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Abstract

Subjects enrolled in a clinical trial may experience a competing risk event which
alters the risk of the primary event of interest. This differs from when subject infor-
mation is censored, which is non-informative. In order to calculate the cumulative
incidence function (CIF) for the event of interest, competing risks and censoring must
be treated appropriately; otherwise estimates will be biased. There are two commonly
used methods of calculating a confidence interval (CI) for the CIF for the event of in-
terest which account for censoring and competing risk: the Kalbfleisch-Prentice (KP)
method and the Counting Process (CP) method. The goal of this paper is to under-
stand the variances associated with the two methods to improve our understanding
of the CI. This will allow for appropriate estimation of the CIF CI for a single-arm
cohort study that is currently being conducted. Previous work has failed to address
this question because researchers typically focus on comparing two treatment arms
using statistical tests that compare cause-specific hazard functions and do not require
a CI for the CIF. The two methods were compared by calculating Cls for the CIF
using data from a previous related study, using bootstrapping, and a simulation study
with varying event rates and competing risk rates. The KP method usually estimated
a larger CIF and variance than the CP method. When event rates were low (< 1%),

the KP method estimated disproportionately large CIs and the CP method estimated

iii



CIs that exceeded the interval [0, 1]. In cases with low event rates (< 5%), bootstrap-
ping estimation of the CIF is recommended. In cases with moderate or high event
rates (> 5%), the CP method is recommended as it yields more consistent results
than the KP method. The CP method is recommended for the proposed study since

event rates are expected to be moderate (5-10%).
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n; Number of subjects at risk of failure at time ¢;

H x(t) Estimator for cause-specific cumulative hazard function
Sk(t) Estimator for overall survival function
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a,(t)  Force of transition for state n
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1 A state that is not in NV
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yn(t) Total forces of transition to the subset N
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wn(t) The probability in the partial model of not leaving state 0
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pn (1) The probability in the partial model of leaving state 0

in the time interval [0, ¢]
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P, (1) The number of processes in state n at time ¢, for n > 0
Dy (1) The number of processes in the subset of states N at time ¢
7(t) The number of processes in state 0 at time ¢
U(t) A second formulation for the number of processes in state 0
at time ¢
p(t) An estimate of a single measurement of V()
On(t) An estimate of wy(¢)
X, A Gaussian process on the time interval [0, 1]
Y, (-, N) A Gaussian process
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Chapter 1

Introduction

Survival analysis is a field of biostatistics that focuses on time-to-event data. Such
data can be obtained from clinical trials, which are studies in medical research and
drug development that generate safety and efficacy data for health interventions.
Time-to-event data is generated by measuring the time from when a patient first
enters the study until they experience an event of interest. Examples of events of
interest include time from diagnosis of a fatal illness to death, or time of progression
from onset of Alzheimer’s to full-blown dementia. The time at which a participant
experiences the event of interest is referred to as the event time. Objectives of survival
analysis include estimating mean time-to-event for a population, the proportion of
a population that will survive past a given time, the rate that those survivors will
experience an event, or the difference between treatment options.

A fundamental aspect of time-to-event data is that not all patients generally
experience the event of interest before completion of the study. The data for these
patients is referred to as censored data, which is a form of missing data when the value

of a measurement or observation is only partially known. There are many forms of
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censoring, such as right censoring, left censoring, and interval censoring. This paper
will focus on right censored data, which refers to data where event times throughout
the duration of the study are missing; however, the start time is known. This includes
data from patients that are lost to follow-up, patients who do not experience the
event of interest during the study, and patients who experience a competing risk
event that prevents the event of interest from being observed. Analysis techniques
which do not account for the fact that some data are censored are not suitable for
time-to-event data (Altman and Bland, 1998). Comparing the average time-to-event
between two groups using a t-test or linear regression is not appropriate because it
does not account for the information from censored data. This results in bias and poor
estimation of expected time-to-event. Comparing the proportion of events among the
two groups using the odds ratio or logistic regression ignores time. This may be a
suitable method for comparing success rates of multiple treatment options, but it is
inadequate for estimation of time-to-event.

