
GPU-Specific Kalman Filtering and Retrodiction

for Large-Scale Target Tracking

GPU-SPECIFIC KALMAN FILTERING AND RETRODICTION

FOR LARGE-SCALE TARGET TRACKING

BY

SEAN TAGER, B.Sc.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Sean Tager, May 2013

All Rights Reserved

Master of Applied Science (2013) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: GPU-Specific Kalman Filtering and Retrodiction for

Large-Scale Target Tracking

AUTHOR: Sean Tager

B.Sc., (Electrical Engineering)

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. T. Kirubarajan

NUMBER OF PAGES: xii, 100

ii

To my sister Lesley, who bought me my first novel

Abstract

In the field of Tracking and Data Fusion most, if not all, computations executed by

a computer are carried out serially. The sole part of the process that is not entirely

serial is the collection of data from multiple sensors, which can be executed in parallel.

However, once the data is to be filtered the most likely candidate is a serial algorithm.

This is due in large part to the algorithms themselves that have been developed over

the last several decades for use on conventional computers that have been left void of

parallel computing capabilities, until now. With the arrival of graphical processing

units, or GPUs, the tracking community is in a favourable position to exploit the

functionality of parallel processing in order to track a growing number of targets.

The problem, however, begins with the sheer labour of having to convert all the

pre-existing serial tracking algorithms into parallel ones. This is clearly a daunting

task when one considers the extent to which the tracking community has gone to

develop modern day filters such as Alpha Beta filters, Probabilistic Data Association

filters, Interacting Multiple Model filters, and several dozen, if not hundred, variants

of the aforementioned. It is most likely that these filters will find some kind of a

parallelization in the near future as ever more sensors are dispersed throughout society

and even more targets are monitored with these sensors. The volume of targets then

becomes simply too unmanageable for a serial algorithm and more focus is placed

iv

on parallel ones. Yet, before the parallel algorithms can be utilized they have to be

derived. It is the derivation of these parallel algorithms which is the focus of this

thesis. However, it should be made clear that it would be impossible to formulate a

parallelization for every filter found in the literature, and so the goal here is to direct

the attention onto one filter in particular, the Kalman filter.

v

Acknowledgements

I would like to thank my supervisor Dr. T. Kirubarajan, whose guidance and insight

made this possible.

I would also like to thank Dr. T. N. Davidson, Dr. J. P. Reilly, Dr. N. Nikolova,

Dr. A. Patricu, Dr. A. Emadi, Dr. R. Tharmarasa and all the professors at McMaster

University who helped forge me into the engineer I am today.

vi

Notation and abbreviations

AIS: Automatic Identification System

ANSI: American National Standards Institute

API: Application Programming Interface

BLAS: Basic Linear Algebra Subroutines

CPU: Central Processing Unit

CUDA: Compute Unified Device Architecture

FLOO: Floating-point Operation

G: Force of Gravity

GHz: Giga Hertz

GPU: Graphical Processing Unit

IDE: Integrated Design Environment

IMM: Interacting Multiple Model

JPDA: Joint Probabilistic Data Association

MB: Megabytes

MHT: Multiple Hypothesis Tracker

MP: Multiprocessors

OpenGL: Open Graphics Library

PDA: Probabilistic Data Association

vii

RAM: Random Access Memory

SDK: Software Development Kit

viii

Contents

Abstract iv

Acknowledgements vi

Notation and abbreviations vii

1 Introduction 1

1.1 The Tracking Problem . 2

1.2 Parallel Computations . 4

1.3 Parallel Algorithms . 5

1.4 Publications . 6

2 The Kalman Filter 7

2.1 One Iteration . 8

2.1.1 Computational Cost . 12

2.2 The Parallel Approach . 14

2.2.1 Compute Unified Device Architecture 16

2.2.2 Customizing the Threads and Blocks 18

2.2.3 Block Operations . 20

ix

2.2.4 The Source Code . 24

2.2.5 The Price of Parallel . 29

2.2.6 Simulation Results: CPU vs GPU 32

2.2.7 Simulation Results: Block Size 38

2.2.8 Future Considerations . 40

3 Retrodiction 43

3.1 Maximum Likelihood Estimate . 44

3.1.1 One Iteration II . 47

3.1.2 Computational Cost II . 49

3.2 Derivation of a Parallel Algorithm . 51

3.2.1 Prefix Sums Operation . 52

3.2.2 Parallelizing Complex Functions 56

3.2.3 The Smoothed States . 58

3.2.4 The Smoothed Covariance . 63

3.2.5 Parallel Computational Cost 66

3.2.6 The Source Code II . 68

3.2.7 Simulation Results II: CPU vs GPU 76

3.2.8 Simulation Results II: Block Size 79

3.2.9 Future Considerations II . 81

4 Conclusion 87

A Block Matrix 90

B Vectorization 92

x

C GeForce GTX 570 Specifications 94

xi

List of Figures

2.1 Prediction Runtime Comparison . 35

2.2 Logarithmic Runtime Comparison . 37

2.3 Block Size Comparison . 40

3.1 Kalman Filter and Retrodiction . 44

3.2 Up-Sweep Scan . 54

3.3 Down-Sweep Scan . 56

3.4 Up-Sweep Scan of bk . 71

3.5 Up-Sweep Scan of Ck . 72

3.6 Down-Sweep Scan of bk . 73

3.7 Down-Sweep Scan of Ck . 74

3.8 Retrodiction Runtime Comparison 78

3.9 Logarithmic Retrodiction Runtime Comparison 79

3.10 Retrodiction Block Size Comparison 81

xii

Chapter 1

Introduction

With the advent of parallel processors and graphical processing units (GPUs) comes

the promise of greater computing power and massive speed ups that translate into

one thing; a better computer. It’s hard to think of a GPU without being constantly

reminded of the benefits it brings, especially now, in a time where the performance of

GPUs is finally available to the public. For years graphical processing units existed

solely in the exclusive domain of industrial programmers that targeted their efforts

towards enhanced visual graphics. But then something happened, the power of par-

allel processing suddenly became available to everyone through APIs like OpenGL

and CUDA. Before long engineers, scientists and even hobbyists began programming

parallel code only to find out that the promise of enhanced runtimes came at a cost,

that cost was complexity. This is why the development of source code for parallel

processors has not been as progressive as some might of imagined.

Due to this complexity many programmers take the extra time to ask themselves if

it’s worth while writing parallel code for a particular application, because they know

that once they decide to commit to developing code on a GPU, they’ll have to do it

1

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

right. This means they will be burdened with the inevitable task of optimizing the

source code. That may sound like a simple matter of using threads to enforce brute

computations, after all, the more threads performing operations in one instruction

cycle can only equate to more computations being completed in a shorter period of

time. The problem is that this is far easier said than done. If one is not careful a GPU

can serialize code, cause bottlenecks during data transfers to and from the device, and

ultimately impeded performance instead of enhancing it. This is all possible due to the

sophisticated dynamics, both in the hardware and software, of a graphical processing

unit. So the only way to exploit the advantages offered by a GPU is to be clever with

the computer architecture, software and the math. This is the dividing line between

an optimized performance and a naive one. Surely, understanding the architecture

of a GPU can only aid in its enhanced functionality, but coupling that with better

mathematical algorithms will undoubtedly become the status quo. Yet, like any

standard, there must be absolute scientific proof as to its validity, which, fortunately,

is already the case. There are mathematical tools, some of which are hundreds of

years old, that can aid any programmer in deriving clever parallel algorithms.

1.1 The Tracking Problem

The science of tracking is simple enough to describe in a single sentence; monitor the

movements of a given target or a number of targets. The methodology, however, is

not so easily implemented and the reasoning is vast and complicated. Firstly, differing

targets behave differently. Following the movements of an oil tanker that requires a

large turning radius is not the same as pursuing an unmanned aerial vehicle capable

of making turns at 20-Gs [14]. Secondly, targets are commonly found in a veritable

2

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

cluster of noise and confusion that can be broken down into two main categories;

the first is due to the physical limitations of the sensors that pick up noise along

with the measurements, while the second is due to numerous other targets in the

vicinity. The latter of these two problems calls into play the need for some kind of

data association, something that has been extensively researched in various articles

[26] [38] [3] [4]. Thirdly, the sensors themselves exploit many different mediums of

measurements such as radar, optics, and Doppler to name a few. Couple these diverse

mediums with numerous sensors operating simultaneously and the field of data fusion

quickly erupts into frenzied endeavour [6] [22] [23] [5].

Yet, there is one common attribute that all of the aforementioned articles and

books share and that is regardless as to what the specific tracking application is,

there must be some kind of a filter [1] [9] [2] [21]. It is these filters that constitute the

core of tracking and due to the probabilistic/stochastic [32] nature of these filters,

the computations can become quite cumbersome, even intractable at times. So if

intensive calculations need to be performed, often times on multiple targets, then the

obvious solution is the use of parallel processing.

Accepting the fact that GPUs will have to be applied inevitably leads to the

harsh truth that every filter must now be paralellized. There is no quick fix to this

problem, the only solution is hard work. A parallel algorithm must be derived for

each and every filter in turn and then implemented in software, which in itself is a

time consuming task prone to bugs. Nonetheless, advances in technology dictate the

necessity of such an endeavour and industry demands it, so the process has to start

somewhere. This leads to the heart of this thesis, which is the starting point for the

most basic of filters and the techniques that will forge them into parallel algorithms.

3

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

The good news is that selecting the first filter to parallelize is not too difficult a task

since there is one in particular that stands out, one that has endured for over 50 years

and is still in widespread use today; the Kalman Filter [18].

1.2 Parallel Computations

The Kalman filter is widely used in Tracking and Data Fusion and has established

itself as an indispensable tool therein. Due to its broad demand, it seems reasonable

that the parallelization of tracking filters begin with this highly utilized filter. This,

however, draws into question the feasibility of deriving a parallel algorithm from a

recursive one. The short answer is that there may be a way to parallelize the Kalman

filter despite the fact that its recursive nature suggests a serial execution, but that

does not mean it is a worthwhile effort. The truth is that most sensors sweep a large

area and they do so at a sampling rate that is quite slow from the perspective of a

computer. This means that if a single target was to be tracked, its current position,

velocity and acceleration measurements would arrive long after the computer has com-

pleted the calculations from the previous measurements, amounting to a considerable

waste of time for a GPU. A more realistic approach is to perform the calculations

on multiple targets simultaneously. Interestingly enough, this is exactly what a GPU

was meant to do, perform the same computation on differing data sets, which is not

to be confused with performing differing calculations on multiple measurements. This

implies that the standard way of accomplishing matrix/vector calculations using seri-

alized software loops that perform element by element operations must be abandoned

for a more strategic approach. It is this strategic plan of attack that is the basis of

chapter 2, wherein the conventional methodology for executing computations between

4

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

matrices and vectors is replaced with a superior implementation that boasts the use

of block multiplication [15].

Obviously, performing block operations is nothing novel, since that is the entire

working basis of a GPU. But as was hinted to earlier, if one blindly executes matrix

and vector computations without being conscious of the intended application, the

results may prove unfavourable. So the idea is to find the best combination of GPU

resources and matrix/vector dimensions, which will have to be customized for the

Kalman filter. This in turn has the added benefit of establishing a methodology that

can be used on the development of filters in the future.

1.3 Parallel Algorithms

Using block operations for matrix manipulation is an appropriate first step, but it is

not the ultimate goal. The real prize when developing source code on a GPU is to

derive a parallel algorithm. If this idea seems too vague or foreign, rest assured that

it will be explained thoroughly in chapter 3. Until then, a simple analogy should help

to satiate one’s curiosity. Think of an ordered set of numbers, and then determine

the best way to find a single value in that ordered set. The naive way would be to

search through the set one at a time, starting from the beginning, while the smart

thing to do would be to perform a binary search. Both operations can be performed

on a CPU, and both will find the number they seek, but one is impressively faster,

and all just by exploiting the fact that the set is ordered. So it becomes clear that

there can be a smarter way of doing things if one is aware of all the facts.

It just so happens, that there are certain aspects of a GPU that allow an algorithm

to perform far better than it normally would. This, however, brings with it certain

5

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

challenges that cannot be overcome with customary mathematical tools, instead a

fresh perspective is needed and is readily available in the prefix sums algorithm [10]

[13]. The prefix sums is an elegant, yet simplistic approach to paralellizing serial

algorithms, and is even capable of turning a recursive algorithm into a parallel one.

Its basis forms the entirety of the third chapter where a detailed dissection of its core

functionality is analysed along with an in depth proof of how it can be applied to a

wide range of mathematical models.

This brings forth the novelty of this thesis, which is to derive a parallel algorithm

for the retrodiction of the Kalman filter that can be applied through the prefix sums

operation. The derivation uses rather unfamiliar math tools aimed at turning recur-

sive code into parallel code, an effort that marks the beginning of what will surely be

a push towards the eventual parallelization of all tracking algorithms found in both

academia and industry.

1.4 Publications

T. Kirubarajan, S. Tager. ”GPU-Specific Kalman Filtering and Retrodiction for

Large-Scale Target Tracking”, To be submitted to IEEE Transactions on Aerospace

and Electronic Systems, July 2013.

6

Chapter 2

The Kalman Filter

A formal understanding of the Kalman filter [18] is the only way to wrest an efficient

mathematical algorithm that can be reasonably implemented on a GPU. This results

in the need to step through the Kalman filter and all the components associated with

it. It should be stated that there are many tutorials and examples in academic litera-

ture that explain the Kalman filter, yet the goal here is to observe the computational

complexity and not to become overly involved with the actual derivation. Therefore,

in order to maintain a clear and comprehensive picture without delving too deeply

into the proof, the pages to follow will be referring to the tutorial outlined in [7].

Before exploring the mathematical details, however, it might be best to acquire

a broad overview of the Kalman filter, its advantages and applications. In its most

simplistic definition the Kalman filter is the optimal solution to the prediction of a

linear Gaussian problem. No filter performs better predictions on measurements rid-

dled with Gaussian noise and modelled as a Gaussian problem. One of the reasons

for this exceptional performance is that the Kalman filter not only models the elec-

trical noise of a signal as a Gaussian random variable but also the uncertainty in the

7

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

actual process itself. Since then the convention has been to call the electrical noise

the measurement noise ωk, while referring to the random error of the model as the

process noise νk, where ωk and νk are both sequences of zero-mean white Gaussian

noise sampled at discrete time instances k.

2.1 One Iteration

The mathematical basis for the Kalman filter begins with nothing more than a state

space equation of the dynamic system defined as

xk+1 = Fkxk +Gkuk + νk (2.1.1)

This equation is governed by the transition matrix Fk, which models the evolution of

the states, the input matrix Gk that describes the constraints placed upon the input

variables and the vector of independently distributed zero-mean white Gaussian noise

νk, all of which are dependant on the sampling time k. For conciseness it should be

mentioned that νk is a set of independent and identically distributed random variables

defined by the following mean, variance and covariance, respectively

E[νk] = 0 for all k

E[νkν
T
l] = 0 for all k 6= l

E[νkν
T
k] = cov(νk, ν

T
k) = Qk

where Qk is the covariance matrix for the process noise and the superscript T stands

for the transpose operation.

8

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

After having defined the state space equation, the output of the state space model

can be defined as

zk = Hkxk + ωk (2.1.3)

The key to this equation is the output matrix Hk, also known as the measurement

matrix, and the measurement noise ωk, which like the process noise is independent

and identically distributed zero-mean white Gaussian noise satisfying the following

expectations

E[ωk] = 0 for all k

E[ωkω
T
k] = 0 for all k 6= l

E[ωkω
T
k] = cov(ωk, ω

T
k) = Rk

There are now two covariance matrices; Qk for the process noise and Rk for the

measurement noise, both of which add to the uncertainty in the output of any linear

Gaussian system.

