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CHA~TER I.

INTRODUCTION

1.1 Introduction

In this analysis a reinforced concrete beam is

treated as a composite beam with incomplete interaction, a

deviation from the conventional concept.

Conventionally it is assumed that in a reinforced

concrete beam, concrete and steel acts together such that

there is no relative movement between the two materials. How­

ever from the experimental evidence(l ,2) it has been well

recognized that slip does take place and concrete does not

act perfectly with the steel.

The phenomenon of so-called 'diagonal failure'

still remains unsolved and a rational theory is required.

The ACI-ASCE committee 426(326) (3) made an excellent contri-

bution in the field of shear and diagonal tension. The com-

mittee stated that the problem of shear failure and diagonal

tension has not been fundamentally and conclusively solved

and the same committee urged the formulation of a rational

theory.

Therefore, new approaches (1 ,2,4) are being under-

taken, especially those which take into account the slip

1
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between the two materials. Robinson (4) suggested that a re­

inforced concrete beam may well be treated as a composite

beam with incomplete interaction.

Treating the reinforced concrete beam in this manner

the qualitative explanation of some of the experimental re­

sults such as cracking pattern, the ultimate moment carrying

capacity of the beam with varying shear-span to depth ratio

and the influence of various parameters on it can be provided.

It is hoped that by treating the reinforced concrete

beam as composite beam with loss of interaction a rational

explanation of so-called diagonal cracking in the shear

span might be achieved.

1.2 Historical Survey

Few SUbjects in the field of concrete have received

more attention from research workers than the shear failure

of reinforced concrete beams. The phenomenon of shear fai­

lure has been the interest of many research workers for

quite a long time.

As early as in 1900 one group of thought believed

the basic cause of shear failure to be due to diagonal

tension and many research workers supported this concept in

the light of their experiments.

Morsch (5) provided the famous and most widely used

equation for shear design which is included in many design
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codes of practices. The equation is:

V 1.1v ;::
bjd

A few years later in 1909 Talbot (6 )
observed that

the Morschequation does not take into account the variables

such as shear-span to depth ratio and percentage of rein-

forcement etc. and it is not in general agreement with the

test results.

Two decades ago Clark(7) introauced the equation for

shear design which includes the shear-span to depth ratio,

percentage of reinforcement and the strength of concrete.

Studies of shear and diagonal tension became a major

interestof research workers when a few structural failures

occurred, especially the failure at Wilking Air Force Depot

in Shelby, Ohio in 1955, and after that considerable research

in this field was undertaken experimentally as well as

analytically.

Kani(B) in his paper, "The Mechanism of So-Called

Shear Failure", used the concept of 'Concrete Teeth' to

explain the mechanism of shear and diagonal failure and

concluded that the shear failure is a problem of diagonal

compression failure, a deviation from earlier concepts.

Kani in another paper(9' further pointed out the process of

transformation of a IIComb-Like" structure with bond into

a 'Tied Arch" without bond due to redistribution of stresses.
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A number of authors(lO,11,12) attempted to relate

the critical cracking load to the maxim~m principal stress.

Ferguson Cl2) also described the failure pattern in terms of

the theory of combined stresses and suggested that if the

the~ry of combined stresses applied more constructively

a rational solution could be achieved.

It has been well recognized(2 ) that the diagonal

tension is a combined stress proble~, however, in a rein-

forced concrete beam owing to initial flexural cracks,

the stress redistribution near the crack, and changes in

the magnitude in the shear and normal stresses, as well as

stress concentrations at the tip of the crack, make the

calculation of principal stresses extremely complex. There-

fore, without taking into account these redistributions of

internal stresses, any theoretical treatment of the problem

of diagonal tension is a rough approximation.

Broms(l3) carried out an analytical study to deter-

mine the distribution of shear, flexural and normal stresses

in constant moment and in combined bending and shear regions

of a simply supported reinforced concrete beam. He reported

that the shear stresses near the neutral axis is the cause

of diagonal tension failure. However, Brom's approach gave

an unrealistically high value of shear stresses(l4) and the

percentage of shear force carried by uncracked concrete is



more than 300 percent as obtained by Uppal (14) , using Bram's

method.

Recently the distribution of shear stresses in a

cracked beam and the percentage of shear force carried by

different components such as uncracked concrete, aggregate

interlocking and dowel action have received the attention

of many research workers (1,11,15) . Acharya and Eemp(15) argued

that the dowel force cannot be ignored in any reliable quan-

titative analysis of shear failure. They suggested. that at

least 60 percent of the total shear force is carried by

aowel action.

Fem"ick and Pauley (l ) in their paper "Mechanism of

Shear Resistance of Concrete Beams", claim that 70 percent

of the shear force is carried by aggregate interlock and

dowel actions, in which dowel action contributes ~ to }

of the 70 percent, and the remaining 30 percent is carried

by uncracked concrete.
(11) .

MacGregor and Walters ~n their analytical analysis

of inclined cracking load suggested that 11 percent of the

total shear force is carried by dowel action, 23 percent by

a9qreqate interlock action and the remainder by the un-

cracked concrete.

In spite of the fact that extensive experimental

as well as analytical research has been carried out in order
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to give a rational explanation of the so-called shear failure,

still the problem remains untractable and the mechanism of

shear failure improperly understood.

Robinson (4) in conducting tests on composite beams

having a cellular zone between concrete and steel I-beam

discovered that in spite of the fact that there was no

interfacial plane between the two materials, the distribution

of strain has been observed to be essentially linear. He

also suggested that the reinforced concrete beam can be

treated as a composite beam with incomplete interaction.

In his analytical study wong(16) following the Robin-

son notion stated that although a reinforced concrete beam

does not have a distinct interfacial plane between steel

and concrete, a slight nlodification of the Newmark(l7) theory

for composite beams with incomplete interaction makes it

applicable to a reinforced concrete beam if a pseudo inter­

face is assumed. He then computed the flexual crack pro-

files of a simply supported reinforced concrete beam with two

symmetrical point loads and observed that the highest crack

is under the load points.

Ho(IS) in an extension of Wong's work computed the

strain trajectories and stated that they do not lead to further

understanding of diagonal cracking.

Uppal (l4) made an extensive analytical study based
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on Robinson's notion and Wong's modified Newmark composite

beam theory. He computed the flexural crack profiles and

studied the influence of a number of parameters such as

degree of interaction between steel and concrete, percentage

of longitudinal reinforcement and the intensity of loading.

He stated that the crack profiles were greatly affected by

these parameters. He also stated that the cracking pattern

is affected by the shear-arm to depth ratio. He also de-

termined the effect on moment carrying capacity of a rein-

forced concrete beam of the variation of shear-arm to depth

ratio, percentage of tensile reinforcement and the inter-

action coefficient. He computed the distribution of shear

stresses in the remaining uncracked concrete, but the amount

of shear force carried by uncracked concrete did not give

a realistic percentage of shear force and hence, he argued

for more rigorous analysis of shear distribution in a cracked

beam.

1.3 Object and Extent of Investigation

In this analysis an attempt has been made to study

the cracking behavior, moment carrying capacity and the

distribution of shear stresses in a reinforced concrete beam,

by treating it as a composite beam with incomplete interaction.

The Newmark(17) composite beam theory can be ap-

plied, with slight modifications to an uncracked reinforced
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concrete beam. Its applicability to a cracked reinforced

concrete beam has been verified. However, it does not take

into account the compatibility conditions at the first flexural

crack from the support.

The stability of a tensile crack is discussed and the

influence of bond-slip modulus and modulus of elasticity

of concrete on the crack height are studied.

Moment carrying capacity curves for a particular

'typical' reinforced concrete beam were computed. It was

found that the computed results are in very close agreement

"th K"' "t 1 results(l9). ThO t dW1 an1 s exper~men a ~s s u y was

extended further to find the influence of various other

parameters on the moment carrying capacity.

An attempt has been made to give the magnitude of

bond-slip modulus for different percentages of steel.

Finally the distribution of shear stresses along

the depth of a cracked beam are computed and the amount of

vertical shear force carried by different components such

as uneracked concrete, dowel action and aggregate inter-

lock action are determined. The shear stresses were com-

bined with the flexural stresses in order to compute the

ma9nitude and direction of principal stresses. The results

obtained are encouraging and an inclined crack is obtained

above the root of the flexural crack. This offers prospects
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that further analysis may lead to determination of the de­

velopment of diagonal cracks if small incremental loading is

utilized.



CHAPTF~ II

COMPOSITE BEAM WITH STEPPED CHANGE IN CROSS-SECTION

2.1 The conventional Newmark(17} theory for composite

beams is applicable only to beams with prismatic sections

and this does not take into account the compatibility con­

ditions if the profile of the cross-section changes sUddently.

From here onwards in this chapter this theory is called

Newmark 1.

As the reinforced concrete beam cracks the application

of Newmark 1 theory (with slight modifications) to the cracked

beam is questionable, since the beam is no longer prismatic

and the degree of interaction, ~" at a particular location

along the length of the beam will be influenced by this.

Therefore, an approach which takes into account the compati­

bility conditions at the location of change in cross-section,

for example at the end of the cracked zone of the beam,

would provide more correct matnematical results. Uppal (l4)

also argued for the development of such an approach.

A cracked reinforced concrete beam can be idealized

into two parts, namely, the one which is uncracked (full

section) and the other which has cracked (reduced section)

and having a sudden change at the limits of the cracked zone.

A particular solution for a simply supported compo-

10
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site beam, "'lith synune·trical situated two point loads at a

distance lUi from each end, having flexible connection and

stepped change in cross-section at a distance 'a' from

each end, where a is less than u, is obtained.

'l'his approach takes into account the compatibility

conditions at the stepped change and will be called NewmGrk

21'3 theory i.n t.his thesis.

The basic dssumr:n::'lOlls and the forHlu.lation c..C ~ he

a.pproach 1 s the saplO as ::ha t of l\iewmarK 1. 'I'h(~ a 5sumpti ons

are:

1. 'rbe two components of the CQIllposi te beam have equal

curvatures at any cross-section.

2. The horizontal force, F, transmitted to each component

by the connections are considered to act at the cen-

troids of each section.

3. 'fhe shear connection between the beam und slab is as·'

sumed to be continuous along the length of the beam,i.e.

connectors are of equal capacities and are equally

spaced; then

K
- := constant.
s

4. The amount of slip permitted by the shear connection

is directly proportional to the load transmitted.



C:2~

STRAIN DISTR,BUTIICROS S SEC T10NSECTIONLONGITUDINAL

. ~
,-.;"'\ (;'\

w .l' -I @ CD""' 1
..-

1 r
(O> ., • y(I). • 1 .. . . . . .or .,. .,. ~ .. y • ., . . . - - - .. . . J-i-j • . . . • • • . . . .. .. . .. .- ... " .-

S $ I I

• L
-'I
"l

(0)

FREE BODY DIAGRAM AT X r: OC

COMPOSITE BEAM WITH STEPPED PROFILE

FIG. 2.1



i.e. y = Q
K
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5. The distribution of strain throughout the depth of the

beam, in the two components, is linear.

6. The total internal moment, M, at any location along the

beam is equal to the sum of the individual member moments,

MI' M2 and the additional couple due to horizontal force,

F, hence:

M = M + M + F·ZI 2 2.1

where Z = distance between the centroids of the indivi-

dual components as shown in Fig. 2.1.

2.3 Solution of Differential ~quation

The basic differential equation(17) for the

solution of horizontal force, F, for various loading, comp-

atability and boundary conditions, is: (See Appendix A)

2.2

The differential equation for the two segments to

the left and right of x = a, is: (see Fig. 2.1)

2.3

2.4
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The subscript zero is used for the full cross-section

and suffix r is used for the reduced cross-section.

Here Qo' QI' Ro and Rr
incorporate the properties of

the sections, as follows:

K
EI 1

2
0 7T

Qo
:= - = (C) 0

L2s
EA LEI

0 0

K
EI 1 2

I 'IT
Qr = - ----~.__.-- ::= (--)

L
2s EAr ~''T"lI

C r
':-L 1

K
Z 1 EA 2

0 0 'IT
R ,- "i:Er .

_.
(f)o Z

L
20 s EI 0

0
0

K ZI 1
EA 2I TI

RI
:= - EEI

I
- (--) Zr

L
2s C I -Ell

and -H EA
0 0

Qo
:= -EI

0

-RI EA
:= 1

Ql Ell

zo

Z
I

where I Interaction coefficient in the full cross-section(c)o =

zone

I Interaction coefficient in the reduced(C) I = cross-sec-

tion zone.

The particular solutions for equations 2.3 and 2.4 are:

For o < x < ()',

R
F

I
:= C

l
cosh x/Qo + C2 sinh x/Qo + QO W·x. 2.5

o
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For

For

a. < x < u

C3 cosh x/Qr + C4 sinh x/Qr +
Rr 2.6F 2 - - w·x
Or

L
u < x < 2"-

F Cs cosh x/Qr -I- C6 sinh x/Qr +
Rr w·u 2.7::::

Or3

Compatabili ty Condi,tions

At x :: 0 :::: 0

dD' dF
2

At 1 i.e.x :::: ai dx
::::

dx

dq dq2
and 1 i.e.dx == dx

or

where M :::: moment at a distance a. from support.
a.

dr dF
3At F 2 F3

and 2 ::::x :::: u; :::: dx dx

and At L
dF 3 0x -- "2 -- ==dx

here suffix 1, 2, 3 represents the composite beam between

o and a, a and u,and u and ~,respectively.S01Vingfor the

constants C
l

, C2 ••.••.... C6 .
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cosh 1'1Qi-~ ( ~ - u) l
sinh ~ IQ r 1

cosh sinh al"Q) +'
o

(~ cosh alQ_ sinh alQ-
o L 0

IQ r sinh a/Q~ cosh a"'Q~)

1
L

sinh '2 IQr

1
cosh a/Q~ + C4 sinh a/Or

J
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2.4 Comparison of Newmark 1 and Newmark 2B

2.4.1 '1'he results obtained by both the approaches

have been plotted in Figs. 2.3, 2.4, 2.5 and 2.6 for various

ratios of reduced depth to full depth, S. The beam con-

sidered for this purpose is shown in F'ig. 2.2. It is a simply

supported beam having tvlO symmetrical poi nt loads of W -:= 5000

Ibs. at a distance, u .- 21 in. from each support, havinq the

change in cross-section at a di.stance, ~ = l~ in. SpecifIc

dimensions have been considered to OVf~rcome complcxi tif:~[;, in-'

valved in attempting to non-dimensionalize the equations

obt.ained.

The values of S considered are 0.4, 0.6, 0.8 and 1.0

and the degree of interaction, ~" along the length of the

beam, horizontal force, F; horizontal shea.r, q, and the top

fibre strain of the above member have been plotted.

2.4.2 FThe effect of S on the magnitude of ~,
l'

-C', Q;:>

obtained by the two approaches is shown in Fig. 2.3. It can

be observed that the difference between ~
F"

is not much

in the region of the reduced section. However, there is

a difference in the region of the full cross-section and

this increases as the value of S decreases. For example,

'Nhen S :::: 0.4 the value of ~, has a sudden reduction in

magnitude at the change of cross-section, moving towards
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mid-span, for Newmark 2B, while on the other hand the value

of ~, has a sudden increase in magnitude for Newmark 1;

and for S = 0.8 the magnitude of ;. has a sudden increase

E'
by both ·the methods. It is also to be noted that F I up to

the change of cross-section is the same by Newmark 1, whatever

may be the value of S, though it is different in the r.educed

section for various \ral.ues of ~;. However 1 in N0\.lffi"lrk 2b

the ;, is different throughout the length of the beam for

every different value of S and in some instances, for

example B = 0.4, ~, is more than 1 up to the change in cross­

section. This is because, as the section reduces for the

same applied bending moment , a redistribution of forces

occurs, see Fig. 2.4 for F and P'.

2.4.3 Figure 2.4 shows the variation in the magni-

·tude of interaction force, F, along the length of the beam

for various values of S. The horizontal forces, P, computed

by the two methods are generally in agreement in the reduced

section, but the difference is in the full section zone and it

increases for the lower values of B, however, it is not

more than 24 percent.

