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CHAPTER I

INTRODUCTION

1.1 Introduction

In this analysis a reinforced concrete beam is
treated as a composite beam with incomplete interaction, a
deviation from the conventional concept.

Conventionally it is assumed that in a reinforced
concrete beam, concrete and steel acts together such that
there is no relative movement between the two materials. How-

(1,2) it has been well

ever from the experimental evidence
recognized that slip does take place and concrete does not
act perfectly with the steel.

The phenomenon of so-called 'diagonal failure'
still remains unsolved and a rational theory is required.
The ACI-ASCE committee 426(326)(3) made an excellent contri-
bution in the field of shear and diagonal tension. The com-
mittee stated that the problem of shear failure and diagonal
tension has not been fundamentally and conclusively solved
and the same committee urged the formulation of a rational
theory.

(1 '2’4)

Therefore, new approaches are being under-

taken, especially those which take into account the slip

1



(4)

between the two materials. Robinson suggested that a re-
inforced concrete beam may well be treated as a composite
beam with incomplete interaction.

Treating the reinforced concrete beam in this manner
the gqualitative explanation of some of the experimental re-
sults such as cracking pattern, the ultimate moment carrying
capacity of the beam with varying shear-span to depth ratio
and the influence of various parameters on it can be provided.

It is hoped that by treating the reinforced concrete
beam as composite beam with loss of interaction a raticnal

explanation of so-called diagonal cracking in the shear

span might be achieved.

1.2 Historical Survey

Few subjects in the field of concrete have received
more attention from research workers than the shear failure
of reinforced concrete beams. The phenomenon of shear fai-
lure has been the interest of many research workers for
gquite a long time.

As early as in 1900 one group of thought believed
the basic cause of shear failure to be due to diagonal
tension and many research workers supported this concept in
the light of their experiments.

h (5)

Morsc provided the famous and most widely used

equation for shear design which is included in many design



codes of practices. The equation is:

v

V’—'-B'J?-a-' 1.1

(6 ) observed that

A few years later in 1909 Talbot
the M@rschequation does not take into account the variables
such as shear-span to depth ratio and percentage of rein-
forcement etc. and it is not in general agreement with the
test results,

Two decades ago Clark(7) introduced the equation for
shear design which includes the shear~span to depth ratio,
percentage of reinforcement and the strength of concrete.

Studies cof shear and diagonal tension became a major
interest of research workers when a few structural failures
occurred, especially the failure atwilking Air Force Depot
in Shelby, Chio in 1955, and after that considerable research
in this field was undertaken experimentally as well as
analytically.

(8) in his paper, "The Mechanism of So-Called

Kani
Shear Failure®, used the concept of 'Concrete Teeth' to
explain the mechanism of shear and diagonal failure and
concluded that the shear failure is a problem of diagonal
compression failure, a deviation from earlier concepts.

(9)

Kani in another paper further pointed out the process of
transformation of a "Comb-Like" structure with bond intc

a 'Tied Arch" without bond due to redistribution of stresses,



(10,11,12)

A number of authors attempted to relate

the critical cracking load to the maximum principal stress.

(12) also described the failure pattern in terms of

Ferguson
the theory of combined stresses and suggested that if the
theory of combined stresses applied more constructively

a rational solution could be achieved.

(2 that the diagonal

It has been well recognized
tension is a combined stress problem, however, in a rein-
forced concrete beam owing to initial flexural cracks,
the stress redistribution near the crack, and changes in
the magnitude in the shear and normal stresses, as well as
stress concentrations at the tip of the crack, make the
calculation of principal stresses extremely complex. There-
fore, without taking intc account these redistributions of
internal stresses, any theoretical treatment of the problem
of diagonal tension is a rough approximation.

Broms(13)

carried out an analytical study to deter-
mine the distribution of shear, flexural and normal stresses
in constant moment and in combined bending and shear regions
of a simply supported reinforced concrete beam. He reported
that the shear stresses near the neutral axis is the cause
of diagonal tension failure. However, Brom's approach gave

an unrealistically high value of shear stresses(l4) and the

percentage of shear force carried by uncracked concrete is



[¥4]

1(14), using Brom's

more than 300 percent as obtained by Uppa
method,

Recently the distribution of shear stresses in a
cracked beam and the percentage of shear force carried by
different components such as uncracked concrete, aggregate
interlocking and dowel action have received the attention

(1,11,15) (15)

. Acharya and Kemp argued

of many research workers
that the dowel force cannot be ignored in any reliable qguan-
titative analysis of shear failure. They suggested that at
least 60 percent of the total shear force is carried by
dGowel action,

(1)

Fenwick and Pauley in their paper "Mechanism of
Shear Resistance of Concrete Beams", claim that 70 percent
of the shear force is carried by aggregate interlock and
dowel actions, in which dowel action contributes % to %

of the 70 percent, and the remaining 30 percent is carried
by uncracked concrete.

MacGregor and Walters(ll)in their analytical analysis
of inclined cracking load suggested that 11 percent of the
total shear force is carried by dowel action, 23 percent by
aggregate interlock action and the remainder by the un-
cracked concrete.

In spite of the fact that extensive experimental

as well as analytical research has been carried out in order



to give a rational explanation of the so-called shear failure,
still the problem remains untractable and the mechanism of
shear failure improperly understood.

Robinson(4) in conducting tests on composite beams
having a cellular zone between concrete and steel I-beam
discovered that in spite of the fact that there was no
interfacial plane between the two materials, the distribution
of strain has been observed to be essentially linear. He
also suggested that the reinforced concrete beam can be
treated as a composite beam with incomplete interaction.

In his analytical study ang(la) following the Robin-
son notion stated that although a reinforced concrete beam
does not have a distinct interfacial plane between steel

(A7) theory

and concrete, a slight modification of the Newmark
for composite beams with incomplete interaction makes it
applicable to a reinforced concrete beam if a pseudo inter-
face is assumed. He then computed the flexual crack pro-
files of a simply supported reinforced concrete beam with two
symmetrical point loads and observed that the highest crack
is under the load points.

Ho(le) in an extension of Wong's work computed the

strain trajectories and stated that they do not lead to further

understanding of diagonal cracking.

)

Uppal(l4 made an extensive analytical study based



on Robinson's notion and Wong's modified Newmark composite
beam theory. He computed the flexural crack profiles and
studied the influence of a number of parameters such as
degree of interaction between steel and concrete, percentage
of longitudinal reinforcement and the intensity of loading.
He stated that the crack profiles were greatly affected by
these parameters. He also stated that the cracking pattern
is affected by the shear-arm to depth ratio. He also de-
termined the effect on moment carrying capacity of a rein-
forced concrete beam of the variation of shear-arm to depth
ratic, percentage of tensile reinforcement and the inter-
action coefficient. He computed the distribution of shear
stresses in the remaining uncracked concrete, but the amount
of shear force carried by uncracked concrete did not give

a realistic percentage of shear force and hence, he argued
for more rigorous analysis of shear distribution in a cracked

beam.

1.3 Object and Extent of Investigation

In this analysis an attempt has been made to study
the cracking behavior, moment carrying capacity and the
distribution of shear stresses in a reinforced concrete beam,
by treating it as a composite beam with incomplete interaction.

The Newmark(l7) composite beam theory can be ap-

plied, with slight modifications to an uncracked reinforced



concrete beam. Its applicability to a cracked reinforced
concrete beam has been verified. However, it does not take
into account the compatibility conditions at the first flexural
crack from the support.

The stability of a tensile crack is discussed and the
influence of bond-slip modulus and modulus of elasticity
of concrete on the crack height are studied.

Moment carrying capacity curves for a particular
‘typical' reinforced concrete beam were computed. It was
found that the computed results are in very close agreement
with Kani's experimental results(lg). This study was
extended further to find the influence of various other
parameters on the moment carrying capacity.

An attempt has been made to give the magnitude of
bond-sliip modulus for different percentages of steel.

Finally the distribution of shear stresses along
the depth of a cracked beam are computed and the amount of
vertical shear force carried by different components such
as uncracked concrete, dowel action and aggregate inter-
lock action are determined. The shear stresses were com-
bined with the flexural stresses in order to compute the
magnitude and direction of principal stresses. The results
obtained are encouraging and an inclined crack is obtained

above the root of the flexural crack. This offers prospects



that further analysis may lead to determination of the de-
velopment of diagonal cracks if small incremental loading is

utilized.



CHAPTER IIX

COMPOSITE BEAM WITH STEPPED CHANGE IN CROSS~SECTION

2.1 The conventional Newmark(17) theory for composite
beams is applicable only to beams with prismatic sections

and this does not take into account the compatibility con-
ditions if the profile of the cross-section changes suddently.
From here onwards in this chapter this theory is called
Newmark 1. |

As the reinforced concrete beam cracks the application
of Newmark 1 theory (with slight modifications) to the cracked
beam is questionable, since the beam is no longer prismatic
and the degree of interaction, %,. at a particular location
along the length of the beam will be influenced by this.
Therefore, an approach which takes into account the compati-
bility conditions at the location of change in cross-section,
for example at the end of the cracked zone of the beam,
would provide more correct mathematical results. Uppal(l4)
also argued for the development of such an approach.

A cracked reinforced concrete beam can be idealized
into two parts, namely, the one which is uncracked (full
section) and the other which has cracked (reduced section)
and having a sudden change at the limits of the cracked zone.

A particular solution for a simply supported compo-

10



11

site beam, with symmetrical situated two point loads at a
distance 'u' from each end, having flexible connection and
stepped change in cross-section at a distance 'a' from
each end, where o is less than u, is obtained.

This approach takes into account the compatibility
conditions at the stepped change and will be called Newmark

2B thecry in this thesis,

2.2 Assumptions
The basic assumputicns and the formulation of 'he

approach is the same as that of Newmark 1. The essumptions

1. The two components of the composite beam have aqual
curvatures at any cross-section.

2. The horizontal force, F, transmitted to each component
by the connections are considered to act at the cen-
troids of each section.

3. The shear connection between the beam and slab is as-
sumed to be continucous along the length of the beam,i.e.
connectors are of egual capacities and are egqually

spaced; then

ot
N

= constant.

of

4., The amount of slip permitted by the shear connection

is directly proportional to the load transmitted.
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5. The distribution of strain throughout the depth of the
beam, in the two components, is linear.
6. The total internal moment, M, at any location along the
beam is equal to the sum of the individual member moments,
Ml, M2 and the additional couple due to horizontal force,
F, hence:
M=M1+M2+F°Z 2.1

where 2 = distance between the centroids of the indivi-

dual components as shown in Fig. 2.1.

2.3 Solution of Differential Equation

The basic differential equation(17) for the
solution of horizontal force, F, for various loading, comp-
atability and boundary conditions, is: (See Appendix 3)

a’r _k _Fi
s

EALEI

F = -
dx2

n R

2

The differential equation for the two segments to

the left and right of x = a, is: (see Fig. 2.1)

2
ar
— = QF = - R_ M(x) 2.3
dx O o]
2
9—% - Q/F = - R M(x) 2.4
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The subscript zero is used for the full cross-section
and suffix I is used for the reduced cross-section.
Here QO, QI’ R and RI incorporate the properties of

the sections, as follows:

© S Ea sEI Clo 2
o e}
Q = I_(. -....,}L.-[l = (;’:..) “2
I s == . c'r .2
EAI _,L‘II L
R - —ao = (-:-l-'-) Ef&_q 7z '1]:—2-
o} s LLIO c o 5T 0 L2
o
R, = X r Ly et z n?
I s ZEII c'I 7T I L2
I
and —
RO EAO
— T ——— pA
Q I ©
o
Ry EAp
- F = AI
I EII
where (é)O = Interaction coefficient in the full cross-section
zone
(é)I = Interaction coefficient in the reduced cross-sec-
tion zone.
The particular solutions for equations 2.3 and 2.4 are:
For G < X f_ o
Ro
= - 31 ———— . 5
Fl Cl cosh xVQO b C2 sinh x;/QO + ) Wex. 2.5

O



Fa

For

= C, cosh x\/QI + C

15

o <X <u
R

4 sinh xv/Q_ + -E-W-x 2.6
1 QI

3
< < e
u X )

R
S . I
= - ‘4 -—-W. .
C5 cosh x\/QI + C6 sinh hVQI + QI u 2.7

Compatability Conditions

At x = O Fl = 0
dr, dr,
At x = o3 ax- = gx *-e- 1, T 9,
dg dg dy, dy
and = = gxo i-e Ix T T
a?v  a%F Q R -R
1 2 _ I o I
oxr ax ax Or.Fl "Q—o-' Fz + Qo M(i

where Ma = moment at a distance o from support.

At x

and At x

here suffix
o and o, o

constants C

sz dF3
= u; F, = Fg and ax- = ax

-E E&.:O
2 dx

1, 2, 3 represents the composite beam between
and u,and u and %,respectively.Solvinq for the

l' C2 * e * s e CG.
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”RI R, VO L
C4 = - (== + =) —L2 W sinh av¥Q_ + (v¥Q_. cosh avQ.
QI Q o} I I
o Q
I
. R.W
cosh avQ - VY0 _ sinh avQ_ sinh avQ )
o) o] I (o] ro—
cosh Jﬁ; ( % - ) cosh %’JE; B
e - + T —= (VQI cosh a/Q;
sinh 5 VQI 1w51nh 5 /QI
oSBT~ ST ad Vo : ST s
cosh deO QO sinh ayQI sinh a;QO) +
(VQO cosh arQ. cinh a/@o - /Q; sinh av’QI cosh ano)
1 L RyW - L
Cy = - ¥ C, cosh = /QI + cosh /6} (§'U)
sinh 5 VQI Q.vQ
L. AL I
RI
Cy = Cy - - W sinh u/QI
Q70
RI
C6 = C4 + W cosh u VQI
QI QI
Qr 1 . —
C2 = 5 T = C., cosh a»/QI + C4 sinh a/QI
o sinh avQ >
o | |
C, =0
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2.4 Comparison of Newmark 1 and Newmark 2B

2.4.1 The results obtained by both the approaches
have been plotted in Figs. 2.3, 2.4, 2.5 and 2.6 for various
ratios of reduced depth to full depth, B. The beam con-
sidered for this purpose is shown in Fig. 2.2. It is a simply
supported beam having two symmetrical point loads of W = 5000
ibs. at a distance, u = 21 in. from each support, having the
change in cross-section at a distance, 4 = 13 in. Speciiic
dimensions have been considered to overcome complexities in-
volved in attempting to non-dimensionalize the equations
cbtained.

The values of B considered are 0.4, 0.6, 2.8 and (.0
g,, along the length of the

beam, horizontal force, F, horizontal shear, g, and the top

and the degree of interaction,

fibre strain of the above member have been plotted.

2.4.2 The effect of f on the magnitude of =%, , as

obtained by the two approaches is shown in Fig. 2.3. It can

be observed that the difference between is not much

F
f"a
in the region of the reduced section. However, there is

a difference in the region of the full cross-section and
this increases as the value of B decreases. For example,

when 8 = 0.4 the value of has a sudden reduction in

P
"F"l

magnitude at the change of cross~section, moving towards
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mid~span, for Newmark 2B, while on the other hand the value

of %, has a sudden increase in magnitude for Newmark 1;

and for B 0.8 the magnitude of E has a sudden increase

Fv
by both the methods. It is also to be noted that %,

the change of cross-section is the same by Newmark 1, whatever

up to

may be the value of 8, though it is different in the reduced
section for various values of . However, in Noewmark 21z

F
the F;,

avery different value of £ and in some instances, for
Y

is different throughout the length of the beam for

example B = 0.4, 71 is more than 1 up to the change in cross-
section. This is because, as the section reduces for the
same applied bending moment , a redistribution of forces

occurs, see Fig. 2.4 for ¥ and F'.

