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Abstract

Training and ergonomics evaluation for laparoscopic surgery is an important tool for the assessment

of trainees. Timely and objective assessment helps surgeons improve hand dexterity and movement

precision, and perform surgery in an ergonomic manner. Traditionally, skill is evaluated by expert

surgeons observing trainees, but this approach is both expensive and subjective. The approach

proposed by this research employs an Ascension 3DGuidance trakSTAR system that captures the

positions and orientations of hand and laparoscopic tool trajectories. Recorded trajectories are

automatically analysed to extract meaningful feedback for training evaluation using statistical and

machine learning methods.

The data are acquired while a subject performs a standardized task such as peg transfer or

suturing. The system records laproscopic instrument positions, hand, forearms, elbows trajectories,

as well as wrist angles. We propose several metrics that attempt to objectively quantify the skill level

or ergonomics of the procedure. The metrics for surgical skills are based on surgical instrument tip

trajectories, whereas the ergonomics metric uses wrist angles. These metrics have been developed

using statistical and machine learning methods.

The metrics have been experimentally evaluated by using a population of seven first year post-

graduate urology residents, one general surgery resident, and eight fourth year postgraduate urology

residents and fellows. The machine learning approach discriminated correctly in 73% of cases be-

tween experts and novices. The machine learning approach applied to ergonomics data correctly

discriminates between experts and novices in 88% of the cases for the peg transfer task and 75%

for the suturing task. We also propose a method to derive a competency-based score using either

statistical or machine learning derived metrics.
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Initial experimental data show that the proposed methods discriminate between the skills and

ergonomics of expert and novice surgeons. The proposed system can be a valuable tool for research

and training evaluation in laparoscopic surgery.
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Notation and abbreviations

PGY — Post graduate year

FLS — Fundamental of Laparoscopic Surgery curriculum

ANOVA1 — One-way analysis of variance

EMI — Electromagnetic interference sensors

Hptip — Tip position vector referenced to handle frame

FToH — Instrument handle vector referenced to fixed transmitter frame

R — Rotation matrix

N — Total number of sample points

T — Total time taken to complete the entire task

t — Time index

|.| — Absolute value

subscript xl — Surgeon’s left hand along the x-axis

subscript xr — Surgeon’s right hand along the x-axis

subscript yl — Surgeon’s left hand along the y-axis

subscript yr — Surgeon’s right hand along the y-axis

subscript zl — Surgeon’s left hand along the z-axis

subscript zr — Surgeon’s right hand along the z-axis

||.|| — Two-norm formula

subscript nl — Surgeon’s left hand using the norm formula

subscript nr — Surgeon’s right hand using the norm formula

L with subscript — Trajectory length
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Sp with subscript — Average speed

Sm with subscript — Smoothness

LF — Low frequency range from 0.1 Hz to 0.7 Hz

HF — High frequency range from 0.8 Hz to 30 Hz

R.H. — Right Hand

L.H. — Left Hand

subscript PFl — First peg picked from surgeon’s left side

subscript PFr — First peg picked from surgeon’s right side

subscript PLl — Last peg picked from surgeon’s left side

subscript PLr — Last peg picked from surgeon’s right side

subscript DFl — First peg dropped from surgeon’s left side

subscript DFr — First peg dropped from surgeon’s right side

subscript DLl — Last peg dropped from surgeon’s left side

subscript DLr — Last peg dropped from surgeon’s right side

N.L. — Neutral wrist stress level

M.L. — Moderate wrist stress level

S.L. — Severe wrist stress level

PCA — Principal component analysis

mRMR — Minimum redundancy and maximum relevance feature selection

FLD — Fisher linear discriminant

SVM — Support vector machine

m — no of sample dimensions

n — no of feature dimensions

r — no of reduced feature dimensions

A ∈ <m× n — Training matrix data set with all measured samples and features

A ∈ <m× r — Training matrix data set with all measured samples and reduced features

x ∈ <r — Reduced feature vector
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Chapter 1

Introduction and Problem

Statement

In 1910, Hans Christian Jacobaeus performed the first laparoscopy on 17 patients (Hatzinger et al.,

2006). Since then, laparoscopy procedure has been optimized and simplified as a result of ad-

vance technology in optical delivery systems, minielectronic components and endoscopes (Atug

et al., 2006). The benefits of laparoscopy have also been well documented: reduced blood loss, less

postoperative pain, shorter hospital stay, earlier return to normal activities, and improved cosmet-

ics (McDougall and ClayMan, 1996).

While performing the laparoscopic surgery, surgeons insert a long instrument in the patient’s

belly through trocars that have a limited range of motion. Consequently, surgeons’ hands tend

to tremor while using laparoscopic tools. Because surgeons operate while looking at a monitor,

there is a lack of depth perception. Consequently, the sense of touch development and hand-eye

coordination require specific laparoscopic training (Derossis et al., 1998). Ergonomic studies have

shown a correlation between laparoscopic procedures and surgeon’s pain in the region of neck and

upper extremities (Berguer et al., 1999). The shape of laparoscopic tool handles leads to muscle

exhaustion, pressure areas, and neural injury as reported in the literature (Matern and Waller,

1999). Li (2002) has noted that awkward hand postures may lead to carpal tunnel syndrome, De

Quervains disease and lateral epicondylitis. Many surgeons have complained of significant ergonomic

1
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problems: frequent hand pains, wrist stiffness, finger numbness and eye-strain (Hemal et al., 2001).

Surgeons with less than two years of experiences in laparoscopic surgery are significantly more

affected. Therefore, structure-based laparoscopic surgery training has become very important to

provide patient safety (Lee et al., 2011) and to avoid ergonomic risk factors for surgeons.

The Fundamental of Laparoscopic Surgery curriculum (FLS), endorsed by the American College

of Surgeons, aims to teach the physiology, fundamental knowledge, and technical skills required

in basic laparoscopic surgery (Derossis MD et al., 1998). The FLS curriculum defines hand-eye

coordination, ambidexterity, and depth perception as the basic skills required in laparoscopic surgery.

Seven FLS training tasks, which include peg transfers, pattern cutting, clip and divide, endolooping,

mesh placement and fixation, and suturing with intracorporeal or extracorporeal knots, are designed

to teach these basic technical skills. All candidates are required to complete these training tasks

successfully.

The non-surgery community is demanding that the curriculum be assessed. The assessment has

to be a timely, unbiased, and an objective measurement of surgical skills (Darzi et al., 1999). Ideally,

the evaluation should be quantitative and automatic. The technical assessment methodology should

be valid, reliable, and practical (Sidhu et al., 2004). The assessment should provide numerical scores

that reflect the technical skill level of a surgeon. It also should help a surgeon improve hand dexterity

and hand movement precision. Furthermore, it could correct the surgeon’s hand movements based

on proper choreography taught by a surgical training institute. Moreover, it should provide feedback

to the surgeon on the task execution ergonomics.

Reznick et al. (1997) has introduced a method of assessment using task-specific check-lists and

global rating scales. Stations to perform the basic operations are used for the examination, and

the skill performance at each station is marked by a qualified surgeon. The task-specific check-list

comprises 20 to 40 required skill items, and the technical skills are assessed as either done correctly or

done incorrectly. In the global rating scales, candidates are required to perform the basic operations

at the stations and are graded on a five point scale by a qualified surgeon. Although the results of

both methods have been proved to be reliable (Sidhu et al., 2004), the methods have put the burden

on expert surgeons, and the results have been highly subjective (Datta et al., 2001; Moorthy et al.,

2003; Stylopoulos and Vosburgh, 2007).
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Stylopoulos and Vosburgh (2007) has described a method of assessing technical skills using a

motion analysis system. They have proved that the assessment of technical skills becomes more

systematic, reproducible, and evaluator-independent by using the motion analysis method. Many

motion analysis systems such as the Imperial College Surgical Assessment Device (ICSAD), ProMIS

Augmented Reality Simulator (ProMIS), Robotic Video and Motion Analysis Software (ROVIMAS),

and Hiroshima University Endoscopic Surgical Assessment Device (HUESAD) have also been re-

ported to assess surgical technical skills (Mason et al., 2012). The ICSAD system tracks surgeons’

hand positions and movements using sensors placed on the dorsum of hands. The ProMIS system

tracks instrument motion using three different camera tracking systems (Van Sickle et al., 2005).

The ROVIMAS system combines the ICSAD system with video-recording (Dosis et al., 2005). The

HUESAD system tracks the movements of the tip by utilizing optical scale sensors, micro-encoders

and a computer (Egi et al., 2008).

The Ascension 3DGuidance trakSTAR system also has the ability to track the position and ori-

entation of an object in 3D space (trakStar, 2009). The system includes electromagnetic interference

(EMI) sensors, a transmitter and an electronics interface unit to connect with a computer (trakStar,

2009). Riener et al. (2003) has utilized the system for recording an endoscope and arm move-

ments during laparoscopy. Tausch et al. (2012) has used the system to track the motion of robotic

instruments and validated robotic surgery curricula using the tracking system. Moreover, Zhou

et al. (2013) has applied the 3DGuidance trakSTAR system for tracking catheter position during

high-dose rate (HDR) prostate brachytherapy.

The use of a motion analysis system for assessing technical skills can be validated by a construct

validity (Moorthy et al., 2003). The construct validity is defined as a test that discriminates among

various levels of expertise. Van Sickle et al. (2005) compared the hand dexterity of five novices and

experts while the surgeons were performing a suturing task. The ProMIS system tracked the motion

of two laparoscopic instruments and recorded time, smoothness, and path distance. Smoothness was

defined as the number of changes in instrument velocity over time. These metrics were analysed

using the Mann-Whitney U test. It was concluded that the experts performed the tasks between

three and four times faster, had three times shorter instrument path length and had four times

greater smoothness of instrument movement. Xeroulis et al. (2009) recruited 26 volunteer subjects
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who were separated into three groups: 13 post graduate junior residents (PGY1,2,3), seven post

graduate senior residents (PGY4,5) and six staff surgeons. All surgeons performed four FLS tasks:

peg transfer task, pattern cut task, endoloop and intracorporeal suturing tasks. The total distance,

number of movements and total time were recorded using ICSAD and analysed using one way

of analysis (ANOVA1). There was a significant difference in the number of movements among

experienced groups for peg transfer, endoloop and intracorporeal suturing tasks. The total distance

was found to be a good discriminant for the experienced group for peg transfer and intracorporeal

suturing tasks. The total time discriminated well between the two groups for all four tasks. It was

also reported that there was a significant correlation between total FLS expert scores and the metrics

of total distance, number of movements and total time. Datta et al. (2002) recruited fifty general

surgical consultants and trainees to suture a synthetic vein patch to the artery with restricted access

at depth. The number of hand movements and execution time were recorded using ICSAD and

analysed using ANOVA1. There was a significant correlation between movements made and the

global skills rating score.

Similar to the aforementioned results, several other researchers showed that motion analysis is

a valid tool for assessing laparoscopic technical skills (Mason et al., 2012). The time, path length

and number of hand movements are valid metrics to assess technical skills. However, the overall

effect of these parameters is not well addressed. Research on a method to convert the motion data

into competency-based scores is on-going. Thus, the overall skill performance level based on the

measured metric parameters is not predictable. Furthermore, the trajectory of the data from the

motion analysis tool is not segmented. The current approach does not assess ergonomic analysis

so that a surgeon can improve the ergonomics of handling instruments. We propose a system that

acquires positions and orientation of movements, records these data, and converts these recorded

data into a feedback training evaluation tool for laparoscopic surgeons. The system identifies the

factors that differentiate the skill performance and wrist angles between novice and expert surgeons.