2.4.4 The distribution of horizontal shear, q, is

shown in Fig. 2.5 and in this case the difference is signi-·

ficant. In the Newmark 2B approach q follows a smoot.b curve
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throughout the length of beam, in accordance with the chosen

compatibility conditions, while on the other hand for Newmark

l,q has a sudden increase at the change of cross-section, moving

towards mid-span . Also for any different value of S, the

magnitude of horizontal shear, q, is the same from the support

to the change of cross-section, as computed by Newmark 1.

2.4.5 Fig. 2.6 shows the variation in the magnitude

of top fibre strain of -the upper member, s} t (or the bot Lom

fibre strain of the lov;er member) along the length (Jf the

beam for various values of S. It can be observed that the

difference in the strain computed by both the approaches

is not much in the reduced section zone and the maximuni is

about 8 percent for 6=0.4. However, there is a considerable

difference in the magnitude of strains in the full section

portion for smaller values of B, but the difference is in-

significant for higher values of S. It is also to be

noted that the magnitude of strains computed by Newmark 2B

are lower than those obtained by Newmark 1 method.

2.5 Comparison of Crack profile:s

The flexural crack profiles have been computed by

the two methods. The method is presented in Appendix A

and chapter III.

The approximation made for computation by Newmark 2B

is that the beam has two different cross-sections, namely, a
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full section from the support to the first flexural crack

and a reduced section, which depends upon the crack height

at any particular section under consideration in the po-

tential cracking zone. In the Newmark 1 method, the approximation

is that the beam has the same reduced or full section through­

out the length of the beam depending upon the section under

consideration.

'l'lle crack prof i les of the reinforced concrete be.1m,

obtained by the two approaches, are shown in Fig. 2.7. It can

be seen that the first flexural crack starts at the same point

by the two methods. The reason is that, first the crack

profile is computed using i.'-Jewmark 1 and then the distance of

the first flexural crack from the support is used as the

length of full section, 0., in Newmark 2B. The height of the

crack at the extremity of the cracked zone is significantly

different and is lower in the case for Newmark 2B; the

difference is about 1 in., but this difference goes on re­

ducing until near the load point, and after it, the profiles

are almost the same and there is practically no difference.

Also the maximum crack height obtained under the load point

is almost the same by both the methods.

The difference in the crack height is obvious; in

the beginning the magnitude of horizontal force, F, varies

considerably when computed by the two methods (as can be
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seen in Fig. 2.4}, but this difference decreases as the

section moves towards ITlia-span. According to theory if F

is greater the crack height will be lower and vice versa.

2.6 Discussion

The variation in the magnitude of horizontal force,

F, degree of interaction, ~, , and the top fibre strain of

the upper member (or tile bottom fibre strain of t.he lower

member) agrees closely in the reduced section zone, when

computed by the two methods. However, in the full section

portion, the difference is considerable for smaller values

of S, but for higher values of 6 the difference is not

significant. The horizontal shear, q, has remarkably

different magnitudes, as compu·ted by the two methods. This

is due to the compatibility condi·tions applied at the change

of cross-section in Newmark 2B, while t.ewmark 1 solution does

not consider any compatibility conditions at the change of

cross-section.

A different set of compatibility conditions

were tried at the change of cross-section, in order to see

F
the results of F" F and q. The solution of the differential

equations obtained from these conditions is called Newmark

2A, but the results obtained are far from Newmark 2B and

Newmark 1. The compatibility conditions at the change of

cross-section are:
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at x = ex

F l = F 2

and ql = q2

The solution of th.e differential equation can be

obtained in the same way as the solution of Newmark 2B.

Although the solution obtained with Newmark 2A is in

very close agreementwith the Stussi method(20) using finite

difference equations, it is concluded that the Newmark 2A

is not correct and the agreement with Stussi solution is

due to the fact that the stussi method does not take into

account the compatibility conditions if the section is non-

prismatic or has a stepped profile, and violates the condi­

tion that ~~ must be equal at the change of cross-section.

If similar conditions were imposed in the Stussi method then it

is expected that this will give the same results as obtained

by Newmark 2B.

The flexural crack profiles obtained by the two

methods give maximum crack height under the load point and

the magnitude is almost the same. It is thought that the

crack profile obtained by Newmark 2B gives better results as

compared to experimental observations, because crack heights

are not as high towards the extremities of the cracked zone

as those obtained by Newmark 1.
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As mentioned earlier the discrepancy in the crack

height is in the initial cracking zone and the profiles are

virtually the same near the load point and after it up to

mid-span. Hence, it is concluded that the Newmark 1 solution;

although it does not. take into account the compatibility

conditions at the change of cross-section can well be applied

to study the reinforced concrete beam especially to finc th'.;

flexural capacity and rnaxilllUm crack hciCJht.



CHAPTER III

STABILITY OF TENSILE CRACK

3.1 The Newmark composite beam theory has been used with

slight modifications to furnish an estimated flexural crack

profile based on the attainment of flexural crack staLiljty.

'llhe theory is summarized in Appendix A.

Apart from assumptions made for composite theory dnd

also made in Appendix A for a reinforced concrete beam it is

assumed that the concrete is capable of withstanding a certain

tensile strain, E , that is a strain level at which crackingcr

will occur. If the lower fibre strain of the concrete, Lob'

is greater than the limiting tensile strain, €cr' then a

flexural crack starts and propagates upwards into the beam

until ccb is equal to ccr ' as well as there being equilibrimn

between internal and external forces.

Frrnn the geometry of the distribution of strains ac

any section, as show~ in Fig. 3.1, the following equation

can be derived:
E:. -E:

II = 2H cb cr
w'ch +

E: b E:C cr

where tl, = first increment in the crack height.
cn

The remaining uncracked depth will be:

30
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2H' = 2H - CH

and

The new remaining depth, 2H', can be reused in

equation 3.1 in place of 2H and another increment in crack

height can be obtained. This is an iterative process re-

peated until a stable section is obtained and then:

N
~

I=l
~ch where

t =0
ch

and

£ £cb = cr

at I=N

Here eH = total crack height.

3.2 Non-Linearity of Concrete

3.2.1 It is well recognized that the stress-strain

distribution for concrete is always non-linear and if a more

rigorous solution and computation are desired for a reinforced

concrete beam, this has to be taken into account.

A variety of stress-strain curves represented by

equations having parabolic, hyperbolic and elliptical cubic

parabolic have been used for analytical studies. Other simple

forms such as triangular, rectangular or trapezoidal have also

been used (21) •

In this analysis the area under the stress-strain curve

of concrete up to crushing strain has been taken from the

Madrid (22) parabolic equation, given below.
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3.2

where € is the strain at the maximum specified stress a •o 0

The same eq~ation has been used by Brown(23) in his book

and wo~g(16) in his analysis.

Fig. 3.2 shows the stress-strain curve obtained from

the above equation.

3.2.2 In order to use the composite beam theory of

Newmark the materials, concrete and steel should be linearly

elastic. Hence, in order to use this theory the stress-

strain behavior of concrete should be linear. Although Yam

and Chapman(24) have developed a solution for a composite

beam having an inelastic continuous shear connection as well

as non-linear characteristic of steel and concrete, this,

however, cannot be used for non-prismatic sections such as

the reinforced concrete beam has after cracking and also the

method is quite tedious and time consuming. Therefore, the

question arises of approximating the area under the stress-

strain curve of Fig. 3.2 into some linear distribution.

3.2.3 There are many ways to approximate the area

under the curve. One approach (method I) is to take the

value of the modulus of elasticity of concrete, E , equal toc
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the initial slope of the parabolic curve (Fig. 3.2), by

differentiating equation 3.2:

Ec 3.3

Then determine the stress and strain which give the same area

under a linear stress-strain curve as that under the parabolic

curve of equation 3.2. This approximation is shown in Fig. 3.3

by a triangle (method I). Here the strain of 1550 micro in/in,

for 00 = 3800 psi, c = 2000 micro in/in and £ = 3000 microo u

in/in, in the linear case is approximated by a strain of 3000

micro in/in in the non-linear case, when E
c

6
= 3.8 x 10 psi.

This means, in this method, that when the strain at

the top fibre of concrete, €ct' reaches 1550 micro in/in then

the curvature of the concrete, ~c' must be increased to al­

most double, in order to have the strain at failure 3000

micro in/in; to satisfy the conditions of equilibrium; to

keep the crack height constant and to maintain the bottom

fibre strain of the uncracked concrete, Ecb ' at the cracking

strain, Ecr ' Here the conditions of equilibrium can be

satisfied but the conditions of compatibility required by

the composite theory, i.e. that the curvature of the

concrete, ¢c' be equal to the curvature of the steel, ¢s'

can no longer be satisfied.
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3.2.4 Another approach (method II) is to keep the
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ultimate strain, £ , constant and reduce the value of modulusu

of elasticity of concrete, Ec ' so that the area under the

linear curve is equal to the area under the parabolic curve. It

is found, by doing this, that for this parabolic stress-strain
a

relationship, the value of Ec = ~, is exactly half that

proposed by Brown (23) • This eqUi~alent linear stress-strain

curve is shown in Fig. 3.3. (method II). In this method the

conditions of compatibility as well as equilibrium conditions

can be satisfied. Therefore, it is thought that method II is

better and hence this is used in this analysis.

3.3 Stability of the Flexural Crack

Tensile cracks are frequently formed in reinforced

concrete beams well below the service loads. Usually they

are harmless and stabilise due to presence of reinforcing

steel and the member possesses additional load capacity.

Krahl (lO)et al. ~n th ' "st b'l't f T '1~ e~r paper a ~ ~ y 0 ens~ e

Cracks in Concrete Beams", mentioned that the crack stability

is of obvious importance in relation to the load carrying

capacity of a concrete member. Oladapo(25) studied the

stability of cracks in prestressed concrete beams, and MacGregor

and Walters {ll)analysis was based on crack stability.

A typical reinforced concrete beam cross-section

considered herein is shown in Fig. 3.4. It has a breadth

b = 6 in, total depth D = 12 in. and effective depth d=lO.7 in.
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The reinforced concrete beam has two symmetrical point loads

situated a distance 'a' from each support, the distance

between the point loads is 36 in. and the length of the beam,

L = (2a+36) in. This beam is called a 'Typical Beam' through-

out this analysis. This 'Typical Beam' is one of a type tested

by Kani(19) in his experiments at the University of Toronto.

It can be shown by the composite beam theorylI4,16,18)

and confirmed by experimental observations (9) that the maxi-

mum height of a flexural crack occurs under the load points.

Therefore, the stability and development of a flexural crack

is considered at a cross-section under the point loads. As

the crack starts to propogate into the beam, the depth of the

uncracked cross-section of the beam at that particular section

reduces and hence the moment carried by uncracked concrete,

Me' the interaction coefficient, ~, and the horizontal force,

F, are bound to be affected.

All these variables have been computed by the two

methods discussed in the preceeding paragraphs and are plotted

in Figures 3.4 and 3.5.

Figure 3.4 shows the variation of Me' F, ~ and £cb

under the load point, as a tensile crack starts at the bottom

fibre of concrete, penetrates vertically into the beam and

stabilizes after reaching a certain depth, for E = 1.9x106
c

psi (method II) and bond-slip modulus, K = 17000 Ib/in. It
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can be noted that the crack height is 9.35 in.

1
Figure 3.5 shows the variation of Mc ' F, C and £cb

for B
c

= 3.8xl06 psi (method I) and it has been found that in

order to get the same crack height, 9.35 in., as obtained

for lower value of E , the magnitude of bond-slip modulus, K,c

has to be increased up to 36000 1b/in., otherwise the crack

height will be 10.42 in. for K = 17000 lb/in (not shown in

the figure). Figure 3.5 also shows the variation of M , F,c

~ , and ccb for Ec = 1.9xl0
6

psi K = 36000 1b/in. (method II).

It is to be noted that the crack height is lower for

Ec = 1.9xl06 psi than for Ec = 3.8xl06 psi and it is 8.38 in.

A conclusion can be made that by keeping the bond-

slip modulus, K, constant and changing the modulus of e1as-

ticity of concrete, the crack height at a particular section

also changes. It has been found that the lower the magnitude

of Ee the lower the crack height and vice versa, as shown

in Fig. 3.5 for K = 36000 psi and E = 3.8x10 6 psi andc

1.9XI06 psi. The difference in crack heights obtained for this

particular case is 1.07 in. at a section under the point loads.

Also the magnitude of bond-slip modulus has signi-

fioant influence on the flexural crack heights. This can be

observed by comparing Fig. 3.4 and 3.5. For a constant

6value of Ec = 1.9xlO psi the crack height is greater for

K = 17000 lb/in as compared to K =36000 Ib/in. Hence, the
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greater the values of K or in other words the greater the

interaction between steel and concrete, the smaller will be

the crack height.



CHAPTER IV

MOMENT CARRYING CAPACITY

4.1 Kani(19) suggested that for a reinforced concrete

beam without web reinforcement the ultimate moment capacity,

Mu ' depends upon the £ ratio and the minimum is about 50

percent at ~ = 2.5 for the 'Typical Beam' of chapter III.

Morrow and Viest e9) (26) and Leonhardt and Walther (9) (27)

also observed the same behavior. Figures 4.1 and 4.2 show

the relative beam strength and ultimate moment carrying

capacities, Mu ' versus shear-span to depth ratio, £' as

obtained experimentally by Kani, Morrow and Viest and Leon-

hardt and Walther, respectively.

It has been observed experimentally (9) and has been

shown analytically(14,16,lS) that the maximum flexural crack

height occurs under the load points. The computed flexural

crack profile of a reinforced concrete beam is shown in

Fig. 2.7. Fig. 4.3 shows typical flexural cracking in a beam

loaded with a two-point load system.

As the shear-span to depth ratio, £, of a reinforced

concrete beam varies, the maximum computed flexural crack

height under the load point also varies (16) , even though the

applied moment is constant, being higher as the shear-span is

reduced.

43
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4.2 Fig. 4.4 shows the influence lines for the concrete

top strain, Sct' and the average or mid-height steel strain,

E , at a section under the load point versus the shear-spansm

to depth ratio, ~, for a constant bending moment 264500 lb-

in (half of the moment as obtained by ACI Code formula). It

may be noted that the concrete strains have much larger values

for smaller ~ ratios, while on the other hand the steel strain

has larger magnitude at greater £ratios.

It is interesting to note that by limiting the magni-

tude of strains, Sct and ssm to some constant values, the

flexural capacity of the beam can be governed either by con-

crete strain or steel strain or both. For the purpose of

demonstration assume that the maximum compressive strain of

concrete, € t = 1500 micro in/in (half the crushing strain
c max

of concrete) and maximum strain that'the steel can take,

E = 750 micro in/in (half the yield strain of steel),
smmax

for the 'Typical Beam' having p = 1.88%, then it can be

aobserved that for d less than 5.3 the concrete strain, Lct
a

is more than Sct and for d higher than this the steel
max a

strain, ssm' is more than E sm Hence, between d = 0.5
maxato d = 5.3, the concrete governs the strength of the beam

aand for ~ more than 5.3, the steel governs the strength.a

It will be shown that, in addition, the governing factor

also depends upon the percentage of steel, p, shape of cross-
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section, strength of concrete, strength of steel etc.

4.3 Thus the moment capacity of a section under the load

point can be determined analytically for certain values of

E and E , and this will be the maximum moment
ctmax smmax

carried at that particular section •

. In computing the influence lines for maximum moment,

Mu ' under the load point, the dimensions of the 'Typical

Beam' of chapter III are considered. The same beam dimen-

sions have been used by Kani (19) in his experiments. Hence,

by doing this the validity of the theory can be established.

It is assumed that the maximum compressive strain of con-

crete is 3000 micro in/in and steel yield strain is 1500 micro

in/in.

4.4 In Kani's experimental beam series the distance

between the point loads was kept constant and to achieve

the different aid values the length of the beam was changed.

The geometry of the beam, span, cross-section, etc. has a

significant influence on the interaction coefficient.