The Kalman filter begins with the state estimation xk|k that is used to predict

the successive state xk+1|k, where the notation xk+1|k is interpreted as the value of x

at time k + 1 given the value of x at time k (Its meaning and notation are identical

to that of a conditional expectation). So the predicted state is calculated using the

state space matrix

xk+1|k = Fkxk|k (2.1.5)

This predicted state is then substituted into equation (2.1.3) in order to estimate the

9

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

value of the next measurement

zk+1|k = Hk+1xk+1|k (2.1.6)

The error in the estimated measurement can now be computed

z̃k+1|k = zk − zk+1|k (2.1.7)

At this point no further computations can be made on the measurements or the

states until both the innovation covariance and filter gain matrices are computed.

Both of these matrices rely on the state estimation covariance matrix which is calcu-

lated as follows

Pk+1|k = FkPk|kF
T
k +Qk (2.1.8)

The predicted covariance is then used to compute the innovation covariance

Sk+1 = Hk+1Pk+1|kH
T
k +Rk+1 (2.1.9)

With the innovation covariance accounted for the filter gain is then determined ac-

cording to the following

Wk+1 = Pk+1|kH
T
k+1S

−1
k+1 (2.1.10)

Now would be a good time to elaborate on an important detail; up until this

point neither the measurement error z̃k+1|k nor the filter gain Wk+1 have any inter

dependant variables besides k. This means that equations (2.1.5) to (2.1.7) can be

computed alongside and independently of equations (2.1.8) to (2.1.10). Since the goal

of this paper is to seek out the optimal parallel algorithm, on might be tempted to

10

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

try and calculate z̃k+1|k and Wk+1 in parallel. This, however, is not possible with

today’s GPUs due to the fact that all the threads on the GPU perform the same

operation only on differing values, and the operations involved in deriving z̃k+1|k are

quite different from those required to obtain Wk+1.

The final steps of the Kalman filter involve updating the state estimations and

the corresponding state estimation covariance matrix.

x̂k+1|k+1 = xk+1|k +Wk+1z̃k+1|k (2.1.11)

Pk+1|k+1 = Pk+1|k +Wk+1Sk+1W
T
k+1 (2.1.12)

The updated state and covariance estimations are then fed back into equations (2.1.5)

and (2.1.8), respectively and the whole procedure is repeated.

xk|k = x̂k+1|k+1 (2.1.13)

Pk|k = Pk+1|k+1 (2.1.14)

This leaves one unanswered question; if (2.1.5) and (2.1.8) require estimates to

perform the calculations, how does one start the iteration at time zero? The standard

practice is to assume an initial state and covariance estimate and allow the Kalman

filter to converge to the optimal estimate in a few iterations. However, caution should

be applied with this approach since an initial estimate far from the actual one may

cause the filter to diverge.

11

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

2.1.1 Computational Cost

The previous section gave a complete diagnostic of the computations involved in the

Kalman filter. Reviewing these in turn shows that one iteration will cost 8 matrix and

3 matrix-vector multiplications, 3 matrix and 2 vector additions, 4 matrix transpose

operations and a single matrix inversion. It is important to note that not all matrices

and vectors contain the same dimensions. A typical example of this would be a two

dimensional problem consisting of x and y coordinates, wherein each dimension has

a position, velocity and acceleration state. This type of problem would render the

vector xk|k of length 6 × 1, while zk+1|k would contain only 2 × 1 elements. So, in

order to accurately compute the runtime [13] it is necessary to set ns equal to the

number of states and nd the number of dimensions, where typically nd ≤ ns. Then by

knowing the dimension of xk|k and zk+1|k one can deduce the size of all the matrices,

which leads to runtimes detailed in Table 2.1, where it has been assumed that S−1k+1

has a runtime of O(n3
d).

No. Operation Variables Runtime

1 Multiplication Fkxk|k O((nsnd)
2)

2 Multiplication Hk+1xk+1|k O(nsn
2
d)

3 Subtraction zk − zk+1|k O(nd)

4 Multiplication FkPk|k O((nsnd)
3)

5 Transpose F T
k O((nsnd)

2)

6 Multiplication FkPk|kF
T
k O((nsnd)

3)

7 Addition FkPk|kF
T
k +Qk O((nsnd)

2)

8 Multiplication Hk+1Pk+1|k O(n2
sn

3
d)

9 Transpose HT
k+1 O(nsn

2
d)

12

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

10 Multiplication Hk+1Pk+1|kH
T
k+1 O(n2

sn
3
d)

11 Addition Hk+1Pk+1|kH
T
k+1 +Rk+1 O(n2

d)

12 Transpose HT
k+1 O(nsn

2
d)

13 Multiplication Pk+1|kH
T
k+1 O(n2

sn
3
d)

14 Inverse S−1k+1 O(n3
d)

15 Multiplication Pk+1|kH
T
k+1S

−1
k+1 O(nsn

3
d)

16 Multiplication Wk+1z̃k+1|k O(nsn
2
d)

17 Subtraction xk+1|k −Wk+1z̃k+1|k O(nsnd)

18 Multiplication Wk+1Sk+1 O(nsn
3
d)

19 Transpose W T
k+1 O(nsn

2
d)

20 Multiplication Wk+1Sk+1W
T
k+1 O(n2

sn
3
d)

21 Subtraction Pk+1|k −Wk+1Sk+1W
T
k+1 O((ns)nd)

2)

Table 2.1: Operational Complexity of the Kalman Filter

One issue with Table 2.1 is that the operations HT
k+1 and Pk+1|kH

T
k+1 were counted

twice, although the more likely scenario is to compute these values once and then store

the solutions into their own temporary matrices that can be used again at a later time.

This would then result in 19 operations as opposed to 21.

So the total runtime is just the sum of those outlined in Table 2.1. Calculating

the runtime may seem like a tedious task until one realizes that as the size of the data

set becomes large the runtime of primary concern is the largest and all others can be

ignored. A quick glance at the list above and it is clear that the largest runtime is

13

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

O((nsnd)
3) and therefore, the complexity of the algorithm can be approximated to

O((nsnd)
3) ≈ O(n3) (2.1.1.1)

Ultimately, (2.1.1.1) says that a single iteration of the Kalman filter contains a cu-

bic runtime, which means that computing n iterations could become time consuming

for large data sets.

2.2 The Parallel Approach

After having delved into the details of one iteration of the Kalman filter it should be

apparent that with all the matrix/vector operations a GPU would come in very handy.

This is due to the fact that there are numerous threads on a GPU, each of which can

compute a single element within the matrix/vector operation simultaneously. That

does not, however, aid in determining whether or not the prefix sums outlined in

[10] can be implemented on the Kalman filter. This is an important consideration,

and should be one of the first when looking to parallelize a recursive algorithm. The

reasoning is that the prefix sums is a powerful mathematical tool that allows certain

recursive calculations to be executed in parallel, as opposed to serially, which is the

standard practice. Yet, one should be careful when considering whether or not to

implement the prefix sums, because even though it may be possible, the reality is

it might not be very helpful. The Kalman filter is a perfect example of this. This

is due to the fact that in order to estimate the state at time k + 1, one must first

obtain the estimate at time k, which will depend on the estimate at time k − 1, and

so on. The best way to emphasize this is to explain the objective of the Kalman

14

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

filter. Simply put, one wishes to know the most likely state or states of the target

at the next sampling time given the current one. If the approach in [10] were to

be applied, it would require a complete set of states of length k = 1, ..., N to be

known, which would be useless. Suppose there are k = 1, ..., 20 measurements, then

in order to predict the state at k = 21 one must first compute all of the estimates

for k = 1, ..., 20. So computing 20 states in order to predict the 21st is a waste of

effort and in most practical applications of tracking this is not the case. Therefore,

obtaining a batch of measurements of length k = 1, ..., 20 at time k = 20 from the

same target does not prove very beneficial.

A more interesting scenario occurs when a multitude of measurements from nu-

merous targets are observed. In this kind of a situation the Kalman filter can be run

on a GPU and then multiple states can be calculated for multiple targets simulta-

neously. The only obstacle is that the threads and blocks of the GPU will have to

be customized in a very methodical way. In order to carry out these calculations, it

is imperative that one be aware of two factors; firstly, the number of threads being

run on the GPU at any given time should be the maximum allowable, and secondly,

these threads should be compatible with the dimension of the matrices involved in

the calculations. The most evident manner of accomplishing this seems to be through

the use of block matrices.

Although the approach outlined in the previous paragraph is actually quite inno-

vative, it seems like an obvious step that would have surely been taken by someone

before now. The reality is that GPUs are such a new topic in the field of computer

science that there hasn’t been much time to derive parallel code for everything. This

author was simply fortunate enough to be in the right place at the right time and

15

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

stumbled across this observation that no one had yet realised. There is no doubt that

someone would have sooner, rather than later, reached the same conclusion, and so it

seems fair to say the timing was ripe for the implementation. That is not to say that

no one has thought about parallelizing the Kalman filter, in fact this has been a topic

of several publications [17] [11] over the last two decades. However, the publications

before now focused on using the Kalman filter in multi sensor applications. For ex-

ample, the idea in both [17] [11], is to use information from multiple sensors regarding

a single target in a manner called ”decentralizing”. This amounts to collecting data

from multiple sensors and computing the state estimate using the Kalman filter for

each sensor, and then processing a global estimate based upon the estimates from

the sensors. This will undoubtedly deliver a refined estimate, and each calculation

can be performed in parallel, but multiple processors and sensors are required. The

algorithm outlined in this thesis looks at multiple targets simultaneously processed

on the same GPU, something that has not been attempted before now.

2.2.1 Compute Unified Device Architecture

If the goal is to exploit the use of threads, then a good start would be to review how

those threads are structured. The problem with this is that there are several variants

of graphical processors available in today’s market, each one with their own distinct

architecture. Therefore, the only practical thing to do is to focus on one, which will

not undermine any of the work presented here, since the goal is to demonstrate an

algorithm that is universally applicable to any GPU. The only setback in demon-

strating the proposed algorithm for a specific graphics card is that if someone wanted

to port the algorithm to another platform, there might have to be altercations when

16

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

allocating the threads and blocks.

In this thesis the GPU of choice will be a CUDA GeForce GTX 570 created

by NVIDIA. The details of this particular brand and model are plentiful, yet since

the proposed algorithm does not call for all of the peripherals of this device to be

used (i.e. atomic operations, textured memory, constant memory, etc.), focus will be

placed upon the main components of interest. Table 2.2 provides a good overview of

the hardware that pertains to the application in question. For a more in depth look

at the graphics card, the reader is referred to Appendix C.

Description Value

Device GeForce GTX 570

CUDA Capability 2.0

Total amount of global memory 1280 MB

Number of Multiprocessors 15

Number of CUDA Cores/MP 32

Total number of CUDA Cores 480

Total amount of shared memory per block 49152 bytes

Maximum number of threads per multiprocessor 1536

Maximum number of threads per block 1024

Maximum block size 1024× 1024× 64

Maximum grid size 65535× 65535× 65535

Table 2.2: Device Query

A good strategy when dealing with GPUs is to use as many threads as possible.

This might lead one to believe that no more than 1,536 threads can be used on a

17

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

single multiprocessor according to Table 2.2. However, what is really meant is that

no more than 1,536 threads can be launched simultaneously. One could have 65,000

threads allocated, but only a maximum of 1,536 of them will be working at any one

given moment on any one given multiprocessor. Furthermore, if there were 65,000

threads allocated there would have to be an appropriate number of blocks allocated.

Looking at Table 2.2, it can be seen that a maximum of 1,024 threads can be allocated

per block. So the idea is to balance the number of threads along with the number of

blocks in order to optimize the number of active threads.

2.2.2 Customizing the Threads and Blocks

To date there is no solution that guarantees optimal performance on a GPU. In fact

there are reports generated daily that explore different strategies concerning the best

functionality [35], [20] [31]. So it must be clear that the strategy outlined here does not

claim to be the optimal one, and even if it was there is sure to be some improvement

of the device hardware or software sometime in the near future that would render the

optimization algorithm obsolete. Yet, there is a straightforward strength to the idea

that is novel enough to make mention of.

The application herein was adopted for the explicit use of a predefined dimension

and state size. Surely, it would seem intuitive to design software that can adapt

to any state or dimension size, however, a problem could arise wherein a state or

dimension size exceeding the maximum number of threads per block would return an

erroneous solution. As such, from here on out it will be assumed that the state and

dimension size are well within the bounds of the thread count outlined in Table 2.2.

This constraint enables the designer to partition each block into a series of matrices

18

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

and vectors (refer to Appendix A for a complete review of matrix partitions). The

advantage then becomes apparent; in place of element by element multiplication

and addition, as is normally done within a serial algorithm, one may perform block

multiplication and addition1. Extending this idea, suppose there are s states and

r dimensions, then the estimated covariance matrix will be an sr × sr matrix. All

that is needed now is to tile this matrix, wherein the total number of threads do not

exceed those prescribed by the GPU, which in this case is 1,024. Lastly, build a grid

of GPU blocks all the while ensuring that there is enough shared memory.

In order to leave no detail unattended, a practical example will be devised and

tested. Suppose the system has two dimensions, x and y, and that each dimension has

three states, namely position, velocity and acceleration, then the estimated covariance

matrix will have dimensions 6 × 6. It would then seem appropriate to allocate 576

threads per GPU block, wherein there are 24 threads along the x dimension and 24

threads along the y dimension, resulting in a block matrix like the one shown below.

P1 =



P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44


(2.2.2.1)

where all block matrices P11-P44 are of size 6× 6.

The next thing to consider is the total amount of shared memory required. In the

sections to come it will become clear why a total of 4 GPU blocks were allocated,

1It is important to note that block multiplication and addition does not refer to the blocks on
the GPU. The nomenclature of ”block matrices” is well defined in the literature while NVIDIA has
opted to call a portion of their architecture ”blocks”. Should this cause any potential confusion then
the term ”block” will refer to matrices and ”GPU blocks” will represent the hardware partitions on
the NVIDIA GPU.

19

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

but until then it shall be assumed that this is the maximum number of GPU blocks

(given each GPU block has 576 threads) that will execute successfully on the device

in question. Using the estimation covariance matrix P as an example, the final size

of the matrix to be computed will be 24 × 96, wherein there are 4 block matrices,

each of size 24× 24.

P =

[
P1 P2 P3 P4

]
(2.2.2.2)

Since the matrix Fk is the same size as Pk|k, then it too can be expressed in an

identical block form

F =

[
F1 F2 F3 F4

]
(2.2.2.3)

2.2.3 Block Operations

The ultimate goal here is to determine how the GPU will perform the multiplication

between the two matrices defined in (2.2.2.2) and (2.2.2.3). However, this is the

final realization and it is first necessary to review the complexity of a single matrix

multiplication. Therefore, it will simplify matters to look at a single block of size

6× 6, namely F11 and P11. Referring to (2.1.8), and concentrating on a single matrix

multiplication,



f11 f12 f13 f14 f15 f16

f21 f22 f23 f24 f25 f26

f31 f32 f33 f34 f35 f36

f41 f42 f43 f44 f45 f46

f51 f52 f53 f54 f55 f56

f61 f62 f63 f64 f65 f66





p11 p12 p13 p14 p15 p16

p21 p22 p23 p24 p25 p26

p31 p32 p33 p34 p35 p36

p41 p42 p43 p44 p45 p46

p51 p52 p53 p54 p55 p56

p61 p62 p63 p64 p65 p66


(2.2.3.1)

20

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

it becomes possible to grasp a firm understanding of how the computations are per-

formed. The GPU will multiply the first column of Pk|k by all six 6 rows and all

6 columns of Fk in a single iteration. This results in 36 floating-point operations

(FLOPs)1 on a CPU, and only one on a GPU.



f11p11 + f12p21 + f13p31 + f14p41 + f15p51 + f16p61

f21p11 + f22p21 + f23p31 + f24p41 + f25p51 + f26p61

f31p11 + f32p21 + f33p31 + f34p41 + f35p51 + f36p61

f41p11 + f42p21 + f43p31 + f44p41 + f45p51 + f46p61

f51p11 + f52p21 + f53p31 + f54p41 + f55p51 + f56p61

f61p11 + f62p21 + f63p31 + f64p41 + f65p51 + f66p61


(2.2.3.2)

Each row of the resulting matrix must be summed and the answers stored in the

first column of the solution matrix. The addition of these values would normally be

done one at a time resulting in 5 addition operations per row for a total of 30 FLOPs.