Using these identified factors, it predicts whether a recorded trajectory is performed by a novice or an

expert. The system also outputs a score that reflects the skill performance of a surgeon. Furthermore,

it displays the segments of a recorded hand movement trajectory and includes ergonomic analysis

on wrist angles.
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Seven first year postgraduate (PGY1) urology residents, one general surgery resident (novice

group), and eight fourth year postgraduate (PGY4) urology residents and fellows (expert group)

volunteered to perform three trials of the peg transfer task and two trials of the suturing task with

intracoporeal knots. They all read and signed the informed consent approved by the local ethics

board. All volunteers were asked to use the same technique mentioned in the FLS guidelines. Because

laparoscopic tools were inserted through small holes, which were about the same size as trocars, all

volunteers performed the tasks with a limited range of motion. All volunteers also performed both

tasks while looking at a monitor in direct line of a surgeon’s vision. The Ascension 3DGuidance

trakSTAR system was used to acquire the trajectories of the laparoscopic tools and angles of the

surgeons’ wrist. Custom software was developed to record the acquired data from the tracking

system.

The recorded handle trajectory is transformed into the tip trajectory through calibration meth-

ods. The tip trajectory is then converted into factors that differentiate the skill performance be-

tween the novice and expert surgeons. Factors, such as total length, total time, average speed, and

smoothness for the peg transfer task are analysed using ANOVA1 to assess how well they discrim-

inate between the skill groups. The smoothness provides a measure of hand tremor and is defined

as the ratio between low and high frequency trajectories. The factors, that are proved to distin-

guish the skill performance between two groups by ANOVA1 method, are used to calculate the skill

performance-based score. The data are also analysed by using machine learning.

Machine Learning has been used in multiple disciplines: pattern recognition, data mining, statis-

tics, probability theory, optimization, statistical physics, and theoretical computer science (Wang

and Summers, 2012). Machine learning techniques such as rule induction, neural networks, genetic

learning, case-based reasoning, and analytic learning have been used to solve real-world problems

such as natural language processing, medical diagnosis, bioinformatics, video surveillance, or finan-

cial data analysis (Segre, 1992).

Machine learning techniques can be separated into three broad categories: supervised learning,

unsupervised learning and semi-supervised learning (Wang and Summers, 2012). In supervised

learning, each sample contains two vectors: a set of features and a label vector. For example, a

sample is the trajectory of a surgeon’s hand movement; features, relevant for surgeon’s skill, are
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extracted from a sample (Alpaydin, 2010). Labels contain objective values relevant to the problem

at hand. For example, a PGY1 laparoscopic resident is labelled as -1 whereas a urology fellow

is labelled as +1. Supervised learning attempts to determine the relationship between a set of

features and a label (Wang and Summers, 2012). Examples of supervised learning are classification,

regression, and reinforcement learning.

In unsupervised learning, each sample contains only a set of features. Unsupervised learning

determines the relationships between samples. Examples of unsupervised learning are clustering,

density estimation, and blind source separation. Semi-supervised learning is the combination of

both supervised learning and unsupervised learning. In semi-supervised learning, some samples

contain labels, and many of the samples do not contain labels. Semi-supervised classification and

information recommendation systems are examples of semi-supervised learning. Based on the appli-

cations, machine learning has different modules (Segre, 1992). For example, a pattern classification

generally includes three modules: feature extraction, feature selection and classification.

Our application employs supervised learning and comprises five modules: hand trajectory seg-

mentation, feature extraction, feature selection, classification, and evaluation. Hand trajectory

segmentation has been used in research areas such as neuroscience, robotics, and ergonomics (Faria

and Dias, 2009). The skill to manipulate objects with our hands is the result of a sophisticated blend

of automatic sensory-motor mechanisms (Johansson and Cole, 1992). A hand manipulation task is

segmented into different stages: reach, lift, transport and release (Flanagan et al., 2006). Then, fea-

tures such as the number of up and down movements, length, time, average speed, and smoothness

are extracted. Subsequently, the features that are most statistically related with labels are selected

using either principal component analysis (PCA) or minimum redundancy and maximum relevance

feature selection (mRMR) (Wang and Summers, 2012). The best features are used to calculate the

skill performance-based score.

The classifier is built to distinguish the skill performance between novice and expert surgeons.

Two types of classifiers are used: Fisher linear discriminant (FLD) and support vector machine

(SVM). Each classifier can be combined with any feature selection method resulting in four investi-

gated models for surgeon skill performance prediction. The performance of each model was evaluated

using a leave-n-out cross validation procedure (Khodayari-Rostamabad et al., 2013).
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Both ANOVA1 and machine learning methods are applied in ergonomic analysis of surgeons’

wrist angles while the surgeons are performing both the peg transfer and suturing task. EMI

sensors are attached on wrists and forearms to monitor the surgeons’ wrist angles. The wrist

angles are grouped according to surgeon’s wrist postures: extension, flexion, radial deviation and

ulnar deviation. The wrist postures are further grouped based on stress level: neutral, moderate

and severe. The percentage duration on each stress level for each wrist posture is calculated to

give feedback to surgeons. The percentage duration is also used to define factors for ANOVA1

and features for machine learning. Factors that identify wrist angle differences between the novice

and expert surgeons are used to validate the motion analysis system for tracking surgeons’ wrist

movements. Features are applied in the same four models that are proposed in the skill performance

prediction to analyse surgeons’ ergonomic performance on wrist angles. Each model is also evaluated

using the leave-n-out cross validation procedure.

1.1 Thesis Contribution

Dr. Patriciu proposed and implemented the system of measuring the laparoscopic tip motion, hand,

forearms, elbows movements and wrist angles using Ascension 3DGuidance trakSTAR. Dr. Bechir

Hage and Dr. Anil Kapoor organized the seven PGY1 laparoscopic residents and one general surgery

resident and the eight PGY4 urology residents and fellows that perform three tirals of the peg trans-

fer task and two trials of the suturing task. Dr. Reilly contributed the smoothness factor, which is

intended to measure hand tremor. Under the guidance of Dr. Patriciu, the author proved that the

factors discriminate the skill performance between novice and expert surgeons. Thus, the Ascension

3DGuidance trakSTAR system for tracking laparoscopic tip motion was validated. Under the su-

pervision of Dr. Patriciu and Dr. Reilly, the author implemented the hand trajectory segmentation.

Under the guidance of Dr. Reilly, the author implemented feature extraction, feature selection,

classification, and evaluation. The machine learning approach discriminated between experts and

novices correctly in 73% of cases. The author derived a competency-based surgeon score using the

results from either the statistical or the machine learning method. Using the statistical method, the

author analysed the stress level of surgeons’ wrist angles and validated the system of measuring sur-

geons’ wrist angles using Ascension 3DGuidance trakSTAR. Using the machine learning approach,
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the stress level of surgeons’ wrist angles between experts and novices was discriminated correctly in

88% of the cases for the peg transfer task and in 75% of the cases for the suturing task.
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1.2 Organization of Thesis

Chapter 2 describes the standard tasks used in this study: the methods applied to acquire laparo-

scopic instrument trajectories and surgeons’ wrist angles during the task execution. Chapter 3

discusses the statistical method used for validating motion analysis and skill evaluation. Chapter 4

presents the machine learning method to predict the skill performance of a surgeon. Chapter 5 pro-

vides some results related to ergonomic analysis of wrist angles. Chapter 6 discusses the conclusions

regarding the results and provides some future research directions.

9



Chapter 2

Data Acquisition

As depicted in Figure 2.1, Chapter 2 describes the standard tasks used in this study: the methods

applied to acquire laparoscopic instrument trajectories and surgeons’ wrist angles during the task

execution. Seven PGY1 laparoscopic residents and one general surgery resident (novice group) and

eight PGY4 residents and urology fellows (expert group) performed three trials of the peg transfer

task and two trials of the suturing task using the laparoscopic tools. The Ascension 3DGuidance

trakSTAR system tracks the position and orientation of laparoscopic handles in surgeons’ hands

and the orientation of surgeons’ wrists angles. The acquired data are recorded by custom software.

The recorded laparoscopic handle data are then converted into a tip trajectory through estimating

the tip positions referenced to the handle positions by either eigenvalue decomposition or a pivot-

calibration method. Similarly, the recorded surgeons’ wrist angles are converted into ergonomic

assessment data.
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Figure 2.1: Chapter 2 Outline
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2.1 System Set-up and Performance Guideline for Peg Trans-

fer Task

The system set-up for the peg transfer task comprised two laparoscopic graspers (Figure 2.2) fitted

with trakStar micro-EMI sensors, the trakStar tracking system, three blue and two pink triangles

on a dexterity block, and a standard FLS trainer system station (Figure 2.3) (Figure 2.4) which

contained the top of the trainer with simulated skin with two holes, base of the trainer with alligator

clips, two side panels, and a FLS standard four millimetres fixed focus lens swivel mounted camera.

The dexterity block was placed in the centre field of the camera’s view. Five pegs were placed on

the pegboard on the surgeon’s left side and arranged in the order of the closest to the most distant

from the transmitter.

By viewing the monitor, the surgeons manipulated the two laparoscopic graspers inserted into

small holes, which were about the same size as trocars. Each peg was lifted with the grasper in the

surgeon’s left hand, transferred to the surgeon’s right hand in mid-air, and lastly it was placed on

the right side in the same arrangement as the right side (Derossis et al., 1998). After all five pegs

from the surgeon’s left side were transferred to the right side, they were moved back to surgeon’s

left side in a first-in, first-out order.
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Figure 2.2: Graspers that were used in the Peg Transfer Task
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Figure 2.3: Conceptual Drawing for the Peg Transfer Task Set-Up
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Figure 2.4: System Set-Up for the Peg Transfer Task
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Figure 2.5: Needle-Drivers that were used in the Suturing Task

2.2 System Set-up and Performance Guideline for Suturing

Task

The system set-up for the suturing task comprised two needled drivers (Figure 2.5) fitted with optical

sensors, the same FLS trainer system station that is used in the peg transfer task, a Penrose Drain

with marked targets placed firmly on a suture block, and the custom tracking system. The suture

block was placed in the centre field of the camera’s view. By viewing the monitor, a simple stitch

was placed through two marks in a longitudinally slit Penrose drain. The suture was tied using an

intracorporeal knot technique. Three throws that included one double throw and two single throws

were placed on the suture.
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Figure 2.6: System Setup for the Suturing Task
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Figure 2.7: Vector Diagram for Formula 2.1

2.3 Data Acquisition for Skills Evaluation on the Peg Trans-

fer Task

Both grasper handles in surgeons’ right and left hands are fitted with the EMI sensors. The trans-

mitter sequentially generates magnetic fields and the EMI sensors instantly measure the transmitted

field vectors at a point in space (trakStar, 2009). Thus, the positions and orientations of the handle

(subscript or superscript H) referenced to the fixed transmitter (superscript FT) are captured and

recorded using custom software. Formula 2.1 provides the tip positions (subscript tip) of the grasper

with respect to the fixed transmitter (FTptip) (Mercier et al., 2005). Figure 2.7 shows the vector

diagram for Formula 2.1.

