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Abstract

The Multiple-input and Multiple-output (MIMO) channel model is very useful

for the presentation of a wide range of wireless communication systems. This thesis

addresses the joint design of a precoder and a receiver for a MIMO channel model, in

a scenario in which perfect channel state information (CSI) is available at both ends.

We develop a novel framework for the transmitting-receiving procedure.

Under the proposed framework, the receiver decomposes the channel matrix by

using a block QR decomposition, where Q is a unitary matrix and R is a block

upper triangular matrix. The optimal maximum likelihood (ML) detection process

is employed within each diagonal block of R. Then, the detected block of symbols

is substituted and subtracted sequentially according to the block QR decomposition

based successive cancellation. On the transmitting end, the expression of probability

of error based on ML detection is chosen as the design criterion to formulate the

precoder design problem. This thesis presents a design of MIMO transceivers in the

particular case of having 4 transmitting and 4 receiving antennas with full CSI knowl-

edge on both sides. In addition, a closed-form expression for the optimal precoder

matrix is obtained for channels satisfying certain conditions. For other channels not

satisfying the specific condition, a numerical method is applied to obtain the optimal

precoder matrix.
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Notation

a Column vector a

A Matrix A

aij The ijth element of a matrix A

Aij A 2× 2 matrix composed of aii, aij, aji, and ajj,

i.e.,

 mii mij

mji mjj


A`i`j The matrix that contains the ith and jth columns

Ak1,k2,...,ki The remaining matrix after deleting columns ak1 , ak2 , . . ., aki

from A.

PA The projection matrix PA = I−AA† that projects an

arbitrary vector to the null space of AH .

(·)−1 The inverse of a matrix

(·)T The transpose of a vector or matrix

(·)H The Hermitian of a vector or matrix

(·)† The Pseudo inverse of a matrix

tr(·) The trace operator

det(·) The determinant operator

diag(a1, a2, . . . , aN) A diagonal matrix with diagonal entries a1, a2, . . . , aN
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P(·) The probability

Q(·) The Q function defined by Q(x) = 1√
2π

∫∞
x
e−

t2

2 dt

E[·] Expectation operator

Q[·] Quantization operator

IN N ×N identity matrix

‖ · ‖ The 2 norm of a vector or matrix

Re{·} Real part of the variable in the curly bracket

x ≺+ y x is additively majorized by y

x ≺× y x is multiplicatively majorized by y
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Chapter 1

Introduction

1.1 Motivation

In recent years, wireless communication systems have played an important role in

modern day human life. On the other hand, due to increasing demand of higher

quality of service (QoS) and limited wireless communication resources, there are

many technical challenges that a wireless system must confront. Multiple-input and

multiple-output (MIMO) has received considerable attention in wireless communica-

tions. By employing multiple antennas at both the transmitter end and the receiver

end, a wireless communication system with MIMO achieves higher data transmitting

rate and reduces the fading effect within limited bandwidth and power resources [1] [2].

For point-to-point MIMO system, precoding is a critical part of data transmission,

since the multiple subchannels are suitably weighted before being emitted from the

transmitting antennas such that the communication quality is maximized in some

sense at the receiver. Therefore the design of precoder is worth doing when the

channel information is known to the transmitter and receiver.
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Generally, the precoder design should match its corresponding receiving scheme.

In the ideal case that the channel inputs are uniformly distributed, Maximum Like-

lihood (ML) detector achieves the optimal error performance [3]. Some optimal pre-

coding policies for ML detector under different criteria have been proposed [4] [5].

In [4], the authors proposed to optimize the shape of the constellations such that

the transmitted power is minimized. The linear precoding policy in [5], on the other

hand, maximizes the input-output mutual information for MIMO Gaussian channel

with arbitrary input distribution under a total transmitted power constraint. How-

ever, the complexity of ML detection increases dramatically fast with the number

of antennas and the size of signal constellation [6], which makes its implementation

extremely difficult. In practice, there are two streams of receiving schemes that are

widely used. One is based on linear equalization, and the other is based on decision-

feedback equalization. The most representative realizations of the linear receivers are

the Zero-Forcing (ZF) receiver [7] [8] [9] [10] [11] [12] [13] [14] [15] and the Minimum

Mean Squared Error (MMSE) receiver [16] [17] [18] [19] [20] [21] [22] [23] [24]. Linear

receivers are very easy to be realized with low computation and implementation costs.

However, in vertain channels they may lose a large amount of detection accuracy. An

alternative nonlinear receiving scheme is decision-feedback detection [25] [26] [27] [28],

which is also a relatively low complexity receiving structure compared to the ML

detection. The typical examples are Zero-Forcing Decision Feedback Equalization

(ZF-DFE) receiver [29] [30] and Minimum Mean Squared Error Decision Feedback

Equalization (MMSE-DFE) receiver [31] [32] [33] [34] [35] [36]. The improved perfor-

mance of such decision feedback equalizers over the linear equalizer has been proved

both theoretically and experimentally in [37] [38] [39]. However, such schemes still

2
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sacrifice too much performance for the computational complexity.

For the independent Gaussian noise channel, the mutual information under a total

power constraint is maximized if the channel inputs are also Gaussian and independent

with waterfilling power allocation [40]. Although Gaussian inputs are optimal in

the sense that the subchannels are diagonalized into a set of noninterfering channel

vectors, it is such an ideal model that cannot be realized in practice. Practically,

the channel inputs are chosen from discrete constellations, such as phase-shift keying

(PSK) and quadrature amplitude modulation (QAM). For the non-Gaussian channel

inputs, applying waterfilling policy leads to a performance quite different from the

Gaussian ideal case. In [41], the results showed that the optimal waterfilling strategies

for Gaussian inputs yields a significant loss of gain for discrete constellation inputs

while linear precoding techniques may achieve higher transmission rate.

In this thesis, we assume that the receiver and transmitter have perfect knowledge

of the channel state information (CSI). The channel inputs are from a specific dis-

crete constellation. We presents a new framework aiming at achieving a better trade

off between error performance and computation cost for the precoder and receiver

design. The new receiver employs a detection strategy that combines the idea of ML

detection and successive cancellation detection. The proposed receiver decomposes

the channel matrix into a series of 2 × 2 blocks based on the proposed block-equal

QRS decomposition and divides the received symbols into several 2×1 symbol blocks

accordingly. For the detection of each block of 2 transmitted symbols, the receiver

jointly detects the symbol block by using an ML detector and successively cancels

the estimated signals block-by-block until all the transmitted symbols are successfully

detected. Since that ML detector is capable to achieve the optimal error performance,

3
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intuitively, applying ML detector on each 2× 1 symbol is superior to the traditional

decision feedback equalization where the symbols are detected sequentially after each

cancellation step. On the other hand, as we just repeatedly apply ML detection on

the smallest possible size of problem, that is, detection of 2 × 1 symbol vector, the

growth of complexity is relatively slow and acceptable. At the transmitter side, we

design an optimal precoder compatible with the receiving scheme. The precoder is

optimized such that it not only guarantees the existence of block-equal QRS decompo-

sition, but also maximizes the minimum distance for a given finite signal constellation

according to the criterion of ML detection. Specifically, we examine the case under

which the MIMO channels have 4 transmitting antennas and 4 receiving antennas and

transmitted symbols are 4-QAM signals. For some of the channels satisfying a cer-

tain condition, we obtain a closed-form solution for the optimal precoder. For other

channels not satisfying the condition, a numerical solution method for the optimal

precoder is given. A simulation example is given to illustrate the performance of our

proposed precoder and detector.

1.2 Main Contributions

The main contributions of this work are as follows:

• We present a novel receiving strategy that is essentially different from any ex-

isting receiving schemes. It first combines the ML detection and successive can-

cellation detection successfully by taking the advantages of both of the methods

and avoiding their shortcomings. The main idea is: Perform 2 × 2 block QRS

decomposition on a given channel matrix H, jointly detect the last two symbols

together using ML detection, then every time successively cancel two newly

4
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detected symbols at one time and perform ML detection on next two symbols

until all the symbols are detected. This can be looked upon as a generalized

successive cancellation detection where each time we detect and cancel the data

block by block instead of doing it symbol by symbol. The use of ML detector for

joint detection of each 2× 2 block enhances the detection accuracy significantly

with just an affordable sacrifice in computational complexity because block size

is small.

• The thesis explains the optimality of block-equal QRS decomposition in symbol

detection. Also, it shows that the block-equal QRS decomposition of a full

channel matrix can be equivalently transformed to that of a diagonal matrix

Λ. The decomposition can be written as ΛS = QR. We focus on the simplest

4×4 channel case where the channel matrix has the smallest size for block QRS

decomposition. In this way, we mathematically prove that there is a necessary

and sufficient condition of the existence of such decomposition ΛS = QR.

Based on the necessary and sufficient condition, we also construct a specific

closed form solution to S that makes ΛS a block-equal QRS decomposable

matrix.

• We propose the corresponding optimal structure of the precoder matrix F that

is compatible with the proposed receiving strategy. In particular, the opti-

mal precoder has the following properties: (a) The resulting cascaded channel

H̃ = HF has the block-equal QRS decomposition. (b) The precoder maxi-

mizes the minimum Euclidean distance of received signal constellation based

on the criterion of ML detection. Therefore, it also minimizes the symbol error

probability (SEP) for ML based block successive cancellation detection.

5
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1.3 Structure of the Thesis

The thesis is organized as follows: In Chapter 2, we present the channel model and

some related assumptions. Then we review some frequently used receiving schemes

which are used for comparison analysis in computer simulation. In Chapter 3, we

propose an optimal block QRS decomposition, named block-equal QRS decomposi-

tion. We show that for a channel matrix, the block QRS decomposition channel with

equal diagonal block entries achieves optimal error performance. We study such a

decomposition in a special case of 4 × 4 MIMO channel and find an equivalent con-

dition to the existence of the unitary matrix S such that ΛS = QR. We further

construct a particular closed form solution to S in special case. In Chapter 4, we

apply the block-equal QRS decomposition on optimal precoder design in the 4 × 4

special case. An optimization problem is presented aiming to find the optimal pre-

coder that maximizes the minimum Euclidean distance between two received symbol

vectors under transmitting power constraint. For the case where the channel satis-

fies a certain condition, a closed-form solution for the block-equal QR decomposition

given in Chapter 3 is used in constructing the optimal precoder matrix F. On the

other hand, when a channel does not satisfy that certain condition, a numerical search

is used for obtaining the numerical result of the optimal precoder. In Chapter 5, we

verify the performance of our proposed receiving scheme and corresponding precoder

design by performming some computer simulations. The simulation results show that

our method greatly improve the error performance compared with other commonly

used detectors. In Chapter 6, we summarize our works and suggest directions for

further research.

6



Chapter 2

Preliminaries

2.1 System Model

In this thesis, we consider a Multiple-Input and Multiple-Output (MIMO) system

that is commonly used in various wireless communication systems. Specifically, the

system has M transmitting antennas and N receiving antennas. At the transmitter

end, multiple symbols are simultaneously transmitted through multiple transmitting

antennas. Those transmitted symbols are assumed to be zero-mean, i.i.d. and uni-

formly distributed over a finite constellation alphabet S. The transmitted symbols

form a symbol vector s ∈ SM . This symbol vector goes through a wireless commu-

nication channel the state information of which is available at both the transmitter

and receiver. An additive noise component is applied on the channel. The received

signal is modeled in the following matrix form:

y = Hs + n (2.1)

7
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where H ∈ CN×M is the channel matrix and n ∈ CN is a zero-mean, complex

circularly-symmetric Gaussian noise vector with covariance matrix 2τ 2I and is as-

sumed uncorrelated with transmitted signals. We assume that M ≤ N , which means

that H is a full column rank square matrix or tall matrix.

To enhance the performance of the detector at the receiving end, a precoder may

be implemented at the transmitter. In such a case, the transmitted symbol vector is

precoded first, then transmitted through the channel. In that case the received signal

is modeled as:

y = HFs + n (2.2)

where F ∈ RM×M is referred to as a precoder matrix added to the transmitter. We

denote the product of channel matrix H and precoder matrix F as cascaded channel

matrix H̃ = HF, so that the channel model with precoder is

y = H̃s + n (2.3)

which maintains consistency in form with the channel model without a precoder in

Eq. (2.1).

2.2 Historical Overview of Receiver Designs

For a MIMO system with given channel state information (CSI), the receiver is

designed to estimate the transmitted symbol vector s based on the knowledge of

channel matrix H and the received signal y. In addition to the additive channel

8



M.A.Sc. Thesis - Dan Fang McMaster - Electrical Engineering

noise, MIMO channel also faces interferences between different subchannels (figure

2.1). Therefore errors may occur and the estimated symbol vector ŝ may not be same

as the transmitted symbol vector s because of the channel noise and interference.

During the past years, several receiver design techniques were proposed to reduce the

probability of errors. This section reviews some of the most representative techniques

used for receiver design.

Tx Rx

HN×M 

h11

h21

hN1

h12

h22

hN2

h1M

h2M

hNM

Figure 2.1: Interferences in MIMO System

2.2.1 Maximum Likelihood Detection

Under the channel model described in Eq. (2.1), for given channel matrix H and

received signals y, the probability of error defined as

Pe , P (ŝ 6= s|y,H) = 1− P (ŝ = s|y,H) (2.4)

9
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where P (ŝ = s|y,H) is the probability of correct symbol estimation:

P (ŝ = s|y,H) =
P (ŝ = s)fy|s,H(y|ŝ = s,H)

fy|H(y|H)
(2.5)

where fy|H(y|H) is the conditional probability density function (p.d.f.) of y given

channel H. This conditional p.d.f. can be written as

fy|s,H(y|ŝ = s,H) = fy−Hs(y −Hŝ) (2.6)

= fn(y −Hŝ) (2.7)

where the joint probability density function of the white Gaussian noise vector n is

given by

fn(n) =
1

πNdet(Φnn)
exp

(
−nHΦnn

−1n
)

(2.8)

Since the noise has a covariance matrix Φnn = 2τ 2I, the Eq. (2.6) can be further

written as

fn(y −Hŝ) =
1

πN(2τ 2)N
exp

(
−‖y −Hŝ‖2

2τ 2

)
(2.9)

Eq. (2.9), when treated as a function of s, can be called likelihood function.

In Eq. (2.5), since both P (ŝ = s) and fy|H(y|H) are independent of ŝ, minimizing

the probability of error is equivalent to maximizing the likelihood function. The ML

detector, possesses the property that it minimizes the error probability by maximizing

10
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the likelihood function:

ŝML = arg max
ŝ

1

πN(2τ 2)N
exp

(
−‖y −Hŝ‖2

2τ 2

)
(2.10)

Note that the maximum of the likelihood function is achieved when ‖y−Hŝ‖2 reaches

the minimum value, therefore the estimation of ML detector is given by

ŝML = arg min
ŝ∈SM

‖y −Hŝ‖2 (2.11)

Similarly, when considering the channel model with precoder in Eq. (2.3), the esti-

mation of ML detector is given by

ŝML = arg min
ŝ∈SM

‖y − H̃ŝ‖2 (2.12)

Eq. (2.12) also suggests an intuitive understanding of the criterion of ML detection:

it chooses the ŝ that yields the minimum Euclidean distance between H̃ŝ and the

received signal y.

Problem as shown in Eq. (2.12) are known to be NP-hard and not easy to solve

in general [6]. However, when the problem size is small, e.g. H ∈ C2×2, the problem

is manageable for some available detection algorithms, such as exhaustive search,

semidefinite relaxation and sphere decoding.

2.2.2 Linear Receivers

Despite the optimal performance of the ML detectors in terms of error rate, there

is a variety of suboptimal receivers. Linear equalization is one category of such

11
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suboptimal receivers having as low as linear computational complexity. Using a linear

receiver, the estimated transmitted symbol vector ŝ is obtained by applying a linear

projection operation on received signals y:

ŝ = Gy (2.13)

There are two major linear strategies, Zero-forcing (ZF) Equalizer and Minimum

Mean Square Error (MMSE) Equalizer.

Zero-Forcing Equalizer

A zero-Forcing Equalizer aims to null out the inter-stream interference completely.

