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Abstract

Subjects enrolled in a clinical trial may experience a competing risk event which

alters the risk of the primary event of interest. This differs from when subject infor-

mation is censored, which is non-informative. In order to calculate the cumulative

incidence function (CIF) for the event of interest, competing risks and censoring must

be treated appropriately; otherwise estimates will be biased. There are two commonly

used methods of calculating a confidence interval (CI) for the CIF for the event of in-

terest which account for censoring and competing risk: the Kalbfleisch-Prentice (KP)

method and the Counting Process (CP) method. The goal of this paper is to under-

stand the variances associated with the two methods to improve our understanding

of the CI. This will allow for appropriate estimation of the CIF CI for a single-arm

cohort study that is currently being conducted. Previous work has failed to address

this question because researchers typically focus on comparing two treatment arms

using statistical tests that compare cause-specific hazard functions and do not require

a CI for the CIF. The two methods were compared by calculating CIs for the CIF

using data from a previous related study, using bootstrapping, and a simulation study

with varying event rates and competing risk rates. The KP method usually estimated

a larger CIF and variance than the CP method. When event rates were low (< 1%),

the KP method estimated disproportionately large CIs and the CP method estimated
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CIs that exceeded the interval [0, 1]. In cases with low event rates (< 5%), bootstrap-

ping estimation of the CIF is recommended. In cases with moderate or high event

rates (> 5%), the CP method is recommended as it yields more consistent results

than the KP method. The CP method is recommended for the proposed study since

event rates are expected to be moderate (5-10%).
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Chapter 1

Introduction

Survival analysis is a field of biostatistics that focuses on time-to-event data. Such

data can be obtained from clinical trials, which are studies in medical research and

drug development that generate safety and efficacy data for health interventions.

Time-to-event data is generated by measuring the time from when a patient first

enters the study until they experience an event of interest. Examples of events of

interest include time from diagnosis of a fatal illness to death, or time of progression

from onset of Alzheimer’s to full-blown dementia. The time at which a participant

experiences the event of interest is referred to as the event time. Objectives of survival

analysis include estimating mean time-to-event for a population, the proportion of

a population that will survive past a given time, the rate that those survivors will

experience an event, or the difference between treatment options.

A fundamental aspect of time-to-event data is that not all patients generally

experience the event of interest before completion of the study. The data for these

patients is referred to as censored data, which is a form of missing data when the value

of a measurement or observation is only partially known. There are many forms of
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censoring, such as right censoring, left censoring, and interval censoring. This paper

will focus on right censored data, which refers to data where event times throughout

the duration of the study are missing; however, the start time is known. This includes

data from patients that are lost to follow-up, patients who do not experience the

event of interest during the study, and patients who experience a competing risk

event that prevents the event of interest from being observed. Analysis techniques

which do not account for the fact that some data are censored are not suitable for

time-to-event data (Altman and Bland, 1998). Comparing the average time-to-event

between two groups using a t-test or linear regression is not appropriate because it

does not account for the information from censored data. This results in bias and poor

estimation of expected time-to-event. Comparing the proportion of events among the

two groups using the odds ratio or logistic regression ignores time. This may be a

suitable method for comparing success rates of multiple treatment options, but it is

inadequate for estimation of time-to-event.

A common method for analyzing time to event data is the Kaplan-Meier (KM)

method. The KM method estimates the survival function for an event of interest,

which describes the probability that a patient will survive beyond a given time (Ka-

plan and Meier, 1958). The KM method takes into account right censored data. The

cumulative incidence function (CIF) is calculated as one minus the survival function

and describes the cumulative probability of an event from a specific cause over time.

When comparing treatment arms, the most effective treatment can be determined

by comparing various treatments using the log rank test (Lin et al., 1997) or Cox

proportional hazards regression methods (Lau et al., 2009).

When conducting a time-to-event analysis, one potential complicating factor is a

2
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competing risk event. A competing risk is defined as any type of event that either

hinders the observation of the event of interest or alters its probability of occurrence

(Gooley et al., 1999). For example, the event of interest could be recurrence of breast

cancer in patients who have had a lumpectomy, a surgical procedure to remove the

cancer. Competing risks include other cancers, whose treatment may affect recurrence

of the localized breast cancer, or death from other causes.

The KM method is not appropriate in situations where there are competing risks.

It assumes that censoring is independent of the event of interest and, as a consequence,

ignores competing risks. This assumption is violated when a competing risk exists,

and such a violation can lead to biased estimates. When an individual experiences

a competing risk or censoring event, they are removed from the group that is at

risk, leading to overestimation of the cumulative incidence of the event of interest

(Gooley et al., 1999; Satagopan et al., 2004). This inflation of the cumulative incidence

results in undesirable and avoidable bias (Gooley et al., 1999). The assumption

of independence compromises the interpretation of the CIF by supposing that the

probability of experiencing an event of interest is the same in the presence and absence

of competing risks (Gooley et al., 1999). Often, competing risks and the event of

interest are not independent. For example, in a study investigating lifetime risk of

development of coronary heart disease, a competing risk is kidney failure, which is

also related to high blood pressure (MacMahon et al., 1997). Treatment for kidney

failure may affect later development of heart disease. As such, the KM method is not

well substantiated in this medical context and may not be clinically meaningful (Tai

et al., 2001).

Alternative methods have been proposed for calculating the CIF which account for
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competing risks. Kalbfleisch and Prentice derived a two-step process for calculating

cumulative incidence while accounting for the informative censoring resulting from

competing risk events (Kalbfleisch and Prentice, 2002). Another estimator for the

cumulative incidence can be derived using the counting process-martingale formula-

tion (Aalen, 1978). These methods have been compared extensively, both through

simulation (Gooley et al., 1999) and application to real data (Gooley et al., 1999; Tai

et al., 2001; Kim, 2007). However, in the presence of competing risks, researchers are

typically interested in comparing time to event data for multiple treatment options

for a particular ailment. The tests that have been derived for comparing treatment

arms, such as the Gray test and the log-rank test, do not compare the CIF directly

(Kim, 2007; Zhang et al., 2008), so a confidence interval (CI) for the CIF is not re-

quired. As such, few studies have been conducted which investigate the confidence

bands associated with the CIF estimates (Lin et al., 1997; Fine and Gray, 1999). The

performance of these variance estimators needs to be assessed for use in a clinical

trial which is underway, for which the CIF estimate and the confidence bounds are of

interest. This trial, for which the goal is to estimate the CIF and associated CI, is a

single-arm cohort study and therefore no comparison of the CIF between treatment

arms can be conducted. Hence, an analysis to compare different variance estimators

of the CIF was conducted, leading to improved understanding of CIs and accuracy of

estimation of the CIF. This study will allow improved inference of the results from

the ongoing clinical trial.
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Chapter 2

Setting

Breast cancer patients typically undergo a series of treatments to remove the cancer

with the goal of ensuring that it does not reoccur. For early stage breast cancer

patients, one option is to have a lumpectomy, which is a type of surgery, followed

by radiation and chemotherapy. However, up to 30% of patients in North America

who are candidates for this treatment regimen do not undergo radiation because of

inconvenience and cost (Whelan et al., 2010).

A study is currently being conducted to investigate the possibility of safely treating

some breast cancer patients with surgery alone. It is hypothesized that some subset of

breast cancer patients have such a good prognosis that the risks associated with breast

radiation outweigh the potential benefit. This single-arm cohort study is collecting

time-to-event data for breast cancer patients who have not undergone chemotherapy

or radiation after having a lumpectomy (NCT01791829, www.clinicaltrials.gov). Al-

though a randomized, two-arm, non-inferiority clinical trial would be preferred, the

sample size for such a trial is not feasible and hence, the cohort design was adopted.

The primary outcome of interest is the upper bound of the 95% CI for the CIF. If
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this upper bound is below a proportion specified by the investigators, then it may

be considered safe for women with a specific clinical profile to go without radiation.

Hence, the primary goal of this study is estimation of the CIF, not statistical testing.

However, as mentioned previously, there are two methods of calculating the CI for

the CIF. Proper estimation of the CIF requires that these methods be evaluated in

order to determine which method is more appropriate for use in this context. Data

from a prior study comparing two radiation regimens for breast cancer treatment with

similar patient characteristics will be used as a historical control to define the upper

bound of the 95% CI that would be considered safe.