2.4.3 Figure 2.4 shows the variation in the magni-
tude of interaction force, F, along the length of the beam

for wvarious values of B. The horizontal forces, F, computed
by the two methods are generally in agreement in the reduced
section, but the difference is in the full section zone and it
increases for the lower values of £, however, it is not

more than 24 percent.

2.4.4 The distribution of horizontal shear, g, is
shown in Fig. 2.5 and in this case the difference is signi-

ficant. In the Newmark 2B approach g follows a smooth curve
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throughout the length of beam, in accordance with the chosen
compatibility conditions, while on the other hand for Newmark
l,g has a sudden increase at the change of cross-section, moving
towards mid-span . Also for any different value of R, the
magnitude of horizontal shear, g, is the same from the support

to the change of cross-section, as computed by Newmark 1.

2.4.5 Fig. 2.6 shows the variation in the magnitude
of top fibre strain of the upper member, €1¢ (or the botiom
fibre strain of the lower member) along the lenuath of the
beam for various values of . It can be observed that the
difference in the strain computed by both the approaches

is not much in the reduced section zone and the maximum is
about 8 percent for R=0.4. However, there is a considerable
difference in the magnitude of strains in the full section
portion for smaller values of B, but the difference is in-
significant for higher wvalues of 3. It is also to be
noted that the magnitude of strains computed by Newmark 2B

are lower than those obtained by Newmark 1 method.

2.5 Comparison of Crack Profiles

The flexural crack profiles have been computed by
the two methods. The method 1s presented in Appendix A
and chapter 1IT.

The approximation made for computation by Newmark 2B

is that the beam has two different cross-sections, namely, a
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full section from the support to the first flexural crack

and a reduced section, which depends upon the crack height

at any particular section under consideration in the po-

tential cracking zone. In the Newmark 1 method, the approximation
is that the beam has the same reduced or full section through-
out the length of the beam depending upon the section under
consideration.

'The crack profiles of the reinforced concrete bcam,
obtained by the two approaches, are shown in Fia. 2.7. It can
be seen that the first fiexural crack starts at the same point
by the two methods. The reason is that, first the crack
profile is computed using WNewmark 1 and then the distance of
the first flexural crack from the support is used as the
length of full section, o, in Newmark 2B. The height of the
crack at the extremity of the cracked zone is significantly
different and is lower in the case for Newmark 2B; the
difference is about 1 in., but this difference goes on re-
ducing until near the load point,and after it,the profiles
are almost the same and there 1s practically no difference.
Also the maximum crack height obtained under the load point
is almost the same by both the methods.

The difference in the crack height is obvious; in
the beginning the magnitude of horizontal force, F, varies

considerably when computed by the two methods (as can be
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seen in Fig. 2.4), but this difference decreases as the
section moves towards mid-span. According to theory if F

is greater the crack height will be lower and vice versa.

2.6 Discussion

The variation in the magnitude of horizontal force,

¥, degree of interaction, , and the top fibre strain of

P
7
the upper member (or the bottom fibre strain of the lower
member) agrees closely in the reduced section zone, when
computed by the two methods. However, in the full section
portion, the difference is considerable for smaller values

of B, but for higher values of B the difference is not
significant. The horizontal shear, gq, has remarkably
different magnitudes, as computed by the two methods. This
is due to the compatibility conditions applied at the change
of cross-section in Newmark 2B, while Newmark 1 solution does
not consider any compatibility conditions at the change of
cross—-section.

A different set of compatibility conditions
were tried at the change of cross-section, in order to see
the results of g., F and q. The solution of the differential
equations obtained from these conditions is called Newmark
2A, but the results obtained are far from Newmark 2B and

Newmark 1. The compatibility conditions at the change of

cross—-section are:
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The solution of the differential equation can be
obtained in the same way as the solution of Newmark 2B.
Although the solution obtained with Newmark 2A is in

(20)

very close agreementwith the Stussi method using finite
difference equations, it is concluded that the Newmark 23

is not correct and the agreement with Stussi solution is

due to the fact that the Stussi method does not take into
account the compatibility conditions if the section is non-
prismatic or has a stepped profile, and violates the condi-
tion that g% must be equal at the change of cross-section.

If similar conditions were imposed in the Stussi method then it
is expected that this will give the same results as obtained
by Newmark 2B.

The flexural crack profiles obtained by the two
methods give maximum crack height under the load point and
the magnitude is almost the same. It is thought that the
crack profile obtained by Newmark 2B gives better results as
compared to experimental observations, because crack heights

are not as high towards the extremities of the cracked zone

as those obtained by Newmark 1.
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As mentioned earlier the discrepancy in the crack
height is in the initial cracking zone and the profiles are
virtually the same near the load point and after it up to
mid-span. Hence, it is concluded that the Newmark 1 solution;
although 1t does not take into account the compatibility
conditions at the change of cross-section can well be applied
to study the reinforced concrete beam especially to fina the

flexural capacity and maximum crack height,



CHAPTER II1X

STABILITY OF TENSILE CRACK

3.1 The Newmark compcsite beam theory has been used with
slight modifications to furnish an estimated flexural crack
profile based on the attainment of flexural crack stability.
The theory is summarized in Appendix A.

Apart from assumptions made for composite theory and
also made in Appendix A for a reinforced concrete beam it is
assumed that the concrete is capable of withstanding a certain
tensile strain, Eop? that is a strain level at which cracking
will occur. If the lower fibre strain of the concrete, “ob
is greater than the limiting tensile strain, €ap? then a
flexural crack starts and propogates upwards into the beam

until € is equal to €op? @S well as there being equilibrium

cb
between internal and external forces.

From the geometry of the distribution of strains at
any section, as shown in Fig. 3.1, the following equation

can be derived:

ecb Ecr
ACI’L: 2H E—-—-—_-*_-E-*-— 3.1
cb “cr

where Ach = first increment in the crack height.

The remaining uncracked depth will be:

30
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and

The new remaining depth, 2H', can be reused in
equation 3.1 in place of 2H and another increment in crack
height can be obtained. This is an iterative process re-

peated until a stable section is obtained and then:

L ﬁ=0
c
N
Cy = Iil Ach where and at I=N
€cb =%er
Here CH = total crack height.
3.2 Non-Linearity of Concrete
3.2.1 It is well recognized that the stress-strain

distribution for concrete is always non-linear and if a more
rigorous solution and computation are desired for a reinforced
concrete beam, this has to be taken into account.

A variety of stress-strain curves represented by
equations having parabolic, hyperbolic and elliptical cubic
parabolic have been used for analytical studies. Other simple
forms such as triangular, rectangular or trapezoidal have also
been used(ZI).

In this analysis the area under the stress-strain curve
of concrete up to crushing strain has been taken from the

(22)

Madrid parabolic equation, given below.
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. € - (E_2
9 =0, 12 () = 7 3.2

where € is the strain at the maximum specified stress O

(23)

The same equation has been used by Brown in his book

(16) in his analysis.

and Wong
Fig. 3.2 shows the stress-strain curve obtained from

the above equation.

3.2.2 In order to use the composite beam theory of
Newmark the materials, concrete and steel should be linearly
elastic., Hence, in order to use this theory the stress-
strain behavior of concrete should be linear. Although Yam

(

and Chapman 29) have developed a solution for a composite
beam having an inelastic continuous shear connection as well
as non-linear characteristic of steel and concrete, this,
however, cannot be used for non-prismatic sections such as
the reinforced concrete beam has after cracking and also the
method is quite tedious and time consuming. Therefore, the

gquestion arises of approximating the area under the stress-

strain curve of Fig. 3.2 into some linear distribution .

3.2.3 There are many ways to approximate the area
under the curve. One approach (method I) is to take the

value of the modulus of elasticity of concrete, E.» equal to
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the initial slope of the parabolic curve (Fig. 3.2), by

differentiating equation 3.2:

L] 3.3

Then determine the stress and strain which give the same area
under a linear stress-strain curve as that under the parabolic
curve of equation 3.2. This approximation is shown in Fig. 3.3
by a triangle (method I). Here the strain of 1550 micro in/in,
for 0, = 3800 psi, £, = 2000 micro in/in and Eu = 3000 micro
in/in, in the linear case is approximated by a strain of 3000
micro in/in in the non-linear case, when Ec = 3.8 x 106 psi.
This means, in this method, that when the strain at

the top fibre of concrete, reaches 1550 micro in/in then

Ectr
the curvature of the concrete, ¢c' must be increased to al-
most double, in order to have the strain at failure 3000
micro in/in; to satisfy the conditions of equilibrium; to
keep the crack height constant and to maintain the bottom

fibre strain of the uncracked concrete, at the cracking

“cb’
strain, E.p+ Here the conditions of equilibrium can be
gsatisfied but the conditions of compatibility required by
the composite theory, i.e. that the curvature of the

concrete, ¢c, be equal to the curvature of the steel, ¢s,

can no longer be satisfied.
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3.2.4 Another approach (method II) is to keep the
ultimate strain, €a’ constant and reduce the value of modulus
of elasticity of concrete, Ec, so that the area under the
linear curve is equal to the area under the parabolic curve. It
is found, by doing this, that for this parabolic stress-strain
relationship, the value of E = ;9, is exactly half that

( o

23
proposed by Brown ). This equivalent linear stress-strain

curve is shown in Fig. 3.3. (method II), 1In this method the
conditions of compatibility as well as equilibrium conditions
can be satisfied. Therefore, it is thought that method II is

better and hence this is used in this analysis.

3.3 Stability of the Flexural Crack

Tensile cracks are frequently formed in reinforced
concrete beams well below the service loads. Usually they
are harmless and stabilise due to presence of reinforcing
steel and the member possesses additional load capacity.

10
{ )et al. in their paper "Stability of Tensile

Krahl
Cracks in Concrete Beams", mentioned that the crack stability
is of obvious importance in relation to the load carrying

25
(25) studied the

capacity of a concrete member. Oladapo
stability of cracks in prestressed concrete beams, and MacGregor
and Walters(ll)analysis was based on crack stability.

A typical reinforced concrete beam cross-section

considered herein is shown in Fig. 3.4. It has a breadth

b = 6 in, total depth D = 12 in. and effective depth d=10.7 in.



38

The reinforced concrete beam has two symmetrical point loads
situated a distance 'a' from each support, the distance

between the point loads is 36 in. and the length of the beamn,

L = (2a+36) in. This beam is called a 'Typical Beam' through-
out this analysis. This 'Typical Beam' is one of a type tested

(19)

by Kani in his experiments at the University of Toronto.

It can be shown by the composite beam theory (14,16,18)

(9) that the maxi-

and confirmed by experimental observations
mum height of a flexural crack occurs under the load points.
Therefore, the stability and development of a flexural crack
is congidered at a cross-section under the point loads. As
the crack starts to propogate into the beam, the depth of the
uncracked cross-section of the beam at that particular section

reduces and hence the moment carried by uncracked concrete,

%, and the horizontal force,

Mc, the interaction coefficient,
F, are bound to be affected.

All these variables have been computed by the two
methods discussed in the preceeding paragraphs and are plotted
in Figures 3.4 and 3.5.

Figure 3.4 shows the variation of Mc, F, é and €b
under the load peint, as a tensile crack starts at the bottom
fibre of_concrete, penetrates vertically into the beam and
stabilizes after reaching a certain depth, for E,6 = l.9><lO6

psi (method II) and bond-slip modulus, K = 17000 lb/in. It
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can be noted that the crack height is 9.35 in,

Figure 3.5 shows the variation of Mc' F, é and €p
for Ec = 3.SXl06 psi (method I) and it has been found that in
order to get the same crack height, 9.35 in., as obtained
for lower value of Ec, the magnitude of bond-slip modulus, K,
has to be increased up to 36000 lb/in., otherwise the crack
height will be 10.42 in. for K = 17000 1lb/in (not shown in
the figure). Figure 3.5 also shows the variation of Mc, F,

1

£, and e, for E_ = 1.9x10% psi K = 36000 1b/in. (method II).

It is to be noted that the crack height is lower for

® psi than for E_ = 3.8x10° psi and it is 8.38 in.

E, = 1.9x10
A conclusion can be made that by keeping the bond-
slip modulus, K, constant and changing the modulus of elas-
ticity of concrete, the crack height at a particular section
also changes. It has been found that the lower the magnitude
of Ec the lower the crack height and vice versa, as shown
in Fig. 3.5 for K = 36000 psi and E_ = 3.8x10° psi and
1.QXI06 psi. The difference in crack heights obtained for this
particular case is 1.07 in. at a section under the point loads.
Also the magnitude of bond-slip modulus has signi-
ficant influence on the flexural crack heights. This can be
observed by comparing Fig. 3.4 and 3.5. For a constant
6

value of Ec = 1.9%x10° psi the crack height is greater for

K = 17000 1lb/in as compared to K = 36000 1lb/in. Hence, the
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greater the values of K or in other words the greater the
interaction between steel and concrete, the smaller will be

the crack height.



CHAPTER IV

MOMENT CARRYING CAPACITY

(19)

4.1 Kani suggested that for a reinforced concrete

beam without web reinforcement the ultimate moment capacity,

M depends upon the % ratio and the minimum is about 50

ul
percent at 2 = 2.5 for the 'Typical Beam' of chapter III.

d
(9) (26)

Morrow and Viest (9) (27)

and Leonhardt and Walther
also observed the same behavior. Figures 4.1 and 4.2 show
the relative beam strength and ultimate moment carrying
capacities, Mu’ versus shear-span to depth ratio , % , as
obtained experimentally by Kani, Morrow and Viest and Leon~
hardt and Walther, respectively.

(9)

It has been observed experimentally and has been

;
(14,16,18) 4} .+ the maximum flexural crack

shown analytically
height occurs under the load points. The computed flexural
crack profile of a reinforced concrete beam is shown in
Fig. 2.7. Fig. 4.3 shows typical flexural cracking in a beam
loaded with a two-point load system.

As the shear-span to depth ratio, %, of a reinforced
concrete beam varies, the maximum computed flexural crack

(16), even though the

height under the load point also varies
applied moment is constant, being higher as the shear-span is

reduced.

43
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4.2 Fig. 4.4 shows the influence lines for the concrete

top strain, and the average or mid-height steel strain,

3
ct’

€qm’ at a section under the load point versus the shear-span

to depth ratio, %7 for a constant bending moment 264500 1lb-
in (half of the moment as obtained by ACI Code formula). It
may be noted that the concrete strains have much larger values

for smaller % ratios, while on the other hand the steel strain

. a .
has larger magnitude at greater g ratios.
It is interesting to note that by limiting the magni-

tude of strains, £t and €am to some constant values, the

flexural capacity of the beam can be governed either by con-
crete strain or steel strain or both. For the purpose of
demonstration assume that the maximum compressive strain of

concrete, €ct = 1500 micro in/in t(half the crushing strain
max

of concrete) and maximum strain that'the steel can take,

€om = 750 micro in/in (half the yield strain of steel),
max
for the 'Typical Beam' having p = 1.88%, then it can be

observed that for % less than 5.3 the concrete strain, ot

is more than ¢ and for % higher than this the steel

“thax a

strain, ¢ __, is more than ¢ . Hence, between = = 0.5
sm SM % a

to % = 5.3, the concrete governs the strength of the beam

and for % more than 5.3, the steel governs the strength.
It will be shown that, in addition, the governing factor

also depends upon the percentage of steel, p, shape of cross-
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section, strength of concrete, strength of steel etc.

