theorem 8. In particular, it

is shown that, when R(d) = R`,L(d`, dL), the achievable distortions dk, ` < k < L,

indicated in Theorem 8 are in fact the best possible.

Theorem 9. 1. If R(d) = L
2`

log
(
λ
d`

)
for some ` < L, then

dk ≥
(k
`
d−1
` −

k − `
`

λ−1
)−1

, k > `.

2. If R(d) = 1
2

log
(
λ
dL

)
, then

dk ≥
k

L
dL +

L− k
L

λ, k < L.

3. If R(d) = R`,L(d`, dL) for some ` < L and L
`
d` − L−`

`
λ < dL <

(
L
`
d−1
` −

L−`
`
λ−1
)−1

, then

dk ≥
L(k − `)(λ− d`)dL + `(L− k)(λ− dL)d`
k(L− `)λ− L(k − `)d` − `(L− k)dL

, ` < k < L.

Proof. See Appendix G.

Remark: Case 2) in Theorem 9 corresponds to (Ahmed and Wagner, 2012, Theo-

rem 11). Furthermore, in this case the lower bounds on dk, k < L, are achievable via

a time-sharing scheme similar to the one described in Section 3.1.
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Chapter 5

Conclusion

We have derived a single-letter lower bound on the sum rate of multiple description

coding subject to symmetric distortion constraints. To evaluate this lower bound, one

has to determine the optimal choice of auxiliary remote sources, which is in general a

non-trivial task. We show that, in several special cases, such optimal remote sources

can be deduced via saddle-point analysis of certain minimax problems. It is worth

noting that the minimax theorems established in this paper depend critically on

the properties of the binary erasure channel, the binary symmetric channel, and the

additive Gaussian noise channel. An important feature shared by all these channels is

that they can all be specified by a single parameter (which induces a natural Markov

ordering). An interesting direction for future research is to investigate, to what extent,

the minimax theorems in the present work can be extended to the scenarios where

the relevant channels are more complex.
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Appendix A

Proof of Lemma 1

Our proof is based on a natural extension of an interesting method developed in Nair

(2013) (see (Nair, 2013, p. 7, Example 1)).

Let Y (X ′) and Ỹ (X ′) be the channel outputs induced by input X ′ via pY |X and

pỸ |X , respectively. Moreover, let pX∗ be an optimal solution to the following opti-

mization problem

max
pX′
−αH(Y (X ′)) + α̃H(Ỹ (X ′)).

Note that, for any pU |X : X → U , we have

− αH(Y |U) + α̃H(Ỹ |U)

≤ sup
u∈U
−αH(Y |U = u) + α̃H(Ỹ |U = u)

≤ −αH(Y ∗) + α̃H(Ỹ ∗), (A.1)

where Y ∗ = Y (X∗) and Ỹ ∗ = Ỹ (X∗).

41



M.A.Sc. Thesis - Shuo Shao McMaster - Electrical Engineering

Since pY |X and pỸ |X are circularly symmetric, there exist bijective functions µ :

Y → Y and µ̃ : Ỹ → Ỹ such that µM(y) = y, pY |X(µx(y)|x) = pY |X(y|0), µ̃M(ỹ) = ỹ,

and pỸ |X(µx(ỹ)|x) = pỸ |X(ỹ|0) for all (x, y) ∈ X × Y and (x, ỹ) ∈ X × Ỹ . Define

distributions pX(k) over X , k = 0, 1, · · · ,M − 1, such that pX(k)(x⊕M k) = pX∗(x) for

all x ∈ X . Let Y (k) and Ỹ (k) be the channel outputs induced by input X(k) via pY |X

and pỸ |X , respectively, k = 0, 1, · · · ,M − 1. Note that

pY (k)(µk(y)) =
∑
x∈X

pX(k)(x)pY |X(µk(y)|x)

=
∑
x∈X

pX(k)(x⊕M k)pY |X(µk(y)|x⊕M k)

=
∑
x∈X

pX∗(x)pY |X(y|x)

= pY ∗(y)

for all y ∈ Y . Similarly,

pỸ (k)(µ̃k(ỹ)) = pỸ ∗(ỹ)

for all ỹ ∈ Ỹ . Since µ and µ̃ are bijective functions, it follows that

H(Y (k)) = H(Y ∗), (A.2)

H(Ỹ (k)) = H(Ỹ ∗) (A.3)

for k = 0, 1, · · · ,M − 1. Now choose U = {0, 1, · · · ,M − 1} and set pU∗(u) = 1
M

for all u ∈ U . Moreover, let pX|U∗(x|u) = pX(u)(x) for all (x, u) ∈ X × U . One can

readily verify that this construction preserves the uniform distribution of X and the
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induced pU∗|X(u|x) depends on (x, u) only through u 	M x for all (x, u) ∈ X × U .

Furthermore, we have

− αH(Y |U∗) + α̃H(Ỹ |U∗)

=
1

M

∑
u∈U

[−αH(Y |U∗ = u) + α̃H(Ỹ |U∗ = u)]

=
1

M

∑
u∈U

[−αH(Y (u)) + α̃H(Ỹ (u))]

= −αH(Y ∗) + α̃H(Ỹ ∗), (A.4)

where (A.4) is due to (A.2) and (A.3). In view of (A.1) and (A.4), pU∗|X must be a

maximizer of (3.1). This completes the proof of Lemma 1.

Remark: The proof in fact implies that maximum value of (3.1) remains the same

even if one has to the freedom to optimize over pX,U .
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Appendix B

Proof of Lemma 2

Since −H(U |Y ) +H(Ũ |Y ) depends on pU,Ũ |X only through pU |X and pX̃ , there is no

loss of generality in assuming that pŨ |X is physically degraded with respect to pU |X .

As a consequence,

H(U, Ũ |Y ) = H(U |Y ) +H(Ũ |U).

On the other hand,

H(U, Ũ |Y ) = H(Ũ |Y ) +H(U |Y, Ũ).

Therefore, we have

−H(U |Y ) +H(Ũ |Y ) = −H(U |Y, Ũ) +H(Ũ |U),
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which implies

−αH(U |Y ) + α̃H(Ũ |Y ) = −α[H(U |Y, Ũ) +H(Ũ |U)]− (α− α̃)H(Ũ |Y ).

In view of the fact that H(Ũ |U) does not depend on pY |X and the fact that H(U |Y, Ũ)

and H(Ũ |Y ) are concave functions of pY |X , one can readily show that −αH(U |Y ) +

α̃H(Ũ |Y ) is a convex function of pY |X .