FTptip = FT
H R Hptip + FToH , where (2.1)

FT
H R = FT

H Rz(ψ) . FTH Ry(θ) . FTH Rx(φ) (2.2)

FT
H R =


cos(θH ) cos(ψH ) cos(φH ) sin(ψH ) + sin(φH ) sin(θH ) cos(ψH ) sin(φH ) sin(ψH ) − cos(φH ) sin(θH ) cos(ψH )

− cos(θH ) sin(ψH ) cos(φH ) cos(ψH ) − sin(φH ) sin(θH ) sin(ψH ) sin(φH ) cos(ψH ) + cos(φH )sin(θH )sin(ψH )

sin(θH ) − sin(φH ) cos(θH ) cos(φH ) cos(θH )



FTptip are the tips positions of the instruments with respect to the fixed transmitter coordinate
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system.

FToH are the positions of the handles with respect to the fixed transmitter coordinate system.

Hptip are the positions of the tips with respect to the instrument coordinate sensor. This is computed

using either the Eigenvalue Decomposition Method or the pivot calibration method (PCM) which

are explained details in the following subsections.

2.3.1 Instrument Tip Position Calibration Using the Eigenvalue Decom-

position Method

The tip position referenced to the instrument’s sensor is estimated using the following method.

1. Rotate the instrument while keeping the tip at one specific location FTptip. The instrument

sensor will describe partial arcs of the sphere patterns. Consequently, the recorded data are

perpendicular to the main axis of the grasper (Figure 2.8).

2. The custom software stores the positions of the grasper handle in the form of xHi, yHi, zHi,

φHi, θHi and ψHi, where i=1,...,N.

3. Then, Hptip is computed by solving the following overdetermined equation:

FT
H R1

FT
H R2

.

.

.

FT
H RN


Hptip =



FTptip − FToH1

FTptip − FToH2

.

.

.

FTptip − FToHN


where, Formula 2.2 provides FT

H Ri,
FToHi = (xHi, yHi, zHi)

T . The next section provides the

algorithm used to compute FTptip.
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Figure 2.8: Estimating Tip Positions Referenced to the Transmitter

Pivoting Point (FTptip) Estimation

1. Compute the centroid of the point cloud; subtract the centroid from each point

x̄ =
1

N

N∑
i=1

xi ȳ =
1

N

N∑
i=1

yi z̄ =
1

N

N∑
i=1

zi

x̃i = xi − x̄ ỹi = yi − ȳ z̃i = zi − z̄

2. Compute the covariance matrix, which is formed by

C =

N∑
i=1


x̃i

2 x̃iỹi x̃iz̃i

x̃iỹi ỹi
2 ỹiz̃i

x̃iz̃i ỹiz̃i z̃i
2


3. Compute the eigenvector and eigenvalues of the covariance matrix C.

4. The eigenvectors of all the large eigenvalues of the covariance matrix point to the principal

directions of the data whereas the eigenvector v = [vx vy vz] of the smallest eigenvalues of

the covariance matrix points to the main axis of the grasper. Thus, the initial estimation of

the tip positions < xco, yco, zco > referenced to the transmitter is obtained by calculating the

centre and radius of a sphere (Rspo):
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xco = x̄+ vx.L

yco = ȳ + vy.L

zco = z̄ + vz.L

Rspo = L

where L is an approximation of the distance between the instrument attached sensor coordinate

system and the instrument’s tip.

5. These values are used as a starting point in a non-linear least square fit function.

minimize
x

||f(x)||22

,where x=[xc, yc, zc, Rsp]

f(xc, yc, zc, Rsp) = [Rsp1−Rsp, Rsp2−Rsp, ..., RspN−Rsp]T =

∥∥∥∥∥∥∥∥∥∥
xc − xi

yc − yi

zc − zi

∥∥∥∥∥∥∥∥∥∥

2

2

where i=1,2,3,...,N

The non-linear least squares problem was solved using lsqnonlin built in MATLAB’s Simulink R©.

6. FTptip = [xc, yc, zc]
T

2.3.2 Tip Position (Hptip) Estimation through Pivot Calibration Method

Alternatively, the tip position referenced to the grasper’s handle is estimated using the classical

PCM comprising the following method.

1. Rotate the instrument while keeping the tip at one location FTptip.

2. The custom software stores the positions of the grasper handle in the form of xHi, yHi, zHi,

φHi, θHi and ψHi, where i=1,...,N.

3. The position of the instrument’s tip with respect to the fixed transmitter is

FTptip = (FTH Ri)
Hptip + FToHi where i = 1, ..., N (2.3)
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4. Add Equation 2.3 for i = 1, ..., N and divide by N .

FTptip = (
1

N

N∑
i=1

FT
H Ri)

Hptip + (
1

N

N∑
i=1

FToHi) (2.4)

5. Subtract Equation 2.4 from Equation 2.3 for i = 1, ..., N ; this will eliminate the unknown

FTptip

0 = (FTH Ri −
1

N

N∑
i=1

FT
H Ri)

Hptip + (FToHi) − (
1

N

N∑
i=1

FToHi) , where i = 1, ..., N (2.5)

Equation 2.5 is rearranged as



FT
H R1 − 1

N

∑N
i=1

FT
H Ri

FT
H R2 − 1

N

∑N
i=1

FT
H Ri

.

.

.

FT
H RN − 1

N

∑N
i=1

FT
H Ri


Hptip =



∑N
i=1

FToHi − FToH1∑N
i=1

FToHi − FToH2

.

.

.∑N
i=1

FToHi − FToHN


(2.6)

6. Hptip is obtained by solving over constrained Equation 2.6.
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2.4 Data Acquisition for Ergonomic Analysis on the Peg

Transfer Task and the Suturing Task

While manipulating the grasper handles for both tasks, the surgeons’ wrist postures are exposed to

extension, flexion, ulnar deviation and radial deviation. Wrist flexion (ΘFLEX) is defined as moving

the palm of the hand toward the front of the forearm, whereas wrist extension (ΘEXT) is defined

as moving the back of the hand toward the back of the forearm. Wrist ulnar deviation (ΨULN) is

defined when the hand including the fingers moves towards the ulna; whereas wrist radial deviation

(ΨRAD) is defined when the hand including the fingers moves towards the radius. The surgeons wrist

angles are measured by using two EMI sensors: one mounted on the forearm and the second one

mounted on the back of the hand as shown in Figure 2.9. The axes of the two sensors are parallel

to each other when the hand is at the steady posture. The extension and flexion are measured

as the angle differences between sensors on the forearm and the back of the hand along the y-axis

(Figure 2.10). Wrist extension results in positive angles along the y-axis, whereas wrist flexion

results in negative angles along the y-axis. The ulnar and radial deviations are measured as the

angle differences between sensors on the forearm and the back of the hand along the z-axis (Figure

2.11). Wrist ulnar deviation results in positive angles along the z-axis whereas wrist radial deviation

results in negative angles along the z-axis.
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Figure 2.9: System Setup for Ergonomic Analysis

Figure 2.10: Extension/Flexion Measurement Figure 2.11: Ulnar/Radial Measurement
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Chapter 3

Statistical Approach and Results

A statistical approach is used to validate the Ascension 3DGuidance trakSTAR system for tracking

the tip movements of laparoscopic tools and to quantify the differences on the skill performance be-

tween novice and expert surgeons for the peg transfer task. Figure 3.1 outlines the steps for analysing

the data using the statistical approach (Ropella, 2007). Firstly, factors that may contribute to the

skill performance between novice and expert surgeons are proposed. Secondly, using these factors,

hypotheses are formulated to determine whether the skill performance between novice and expert

surgeons is distinguishable. Thirdly, a probability model is assumed to make a decision on accepting

or rejecting hypotheses. Lastly, the hypothesis with one factor at a time is tested using ANOVA1.

The goal of ANOVA1 is to test for differences among the means of surgeons’ skill levels and to quan-

tify these differences. The factors rejected by the hypotheses are proved to statistically distinguish

the skill performance between novice and expert surgeons. Because the factors discriminate the skill

performance between novice and expert surgeons, the Ascension 3DGuidance trakSTAR system for

tracking the tip movements of laparoscopic tools is validated. The competency-based scores for all

surgeons are achieved using these factors.
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Figure 3.1: Chapter 3 Outline
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3.1 Factors

Factors that may contribute to the skill performance between novice and expert surgeons are sepa-

rated into four categories: path length, time, average speed and smoothness. The following explains

each category.

• Path Length: Path length is defined as the total distance travelled by the tip of the laparo-

scopic tool in a surgeon’s hand while performing the entire task. Falcone et al. (2012) reported

that there are over 268 trillion ways of completing the peg transfer task. Path length is found

to be inversely related to the degree of economy of motion. The economy of motion is defined

as the minimum hand movements required to complete a task (Barnes and Barnes, 1958).

• Time: Time is defined as the time required to complete the entire task. The time factor

is inversely related to the surgical efficiency. The surgical efficiency is defined as the cost to

complete the entire task.

• Average Speed: Average speed is the ratio of path length to time. It is directly related to

the surgical efficiency.

• Smoothness: Smoothness is defined as the ratio of low to high frequency components of the

tip trajectory. The frequency measurements of laparoscopic tip movements are obtained by

using a Fast Fourier transform algorithm. The threshold value between low and high frequen-

cies is obtained through the experiment on the degree of differentiating the skill performance

between novice and expert surgeons. Thus, this value may just apply to these acquired data.

The low frequency range is from 0.1Hz to 0.7Hz whereas the high frequency range is from

0.8Hz to 30Hz. The smoothness factor is intended to be used as the measurement of hand

tremor. A higher smoothness value is assumed to have less hand tremor or volitional jerky

movements. The norm formula used in the smoothness factor HFnr,HFnl,LFnr,LFnl is ob-

tained by first converting three dimensional space to one dimensional space using the norm

formula
√
x2
i + y2

i + z2
i where i = 1, 2, ..., N .

Path length, time and average speed can also be used to differentiate the skill performance be-

tween novice and expert surgeons and to validate the motion system (Mason et al., 2012). Each
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category is further grouped into the measurements along the x-axis, y-axis, z-axis and the measure-

ment using the norm formula. The measurement along the x-axis contributes to the analysis of the

path of detecting the positions of pegs. The measurement along the y-axis contributes to the analysis

of the path of transferring pegs. The measurement along the z-axis contributes to the analysis of the

path of picking or dropping pegs. The measurement using the norm formula contributes to analysis

of the overall effect of the measurements along the x-axis, y-axis and z-axis. All these factors are

listed in Table 3.1:
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Table 3.1: Factor Definition

Description Symbol Side Definition Justification Unit

Path Length

Lxr R.H.
∑N−1
i=1 |xi − xi+1|

Lyr R.H.
∑N−1
i=1 |yi − yi+1|

Lzr R.H.
∑N−1
i=1 |zi − zi+1|

Lnr R.H.
√

L2
xr + L2

yr + L2
zr Economy centimetre

Lxl L.H.
∑N−1
i=1 |xi − xi+1|

Lyl L.H.
∑N−1
i=1 |yi − yi+1|

Lzl L.H.
∑N−1
i=1 |zi − zi+1|

Lnl L.H.
√

L2
xl + L2

yl + L2
zl

Total Time T - tN − t1 Efficiency second

Average Speed

Spxr R.H. 1
TLxr

Spyr R.H. 1
TLyr

Spzr R.H. 1
TLzr

Spnr R.H. 1
TLnr Efficiency centimetre

second

Spxl L.H. 1
TLxl

Spyl L.H. 1
TLyl

Spzl L.H. 1
TLzl

Spnl L.H. 1
TLnl

Smoothness

Smxr R.H. LFxr

HFxr

Smyr R.H.
LFyr

HFyr

Smzr R.H. LFzr

HFzr

Smnr R.H. LFnr

HFnr
Hand tremor unitless

Smxl L.H. LFxl

HFxl

Smyl L.H.
LFyl

HFyl

Smzl L.H. LFzl

HFzl

Smnl L.H. LFnl

HFnl
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3.2 Hypotheses Formulation

Applying the factors listed in Table 3.1, the following null hypotheses are formulated:

1. The means of the path length factors in the expert and novice groups are the same.

2. The means of the total time factor in the expert and novice groups are the same.

3. The means of the average speed factors in the expert and novice groups are the same.

4. The means of the smoothness factors in the expert and novice groups are the same.

3.3 Probability Model

A probability model describes the likelihood of the occurrence of an experimental outcome and the

characteristics of the population. For example, a probability model of the time factor for the novice

surgeons predicts the most likely time that any novice takes to complete the entire task. Because

there are eight subjects for each group, insufficient data are acquired to predict the probability

model. Therefore, according to the central limit theorem, which states that the sum of random

processes with arbitrary distributions will result in a random variable with a normal distribution,

each factor is modelled as the normal distribution. The variance in the two populations for each

factor is assumed to be the same. The two populations are assumed to be mutually independent.

