
On Optimal Policies for Energy-Aware Servers

ON OPTIMAL POLICIES FOR ENERGY-AWARE SERVERS

BY

VINCENT MACCIO, B.Eng.

a thesis

submitted to the department of computing and software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Vincent Maccio, August, 2013

All Rights Reserved

Master of Applied Science (2013) McMaster University

(Software Engineering) Hamilton, Ontario, Canada

TITLE: On Optimal Policies for Energy-Aware Servers

AUTHOR: Vincent Maccio

B.Eng., (Software Engineering and Management)

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. Douglas G. Down

NUMBER OF PAGES: x, 127

ii

I would like to dedicate this work to my loving wife, Stephanie Maccio. Her

constant support (both emotionally and financially) has made it possible for me to

be a successful Master’s student. Her selfless encouragement and positive attitude

has made me, and continues to make me, truly happy.

Abstract

As energy costs and energy used by server farms increase, so does the desire to im-

plement energy-aware policies. Although under some cost functions, optimal policies

for single as well as multiple server systems are known, large gaps in theoretical

knowledge are present in the field. Specifically, there exists many widely used and

non-trivial cost functions, where the corresponding optimal policy remains unknown.

This work presents and leverages a model which allows for an exact analysis of these

optimal policies with considerable generality, for on/off single server systems under

a broad range of cost functions that are based on expected response time, energy

usage, and switching costs. Furthermore, from the results derived in the analysis,

several applications and implications are presented and discussed. This includes the

determination of routing probabilities to show a range of non-trivial optimal routing

probabilities and server configurations when energy concerns are a factor.

iv

Acknowledgements

This work has only been made possible through the help of my supervisor Dr. Dou-

glas G. Down. His patience and enthusiasm allowed me to learn and understand both

the rudimentary and advanced topics of stochastic modelling and queueing theory.

His guidance and insight allowed for my research to be fruitful and rewarding, while

his friendly and good character allows me to look back on my time as a Master’s

student with only fond memories. All of which, I am eternally thankful for.

This research was funded by the Natural Sciences and Engineering Research Council

of Canada.