1 K EI L2
4.1

C = .... ;s ~ rEI

where K = bond-slip modulus

L = length of the beam.
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This means that if K along with all other parameters,

except L, is kept con~tant, then ~ is directly proportional

to the square of length, L. It should be noted, however,

that ~ does not remain constant in a cracked beam, as can be

observed in Figs. 3.4 and 3.5, because the geometry of the

cross-section changes where cracking occurs. Therefore,in

this analysis instead of taking an initial value of ~, the

bond-slip modulus, K, has been assumed to be cons~ant. By

doing this the interaction coefficient'f' changes with

different aid ratios, even for an uncracked beam. Hence,

l/e is small for short span beams and it has a higher value

for greater spans.

Therefore,an important conclusion can be made that

the span length, L, is one of the significant parameters in

the behavior of reinforced concrete beams.

4.5.1 The moment carrying capacity has been computed

under the load point for the 'Typical Beam' with various

values of a/d. These computed values of M versus aid areu

shown in Fig. 4.5 for bond-slip modulus, K = 17000 lb/in. The

dotted line in the same figure is the ultimate flexural ca-

pacity, M
ult

' value for beams with the cross-section of the

'Typical Beam', computed by the ACI Code formula:

where

M = A f (d - a'/2)ult s y 4.2
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4.5.2 Fig. 4.5 shows that the influence line for moment

carrying capacity, M , has two distinct portions, one slopes
u

downward and the other one is almost horizontal. Concretp

governs the strength of the beam in the sloping part, and in

the horizontal region steel reaches the yield strain first

and hence governs the strength of the beam. The concrete and

steel both reach their ultimate strains at the transition

point, T, where both the curves intersect each other.

4.5.3 The variation in the computed capacities of the beam

ranges from 22 percent for aid == 0.5 to 100 percent of the M
u1t

at aid = 5.3, in the region where the concrete strain governs

the strength of the beam. The strength is almost uniform

and varies only between 100 percent to 98.5 percent of the

Mult in the region where the steel strain governs.

4.5.4 If the results of Fig. 4.5 are compared to that of

Fig. 4.1 (Kani's experimental results) it may be seen that

there is a very close agreement qualitatively as well as

quantitatively for aid> 2.5. Thus analysis of the reinforced



52

~~a =1--36~ 0--1
i L= 20+36 t

(K-IN) t'fu

529

500

40

300

200

100

-- ------- - - - T_ ----E

€Cb = 100 Ynt'CYtJ ;.",/,],

f c+ ~ 3000 "",/,r() iro/I;'

K= 17000 Ib!in

0~0---!---'------L_-J.4--5.L..-_--L6----L7---'-t
MOMENT CARR't'IG CAPACrTY

VERSUS ~



53

concrete beam in accordance with the composite beam theory

enables the moment carrying capacities, M , to be computedu

for concrete beam without shear reinforcement, for various

values of shear-span to depth ratios. The validity of the

theory has been checked against Kani1s experimental results.

It was found that, in order to bring the computed

results closer to the Kani1s experimental values, a par-

ticular magnitude of bond-slip modulus, K, was required, and

in general the flexural capacity, M , is largely dependentu

upon K. This is discussed in more detail in the following

paragraphs.

4.6.1 As discussed earlier the interaction coefficient,

1E has a remarkably significant influence on the reinforced

concrete beam; reflecting the influence of bond-slip

modulus, K. This is shown in Fig. 4.6 for the 'Typi.ca1 Beam'

with P = 1.88 percent. Five different values of K were

selected, namely, K = 10,000, 15,000, 17,000, 20,000 and

30,000 lb/in. It is interesting to note that the reduction

in K has two effects on the influence line for flexural

capacity; first, decrease in the magnitude of K causes the

transition point, T, to be displaced towards the right and

for smaller value of K such as 10,000 lb/in the transition

almost vanishes, indicating that the carrying capacity

cannot reach the maximum possible flexural capacity. The
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second effect is that the higher values of K increase the

flexural capacity in the region governed by the concrete

strain and decrease the capacity in the region governed by

the steel strain. This means a decrease in the magnitude

of K increases the strength of the beam where steel is the

governing factor and decreases the strength where concrete

is the governing factor and vice-versa.

4.6.2 Now the question arises that what is the exact rnag-

nitude of bond-slip modulus, K, for a particular reinforced

concrete beam and what should be the criterion for selecting

a particular value of K for any beam? In fact K depends

upon a number of parameters, such as strength of concrete and

steel; percentage of steel; shape and dimensions of cross­

section; number, placing and diameter of longitudinal bars,

etc. Unfortunately, the importance of bond-slip modulus

has not been considered by research workers. Hence, further

research in this field is required.

Therefore, the criterion for selecting the bond-slip

modulus, K, is that the value which gives closest agreement

with Kani's experimental results, is considered to be the

magnitude of K. Close examination of Fig. 4.6 clearly reveals

that the magnitude of K = 17000 lb/in for p = 1.88 percent

gives almost the same results as obtained by Kani.
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:F'or the various values of percentage of steel, p,

in 'the beam tested by Kani, in order to find the effect of p,

on the relative beam strength, this analysis reveals that

there must be differen't magnitudes of K for each series

having different steel percentages. It may be noted that K

increases for higher values of p and decreases for smaller

percentages of steel. This is shown in Fig. 4.7.

4.7 Comparison with Kani's Results

4.7.1
. (8,9,19)

Kani has done an extensive experlmental

investigation in the field of shear and diagonal tension. He

performed large numbers of tests (19) on the same 'Typical

Beam' 'to find the influence of concrete strength, f~,

percentage of steel, p, and shear-span to depth ratio, aid, on

reinforced concrete beams. Figs. 4.1 and 4.8

versus aid ratio for p = 2.80, 1.88, 0.8 and

the strength of
M

show the test
Ivl'ul t

0.5 percent and f' = 5000, 3800 and 2500 psi.c
1<ani's

experimental and the computed results of this analysis are

compared in Pig. 4.9 for f' = 3800 psi and p = 1.88. It isc

found that 'there is a significantly close agreement between the

experimental and computed results for aid ratios more than

2.5. Kani observed an increase in the ultimate flexural

capacity for aid < 2.5. Agreement with the experimental

results has not been achieved over that range using the com-

posite beam theory because of different phenomenon governing
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the strength of the beam. This aspect is discussed in de­

tail elsewhere in this chapter.

4.7.2 Kani (9) sta"tes that as the load on the beam increases

the reinforced concrete beam transforms into a 'comb-like'

structure. The compressive zone of the beam is the backbone

of the 'concrete-comb' and in the tensile zone there are more

or less vertical cracks, which form the 'concrete-teeth'.

The applied load is resisted by the transfer of stresses be-

tween concrete and steel through the bond between the

materials. After the resistance of the concrete teeth has

disappeared, the longitudinal profile of the concrete beam

resembles a 'tied-archie This transformation of the rein-

forced concrete beam may occur suddenly or develop gradually.

Rani (9) also stated that for beams having aid ratios

less than 2.5, the capacity of the concrete teeth is lower

than that of the concrete arch, therefore, under increasing

loads, the transformation from beam action to tied arch

occurs gradually and the failure occurs when the capacity

of the arch is exceeded.

For beams having aid ratios between 2.5 and the

transition point, T, the capacity of the concrete-teeth is

more than the capacity of the arch, however failure does not

occur until the concrete teeth capacity is exceeded and at
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this stage transformation begins. In this case a sudden

collapse follows, because the concrete arch capacity is lower

than the applied moment. Beyond the transition point, T, only

normal flexural failure is. possible.

Hence, in Fig. 4.1, according to Kani (9), the portion

DV represents the capacity of the remaining arch. In the

region VTE the relative beam strength is governed by the

capacity of the concre'te teeth. Point V is the intersection

of the remaining arch capacity line to the concrete teeth

capacity line and 'this point shows the minimum relative beam

strength. After the transition point, T, only normal flexural

failure is possible.

4.7.2 It has been observed that the computed moment carrying

capacity, M , under the load point versus aid ratio is in­
n

fluenced by certain parameters in the same way as found

experimentally by Kani. But as discussed above the com-

puted results do not show any rise in carrying capacity for

smaller values of a/d.

Figs. 4.10a and 4.10b show the influence of percen-

tage of steel, p, on the relative beam strength versus a/d

ratio computed by the composite theory. Kani (19) found

similar: relative beam strengths for various values of percen-

tage of s'i:.eel, p. In order to compare the results the same
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percentages of steel, p = 0.5, 0.8, 1.88 and 2.80 are used.

It is interesting to note that p has two effects on

the moment carrying capacity; the ultimate flexural capacity

is greater for higher values of p and also the transition

point, T, moves towards right, Fig. 4.l0a. Increase in the

flexural capacity with increase in p has also been demonstrated

analytically by MacGregor and walters(ll~ Kani(19) states that

the amount of longitudinal reinforcement has a significant

influence on the location of transition point. If the amount

of reinforcement varies from 2.80, 1.88 to 0.80 percent then

the transition points, obtained from the test results, are

at aId = 6.5, 5.5 and 3.5 respectively. For smaller percentage

of steel such as 0.50, the valley of diagonal tension disap-

peared completely. This is evident from Fig. 4.8.

In order to compare the results for different percen-

tages of steel, consider for example when p = 0.50 percent,
Muthe ---- computed by this analysis is 100 percent (Fig. 4.l0b)Mult

at aid = 2.5 and the experimental findings of Kani also give

.,

percent
M

u
of -­Mult

100 percent.
Mrl-- is 84
ult

percentage

At P = 0.80 percent, the computed value of

at aid = 2.5 (Fig. 4.10b), the same

is obtained by Kani for this amount of

reinforcement.

For p = L88 percent and 2.80 percent the computed

results and Kani's experimental results are shmvn in Figs.
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4.9 and 4.11.

Fig. 4.9 shows ·the agreement of the theory with the

test results (19) for p = 1.88 percent. The transition point,

T, is found to be at aid = 5.4 whereas Kani's tests indicate

the transition point at aid = 5.6. Kani(19) stated that the

results showed a scatter. The minimum relative beam strength

at aid = 2.5 (point V in the diagram) is 57 percent as ob-

tained by Kani and the computed results give 54 percent.

Similarly, if the results for p = 2.80% are compared,

the transition point, T, occurs at aid ~ 7.1 while Kani's

tests gave the transition at aid = 6.6. Fig. 4.11 shows the

comparison. The minimum relative beam strength at aid = 2.5,

according to Kani is 58% whereas the computed one is 57%.

However, there is a slight difference in the magnitudes of

carrying capacity between V and T varying from 1 to 8%. This

is because the test results showed almost the same capacity

at aid = 3 as for aid = 2.5, but, according to theory the

carrying capacity will increase for increasing ratios of aid

up to transition point T.

4.8 Discussion

4.8.1 In this chapter the experimental results of

Kani,Horrow and Viest, and Leonhardt and Walther are presented.

They show qualitative agreement amongst them for the variation
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of ultimate flexural capacity with variation in the shear­

span to depth ratio, a/d. Three distinct regions can be

identified, namely DV, VT and TE as in Fig. 4.1.

The theoretical computations based on the concept of

loss of interaction in a composite beam have shown good

agreement with Kani's experimental results over the region

VT and TE. The only qualitative assumption made in the

theoretical computations was that the bond-slip modulus

should have that magnitude that would give the closest agree­

ment between the computed and experimental value of ultimate

flexural capacity at the experimental trmlsition points V'and

T for beams having a particular steel percentage, p.

Fitting the theoretical results to the experimental

transition points, V and T, resulted in the bond-slip modulus,

K,having different values for different steel percentages, p.

Although the resulting magnitudes of K are not equal and have

not been identified with any experimental results, since the

bond-slip modulus does not appear to have been investigated

experimentally; qualitatively the computed values of K appear

acceptable since they show an increase of K with increase in

percentage of steel (i.e. either an increase in bar diameter

or an increase in number of bars).

It is interesting to note that in the computation no

account has been made directly for the vertical applied shear
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or diagonal cracking and the analysis is entirely based on

flexural capacity at the cross-sections under the load points.

In spite of this the computed results are very much in agree­

ment with experimental results of Kani.

4.8.2 Figs. 4.5, 4.9, 4.10a, 4.10b and 4.11 show the

computed ultimate moment, Mu ' carried by the section under

the load point for various ratios of a/d. It has been

observed that it is influenced by the same parameters as found

experimentally by Kani over the range VTE. However, this

method does not result in any increase in ultimate flexural

capacity of the beams for a/d less than 2.5 as has been

observed experimentally.

It is evident that some other factor comes into play

in this region. Kani (9) has suggested that the 'tied-arch'

phenomenon governs the strength of the beam for a/d ratios

less than the transition point, V. Hence, in order to have a

complete theoretical explanation of the reinforced concrete

beams behavior, the arch analogy should be investigated.

4.8.3 In fact Kani(9) has presented a semi-empirical

method for calculating the capacity of the remaining arch

and the capacity of the concrete -teeth, but, that method

cannot be generalized because it depends upon certain factors

such as spacing and height of the flexural crack which have

to be determined from experiments.
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Kani's method of analysis is summarized in the following

paragraph.

1. The full flexural capacity, MpL ' of the beam can be

expressed by:

7
MpL = --d-A f

8 s Y
4.3

4.4

2. The capacity of the concrete teeth can be expressed by:

7 f t llx b
-86 sad.

3. If M is the moment depends only on the properties of the
o

section, then:

H
o

fl
7 t= 86 4.5

a
TR

The equation 4.4 can be written as:

llx a
MeR = Mo-g--d 4.6

4_ At the point where the carrying capacity line reaches

the line of full flexural capacity, the:

then the transition point a TR can be given by

MFL s
= r.r-- l1x

o

putting the values of MFL and Mo from equations 4.3 and

4.4 into above equation:
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4.7

Renee the magnitude of (J,TR can be determined.

5. In the region of low aid ratios the capacity of the beam

can be calculated as the strength of the remaining arch

which can be expressed as:

MFL d
== ~a

where k is a constant and is equal to 0.9.

4.8

6. In the medium region of aid values the concrete teeth

capacity determines the strength of the structure:

MpL
MeR == ll'11R ~

7. The common boundary point of the two regions is

4.9

given by:

a .
nun

= /aTR
k

4.10

and the minimum capacity at ~. can be calculated by:
m~n

where (J,TR = the magnitude of transition point

f t = tensile strength of concrete

p = percentage of longitudinal tension rein-

forcement
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s = average height of the crack

~x = average spacing of crack

k = constant factor = 0.9 - suggested by Kani(9)

MFL = full flexural capacity

MeR = moment at failure of concrete-teeth or

the capacity of remaining arch

aid = shear-arm depth ratio



CHA~TER V

SHEAR STRESS DISTRIBUTION

5.1 The forntation of flexural cracks, particularly in the

shear span, leaves a comparatively small cross-section of

concrete to support the external shear force with the result

that many authors(1,Jl 1 15) reason that additional resistance

must be provided by 'dowel action' in the reinforcing bars

and 'aggregate interlock' or 'shear due to friction'.

Acharya(15) argued that the presence of dowel force

cannot be ingored in any quantitative analysis of shear

failure.

Some research workers(ll) in the analysis of diagonal

failure assume some contribution of dowel and aggregate inter­

lock forces. Fenwick and Pauley (1 ) in their paper "Mechanism

of Shear Resistance of Concrete Beams" attributed a signifi-

cant percentage of shear resistance to aggregate interlock.

Their experiments suggest that aggregate interlock action

provides 50 percent of the resistance to shear force in a

cracked beam, with 20 percent due to dowel action and the

remainder carried in by uncracked portion of a cross-section.

It was therefore of interest to study the distribution

of shear stresses and the contribution of shear force resis-

72
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tance by different components, at various sections along the

length of a cracked beam.

Since there are three major components resisting the

shear force, namely, uncracked concrete, aggregate interlock

action and dowel action, two different approaches are con-

sidered. One for calculating the shear stress distribution in

the uncracked concrete and the other to determine the contri-

bution of dowel and aggregate interlock actions and Lhe

distribution of shear stresses in the cracked portion of the

beam. These are discussed i.n the following.