3.4 Hypotheses Testing

With the assumptions made in the probability model section, the one-way analysis (ANOVA1) can

be used to test the hypothesis by applying one factor at a time: H0 : µJ = µE (Devore, 2012).

The subscript J refers to the novice group whereas the subscript E refers to the expert group. Each

observation is written as xij = µi + εij , i ∈ {J,E} where εij measures the deviation of the jth

observation from the corresponding mean group. The p-value is used to quantify the differences in

the means of two groups: it is inversely related to the confidence level of rejecting the hypothesis

H0. If the p-value is less than or equal to 0.05, the hypothesis for the proposed factor is rejected
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with a confidence level of 95% and above on distinguishing the skill performance between novice and

expert surgeons and validating the motion system.

The p-value is derived from a cumulative F-distribution table by using a computed f − value.

The F-distribution table is given in most Statistics text books or installed in most statistics software.

The computed f − value is derived as follows:

1. µ = 1
k

∑k
i=1 µi, where k is equal to 2 which refers to two different groups; thus, i ∈ {J,E}.

2. Factor sum of squares: SSA = Ni
∑k
i=1(µi − µ)2 , where Ni refers to the number of sample of

points in the respective group.

3. Error sum of squares: SSE =
∑k
i=1

∑Ni
j=1(xij − µi)2.

4. s2
1 = SSA

k−1

5. s2 = SSE
k(Ni − 1)

6. f − value =
s21
s2

The ANOVA1 function built in MATLAB R©’s Statistics Toolbox is used to test the hypothesis:

the function returns the p-value and box-and-whisker plot with notches on or off. The box plot is

described detailed in the next section.

3.4.1 Box-and-Whisker Plot

As depicted in Figure 3.2, the box plot shows the distribution of the input data: percentiles, three

quartiles (Q1, Q2 and Q3), interquartile range (IQR), and outliers. It can be explained as follows:

1. Data in each group are arranged from maximum to minimum values

2. The P-th percentile(P) for the data is obtained by the following steps (Schoonjans et al.,

2011):

(a) Calculate the rank: r = 1
2 + P.Ni

100 where Ni refers to the number of data points

(b) Round the rank(r) into the nearest integer and take the data value corresponding from

the rank
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3. The quartiles separate the data into four sessions:

(a) Q2 is the median value and it divides the data into two halves: lower half and higher half.

It is the 50th percentile of the data.

(b) Q1 is the median value of the lower half of data: it is the 25th percentile of the data,

which separates the lower quarter of the data from the rest.

(c) Q3 is the median value of the higher half of data: it is the 75th percentile of the data,

which separates the upper quarter of the data from the rest.

4. IQR = Q3 - Q1 which can be used as a measure of how the data are spread out

5. The outliers are the minimum and maximum values

As depicted in Figure 3.3, the notches in the box plot indicate the approximate confidence intervals

around the medians. The notches are calculated as Q2+/−(1.57 . IQR)√
Ni

(Chambers, 1983). The box

plot with the notches are used when the sample range is large. If two boxes notches from different

groups do not overlap, the proposed factor is rejected with a confidence level of 95% and above.
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Figure 3.2: Box Plot

Figure 3.3: Box Plot with Notches
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3.5 Results

As depicted in Figures 3.4 – 3.14, the null hypotheses for the respective measurements can be

rejected because the corresponding p-values are all less than or equal to 0.05. Therefore, these

factors are proved to statistically distinguish the skill performance between novice and expert sur-

geons. Consequently the Ascension 3DGuidance trakSTAR system for tracking the tip movements

of laparoscopic tools is validated.
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Figure 3.4: Range of the total length moved by novices’ right hand along the x-axis is from 670 cm
to 1360 cm whereas the range of the total length moved by experts’ right hand is from 530 cm to
1170 cm.

Figure 3.5: Range of the total length moved by novices’ right hand along the y-axis is from 500 cm
to 1360 cm whereas the range of the total length moved by experts’ right hand is from 535 cm to
1000 cm.
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Figure 3.6: Range of the total length moved by novices’ right hand along the z-axis is from 840 cm
to 1840 cm whereas the range of the total length moved by experts’ right hand is from 790 cm to
1460 cm.

Figure 3.7: Range of the total length moved by novices’ right hand using the norm formula is from
1190 cm to 2620 cm whereas the range of the total length moved by experts’ right hand is from 1140
cm to 2120 cm.
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Figure 3.8: Range of the total length moved by novices’ left hand along the y-axis is from 520 cm to
1490 cm whereas the range of the total length moved by experts’ left hand is from 550 cm to 1020
cm.
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Figure 3.9: Range of the total time taken by novices is from 36 s to 118 s whereas the range of the
total time taken by experts is from 31 s to 105 s.

Figure 3.10: Range of the average speed moved by novices’ left hand along the x-axis is from 8 cm/s
to 15 cm/s whereas the range of the average speed moved by experts’ left hand is from 8 cm/s to
19 cm/s.
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Figure 3.11: Range of the average speed moved by novices’ left hand along the z-axis is from 12
cm/s to 22 cm/s whereas the range of the average speed moved by experts’ left hand is from 13
cm/s to 25 cm/s.

Figure 3.12: Range of the average speed moved by novices’ left hand using the norm formula is from
17 cm/s to 30 cm/s whereas the range of the average speed moved by experts’ left hand is from 18
cm/s to 37 cm/s.
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Figure 3.13: Range of the smoothness of movement by novices’ right hand using the norm formula
is from 1.1 to 3.0 whereas the range of the smoothness of movement by experts’ right hand is from
1.2 to 2.8.

Figure 3.14: Range of the smoothness of movement by novices’ left hand along the z-axis is from
1.7 to 4.3 whereas the range of the smoothness of movement by experts’ left hand is from 1.4 to 3.9.
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3.6 Metric Scales using the Results from the Statistical Method

As mentioned in the hypotheses testing section, the lowest p-value indicates the highest confidence

level of rejecting the hypothesis. The hypothesis tests mentioned in the statistical method proved

that the following factors have the lowest p-value in each category:

• the path length moved by surgeons’ right hands along the z-axis

• the total time taken by surgeons

• the average speed of the surgeons’ left hands along the x-axis

• the smoothness of the movement of the surgeons’ left hands along the z-axis

The metric scales on the skill performance of surgeons are obtained by using a regression procedure

to find the weights of these four factors. All these factor measurements in each category are first

normalized so that all the measured values range from lower to higher rates. The lowest rate, which

is equal to zero, represents the poorest skill performance and the highest rate, which is equal to 100,

represents the best skill performance. The normalized constant values are saved into a vector nv =

{nv1, nv2, nv3, nv4} for future analysis.

These normalized factor measurements are used to fill matrix, MStat whereMStat ∈ <m× n, where

m = 48 = 16 surgeons × 3 trials and n = 4 factors as indicated above. Then, the metric scores

for all surgeons are initialized objectively and used to fill a vector, sStat: the elements of the vector

sStat is assigned the value 100 if the corresponding surgeon is an expert and a value 1 if a novice.

The weights of these four factors are obtained by regressing the input matrix MStat onto the vector

sStat. Algorithm 1 outlines the method to obtain the weights of these four factors. The weights are

inversely related to the p-values. Thus, these weights are directly related to the confidence level for

rejecting the above proposed hypotheses. Each surgeon’s skill performance is scored by multiplying

the input four factors,f, with weights,w, which are the output from Algorithm 1. Using Formula 3.2,

the competency-based score for a surgeon is achieved. Figure 3.15 shows the scores that are achieved

by all surgeons while performing three trials of the peg transfer task. The scores were better for

more experienced surgeons. The Matlab software provided by Michael Grant and Stephen Boyd is

used to find the weights (Grant and Boyd, 2013).
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minimize
w

||MStatw− sStat||22 (3.1)

Algorithm 1 Find the weights of four factors

Input: MStat

Output: w = {w1, w2, w3, w4}
1: w ← Equation 3.1
2: Sumw ← Sum the elements of w
3: w ← Divide each element of w by Sumw so that ||w||1 = 1

fnew =< f1/nv1, f2/nv2, f3/nv3, f4/nv4 >

MetricScale = fnew · w′
(3.2)
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Figure 3.15: Metric Scales for the Peg Transfer Task
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Chapter 4

Machine Learning Approach and

Results

The machine learning approach predicts whether a recorded trajectory is performed by a novice or

an expert. As depicted in Figure 4.1, it includes five steps: hand trajectory segmentation, feature

extraction, feature selection, classification and evaluation. Hand trajectory segmentation in the

machine learning approach segments the laparoscopic tip movements into different stages: reach, lift,

transport and release of pegs. Similar to the statistical approach, features that may contribute to the

skill performance between novice and expert surgeons are defined. These features with m samples

are arranged in a matrix format; mathematically, A ∈ <m× n, where m stands for the number of

training samples and n stands for input features. There is also a label vector that includes +1 which

represents the skill performance of a novice surgeon and −1 which represents the skill performance

of an expert surgeon. The best features, which are the most statistically related to the labels, are

selected by using either principal component analysis (PCA) or minimum redundancy and maximum

relevance feature selection(mRMR) (Wang and Summers, 2012). The classifier finds the relationship

between the selected features and a label. Two classifiers, namely, the Fisher linear discriminant

(FLD) and the support vector machine (SVM), are introduced. Each classifier is combined with any

feature selection method resulting in four models for predicting surgeon skill performance:
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1. PCA feature selection with FLD classifier

2. PCA feature selection with SVM classifier

3. mRMR feature selection with FLD classifier

4. mRMR feature selection with SVM classifier

The overall performance of these four models is evaluated by using leave-one-out cross validation

method (Khodayari-Rostamabad et al., 2013).
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Figure 4.1: Chapter 4 Outline
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4.1 Hand Trajectory Segmentation

Hand trajectory segmentation is achieved by detecting different positions of pegs and the changes

in the velocity of each hand movement (Flanagan et al., 2006). It is segmented into different stages:

reach, lift, transport and release.

As depicted in Figure 4.2 and Figure 4.3, the first peg chosen is located at the minimum x values,

which are the closest to the transmitter, and the last peg chosen is located at the maximum x values,

which are the furthest from the transmitter. The negative y-positions indicate the grasper at the

left side of the transmitter, and the positive y-positions indicate the grasper at the right side of the

transmitter as depicted in Figure 4.4 and Figure 4.5. The minimum z-positions are at the pick-

up regions, and the maximum z-positions are at the transferring regions as depicted in Figure 4.6

and Figure 4.7. Thus, different positions of each peg in the x and z axis are mainly used in the

segmentation. When the grasper is moved from mid-air to the peg position, a negative velocity

in the z-axis is observed. When the grasper is moved from the peg position to mid-air, a positive

velocity in the z-axis is observed. While picking up or transferring the peg, there is a pause that

indicates zero velocity. Thus, different directions of the velocity in the z-axis are also used in the

segmentation. All data are sampled at 60 Hz.