v

Contents

Abstract iv

Acknowledgements v

Contents viii

List of Tables ix

List of Figures x

1 Introduction 1

2 Preliminary Knowledge 3

2.1 Stochastic Processes . 3

2.1.1 Markov Processes . 4

2.1.2 Continuous-Time Markov Chains 4

2.2 Queueing Theory . 6

2.2.1 Kendall’s Notation . 6

2.2.2 Little’s Law . 8

2.2.3 The M/M/1 Queue . 9

vi

2.2.4 The M/G/1 Queue . 12

2.2.5 Queueing Equations . 15

3 Literature Review 16

3.1 Green Computing . 16

3.2 Vacation Models . 19

3.3 Previous Work . 22

4 Problem Formulation 25

4.1 The Model . 25

4.2 Notation . 27

4.3 Cost Functions . 29

4.3.1 Optimal Policies . 29

5 Analysis 32

5.1 The M/M/1 ◦ {M,M,1} Queue . 32

5.1.1 Markov Chain Solution . 34

5.1.2 Deriving System Metrics . 38

5.2 The M/M/1 ◦ {M,M,k} Queue . 46

5.2.1 Markov Chain Solution . 46

5.2.2 Deriving System Metrics . 53

5.2.3 Products of Metrics . 65

5.3 The M/G/1 ◦ {G,G,k} Queue . 70

5.3.1 The Work-Cycle . 70

5.3.2 Products of Metrics . 76

5.3.3 Energy and Switching . 80

vii

5.4 The M/G/1 ◦ {G,M,k} Queue . 90

6 Applications 101

6.1 Optimal Parameter Values . 101

6.2 Constrained Optimization . 111

6.3 Sleep States . 113

6.4 Random Routing . 116

7 Conclusions 121

7.1 Future Work . 122

Bibliography 123

viii

List of Tables

2.1 Stochastic Process Classes . 5

2.2 Distribution Notation . 7

2.3 Queue Policies . 8

2.4 Queueing Theory Equations . 15

4.5 Parameter Summary . 28

5.6 Optimal Parameters of Metrics . 65

ix

List of Figures

2.1 M/M/1 Queue . 10

5.2 M/M/1 ◦ {M,M, 1} Queue . 33

5.3 M/M/1 ◦ {M,M, 1} response time vs α for varying γ values 42

5.4 M/M/1 ◦ {M,M, k} Queue . 47

5.5 M/M/1 ◦ {M,M, k} response time vs α for varying γ and k values . . 60

5.6 M/M/1 ◦ {M,M, k} response time vs k for varying γ values 62

5.7 M/G/1 ◦ {G,G, k}, E[E] vs α for varying γ values 81

5.8 M/G/1 ◦ {G,G, k}, E[E] vs α for varying k and γ values 84

5.9 M/G/1 ◦ {G,G, k}, E[E] vs α for varying rSetup values 85

5.10 M/G/1 ◦ {G,G, k}, E[Sw] vs α for varying γ values 87

5.11 M/G/1 ◦ {G,G, k}, E[Sw] vs α for varying k values 88

5.12 M/G/1 ◦ {G,G, k}, E[Sw] vs ρ, µ = 1, γ = 1 89

6.13 Random Routing – Optimization vs p 117

6.14 Random Routing – Single Case . 120

x

Chapter 1

Introduction

The relative as well as absolute energy consumed by servers have been steadily in-

creasing in North America over the past several years [4, 19]. As systems grow and

expand, energy concerns have become a major factor for server farm managers from

both environmental and economic viewpoints. However, the task of creating feasible

optimal or near-optimal policies is a daunting problem due to the sheer complexity

these systems exhibit. Even for single server systems, when energy is a factor, optimal

policies remain unknown for a number of metrics considered in the literature. This

work focuses on analysing energy-aware single server systems, with the prospect of

deriving optimal policies.

When determining an optimal policy, one minimizes some cost function (possibly sub-

ject to some constraints). The cost function is constructed from system metrics which

are desirable to keep low. For example, the expected number of jobs in the system,

the expected response time of a given job, the expected energy used by the system,

and the expected rate at which the server turns on and off. In Chapter 4, a model is

1

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

presented and discussed, which allows one to describe a set of optimal policies which

the optimal policy is a member of. Furthermore, this is true for a large range of cost

functions due to some convenient observed properties which these policies exhibit.

With the problem formulated and the model defined, Chapter 5 gives a detailed anal-

ysis under varying assumptions about the system. Specifically this chapter derives

closed form expressions for the expected response time of a job, the expected energy

used by the system, and the expected rate at which the server turns off, denoted

E[R], E[E], and E[Sw] respectively. Furthermore, this is done with imposing little on

the system in terms of assumptions, by allowing most underlying distributions to be

considered in the general case. Here the impact that different system configurations

have on these metrics is also examined in some detail.

After the model has been analysed, and the metrics solved for, Chapter 6 shows

how the optimal policy is derived given particular cost functions. Furthermore, this

chapter applies the model in different contexts of interest. Specifically, this chapter

considers constrained optimization, the addition of sleep states, and invokes the re-

sults from Chapter 5 in the determination of routing probabilities in a multi-server

system.

2

Chapter 2

Preliminary Knowledge

This chapter presents an explanation of some of the fundamental tools and concepts

which appear in stochastic modelling and queueing theory. If the reader is familiar

with Continuous Time Markov Chains, and preliminary models from queueing theory,

this chapter may be skipped.

2.1 Stochastic Processes

A stochastic or random process is a mathematical abstraction used to represent and

model a system’s behaviour over time. Formally, a stochastic process is a set of ran-

dom variables {Xt | t ∈ T}. The index set T is typically interpreted as a set of

time values. The random variables Xi denote information concerning the system in

question and may be either discrete or continuous, i.e. Xi may be the number of cus-

tomers in a system (discrete), or the power being consumed by a system (continuous),

at time i. In contrast, T may be countable, i.e. T = {1, 2, 3... } or defined on some

interval, i.e. T = {t | t > 0}.