A common method for analyzing time to event data is the Kaplan-Meier (KM)
method. The KM method estimates the survival function for an event of interest,
which describes the probability that a patient will survive beyond a given time (Ka-
plan and Meier, 1958). The KM method takes into account right censored data. The
cumulative incidence function (CIF) is calculated as one minus the survival function
and describes the cumulative probability of an event from a specific cause over time.
When comparing treatment arms, the most effective treatment can be determined
by comparing various treatments using the log rank test (Lin et al., 1997) or Cox
proportional hazards regression methods (Lau et al., 2009).

When conducting a time-to-event analysis, one potential complicating factor is a
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competing risk event. A competing risk is defined as any type of event that either
hinders the observation of the event of interest or alters its probability of occurrence
(Gooley et al., 1999). For example, the event of interest could be recurrence of breast
cancer in patients who have had a lumpectomy, a surgical procedure to remove the
cancer. Competing risks include other cancers, whose treatment may affect recurrence
of the localized breast cancer, or death from other causes.

The KM method is not appropriate in situations where there are competing risks.
It assumes that censoring is independent of the event of interest and, as a consequence,
ignores competing risks. This assumption is violated when a competing risk exists,
and such a violation can lead to biased estimates. When an individual experiences
a competing risk or censoring event, they are removed from the group that is at
risk, leading to overestimation of the cumulative incidence of the event of interest
(Gooley et al., 1999; Satagopan et al., 2004). This inflation of the cumulative incidence
results in undesirable and avoidable bias (Gooley et al., 1999). The assumption
of independence compromises the interpretation of the CIF by supposing that the
probability of experiencing an event of interest is the same in the presence and absence
of competing risks (Gooley et al., 1999). Often, competing risks and the event of
interest are not independent. For example, in a study investigating lifetime risk of
development of coronary heart disease, a competing risk is kidney failure, which is
also related to high blood pressure (MacMahon et al., 1997). Treatment for kidney
failure may affect later development of heart disease. As such, the KM method is not
well substantiated in this medical context and may not be clinically meaningful (Tai
et al., 2001).

Alternative methods have been proposed for calculating the CIF which account for
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competing risks. Kalbfleisch and Prentice derived a two-step process for calculating
cumulative incidence while accounting for the informative censoring resulting from
competing risk events (Kalbfleisch and Prentice, 2002). Another estimator for the
cumulative incidence can be derived using the counting process-martingale formula-
tion (Aalen, 1978). These methods have been compared extensively, both through
simulation (Gooley et al., 1999) and application to real data (Gooley et al., 1999; Tai
et al., 2001; Kim, 2007). However, in the presence of competing risks, researchers are
typically interested in comparing time to event data for multiple treatment options
for a particular ailment. The tests that have been derived for comparing treatment
arms, such as the Gray test and the log-rank test, do not compare the CIF directly
(Kim, 2007; Zhang et al., 2008), so a confidence interval (CI) for the CIF is not re-
quired. As such, few studies have been conducted which investigate the confidence
bands associated with the CIF estimates (Lin et al., 1997; Fine and Gray, 1999). The
performance of these variance estimators needs to be assessed for use in a clinical
trial which is underway, for which the CIF estimate and the confidence bounds are of
interest. This trial, for which the goal is to estimate the CIF and associated CI, is a
single-arm cohort study and therefore no comparison of the CIF between treatment
arms can be conducted. Hence, an analysis to compare different variance estimators
of the CIF was conducted, leading to improved understanding of CIs and accuracy of
estimation of the CIF. This study will allow improved inference of the results from

the ongoing clinical trial.



Chapter 2

Setting

Breast cancer patients typically undergo a series of treatments to remove the cancer
with the goal of ensuring that it does not reoccur. For early stage breast cancer
patients, one option is to have a lumpectomy, which is a type of surgery, followed
by radiation and chemotherapy. However, up to 30% of patients in North America
who are candidates for this treatment regimen do not undergo radiation because of
inconvenience and cost (Whelan et al., 2010).