Let pY ∗|X be a minimizer of (3.2). Define pY (k)|X : X → Y , k = 0, 1, · · · ,M − 1,

such that pY (k)|X(µk(y)|x⊕M k) = pY ∗|X(y|x) for all (x, y) ∈ X × Y . It is easy to see

that

pX,U,Y (k)(x⊕M k, u⊕M k, µk(y))

= pX,U(x⊕M k, u⊕M k)pY (k)|X(µk(y)|x⊕M k)

= pX,U(x, u)pY ∗|X(y|x)

= pX,U,Y ∗(x, u, y)

for all (x, u, y) ∈ X × U × Y and k = 0, 1, · · · ,M − 1, which, together with the fact

that µ is a bijective function, implies

H(U |Y ∗) = H(U |Y (k)) (B.5)

for k = 0, 1, · · · ,M − 1. Similarly, we have

H(Ũ |Y ∗) = H(Ũ |Y (k)) (B.6)
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for k = 0, 1, · · · ,M − 1.

Now define pȲ |X : X → Y such that

pȲ |X(y|x) =
1

M

M−1∑
k=0

pY (k)|X(y|x)

for all (x, y) ∈ X × Y . Note that

pȲ |X(µx(y)|x) =
1

M

M−1∑
k=0

pY (k)|X(µx(y)|x)

=
1

M

M−1∑
k=0

pY ∗|X(µx	Mk(y)|x	M k)

=
1

M

M−1∑
k=0

pY ∗|X(µk(y)|k),

which does not depend on x. Therefore,

pȲ |X(µx(y)|x) = pȲ |X(y|0)

for all (x, y) ∈ X × Y . Moreover, we have

E[m(X, Ȳ )] =
∑

(x,y)∈X×Y

pX(x)pȲ |X(y|x)m(x, y)

=
1

M

∑
(x,y)∈X×Y

M−1∑
k=0

pX(x)pY (k)|X(y|x)m(x, y)

=
1

M

M−1∑
k=0

∑
(x,y)∈X×Y

pX(x)pY (k)|X(y|x)m(x, y)

=
1

M

M−1∑
k=0

∑
(x,y)∈X×Y

pX(x⊕M k)pY (k)|X(µk(y)|x⊕ k)m(x⊕M k, µk(y))
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=
1

M

M−1∑
k=0

∑
(x,y)∈X×Y

pX(x)pY ∗|X(y|x)m(x, y)

= E[m(X, Y ∗)]

≤ d.

Since −αH(U |Y ) + α̃H(Ũ |Y ) is a convex function of pY |X , it follows that

− αH(U |Ȳ ) + α̃H(Ũ |Ȳ )

≤ 1

M

M−1∑
k=0

[−αH(U |Y (k)) + α̃H(Ũ |Y (k))]

= −αH(U |Y ∗) + α̃H(Ũ |Y ∗), (B.7)

where (B.7) is due to (B.5) and (B.6). Therefore, pȲ |X must also be a minimizer of

(3.2). This completes the proof of Lemma 2.
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Appendix C

Proof of Theorem 2

The following result due to von Neumann Neumann (1937) (see also (Kakutani, 1941,

Theorem 2)) plays a crucial role in establishing the minimax theorems in this paper.

Lemma 4. Let X and Y be two bounded closed convex sets in the Euclidean spaces

Rm and Rn, respectively, and X × Y be their Cartesian product in Rm+n. Let U and

V be two closed subsets of X ×Y such that for any x ∈ X the set {y ∈ Y : (x, y) ∈ U}

is non-empty, closed, and convex, and such that for any y ∈ Y the set {x ∈ X :

(x, y) ∈ V} is non-empty, closed, and convex. Under these assumptions, U and V

have a common point.

The next result is a direct consequence of Lemma 4.

Lemma 5. Let f(x, y) be a continuous real-valued function defined for x ∈ X and

y ∈ Y, where X and Y are two bounded closed convex sets in the Euclidean spaces Rm

and Rn, respectively. If for any x ∈ X the set arg miny∈Y f(x, y) is non-empty, closed,

and convex, and for any y ∈ Y the set arg maxx∈X f(x, y) is non-empty, closed, and
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convex, then there exists a saddle point (x∗, y∗) in the sense that

x∗ ∈ arg max
x∈X

f(x, y∗), (C.8)

y∗ ∈ arg min
y∈Y

f(x∗, y). (C.9)

Proof. Let U = {(x, y) : x ∈ X , y ∈ Ux} and V = {(x, y) : x ∈ Vy, y ∈ Y}, where

U(x) = arg miny∈Y f(x, y) and V(y) = arg maxx∈X f(x, y). Consider a Cauchy se-

quence (x(n), y(n)), n = 1, 2 · · · , with (x(n), y(n)) ∈ U for every n. Denote the limit of

this sequence by (x, y). Note that

f(x, y)

= lim
n→∞

f(x(n), y(n))

≤ lim
n→∞

f(x(n), y(x))

= f(x, y(x)),

where y(x) ∈ U(x). Hence, we must have y ∈ U(x), which implies (x, y) ∈ U . This

proves that U is closed. Similarly, it can be proved that V is also closed. Now it

follows from Lemma 4 that U ∩ V 6= ∅, i.e., there exists (x∗, y∗) such that (C.8) and

(C.9) are satisfied.

Now we proceed to prove Theorem 2. Note that the maximization problem

max
q∈[0, 1

2
]L+1

κ(α, q, δ)
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can be decomposed into the following sub-problems

max
q0∈[0, 1

2
]
α1(1− δ1)Hb(q0), (C.10)

max
qk∈[0, 1

2
]
[−αk(1− δk) + αk+1(1− δk+1)]Hb(qk), k = 1, · · · , L− 1, (C.11)

max
qL∈[0, 1

2
]
−αL(1− δL)Hb(qL). (C.12)

It is clear that the maximizers of (C.10), (C.11), (C.12) are, respectively, given by

q0 =


0, α1(1− δ1) < 0

any number in [0, 1
2
], α1(1− δ1) = 0

1
2
, α1(1− δ1) > 0

, (C.13)

qk =


0, αk(1− δk) > αk+1(1− δk+1)

any number in [0, 1
2
], αk(1− δk) = αk+1(1− δk+1)

1
2
, αk(1− δk) < αk+1(1− δk+1)

, k = 1, · · · , L− 1,

(C.14)

qL =


0, αL(1− δL) > 0

any number in [0, 1
2
], αL(1− δL) = 0

1
2
, αL(1− δL) < 0

. (C.15)