4.3 Thus the moment capacity of a section under the load
point can be determined analytically for certain values of

€ot and € , and this will be the maximum moment
max max

carried at that particular section.

.In compﬁting the influence lines for maximum moment,
Mu' under the load point, the dimensions of the 'Typical
Beam' of chapter III are considered. The same beam dimen-

(19) in his experiments. Hence,

sions have been used by Kani
by doing this the validity of the theory can be established.

It is assumed that the maximum compressive strain of con-

crete is 3000 micro in/in and steel yield strain is 1500 micro

in/in.

4.4 In Kani's experimental beam series the distance
between the point loads was kept constant and to achieve
the different a/d values the length of the beam was changed.
The geometry of the beam, span, cross-section , etc. has a

significant influence on the interaction coefficient.

where K bond-slip modulus

L = length of the beam.
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This means that if K along with all other paramecters,

except L, is kept constant, then % is directly proportional

to the square of length, L. It should be noted, however,

that é does not remain constant in a cracked beam, as can be

observed in Figs. 3.4 and 3.5, because the geometry of the
cross-section changes where cracking occurs. Therefcre,in

this analysis instead of taking an initial value of the

1
("?'l
bond-slip modulus, K, has been assumed to be constant. By

'é” changes with

different a/d ratios, even for an uncracked beam. Hence,

doing this the interacticon coefficient

1/C is small for short span beams and it has a higher value
for greater spans.

Therefore,an important conclusion can be made that
the span length, L, is one of the significant parameters in

the behavior of reinforced concrete beams.

4.5,1 The moment carrying capacity has been computed
under the load point for the 'Typical Beam' with various
values of a/d. These computed values of Mu versus a/d are
shown in Fig. 4.5 for bond-slip modulus, K = 17000 1lb/in. The
dotted line in the same figure is the ultimate flexural ca-

pacity, M value for beams with the cross-section of the

ult’
'Typical Beam', computed by the ACI Code formula:

= A - ¥ .
Mult A fy (a at/2) 4.2

where
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A_f
a' = =
0.85-f'+b
c
£, = Es'gsm
Y max
t .
£ Ec ect .
max
4,5,2 Fic. 4.5 shows that the influence line for mowent

carrying capacity, Mu’ has two distinct portiong, one slopes
downward and the other one is almost horizontal. Concrete
governs the strength of the beam in the sloping part, and in
the horizontal region steel reaches the yield strain first
and hence governs the strength of the beam. The concrete and
steel both reach their ultimate strains at the transition

point, T, where both the curves intersect each other.

4.5.3 The variation in the computed capacities of the beam
ranges from 22 percent for a/d = 0.5 to 100 percent of the Mult
at a/d = 5.3, in the region where the concrete strain governs
the strength of the beam. The strength is almost uniform

and varies only between 100 percent to 98.5 percent of the

M in the region where the steel strain governs.

ult

4.5.4 If the results of Fig. 4.5 are compared to that of
Fig. 4.1 (Kani's experimental results) it may be seen that
there is a very close agreement qualitatively as well as

quantitatively for a/d > 2.5. Thus analysis of the reinforced
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concrete beam in accordance with the composite beam theory
enables the moment carrying capacities, Mu’ to be computed
for concrete beam without shear reinforcement, for various
values of shear-span to depth ratios. The validity of the
theory has been checked against Kani's experimental results,
It was found that, in order to bring the computed
results closer to the Kani's experimental values, a par-
ticular magnitude of bond-slip modulus, K, was required, and
in general the flexural capacity, Mo is largely dependent
upon K. This is discussed in more detail in the following

paragraphs.

4.6.1 As discussed earlier the interaction coefficient,
1

ol has a remarkably significant influence on the reinforced
concrete beam; reflecting the influence of bond-slip
modulus, K. This is shown in Fig. 4.6 for the 'Typical Beam'
with p = 1.88 percent. Five different values of K were
selected, nawmely, K = 10,000, 15,000, 17,000, 20,000 and
30,000 1b/in. It is interesting to note that the reduction
in K has two effects on the influence line fox flexural
capacity; first, decrease in the magnitude of K causes the
transition point, T, to be displaced towards the right and
for smaller value of K such as 10,000 1lb/in the transition

almost vanishes, indicating that the carrying capacity

cannot reach the maximum possible flexural capacity. The
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second effect is that the higher values of K increase the
flexural capacity in the region governed by the concrete

strain and decrease the capacity in the region governed by
the steel strain. This means a decrease in the magnitude
of K increases the strength of the beam where steel is the
governing factor and decreases the strength where concrete

is the governing factor and vice-versa.

4,6.2 Now the question arises that what is the exact mag-
nitude of bond-slip modulus, K, for a particular reinforcad
concrete bheam and what should be the criterion for selecting
a particular value of K for any beam? In fact K dcpends
upon a number of parameters, such as strength of concrete and
steel; percentage of steel; shape and dimensions of crouss-
section; number, placing and diameter of longitudinal bars,
etc. Unfortunately, the importance of bond-slip modulus
has not been considered by research workers. Hence, further
research in this field is required.

Therefore, the criterion for selecting the bond-slip
modulus, K, is that the value which gives closest agreement
with Kani's experimental results, is considered to be the
magnitude of K. Close examination of Fig. 4.6 clearly reveals
that the magnitude of K = 17000 1lb/in for p = 1.88 percent

gives almost the same results as obtained by Kani.
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For the various values of percentage of steel, p,
in the beam tested by Kani, in order to find the effect of p,
on the relative beam strength, this analysis reveals that
there must be different magnitudes of K for each series
having different steel percentages. It may be noted that K
increases for higher values of p and decreases for smaller

percentages of steel. This is shown in Fig. 4.7.

4.7 Comparison with Kani's Results

. . . 8 1
4.7.1 Kani has done an extensive experlmental( r9,13)

investigation in the field of shear and diagonal tension. He

(19)

performed large numbers of tests on the same 'Typical

Beam' to find the influence of concrete strength, fé,
percentage of steel, p, and shear-span to depth ratio, a/d, on

the strength of reinforced concrete beams. Figs. 4.1 and 4.8

Mtest

Mult

0.5 percent and fé = 5000, 3800 and 2500 psi. ZXani's

show the versus a/d ratio for p = 2.80, 1.88, 0.8 and
experimental and the computed results of this analysis are
compared in Fig. 4.9 for fé = 3800 psi and p = 1.88. It is
found that there is a significantly close agrecement between the
experimental and computed results for a/d ratios more than

2.5. Kani observed an increase in the ultimate flexural
capacity for a/d < 2.5. Agreement with the experimental
results has not been achieved over that range using the com~

posite beam theory because of different phenomenon governing
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the strength of the beam. This aspect is discussed in de-

tail elsewhere in this chapter.

(9)

4.7.2 Kani states that as the load on the beam increases
the reinforced concrete beam transforms into a 'comb-like'
structure. The compressive zone of the beam is the backbone
of the ‘concrete-~comb' and in the tensile zone there are more
or less vertical cracks, which form the 'concrete-teeth'.
The applied load is resisted by the transfer of stresses be-
tween concrete and steel through the bond between the
materials. After the resistance of the concrete teeth has
disappeared, the longitudinal profile of the concrete beam
resembles a 'tied-arch'. This transformaticn of the rein-
forced concrete beam may occur suddenly or develop gradually.
Kani(g) also stated that for beams having a/d ratios
less than 2.5, the capacity of the concrete teeth is lower
than that of the concrete arch, therefore, under increasing
loads, the transformaticn from beam action to tied arch
occurs gradually and the failure occurs when the capacity
of the arch is exceeded.

For beams having a/d ratios between 2.5 and the
transition point, T, the capacity of the concrete-teeth is

more than the capacity of the arch, however failure does not

occur until the concrete teeth capacity is exceeded and at
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this stage transformation begins. In this case a sudden
collapse follows, because the concrete arch capacity is lower
than the applied moment. Beyond the transition point, T, only
normal flexural failure is possible.

(9), the portion

Hence, in Fig. 4.1, according to Kani
DV represents the capacity of the remaining arch. In the
region VTE the relative beam strength is governed by the
capacity of the concrete teeth. Point V is the intersection
of the remaining arch capacity line to the concrete teeth
capacity line and this point shows the minimum relative beam

strength. After the transition peoint, T, only normal flexural

failure is possible.

4,.7.2 It has been observed that the computed moment carrying
capacity, Mu’ under the load point versus a/d ratio is in-
fluenced by certain parameters in the same way as found
experimentally by Kani. But as discussed above the com-
puted results do not show any rise in carrying capacity for
smaller values of a/d.

Figs. 4.10a and 4.10b show the influence of percen-
tage of steel, p, on the rélative beam strength versus a/d

[0}
(19) found

ratio computed by the composite theory. Kani
similar relative beam strengths for various values of percen-

tage of steel, p. In order to compare the results the same
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percentages of steel, p = 0.5, 0.8, 1.88 and 2.80 are used.

It is interesting to note that p has two effects on
the moment carrying capacity; the ultimate flexural capacity
is greater for higher values of p and also the transition
point, T, moves towards right, Fig. 4.10a. Increase in the
flexural capacity with increase in p has also been demonstrated

analytically by MacGregor and Walters(112 Kani(lg)

states that
the amount of longitudinal reinforcement has a significant
influence on the location of transition point. If the amount
of reinforcement varies from 2.80, 1.88 to 0.80 percent then
the transition points, obtained from the test results, are

at a/d = 6.5, 5.5 and 3.5 respectively. For smaller percentage
of steel such as 0.50, the valley of diagonal tension disap-
peared completely. This is evident from Fig. 4.8.

In order to compare the results for different percen-

tages of steel, consider for example when p = 0.50 percent,
Mu
Mult

at a/d = 2.5 and the experimental findings of Kani also give

the computed by this analysis is 100 percent (Fig. 4.10b)

100 percent. At p = 0.80 percent, the computed value of

M

Mu is 84 percent at a/d = 2.5 (Fig. 4.10b), the same
ult Mu

percentage of M

ult

is obtained by Kani for this amount of

reinforcement.

For p = 1.88 percent ancd 2.80 percent the computed

results and Kani's experimental results are shown in Figs.
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4.9 and 4.11.
Fig. 4.9 shows the agreement of the theory with the
(

19
test results ) for p = 1.88 percent. The transition point,

T, is found to be at a/d = 5.4 whereas Kani's tests indicate

(19
stated that the

the transition point at a/d = 5.6. Kani
results showed a scatter. The minimum relative beam strength
at a/d = 2,5 (point V in the diagram) is 57 percent as ob-
tained by Kani and the computed results give 54 percent.

Similarly, if the results for p = 2.80% are compared,
the transition point, T, occurs at a/d = 7.1 while Kani's
tests gave the transition at a/d = 6.6. Fig. 4.11 shows the
comparison. The minimum relative beam strength at a/d = 2.5,
according to Kani is 58% whereas the computed one is 57%.
However, there is a slight difference in the magnitudes of
carrying capacity between V and T varying from 1 to 8%. This
is because the test results showed almost the same capacity
at a/d = 3 as for a/d = 2.5, but, according to theory the

carrying capacity will increase for increasing ratios of a/d

up to transition point T.

4,8 Discussion

4.8.1 In this chapter the experimental results of
Kani,Morrow and Viest, and Leonhardt and Walther are presented.

They show qualitative agreement amongst them for the variation
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of ultimate flexural capacity with variation in the shear-
span to depth ratio, a/d. Three distinct regions can be
identified, namely DV, VT and TE as in Fig. 4.1.

The theoretical computations based on the concept of
loss of interaction in a composite beam have shown good
agreement with Kani's experimental results over the region
VT and TE. The only qualitative assumption made in the
theoretical computations was that the bond-slip modulus
should have that magnitude that would give the clousest agree-
ment between the computed and experimental value of ultimate
flexural capacity at the experimental transition points V-and
1 for beams having a particular steel percentage, p.

Fitting the theoretical results to the experimental
transition points, V and T, resulted in the bond-slip modulus,
K,having different values for different steel percentages, p.
Although the resulting magnitudes of K are not egual and have
not been identified with any experimental results, since the
bond-slip modulus does not appear to have been investigated
experimentally; qualitatively the computed values of K appear
acceptable since they show an increase of K with increase in
percentage of steel (i.e. either an increase in bar diameter
or an increase in number of bars).

It is interesting to note that in the computation no

account has been made directly for the vertical applied shear
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or diagonal cracking and the analysis is entirely based on
flexural capacity at the cross-sections under the load points.
In spite of this the computed results are very much in agree-

ment with experimental results of Kani.

4.8.2 _ Figs. 4.5, 4.9, 4.10a, 4.10b and 4.11 show the
computed ultimate moment, Mu’ carried by the section under
the load point for various ratios of a/d. It has been
observed that it is influenced by the same parameters as found
experimentally by Kani over the range VTE. However, this
method does not result in any increase in ultimate flexural
capacity of the beams for a/d less than 2.5 as has been
observed experimentally.

It is evident that some other factor comes into play
in this region. Kani(g) has suggested that the 'tied-arch'
phenomenon governs the strength of the beam for a/d ratios
less than the transition point, V. Hence, in order to have a
complete theoretical explanation of the reinforced concrete

beams behavior, the arch analogy should be investigated.

4,.8.3 In fact Kani(g)

has presented a semi-empirical
method for calculating the capacity of the remaining arch

and the capacity of the concrete teeth, but, that method
cannot be generalized because it depends upon certain factors

such as spacing and height of the flexural crack which have

to be determined from experiments.



69

Kani's method of analysis is summarized in the following

paragraph.

l.

The full flexural capacity, M L’ of the beam can be

F

expressed by:

7
MFL =3 d AS fy . 4.3

The capacity of the concrete teeth can be expressed by:

1
ft Ax

- 1 _t Ax
M = 5T S bad. 4.4

CR

If MO is the moment depends only on the properties of the

section, then:

fl
t 2
M ' bd 4.5

oo}

O—

The equation 4.4 can be written as:

= .Ax.é—
Mag = My'5'3 4.6

At the point where the carrying capacity line reaches
the line of full flexural capacity, the:

- =y B&xa
MFL = Mop = Mg 3 d

then the transition point o can be given by

TR

YrLs

(63 el
TR M Ax
(o]

putting the values of MF and Mo from equations 4.3 and

L

4.4 into above equation:
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Hence the magnitude of Qpp can be determined.

In the region of low a/d ratios the capacity of the beam

can be calculated as the strength of the remaining arch

which can be expressed as:

M
M = FL

CR k

o)e
-9
©

where k is a constant and is equal to 0.9.

In the medium region of a/d values the concrete teeth

capacity determines the strength of the structure:

M T o =, 4.9

The common boundary point of the two regions is

given by:
o

o . = _rEB_ 4.10
min k

and the minimum capacity at ¢oin can be calculated by:

o
min
min M = M
CR %ng FL
where Upp = the magnitude of transition point
fé = tensile strength of concrete
p = percentage of longitudinal tension rein-

forcement
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MFL

MCR

a/d
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average height of the crack

average spacing of crack

constant factor = 0.9 - suggested by Kani(9)
full flexural capacity

moment at failure of concrete-teeth or

the capacity of remaining arch

shear-arm depth ratio



CHAPTER V

SHEAR STRESS DISTRIBUTION

5.1 The formation of flexural cracks, particularly in the
shear span, leaves a comparatively small cross-section of
concrete to support the external shear force with the result

(l’Jl’15)reason that additional resistance

that many authors
must be provided by 'dowel action' in the reinforcing bars
and 'aggregate interlock' or 'shear due to friction'.