Hand trajectory segmentation is achieved by two steps:

1. Partition the Task into Two Segments

2. Segmentation of Individual Peg Movements

The following subsections describe the details of each step.
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Figure 4.2: Right Grasper X-positions Figure 4.3: Left Grasper X-positions

Figure 4.4: Right Grasper Y-positions Figure 4.5: Left Grasper Y-positions

Figure 4.6: Right Grasper Z-positions Figure 4.7: Left Grasper Z-positions
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Figure 4.8: Partition the task into two segments

4.1.1 Partition the Task into Two Segments

As mentioned in Chapter 2, five pegs were placed on the pegboard on the surgeon’s left side and

arranged in the order of nearest to furthest with respect to the transmitter. After all five pegs from

the left side were picked and placed to the right side, these five pegs were moved back to surgeon’s

left side in the same order. When a surgeon switched picking from the left side to right side, swift

movements in the x-axis and z-axis are detected. Because swift movements could contribute to high

frequency component noise, the trajectory is partitioned into two segments.

The last peg dropped from the left side was located furthest from the transmitter and the first

peg picked from the right side was located closest to the transmitter. As depicted in Figure 4.8, the

furthest positions from the transmitter refer to the maximum values and the closest positions to the

transmitter refer to the minimum values in the trajectory. Therefore, partitioning the task into two

segments is achieved by detecting the transition from the maximum value to the minimum value

in the trajectory. This transition should not be detected within a 25% interval from the start and

from the end of the trajectory. Figure 4.8 also highlights these facts and Algorithm 2 outlines the

method. The last peg picked form the left side is denoted as tDLR and the first peg picked from the

right side is denoted as tPFL in the algorithm. The input vector x constitutes the time series of the

trajectory of the grasper in surgeon’s right hand along the x-axis. All data are sampled at 60 Hz.
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Algorithm 2 Look for tDLR and tPFL

Input: x={x1, x2, x3, ..., xN}
Output: tDLR, tPFL

1: tDLR ← N
2: tPFL ← 0
3: lim ←0.25
4: while tDLR >tPFL do
5: tUlim ← T - (T · lim)
6: tLlim ← T · lim
7: MX ← 0
8: for i = tLlim to tUlim do
9: if MX < xi then

10: MX← xi
11: end if
12: end for
13: MN← MX
14: for i = tLlim to tUlim do
15: if MN > xi then
16: MN← xi
17: end if
18: end for
19: POSmx ← MX− (MX · 0.3)
20: POSmn ← MN + (MN · 0.3)
21: for i = tLlim to tUlim do
22: if xi ≤ POSmn then
23: tPFL ← i
24: break
25: end if
26: end for
27: for i = tUlim downto tLlim do
28: if xi ≥ POSmx then
29: tDLR ← i
30: break
31: end if
32: end for
33: if tDLR > tPFL then
34: lim← lim+ 0.1
35: end if
36: end while
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4.1.2 Segmentation of Individual Peg Movements

The extracted trajectory from the previous section is further used to segment the path from picking

a peg to transferring this peg. Then, the extracted trajectory is filtered to remove high-frequency

components by a third-order Butterworth filter with the cut-off frequency of three Hz, and then it

is smoothed by the cross-correlation with a Gaussian pulse with the variance of three. Then, the

velocity, which is defined as the rate of change of measurements between any two consecutive sample

points, is used to identify the path for picking or dropping a peg, and the path for transferring a peg

to another hand. The path of picking or dropping a peg is obtained by grouping all the consecutive

negative signs of the velocities. Similarly, the path of transferring a peg is obtained by grouping

all the consecutive positive signs of the velocities. The zero velocities indicate steady-state picking,

dropping and transferring pegs. Algorithm 3 outlines the method and the following figures show the

steps for segmenting the path of an individual peg movement.

Algorithm 3 Look for t

Input: z={z1, z2, z3, ..., zNR}
Output: t
1: zF ← Filtered input z by third order butter worth filter
2: zS ← Smooth filtered output zF by cross-correlation with Gaussian pulse
3: zRec ← Downsample zS by 10-fold
4: zvel ← A set of velocities calculating from zRec

5: tneg ← negative slope start points from zvel

6: tpos ← positive slope start points from zvel

7: ttzvel ← index of lowest z values between tneg and tpos

8: tth ← index of z values which are lower than the threshold value in ttzvel

9: t← index of the positive slope which is higher than the threshold value in tth
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Figure 4.9: Filtered high-frequency components and smoothed data

Figure 4.10: Reduce Sampling Rate
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Figure 4.11: z-velocities

Figure 4.12: Interval of negative z-velocity start and end
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Figure 4.13: Z minimum point within the interval of negative z-velocity start and end

Figure 4.14: All Features Extracted
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Figure 4.15: Extract Features below z threshold

Figure 4.16: Extract Features whose positive slopes are above threshold
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4.2 Feature Extraction

Similar to the statistical approach mentioned in Chapter 3, path length, time, average speed and

smoothness features are extracted for the measurement of economy, efficiency and hand tremor. All

these features are also further grouped into measurements along the x-axis, y-axis, and z-axis and

measurements using the norm formula.

Using the time index outputs from Algorithm 2, the measurement features for path length, time,

the average speed and smoothness are further grouped into the following:

• Picking all pegs from a surgeon’s right to left side

• Dropping all pegs from a surgeon’s right to left side

• Picking all pegs from a surgeon’s left to right side

• Dropping all pegs from a surgeon’s left to right side

Using the same steps from line 1 to line 7 of Algorithm 3, the number of up and down movement

features for the measurement of economy are also extracted. There are 74 features in total and

Tables 4.1 – 4.5 describe the details of each feature.

Table 4.1: Time Features

Description Symbol Definition Justification Unit

Duration from the first peg picked to the
last peg dropped

Twhole TDL5 − TPR1 Efficiency second

Duration of moving all five pegs from
surgeon’s right to left side

TRL TDR5 − TPR1 Efficiency second

Duration of moving all five pegs from
surgeon’s left to right side

TLR TDL5 − TPL1 Efficiency second

Duration of switching between surgeon’s
right side and left side

TS Twhole − TRL − TLR Efficiency second
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Table 4.2: Length Features

Description Symbol Definition Justification Unit

Total length moved by surgeon’s
right hand

Lxr

∑tDLL−1
i=tPFR

|xi − xi+1|

Lyr

∑tDLL−1
i=tPFR

|yi − yi+1| Economy centimetre

Lzr

∑tDLL−1
i=tPFR

|zi − zi+1|

Lnr

√
L2

xr + L2
yr + L2

zr

Total length moved by surgeon’s
left hand

Lxl

∑tPLL−1
i=tDFR

|xi − xi+1|

Lyl

∑tPLL−1
i=tDFR

|yi − yi+1| Economy centimetre

Lzl

∑tPLL−1
i=tDFR

|zi − zi+1|

Lnl

√
L2

xl + L2
yl + L2

zl

Total length moved while
picking five pegs from surgeon’s
right to left side

Lpxrl

∑tPLR−1
i=tPFR

|xi − xi+1|

Lpyrl

∑tPLR−1
i=tPFR

|yi − yi+1| Economy centimetre

Lpzrl

∑tPLR−1
i=tPFR

|zi − zi+1|

Lpnrl

√
L2

pxrl + L2
pyrl + L2

pzrl

Total length moved while
dropping five pegs from
surgeon’s right to left side

Ldxrl

∑tDLR−1
i=tDFR

|xi − xi+1|

Ldyrl

∑tDLR−1
i=tDFR

|yi − yi+1| Economy centimetre

Ldzrl

∑tDLR−1
i=tDFR

|zi − zi+1|

Ldnrl

√
L2

dxrl + L2
dyrl + L2

dzrl

Total length moved while
picking five pegs from surgeon’s
left to right side

Lpxlr

∑tPLL−1
i=tPFL

|xi − xi+1|

Lpylr

∑tPLL−1
i=tPFL

|yi − yi+1| Economy centimetre

Lpzlr

∑tPLL−1
i=tPFL

|zi − zi+1|

Lpnlr

√
L2

pxlr + L2
pylr + L2

pzlr

Total length moved while
dropping five pegs from
surgeon’s left to right side

Ldxlr

∑tDLL−1
i=tDFL

|xi − xi+1|

Ldylr

∑tDLL−1
i=tDFL

|yi − yi+1| Economy centimetre

Ldzlr

∑tDLL−1
i=tDFL

|zi − zi+1|

Ldnlr

√
L2

dxlr + L2
dylr + L2

dzlr
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Table 4.3: Average Speed Features

Description Symbol Definition Justification Unit

Average speed moved by
surgeon’s right hand

Spxr
Lxr

tDLL−tPFR

Spyr
Lyr

tDLL−tPFR
Efficiency centimetre

second

Spzr
Lzr

tDLL−tPFR

Spnr
Lnr

tDLL−tPFR

Average speed moved by
surgeon’s left hand

Spxl
Lxl

tPLL−tDFR

Spyl
Lyl

tPLL−tDFR
Efficiency centimetre

second

Spzl
Lzl

tPLL−tDFR

Spnl
Lnl

tPLL−tDFR

Average speed moved while
picking five pegs from surgeon’s
right to left side

Sppxrl
Lpxrl

tPLR−tPFR

Sppyrl
Lpyrl

tPLR−tPFR
Efficiency centimetre

second

Sppzrl
L|pzrl

tPLR−tPFR

Sppnrl
Lpnrl

tPLR−tPFR

Average speed moved while
dropping five pegs from
surgeon’s right to left side

Spdxrl
Ldxrl

tDLR−tDFR

Spdyrl
Ldyrl

tDLR−tDFR
Efficiency centimetre

second

Spdzrl
Ldzrl

tDLR−tDFR

Spdnrl
Ldnrl

tDLR−tDFR

Average speed moved while
picking five pegs from surgeon’s
left to right side

Sppxlr
Lpxlr

tPLL−tPFL

Sppylr
Lpylr

tPLL−tPFL
Efficiency centimetre

second

Sppzlr
Lpzlr

tPLL−tPFL

Sppnlr
Lpnlr

tPLL−tPFL

Average speed moved while
dropping five pegs from
surgeon’s left to right side

Spdxlr
Ldxlr

tDLL−tDFL

Spdylr
Ldylr

tDLL−tDFL
Efficiency centimetre

second

Spdzlr
Ldzlr

tDLL−tDFL

Spdnlr
Ldnlr

tDLL−tDFL
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Table 4.4: Number of Up and Down Features

Description Symbol Definition Justification Unit

Number of up and down
movements by surgeon’s
right hand

NUDr

NUDrp From Line 1 to Line 7 of Algorithm 3 Economy unitless

NUDrd

Number of up and down
movements by the
surgeon’s left hand

NUDl

NUDlp From Line 1 to Line 7 of Algorithm 3 Economy unitless

NUDld
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Table 4.5: Smoothness Features

Description Symbol Definition Justification Unit

Smoothness of movement by
surgeon’s right hand

Smpxrl
LFpxrl

HFpxrl

Smdxlr
LFdxlr

HFdxlr

Smpyrl
LFpyrl

HFpyrl

Smdylr
LFdylr

HFdylr
Hand tremor unitless

Smpzrl
LFpzrl

HFpzrl

Smdzlr
LFdzlr

HFdzlr

Smpnrl
LFpnrl

HFpnrl

Smdnlr
LFdnlr

HFdnlr

Smoothness of movement by
surgeon’s left hand

Smpxlr
LFpxlr

HFpxlr

Smdxrl
LFdxrl

HFdxrl

Smpylr
LFpylr

HFpylr

Smdyrl
LFdyrl

HFdyrl
Hand tremor unitless

Smpzlr
LFpzlr

HFpzlr

Smdzrl
LFdzrl

HFdzrl

Smpnlr
LFpnlr

HFpnlr

Smdnrl
LFdnrl

HFdnrl
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4.3 Feature Selection

All measured features from each surgeon are used to fill matrix A ∈ <m× n, where m = 48 = 16

surgeons × 3 trials and n = 74 features. These high number of features cause a dimensionality

problem, where higher dimensionality results in an unreliable outcome (Theodoridis, 2003). To

avoid the dimensionality problem and to save the computational cost, the dimensions of measured

features are further reduced by selecting the best features. The best features most statistically

dependent on the skill performance between novice and expert surgeons are selected by projecting

the data orthogonally onto a lower dimensional linear space (PCA). Alternatively, the best features

are selected by measuring the mutual information, the redundancy and the relevant information

among features.