Similarly, the minimization problem

min
δ∈D(d)

κ(α, q, δ)
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can be decomposed into the following sub-problems

min
δk∈[0,dk]

αk(1− δk)[Hb(qk−1)−Hb(qk)], k = 1, · · · , L,

and the corresponding minimizers are given by

δk =


0, αk[Hb(qk−1)−Hb(qk)] < 0

any number in [0, dk], αk[Hb(qk−1)−Hb(qk)] = 0

dk, αk[Hb(qk−1)−Hb(qk)] > 0

, k = 1, · · · , L. (C.16)

According to (C.16), the set arg minδ∈D(d) κ(α, q, δ) is non-empty, closed, and

convex for every q ∈ [0, 1
2
]L+1. Moreover, according to (C.13)-(C.15), the set arg

maxq∈[0, 1
2

]L+1 κ(α, q, δ) is non-empty, closed, and convex for every δ ∈ D(d). There-

fore, it follows from Lemma 5 that there exists (q∗, δ∗) such that (3.3) and (3.4) are

satisfied.

Now consider the case α1 ≥ · · · ≥ αL ≥ 0. Let (q∗, δ∗) be an arbitrary saddle

point solution. If q∗k−1 < q∗k for some k, then, in light of (C.14)-(C.16), one of the

following must be true:

• αk = αk+1 and δ∗k = δ∗k+1 = 0;

• αk = 0.

Moreover, if q∗k−1 > q∗k and dk = 1 for some k, then, in light of (C.14)-(C.16), one of

the following must be true:

• δ∗k = δ∗k+1 = 1;

• αk+1 = 0 and δ∗k = 1;
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• k = L and δ∗L = 1;

• αk = 0.

Based on these observations, one can readily show via induction that (q̃∗, δ∗) with

q̃∗ = (q̃∗0, q̃
∗
1, · · · , q̃∗L) is also a saddle-point solution, where q̃∗0 = q∗0 and

q̃∗k =


q̃∗k−1, q̃∗k−1 < q∗k

q̃∗k−1, q̃∗k−1 > q∗k and dk = 1

q∗k otherwise

for k = 1, · · · , L. Note that by construction we have q̃∗0 ≥ q̃∗1 ≥ · · · ≥ q̃∗L and q̃∗k−1 = q̃∗k

whenever dk = 1, k = 1, · · · , L. In view of (C.14), it is clear that, if δ∗k < δ∗k+1 for

some k, then either q̃∗k = 0 or αk = 0. Based on this observation, one can show via

a simple induction that (q̃∗, δ̃
∗
) with δ̃

∗
= (δ∗1, · · · , δ∗L) is still a saddle-point solution,

where δ̃∗1 = δ∗1 and

δ̃∗k+1 =

 δ̃∗k, δ̃∗k < δ∗k+1

δ∗k+1, otherwise

for k = 1, · · · , L − 1. Note that by construction we have δ̃∗1 ≥ · · · ≥ δ̃∗L. In the case

α1 > · · · > αL > 0, if q∗k−1 < q∗k for some k, then it follows by (C.16) that δ∗k = 0,

which, in view of (C.14) and (C.15), further implies q∗k = 0, leading to a contradiction

with the assumption q∗k−1 < q∗k; therefore, we must have q∗0 ≥ q∗1 ≥ · · · ≥ q∗L. This

completes the proof of Theorem 2.
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Proof of Theorem 4

We first prove the following technical result. Define

g(α, α̃, δ, δ̃) = −α(1− 2δ) log
(1− δ

δ

)
+ α̃(1− 2δ̃) log

(1− δ̃
δ̃

)
,

g̃(α, α̃, δ, δ̃) = −α(1− 2δ)2 + α̃(1− 2δ̃)2,

where α ≥ α̃ ≥ 0, δ ∈ [0, 1
2
], and δ̃ ∈ [0, 1

2
]. When no confusion can arise, we will

simply write g(α, α̃, δ, δ̃) and g̃(α, α̃, δ, δ̃) as g and g̃, respectively.

Lemma 6. The maximizer of the following optimization problem

max
q∈[0, 1

2
]
−αHb(q � δ) + α̃Hb(q � δ̃),

53



M.A.Sc. Thesis - Shuo Shao McMaster - Electrical Engineering

where α ≥ α̃ ≥ 0, δ ∈ [0, 1
2
], and δ̃ ∈ [0, 1

2
], is given by

q =



0, g ≤ 0 and g̃ < 0,

q†, g > 0 and g̃ < 0

1
2
, g > 0 and g̃ ≥ 0

any number in [0, 1
2
], g = g̃ = 0

with q† being the unique solution of

α(1− 2δ) log
(1− q � δ

q � δ

)
= α̃(1− 2δ̃) log

(1− q � δ̃
q � δ̃

)

for q ∈ (0, 1
2
).

Proof. One can readily verify Lemma 6 for the following degenerate cases: 1) α̃ = 0,

2) δ = δ̃, 3) δ = 1
2
, 4) δ̃ = 1

2
. Therefore, it suffices to consider the case where

α ≥ α̃ > 0, δ ∈ [0, 1
2
), δ̃ ∈ [0, 1

2
), and δ 6= δ̃.

Let ς(q) = −αHb(q � δ) + α̃Hb(q � δ̃). Note that

ς ′(q) = −α(1− 2δ) log
(1− q � δ

q � δ

)
+ α̃(1− 2δ̃) log

(1− q � δ̃
q � δ̃

)
,

ς ′′(q) =
α(1− 2δ)2

(q � δ)(1− q � δ)
− α̃(1− 2δ̃)2

(q � δ̃)(1− q � δ̃)

for q ∈ [0, 1
2
]; in particular,

ς ′(0) = g(α, α̃, δ, δ̃),

ς ′′(
1

2
) = −4g̃(α, α̃, δ, δ̃).
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We shall prove the following statements:

a) ς ′(q) = 0 has no more than one solution in [0, 1
2
);

b) ς ′′(q) = 0 cannot have two different solutions in [0, 1
2
].