Acharya(ls)argued that the presence of dowel force
cannot be ingored in any quantitative analysis of shear
failure.

(11)

Some research workers in the analysis of diagonal

failure assume some contribution of dowel and aggregate inter-

(1)

lock forces. Fenwick and Pauley in their paper "Mechanism
of Shear Resistance of Concrete Beams" attributed a signifi-
cant percentage of shear resistance to aggregate interlock,
Their experiments suggest that aggregate interlock action
provides 50 percent of the resistance to shear force in a
cracked beam, with 20 percent due to dowel action and the
remainder carried in by uncracked portion of a cross-section.

It was therefore of interest to study the distribution

of shear stresses and the contribution of shear force resis-

72
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tance by different components, at various sections along the
length of a cracked beam.

Since there are three major components resisting the
shear force, namely, uncracked concrete, aggregate interlock
action and dowel action, two different approaches are con-
sidered. One for calculating the shear stress distribution in
the uncracked concrete and thc other to determine the contri-
bution of dowel and aggregate interlock actions and the
distribution of shear stresses in the cracked portion of the

beam. These are discussed in the following.

5.2 Shear Stress Distribution in Uncracked Concrete

5.2.1 The method presented here is primarily based
on equilibrium of the horizontal forces. The eguilibrium
conditions are applied to an uncracked portion between any
two secticns of a cracked beam. Fig. 5.l1la shows such an
uncracked portion, C-C, between sections 1-1 and 2-2. Re-
ferring to Fig. 5.l1la, the strain at any level can be computed
by:

n, -y
e = ah

}

27Y)

Y, ¢4 (——“2 );
where n; and n, are the distances of the neutral axes for
section 1-1 and 2-2 respectively from the top concrete fibre.
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Ax in Fig. 5.1 is the distance between section 1-1
and 2~2; that is the middle section C-C where the shear
stress distribution is to be determined is Ax/2 in. from each
section 1-1 or 2-2., It is assumed that the flexural crack
heights at all the three sections 1-1,C~C and 2-2 are the
same and the height is equal in magnitude to that obtained

for section C-C, that is,

Cdl = Cdc = Ldz

where Cd is the uncracked concrete depth. Since the magnitude
cf Ax/2 is very small, therefore, the difference between the

actual computed uncracked depth is insignificant.

5.2.3 Shear Stresses

The uncracked portion €-C can be divided into a
pumber of rectangular laminas . The average shear stress
determined, from the equilibrium of the free body above
the base level, at the base of each lamina is shown in

Figs. 5.1b and 5.lc.
F,-F

_ 271
Therefore 12 T §ix 5.2
ectl+eyl
where F, = (—~——§——~) Yy bEc
€ +€
ct2 y2

and F2 = (~———5——~) Yo bE
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width of the beam

i

here b
le = average shear stress over the base

of free body.

If T is the vertical shear stress at a depth, y,

and at a distance, x, from left support, then
Txy = 12

5.2.4 Shear Force
The total shear force, S, carried by the section
C-C at a distance x from left support, as per Fig. 5.lc can

be given by: C

5.2.5 Zero shear stress at the root of the crack

From the method stated above the shear stress is not
zero at the root of the crack and the computation shows that
there is a certain amount of shear stress existing at the base
of the crack. But, for the requirements of the boundary con-
dition it is reasoned that the shear strese should be zero
at the root of the crack, since it is zexo at the top or bkottom
fibres of concrete. Also the method for the determination of

shear stresses in the cracked region of the section, as dis-
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cussed in the following paragraphs, reguires the shear stress

to be zero at the base of the crack.

5.3 Shear Stress Distribution in Cracked Concrete
(1,2,9,11,28)

5.3.1 Most research workers agree that
the formation of flexural tension cracks in a beam,

divide the tension zone into a number of blocks; each of them
may be considered as a cantilever spanning from the compres-
sion zone to Jjust beyond the tension reinforcement. These
blocks are called 'concrete-cantilevers' and the compression
zone is the backbone of these cantilevers. The structure

formed may be likened to a 'comb-like'! structure. This is

shown in Fig. 5.2a.

5.3.2 If only two adjacent concrete cantilevers are
considered at a time and all the other minor forces acting
on them are neglected then the only major force acting 1is
the bond force, AFB, which is the incremental increase of
the tensile force in the flexural reinforcement, as shown

in Fig. 5.2.b. These two cantilevers can be idealized as a
'composite cantilever beam' having a continuous shear con-
nection throughout the length at the interface due to
aggregate interlock or friction action, and a stiff con-
nector due to horizontal steel at the level of reinforcement

(dowel action). This composite cantilever beam has a
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horizontal shear, g, at the interface, which can be determined

(20)

by Stussi composite theory. The continuous connection can
be replaced by discrete connectors of any desired spacing, s.
If the horizontal shear, ¢, is divided by the product of
breadth of beam and spacing of connectors then the vertical

shear stress can be obtained:

5.3.3 This approach, discussed above, has been
used to determine the shear stress distribution in the tensile
zone.

For any compoéite beam the magrnitucde cf tlke shear
modulus of the connector must be known. In this case there
are two different connectors, friction or aggregate inter-
locking action (replaced by discrete connectors of spacing,s)
and a stiff shear connector due to reinforcement (dowel
action). Now the question arises as to the magnitude of
the shear module of the two types of connectors. In order
to determine the contribution of dowel action in a reinforced

(1)

concrete beam Fenwick and Pauley conducted tests on long
and short dowels. They stated that"the long dowels were
intended to throw some light on the conditions which prevail

in the vicinity of the first diagonal crack near the support

of a beam ----," "The short dowel tests were designed to
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give some information on the contribution of dowel action to
the resistance of the concrete cantilevers". Their test arrange-
ments and the results obtained in the form of a graph (dowel
force versus displacement of dowels) are shown in Fig. 5.3a to
5.3c.

Since the short dowel tests were intended to deter-
mine the conditions in concrete cantilevers, the initial
slope of the dowel force versus displacement of dowel curve
(which can be regarded as a load-slip curve) has been used for
the determination of the modulus of the stiff connector
(flexural reinforcement). The average value obtained from

Fig. 5.3b (tension side) is:
KD = 1,75 x 105 ib/in for a %“ diameter bar.
In this way an approximate value of shear modulus of

dowel, K., has been determined. The magnitude of the friction

Dl

modulus, KAG'

appears to have been done to determine the friction modulus.

still remains unknown. At this stage ho work

Therefore, the magnitude of the friction modulus, KAG' is
left undefined in the computation.

From the approach of section 5.2 of this chapter the
shear force contribution of uncracked concrete is known. The
remaining shear force must be carried by aggregete interlock
plus dowel action. Therefore, the magnitude of the friction

modulus, which gives the appropriate percentage contri-

Kag’
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bution to the total shear force is taken as the value of

aggregate interlocking modulus.

5.3.4 In order to find the shear stress distribu-
tion in the tensile zone by Stussi's composite beam theory
the dimensions of the ‘'composite cantilever beam' such as
length, breadth and depth, must be known. The length is the
crack height from the bottom of the concrete beam to the
root of the crack, for the crack which forms the interface
between the two cantilevers. The depth of each element of
the composite beam cantilever is taken as the spacing of the

(13) suggested that the average crack spacing

cracks. Broms
is approximately twice the distance of the concrete cover,ds,

to the tension reinforcement.

Scr(ave) = 2ds 5.5

where S is the average crack spacing.

cr (ave)
In the computation this spacing has been used. The

influence of crack spacing on the shear stress distribution

along a crack has also been determined and is summarized

elsewhere in this chapter.

5.4 Shear Stress Distribution Along A Flexural Crack

The particular beam considered for this purpose is
the same ‘'typical beam' of chapter III, having p = 1.88

percent. The bending moment on the beam is 264500 lb-in, half
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the ultimate bending moment carried by such a section, as ob-
tained by ACI Code formula.

Since in the beam considered here two number 7 bars
are used, the modulus of dowel action is:

2 x 1.75 x 10° lb/in

= 3.5 x 105 1b/in.

%p

]

Two shear—~arm to depth ratios, a/d, are ccnsidered,
namely % = 3 and % = 5, in order to have a better picture of
shear stress distribution for the same bending moment.

Fig. 5.4a and 5.4b shows the computed shear stress
distribution at different sections along the length of the
beam for % = 3 and %-= 5, respectively. The figures also
show the required magnitude of friction or aggregate inter-

locking modulus, K for every particular section, since it

AG’
varies for different sections, when it is required that the
internal resisting shear force must equal the external applied
shear force. The percentage of total shear force carried by
different components in a ¢racked beam is also shown in
Figs. 5.4a and 5.4b.

It is to be noted that the percentage shear force
carried by the uncracked concrete varies from section to sec-~
tion; for example for % = 3 and x=4 in., where the section is

uncracked throughout the depth of the beam 99.7 percent of

the total shear force is carried by concrete and the distri-
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bution of shear stress is a parabolic curve. In the cracked
zone in the shear span the percentage contribution of shear
force varies from 42.3 percent to 38.0 percent for % = 3
and 55 percent to 47 percent for % = 5. The dowel force is
almost constant and is about 7.5 percent except just to the
left of the point load where it is about 3.5 percent, for
both the a/d ratios. The aggregate interlocking resistance
ranges from 54 percent to 49.5 percent and 45.%7 percent to 40
percent of the total shear force for % = 3 and 5,respectively.
In the constant moment region the shear stress in
the uncracked concrete reverses its sign (negative). Since
the 'tooth' deflection would remain in the same direction,
because, the stress in the tensile reinforcement continues
to increase up to midspan. Therefore,a balance of internal
shear force is possible and zero total shear force can be

obtained. However, in order to achieve zero resultant

shear a very large magnitude of KAG is required. For example,

for % = 3 the KAG in the constant moment region is about
10 times greater than the Krc in the combined moment and

shear region. Even then a negative shear of magnitude 2.94 per-
cent at x=39.6 in. and 1.28 percent at x = 45.6 in. remained.
One conclusion to be drawn from this is that the computed

shear force contribution due to friction is extremely in-

sensitive to the change in the magnitude of the friction
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shear modulus, in the constant moment region.

KAG’

The magnitude of KAG just to the left of the load

point, as shown in Fig. 5.4a, is 3,220,000 lb/in2 for a/d=3

and 936,000 lb/in2 for a/d=5. 7These are also the maximum
values of KAG in the combined shear and bending moment region,
It can also be noted that for % = 3 and at x = 32 in.{(just left
of the load point) the total shear force carried by all the
components is 96.5 percent; a difference of 3.5 percent.

Hlere the same difficulty arises and in ordexr to get another

3.5 percent due to friction the value of K would have to

AG
be more than 7 times the used value of KAG = 3,220,000 lb/inz.
which is already 10 times higher than the other KAG values for

the same a/d ratio in the increasing moment region.

5.5 1Influence of Crack Spacing and Ax

5.5.1 The choice of crack spacing has a great

influence on the magnitude of K It has been fcund that

AG"
the greater the value of average crack spacing (tooth width),

the greater the magnitude of KAG required to balance the
external shear force and vice versa. For example, if a crack

spacing of 1.3 in. is used in the computation instead of 2.6

in. then the magnitude of K. g is reduced to 200,000 lb/in2
2 = 3 and at x = 13,6 in, and it

from 396,000 1b/in” for

N Quff

2
reduced to 210,000 1b/in° from 426,000 1lb/in“ for %—.— 5
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and at x = 39.6 in. Similarly for other sections. Also the
reduction in the crack spacing slightly increases the percen-
tage of shear force carried by dowel action and it is observed
that the average shear force carried by dowel action in the
shear span is 8.5 percent for crack spacing of 1.3 in.; an in-
crease of 1 percent from that with 2.6 in. crack spacing.

This means that the aggregate interlocking force decreased

by 1 percent.

5.5.2 It has been found that the magnitude of

Ax used in the computation of the sheayxy stress distribution
in the uncracked concrete does not have any effect on the
shear force carried by the uncracked concrete. The value of
Ax was varied from 1.0 in. to 0.01 in., but the percentage
of shear force and the magnitude of shear stresses remains

the same for each particular section.,

5.6 Discussion

The methods considered here for the determination
of shear stress distribution in a cracked bheam, throughout
its depth, and subsequently used to find the contribution
of the different components to resist the external shear
force are based on simplified assumptions, such as equilibrium
of horizontal forces and on a composite cantilever beam

model. However, the shear stress distribution and the
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percentage contribution of different components seems to be
reasonable.

Acharya(lSIargued that only 40 percent of the total
shear force is carried by uncracked concrete and the rest by
dowel action. On the other hand Fenwick and Pauley(l)
claim that the shear force carried by uncracked concrete, aggre-
gate interlock and dowel actions is 30 percent, 50 percent
and 20 percent respectively. MacGregor and Walters(ll)in
their analytical analysis considered 11 percent contribution
of shear force from dowel action, 23 percent from the aggre-
gate interlock and the remaining from uncracked concrete.

From the approach described above the percentage
shear force carried by the uncracked concrete ranges from
39 percent to 55 percent; aggregate interlock action con-
tribution in resisting the shear force varied from 40 percent
to 54 percent and the dowel action resists almost 7.5 percent
of the total shear force. This is for a particular beam
cross-section (typical beam) and for two a/d ratios: 3 and 5.

In the light cf the above discussion it is concluded
that the calculated shear stress distribution in uncracked
concrete and the percentage contribution in resisting the
shear force is reasonable. Although the method for finding

the shear stress distribution and the contribution of dowel

and aggregate interlocking actions is based on simplified
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assumptions the distribution of shear stress on a cross-~
section in the tensiie zone seems to be reasonable. Dowel
action does not seem to contribute much to the resistance

to shear force for this particular beam. It is to be mentioned
that a different beam having the dimensions of those tested

(Zg)was alsoc examined anglytically. The maximum

by Plowman
bending moment on the beam is 36200 lb-in (design moment),
the magnitude of K and E_ is 17000 1lb/in and 1.9x10% psi,
respectively. It was found that the dowel action in this
particular beam is significantly larger; having a magnitude
of almost 20 percent, while the shear force carried by uncracked
concrete is 46.6 percent and the remaining was carried by
aggregate interlocking action. The distance of the particular
section was 20 in., from left hand support.

Therefore, the percentage of shear force carried by
dowel action and aggregate interlocking vary considerably
and depend upon the dimensions of the beam.

It should be emphasized that the computed values
of the friction shear modulus (or aggregate interlock modulus)
are the result of determining a magnitude of KAG which would
provide the remainder of the shear resistance not carried by
the computed components due to dowel action and the uncracked
part of the concrete.

It is difficult to pass a judgement on the magnitudes
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and variation of Kic values obtained from the computation,
since there does not appear to have been any experimental
results with which to compare them. Therefore, a more
realistic approach is required to determine the magnitudes of
the friction modulus.

Also in a real beam the width of the crack is not con-
stant, The maximum width occurs at the level of the longi-
tudinal reinforcement and the minimum width at the root of
the crack. Therefore, the magnitude of aggregate interlocking
modulus is not in fact likely to be constant, because the
maximum friction will occur near the root of the crack and
the minimum at the level of reinforcement. Hence, it is
also emphasized that the variation in the magnitude of
aggregate interlocking modulus should also be investigated
and should be considered in the computation.