The historical control data comes from a study published in 2010 investigating the

long-term results of hypofractionated radiation therapy for breast cancer (Whelan

et al., 2010). The goal of the study was to determine whether a 3-week schedule

of whole-breast radiation is as effective as a 5-week schedule in reducing the risk

of recurrence of breast cancer after the lumpectomy procedure. There were 1234

women enrolled in this study and they were followed for up to 14 years. Whelan

et al. (2010) determined rates of local recurrence and overall survival using the

KM method. A 97.5% CI was used to compare rates of local recurrence in the two

groups, and the null hypothesis that the hypofractionated treatment would be worse

than the standard treatment was rejected in favour of the non-inferiority hypothesis

(p < 0.0001). Secondarily, a log-rank test was used to compare the probability of

survival over time and it was found that survival was not statistically different between

the two groups (p = 0.79). Cox proportional-hazards models were used to evaluate

the consistency of treatment effects across various subgroups of interest. Since the

study was designed when CIF methods were not well developed, the authors used
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KM methods. As summarized earlier, the use of KM is not optimal for the analysis

of local recurrence because the assumption that competing events are independent

is violated, since some patients will die without having had a local recurrence, and

informative censoring is not taken into account. This data was re-analyzed later using

statistical tests which do account for competing risks. These analyses demonstrated

the same result: the 3-week schedule was deemed to be equally as effective as the

5-week schedule (Parpia et al., 2013).
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Chapter 3

Methods

Study Design

The primary objective of this study was to evaluate methods of estimating confidence

intervals for the CIF. This will allow for appropriate estimation of the CIF for the

cohort study that is currently being conducted. Two confidence intervals that take

into account informative censoring were investigated. These estimation methods do

not assume independence of competing risks; thus, they are not susceptible to the bias

associated with violating this assumption. The first was derived by Kalbfleisch and

Prentice (2002) and will be referred to as the KP method. The second was derived

by Aalen (1978) and will be referred to as the Counting Process (CP) method. The

formulas for these CIs are given in the subsections that follow.

To investigate the two CIF methods, CIs for the CIF for the historical data were

calculated using each method. The distribution of possible values for the lower and

upper bounds of the 95% CI for the CIF were further investigated by performing
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a bootstrap analysis using the historical data. Finally, a simulation study was per-

formed to evaluate if the results held over a variety of censoring and event rates.

The width of a CI is affected by the sample size. As such, each simulation had 600

subjects, which reflects the anticipated sample size for the cohort study.

Analysis of Historical Data

Confidence intervals for the CIF were calculated for each of the two treatment groups

from the historical control. All CIF estimates were made at 10 years, following the

time frame of interest of the original trial.

95% reference intervals for the estimates of the 95% CI upper and lower bounds

were calculated based on the bootstrapped data. The intervals that were generated

are referred to as reference intervals, rather than confidence intervals, because CI are

not random variables. Hence, the range of estimates for the lower and upper bounds

of the CI are fixed and cannot be described by a CI. For example, the calculation of

the bootstrap reference interval for the lower bound for the KP method is as follows:

10,000 bootstrap samples were taken from the historical data set. For each sample,

the lower bound of the CI for the CIF was calculated using the KP method. A 95%

reference interval was then determined for the lower bounds that were calculated. A

95% BCa reference intervals was also calculated for the upper bound of the 95% CI,

as calculated by each of the two methods. Additionally, a 95% bootstrap CI was

calculated for the CIF, as calculated by each method.

9
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Simulation Study

Simulations were conducted to further evaluate the differences between the CP method

and the KP method. The simulation was designed to replicate a clinical trial with

600 patients who are followed for 15 years, which is based on the structure of the

historical study and the cohort study that is currently being conducted. Patients are

at risk of either a local recurrence, a competing risk, or neither. For each scenario,

1000 simulated clinical trials were generated, with 600 patients per sample. Each sce-

nario had a specified probability of local recurrence, p, and probability of competing

risk, q. A vector of outcomes for local recurrence was generated from the Bernoulli

distribution with 600 trials and probability of success, p. A vector of event times for

local recurrence events was then generated from the Exponential distribution with

mean 1/3. Similarly, for competing risks, a vector of indicators was generated from

the Bernoulli distribution with 600 trials and probability of success, q. A vector of

event times for competing risk events was then generated from the Exponential distri-

bution, also with mean 1/3. The times of local recurrence and competing risk events

were then compared to determine the time and status of the earliest event, if any,

resulting in a vector of event times and statuses. The status 0 indicated no event and

the corresponding time indicates that the patient has dropped out of the experiment

and is censored. No event will be referred to as a “censored patient” and the corre-

sponding time will be referred to as the “censoring time.” The status 1 indicated a

local recurrence, and the status 2 indicated a competing risk event. Using the KP

method, and CP method, the CIF, variance, and 95% CI were calculated for each of

the 1000 samples. The mean values were then calculated. The mean difference in CIF

between the two methods were also calculated. 16 scenarios were investigated, where

10
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p and q had very high, high, moderate, and low probabilities of occurring. These

probabilities were 0.90, 0.50, 0.10, and 0.01, respectively.

A second group of simulations investigated data with a lower probability of censor-

ing towards the beginning of the experiment. Event times and statuses were generated

for local recurrence and competing risk events as in the first group of simulations.

However, when a 0 was generated in either status vector, the corresponding time was

replaced with a time from a different distribution. The new distribution was created

based on the distribution of censoring times in the historical data, ignoring treatment

groups, as pictured in Figure 3.1. This distribution of event times is more similar to

real life. Some patients are censored earlier in the trial for various reasons, including

moving or withdrawal of consent. However, most patients remain in the study until

its completion, 10-15 years after their enrollment. The probability of censoring was

calculated for each year from 0 to 15 years. A piece-wise function was then created

to represent the distribution based on these probabilities. Analysis was conducted as

in the first group of simulations. The code used to generate results in the simulation

study can be found in Appendix A.

Simulations, as described above, were also conducted with 1000 subjects per sam-

ple to explore differences due to sample size.

Kalbfleisch-Prentice Method

The point estimate and variance for the CIF were derived by Kalbfleisch and Prentice

in the book The Statistical Analysis of Failure Time Data (Kalbfleisch and Prentice,

2002). Experiencing the event of interest or a competing risk is referred to as failure.

Let T and C be two continuous random variables that denote failure and censoring

11
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Figure 3.1: Histogram of censoring times for historical data

times, respectively. For data with K competing risks, the pairs (xi, δi) are observed,

where xi = min(ti, ci) and δi = 0, ..., K is an indicator with value 0 if the individual

was censored or value 1, ..., K, specifying the causes of failure, including the event

of interest and the competing risks. In this framework, any of the K events can be

considered the event of interest, and all other risks will be considered competing risks.

The cause-specific hazard function at time t is the instantaneous rate of failure due

to cause k, conditional on survival to time t. The simplest case is when there is a

single competing risk event, and therefore K = 1. The cause-specific hazard function

for each competing risk event can be summarized as

hk(t) = lim
∆t→0

P (t ≤ T < t+ ∆t, δ = k | T ≥ t)
∆T , k = 1, ..., K.

12
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From this, the cause-specific cumulative hazard function, Hk(t), and the overall sur-

vival function, S(t), which is the probability of survival beyond time t, can be calcu-

lated as:

Hk(t) =
∫ t

0
hk(u)du

S(t) = P (T > t) = exp
(
−

K∑
k=1

Hk(t)
)
.

Since the cumulative incidence function describes the probability of failure due to

cause k prior to time t, it is therefore calculated as:

Fk(t) = P (T ≤ t, δ = k) =
∫ t

0
S(u)hk(u) =

∫ t

0
S(u)dHk(u), k = 1, ..., K. (3.1)

Let t1 < t2 < ... < tj < ... < tn be distinct failure times from any cause k. Let

dkj denote the number of failures from cause k up to time tj, and let nj denote the

number of subjects at risk of failure at time tj. Then the cause-specific cumulative

hazard function can be estimated with the Nelson-Aalen estimator,

Hk(t) =
∫ t

0
hk(u)du ≈ Ĥk(t) =

∑
tj≤t

dkj
nj
. (3.2)

The original Kaplan-Meier estimator of failure from cause k, ignoring competing risks,

is

Ŝk(t) =
∏
tj≤t

(
1− dkj

nj

)

13
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and the overall Kaplan-Meier estimator of failure from any cause is

Ŝ(t) =
∏
tj≤t

(
1− dj

nj

)
. (3.3)

Equations 3.2 and 3.3 can be plugged into Equation 3.1 to arrive at an estimate for

the CIF,

F̂k(t) =
∫ t

0
S(u)dHk(u) ≈ F̂k(t) =

∑
tj≤t

Ŝ(tj−1)dkj
nj
.

From this, using the Delta method, the variance of F̂k(t) can be derived as:

V ar(F̂k(t)) =
∑
tj≤t

{
[F̂k(t)− F̂k(tj)]2

dj
nj(nj − dj)

+ [Ŝ(tj−1)]2nj − dkj
n3
j

−2[F̂k(t)− F̂k(tj)][Ŝ(tj−1)]dkj
n2
j

}
.

(3.4)

Further details are provided in Appendix B.

Equation 3.4 may lead to limits outside of [0, 1]. This can be resolved by using a

log(−log) transformation on the estimated CIF. The standard error of log(− log(F̂k(t)))

can be derived using the Delta method,

SE(log(− log(F̂k(t)))) = SE(F̂k(t))
F̂k(t)[log(F̂k(t))]

.

A pointwise confidence interval for Fk(t), the cumulative incidence function for cause

k, is (e−eL
, e−e

U ), where

L = log(− log(F̂k(t)))− zα/2(SE(log(− log(F̂k(t)))))

U = log(− log(F̂k(t))) + zα/2(SE(log(− log(F̂k(t)))))

14
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where zα is the 100(1− α) percentile of the standard normal distribution.