3

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

2.1.1 Markov Processes

A stochastic process is a Markov process if the Markov property holds. The Markov

property states that for every sequence of increasing time values (t0, t1, t2, ..., tn), given

the values of Xt0 , Xt1 , Xt2 , ..., Xtn−1 , the conditional distribution of Xtn depends only

on Xtn−1 . This is seen formally as,

P [Xtn ≤ xn|Xt0 = x0, Xt1 = x1, Xt2 = x2, ..., Xtn−1 = xn−1]

= P [Xtn ≤ xn|Xtn−1 = xn−1].

This has the interpretation that the stochastic process is “memoryless”, that is the

system’s future behaviour only depends on its present state, and is completely inde-

pendent from its past behaviour. Exploiting the memoryless property of a Markov

process allows for an elegant analysis of such a system, since one can analyse all future

behaviours of a system with only the knowledge of the current system state. This

result is the cornerstone for the analysis of many queueing systems, which will be

seen in Section 2.2.

2.1.2 Continuous-Time Markov Chains

A continuous-time Markov chain (CTMC) is a Markov process where the random

variables {Xt | t ∈ T} take on discrete values from some set S, called the state space,

and the set T is defined to be some continuous interval. A CTMC is often thought of

as a directed graph where the nodes of the graph are the elements of S (the system

states), and the arrows are the “transition rates” between states, labelled by qi,j, the

rate the system moves from state i to state j. Given all of the transition rates, one

4

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

can construct the transition matrix for a given Markov chain as shown in (2.1),

Q =

−q0,0 q0,1 q0,2 · · ·

q1,0 −q1,1 q1,2 · · ·

q2,0 q2,1 −q2,2 · · ·
...

...
...

. . .

(2.1)

where qi,i =
∑

j 6=i qi,j. This last relation comes from the fact that for each state, the

sum of probabilities to move to any other state (including the given state) in a given

amount of time, equals 1. Table 2.1 shows the different classes of stochastic processes

when switching between discrete and continuous state spaces.

Time Values
State Space Discrete Continuous

Discrete Discrete-Time Markov Chain Continuous-Time Markov Chain
Continuous Discrete-Time Markov Process Continuous-Time Markov Process

Table 2.1: Stochastic Process Classes

There is a special class of CTMCs called birth-death processes. This is when S is

isomorphic to some subset of the natural numbers, where for simplicity it is often

assumed that S ⊆ N. It is also the case that the state variable (current state) may

only increase or decrease by a value of 1 between each transition. The transition

matrix for birth-death processes is therefore of the form,

Q =

−λ0 λ0 0 · · ·

µ1 −(λ1 + µ1) λ1 · · ·

0 µ2 −(λ2 + µ2) · · ·
...

...
...

. . .

5

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

and may be finite or infinite. In this context, λn and µn are referred to as the

birth and death rates in state n, respectively. Birth-death processes arise in many

different fields of study such as biology, demography, and engineering, however the

main focus here is applying them to different queueing networks. Although simplistic,

many rudimentary queuing systems become birth-death processes once exponential

assumptions on the underlying distributions are imposed.

2.2 Queueing Theory

Queueing theory is the mathematical study and analysis of “lines” or “queues” where

the goal is to make statistical predictions on the characteristics of systems where

these queues are present. In general these systems have arrivals of customers or jobs

which occur according to some random process. These jobs are sent to queues where

they wait to be served or processed. Servicing a job also takes a random amount of

time following some distribution. These systems can become extremely complex by

connecting multiple systems together, implementing different routing policies, having

different arrival streams, etc. making for interesting and challenging problems. This

chapter presents some of the simpler queueing models, and the methods used to

analyse them.

2.2.1 Kendall’s Notation

When the systems in question are limited to having a single queue to which all jobs

arrive, there still exists many different parameters in order to describe the system or

queue fully. Due to the complexity and variation in behaviour these queues exhibit,

6

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

a convenient notation known as Kendall’s Notation is widely used. The notation is

a list of six parameters delimited by “/” of the form A/S/c/K/N/D. A denotes the

distribution of the times between arrivals, S denotes the distribution of the services

times of the jobs, c denotes the number of servers, K denotes the capacity of the

queue, N denotes the population sized to be served, and D denotes the order that

the jobs get served when waiting in the queue. While c, K, and N are all natural

numbers, there exists a further notation denoting the type of distributions A and

S follow. The notation for the distributions mentioned in this work is presented in

Table 2.2 (the list is only partial). Different instantiated values for D are given in

Table 2.3 but for all models presented in this paper the FIFO policy is used.