5.2 Shear Stress Distribution in Uncracked Concrete

5.2.1 The method presented here is primarily based

on equilibrium of the horizontal forces. The equilibrium

conditions are applied to an uncracked portion between any

two sections of a cracked beam. Fig. S.la shows such an

uncracked portion, C-C, between sections 1-1 and 2-2. Rc-

ferring to Fig. 5.la, the strain at any level can be computed

by:
nl-Yl

£: =E:
ct l

( n )
Yl 1 5.1

n 2- Y2
E: =e;

ct2
(---)

Y2 n 2 J

where n l and n 2 are the distances of the neutral axes for

section 1-1 and 2-2 respectively from the top concrete fibre.
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Lix in Fig. 5.1 is the distance between section 1-1

and 2-2; that is the middle section C-C where the shear

stress distribution is to be determined is ~x/2 in. from each

se~tion 1-1 or 2-2. It is assumed that the flexural crack

heights at all the three sections l-l,C-C and 2-2 are the

same and the height is equal in magnitude to that obtained

for section C-C, that is,

Cd = Cd == Cd1 c 2

where Cd is the uncracked concrete depth. Since the magnitude

of ~y./2 is very small, therefore, the difference between the

actual computed uncracked depth is insignificant.

5.2.3 Shear Stresses

The uncracked portion C-C can be divided into a

Dumber of rectangular laminas. The average shear stress

d~termined, from the equilibrium of the free body above

the base level, at the base of each lamina is shown in

Figs. 5.1b and 5.1c.

Therefore

where

and

T
F2-F l 5.2=12 b • t:,.x

e: +e:
ct l Yl bEFl == ( 2 ) Y l c

e: +e:ct2 Y 2F 2 = ( 2 ) Y2 bEc
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here b = width of the beam

T12 = average shear stress over the base

of free body.

If T is the vertical shear stress at a depth, y,xy

and at a distance, x, from left support, then

T -- 'rxy "12·

5.2.4 Shear Force

The total shear force, 8, carried by the section

c-c at a distance x from left support, as per Fig. S.le can

be given by:
Cd

8 = L f c
I
"o

T dy
xy

5.3

5.2.5 Zero shear stress at the root of the crack

From the method stated above the shear stress is not

zero at the root of the crack and the computation shows that

there is a certain amount of shear stress existing at the base

of the crack. But, for the requirements of the boundary con-

dition it is reasoned that the shear stress should be zero

at the root of the crack, since it is zero at the top or bottom

fibres of concrete. Also t.he method for the determination of

shear stresses in the cracked region of the section, as dis-
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cussed in the following paragraphs, requires the shear stress

to be zero at the base of the crack.

5.3

5.3.1

Shear Stress Distribution in Cracked Concrete

(1 2 9 11 28)
Most research workers "" agree that

the formation of flexural tension cracks in a beam,

divide the tension zone into a number of blocks; each of them

may be considered as a cantilever spanning from the compres-

sion zone to just beyond the tension reinforcement. These

blocks are called 'concrete-cantilevers' and the compression

zone is the backbone of these cantilevers. The structure

formed may be likened to a 'comb-like' structure. This is

shown in Fig. 5.2a.

5.3.2 If only two adjacent concrete cantilevers are

considered at a time and all the other minor forces acting

on them are neglected then the only major force acting is

the bond force, 6F
B

, which is the incremental increase of

the tensile force in the flexural reinforcement, as shown

in Fig. 5.2.b. These two cantilevers can be idealized as a

'composite cantilever beam' having a continuous shear con-

nection throughout the length at the interface due to

aggregate interlock or friction action, and a stiff con-

neetor due to horizontal steel at the level of reinforcement.

(dowel action). This composite cantilever beam has a
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horizontal shear, q, at the interface, which can be determined

, (20) 't k_ Th' t"by StussL compos~ e tl~ory. e cont~nuous connec 10n can

be replaced by discrete connectors of any desired spacing, s.

If the horizontal shear, q, is divided by the product of

breadth of beam and spacing of connectors then the vertical

shear stress can be obtained:

5.4

5.3.3 This approach, discussed above, has been

used to determine the shear stress distribution in the tensile

zone.

For any composite beam the magnitu.de of tl:.e: shear

modulus of the connector must be known. In this case there

are two different connectors, friction or aggregate inter-

locking action (replaced by discrete connectors of spacing,s)

and a stiff shear connector due to reinforcement (dowel

action) • Now the question arises as to the magnitude of

the shear module of the two types of connectors. In order

to determine the contribution of dowel action in a reinforced

concrete beam Fenwick and pauley(l ) conducted tests on long

and short dowels. They stated that"the long dowels were

intended to throw some light on the conditions which prevail

in the vicinity of the first diagonal crack near the support

of a beam ----," liThe short dowel tests were designed to
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give some information on ·the contribution of dowel action to

the resistance of the concrete cantilevers". Their test arrange­

ments and the results obtained in the form of a graph (dowel

force versus displacement of dowels) are shown in Fig. S.3a to

5.3c.

Since the short dowel tests were intended to deter­

mine the conditions in concrete cantilevers, the initial

slope of the dowel force versus displacement of dowel curve

(which can be regarded as a load-slip curve) has been used for

the determination of the modulus of the stiff connector

(flexural reinforcement). The average value obtained from

Fig. S.3b <tension side) is:

Kc = 1.75 x 10 5 lb/in for a ~" diameter bar.

In this wayan approximate value of shear modulus of

dowel, KC ' has been determined. The magnitude of t.he friction

modulus, K
AG

, still remains unknown. At this stage no work

appears to have been done to determine the friction modulus.

Therefore, the magnitude of the friction modulus, KAG , is

left undefined in the computation.

From the approach of section 5.2 of this chapter the

shear force contribution of uncracked concrete is known. The

remaining shear force must be carried by aggregete interlock

plus dowel action. Therefore, the magnitude of the friction

modulus, KAG , which gives the appropriate percentage contri-
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bution to the total shear force is taken as the value of

aggregate interlocking modulus.

,.

5.3.4 In order to find the shear stress distribu-

tion in the tensile zone by Stussi's composite beam theory

the dimensions of the 'composite cantilever beam' such as

length, breadth and depth, must be known. The length is the

crack height from the bottom of the concrete beam to the

root of the crack, for the crack which forms the interface

between the two cantilevers. The depth of each element of

the composite beam cantilever is taken as the spacing of the

cracks. Broms (13) suggested that the average crack spacing

is approximately twice the distance of the concrete cover,ds '

to the tension reinforcement.

S = 2dcr(ave) s 5.5

where Scr(ave) is the average crack spacing.

In the computation this spacing has been used. The

influence of crack spacing on the shear stress distribution

along a crack has also been determined and is summarized

elsewhere in this chapter.

5.4 Shear Stress Distribution Along A Flexural Crack

The particular beam considered for this purpose is

the same 'typical beam' of chapter III, having p = 1.88

percent. The bending moment on the beam is 264500 lb-in, half
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the ultimate bending moment carried by such a section, as ob-

tained by ACI Code formula.

Since in the beam considered here two number 7 bars

are used, the modulus of dowel action is:

KD = 2 x 1.75 x 10 5 lb/in

= 3.5 x 105 lb/in.

Two shear-arm to depth ratios, a/d, are considered,

namely ~ = 3 and g= 5, in order to have a better picture of

shear stress distributi.on for the same bending moment.

Fig. 5. 4a and 5. 4b shm'1s the computed shear stress

distribution at different sections along the length of the

a a
beam for d = 3 and d = 5, respectively. The figures also

show the required magnitude of friction or aggregate inter-

locking modulus, KAG , for every particular section, since it

varies for different sections, when it is required that the

internal resisting shear force must equal the external applied

shear force. The percentage of total shear force carried by

different components in a cracked beam is also shown in

Figs. 5.4a and 5.4b.

It is to be noted that the percentage shear force

carried by the uncracked concrete varies from section to sec­

tion; for example for ~ = 3 and x=4 in., where the section is

uncracked throughout the depth of the beam 99.7 percent of

the total shear force is carried by concrete and the distri-
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bution of shear stress is a parabolic curve. In the cracked

zone in the shear span the percentage contribution of shear

force varies from 42.3 percent to 38.0 percent for ~ = 3

aand 55 percent to 47 percent for d = 5. The dowel force is

almost constant and is about 7.5 percent except just to the

left of the point load where it is about 3.5 percent, for

both the aid ratios. The aggregate interlocking resistance

ranges from 54 percent to 49.5 percent and 45.1 percent to 40

apercent of the total shear force for d = 3 and 5,respectively.

In the constant moment region the shear stress in

the uncracked concrete reverses its sign (negative). Since

the 'tooth' deflection would remain in the same direction,

because, the stress in the tensile reinforcement continues

to increase up to midspan. Therefore,a balance of internal

shear force is possible and zero total shear force can be

obtained. However, in order to achieve zero resultant

shear a very large magnitude of KAG is required. For example,

for ad = 3 the RAG in the constant moment region is about

10 times greater than the KAG in the combined moment and

shear region. Even then a negative shear of magnitude 2.94 per­

cent at x=39.6 in. and 1.28 percent at x = 45.6 in. remained.

One conclusion to be drawn from this is that the computed

shear force contribution due to friction is extremely in-

sensitive to the change in the magnitude of the friction
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shear modulus, K
AG

, in the constant moment region.

The magnitude of KAG just to the left of the load

point, as shown in Fig. 5.4a, is 3,220,000 Ib/in2 for a/d=3

and 936,000 Ib/in
2

for a/d=5. These are also the maximum

values of KAG in the combined shear and bending moment region.

a
It can also be noted that for d = 3 and at x = 32 in. (just left

of the load point) the total shear force carried by all the

components is 96.5 percent; a difference of 3.5 percent.

Here the same difficulty arises and in order to get another

3.5 percent due to friction the value of RAG would have to

be more than 7 times the used value of Y.AG == 3,220,000 lb/in2 ,

which is already 10 times higher than the other KAG values for

the same aid ratio in the increasing moment region.

5.5 Influence of Crack SEacing and bx

5.5.1 The choice of crack spacing has a great

influence on the magnitude of KAG • It has been found that

the greater the value of average crack spacing (tooth width) ,

the greater the magnitude of KAG required to balance the

external shear force and vice versa. For example, if a crack

spacing of 1.3 in. is used in the computation instead of 2.6

in. then the magnitude of KAG is reduced to 200,000 Ib/in 2

from 396,000 lb/in2 for ~ = 3 and at x == 13.6 in. and it

2 ? a
reduced to 210,000 Ib/in from 426,000 Ib/in- for d = 5



87

and at x = 39.6 in. Similarly for other sections. Also the

reduction in the crack spacing slightly increases the percen­

tage of shear force carried by dowel action and it is observed

that the average shear force carried by dowel action in the

shear span is 8.5 percent for crack spacing of 1.3 in.; an in­

crease of 1 percent from that with 2.6 in. crack spacing.

This means that the aggregate interlocking force decreased

by 1 percent.

5.5.2 It has been found that the magnitude of

~x used in the computation of the shear stress distribution

in the uncracked concrete does not have any effect on the

shear force carried by the uncracked concrete. The value of

~x was varied from 1.0 in. to 0.01 in., but the percentage

of shear force and the magnitude of shear stresses remains

the same for each particular section.

5.6 Discussion

The methods considered here for the determination

of shear stress distribution in a cracked beam, throughout

its depth, and subsequently used to find the contribution

of the different components to resist the external shear

force are based on simplified assumptions, such as equilibrium

of horizontal forces and on a composite cantilever beam

model. However, the shear stress distribution and the
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percentage contribution of different components seems to be

reasonable.

Acharya(151argued that only 40 percent of the total

shear force is carried by uncracked concrete and the rest by

dowel action. On the other hand Fenwick and pauley(l)

claim that the shear force carried by uncracked concrete, aggre­

gate interlock and dowel actions is 30 percent, 50 percent

and 20 percent respectively. MacGregor and walters(ll) in

their analytical analysis considered 11 percent contribution

of shear force from dowel action, 23 percent from the aggre-

gate interlock and the remaining from uncracked concrete.

From the approach described above the percentage

shear force carried by the uncracked concrete ranges from

39 percent to 55 percent; aggregate interlock action con­

tribution in resisting the shear force varied from 40 percent

to 54 percent and the dowel action resists almost 7.5 percent

of the total shear force. This is for a particular beam

cross-section (typical beam) and for two aid ratios: 3 and 5.

In the light of the above discussion it is concluded

that the calculated shear stress distribution in uncracked

concrete and the percentage contribution in resisting the

shear force is reasonable. Although the method for finding

the shear stress distribution and the contribution of dowel

and aggregate interlocking actions is based on simplified
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assumptions the distribut~on of shear stress on a cross­

section in the tensile zone seems to be reasonable. Dowel

action does not seem to contribute much to the resistance

to shear force for this particular beam. It is to be mentioned

that a different beam having the dimensions of those tested

by Plowman(29) was also examined analytically. The maximum

bending moment on the beam is 36200 lb-in (design moment),

the magnitude of K and Ec is 17000 lb/in and 1.9Xl06 psi,

respectively. It was found that the dowel action in this

particular beam is significantly larger; having a magnitude

of almost 20 percent, while the shear force carried by uncracked

concrete is 46.6 percent and the remaining was carried by

aggregate interlocking action. The distance of the particular

section was 20 in. from left hand support.

Therefore, the percentage of shear force carried by

dowel action and aggregate interlocking vary considerably

and depend upon the dimensions of the beam.

It should be emphasized that the computed values

of the friction shear modulus (or aggregate interlock modulus)

are the result of determining a magnitude of KAG which would

provide the remainder of the shear resistance not carried by

the computed components due to dowel action and the uncracked

part of the concrete.

It is difficult to pass a judgement on the magnitudes
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and variation of KAG values obtained from the computation,

since there does not appear to have been any experimental

results with which to compare them. Therefore, a more

realistic approach is required to determine the magnitudes of

the friction modulus.

Also in a real beam the width of the crack is not con­

stant. The maximum width occurs at the level of the longi­

tudinal reinforcement and the minimum width at the root of

the crack. Therefore, the magnitude of aggregate interlocking

modulus is not in fact likely to be constant, because the

maximum friction will occur near the root of the crack and

the minimum at the level of reinforcement. Hence, it is

also emphasized that the variation in the magnitude of

aggregate interlocking modulus should also be investigated

and should be considered in the computation.

Once these coefficients are established, it would then

be possible to determine the distribution of shear stresses

in the tensile zone of a cracked beam and the contribution of

the different actions in resisting it, especially if a multi­

layered composite beam solution is tried. Then it is hoped

the analysis could be extended to trace the path of diagonal

cracks and to study the cause of such a failure.
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CHAPTER VI

INCLINED CRACKING

6.1 Diagonal cracking is often regarded as a combined

stress problem. 'l'herefore, in this chapter the maximum prin-

cijBl b:msile strains {combinatioll of flexural and shear

It. 5.3 based 011 the assumpt.ion that cracking wi 11 st.-.lrt t.o occur

~lenever the principal tension strain exceeds the critical

-bracking strain,

6.2.1

~ (100 micro in/in).cr

From the previous chapter the distribution

and magnitude of shear stresses in a cracked reinforced con-

crete beam are known. The flexural strain distribution at

any particular section can also be computed as shown in Fig.

5.1.

6.2.2 Shear Strain

Consider a sEction at a distance x from the left

hand support, then at any level 'y' from the top concrete

fibre, the shear stress,

be:

T is known. The shear strain wouldxy

Yxy

1
= _E..

Gc
6.1

where G = shear modulus of concretec

91

E
c= 2 (l+v)
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Here v is the Poisson's ratio. The value of v for concrete

is taken as 0.16.

6.2.3 Principal Strain

If E is the flexural strain at a distance x fromxy

left hand support and at a depth y from top fibre of concrete

then the magnitude and direction of maximum principal strain

at the same position can be computed by the conventional com-

bined strain formula, as:

cmax

E: /

= ~+ I
2

6.2

Here any effect of transverse strains has been neglected.

Also
_1 1 y

6 = '2 tan- (~xy )
xy

6.3

6.3 Since the computed shear stress is zero at the root

of Jche crack any inclined crack likely to occur must be some

distance above the root of the flexural crack. The uncracked

concrete cross-section at any particular location is divided

into a number of intervals and at each level the combination

of shear and flexural strains (maximum principal strain) is

computed. Since in this computation the magnitude of the

applied bending moment is arbitrary, the largest of the

maximum principal strains will be regarded as the cause of
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inclined cracking if it is greater than or equal to the

critical cracking strain £cr The more correct computational

procedure is to apply incremental loading and trace the 10-

cation and direction of the top of the crack.