It is achieved by forcing GH = I and G is given by the pseudoinverse of the matrix

H:

GZF = H† = (HHH)−1HH (2.14)

The special case is when H is square and invertible, in this case the linear operation

G is exactly the channel inverse:

GZF = H−1 (2.15)

Using ZF equalization, the estimated transmitted symbol vector is

ŝ = GZFy = H†Hs + H†n = s + H†n (2.16)

12
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Although the inter-stream interference is eliminated, the channel noise is still involved

in the estimated signals. So, at high SNR, since that the inter-stream interference is

the main concern, this equalizer performs well. However, when the channel is noisy

and SNR is low, the channel noise becomes the dominant issue and the zero-forcing

equalizer leads to very poor error performance.

Minimum Mean Square Error Equalizer

As the name implies, the Minimum Mean Square Error Equalizer minimizes the

mean square error of the estimated signals.

GMMSE = arg min
ŝ∈SM

E[‖e‖2] (2.17)

where the term error e is defined as the difference between transmitted signal and

estimated signal:

e = ŝ− s (2.18)

= (GH− I)s + Gn (2.19)

The mean squared error is also equal to the trace of the covariance matrix of error:

E[‖e‖2] = tr(E[eeH ]) = tr
(
G(HHH + Φnn)GH − 2Re{GH}+ I

)
(2.20)

13
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where Φnn denotes the covariance matrix of channel noise, i.e., Φnn , E[nnH ]. The

MMSE solution of G that minimizes the mean squared error is given by

GMMSE = (HHH + Φnn)−1HH (2.21)

The MMSE Equalizer maximizes the signal-to-interference-plus-noise ratio (SINR)

and finds an optimal trade off between the inter-stream interference and channel

noise. This is the major advantage over ZF Equalizer especially at low-to-moderate

SNR.

2.2.3 Successive Cancellation Detection

For the linear receiver, the data streams of different subchannels are detected

separately. However for successive cancellation detector, the detection result of one

subchannel is used for the detection of its following subchannels. Once a symbol of

a subchannel is successfully detected, we can subtract it off from the received signals

and reformulate our detection problem with one less subchannel. The process is

continued until only one subchannel left and no more interference involved. This is

the main philosophy behind successive cancellation detection.

Mathematically, successive cancellation detection can be described by the QR

Decomposition. The procedure of QR decomposition based successive cancellation

detection can be described as follows:

For simplicity, suppose that there is an N ×N square channel matrix H. Perform

QR Decomposition on the channel matrix H = QR, where Q is a unitary matrix and

R is an upper triangular matrix. The channel model in Eq. (2.1) can then be written
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in the following form:

y = QRs + n (2.22)

Left-multiply both sides by the matrix QH ,

QHy = Rs + QHn (2.23)

Define ỹ , QHy and ñ , QHn, Eq. (2.23) is rewritten as



ỹ1

ỹ2

...

ỹN


=



r11 r12 . . . r1N

0 r22 . . . r2N

...
...

. . .
...

0 0 . . . rNN





s1

s2

...

sN


+



ñ1

ñ2

...

ñN


(2.24)

Start the detection from the last symbol of Eq. (2.24). Since there is only one nonzero

element in the last row of the upper triangular matrix R. last symbol ŝN can be easily

estimated:

ŝN = Q[ỹ1/rNN ] (2.25)

where Q[·] denote the operation of quantization. Assuming that the symbol ŝN is

detected correctly, we subtract the term sN off from the second last row. Thus, the

interference from the last symbol is eliminated and the second last symbol can be

15
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estimated:

ŝN−1 = Q[(ỹN−1 − rNN ŝN)/rN−1 N−1] (2.26)

Continue this subtract-and-estimate procedure until the first symbol is detected.

This detection scheme can be used to improve the performance of linear receivers,

like ZF receiver and MMSE receiver. The corresponding successive cancellation detec-

tion shcemes are respectively called Zero-Forcing Decision Feedback Equalization (ZF-

DFE) and Minimum Mean Squared Error Decision Feedback Equalization (MMSE-

DFE). It has been shown experimentally that the successive cancellation receivers

invariably improve the error performance compared to their linear version of receivers.

The major concern of successive cancellation is the problem of error propagation.

A lot of studies have been proposed to find the optimally ordered successive can-

cellation to minimize the probability of error propagation such that each time the

transmitted symbol is successfully cancelled with very high probability. Specifically,

an equal-diagonal QRS decomposition was proposed in [38]. This QRS decomposition

has following form:

HS = QR (2.27)

where S is a unitary matrix, Q and R are the factors in QR decomposition. This

factorization possesses such a special property that R has equal diagonal entries,

which naturally enable an optimally ordered column permutation for successive can-

cellation. Meanwhile, the unitary matrix S serves as the optimal precoder. Such S

minimizes the block error probability and maximize the lower bound of the minimum

16
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Euclidean distance between each pair of received symbol vectors. Applying this opti-

mal QRS decomposition in ZF-DFE and MMSE-DFE further improves the detection

performance. We also include the algorithm for designing the QRS decomposition in

Appendix A.
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Chapter 3

Block-Equal QRS decomposition

In this chapter, we introduce our main contribution in the mathematical derivation

of a novel matrix factorization method called block-equal QRS decomposition. A new

receiving scheme based on block-equal QRS decomposition is also proposed.

3.1 A New Transmitting and Receiving Scheme

Based on Block-Equal QRS decomposition

We have acknowledged that ML detection achieves the optimal error performance

but is hard to realize, and successive cancellation detection is much easier to imple-

ment but sacrifices too much performance. Our goal is to design a novel transmitting

and receiving scheme having an error performance as close to ML detection as possi-

ble with an affordable computational cost. The new scheme is a combination of ML

detection and successive cancellation detection. Instead of applying QR decomposi-

tion on the channel matrix, we introduce a block-wise QR decomposition so that the

18
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successive cancellation is proceeded in a block-by-block manner. The symbols in one

block are jointly detected at the same time, where ML detection can be used within

each of the blocks. We design such a strategy to take advantage of both ML detection

and successive cancellation detection.

In the proposed scheme, the cascaded channel matrix H̃ is decomposed into the

product of a unitary matrix Q̃ and a block upper triangular matrix R̃. Applying the

decomposition on the channel model (2.3), we have

y = Q̃R̃s + n (3.1)

Left-multiply both sides by the matrix Q̃H ,

Q̃Hy = R̃s + Q̃Hn (3.2)

Define ỹ , Q̃Hy and ñ , Q̃Hn. Eq. (3.2) is then rewritten as

ỹ = R̃s + ñ (3.3)

To depict the channel model clearly, we further write the Eq. (3.3) in the following

matrix form:



ỹ1

ỹ2

...

ỹN


=



R11 R12 . . . R1N

0 R22 . . . R2N

...
...

. . .
...

0 0 . . . RNN





s1

s2

...

sN


+



ñ1

ñ2

...

ñN


(3.4)
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where the diagonal block entries {Rii} are n×n square matrices, and both the trans-

mitted and received symbol vectors are segmented into symbol blocks of dimension

n× 1 correspondingly.

Based on the channel model in Eq. (3.4), our proposed receiving scheme works as

follows:

Algorithm 1. ML Based Successive Cancellation Detection

1. Start with the last row of Eq. (3.4), which is ỹN = RNNsN + ñN . Estimate the

last transmitted symbol block sN by using ML detection:

ŝN = arg min
sN∈S

‖ỹN −RNNsN‖2 (3.5)

2. Consider the second last row, which is ỹN−1 = RN−1,N−1sN−1 + RN−1,NsN +

ñN−1. Assuming that the transmitted symbol segment ŝN is detected correctly,

we cancel it from the second last row, which leads to

ỹN−1 −RN−1,N ŝN = RN−1,N−1sN−1 + ñN−1 (3.6)

Again, we employ ML detection for the estimation of the second last transmitted

symbol block sN−1:

ŝN−1 = arg min
sN−1

‖(ỹN−1 −RN−1,N ŝN)−RN−1,N−1sN−1‖2 (3.7)

3. Repeat this cancellation process successively and apply ML detector on each

block-based joint detection of transmitted symbols until all the symbols are de-

tected successfully.
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Such a receiving process basically shares the idea with the successive cancellation

detection. However, this new scheme makes a critical difference. The strategy of

detecting the symbols block-by-block instead of doing it symbol-by-symbol creates a

framework under which a joint detection of more than one symbol is allowed. A joint

detection of a block of symbols often yields superior performance to the hard decision

of a single symbol, which is used in conventional successive cancellation detection.

When the block size is small, ML detection can be applied on the joint detection of

each block with manageable computation complexity. In that sense, we may take

advantage of the optimal error performance provided by ML detector at each step

of block detection and enjoy an overall performance enhancement of the system as a

whole.

3.2 The Optimality of Block-Equal QRS Decom-

position

Our proposed receiving scheme is a combination of successive cancellation detec-

tion (for inter-block detection) and ML detection (within each block entry Rii along

the diagonal of the upper triangular matrix R). Considering the block symbol er-

ror probability Pei of the ith block Rii, it has a nearest neighbour approximation as

shown below [42, p. 185]:

Pei ≈ N̄kiQ

(
dmin i

2τ

)
(3.8)
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where the Q function is defined as [42, p. 41]:

Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt (3.9)

In this context, assume that the transmitted symbol constellation is S, the ith

transmitted symbol block of dimension n, denoted as si, belongs to the symbol vector

set Sn. For each possible transmitted symbol block si, we may represent Riisi at the

receiver side as a point in the received signal space X n. dmin i is then defined as the

minimum Euclidean distance between each pair of different points, Riisi and Riis̄i,

in X n.

dmin i = min
si,s̄i∈Sn,si 6=s̄i

‖Rii(si − s̄i)‖ (3.10)

N̄ki denotes the average kissing number for the ith transmitted symbol block. The

kissing number of each possible point Riisj, denoted as Nkij, is defined as the number

of the nearest neighbours, achieving the minimum distance dmin i from them to that

point. The average kissing numbers is then defined as

N̄ki =

∑
sj∈Sn Nkij

|X n|
(3.11)

where |X n| denotes the cardinality of transmitted symbol block set X n.

The nearest neighbour approximation in Eq. (3.8) shows that the term dmin,i

dominates the error performance of the ith ML detector for that block. A good

precoder should be designed such that dmin i is maximized.

From the whole channel matrix point of view, we successively perform the ML
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detection block-by-block until all the received symbols are detected. The probability

of correctly detecting all the blocks is given by

Pc =
n∏
i=1

(1− Pei) (3.12)

Therefore, the overall block symbol error probability is:

Pe = 1− Pc (3.13)

=
n∑
i=1

Pei −
n∑
i 6=j

PeiPej + . . .+ (−1)n−1

n∏
i=1

Pei (3.14)

The dominant term of Pe is the first term containing the sum of error probabilities

for all the blocks. Thus, the overall block symbol error probability is upper bounded

by its dominant term, the sum of each Pei:

Pe ≤
n∑
i=1

Pei (3.15)

The sum of all Peis, however, is dominated by the maximum term over all the

error probabilities, which is given by max{Pei}. Eq. (3.8) reveals the fact that the

dominant term of each Pei is the corresponding Q function Q(dmin i

2τ
). Thus, max{Pei}

is largely determined by min{dmin i}, which suggests that the overall error performance

is determined by every minimum of dmini.

An intuitive conjecture is, the optimal precoder should then be designed such that

each block of the block QRS decomposition has the equal dmini, so that the overall
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error performance of the whole system is optimal.

min
1≤i≤n

dmin i = dmin 1 = dmin 2 = . . . = dminn (3.16)

In Section 4.2, we will explain that if each diagonal block of R̃ has equal min-

imum distance dmin, then the blocks themselves also equal to each other. In order

to guarantee the equal dmin i of each block, the block QRS decomposition is forced

to have equal diagonal R̃-block. We call such a decomposition as block-equal QRS

decomposition.

For simplicity, let dmin be the equal minimum distance over all minimum distances:

dmin , min
1≤i≤n

dmin,i (3.17)

In order to achieve the optimal error performance for the ML based intra-block

detection scheme, such block QRS decomposition is supposed to have maximal possi-

ble dmin. Note that F serves as the precoder matrix, such that the channel matrix H

can be factorized as HF = Q̃R̃. The precoder matrix F should be designed according

to the following criteria:

max
F

dmin (3.18)

s.t. transmitting power constraint
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3.3 Block-Equal QRS Decomposition of 4×4 Chan-

nel Matrix

In Section 3.2, we have explained that the optimal detection performance can be

achieved by finding a unitary matrix F, such that for a given channel matrix H, the

product HF has block-equal QRS decomposition H̃ = HF = Q̃R̃. The output of

each data block is then detected by a ML detector. Since ML detection is NP-hard,

the computational complexity grows dramatically fast as the problem size increases.

To control the computational overhead, the block size should be chosen as small as

possible. The smallest possible size of a block is 2. Thus, we assume that the cascaded

channel matrix H̃ should be decomposed into Q̃R̃ where R̃ has equal 2× 2 diagonal

blocks.

To facilitate the QR decomposition of H̃ into equal 2 × 2 diagonal blocks in R̃,

we consider the simplest case in which the dimension of H̃ is 4× 4. Substituting the

singular value decomposition of H̃ into the equation of block-equal QRS decomposi-

tion,

H̃ = UΛVH = Q̃R̃ (3.19)

Left-multiply UH on both sides of Eq. (3.19),

ΛVH = UHQ̃R̃ (3.20)
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We may express the 4× 4 block-equal upper triangular matrix in the following form:

R̃ =

Req R12

0 Req

 (3.21)

and further define the singular value decomposition of each diagonal block Req as

Req = QeqΛeqUeq (3.22)

Substituting the singular value decomposition of Req into Eq. (3.21), we have

R̃ =

Qeq 0

0 Qeq


Λeq R̆12

0 Λeq


Ueq 0

0 Ueq

 (3.23)

where R12 and R̆12 has the following relationship:

R12 = QeqR̆12Ueq (3.24)

We define the block matrices in Eq. (3.23) sequentially as QR, R, and UR:

QR =

Qeq 0

0 Qeq

 R =

Λeq R̆12

0 Λeq

 UR =

Ueq 0

0 Ueq

 (3.25)

Substituting R̃ = QRRUR into Eq. (3.20), we further have

ΛVH = UHQ̃QRRUR (3.26)
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Rewrite Eq. (3.26),

ΛVHUR
H = UHQ̃QRR (3.27)

Note that the matrices U, V, UR, and QR are unitary matrices, we can absorb

the product VHUR
H as one unitary matrix S and absorb the product UHQ̃QR as

another unitary matrix Q,

S = VHUR
H (3.28)

Q = UHQ̃QR (3.29)

so that Eq. (3.27) has a compact form:

ΛS = QR (3.30)

Therefore, it is equivalent to considering an diagonal problem: finding the block-equal

QRS decomposition for a given 4×4 diagonal matrix Λ, whose diagonal elements are

the singular values of a full 4× 4 matrix H̃.

Problem 1. Given an diagonal matrix Λ = diag(
√
σ1,
√
σ2,
√
σ3,
√
σ4), where σ1 ≥

σ2 ≥ σ3 ≥ σ4 ≥ 0, find an unitary matrix S ∈ R4×4 such that ΛS = QR, where

Q ∈ R4×4 is an unitary matrix and R ∈ R4×4 has the following structure:

R =

Λeq R̆12

0 Λeq

 (3.31)

Specifically, the diagonal block entries Λeq = diag(
√
r1,
√
r2) and R̆12 ∈ R2×2 can be
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any 2× 2 matrix.

Assume that the elements in S is written as sij, i, j = 1, 2, 3, 4. We have the

following necessary and sufficient condition of the existence of such block-equal QRS

decomposition.

Theorem 1. There exists such a unitary matrix S that satisfies Problem 1 if and

only if the following 7 equations have solution:

s2
11 + s2

21 + s2
31 + s2

41 = 1

s2
12 + s2

22 + s2
32 + s2

42 = 1

s11s12 + s21s22 + s31s32 + s41s42 = 0

σ1s
2
11 + σ2s

2
21 + σ3s

2
31 + σ4s

2
41 = r1 (3.32)

σ1s
2
12 + σ2s

2
22 + σ3s

2
32 + σ4s

2
42 = r2

σ1s11s12 + σ2s21s22 + σ3s31s32 + σ4s41s42 = 0

σ2
1s

2
11 + σ2

2s
2
21 + σ2

3s
2
31 + σ2

4s
2
41

r1

+
σ2

1s
2
12 + σ2

2s
2
22 + σ2

3s
2
32 + σ2

4s
2
42

r2

= σ1 + σ2 + σ3 + σ4 − r1 − r2

(Proof: See Appendix C.)