Yet, the approach used here will be adopted from the prefix sums algorithm [10].

Therefore, column 1 will be added to column 2 and the result stored in column 1,

column 3 will be added to column 4 and the result stored in column 3, and column

5 will be added to column 6 with the result stored in column 5, all in one FLOP.

Column 1 will then be added to column 3 and stored in column 1, which will require

a single FLOP and finally column 5 will be added to column 1 and the final answer

stored in column 1, which will account for the final FLOP. So instead of 30 FLOPs

there will be 3.

1From now on a FLOP will refer to the number of floating-point operations in a single instruction
cycle on a CPU, while FLOPs will be regarded as the plural of a FLOP and not to be confused with
floating-point operations per second.

21

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

The next iteration will multiply the entirety of Fk by the second column of Pk|k,

again in a single FLOP. Then 3 more FLOPs will be required to sum all the columns

and the answer stored in the second column. This will continue until Fk has been

multiplied by all 6 columns of Pk|k, which brings the total number of FLOPs to

6 multiplications and 18 additions. Therefore, the multiplication of two matrices

requires a runtime of O(n) for both addition and multiplication operations, assuming

that the dimensions of the estimated covariance and the state space matrix are n×n.

Comparing this to a serial algorithm that would have a runtime of O(n3)+O(n2−n),

and the benefits of a GPU become blatantly obvious.

Recall that the matrix multiplication above was for a single block matrix. There

are, however, 16 matrices in (2.2.2.1), and the manner in which the GPU processes

these is one row at a time. Using the product below to elaborate on this point,

F1P1 =



F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44





P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44


(2.2.3.3)

It is seen that each block along the first row of F1 is multiplied by the blocks along

the first column of P1, while the second row of F1 is multiplied by the second column

22

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

of P1, resulting in the following matrix



F11P11 F12P21 F13P31 F14P41

F21P12 F22P22 F23P32 F24P42

F31P13 F32P23 F33P33 F34P43

F41P14 F42P24 F43P34 F44P44


(2.2.3.4)

The previous calculations showed that every block multiplication will cost a run-

time of O(n), however, every block along the first row will be computed simultane-

ously, which still only costs O(n). This must be performed for each row in turn, and

since there are only 4 rows, the cost is still only O(n). A good way to visualize this is

to realize that the entire matrix is 24× 24 and all 24 threads along the first six rows

of F1 are multiplied with the 24 threads along the first column of P1. A CPU will

require (O(n3) +O(n2− n)), yet, the advantages of the GPU don’t end there. Recall

that there are 4 GPU blocks, as outlined below

FP =

[
F1P1 F2P2 F3P3 F4P4

]
(2.2.3.5)

and each GPU block is executed in parallel. So in fact, all of the aforementioned

computations are executed simultaneously across all 4 GPU blocks, which means

there are a total of 96 threads across 6 rows of F multiplied by the 1st, 7th, 13th and

19th columns of P all at once. Furthermore, as was seen above, the runtime for F1P1

is O(n), and all 4 GPU blocks are launched simultaneously and executed in parallel,

so whether 1 block is used or 4, the runtime remains O(n). Refer to Table 2.3 for the

runtimes pertaining to the block operations explained above.

After all of the math is done and said it is no surprise that the CPU has a cubic

23

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

runtime, something that is well established [13]. However, the GPU does present a

welcomed advantage with a runtime that is nearly linear, but at what cost?

Operation GPU CPU

Matrix Multiplication O(n) O(n3) +O(n2 − n)

Block Multiplication O(n) (O(n3) +O(n2 − n))

Grid Multiplication1 O(n) (O(n3) +O(n2 − n))

Table 2.3: Run Time Operations

Before moving onto the next section, there is something of importance that needs

to be addressed. The last two sections outlined a strategy for implementing ma-

trix/vector computations using the CUDA runtime library. This, however, is by no

means the only tool available to a designer, another very popular API is OpenGL [19].

All of the block operations detailed in this section could easily be ported to OpenGL,

where the syntax will undoubtedly vary, and there may have to be a few more mi-

nor changes, but the algorithm is disposable on any API that utilizes a graphical

processing platform.

2.2.4 The Source Code

This section steps through the relevant parts of code that perform the operations

discussed in section 2.2.3. The first thing to look at will be memory allocation. A

quick note to the reader, although in Table 2.1 it was determined that there are 21

matrix/vector operations, matrix-transpose multiplication can easily be performed

on a GPU in one step. This means that the operations Pk|kF
T
k , Pk+1|kH

T
k+1 and

1Where a grid is comprised of all 4 GPU blocks

24

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

Sk+1W
T
k+1 can each be performed without having to take the transpose explicitly.

Normally, the rows of the multiplicand matrix are multiplied by the columns of the

multiplier matrix, but if the rows of the multiplicand are instead multiplied by the

rows of the multiplier, then this is the equivalent of multiplying the multiplicand by

the transpose of the multiplier. Fortunately, this is a simple undertaking for GPU,

since the threads along the columns of the multiplier can be swapped with those along

the rows. This then amounts to 17 matrix operations (since Pk+1|kH
T
k+1 is performed

once and stored in memory for later use a second time) as opposed to 21.

There are several variants of memory available to the user on a GPU, but only

two of those are of great concern here; global memory and shared memory. These

two types of memory vary in their size and speed. Global memory is more plentiful

and accessibly interchangeable to every grid, block and thread. This means that any

thread residing in any block located on any grid can be added, subtracted, multiplied

or divided by any other thread. Threads using shared memory, however, can only

perform computations with other threads that exist in the same block. This limits the

accessibility of the threads, but the access speed of shared memory is several times

faster than that of global memory. The speed of shared memory is due to its location

directly on the multiprocessor, while global memory is located on the GPU but not

on the multiprocessor [29].

The diversity of the hardware forces a programmer to become familiar with the

specifics of a GPU if the desired speed up is to be achieved. Whether one should

use shared or global memory is dependant on the intended application. One might

think that since shared memory is faster than global memory, the smart thing to

do is to use it. The problem is, however, that data is transferred from the host to

25

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

the device’s global memory by default, and if one wishes to use shared memory then

an additional transfer out of global memory and into shared memory must be made

before operations can begin. So the only time it makes sense to use shared memory is

if there are a sufficient number of computations that warrant this data transfer. If the

GPU is being used to simply add the contents of two vectors, global memory might

suffice. The need for shared memory is usually justified when there are a large number

of calculations that are more advanced than simple addition or multiplication, which

means that the GPU will be spending a large percentage of its time performing these

calculations and very little time transferring data to and from global memory.

In the case of the Kalman filter and its numerous matrix/vector operations, the use

of shared memory does make sense. As such, every matrix/vector must be allocated

enough shared memory to store 64 matrices/vectors appropriately sized for 3 state

space variables and 2 dimensions. This means that the state estimation vector x̂k|k

should be allocated 384 array elements, while the process noise Qk should be given

2,304 array elements, both of type float. The programmer should always take the

time to do a quick calculation in order to ensure that there is an appropriate amount

of shared memory allocated. If too much memory is allocated then the program

will crash, not enough and the program will be too slow. The amount of shared

memory available can be confirmed using Table 2.2, where it explicitly states that

the maximum amount of shared memory per block is 49,152 bytes.

Since the kernel will be taking advantage of shared memory, before any operations

can be performed the data must be transferred from global memory. The device works

quite simply; when data is transferred from the host to the device it is automatically

stored into global memory. From there the programmer must decide where to send

26

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

it and what to do with it. In this case the data will be transferred from global

memory to shared memory from where the computations will be executed. Once

those calculations are done the data must be transferred from shared memory back

into global memory where it can be sent back to the host. So, the moral of this

story is to ensure that there are enough computations that justify the use of shared

memory, since there will be two extra data transfers, to and from shared memory.

The next thing to consider is how the matrix/vector multiplications are being

executed. Listing 2.1 looks at the complete matrix multiplication of Fk and Pk|k

Listing 2.1: Matrix Multiplication

for(j=0; j<4; j++)

{

for(i=0; i<6; i++)

{

if(row < 6)

{

B[y][col] = F[y+6*j][col]*P_k_k[x][6*j+i+24*bx];

if((x%2) == 0)

{

B[y][col] += B[y][col +1];

if((x%6) == 0)

{

B[y][col] += B[y][col +2];

27

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

B[y][col] += B[y][col +4];

}

}

if((x%6) == 0)

{

P_k_k[y+6*j][col+i] = B[y][col];

}

}

__syncthreads ();

}

}

As was explained in section 2.2.3, the first for loop in Listing 2.1 consists of the 4

iterations that perform block multiplications on each row of (2.2.2.1). The second for

loop computes the multiplication of Fk with each column of Pk|k, hence the need for

6 iterations, one for each column of Pk|k. The 3 addition operations are performed to

sum all the columns after Fk has been multiplied by a single column of Pk|k, therefore,

these additions are performed 6 times, for a total of 18 FLOPs. Then everything is

stored back into Pk|k for future use.

The matter concerning the inverse computation of the innovation covariance in

(2.1.10) can be solved quite easily by solving for the determinant [36]. Since this is a

2 dimensional problem, the size of Sk is 2 × 2 and therefore S−1k+1 can be calculated

28

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

using the following formula [36]

S−1 =
1

s11s22 − s12s21

s11 s12

s21 s22

 (2.2.4.1)

Once all the computations are complete the last order of business is to transfer

the result back into global memory where the host can retrieve the data.

2.2.5 The Price of Parallel

The first thing every scientist and engineer learns is that if its too good to be true, then

that’s exactly what it is. If graphical processors provide such a blatant advantage,

then why isn’t everything done in this manner? One obvious answer is that the

technology is relatively new and there simply hasn’t been enough time to convert all

of the serial algorithms into parallel ones. Although this is relatively correct, a more

realistic answer is that it may not be worthwhile to derive a parallel algorithm due

to its complexity, which is the price one pays for writing software on a GPU. If the

GPU provides an exponential speed up then it does so at a cost of exponential code

complexity due to difficult indexing and a heightened hardware diversity. These two

points emphasize what is being discussed here, so it would seem wise to explore both.

The idea that an advanced architectural layout would impede/improve perfor-

mance was discussed in the previous section where data was first transferred from

global to shared memory. This is not so different from booting up a computer during

which time the CPU transfers data from the hard drive to RAM. After that transfer is

complete the computer uses RAM exclusively for the lifetime of any program without

the need to move the data to a different memory register for improved functionality.

29

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

So in essence, global memory can be thought of as a hard drive, and shared memory

is the equivalent of RAM. The difference, however, begins with the number of threads

and the size of the blocks that can limit or extend performance. The fact that there

are varying memory registers with differing execution properties is the responsibility

of the programmer to optimize. Yet, before anyone can exploit the use of something

like shared memory they have to be aware of its existence, hence the need for a re-

fined understanding of the hardware architecture of a parallel processor and all of the

peripherals there within.

The second issue worth mentioning is concerning the indexing of the arrays within

the GPU that are emphasized in Listing 2.1. A close inspection is enough to convince

the reader that there are up to 6 different indexing variables in a single iteration, and

that is for one matrix multiplication. Recall that the implementation outlined here

requires 17 operations on matrices and vectors of varying dimension, which means

that the indexing of most matrix/vector operation will be unique. Be advised that

debugging this is no small feat. It could take a day or two to devise a strategy, much

like partitioning everything into block matrices, while writing the actual software

might take a month or two.

When delving into the details of a CUDA device one quickly becomes overwhelmed

by the peripherals offered. Having to deal with threads located in blocks embedded

in grids that can be optimized through shared memory, textured memory, atomic

operations and asynchronous data transfers exploited through the use of streams

[30] is enough to dissuade any programmer from taking the time to write parallel

programs. Add to this the constant responsibility of being ever aware of the number

of threads and blocks and how they behave according to the rules governed by the

30

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

warp sizes thus affecting the occupancy, while taking care to ensure that portions

of the code do not become serialized causing issues with concurrency [28] and it

becomes clear why most programs will not see a parallel implementation. The only

time a serial algorithm should be converted into a parallel one is if the ends justify

the means, which is the case for tracking and data fusion.

The specific example from sections 2.2.2 and 2.2.3 showed that the block compu-

tations were customized for a GPU that had exactly 24 × 24 threads and 4 blocks

allocated. These values were hard coded into the program and any alteration would

render the algorithm useless. If one desired to implement the code on a 3 dimen-

sional problem, wherein each dimension had 3 states, one could no longer use 16

block matrices since the size of each matrix would be 9× 9 and that would demand

1,296 threads, which exceeds the number of threads per GPU block and may cause

serialization. The alternative would be to implement 9 block matrices, each of size

9×9, thus utilizing a total of 729 threads. This, however, would alter the indexing of

the arrays within the kernel and result in an erroneous output. The only way around

this is to rewrite the kernel in order to handle the new indexing requirement.

So being aware of all the variables involved in the execution of a program that

enables one to write optimal code can quickly become cumbersome, which is why no

claims have been made that the source code written here is the best possible code.

The parallel algorithm outlined in the aforementioned pages is definitely linear and

will theoretically outperform any serial algorithm, but if one is not careful, the source

code may not.

31

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

2.2.6 Simulation Results: CPU vs GPU

The following simulation was split into two distinct trial runs. The first simulation was

performed on an Intel Core i7 870 @ 2.93 GHz using an ANSI C compiler. All of the

code was written by this author in the C programming language so as to guarantee

that the algorithm being executed was that which is outlined in section 2.1. The

second component of the simulation was conducted using an NVIDIA GeForce GTX

570 graphics card and the CUDA runtime library. It should be noted that unlike the

experiment run in [12], CUDA BLAS was not used here. Although there are a total of

21 matrix computations according to Table 2.1, the authors of [12] chose to partition

the Kalman filter into 5 distinct computations. Whether or not they transferred the

5 partitioned sets of matrices and vectors to the GPU one at a time or all at once

is unclear, but two facts do stand out; in order to perform the 21 matrix/vector

calculations using CUDA BLAS one would either have to call each matrix function

from the host, or make the call from within the kernel. Calling 21 matrix/vector

operations from the host would require 21 data transfers from the CPU to the GPU

and then another 21 back to the CPU, which would adversely affect the throughput.

Calling the functions from within the device severely limits the amount of data that

can be processed in a single kernel call. The reason for this is simple; there is a finite

amount of available memory on the GPU and every function call from the kernel to

another kernel requires memory to be allocated on the GPU. This is equivalent to

pushing a function call and all the necessary memory onto a stack, and the stack is

only so large. In fact, referring to Table 2.2 it can be seen that the total amount of

global memory is 1,280 Mbytes, and worse yet, if shared memory is used then there

are only 49,152 bytes. Furthermore, CUDA BLAS could not implement the strategy

32

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

outlined in section 2.2.3 because it performs block operations in a manner that is

different from the customized block operations derived in this thesis. This is most

likely why the authors of [12] chose to vary the number of dimensions between 1,000

to 7,000 and the number of states between 250 to 3,500. A matrix of this size is

exactly what CUDA BLAS was meant for, but for the purposes of tracking this is

unrealistic, this author has never heard of a practical situation wherein there were

250 states, much less 3,500. So instead, this thesis has opted to transfer the entire

data set to the GPU once, allow the computations to be performed on the GPU, and

then transfer the results back. This may not be the best way to transfer the data,

since there is some indication in the upcoming sections that breaking up the data

into streams and transferring each stream separately is the preferred method. Yet,

performing asynchronous data transfers is outside the scope of this thesis, and will

not be resolved here.

The sole task that remains is to report the results of the source code. This

consists of nothing more than running the kernel on data sets of varying size and

recording the results. However, before doing that it would be best to elaborate on

one issue. The algorithm up until now has focused on a predefined data set of 64

measurements. Recall that the estimation covariance matrix in (2.2.2.2) was in block

form with dimensions 24 × 96, wherein there were 64 block matrices of size 6 × 6.