In view of Rolle’s theorem and the fact that ς ′(1
2
) = 0, it suffices to prove statement

b). Note that

ς ′′(q) = 0

⇐⇒(α− α̃)(1− 2δ)2(1− 2δ̃)2(q2 − q)− α(1− 2δ)2δ̃(1− δ̃) + α̃(1− 2δ̃)2δ(1− δ) = 0

(D.17)

for q ∈ [0, 1
2
]. If α = α̃ > 0, then we further have

ς ′′(q) = 0⇐⇒τ(δ) = τ(δ̃),

where τ(x) = x(1−x)
(1−2x)2

; since τ(x) is a strictly increasing function for x ∈ [0, 1
2
), it

follows that ς ′′(q) = 0 has no solution in (0, 1
2
) (under our assumption δ ∈ [0, 1

2
),

δ̃ ∈ [0, 1
2
), and δ 6= δ̃). For the case α > α̃ > 0, note that the sum of the two roots of

the equation in (D.17) is equal to one, which implies that ς ′′(q) = 0 cannot have two

different solutions in [0, 1
2
].

Now consider the following cases.

• g ≤ 0 and g̃ < 0 (i.e., ς ′(0) ≤ 0 and ς ′′(1
2
) > 0): Recall that ς ′(1

2
) = 0. Since

ς ′′(1
2
) > 0, there exists some ε ∈ (0, 1

2
] such that ς ′(q) < 0 for q ∈ [1

2
− ε, 1

2
);

moreover, in view of the fact that ς ′(0) ≤ 0 and the fact that ς ′(q) = 0 has

no more than one solution in [0, 1
2
), we must have ς ′(q) ≤ 0 for q ∈ [0, 1

2
− ε];
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therefore, q = 0 is the unique maximizer of ς(q) for q ∈ [0, 1
2
].

• g > 0 and g̃ < 0 (i.e., ς ′(0) > 0 and ς ′′(1
2
) > 0): In this case, q = q† is the unique

solution of ς ′(q) = 0 for q ∈ (0, 1
2
); furthermore, we have ς ′(q) > 0 for q ∈ [0, q†)

and ς ′(q) < 0 for q ∈ (q†, 1
2
). Therefore, q = q† is the unique maximizer of ς(q)

for q ∈ [0, 1
2
].

• g > 0 and g̃ ≥ 0 (i.e., ς ′(0) > 0 and ς ′′(1
2
) ≤ 0): Again recall that ς ′(1

2
) = 0. If

ς ′′(1
2
) < 0, then there exists some ε ∈ (0, 1

2
] such that ς ′(q) > 0 for q ∈ [1

2
− ε, 1

2
);

moreover, in view of the fact that ς ′(0) > 0 and the fact that ς ′(q) = 0 has

no more than one solution in [0, 1
2
), we must have ς ′(q) ≥ 0 for q ∈ [0, 1

2
− ε];

therefore, q = 1
2

is the unique maximizer of ς(q) for q ∈ [0, 1
2
]. For the case

ς ′(0) > 0 and ς ′′(1
2
) = 0, in view of the fact that ς ′(1

2
) = 0 and the fact that

ς ′′(q) = 0 cannot have two different solutions in [0, 1
2
], we must have ς ′(q) > 0

for q ∈ [0, 1
2
); as a consequence, q = 1

2
is again the unique maximizer of ς(q) for

q ∈ [0, 1
2
].

• g ≤ 0 and g̃ ≥ 0: We shall show that this case does not exist under our

assumption α ≥ α̃ > 0, δ ∈ [0, 1
2
), δ̃ ∈ [0, 1

2
), and δ 6= δ̃. Since g ≤ 0 and g̃ ≥ 0,

it follows that ρ(δ) ≥ ρ(δ̃), where

ρ(x) =
1

1− 2x
log
(1− x

x

)
.

It can be verified that

ρ′(x) =
1

(1− 2x)2
ξ(x),
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where

ξ(x) = 2 log
(1− x

x

)
− 1− 2x

x(1− x)
.

Moreover,

ξ′(x) = − 2

x(1− x)
+

2x(1− x) + (1− 2x)2

x2(1− x)2

=
(1− 2x)2

x2(1− x)2

> 0

for x ∈ (0, 1
2
). Therefore, we have ξ(x) < ξ(1

2
) = 0 for x ∈ (0, 1

2
), which implies

ρ′(x) < 0 for x ∈ (0, 1
2
) and further implies that ρ(x) a strictly decreasing

function for x ∈ [0, 1
2
). As a consequence, ρ(δ) ≥ ρ(δ̃) if and only if δ ≤ δ̃. On

the other hand, g̃ ≥ 0 implies δ ≥ δ̃. Hence, we must have δ = δ̃. However, this

case is excluded by our assumption δ 6= δ̃.

This completes the proof of Lemma 6.

Now we proceed to prove Theorem 4. Note that the maximization problem

max
q∈[0, 1

2
]L+1

η(α, q, δ)

can be decomposed into the following sub-problems

max
q0∈[0, 1

2
]
α1Hb(q0 � δ1), (D.18)

max
qk∈[0, 1

2
]
−αkHb(qk � δk) + αk+1Hb(qk � δk+1), k = 1, · · · , L− 1, (D.19)
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max
qL∈[0, 1

2
]
−αLHb(qL � δL). (D.20)

It is clear that the maximizers of (D.18) and (D.20) are, respectively, given by

q0 =


1
2
, α1 > 0 and δ1 ∈ [0, 1

2
)

any number in [0, 1
2
], α1 = 0 or δ1 = 1

2

, (D.21)

qL =

 0, αL > 0 and δL ∈ [0, 1
2
)

any number in [0, 1
2
], , αL = 0 or δL = 1

2

. (D.22)

Moreover, it follows from Lemma 6 that the maximizers of (D.19) are given by

qk =



0, gk ≤ 0 and g̃k < 0

q†k, gk > 0 and g̃k < 0

1
2
, gk > 0 and g̃k ≥ 0

any number in [0, 1
2
], gk = g̃k = 0

, (D.23)

where gk = g(αk, αk+1, δk, δk+1), g̃k = g̃(αk, αk+1, δk, δk+1), and q†k is the unique solu-

tion of

αk(1− 2δ) log
(1− q � δk

q � δk

)
= αk+1(1− 2δk+1) log

(1− q � δk+1

q � δk+1

)

for q ∈ (0, 1
2
), k = 1, · · · , L− 1. Similarly, the minimization problem

min
δ∈D(d)

η(α, q, δ)
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can be decomposed into the following sub-problems

min
δk∈[0,dk]

αk[Hb(qk−1 � δk)−Hb(qk � δk)], k = 1, · · · , L. (D.24)

It is easy to verify that the minimizers of (D.24) are given by

δk =


0, αk > 0 and qk−1 < qk

dk, αk > 0 and qk−1 > qk

any number in [0, dk], αk = 0 or qk−1 = qk

, k = 1, · · · , L. (D.25)

The rest of the proof is almost identical with its counterpart in the proof of Theorem

2 (cf. the steps after Equation (C.16)) and thus is omitted.
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Appendix E

Proof of Theorem 6

The following technical lemma is needed for the proof of Theorem 6. Define

h(α, α̃, δ, δ̃) = −(α− α̃)(λ− δ)(λ− δ̃),

h̃(α, α̃, δ, δ̃) = −α(λ− δ)δ̃ + α̃(λ− δ̃)δ,

where α ≥ α̃ ≥ 0, δ ∈ [0, λ], and δ̃ ∈ [0, λ]. When no confusion can arise, we will

simply write h(α, α̃, δ, δ̃) and h̃(α, α̃, δ, δ̃) as h and h̃, respectively.