Once these coefficients are established, it would then
be possible to determine the distribution of shear stresses
in the tensile zone of a cracked beam and the contribution of
the different actions in resisting it, especially if a multi-
layered composite beam solution is tried. Then it is hoped
the analysis could be extended to trace the path of diagonal

cracks and to study the cause of such a failure.



CHAPTER VI

INCLINED CRACKING

6.1 Diagonal cracking is often regarded as a combined
stress problem. Therefore, in this chapter the maximum prin-
cipal tensile strains (combination of flexural and shear
strains) are studied on an elemnent above the flexuval cracw.

it is based on the assumption that cracking will start to occur
whenever the principal tension strain exceeds the criticail

-cracking strain, £ oy (L00 micro in/in).

6.2.1 From the previous chapter the distribution
and magnitude of shear stresses in a cracked reinforced con-
crete beam are known. The flexural strain distribution at

any particular section can also be computed as shown in Fig.

5.1.

6.2.2 Shear Strain

Consider a section at a distance x from the left
hand support, then at any level ‘'y' from the top concrete
fibre, the shear stress, Txy is known., The shear strain would

be:
1

Y = ")EX' 6.1
Xy Gc

E
s - - c
where Gc shear modulus of concrete TR

91
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Here V is the Poisson's ratio. The value of V for concrete

is taken as 0.16.

©6.2.3 Principal Strain

If Sxy is the flexural strain at a distance x from
left hand support and at a depth y from top fibre of concrete
then the magnitude and direction of maximum principal strain
at the same position can be computed by the conventional com~

bined strain formula, as:

S,/ Gz, a2 6.2
“max 2 2 2 . '

Here any effect of transverse strains has been neglected.

Alsa
6 = = tan 1 (zﬁl) 6.3
— 2 8 L]
Xy
6.3 Since the computed shear stress is zero at the root

of the crack any inclined crack likely to occur must be some
distance above the root of the flexural crack. The uncracked
concrete cross-section at any particular location is divided
into a number of intervals and at each level the combination
of shear and flexural strains (maximum principal strain) is
computed. Since in this computation the magnitude of the
applied bending moment is arbitrary, the largest of the

maximum principal strains will be regarded as the cause of
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inclined cracking if it is greater than or equal to the
critical cracking strain €ap® The more correct computational
procedure is to apply incremental loading and trace the lo-

cation and direction of the top of the crack.

6.4 Numerical Example

6.4.1 Consider the "typical Beam' having p = 1.88%,
K = 17000 1b/in and a/d = 3. Fig. 6.1 shows the computed
flexural and inclined crack pattern in the combined bending
and shear region. The procedure of computing the inclined

cracks is as follows.

6.4.2 Procedure

The flexural crack heights are obtained in the usual
manner as outlined in chapter III. In computing the in-
clined cracks, the shear stress distribution in the remaining
uncracked concrete portion at a particular cross-section is
determined. The uncracked concrete portion is divided
into 50 equal intervals; at each interval the maximum
principal strain is computed as outlined above. The largest
of all the maximum principal tensile strains is regarded as
the cause of inclined cracking if it is greater than or
equal to €or® The first increment in the crack height is
then computed in the same way as explained in Chapter III.

Then the new total cracked height will be the sum of the
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flexural crack height, the first increment in the crack
height due to maximum principal tensile strain and the height
between the root of the flexural crack and the depth overx
which the maximum principal tensile strain is equal to or

more than €ap? see Fig. 6.2.

Ch

It

CH M Ach' + Dc
C C
and

21 6.4

it
vt

!
)

m

The new remaining depth, 2H', is reused in equation
3.1 in place cof 2H and another increment in the crack height
is obtained. All the above procedure, is repeated until a
stable section is obtained, as explained in chapter 1II,
section 3.1, except that the magnitude of € b in this case
is equal to the largest of the maximum principal tensile
strains.

It was found that vertical shear capacity of a
particular section in the uncracked concrete diminishes as
the inclined crack height increases. For example at
x = 11.2 in. the shear force carried by the uncracked con-
crete above the root of the flexural crack is 45 percent.
After the stabilization of the inclined crack the pexcen-
tage shear force carried by the uncracked concrete is re-

duced to 41.5 percent.
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6.5 Discussion

The maximum principal strains computed in the re-
maining uncracked portion of the beam are in fact greater
than the critical cracking strain, €y (100 micro in/in),
hence an inclined crack is obtained. An inclination of up
to 40 degrees with the vertical has been obtained. This
suggests that inclined cracks may be developed when the

principal strains are computed.

By computing and plotting the development of cracks
during incremental loading it may be possible to trace the

development of inclined cracks.



CHAPTER VIIL

SUMMARY, CONCLUSION AND SUGGESTIONS FOR
FUTURE STUDIES

7.1 Summarz

In this thesis a reinforced concrete beam has been
treated as a composite beam with incomplete interaction.

The solution for a composite beam with stepped profile
was obtained. It takes into account the compatibility con-
ditions at the change of cross-section, i.e., at the first
flexural crack. It was found that the maximum crack height
under the load point calculated by this method (Newmark 2B)
remains the same as obtained by Newmark 1, which does not
take into consideration the compatibility conditions, see
Fig. 2.7. However, the crack profile obtained by Newmark 2B,
in the increasing moment region, is better than the crack
profile obtained by Newmark 1, as the cracks are not sc
high in the initial flexural cracking zone. It has been
found that the Newmark 1 solution can well be applied to the
study of reinforced concrete beam, since the difference be-
tween the two approaches when computing the moment capacity
under the load point is negligible,

The non-linear behavior of concrete has been con-

sidered and the area under the parabolic stress-strain curve

98
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of concrete has been approximated to a triangle, by reducing
the modulus of elasticity of concrete. It has been found
that the crack height, in general depends upon the bond-slip
nmodulus, K, and modulus of elasticity of concrete, Ec. The
decrease in K results in higher crack heights., On the other
hand the decrease in Ec also decreases the crack height, see
Figs. 3.4 and 3.5.

The stability of flexural cracks has also been discussed
and it was found that the tensile crack stabilizes, after pene-
trating vertically into the beam to a certain height until the
lower fibre concrete strain, €ap’ is equal to critical cracking
strain, Eopr aS well as there being equilibrium between in-
ternal and external forces. The analysis of Krahl(lo)et al.
and MacGregor and walters(1l) also depends upon stability of
the tension crack, but the analysis presented in this thesis
differs in the sense that they did not account for the relative
movement (slip) between the concrete and steel.

It was found that the interaction diminishes as the
shear-arm to depth-ratio, a/d, is reduced, consequently the

concrete top strain, € increases and steel mid height

ct’
strain, €am’ decreases. Hence, the influence lines for the
maximum moment carrying capacity were obtained. These are
almost the same as obtained experimentally by Kani, Leonhardt

and Walther, and Morrow and Viest (see Fig. 4.1, 4.2 and
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compare with Fig. 4.5 for a/d > 2.5). These carrying capacity
curves are only based on the consideration of flexural stresses
and no account has been taken of shear stresses. Figs. 4.9

and 4.11 show the comparison between Kani's (19) experimental
results and the computed results of this thesis., It is interes-
ting to note that these curves are similar in magnitude and shape
for a/d > 2.5. It is to be noted that each curve consists of

two parts, namely one sloping down (portion VT in Fig. 4.5)

and the other which is almost horizontal (portion TE in Fig. 4.5).
In the sloping portion concrete governs the strength of the

beam while in the horizontal part the steel reaches its

yvield strain first. Point 'T' in Fig. 4.5 represents the
transition point which divides the two governing factors and
alsc at this point the concrete and steel both fail simultaneous-

iy.
The transition point, T, as reasoned by Kani(g) dif-
ferentiates between the two modes of failure. Beams having
a/d ratios less than T fail in diagonal cracking and after the
transition point only normal flexural failure is possible.

It was established that the value of bond-slip modulus,
K, affects the moment carrying capacity and the location of
the transition point. The carrying capacity increases slightly

on the right side of transition point and decreases on the

left side of transition point, as the value of K reduces for

MCMASTER UNIVERSITY LIBRARY
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a given percentage of steel, Also the transition point moves
more towards the support for higher values of K, Fig. 4.6.

It has been found that the percentage of steel, p, has
a significant influence on carrying capacity and also on the
position of transition point. The transition point moves to-
wards a larger a/d ratio for greater percentages of steel,
Figs. 4.10a and 4.10b.

(19)

Kani , in describing the influence of p on relative
beam strength stated, "for those beams with a high percentage
of reinforcement (p = 2.80 percent), the 'valley of diagonal
failure' has a low point in the vicinity of Mu/ﬁfl = 50 per-
cent, whereas for those beams with a low percentage of rein-
forcement (p = 0.5 percent with Mu/ﬁlfl = 100 percent), the
'valley of diagonal failure' disappears". Kani also stated
that the amount of reinforcement influences the location of
the transition point, T. Varying the main reinforcement
from p = 2.80 percent to 1.88 percent and 0.80 percent, the
test results produced locations of the transition point, T, at
a/d = 6.5, 5.5 and 3.5,respectively.

The computed results show that for p = 0.50, 0.80,
1.88 and 2.80 percent, the transition point T occurs at
a/d = 2.5, 3.0, 5.4 and 7.1 ,respectively. The computed
relative beam strength,Mu/Mult at a/d = 2.5 is 100 percent,

84 percent, 54 percent and 58 percent for P = 0.50,0.80,1.88
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and 2.80 percent, respectively. In spite of the fact that
certain simplifying assumptions were made for this analytical
approach, the computed values are in very close agreement
with the experimental results. The only qualitative assump-
tion made in the analysis is that the bond-slip modulus
should have the magnitude that would give the closest agree-
ment between the computed and Kani's experimental results at
the experimental transition points V and T.

The analysis was further extended to determine the
shear stress distribution and the contribution of different
actions in a cracked beam. Shear studies were carried out by
two different methods, one to determine the shear distribution
in uncracked concrete and the other to find out the distri-
bution in the tensile zone. The analysis indicated that the
contribution of uncracked concrete varies from 39 percent to
55 percent depending upon the remaining uncracked depth and
shear span to depth ratio. Dowel action contributes about
7.5 percent of the total shear force and the rest, presumably,
is carried by aggregate interlock action. The opinion of
research workers varies widely regarding the share of total
shear force by different actions. MacGregor and Walters(ll)
suggested that 66 percent of the total shear force is carried
by the uncracked concrete, 23 percent is carried by aggregate

interlock action and the rest, 1l percent, by dowel action.
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(1)

Fenwick and Pauley claim that the contribution of un-
cracked concrete is 30 percent and the remaining 70 percent
is carried by aggregate interlock and dowel actions; out of

this 70 percent %rd to %th.is the contribution of dowel

(ls)assumed that as much as 60 percent of the

action. Acharya
total shear force is carried by the dowel action.

It is also suggested that shear stress at the root of
the flexural crack is zero. This differs with the opinion of

Krahl et alflo)and MacGregor and Walters(ll)

who argued that
for an inclined crack (extension cf the flexural crack) there
must be some shear stress at the root of the crack. But, in
many instances the diagonal crack is above the flexural crack,
therefore, the assumption of zero shear stress at the root of
the flexural crack is reasonable.

It has been shown that inclined cracking is possible
above the root of the flexural crack and an inclination of as
much as 40 degrees is possible. This inclination was ob-
tained by combining the bending and shear stress. No account
has been taken of normal stresses. A more rigorous analysis
is required to determine the path of the diagonal cracks, and
an incremental loading technique should be utilized. It is

hoped that this may provide more insight into the problem of

diagonal cracking.
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7.2 Conclusion

The following conclusions are drawn from this study:

(7N calted

1. The composite beam solution of Newmark
Newmark 1) can be applied, giving reasonable accuracies,
to determine the crack profile and moment carrying capa-
city, particularly with respect to the crack height at
the load points.

2. The magnitude of modulus of elasticity of concrete has a
significant influence on crack height. For higher wvalues
of Ec' the crack height will be higher.

3. The bond~slip modulus affects the final height of the
flexural crack. The lower the magnitude of K, the greater
will be the height of the flexural crack.

4. After flexural cracking, the value of the interaction co-
efficient, %, increases, as the depth of the remaining
uncracked concrete diminishes.

5. Due to reduction in the remaining uncracked depth during
the process of flexural cracking, the horizontal force, F,
increases, as the moment carried by the remaining un-
cracked concrete, Mc' decreases.

6. The bond-slip modulus, K, percentage of reinforcement, p,
and the shear-arm to depth ratio, a/d, have a significant
influence on moment carrying capacity of the beam. The

lower the a/d ratio, the lower will be the carrying
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capacity. Increase in the magnitude of K increases the
carrying capacity to the left of the transition point,

T, and also it shifts 'T' more towards the support.

The percentage of steel has two effects; it increases

the moment carrying capacity if p increases and also
moves the transition point away from the support.

Shear studies show that 39 percent to 55 percent of

the total shear force is carried by the uncracked concrete,
7.5 percent by dowel action and the rest by aggregate
interlocking action. (The study of shear force carrying
capacity at a cracked section in beams with different
dimensions, however, indicates that the proportions can
vary significantly. A study of a typical beam tested

by Plowman showed that the dowel actions can contribute
up to 20 percent with the uncracked section supporting 46
percent and aggregate interlock taking the remaining 34
percent.)

Inclined cracking can occur above the root of the flexural
crack, since the principal strain can be more than the
critical cracking strain. An inclination of as much as

40 degrees to the vertical was obtained.
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7.3 Suggestions for Future Work

1. The flexural cracking, based on composite beam theory with
incomplete interaction, should be extended to include
curvilinear stress-strain characteristics of concrete.
This should lead to more realistic cracking profiles and
probably better understanding of the problems of diagonal
cracking.

2. The values of bond-slip modulus, modulus of aggregete
interlock action and dowel action modulus should be in-
vestigated and the effect of various parameters, such as
percentage of steel {(diameter and number of bars), breadth
and depth of cross-section and the strength of concrete
and steel on the magnitudes of these moduli should be
determined.

3. A theoretical arch model should be investigated for the
determination of moment carrying capacity of a beam for
smaller values of shear-span to depth ratios (i.e.

a/d < 2.5), in order to estaklish a complete theoretical
explanation of the behavior of reinforced concrete beams.

4. The distribution of shear stresses in the cracked region
(tensile zone) of the beam should be investigated more
rigorously. In particular the cantilever action of the
concrete 'teeth' in the cracked zone should be treated

as a multilayer composite beam problem.
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This method of analysis should be extended to study the
effect of incremental loading. Such an approach may lead
to a better production of the path of diagonal cracks

and better understanding of such a failure.
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APPENDIX A

FLEXURAL CRACKING THEORY

A.A.1 The conventional theories for the analysis of rein-
forced concrete beams assume that there is perfect bond be-
tween the steel and the concrete and that no slip occurs.
However, it is well recognized by the experiments of many

(1,2,30) that the two materials in a

research workers
reinforced concrete beam do not act perfectly together and
there is always some relative movement between them. 1In a
cracked beam this phenomenon is much more pronounced where
slip is partially due to the breakdown in interaction (be-
tween the concrete and steel) and partially due to defor-
mation of the concrete teeth.

Although a reinforced concrete beam does not possess
a distinct interfacial plane between the concrete and steel.

(17) can be applied if a pseudo-

The composite beam theory
interface is assumed.

The following assumptions are made for the derivation
of the formulae:
1) Concrete and steel are perfectly elastic materials.
2) Concrete and steel deflect equal amounts at all peoints

along the length of the beam, i.e., they have equal

curvatures at any cross-section.
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3) The horizontal force, F, transmitted to each component
by the bond is considered to act at the centroids of
each section.