In Eq. (3.32), the 7 equations are in terms of 8 variables sij, i = 1, 2, j = 1, 2, 3, 4.

The other variables σ1, σ2, σ3, σ4, r1, and r2 are the coefficients satisfying the following

relation:

σ1σ2σ3σ4 = r2
1r

2
2 (3.33)

The proof of Eq. (3.33) is as follows:
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Proof. Write the equation ΛS = QR in its matrix form:



√
σ1

√
σ2

√
σ3

√
σ4


S = Q



√
r1 0

0
√
r2

R̆12

0

√
r1 0

0
√
r2


(3.34)

The determinant of the left-hand side should be equal to that of the right-hand side,

therefore,

√
σ1σ2σ3σ4 = r1r2 (3.35)

Moreover, when the 6 variables further satisfy a certain condition, the following

theorem give an explicit solution to the 7 equations in Theorem 1.

Theorem 2. When r1 and r2 satisfy that

r1 =
√
σ1σ2 (3.36)

r2 =
√
σ3σ4 (3.37)
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a specific solution of S is given by

S =



√
r1 − σ2

σ1 − σ2

0

√
σ1 − r1

σ1 − σ2

0√
σ1 − r1

σ1 − σ2

0 −
√
r1 − σ2

σ1 − σ2

0

0

√
r2 − σ4

σ3 − σ4

0

√
σ3 − r2

σ3 − σ4

0

√
σ3 − r2

σ3 − σ4

0 −
√
r2 − σ4

σ3 − σ4


(3.38)

(Proof: See Appendix E)

From Theorem 2, we know that the specific solution of S can be written as a

function of Λ:

S = fd−qr(Λ) (3.39)

where the notation fd−qr(·) is the function mapping Λ to its corresponding S.

Take the inverse on both sides of the diagonal block-equal QRS decomposition,

we have

SHΛ−1 = R−1QH (3.40)

Λ−1Q = SR−1 (3.41)

Note that the inverse of an upper triangular matrix is still an upper triangular

matrix. Therefore, Eq. (3.41) is also a block-equal QRS decomposition. This obser-

vation implies that Q can also be obtained by using the same function fd−qr(·) as
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long as we replace the argument of the function by its inverse Λ−1, i.e.,

Q = fd−qr(Λ
−1) (3.42)

Using the result of Theorem 2 twice, we are able to find both S and Q. Then, R

is given by

R = QHΛS (3.43)

Then, we develop the diagonal block-equal QRS decomposition to the block-equal

QRS decomposition for any given 4× 4 full channel matrix H. From Eqs. (3.29) and

(3.23), Q̃ and R̃ are expressed in the following equations:

Q̃ = UQQR
H , R̃ = QRRUR (3.44)

Therefore the block equal QR decomposition of a 4× 4 cascaded channel matrix

is given by

H̃ = Q̃R̃ = (UQQR
H)(QRRUR) = UQRUR (3.45)

For notational simplicity, we can absorb the product of Q̃ and QR as Q̃1 and

define a new matrix R̃1 as RUR:

Q̃1 = Q̃QR = (UQQR
H)QR = UQ (3.46)

R̃1 = RUR (3.47)
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Using the new notations Q̃1 and R̃1, the block-equal QRS decomposition can also

be written as

H̃ = Q̃1R̃1 (3.48)

In practice, the block-equal QRS decomposition we apply is in the form of Eq. (3.48),

where the unitary matrix Q̃1 actually absorbs the left-hand side unitary matrix UR

and the block upper triangular matrix R̃1 only contains two parts, the diagonal block

upper triangular matrix R and the unitary matrix UR.
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Chapter 4

Optimal Precoder Design Based on

Block-Equal QRS Decomposition

This chapter applies the mathematical conclusions in Chapter 3 on the optimal

precoder design for the proposed receiving shceme in 4× 4 case.

4.1 The Structure of Precoder F

Based on the ML detection criterion, and the optimality of block-equal QRS de-

composition, the optimal precoder is designed to maximize the minimum distance

dmin, which is mentioned in section 3.1, Eq. (3.18). We write the optimization prob-

lem of the precoder design in the following form:
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Problem 2. The Main Optimization Problem for Precoder Design

max
F

dmin

s.t. H̃ = HF has a block-equal QRS decomposition

tr(FHF) = 1

(4.1)

Instead of optimize F as a whole, we may first investigate the structure of F and

then determine each component of it. Define the singular value decompositions of H

and F as follows:

H = UHΛHVH
H (4.2)

F = UFΛFVF
H (4.3)

where UF, ΛF and VF
H are to be determined.

A necessary condition for an optimal precoder is that it diagonalizes the channel

matrix H, i.e., UF = VH(See Appendix F), then H̃ is equal to

H̃ = HF = UH(ΛHΛF)VF
H (4.4)

Comparing the equation with the singular value decomposition of the cascaded

channel matrix H̃, that is

H̃ = UΛVH (4.5)
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Thus, we obtain the following equalities:

UH = U ΛHΛF = Λ VF
H = VH (4.6)

Also, from Eq. (3.45), we know that the block-equal QRS decomposition of H̃ is

H̃ = UQRUR. Substitute ΛS = QR into the right-hand side, we have

H̃ = UΛSUR (4.7)

We also compare Eq. (4.7) with the SVD of H̃ in Eq. (4.5), which leads to

VH = SUR (4.8)

From Eqs. (4.3), (4.6), and (4.8), the structure of the optimal precoder is obtained

by

F = VHΛFSUR (4.9)

Under our assumption, the channel information H is given. Thus we can calculate

VH and ΛH based on H. Therefore, to optimize precoder matrix F is equivalent to

optimize both of the matrices ΛF, S, and UR. According to Theorem 2, S depends

on Λ, which is the product of ΛH and ΛF. When ΛH is known, S depends on ΛF.

Thus, in order to design the optimal precoder, we are supposed to design the matrices

ΛF and UR that maximize the minimum distance dmin. The optimization problem 2

is equivalent to the following reformulation:
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Problem 3. Reformulation of Problem 2 in Terms of ΛF,S,UR

max
ΛF,S,UR

dmin

s.t. ΛF is a diagonal matrix with nonnegative diagonal elements

S is a unitary matrix

UR is a block diagonal matrix, each diagonal block is a 2× 2 unitary matrix

ΛS = QR

Λ = ΛHΛF

tr(ΛF
HΛF) = 1

(4.10)

4.2 Optimal Unitary Matrix UR and the Corre-

sponding dmin

In this section, the choice of matrix UR and its relation with dmin is discussed

under case that all the transmitted symbols are chosen from 4-QAM constellation

denoted by S. Since UR = diag(Ueq,Ueq), the essential issue is to determine Ueq.

By introducing block-equal QRS decomposition, the cascaded channel H̃ can be

decomposed as a series of identical 2 × 2 block-channel. In the specific 4 × 4 case,

each block-channel is represented by the matrix Req.

ỹ1

ỹ2

 =

Req R12

0 Req


s1

s2

+

ñ1

ñ2

 (4.11)
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Within each block-channel, ML detection deals with the following optimization prob-

lems for searching a 2× 1 transmitted symbol vector si, i = 1, 2:

ŝ2 = arg min
s2∈S2

‖ỹ2 −Reqs2‖2 (4.12)

ŝ1 = arg min
s1∈S2

‖(ỹ1 −R12ŝ2)−Reqs1‖2 (4.13)

When the signal to noise ratio (SNR) is high, the symbol error probability (SEP) is

dominated by the minimum distance dmin (See Eq. (3.17)). Under the assumption

that the transmitted symbols are uncorrelated and have unitary energy, dmin depends

on the 2× 2 block-channel matrix Req, that is, dmin is a function of Req:

dmin = dmin(Req) =
√

min
s,ŝ∈S2,s6=ŝ

(s− ŝ)HRH
eqReq(s− ŝ) (4.14)

We employ Eq. (3.48) as the form of block-equal QRS decomposition, where R̃1 =

RUR. Thus the equal diagonal block Req of R̃1 is given by

Req = ΛeqUeq (4.15)

where Λeq = diag(
√
r1,
√
r2) and Ueq ∈ R2×2 is a unitary matrix which can be

characterized by several parameters. In particular, we examine the following param-

eterization of Ueq [43].

Ueq =

 ejα cos θ ej(α+γ) sin θ

−ej(−γ+β) sin θ ejβ cos θ

 (4.16)

In this parameterized form of Ueq, α, β ∈ [0, 2π] is independent of the matrix
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RH
eqR

H
eq. Therefore, according to Eq. (4.14), α and β do not affect dmin. However,

the values of θ ∈ [0, 2π] and γ ∈ [0, π] have an impact on dmin. Thus, without loss

of generality, we can set α = β = 0. When the squared singular values, r1 and r2, of

Req are fixed, i.e., Λeq is given, we can also say that dmin is a function of θ and γ:

dmin(Req) = dmin(θ, γ) (4.17)

The parameters θ and γ should be carefully chosen such that the minimum distance

is maximized, i.e.,

max
θ,γ

dmin(θ, γ) (4.18)

s.t. r1 and r2 are fixed

From Eq. (4.14), it can be shown that dmin is symmetric about any multiple of π/2

for θ and γ. Hence, in the Problem (4.18) we can seek for closed-form solutions to θ

and γ by only considering the case where 0 ≤ θ ≤ π
4

and 0 ≤ γ ≤ π
4

without loss of

generality.

To solve Problem (4.18), we firstly classify the 2× 2 block-channel into four cate-

gories where r1 and r2 satisfy different conditions [43]:

• Condition 1: (r1 + r2)/(r1 − r2) ≥ 2

• Condition 2:
√

2 ≤ (r1 + r2)/(r1 − r2) ≤ 2

• Condition 3: 5
√

74
37
≤ (r1 + r2)/(r1 − r2) ≤

√
2

• Condition 4: (r1 + r2)/(r1 − r2) ≤ 5
√

74
37
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The following Lemma 1 then provides the corresponding closed-form solutions to this

optimization problem under different categories.

Lemma 1. [43] For a 2 × 2 block-channel with given singular value matrix Λeq =

diag(
√
r1,
√
r2), the right-hand side unitary matrix is parameterized as

Ueq =

 cos θ ej(γ) sin θ

−ej(−γ) sin θ cos θ

 (4.19)

the optimal solution to the optimization problem (4.18) is given by

• When (r1 + r2)/(r1 − r2) ≥ 2,

θ = γ =
π

4
(4.20)

and the maximum of the objective function is

max dmin(θ, γ) =
√

2(r1 + r2) (4.21)

• When
√

2 ≤ (r1 + r2)/(r1 − r2) ≤ 2,

θ =
π

4
γ = arccos

(
r1 + r2

2(r1 − r2)

)
(4.22)

and the maximum of the objective function is

max dmin(θ, γ) =
√

2(r1 + r2) (4.23)
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• When 5
√

74
37
≤ (r1 + r2)/(r1 − r2) ≤

√
2,

θ =
π

4
γ = arcsin

(
r1 + r2

2(r1 − r2)

)
(4.24)

and the maximum of the objective function is

max dmin(θ, γ) =

√
4(r1 + r2)− 2

√
4(r1 − r2)2 − (r1 + r2)2 (4.25)

• When (r1 + r2)/(r1 − r2) ≤ 5
√

74
37

,

θ = arctan

(√
1− ν
1 + ν

)
(4.26)

γ = arcsin

(
r1

2(r1 − r2)

√
1− ν
1 + ν

+
r2

2(r1 − r2)

√
1− ν
1 + ν

)
(4.27)

where ν =

√
2(r1−r2)2−(r1+r2)2
√

3(r1−r2)
, and the maximum of the objective function is

max dmin(θ, γ) =

√
2(r1 + r2)− 2√

3

√
2(r1 − r2)2 − (r1 + r2)2 (4.28)

Lemma 1 shows that, when r1 and r2 are fixed, both the minimum distance dmin

and the optimal design of the unitary matrix Ueq are determined by r1 and r2. Ac-

cording to Eq. (3.47), R̃1 is equal to the product of R and UR:

R̃1 = RUR =

Req R12

0 Req

 =

ΛeqUeq R12Ueq

0 ΛeqUeq

 (4.29)

Here r1 and r2 are the diagonal elements of Λeq. Therefore, when r1 and r2 are fixed,
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R and UR are also fixed. That is, as long as we find the optimal r1 and r2 that

maximize dmin, the optimal diagonal blocks of R̃1 have to be equal. In this sense,

Lemma 1 shows the way to achieve our proposed block-equal QRS decomposition.

4.3 Optimization of Power Loading Matrix ΛF

In Section 4.1, we have claimed that the optimization problem of precoder design

is equivalent to Problem 3 whose variables are ΛF, S, and UR. Problem 3 states

that:

max
ΛF,S,UR

dmin

s.t. ΛS = QR, Λ = ΛHΛF, tr(ΛF
HΛF) = 1

(4.30)

Section 4.2 further gives the closed-form expression of the objective function dmin in

terms of the variables r1 and r2, that is, dmin(r1, r2). Moreover, the optimal UR is

also determined by r1 and r2. We then rewrite the Problem 3 as follows,

Problem 4. Reformulation of Problem 3 in Terms of ΛF,S, r1, r2

max
ΛF,S,r1,r2

dmin(r1, r2)

s.t. ΛF is a diagonal matrix with nonnegative diagonal elements

S is a unitary matrix

r1 ≥ r2 ≥ 0

ΛS = QR

Λ = ΛHΛF

tr(ΛF
HΛF) = 1

(4.31)

Specifically, we describe the diagonal matrices Λ, ΛH, and ΛF by using their
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diagonal elements, which are the singular values of their corresponding matrices:

Λ = diag(
√
σ1,
√
σ2,
√
σ3,
√
σ4) (4.32)

ΛH = diag(
√
λ1,
√
λ2,
√
λ3,
√
λ4) (4.33)

ΛF = diag(
√
µ1,
√
µ2,
√
µ3,
√
µ4) (4.34)

Λeq = diag(
√
r1,
√
r2) (4.35)

The diagonal elements of ΛH are given by the channel state information (CSI), while

the diagonal elements of ΛF need to be optimized. Essentially, these diagonal elements

of ΛF serve as power loading factors of the precoder. It should be worth noting that

in this thesis the all the diagonal elements are assumed to be decreasingly ordered.

That is,

√
σ1 ≥

√
σ2 ≥

√
σ3 ≥

√
σ4 (4.36)√

λ1 ≥
√
λ2 ≥

√
λ3 ≥

√
λ4 (4.37)

√
µ1 ≥

√
µ2 ≥

√
µ3 ≥

√
µ4 (4.38)

√
r1 ≥

√
r2 (4.39)

Based on the notations, we transform the second and third constraints in Problem 4

from the matrix forms to their equivalent constraints in terms of the singular values

of each matrix:

σi = λiµi, i = 1, 2, 3, 4 (4.40)

µ1 + µ2 + µ3 + µ4 = 1 (4.41)
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The first constraint in Problem 4 ensures that the cascaded channel matrix has

block-equal QRS decomposition. From the first constraint ΛS = QR, we can get to

the following equality:

SHΛHΛS = RHR (4.42)

Note that σ1, σ2, σ3, σ4 are the eigenvalues of the matrix SHΛHΛS in descending

order on the left-hand side. On the right hand side, the diagonal elements of RHR

are the Cholesky values, which are given by r1, r1, r2, and r2 in descending order.

The following lemma states the relationship between these values [44, p. 234].

Lemma 2. If A ∈ Rn×n is a positive semi-definite matrix with eigenvalues λi and

Cholesky values di, i = 1, . . . , n, then

d ≺× λ (4.43)

where d = (d[1], . . . , d[n]) and λ = (λ[1], . . . , λ[n]) (The brackets in the subscripts in-

dicates that the sequences are arranged in descending order). Conversely, if the two

sequences d and λ satisfy the relationship described in Eq. (4.43), then there ex-

ists a positive semi-definite matrix A with eigenvalues λi and Cholesky values di,

i = 1, . . . , n.