A study is currently being conducted to investigate the possibility of safely treating
some breast cancer patients with surgery alone. It is hypothesized that some subset of
breast cancer patients have such a good prognosis that the risks associated with breast
radiation outweigh the potential benefit. This single-arm cohort study is collecting
time-to-event data for breast cancer patients who have not undergone chemotherapy
or radiation after having a lumpectomy (NCT01791829, www.clinicaltrials.gov). Al-
though a randomized, two-arm, non-inferiority clinical trial would be preferred, the
sample size for such a trial is not feasible and hence, the cohort design was adopted.

The primary outcome of interest is the upper bound of the 95% CI for the CIF. If
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this upper bound is below a proportion specified by the investigators, then it may
be considered safe for women with a specific clinical profile to go without radiation.
Hence, the primary goal of this study is estimation of the CIF, not statistical testing.
However, as mentioned previously, there are two methods of calculating the CI for
the CIF. Proper estimation of the CIF requires that these methods be evaluated in
order to determine which method is more appropriate for use in this context. Data
from a prior study comparing two radiation regimens for breast cancer treatment with
similar patient characteristics will be used as a historical control to define the upper
bound of the 95% CI that would be considered safe.

The historical control data comes from a study published in 2010 investigating the
long-term results of hypofractionated radiation therapy for breast cancer (Whelan
et al., 2010). The goal of the study was to determine whether a 3-week schedule
of whole-breast radiation is as effective as a 5-week schedule in reducing the risk
of recurrence of breast cancer after the lumpectomy procedure. There were 1234
women enrolled in this study and they were followed for up to 14 years. Whelan
et al. (2010) determined rates of local recurrence and overall survival using the
KM method. A 97.5% CI was used to compare rates of local recurrence in the two
groups, and the null hypothesis that the hypofractionated treatment would be worse
than the standard treatment was rejected in favour of the non-inferiority hypothesis
(p < 0.0001). Secondarily, a log-rank test was used to compare the probability of
survival over time and it was found that survival was not statistically different between
the two groups (p = 0.79). Cox proportional-hazards models were used to evaluate
the consistency of treatment effects across various subgroups of interest. Since the

study was designed when CIF methods were not well developed, the authors used
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KM methods. As summarized earlier, the use of KM is not optimal for the analysis
of local recurrence because the assumption that competing events are independent
is violated, since some patients will die without having had a local recurrence, and
informative censoring is not taken into account. This data was re-analyzed later using
statistical tests which do account for competing risks. These analyses demonstrated
the same result: the 3-week schedule was deemed to be equally as effective as the

5-week schedule (Parpia et al., 2013).



Chapter 3

Methods

Study Design

The primary objective of this study was to evaluate methods of estimating confidence
intervals for the CIF. This will allow for appropriate estimation of the CIF for the
cohort study that is currently being conducted. Two confidence intervals that take
into account informative censoring were investigated. These estimation methods do
not assume independence of competing risks; thus, they are not susceptible to the bias
associated with violating this assumption. The first was derived by Kalbfleisch and
Prentice (2002) and will be referred to as the KP method. The second was derived
by Aalen (1978) and will be referred to as the Counting Process (CP) method. The
formulas for these Cls are given in the subsections that follow.

To investigate the two CIF methods, Cls for the CIF for the historical data were
calculated using each method. The distribution of possible values for the lower and

upper bounds of the 95% CI for the CIF were further investigated by performing
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a bootstrap analysis using the historical data. Finally, a simulation study was per-
formed to evaluate if the results held over a variety of censoring and event rates.
The width of a CI is affected by the sample size. As such, each simulation had 600

subjects, which reflects the anticipated sample size for the cohort study.