Lemma 7. The maximizer of the following optimization problem

max
θ∈[0,λ]

−α log(λθ + λδ − θδ) + α̃ log(λθ + λδ̃ − θδ̃),
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where α ≥ α̃ ≥ 0, δ ∈ [0, λ], and δ̃ ∈ [0, λ], is given by

θ =



0, h ≤ 0, h̃ ≤ 0, and h+ h̃ < 0

min
{
− h̃

h
λ, λ
}
, h < 0 and h̃ > 0

λ, h = 0 and h̃ > 0

any number in [0, λ], h = h̃ = 0

.

Proof. Note that

%′(θ) =
hθ + h̃λ

(λθ + λδ − θδ)(λθ + λδ̃ − θδ̃)

for θ > 0, where

%(θ) = −α log(λθ + λδ − θδ) + α̃ log(λθ + λδ̃ − θδ̃).

Now consider the following cases.

• h ≤ 0, h̃ ≤ 0, and h+ h̃ < 0: In this case, %(θ) is a strictly decreasing function

for θ ≥ 0; consequently, θ = 0 is the unique maximizer of %(θ) for θ ∈ [0, λ].

• h < 0 and h̃ > 0: In this case, %(θ) is a strictly increasing function for θ ∈

[0,− h̃
h
λ) and a strictly increasing function for θ > − h̃

h
λ; consequently, θ =

min{− h̃
h
λ, λ} is the unique maximizer of %(θ) for θ ∈ [0, λ].

• h = 0 and h̃ > 0: In this case, %(θ) is a strictly increasing function for θ ≥ 0;

consequently, θ = λ is the unique maximizer of %(θ) for θ ∈ [0, λ].

• h = h̃ = 0: In this case, %(θ) is a constant.
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This completes the proof of Lemma 7.

Now we proceed to prove Theorem 6. The main difficulty here is that ω(α, ·, ·) is

not continuous at certain boundary points1; as a consequence, Lemma 5 in Appendix

C is not applicable anymore. So we shall instead rely on Lemma 4 in Appendix C.

Note that the maximization problem

max
θ∈[0,λ]L+1

ω(α, θ, δ)

can be decomposed into the following sub-problems

max
θ0∈[0,λ]

α1

2
log(λθ0 + λδ1 − θ0δ1), (E.26)

max
θk∈[0,λ]

−αk
2

log(λθk + λδk − θkδk) +
αk+1

2
log(λθk + λδk+1 − θkδk+1), k = 1, · · · , L− 1,

(E.27)

max
θL∈[0,λ]

−αL
2

log(λθL + λδL − θLδL). (E.28)

It is clear that the maximizers of (E.26) and (E.28) are, respectively, given by

θ0 =

 λ, α1 > 0 and δ1 ∈ [0, λ)

any number in [0, λ], α1 = 0 or δ1 = λ
, (E.29)

θL =

 0, αL > 0 and δL ∈ [0, λ)

any number in [0, 1
2
], , αL = 0 or δL = λ

. (E.30)

1For example, consider an arbitrary (α, θ, δ) such that αk > 0 and θk−1 = θk = δk = 0 for some

k. It can be shown that, for any a ∈ [−∞,∞], one can find a sequence (θ(n), δ(n)), n = 1, 2, · · · ,
converging to (θ, δ) such that limn→∞ ω(α, θ(n), δ(n)) = a. Similarly, if αk > 0, αk+1 > 0, and

θk = δk = δk+1 = 0 for some k, then, for any a ∈ [−∞,∞], one can find a sequence (θ(n), δ(n)),

n = 1, 2, · · · , converging to (θ, δ) such that limn→∞ ω(α, θ(n), δ(n)) = a.
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Moreover, it follows from Lemma 7 that the maximizers of (E.27) are given by

θk =



0, hk ≤ 0, h̃k ≤ 0, and hk + h̃k < 0

min
{
− h̃k

hk
λ, λ
}
, hk < 0 and h̃k > 0

λ, hk = 0 and h̃k > 0

any number in [0, λ], hk = h̃k = 0

, k = 1, · · · , L− 1,

(E.31)

where hk = h(αk, αk+1, δk, δk+1) and h̃k = h̃(αk, αk+1, δk, δk+1). Similarly, the mini-

mization problem

min
δ∈D(d)

ω(α, θ, δ)

can be decomposed into the following sub-problems

min
δk∈[0,dk]

αk
2

log
(λθk−1 + λδk − θk−1δk

λθk + λδk − θkδk

)
, k = 1, · · · , L. (E.32)

It is easy to verify that the minimizers of (E.32) are given by

δk =


0, αk > 0 and θk−1 < θk

dk, αk > 0 and θk−1 > θk

any number in [0, dk], αk = 0 or θk−1 = θk

, k = 1, · · · , L. (E.33)

For every θ ∈ [0, 1
2
]L+1, define U(θ) to be the set of δ ∈ D(d) satisfying (E.33);

similarly, for every δ ∈ D(d), define V(δ) to be the set of θ ∈ [0, 1
2
]L+1 satisfying

63



M.A.Sc. Thesis - Shuo Shao McMaster - Electrical Engineering

(E.29), (E.30), and (E.31). Furthermore, define

U = {(θ, δ) : θ ∈ [0,
1

2
]L+1, δ ∈ U(θ)},

V = {(θ, δ) : θ ∈ V(δ), δ ∈ D(d)}.

Note that2

U(θ) ⊆ arg min
δ∈D(d)

ω(α, θ, δ), θ ∈ [0,
1

2
]L+1, (E.34)

V(δ) ⊆ arg max
θ∈[0, 1

2
]L+1

ω(α, θ, δ), δ ∈ D(d), (E.35)

where the equality in (E.34) holds if

min
δ∈D(d)

ω(α, θ, δ) > −∞,

and the equality in (E.35) holds if

max
θ∈[0, 1

2
]L+1

ω(α, θ, δ) <∞.