6.4 Numerical Example

6.4. 1 Consider the "typical Beam' having p = 1. 88%,

K ::: 17000 Ib/in and aid::: 3. Fig. 6.1 shmvs the computed

flexural and inclined crack pattern in the combined bending

and shear region. The procedure of computing the inclined

cracks is as follows.

6.4.2 Procedure

The flexural crack heights are obtained in the usual

manner as outlined in chapter III. In computing the in-

clined cracks, the shear stress distribution in the remaining

uncracked concrete portion at a particular cross-section is

determined. The uncracked concrete portion is divided

into 50 equal interva.ls; at each interval the maximum

principal strain is computed as outlined above. The largest

of all the maximum principal tensile strains is regarded as

the cause of inclined cracking if it is greater than or

equal to £ • The first increment in the crack height iscr

then computed in the same way as explained in Chapter III.

Then the new total cracked height will be the sum of the
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flexural crack height, the first increment in the crack

height due to maximum principal tensile strain and the heiqht

between the root of the flexural crack and the depth over

which the maximum principal tensile strain is equal to or

more than s cr' see Fig. 6.2.

eH
:= eH + Ll ch + D

cc c

and
21I' := 2II - ,.., 6.4'-H

c

The new remaining depth, 2H', is reused in equation

3.1 in place of 2H and another increment in the crack height

is obtained. All the above procedure, is repeated until a

stable section is obtained, as explained in chapter III,

section 3.1, except that the magnitude of £cb in this case

is equal to the largest of the maximum principal tensile

strains.

It was found that vertical shear capacity of a

particular section in the uncracked concrete diminishes as

the inclined crack height increases. For example at

x = 11.2 in. the shear force carried by the uncracked con-

crete above the root of the flexural crack is 45 percent.

After the stabilization of the inclined crack the percen-

tage shear force carried by the uncracked concrete is re-

duced to 41.5 percent.



97

6.5 Discussion

The maximum principal strains computed in the re-

maining uncracked portion of the beam are in fact greater

than the critical cracking strain, £ (100 micro in/in),cr

hence an inclined crack is obtained. An inclination of up

to 40 degrees with the vertical has been obtained. This

suggests that inclined cracks may be developed when the

principal strains are computed.

By computing and plotting the development of cracks

during incremental loading it may be possible to trace the

development of inclined cracks.



CHAPTER VII.

SUMMARY, CONCLUSION AND SUGGESTIONS FOR
FUTURE STUDIES

7.1 Summary

In this thesis a reinforced concrete beam has been

treated as a composite beam with incomplete interaction.

The solution for a composite beam with stepped profile

was obtained. It takes into account the compatibility con-

ditions at the change of cross-section, i.e., at the first

flexural crack. It was found that the maximum crack height

under the load point calculated by this method (Newmark 2B)

remains the same as obtained by Newmark I, which does not

take into consideration the compatibility conditions, see

Fig. 2.7. Hmvever, the crack profile obtained by Newmark 2B,

in the increasing moment region, is better than the crack

profile obtained by Nemnark I, as the cracks are not so

high in the initial flexural cracking zone. It has been

found that the Newmark 1 solution can well be applied to the

study of reinforced concrete beam, since the difference be-

tween the two approaches when computing the moment capacity

under the load point is negligible.

The non-linear behavior of concrete has been con-

sidered and the area under the parabolic stress-strain curve

98
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of concrete has been approximated to a triangle, by reducing

the modulus of elasticity of concrete. It has been found

that the crack height, in general depends upon the bond-slip

modulus, K, and modulus of elasticity of concrete, E •c
The

decrease in K results in higher crack heights. On the other

hand the decrease in E also decreases the crack height, seec

Figs. 3.4 and 3.5.

The stability of flexural cracks has also been discussed

and it was found that the tensile crack stabilizes, after pene-

trating vertically into the beam to a certain height until the

lower fibre concrete strain, E cb ' is equal to critical cracking

strain, 8 , as well as there being equilibrium between in-cr

ternal and external forces. The analysis of Krahl(lO) et ale

and MacGregor and Walters(Jl) also depends upon stability of

the tension crack, but the analysis presented in this thesis

differs in the sense that they did not account for the relative

movement (slip) between the concrete and steel.

It was found that the interaction diminishes as the

shear-arm to depth-ratio, aid, is reduced, consequently the

concrete top strain, Set' increases and steel mid height

strain, ssm' decreases. Hence, the influence lines for the

maximum moment carrying capacity were obtained. These are

almost the same as obtained experimentally by Kani, Leonhardt

and Walther, and Morrow and Viest (see Fig. 4.1, 4.2 and
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compare with Fig. 4.5 for aid:: 2.5). These carrying capacity

curves are only based on the consideration of flexural stresses

and no account has been taken of shear stresses. Figs. 4.9

and 4.11 show the comparison between Kani's (19) experimental

results and the computed results of this thesis. It is interes­

ting to note that these curves are similar in magnitude and shape

for aid> 2.5. It is to be noted that each curve consists of

two parts, namely one sloping down (portion VT in Fig. 4.5)

and the other which is almost horizontal (portion TE in Fig. 4.5).

In the sloping portion concrete governs the strength of the

beam while in the horizontal part the steel reaches its

yield strain first. Point 'T' in Fig. 4.5 represents the

transition point which divides the two governing factors and

also at this point the concrete and steel both fail simultaneous­

ly.

The transition point, T, as reasoned by Kani (9) dif­

ferentiates between the two modes of failure. Beams having

aid ratios less than T fail in diagonal cracking and after the

transition point only normal flexural failure is possible.

It was established that the value of bond-slip modulus,

K, affects the moment carrying capacity and the location of

the transition point. The carrying capacity increases slightly

on the right side of transition point and decreases on the

left side of transition point, as the value of K reduces for

McMASTER UNIVERSITY LIBRARY
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a given percentage of steel. Also the transition point moves

more towards the support for higher values of K, Fig. 4.6.

It has been found that the percentage of steel, p, has

a significant influence on carrying capacity and also on the

position of transition point. The transition point moves to-

wards a larger aid ratio for greater percentages of steel,

Figs. 4.10a and 4.10b .

. (19) . d . b' th . £1 £ l'Kanl , In escrl lng e In uence 0 p on re atlve

beam strength stated, lIfor those beams with a high percentage

of reinforcement (p = 2.80 percent), the 'valley of diagonal

failure' has a low point in the vicinity of Mu/Mfl = 50 per­

cent, whereas for those beams with a low percentage of rein-

forcement (p = 0.5 percent with Mu/Mfl = 100 percent), the

'valley of diagonal failure' disappears". Kani also stated

that the amount of reinforcement influences the location of

the transition point, T. Varying the main reinforcement

from p = 2.80 percent to 1.88 percent and 0.80 percent, the

test results produced locatiom of the transition point, T, at

aid = 6.5, 5.5 and 3.5,respectively.

The computed results show that for p = 0.50, 0.80,

1.88 and 2.80 percent, the transition point T occurs at

aid = 2.5, 3.0, 5.4 and 7.1,respectively. The computed

relative beam strength,Mu/Mult at aid = 2.5 is 100 percent,

84 percent, 54 percent and 58 percent for P = 0.50,0.80,1.88



102

and 2.80 percent, respectively. In spite of the fact "that

certain simplifying assumptions were made for this analytical

approach, the computed values are in very close agreement

with the experimental results. The only qualitative assump-

tion made in the analysis is that the bond--slip modulus

should have the magnitude that would give the closest agree-

ment between the computed and Kani's experimental results at

the experimental transition points V and T.

The analysis was further extended to determine the

shear stress distribution and the contribution of different

actions in a cracked beam. Shear studies were carried out by

two different methods, one to determine the shear distribution

in uncracked concrete and the other to find out the distri-

bution in the tensile zone. The analysis indicated that the

contribution of uncracked concrete varies from 39 percent to

55 percent depending upon the remaining uncracked depth and

shear span to depth ratio. Dowel action contributes about

7.5 percent of the total shear force and the rest, presumably,

is carried by aggregate interlock action. The opinion of

research workers varies widely regarding the share of total

shear force by different actions. MacGregor and Walters (11)

suggested that 66 percent of the total shear force is carried

by the uncracked concrete, 23 percent is carried by aggregate

interlock action and the rest, 11 percent, by dowel action.
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Fenwick and pauley(l ) claim that the contribution of un-

cracked concrete is 30 percent and the remaining 70 percent

is carried by aggregate interlock and dowel actions; out of

this 70 percent ~rd to ~th is the contribution of dowel

action. Acharya(15) assumed that as much as 60 percent of the

total shear force is carried by the dowel action.

It is also suggested that shear stress at the root of

the flexural crack is zero. This differs with the opinion of

Krahl et al}lO)and MacGregor and Walters(ll) who argued that

for an inclined crack (extension cf the flexural crack) there

must be some shear stress at the root of the crack. But, in

many instances the diagonal crack is above the flexural crack,

therefore, the assumption of zero shear stress at the root of

the flexural crack is reasonable.

It has been shown that inclined cracking is possible

above the root of the flexural crack and an inclination of as

much as 40 degrees is possible. This inclination was ob-

tained by combining the bending and shear stress. No account

has been taken of normal stresses. A more rigorous analysis

is required to determine the path of the diagonal cracks, and

an incre.mental loading technique should be utilized. It is

hoped that this may provide more insight into the problem of

diagonal cracking.
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7.2 Conclusion

The following conclusions are drawn from this study:

1. . . f (l7)The compos~te beam solut~on 0 Newmark (called

Newmark 1) can be applied, giving reasonable accuracies,

to determine the crack profile and moment carrying capa-

city, particularly with respect to the crack height at

the load points.

2. The magnitude of modulus of elasticity of concrete has a

significant influence on crack height. For higher values

of Ee , the crack height will be higher.

3. The bond-slip modulus affects the final height of the

flexural crack. The lower the magnitude of K, the greater

will be the height of the flexural crack.

4. After flexural cracking, the value of the interaction co­

efficient, ~, increases, as the depth of the remaining

uncracked concrete diminishes.

5. Due to reduction in the remaining uncracked depth during

the process of flexural cracking, the horizontal force, F,

increases, as the moment carried by the remaining un-

cracked concrete, M , decreases.c

6. The bond-slip modulus, K, percentage of reinforcement, p,

and the shear-arm to depth ratio, aid, have a significant

influence on moment carrying capacity of the beam. The

lower the aid ratio, the lower will be the carrying
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capacity. Increase in the magnitude of K increases the

carrying capacity to the left of the transition point,

T, and also it shifts IT' more towards the support.

The percentage of steel has two effects; it increases

the moment carrying capacity if p increases and also

moves the transition point away from the support.

7. Shear studies show that 39 percent to 55 percent of

the total shear force is carried by the uncracked concrete,

7.5 percent by dowel action and the rest by aggregate

interlocking action. (The study of shear force carrying

capacity at a cracked section in beams with different

dimensions, however, indicates that the proportions can

vary significantly. A study of a typical beam tested

by Plowman showed that the dowel actions can contribute

up to 20 percent with the uncracked section supporting 46

percent and aggregate interlock taking the remaining 34

percent. )

8. Inclined cracking can occur above the root of the flexural

crack, since the principal strain can be more than the

critical cracking strain. An inclination of as much as

40 degrees to the vertical was obtained.
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7.3 Suggestions for Future Work

1. The flexural cracking, based on composite beam theory with

incomplete interaction, should be extended to include

curvilinear stress-strain characteristics of concrete.

This should lead to more realistic cracking profiles and

probably better understanding of the problems of diagonal

cracking.

2. The values of bond-slip modulus, modulus of aggregate

interlock action and dowel action modulus should be in­

vestigated and the effect of various parameters, such as

percentage of steel (diameter and number of bars), breadth

and depth of cross-section and the strength of concrete

and steel on the magnitudes of these moauli should ue

determined.

3. A theoretical arch model should be investigated for the

determination of moment carrying capacity of a beam for

smaller values of shear-span to depth ratios (i.e.

aid < 2.5), in order to establish a complete theoretical

explanation of the behavior of reinforced concrete beams.

4. The distribution of shear stresses in the cracked region

(tensile zone) of the beam should be investigated more

rigorously. In particular the cantilever action of the

concrete 'teeth' in the cracked zone should be treated

as a multilayer composite beam problem.



107

5. This method of analysis should be extended to study the

effect of incremental loading. Such an approach may lead

to a better production of the path of diagonal cracks

and better understanding of such a failure.
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APPENDIX A

FLEXURAL CRACKING THEORY

A.A.l The conventional theories for the analysis of rein-

forced concrete beams assume that there is perfect bond be­

tween the steel and the concrete and that no slip occurs.

However, it is well recognized by the experiments of many

research workers(1,2,30) that the two materials in a

reinforced concrete beam do not act perfectly together and

there is always some relative movement between them. In a

cracked beam this phenomenon is much more pronounced where

slip is partially due to the breakdown in interaction (be­

tween the concrete and steel) and partially due to defor­

mation of the concrete teeth.

Although a reinforced concrete beam does not possess

a distinct interfacial plane between the concrete and steel.

The composite beam theory(17) can be applied if a pseudo-

interface is assumed.

The following assumptions are made for the derivation

of the formulae:

1) Concrete and steel are perfectly elastic materials.

2) Concrete and steel deflect equal amounts at all points

along the length of the beam, i.e., they have equal

curvatures at any cross-section.
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3) The horizontal force, F, transmitted to each component

by the bond is considered to act at the centroids of

each section.

4) There is a linear straLn distribution across the depth

of the section.

5) The bond-slip modulus is assumed to remain constant be-

fore and after cracking and is uniform and continuous

along the length of the beam.

6) The amount of slip between the concrete and steel is

directly proportional to the horizontal shear.

7) The total external moment, M
t

, at any location along

the length of the beam is equal to the sum of the indi-

vidual moments, in the concrete, M , and in the steel,c

Ms ' and the additional couple due to horizontal force,

1;, hence:

The line joining the extremities of the flexural

crack is called the crack profile. This profile will be

treated as a pseudo-interface. Referring to Fig. A.A.I, the

stress-strain at- the pseudo-interface can be written as:

where

~ = e: ~dx 1 - t:. cb A.A.l
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From the similarity of the

~ = (. E: (.dx st - r - cb

shaded triangles,

d
D - '2 - 2H'

E = (E: - E: ) f-(--d::----}
r sb st
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A.A.2

A.A.3

where E is the strain due to distortion of the 'concrete
r

teeth' in a cracked beam. Since the strain distribution has

been assumed to be linear across the section, analogous

to composite beam theory the following expressions can be

written:

F
1'1 C Is S

E: =
EsAs

+ EIsb s s

F
M C

(.
st s s

= E1\-~s s s s A.A.4

F
M C

(. + c c- ~ ~cb c c c c

M C I
F c c

J
(.ct =--- -

E A E Ic c c c

Therefore:
FMC F

Er = (EA + EsIs - ~ +
s ~ s s s s

M C D _ d
~)( '2-
E I ds s

2H'
)

or
2 M Cs s

E Is s

d
D - '2 - 2H'
(d ) A.A.5
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Substituting this value of ~ in equation A.A.2, the rate
r

of change of slip will be:

dy
dx A.A.6

where

According to composite beam theory:

dF
q = dx

sy = qo_
K

q = load transmitted per unit ler,·gth of the

beam (here I between conc:ete and steel

reinforcement)

F = Interaction force

s = Spacing of connector

= 1 in. (For reinforced concrete beam)

K = Bond-slip modulus.

A.A.7

A.A.8

Differentiating eqs. A.A.7, and A.A.8 with respect to x,

yields:

and ~ ~ 0
1

dx -- dx K' where s - 1

A.A.9

A.A.IO

Substitution of eq. A.A.9 in eq. A.A.IO, yields:

d'Y d 2p 1
dx = 0-

dx2 K
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Therefore, eq. A.A.6 will then be:

A.A.ll

Now sUbstituting values of Sst and scb in eg. A.A.II from eq.