Applying Lemma 2 to Eq. (4.42), a necessary but not sufficient condition of the

first constraint ΛS = QR is given by

(r1, r1, r2, r2) ≺× (σ1, σ2, σ3, σ4) (4.44)
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Changing the first constraint of Problem 3 with its necessary but not sufficient

condition (4.44), and replacing other two constraints with their equivalent versions,

it leads to a new problem as follows:

Problem 5. Optimization Problem with Enlarged Feasible Set

max

µ1, µ2, µ3, µ4

r1, r2

dmin(r1, r2)

s.t. (r1, r1, r2, r2) ≺× (σ1, σ2, σ3, σ4)

σi = λiµi, i = 1, 2, 3, 4

µ1 + µ2 + µ3 + µ4 = 1

(4.45)

Since that the first constraint of Problem 5 is just a necessary condition of the

constraint ΛS = QR, the solution to Problem 5 cannot guarantee that a specific

block-equal QRS decomposition exists. In fact, the feasible set of Problem 4 is a

subset of that of the Problem 5. In other words, Problem 5 is a relaxed problem.

To solve Problem 5, we decompose it into two sub-problems. The first sub-problem

seeks the optimal r1 and r2 in terms of σ1, σ2, σ3 and σ4 that maximize dmin under

the condition that the power loading factors µ1, µ2, µ3 and µ4 are fixed. Because

σi depends on µi, so r1 and r2 can be expressed in terms of µ1, µ2, µ3 and µ4. The

second sub-problem further finds optimal solutions of µ1, µ2, µ3 and µ4 that maximize

dmin(r1, r2) under the precoder power constraint, which is µ1 + µ2 + µ3 + µ4 = 1.
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4.4 Optimal Solution to the First Sub-Problem

As it was stated, the first step is to solve the following sub-problem. We remove

the second and third constraints form Problem 5, because µ1, µ2, µ3 and µ4 are

assumed to be fixed in the first sub-problem .

Problem 6. First Sub-problem of Problem 5

max
r1,r2

dmin

s.t. (r1, r1, r2, r2) ≺× (σ1, σ2, σ3, σ4)

(4.46)

where d2
min changes as r1 and r2 satisfy different 2 × 2 block-channel condition.

According to the Lemma 1, the value of d2
min can be concluded as:

d2
min =



2(r1 + r2),
r1 + r2

(r1 − r2)
≥ 2

2(r1 + r2),
√

2 ≤ r1 + r2

(r1 − r2)
≤ 2

4(r1 + r2)− 2
√

3r2
1 + 3r2

2 − 10r1r2,
5
√

74

37
≤ r1 + r2

(r1 − r2)
≤
√

2

2(r1 + r2)− 2√
3

√
r2

1 + r2
2 − 6r1r2,

r1 + r2

(r1 − r2)
≤ 5
√

74

37

(4.47)

and the majorization constraint is equivalent to the following three conditions:

r1 ≥ 4
√
σ1σ2σ3σ4 (4.48)

r1 ≤
√
σ1σ2 (4.49)

r2 =
√
σ1σ2σ3σ4/r1 (4.50)

(Proof: See the Appendix G.1)
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4.4.1 Optimal r1 and r2 in the Condition 1

Under Condition 1, Problem 6 has following equivalent form:

max
r1,r2

2(r1 + r2)

s.t. (r1 + r2)/(r1 − r2) ≥ 2

r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

r2 =
√
σ1σ2σ3σ4/r1

(4.51)

For notational simplicity purpose, we introduce a new parameter ρσ =
√

(σ1σ2)/(σ3σ4).

There are several situations where ρσ falls in different ranges.

Situation A. When ρσ ≤ 3, this problem can be reformulated as:

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

(4.52)

(Reformulation of Eq. (4.52): See Appendix G.2)

The optimal r1 and r2 is

r1 =
√
σ1σ2 (4.53)

r2 =
√
σ3σ4 (4.54)
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The corresponding maximum of the squared minimum distance is

max d2
min = 2(

√
σ1σ2 +

√
σ3σ4) (4.55)

= 2(ρσ + 1)
√
σ3σ4 (4.56)

Situation B. When ρσ > 3, the problem can be formulated as:

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤
√

3 4
√
σ1σ2σ3σ4

(4.57)

(Reformulation of Eq. (4.57): See Appendix G.2)

The optimal r1 and r2 is

r1 =
√

3 4
√
σ1σ2σ3σ4 (4.58)

r2 =
1√
3

4
√
σ1σ2σ3σ4 (4.59)

The corresponding maximum of the squared minimum distance is

max d2
min = 2(

√
3 +

1√
3

) 4
√
σ1σ2σ3σ4 (4.60)

=
8√
3

√
ρσ
√
σ3σ4 (4.61)
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4.4.2 Optimal r1 and r2 in Condition 2

Under Condition 2, Problem 6 has following equivalent form:

max
r1,r2

2(r1 + r2)

s.t.
√

2 ≤ (r1 + r2)/(r1 − r2) ≤ 2

r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

r2 =
√
σ1σ2σ3σ4/r1

(4.62)

There are several situations where ρσ falls in different ranges.

Situation A. When ρσ < 3, this problem is infeasible.

(Proof: See the Appendix G.3)

Situation B. When 3 ≤ ρσ ≤ (
√

2 + 1)2, the problem can be reformulated as

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥
√

3 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

(4.63)

The optimal r1 and r2 is

r1 =
√
σ1σ2 (4.64)

r2 =
√
σ3σ4 (4.65)
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The corresponding maximum of the squared minimum distance is

max d2
min = 2(

√
σ1σ2 +

√
σ3σ4) (4.66)

= 2(ρσ + 1)
√
σ3σ4 (4.67)

Situation C. When ρσ > (
√

2 + 1)2, the problem can be reformulated as

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤ (
√

2 + 1) 4
√
σ1σ2σ3σ4

(4.68)

The optimal r1 and r2 is

r1 = (
√

2 + 1) 4
√
σ1σ2σ3σ4 (4.69)

r2 = (
√

2− 1) 4
√
σ1σ2σ3σ4 (4.70)

The corresponding maximum of the squared minimum distance is

max d2
min = 4

√
2 4
√
σ1σ2σ3σ4 (4.71)

= 4
√

2
√
ρσ
√
σ3σ4 (4.72)
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4.4.3 Optimal r1 and r2 in Condition 3

Under Condition 3, Problem 6 has following equivalent form:

max
r1,r2

4(r1 + r2)− 2
√

3r2
1 + 3r2

2 − 10r1r2

s.t. 5
√

74
37
≤ (r1 + r2)/(r1 − r2) ≤

√
2

r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

r2 =
√
σ1σ2σ3σ4/r1

(4.73)

Rewriting the objective function as a function in terms of r1 + r2, we have:

f(r1 + r2) =4(r1 + r2)− 2
√

3(r1 + r2)2 − 16r1r2 (4.74)

=4(r1 + r2)− 2
√

3(r1 + r2)2 − 16
√
σ1σ2σ3σ4 (4.75)

Setting the derivative of the minimum distance with respect to r1 + r2 equal to zero,

we obtain r1 + r2 = 8√
3

4
√
σ1σ2σ3σ4(≈ 4.6 4

√
σ1σ2σ3σ4). The upper bound of r1 + r2,

however, is given by

r1 + r2 ≤


√√√√ 5

√
74

37
+ 1

5
√

74
37
− 1

+

1/

√√√√ 5
√

74
37

+ 1
5
√

74
37
− 1

 4
√
σ1σ2σ3σ4(≈ 3.9 4

√
σ1σ2σ3σ4) (4.76)

(Proof: See Appendix G.4.)

which is less than the value that makes the derivative of minimum distance to be zero.

It means that the squared minimum distance is monotonically decreasing within the

domain of r1 + r2 (See Fig. 4.1). Thus, maximizing squared minimum distance is

equivalent to minimizing r1 + r2.
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4.6 !1! 2! 3! 4
43.9 !1! 2! 3! 4

4 r1 + r2

f (r1 + r2 ) = 4(r1 + r2 )! 2 3(r1 + r2 )
2 !16 !1! 2! 3! 4

Figure 4.1: The Objective Function in Optimization Problem (4.73)

The problem is reformulated as:

min
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≤
√

5
√
74

37
+1

5
√
74

37
−1

4
√
σ1σ2σ3σ4

r1 ≥ (
√

2 + 1) 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

(4.77)

To minimize r1 + r2, we have the following two situations with respect to the

parameters ρσ:

Situation A. When ρσ < (
√

2 + 1)2, this problem is infeasible.

Situation B. When ρσ ≥ (
√

2 + 1)2, the optimal r1 and r2 is

r1 = (
√

2 + 1) 4
√
σ1σ2σ3σ4 (4.78)

r2 = (
√

2− 1) 4
√
σ1σ2σ3σ4 (4.79)
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The corresponding maximum of the squared minimum distance is

max d2
min = 4

√
2 4
√
σ1σ2σ3σ4 (4.80)

= 4
√

2
√
ρσ
√
σ3σ4 (4.81)

4.4.4 Optimal r1 and r2 in Condition 4

Under Condition 4, Problem 6 has following equivalent form:

max
r1,r2

2(r1 + r2)− 2√
3

√
r2

1 + r2
2 − 6r1r2

s.t. (r1 + r2)/(r1 − r2) ≤ 5
√

74
37

r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

r2 =
√
σ1σ2σ3σ4/r1

(4.82)

Similar to Condition 3, we rewrite the objective function as a function in terms of

r1 + r2:

f(r1 + r2) =2(r1 + r2)− 2√
3

√
(r1 + r2)2 − 8r1r2 (4.83)

=2(r1 + r2)− 2√
3

√
(r1 + r2)2 − 8

√
σ1σ2σ3σ4 (4.84)

Setting the derivative of the minimum distance with respect to r1 + r2 equal to zero,

we obtain r1 + r2 = 2
√

3 4
√
σ1σ2σ3σ4(≈ 3.46 4

√
σ1σ2σ3σ4). The lower bound of r1 + r2,
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however, is given by

r1 + r2 ≥


√√√√ 5

√
74

37
+ 1

5
√

74
37
− 1

+

1/

√√√√ 5
√

74
37

+ 1
5
√

74
37
− 1

 4
√
σ1σ2σ3σ4(≈ 3.9 4

√
σ1σ2σ3σ4) (4.85)

(Proof: See Appendix G.5.)

which is greater than the value that makes the derivative of minimum distance to be

zero. It means that the squared minimum distance is monotonically increasing within

the domain of r1 + r2. Thus, maximizing squared minimum distance is equivalent to

maximizing r1 + r2.

The problem is reformulated as:

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥
√

5
√
74

37
+1

5
√
74

37
−1

4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

(4.86)

Also, we have the following two situations with respect to the parameters ρσ:

Situation A. When ρσ ≤
5
√
74

37
+1

5
√
74

37
−1

, this problem is infeasible.

Situation B. When ρσ ≥
5
√

74
37

+1

5
√
74

37
−1

, the optimal r1 and r2 is

r1 =
√
σ1σ2 (4.87)

r2 =
√
σ3σ4 (4.88)
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The corresponding maximum of the squared minimum distance is

max d2
min = 2(

√
σ1σ2 +

√
σ3σ4)− 2√

3

√
σ1σ2 − 6

√
σ1σ2σ3σ4 + σ3σ4 (4.89)

= 2

[
ρσ + 1− 1√

3

√
ρ2
σ − 6ρσ + 1

]
√
σ3σ4 (4.90)

4.4.5 Conclusion: Global Optimal r1 and r2

Since the optimal r1 and r2 are functions of σ1, σ2, σ3, and σ4, which are the

squared singular values of H̃ = HF, thus, given H, we can adjust the the parameters

in F so that r1 and r2 would assume values such that d2
min(r1, r2) is of a maximum

values.

Consider all the conditions from Condition 1 to Condition 4, we have obtain many

different expressions of the maximum d2
min. There are overlaps between some cases

within which two or more max d2
mins are given. We compare the different max d2

mins

in the different regions of r1 and r2 and choose the one yielding the highest values of

max d2
min within each region. Note that all the expressions are written as a function

in terms of ρσ multiplied by a factor
√
σ3σ4. For the convenience of comparing the

overlapped expressions of max d2
min, we can remove the common factor

√
σ3σ4 and just

compare those functions in the domain of ρσ. We then conclude all the expressions

that divided by and their valid range in Table 4.1. Fig. 4.2 further depicts the

relationship between those functions.

Therefore in summary, we have proposed the following choices of max d2
min under
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Table 4.1: Conclusion of All Expressions of max d2
min in the First Sub-problem

Condition 1 Condition 2 Condition 3 Condition 4

ρσ ≤ 3 f1(ρσ)[1] - - -

3 ≤ ρσ ≤ (
√

2 + 1)2 f2(ρσ)[2] f1(ρσ) - -

(
√

2 + 1)2 ≤ ρσ ≤
5
√
74

37
+1

5
√
74

37
−1

f2(ρσ) f3(ρσ)[3] f3(ρσ) -

ρσ ≥
5
√
74

37
+1

5
√
74

37
−1

f2(ρσ) f3(ρσ) f3(ρσ) f4(ρσ)[4]

[1] f1(ρσ) = 2(ρσ + 1)
[2] f2(ρσ) = 8√

3

√
ρσ

[3] f3(ρσ) = 4
√

2
√
ρσ

[4] f4(ρσ) = 2
[
ρσ + 1− 1√

3

√
ρ2
σ − 6ρσ + 1

]

f1(!" )
f2 (!" )
f3(!" )
f4 (!" )

!"( 2 +1)2 15+ 4 140

Figure 4.2: Comparsion of Multiple Expressions of max d2
min in the First Sub-problem
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different conditions of ρσ:

d2
min =


2(ρσ + 1)

√
σ3σ4, ρσ ≤ (

√
2 + 1)2

4
√

2
√
ρσ
√
σ3σ4, (

√
2 + 1)2 ≤ ρσ ≤ 15 + 4

√
14

2

[
ρσ + 1− 1√

3

√
ρ2
σ − 6ρσ + 1

]
√
σ3σ4, ρσ ≥ 15 + 4

√
14

(4.91)

Corresponding to the values of global max d2
min are the values of optimal r1 and r2

which are shown as follows:


r1 =

√
σ1σ2, r2 =

√
σ3σ4, ρσ ≤ (

√
2 + 1)2

r1 = (
√

2 + 1) 4
√
σ1σ2σ3σ4, r2 = (

√
2− 1) 4

√
σ1σ2σ3σ4, (

√
2 + 1)2 ≤ ρσ ≤ 15 + 4

√
14

r1 =
√
σ1σ2, r2 =

√
σ3σ4, ρσ ≥ 15 + 4

√
14

(4.92)

4.5 Optimal Solution to the Second Sub-Problem

After solving the first sub-problem, r1 and r2 are expressed by optimal functions

of {σi}, i = 1, 2, 3, 4 in the sense that d2
min reaches the global maximum. Since we have

obtained the optimal values of dmin in terms of r1 and r2, now, we tackle the second

sub-problem by fixing r1 and r2 at their optimal functions in terms of {σi}, i = 1, 2, 3, 4

and then optimizing the objective function dmin with respect to {σi}, i = 1, 2, 3, 4.
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Problem 7. Second Sub-problem of Problem 5

max
µ1,µ2,µ3,µ4

dmin(σ1, σ2, σ3, σ4)

s.t. σi = λiµi, i = 1, 2, 3, 4

µ1 + µ2 + µ3 + µ4 = 1

(4.93)

In Eq. (4.91), d2
min is a piecewise function, of which the expression is depending

on the channel parameter ρσ. We therefore solve the optimization problem under

different cases of {σi}, i = 1, 2, 3, 4 given by Eq. (4.91) respectively.

4.5.1 Case 1

In the first case, ρσ ≤ (
√

2 + 1)2, d2
min = 2(ρσ + 1)

√
σ3σ4. Under this condition,

Problem 7 has the following form:

max
µ1,µ2,µ3,µ4

2(ρσ + 1)
√
σ3σ4

s.t. ρσ ≤ (
√

2 + 1)2

σi = λiµi, i = 1, 2, 3, 4

µ1 + µ2 + µ3 + µ4 = 1

(4.94)

Denote ρλ =
√

λ1λ2
λ3λ4

, d2
min can be rewritten as d2

min = 2(ρλ
√
µ1µ2 +

√
µ3µ4)

√
λ3λ4.

Lemma 3. The optimal µ1, µ2, µ3, and µ4 that maximize the objective function in

Problem (4.94) satisfy the following conditions:

µ1 = µ2 (4.95)

µ3 = µ4 (4.96)
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Proof. Since that

(µ1 − µ2)2 ≥ 0 (4.97)

therefore

µ1µ2 ≤
µ2

1 + µ2
2

2
(4.98)

The equality holds when µ1 and µ2 satisfy that µ1 = µ2.