In view of (E.33), the set U(θ) is non-empty, closed, and convex for every θ ∈

[0, 1
2
]L+1. Moreover, in view of (E.29)-(E.31), the set V(δ) is non-empty, closed,

and convex for every δ ∈ D(d). Consider a Cauchy sequence (θ(n), δ(n)) with θ(n) =

(θ
(n)
0 , θ

(n)
1 , · · · , θ(n)

L ) and δ(n) = (δ
(n)
1 , · · · , δ(n)

L ), n = 1, 2, · · · , such that (θ(n), δ(n)) ∈ U
2For example, if α1 ≥ · · · ≥ αL > 0, θ0 > θ1 = 0, and θ2 > · · · > θL, then

arg minδ∈D(d) ω(α, θ, δ) = {δ ∈ D(d) : δ1 > 0, δ2 = 0}; in contrast, we have U(θ) =
{(d1, 0, d3, · · · , dL)}. Note that in this example U(θ) is a closed set whereas arg minδ∈D(d) is not. Sim-
ilarly, if α1 > · · · > αL > 0, δ1 = 0, and δk ∈ (0, λ), k = 2, · · · , L, then arg maxθ∈[0, 12 ]L+1 ω(α, θ, δ) =

{θ ∈ [0, 12 ]L+1 : θ0 > 0, θ1 = 0}; in contrast, V(δ) contains a single element. Note that in this
example V(δ) is a closed set whereas arg maxθ∈[0, 12 ]L+1 ω(α, θ, δ) is not.
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for every n. Denote the limit of this sequence by (θ, δ). Note that, for any k, if αk = 0

or θk−1 = θk, then (E.33) is clearly satisfied by δk. On the other hand, if αk > 0 and

θk−1 < θk (θk−1 > θk), then we must have θ
(n)
k−1 < θ

(n)
k (θ

(n)
k−1 > θ

(n)
k ) for all sufficiently

large n, which, together with the fact that (θ(n), δ(n)) ∈ U for every n, implies δ
(n)
k = 0

(δ
(n)
k = dk) for all sufficiently large n and consequently δk = 0 (δk = dk); hence, (E.33)

is still satisfied by δk. Therefore, we have (θ, δ) ∈ U . This proves that U is a closed

set. Similarly, let (θ(n), δ(n)), n = 1, 2, · · · , be a Cauchy sequence with (θ(n), δ(n)) ∈ V

for every n. Again denote the limit of this sequence by (θ, δ). It is easy to verify

that θ0 and θL satisfy (E.29) and (E.30), respectively. In order to show that (E.31)

is satisfied by θk, k = 1, · · · , L− 1, we consider the following cases.

• hk(αk, αk+1, δk, δk+1) ≤ 0, h̃k(αk, αk+1, δk, δk+1) ≤ 0, and they are not equal to

zero at the same time: If h̃k(αk, αk+1, δk, δk+1) < 0, then we have

h̃k(αk, αk+1, δ
(n)
k , δ

(n)
k+1) < 0 for all sufficiently large n, which, together with the

fact that (θ(n), δ(n)) ∈ V for every n, implies θ
(n)
k = 0 for all sufficiently large n

and consequently θk = 0. On the other hand, if hk(αk, αk+1, δk, δk+1) < 0 and

h̃k(αk, αk+1, δk, δk+1) = 0, then hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1) < 0 for all sufficiently

large n. Since (θ(n), δ(n)) ∈ V for every n, it follows that, when n is sufficiently

large, we have θ
(n)
k = 0 if h̃k(αk, αk+1, δ

(n)
k , δ

(n)
k+1) ≤ 0, and

θ
(n)
k = min

{
−
h̃k(αk, αk+1, δ

(n)
k , δ

(n)
k+1)

hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1)

λ, λ
}

if h̃k(αk, αk+1, δ
(n)
k , δ

(n)
k+1) > 0. This, together with the fact that

lim
n→∞

hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1) < 0,
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lim
n→∞

h̃k(αk, αk+1, δ
(n)
k , δ

(n)
k+1) = 0,

implies θk = 0. Hence, (E.31) is satisfied in this case.

• hk(αk, αk+1, δk, δk+1) < 0 and h̃k(αk, αk+1, δk, δk+1) > 0: We must have

hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1) < 0 and h̃k(αk, αk+1, δ

(n)
k , δ

(n)
k+1) > 0 for all sufficiently

large n, which, together with the fact that (θ(n), δ(n)) ∈ V for every n, implies

θ
(n)
k = min

{
−
h̃k(αk, αk+1, δ

(n)
k , δ

(n)
k+1)

hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1)

λ, λ
}

for all sufficiently large n. Hence,

θk = lim
n→∞

θ
(n)
k

= min
{
− h̃k(αk, αk+1, δk, δk+1)

hk(αk, αk+1, δk, δk+1)
λ, λ
}
,

which satisfies (E.31).

• hk(αk, αk+1, δk, δk+1) = 0 and h̃k(αk, αk+1, δk, δk+1) > 0: In this case

h̃k(αk, αk+1, δ
(n)
k , δ

(n)
k+1) > 0 for all sufficiently large n. Recall that (θ(n), δ(n)) ∈ V

for every n. Therefore, when n is sufficiently large, we must have

θ
(n)
k = min

{
−
h̃k(αk, αk+1, δ

(n)
k , δ

(n)
k+1)

hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1)

λ, λ
}

if hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1) < 0, and θ

(n)
k = λ if hk(αk, αk+1, δ

(n)
k , δ

(n)
k+1) = 0. This,
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together with the fact that

lim
n→∞

hk(αk, αk+1, δ
(n)
k , δ

(n)
k+1) = 0,

lim
n→∞

h̃k(αk, αk+1, δ
(n)
k , δ

(n)
k+1) > 0,

implies θk = λ. Hence, (E.31) is satisfied in this case.

• hk(αk, αk+1, δk, δk+1) = h̃k(αk, αk+1, δk, δk+1) = 0: This case is trivial.

This proves (θ, δ) ∈ V , which further implies that V is a closed set. Therefore, it

follows from Lemma 4 that U ∩ V 6= ∅; as a consequence, there exists (θ∗, δ∗) such

that (4.1) and (4.2) are satisfied.