Notation Distribution Description

M Exponential

Standing for Markovian or memoryless, this distri-
bution is often used to allow for an analysis using
CTMCs. In general, this imposition on the distribu-
tion is restrictive.

Ek Erlang k

An Erlang distribution with shape parameter k still
allows for easy analysis since it is composed of k ex-
ponential distributions in series while still giving flex-
ibility when fitting the model to observations.

D Degenerate

The distribution with 0 variance, that is the random
variable which follows this distribution will always
equal the mean. This is used when times between
arrivals or service times are constant.

G or GI
General
Independent

Represents the possibility of any distribution, allow-
ing for a completely general analysis of the system.

Table 2.2: Distribution Notation

It is common when denoting these queues to drop the last three parameters and sim-

ply write A/S/c. When this is done, the following values for the excluded parameters

7

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Shorthand Name Description

FIFO
First In First
Out

Perhaps the most intuitive policy, the jobs are pro-
cessed in the order they arrive.

LIFO
Last In First
Out

Jobs are processed in the reverse order they arrive.
The policy must also make the choice if a job is pre-
empted if a new job arrives while it is being processed.

PS
Processor
Sharing

Each job in the system gets an equal fraction of the
processor.

Table 2.3: Queue Policies

are assumed to be K =∞, N =∞, and D = FIFO. For example an M/M/2 queue

is a system where interarrival as well as service times are exponentially distributed,

there are two servers, the buffer (or queue) has no maximum capacity and implements

a First In First Out policy, and the number of jobs available to arrive to the system

is infinite.

When analysing these systems mathematically, it is standard to denote the arrival

rate as λ, the service rate from each server as µ, and the system utilization as ρ. It

follows from here that ρ = λ/cµ. This is also the condition for the system’s stability.

The system is considered unstable if jobs arrive to the system faster than they can be

processed i.e. λ ≥ cµ. This implies that in a stable system ρ < 1. When analysing any

of these systems this condition arises in the analysis, as will be seen in the remaining

subsections in this chapter as well as Chapter 5.

2.2.2 Little’s Law

Before any analysis of these systems is presented, it is important for the reader to

be made aware of and understand a result in queueing theory known as Little’s Law

8

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

[14]. It is one of the fundamental theorems in the field which allows one to derive

expressions which would be hard to otherwise attain. The law states that the long

term mean number of customers or jobs in a stable system is equal to the product of

the arrival rate to the system and the mean time a job spends in the system. This

law is applied to most queueing systems as the expected number of jobs in the system

equals the arrival rate multiplied with the expected response time of any given job.

E[N] = λE[R]

This law holds independently of the arrival distribution, the number of servers in the

system, the type of policies the system implements, etc. It is regarded as one of the

most important results in queueing theory, and is invoked many times in this work.

2.2.3 The M/M/1 Queue

In queueing theory, one of the most basic and easy to analyse systems is the M/M/1

queue. From the notation introduced in Section 2.2.1, this is a single server sys-

tem where the interarrival times, as well as the service times of the jobs are both

exponentially distributed. The interarrival times being exponentially distributed is

equivalent to the arrivals following a Poisson process and is often referred to as such.

Due to the exponential distributions, the memoryless property allows the system to

be be modelled as a CTMC, where the state denotes the number of jobs in the system

(waiting in the queue, and being processed). This Markov chain is depicted in Figure

2.1. Furthermore, since the state of the CTMC can only increase or decrease by at

most one in any given transition, the system is also a birth-death process, where the

transition matrix is given in (2.2).

9

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Figure 2.1: M/M/1 Queue

Q =

−λ λ 0 · · ·

µ −(λ+ µ) λ · · ·

0 µ −(λ+ µ) · · ·
...

...
...

. . .

(2.2)

It is of interest to capture the system’s behaviour in steady state. This means allow-

ing time to approach infinity and observing the proportion of time the system spends

in each of its states. This steady state proportion of time is often referred to as the

system’s steady state distribution and for each state, n, its value is denoted by πn.