Threrefore,
√
µ1µ2 is maximized when µ1 = µ2. Similarly, we can prove that the

optimal µ3 and µ4 satisfy µ3 = µ4.

Based on this result, we have µ3 = 1/2− µ1. is reformulated as

max
µ1,µ3

µ1

s.t. µ1 ≤ (
√

2+1)2

2[ρλ+(
√

2+1)2]

µ1 ≥ 1/4

(4.99)

We discuss the solution to Problem (4.99) in the space spanned by λ1, λ2, λ3 and

λ4. For notational simplicity, we express different regions of the whole space by using

the parameter ρλ =
√

λ1λ2
λ3λ4

.

Situation A. When ρλ ≤ (
√

2 + 1)2, we have

1/4 ≤ (
√

2 + 1)2

2
[
ρλ + (

√
2 + 1)2

] (4.100)
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the optimal {µi}, i = 1, 2, 3, 4 and corresponding maximal minimum distance is:

µ1 = µ2 =
(
√

2 + 1)2

2
[
ρλ + (

√
2 + 1)2

] (4.101)

µ3 = µ4 =
ρλ

2
[
ρλ + (

√
2 + 1)2

] (4.102)

max d2
min =

(4 + 2
√

2)ρλ

ρλ + (
√

2 + 1)2

√
λ3λ4 (4.103)

Situation B. When ρλ > (
√

2 + 1)2, however, 1/4 ≥ (
√

2+1)2

2[ρλ+(
√

2+1)2]
, the problem is

infeasible.

4.5.2 Case 2

In the second case, (
√

2 + 1)2 ≤ ρσ ≤ 15 + 4
√

14, d2
min = 4

√
2
√
ρσ
√
σ3σ4. Under

this condition, Problem 7 has the following form:

max
µ1,µ2,µ3,µ4

4
√

2
√
ρσ
√
σ3σ4

s.t. (
√

2 + 1)2 ≤ ρσ ≤ 15 + 4
√

14

σi = λiµi, i = 1, 2, 3, 4

µ1 + µ2 + µ3 + µ4 = 1

(4.104)

Since that the parameters ρσ and ρµ have the following relation:

ρσ =

√
σ1σ2

σ3σ4

=

√
µ1µ2

µ3µ4

ρλ (4.105)
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Substitute Eq. (4.105) into the objective function of Problem (4.104), we have

4
√

2
√
ρσ
√
σ3σ4 = 4

√
2 4
√
µ1µ2µ3µ4

√
ρλ
√
λ3λ4 (4.106)

The inequality of arithmetic and geometric means says that:

4
√
µ1µ2µ3µ4 ≤

µ1 + µ2 + µ3 + µ4

4
(4.107)

with equality if and only if µ1 = µ2 = µ3 = µ4. Note that the third constraint of

Problem (4.104) requires the sum of the four variables to be a constant. Therefore,

4
√
µ1µ2µ3µ4 ≤

1

4
(4.108)

Thus, the optimal values of µ1, µ2, µ3, and µ4 that maximize the dmin must satisfy

that µ1 = µ2 = µ3 = µ4 = 1/4.

Substituting the optimal realtion µ1 = µ2 = µ3 = µ4 into Eq. (4.105) yields

ρσ = ρλ (4.109)

Therefore the first constraint of Problem (4.104) suggests that ρλ should fall in the

following region:

(
√

2 + 1)2 ≤ ρλ ≤ 15 + 4
√

14 (4.110)

Thus, we conclude our result in the following situations according to ρλ:

Situation A. When (
√

2 + 1)2 ≤ ρλ ≤ 15 + 4
√

14, the optimal {µi}, i = 1, 2, 3, 4
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and corresponding maximal minimum distance is:

µ1 = µ2 = µ3 = µ4 = 1/4 (4.111)

max d2
min =

√
2ρλ
√
λ3λ4 (4.112)

Situation B. When ρλ ≤ (
√

(2)+1)2 or ρλ > 15+4
√

14, the problem is infeasible.

4.5.3 Case 3

In the last case, ρσ ≥ 15 + 4
√

14, d2
min = 2

[
ρσ + 1− 1√

3

√
ρ2
σ − 6ρσ + 1

]√
σ3σ4.

Under this condition, Problem 7 has the following form:

max
µ1,µ2,µ3,µ4

2
[
ρσ + 1− 1√

3

√
ρ2
σ − 6ρσ + 1

]√
σ3σ4

s.t. ρσ ≥ 15 + 4
√

14

σi = λiµi, i = 1, 2, 3, 4

µ1 + µ2 + µ3 + µ4 = 1

(4.113)

Substituting ρσ =
√

µ1µ2
µ3µ4

ρλ into the objective function of Problem (4.113),

2

[
ρσ + 1− 1√

3

√
ρ2
σ − 6ρσ + 1

]
√
σ3σ4 (4.114)

=2

[
√
µ1µ2ρλ +

√
µ3µ4 −

1√
3

√
µ1µ2ρ2

λ − 6
√
µ1µ2µ3µ4ρλ + µ3µ4

]√
λλ4 (4.115)
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Similar to Case 1, the optimal µ1, µ2, µ3 and µ4 should satisfy that µ1 = µ2 and

µ3 = µ4. The d2
min can then be rewritten as

d2
min =

√
λ3λ42(µ1ρλ + µ3 −

1√
3

√
µ2

1ρ
2
λ − 6µ1µ3ρλ + µ2

3) (4.116)

which can be treated as a function in terms of µ1. By further simplify the Eq. (4.116)

according to µ1, we write the d2
min as the following function:

f(µ1) = (ρλ − 1)µ1 −
1√
3

√
(ρ2
λ + 6ρλ + 1)µ2

1 − (3ρλ + 1)µ1 +
1

4
(4.117)

We calculate the second-order derivative of the objective function, which is given by:

f ′′(µ1) =
2ρ2

λ

9
[
(ρ2
λ + 6ρλ + 1)µ2

1 − (3ρλ + 1)µ1 + 1
4

]3/2 (4.118)

Since ρλ ≥ 1, therefore f ′′(µ1) > 0. So the objective function is a convex function

regarding to µ1. The maximum of a convex function would be one of the values on

the boundaries of feasible domain.

Situation A. When ρλ ≤ 15 + 4
√

14, the problem is reformulated as

max
µ1

(ρλ − 1)µ1 − 1√
3

√
(ρ2
λ + 6ρλ + 1)µ2

1 − (3ρλ + 1)µ1 + 1
4

s.t. µ1 ≥ (15+4
√

14)

2[ρλ+(15+4
√

14)]

µ1 ≤ 1/2

(4.119)

the feasible domain of the problem is (15+4
√

14)

2[ρλ+(15+4
√

14)]
≤ µ1 ≤ 1/2. The values of the
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objective function at two boundary points are given by:

d2
min|µ1=

(15+4
√
14)

2[ρλ+(15+4
√
14)]

=
2
√

2(4
√

2 + 2
√

7−
√

15 + 4
√

14)

ρλ + (15 + 4
√

14)
ρλ
√
λ3λ4 (4.120)

d2
min|µ1=1/2 = (1− 1√

3
)
√
λ3λ4ρλ (4.121)

Compare the two boundary values, if ρλ ≤ 3+15
√

3+4
√

42−6
√

30+8
√

14

3−
√

3
(≈ 6.6673),

µ1 = µ2 =
(15 + 4

√
14)

2
[
ρλ + (15 + 4

√
14)
] (4.122)

µ3 = µ4 =
ρλ

2
[
ρλ + (15 + 4

√
14)
] (4.123)

max d2
min =

2
√

2(4
√

2 + 2
√

7−
√

15 + 4
√

14)

ρλ + (15 + 4
√

14)
ρλ
√
λ3λ4 (4.124)

otherwise, if
3+15

√
3+4
√

42−6
√

30+8
√

14

3−
√

3
≤ ρλ ≤ 15 + 4

√
14,

µ1 = µ2 = 1/2 (4.125)

µ3 = µ4 = 0 (4.126)

max d2
min = (1− 1√

3
)ρλ
√
λ3λ4 (4.127)

Situation B. When ρλ > 15 + 4
√

14, the feasible domain of the problem is

1/4 ≤ µ1 ≤ 1/2. The problem is reformulated as

max
µ1

(ρλ − 1)µ1 − 1√
3

√
(ρ2
λ + 6ρλ + 1)µ2

1 − (3ρλ + 1)µ1 + 1
4

s.t. 1/4 ≤ µ1 ≤ 1/2

(4.128)

63



M.A.Sc. Thesis - Dan Fang McMaster - Electrical Engineering

The values of the objective function at two boundary points are given by:

d2
min|µ1=1/4 =

1

2

(
ρλ + 1−

√
ρ2
λ − 6ρλ + 1

3

)√
λ3λ4 (4.129)

d2
min|µ1=1/2 = (1− 1√

3
)ρλ
√
λ3λ4 (4.130)

For any possible ρλ > 15 + 4
√

14, it holds that

µ1 = µ2 = 1/2 (4.131)

µ3 = µ4 = 0 (4.132)

max d2
min = (1− 1√

3
)ρλ
√
λ3λ4 (4.133)

4.5.4 Conclusion: Global Optimal ΛF

The previous sections discussed the optimal solution to the ΛF, which actually

controls the power loading of the precoder. Similarly to what happens for the solutions

to the first sub-problem, it turns out that the optimal solutions under different cases

have some overlaps. We have also simplified the expressions of max d2
min in a united

form composing a function of ρλ and a common factor λ3λ4. For the convenience

of comparison purpose, we do not need to consider the common factor. Thus, we

conclude all the expressions of max d2
min as functions in terms of ρλ in Table 4.2. The

relationship between these functions are shown in Fig. 4.3.
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Table 4.2: Conclusion of all expressions of max d2
min in the Second Sub-problem

Condition 1 Condition 2 Condition 3

ρσ ≤ (
√

2 + 1)2 f1(ρλ)
[1] - f3(ρλ)

[3]

(
√

2 + 1)2 ≤ ρλ ≤ 6.67 - f2(ρλ)
[2] f3(ρλ)

6.67 ≤ ρλ ≤ 15 + 4
√

14 - f2(ρλ) f4(ρλ)
[4]

ρλ ≥ 15 + 4
√

14 - - f4(ρλ)

[1] f1(ρλ) = (4+2
√

2)ρλ
ρλ+(

√
2+1)2

[2] f2(ρλ) =
√

2ρλ

[3] f3(ρλ) =
2
√

2(4
√

2+2
√

7−
√

15+4
√

14)

ρλ+(15+4
√

14)
ρλ

[4] f4(ρλ) = (1− 1√
3
)ρλ

f1(!" )
f2 (!" )
f3(!" )
f4 (!" )

( 2 +1)2 15+ 4 146.67 !"

Figure 4.3: Comparsion of Multiple Expressions of max d2
min in the Second Sub-

problem
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Then, we summarize the results in choice of max d2
min as follows:

d2
min =



(4 + 2
√

2)ρλ

ρλ + (
√

2 + 1)2

√
λ3λ4, ρλ ≤ (

√
2 + 1)2

√
2ρλ
√
λ3λ4, (

√
(2) + 1)2 ≤ ρλ ≤ 2(2 +

√
3)

(1− 1√
3

)ρλ
√
λ3λ4, ρλ ≥ 2(2 +

√
3)

(4.134)

Corresponding to the values of global max d2
min are the values of optimal µ1, µ2, µ3

and µ4 which are shown as follows:



µ1 = µ2 =
(
√

2 + 1)2

2
[
ρλ + (

√
2 + 1)2

] ,
µ3 = µ4 =

ρλ

2
[
ρλ + (

√
2 + 1)2

] , ρλ ≤ (
√

2 + 1)2

µ1 = µ2 = µ3 = µ4 = 1/4, (
√

2 + 1)2 ≤ ρλ ≤ 3(2 +
√

3)

µ1 = µ2 = 1/2, µ3 = µ4 = 0 ρλ ≥ 3(2 +
√

3)

(4.135)

The optimal values of r1 and r2 obtained in Eq. (4.92) are the choices for the R

matrix in block-equal QR decomposition at the receiver. The optimal values of µ1,

µ2, µ3, and µ4 obtained in Eq. (4.135), on the other hand, are the choices of singular

values for the precoder matrix F at the transmitter. In Eq. (4.135), the optimal µ1,

µ2, µ3, and µ4 have different optimal values under different channel conditions which

is defined according to the value of ρλ as follows:

• Good Channels: ρλ ≤ (
√

2 + 1)2

• Moderate Channels: (
√

2 + 1)2 ≤ ρλ ≤ 3(2 +
√

3)

• Bad Channels: ρλ ≥ 3(2 +
√

3)
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4.6 Optimal Solution to the Precoder Matrix F

In Section 3.3, we have shown that the block-equal QRS decomposition is possible

if a solution exists for the set of 7 equations of (3.32). This set of quadratic equa-

tions consists of eight unknowns {sij}, i = 1, 2 and j = 1, 2, 3, 4 together with the

coefficients σ1, σ2, σ3, σ4, r1, and r2. The above two optimization sub-problems of

Problem 5 together yield the optimal values of those coefficients which can now be em-

ployed to solve the set of quadratic equations. After solving these equations, we may

formulate the block-equal QRS decomposition described in Section 3.3. Problem 5,

however, is a relaxed problem, which cannot guarantee the existence of block-equal

QRS decomposition. It has a larger feasible set than that of the original Problems 2,

3, and 4. We can conclude that these optimal coefficients are within the feasible set

of the original Problems 2, 3, and 4 if they lead to a solution of the set of 7 quadratic

equations. Therefore, in this section, we examine the solution of the set of 7 equations

using those optimal coefficients obtained in the previous two sections.

4.6.1 Good Channel Case

In Eq. (4.135), the first case says that, when ρλ ≤ (
√

2 + 1)2, the parameter ρσ is

ρσ =

√
σ1σ2

σ3σ4

= ρλ

√
µ1µ2

µ3µ4

= (
√

2 + 1)2 (4.136)

Combine this result with Eq. (4.92), saying that the optimal r1 and r2 satisfy that

r1 =
√
σ2σ2 r2 =

√
σ3σ4 when ρσ ≤ (

√
2 + 1)2 (4.137)
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It can be found that as long as the singular values of the channel satisfy the condition

that ρλ ≤ (
√

2 + 1)2, the optimal r1 and r2 are
√
σ1σ2 and

√
σ3σ4. Theorem 2 says,

when r1 and r2 has such relation with the singular values of the cascaded channel

matrix H̃ that r1 =
√
σ1σ2 and r2 =

√
σ3σ4, a specific closed form solution of S is

given. This result shows that our optimal solution to Problem 5 perfectly matches

the condition under which the cascaded channel has the proposed closed-from block-

equal QRS decomposition. Therefore our specific solution to the matrix S shown in

Eq. (3.38) can be employed to compose the optimal precoder matrix according to

Eq. (4.9).

4.6.2 Moderate Channel Case

In the second case of Eq. (4.135), things are not as ideal as the first case. When

(
√

2 + 1)2 ≤ ρλ ≤ 3(2 +
√

3), µ1 = µ2 = µ3 = µ4 = 1/4, which indicates that the

optimal precoder uniformly allocates power over all the data streams. In such a case,

the parameter ρσ is given by

ρσ =

√
µ1µ2

µ3µ4

ρλ = ρλ (4.138)

Therefore the range of ρσ is also [(
√

2 + 1)2, 3(2 +
√

3)]. According to Eq. (4.92),

under the case that ρσ falls in that range, the corresponding optimal r1 and r2 are

r1 = (
√

2 + 1) 4
√
σ1σ2σ3σ4 r2 = (

√
2− 1) 4

√
σ1σ2σ3σ4 (4.139)

when (
√

2 + 1)2 ≤ ρλ ≤ 3(2 +
√

3)
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In this case, those optimal values of r1 and r2 do not satisfy the condition such that

we can have the closed-form S in Theorem 2. However, it does not mean that such a

matrix S based on this optimal solution does not exist. According to Theorem 1, the

existence of a solution to the 7 equations is equivalent to the existence of a block-equal

QRS decomposition of the cascaded channel. Thus, as long as we can get a set of

solution to the 7 equations, that set of solution gives us one specific realization of S.