4) There is a linear strain distribution across the depth
of the section.

5) The bond-slip modulus is assumed to remain constant be-
fore and affer cracking and is uniform and continuous
along the length of the beam.

6) The amount of slip between the concrete and steel is
directly proportional to the horizontal shear.

7) The total external moment, M at any locaticn along

£’
the length of the beam is equal to the sum of the indi-~-
vidual moments, in the concrete, Mc’ and in the steel,
MS, and the additional couple due to horizontal force,
F, hence:
M, =M, o+ M + FeZ.

The line joining the extremities of the flexural

crack is called the crack profile. This profile will be

treated as a pseudo-interface. Referring to Fig. A.A.I, the

stress-strain at- the pseudo-interface can be written as:

Qx = g€, — € A.A.1l

where
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. dy _ - e -
N X €gt € €ab A.A,2
From the similarity of the shaded triangles,
D - % - 2H'
e, = (e —e )¢ T ) A.A.3

where €. is the strain due to distortion of the 'concrete
teeth' in a cracked beam. Since the strain distribution has
been assumed to be linear across the section, analogous

to composite beam theory the following expressions can be

written:

.
e - F + I\is S
sb ESAS ESIS
Est - F - Mscs
E AS ESIS
> A.A.4
M C
b ="EFA Y ET
¢ c'c c ¢
M C
- _ _C
€ct "E A E I
ce c ¢
J
Therefore: MC M C p - & _ opt
= F + .5 s _ F + S Sy 2 )
€ E A E 1 EA E T 5]
s g s”s s's s s
2 MSCs D - % - 2H!
or £ = - ( ) A.A.5
r BSIS d
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Substituting this value of €. in equatiocn A.A.2, the rate

f change of slip will be:

g1
il
™
!
™
}

According to composite beam theory:

_ar
T odx

A

| w

where q load transmitted per unit length of the
beam (here , between concrete and stecl
reinforcement)

F = Interaction force

Spacing of connector

1]
I

it

1 in. (For reinforced concrete beam)

K

i

Bond-slip modulus.

Differentiating egs. A.A.7, and A.A.8 with respect to x,

vields:
2
g_%.-: ‘1.1‘21 A.A.9
dx
and %% = g% . % , where s = 1 A.A.10

Substitution of eq. A.A.9 in eq. A.A.10, yields:

R
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Therefore, eq. A.A.6 will then be:

1 & L LS
K dxz st cb Eslsd

(o - % - 2H'). A.A.11

Now substituting values of € and € b in eg. A.A.11 from eq.

st
A.A.4
1a% (o Tssy Ll E_ “ere el b d 25")
K dx2 ESAS hSIS ECAC ECIC EsIsd 2

Re-arranging,

2 M_C M C 2M_C
1 d™"p 1 1 s”s c’C sS'Ss d
= = F( + =)= + = + D - 5 - 2H")] A.A.12
K 352 EA,  EA, 'EI,  EI,  EJId 2

Since it is assumed that the concrete and steel rein-
forcement deflect equally at all points i.e., they have equal

curvatures, therefore:

S = .C A.A.13

Also from the equilibrium of composite section

M =M + M + FeZ2 . A.A.14
t (o] s
Therefore:
Mc Ms Mt - F2Z
= = A.A.15
ECIc ESIs ZEL

where
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2 M, ~F+2 2C
1 a°r 1 1 t s a ,
= —= = F( + ) - [c+C + —— (D - 5 - 2H")]
EL d 2
K dxz ESAS ECAc z s C
2 2 M, 2
14°F 1 1 Z +
or = —5 = F{3 + } - e A.A.16
K dx2 LSAS EcAc LEI LEI
2CS d
= P - o e 1
where Z CS + Cc + 3 (b 3 2H')
by definition Cc = H'
_d
and CS = -2'- .
1 1 1
1f - t o
EA E As LcAc
and FT = IEL + BA-2°

Then eg. A.A.l16 can be written as:

1 &% _ pe_ BL_ _ M2
K gx? tazgr CBIL
By re-arranging the above equation:
a’F ET Z
- FeKe— = - Keeee M (x) A.A.17
x> EALEI LEL Tt
For a cracked section,
2Cs d
— - ]
Z = cs + cc + —a—~»(D 5 2H'")
- 4 ' 2d _ 4 _ '
or Z =3+ H' + 57 (D 5 2H').

Therefore, Z =D - H'.,
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For an uncracked section, where there are no concrete teeth,

b - %-- 2H' = Q and so E. = 0. Therefore, equation A.A.2,

reduces to:

‘The equation for the uncracked section will be ob-
tained in a manner similar to that for the cracked section

This shows that slip occurs only between the rein-
forcement and the concrete surrounding it, in an uncracked
beam, whereas in a cracked beam there would be an additional
slip due to deformation of the concrete teeth.

It is therefore, concluded the differential equation
A.A.17 is applicable to both a cracked as well as uncracked
section of a reinforced concrete beam.

Equation A.A.17 is a second order differential
equation in F. The sclution of this equation can be ob-
tained for various loadings and end and compatibility con-
ditions by expressing the external moment M, in terms of

t
distance x of the section from left hand support.
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APPENDIX B

PROGRAM TU FIND THE CRACK PROFILE UF ReCe TEAm

FUNCTION
THIS PRUGRAR COMPUTES THE FLEXURAL CRACK PROUFILE OF A REINFUR-
CED CONCRETE BEAM = TREATING IT AS A CGWPUSITE BEAS wITH

INCOMPLETE INTERACTION

IR R T R T R N T R T T T T T T S T S S T S

RSNt

FI T T T T T N Y

L S T T O T T YO S T I A N A Y N A TN O N T T 508 IO O N TN T N IO IO O I A O BRI B ¥

INPUT DATA
AS A PARTICULAR CASE THE DICENSIONS OF v TYFICAL BEAM ' HAVE
BEEN USEDe
NOTATIONS

ACsACL AREA OF COUNCReTE

AS AREA OF Tt REINFORCEMENT

B wIDTH OF THE bLA#M

BM MAXTUM EXTERNAL MOMENT

BMC MOMENT CARRIED B8Y CONCRETE

BMS MOMENT CARKRIED Y STEEL

BrMX APPLIED MumiENT AT A SECTIutv X FRum LEFT oJPPURT

Co1l INTERACTICN COLFFICIENT - INITIAL VALUE

CCCC INTERACTIUN COLFFLICIENT = TERMIMAL VALJE AS GUTPUT

CH TOTAL CRACK HEIGHT

CI=CI1 FMOUMENT OF INMNERTIAS OF CulkcoTE

DELCH INCREMENT IN THE CRACK HEIGHT

DIS DIAMETER UF THE STEEL REINFCORCEMENT

ED EFFECTIVE DEPTH GF CONCRETE

ECsES ODULT CF ELASTICITY OF CONCRETE AMD STEEL
RESPECTIVELY

FesFP INTERACTIUN FURCE FUR INCUMPLETE Anb CUmPLEIE
INTERACTIUONS REoPECTIVELY

FFp DEGREE OF INTERACTION

RD UNCRACKED DEPTm OF CONCKRETE

sl MOMENT OF INERTIA OF STEEL

STCR PERMISSIBLE CRACKING STRAIN

STCBsSTCT STRAINS AT BOTTOm AND TOP FIBRES COF UNCRACKED
CONCRETE RESPECTIVELT '

SToBs5ToT STRAIN AT BOTTu ANL TOP FlpkeS OF STEEL
REoPECTIVeLY ]

STSM MID=HEIGHT STRAIN IN STEEL

1D TOTAL DEPTH OF CONCRETE

U LENGTIH OF THE SHEAR SPAN

uoD SHEAR DEPTH RATIO

w EXTERMAL APPLIED LUAD

X DISTANCE UF ANY SECTIUN FrUM LEFT HARND SUPPURT'

Z521 INTERMAL LEVER ARw

LK)

BCHND-SLIP MODULUS



N"NONO NN

[

11

14

122

ZL LENGTH OF THE BEAmM

L2 HALF THE LENGTH OF skAM
D E CK

B

DIIMENSICN FL1UU) oFPIL1UG) sFFP(L100) s Cl1L) 94K (10)
DATA _INPUT AKD CALCULATIu~N UF SECTIUN PRUPERTIES
TD=12.0

ED=1047

B=6eu

AS=1.207

STCR=UVeu0UL1

UOD=4 .U

BM=264500,4,0

2L =240U%#U+36,4,U

WRITE(622) TDsBEsASsSTCRsUIBMIEDSZL
FORNAT(ﬁFlZo 25XsFl2e695X92F15e535X92F125)
S=1leU

PI=22e0/ 70

LL2=2L%Ve5

EC=3.,8E+Ub

ES=3U,0E+U6

ACl=B*TD

Cl1=D%TD#%32e/124V

Z1=ED~(Ue5%TD)

ASS=045%AS

DIS=SQRT(4euxASS/PI)

SI=24 v (ASSH¥24/ (4, U*P]})

SEI1=EC*CI1+ES%SI
EABL=ES*AS*EC*ACL/LES*AS+EC*ACL)

EIBl= SEIl+tAblyZl*Zl

X=3.0

I=1

ZK{(I1)=17000.u .
C(I)=5*EA81%5E11*pI*PI/(ZK(I)*EIBI*ZL*ZL)
COI=1a.0/Cl1)

W=BM/U

WRITE(6s14) X

FORMAT ({1HUs26HSECTION CONSIDERED IS AT =sF6. 2)
CH=060

CALCULATION OF INTRACTION FURCE AND CRACK HEIGHT INCREMENTS
RD=TD-CH

AC=B*RD

CI=0%RD¥%36/12eU

SEI=EC*CI+ES*SI

EAB=ES#ASXECX¥AC/ (ES®AS+ECH*AC)

2=ED~0«5%RD

EIB=SEI+EAB*Z%*Z

CR=S*EAB*SEI* PI*PI/(Z&(I)‘EIB *ZL*ZL)
PPI=SQRTI(CR)

AA=PI#X/(ZL*PPI)



30

15

27

EE=PI®*(Ue5-U/ZL)/PP1
FE=PI%*(va5-X/ZL)/PPI1
BB=PI#U/ (ZL*PPI)
DD=uUe5*PI/PPI
GG=SINH(AA)
HH=SINH(BE)
PP=COSH(EE)
PPP=COSHI(FF)
PIP=COSH(DD)
IF(XeGTWsU) GO TO 30
BMX=W#*X

FFP=1eU=({GG*PP)/(PIP*AA))

FP=EAB*Z*BMX/EIB
F=FP*FFP

GO TO 7

BMX=BM

FFP=leU={ (HH#*PPP)/ (PIP*BB))

FP=EAB#*Z*BMX/E1B
F=FP*FFP
CC=Ue5%RD
CS=Ue5%DIS

BMC=(3MX~F%*2)*EC*CI/SE]

BMS=BMX—-BMC-F*Z

STCB==F/ (EC*AC) +BMC%CC/ (ECxCI)
STCT==F/(EC*AC) -BMC*CC/(EC*CI)
STSB=F/ (ES®AS) +BiO*CS/ (ES®ST)

STST=F/(ES*AS)—BulS*CS/(ES*S1) .

STSM=Ue 5% (STST+5TSB)
CCCC=1.U/CR

IF(STCBWLESSTCR) GO TO 8
IF(ABS(STCB=STCR) eLTeleuk=06)

IF(CHeGESTD) GO TO 8

DELCH=RD#(STCB-STCR) /(STCLBb=-STCT)

CH=CH+DELCH
GO TO 5

GO TO 8
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WRITE(gs1l) RD:CH;DELCH’F(I)9DMC9CCLC92K(I)gSTCDaSTLTsSTSM

FORMAT(1HuUs7F11e393E15e4)

IF(XekQsU) GO TO 27
RRR=140
X=X+RRR

IF(X.LEsZL2) GO TO 11

X=U
GO TO 11
SToP
END
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PROGRAM Tu FIND TrE CRACK PRUFILLE UF RKeCae sche

it e o ——— s = (8 e oy T S v o tom = it n b > = - - i b —t ———

FUNCTION
THIS PRUGRAM COMPUTES THE FLEAURAL CRACK PRUFILE UF A ReINFUKR—
CeD CONCRETE E2EBEAM - TREATING IT AS A COMPUSITE uvbAm wITH
INCOMPLETE INTERACTIONS

INPUT DATA
AS A PARTICULAR CASE THE ulmENSIONS OF ' TYPICAL oEAm ' HAVE
BEEN USEDe THE DISTANCE OF THE FIRST FLEXURAL CRACK FRUm THE
S5UPPORTs AS CUMPUTED IN THE PRUGKAM UF APFENDIX B (NEwdARK 1
METHOD) » HAS LEEN UScu AS THE MAGNITULE UF 'ALP'( Tdb LENGTH
OF THE FuLL CRO55-SECTIUN FROm THE >JPPORT ).

NOTATIONS

ALL NOTATIONS ARE SAME AS USEL IN TrE APPenNDIX © PROGRA®Me

C

VA

x* N

£
R

DIMENSION C(1lu)sZK(1u) =
TD=12.0

B=6.U

AS=14207

STCR=U4,ulU1

ED=10.7

Uob=3 .0

B=264500,4,U

ALP=441

U=ED*UOD

ZL:ZQU*U+3600

WRITE(692) TDsBsASsSTCRsUsBMsEDZL
FORMAT(3F1l2e535XsF12e695X32F15e595X22F1245)
S=10U

PI=22+U/74U

LL2=21.7/2eV

W=BM/U

ZK{1)=17000.u

EC=3.8E+06

ES=30.0E+U6

AC=B%*TD

CIl=B*TD%*%3/12.U

Z=ED=-TD/2ev
ASSS=Ue5%AS



11
12

R )

490

DIS=SURT 4 e ASES/PI)
SI=ZaUFALSOW#Z o /{LaP])
SEI=EC#II+_0%0]
EAL=CS#ASHLCHAC/ (LOFAL+FECTAQ)
tlo=5SCl+babidss

X=1.U

WRITE(6s12) XsBl

FORMAT(1Hue31HTHE SECTION CONSIDEREL 1S

IF(XeGTWU) GO TO 3

BMX=w%X

GO TO 4

bMmX=5m

CH=vas U

RD=TD-CH

ACl=E%RD

Cll=p#*RD#%3/1240L
SEI1=EC*CI1+E£S#S]
EASI=ES*ALRECHACL/ (ES*AS+C*ACT)
Z1=ED~RD/2ev
EIbl=SEll+CAnlsZls®2q

QG=Ln (1 Y#EIG/(SHEAB®SET)
QGL=ZR (1) #ET 1/ (S*EALLI®SELL)
RREZK (L) #L%,/ {o*BE])
RRI=ZK(1I%L1 %0/ (9%5ETT)
SGU=ESURTIQQR)

SQUL=5QRT(GUL)
AA=COSHLALP*5GG)
BL=COSH(ALP*SQUL)
CC=SThHIALP#5GQ)
DD=SINH(ALP*5QQ1)

EE=ZL2-J

FF=COSH(EE#5GLG1L)
GG=STAHISGGL*ZL2)
PP=COSH{SWGL*Z12)
S5=SINHIU%SLUL)
TT=COoH(U%54,Ql)
VVE5WRWEIXBERFAA-SQQ*DD*CC
UU=RRI*FF/(GG*GU1%*%145)
YY=5QWR#CCHBE-SQQ1*CO*AA
XX=RR1/&QA1-RR/GQ
27=500*CCH*XX/SQG1