Now consider the case α1 ≥ · · · ≥ αL ≥ 0. Let (θ∗, δ∗) be an arbitrary saddle

point solution. It is clear that ω(α, θ∗, δ∗) ∈ (−∞,∞). Therefore, we must have

(θ∗, δ∗) ∈ U ∩ V . Define θ̃
∗

= (θ̃∗0, θ̃
∗
1, · · · , θ̃∗L), where θ̃∗0 = θ∗0 and

θ̃∗k =


θ̃∗k−1, θ̃∗k−1 < θ∗k

θ̃∗k−1, θ̃∗k−1 > θ∗k and dk = λ

θ∗k otherwise

for k = 1, · · · , L; note that by construction we have θ̃∗0 ≥ θ̃∗1 ≥ · · · ≥ θ̃∗L and θ̃∗k−1 = θ̃∗k

whenever dk = λ, k = 1, · · · , L. Moreover, define δ̃
∗

= (δ∗1, · · · , δ∗L), where δ̃∗1 = δ∗1

and

δ̃∗k+1 =

 δ̃∗k, δ̃∗k < δ∗k+1

δ∗k+1, otherwise
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for k = 1, · · · , L − 1; note that by construction we have δ̃∗1 ≥ · · · ≥ δ̃∗L. It can be

shown that (θ̃
∗
, δ̃
∗
) is also a saddle-point solution (cf. the counterpart in the proof of

Theorem 2).

Finally consider the case α1 ≥ · · · ≥ αL > 0. If θ∗k−1 < θ∗k for some k, then it

follows by (E.33) that δ∗k = 0. We shall show that it is impossible to have θ∗k > 0 and

δ∗k = 0 at the same time. Indeed, if θ∗k > 0 and δ∗k = 0, then, according to (E.31), we

must have δ∗k+1 = 0 (and αk = αk+1), which, in view of (E.33), further implies θ∗k ≤

θ∗k+1 (and consequently θ∗k+1 > 0); now a simple induction yields θ∗L > 0 and δ∗L = 0,

leading to a contradiction with (E.30). Therefore, we must have θ∗0 ≥ θ∗1 ≥ · · · ≥ θ∗L.

This completes the proof of Theorem 6.
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Appendix F

Proof of Corollary 9

It follows from Theorem 6 that

ψ(α, d) = max min
δ∈D(d)

ω(α, θ, δ),

where the maximization is taken over those θ such that λ ≥ θ0 = · · · = θi−1 ≥ θi =

· · · = θj−1 ≥ θj = · · · = θL ≥ 0. As a consequence, we have

ψ(α, d) = max
(θ0,θi,θj):λ≥θ0≥θi≥θj≥0

min
(δi,δj)∈[0,di]×[0,dj ]

αi
2

log
(λθ0 + λδi − θ0δi
λθi + λδi − θiδi

)
+
αj
2

log
( λθi + λδj − θiδj
λθj + λδj − θjδj

)
= max

(θ0,θi,θj):λ≥θ0≥θi≥θj≥0

αi
2

log
(λθ0 + λdi − θ0di
λθi + λdi − θidi

)
+
αj
2

log
( λθi + λdj − θidj
λθj + λdj − θjdj

)
= max

θi∈[0,λ]

αi
2

log
( λ2

λθi + λdi − θidi

)
+
αj
2

log
(λθi + λdj − θidj

λdj

)
.

One can readily verify following statements by invoking Lemma 7 in Appendix E.
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• h̃(αi, αj, di, dj) ≤ 0 (i.e., αi(λ− di)dj ≥ αj(λ− dj)di): We have

max
θi∈[0,λ]

αi
2

log
( λ2

λθi + λdi − θidi

)
+
αj
2

log
(λθi + λdj − θidj

λdj

)
=
αi
2

log
( λ2

λθi + λdi − θidi

)
+
αj
2

log
(λθi + λdj − θidj

λdj

)∣∣∣∣
θi=0

=
αi
2

log
( λ
di

)
.

• h(αi, αj, di, dj) + h̃(αi, αj, di, dj) ≥ 0 (i.e., αi(λ− di) ≤ αj(λ− dj)): We have

max
θi∈[0,λ]

αi
2

log
( λ2

λθi + λdi − θidi

)
+
αj
2

log
(λθi + λdj − θidj

λdj

)
=
αi
2

log
( λ2

λθi + λdi − θidi

)
+
αj
2

log
(λθi + λdj − θidj

λdj

)∣∣∣∣
θi=λ

=
αj
2

log
( λ
dj

)
.

• h̃(αi, αj, di, dj) > 0 and h(αi, αj, di, dj)+ h̃(αi, αj, di, dj) < 0 (i.e., αi(λ−di)dj <

αj(λ− dj)di and αi(λ− di) > αj(λ− dj)): We have

max
θi∈[0,λ]

αi
2

log
( λ2

λθi + λdi − θidi

)
+
αj
2

log
(λθi + λdj − θidj

λdj

)
=
αi
2

log
( λ2

λθ† + λdi − θ†di

)
+
αj
2

log
(λθ† + λdj − θ†dj

λdj

)
,

where

θ† = − h̃(αi, αj, di, dj)

h(αi, αj, di, dj)
λ

=
−αiλ(λ− di)dj + αjλ(λ− dj)di

(αi − αj)(λ− di)(λ− dj)
.
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It can be verified that

αi
2

log
( λ2

λθ† + λdi − θ†di

)
+
αj
2

log
(λθ† + λdj − θ†dj

λdj

)
=
αi
2

log
[(αi − αj)(λ− dj)

αi(di − dj)

]
+
αj
2

log
[ αjλ(di − dj)

(αi − αj)(λ− di)dj

]
.

This completes the proof of Corollary 9.
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Appendix G

Proof of Theorem 9

We shall treat the three cases separately. It will be seen that Case 3) is the most

non-trivial one whereas the other two are simple consequences of Corollary 11.

1. In view of Corollary 11, we must have R(d) ≥ R`,k(d`, dk) and consequently

R`,k(d`, dk) = L
2`

log
(
λ
d`

)
for all k > `. Note that R`,k(d`, dk) = L

2`
log
(
λ
d`

)
if

and only if

dk ≥
(k
`
d−1
` −

k − `
`

λ−1
)−1

.

2. In view of Corollary 11 (or Theorem 9), we must have R(d) ≥ Rk,L(dk, dL) and

consequently Rk,L(dk, dL) = 1
2

log
(
λ
dL

)
for all k < L. Note that Rk,L(dk, dL) =

1
2

log
(
λ
dL

)
if and only if

dL ≤
L

k
dk −

L− k
k

λ,
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i.e.,

dk ≥
k

L
dL +

L− k
L

λ.