Counting-Process Martingale Method

The point estimate and variance using the Counting-Process Martingale Method was

derived by Aalen (1978) in the publication Non-Parametric Estimation of Partial

Transition Probabilities in Multiple Decrement Models. Let Pη(t) be the probability

that a process is in state η at time t, given that it started in state 0 at time 0. We can

describe the survival model with a time-continuous Markov chain with one transient

state, labeled 0, and ν absorbing states. The transient state represents the state

where no event has occurred and the absorbing states represent the competing risks.

The infinitesimal transition probability from state 0 to state η at time t is

αη(t) =
P ′η(t)
P0(t) , η = 1, ..., ν.

αη(t) will be referred to as forces of transition. Existence of αη(t) depends on existence

of the derivative P ′η(t). As such, it is assumed that αη(t) exists and is continuous

everywhere for η = 1, ..., ν. Let N be a subset of {1, ..., ν}. A partial chain is a

new model defined such that αµ(0) ≡ 0 for all µ not in N . The new model allows

conclusions to be drawn about a specific subset, assuming that the forces of transition

of the events not included in the set N are zero. The total forces of transition to the

set of states {1, ..., ν}, and the subset N , are γ(t) and γN(t), respectively. They are

γ(t) =
ν∑
η=1

αη(t), γN(t) =
∑
η∈N

αη(t).
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The cumulative forces of transition are

βη(t) =
∫ t

0
αη(s)ds, βN(t) =

∫ t

0
γN(s)ds.

Let ωN(t) be the probability in the partial model of not leaving state 0 in the time

interval [0, t].

ωN(t) = exp(−βN(t))

Let ρN(t) be the probability in the partial model of leaving state 0 in the time interval

[0, t].

ρN(t) = 1− ωN(t)

The probability of transition from state 0 to state η in the time interval [0, t] in the

partial chain for the subset N is

Pη(t, N) =
∫ t

0
αη(s)ωN(t)ds =

∫ t

0
ωN(s)dβη(s) (3.5)

Pη(t, N) will be estimated by substituting estimators of ωN(s) and βη(s).

Suppose that over the time interval [0, 1], φ independent processes with the same set

of forces of transition are observed continuously. All processes start in state 0. Let

Φη(t) denote the number of processes in state η at time t, a right-continuous process

for η > 0. Let

ΦN(t) =
∑
η∈N

Φη(t)

denote the number of processes in the subset of states N at time t. Let τ(t) = Φ0(t),

a left-continuous process. Let Ψ(t) describe the number of processes in state 0 at
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time t, given by

Ψ(t) =


τ(t)−1 τ(t) > 0

0 τ(t) = 0

and ψ(t) be an estimate of a single measurement of Ψ(t). If the subset N is thought

of as a single state, the Kaplan-Meier estimator can be used for estimation of ωN(t).

ω̂N(t) = exp
{∫ t

0
log(1−Ψ(s))dΦN(s)

}
(3.6)

The Nelson-Aalen estimator can be used for estimation of the cumulative force of

transition, βη(t), given by:

β̂η(t) =
∫ t

0
Ψ(s)dΦη(s). (3.7)

Substituting Equations 3.6 and 3.7 into Equation 3.5 yields

P̂η(t, N) =
∫ t

0
ω̂N(s− 0)dβ̂η(s) =

∫ t

0
ω̂N(s− 0)Ψ(s)dΦη(s). (3.8)

An estimate for the variance of P̂η(t, N) can be derived by studying its convergence

in distribution. Let X1, ..., Xn be independent Gaussian processes on the interval

of time [0, 1] with independent increments. Each Xη is such that E(Xη) = 0 and

V ar(Xη) =
∫ t

0 αη(s)ψ(s)ds. Aalen (1978) proves that the vector consisting of all

processes of the form

Yη,φ(·, N) = φ1/2(P̂η,φ(·, N)− Pη(·, N)), η ∈ N,N ⊂ {1, ..., ν}
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converges weakly to the vector consisting of the Gaussian process Yη(·, N), defined

by

Yη(t, N) = −
∫ t

0

[∫ t

0
ωN(u)αη(u)du− ωN(s)

]
dXη(s)

+
∑

µ∈N−{η}

∫ t

0

∫ t

s
ωN(u)αη(u)dudXµ(s).

This representation of the Y -processes as stochastic integrals over the X-processes

makes it possible to compute moments. Since the Xη are independent processes and

have independent increments, the variance is given by

V arYη(t, N) =
∫ t

0

[∫ t

s
ωN(u)αη(u)du− ωN(s)

]2
d(V arXη(s))

+
∑

µ∈N−{η}

∫ t

0

[∫ t

s
ωN(u)αη(u)du

]2
d(V arXµ(s))

=
∫ t

0

[∫ t

s
ωN(u)αη(u)du− ωN(s)

]2
αη(s)ψ(s)ds

+
∑

µ∈N−{η}

∫ t

0

[∫ t

0
ωN(u)αη(u)du

]2
αµ(s)ψ(s)ds.

which can be rewritten as

V arYη(t, N) =
∫ t

0
[Pη(t, N)− Pη(s,N)− ωN(s)]2 r(s)dβη(s)

+
∑

µ∈N−{η}

∫ t

0
[Pη(t, N)− Pη(s,N)]2 ψ(s)dβµ(s).

(3.9)

In this expression, since τ(t) has a Binomial distribution with φ trials and probability

of success, ψ(t)−1, ψ(t) may be estimated with φ · Ψ(t). Substituting this estimate

and the estimates in Equations 3.6, 3.7, and 3.8, into Equation 3.9 yields an estimate
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of the variance of Yη(t, N). This estimate can be expressed as the following:

ˆV arY η(t, N) = φ
∫ t

0

[
P̂η(t, N)− P̂η(s,N)− ω̂N(s)

]2
Ψ(s)dβ̂η(s)

+
∑

µ∈N−{i}
φ
∫ t

0

[
P̂η(t, N)− P̂η(s,N)

]2
Ψ(s)dβ̂µ(s)

= φ
∫ t

0

[
P̂η(t, N)− P̂η(s,N)− ω̂N(s)

]2
Ψ2(s)dΦη(s)

+
∑

j∈A−{i}
n
∫ t

0

[
P̂i(t, A)− P̂i(s, A)

]2
R2(s)dNj(s).
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Chapter 4

Results

Analysis of Historical Data

The results of the historical data analysis are given in Table 4.1. For both treat-

ment groups, the KP method estimated a slightly higher CIF at 10 years than the

CP method. For treatment group 1, the KP and CP methods estimated 10-year

cumulative incidences of 0.064, and 0.054, respectively. For treatment group 2, the

KP and CP methods estimated 10-year cumulative incidences of 0.067, and 0.059,

respectively. The variances for the KP method were larger than the variances for the

CP method, resulting in much larger CIs, as depicted in Figures 4.1 and 4.2. The

CIs for the CP method were completely contained in the CIs for the KP method.

For treatment group 1, the KP method CI, (0.020, 0.145), contained the CP method

CI, (0.036, 0.072). For treatment group 2, the KP method CI, (0.024, 0.143), also

contained the CP method CI, (0.040, 0.078). Towards the end of the study, where

the number of participants had decreased, the estimates for the bounds became very

large for both methods.
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Table 4.2 shows the bootstrap reference intervals for the lower and upper bounds

of the 95% CI for the CIF and a 95% bootstrap CI for the CIF for each method.

For this analysis, 10,000 bootstrap replications of the CIF and 95% CI for the CIF

were calculated using each method. Then a 95% BCa reference interval was calcu-

lated for the upper and lower bounds of the 95% CI for the CIF. A 95% BCa CI

was also determined for the CIF. For treatment 1, the KP method reference inter-

val for the lower bound, (0.0075, 0.0378), was completely below the CI for the CIF,

(0.0442, 0.0875), which was completely below the reference interval for the upper

bound, (0.1320, 0.1635). This may be due to the closeness of the CIF to 0 and the

known poor performance of asymptotic estimators at extreme values. For the CP

method, the reference interval for the lower bound, (0.0219, 0.0528), overlapped with

the CI for the CIF, (0.0371, 0.0739), which also overlapped with the reference interval

for the upper bound, (0.0523, 0.0949). The CIs for treatment 2 behaved similarly. The

bootstrap CIs for the CIF were similar in width for both methods and both treatment

groups; however the KP method yielded CIs which were higher by a slight amount.

The bootstrap CIs for the CIF can also be compared to the CIs calculated for each

treatment group in table 4.1. The calculated KP method CIs were much wider than

the bootstrap CIs for both treatment groups, while, in contrast, the calculated CP

method CIs were very similar to the bootstrap CIs.