This means that the code will only work on a sample set of size 64. To workaround

this limit, all the data transferred from the host is stored in global memory and from

there 64 measurements at a time are transferred to the shared memory where they

are processed by the kernel. Once finished, the kernel transfers the results back into

global memory and the next chunk of 64 samples is swapped into shared memory for

33

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

processing. This continues until everything in global memory has been dealt with.

Of course, there arises an issue with any data set that is not a multiple of 64, but

that can easily be resolved by padding the data with zeros.

In order to make effective use of the GPU, one must be able to reliably gauge its

performance through the use of various metrics. The CUDA Toolkit provides several

ways of doing this, but by far the most useful are the timers in its libraries. At

the time of this publication, the CUDA Toolkit 5.0 was the most recent API release,

offering timers capable of measuring, not only the elapsed time of the GPU but that of

the CPU as well. As such, CUDA SDK timers were utilized to compare the duration

of code execution between the host and device across a wide range of data set sizes

and the following results were recorded and are displayed in Table 2.4.

Data Size CPU Time (s) GPU Time (s)

64 0.005824 0.000734

128 0.034944 0.001281

256 0.009531 0.00213

512 0.011083 0.003686

1024 1.507853 0.007249

2048 1.046539 0.013867

4096 0.33041 0.027721

8192 0.419372 0.054891

16384 0.335895 0.109429

32768 2.47752 0.218099

65536 4.957672 0.434744

131072 9.861555 0.868823

34

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

262144 20.002492 1.737119

Table 2.4: Prediction Simulation Results

These results are not surprising, and furthermore, it is comforting to see that the

GPU behaves exactly as predicted; in a linear fashion. Doubling the data size doubles

the execution time regardless as to the number of measurements being processed. And

irrespective as to how the CPU behaves for smaller data set sizes, it operates as one

would expect when encumbered with larger data sets, save one feature; it is linear,

and not cubic. This is the result of a small data set. If the data set were increased

it should demonstrate cubic behaviour. How the host performs relative to the device

can be seen in Figure 2.1, where larger data sets force the CPU runtime to diverge

quickly away from the GPU.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

5

10

15

20

25

Data Set Size

R
un

 T
im

e
(s

)

CPU Runtime vs GPU Runtime

CPU Runtime
GPU Runtime

Figure 2.1: Prediction Runtime Comparison

One of the more interesting observations drawn from Table 2.4 is in regard to

the execution times of the CPU for the data sizes up to and including 16,384; notice

35

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

how incoherently they vary. The data with 16,384 measurements takes less time to

execute than one which is 8 times smaller. In fact, there seems to be some discrepancy

concerning the data sets of size 1,024 and 2,048. Why these particular sizes cause

exacerbated runtimes is a good question indeed. At one point it seemed implausible,

and so in place of using the timers offered in CUDA 5.0, the event timers offered in

the CUDA 4.0 were implemented. The event timers produced the same results as the

SDK timers.

When reviewing Figure 2.1, it is difficult to grasp exactly how irregular the CPU

behaves due to the clustering of data set sizes for small values. Therefore, the same

data set from Table 2.4 was plotted logarithmically in Figure 2.2, where it becomes

much more apparent that there is something peculiar regarding the behaviour of

the CPU. The problem is not so much that the behaviour is varied, but that it

seems inexplicable. There are several theories, such as the C compiler is performing

optimization routines that run into problems with certain data sizes. Or perhaps the

manner in which data is pushed and popped onto and off of the stack encounters

problematic scenarios that the compiler is unaccustomed to dealing with. It could

be a bug within the integrated design environment (IDE) or the operating system

itself. One might wonder why the GPU shows absolutely no signs of any bad conduct

that the CPU displays. The simple answer is that the GPU executes the source

code within the kernel, and nothing else. Besides the speed at which the data is

transferred from the host to the device, the programmer is in complete control of

everything that happens on the device hardware. In contrast, the user has limited

control over the operating system kernel, which has complete control of the CPU, and

it is this dynamic that is the most likely culprit of this unexplained behaviour.

36

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Logarithmic Data Set Size

R
un

 T
im

e
(l

og
(s

))

Logarithmic CPU Runtime vs GPU Runtime

Logarithmic CPU Runtime
Logarithmic GPU Runtime

Figure 2.2: Logarithmic Runtime Comparison

There is one more issue that every software developer working with a GPU should

address, and that is the accuracy. Truncation error can be a serious issue if the

programmer is not conscious of it, since this can alter the results of a simulation

quite substantially. The GPU used throughout this chapter supports the use of 32

bit floating point data types (float), which greatly simplified the comparison of

results to that of the CPU, since it too is equipped with the ability to use arrays

of type float. Both the GPU and the CPU were programmed with a data type of

float and the results produced were identical. As such, there was no truncation or

rounding off errors and therefore, the programmer is not burdened with addressing

this topic, although one should be aware of it since this is an issue that may affect

future development of tracking filters.

37

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

2.2.7 Simulation Results: Block Size

It was mentioned in section 2.2.2 that there is no way to predetermine the optimal

performance of the GPU, due in large part to the fact that the technology is relatively

new and scientists and engineers are just beginning to comprehend its limitations and

advantages. There are, however, obvious steps that can be taken to improve perfor-

mance at the initial design stages of the source code. One of these is to maximize the

number of operational threads and blocks. Referring to Table 2.2, one can see that

there are a maximum of 1,536 threads that are operational on any given multipro-

cessor at any given time. A good strategy would be to allocate 1,536 threads all the

time, yet this is usually not possible. So the next best thing is to allocate the closest

number of threads. Recall that the code being executed in this section utilizes 576

threads per block, and there are a total of 4 blocks. What if the number of blocks

were varied? How would this affect the performance? Table 2.5 shows the results of

running the source code while allocating 1, 2, and 4 blocks. Keep in mind that the

size of the data set and the number of threads per block is identical for all 3 simula-

tions. The reason that this is worth mentioning is due to the fact that the runtimes

seem to be vastly dissimilar. There is some indication that doubling the block size

halves the runtime, and so one might be inclined to keep doubling the block size, yet

there is a limit to how many blocks that can be allocated before the device runs out

of available shared memory.

Data Size 1 Block 2 Blocks 4 Blocks

64 0.002161 0.001049 0.000734

128 0.003859 0.002228 0.001281

256 0.0066391 0.003795 0.00213

38

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

512 0.0112965 0.006595 0.003686

1024 0.025697 0.013189 0.007249

2048 0.050348 0.026149 0.013867

4096 0.099976 0.051403 0.027721

8192 0.198816 0.102787 0.054891

16384 0.397458 0.204695 0.109429

32768 0.794539 0.408696 0.218099

65536 1.587160 0.815729 0.434744

Table 2.5: Block Size Runtimes

Based on the thread size detailed in section 2.2.2, the maximum number of blocks

that can be allocated is 4. This limiting factor is due to the shared memory allocated

within the kernel, which is 46,080 bytes. Notice how Table 2.2 states that the total

amount of shared memory is 49,152 bytes, this value is exceeded for any block size

greater than 4. A quick glance at Figure 2.3 should convince the reader how important

selecting the proper block size is, while an in depth look into Table 2.2 versus Table 2.5

should assure the reader that no matter what the block size is the GPU outperforms

the CPU at every turn. However, a word of caution, although using any number of

blocks improved performance, this may not be the case for all algorithms. In fact,

it is possible that the manner in which the threads were used in this particular code

is the dominating factor, since the number of threads were never altered the GPU

was never slower than the CPU. That is not to say altering the block size for another

algorithm or a differing thread count will produce such favorable results.

39

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

0 1 2 3 4 5 6 7

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Data Set Size

R
un

 T
im

e
(s

)

Block Size Runtime Comparision

1 Block
2 Blocks
4 Blocks

Figure 2.3: Block Size Comparison

2.2.8 Future Considerations

As was mentioned in section 2.2.5, a program written for a GPU comes with the bur-

den of having a multitude of architectural considerations that can impede or improve

the performance of one’s code. A solid understanding of this computer structure will

only prove to empower the programmer in compiling better code. Yet, for most this

is something that will require years of experience and doesn’t serve one very well in

the short run. For this reason, NVIDIA has developed a tool that helps facilitate

the development of optimal code, it is called Visual Profiler. Once the source code

has been compiled into an executable, it can be analysed by Visual Profiler. This

software tool provides invaluable information concerning performance metrics such

as concurrency, warp divergence and throughput, to name a few. This knowledge is

indispensable when one is engaged in an iterative design process.

After having run the source code from section 2.2.4 in Visual Profiler, several

promising results were revealed that highlight a direction of potential improvement,

40

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

and have been listed below.

1. Low memory copy and compute overlap

• The percentage of time when memory copy is being performed in parallel

with compute is low

2. Low memory copy throughput

• The memory copies are not fully using the available host to device band-

width

3. Low kernel concurrency

• The percentage of time when two kernels are being executed in parallel is

low

4. Low global load efficiency

• Global memory loads may have a poor access pattern, leading to inefficient

use of global memory bandwidth

5. High branch divergence overhead

• Divergent branches are causing significant instruction issue overhead.

Items 1, 2 and 3 pertain to the same problem, that being there are no asynchronous

data transfers. This is due to the fact that by default the kernel will begin executing

code once all of the data is transferred from the host. It is possible, however, to

command the kernel to begin operations before it receives all of the data, a feat

41

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

accomplished by the use of streams. Essentially, streams allow one to break the data

up into subsections and transfer one subsection while the kernel processes another.

Item 4 is in regards to coalesced access to global memory, which is a consequence

of warps being misaligned when accessing global memory [31]. The final item has to

do with the fact that threads within the same block that are forced through differing

paths due to if statements or for loops can become serialized, which would defeat

the purpose of using a GPU.

Although the items in the above list are informative, they do not represent the

primary goal, which is to derive a parallel algorithm. The reason that this is so impor-

tant is that however impressive the threads and blocks on a GPU perform, they are

still doing calculations on a serial algorithm and that will always limit the potential

of the GPU. A designer should look past the parallelization of arithmetic operations

to the parallelization of entire algorithms. That is the first step in an iterative design

process intended on finding the optimal solution, and hence the optimal performance.

So, the issues addressed in this section, as interesting as they are, were meant to aid

in improving one’s software skills, and do very little to help develop solid algorithm

design skills. However, optimal code requires a good algorithm and equally effec-

tive software, so this section helps remind one of what future pitfalls to avoid and

where potential avenues of improvement may reside, thus paving the way for future

refinements that will not be dealt with here.

42

Chapter 3

Retrodiction

Retrodiction is a refined estimate of the previous prediction made by the Kalman

filter, which in laymen terms means it is looking back in time, not ahead. This may

seem futile, but in fact has several practical applications, mostly in image processing

and tracking. In tracking, it enables the tracker to acquire a polished version of the

trajectory laid out by the Kalman filter. One of the best ways to demonstrate the

difference between the Kalman filter and retrodiction is graphically. To be clear, the

black line in Figure 3.1 is the true trajectory of the target and the red line is the

measurement that has been contaminated with white Gaussian noise, while the blue

and green lines are the filters in question. Notice how the retrodiction of the Kalman

filter is not nearly as jagged as the Kalman filter itself, it is much smoother, hence

the term ”Smoothing”. It gives a far better estimate of the true trajectory of the

target, despite the measurements that have been riddled with noise.

43

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

-1.1 0.9 2.9 4.9 6.9 8.9 10.9 12.9 14.9 16.9
X-axis

4.5

6.5

8.5

10.5

12.5

14.5

16.5

18.5

20.5

Y
-a

x
is

Kalman Filter

Prediction & Retrodiction

Legend

True Data
Noisey Data
Kalman
Retrodiction

Figure 3.1: Kalman Filter and Retrodiction

3.1 Maximum Likelihood Estimate

The Kalman filter has differing versions like the extended and unscented Kalman

filters, and so does retrodiction. This presents a slight dilemma as to which Smoothing

filter should be chosen for the task ahead. Since the point is to break new ground,

it really doesn’t matter which algorithm is selected, since the work done here will

be easily ported to other areas. As a result, it seemed sensible to start with one of

the more popular (albeit older) versions of retrodiction. With that said, this thesis

will concentrate its efforts on deriving a parallel algorithm for the retrodiction of the

Kalman filter as defined by H. E. Rauch, F. Tung and C. T. Striebel [34]. Their paper

was published shortly after Kalman’s and is considered by far to be the originator of

44

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

the Smoothing filter.

The problem of Smoothing involves using state and covariance estimates that have

already been obtained by the Kalman filter. Since one must compute the covariance

at a given time in order to compute the estimate, it is assumed that the covariance

matrix computed at each and every time step of the Kalman filter has been retained

in memory. With both the estimated covariance matrices and the state estimation

vectors, one can more easily carry out a parallel implementation of the Smoothing

problem. In their work entitled: Maximum Likelihood Estimates of Linear Dynamic

Systems [34], the authors were able to develop the discrete time solution to the

problem of Smoothing, which will be reviewed here.

The goal is to find the optimal estimate x̂k|N given the data set z0,z1,...,zN = Zk,

where N is the size of the entire data set under consideration. If k = N it is a filtering

problem, if k > N it is a prediction problem and if k < N it is a retrodicton problem.

The case where k > N was discussed in depth throughout the previous section, and

here the objective is to solve for the case when k < N .

According to the maximum likelihood estimate

L(xk, xk+1, ZN) = logp(xk, xk+1|Zk) (3.1.1)

If the estimates x̂k|k have already been computed by the Kalman filter, then (3.1.1)

can be expressed as

max
xk,xk+1

L(xk, xk+1, ZN) = max
xk,xk+1

{−‖xk+1 − Fkxk‖2Q−1k

−‖xk − x̂k|k‖2P−1k|k}
(3.1.2)

45

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

where the terms from (3.1.1) that do not contain xk have been omitted. Replacing

the first term in (3.1.2) with the desired estimate gives

J = −‖x̂k|N − Fkxk‖2Q−1k + ‖xk − x̂k|k‖2P−1k|k (3.1.3)

Taking the derivative with respect to xk, setting it equal to zero and solving for x̂k|N

produces

x̂k|N = x̂k|k + Pk|kF
T
k P

−1
k|k [x̂k+1|N − Fkx̂k|k] (3.1.4)

The covariance can then be calculated and shown to be

Pk|N = Pk|k + Ck[Pk+1|N − Pk+1|k]CT
k (3.1.5)

where

Ck = Pk|kF
T
k [FkPk|kF

T
k +Qk]−1

= Pk|kF
T
k P

−1
k|k

(3.1.6)

Equations (3.1.4) and (3.1.5) are the solution to the retrodiction problem, and

it is these two equations that form the basis of the parallization algorithm in the

pages to follow. Although the proof outlined from (3.1.1) through to (3.1.5) was not

thoroughly comprehensive (the reader is referred to [34] for a detailed overview), it

was enough to emphasize how the prediction estimates x̂k|k affect the smoothed state.

46

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

3.1.1 One Iteration II

As was the case in section 2.1, this section will step through the necessary matrix

operations in order to appreciate what is involved in computing the retrodiction of

the Kalman filter. It makes sense to start the calculations by seeking a solution to Ck,

since this matrix is needed in order to update both the state and covariance estimates.

However, in order to solve for Ck, both Pk|k and Pk+1|k have to be calculated. It is

possible to store Pk|k in memory during the Kalman filter computations, or to compute

it using Pk+1|k+1, the latter will be illustrated below as a matter of conciseness.

Pk+1|k = (P−1k+1|k+1 −H
T
k+1R

−1
k Hk)−1 (3.1.1.1)

If it seems distasteful to have to solve an inverse for 3 distinct matrices, then the

above solution can be modified to

Pk+1|k = Pk+1|k+1 − Pk+1|k+1H
T
k+1(Hk+1Pk+1|k+1H

T
k+1

− Rk)−1HkPk+1|k+1

(3.1.1.2)

In either case the sought after solution is

Pk|k = Fk(Pk+1|k −Qk)Fk (3.1.1.3)

Deriving Ck is then a trivial matter of substituting the equation above into (3.1.6).