CCl=UeU .
CCa=~(ZL+LIH*VVI/(YY+(VV*PP/GG))
CC3==(CC4*PP/GG)=-LU :
CC2=Wl#(CCa%R3+CC4#DD) /(LE*CQ)
CCH=CC3-{RR1L#5S5/(QQ1%%1e5))
CCH=CCHAIRRI#*#TT/Z(LALI**1a5))
IF{XeGTeALP) GO TC 1wl

F=CCLl*COSHIX%5GGE ) +CC2# ST X¥SQL ) +RR*X /GG

FP=RR#X/Q0
FFEP=F/FP

CCC=TC/ 2w
C5=015/2ev

/“.T X=9FlU-29le9F1202)
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1uv2

10
16

15
6u

EmC= (oM R=F* L)% CxCI1 /551
bnS=ho X =L C-F %L
STCh==F/(ECH*AT)I+5mCxCCC/{ECHCT)
STCI==F/(EC#ACH~DCClC/ 0D

ST =F/Z{ELHAL) =BIS*Co/(E5*S
STOM=web¥ (ZTLTHSTSER)
GO TO 7
IF(XeGTaL) GO TD 1U2
FaCC2#CUSHIXH¥S5GUL ) +CC4#*ST b (X*50L,G1) +R1*X/GGT
FP=riR1#X/qul

FEP=F/FP

CCC=RD/Z2eV

Co=wlS/2ev

BriC= (DMX=FRZ1)#ECHCIL/SELL

BihiS=u A=omC-F%Z1
STCL==F/{EC#*ACL ) +uMCICT/(EL*CIT)
STCT==F/(£C*ACL)—EXC*LCC/(ZC*CI 1)

STOB=F/ (ESXASY+SHE*CE/(Io%01)
STOI=F/7(ELH#AL) B L% CL/ESHST)
STSH=Je 5% (STSB+5TST)

GO TO 7

IF(XeGTeZL2) GO TO 6w
F=CCB%CUuSHIX#ouul 1 +CCE#STHLA (XN sl M +RR1IFU/ZLL]L
FRr=a=kiRl*u/uul

FFPE=F/rP

CCC=RI/ 20w

CS=DIS/24u

Bral= (i A-F#L1)*EC*CTIL/ 78T

B¥S=ovriX=iiC~F*Z1

STCS==F/{EC*ACL) +biC*CCC/(ECHCIL)

STCT==F/ (EC%nCL) =3 IR/ (RCHCTEL)
STI3=F/(E5#AL)+B1iS*Co/{ELHS])
STST=F/{ESHAS) -8B o%Co/(Z5%51)
STovizue D% (LT LB+OTOT)

CONTINUE

CCCC=1leuv/CR

IF(S5TCHRLESSTCRY GO TO 8

IF(ALS{STCU=5TCR) eLTeleE-36)Y GO TO 8
IF(CHeGLeTu) GO TGO 8

DELCH=RO* (STCE-STCR) /(3TCs~5TCT)

CH=Ch+beLCH

GO TO b5 ' )
WRITE(H91v) ML eCilsDELCHioF o3iMCesCCLCZK (1) s STCLoSTCTsSTSH
FORMAT(IAUeTIF11e393C15e4) :

[IF{XeZQal) L0 TO 27

RRR=lcU

X=A+RIRR

IF{AeblCeZl2) GO TO 11

A=U

GO TO 11

STOP

END

126
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APPENDIX U 127

PROGRAKM Tu FIND THE mUMedl CAKRYING CAPACITY UGF ReCe broAwM

FUNCTION .
THIS PRUGRAM COMPUTES THE ~AXIdumM MUMENT CARKYING CAPACITY
OF A REINFORCED CONCRETE bEAM FOR DIFFIRERNT SHEAR-ARM TO
DEPTH RATIOSs UNDER LUAD PUINT oY NEWmARKR 1 THEURYe THo
BEAM HAS BEEN TREATED AS A CumPuSITe bbAm wITH INCOMPLETE
INTERACTION.

INPUT DATA
AS A PARTICULAR CASE Tht DIMEnOLIONS OF + TYRPICAL vEAM ' HAVE

BEEN USEDe
NOTATIONS

AO DEPTH OF NEUTRAL AXIS AS ObTAINED BY AsCele COUE

FORMULA

EUC ALLOWABLE ULTIMATE STRAIN IN CONCRETE

P PERCENTAGE OF TENSILE REINFORCUEMENT

SuC ULTIAATE CRUSHING STREES OF CUNCRETE

RATIO RELATIVE SEAM STRENGTH

YST YIELD STRESS OF STEEL

YSTS YIELD STRAIN OF STEEL

UBMM ULTIMATE ~OMENT CAPACITY UF THE BEA-~OSTAINED BY

AeCele CODE FORMULA

OTHER NOTATIONS ARE SAME AS USED IN APPEruIX o PRUGRAM

LIMITATIONS
STCR=1uv MICRO IN/IN
STCT=300yu NMICRO IN/IN
STSHM=15u0 MICRO IN/IN

*G’

ECK
%K%

DIMENSION C(25)+2ZK(25)

DATA INPUT  AND CALCULATIO/N OF SECTION PROP:RTItS
TD=12,0

B=60U

P=1088

STCR=v,L0U1

ED=10.7

AS=B*ED¥P/1luu,eu

NN=10 .
NN IS THE NUMBER OF A/D RATICS TO BE CONSIDERED



28

53

54

128

INITIALLY ASSUME ANY SUITAOLE VALUE OF ULTIMATE sENUVING MUAENT
FOR EACH PARTICULAK AZL RATIO

DO 27 M=1sNN

READ(5s28) ULUODsBM

FORMAT(2F12ev)

U=UQD*ED

ZLL=2 e U¥U+36eu

WRITE(6353) TDsBy AthDQZL’PagTLR

FORMAT(1HU 92 1HPRUPERTIES UF SECTION6F124335E15e4)

WRITE{(69+54) UQD

FORMAT (1HusL1HU/D RATIC =3sF5e2)

5=1e0

KNT=v

PI=22eU/Tov

ZL2=ZL*U¢5

EUC=ueU3

EC=1+9E+06

SUC=EJUCH*EC

ES=30Ues0E+US

YST=450UL04U

YSTS=YST/ES

ACl=8%TD |

Cll=p*TL#%34/1240

Z1=ED=(ue5%*TD)

ASS=UeH%AS

DIS=5QRT(4eL#¥ASS/PI)

SI=24Ux(ASS#%24/(4a0U*PI)) )

EABLl=ES#AS*LC*ACL/ (ES*ASHECH*ACL)

SEIL1=LC*CI1+EL%S]

EIBL=SEIL+EABL*Z1%Z]

X=U

FOR THE CALCULATION UF ULTImATE CARKYING CAPALITY SECTION UNDER
LOAD POINT 1S CONSIDERED

I=1

ZK(I)=17Uvveu

C(1)=5*EA81%SEIl*PI*PI/(Zm(I)*"IBI*ZLyZL)

COoI=1.0/C(])

w=bMm/U

CH=GeU

FOR EVERY SLET OF pENUING mOmENT AND A/D KATIU FLEAURAL CRACK
STABILISES FIRST

RD=TD-CH

AC=B*RD

Cl=B%RD%*3s/124U

SEI=EC#CI+ES%*S] o

EAB=ES#ASHECHAC/ (ESHASHECHACQ) '

Z=ED—-U ¢5%RD

FIB=SEI+EAB*Z*Z

CR=S#EAB*SELI#PI*PI/(ZK (1) #EIB®ZL*ZL)

CCCC=14U/CR )

PPI=SQRT{CR)

AA=PI*X/(ZL*PPI)

BB=PI*U/(LL*PPI)

DD=veb%PI/PPI

EE=PI%(ve5-U/ZL)/PPI
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30

103

31

49

12
FF=Pl#({ve5—X/2L)/PPI 2

GG=5IHH (AA)
HH=STNH (b))

PP=COSH(EE)

PPP=COSH(FF)

PIP=COSH(DD)

IF(X.GT.U) GO TO 3U

BMX =i %X
FFP=1.u=((GG#*PP)/(PIP*AA))
FP=EAb*Z*BrX/ELB

F=FP*FFP

GO TO'7

BMX=Bi
FEP=140~{ (HH*PPP )/ (PIP*BB) )
FP=EAB*Z#3MX/ELB

F=FP*FFP

CC=Ue 5%RD

CS=ue5%DIS

BHMC= (BIX=F#Z ) #EC#CI/SEL
BiMS=BHX~BrC—F*Z
STCB=~F/ (EC*AC) +BHC*CC/LECRCI)
5TCT=~F/ (EC*AC)~BIC*CC/ (EC*CI)
STSB=F/ (ES*AS) +BIiS*CS/ (ES*ST)
STST=F/(ES*AS) —BiMS*CS/(ES*ST)
ST5M=Ue5% (STST+5TSB)
T=STSM*ES*AS

IF(STCBLLE.STCR) GO TO 20

JOF(ABS(STCB=STCR) 4LT41,UE=06) GO TO 2V

DELCH=RD*(STCB~STCR)/(STC3-STCT)

CH=CH+DELCH

GO TO 5

WRITE(63s3) RDsCHsFFPsCCCL,COLsSTCB»STCT»STSH

FORMAT(1HU s5F 14 e395E18e4)

AFTER STABILISATIUN UF CRACK CHEK FuUk THE CONCRETE ToP STRAIN AnD
STEEL mID=HEIGHT STRAINeIF EITHER UNe IS GRETER THAN THE
KESPECTIVE ALLOWABLE LImlT REUUCE THE BENDING mONMENTe1F ARNY
STRAIN EQUAL TO THE ALLOWABLE LImMIT TAKE ANUTHER A/D KATIO»
OTHERWISE INCREASE THE BERDING MOMENT AND REPEhT THE PROCESS

IF(STSMeGTe (YSTS+1UeCE~0U6)] GO TO 1U3

IF(ABS(STCT) «GT o {EUC+25eCE~C6)) GO TO 103

IF(STSMeGE.YSTS) GO TO 48

IF(ABS(STSM=YSTS) eLE«10sUE~0U6) GO TO 48

IF(ABS(STCT) «GE «34UE~G3) .GO TO 49

IF{ABS(STCT+3.0E~03) eLE«25.,0E~-06) GO TO 49

GO TO 31

BM=BM=500040

KNT=KNT+1

GO TO 6

IF(KNT+GTa1) GO TO 5U

BM=BM+5ulU,sv

GO TO 6

CALCULATIUN GF ULTIMATE BENOING suerbNT LY ACI CODE FORGULA

AO=ASHYST/ (Le85%SUCHE)

UBMH=ASRYST% (ED=ue 5%A0)

RATIO=BMX/UBMM



WRITE(GEs11) UBRinsBMXsRATIVsSTCT 95T S 130
11 FCORMAT(1lHusl4aH CONC CRUSHLY 93F1lb5e392E20Vek)

GO TO 27

CALCULATION UF ULULTIMATE SunDING mMumENT bY ACI CUDE FORMULA
48  AQ=ASHYLT/ (ve85%5UC*B)

UBMii=AS*YoT# (EU~ue 5%A0)

RATIO=BMX /UL MM

WRITE(6:47) UBMsBAXsRATIUsSTCT s STSH
47 FORMAT(1Hus14H STEEL YIELUDS 93F15e392E2Ue4)

GO TO 27
CALCULATION OF ULTIMATE BbabInG mUMENT 8Y ACI CODE FORIMULA

Bu  AQ=ASHYST/{Ce85%5UC*b)
UBMM=ASH*#YST# (ED-U+53%A0)
KATIO=BmX/UbMM
WRITE(635]1) UBMmsBiXsRATIUVsSTCT »STSH

51 FORGAAT{IHU»5HUSE LES3SER INCREWENT UF bin—=SeCTION 1S5 ncAREn Tu FAIL
IURE»3F124332E1544)

27 CONTINUE
STop .
END

——
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APPENDIX E 131

PROGRAM TO FIND THE SHEAR STRESS DITRIBUTION THROUGHOUT THE
DEPTH OF A CRACKED OR UNCRACKED ReCe orcAM

e e s st e e e . s et T et s - . S ot ¢ o o e e

PART 1) IN THE REMAINING UNCRACKED CONCRETE

FUNCTION
THIS PROGRAK COMPUTES THE SHEAR STRcSS DITRIEUGWTION IN THE
UNCRACKED CONCRETE ANv ITo CCONTRIGUTIUN InN RESISTING THz EX-
TERNAL oHEAR FORCce THE obEmm HAS téeN TREATED AS A CumPuslITE
BEAM wITH INCOMPLETE INTERACTIONAND NEWmAKK 1 THEOURY HAS SEEN

USEDe ___
INPUT DATA
AS A PARTICULAR CASE THE UIMENSIONS OF 't TYPICAL BEAM ' HAVE
BEEN USED. .
NOTATIONS
CRSP SPASING OF THE FLEXURAL CRACKS OR TOOTH WIDTH
DDNAL1 ARD DISTANCE UF ANY PARTICULAR LEVEL FrUm THE TUP
DDNA2 CONCRETE FIBRE FOR SECTIONS 1-1 AND 2-2 RESP-
ECTIVELY
DX DISTANCE oETWEEN THE SECTIONS 1-1 AN 2-2

FOR 1 AND FuUR2 HURIZUNTAL FURCE AT ANY LeVEL FRum TuP CunCrEiTE
FIBRE AT SECTONS 1-1 AND 2~-2s RESPECTIVELY

GC SHEAR MODJLUS OF CONCRETE

POR POISON'S RATIO FOR CONCRETE

" RSHF RATIO OF THE SHEAR FORCt CARRIcD bY THE UNCRACKERY
CONCRETE

SHF SHEAR FORCE AT ANY LEVEL FRCwm TOP CONCRETE FIoRE

STY1l AND STY2 CONCRETE STRAIN AT ANY LEVEL AT SECTIONS 1-1 AND
2-2 s RESPECTIVELY

TSHF ) TOTAL SHEAR FORCE ABOVE ANY DESIRED LEVEL
OTHER NOTATIONS ARE SAME AS USED IN APPENDIX Bs C AND
D PROGRAM

D ECK

FRFFFRH

DIMENSION X{5uU) s XX({5)sRD{(5)sCHI5)sFFP(5)sFP(5)sF(5)sB8MMX(5)sBMC(5)
DIMENSION BMS(5)9sSTCBI(5)sSTCT(5) sSTSB(5)93TST(5)sSTSM(5) sDELCH(5)
DIMENSION UNA(5)sDDMALI(50) sDDNA2(50)sSTY1(50)sSTY2(50)5F0R1(50)