Simulation Study

Table 4.3 contains the CIFs calculated by the KP and CP methods and the differences

between the estimates in each of the simulation scenarios, where times were simulated
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from an exponential distribution or from a distribution which mimicked the histor-

ical data. A positive value for the mean difference indicates that the KP method

calculated a higher CIF than the CP method. The KP method estimated a higher

CIF in almost all cases. In scenario 1, for both censoring distributions, the KP and

CP methods calculated the same value for the CIF. In the scenarios where the CP

method estimated a higher CIF–scenario 4 for exponential censoring and scenarios

3 and 4 for historical censoring–the differences were small. The differences in these

scenarios ranged from -0.003 to -0.034. In scenarios where the KP method yielded

a higher CIF estimate, the differences ranged from 0.002 to 0.411. The differences

between the estimates tended to be higher in scenarios 11, 12, 15, and 16, with high

event rates and high competing risk rates, regardless of the censoring distribution.

The differences between the estimates were larger in the simulations with exponential

censoring than the simulations with censoring that mimics the historical data. The

CP method CIF estimates appeared to be more sensitive to extreme changes in the

competing risk rate than the KP method. In scenarios 9-11, where p = 0.50 and

q = 0.01, 0.10 and 0.50, with historical censoring, the KP method and CP method

estimated similar CIF values, ranging from 0.485 to 0.490. In scenario 12, where

q = 0.90, the KP method estimated the CIF as 0.485, similar to the other estimates.

Alternately, the CP method estimated the CIF as 0.274, which is substantially lower.

Table 4.4 contains the variances calculated by the KP and CP methods in each of

the simulation scenarios for both censoring distributions. The KP method variances

were larger than the CP method variances in every simulation. For both methods, the

variances for the simulations with exponential censoring tended to be larger than the

variances for simulations with historical censoring. For the KP method, this was true
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in all scenarios, however, for the CP method, in scenarios 4, 13, 14, 15, and 16, the

variance for the simulations with exponential censoring were larger than or equal to

the variances for the simulation with historical censoring. In each of these scenarios,

the probability of local recurrence or competing risk was high; p = 0.90 or q = 0.90.

For both censoring distributions, as the competing risk rate, q, increased, the KP

method variances increased. Alternatively, the CP method variances decreased as

q increased, except in the four cases where the local recurrence rate was very high

(p = 0.90). In these cases, the CP method variances increased as q increased and the

CIF estimates decreased as q increased.

In the simulations with exponential censoring, the KP method variances decreased

as the local recurrence rate, p, increased. No other trends related to the local recur-

rence rate were observed. Overall, the CP method yielded consistently small vari-

ances, ranging from 0.00001 to 0.00221, while the KP method yielded larger variances,

ranging from 0.00030 to 0.04503.

Tables 4.5 and 4.6 contain 95% CIs calculated by each method for simulations with

exponential censoring times and historical censoring times, respectively. In Table 4.5,

the KP method always estimated a higher upper bound for the CI compared with the

CP method and the CIs for the KP method were very wide. Small CIF estimates,

paired with large variances, resulted in particularly large intervals. Alternately, the

CP method, which calculated smaller variances, yielded much smaller CIs. For exam-

ple, in scenario 3 with exponential censoring, the KP method CIF estimate was 0.022

and the 95% CI was (0.000, 0.952). The CP method CIF estimate was 0.021 and the

95% CI was (0.009, 0.033). In Table 4.6, the KP method also estimated a higher

upper bound for the CI than the CP method; however, the differences tended to be
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slightly less extreme than in the cases with exponential censoring times. The CIs for

the KP method remained very wide in comparison to the CP method. In scenario 1

with exponential censoring times, the CP method estimated a negative lower bound

for the CI. The CIF estimate was 0.033 and the CI was (−0.001, 0.067). The KP

method CI never exceeded 0 or 1 due to the linear transformation which was applied.

The results from the simulations with 1,000 subjects can be found in Appendix C.

All of trends above were observed, however, the variances calculated by both methods

were slightly smaller in the simulations with the large sample size.
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Figure 4.1: The CIF, lower, and upper bounds of the 95% CI for the CIF, calculated
by the KP method and CP method for treatment group 1 of the historical data
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Figure 4.2: The CIF, lower, and upper bounds of the 95% CI for the CIF, calculated
by the KP method and CP method for treatment group 2 of the historical data
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Treatment Method CIF Variance 95% CI
1 KP 0.064 0.00101 (0.020, 0.145)
1 CP 0.054 0.00009 (0.036, 0.072)
2 KP 0.067 0.00092 (0.024, 0.143)
2 CP 0.059 0.00009 (0.040, 0.078)

Table 4.1: CIF, variance, and 95% CIs calculated for each treatment group of the
historical data using the KP method and CP method.

For treatment group 1, n = 612 and for treatment group 2, n = 622.

Treatment Method 95% CI for 95% CI for 95% CI for
Lower Bound Upper Bound CIF

of 95% CI for CIF of 95% CI for CIF
1 KP (0.0075, 0.0378) (0.1320, 0.1635) (0.0442, 0.0875)
1 CP (0.0219, 0.0528) (0.0523, 0.0949) (0.0371, 0.0739)
2 KP (0.0104, 0.0428) (0.1283, 0.1632) (0.0478, 0.0919)
2 CP (0.0258, 0.0585) (0.0580, 0.1022) (0.0419, 0.0803)

Table 4.2: Bootstrap confidence intervals for each treatment group of the historical
data.
For each CI, 10,000 bootstrap samples were taken. For each sample, the CIF and bounds
of the 95% CI were calculated using the KP method and CP method. 95% CIs were then
determined for each statistic.
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p q
Exponential Censoring Historical Censoring

Mean Mean Mean Mean Mean Mean
KP CP Difference KP CP Difference

1 0.01 0.01 0.033 0.033 0.000 0.010 0.010 0.000
2 0.01 0.10 0.031 0.027 0.004 0.010 0.010 0.000
3 0.01 0.50 0.022 0.021 0.002 0.010 0.013 -0.003
4 0.01 0.90 0.011 0.044 -0.033 0.010 0.044 -0.034
5 0.10 0.01 0.278 0.274 0.004 0.099 0.098 0.001
6 0.10 0.10 0.269 0.233 0.036 0.098 0.093 0.005
7 0.10 0.50 0.198 0.109 0.089 0.099 0.074 0.024
8 0.10 0.90 0.119 0.058 0.061 0.097 0.055 0.042
9 0.50 0.01 0.812 0.804 0.007 0.490 0.487 0.002
10 0.50 0.10 0.801 0.731 0.070 0.490 0.466 0.024
11 0.50 0.50 0.729 0.464 0.266 0.488 0.369 0.119
12 0.50 0.90 0.556 0.282 0.274 0.485 0.274 0.211
13 0.90 0.01 0.950 0.945 0.005 0.873 0.869 0.004
14 0.90 0.10 0.949 0.898 0.052 0.872 0.830 0.042
15 0.90 0.50 0.940 0.691 0.250 0.873 0.661 0.212
16 0.90 0.90 0.906 0.495 0.411 0.871 0.492 0.379

Table 4.3: Mean CIF estimates calculated for simulated data by the KP method and
CP method.
p denotes the probability of a local recurrence. q denotes the probability of a competing
risk event. Scenarios in the first column had censoring times that followed the exponential
distribution with mean 1/3. Scenarios in the second column had censoring times that
mimicked the censoring times for the historical data. Every combination was simulated
1000 times with n = 600.
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p q
Exponential Censoring Historical Censoring

KP CP KP CP
1 0.01 0.01 0.04298 0.00042 0.00030 0.00002
2 0.01 0.10 0.04412 0.00026 0.00049 0.00002
3 0.01 0.50 0.04503 0.00005 0.00206 0.00002
4 0.01 0.90 0.04483 0.00001 0.01251 0.00002
5 0.10 0.01 0.02832 0.00221 0.00041 0.00015
6 0.10 0.10 0.02878 0.00151 0.00059 0.00014
7 0.10 0.50 0.03469 0.00029 0.00212 0.00012
8 0.10 0.90 0.04092 0.00010 0.01193 0.00009
9 0.50 0.01 0.00365 0.00082 0.00057 0.00043
10 0.50 0.10 0.00415 0.00080 0.00073 0.00042
11 0.50 0.50 0.00815 0.00058 0.00197 0.00039
12 0.50 0.90 0.02099 0.00035 0.00875 0.00033
13 0.90 0.01 0.00030 0.00011 0.00022 0.00019
14 0.90 0.10 0.00042 0.00018 0.00033 0.00024
15 0.90 0.50 0.00126 0.00038 0.00109 0.00038
16 0.90 0.90 0.00527 0.00042 0.00437 0.00042

Table 4.4: Mean variances calculated for simulated data by the KP method and CP
method.
p denotes the probability of a local recurrence. q denotes the probability of a competing
risk event. Scenarios in the first column had censoring times that followed the exponential
distribution with mean 1/3. Scenarios in the second column had censoring times that
mimicked the censoring times for the historical data. Every combination was simulated
1000 times with n = 600.
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p q
KP Method CP method