Analysis of Historical Data

Confidence intervals for the CIF were calculated for each of the two treatment groups
from the historical control. All CIF estimates were made at 10 years, following the
time frame of interest of the original trial.

95% reference intervals for the estimates of the 95% CI upper and lower bounds
were calculated based on the bootstrapped data. The intervals that were generated
are referred to as reference intervals, rather than confidence intervals, because CI are
not random variables. Hence, the range of estimates for the lower and upper bounds
of the CI are fixed and cannot be described by a CI. For example, the calculation of
the bootstrap reference interval for the lower bound for the KP method is as follows:
10,000 bootstrap samples were taken from the historical data set. For each sample,
the lower bound of the CI for the CIF was calculated using the KP method. A 95%
reference interval was then determined for the lower bounds that were calculated. A
95% BCa reference intervals was also calculated for the upper bound of the 95% CI,
as calculated by each of the two methods. Additionally, a 95% bootstrap CI was

calculated for the CIF, as calculated by each method.
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Simulation Study

Simulations were conducted to further evaluate the differences between the CP method
and the KP method. The simulation was designed to replicate a clinical trial with
600 patients who are followed for 15 years, which is based on the structure of the
historical study and the cohort study that is currently being conducted. Patients are
at risk of either a local recurrence, a competing risk, or neither. For each scenario,
1000 simulated clinical trials were generated, with 600 patients per sample. Each sce-
nario had a specified probability of local recurrence, p, and probability of competing
risk, ¢. A vector of outcomes for local recurrence was generated from the Bernoulli
distribution with 600 trials and probability of success, p. A vector of event times for
local recurrence events was then generated from the Exponential distribution with
mean 1/3. Similarly, for competing risks, a vector of indicators was generated from
the Bernoulli distribution with 600 trials and probability of success, q. A vector of
event times for competing risk events was then generated from the Exponential distri-
bution, also with mean 1/3. The times of local recurrence and competing risk events
were then compared to determine the time and status of the earliest event, if any,
resulting in a vector of event times and statuses. The status 0 indicated no event and
the corresponding time indicates that the patient has dropped out of the experiment
and is censored. No event will be referred to as a “censored patient” and the corre-
sponding time will be referred to as the “censoring time.” The status 1 indicated a
local recurrence, and the status 2 indicated a competing risk event. Using the KP
method, and CP method, the CIF, variance, and 95% CI were calculated for each of
the 1000 samples. The mean values were then calculated. The mean difference in CIF

between the two methods were also calculated. 16 scenarios were investigated, where

10
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p and ¢ had very high, high, moderate, and low probabilities of occurring. These
probabilities were 0.90, 0.50, 0.10, and 0.01, respectively.

A second group of simulations investigated data with a lower probability of censor-
ing towards the beginning of the experiment. Event times and statuses were generated
for local recurrence and competing risk events as in the first group of simulations.
However, when a 0 was generated in either status vector, the corresponding time was
replaced with a time from a different distribution. The new distribution was created
based on the distribution of censoring times in the historical data, ignoring treatment
groups, as pictured in Figure 3.1. This distribution of event times is more similar to
real life. Some patients are censored earlier in the trial for various reasons, including
moving or withdrawal of consent. However, most patients remain in the study until
its completion, 10-15 years after their enrollment. The probability of censoring was
calculated for each year from 0 to 15 years. A piece-wise function was then created
to represent the distribution based on these probabilities. Analysis was conducted as
in the first group of simulations. The code used to generate results in the simulation
study can be found in Appendix A.

Simulations, as described above, were also conducted with 1000 subjects per sam-

ple to explore differences due to sample size.

Kalbfleisch-Prentice Method

The point estimate and variance for the CIF were derived by Kalbfleisch and Prentice
in the book The Statistical Analysis of Failure Time Data (Kalbfleisch and Prentice,
2002). Experiencing the event of interest or a competing risk is referred to as failure.