The reason why this type of analysis is convenient is that it allows one to determine

system metrics such as the distribution of the number of jobs in the system. From

here, the expected number of jobs in the system can be obtained, and by applying

Little’s Law, one can arrive at the expected response time for any given job.

It is known that the rate into each state must equal the rate out of that state. This

is true because the number of times the system enters the state, and the number of

times which the system leaves that same state, may differ by at most one. Letting

time go to infinity it follows that the rate in and out of the state must be equal. From

this observation, for any state n > 0 it is seen that λπn−1 + µπn+1 = (λ+ µ)πn (rate

in equals rate out). Iterating over all n > 0 gives us a set of equations referred to as

10

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

the balance equations for the CTMC shown in Figure 2.1. We also have the balance

equation for state 0, λπ0 = µπ1. Rearranging gives us π1 = ρπ0 and from a simple

recursion we find πn = ρnπ0. This gives a set of equations with an infinite number of

solutions, so some sort of boundary equation must be invoked. It is noted that the

sum of all of the steady state probabilities must equal 1, in other words at any point

in time the system must be in exactly one of its states. This is seen mathematically

as,

∞∑
i=0

πi = 1 ⇒ π0

∞∑
i=0

ρi ⇒ π0 = 1− ρ.

Putting the boundary and balance equations together, the steady state distribution

of the number of jobs in the system is given by

πn = (1− ρ)ρn.

From here, we can weight each πn by n and sum them to arrive at the expected

number of jobs in the system, and with an application of Little’s Law, the expected

response time. The algebra will not be shown here as the results are well known.

These metrics are given by

E[N] =
λ

µ− λ
and E[R] =

1

µ− λ
.

For the purposes of this work, the energy used by these systems is also of interest.

Although usually not mentioned in the literature, the expected energy used by an

M/M/1 queue is easily determined. Assuming there is an amount of energy used while

11

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

processing jobs and when the system is idle, denoted by EBusy and EIdle, respectively,

the expected energy used by the system (E[E]) is simply solved by weighting the

probabilities of being busy or idle by the energy values. The probability of being

idle is π0, and the probability of being busy is 1− π0, (the utilization ρ). Putting it

together, the expected energy is given by

E[E] = EBusyρ+ EIdle(1− ρ).

The exponential assumptions make for a system that is clean and easy to analyse,

however this limits the feasible application of the model in practical settings. In the

next section we relax some of these assumptions to make for a more general model,

but also one that is more challenging to analyse.

2.2.4 The M/G/1 Queue

One of the more interesting and practical queueing models is the M/G/1 queue. This

is due to the nature of the assumption that the arrival stream being a Poisson pro-

cess is reasonable in many applications, i.e. server requests being generated all over

the country. On the other hand, exponentially distributed service times, (M/M/1)

generally is a poor assumption. Furthermore, exact analytic results for the M/G/1

are well known and relatively simple to apply, if the first and second moments of the

service time distribution is known.

The difficulty in analysing such a system is the memoryless property is not present

in all underlying distributions, specifically it is not a property of the service time

distribution. Without the memoryless property, the system cannot be analysed as a

12

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Markov chain where the states are the number of jobs in the system, since one would

also have to keep track of how long a current job has been processed to make predic-

tions about the future state. To overcome these challenges, the system is inspected

every time a job leaves the system. At this exact point in time all that is needed to

be known to predict future events is the current number of jobs in the system. This

is due to the memoryless nature of the arrival stream as well as the knowledge that

the current job has not commenced processing. This is an example of an embedded

Markov chain. Analysing this embedded Markov chain allows one to give an exact

analysis of the system, however before the details are presented, some notation must

be introduced. Let Nn be a random variable denoting the number of jobs in the

system at the nth departure point (the moment the nth job leaves the system). Let

An+1 be a random variable denoting the number of jobs which arrive to the system

during the service time between the nth and (n + 1)th departure points. This gives

the following recursion,

Nn+1 =

Nn + An+1 − 1 Nn ≥ 1

An+1 Nn = 0

.