Mean Mean 95% CI Mean Mean 95% CICIF Variance CIF Variance
1 0.01 0.01 0.033 0.04298 (0.000, 0.902) 0.033 0.00042 (-0.001, 0.067)
2 0.01 0.10 0.031 0.04412 (0.000, 0.914) 0.027 0.00026 (0.000, 0.054)
3 0.01 0.50 0.022 0.04503 (0.000, 0.952) 0.021 0.00005 (0.009, 0.033)
4 0.01 0.90 0.011 0.04483 (0.000, 0.989) 0.044 0.00001 (0.037, 0.050)
5 0.10 0.01 0.278 0.02832 (0.044, 0.603) 0.274 0.00221 (0.183, 0.364)
6 0.10 0.10 0.269 0.02878 (0.038, 0.600) 0.233 0.00151 (0.158, 0.308)
7 0.10 0.50 0.198 0.03469 (0.010, 0.598) 0.109 0.00029 (0.076, 0.142)
8 0.10 0.90 0.119 0.04092 (0.000, 0.646) 0.058 0.00010 (0.038, 0.077)
9 0.50 0.01 0.812 0.00365 (0.656, 0.901) 0.804 0.00082 (0.748, 0.860)
10 0.50 0.10 0.801 0.00415 (0.635, 0.896) 0.731 0.00080 (0.675, 0.786)
11 0.50 0.50 0.729 0.00815 (0.506, 0.863) 0.464 0.00058 (0.417, 0.511)
12 0.50 0.90 0.556 0.02099 (0.249, 0.780) 0.282 0.00035 (0.245, 0.319)
13 0.90 0.01 0.950 0.00030 (0.901, 0.975) 0.945 0.00011 (0.925, 0.966)
14 0.90 0.10 0.949 0.00042 (0.888, 0.977) 0.898 0.00018 (0.872, 0.924)
15 0.90 0.50 0.940 0.00126 (0.807, 0.981) 0.691 0.00038 (0.653, 0.729)
16 0.90 0.90 0.906 0.00527 (0.577, 0.978) 0.495 0.00042 (0.455, 0.536)

Table 4.5: Mean lower and upper bounds for the 95% CI for the CIF for simulations
with exponential censoring times
p denotes the probability of a local recurrence. q denotes the probability of a competing risk
event. Censoring times followed the exponential distribution with mean 1/3. Each scenario
was simulated 1000 times with n = 600.
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p q
KP Method CP method

Mean Mean 95% CI Mean Mean 95% CICIF Variance CIF Variance
1 0.01 0.01 0.010 0.00030 (0.000, 0.141) 0.010 0.00002 (0.002, 0.018)
2 0.01 0.10 0.010 0.00049 (0.000, 0.213) 0.010 0.00002 (0.001, 0.017)
3 0.01 0.50 0.010 0.00206 (0.000, 0.579) 0.013 0.00002 (0.006, 0.020)
4 0.01 0.90 0.010 0.01251 (0.000, 0.934) 0.044 0.00002 (0.037, 0.051)
5 0.10 0.01 0.099 0.00041 (0.064, 0.143) 0.098 0.00015 (0.074, 0.122)
6 0.10 0.10 0.098 0.00059 (0.057, 0.152) 0.093 0.00014 (0.070, 0.117)
7 0.10 0.50 0.099 0.00212 (0.033, 0.211) 0.075 0.00012 (0.053, 0.096)
8 0.10 0.90 0.097 0.01193 (0.004, 0.409) 0.054 0.00009 (0.037, 0.073)
9 0.50 0.01 0.490 0.00057 (0.442, 0.536) 0.487 0.00043 (0.447, 0.528)
10 0.50 0.10 0.490 0.00073 (0.436, 0.542) 0.466 0.00042 (0.425, 0.506)
11 0.50 0.50 0.488 0.00197 (0.399, 0.572) 0.369 0.00039 (0.330, 0.408)
12 0.50 0.90 0.485 0.00875 (0.296, 0.651) 0.274 0.00033 (0.238, 0.310)
13 0.90 0.01 0.873 0.00022 (0.841, 0.900) 0.869 0.00019 (0.842, 0.896)
14 0.90 0.10 0.872 0.00033 (0.832, 0.904) 0.830 0.00024 (0.800, 0.860)
15 0.90 0.50 0.873 0.00109 (0.791, 0.924) 0.661 0.00038 (0.623, 0.699)
16 0.90 0.90 0.871 0.00437 (0.660, 0.952) 0.492 0.00042 (0.452, 0.532)

Table 4.6: Mean lower and upper bounds for the 95% CI for the CIF for simulations
with historical censoring times.
p denotes the probability of a local recurrence. q denotes the probability of a competing risk
event. Censoring times mimicked the censoring times of the historical distribution. Each
scenario was simulated 1000 times with n = 600.
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Chapter 5

Discussion

In a clinical trial that produces time-to-event data, a statistic of interest is the CIF,

which describes the proportion of individuals that have experienced the event of inter-

est at a given time. To estimate the CIF without bias, competing risks and censoring

must be taken into account. A competing risk is an event whose occurrence will

alter the probability of occurrence of the event of interest. As a result, competing

risk events are informative, as opposed to censoring events which are not informa-

tive beyond the time of censoring. Previous research has compared and evaluated

valid methods of estimating the CIF extensively; however, little research has been

conducted investigating calculation of the variance associated with these estimates

using different methods. Most clinical trials are concerned with comparing the CIFs

of two treatment arms using statistical tests, so research regarding the CIF has been

focused in this area. There are two commonly used methods that have been proposed

for calculating the CIF and the associated variance: the Kalbfleisch-Prentice method

and the Counting Process method by Aalen.

The primary objective of this study was to improve our understanding of the CIF

32



M.Sc. Thesis - Tzvia R. Iljon McMaster - Statistics

and its variance calculated using these two methods. The results will help to guide

estimation of the CIF for a single-arm cohort study that is currently underway. The

cohort study is concerned with the upper bound of the 95% CI for the CIF. Here, the

KP and CP methods were compared using historical data from a related study, which

was used as the historical control rate in planning the cohort study. Additionally,

bootstrapping was performed along with a simulation study using estimates designed

to replicate plausible outcomes for the cohort study.

For each treatment group of the historical data, estimates for the CIF, variance,

and 95% CI for the CIF were calculated using each method. The KP method esti-

mated a slightly higher CIF than the CP method for both treatment groups; although,

this difference may be considered negligible in certain contexts. The variances esti-

mated by the KP method were larger than the variances estimated by the CP method

and the KP method CIs completely contained the CP method CIs. The combination

of higher CIF estimate and larger variance calculated by the KP method leads to

higher estimates for the upper bound of the CIF and suggests that the KP method

is more conservative than the CP method.

Bootstrapping was also used to investigate the historical data. For each method

and each treatment group, the CIF and 95% CI for the CIF were calculated for

10,000 bootstrap replications. 95% BCa reference intervals were then determined for

the lower and upper bounds of the 95% CI for the CIF. Additionally, a 95% BCa

CI was calculated for the CIF estimate using each method. The bootstrap reference

intervals for the lower and upper bounds of the 95% CI for the CIF did not overlap

with the bootstrapped 95% CI for the CIF for the KP method; whereas, the intervals

did overlap for the CP method. This demonstrates that the KP method bounds are
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consistently more extreme than the CP method bounds for the 95% CI for the CIF.

However, the widths of the bootstrapped 95% CIs for the CIF were similar for both

methods. The width of the intervals was around 3.5% for both methods. When the

bootstrap CIs for the CIF were compared to the CIs calculated by each method using

CIF and variance estimates, the KP method CI was much wider. This suggests that

the KP method may be over-estimating the variance. The Delta method, which is

used to calculate the KP CIF and variance, includes a binomial approximation to the

normal, whereas the CP method and bootstrap methods are based on exact values.

This approximation may be questionable when the event rate is small, thus a potential

cause for the large variances observed. Since the CP method CI was more similar

to the bootstrap CI, it may provide a better approximation for the CI than the KP

method in this case, despite the fact that the KP method is more conservative.

A simulation study was conducted to evaluate the performance of each method

in a variety of scenarios. 32 scenarios were investigated where local recurrence rates

and competing risk rates were varied. The rates investigated were 0.01, 0.10, 0.5 and

0.90. Two distributions for censoring times were also employed. Each scenario was

replicated 100 times, with 600 subjects in each sample. The sample size was chosen

to reflect the cohort study of interest and may be considered small in the context

of some clinical trials, but it is relatively large for oncology trials. For each of the

100 samples in a scenario, the CIF, variance and 95% CI for the CIF were calculated

using the KP and CP methods. For each scenario, the mean of each statistic was

calculated.

The KP method estimated a higher CIF than the CP method in almost all cases.

In the scenarios where the CP method estimated a lower CIF, the difference was very
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small. In general, the KP method estimated the CIF more conservatively than the

CP method. The differences between the two methods’ CIF estimates were higher in

scenarios with high local recurrence rates, high competing risk rates, and exponential

censoring over scenarios with lower event rates and censoring times that mimicked

the historical data. In scenarios with exponential censoring, a majority of the events

and censoring occurred prior to the time point of interest, whereas, in the scenarios

with historical censoring, a majority of the events and censoring occur after the time

point of interest. Since the simulations with exponential censoring times had more

censoring and events prior to the 10-year cut point, this allows more opportunity for

the methods to diverge. The KP method CIFs appeared less sensitive to changes in

competing risk rates than the CP method. The KP method estimated the same CIF

for four scenarios with different competing risk rates. Alternately, the CP method

was very sensitive to changes in competing risk rates. In particular, when competing

risk rates were very high, the CP method CIF estimates were substantially lower than

CIF estimates with lower competing risk rates.