To find a solution to the equations, we employ a numerical optimization method by

using computational tool MATLAB Optimization Toolbox. In such a case, an optimal

S need to be found through numerical method. Thus, we consider the following

optimization problem:

Problem 8. Optimization Problem for Numerical Result of S (Least Square

Solution)

min
sij,i=1,2,3,4j=1,2

|s2
11 + s2

21 + s2
31 + s2

41 − 1|2 + |s2
12 + s2

22 + s2
32 + s2

42 − 1|2+

|s11s12 + s21s22 + s31s32 + s41s42|2+

|σ1s
2
11 + σ2s

2
21 + σ3s

2
31 + σ4s

2
41 − r1|2+

|σ1s
2
12 + σ2s

2
22 + σ3s

2
32 + σ4s

2
42 − r2|2+

|σ1s11s12 + σ2s21s22 + σ3s31s32 + σ4s41s42|2+

|σ
2
1s

2
11+σ2

2s
2
21+σ2

3s
2
31+σ2

4s
2
41

r1
+

σ2
1s

2
12+σ2

2s
2
22+σ2

3s
2
32+σ2

4s
2
42

r2

− (σ1 + σ2 + σ3 + σ4 − r1 − r2)|2

s.t. r1 = (
√

2 + 1) 4
√
σ1σ2σ3σ4

r2 = (
√

2− 1) 4
√
σ1σ2σ3σ4

σi = λiµi, i = 1, 2, 3, 4

µ1 = µ2 = µ3 = µ4 = 1/4

(4.140)
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From Eq. (3.32), we take the sum of the squares of all equations, and minimize it.

We generated 200 random channels and each time evaluated the optimum parameters

σ1, σ2, σ3, σ4, r1, and r2. Using these parameters in Problem 8, we minimized the

sum of squares. We noted that, for each set of randomly generated channel, a solution

for Problem 8 is arrived at. Thus, we can conclude that there exists a solution for the

block-equal QRS decomposition. It can be shown in the simulation experiments that

for each of the randomly generated channels, a local optimum can be found quickly

and it can minimize the value of the objective function as small as a given tolerance

(e.g., 1 × 10−12). Therefore, for the second case, it can be concluded that based on

the optimal solution ΛF and UR obtained from Problem 5, there exists numerical

solution to the matrix S such that the resulting cascaded matrix H̃ has block-equal

QRS decomposition.

4.6.3 Bad Channel Case

The last case in Eq. (4.135) is that, when ρλ ≥ 3(2 +
√

3), the optimal power

loading factor are µ1 = µ2 = 1/2 and µ3 = µ4 = 0. We may not use the parameter

ρσ to indicate the region within the space expanded by {σi}, i = 1, 2, 3, 4. Instead,

we consider the values of {σi} directly. In this case, the optimal values of {σi} are:

σ1 =
1

2
λ1 σ2 =

1

2
λ2 σ3 = 0 σ4 = 0 (4.141)

Therefore, the following inequality holds for any arbitrarily large positive number k:

σ1σ2 ≥ kσ3σ4 = 0 (4.142)
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Let k = (15 + 4
√

14)2. The relationship between the four variables also satisfy that

σ1σ2 ≥ (15 + 4
√

14)2σ3σ4. Thus, according to the result shown in Eq. (4.92), the

optimal r1 and r2 is

r1 =
√
σ2σ2 r2 =

√
σ3σ4 when ρλ ≥ 3(2 +

√
3) (4.143)

This result shows that the optimal choices of r1 and r2 are the same as those in

the Good Channel Case. Therefore, the specific realization of matrix S given in in

Eq. (3.38) is also suitable for constructing the optimal precoder matrix in the Bad

Channel Case. Substituting the specific realization solution of S, the optimal ΛF and

UR into Eq. (4.9) then leads to the optimal F.

4.6.4 Conclusion

In conclusion, a solution to the set of 7 quadratic equations always exists in

good and bad channel conditions. In moderate channel condition, the simulation

results show that numerical solutions usually exist. This indicates that the optimal

solution to Problem 5 can always yield a precoder that guarantees the block-equal

QRS decomposition. That is, although the relaxed Problem 5 enlarges the feasible set,

its optimal solution of F actually locates in the original feasible set of Problems 2,

3, and 4. So, the optimal solution to Problem 5 is also the optimal solution to

Problems 2, 3, and 4.
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Chapter 5

Simulation and Discussion

In this chapter, we present a set of computer simulations on the proposed block-

equal QR decomposition based optimal transmission and receiving scheme.

5.1 Simulation System Model

We only consider the 4× 4 special case which has been theoretically discussed in

the previous chapters: There are 4 transmitting antennas and 4 receiving antennas.

Each transmitting antenna sends a data stream of intended symbols randomly picked

from a 4-QAM constellation. At each time slot, the transmitted symbol vector will

be precoded before being sent through a randomly generated channel. From the

discussion about the existence of optimal precoder in Chapter 4, a closed form solution

of the optimal precoder for our proposed receiving scheme has been obtained when

the channel satisfies ρλ ≤ (
√

2 + 1)2. However, it is still an open question on finding

the closed form solution while (
√

2 + 1)2 ≤ ρλ ≤ 3(2 +
√

3). In this situation without
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available closed form solution, we use numerical solution instead. At the output of the

channel, the received signal is a composition of channel output signal and an additive

white Gaussian noise. We assume that the noise is white, i.e., Φnn = 2τ 2I. The

combined ML-BEQRS (Block-Equal QRS Decomposition) detector is applied at the

receiver end to estimate the transmitted symbol vector. In the simulation, we change

the level of SNR in a range from −5dB to 20dB and verify the error performance for

each SNR level.

Depending on the value of channel condition parameter ρλ, the optimal precoder

matrix is achieved by either closed-form solution or numerical solution. In Section 4.6,

we have discussed the solutions of the optimal precoder under different cases, which

are good channel case, moderate channel case and bad channel case. For the good

channel case and bad channel case, we use the closed-form solution to construct the

precoder. For the moderate channel case, we use the numerical solution instead. We

evaluate our proposed method in three cases saparately .

5.2 Other Frameworks for Comparison

For the purpose of examine the error performance of our proposed design, we

compare our precoder and detector with the following transmission and receiving

strategies:

1. Zero-Forcing (ZF) Equalization

The procoder for ZF Equalization is [8]

FZF =

√
1

Mtr(Θ−1/2)
VΘ−1/4D
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where Θ and V comes from the eigenvalue eigenvalue decomposition HHΦnn
−1H =

VΘVH and D is a normalized discrete Fourier Transform (DFT) matrix. In

4× 4 case M = 4.

2. Minimum Mean Squared Error (MMSE) Equalization

The precoder for MMSE Equalization is [20]

FMMSE =

√
1

M
V∆D

where V, D and M has the same meaning as ZF equalization, and ∆ is a

diagonal matrix with the diagonal elements determined by

|δii|2 =


1
r

(
1 +

∑r
j=1 θ

−1
j

)
− θ−1

i , i ≤ r

0, otherwise
(5.1)

where θi are diagonal elements of Θ, coming from the eigenvalue decomposition

HHΦnn
−1H = VΘVH , and r ≤ 4 is the largest integer satisfying

1

θi
<

1

r

(
1 +

r∑
j=1

θ−1
j

)

3. Zero-Forcing Decision Feedback Equalization (ZF-DFE)

The structure of such decision feedback transmission and detection framework

is depicted in Figure 5.1.

The transceiver with ZF-DFE can be jointly designed using the following pro-

cedure [45]: (1) The precoder FZF-DFE =
√

1/MVK, where V is given by

the eigenvalue decomposition of HHΦnn
−1H = VΘVH , K is chosed such that
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W	
 Detector	


B	


Channel	
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n	


s	
 y	


Precoder MIMO Channel Decision Feedback Equalizer 

Figure 5.1: Model of Decision Feedback Transmission and Detection

the mean squared error achieves its lower bound. (2) The feedback matrix

BZF-DFE = UZF-DFE − I, where UZF-DFE is a unit diagonal upper triangular

matrix given by the Cholesky factorization (HFZF-DFE)HΦnn
−1(HFZF-DFE) =

UH
ZF-DFECZF-DFEUZF-DFE. (3) The feedforward matrix WZF-DFE = (BZF-DFE +

I)(HFZF-DFE)†.

4. Minimum Mean Squared Error Decision Feedback (MMSE-DFE) Equal-

ization

The transceiver with MMSE-DFE can be jointly designed using the following

procedure [45]: (1) The precoder FMMSE-DFE = V∆KH , where the definition

of V is same as ZF-DFE and ∆ is a diagonal matrix with diagonal elements

defined in equation (5.1). The unitary matrix K is chosed such that the mean

squared error achieves its minimized lower bound. (2) The feedback matrix

BMMSE-DFE = UMMSE-DFE− I, where UMMSE-DFE is a unit diagonal upper trian-

gular matrix given by the Cholesky factorization I+(HFZF-DFE)HΦnn
−1(HFZF-DFE) =

UH
MMSE-DFECMMSE-DFEUMMSE-DFE. (3) The feedforward matrix

WMMSE-DFE = (BMMSE-DFE+I)(HFMMSE-DFE)H [(HFMMSE-DFE)(HFMMSE-DFE)H+

Φnn]−1.
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5. Block QR Decomposition Detector without Proposed Optimal Pre-

coder

The precoder matrix in this case is set to be F = I. Then use the block-by-block

successive cancellation strategy.

6. Maximum Likelihood Detector with Proposed Optimal Precoder

Employ our proposed optimal precoder matrix, then use ML detector, jointly

detecting all 4 symbols.

7. Maximum Likelihood Detector without Proposed Optimal Precoder

The precoder matrix in this case is set to be F = I. Then use ML detector to

jointly detect all 4 symbols.

In all the simulation two set of 200 channels that satisfy the corresponding channel

condition are randomly generated. In each scenario, our proposed method and other

7 methods that have been mentioned for comparison are tested over the fixed 200

channels. Their average bit error rates (BER) over all 200 fixed channel realizations

are evaluated and compared with each other. As for each specific channel, the trans-

mitter continuously send 106 symbol vectors, each symbol of which is independent

and randomly picked from the 4-QAM constellation symbol set. The receiver detect

those symbols by using the 8 methods separately.

5.3 Simulation Results

We illustrate the performance of our proposed block-equal QRS decomposition and

the other 7 methods mentioned with a computer simulation that is shown in Fig. 5.2,

Fig. 5.3 and Fig. 5.4. In the first plot Fig. 5.2, all the 8 methods are compared
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Figure 5.2: Error Performance Comparison in Good Channel Case

in the good channel case, in which our proposed method (the solid line with five-

pointed star named BE-QRS) can get a closed-form precoder matrix F. The graph

shows that when applying our proposed optimal precoder matrix, the ML detector

that jointly detects all the 4 symbols together gets the optimal error performance

(the solid line). Our proposed detection strategy achieves a performance curve that

is very close to the optimal performance line. To be precise, the difference of SNR

in dB when the bit error rate (BER) at the level of 10−7 is no greater than 0.2dB.

Meanwhile, the performance of our proposed precoding and receiving scheme is far

beyond the linear receivers (ZF and MMSE) and its decision feedback counterparts

(ZF-DFE and MMSE-DFE). Among these four strategies, the MMSE-DFE (the solid

line with square) possesses a better error performance curve. Specifically our methods

outperforms the linear receivers (ZF and MMSE) by 4dB and outperforms the decision

feedback receivers (ZF-DFE and MMSE-DFE) by 1.5dB at the BER level of 10−7.
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On the other hand, the performance of ML detector that jointly detects 4 symbols

but has no optimal precoder (the dash-dot line) is not very good, and neither is

the case of using block successive cancellation detection strategy without optimal

precoding (the dashed line with five-pointed star). These two lines indicate that the

implementation of a good precoder is a significant contribution to the improvement

of error performance when the channel state is good.
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Figure 5.3: Error Performance Comparison in Moderate Channel Case

The second plot in Fig. 5.3 compare the same methods under the Scenario 2,

where (
√

2 + 1)2 ≤ ρλ ≤ 3(2 +
√

3). Under this case, the channel condition is worse

than the previous case and the closed-form solution is undetermined. However we can

use numerical method to obtain the solution. The experiments shows that, by using

the MATLAB Optimization Toolbox, we can easily solve the Problem 8 with a local

optimal solution to a randomly given channel. Although the solution is just local

optimum, every time it can minimize the objective function to a level less than 10−12.
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The performance comparison in Fig. 5.3 shows that our proposed method, the

BE-QRS in the graph, still yields a good performance very close to the optimal error

performance of jointly ML detector with the proposed optimal precoder for BE-QRS.

Compared to the other linear and non-linear methods at the BER level of 10−7, our

method is superior to the method of MMSE-DFE, ZF-DFE, MMSE, ZF by 1.2dB,

1.4dB, 3.35dB and 3.6dB respectively. This result is very similar to the good channel

case. However, there is also a difference between the results of two cases. In the

moderate channel case, the jointly ML detector without optimal precoder achieve a

relatively better performance compared to the previous case. The difference is caused

by the change of channel condition. When channel condition gets worse, the use of

jointly ML detection plays a more critical role than the use of precoder.
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Figure 5.4: Error Performance Comparison in Bad Channel Case

The last plot in Fig. 5.4 shows the performance comparison under bad channel
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condition where ρλ ≥ 3(2+
√

3). The performance of linear receivers (ZF and MMSE),

and receiver without using precoder (Blcok-QR and ML Detection) remains quite

poor. In this case the closed-form solution is available for constructing the optimal

precoder. Unlike the results in the previous two cases, the methods of ZF-DFE and

MMSE-DFE seem to achieve better performances than our proposed method and

4× 4 ML detection when SNR is low (less than 9dB) and a competitive performance

in moderate and high SNR range (from 10dB to 15dB). However, the comparison is

unfair. Because of the poor channel condition, the methods of ZF-DFE and MMSE-

DFE shut down some of the subchannels in low SNR cases. And shutting down

subchannels results in transmission rate less than 4.
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80%	  
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rate	  =	  3	  

rate	  =	  2	  

SNR(dB)	  

Figure 5.5: The Percentages of Channels with Different Transmission Rates in MMSE-
DFE scheme

Figure 5.5 shows the transmission rates of the 200 channel realizations over all

SNR conditions in MMSE-DFE method. We can find that for a significant portion
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of channel realizations, the transmission rate is less than 4 even when SNR is high.

Specifically, when the SNR is in the range from 10dB to 15dB, our method achieve

the same performance with MMSE-DFE and ZF-DFE. According to Figure 5.5, the

transmission rate is 3 symbols/use for over 50% percent of the channel realizations

as SNR = 10dB. When SNR = 15dB, the percentage of channels with transmission

rate equal to 3 symbols/use is still larger than 30%. On the other hand, our proposed

method and 4 × 4 ML detection with proposed optimal precoder always transmit

symbols at the rate r = 4. In this sense, our method actually is superior to those

nonlinear receivers.
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Chapter 6

Conclusion and Future Work

6.1 Final Remarks

In this thesis, we have proposed a block-equal QR decomposition of a given 4× 4

matrix. The decomposition has the following form

H̃F = Q̃R̃ (6.1)

where F is a unitary matrix to be determined, Q̃ is a unitary matrix and R̃ is a

block-equal upper triangular matrix. This block-equal upper triangular matrix has

equal 2 × 2 block entries along the diagonal. We proved that as long as there is

a solution to a set of 7 equations with 8 variables, there exists a block-equal QR

decomposition. We further construct the explicit solution for the block-equal QR

decomposition under a special condition.

We applied the block-equal QR decomposition to design the optimal precoder

for the transmitted signals composed of 4-QAM signals. The precoder has following
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good properties: (1) It lets the cascaded channel H̃ = HF to have the block-equal

QR decomposition. (2) After performing the block-equal QR decomposition on the

cascaded channel H̃, each 2 × 2 block channel along the diagonal of R̃ applies same

rotation on the 2 × 2 transmitted symbol vector, which leads to the same minimum

Euclidean distance between two received signal vectors at the channel output. (3)

It maximizes the minimum Euclidean distance between two received signal vectors

at the channel output and minimizes the symbol error probability at the same time.

The presented simulation results demonstrated the superior error performance of our

optimal precoder-receiver pair.