There is something to note concerning the covariance matrix Pk+1|k, and the sub-

scripts accompanying it. Since the retrodiction of the Kalman filter first requires the

computation of the state and covariance estimates of the Kalman filter itself, and in

calculating the estimation covariance it would be necessary to compute Pk+1|k, the

47

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

reader might be inclined to consider the possibility of retaining the matrix in memory

for later use by the Smoothing algorithm. This, however, is not possible since the

matrix Pk+1|k in the Smoothing problem is not the same matrix defined in (2.1.8).

An important thing to keep in mind is that the algorithm begins with the last

estimate calculated by the Kalman filter, which means that if the data set is of length

N , then k + 1 = N,N − 1, ..., 1. Therefore, the Smoothing problem begins with the

last estimation covariance computed

Pk+1|N = Pk+1|k+1 (3.1.1.4)

where Pk+1|k+1 is the estimated covariance at time k + 1 = N . All of the necessary

components required to compute the updated estimation covariance Pk|N in (3.1.5)

are now accounted for. Similarly, all of the values needed for solving (3.1.4) are also

present, except for x̂k+1|N , which is nothing more than

x̂k+1|N = x̂k+1|k+1 (3.1.1.5)

Once x̂k|N and Pk|N are computed using (3.1.4) and (3.1.5), respectively, then they

can be substituted back into the aforementioned formulas by setting them equal to

x̂k+1|N = x̂k|N (3.1.1.6)

and

Pk+1|N = Pk|N (3.1.1.7)

A cautionary word to the reader; equations (3.1.1.5) and (3.1.1.4) are only used

48

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

to initialize x̂k+1|N and Pk+1|N , while (3.1.1.6) and (3.1.1.7) are used to update the

variables every iteration thereafter.

3.1.2 Computational Cost II

The number of matrix/vector operations needed in order to assess the runtime com-

plexity of the Smoothing problem is best illustrated using Table 3.1. Once again, HT
k

and Pk+1|k+1H
T
k were counted twice, so the actual number of matrix/vector compu-

tations is probably 25 as opposed to 27. Furthermore, in the table below the value of

Pk+1|k was computed according to (3.1.1.2), which contains 9 matrix operations. If

(3.1.1.1) were used instead, only 7 matrix computations would be required bringing

the total count to 23, bearing in mind that 3 of those computations are inverse op-

erations. Lastly, there are 3 matrix computations required to solve for Pk|k, however,

this can be ignored if the estimation covariance calculated during the Kalman filter

was retained in memory, which means there are 20 matrix/vector computations. No

matter what though, the retrodiction of the Kalman filter needs a bit more work than

the prediction, which only justifies the need for a parallel algorithm even more.

No. Operation Variables Runtime

1 Multiplication Hk+1Pk+1|k+1 O(n2
sn

3
d)

2 Transpose HT
k+1 O(nsn

2
d)

3 Multiplication Hk+1Pk+1|k+1H
T
k+1 O(n2

sn
3
d)

4 Subtraction Hk+1Pk+1|k1H
T
k+1 −Rk+1 O(n2

d)

5 Inverse (Hk+1Pk+1|k+1H
T
k+1 −Rk+1)

−1 O(n3
d)

6 Multiplication Hk+1Pk+1|k+1 O(n2
sn

3
d)

7 Multiplication (Hk+1Pk+1|k+1H
T
k+1 −Rk+1)

−1

49

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

Hk+1Pk+1|k+1 O(nsn
3
d)

8 Transpose HT
k+1 O(nsn

2
d)

9 Multiplication Pk+1|k+1H
T
k+1 O(n2

sn
3
d)

10 Multiplication Pk+1|k+1H
T
k+1

(Hk+1Pk+1|k+1H
T
k+1 −Rk+1)

−1

Hk+1Pk+1|k+1 O(nsn
3
d)

11 Subtraction Pk+1|k+1 − Pk+1|k+1H
T
k+1

(Hk+1Pk+1|k+1H
T
k+1 −Rk+1)

−1

Hk+1Pk+1|k+1 O((nsnd)
2)

12 Subtraction Pk+1|k −Qk O((nsnd)
2)

13 Multiplication Fk(Pk+1|k −Qk) O((nsnd)
3)

14 Multiplication Fk(Pk+1|k −Qk)Fk O((nsnd)
3)

15 Transpose F T
k O((nsnd)

2)

16 Multiplication Pk|kF
T
k O((nsnd)

3)

17 Inverse P−1k|k O((nsnd)
3)

18 Multiplication Pk|kF
T
k P

−1
k|k O((nsnd)

3)

19 Subtraction Pk+1|N − Pk+1|k O((nsnd)
2)

20 Transpose CT
k O((nsnd)

2)

21 Multiplication (Pk+1|N − Pk+1|k)CT
k O((nsnd)

3)

22 Multiplication Ck(Pk+1|N − Pk+1|k)CT
k O((nsnd)

3)

23 Addition Pk|k + Ck(Pk+1|N − Pk+1|k)CT
k O((nsnd)

2)

24 Multiplication Fkx̂k|k O((nsnd)
2)

25 Subtraction x̂k+1|N − Fkx̂k|k O(nsnd)

26 Multiplication Ck(x̂k+1|N − Fkx̂k|k) O((nsnd)
2)

50

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

27 Addition x̂k|k + Ck(x̂k+1|N − Fkx̂k|k) O(nsnd)

Table 3.1: Operational Complexity of the Smoothing Problem

Looking at the table above and it is clear that the largest runtime is O((nsnd)
3) ≈

O(n3). Recall from the last chapter that the cubic runtime of the Kalman filter was

the primary motivation for using a GPU, and that motivation applies here, as well.

3.2 Derivation of a Parallel Algorithm

There is no doubt that the procedure in chapter 2 offered an increase in performance

when compared to a serial program. Yet, it merely showed how to configure basic

matrix multiplication into block form and implement that onto a computer architec-

ture better suited for it. The real prize would be to not only exploit the properties of

a GPU by more efficiently organizing matrix operations, but to convert the algorithm

into a genuine parallel algorithm. The first question that should be posed is whether

or not this has been attempted before? The answer is yes [25] [24], but only in a

limited capacity. The authors of the publication entitled; Parallel Smoothing, have

opted to divide the data set into subintervals, and perform 3 distinct steps. The

first step involves performing computations on each subinterval simultaneously, using

independent processors. The second step demands that the smoothed estimates at

the boundaries of each interval are combined in order to smooth them out. The final

step requires yet, another retrodiction performed on the all the data points in order

to obtain a global solution. The algorithm proposed here is entirely different, since

the recursive properties have been replaced with the prefix sums algorithm that has a

51

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

logarithmic runtime, and the computations are performed using the same block opera-

tions detailed in chapter 2. This suggests that the retrodiction should out perform the

prediction since it incorporates the strategy from section 2.2.3 while simultaneously

adopting the prefix sums algorithm.

Recall that in section 2.2, the matter of applying the prefix sums algorithm out-

lined in [10] was said to be impractical, but such is not the case with the retrodiction

of the Kalman filter. The difference being that the Kalman filter would require all

the previous estimates in order to predict the successive one and as was mentioned

earlier, computing 20 estimates just to predict the 21st is wasteful, while retrodiction

relies on already knowing all the past predictions. This is the key feature that distin-

guishes retrodiction from prediction when vying for potential candidates that can be

paralellized.

3.2.1 Prefix Sums Operation

Deriving a parallel algorithm from a recursive one is not such a difficult task if one has

the right tools. The problem is that parallel processing units are relatively new, and

so the documentation that algorithm designers need to aid them in exploiting this

new technology is equally modern and therefore, not as plentiful. Yet, the last several

years have seen the arrival of core building blocks that designers will need if they are

to thrive in the field of GPU software development. The most popular of these being

the all-prefix-sums algorithm. Throughout this thesis there has been mention of the

prefix sums algorithm, and how it should be considered when attempting to parallelize

a serial algorithm. Its importance has been well embellished in the previous pages,

and now, finally, its powers will be revealed.

52

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

Referring to [10], the all-prefix-sums operation takes a binary associative opera-

tor ⊕ and an ordered set of n elements [a0, a1, ..., an−1] and returns the ordered set

[a0, (a0⊕ a1), ..., (a0⊕ a1...⊕ an−1)]. For example, if the binary operation is addition,

then the input [
3 5 1 1 0 2 4 1

]
will produce the output

[
3 8 9 10 10 12 16 17

]

And if the binary operation is multiplication, then the same input from above would

produce the following output

[
3 15 15 15 0 0 0 0

]

If the all-prefix-sums operation is performed on a vector, then it is known as the

scan operation. Performing the scan on a vector using a CPU is simple enough, all

that is required is to loop through the array adding all the elements. It shouldn’t be

too hard to convince the reader that the runtime complexity of such an algorithm

is O(n). The important thing to note is that the code for this algorithm would be

executed by a single thread, so how does one exploit the benefit of having multiple

threads? A simple, yet elegant way of doing this is outlined below.

The computation begins by adding every value located at an even index (assuming

the indices begin at 0) to the adjacent value located at an odd index, wherein the

odd indices must be greater than the even indices. This is displayed by the arrows of

Figure 3.2, which are denoted by d1. Notice that d1 does not represent the row, but

53

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

the operations between rows, i.e. the arrows. The sum of these values are stored in

the odd indices. The next set of operations is d2, where the values from the previous

iteration are summed with their nearest neighbour, which must be located at one of

the odd indices from the previous iteration. The only constraints are that the value

located at the smallest index is added to its neighbour and no value can be added

to two different neighbours. This continues upward until there is only one value

remaining.

3 5 1 1 0 2 4 1

3 3+5=8 1 1+1=2 0 0+2=2 4 4+1=5

3 8 1 8+2=10 0 2 4 2+5=7

3 8 1 10 0 2 4 10+7=17

d1:

d2:

d3:

Figure 3.2: Up-Sweep Scan

The important thing to note when referring to Figure 3.2 is that d1 is performed

in one FLOP on a GPU, wherein a CPU would require 4 FLOPS. In fact, d1, d2 and

d3 each require 1 FLOP, where in this particular example the CPU would need to

perform 7 FLOPS. This may not seem like an impressive improvement, but what if the

length of the array was not 8, but 1,000? Since the up-sweep reduces the number of

necessary array elements by half every iteration, then the number of FLOPS required

to execute the up-sweep by a GPU is log2 n. Therefore, running the up-sweep on an

array of 1,000 elements would require 10 FLOPS from a GPU, and 999 from a CPU.

54

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

One can clearly see how this could quickly be advantageous for large sized arrays.

Yet this is only half of the algorithm, the down-sweep needs to be performed as well.

The down-sweep begins by taking the resultant array of the up-sweep and setting

the last index equal to 0, which is indicated by d0 in Figure 3.3. Then the rest of the

algorithm is just the up-sweep in reverse. In the final computation of the up-sweep

the value at index 7 was added to that at index 3, and in the down-sweep this is the

first operation. There is one additional operation that requires careful consideration

and that is before the new value is stored in index 7, the old value must be swapped to

index 3. So at every iteration addition is performed and swaps are made. Upon close

inspection the reader can verify that all of the indices involved in the up-sweep are

also engaged in the down-sweep. The final result is identical to the expected answer

except that the every value has been shifted by one index to the right. This is not a

problem since they can be shifted back and the last value calculated in the up-sweep

can be temporarily stored in a variable and set back into the last index once the array

has been shifted.

The runtime of the up-sweep was determined to be O(log2 n). Since the down-

sweep contains the same number of operations except for the additional swaps, it

should have a complexity of O(log2 n), which gives a total runtime of O(log2 n).

The trivial example outlined in this section may not seem very insightful or prac-

tical for problems that contain complex calculations like the Smoothing problem,

after all, how does summing a bunch of numbers help when performing 27 distinct

matrix/vector computations? The answer is that if an algorithm, not matter how

intricate, can be proven to meet certain requisites, then the scan algorithm can be

implemented. The proof of this is undoubtedly the most novel aspect and the greatest

55

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

0 3+0=3 8 9 10 0+10=10 12 12+4=16

3 0 1 8+0=8 0 10 4 2+10=12

3 8 1 0 0 2 4 10+0=10

3 8 1 10 0 2 4 0

3 8 1 10 0 2 4 17

d0:

d1:

d2:

d3:

Figure 3.3: Down-Sweep Scan

contribution of this thesis.

3.2.2 Parallelizing Complex Functions

In order to derive a parallel algorithm from a recursive one, the first step is to prove

that it meets the criteria outlined in the following equations

xi =


b0 i = 0

(xi−1 ⊗ ai)⊕ bi 0 < i < N

(3.2.2.1)

where ai and bi are arbitrary constants and ⊗ and ⊕ are binary operators [16]. The

key to converting a recursive algorithm into a parallel one is by way of the constraints

56

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

defined for the binary operators, namely

⊕ is associative (3.2.2.2a)

⊗ is semi-associative (3.2.2.2b)

⊗ is distributive (3.2.2.2c)

As long as these three properties are satisfied, then (3.2.2.1) can be converted into a

parallel algorithm. However, it is the intent of this thesis to go one step further and

implement the parallel algorithm on an actual GPU, which requires the use of the

scan operation, defined by the following equations

xi =


b0 i = 0

xi−1 ⊗ ai 0 < i < N

(3.2.2.3)

and an ordered set that obeys the following recursive formula

yi =


a0 i = 0

yi−1 � ai 0 < i < N

(3.2.2.4)

The operator � is referred to as the companion operator of the binary operator ⊗,

and is defined as a binary associative operator that satisfies the following

(ai ⊗ bi)⊗ ci = ai ⊗ (bi � ci) (3.2.2.5)

Furthermore, if ⊗ is fully associative then it is equal to �. The manner in which

(3.2.2.1) can be reduced to (3.2.2.3) is by way of, yet another binary operator defined

57

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

as

ci • cj = [ci,a � cj,a, (ci,b ⊗ cj,a)⊕ cj,b] (3.2.2.6)

wherein ci,a and ci,b are elements belonging to the set ci. So if the criteria outlined

in equations (3.2.2.1) to (3.2.2.6) are met, then a parallel algorithm can be derived

from a recursive one and implemented using the scan algorithm outlined in [10].

3.2.3 The Smoothed States

Armed with the formulas outlined in section 3.2.2, the derivation of the parallel

algorithm begins by expanding an rearranging (3.1.4)

x̂k|N = x̂k|k − CkFkx̂k|k + Ckx̂k+1|N (3.2.3.1)

Now let

bk = x̂k|k − CkFkx̂k|k (3.2.3.2)

akxk+1 = Ckx̂k+1|N (3.2.3.3)

and

xk = x̂k|N (3.2.3.4)

The result is an equation much like that found in (3.2.2.1)

xk = akxk+1 + bk (3.2.3.5)

What this means is that (3.2.3.1) is in the appropriate form needed to parallelize

it. Now that the equation is in the proper form, the binary operators can clearly be

58

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

classified as vector addition

akxk+1 + bk = (akxk+1)⊕ bk (3.2.3.6)

and matrix-vector multiplication

akxk+1 = xk+1 ⊗ ak (3.2.3.7)

According to the previous section, the three properties, defined in (3.2.2.2a),

(3.2.2.2b) and (3.2.2.2c) have to be satisfied. The first property (3.2.2.2a), is the

easiest to prove and quite simply equates to the fact that matrix/vector addition is

fully associative.

(a⊕ b)⊕ c = a⊕ (b⊕ c) (3.2.3.8)

The second property (3.2.2.2b), is proven by first noticing that the binary operation

in (3.2.3.7) is the equivalent of the transpose of matrix/vector products

(a⊗ b)⊗ c = c(ba)

= (cb)a

= a⊗ (cb)

(3.2.3.9)

It is easy enough to assert that the transpose of matrix/vector products is the

product of transposed matrix/vectors, provided the dimensions agree. Therefore, if

u and v are appropriately sized matrices/vectors then the following property applies

(uv)T = vTuT (3.2.3.10)

59

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

Extending this idea, it can be verified that the transpose of matrix/vector products

is associative by first acknowledging that matrix/vector multiplication is associative.