The variances calculated by the KP method varied in magnitude more than the

variances calculated by the CP method. The KP method variances were substantially

larger than the CP method variances in every simulation. Both methods yielded larger

variances in simulations with exponential censoring, demonstrating that an increase

in censoring events leads to larger variability. As the competing risk rate increased,

the CP method variances tended to decrease. With an increase in competing risk rate,

the number of censoring events and the number of outcome events would decrease,

regardless of the censoring distribution. As such, it is logical that the CP method

variances decreased as the competing risk rate increased. Alternatively, the increase in
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KP method variances suggests that this method is sensitive not only to the amount of

censoring, but also to the number of competing risk events. When the local recurrence

rate was very high, the CP method variances also decreased when the competing risk

rate increased. In these cases, the associated CIF estimates were very close to 1. This

trend may be a demonstration of how extreme CIF values may influence the variance

calculation.

The 95% CIs for the CIF calculated by the KP method were much wider than

those calculated by the CP method. The KP method estimated much larger variances

than the CP method so this is sensible. In cases with small estimates, the CP method

CIs are not very wide. As such, bootstrapping may be a more suitable method of

CI estimation when event rates are low. This was further illustrated using the CIF

plots for the historical data. In cases where event rates are high and censoring follows

an exponential distribution, the KP method CIs are wider and higher than the CP

method CIs. As such, in cases with high event rates or lots of early censoring, it is

important that investigators consider the differences between the two methods prior

to implementation. It may be beneficial to investigate the bias associated with each of

the estimates in order to decide which method should be implemented in these cases.

In order to evaluate bias, a different simulation method would need to be employed,

whereby a CIF curve is generated and data is simulated from the curve. The results

would only be applicable to that particular curve. Aalen (1978) proved that the CP

method CIF is the minimum variance unbiased estimator for the CIF. To the best of

my knowledge, bias for the CIF computed by the KP method has not been derived.

The simulations covered a variety of scenarios; however, the generalizability of

these results is not clear. Although several different rates were investigated, only
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two sample sizes were studied. All of the trends that were observed for simulations

with 600 subjects per sample were also observed for simulations with 1000 subjects

per sample. The variances for both methods were smaller when the sample size was

larger, leading to narrower CIs. Similar trends are expected for trials with smaller

sample sizes; however, in trials with much larger samples, the two calculation meth-

ods may yield more comparable results because of the decrease in variability. In

the simulation study, only two censoring distributions were investigated. Although

the exponential distribution is commonly employed for survival data, other distribu-

tions like the Weibull distribution are also suitable. It is not clear if these results

would be similar with other censoring distributions; however, it is hypothesized that

distributions that result in lots of early censoring will yield similar results to the ex-

ponential distribution. Likewise, distributions that result in later censoring might be

expected to yield similar results to the historical distribution, which tended to result

in narrower CIs than those calculated in the simulations with exponential censoring

times. Finally, these results were generated using right-censored data and are not

generalizable to left- or interval-censored data.

The planned single-arm cohort study is expected to have moderate event rates

(5-10%) that would be comparable to the event rates in the historical data. The

CP method calculated 95% CIs that were similar to the bootstrap CIs for the CIF,

suggesting that the estimated variance is reasonable. The variances estimated by

the CP method also fluctuated less than the KP method, particularly in cases with

historical censoring times. While the KP method yields a more conservative CI for the

CIF, it’s estimates are much less consistent than those estimated by the CP method.

Furthermore, the majority of main computing packages, including SAS, R, and SPSS,
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are written to calculate the CIF using the CP method. Thus, it is recommended that

the CP method be used for analysis of the cohort study.
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R Code

Organizing data into vectors for analysis

This function will receive a matrix or data frame of times and a corresponding matrix

or data frame of statuses. It returns a data frame containing times and corresponding

statuses that indicate the first event to occur and the event type. 0 indicates no

event and the corresponding time indicates the censoring time. 1 indicates an event

of interest (for this particular analysis, it indicates a local recurrence), and 2 indicates

a competing risk event.

crv<-function(t_cr, c_cr)

{

for (i in 1:nrow(t_cr)) # loop through each patient row

{

for (j in 2:ncol(c_cr)) # loop through each competing risk event

{

if (c_cr[i,1]==1) #has there been a local recurrence (lr)?
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{

if (c_cr[i,j]==1) #has there been a competing risk event (cr)?

{

if (t_cr[i,1]>t_cr[i,j]) #did the cr happen before the lr?

{

t_cr[i,1]<-t_cr[i,j] # if so, change the time to match cr

c_cr[i,1]<-2 # and change the status to 2

}

}

}

else

{

if (c_cr[i,j]==1) #has there been a cr?

{

if (c_cr[i,1]==2) # has there already been a cr recorded?

{

if (t_cr[i,1]>t_cr[i,j]) # which event happened first?

{

t_cr[i,1]<-t_cr[i,j] #record time of the earlier cr event

}

}

else

{

t_cr[i,1]<-t_cr[i,j] # change the time to match the cr
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c_cr[i,1]<-2 # change the status to 2

}

}

}

}

}

# return the vector of times and statuses

cr<-as.data.frame(cbind(t_cr[,1], c_cr[,1]))

names(cr)<-c("time", "status")

return(cr)

}

Calculating CI for CIF using the KP Method

This function receives a vector of times and a vector of corresponding statuses. It

returns a data frame containing the CIF, variance, transformed lower bound, and

transformed upper bound from the KP method.

cif.kp<-function(time, stat)

{

#estimate indicates the times of interest for the CIF and variance.

#estimate can be a vector of any length

estimate<-10

#sort the times and corresponding censors

o<-order(time)

time<-time[o]
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stat<-stat[o]

all<-as.data.frame(cbind(time, stat))

names(all)<-c("time", "status")

N<-length(time)

# risk group

# data is sorted by time

# everyone in the time past has had an event or been censored

n<-rep(NA, N)

for (i in 1:N)

{

n[i]<-N-i+1

}

#Patients who have had a local recurrence at that specific time

#This is not a cumulative count, just for that single step

#d will take the value 1 or 0

d<-rep(NA, N)

for (i in 1:N)

{

cr<-all$status[i]

d[i]<-as.numeric(cr==1)

}
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#Survival function

s<-rep(NA, N)

s[1]<-1-d[1]/n[1]

for (i in 2:N)

{

s[i]<-s[i-1]*(1-d[i]/n[i])

}

#CIF

F<-rep(NA, N)

F[1]<-d[1]/n[1]

for (i in 2:N)

{

F[i]<-s[i-1]*(d[i]/n[i])+F[i-1]

}

#indices for times of interest based on the vector estimate

#This loop looks for the smallest absolute difference between

#the time of interest and times listed in the vector.

#If the index chosen results in a positive difference, it means

# that it is past the time of interest, so the previous index

# is selected

j=1

index<-rep(NA, length(estimate))
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for (i in estimate)

{

ind<-which.min(abs(time-i))

if (time[ind]-i>0)

{

ind<-ind-1

}

index[j]=ind

j=j+1

}

#Calculate the variance and 95\% confidence intervals for

# the times of interest

kp.l<-kp.u<-v<-rep(NA, length(estimate))

k=1

for (i in index)

{

#Variance of CIF

vterms<-rep(NA, i)

#specify first term because S[0]=1 is not in the S vector

vterms[1]<-(F[i]-F[1])ˆ2*d[1]/(n[1]*(n[1]-d[1]))

+(n[1]-d[1])/(n[1]ˆ3)-2*(F[i]-F[1])*1*d[1]/n[1]ˆ2

if (i>1)

{
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for (j in 2:i)

{

a<-(F[i]-F[j])ˆ2*d[j]/(n[j]*(n[j]-d[j]))

b<-(s[j-1])ˆ2*(n[j]-d[j])/(n[j]ˆ3)

c<-2*(F[i]-F[j])*s[j-1]*d[j]/n[j]ˆ2

vterms[j]<-a+b-c

}

}

v[k]<-sum(vterms)

#lower and upper bounds of transformed confidence interval

a<-sqrt(v[k])/(F[i]*log(F[i]))

b<-log(-log(F[i]))-qnorm(0.025, lower.tail=F)*a/sqrt(N)

c<-log(-log(F[i]))+qnorm(0.025, lower.tail=F)*a/sqrt(N)

kp.l[k]<-exp(-exp(b))

kp.u[k]<-exp(-exp(c))

k=k+1

}

f<-F[index]

result<-as.data.frame(cbind(estimate, f, v, d.l, d.u, kp.l, kp.u))

names(result)<-c("time", "CIF", "var", "kp.lower", "kp.upper")

return(result)
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}

Calculating CI for CIF using Counting Process Method

This function calculates the CI for the CIF using the Counting Process method from

the R package cmprsk. It receives a vector of failure times and a vector of corre-

sponding statuses. It returns a data frame containing estimates of CIF, variance,

lower bound, and upper bound from the Counting Process method.