3. For any integer k ∈ (`, L), it follows from Corollary 10 that R(d) ≥ ψ(α∗, d̃),

where d̃ = (d̃1, · · · , d̃L) with d̃` = d`, d̃k = dk, d̃L = dL, and dk′ = λ, k′ /∈

{`, k, L}. By Theorem 6, we have

ψ(α∗, d̃) = max min
δ∈D(d̃)

ω(α∗, θ, δ),

where the maximization is taken over those θ such that λ ≥ θ0 = · · · = θ`−1 ≥

θ` = · · · = θk−1 ≥ θk = · · · = θL−1 ≥ θL ≥ 0. As a consequence, we have

ψ(α∗, d̃) = max
(θ0,θ`,θk,θL):λ≥θ0≥θ`≥θk≥θL≥0

min
(δ`,δk,δL)∈[0,d`]×[0,dk]×[0,dL]

L

2`
log
(λθ0 + λδ` − θ0δ`
λθ` + λδ` − θ`δ`

)
+
L

2k
log
( λθ` + λδk − θ`δk
λθk + λδk − θkδk

)
+

1

2
log
( λθk + λδL − θkδL
λθL + λδL − θLδL

)
= max

(θ0,θ`,θk,θL):λ≥θ0≥θ`≥θk≥θL≥0

L

2`
log
(λθ0 + λd` − θ0d`
λθ` + λd` − θ`d`

)
+
L

2k
log
( λθ` + λdk − θ`dk
λθk + λdk − θkdk

)
+

1

2
log
( λθk + λdL − θkdL
λθL + λdL − θLdL

)
= max

(θ`,θk):λ≥θ`≥θk≥ 0

L

2`
log
( λ2

λθ` + λd` − θ`d`

)
+
L

2k
log
( λθ` + λdk − θ`dk
λθk + λdk − θkdk

)
+

1

2
log
(λθk + λdL − θkdL

λdL

)
.
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Now consider the following optimization problems:

max
θ`∈[0,λ]

− L
2`

log(λθ` + λd` − θ`d`) +
L

2k
log(λθ` + λdk − θ`dk), (G.36)

max
θk∈[0,λ]

− L

2k
log(λθk + λdk − θkdk) +

1

2
log(λθk + λdL − θkdL). (G.37)

First note that the condition L
`
d` − L−`

`
λ < dL <

(
L
`
d−1
` − L−`

`
λ−1
)−1

, together

with the assumption that d` ∈ (0, λ] and dL ∈ (0, λ], implies 0 < dL < d` < λ,

h̃(α∗` , α
∗
L, d`, dL) > 0, and h(α∗` , α

∗
L, d`, dL) + h̃(α∗` , α

∗
L, d`, dL) < 0, which further

implies θ† ∈ (0, λ), where

θ† = − h̃(α∗` , α
∗
L, d`, dL)

h(α∗` , α
∗
L, d`, dL)

λ

=
−Lλ(λ− d`)dL + `λ(λ− dL)d`

(L− `)(λ− d`)(λ− dL)
.

Now define

θ(dk) = − h̃(α∗` , α
∗
k, d`, dk)

h(α∗` , α
∗
k, d`, dk)

λ,

θ̃(dk) = − h̃(α∗k, α
∗
L, dk, dL)

h(α∗k, α
∗
L, dk, dL)

λ.

It is easy to verify that

θ(dk) =
−kλ(λ− d`)dk + `λ(λ− dk)d`

(k − `)(λ− d`)(λ− dk)
,

θ̃(dk) =
−Lλ(λ− dk)dL + kλ(λ− dL)dk

(L− k)(λ− dk)(λ− dL)
;

moreover, θ(dk) is a strictly decreasing function and θ̃(dk) is a strictly increasing
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function for dk ∈ (0, λ). Note that

θ̃(d`) =
−Lλ(λ− d`)dL + kλ(λ− dL)d`

(L− k)(λ− d`)(λ− dL)

<
−Lλ(λ− dL)d` + kλ(λ− dL)d`

(L− k)(λ− d`)(λ− dL)

=
−λd`
λ− d`

= θ(d`),

θ(dL) =
−kλ(λ− d`)dL + `λ(λ− dL)d`

(k − `)(λ− d`)(λ− dL)

<
−kλ(λ− d`)dL + `λ(λ− d`)dL

(k − `)(λ− d`)(λ− dL)

=
−λdL
λ− dL

= θ̃(dL).

Therefore, the equation θ(dk) = θ̃(dk) has a unique solution for dk ∈ (d`, dL),

which is given by

d∗k =
L(k − `)(λ− d`)dL + `(L− k)(λ− dL)d`
k(L− `)λ− L(k − `)d` − `(L− k)dL

.

It is clear that h̃(α∗` , α
∗
k, d`, d

∗
k) > 0 and h̃(α∗k, α

∗
L, d

∗
k, dL) > 0. Moreover, it can

be verified that

θ(d∗k) = θ̃(d∗k) = θ† ∈ (0, λ).
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Therefore, there exists an ε ∈ (0, d∗k] such that

h̃(α∗` , α
∗
k, d`, dk) > 0,

h̃(α∗k, α
∗
L, dk, dL) > 0,

0 < θ̃(dk) < θ(dk) < λ (G.38)

for any dk ∈ (d∗k−ε, d∗k). It follows from Lemma 7 in Appendix E that θ` = θ(dk)

is the unique maximizer of (G.36) and θk = θ̃(dk) is the unique maximizer of

(G.37) for any dk ∈ (d∗k − ε, d∗k), which, together with (G.38), implies

ψ(α∗, d̃) =
L

2`
log
( λ2

λθ(dk) + λd` − θ(dk)d`

)
+
L

2k
log
(λθ(dk) + λdk − θ(dk)dk
λθ̃(dk) + λdk − θ̃(dk)dk

)
+

1

2
log
(λθ̃(dk) + λdL − θ̃(dk)dL

λdL

)
>
L

2`
log
( λ2

λθ† + λd` − θ†d`

)
+
L

2k
log
(λθ† + λdk − θ†dk
λθ† + λdk − θ†dk

)
+

1

2
log
(λθ† + λdL − θ†dL

λdL

)
= R`,L(d`, L)

for any d∗k ∈ (d∗k − ε, d∗k). Therefore, if R(d) = R`,L(d`, dL), then we must have

dk ≥ d∗k.

This completes the proof of Theorem 9.
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