A.A.4

F
(~

s s

M C FMC 2M C d
s s) ( ~) s s ( 2 ')EI - -~+EI -B'Yd D- i - H •
s s c c c c s s

Re-arranging,

1 d 2F' 1 1 HsCs McCc 2H C
K :2 = F (E""l\ + I;;A) - [ET + EI + E ~ ~ :D

dx s s c c Sse c s s
~ - 2H')] A.A.12

Since it is assumed that the concrete and steel rein-

forcement deflect equally at all points i.e., they have equal

curvatures, therefore:

=
M

c
E I

c c
A.A.13

Also from the equilibrium of composite section

Therefore:

= M + M + FeZ •c s A.A.14

where

M
c

Eclc

M= __s_:::;
E Is s

M - FeZ
t

L:EI
A.A.IS

EEl = E I + E I .sse c
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or

where

1 d
2

F 1 1 Z2 MtZ

K dx2 = P{E A + EA" EEI} - EEI A.A .16
s s c c

2C dZ = C + C + s (0 - 2" - 2H' )s c tr-

by definition

and

If

and

C = H'
c

C
d= 2 .s

1 1 1
;:: Ex-+ E AEA s s c c

Ef :: EEI + EA.Z 2

Then eq. A.A.16 can be written as:

By re-arranging the above equation:

A.A.17

Z = cs

or

For a cracked section,

2C d
+ Cc + -/- (0 - 2" - 2H')

Z = d + H' + 2d (0 - d
2

- 2H').
2 2d

Therefore, Z=O-H'.
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For an uncracked section, where there are no concrete teeth,

D - ~ - 2H' = 0 and so ~r = O. Therefore, equation A.A,2.

reduces to:

dy = E - Eax st cb'

The equation for the uncracked section will be ob-

tained in a manner similar to that for the cracked section

(Eq. A.A.l?) then, Z = D-H

This shows that slip occurs only between the rein-

forcement and the concrete surrounding it, in an uncracked

beam, whereas in a cracked beam there would be an additional

slip due to deformation of the concrete teeth.

It is therefore, concluded the differential equation

A.A.17 is applicable to both a cracked as well as uncracked

section of a reinforced concrete beam.

Equation A.A.l? is a second order differential

equation in F. The solution of this equation can be ob-

tained for various loadings and end and compatibility con-

ditions by expressing the external moment M
t

in terms of

distance x of the section from left hand support.
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UOD=4.U
B;-1 =26 4 5 () (J • U
U=UO[)*ED
ZL=2.U*U+36.u
WRITE(6,Z) TD,B,AS,STCR,UtSMtED,ZL

2 FOI~;·;A T-( -3F 12 .5 ,5 X, F12.6,5 X t 2 F15.5 ,5 X, 2F 12 • ~ )
S=l.U
PI=22.0/7.0
ZLZ=ZL*u.5
EC=3.8E+J6
ES=3U.OE+G6
AC1=B*TD
Cl1=5*TD**3./12.U
Zl=ED-(0.5>.HD)
ASS=O.5*AS
DIS=SQRT(4.v*ASS/PI)
SI=2.v*(ASS**2./(4.U*PI»
SEIl=EC*CIl+ES*SI
EABl=ES*AS*EC*ACl/JES*AS+~C*AC1)
EIB1=SEI1+EAB1*Zl*Zl
X=3.0
1=1
ZK(I) =170UU.u
C(I)=S*EAB1*SEll*PI*PI/(Z~(I)*EIBI*ZL*ZL)
COI=1.0/C(I)

11 IrJ=Bt-1/U
WI-<ITE(6tl4) x

14 FORMAT(lHu,26HSECTION CONSIDER[[) IS AT =,F6.2)
CH=().O

C CALCULATION OF INTRACTION FORCE AND CRACK HEIGHT INCRE~ENTS
5 RD=TD-CH

AC=8*RD
C1=b'::'I~D**3 ./12. U
SEI=EC*CI+E~-l:-SI
EAB=ES*AS*EC*AC/(ES*AS+EC*AC)
Z=ED-O.5*RD
E1B=SE 1+EAS*Z-l:-Z
CR=S*EAB*SEI*PI*PI/(ZK(I)*EIS*ZL*ZL)
PPI=SQRT(CR)
AA=PI*X/(ZL-:l-PPI)
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FF=PI*(v.5-X/ZL)/PPI
b8=PI-x-U/(ZL*PPI)
DD=u. 5-;:-P I /PP I
GG=SINH(AA)
HH=SINH(Bt:3)
PP=COSH(EE)
PPP=COSH(Ff)
PIP=COSH(DD)
IF(X.GT.U) GO TO 30
Bf'''1X='vJ* X
FFP=I.G-((GG*PPl/tPIP*AA»
FP=EAB*Z -l*Bi'1X / EI B
F=FP*FFP
GO TO 7

30 8f'v1X=Br"1
FFP=I.G-((HH*PPP)/(PIP*BB»
FP=EAB*Z*8r-1X/E I S
F=FP*FF-..f?

7 CC=u.5*RD
CS=u.5*DIS
BMC=(dMX-F*l)*EC*CI/SEI
B,\1S =Br-J1X -SHC -F*Z
STCB=-F/(EC*AC)+~MC*CC/(EC*CI)
STCT=-F/(EC*AC)-BMC*CC/(EC*CI)
STSB=F/(ES*AS)+BM5*CS/(ES*SI)
STST=F/ ( ES*AS) -b,·lS-::-CS/ ( ES~-S I )
STSM=~.5*(STST+STS8l

CCCC=I.v/c'R
IF(STCB.LE.STCRl GO TO 8
IF(ABS(STC13-STOn.LTel.uE-06l GO TO 8
IF(CH.GE.TDl GO TO 8
DELCH=RD*(STC8-STCR)/(STCb-STCT)
CH=CH+DELCH
GO TO 5

8 'wRITE(6dl,) Rl),Ch,OELCI-j,F( I) d)j"C,CCLC,Zr,( 1) ,STCo,STLT,STSH
lu FORMAT(IHu,7Fll.3,3EI5.4)

IF(X.cQ.Ul GO TO 27
RRR=l.O

15 X=X+RRR
IF(X.LE.ZL2) GO TO 11
X=U .
GO TO 11

27 STOP
END
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FUNCTION
THIS pr~vGI~A"1 CUI',PLJTES THE FLEXl..l'AL (I-(I-\Ct<. PI-<ufIU:: vF A 1-<c.li\FUI,­
Ct.l) COhCF.:tTE tH:.AJvi - Ti-<EATlr'lG IT AS A CO:'IPUSITE ljt.~I'1 \..;ITH
I I'K0 IV; PL i: rEI j\l TE1-< ACT I (;N•

INPUT DATA
AS A PArnICULAI-< CASE: THE ul",lf\.lSIOI\iS uF , TYPICAL wEA". ' HAVE
BEEN USED. THE DI~TAN(E OF fHE FII~ST FLEXURAL Cf-<ACK Fi-«JI'I THE
SLJPPOIH, AS CuivlPuT ED I N THE PRLJGkAi'/, uF ,liyl-' END I X B (NE.I,:IAi,K 1
;'IETHOU), HA,;, t..u::r'oJ USc.v AS hie. ,VIAuIHTLJve. uF 'AU.>' ( Trlt Lb"GTh
OF THE FuLL OWS~-SC:c.r I Gi'-l FRO"I THE .:JuPPORT ).

NOTATIONS

ALL NOTA T IOI\.S ARE. SA;vlt AS USELJ 11\1 THE APPt.ND I X ti PI:;:OGi,Aj\l.

DEC K

DIMENSION C(lv),ZK(l~)

TD=12.0
B=6.u
AS=1.207
STCR=u.uuv!
ED=10.7
UOD=3.u
B i'/i =2 645 (,) u • u
ALP=4.i
U= ED-*UOD
ZL=2.v*U+36.G
WRITE(6,2) TD,B,AS,STCR,U,SM,EO,ZL

Z FORMAT(3F12.5,5X,F12.6,5X,2F15.5,5X,ZF12.5)
S=l.v
P'r=2Z.u/7.U
ZLZ=ZL/Z.U
v!=Bf'I,IU
ZK(1)=17000.u
EC=3.8E+06
ES=3U.GE+u6
AC=B-*TD

,C I =b*TD*-*3/12.u
Z=ED-TD/Z.u
ASSS=0.5*AS
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5I=2.G*h~S~*2./(4.~*Pl)

,:)t I =EC*C I +:,:;:j.;:-::, I
EAb~[~*A~~~t*AC/(l::'*A~+~t~ACI

e:.l Q=,Si...l +ti\V'< L';~Z
X=l.u

11 ~'J RITE ( 6 d 2 I X, Bf·~
12 FOj~>i!~T(lHudlliTHE SECTIUN COi'J,'::,Iul:I-.(EL- IS ;-.T X=,F1iJ.2d\.;X,F12.21

IF(X.GT.UI GO 10 3
8HX=~'~*X

GO TO 4
3 bi·iX=o,'·1
4 CI1=v.u
5 RD=TD-CH

,:.\Cl=b*RD
CIl=a*R[)**3/12.~

SEIl=EC*CIl+ES*SI
£Adl=[S*A~*~C*AC1/(ES*AS+~C*ACll

Z1=E:.u-Rfj/2. v

Elbl=~~Il~L~Ll*ll**2.
QQ=L~(l)*EI~/(S*EAG*SEII

WUl=lK(ll*EI~l/(~*tA~l*SEll)
RR=ZK ( 1 H~L{"" / (~~-SEI )
I~Hl=ZK{ IP'Lll:\:/(~*")EIl 1
SGiW=S:Jf~ r (Ol~ I
SQ~ 1=SG,R T ( ~iJ 1 I
At\=COSri (ALP';~SGG)
Lil.;=COSH (ALP';"SQlH >'

CC=S I I.. H(i\LP~-SQQ)

DD=SINH(ALP*SOQll
E:.E=ZL2-u
FF=COSH (EE:*sLcH 1
GG=SIhH(SQQl*ZLZl
PP=COSH{5~~1*lL2l

SS=S I j'~H (U*SL"ul )
TT=C00H (U·:l-S\..iQl 1
VV=~~~1~8G*AA-SQQ*DD*CC

UU=RRl*FF/(GG*Qul**1.5l
YY=SQQ*CC*BG-SQQl*CD*AA
XX=F<ln /(,;Q l-;~R/GO

ZZ=SQG*CC*XX/SQQ1
CC1=u.0
CC4=-(ZL+~u*VVl/(YY+(VV*PP/GGl)
CC3=-(CC4*PP/GG)-UU
CC2=QWl*(CC3*G3+CC4*[))l/(~Q*CCl
CC5=CC3-(~~1*SS/(OG1**1.5»

CC6=CC4+(~R1*TT/(~Q1**1.5l)

40 IF(X.GT.ALPl GO Te 1ul
F=CCl *CGSH (x.;:-sc,,:G.. 1+CC2';"5 L:ll (x·~su::;, 1+Rk::·X/~::;;·
FP=f~W"'XI.QO
FFP=F/FP
((C=TG/2.",
CS=OIS/2.'v



b /;1 C= ( u i': X- F>c i. )* ~ e-:~ C liS::' I
b,il,s=b,·,X-u, ,C-F~i-Z
S TCb=-F 1 (EC.;c:\C) +C;"IC>~(C(1(EC~i-( I)
~ rC1=- F 1 ( cC'< :\ ( ) - J::; ( ,,,c:: (/ ( t:. (-::-( I )
S TS8=F 1 (E0>c:,S) +C,·\S-::-C;I (E2-:~~ I)
5 TS 1 =F / ( E~ >c ,\ S ) - 0 i "S,~ ( ;::, 1 ( E:;'~S 1 )
ST '::-';'1= v. ~-l:- (S T:... T+S T513 )
GO TO 7

luI 1F(X.GT.u) GO TO 1uL
F =((3 -*(J SH ( X-'''5(,,0 1 ) +((If ~':-S I ... h ( X-* J(. ,:H ) +r~,n *X IQGl
F P=,·m 1 ole XI;::, u1
FFP=F/FP
C((=HU/2.J
(::;=1.)15/2.",
DI:;(= (GI"X-F';:-L 1 ) -*E(-><-C II 1 S~ II
bHS=ul ·,X-uI·i(-F-l:-Zl
ST(L;,=-F / ( [(*/I( 1 ) +b~'I(':«C I ( EV~~C 11 )
.3 TCT=- F / ( [( -l(- f~ (1 ) - c"', ( -l:- (. (( / ( ::: (* (. I 1 )
STSb= f- 1 ( E.sJ~\.s ) +3i-:S*( S1 ( ~.s.~-:;, 1)
S 151 =F / ([~-*f':'0) -[3. :~-)~c:..)1 ([5-::-5 I )
5TS~=~.5*(STSb+5TST)

GO TO 7
Iv2 IF(X.GT.ZLZ) GO TO OV

F =c.. ( 5 -l(- ( I)::; H ( X i~ .::> l:.i \J 1 ) +((6 ;~ oS 1:,:-j ( X;~ S\M 1 ) + :-; i<1*U I~, f.,' 1
F i)=i~i\.l ':-uh;Q 1
FFP=-F IFP
(C(=F;;:J/2. '-'
(S=DI5/2.v
1:)1'1(= <" L)j·,A-r.;cL 1) *E(;:-( 11/ Si:.. 11
bi'/S= uj·iX -iii·,C - F-l(- Z 1
S TC j =- F1 ( EC",c II C1 ) +b;': ( -* CCC/ ( E(*ell )
s TCT=- F / ( c: C-:~ fI C1 ) - U. I C~i- CCC/ ( t. C;:- C I 1 )
ST.sJ=F / (c:.s.;:-,;.s) +8i·;5-*(':;'1 (t::J~~S I)
S TS T=F / ( ESo};- I,:;' ) - 3 1<5-:" (S / ( :::: s -::- S I )
S 1 S"'j= u. 5* (,-,1 '::'iJ+.:J TST)

7 cONrII~UE:.

CCCC= 1. v/CI~
IF(STC~.LE.STCR) GO TO 8
IF(A~S(ST(0-.sTCRJ.LT.l.~E-~6) GO TO 8
IF(CH.GL.Tu) GO TO 8
DELCIi= r~D* (0 T(8-5 T(1\ ) 1 ( .') Te. 0-5 TCTl
CH=Ch+IJt.L(rl
GO TO 5

8 'v'i:d TE ( 6 , 1 v) i·.: [.. , CfI , [j [ L(Ii , :=- d i:;C , ( CC( , z(~ (1 ) , S T(b , S TCT , S TS ;'Ij

10 FOR~AT(lrlv,7Fl1.3,3[15.4)

16 If(X.C:UsU) 00 TO 27
I~I-<R= 1. v

1 ;) X=X+;~ i< R
6v IF(A.LioZL2) GG TO 11

X=u
GO TO 11
STOP
ENlJ .

1~6

)
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I I

PI-.(OGRAI', Tv Fli"lu THl:. "lu;vit:l~l l.AI",I-<YIhu CAPACITY UF i-<.C. be./-\I'I

FUNCTION •
THI~ PI-':JGRAi'·j COI"ltJUTi::.S THE ,'IAXh'iul'l Ivivl"Il::,H l.A;-<I~YI;'lG CAPACITY
OF A REINFOr-<CED CO;-KI-<l:.TE bf:A,vl FOl-\ DIFFIREIH '::'Hf:AR-AHI'1 TO
DI:PT H 1-< A T I O..':l, uNDER LuAU rlv I NT 15 Y i\jb~I"IAR'" 1 THf:vl'Y. THe.
BtAH hA-S bl::.I:N TRI:ATt:O AS A (ul'IPuSITe. bt:f\I'! ,rv'ITH If'lCGI'IPi....ETt.
INTEr~ACTION.

INPUT DATA
AS A PAI-\TICULAR CASt:. Tht. OI,vllJ'l~IOI~S GF , TYPICAL dEAl", , HAVE
I:3I::.EN USElJ.