cif.cpm<-function(time, stat)

{

#estimate is a vector of the times of interest

estimate<-10

n<-length(time)

cpm<-cuminc(time, stat, cencode=0)

cpm.t<-timepoints(cpm, estimate)

cpm.CIF<-rep(NA, length(estimate))

cpm.var<-rep(NA, length(estimate))

cpm.l<-rep(NA, length(estimate))

cpm.u<-rep(NA, length(estimate))

j=1

#timepoints returns values for both events - 1 and 2

#we are interested in the rates for event type 1

for (i in estimate)

{

cpm.CIF[j]<-cpm.t$est[1,j]
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cpm.var[j]<-cpm.t$var[1,j]

#note that qnorm gives -1.96

cpm.l[j]<-cpm.CIF[j]+qnorm(0.025)*sqrt(cpm.var[j])

cpm.u[j]<-cpm.CIF[j]-qnorm(0.025)*sqrt(cpm.var[j])

j=j+1

}

as.data.frame(cbind(cpm.CIF, cpm.var, cpm.l, cpm.u))

}

Single Iteration of Simulation

This function runs a single iteration of a simulation. This function receives prob-

abilities of local recurrence and competing risk, sample size, and the type of data

that should be simulated (exponential or following the historical data). It returns a

data frame containing the CIF, variance, lower bound, and upper bound calculated

by both the KP method and CP method.

simulate<-function(problr, probcr, n, stype)

{

es<-10

#generate data based on simulation parameters

time_lr<-rexp(n, rate=1/3)

status_lr<-rbern(n, problr)

time_cr<-rexp(n, rate=1/3)

status_cr<-rbern(n, probcr)
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#to generate data from whelan, replace the times for the status=0

if (stype=="whelan")

{

lr<-as.data.frame(cbind(time_lr, status_lr))

cr<-as.data.frame(cbind(time_cr, status_cr))

for (i in 1:n)

{

if (lr$status_lr[i]==0)

{

lr$time_lr[i]<-rtime(runif(1), p)

}

if (cr$status_cr[i]==0)

{

cr$time_cr[i]<-rtime(runif(1), p)

}

}

time_lr<-lr$time_lr

time_cr<-cr$time_cr

status_lr<-lr$status_lr

status_cr<-cr$status_cr

}

#make the vectors of failure times and statuses

times<-as.data.frame(cbind(time_lr, time_cr))
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status<-as.data.frame(cbind(status_lr, status_cr))

cr.data<-crv(times, status)

#get estimates and variance from KP method

kp.data<-cif.kp(cr.data$time, cr.data$censor)

#get estimates and variance from counting process method

cpm.data<-cif.cpm(cr.data$time, cr.data$censor)

as.data.frame(cbind(kp.data, cpm.data))

}

Multiple Iterations of Simulation

This function runs many iterations of a simulation scenario. It receives the probabili-

ties of local recurrence and competing risk, the sample size, the number of simulations

to run, and the type of data that should be simulated. It returns a data frame con-

taining the probabilities of local recurrence and competing risk, the CIF, variance,

lower and upper bounds calculated by both the KP method and Counting Process

method. This function uses the function simulate, given above.

simulaterep<-function(problr, probcr, n, reps, stype)

{

es<-10

store<-matrix(rep(NA, 11*reps), nrow=reps)

for (i in 1:reps)
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{

sim<-simulate(problr, probcr, n, stype)

store[i,1]<-sim$time[1]

store[i,2]<-sim$CIF[1]

store[i,3]<-sim$var[1]

store[i,4]<-sim$t.lower[1]

store[i,5]<-sim$t.upper[1]

store[i,6]<-sim$cpm.CIF[1]

store[i,7]<-sim$cpm.var[1]

store[i,8]<-sim$cpm.lower[1]

store[i,9]<-sim$cpm.upper[1]

}

store<-as.data.frame(store)

names(store)<-c("time", "CIF", "var", "kp.lower", "kp.upper",

"cpm.CIF", "cpm.var", "cpm.lower", "cpm.upper")

kp.v<-mean(store$var, na.rm=T)

kp.c<-mean(store$CIF, na.rm=T)

kp.l<-mean(store$kp.lower, na.rm=T)

kp.u<-mean(store$kp.upper, na.rm=T)

cpm.v<-mean(store$cpm.var)

cpm.c<-mean(sim$cpm.CIF)

cpm.l<-mean(sim$cpm.lower)

cpm.u<-mean(sim$cpm.upper)
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sims<-as.data.frame(cbind(problr, probcr, kp.c,kp.v, kp.l,

kp.u, cpm.c, cpm.v, cpm.l, cpm.u))

names(sims)<-c("Problr","Probcr", "kp.c","kp.v", "kp.l",

"kp.u", "cpm.c", "cpm.v", "cpm.l", "cpm.u")

return(sims)

}

Bootstrap statistic function

This is the function used for the bootstrapping confidence intervals. It is called by

the function boot from the R package boot. It receives a data frame of failure times

and statuses and returns bootstrap samples of the CIF, variance, lower and upper

bounds calculated by the KP method and Counting Process method.

boot.all<-function(b, i)

{

b<-b[i,]

kp<-cif.kp(b$time, b$status)

kp.c<-kp$CIF

kp.v<-kp$var

kp.u<-kp$t.upper

kp.l<-kp$t.lower

cpm<-cif.cpm(b$time, b$status)

cpm.c<-cpm$cpm.CIF

cpm.v<-cpm$cpm.var

cpm.l<-cpm$cpm.lower
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cpm.u<-cpm$cpm.upper

cbind(kp.c, kp.v, kp.l, kp.u, cpm.c, cpm.v, cpm.l, cpm.u)

}

Sampling random times from the censoring distribution of the

historical data

This code was used to determine the cumulative probabilities of censoring from the

historical data.

t<-cr$time[cr$status==0]

f<-rep(NA, 15)

for (i in 1:15)

{

t1<-t[t<i]

f[i]<-sum(i-1<=t1)

}

p<-f/sum(f)

p<-cumsum(p)

This function samples random times from the censoring distribution based on the

historical data. It receives a vector of random numbers from the Uniform distribution

on the interval [0, 1], and a vector containing the cumulative probabilities of censoring

in each year. It returns a vector of random times from the censoring distribution based

on the historical data.

rtime<-function(x,p)
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{

t<-rep(NA, length(x))

for (i in 1:length(x))

{

if (0<= x[i] && x[i]<=p[1])

{

t[i]<-runif(1, min=0, max=1)

}

else

{

for (j in 2:15)

{

if (p[j-1]<= x[i] && x[i]<=p[j])

{

t[i]<-runif(1, min=j-1, max=j)

}

}

}

}

return(t)

}
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Derivation of KP Method Variance

The CIF is a function of the survival function Ŝ(t):

F̂k(t) =
∑
tj≤t

Ŝ(tj−1)dkj
nj

To find the variance of the CIF, the variance of Ŝ(t) must be calculated first. Recall

the formula for Ŝ(t):

Ŝ(t) =
∏
tj≤t

(
1− dj

nj

)

The variance of a product is difficult to calculate, so using the log transformation can

simplify the problem.

ln(Ŝ(t)) =
∑
tj≤t

ln
(
nj − dj
nj

)
(B.1)

Let pj = nj−dj

nj
. Then the observations of survival among the nj subjects that are

at risk are independent Bernoulli trials with constant probability pj. The estimator

and variance of this Bernoulli experiment are thus p̂j and p̂j(1−p̂j)
nj

, respectively.
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The Delta Method may be used to estimate the standard error of a transformed

parameter. If X is a random variable with mean µ, and the function g is differentiable,

then

g(X) ≈ g(µ) + (X − µ)g′(µ)

An approximation of the variance is

V ar(g(X)) ≈ V ar(X)[g′(µ)]2

Thus the variance of a single term from Equation B.1 can be approximated with the

Delta Method with the transformation ln(X) and the parameter p̂j:

V ar(ln(p̂j)) ≈
p̂j(1− p̂j)

nj

[
1
p̂j

]2

= (1− p̂j)
nj p̂j

=

nj − (nj − dj)
nj

nj
(nj − dj)

nj

= dj
nj(nj − dj)

The complete variance can be written as a sum of variances since each term is an

independent Bernoulli experiment:

V ar(ln(Ŝ(t))) ≈ V ar

∑
tj≤t

ln(pj)
 =

∑
tj≤t

V ar(ln(pj)) =
∑
tj≤t

dj
nj(nj − dj)

Using the Delta Method again, the variance of Ŝ(t) = exp(ln(Ŝ(t))) is

V ar(Ŝ(t)) ≈
∑
tj≤t

[
dj

nj(nj − dj)

] [
exp(ln(Ŝ(t)))

]2
=
[
Ŝ(t)

]2 ∑
tj≤t

dj
nj(nj − dj)
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Finally, using the Delta Method again, the variance of F̂ (t) is

V ar(F̂k(t)) =
∑
tj≤t

{
[F̂k(t)− F̂k(tj)]2

dj
nj(nj − dj)

+ [Ŝ(tj−1)]2nj − dkj
n3
j

−2[F̂k(t)− F̂k(tj)][Ŝ(tj−1)]dkj
n2
j

}
.