In this thesis, because there are 48 samples available, approximately the ratio of one feature to

10 samples is assumed to represent the skill performance of the peg transfers. The exact number is

left as future research when there are more data available to analyse.

4.3.1 Principal Component Analysis (PCA)

The PCA is based on the eigenvalue decomposition of the covariance matrix of the data. It finds

the linear subspace specified by the orthogonal vectors that form the principal components. The

principal components are obtained by collecting the eigenvectors with the large eigenvalues. The

large eigenvalues indicate the significance of features in data. All measured features from each

surgeon are used to fill matrix A ∈ <m× n where m = 48 = 16 surgeons × 3 trials and n = 74

features. The features of matrix A are further reduced by the following steps:

1. Subtract the average of measurements for all surgeons in each feature from matrix A; the

outcome is denoted as Ac, Ac ∈ <m× n.

2. Calculate the covariance matrix of the data, C = ATc Ac , where C ∈ <n× n.

3. Calculate the eigenvectors (V ) and eigenvalues of the covariance matrix C, V ∈ <n× n.

4. Choose the eigenvectors that have large eigenvalues. These eigenvectors are known as principal

components.
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5. Multiply data with the principal components, and then the dimension of Ac is reduced; the

outcome is denoted as Ar = AVr, Ar ∈ <m× r, Vr =∈ <m× r.

6. Save the eigenvectors for subsequent analysis.

If there are fewer observations than features, the computational cost is further reduced by the

following steps: If A ∈ <m× n ,

1. Subtract the average of measurements for all surgeons in each feature from matrix A; the

outcome is denoted as Ac, Ac ∈ <m× n.

2. Calculate the covariance matrix of the data, C = AcA
T
c , where C ∈ <m×m.

3. Calculate the eigenvectors (U) and eigenvalues of the covariance matrix C, where U ∈ <m×m.

4. Choose the eigenvectors that have the large eigenvalues. If there are r large eigenvalues, the

dimension of U becomes Ur ∈ <m× r.

5. Multiply ATc with Ur; the outcome is denoted as Un = ATc Ur , where Un ∈ <n× r and divide

each element of Un with the corresponding norm of column vector Ur.

6. Multiply data Ac with the reduced and normalized eigenvectors Un and then, the dimension

of Ac is reduced; the outcome is denoted as Ar = AcUn, Ar ∈ <m× r.

7. Save the eigenvectors for subsequent analysis.

Result from Principal Component Analysis Feature Selection

Eigenvectors, which have four large eigenvalues, are assumed to represent the skill performance of

the peg transfer task.

4.3.2 Minimum Redundancy and Maximum Relevance Feature Selection

(mRMR)

Mutual information is a measurement of the statistical relation between two random variables (Ding

and Peng, 2005). If the mutual information between two features is zero, it indicates that the two

features are independent. If the mutual information is large, the two features are dependent. The
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mutual information of two random variables X and Y is defined based on their joint probability

distribution p(x,y) and the respective marginal probabilities p(x) and p(y).

I(X;Y ) =
∑
i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)

Feature dimensions are reduced by minimizing redundancy among features and maximizing the

relation between features and the targeted group. Minimizing redundancy among features is obtained

by

minimize WI , WI =
1

|S|2
∑
i,j∈S

I(i, j),

where S is the set of features and I(i, j) is the mutual information between two features.

Maximizing the relation between features and the targeted group is obtained by

maximize VI , VI =
1

|S|2
∑
i∈S

I(h, i),

where S is the set of features and I(h, i) is the mutual information between the feature and classifi-

cation label. Thus, the best feature is chosen by optimizing the two above functions. By assuming

the two functions are equally important, the formula becomes

m
i∈ΩS

aximize (VI −WI), maximize
i∈ΩS

[I(i, h)− 1

|S|
∑
j∈S

I(i, j)]

Ω is the entire set.

The mRMR programs provided by Dr. Hanchuan Peng is used to select features.

http://penglab.janelia.org/proj/mRMR/

Result from the Mutual Information, Minimum Redundancy, and Maximum Relevance

Feature Selection

The most relevant four features are selected by leaving out one sample at a time and training the

rest of the features. Thus, there are N different combination of the four features. These four features

are selected by choosing the most relevant features that occur the most in N different combinations.
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They are as follows:

1. Smoothness of movement of the surgeon’s right hand along the z-axis while picking all five

pegs from the surgeon’s right to the left side

2. Smoothness of movement of the surgeon’s right hand along the z-axis while dropping all five

pegs from the surgeon’s left to the right side

3. Smoothness of movement of the surgeon’s left hand along the z-axis while dropping all five

pegs from the surgeon’s right to the left side

4. Total length moved by the surgeon’s right hand along the x-axis

4.4 Classification

Because two different groups must be classified, binary classification is used (Statnikov et al., 2011).

Binary classification is defined by using a real-valued function f(x) where x is the selected feature

vector x = (x1, x2, x3, ..., xr) , x∈ <r. If f(x) turns out to be positive, it belongs to the novice class;

otherwise, it belongs to the expert class. The input vector x is projected down to one dimension

using y = f(x) = (w)
T
x + b where w ∈ <r is the weight vector. Alternatively, the formula can be

rewritten in matrix form:

y = X . c

where X =

x

1


T

and

c =

w

b



(4.1)

Both the weight vector w and b can be found by using the FLD method or the SVM method.
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4.4.1 Fisher Linear Discriminant(FLD)

The FLD approach first finds the weights of the hyperplane on which the projection of the data is

maximally distinguished (Bishop and Nasrabadi, 2006). The elements of the weight vector fw are

found by using Equations 4.2. Let J be the set of indexes representing the novice training samples

and S correspondingly be the set representing the expert training samples. NJ defines as the total

number of sample points in the novice group and the NS defines as the total number of sample

points in the expert group. The input vector x refers to each input feature vector whose elements

are selected by using the feature selection methods explained in the previous session.

f(w) =
(µJ − µS)2

σ2
J + σ2

S

µJ =
1

NJ

∑
i∈J

xi

µS =
1

NS

∑
i∈S

xi

σJ =
∑
i∈J

(xi − µJ)2 σS =
∑
i∈S

(xi − µS)2

(4.2)

Then, the coefficients of the hyperplane between the skill performance of surgeons are defined by

using the regression Equations 4.3: x=Ar ·fw, where Ar ∈ <m× r and fw ∈ <r, a label vector t ∈ <m

includes +1 which represents the skill performance of a novice surgeon and -1 which represents the

skill performance of an expert surgeon.

minimize
c

||Xc− t||22

t = [+1 · · · − 1]T

X and c are as defined in formula 4.1

(4.3)

Thus, the skill performance of each surgeon is predicted by first multiplying the four selected

features with the weight vector fw. Then, the outcome is determined by using Formula 4.1 with w

and b found in Equation 4.3.
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4.4.2 Support Vector Machine(SVM)

The SVM classifier finds an optimal hyperplane that maximizes the margin between data points

in two different classes (Statnikov et al., 2011). The weight vector w and b can be found by the

following equation:

minimize
w,b,ξ

1

2
||w||22 + C

N∑
j=1

ξj

subject to yi((w.xi) + b ≥ 1− ξi for i = 1, . . . , N.

ξi ≥ 0

where there are N samples (x1, x2..., xN ) and corresponding classification labels (y1, y2..., yN ∈

{−1,+1}). Under the constraint yi((w.xi) + b ≥ 1− ξi, the error is bounded by slack variables ξi.

C ≥ 0 is a user-defined parameter. In this above method, the computation cost for finding the weight

vector is high. Alternatively, it can be reformulated into dual form to reduce the computational cost.

The equation is as follows: α = (α1, α2, α3, ..., αN )

minimize
α

1

2

N∑
j,k=1

αjαkyjykxj .xk −
N∑
j=1

αj

subject to

N∑
i=1

αiyi = 0 for i = 1, . . . , N.

0 ≤ αi ≤ C

w =

N∑
j=1

αjyjxj (4.4)

b = −1

2
(w.xi + w.xj) = −1

2

N∑
k=1

αkyk(xk.xj + xk.xi) (4.5)

where xi and xj are two arbitrary objects with different classification labels and 0 ≤ αi ≤ C and

0 ≤ αj ≤ C. C ≥ 0 is a user-defined parameter. If C is set to be large, each non-zero ξi has a

large contribution; thus, the margin is big. If C is set to be small, each non-zero ξi has a small

contribution; thus, the margin is small and there is a higher chance of being misclassified. C is

adjusted by using the result from the evaluation as discussed in the next section. The svmtrain

function in MATLAB R©’s Statistics Toolbox is used to classify the skill performance by an expert
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or a novice.

According to Formula 4.1, the skill performance of each surgeon is predicted by multiplying the

selected features x with the weight vector from Formula 4.4 and the constant given from Formula 4.5.

4.5 Evaluation

Two techniques that validate this machine learning approach are hold-out cross-validation and leave-

n-out cross validation methods (Statnikov et al., 2011). The hold-out cross-validation method re-

quires to split the data set into a training set and a testing set. The classifier is built using the

training set of data and the evaluation on the machine learning approach is determined by using

the testing set. Although hold-out cross validation is the most practical approach to evaluate the

machine learning, it requires a large sample size.

In the leave-one-out cross validation method, the classifier is built on all data except for the one

sample that is left out for testing. The leave-one-out classifier is evaluated on the removed sample

to determine whether it predicts correctly. These steps are repeated for every test sample so that

there are N tests in total. The final accuracy is the average of correct predictions. In this way, the

leave-one-out method tests all the available data.

Because there are eight subjects for each group, the sample size is too small to use the hold-out

cross validation method. Instead, the leave-one-out cross validation method is used to evaluate the

machine learning approach. The parameter C, which is required to adjust the SVM, is determined

by achieving the highest correct percentage prediction upon evaluation.
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4.6 Results

The results of the surgeons’ skill performance for the peg transfer task are listed in Tables 4.6 – 4.9.

They are summarised as follows:

1. PCA feature selection with FLD classifier predicts 69% correctly.

2. PCA feature selection with SVM classifier predicts 68% correctly.

3. mRMR feature selection with FLD classifier predicts 73% correctly.

4. mRMR feature selction with SVM classifer predicts 69% correctly.