Therefore, given 3 matrices/vectors u, v and w, with the appropriate dimensions, it

can easily be verified that

((uv)w)T = wT (vTuT)

= (wTvT)uT
(3.2.3.11)

This proves that not only is the transpose of matrix/vector products associative, it is

fully associative. So if ⊗ is fully associative then � is as well and (3.2.3.9) is equal to

a⊗ (cb) = a⊗ (b� c)

= a⊗ (b⊗ c)
(3.2.3.12)

This has the added benefit of proving that (3.2.2.4) is associative as well. The final

requirement is to satisfy (3.2.2.2c), which can easily be done through the following

steps

a⊗ (b⊕ c) = (b⊕ c)a

= (ba⊕ ca)

= ((a⊗ b)⊕ (a⊗ c))

(3.2.3.13)

Hence, the ⊗ operator is distributive, and therefore the recursive equation in

(3.2.3.5) satisfies all three requirements, and as such can be implemented in a parallel

algorithm. This does not, however, mean that it can be used in the scan algorithm

described in [10], which is the final goal.

60

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

Two more steps need to be taken, first (3.2.2.1) must be reduced to (3.2.2.3) and

second an ordered set must satisfy (3.2.2.4). The first step can be accomplished by

fulfilling the necessity of showing that the binary operator • is associative given the

following set

ci = [ai, bi] (3.2.3.14)

Therefore, the following must be proven

(ci • cj) • ck = ci • (cj • ck) (3.2.3.15)

Just to be clear, the values ci, cj and ck represent the arbitrary constants defined in

(3.2.2.1) for differing sampling times i, j and k. Substituting the definition defined

in (3.2.2.6) into the above equation results in

(ci • cj) • ck = [ci,a � cj,a, (ci,b ⊗ cj,a)⊕ cj,b] • ck

= [(ci,a � cj,a)� ck,a, (((ci,b ⊗ cj,a)⊕ cj,b)⊗ ck,a)⊕ ck,b]

= [(cj,aci,a)� ck,a, ((cj,aci,b) + cj,b)⊗ ck,a + ck,b]

= [(ck,acj,a)ci,a, ck,a(cj,aci,b) + ck,acj,b + ck,b]

= [ci,a � (cj,a � ck,a), (ck,acj,a)ci,b + ck,acj,b + ck,b]

= [ci,a � (cj,a � ck,a), ci,b ⊗ (cj,a ⊗ ck,a)⊕ cj,b ⊗ ck,a ⊕ ck,b]

(3.2.3.16)

61

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

It has already been proven in (3.2.3.13) that ⊗ is distributive, therefore

[ci,a � (cj,a � ck,a), ci,b ⊗ (cj,a ⊗ ck,a)⊕ cj,b ⊗ ck,a ⊕ ck,b]

= ci • [cj � ck, (cj,b ⊗ ck,a)⊕ ck,b]

= ci • (cj • ck)

(3.2.3.17)

Therefore the • operator is associative. The second step to finalizing the paralleliza-

tion of the estimates starts by establishing an ordered set

sk = [yk, xk] (3.2.3.18)

The variable yk was already defined in (3.2.2.4), and so all that remains is to prove

that this recursive property holds. The initialization of the ordered set is rather

straightforward.

sN = [yN , xN]

= [aN , bN]

= cN

(3.2.3.19)

Proof that the binary operators outlined in equations (3.2.3.6) and (3.2.3.7) will work

62

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

on the ordered set begins by mixing the ordered set with the constants from (3.2.2.1).

sk = [yk, xk]

= [yk, akxk+1 + bk]

= [yk+1 � ak, (xk+1 ⊗ ak)⊕ bk]

= [yk+1 � ck,a, (xk+1 ⊗ ck,a)⊕ ck,b]

= [yk+1, xk+1] • ck

= sk+1 • ck

(3.2.3.20)

Recall that the • operator was established as being associative in (3.2.3.17), and

as a result (3.2.2.1) can be reduced to (3.2.2.3). This concludes the proof for the

estimates within the Smoothing problem. It has been shown that not only can a

parallel algorithm be derived, but it can be implemented on a parallel processor

using the scan algorithm described in [10].

3.2.4 The Smoothed Covariance

The next portion of the proof consists of applying the same series of steps implemented

on the estimates to the covariance matrix in (3.1.5). As with the estimates, the

equation in question is expanded and rearranged

Pk|N = Pk|k − CkPk+1|kC
T
k + CkPk+1|NC

T
k (3.2.4.1)

The first thing to note is how the covariance matrix Pk+1|N is wedged between the two

matrices Ck and CT
k . This presents a problem when attempting to get the equation

into the form dictated by (3.2.2.1). The solution to this obstacle is an elegant, yet

63

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

simple one that consists of a two step process, which begins with the vec operator

[27] that enables one to turn a matrix into a stacked vector of the columns of that

matrix. Refer to Appendix B for further details.

Applying the vec operator to both sides of (3.2.4.1), results in

vec(Pk|N) = vec(Pk|k − CkPk+1|kC
T
k) + vec(CkPk+1|NC

T
k) (3.2.4.2)

Assuming all of the matrices in the above equation are n× n, then

vec(Pk|N) has dimensions n2 × 1 (3.2.4.3a)

vec(Pk|k − CkPk+1|kC
T
k) has dimensions n2 × 1 (3.2.4.3b)

vec(CkPk+1|NC
T
k) has dimensions n2 × 1 (3.2.4.3c)

The last expression (3.2.4.3c) is problematic, and thus requires the use of the second

step, which is the Kronecker product defined in Appendix B, and stated here for

convenience.

vec(AXB) = (BT
⊗

A)vec(X) (3.2.4.4)

It is important to note that the
⊗

operator above is the Kronecker product and

not the same binary operator ⊗ that was applied in the previous sections. This is

an unfortunate consequence of notation, and as a result this paper will adopt the

boldface notation
⊗

to mean the Kronecker product, so as to differentiate between

the two.

64

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

The expression from (3.2.4.3c) can now be configured using (3.2.4.4) in the fol-

lowing manner

vec(CkPk+1|NC
T
k) = (Ck

⊗
Ck)vec(Pk+1|N) (3.2.4.5)

where

vec(Pk+1|N) has dimensions n2 × 1

(Ck

⊗
Ck) has dimensions n2 × n2

The same strategy that was applied to the estimates in the last section is adopted

here, wherein each respective component, namely (3.2.4.3a), (3.2.4.3b) and (3.2.4.5)

is substituted into (3.2.3.5)

xk,P = vec(Pk|N) (3.2.4.7)

bk,P = vec(Pk|k − CkPk+1|kC
T
k) (3.2.4.8)

ak,Pxk+1,P = (Ck

⊗
Ck)vec(Pk+1|N) (3.2.4.9)

where P in the subscripts above is used to distinguish them from the equations used

to represent the state estimates in (3.2.3.2) to (3.2.3.4).

Now they are in a form that is identical to (3.2.3.5), in fact, even the binary

operators are the same. Therefore, all 3 of the properties in (3.2.2.2) hold true, as

well as the subsequent proofs that showed (3.2.2.1) can be reduced to (3.2.2.3) and

the ordered set in (3.2.2.4) does exist. Therefore, the parallelization of the estimation

covariance matrices are both possible and capable of being carried out via the scan

operation explained in section 3.2.2.

The sole difference between the equations outlined in (3.2.3.2) to (3.2.3.4) and

65

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

those from (3.2.4.7) to (3.2.4.9) are that the dimensions differ by an entire magnitude.

This, however does not come as a surprise nor a problem. The estimated state vector

is always an entire magnitude smaller than the estimated covariance matrix. Whether

one adds two vectors of size n2 × 1 or two matrices with dimensions n × n, makes

no difference to the computational intensity. Even when solving for (3.2.4.9), the

runtime complexity is not adversely affected. This issue will be addressed in more

detail in the following section.

3.2.5 Parallel Computational Cost

In section 2.1.1 it was shown that the most significant runtime of the Kalman filter

was O(n3), which when compared to the complexity for the parallel algorithm of O(n)

determined in section 2.2.3, justified parallelizing the computations of the Kalman

filter. The situation may prove to be quite similar when considering the Smoothing

algorithm. All of the matrix computations outlined in Table 3.1 are within the same

dimensional range of those shown in Table 2.1,and the algorithm derived in section

3.2.4 only suggests a slightly different outcome from that derived in section 2.2.3.

Specifically, that defined in (3.2.4.5), which shows that the Kronecker product trans-

forms Ck

⊗
Ck into an n2 × n2 matrix, while the vec operator turns Pk+1|N into an

n2 × 1 vector. This matrix and vector will have to be multiplied by one another,

but fortunately that only equates to a matrix-vector product whose runtime can be

greatly diminished with a GPU. For example, using a GPU to perform matrix-vector

multiplication of an n×n matrix and an n×1 vector will result in a constant runtime

of O(1), provided there are n × n threads operating within the block. Using the

same number of threads for an n2 × n2 matrix times an n2 × 1 vector will cost O(n).

66

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

The added computation of having to multiply the resulting Kronecker product with

vec(Pk+1|N) will increase the execution time but not the code complexity, which will

ultimately remain linear. This is but one consideration, the other being the actual

Kronecker product, which will consist of multiplying a matrix times a scalar. If the

matrix has dimensions 4× 4, then there will have to be 16 matrix-scalar operations,

wherein each operation has a complexity of O(1). This may seem like a trivial matter,

but as will be seen in the next section, there are only 64 blocks, and so only 4 matrices

at a time can be computed, which will cause serialization. That will amount to 16

FLOPS required to compute the Kronecker product for 64 matrices.

At this point it might be worth mentioning that it is possible to dismiss the

parallelization of the estimation covariance. The results of Pk|N can be acquired

using block matrix operations similar to those shown in section 2.2.3, in which case

the vec operator will not be utilized. The price of doing this will restrict the designer

from using the scan operation on the estimated covariance, which will in turn serialize

the estimated covariance calculations, but not those of the state estimation.

The good news is that one has options. One can ignore the use of the scan

operation, in which case sections 3.2.3 and 3.2.4 no longer apply and block operations

may be used to solve the Smoothing problem serially. Or one can incorporate the

algorithm in section 3.2.3 while ignoring that from section 3.2.4, or both sections 3.2.3

and 3.2.4 can be integrated onto a GPU. One final option is to ignore the calculation

of the estimated covariance all together. The solution to the Smoothing problem is

primarily concerned with the state estimates, and the covariance estimates may prove

useless. The reason this is even possible is obvious when one looks at 3.2.3.1, wherein

the retrodiction estimate x̂k|N is in no way dependant on the updated covariance

67

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

Pk|N . With that said, the sole question that remains is which of the 4 aforementioned

options produces the best results?

3.2.6 The Source Code II

The results produced in section 2.2.6 were based upon the example outlined in section

2.2.3, wherein each block contained 16 matrices, the largest of which was 6× 6. The

size of each matrix was a result of there being 3 state space variables (position, velocity

and acceleration) and 2 dimensions (x and y). The following simulation will be slightly

different. Instead, there will be 2 state space variables, namely position and velocity,

and 2 dimensions, x and y. Furthermore, the implementation of the algorithm will

not be executed as outlined in section 2.2.3, wherein each block consisted of 24× 24

threads subdivided into 16 matrices, instead each block will consist 4 × 4 threads,

since the largest matrix is of size 4 × 4, and there will be a total of 64 blocks.

The reasoning behind this change is simplicity. Subdividing a block into smaller

matrices is quite difficult and time consuming, whereas allocating a matrix for each

block greatly simplifies the task of coding. It comes down to performance versus

complexity; is it really worth while to cram 16 matrices into a block in order to increase

thread performance? This is an important question that every programmer must face.

Surely, utilizing more threads will increase performance, but by how much? If it takes

an extra month to code the algorithm while seeing an increase in functionality by a

fractional amount, then it might not be worth one’s while. Therefore, this section

resolves two questions at once, the first is how much of a speed up does the algorithm

presented in section 3.2.3 offer, and the second being how much does using a reduced

thread count impeded performance?

68

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

The code was structured much like what was seen in section 2.2.4. The first consid-

eration is whether or not shared memory will enhance performance. In this particular

case there are a substantial amount of matrix computations that will benefit from

the use of shared memory and therefore, allocating the appropriate amount of shared

memory is the first step. The programmer must ensure that every matrix/vector is

allocated enough shared memory to store 64 matrices/vectors appropriately sized for

2 state space variables and 2 dimensions. For example, the state estimation vector

x̂k|k should be allocated 256 array elements, while the state transition matrix should

be given 1,024 array elements, both of type float.

There is one major difference between the code that was outlined in section 2.2.4

and that which is defined here, that being the fact that threads between differing

blocks cannot interact. Threads from block 3 cannot be added, subtracted, multiplied,

divided or in any way arithmetically combined with those from any other block. This

causes a problem when performing both the up-sweep and the down-sweep of the

scan since bk (refer to equation 3.2.3.2) will reside in block k and have to be added to

bk+1 located on block k + 1. The workaround for this is to compute bk using shared

memory and once that is complete the results can be transferred into global memory

where the values residing on different blocks can be arithmetically interchanged. This,

however, adds additional transfers from shared to global memory and draws into

question the efficiency of using shared memory. The only way to know if shared

memory is better equipped for the algorithm in question is to write a second piece

of code that uses global memory only, and compare that to the performance of the

aforementioned code. This is well out of the scope of this thesis, since the goal is to

derive a parallel algorithm using the prefix sums and not to explore every avenue of

69

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

possible optimization. Therefore, the option of writing code that solely utilizes global

memory will have to be tucked away for future considerations.

As was mentioned above, the matrix computations will be divided into two distinct

categories; those that are executed in shared memory and those using global memory.

The first category will be executed exactly as was seen in Listing 2.1, wherein two

nested for loops will be utilised to multiply the columns and rows of the matrices in

question, while only one for loop is required to multiply a matrix by a vector. The

idea is to perform matrix/vector operations until every value of Ck and bk in shared

memory has been computed, and afterwards the results can be transferred into global

memory and the scan algorithm can begin.

As a matter of conciseness, it seems prudent to elaborate on the exact methodology

that will be utilised in performing the up and down-sweep. One of the key issues is

to solve for bk and Ck serially, prior to the scan algorithm being implemented. That

means bk and Ck must be computed for all values of k = 1, ..., N and once they are

calculated then the up-sweep can begin

It is at this point that the reader can appreciate all of the effort that went into

exploring matrix block operations in the previous chapter. These block operations

can now be easily assimilated by the present chapter when solving for bk and Ck,

which begins by looking at how bk+1 is updated.

b∗k+1 = bk+1 + Ck+1bk (3.2.6.1)

and Ck+1 is updated as follows

C∗k+1 = Ck+1Ck (3.2.6.2)

70

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

A simple example using the same sized data set from section 3.2.1 is demonstrated

in Figure 3.4 and Figure 3.5, where b∗k and C∗k represent the updated values, which

are refreshed every iteration. This means that after the first iteration d1

b∗5 = b5 + C5b6 (3.2.6.3)

and subsequent to the second iteration d2

b∗5 = b∗5 + C∗5b
∗
7

= (b5 + C5b6) + (C5C6)(b7 + C7b8)

(3.2.6.4)

The important thing to note is that the value b∗5 after the first iteration d1 is not the

same value as b∗5 after the second iteration d2.

b8 b7 b6 b5 b4 b3 b2 b1

b8 b7 + C7b8 b6 b5 + C5b6 b4 b3 + C3b4 b2 b1 + C1b2

b8 b∗7 b6 b∗5 + C∗5b
∗
7 b4 b∗3 b2 b∗1 + C∗1b

∗
3

b8 b∗7 b6 b∗5 b4 b∗3 b2 b∗1 + C∗1b
∗
5

d1:

d2:

d3:

Figure 3.4: Up-Sweep Scan of bk

The next step is to perform the down-sweep, which is identical to the up-sweep

except that it runs in the reverse direction. There is something worth noting with

regards to the down-sweep when referring to Figure 3.3, the down-sweep is initialized

71

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

C8 C7 C6 C5 C4 C3 C2 C1

C8 C7C8 C6 C5C6 C4 C3C4 C2 C1C2

C8 C∗7 C6 C∗5C
∗
7 C4 C∗3 C2 C∗1C

∗
3

C8 C∗7 C6 C∗5 C4 C∗3 C2 C∗1C
∗
5

d1:

d2:

d3:

Figure 3.5: Up-Sweep Scan of Ck

by setting the last value equal to 0. This only applies if the scan algorithm is being

applied to scalar values. In this case, vectors and matrices are being used, which

consists of setting b1 = 0 and C1 = I, where I is the identity matrix. Always keep

in mind that retrodiction is the pursuit of the estimate at time k given the estimates

for all time greater than and including k+ 1, which is why the first value in the scan

algorithm shown in Figure 3.4 is b8 and the last value is b1.