For further details, see Hosmer et al. (2008).

The Delta Method is applied once again when this variance is transformed using the

log(− log) transformation to ensure that the CI for the CIF estimate is in the interval

[0, 1].
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Results of simulations with 1,000

subjects per trial
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p q
Exponential Censoring Historical Censoring

Mean Mean Mean Mean Mean Mean
KP CP Difference KP CP Difference

1 0.01 0.01 0.032 0.031 0.001 0.010 0.010 0.000
2 0.01 0.10 0.031 0.027 0.004 0.010 0.009 0.000
3 0.01 0.50 0.021 0.011 0.010 0.010 0.008 0.002
4 0.01 0.90 0.012 0.007 0.005 0.010 0.008 0.002
5 0.10 0.01 0.282 0.278 0.004 0.098 0.098 0.000
6 0.10 0.10 0.267 0.231 0.036 0.099 0.094 0.005
7 0.10 0.50 0.199 0.109 0.089 0.098 0.074 0.024
8 0.10 0.90 0.119 0.057 0.061 0.098 0.055 0.043
9 0.50 0.01 0.811 0.803 0.007 0.489 0.487 0.002
10 0.50 0.10 0.798 0.729 0.070 0.490 0.466 0.024
11 0.50 0.50 0.726 0.462 0.264 0.488 0.369 0.120
12 0.50 0.90 0.559 0.283 0.275 0.484 0.273 0.211
13 0.90 0.01 0.950 0.945 0.005 0.873 0.869 0.004
14 0.90 0.10 0.949 0.897 0.052 0.873 0.831 0.042
15 0.90 0.50 0.941 0.692 0.250 0.873 0.662 0.212
16 0.90 0.90 0.908 0.496 0.412 0.871 0.491 0.379

Table C.1: Mean CIF estimates calculated for simulated data by the KP method and
CP method.
p denotes the probability of a local recurrence. q denotes the probability of a competing
risk event. Scenarios in the first column had censoring times that followed the exponential
distribution with mean 1/3. Scenarios in the second column had censoring times that
mimicked the censoring times for the historical data. Every combination was simulated
1000 times with n = 1000.
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p q
Exponential Censoring Historical Censoring

KP CP KP CP
1 0.01 0.01 0.02615 0.00023 0.00018 0.00001
2 0.01 0.10 0.02639 0.00015 0.00029 0.00001
3 0.01 0.50 0.02652 0.00002 0.00124 0.00001
4 0.01 0.90 0.02725 0.00001 0.00745 0.00001
5 0.10 0.01 0.01657 0.00134 0.00025 0.00009
6 0.10 0.10 0.01724 0.00089 0.00036 0.00009
7 0.10 0.50 0.02041 0.00017 0.00127 0.00007
8 0.10 0.90 0.02418 0.00006 0.00713 0.00005
9 0.50 0.01 0.00219 0.00049 0.00034 0.00026
10 0.50 0.10 0.00248 0.00048 0.00044 0.00025
11 0.50 0.50 0.00489 0.00035 0.00118 0.00024
12 0.50 0.90 0.01234 0.00021 0.00522 0.00020
13 0.90 0.01 0.00018 0.00007 0.00013 0.00012
14 0.90 0.10 0.00025 0.00011 0.00020 0.00014
15 0.90 0.50 0.00075 0.00023 0.00066 0.00023
16 0.90 0.90 0.00312 0.00025 0.00262 0.00025

Table C.2: Mean variances calculated for simulated data by the KP method and CP
method.
p denotes the probability of a local recurrence. q denotes the probability of a competing
risk event. Scenarios in the first column had censoring times that followed the exponential
distribution with mean 1/3. Scenarios in the second column had censoring times that
mimicked the censoring times for the historical data. Every combination was simulated 0
times with n = 1000.
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p q
KP Method CP method

Mean Mean 95% CI Mean Mean 95% CICIF Variance CIF Variance
1 0.01 0.01 0.033 0.02615 (0.000, 0.835) 0.031 0.00023 (0.005, 0.058)
2 0.01 0.10 0.031 0.02639 (0.000, 0.841) 0.027 0.00015 (0.005, 0.048)
3 0.01 0.50 0.021 0.02652 (0.000, 0.915) 0.011 0.00002 (0.003, 0.020)
4 0.01 0.90 0.012 0.02725 (0.000, 0.973) 0.007 0.00001 (0.002, 0.012)
5 0.10 0.01 0.282 0.01657 (0.079, 0.536) 0.278 0.00134 (0.207, 0.349)
6 0.10 0.10 0.267 0.01724 (0.067, 0.529) 0.231 0.00089 (0.173, 0.289)
7 0.10 0.50 0.199 0.02041 (0.024, 0.510) 0.109 0.00017 (0.083, 0.135)
8 0.10 0.90 0.119 0.02418 (0.002, 0.532) 0.058 0.00006 (0.043, 0.072)
9 0.50 0.01 0.811 0.00219 (0.698, 0.885) 0.803 0.00049 (0.760, 0.847)
10 0.50 0.10 0.798 0.00248 (0.678, 0.877) 0.729 0.00048 (0.686, 0.771)
11 0.50 0.50 0.726 0.00489 (0.561, 0.837) 0.463 0.00035 (0.426, 0.498)
12 0.50 0.90 0.558 0.01234 (0.322, 0.741) 0.283 0.00021 (0.255, 0.312)
13 0.90 0.01 0.950 0.00018 (0.915, 0.971) 0.945 0.00007 (0.929, 0.961)
14 0.90 0.10 0.949 0.00025 (0.907, 0.972) 0.897 0.00011 (0.877, 0.918)
15 0.90 0.50 0.941 0.00075 (0.854, 0.976) 0.692 0.00023 (0.662, 0.721)
16 0.90 0.90 0.908 0.00312 (0.702, 0.971) 0.496 0.00025 (0.464, 0.527)

Table C.3: Mean lower and upper bounds for the 95% CI for the CIF for simulations
with exponential censoring times
p denotes the probability of a local recurrence. q denotes the probability of a competing risk
event. Censoring times followed the exponential distribution with mean 1/3. Each scenario
was simulated 1000 times with n = 1000.

60



M.Sc. Thesis - Tzvia R. Iljon McMaster - Statistics

p q
KP Method CP method

Mean Mean 95% CI Mean Mean 95% CICIF Variance CIF Variance
1 0.01 0.01 0.010 0.00018 (0.001, 0.088) 0.010 0.00001 (0.004, 0.016)
2 0.01 0.10 0.010 0.00029 (0.000, 0.128) 0.010 0.00001 (0.004, 0.015)
3 0.01 0.50 0.010 0.00124 (0.000, 0.422) 0.008 0.00001 (0.003, 0.013)
4 0.01 0.90 0.010 0.00745 (0.000, 0.876) 0.008 0.00001 (0.004, 0.013)
5 0.10 0.01 0.100 0.00025 (0.071, 0.132) 0.098 0.00009 (0.079, 0.117)
6 0.10 0.10 0.099 0.00036 (0.066, 0.139) 0.094 0.00009 (0.075, 0.112)
7 0.10 0.50 0.098 0.00127 (0.043, 0.181) 0.074 0.00007 (0.057, 0.090)
8 0.10 0.90 0.098 0.00713 (0.009, 0.328) 0.055 0.00005 (0.041, 0.069)
9 0.50 0.01 0.490 0.00034 (0.453, 0.525) 0.487 0.00026 (0.456, 0.518)
10 0.50 0.10 0.490 0.00044 (0.449, 0.531) 0.466 0.00025 (0.435, 0.498)
11 0.50 0.50 0.488 0.00118 (0.419, 0.554) 0.369 0.00024 (0.339, 0.399)
12 0.50 0.90 0.484 0.00522 (0.338, 0.616) 0.273 0.00020 (0.245, 0.300)
13 0.90 0.01 0.873 0.00013 (0.849, 0.894) 0.869 0.00012 (0.848, 0.890)
14 0.90 0.10 0.873 0.00020 (0.843, 0.898) 0.831 0.00014 (0.808, 0.854)
15 0.90 0.50 0.873 0.00066 (0.813, 0.915) 0.661 0.00023 (0.632, 0.691)
16 0.90 0.90 0.871 0.00262 (0.726, 0.941) 0.491 0.00025 (0.460, 0.522)

Table C.4: Mean lower and upper bounds for the 95% CI for the CIF for simulations
with historical censoring times.
p denotes the probability of a local recurrence. q denotes the probability of a competing risk
event. Censoring times mimicked the censoring times of the historical distribution. Each
scenario was simulated 1000 times with n = 1000.
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