Table 4.6: Evaluation Results from using the PCA Feature Selection with the FLD Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 18 6 75

Novice 15 9 63

Total 33 15 69

Table 4.7: Evaluation Results from using the PCA Feature Selection with the SVM Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 18 6 75

Novice 14 10 58

Total 32 16 67
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Table 4.8: Evaluation Results from using the mRMR Feature Selection with the FLD Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 18 6 75

Novice 17 7 71

Total 35 13 73

Table 4.9: Evaluation Results from using the mRMR Feature Selection with the SVM Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 16 8 67

Novice 17 7 71

Total 33 15 69
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4.7 Metric Scales using the Results from the Machine Learn-

ing Method

Similar to the statistical method as discussed in Chapter 3, the most relevant feature in each category

is extracted by using the mutual information, minimum redundancy and maximum feature selection

method. The most relevant features in each category are

1. total time taken

2. total length moved by the surgeon’s right hand along the x-axis

3. average speed of the surgeon’s right hand using the norm formula while picking five pegs from

the surgeon’s right to the left side

4. smoothness of movement of the surgeon’s right hand using the norm formula while picking all

five pegs from the surgeon’s right to the left side

5. total number of up and down movements by the surgeon’s right hand

The metric scales to measure the performance of the peg transfer task are achieved by applying

Algorithm 1 as mentioned in Chapter 3. Figure 4.17 shows the scores that are achieved by all

surgeons while performing three trials of the peg transfer task. The scores were better for more

experienced surgeons.
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Figure 4.17: Metric Scales for the Peg Transfer Task
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Chapter 5

Ergonomic Analysis:Wrist Posture

In this chapter, the wrist angle trajectories are utilized to analyse the ergonomic performance of a

surgeon using the same methods and steps described in Chapter 3 and Chapter 4 (Figure 5.1). The

goal is to provide feedback to a surgeon on the task execution ergonomics.

As mentioned in the data acquisition section, while manipulating the grasper handles for both

tasks, the surgeons’ wrist postures are exposed to extension, flexion, radial deviation and ulnar

deviation. The wrist angles are measured using two EMI sensors: one mounted on the forearm and

another one mounted on the back of the hand. The sensors’ axes are parallel when the hand is at

the steady posture. Wrist extension results in a positive angle difference between two sensors along

the y-axis, whereas wrist flexion results in a negative angle difference between two sensors along

the y-axis. Wrist ulnar deviation results in a positive angle difference between two sensors along

the z-axis, whereas wrist radial deviation results in a negative angle difference between two sensors

along the z-axis. Wrist extension, flexion, radial deviation and ulnar deviation are grouped into

three categories: neutral posture, moderate stress and severe stress.
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Figure 5.1: Chapter 5 Outline
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In each category, factors that may contribute to the ergonomic performance of the surgeons’

wrist angles are proposed by using Formula 5.1. Using these factors, hypotheses are formulated to

determine whether the ergonomic performance between novice and expert surgeons is distinguishable.

The same probability model and steps described in Chapter 3 are applied to test hypotheses. The

factors, which are rejected by the hypotheses, are proved to statistically distinguish the ergonomic

performance between novice and expert surgeons. Because the factors discriminate the ergonomic

performance between novice and expert surgeons, the Ascension 3DGuidance trakSTAR system for

tracking wrist movements is validated. The average wrist stress levels of surgeons while performing

both tasks are also reported.

The machine learning method, as discussed in Chapter 4, predicts the ergonomic performance

of a surgeon. Wrist angle segmentation is achieved by grouping all the positive or negative angle

differences along the y-axis and grouping all the positive or negative angle differences along the

z-axis. Features are extracted using the same Formula 5.1 as in the statistical method. Applying

the same four models as discussed in Chapter 4 leads to the prediction of the ergonomic performance

of a surgeon: PCA feature selection with FLD classifier, PCA feature selection with SVM classifier,

mRMR feature selection with FLD classifier, and mRMR feature selection with SVM classifier. The

leave-one-out cross validation method is also used to evaluate this machine learning algorithm.

%t =
100

T
·
k∑
i=1

ti (5.1)

T is defined as total time taken and ti is defined as the duration under each category in each group.

%t is defined as the percent time spent under each category in each group.

5.1 Statistical Method

Factors that may contribute to surgeons’ ergonomic performance on wrist angles are listed in Ta-

ble 5.1. Factors are defined through experimenting the degree of differentiating the ergonomic

performance between novice and expert surgeons. Consequently, the degree range for each category

may just apply to this acquired data.

74



M.A.Sc. Thesis - Thu Zar Kyaw McMaster - Electrical Engineering

Table 5.1: Wrist posture Analysis Factor

Factor Category Side Angle Range Formula

Extension

Neutral L.H. 0 ◦ ≤ ΘEXT < 16◦

R.H. 0 ◦ ≤ ΘEXT < 16◦

Moderate L.H. 16 ◦ ≤ ΘEXT < 46◦ %t = 100
T ·

∑k
i=1 ti

R.H. 16 ◦ ≤ ΘEXT < 46◦

Severe L.H. 46 ◦ ≤ ΘEXT < 90◦

R.H. 46 ◦ ≤ ΘEXT < 90◦

Flexion

Neutral L.H. −16 ◦ ≤ ΘFLEX < 0◦

R.H. −16 ◦ ≤ ΘFLEX < 0◦

Moderate L.H. −46 ◦ ≤ ΘFLEX < −16◦ %t = 100
T ·

∑k
i=1 ti

R.H. −46 ◦ ≤ ΘFLEX < −16◦

Severe L.H. −90 ◦ ≤ ΘFLEX < −46◦

R.H. −90 ◦ ≤ ΘFLEX < −46◦

Ulnar Deviation

Neutral L.H. 0◦ ≤ ΨRAD < 10◦

R.H. 0◦ ≤ ΨRAD < 10◦

Moderate L.H. 10◦ ≤ ΨRAD < 60◦ %t = 100
T ·

∑k
i=1 ti

R.H. 10◦ ≤ ΨRAD < 60◦

Severe L.H. 60◦ ≤ ΨRAD < 90◦

R.H. 60◦ ≤ ΨRAD < 90◦

Radial
Deviation

Neutral L.H. −15◦ ≤ ΨULN < 0◦

R.H. −15◦ ≤ ΨULN < 0◦

Moderate L.H. −60◦ ≤ ΨULN < −15◦ %t = 100
T ·

∑k
i=1 ti

R.H. −60◦ ≤ ΨULN < −15◦

Severe L.H. −90◦ ≤ ΨULN < −60◦

R.H. −90◦ ≤ ΨULN < −60◦
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Using the defined factors, the following hypotheses are formulated for both the peg transfer task

and suturing task:

1. The means of the extension factors are the same.

2. The means of the flexion factors are the same.

3. The means of the radial deviation factors are the same.

4. The means of the ulnar deviation factors are the same.
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5.1.1 Results

The following results are obtained using the same assumption of the probability model and ANOVA1

function as discussed in Chapter 3. As depicted in the following figures, the null hypotheses for

the respective factors can be rejected because the corresponding p-values are all less than 0.05.

Therefore, these factors are proved to statistically distinguish the ergonomic performance between

novice and expert surgeons. Consequently the Ascension 3DGuidance trakSTAR system for tracking

wrist movements is validated.

Peg Transfer Results

77



M.A.Sc. Thesis - Thu Zar Kyaw McMaster - Electrical Engineering

Figure 5.2: Time range of wrist extension under the neutral category by novices’ right hand is from
0% to 29% whereas the time range of wrist extension by experts’ right hand is from 0% to 73%.

Figure 5.3: Time range of wrist extension under the severe category by novices’ right hand is from
0% to 99% whereas the time range of wrist extension by experts’ right hand is from 0% to 43%.
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Figure 5.4: Time range of wrist extension under the moderate category by novices’ left hand is from
0% to 79% whereas the time range of wrist extension by experts’ left hand is from 0% to 97%.

Figure 5.5: Time range of wrist extension under the severe category by novices’ left hand is from
0% to 100% whereas the time range of wrist extension by experts’ left hand is from 0% to 45%.
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Figure 5.6: No novices are found with wrist flexion under the neutral category by the right hand,
whereas the time range of wrist flexion by experts’ right hand is from 0% to 68%.

Figure 5.7: Time range of wrist flexion under the moderate category by novices’ right hand is from
0% to 1.7% whereas the time range of wrist flexion by experts’ right hand is from 0% to 95%.
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Figure 5.8: Time range of wrist ulnar deviation under the severe category by novices’ right hand is
from 0% to 93% whereas the time range of wrist ulnar deviation by experts’ right hand is from 0%
to 88%.

Figure 5.9: Time range of wrist radial deviation under the severe category by novices’ right hand is
from 0% to 70% whereas the range of wrist radial deviation by experts’ right hand is from 0% to
97%.
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Suturing Task Results

82



M.A.Sc. Thesis - Thu Zar Kyaw McMaster - Electrical Engineering

Figure 5.10: Time range of wrist extension under the severe category by novices’ right hand is from
0% to 99% whereas the time range of wrist extension by experts’ right hand is from 0.6% to 54%.

Figure 5.11: Time range of wrist flexion under the severe category by novices’ left hand is from 0%
to 87% whereas the time range of wrist flexion by experts’ left hand is from 0% to 49%.
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Figure 5.12: Time range of wrist ulnar deviation under the moderate category by novices’ left hand
is from 0% to 35% whereas the time range of wrist ulnar deviation by experts’ left hand is from 0%
to 96%.

Figure 5.13: Time range of wrist radial deviation under the severe category by novices’ right hand
is from 0% to 43% whereas the time range of wrist radial deviation by experts’ right hand is from
0% to 89%.
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Posture Analysis for Peg Transfer Task

Table 5.2 indicates the average wrist stress levels of surgeons while performing the peg transfer task.

The notations N.L., M.L. and S.L. are defined as neutral, moderate and severe wrist stress levels

respectively. L.H. refers to a surgeon’s left hand whereas R.H. refers to a surgeon’s right hand.

All surgeons could be analytically aware of the ergonomic problem by making the stress levels on

surgeons’ wrist postures available during the training. This awareness may lead a surgeon to perform

the task in an ergonomic manner. Thus, the average wrist stress levels of surgeons while performing

peg transfer task is reported.

Table 5.2: Mean Percentage of wrist time spent in a position and stress level

Stress Level

N.L. by
L.H.

M.L. by
L.H.

S.L. by
L.H.

N.L. by
R.H.

M.L. by
R.H.

S.L.by
R.H.

Extension
Novice 11% 14% 24% 2% 11% 58%

Expert 11% 34% 4% 13% 11% 5%

Flexion
Novice 11% 16% 18% 0% 0% 23%

Expert 4% 33% 9% 15% 36% 14%

Ulnar
Novice 4% 14% 25% 4% 33% 50%

Expert 1% 21% 16% 1% 35% 28%

Radial
Novice 4% 20% 27% 1% 0 % 5%

Expert 3% 39% 14% 1% 8% 22%
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Posture Analysis for Suturing Task

Table 5.3 indicates the average wrist stress levels of surgeons while performing the suturing task.

Table 5.3: Mean Percentage of wrist time spent in a position and stress level

Stress Level

N.L. by
L.H.

M.L. by
L.H.

S.L. by
L.H.

N.L. by
R.H.

M.L. by
R.H.

S.L.by
R.H.