-----
NOTATIONS

AO

EUC
P
suc
RATIO
YST
YSTS
UBivl,,11

DEPTH OF NEUTRAL AXIS A..':l ObTAINED ~Y A.C.I. LODE
FORf\1ULA
ALLOV,ABLE ULTIf'IATE ;:,TRAIN IN COjK~ETE

PERCENTAGt. OF TEI~SIL E RI::.INFORlt:I'iI:NT
UL1I~AT~ CRuSHING 5TR~ES of CJNCRET£
RELATIVE dEAM 5TR~N~TH

YIELD STRESS OF STEEL
YIELU STRAIN OF STEI:L
0LTII'IATE ,'IOi"lEIH CAPACITY vF THE t3EAI'I-Oi::3TAIr~ED BY
A.C.I. COUE FORMuLA

L I ivl I TAT IONS
STCR=lUl.i
STCT=3UUU
STSI\1=150U

DEC K

~H CRO I Nil I~

~/ICRO INIlN
j,1I Cf~O I Nil l'l

DIfviENSION C(25) ,ZK(25)
DATA INPUT- AND CALCULATIOI'J OF SECTION PROPERTIES
TD=12.0
B=6.U
P=1.88
STCR=U.UQUl
ED=IU.7
t\S=S*ED*PI Ivu. u
NN=lU
NN IS THE Nu~BER OF AID RATIOS TO BE CONSIDERED



J,.28

C HdTIALLY f\SSUI:IE M~Y SJIT/\oLE VALUE. OF JLTII"jATE 15EI\,LiIi'.G i',U,-IUH
C FOR lACH PARTIC0LAk A/U RATIO

00 27 ,'vi=l,Ni'J
READ(~,Z8) GOJ,~M

28 FOR;'.iAT(ZFIZ.v)
U=UOO-x-ED
lL=2.J*U+36.u
WRITE(6,53) TD,G,A~,ED,lL,P,5TCR

5 3 F0 1-<1'. AT ( 1H\n 2 1HPl~ 0 PE,-\ TIE S u F Sc: Crr Of~ , 6F 12 • 3 , E1 :> • 4 )
\\I~ITE(6,54) JOD

54 FORMAT(lHv,llHU/O RATIO =,FS.2)
5=1.0
KNT=u
PI=22.u/7.u
lL2=lL-l:-U.5
EUC=u.uu3
EC=1.9E+06
SUC=EJC-l:-EC
ES=3u.G.E+u6
YST=4:.>Ol"O.u
YSTS=YST/ES
AC1=I:::l*TO .
CI1=d*TU**3./12.0
ll=E.D- (v. 5-*TD)
ASS=CJ.5-l:-AS
DIS=SQRT(4.L*ASS/PI)
SI=2.U*(ASS*~-2.1(4.U*PI») _
EAb1=~S*AS*lC*AC1/(ES*AS+E.C*AC1)
SEl1=lC*CI1+tS*SI
Ele1=S~I1+EA~1*ll*ll
X=U

C FOI-< ThE G\LCULAT I (J1~ uF LJL TI l'IATe. CAi~I\Y I Nll CAPAC I TY St:C TI Ui\j ulllOER
C LOAD POINT IS CONSIUtREO

1=1
l K( I ) = 1 7 uv'u • v
C(~)=S*EA~1*SEI1*PI*PI/(l~(I)*EII:::l1*lL*lL)
COI=l.u/C(I)

6· ','i=blVi/LJ
CH=u.u

C FOF" EVEI,Y ~lT OF bEj~LiING I',OI"EIH ANI) AID I-<ATI(; FU:.XURAL CI\ACj(
C STABILISES FIRST

5 r~D=To-CH
AC=!:3-*RD
CI=t>*RO-Hc 3./12.U
SEI=EC*CI+t:S*51
EAI:::l=ES*AS*lC*AC/(ES*AS+EC*AC)
l=ED-LJ.5*RI)
E I B=SE I +EAB-*l*l
CR=S*EAb*SEl*PI*PI/(Z~(I)*EIb*lL*ZL)
CCCC=l.u/CR
PP I =SQrH (Ci~)
AA=PI*X/(lL*PPI)
elJ=p I -*UI (LL-;<PP I)
DD='--. !)-::-p I IPP I
EE=PI*(u.5-U/ZL)/PPI
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FF=PI*Cv.5-X/ZLI/PPI
GG=:;;U~HCAA)
HH=SI im Cbb I
f-JP=COSHCEEI
PPP=COSj-j{ FF)
PIP=COSH(DDI
IF(X.GT.U) GO TO 3U

FFP=1.u-«GG*PPI/(PIP*AA) l
FP=EAb*Z-l(-bl'IX I t. I b
F=FP-*FFP
GO TO'7

3 Q BtvlX =Bi'1
FFP=1.0-( (HH*PPPI/CPIP*BBl)
FP=EAI:3*Z~~8I"IX/ E1B
F=FP*FFP

7 CC=l;.5*Hi)
CS= u. 5-x-!) I S
[3;-1(= ( BI~iX-r*Z )*ECkC I I 5E I
l::3HS=B/:,X-b,,1C-F~-Z

STCB=-F/(EC*AC)+bMC*CC/(Et*CII
STCT =-F I ( EC*AC I-BhC*CC/ ( EC*C I )
STSB=F/CES*AS)+BMS*CS/CES*SIl
STST=F/(ES*ASI-BMS*CS/(ES*SIl
STSM=l;.5*(ST~T+ST~I:3)

T=S TSI+*ES*AS
IF(STC8.LE.STCR) GO TO 20
.IF(hBS(STCG-STCRI.LT.1.U~-06)GO TO 20
DELCH=R!)~(STCB-STCRl/CSTtG-STCT)
CH=CH+DELCH
GO TO 5

2u WRITE(6,3) RD,CH,FFP,CCCt,COI,STCb~STCT,STSM
3 FOR~AT(1H~,5F14.j,jE1ti.4l

C AFTER STAbILI~t\Tlu,~ UF CI\ACK CHEr, F0h; THE CO"tt(ETE TGP ST,,,,AIN AI"!)
C ST!:EL l'dL)-HEIGHT STRAIN.IF EITHlR li:~L:. IS GI::ZC:Tl::I~ THAI'; THE
C j~ESPECT I VE fILLO,.,/\dLE L1"11 T REuuCt: THl GEi~[j II'JG hOhEhiT. I F Ai~Y
C STI.(AIN E.QUAL TO THE ALLO~!AbLE lII'IIT TA.<.E MWTHEI~ I,ll) j,ATIO,
C OTHH~\'J I SE I r'JCf~EASE. THE GEr~D I NG I~OIvlENT Ai'.J() [-<EPEA T THE PI-<OCESS

IF(STSM.GT.(YSTS+1Q.~E-U6» GO TO 1u3
IF(A8S(STCTI.GT.(EUC+25.0E-06» GO TO 103
IF(ST5M.GE.YSTSI GO TO 48
IF(ABS(STSM-YSTS).LE.10.uE-06) GO TO 48
IF(ABSCSTCTI.GE.3.uE-03) ,GO TO 49
IF(ABS(STCT+3.uE-031.LE.25.0E-06) GO TO 49
GO TO 31

103 BM=BM-5000.0
KNT=KNT+l
GO TO 6

31 IF(KNT.GT.11 GO TO 5U
8[\1 =[j/\H 5 vU u. v

GO TO 6
C CALCLJLA TI 01'J 0F UL T I i·,A TE lJt.N01 dG ,"IVI",t.N T LJ Y IIC I CliOe FOK",ULA

49 Ab=AS*YST/(~.85*SUC*~)
U~~M=A5*YST*(ED-J.5*AO)

I~A TI O=S;'iX /Ubj"1f'1
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11 F8RI<ATDHvd4h CCJiK G~Lj.stlL.J df15.3,LE.~u.4)

GO TO 27
C CALCJLATIOJ'l 0F LLTli'iATf:. DLi"Dli... G I'IUI'IU..;T bY ACI CUUt. FOI~I'IULA

48 AO=AS*Y~T/(v.8~*~UC*b)
Ut31'vjj'i= AS *Y~ T-;(- ( ED -u • 5-*AO)
I~AT 10= Bf'iX / Uth·iiv.
\'JI-<ITE(6,41l LB/I/I,B,JjX,i~ATIU,STCT,STSI'1

4 7 F 0 F~ ,:\AT (1 H\) d 4 H ST Et. L Y I EL i.J S , 3 F 15 • :3 , 2 E2 lJ • '+ )
GO TO 27

C CALCULA TI OJ''; OF UL T HIA TE t3L;'~1J I I~G ,'IU,-lbH d Y AC I CUDE FO'~I"uLA

5u AO=AS*YST/(~.85*SUC*b)
UB,"lIlt=AS* YST-;< ( ED-u. 5"'~AO)
I~AT IO=b"IX/Ubl'IH
v,au TE ( 6 ; 51) UBI-II;" bl"X, RA T I v, STC r , STSlyl

~ 1 F-'UK,"lA T ( IHu, j 5HU S C. LESSEI:": I NCRt::.,-,c.;'n 0F b ..,-St.C TI u;... IS IkAi,,:C.I, Tu FA I L
lURE,3FI2.3,2E15.4)

27 CONTINUE
STOp
END



=============================================
PAR T 1) II" THE REI;IA I (\J I NG LiJ\lU<ACKEO COI'JO< ETE

DEPTH OF A (RA(~ED OR U~CRACKtD R.C. ocAM

NOTATIONS

131APPt::i\D I X E

SPASING OF THE FLEXURAL CRACKS OR TOOTH WIDTH
DISTANCl:. uF Aj~Y PAi'nICULAI~ LEVEL FKU"I THE:. TuP
CONO< ET I:. F I 61-<E FOf-< SECT IO/"iS 1-1 Aj~D 2-2 l-<cSP­
ECTIVELY
OISTANCE cETWEtN THl:. SECTIONS 1-1 A~U 2-2
HOJ~Iluj~TAL Ful",CE Ar !l1'J'( Lt.VEL Fkul-j f0i-' CUI'K,-<I:.TE
FIBRE AT SECTONS 1-1 AND 2-2, RESPt.CTIVElY
SHEAR MODuLUS OF CONCRETE
POISON'S ~ATIO FOR CONCRETE
RATIO OF THE SHEAR FORCt. CARRIED bY THi: U~CRACKl:.u

CONCRETE
,sHEAR FORCE AT ANY LEVEL FRO~ TOP CONCRETE FIbRE
CO;\jCI~ETE .:>Tl~AI,\j AT A/"Y Ll:'VEL AT SECTIONS 1-1 A/\;O
2-2 , RESPECTIVELY
TOTAL SHEAR FORCE AciOVE ANY DESIRED LEVEL

INPUT DATA
AS A PM<TICULAR CASE. THt uI,'IE/"J.;)IO,,,S 0F , TYPICAL UE.At"1 ' HAVE
Bi:EN USED.

PROGRAM TO FIND THE SHEAR STRESS UITRI5UTION THROUGHOUT THE

FUNCTION
THIS PROGRAM COMPUTES THE SHEAR STRES~ DITRI~LiTION IN THE
UNCRACK~U CONCRETE ANv IT~ CCNTRI~UTIUN Ii~ RESISTING THE EX­
TU.(NAL .;,HE.AR FORCt. TilE Ot:t~I" HA,s Llct:.N TR!:.ATEt:J AS A CUI';Pv~ITE

t3EAiv1 vHTrl INCO"IPLETl:. IiHEI';:/\CTI()"'JAI~D 1"t.v·i"'IM<i<.. 1 THE0r-<y HAS dEEI'J
USED. ____

OX,
FOI-< 1 AND Fui-<2

TSHF

CRSP
DONAl Ar~D

DDNA2

SHF
STY1 AND STY2

GC
paR

, RSHF

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

OTHER NOT ATl ONS ARE 'SAl'iE 'AS USED I N APPEND I X (j, C AND
o PROGRAM

DEC K

01 ;vIEN S I ON X ( 5 u ) ,XX ( 5 ) ,R 0 ( 5 ) 'CH ( 5 ) ,FF P ( 5 ) , FP ( 5 ) 'F ( 5 ) ,Bf"iX ( 5 ) ,BivJC ( 5 )
DIM ENS ION Bfl.1, S ( 5 ) ,S TCB( 5 ) ,S TCT( 5 ) ,S TS1::3 ( 5 ) ,.3 TST( 5 ) ,STSfv1 ( 5 ) ,0ELCH( 5 )
DHI, ENS ION DNA ( 5 ) ,D0 1'1 A1 ( 5(; ) , 0DI~ A2 ( 5 CJ ) ,S TY1 ( 50 ) ,S TY2 (50 ) , FOR 1 ( 50 )
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L>H'iENSION Ful~2(50l ,SHS(5"l ,Sri.':.>r (3~)l ,'sfISTf'.HS(,) diSC) ,SHF(5U)
o IrviENSIOr,J T:JfIF(5Jl ,r~D[)(5,-;) ,CHt-i(5C)

C Old A Ii'~Pu T ld,.[) CI~LCULAT101, GF St:.C T i LJh PMJPEI-< Tl ES
TO=12.0
6=6.U
AS=I.207
STCH=LJ.uULJl
ED=IU.7
POr~=O.16
S=I.'O
PI=22.U/7.u
ZK=170UU.U
WRITE(6,2) TD,ED,b,AS,STCR

2 FORi'IA T(IHl-, 4F2,J. 3, F2.v.4)
CRSP=2.6
OX="".1
UOD=3.()
BM=264500.0
U=UOD*-E.Q
ZL=2.0~-U+36.li
ZL2= u. 5-:t-ZL
~RITE(6,62) 00lJ,BM

62 FOR:·IAT(IHvdlHA/u RATIt.; =,F7.2,5X,16HbEi~L;Ii'~G 1"IO,·iE;H =,FI0.0)
NN=11

C NN IS THE NLJht3ER OF SCCTIvNS AT ~\I-IICH SllEAR CALCUL/,TICr\ DESII~Ei)
READ(~,13) (X(I),I=I,NN)

13 FORNAT(16F5.0)
EC=1.9E+U6
E·S=3u. UE+LJ6
GC=u.~*EC/(l.u+POR)

ACl=13*TD
CI1=b*TlJ**3./12.G
ZI=ED-(J.5.;:-TD)
DIS=SQRT(4.v*AS/PI)
SI=AS**2./(4.v*PI)
SEI1=EC*Cll+ES*SI
EABl=ES*AS*cC*AC1/(ES*AS+~C*ACl)

EIBl=St:.Il+cAdl*ZI**2.
C=S*EABl*St:.Il*PI*PI/(ZK*Elbl*ZL*ZL)
DO 47 1=I,NN
r~DD ( I ) =TD
CHH(I)=Li.U

47 CONTI NUE
\tJ =I:3fV1 / U

.( SECTIUNS 1-1 AND 2-2 ARE AT AT A DISTANCE DX/2 TO ThE LEFT A~D
C RIGHT OF THf:. PARTI(ULl\i~ SECTIOI,J (-C

lJ 0 15 J =1 , 1'1 N
XX(1)=X(J)-v.5*DX
XX(2)=X(J)
XX(3)=X(J)+~.5*lJX

'~RITE(6,56) X(J)
56 FOr~i'"AT(lfl",d4HSE(TION I\T X =,F7.2)

D'O 16 1=1,3
I~ j) ( I ) =R1)D ( J )
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CHlll=CrllilJl

16 CONTI;~Ul:.
C THl:. FLEXUI,i\L Ci~ACK rll:.IGHT /\T THE f);\I-<TICJLid-< St.:CTlvl, C-C IS C1~LCUL-
C ATt.u rll~ST Ai~[) THt 11LIlJii.T OF U'\AUZ FLJR RtSPr.:.LTIVL St.C.TluiJS
C 1-1 I\:W 2-2 j/IADE E~Ui\L TO THAT FOR SECT luN C-C A,~i) TtlEI'J THE
C STI-<Al['l )lSTi~lbUTIC;~ FOI-.< SL:..CTI(;I~S 1-1 AND 2-2 M~E L;:::Ttl~I·llNtl.J