Let T" and C' be two continuous random variables that denote failure and censoring

11
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Figure 3.1: Histogram of censoring times for historical data
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times, respectively. For data with K competing risks, the pairs (z;,d;) are observed,
where z; = min(¢;,¢;) and §; = 0, ..., K is an indicator with value 0 if the individual
was censored or value 1,..., K, specifying the causes of failure, including the event
of interest and the competing risks. In this framework, any of the K events can be
considered the event of interest, and all other risks will be considered competing risks.
The cause-specific hazard function at time ¢ is the instantaneous rate of failure due
to cause k, conditional on survival to time t. The simplest case is when there is a
single competing risk event, and therefore K = 1. The cause-specific hazard function

for each competing risk event can be summarized as

_ PU<T<t+At,6=Fk|T>t)
At—0 AT 7

k=1,.. K.

12
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From this, the cause-specific cumulative hazard function, Hy(t), and the overall sur-
vival function, S(t), which is the probability of survival beyond time ¢, can be calcu-

lated as:

m = | " b () du

S(t) = P(T'>t)=exp <—§:1Hk(t)> .

Since the cumulative incidence function describes the probability of failure due to

cause k prior to time ¢, it is therefore calculated as:
t t
Fot) = P(T < ,6 = k) :/ S (u)hi(u) :/ S(u)dHy(u), k=1,.,K (3.1)
0 0

Let t; <ty < ... < t; < .. < t, be distinct failure times from any cause k. Let
di; denote the number of failures from cause £ up to time ¢;, and let n; denote the
number of subjects at risk of failure at time ¢;. Then the cause-specific cumulative
hazard function can be estimated with the Nelson-Aalen estimator,

dij

1

m@ZKMMMwm®=Z

t;<t

(3.2)

The original Kaplan-Meier estimator of failure from cause k, ignoring competing risks,
is

S =TI (1 - d’“ﬂ')

i<t 1

13
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and the overall Kaplan-Meier estimator of failure from any cause is

St =1] (1 — df) . (3.3)

Equations 3.2 and 3.3 can be plugged into Equation 3.1 to arrive at an estimate for

the CIF,

B0 = | S()dH () ~ B(t) = 3 (1)

Var(Fy(t)) = z<j {[ﬁk(t) = Bty ———~

" (3.4)

Further details are provided in Appendix B.
Equation 3.4 may lead to limits outside of [0,1]. This can be resolved by using a
log(—log) transformation on the estimated CIF. The standard error of log(— log(F(t)))

can be derived using the Delta method,

SE(log(—log(F(t)))) = p,ciﬁfﬁgfon |

A pointwise confidence interval for Fy(t), the cumulative incidence function for cause

k, is (e‘eL, e‘eU), where

L = log(—log(Fi(1)) — 2a/a(SE(log(—log(Ey(t)))))

A A

U = log(—log(Fi(t))) + zas2(SE(log(—log(Fi(t)))))

14
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where 2z, is the 100(1 — «) percentile of the standard normal distribution.

Counting-Process Martingale Method

The point estimate and variance using the Counting-Process Martingale Method was
derived by Aalen (1978) in the publication Non-Parametric Estimation of Partial
Transition Probabilities in Multiple Decrement Models. Let P,(t) be the probability
that a process is in state i at time ¢, given that it started in state 0 at time 0. We can
describe the survival model with a time-continuous Markov chain with one transient
state, labeled 0, and v absorbing states. The transient state represents the state
where no event has occurred and the absorbing states represent the competing risks.

The infinitesimal transition probability from state 0 to state n at time ¢ is

a,(t) will be referred to as forces of transition. Existence of o, () depends on existence
of the derivative Py (t). As such, it is assumed that a,(t) exists and is continuous
everywhere for n = 1,...,v. Let N be a subset of {1,...,v}. A partial chain is a
new model defined such that «,(0) = 0 for all x not in N. The new model allows
conclusions to be drawn about a specific subset, assuming that the forces of transition
of the events not included in the set N are zero. The total forces of transition to the

set of states {1,...,v}, and the subset N, are v(t) and yy(t), respectively. They are

A(t) = ilan@), ()= 3 a(t).

neN

15
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The cumulative forces of transition are

By(t) = /0 tan(s)ds, Bn(t) = /0 tvN(s)ds.