6.2 Future Works

• In this thesis, we have proved that the equivalent condition of finding a block-

equal QR decomposition is solving a set of 7 equations with 8 variables. When a

certain condition is satisfied, we found a specific closed form factorization for any

given channel matrix H. However, when the condition is not satisfied, finding

the closed form solution of a unitary matrix that leads to a block-equal QR

decomposition is still an open question. We used the MATLAB Optimization

Toolbox to achieve a numerical solution in this situation. However, a closed

form solution is preferred since it greatly improves time efficiency and makes

our proposed strategy easy to implemented for practical use.

• Our precoder and receiver design is based on a minimum sized 4 × 4 channel

model where there are only 4 transmitting and receiving antennas in the MIMO

system. Future investigations should consider the block-equal decomposition
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scheme for the channel with generalized dimension of N×M , where N ≥M and

M is a multiple of 4. To generalize the idea of block-equal decomposition would

be of significant meaning in practice. The results we have got can definitely

contribute to this future work.

• We designed the optimal precoder for the case where transmitted signal is from

4-QAM constellation. Another direction of further study may be the extension

of the symbol set to any square QAM constellations.
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Appendix A

Equal-diagonal QRS decomposition

and the Construction of the

S-Factor

Theorem 3. [38] For an arbitrary M × N matrix H with rank r, there exists a

unitary matrix S such that HS has an equal-diagonal R-factor, i.e.,

HS = QR (A.1)

where Q is an M × r column-wise orthonormal matrix and R = [Rr×r 0r×(N−r)]

with Rr×r being the equal-diagonal R-factor.

Algorithm 2 (Construction of the S-factor). Following is the recursive algorithm to

find the S-factor of the QRS decomposition HS = QR.
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1) SVD Perform the SVD of H = HΛV and let Ȟ = H(̇VH), i.e.,

Ȟ = U

 Λr×r

0(M−r)×r

 (A.2)

2) Initialization Determine the first column of Š, i.e., š1 =

(
Š11, . . . , Šr1

)T
, such

that constraints

šH1 ȞHȞš1 = det
(
ȞHȞ

)1/r
(A.3)

šH1 š1 = 1 (A.4)

are satisfied.

3) Recursion Reduce the dimension and decouple constraints. Set šk+1 = Š⊥k zk+1,

where zk+1 is any vector that satisfies

zHk+1C
(k)zk+1 = det

(
ȞHȞ

)1/r
(A.5)

zHk+1zk+1 = 1 (A.6)

with C(k) = (ȞŠ⊥k )HPȞŠk
(ȞŠ⊥k ). The notation PA = I − AA† denots the

projection matrix that projects an arbitrary vector to the null space of AH .

4) Complete the S-factor

S = [VrŠ (VH)1,...,r] (A.7)

where the overline Ak1,k2,...,ki denotes the remaining matrix after deleting columns
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ak1, ak2, . . ., aki from A.
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Appendix B

Majorization theory

Majorization theory [44] helps us simplify the matrices conditions into conditions

of some single variables. This section introduces some basic relation symbols as well

as some useful theorems that are used in the thesis .

Definition 1. ( [44, p. xx]) For any x ∈ Rn, let

x[1] ≥ . . . ≥ x[n] (B.1)

denote the the components of x in decreasing order.

Definition 2. ( [44, 1.A.1]) For x, y ∈ Rn,

x ≺+ y if



k∑
i=1

x[i] ≤
k∑
i=1

y[i], k = 1, . . . , n− 1,

n∑
i=1

x[i] =
n∑
i=1

y[i].

(B.2)

When x ≺+ y, x is said to be additively majorized by y. (y additively majorizes x).
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Parallel to the additive majorization, here is the definition of multiplicative ma-

jorizaton.

Definition 3. ( [46, 2.3]) For x, y ∈ Rn
+,

x ≺× y if



k∏
i=1

x[i] ≤
k∏
i=1

y[i], k = 1, . . . , n− 1,

n∏
i=1

x[i] =
n∏
i=1

y[i].

(B.3)

When x ≺× y, x is said to be multiplicatively majorized by y. (y multiplicatively

majorizes x).

Lemma 4. ( [44, p. 234]) If A ∈ Rn×n is a positive semi-definite matrix with eigen-

values xi and Cholesky values yi, i = 1, . . . , n, then

x ≺× y (B.4)

where x = (x[1], . . . , x[n]) and y = (y[1], . . . , y[n]). Conversely, if the two sequences

x and y satisfy the relationship described in Eq. (B.4), then there exists a positive

semi-definite matrix A with eigenvalues xi and Cholesky values yi, i = 1, . . . , n.

Lemma 5. ( [44, 9.H.1]) If U and V are n × n positive semi-definite Hermitian

matrices with eigenvalues λi(U) and λi(V), i = 1, . . . , n, then

k∏
i=1

λi(UV) ≤
k∏
i=1

λi(U)λi(V), k = 1, . . . , n, (B.5)

n∏
i=1

λi(UV) =
n∏
i=1

λi(U)λi(V). (B.6)
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Appendix C

Proof of Theorem 1

Separate the matrix S into two parts, each of which contain two columns of S:

S =

(
S1 S2

)
(C.1)

where Si ∈ R4×2, i = 1, 2.

If there exists such decomposition ΛS = QR, it can then be written in such a

block matrices form:

Λ

(
S1 S2

)
= Q

Λeq R̆12

0 Λeq

 (C.2)

Left-multiply both sides of Eq. (C.2) by its Hermitian,

SH1

SH2

ΛHΛ

(
S1 S2

)
=

ΛH
eq 0

R̆H
12 ΛH

eq

QHQ

Λeq R̆12

0 Λeq

 (C.3)
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Let ΛHΛ = diag(σ1, σ2, σ3, σ4) , Σ and ΛH
eqΛeq = diag(r1, r2) , Υ

The Eq. (C.3) is equivalent to

SH1 ΣS1 SH1 ΣS2

SH2 ΣS1 SH2 ΣS2

 =

 Υ ΛeqR̆12

R̆H
12Λeq R̆H

12R̆12 + Υ

 (C.4)

There actually are three equalities in Eq. (C.4), which are

SH1 ΣS1 = Υ (C.5)

SH1 ΣS2 = ΛeqR̆12 (C.6)

SH2 ΣS2 = R̆H
12R̆12 + Υ (C.7)

Substitute R̆12 in Eq. (C.6) into Eq. (C.7),

SH2
(
Σ−ΣS1Υ

−1SH1 Σ
)
S2 = Υ (C.8)

For notational simplicity, define that

A , Σ−ΣS1Υ
−1SH1 Σ (C.9)

Thus, the Eq. (C.8) can be simplified as

SH2 AS2 = Υ (C.10)
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Note that both of Si, i = 1, 2 consist of two columns,

S1 =

(
s1 s2

)
, S2 =

(
s3 s4

)
(C.11)

The Eq. (C.5) and Eq. (C.10) can be written as

sH1 Σs1 = r1 (C.12)

sH2 Σs2 = r2 (C.13)

sH1 Σs2 = 0 (C.14)

sH3 As3 = r1 (C.15)

sH4 As4 = r2 (C.16)

sH3 As4 = 0 (C.17)

Since that S is a unitary matrix, the vectors s1, s2, s3 and s4 are orthonormal to

each other. Combining the Eq. (C.17) and the orthonormality of S, there exists a

homogeneous linear system with respect to s4:

(
s1 s2 s3 As3

)H
s4 = 0 (C.18)

which indicates that As3 is a linear combination of s1, s2, and s3:

As3 = a s1 + b s2 + c s3 (C.19)
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According to the definition of A in Eq. (C.9),

A = Σ−
(

Σs1s
H
1 Σ

r1

+
Σs2s

H
2 Σ

r2

)
(C.20)

Substitute the expression of A into the Eq. (C.19),

[
Σ−

(
Σs1s

H
1 Σ

r1

+
Σs2s

H
2 Σ

r2

)]
s3 = a s1 + b s2 + c s3 (C.21)

Left-multiply both sides of Eq. (C.21) by the factor sH1 :

Left-hand Side =sH1

[
Σ−

(
Σs1s

H
1 Σ

r1

+
Σs2s

H
2 Σ

r2

)]
s3 (C.22)

=sH1 Σs3 −
(

sH1 Σs1s
H
1 Σs3

r1

+
sH1 Σs2s

H
2 Σs3

r2

)
(C.23)

Because of equation (C.12) and (C.14), (C.24)

=sH1 Σs3 − sH1 Σs3 = 0 (C.25)

Right-hand Side =a sH1 s1 + b sH1 s2 + c sH1 s3 = a (C.26)

Left-hand Side = Right-hand Side (C.27)

⇒ a = 0 (C.28)

93



M.A.Sc. Thesis - Dan Fang McMaster - Electrical Engineering

Left-multiply both sides of Eq. (C.21) by the factor sH2 :

Left-hand Side =sH2

[
Σ−

(
Σs1s

H
1 Σ

r1

+
Σs2s

H
2 Σ

r2

)]
s3 (C.29)

=sH2 Σs3 −
(

sH2 Σs1s
H
1 Σs3

r1

+
sH2 Σs2s

H
2 Σs3

r2

)
(C.30)

Because of equation (C.13) and (C.14), (C.31)

=sH2 Σs3 − sH2 Σs3 = 0 (C.32)

Right-hand Side =a sH2 s1 + b sH2 s2 + c sH2 s3 = b (C.33)

Left-hand Side = Right-hand Side (C.34)

⇒ b = 0 (C.35)

Left-multiply both sides of Eq. (C.21) by the factor sH3 :

Left-hand Side =sH3

[
Σ−

(
Σs1s

H
1 Σ

r1

+
Σs2s

H
2 Σ

r2

)]
s3 (C.36)

=sH3 Σs3 −
(

sH3 Σs1s
H
1 Σs3

r1

+
sH3 Σs2s

H
2 Σs3

r2

)
(C.37)

=sH3 Ss3 = r1 (equation C.15) (C.38)

Right-hand Side =a sH3 s1 + b sH3 s2 + c sH3 s3 = c (C.39)

Left-hand Side = Right-hand Side (C.40)

⇒ c = r1 (C.41)

Therefore, substituting that a = b = 0, c = r1, the Eq. (C.19) can then be

94



M.A.Sc. Thesis - Dan Fang McMaster - Electrical Engineering

rewritten as

As3 = r1s3 (C.42)

Similarly, there also exists the following homogeneous linear system with respect

of s3:

(
s1 s2 s3 As4

)H
s3 = 0 (C.43)

A similar result can be obtained by using the same trick:

As4 = r2s4 (C.44)

Let A be right-multiplied by s1 and s2, we have

As1 =

[
Σ−

(
Σs1s

H
1 Σ

r1

+
Σs2s

H
2 Σ

r2

)]
s1 (C.45)

=Σs1 −
Σs1s

H
1 Σs1

r1

− Σs2s
H
2 Σs1

r2

(C.46)

=Σs1 −Σs1 − 0 (C.47)

=0 (C.48)
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As2 =

[
Σ−

(
Σs1s

H
1 Σ

r1

+
Σs2s

H
2 Σ

r2

)]
s2 (C.49)

=Σs1 −
Σs1s

H
1 Σs2

r1

− Σs2s
H
2 Σs2

r2

(C.50)

=Σs2 − 0−Σs2 (C.51)

=0 (C.52)

Therefore, A can be factorized as

A =

(
s1 s2 s3 s4

)


0

0

r1

r2





sH1

sH2

sH3

sH4


= S

0

Υ

SH (C.53)

which indicates that each columns of S is an eigenvector of A and the eigenvalues are

0, 0, r1, and r2.

Definition 4. Let matrix M = {mpq} be an n-by-n matrix. The notation Mij is

defined as

Mij ,

mii mij

mji mjj

 , 1 ≤ i < j ≤ n (C.54)

Theorem 4. Let M be an n-by-n symmetric matrix with eigenvalues κ1, κ2, . . ., κn.
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The following equalities holds

n∑
i=1

κi = tr(M) (C.55)

n∑
i 6=j

κiκj =
n∑
i 6=j

det(Mij) (C.56)

Apply the Theorem 4 on the matrix A, we get the following two equations:

tr(A) = r1 + r2 (C.57)

4∑
i 6=j

det(Aij) = r1r2 (C.58)

For the Eq. (C.57),

tr(A) =
n∑
i=1

σi −
(

sH1 Σ2s1

r1

+
sH2 Σ2s2

r2

)
= r1 + r2 (C.59)

For each term of the Eq. (C.58), det(Aij) is given by

det(Aij) = det(Σij −ΣH
`i`j

S1Υ
−1SH1 Σ`i`j) (C.60)

where Σ`i`j is the matrix that contains the ith and jth columns

= det(Σij) det(I−Υ−1SH1 Σ`i`jΣ
ij−1ΣH

`i`j
S1) (C.61)

=σiσj det(Υ−1) det(Υ− SH1 Σ`i`jΣ
ij−1ΣH

`i`j
S1) (C.62)

=
σiσj
r1r2

det

r1 − (σis
2
i1 + σjs

2
j1) σisi1si2 + σjsj1sj2

σisi1si2 + σjsj1sj2 r2 − (σis
2
i2 + σjs

2
j2)
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Therefore Eq. (C.58) can be rewritten as

4∑
i 6=j

det
(
Aij
)

(C.63)

=
σ1σ2

r1r2

det

r1 − (σ1s
2
11 + σ2s

2
21) σ1s11s12 + σ2s21s22

σ1s11s12 + σ2s21s22 r2 − (σ1s
2
12 + σ2s

2
22)

 (C.64)

+
σ3σ4

r1r2

det

r1 − (σ3s
2
31 + σ4s

2
41) σ3s31s32 + σ4s41s42

σ3s31s32 + σ4s41s42 r2 − (σ3s
2
32 + σ4s

2
42)

 (C.65)

+
σ1σ3

r1r2

det

r1 − (σ1s
2
11 + σ3s

2
31) σ1s11s12 + σ3s31s32

σ1s11s12 + σ3s31s32 r2 − (σ1s
2
12 + σ3s

2
32)

 (C.66)

+
σ2σ4

r1r2

det

r1 − (σ2s
2
21 + σ4s

2
41) σ2s21s22 + σ4s41s42

σ2s21s22 + σ4s41s42 r2 − (σ2s
2
22 + σ4s

2
42)

 (C.67)

+
σ1σ4

r1r2

det

r1 − (σ1s
2
11 + σ4s

2
41) σ1s11s12 + σ4s41s42

σ1s11s12 + σ4s41s42 r2 − (σ1s
2
12 + σ4s

2
42)

 (C.68)

+
σ2σ3

r1r2

det

r1 − (σ2s
2
21 + σ3s

2
31) σ2s21s22 + σ3s31s32

σ2s21s22 + σ3s31s32 r2 − (σ2s
2
22 + σ3s

2
32)

 (C.69)

=
σ1σ2σ3σ4

r1r2

[
(s31s42 − s32s41)2 + (s11s22 − s12s21)2 + (s21s42 − s22s41)2 (C.70)

+ (s11s32 − s12ss31)2 + (s21s32 − s22s31)2 + (s11s42 − s12s41)2
]

= r1r2

Therefore,

(s31s42 − s32s41)2 + (s11s22 − s12s21)2 + (s21s42 − s22s41)2 (C.71)

+ (s11s32 − s12ss31)2 + (s21s32 − s22s31)2 + (s11s42 − s12s41)2 =
r2

1r
2
2

σ1σ2σ3σ4
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Revisiting the Eq. (C.3), we calculate the determinant of each side, which yields

r2
1r

2
2 = σ1σ2σ3σ4 (C.72)

Substitute it into the Eq. (C.71), it becomes

(s31s42 − s32s41)2 + (s11s22 − s12s21)2 + (s21s42 − s22s41)2 (C.73)

+ (s11s32 − s12ss31)2 + (s21s32 − s22s31)2 + (s11s42 − s12s41)2 = 1

Actually, it can be shown that when the vector s1 and s2 are orthonormal, the

Eq. (C.73) is always true. (Proof: See Appendix D). In other words, this equation

is redundant under our conditions. So far, despite of the redundant Eq. (C.73), seven

equations with respect to the eight elements have been found. The existence of the

solution to the 7 equations are equivalent to the existence of such a matrix S that

satisfies the conditions in Challenge 1:

s2
11 + s2

21 + s2
31 + s2

41 = 1 (C.74)

s2
12 + s2

22 + s2
32 + s2

42 = 1 (C.75)

s11s12 + s21s22 + s31s32 + s41s42 = 0 (C.76)