Extension
Novice 9% 11% 16% 7% 22% 42%

Expert 19% 11% 21% 7% 13% 18%

Flexion
Novice 10% 15% 39% 3% 8% 16%

Expert 15% 19% 14% 11% 21% 29%

Ulnar
Novice 3% 6% 9% 5% 24% 10%

Expert 5% 32% 18% 2% 23% 22%

Radial
Novice 11% 44% 27% 10% 42 % 9%

Expert 5% 26% 15% 5% 24% 24%

5.2 Machine Learning Method

5.2.1 Hand Trajectory Segmentation

The segmentation for wrist extension is obtained by grouping all the positive angle differences along

the y-axis, whereas segmentation for wrist flexion is obtained by grouping all the negative angle

differences along the y-axis. The segmentation for wrist ulnar deviation is obtained by grouping

all the positive angle differences along the z-axis, whereas segmentation for wrist radial deviation is

obtained by grouping all the negative angle differences along the z-axis.
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5.2.2 Feature Extraction

Similar to the statistical method, there are six features related to the extension, six features related

to the flexion, six features related to the radial deviation, and six features related to the ulnar

deviation. The features, which are extracted by using the same Formula 5.1, are defined as in

Table 5.1.
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5.2.3 Peg Transfer Task Results by Feature Selection

Principal Component Analysis(PCA)

Using the PCA method discussed in Chapter 4, eigenvector features that have the six largest eigen-

values are assumed to represent surgeons’ ergonomic performance on wrist angles for the peg transfer

task. The exact number is left as future research, when there are more data available to analyse.

Minimum Redundancy and Maximum Relevance Feature Selection (mRMR)

Using the mRMR method discussed in Chapter 4, the following five best features are assumed to

represent surgeons’ ergonomic performance on wrist angles during the peg transfer task execution:

1. Extension feature under the severe category by surgeon’s right hand

2. Radial feature under the neutral category by surgeon’s left hand

3. Ulnar feature under the moderate category by surgeon’s right hand

4. Flexion feature under the moderate category by surgeon’s right hand

5. Extension feature under the neutral category by surgeon’s right hand

5.2.4 Peg Transfer Task Results by Classification and Evaluation

Using the same FLD classifier, SVM classifier and evaluation method, the evaluation results of

surgeons’ ergonomic performance on wrist angles during the peg transfer task execution are listed

in Tables 5.4 – 5.7. They are summarised as follows:

1. PCA feature selection with FLD classifier predicts 88% correctly.

2. PCA feature selection with SVM classifier predicts 88% correctly.

3. mRMR feature selection with FLD classifier predicts 60% correctly.

4. mRMR feature selection with SVM classifier predicts 75% correctly.
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Table 5.4: Evaluation Results from using the PCA Feature Selection with the FLD Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 20 4 83

Novice 22 2 92

Total 42 6 88

Table 5.5: Evaluation Results from using the PCA Feature Selection with the SVM Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 20 4 83

Novice 22 2 92

Total 42 6 88

Table 5.6: Evaluation Results from using the mRMR Feature Selection with the FLD Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 14 10 58

Novice 15 9 63

Total 29 19 60

Table 5.7: Evaluation Results from using the mRMR Feature Selection with the SVM Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 20 4 83

Novice 16 8 67

Total 36 12 75
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5.2.5 Suturing Task Results by Feature Selection

Using the PCA method discussed in Chapter 4, eigenvector features that have four large eigenvalues

are assumed to represent surgeons’ ergonomic performance on wrist angles during the suturing task

execution. The exact number is left as future research when there are more data available to analyse.

Minimum Redundancy and Maximum Relevance Feature Selection (mRMR)

Using the mRMR method discussed in Chapter 4, the following three best features are assumed to

represent surgeons’ ergonomic performance on wrist angles during the suturing task execution:

1. Radial feature under the neutral category by surgeon’s left hand

2. Radial feature under the neutral category by surgeon’s right hand

3. Ulnar feature under the moderate category by surgeon’s left hand

5.2.6 Suturing Task Results by Classification and Evaluation

Using the same FLD classifier, SVM classifier and evaluation method, the evaluation results of the

ergonomic performance on surgeons’ wrist angles during the suturing task execution are listed in

Tables 5.8 – 5.11. They are summarised as follows:

1. PCA feature selection with FLD classifier predicts 75% correctly.

2. PCA feature selection with SVM classifier predicts 75% correctly.

3. mRMR feature selection with FLD classifier predicts 59% correctly.

4. mRMR feature selection with SVM classifier predicts 66% correctly.
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Table 5.8: Evaluation Results from using the PCA Features Selection with the FLD Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 13 3 81

Novice 12 4 75

Total 25 7 75

Table 5.9: Evaluation Results from using the PCA Features Selection with the SVM Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 12 4 75

Novice 12 4 75

Total 24 8 75

Table 5.10: Evaluation Results from using the mRMR Feature Selection with the FLD Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 11 5 69

Novice 8 8 50

Total 19 13 59

Table 5.11: Evaluation Results from using the mRMR Feature Selection with the SVM Classifier

Group # of correct predictions # of wrong predictions percent correct

Expert 11 5 69

Novice 10 6 63

Total 21 11 66
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Chapter 6

Conclusions and Discussion

Training and ergonomics evaluation for laparoscopic surgery aim to help a surgeon improve hand

dexterity, evaluate hand movement precision and perform surgery in an ergonomic manner. This

type of evaluation is developed through a system that captures the positions and orientations of hand

and laparoscopic tool movements, records these acquired data, and converts these recorded data into

a feedback training evaluation tool. While the Ascension 3DGuidance trakSTAR tracking system

acquires the positions and orientations of hand and laparoscopic tool movements, both statistical

and machine learning methods convert the captured data into a feedback training evaluation tool.

The data acquisition technique includes developing software to record data and then converting

the recorded data into skill and wrist ergonomic analysis data. The statistical approach covers the

topics of defining the measurement variables, proposing hypotheses, assuming probability models

and testing hypotheses. The machine learning approach lists out the steps and methods: hand

trajectory segmentation, feature extraction, feature selection, classification and evaluation. Thus,

the outcome of the proposed evaluation system is quantitative, automatic and objective.

Seven PGY1 laparoscopic residents, one general surgery resident, and eight PGY4 residents and

urology fellows performed three trials of the peg transfer task and two trials of the suturing task.

The Ascension 3DGuidance trakSTAR tracker was used to capture the positions and orientations of

the EMI sensors, which were mounted on surgeons’ hands, forearms and elbows. The sensors were
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also fitted onto the handle of laparoscopic tools. The acquired data were recorded by custom soft-

ware. The recorded laparoscopic handle trajectory was then converted into tip trajectory through

estimating the tip positions referenced to the handle positions by either the eigenvalue decompo-

sition method or the pivot-calibration method. The eigenvalue decomposition method resulted in

higher accuracy than the pivot-calibration method for this tracking system. The hand and forearm

trajectories were transformed into wrist angle trajectories. Both statistical and machine learning

methods transformed the tip trajectory into metrics that were used to evaluate the skill performance

of a surgeon. Both methods also transformed the wrist angle trajectory into metrics that were used

to evaluate the ergonomic performance of a surgeon.

Under the statistical approach, factors are proved to differentiate technical skills between novice

and expert surgeons for the peg transfer task. Consequently, the proposed motion measurement

system is validated for tracking laparoscopic tip movements. Under each category of factors, the

factor with the highest confidence level of differentiating the skill performance between surgeons

is extracted. Using these factors, the algorithm to determine the metric scale for each surgeon’s

performance is proposed. This proposed competency-based score system is intended to help novices

learn faster by achieving greater economy and higher efficiency.

Under the machine learning approach, hand movement evaluation is proposed by first automati-

cally segmenting hand trajectory. The segmentation is also intended to provid feedback on surgical

performance in a quantitative, automatic and objective manner. With the aid of segmentation,

features are proposed to predict the skill performance of a surgeon. Features that are most sta-

tistically dependence on the skill performance between novice and expert surgeons are selected to

avoid the dimensionality problem. Specifically, four models that select features and predict the skill

performance of a surgeon are proposed: PCA feature selection with FLD classifier, PCA feature

selection with SVM classifier, mRMR feature selection with FLD classifier, and mRMR feature se-

lection with SVM classifier. These four models are validated by the leave-one-out cross validation

method. mRMR feature selection with FLD classifier models gives the highest percentage of correct

classification which is 73%. The alternative approach of developing the competency-based score

system is obtained by using mRMR feature selection with the mentioned metric scale algorithm.

Using the same methods that are applied for the skill evaluation, the ergonomic analysis on
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wrist angles is proposed. The statistical approach proves that the proposed factors distinguish the

ergonomic performance on surgeons’ wrist angles for both tasks. Both PCA feature selection with

SVM classifier and PCA feature selection with SVM classifier give the highest percentage of correct

classification for both tasks: 88% for the peg transfer and 75% for the suturing task.

All surgeons could be analytically aware of the ergonomic problem by making the stress levels on

surgeons’ wrist postures available during the training. This awareness may lead a surgeon to perform

the task in an ergonomic manner. Thus, the average wrist stress levels of surgeons while performing

both tasks are also reported. The ergonomic analysis may help an engineer design a new handle

so that a surgeon could avoid severe and moderate stress levels of wrist posture. Alternatively,

the analysis and segmentation may help a researcher find ergonomic and efficient ways to perform

surgical tasks. Although more data are still required to make a general claim about the results, the

proposed system and methods are designed to be used as tools for further research in training and

ergonomics evaluation for laparoscopic surgery.

6.1 Discussion

The analysis on the skill and wrist angles of eight subjects in either a novice or expert group does not

include enough data to draw a general conclusion. However, the proposed system and approaches are

designed to be treated as preliminary research on acquiring and analysing motion data. Although

the Ascension 3DGuidance trakSTAR has the ability to track the positions and orientations of an

object in 3D space, inconsistent offset errors in capturing data are randomly recorded. These errors

have led to the inability to track surgeons’ performance precision. As a result of these errors, the

proposed algorithm to segment the path of picking, transferring and placing a peg contains more

steps than required.

If the threshold value between low- and high frequencies for the smoothness factor is obtained

through an optimization method, the results may lead to better accuracy compared with experi-

mentally examining the degree of differentiating the skill performance between novice and expert

surgeons. The projection of the data on the lower dimensional linear space is not always the best

for selecting features because larger eigenvalues may make two groups coincide whereas the smaller

eigenvalues may separate the two groups (Theodoridis, 2003). The mRMR is based on greedy
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methods that select individual features one at a time. Thus, it may discard sets of features which

individually are not discriminative, but jointly are highly discriminative (Khodayari-Rostamabad

et al., 2013). In order to validate the competency-based score method, the data measurements with

known different technical skill levels of surgeons are required. Hold-out cross validation is a more

practical approach to evaluate the machine learning; more data are still required.

6.2 Further Development

Further development could include: –

• Finding a way to remove inconsistent offset errors in data acquisition so that the skill perfor-

mance precision can be tracked.

• Validating recorded wrist angles data while performing the surgical tasks so that ergonomic

analysis fulfils its intended purpose

• Validating wrist stress levels using the Ascension 3DGuidance trakSTAR system so that er-

gonomic analysis fulfils its intended purpose

• Obtaining more data so that a general conclusion can be drawn

• Finding actual hand tremor frequency using the Ascension 3DGuidance trakSTAR system to

fulfil its intended purpose.

• Research on other feature selection methods so that the skill evaluation fulfils its intended

purpose

• Finding the exact number of features required to represent samples through an optimization

method so that the skill evaluation fulfils its intended purpose

• Validating the competency-based score method by acquiring data measurements with known

different technical skill levels of surgeons to fulfil its intended purpose

• Analysing wrist supination and pronation for ergonomic analysis
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