Let wy(t) be the probability in the partial model of not leaving state 0 in the time
interval [0, ¢].

wn (t) = exp(—Bn(t))

Let pn(t) be the probability in the partial model of leaving state 0 in the time interval
[0, ¢].

pn(t) =1 —wn()

The probability of transition from state 0 to state 1 in the time interval [0,¢] in the

partial chain for the subset N is

t

P,

6 N) = [ ag(son (s = [ won(s)ds(s) (3.5)

0

P,

»(t, N) will be estimated by substituting estimators of wy(s) and 3,(s).

Suppose that over the time interval [0, 1], ¢ independent processes with the same set
of forces of transition are observed continuously. All processes start in state 0. Let
®, (t) denote the number of processes in state ) at time ¢, a right-continuous process

for n > 0. Let
Oy (t) =D Py(t)

nenN
denote the number of processes in the subset of states N at time ¢. Let 7(t) = ®y(t),

a left-continuous process. Let W(¢) describe the number of processes in state 0 at

16
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time t, given by
()™t 7(t) >0
b | 7O 70
0 7(t)=0
and ¢ (t) be an estimate of a single measurement of W(¢). If the subset N is thought

of as a single state, the Kaplan-Meier estimator can be used for estimation of wy ().

on(t) = exp { / Nog(1 — \I!(s))d(IDN(s)} (3.6)

The Nelson-Aalen estimator can be used for estimation of the cumulative force of

transition, 3,(t), given by:

Substituting Equations 3.6 and 3.7 into Equation 3.5 yields

A

t . t
Bt N) = /0 on(s — 0)dB,(s) = /0 O (s — 0)U(s)dd, (s). (3.8)
An estimate for the variance of ]377(25, N) can be derived by studying its convergence
in distribution. Let Xj,..., X,, be independent Gaussian processes on the interval
of time [0,1] with independent increments. Each X, is such that E(X,) = 0 and

Var(X,) = [y ay(s)(s)ds. Aalen (1978) proves that the vector consisting of all

processes of the form

17
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converges weakly to the vector consisting of the Gaussian process Y (-, N), defined

by

Y,(t,N) = —/Ot [/Ot wi (u)ay (u)du — wN(s)] dX,(s)
+ > //wN w) oy, (w)dud X, (s).

neN—{n}

This representation of the Y-processes as stochastic integrals over the X-processes
makes it possible to compute moments. Since the X, are independent processes and

have independent increments, the variance is given by

2

t[/:wN(u)an(u)du—wN(s)} d(VarX,(s))
+ > / [/ a,(u )du} d(VarX,(s))

pEN—{n}

VarY,(t,N) = /
0

2

:/Olt [/:wN(u)ozn(u)du—wN(S)} an(s)i(s)ds
o 5 [ ovtwagun] ausuisds

peEN—{n}

which can be rewritten as

Vark; (t.N) = [ [Pt N) = Pyfs, N) = ()" r(5)d ()

+ [ IR N) = Py N ()5 (5).

pEN—{n}

(3.9)

In this expression, since 7(t) has a Binomial distribution with ¢ trials and probability
of success, ¥(t)™!, ¥(t) may be estimated with ¢ - ¥(¢). Substituting this estimate

and the estimates in Equations 3.6, 3.7, and 3.8, into Equation 3.9 yields an estimate

18
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of the variance of Y, (¢, N). This estimate can be expressed as the following:

Vary,(t,N) = ¢ Ot [By(t, N) = By, N) — ()] (s)dB(s)
£ 3 o [ (Bt N) = By, N w(s)duls)

peN—{i}

=6 [ [Pyt N) = Pys, V) = ()] W), ()

£ [ (Bt A) - Bis, A)) BN, (5)

jeA—{iy 7