σ1s
2
11 + σ2s

2
21 + σ3s

2
31 + σ4s

2
41 = r1 (C.77)

σ1s
2
12 + σ2s

2
22 + σ3s

2
32 + σ4s

2
42 = r2 (C.78)

σ1s11s12 + σ2s21s22 + σ3s31s32 + σ4s41s42 = 0 (C.79)

σ2
1s

2
11 + σ2

2s
2
21 + σ2

3s
2
31 + σ2

4s
2
41

r1

+
σ2

1s
2
12 + σ2

2s
2
22 + σ2

3s
2
32 + σ2

4s
2
42

r2

= σ1 + σ2 + σ3 + σ4 − r1 − r2

(C.80)
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Appendix D

The Proof of the Redundancy of

Equation (C.71)

2× Left-hand Side

=2
[
(s2

31s
2
42 + s2

32s
2
41 − 2s31s32s41s42) + (s2

11s
2
22 + s2

12s
2
21 − 2s11s12s21s22)

+ (s2
21s

2
42 + s2

22s
2
41 − 2s21s22s41s42) + (s2

11s
2
32 + s2

12s
2
31 − 2s11s12s31s32)

+ (s2
21s

2
32 + s2

22s
2
31 − 2s21s22s31s32) + (s2

11s
2
42 + s2

12s
2
41 − 2s11s12s41s42)

]
=(s2

11s
2
22 + s2

12s
2
21 − 2s11s12s21s22) + (s2

11s
2
32 + s2

12s
2
31 − 2s11s12s31s32)+

(s2
11s

2
42 + s2

12s
2
41 − 2s11s12s41s42) + (s2

11s
2
22 + s2

12s
2
21 − 2s11s12s21s22)+

(s2
21s

2
42 + s2

22s
2
41 − 2s21s22s41s42) + (s2

21s
2
32 + s2

22s
2
31 − 2s21s22s31s32)+

(s2
31s

2
42 + s2

32s
2
41 − 2s31s32s41s42) + (s2

11s
2
32 + s2

12s
2
31 − 2s11s12s31s32)+

(s2
21s

2
32 + s2

22s
2
31 − 2s21s22s31s32) + (s2

31s
2
42 + s2

32s
2
41 − 2s31s32s41s42)+

(s2
21s

2
42 + s2

22s
2
41 − 2s21s22s41s42) + (s2

11s
2
42 + s2

12s
2
41 − 2s11s12s41s42)
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=s2
11(s2

22 + s2
32 + s2

42) + s2
12(s2

21 + s2
31 + s2

41)− 2s11s12(s21s22 + s31s32 + s41s42)

+ s2
21(s2

12 + s2
42 + s2

32) + s2
22(s2

11 + s2
41 + s2

31)− 2s21s22(s11s12 + s41s42 + s31s32)

+ s2
31(s2

42 + s2
12 + s2

22) + s2
32(s2

41 + s2
11 + s2

21)− 2s31s32(s41s42 + s11s12 + s21s22)

+ s2
41(s2

32 + s2
22 + s2

12) + s2
42(s2

31 + s2
21 + s2

11)− 2s41s42(s31s32 + s21s22 + s11s12)

Since that s2
11 + s2

21 + s2
31 + s2

41 = 1 , s2
12 + s2

22 + s2
32 + s2

42 = 1

and s11s12 + s21s22 + s31s32 + s41s42 = 0, therefore,

=s2
11(1− s2

12) + s2
12(1− s2

11) + 2s2
11s

2
12 + s2

21(1− s2
22) + s2

22(1− s2
21) + 2s2

21s
2
22

+ s2
31(1− s2

32) + s2
32(1− s2

31) + 2s2
31s

2
32 + s2

41(1− s2
42) + s2

42(1− s2
41) + 2s2

41s
2
42

=s2
11 + s2

12 + s2
21 + s2

22 + s2
31 + s2

32 + s2
41 + s2

42 = 2 = 2× Right-hand Side
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Appendix E

Proof of Theorem 2

Under this particular case that r1 =
√
σ1σ2 and r2 =

√
σ3σ4, we assume that the

matrix S1 has the following special form:

S1 =



s11 6= 0 s12 = 0

s21 6= 0 s22 = 0

s31 = 0 s32 6= 0

s41 = 0 s42 6= 0


(E.1)

With the assumption above, the 7 equations in Theorem 1 can be simplified into
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the following 5 equations:

s2
11 + s2

21 = 1 (E.2)

s2
32 + s2

42 = 1 (E.3)

σ1s
2
11 + σ2s

2
21 = r1 (E.4)

σ3s
2
32 + σ4s

2
42 = r2 (E.5)

σ2
1s

2
11 + σ2

2s
2
21

r1

+
σ2

3s
2
32 + σ2

4s
2
42

r2

= σ1 + σ2 + σ3 + σ4 − r1 − r2 (E.6)

Combine Eq. (E.2) and Eq. (E.4), we have:

 s2
11 + s2

21 = 1

σ1s
2
11 + σ2s

2
21 = r1

⇒

 s2
11 = (r1 − σ2)/(σ1 − σ2)

s2
21 = (σ1 − r1)/(σ1 − σ2)

(E.7)

Similarly, combine Eq. (E.3) and Eq. (E.5), we have:

 0s2
32 + s2

42 = 1

σ3s
2
32 + σ4s

2
42 = r2

⇒

 s2
32 = (r2 − σ4)/(σ3 − σ4)

s2
42 = (σ3 − r2)/(σ3 − σ4)

(E.8)

Substituting the expressions of s2
11, s2

21, s2
32 and s2

42 into the Eq. (E.6):

σ2
1
r1−σ2
σ1−σ2 + σ2

2
σ1−r1
σ1−σ2

r1

+
σ2

3
r2−σ4
σ3−σ4 + σ2

4
σ3−r2
σ3−σ4

r2

= σ1 + σ2 + σ3 + σ4 − r1 − r2 (E.9)

r1(σ1 + σ2)− σ1σ2

r1

+
r2(σ3 + σ4)− σ3σ4

r2

= σ1 + σ2 + σ3 + σ4 − r1 − r2 (E.10)

σ1σ2

r1

+
σ3σ4

r2

= r1 + r2 (E.11)

We notice that when we set r1 and r2 as their optimal values r1 =
√
σ1σ2 and
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r2 =
√
σ3σ4, the Eq. (E.6) holds. Thus, we can conclude that our assumption is

correct, i.e.,

S1 =



√
(r1 − σ2)/(σ1 − σ2) 0√
(σ1 − r1)/(σ1 − σ2) 0

0
√

(r2 − σ4)/(σ3 − σ4)

0
√

(σ3 − r2)/(σ3 − σ4)


(E.12)

is a set of solution to the 7 equations in this case. And S is given by:

S =



√
r1 − σ2

σ1 − σ2

0

√
σ1 − r1

σ1 − σ2

0√
σ1 − r1

σ1 − σ2

0 −
√
r1 − σ2

σ1 − σ2

0

0

√
r2 − σ4

σ3 − σ4

0

√
σ3 − r2

σ3 − σ4

0

√
σ3 − r2

σ3 − σ4

0 −
√
r2 − σ4

σ3 − σ4


(E.13)
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Appendix F

The Optimality of a Precoder that

Diagonalizes the Channel

We Assume that:

1. The eigenvalues of matrix H̃HH̃ in descending order are given by sequence

(σ1, σ2, σ3, σ4). The Cholesky values of H̃HH̃ in descending order, on the other

hand, are given by (r1, r2, r3, r4)

2. The eigenvalues of matrix HHH in descending order are given by sequence

(λ1, λ2, λ3, λ4).

3. The eigenvalues of matrix FHF in descending order are given by sequence

(µ1, µ2, µ3, µ4).
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Based on Lemma 4 (See Appendix B), the sequence of Cholesky values of one

matrix is multiplicatively mahorized by its sequence of eigenvalues:

(r1, r2, r3, r4) ≺× (σ1, σ2, σ3, σ4) (F.1)

Since H̃ = HF, the sequences of eigenvalues satisfy the following relationship accord-

ing to Lemma 5 (See Appendix B):

(σ1, σ2, σ3, σ4) ≺× (λ1µ1, λ2µ2, λ3µ3, λ4µ4) (F.2)

Combining Eqs. (F.1) and (F.2), we have the following new majorization relationship:

(r1, r2, r3, r4) ≺× (λ1µ1, λ2µ2, λ3µ3, λ4µ4) (F.3)

According to Lemma 4, if the two sequences satisfy the condition, then there exists

a matrix, whose Cholesky values are given by the left-hand side sequence and whose

eigenvalues are given by the right-hand side sequence. If the eigenvalues of H̃HH̃ are

(λ1µ1, λ2µ2, λ3µ3, λ4µ4), Then the matrix H̃HH̃ satisfies the condition in Lemma 4.

Therefore the diagonalization of the channel H by the precoder F is a sufficient

condition for the existence of an optimal precoder.
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Appendix G

Mathematical Derivations

G.1 Equivalent Conditions

(r1, r1, r2, r2) ≺× (σ1, σ2, σ3, σ4) (G.1)

According to the definition of multiplicative majorizaton stated in Def. 3, Eq. (G.1)

is equivalent to the following equality and inequalities:

r1 ≤ σ1 (G.2)

r2
1 ≤ σ1σ2 (G.3)

r2
1r2 ≤ σ1σ2σ3 (G.4)

r2
1r

2
2 ≤ σ1σ2σ3σ4 (G.5)
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Note that the sequences in Eq. (G.1) are decreasingly ordered. Substituting r1 ≥ r2

and σ1 ≥ σ2 ≥ σ3 ≥ σ4 into the equality and inequalities above and removing the

redundant ones, we have the following 3 conditions that are equivalent to Eq. (G.1):

r1 ≥ 4
√
σ1σ2σ3σ4 (G.6)

r1 ≤
√
σ1σ2 (G.7)

r2 =
√
σ1σ2σ3σ4/r1 (G.8)

G.2 Reformulation in Eqs. (4.52),(4.57)

Substitutting r2 =
√
σ1σ2σ3σ4/r1 into problem (4.51), the objective function and

the constrants can be simplified as

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≤
√

3 4
√
σ1σ2σ3σ4

r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

(G.9)

Situation A. When ρσ ≤ 3,

√
σ1σ2

σ3σ4

≤ 3 (G.10)

4

√
σ1σ2

σ3σ4

≤
√

3 (G.11)

4
√
σ1σ2 ≤

√
3 4
√
σ3σ4 (G.12)

√
σ1σ2 ≤

√
3 4
√
σ1σ2σ3σ4 (G.13)
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Since that
√
σ1σ2 ≤

√
3 4
√
σ1σ2σ3σ4, the feasible set of r1 is upper bounded by

√
σ1σ2.

And the condition r1 ≤
√

3 4
√
σ1σ2σ3σ4 is redundant. Thus, problem (4.51) can be

reformulated as

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

(G.14)

Situation B. On the contrary, when ρσ > 3,
√
σ1σ2 ≥

√
3 4
√
σ1σ2σ3σ4, the feasible set

of r1 is upper bounded by
√

3 4
√
σ1σ2σ3σ4. And the condition r1 ≤

√
σ1σ2 is redundant.

Thus, problem (4.51) can be reformulated as

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤
√

3 4
√
σ1σ2σ3σ4

(G.15)

G.3 Reformulation in Eqs. (4.63),(4.68)

Substitutting r2 =
√
σ1σ2σ3σ4/r1 into problem (4.62), the objective function and

the constrants can be simplified as

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥
√

3 4
√
σ1σ2σ3σ4

r1 ≤ (
√

2 + 1)2 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

(G.16)

Situation A. When ρσ < 3,
√
σ1σ2 ≤

√
3 4
√
σ1σ2σ3σ4, which means one of the upper

bounds of r1 is greater than its lower bound. There does not exist such a r2 satisfying
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all the three constraints at the same time. So this problem is infeasible when ρσ < 3.

Situation B. When 3 ≤ ρσ ≤ (
√

2 + 1)2,
√

3 4
√
σ1σ2σ3σ4 ≤

√
σ1σ2 ≤ (

√
2 +

1)2 4
√
σ1σ2σ3σ4. The feasible set of r1 is bounded by

√
3 4
√
σ1σ2σ3σ4 and

√
σ1σ2. Thus,

problem (4.62) can be reformulated as

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥
√

3 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

(G.17)

Situation C. When ρσ > (
√

2+1)2,
√

3 4
√
σ1σ2σ3σ4 ≤ (

√
2+1)2 4

√
σ1σ2σ3σ4 ≤

√
σ1σ2.

The feasible set of r1 is bounded by
√

3 4
√
σ1σ2σ3σ4 and (

√
2 + 1)2 4

√
σ1σ2σ3σ4. Thus,

problem (4.62) can be reformulated as

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥ 4
√
σ1σ2σ3σ4

r1 ≤ (
√

2 + 1) 4
√
σ1σ2σ3σ4

(G.18)

G.4 Upper Bound of r1 + r2 under Condition 3

Too find the upper bound of r1 + r2, we solve the following optimization problem:

max
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≤
√

5
√
74

37
+1

5
√
74

37
−1

4
√
σ1σ2σ3σ4

r1 ≥ (
√

2 + 1) 4
√
σ1σ2σ3σ4

r1 ≤
√
σ1σ2

(G.19)

111



M.A.Sc. Thesis - Dan Fang McMaster - Electrical Engineering

To solve the problem, we need to discuss the relationship between
√
σ1σ2 and the

other two boundaries (
√

2 + 1) 4
√
σ1σ2σ3σ4 and

√
5
√
74

37
+1

5
√
74

37
−1

4
√
σ1σ2σ3σ4 (See Fig. G.1):

a)
√
σ1σ2 ≤ (

√
2 + 1) 4

√
σ1σ2σ3σ4 ≤

√
5
√
74

37
+1

5
√
74

37
−1

4
√
σ1σ2σ3σ4

The problem is infeasible.

!1! 2! 3! 4
4 ( 2 +1) !1! 2! 3! 4

4 5 74
37

+1

5 74
37

!1
!1! 2! 3! 4

4

r1

f (r1) = r1 + r2 = r1 + !1! 2! 3! 4
4 / r1

Figure G.1: The Relationship of Different Boundaries in Problem (G.19)

b) (
√

2 + 1) 4
√
σ1σ2σ3σ4 ≤

√
σ1σ2 ≤

√
5
√
74

37
+1

5
√
74

37
−1

4
√
σ1σ2σ3σ4

The feasible set of r1 should be (
√

2+1) 4
√
σ1σ2σ3σ4 ≤ r1 ≤

√
σ1σ2. The corresponding

maximum value of r1 + r2 is

(r1 + r2)max =
√
σ1σ2 +

√
σ3σ4 (G.20)
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Note that the following inequality also holds under this situation:

(r1 + r2)max ≤


√√√√ 5

√
74

37
+ 1

5
√

74
37
− 1

+

1/

√√√√ 5
√

74
37

+ 1
5
√

74
37
− 1

 4
√
σ1σ2σ3σ4 (G.21)

c) (
√

2 + 1) 4
√
σ1σ2σ3σ4 ≤

√
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The feasible set of r1 should be (
√
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√
5
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5
√
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4
√
σ1σ2σ3σ4. The

corresponding maximum value of r1 + r2 is
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Combine the results in Eqs. (G.21) and (G.22), we can draw the conclusion that[√
5
√
74

37
+1

5
√
74

37
−1

+

(
1/

√
5
√
74

37
+1

5
√
74

37
−1

)]
4
√
σ1σ2σ3σ4 is always a upper bound of r1 + r2.

G.5 Lower Bound of r1 + r2 under Condition 4

Too find the lower bound of r1 + r2, we solve the following optimization problem:

min
r1

r1 +
√
σ1σ2σ3σ4/r1

s.t. r1 ≥
√

5
√
74

37
+1

5
√
74

37
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4
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√
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(G.23)

To solve the problem, we need to discuss the relationship between two boundaries

√
σ1σ2 and

√
5
√
74

37
+1

5
√
74

37
−1

4
√
σ1σ2σ3σ4 (See Fig. G.2):
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√
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5
√
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√
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4
√
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The problem is infeasible.

!1! 2! 3! 4
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f (r1) = r1 + r2 = r1 + !1! 2! 3! 4
4 / r1

!1! 2

Figure G.2: The Relationship of Different Boundaries in Problem (G.23)
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Therefore, r1 + r2 is lower bounded by

[√
5
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