62

13

47

56

132

DIMENSICN FUKZ2{50)sSHS(5w) sSHOTI50) sSHETHASG) s TI5C) sSHF(50)
DIMENSION TSHF(5U)sRUD(B5G1 o CHH(BC)
DATA InPUT AND CALCULATIUIN UF OtCTL\JH PROPERTIES
TD=12.y
B=6eU
AS=1.207
STCR=U,uLUL]
ED=10U.7
POR=0416
S::].Q'U
Pl=22eU/Tev
WRITE(69s2) TDsEDsBsAS»STLR
FORMAT(1HU :4F20e32F20e4)
CRSP=2.6
DX=uvel
UOD=3.0
M=264500.0
U=UOD#*ED
2L.=2eC%U+36e U
ZL2=v e b1
WRITE(6562) JODSBM
FORMAT(1HueL11HA/ZU RATIU =9FT7e235Xs LOHLENDING #OAENT =3F10.0)
NN=11
NN IS THE NUMBER GF SCCTIUNS AT wWHICH SHEAR CALCULATION DESIRED
READ(5s13) (X(1)YsI=1sNN)
FORMAT(16F5eu)
EC=1,9E+06
ES=3U.VUE+LE
GC=ULHEC/ (1 e U+POR)
AC1l=8%*TD
Z1=ED={(ue5%*TD)
DIS=S5QRT{4eu¥AS/PI1)
SI=AS*%2,/ (L4 eu*Pl)
SEIL=EC#CIL1+ES*SI
EABL=ES#AS#EC*ACL/ (ES*AS+EC#ACL)
E1B1=5E11+tABlxZl®%2,
C=5%EABL*SEI1#PI#*P I/ (ZK*EIB1*ZL*ZL)
DO 47 I=1sNN
RDD(1)=TD
CHH(I)=UeuU
CONTIRUE
W=BM/U
SECTIONS 1-1 AND 2-2 ARE AT AT A DISTANCE DX/2 TO THE LEFT AND
RIGHT OF THE PARTICULAR SECTION C-C
DO 15 J=1sNN
XX{1)=X{J)—ve5#DX
XX(2)=X(J)
AX(3)=X(J)+tLe5%DX

"WRITE(6956) X{J)

FORMAT (1He s L4HSECTION AT X =sFTe2)
DO 16 I[=1+3
RO(I)=RbLD(J)
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21

43

41
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CH1)=CAn(J)

CONTInNUE :

THE FLEXURKAL CRACK HEIGHT AT THE PARTICJILAR SECTlunw C-C Is CiALQUL-
ATED FIRST AL THE Hilodl OF CRACK FUR RESPolTIVe 3eCTIUiS
1-1 ANL 2-2 WMADE EWUAL TO THAT FOR SECTIUN C-C AN TnEl THE
STRAIN DISTRIBUTICN FOR ScCTIUNS 1-1 AND 2-2 ARE OcTERHINEDL

K=2

AC=8%RD (K)

Cl=pB%¥RDIK)*%34/12eU

SEI=EC*#CI+£5%51

EAB=ES*AS®ECHAC/ (ES*¥AS+EL*ACQ)

L=ED=(Ce5*RU(K))

EIB=SEI+EAL*L%*Z

CR=S*EAB#SEIRPI*PI/(ZR¥EIL*ZL*ZL)

PPI=SQRT(CR)

AA=PI*XX(K)/ (ZL*PPT)

BB=PI*U/(ZL*PPI)

DD=uveb5*P1/PP1

EE=PI*¥(ue5-U/ZL)}/PPI

FF=PI*(Te5-XX{K)/ZL)/PPI

GG=SINH(AA)

HH=SINH{BL)

PP=COSH(EE)

PPP=CUOSH(FF)

PIP=COSH(DL)

IFIXX{K)eGTeU) GO TO 6

BMX{K)=wx*xXX(K) :

FEP(R)Y=1leuv—( (GGXPP)/(PIP*AAY)) -

FP(K)=EAB*Z*BMX(K)/EIB

FIK)=FP(K)*FFP(K)

GO TO 7

BMX (K ) =BM

FFP(K)=Lleu=( (HH*PPP)/(PIP*B1B))

FPIK)=EAB*Z¥LMX(K) /ELD

FIK)=FP(K)®FFP(K)

CC=RD(K)%*veb

CS=Ue5%DIS .

BMC(K) = (B X (Q) —FIK)IRZ)*EC*CI/SET

BiS (K) =BMA(R)=BHC(K)=F (K)*Z

STCBIK)==F (K) ZLEC*AC) +BMC K *CL/LEC*CT)

STCTUK) ==F () / LEC*AC) =BiC (L) *CC/ (EC*CL)

STSBIR) =F (&) ZLES*AS)+B8:1S (1) #CS/(ES5*5])

STSTIK)I=F () /{ES*¥AS )~ S (LK) #CS/(ES*S51T)

STSAIK)Y=ueH* (STSBIK)+STST(K))

TIK)=SToM(K)#ES*AS

DNA (K)==STCT(KI#RD(K) /7 (STCB(K)=STCT(K))

IF(KeEQel) GO TO 42

IF(KeEQe2) GO TO 43

GO TO 44

IF(CH(K)eGEaTD) GO TO 53

IF(STCRBIK)«LE«STCR) GO TO 20

IF(ABS(STCB(K)=STCR)aLTele CE-U6) GO TO 20

BELCH(K)=RD(N)#(STCBIK)=STCRI/Z(STCBIK)=STCT(K))

CH{K)=CHIK)+UELCHI(IK)
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42

44
45

53
59

17

19

25

31
27

34

26

28

35

18

134

RO(K)=TD~CH(K)

RDD(JY=RD(K)

CHH{J)=CHI(K)

GO TO 5

K=K-1

RO{K)=RD{K+1)

CHIK)=CH(K+1)

GO TO 5

K=K+2

RD(K)=RD(K-1)

CH{K)=CH(K~1)

GO TO 5

WRITE(G945) RDI2)sCHI2) sDINAL2) 95TC(2) 93TCT(2)55TSM(2)
FORWAT (1Hv s L4HAFTER GENUING 93F106393E2064)

GO TO 54

WRITE(6959) RKD(2)sCHI2) sunAl2)95TCB(2) 9s5TCT(2) 95Toim(2)
FORMAT (1Hu s LEHWHCLE DEAMm CRACRED 9 3FLGe3 33520 e4)

GO TO 57

THIS RAET CALCULATE THE SnEAR STRESS ANU SHEAK FGRCE
M=1 : )

KK=50U

DDM=RD (i+1) /FLOAT (KK)

DO 18 JJ=19KK

IF(JJeEGal) GO TO 17

DDNAL1(JJY=DDINAL(JJ~1)+DDi

DDONAZ (JJY=DDNA2 (JJ-1)}+DDM

GO TO 19

DDNAL(JJ)=DDM

DDNAZ (JJ) =DM

IF(DDNALIJI) «GT e DiNALM) ) GU TO 25
STYL(JUY=STCT ) % (DA L) =L DINALEJY) ) /DA (i)
FORI(JJII=(STCT(r)+STY1(JJ) 1 %G eHFODNAL(JJ ) *BHEC

GO TO 27
STYl(JJ)=STCB(M)*(DDNAl(JJ)-DNA(M))/(RD(H);DNA(H))
FO&l(JJ)=v-5*B*EC*STCT(H)*DNA(H)+C.5*U*EC*5TY1(JJ)*(DbNAl(JJ)“DNA(
1M))

GO TO 27
FORl(JJ)=Uob*B*EC*bTCT(H)*DNA(N)+0.5*D*EC*STCD(M)*(Ku(m)—uNA(M))
IF(DDHAL(JI) o LTeEL) GO TO 34

FOR1(JJI=FURL(JII+T (M)

IF(DDHAZ2(JJ) o GT o DINALM+2)) GO T 26
STY2(JJy=STCTIm+2) % (DHAGI+2)—DONA2(JJ ) )/ DNALKM+2)
FOR2(JI)=(STCT(in+2)+5TY2(JI 1 ) ¥L e 5*DONA2 (JU) ¥B¥EC

GO TO 28 ‘ ’
STY2(uJd)=STCRM+2 )% (DDNA2 (JI)=unNA(i+2) )/ (kD (n4+2) ~DHA G+ 2) )
FORZ(JJ)=V.5*U*EC*6TCr(M+2)*DNA(M+Z)+6TY2(JJ)*U-5*D%EC*(DUHAZ(JJ)*
2DNA(M+21))

GO TO 28

IF(DDNAZ2(JJ) «LTW«ED) GO TO 35

FORZ2(JJ)Y=FUR2{JJI)+T (M+2)
SHS(JJ)Y=(FUR2{(JJI)=FORL(JII )/ (B*DX)

SHST(JJ)=SHS (JJ) /GC

SHST(KK)=Ueuv

CONTINUE
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22
50

15
57

SHF (1) =ue55#5HS (1) #UDi%B 135

TSHF (1)=5HF (1)

DO 51 I=2sKK
SHF(I)=Ue 5% (SHSIT)+5HS(I-1) ) *p*pLM
TSHF (I )=TSHF ({I~1)+CHF (1)
ROHF=TSHF (KX} /W

CONTINUE

WwRITE(69s30u)

FCRIMAT{1Hvs23H SHEAR vISTRIBUTION)
WRITE(6s22) DD TSHF (KK} s RSHF
FORMAT(1Hu93F12e%)

WRITE(Bs5u) SHS(B)sSHS(1.) 9SHS(15) 9S5SHS(20) s SH2(25) 9SHS{30) s SHS(55)
290HS(4u) 9 5HG(45) s HHS(49)
FORMAT(1Hvs1luE1243)

CONTINUE

STOP

END
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DIM
DIW
D=
D=
ER=

ART 2) Ifv THE CRACKED LONE UF CONCRETE 136

CTION
THIS PROGRAM CCMPUTES THE SHEAR STRESS DISTRIBUTION IN THE
CRACKED PORTIUN(TENSILE ZOUinE) UF CONCRETE AND ALSU CALCJULATE
THE CONTKIBUTION OF DuwbklL AND AGGREGATE INTERLUCK ALTIUNSe AnY
TwO ADJACENT CONCRETE TEETHS WERE IDEALISED INTO 'CuUMPOSITE
CANTILEVER BEAK?Y AND STUUSI'S CUMPOSITE BEAM THEORY HAS bEEN
USED. '

UT DATA
THE DIMENSIONS OF ThE CONCRETE TEZTHS HAVE BEEN UStu THEY ARE
AS FOLLUWS WITH THE NUTATIUNS.
BM BENDING MuMENT AT ANY SECTION IN THE CANTILEVER
— BEAM
BiaM EXTERNAL bsENDING MOMENT (LONGITUDINAL)Y AT THE
SECTION UNDER CONSIDERATION
BR LREDTH OF THE opEAM
DB ANu ub LDEPTH CF LACH ciLbemenT OF THE beAM ANv Io BQUAL
TO THE AVERAGE CRACK SPASING
N NUMBER CONNECTORS
RA RATIO Cr THE bHEAR(FORCt CARRIED bY UNCRACKLED
CCNCRETE AS OBTAINED FRUM PART 1
RRS RATIO OF THE SHEAR FORCE TO B& RESISTED BY UOWEL
AND AGGRECGATE INTERLOCK ACTIONS
S AND SP CONNECTORS SPASING
U DISTANCE SETWEEN THE FLEXURAL REINFORECEMenT TO
THE CRACK HEIGHT AT THE INTERFACE
W LUAD OGN THE BEAM AND IS EWUAL TO THE- INCREMENT
IN THE HORIZONTAL FURCE SBJIETWEEN THE TwO ADJACENT
CONCRETE TEETHS UNDER CONSIDERATION
Ww EXTERNAL LOAD (VERTICAL)Y AT THE SECTION UJNUER
CONSIDERATION
ZKC AGGREGATE INTERLOCK #MCDULUS
ZL LENGTH OF THE oEAM-EQUAL TO THE CRACK HelIGHT AT
THE INTERFACE OF THE bEAM :
OTHER NOTATIONS ARE SELF EXPLANATORY IN THE LIGHT
OF THE WNOTATIONS USED IN THE APPENDICES Bs Co» Ds AND E-PART 1
C K
Fk %
ENSTION SC100) X (100} oBM{10U)sA{29100)s3(1Cu)sB(100)

MENSION ZK(IUU)SSS(lUU)’dHF(lUU)9TQHF(1vU)SDHb(1UU)
246
DS
6ed



2 a XA

12

13
lu

14

SP=vVe25
ZL=Te337
U=6eu37
ZKC=4840U0uUe b
BMiM=26450ued
RA=UeU4D
ST1=786+95E—v6
ST2=781e445-u6
N=3u

N1=N-1

N2=N-2
5(1)=U.3

DO 12 1=2sN2
S(I)=5P
SINL)=0.287
W={ST1=5T2)#3v.uE+06

WRITE(G6913) DSsDBsBRsWsZLsUaiNaZKCeSP

WRITE(6214) BMl4iaRA»ST1ls5T2
FORWAT#&HuabFlZ-LaIluaLFld 2)
FCRMAT(1HouslzF1lue3)
FORMAT(IHUs4F12e49110)
FORMAT{1Hus2Fl5eb492E15e4)

W =BMM/ 3261

KNTT=30U

KNT=0

RRS=RA

137

THE PARTICULAR DIMENSIONS GIVEm HERE ARE FUR THt CANTILEVERS Iy

BETWELEN THE LOAD POIKTSe
SPAN THEN RRS5=1.C0-RA
Z=(DS+DB)I*U5
ES=149E+0U6
AS=DS#BR
AB=DB¥*BR
EB=ES
BI=BR*¥DB3#%3./12av
EAB=ELS#ASHEOHRADB/ (ES#AS+ED®AL)
SEI=Eu%ol+L5%51
EIB=SEI+EAB*Z*Z
AO=EIB/ (EABH*SEI)
X{1)=uab%5(1)
DO 4 1=2sN1
SS(I)=(5(1-1)+S({[1)*Uaeb5
X(I)=X{1-1)+G55(1)
CONTINUE
DO 5 I=1s5
BMII)=0e0
DO 6 I=6sN1
BMII) =W (XTI )=-(21L-U))
DO 16 I=1sN1l
ZK(1)=2ZKC

CZK(6)=240%1 e TBE+UB+ZKC

ZK(1)=2ZKC*5(1) /5P
ZKIN1)=ZKC#*SINL) /5P

[F THE SECTION LIES I

THE SHEAR



20

11

18

21
22
19

KNT=xinT+1 138
DO 20 I=1sN2

A(lsT)=—1ou
A(231)=1evtZK (1) /7ZK(T+1)+ACKZRITI*S(T)
Al3s1) 22K (1) /2ZK(T+1)

BU1) =B 1) %2%ZK(1)%S (1) /SEI
CONTINUE :

A(ls1)=UeU

A(Z3sN1)=Ueu

A2 sN1)=1eu+tA0*ZK (N1)*S (1)
A(LlsN1)==1s0

BUNL) =B (NL) #2%ZK (1) %S ({1) /SEI
CALL BNDSCL(AsBs3s1sN1)

BIN)=B(N1)

Q(1)=B(1)

DO 11 I=2sN -

@(11=3(1)=B(1-1)

SHS(1)=ueu

DO 18 1=2,N1

SHS (1) =0(1)/(S(1)*BR)

SHS(N) =Uaeu

DO 19 I=1sN1

SHE (1) =(5GH5 (1) +SHS (1+1) ) %ue5*BR¥S (1)
IF(1.6T«1) GO TO 21

RR=u e U

GO TO 22

RR=TSHF (I~-1)

TSHF (1) =RR+5HF (1)

CONT INUE

RATIO=TSHF (N1) /Ww

ARITE(6s1v) (B(I)sI=1sN1)
WRITE(6s1v) (Q(I)sI=L1sN)
WRITE(6510) (SHS(I)sI1=1sN)

WRITE (693) TSHE(NL) st s ZKCsRATIOSKNT
IF (ABS (RATIU—RRS) aLEsCsuul) GO TO 7
IF(KNT+GT«KNTT) GO TO 7
IF(RATIOGTeRRS) GO TO 8
ZKC=ZKC+50LU0 o U

GO TO 9

ZKC=ZKC—5UVU6u

Go TO 9

STop

END