Once the down-sweep is completed all of the values are shifted to the left by one

index and the last index is set equal to the value calculated in the up-sweep, which

means b∗1 +C∗1b
∗
5 and C∗1 = C∗1C

∗
5 . It should be stated for clarity that b∗1 in Figure 3.6

is set equal to b∗3 + C∗3b
∗
5 after iteration d2.

At this point an observant reader might ask how the up and down-sweep detailed

in figures 3.4 through 3.7 managed to solve for the variable ak defined in (3.2.3.3)? The

answer can be found by looking at a single computation from Figure 3.4, specifically

b7 = b7 + C7b8 (3.2.6.5)

72

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

0 b8 + C80 b∗7 b6 + C∗6b
∗
7 b∗5 b4 + C∗4b

∗
5 b
∗
3 + C∗3b

∗
5 b2 + C∗2b

∗
1

b8 0 b6 b∗7 + C∗70 b4 b∗5 b2 b∗3 + C∗3b
∗
5

b8 b∗7 b6 0 b4 b∗3 b2 b∗5 + C∗50

b8 b∗7 b6 b∗5 b4 b∗3 b2 0

b8 b∗7 b6 b∗5 b4 b∗3 b2 b∗1

d0:

d1:

d2:

d3:

Figure 3.6: Down-Sweep Scan of bk

Substituting (3.2.3.2) into the above equation results in

b7 + C7b8 = x̂7|7 − C7F7x̂7|7 + C7(x̂8|8 − C8F8x̂8|8) (3.2.6.6)

Referring to equations (3.2.3.2) and (3.2.3.3), it is clear that

b7 = x̂7|7 − C7F7x̂7|7 (3.2.6.7)

and

a7x8 = C7(x̂8|8 − C8F8x̂8|8) (3.2.6.8)

This makes it obvious that

a7 = C7 (3.2.6.9)

73

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

I C8 C∗7 C6C
∗
7 C∗5 C4C

∗
5 C∗3C

∗
5 C2C

∗
3C
∗
5

C8 I C6 C∗7 C4 C∗5 C2 C∗3C
∗
5

C8 C∗7 C6 I C4 C∗3 C2 C∗5

C8 C∗7 C6 C∗5 C4 C∗3 C2 I

C8 C∗7 C6 C∗5 C4 C∗3 C2 C∗1

d0:

d1:

d2:

d3:

Figure 3.7: Down-Sweep Scan of Ck

while the following can be said about the estimated smoothed state

x8 = x̂8|8 − C8F8x̂8|8

= x̂8|N

(3.2.6.10)

So the variable ak is computed within the up and down-sweep, it has just been

replaced by the variable Ck in figures 3.4 through 3.7. The fact that ak = Ck is no

coincidence, it is the subtle beauty of the prefix sums algorithm. It is also a welcomed

advantage since one would have to compute Ck in order to solve the Smoothing

problem, yet instead of having to explicitly work out ak as was the case for bk, the

scan provided it for free.

The last thing that requires attention is the inverse calculation of the matrices

(Hk+1Pk+1|k+1H
′
k+1 − Rk)−1 and P−1k|k in (3.1.1.2) and (3.1.6), respectively. Since

there are 2 state space variables and 2 dimensions, the size of these matrices is known

74

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

beforehand, which allows one to hard code the inverse calculation, thus circumventing

the need for any overly complicated algorithm like LU decomposition or the Cholesky

factorisation. The first matrix has dimensions 2× 2, and can be computed using the

formula outlined in (2.2.4.1). The estimated covariance matrix has dimensions 4× 4,

and its inverse is found using the adjugate matrix and the determinant [36]

A−1 =
1

det(A)
adjA (3.2.6.11)

Everything up until now has detailed all the ingredients needed to calculate the

retrodiction of the Kalman filter using the prefix sums algorithm. But these are only

half of the necessary steps that one would have to perform, there still remains the

matter of the estimated covariance, which can be computed using the same procedure

outlined in this section. There are, however, two additional steps that need to be

addressed, that being the vec operation and the Kronecker product. Recall that

the largest matrix was assumed to be 4 × 4 and performing the vec operator will

transform this into a 16× 1 vector, while the Kronecker product will create a 16× 16

matrix. The first problem is that each block was allocated 4 × 4 threads, which

cannot perform the necessary matrix-vector calculation from (3.2.4.2). One option is

to use 4× 4 threads and block operations, thus partitioning the 16× 16 matrix into

16 sub matrices that can be placed into 16 distinct blocks. The problem with this is

that one cannot use shared memory since blocks cannot arithmetically interact with

one another, making it difficult to perform the product (Ck

⊗
Ck)vec(Pk+1|N). A

better option is to allocate 16× 16 threads, but use 4× 4 for all computations except

those involving the vec and Kronecker operations. Once these transformations are

completed all of the steps detailed in figures 3.4 to 3.7 can be easily applied.

75

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

As a result of the aforementioned dilemma, for the purposes of testing, the esti-

mation covariance was not computed, solely the state estimation was calculated on

both the CPU and the GPU. The reasoning behind this is due to the added necessity

of having to solve for the estimation covariance matrices using the Kronecker prod-

uct outlined in Appendix B, that would have forced the coding to be severely more

complex than is needed in order to test the functionality of the parallelization of the

Smoothing problem. Furthermore, the smoothed trajectory requires solely the state

estimates, which is why the estimated covariance matrices can be ignored.

3.2.7 Simulation Results II: CPU vs GPU

As was the case in section 2.2.6, the following simulation was performed in two phases,

one was performed on an i7 870 @ 2.93 GHz using an ANSI C compiler, while the

second was executed on a NVIDIA GeForce GTX 570 graphics card using the CUDA

runtime library. Like before, the serial algorithm of the retrodiction was written

by this author using the C programming language so as to ensure that the code

being executed was that which was outlined in [34]. The amount of data that was

processed was increased from 64 to 524,288 in increments of 64× 2n, for n = 1, ..., 13.

The corresponding runtime for both the CPU and the GPU was recorded and stored

in Table 3.2 for quick referencing.

Data Size CPU Time (s) GPU Time (s)

64 0.001155 0.000372

128 0.005709 0.000621

256 0.009056 0.001009

512 0.030386 0.002039

76

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

1024 0.035425 0.004093

2048 0.069176 0.007815

4096 0.898497 0.015266

8192 1.01493 0.03052

16384 0.917155 0.061148

32768 1.093203 0.122052

65536 2.21806 0.244505

131072 4.376406 0.487737

262144 8.551049 0.974989

524288 17.162158 1.950584

Table 3.2: Retrodiction Simulation Results

Like Table 2.4, the results in Table 3.2 demonstrate how the GPU performs favor-

ably and predictably, while the CPU is several times slower (refer to Figure 3.8). One

noticeable difference between the results obtained in section 2.2.6 and those shown

here are that the retrodiction algorithm was able to run an extra data set of size

524,288. The reason this was not done in section 2.2.6 was due to the fact that any

data set size greater than 262,144 caused the device to crash. This crash was the

consequence of utilizing too many registers per thread. Debugging this is outside the

scope of this thesis and in no way undermines the simulation results.

The next thing worth mentioning is that there was greater consistency with the

retrodiction algorithm when using the CPU, as can be seen in Figure 3.9. The un-

explained behaviour of the CPU that was first observed in section 2.2.6 is less pro-

nounced, albeit still present. The most interesting thing is how the shape of the graph

77

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

0 1 2 3 4 5 6

x 10
5

0

2

4

6

8

10

12

14

16

18

Data Set Size

R
un

 T
im

e
(s

)

CPU Runtime vs GPU Runtime

CPU Runtime
GPU Runtime

Figure 3.8: Retrodiction Runtime Comparison

for the CPU in Figure 2.2 is strikingly similar to that of Figure 3.9. The fact that two

different algorithms performing two distinct sets of matrix/vector computations pro-

duced such analogous graphs suggests that whatever the problem is, it is not random

and seems to be a systematic fault.

Another issue to consider in this section is that the retrodiction takes less time to

compute than the prediction, which cab be observed when comparing Table 2.4 with

Table 3.2. It seems that the Smoothing problem is about twice as fast as the Kalman

filter. One might think that this is due to the fact that the calculations involving the

smoothed estimation covariance were ignored, but that is not the sole reason. Recall

from section 3.1.2 that in order to solve for Pk|k, the value of Pk+1|k was calculated

as well. However, once the Kalman filter computed Pk|k, this matrix was retained

in memory and used later by the retrodiction algorithm. So the 9 matrix operations

needed to solve for Pk+1|k and the 3 accounting for Pk|k were completely circumvented,

which means that a total of 15 matrix/vector computations were performed. Also,

the matrix transpose multiplication of Pk|kF
T
k found in both (3.1.4) and (3.1.6) was

78

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Logarithmic Data Set Size

R
un

 T
im

e
(l

og
(s

))

Logarithmic CPU Runtime vs GPU Runtime

Logarithmic CPU Runtime
Logarithmic GPU Runtime

Figure 3.9: Logarithmic Retrodiction Runtime Comparison

computed only once since transpose matrix multiplication is performed in one step.

Furthermore, Pk|kF
T
k was calculated in (3.1.4) and then saved in memory and the

result used again later in (3.1.6). This brings the total number of matrix/vector

computations to 12. Subtract from this the 5 computations that were not executed

when ignoring Pk|N and the final total is 7 matrix/vector operations.

The only thing left to discuss in this section is the precision of the results. Like

those produced in section 2.2.6, the results here were acquired using arrays of type

float, for both the CPU and the GPU. Once again, the results did not demonstrate

any kind of truncation or rounding off errors. The values computed for both the host

and device were identical.

3.2.8 Simulation Results II: Block Size

Since the source code in section 3.2.6 relies heavily upon the number of blocks allo-

cated, it makes sense to use this as a performance metric. This was the same tactic

79

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

seen in section 2.2.7, wherein the runtime for a varying number of blocks was cata-

logued and compared. Recall that in section 2.2.7 the code was executed for 1, 2, and

4 blocks. This does not make much sense here since the software outlined in section

3.2.6 was implemented using 64 blocks. Therefore, it seemed more appropriate to

vary the number of blocks from 1 to 64, the results of which are shown in Table 3.3.

Data Size 1 Block 16 Blocks 64 Blocks

64 0.005899 0.000612 0.000372

128 0.011371 0.001396 0.000621

256 0.022945 0.00216 0.001009

512 0.045243 0.00413 0.002039

1024 0.090262 0.008267 0.004093

2048 0.180401 0.016376 0.007815

4096 0.360666 0.03288 0.015266

8192 0.721054 0.065386 0.03052

16384 1.442205 0.130914 0.061148

Table 3.3: Retrodiction Simulation Results

The first thing that stands out is how slow the GPU performs when only 1 block

is being utilized. When compared to Table 3.2, it can be seen that the code is

executed faster on the CPU than the GPU. This is the first time that the CPU has

outperformed the GPU, and is a good lesson to remember. If one is not careful with

the allocation of threads and blocks, the GPU can actually impede the runtime. This

situation, however, only applies to very small block sizes, and quickly evaporates as

the block size is increased to 16 and 64.

80

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

Data Set Size

R
un

 T
im

e
(s

)

Block Size Runtime Comparision

1 Block
16 Blocks
64 Blocks

Figure 3.10: Retrodiction Block Size Comparison

The fact that the difference between utilizing 16 and 64 blocks only doubles the

runtime is interesting because there are 4 times the number of blocks, yet only twice

the improvement. This behaviour was not observed in Table 2.4, which displayed a

runtime that was approximately halved when the block size was doubled, a pattern

that seemed to suggest some linear relationship between the number of blocks and the

runtime. Figure 3.10, however, shows that increasing the number of blocks can greatly

affect performance, but does so in a non linear fashion. Its almost as if the number

of blocks allocated will eventually saturate the performance, after which adding more

blocks will contribute very little improvement.

3.2.9 Future Considerations II

It becomes apparent that as the design process evolves, there are numerous consider-

ations to make when programming software for a GPU. Whether or not to use shared

memory, how many threads need to be implemented, can these threads be divided

81

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

into a greater number of blocks, are just a few questions that have been addressed in

the previous sections. Recall also that section 2.2.8 listed several other design goals

that could help improve the performance of the GPU. Before delving into Visual

Profiler, it seems wise to list the possible improvements discussed thus far.

1. Increase number of threads

• The number of threads per block being utilized in the parallelization al-

gorithm of the Smoothing problem is 16, this value could conceivably be

increased to 256

2. Utilize global memory

• The use of global memory in place of shared memory due to the data

transfers from shared to global at the commencement of the up and down-

sweep

3. Compute the estimation covariance matrix

• Use the Kronecker product and the vec operator to compute the estimation

covariance matrix in order to gauge the speed up

The whole point of trying to predict where performance enhancements on a GPU

can be made is the result of refining one’s skills so as to avoid pitfalls that might

slow down the code, and seek out improvements that might speed up the code. Since

writing software for a GPU is exponentially more complicated than that of a CPU, one

needs to be cautious. The last thing that should happen is for the code to take several

months to develop only to find out that its not possible to attain speed ups greater

than a factor of 2 or 3. Yet, the situation becomes complicated when one doesn’t know

82

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

exactly what to expect and is therefore incapable of determining beforehand whether

or not the algorithm will perform admirably. This is the situation in which items

1 and 2 describe. There is no way of knowing how well or poorly the software will

perform by altering the number of operational threads or using less shared memory

in favor of global memory. At this point it really is just a matter of trial and error,

which is a costly endeavour when writing GPU software. This is why the algorithm

detailed in section 3.2.4 was never implemented. Having to write an extra kernel in

order to perform the vec operation would have been an involved process that might

or might not produce favorable results. But it is nonetheless, a novel approach to a

growing field and worthy of mention.

As always, it is good practice to use any kind of tool capable of measuring perfor-

mance metrics since optimizing the GPU for speed is the ultimate goal. Fortunately,

NVIDIA provides this tool, which was already mentioned in section 2.2.8, called Vi-

sual Profiler. Therefore, the parallelization of the Smoothing problem was analysed

and the following results produced.

1. Low memory copy and compute overlap

• The percentage of time when memory copy is being performed in parallel

with compute is low

2. Low memory copy throughput

• The memory copies are not fully using the available host to device band-

width

3. Low kernel concurrency

83

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

• The percentage of time when two kernels are being executed in parallel is

low

4. Occupancy may be limited by block size

• Occupancy can potentially be improved by increasing the number of threads

per block

5. Occupancy may be limited by shared memory

• Occupancy can potentially be improved by decreasing shared memory us-

age per block

6. Low multiprocessor occupancy

• Low occupancy may limit utilization of the GPU’s multiprocessors

7. Low global load efficiency

• Global memory loads may have a poor access pattern, leading to inefficient

use of global memory bandwidth

8. Low global memory store efficiency

• Global memory stores may have a poor access pattern, leading to inefficient

use of global memory bandwidth

9. Inefficient block size

• Compute resources are being wasted because the number of threads per

block is not a multiple of the warp size

84

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

10. High instruction replay overhead

• A combination of global, shared, and local memory replays are causing

significant instruction issue overhead

11. High global memory instruction replay overhead

• Non-coalesced global memory accesses are causing significant instruction

issue overhead

The first 3 items above are the same as those explained in section 2.2.8, where the

reader is referred to for further information. Items 4 and 9 suggest that the number

of threads be some multiple of 32 since that is the warp size. This ensures that

the optimal number of threads are operational when they are launched. The next

item 5 is something that was already discussed in the previous bullet listing, wherein

the possibility that global memory might be better suited for the task instead of

shared memory. Notice that items 4, 5 and 6 all mention problems areas related

to occupancy. Occupancy is a metric used to determine how well the threads are

accessing the registers. If only a few threads utilize a great many registers, then

the occupancy is low, if the threads use just the right number of registers then the

occupancy is optimized. As was discussed in section 2.2.5, this is an involved topic

that goes to the heart of understanding the advanced nature of a GPU’s architecture.