21 K=2
5 AC=o,,-RD IKl

Cl=6*kD(Kl**3./12.u
SEl=EC*CI+t:S*SI
EA8=ES*AS*EC*AC/(l:.S*A~+El*ACl
Z=ED-lv.~,v<RUIKll
EII3=SEI+EAlJ*Z*l
CR=S*EAb*SEl*PI*PI/IZK*EI~*ZL*ZLl
PP I =St.JRT (CF< l
AA=PI*XXIKl/IZL*PPIl
BB=PI*U/IZL*PPI)
UD=v.5-l:-PI/PPI
EE=PI*(u.5-U/ZLl/PPI
FF=PI*rC.5-XX(Kl/ZLl/PPI
GG=SINHIAAl
HH=SINH(blJ)
PP=COSH(EE)
PPP=COSH(FFl
PIP=COSH([;Ul
IF(XXIKl.GT.ul GO TO 6
0;,1 XI K l = \. -:(- XX( ~ )
FFP (k) =1. v- I (GG>: PP l 1 I PI P>:-AA) )
FPIKl=EAB*Z*b~XIKl/Elcl
FIKl=FP(K)*FFPIK)
GO TO 7

6 Bl'/jX I K ) =I:3M
FFPIKl=l.lrl IHH*PPY)/(PIP-;~bL» l
FPIKl=EAb*Z*lJNX(Kl/Elo
F(Kl=FP(K)~FFPI~)

7 CC=I~j)IK)*v.~
CS=0.5*OIS ,
SivlC (J<. l = ( Bi'.X I "l -F I Kl -)< Z l ,x- EC-*C 1/SE I
Biv'IS (K ) =B;~:X I K l-sr:,C (;( l -F I ;( l -X'Z
STCfJ (r';' l =-F (K.) 1 (EC*AC) +[3,':,<.. (K l *((../ (lC*CI)
STC TI K) =-F (I,) 1 I EC~<AC l -131"<" I K) *CC/ (EC*C I)

STS[) IK l =F I 1-... l 1 IE':' *AS l +131"1 S ( l~ ) *CS / I c. S .J} S 1 l
STS TIK ) =F ( i'o.l / I ES~-AS l-til"'S ( ,;;') *C51 ( [S-* S 1 l
S TS;..j( K) =v. s·)} 1ST S B I i( l +,:, TS T I K ) )
TIKl=STSMIK)*ES*AS
ONAIKl=-STCTIKl*RDIK)/(STl5IK)-STCTIKll
IF(K.EQ.ll GO TO 42
IFIK.EQ.2l GO TO 43
GO TO 44

43 IF(CHIKl.Gt.TOl GO TO 53
IF(STCB(Kl.LE.STCRl ~O TO 20
IFIASSISTCb(~l-STCRl.LT.1.0E-U6lGO TO 20

41 DELCH(K)=~D(i'o.)*(STC8(Kl-ST~R)/(STCB(Kl-STCT(K»
CHIKl=CHIKl+iJELCH(Kl
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RD(Kl=TD-CH(Kl
RDD (J 1=I-<D (K 1
CHH(Jl=CH(Kl
GO TO 5

20 ;<=K-l
i~O(Kl=FW(K+l1
CH(Kl=CH(K+ll
GO TO 5

42 K=K+2
RD(Kl=RD(K-ll
CH(Kl=CH(K-ll
GO TO 5

4 4 ~'" RI TE ( 6 ,4:' 1 I~ [) ( 2 1 , CH ( 2 1 , [) i'll-\ ( 2 1 ,.:, TCD ( 2 1 ,..) TCT ( 2 1 , STS,','d 2 1
45 FOi-{"IAT(lHvd4HAFT[I-\ I.H:>!uI,\G dflJ.3,3l2u.4l

GO TO 54
53 'I" 1-\ I TE ( 6 , :> 9 1 1-\ D ( 2 1 , CH (2 ) ",) I~ /\ ( 2 1 , ~ TC{j ( 2 ) , ~ TCT ( 2) , ~ T,:)/,.( 2 1
59 FOI-<j.iAT(1H,_.,,1oH';.HCLE bEA('j l!-{ACKt.D,3f10.3,::H::2C.4l

GO TO 57
£ THIS PART CALCULATl THE ShEAR STRESS ANO SHEAR FORCE

5'+ tv1= 1
KK=5lJ
ODM=RD(M+ll/FLOAT(KKl
DO 18 JJ=l,KK
IF(JJ.Eu.ll GO TO 17
DDNAl (JJ 1=DDj~Al (JJ-l 1+DDi'l
DDNA2(JJl=DDNA2(JJ-1l+DD~

GO TO 19
17 DDNA1(JJl=DDM

DDNA2 (JJ 1=i.Ji.;H
19 IF(DDr-lAl(JJ).GT.ui'\idt'dl Gv TO 25

STY 1 (JJ 1=~ Tc r (Iv, 1* (l)i-:A (j·!l-L"DI'.A1 (JJ 1 1/D,~A (,vi)
FOf-<1 (JJ 1= (::. TCT (I,il +,STYl (JJ 1 1-::-U.5-;l-[)[)I~A1 (JJ 1-:l-B*EC

GO TO 27
25 STYl(JJl=STCI:HHI-:l(DDi\jAl(JJl-D;M(i·il 1/(I~D(i';l":'Dj~A(r..;l 1

FO,-{ 1 ( JJ 1=v. 5-'<-6-1:- Ec-;< STCT ("d *[)hA (", I +G • 5*lJ-:l-EC-*S TY 1 (JJ 1-;:- ( DIA~A1 (JJ 1-Dl\:A (
1 f'vl) )

GO TO 27
31 FOIU ('JJ I =v. ~-*b*EC-:<~TCT (i'l 1-)<L)I-lA (1'1 1+0. 5';~b*EC*STCb (1'1 1-;< (h:u (,; 1-ul.i\ (Ivl) 1
27 IF(DDNA1(JJl.LT.Eu) GO TO 34

FOR1(JJ)=Fu~1(JJ)+T(~l

34 IF(DDI~A2(JJ)oGT.[)r'l/"ivl+2ll GO TO 26
STY 2 ( J J } =::; TCT ( :"1 + 2 I .;< ( Di ~ A ( ,-1+ 2 1- [) [) NA2 ( J J 1 1/ [) l'l A ( i~i+ 2 1
FUi-{2 ( JJ 1= (.:J TCT ( h+2 1+S TY2 ( JJ ) 1*v. 5 -;}[)DI'~A2 ( J..;) *B*EC
GO TO 28

26 STY 2 ( JJ 1=5 TCD (;\1+2 1*( DDIM2 ( JJ 1-ul'.A ( l-i+2 1 1/ ( I-d) (1'1+2 1-DJ JA (1'1+2 1 1
FOR2 ( JJ 1=v. 5-;<-1:)* EC>:-S TC r (,";+2) '<DNA (i'I+2 1+S TY 2 (JJ 1*0. ~-;<t)*·EC* ( Dur.... AZ (JJ) ­

2DNA (1\1+2 1 1
GO TO 28

28 IF(DDNA2(JJl.LT.EDl GO TO 35
FOR2(JJl=FOR2(JJl+T(~+2l

35 5HS(JJl=(F0k2(JJI-FO~1(JJll/(B*DXl
SHST(JJl=SH5(JJl/GC
SHST(KKl=u.u

18 COrHINUE
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51

3uu

22

50
15
57

SHF ( 1 ) =u. 5-;;-SHS ( 1) -*UD,-i*13
TSHF(l)=SHF(ll
DO 51 1=2, r<.~

SHF ( I ) =v • 5* (.s HS ( I )+SHS ( I - 1 ) ) -;<- b *]) LJ i·1
TSHF{Il=TSHF(I-1)+~HF(I)

1<:,sHF= TSI-IF {i'..i\:. l 11';
CONTINUE
\'v 1-< I TE ( 6 , 3 v v )

FCR,/,AT(lHv,23H SHEAi-\ uiSTi-<IUlJTION)
VIRITE(6,22) DDi-i,TSHF{r(K) ,RSHF
FORMAT(lHv,3F12.3l
~'JR I TE ( 6 , 5 v) S HS ( 5 ) , S HS ( 1 ~ ) , S HS ( 1 5 ) ,oS h S ( 2 0 l , SH,:, ( 2 5 ) , S rl S ( 3 0) ,oS h S ( ::, 5 )

2,~HS(4v),.sH~(45),.sHS(49)

FOR~AT(lHv,luE12.3l

CONTINUE
STOP
END



PART 2) I~ THE CRACKED LONE OF CONCRETE
=========================================
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I I

FUiKT ION
THIS PROGRAM CO~PUTES THE SHEAR ST~ESS uIST~lbUTION IN THE
O~ACKE[) POI~T I uN ( TEdS I LE LUi't.) \.iF COI\jO-< ETE AND ALSu CALCJLATE
THE. COIHI~IBUTION OF uu~'d::.L AI~D AGGHElJATE IdTEI'\L0CI\. AlTIul~~. AJ'IY
TwO ADJACENT COi~CRETE TEETHS \i~Ei"<E ILJEALISED U-lTCJ 'C0IvdJJ~ITE

CAN TI LEV t:R bEM;.' ANU STUU::> I 'S CuhPO.:i I TE BEAIv'i THEORY HAS bEEN
USED.

INPUT DATA
THE DIM~N~IONS OF ThE. CONCRETE. TE~THS HAVE. 6~EN USEu.THEY ARt
AS FOLLU~S WITH THE NvTATI0NS.

Bfvi

DR
IJtl ANiJ us

N
RA

RRS

SAND SP
U

'vi

ZKC
ZL

DENDING MuMENT AT ANY SECTION IN TH~ CANTILEVER
BEMJI
EXTERNA.L bEf'.lDli"G f'iO'-'IE/'lT (LONGITUDI/\ALl AT THE
SECTION UNDER CONSIDERATION
bREDTH OF THE cEAM
LJi::.PTH OF tAU, t:.Ltl"lt:.l'n OF THE bt.AI"i AJ'lu I;;;, lQuAL
T8 THE AVERAGE CRACK SPASING
NUMBER CONNECTORS
RATIO OF THE ~HEAR FORCE CARRIED cY UNCRACKlU
CONCRETE AS ODTAINED FROM PART 1
RATIO OF THE SrlEAR FORC~ TO B~ RESISTED GY DOWEL
AND AGGREGATE INTERLOCK ACTIONS
CONNECTORS SPASING
DIS TI\NCE ;.;ETvJEEN THi: FLt.XURAL RE I NFOI~ECE..'lt:.f\j T TO
THE C[~ACK HEIGHT AT THE INTEI-<FACE
LCJAD Gf'~ THE t3E/l,I'1j AND IS [l,JUAL TO THE· IfKI~t::I'iENT

IN THE HORIZONTAL FuRCE dJET~E.EN THE TWO ADJACENT
CONCRETE TEETH~ UNUE~ CCJNSIDERATION
EXTERNAL LOAD (VERTICAL) AT THE SECTION UN~ER
CONSIDERATION
AGGREGATE I~TERLOCK ~ODJLUS
LENGTrl OF THE bEAI,;-EULJAL TO THE CRACK Ht.IGflT AT
THE INTEI~fACE OF THE bEAJ"i

OTHER NOTATIONS ARE SELF EXPLANATORY IN THE LIGHT
OF THE NOTATIONS USED IN THE A~PENDICES b, C, D, AND E-PART 1

DEC K

DI ~ ENS ION S ( 1() l, ) , X( 1d) ) , B.\I ( 1uu ) ,A ( 3 , 10 0 ) ,Q ( 10 \J ) ,B ( 1 (j 0 )
DI~ENSION lK(10u),SS(lUU),~HF(luJ),TSHF(100),~HS(lUu)

DS=2.6
Dd=DS
BR=6.v



C
C
C

12

13
Iu

3
14

4

5

6
9

16
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SP=u.25
ZL=7.337
U=6.u37
ZKC=4840(,vU.G
BJ\'\ i'i =264 :> Uv • u
f~A=u.u4~
ST1=786.9St::-v6
ST2=781.44~-v6

N=3u
N1=N-1
N2=N-2
S(l)=u.3
DO 12 I=2,N2
SCII=SP
SCNll=J.2B7
~=(ST1-ST2)~30ovE+U6
WRITE(6,131 DS,D~,~R,W,ZL,U,N,ZKC,SP

\~RITE(6d4) BI'.lllli,;<A,ST1,ST2
FOR,'IA T+-l Hv, 6 F 12 .2 , I 1 v, 2 F 12 • 2 )
F 01-< i"! A T ( 1H v , 1 L F 1 v • 3 I
FOIN:AT (lHv ,4F 12.4, I lu I
FOHJ/IA TC11 j v, 2 F15 .4,2E15 041
i~ ..:=l3i"'l.vI/32.1
KNTT=3U
Ki'H=O
RRS=RA
THE PAl-<TICULAR D1l-,EI'~SIOI\jS GIVE" HEI,E I\I~E. FuR THE Ci~I'~TILEVb<.::> II'~

dE n~EU" THE LOAD PO lidS. I F THE SECT I ON LIES I jJ TrlE SHEAR
SPAN fhEN RRS=l.C-RA

Z= (DS+D[) I -X-v. 5
ES=I.9E+u6
AS=DS*BR
AB=D~*BR
EB=ES
SI=BR*DS**3./12.0
B1=BR*Dl3**3./12.v
EA~=ES*AS*~D*AU/(E.S*AS+lD*AUI
SE1=1:.t.5*oI+lS-*~1

E I 1:3=51:.1 +l:.hb*Z-~l

AO=E I lJl (EA8-*SE I I
XCll=u.~*S(ll

DO 4 I=2,Nl
S:::,( 1 ) = ( S ( 1-1 1+5 ( I I I*u. 5
X( I )=X( I-ll+SS( I)
CONTI I\IUE
DO 5 1"=175
Bjvl ( I I = U• (j

DO 6 1=6,Nl
l:3M(1I=W*(X(1I-(ZL-UI)
DO 16 1=1,.''11
ZK(1I=ZKC
ZK(6)=2.0*1.75E+u5+lKC
lK(II=Z~C*S(l)/SP
ZK(N1)=LKC*S(N11/~P



20

11

18

21
22
19

8

7

KNT == r'. i'~ T+1
lJO 20 I=I,N2
A( 1 , I ) =-1. v

A( 2 , I ) =1 • lJ +Z t~ ( I ) I ZK ( I + 1 ) +!, () ~~ L. k ( I ) ~~ S ( I )
A(3d )=-L.K( I )/ZK( 1+1)
B ( I )= [j :'1 ( I I -l(- L -l,C Z j( { I I -;(- S ( I ) / S l:. I
CONTI NUE
A(ld)=u.J
A(3,N1)=u.u
A(2,i'J!)=1.",+AO*ZK(I\;1)*S(I'lI)
A(1,N1)=-1.0
D ( N1) =Bc·i (N 1) *Z ~~LK (In ) ~·s (iU ) / SE I
CALL SNDSCL(A,8,3,1,~1)

B(N)=o(N1>
(J ( 1> =lH 1)
DO 11 I=2,N
u( I )=t3( I )-t>( 1-1")
SHS(l)=lHI./
DO 18 1=2,Nl
SHS(I)~{1)/(S(I)*UR)
SHS(N)=u.v
DO 19 I=1,Nl
S HF ( I ) ={S H:.J ( I ) +SHS ( I +1 ) )*u • 5~· iJ R~~ S ( I )
IF(I.GT.1) GO TO 21
I~R=v. u
GO TO 22
r~R=TSHF(I-l)

TSHF(I)=RR+SHF(I)
CONTINUE
~ATIO=TSHF(Nl)/WW
,':R I TE ( 6 d v) (1.:)( I ) d =1, N1)
WRITE(6,l v ) (Q(I),I=I,N)
WRITE(6,1u) (~HS(I),1=1,N)

~·m I TE ( 6 , 3) TS HF ( N1 ) , ~: \': ,L ~ l , (~A T I 0 , Ki\l T
IF(Al3S{RAllu-RRSI.lE.u.uvl) GO fa 7
IF(KNT.GT.KNTT) GO TO 7
IF(RATIO.GT.RRS) ·GO TO 8
ZKC=ZKC+5L0L.U
GO TO 9
LKC=lKC-5uvu.v
GO TO 9
STop
ENlJ
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