The three items 7, 8 and 11 were already addressed in section 2.2.8. Item 10 is one of

the more complicated and vague issues since it suggests that there may be a problem

with the use of memory. It states that a better execution of either global, shared,

local, textured, constant or registers is advised. The only hint towards any resolution

is the one provided in section 3.2.6 that states the use of global memory might be

85

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

better suited to meet the needs of this particular algorithm than shared memory.

86

Chapter 4

Conclusion

Surely performing block computations will enhance the performance of a simple

tracker, enabling it to monitor a greater number of targets that it was incapable

of doing before GPUs were available, but that is merely a stepping stone to the larger

picture. What about all of the publications concerning data fusion [5] [6] [23]? How

does the ability of a tracker to monitor numerous targets simultaneously affect the

trackers ability to monitor multiple sensors simultaneously? From the perspective of

a GPU the two are not so different, which means that the details outlined in chapter

2 can be easily adopted to the field of data fusion. So not only can a GPU be used to

perform faster matrix computations once the data has been acquired, it can be used

to acquire the data faster. This means that the architecture of a graphical processing

unit can be utilized at various stages of the data processing. So the next inevitable

question is how many different ways, and in how many different places can a GPU

improve the whole system of monitoring targets? At this point no one knows, which

is what makes this thesis so compelling, it sets the stage for what’s to come. De-

riving parallel algorithms for MHT, PDA, JPDA and Alpha-Beta filters has to start

87

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

somewhere and is too intractable a task to perform in one sitting. It is something

that will require several years and hundreds of publications before it is brought to a

level of maturity that can be utilized reliably in industry. Yet, the chore has to start

somewhere and at some point, and starting with the Kalman filter was a judicious

choice since it paves the way for a parallel IMM filter, while planting the seed for

those who might consider parallelizing the extended and unscented Kalman filters [8]

[37].

Yet, exploiting the functionality of a GPU by performing numerous operations

concurrently is a limited endeavour that will eventually saturate, after all even a

GPU has limits. Its not so much the speed up that should concern a designer, but

the architecture. Differing architecture has differing applications, some optimized for

certain scenarios and not for others. This is exactly why there are several variants of

processors such as microcontrollers, digital signal processors and field programmable

gate arrays. Each one has its place and functionality. This is the whole point of

deriving a parallel algorithm for the retrodiction of the Kalman filter. Being smart

about how to exploit the hardware allows the software to go the extra mile. Structur-

ing the Smoothing problem so that it fits into the prefix sums algorithm is equivalent

to compressing data into a smaller storage space before it is transferred, after all

why perform block operations on a serial algorithm when it is possible to perform

those same block operations on a parallel algorithm? So the parallelization of the

Smoothing problem is an additional advantage to the already pre-existing advantage

that a GPU provides when performing matrix/vector calculations. The retrodiction

described in [34] could have easily been computed using the same block partitioning

88

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

technique outlined in chapter 2, but it would have amounted to block operations be-

ing performed in a recursive manner. Instead, block operations were performed in a

parallel manner, resulting in a refined efficiency.

So the only question that remains is what does all this mean for the future? There

is no doubt that the industry places greater demand on the tracking community as

a whole to monitor more targets with ever increasing precision. Greater precision

means better algorithms which usually entails more complicated math. Just think of

the IMM filter, which can switch between models, or the MHT filter that keeps track

of multiple scenarios, both of these are modern filters that require a greater number

of computations than their predecessors the Alpha-Beta or Kalman filter. And what

of optical tracking methods, the pixel count in cameras is increasing almost everyday,

this requires more processing power in order to perform operations like edge detection

[38] and feature extraction [33] that are fundamental in tracking. The only way to

solve these challenges is with GPUs. But blindly using threads and blocks in hopes

that speed ups will occur is unrealistic. A strategic approach has to be adopted, one

wherein the computations are optimized along with the algorithms.

89

Appendix A

Block Matrix

A matrix can be partitioned into sub matrices referred to as blocks in the following

manner, suppose

A =



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16


then the partitioned matrix can be defined as

A =

A11 A12

A21 A22


where

A11 =

1 2

5 6



90

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

A12 =

3 4

7 8



A21 =

 9 10

13 14



A22 =

11 12

15 16


This idea can be extended to matrix multiplication by performing the operation on

the sub matrices. For example, let

B =



1 1 2 2

3 3 4 4

5 5 6 6

7 7 8 8


If B is partitioned into the same sized sub matrices as A, then

C = AB

=

A11B11 A12B12

A21B21 A22B22



=



7 7 22 22

23 23 46 46

115 115 162 162

163 163 218 218



91

Appendix B

Vectorization

The vectorization performs the linear transformation of a matrix into vector form.

This means that a matrix A, can be converted into a column vector. Suppose

A =

[
a1 a2 . . . an

]

where A is a m× n matrix with columns a1 . . . an, then the vec operation is defined

as

vec(A) =



a1

a2
...

an


and the dimensions of the resulting vector are mn× 1.

An extension of the vec operation is the Kronecker product that utilizes the results

shown above in order to perform matrix multiplication. The Kronecker product is

92

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

defined as follows

vec(AXB) = (BT ⊗ A)vec(X)

The operator ⊗ denotes the Kronecker product which if defined for an m× n matrix

A and a p× q matrix B, results in

A⊗B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
... . . .

...

am1B am2B . . . amnB


where the resulting matrix has dimensions mp× nq. For example, let

A =

1 2

3 4


and let

B =

0 5

6 7


Then the following holds true

A⊗B =



0 5 0 10

6 7 12 14

0 15 0 20

18 21 24 48



93

Appendix C

GeForce GTX 570 Specifications

The following specifications were obtained through the use of the CUDA device query.

Description Value

Device GeForce GTX 570

CUDA Driver Version 5.0

CUDA Capability 2.0

Total amount of global memory 1280 MB

(15) Multiprocessors × (32) CUDA Cores/MP 480 CUDA Cores

GPU Clock rate 1484 MHz

Memory Clock rate 1900 MHz

Memory Bus Width 320-bit

L2 Cache Size 655360 bytes

Max Textured Dimension Size (x,y,z) 1D=65536,

2D=65536,65536,

3D=2048,2048,2048

94

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

Max Layered Texture Size (dim × layers) 1D=16384×2048,

2D=(16384,16384)×2048

Total amount of constant memory 65536

Total amount of shared memory per block 49152 bytes

Total amount of registers available per block 32768

Warp size 32

Maximum number of threads per multiprocessor 1536

Maximum number of threads per block 1024

Maximum block size 1024× 1024× 64

Maximum grid size 65535× 65535× 65535

Maximum memory pitch 2147483647 bytes

Texture alignment 512

Concurrency copy and kernel execution Yes with 1 copy engine

Runtime limit on kernel Yes

Integrated GPU sharing Host Memory No

Support host page-locked memory mapping Yes

Alignment requirement for Surfaces Yes

Device has ECC support Disabled

Device supports Unified Addressing (UVA) No

Deice PCI Bus ID/PCI location ID 1/0

Table C.1: CUDA Device Query (Runtime API)

95

Bibliography

[1] S. Arulampalam, N. Gordon, B. Ristic. ”Beyond Kalman Filter: Particle Filters

for Tracking Applications”. Artech House, Boston, MA, USA, January 2004.

[2] Y. Bar-Shalom, H. Blom. ”The Interacting Multiple Model Algorithm for Sys-

tems with Markovian Switching Coefficients”. IEEE Transactions on Automatic

Control, vol. 33, no. 8, pp. 780–783, August 1988.

[3] Y. Bar-Shalom, F. Daum, J. Huang. ”The Probabilistic Data Association Filter”.

IEEE Control Systems Magazine, vol. 29, no. 6, pp. 82–100, December 2009.

[4] Y. Bar-Shalom, K. Chang. ”Joint Probabilistic Data Association for Multitar-

get Tracking with Possibly Unresolved Measurements and Maneuver”. IEEE

Transactions on Automatic Control, vol. 29, no. 7, pp. ”585–594”, 1984.

[5] Y. Bar-Shalom, I. Kadar, T. Kirubarajan, K. R. Pattipati. ”Large Scale

Ground Target Tracking With Single and Multiple MTI Sensors”. Multitarget-

Multisensor Tracking Applications and Advances III, 2000.

[6] Y. Bar-Shalom, X. R. Li. ”Multitarget-Multisensor Tracking: Principles and

Techniques”. YBS Publishing, Storrs, USA, 1995.

96

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

[7] Y. Bar-Shalom, T. Kirubarajan, X. R. Li. Estimation with Applications to Track-

ing and Navigation: Theory Algorithms and Software. John Wiley & Sons, Inc.,

New York, NY, USA, 2001.

[8] G. Bishop, G. Welch. ”An Introduction to the Kalman Filter”. Department of

Computer Science, University of North Carolina, 2001.

[9] S. Blackman. ”Multiple Hypothesis Tracking For Multiple Target Tracking”.

IEEE Transactions on Aerospace and Electronic Systems, vol. 19, no. 1, pp.

5–18, 2003.

[10] G. E. Blelloch. ”Prefix Sums and Their Applications”. School of Computer

Science, Carnegie Mellon University, (CMU-CS-90-190), November 1990.

[11] C. B. Chang, K. P. Dunn, D. Willner. ”Kalman Filter Algorithms for a Multi-

Sensor System”. IEEE Conference on Decision and Control including the 15th

Symposium on Adaptive Processes, pp. 570–574, December 1976.

[12] Y. Chang, B. Huang, M. Huang S. Wei. ”Accelerating the Kalman Filter on a

GPU”. IEEE 17th International Conference on Parallel and Distributed Systems,

pp. 1016–1020, 2011.

[13] T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algorithms. MIT

Press and McGraw-Hill, 3rd edition, 2009.

[14] O. E. Drummond. ”Feature, Attribute, and Classification Aided Target Track-

ing”. SPIE Proceedings, Signal and Data Processing of Small Targets, vol. 4473,

pp. 542–558, November 2001.

97

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

[15] H. Eves. Elementary Matrix Theory. Dover Publications Inc., Mineola, NY,

USA, 1980.

[16] J. B. Fraleigh, V. J. Katz. A First Course in Abstract Algebra. Addison-Wesley,

London, ON, Canada, 7th edition, 2003.

[17] H. R. Hashemipour, A. J. Laub, S. Roy. ”Decentralized Structures for Parallel

Kalman Filtering”. IEEE Transactions on Automatic Control, vol. 33, no. 1, pp.

88–94, January 1988.

[18] R. E. Kalman. ”A New Approach to Linear Filtering and Prediction Prob-

lems”. Transactions of the ASMEJournal of Basic Engineering, vol. 82, pp.

35–45, March 1960.

[19] J. M. Kessenich, B. M. Licea-Kane, G. Sellers, D. Shreiner. OpenGL Program-

ming Guide: The Official Guide to Learning OpenGL(R), Version 2. Addison-

Wesley, 5th edition, 2005.

[20] B. Khailany M. Bauer, H. Cook. ”CudaDMA: Optimizing GPU Memory Band-

width via Warp Specialization”. SC ’11 Proceedings of 2011 International Con-

ference for High Performance Computing, Networking, Storage and Analysis,

November 2011.

[21] T. Kirubarajan, T. Lang, M. McDonald, N. Nandakumaran, S. Sutharsan,

R. Tharmarasa. ”Interacting Multiple Model Forward Filtering and Backward

Smoothing for Maneuvering Target Tracking”. Signal and Data Processing of

Small Targets, vol. 7445, 2009.

98

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

[22] W. Koch. ”GMTI-tracking and information fusion for ground surveillance”.

Signal and Data Processing of Small Targets, vol. 4473, pp. 381, 2001.

[23] J. Koller, M. Ulmke. ”Data Fusion for Ground Moving Target Tracking”. IEEE

International Conference on Multisensor Fusion and Integration for Intelligent

Systems, vol. 11, no. 4, pp. 261–270, May 2006.

[24] B. C. Levy, A. S. Willsky, A. H. Tewfik. ”A New Parallel Smoothing Algorithm”.

IEEE Conference on Descicion and Control, vol. 25, pp. 933–937, December

1986.

[25] B. C. Levy, A. S. Willsky, A. H. Tewfik. ”Parallel Smoothing”. Systems and

Control, vol. 14, no. 3, pp. 253–259, March 1988.

[26] X. R. Li. ”The PDF of Nearest Neighbor Measurement and a Probalistic Nearest

Neighbor filter for Tracking in Clutter”. IEEE Conference on Decision and

Control, vol. 1, pp. 918–923, December 1993.

[27] J. R. Magnus, H. Neudecker. Matrix Differential Calculus with Applications in

Statistics and Econometrics. Wiley, March 1999.

[28] NVIDIA Corporation. ”Compute Visual Profiler: User Giude”. (DU-

05162-001 v02), October 2010. url: http://docs.nvidia.com/cuda/profiler-users-

guide/index.html.

[29] NVIDIA Corporation. ”NVIDIA CUDA: Programming Guide”. (Version 1.0),

2010. url: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[30] NVIDIA Corporation. ”NVIDIA CUDA: Reference Manual”. (Version 3.2 Beta),

August 2010. url: http://docs.nvidia.com/cuda/cuda-runtime-api/index.html.

99

M.A.Sc. Thesis - Sean Tager McMaster - Electrical Engineering

[31] NVIDIA Corporation. ”Cuda C Best Practices Guide”. (DG-05603-001 v4.0),

May 2011. url: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/.

[32] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-

Hill, New York, NY, USA, 4th edition, 1984.

[33] C. Poullis, U. Neumann, S. You. ”Linear Feature Extraction Using Perceptual

Grouping and Graph-Cuts”. 15th ACM International Symposium on Geographic

Information Systems, pp. 64, November 2007.

[34] H. E. Rauch, C. T. Striebel, F. Tung. ”Maximum Likelihood Estimates of Linear

Dynamic Systems”. AIAA Journal, vol. 3, no. 8, pp. 1445–1450, August 1965.

[35] J. Stam. ”Maximizing GPU Efficiency in Extreme Throughput Applications”.

GPU Technology Conference, October 2009.

[36] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge, Wellesley, MA,

USA, 3rd edition, 2005.

[37] R. van der Menve, E. A. Wan. ”The Unscented Kalman Filter for Nonlinear

Estimation”. IEEE Adaptive Systems for Signal Processing, Communications,

and Control Symposium 2000, pp. 153–158, October 2000.

[38] X. Wang. ”Gating Techniques for Maneuvering Target in Clutter”. IEEE Trans-

actions on Aerospace and Electronic Systems, vol. 38, no. 3, pp. 1087–1097, July

2002.

100

	Abstract
	Acknowledgements
	Notation and abbreviations
	Introduction
	The Tracking Problem
	Parallel Computations
	Parallel Algorithms
	Publications

	The Kalman Filter
	One Iteration
	Computational Cost

	The Parallel Approach
	Compute Unified Device Architecture
	Customizing the Threads and Blocks
	Block Operations
	The Source Code
	The Price of Parallel
	Simulation Results: CPU vs GPU
	Simulation Results: Block Size
	Future Considerations

	Retrodiction
	Maximum Likelihood Estimate
	One Iteration II
	Computational Cost II

	Derivation of a Parallel Algorithm
	Prefix Sums Operation
	Parallelizing Complex Functions
	The Smoothed States
	The Smoothed Covariance
	Parallel Computational Cost
	The Source Code II
	Simulation Results II: CPU vs GPU
	Simulation Results II: Block Size
	Future Considerations II

	Conclusion
	Block Matrix
	Vectorization
	GeForce GTX 570 Specifications