Noting that all service times are identically and independently distributed (i.i.d), the

index on A is dropped and referred to from this point on as As. Using the Heaviside

function this can be rewritten as,

Nn+1 = Nn − U(Nn) + As. (2.3)

The goal is to determine the expected number in the system in steady state, this is

13

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

equivalent to letting n→∞, and taking expectations of both sides of (2.3), however

if this were to be done the expected number in the system would cancel out and there

would be no hope of solving for it. To work around this issue, both sides of (2.3) are

squared before expectations are taken. This yields the equation

0 = E[A2
s] + 2E[N]E[As]− E[U(N)]− 2E[N]− 2E[U(N)]E[As].

After some calculations, and letting σ2
S denote the variance of the service time distri-

bution, one can solve for E[N] and with Little’s Law E[R].

E[N] = ρ+
ρ2 + λ2σ2

S

2(1− ρ)
and E[R] =

1

µ
+
ρ2 + λ2σ2

S

2λ(1− ρ)

Again, for the purposes of this work the expected energy consumed by the system

will be required. For all single server systems, the utilization is known to be ρ, and

due to this the expected energy of an M/G/1 queue is equal to that of an M/M/1.

From the previous section, this is known to be

EBusyρ+ EIdle(1− ρ).

This shows the expected energy of the system to be completely independent of the

underlying service time distribution. This same result is presented in the analysis of

energy-aware systems in Chapter 5.

14

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Metric
Queue E[N] E[R] E[E]

M/M/1
λ

µ− λ
1

µ− λ EBusyρ+ EIdle(1− ρ)

M/G/1 ρ+
ρ2 + λ2σ2

S

2(1− ρ)

1

µ
+
ρ2 + λ2σ2

S

2λ(1− ρ)
EBusyρ+ EIdle(1− ρ)

G/G/1 Not known Not known EBusyρ+ EIdle(1− ρ)

Table 2.4: Queueing Theory Equations

2.2.5 Queueing Equations

The M/M/1 and M/G/1 queues are some of the most widely understood and used

systems in queueing theory. Knowledge of both of these systems is assumed in this

work and for convenience these equations are collected in Table 2.4. While this chapter

provided the necessary basics to understand the mathematics and reasoning in the

later parts of this work, there were some subtleties and details which were omitted. If

the reader is looking for deeper understanding of the ideas presented here, or perhaps

a broader look at queueing theory in general the following literature is recommended;

[10, 11, 12]. Furthermore, once the reader grasps the basics of the field and wishes

to gain even deeper insight into the analytical methods used in the previously cited

works, [17] is also recommended.

15

Chapter 3

Literature Review

This chapter examines other articles and contributions which pertain to the field to

which this work belongs. In addition, this chapter discusses the contributions of this

work to the field.

3.1 Green Computing

Green or sustainable computing is a relatively new field of research in which the trade-

offs of performance and energy or power usage of computing systems are examined

and analysed. While having these systems always operating at their top performance

is an inarguably effective policy to implement, it may not be the most efficient use of

the systems resources. This could lead to higher system costs than necessary (paying

for power while a server idles). Also there may exist the benefit of being (or being

perceived to be) green. Different authors have different motivations for the research,

but the basic idea of looking at how these different system metrics interact as config-

urations change, remains the same.

16

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

While the motivation for solving these problems is intuitive or intrinsic, several data

center statistics or facts are given in [7, 13, 16, 22]. These works show that server

farms use a relatively large portion of total energy used across North America, and

that both the absolute and relative values of their energy use are on the increase.

Furthermore, the article [3] gives a more thorough argument why these energy con-

cerns are valid. Finally, [2] takes a numerical viewpoint, and shows that in data

centers, a typical server will idle a non-trivial proportion of time, and use roughly be-

tween 60%-70% of the energy that it would use while processing jobs during that time.

With the inherent application to industry, the field has many active researchers.

These problems can vary from inspecting an isolated single server system, to looking

at the whole computational framework of data centers across the continent. However,

although the specific problems vary across works, the nature of the field always has au-

thors looking at the trade-offs of performance and resource consumption. Due to this,

authors will typically look to do their analysis with respect to some cost function. In

the literature, the research can be segregated into using one of two types of cost func-

tions. The cost function used by [6, 7, 9] is E[R]E[E], while [3, 15, 16, 18, 20, 22, 23]

used a cost function of the form E[R] +β1E[E] +β2E[Sw]. While both cost functions

have their advantages and disadvantages, analysing systems and policies under only

one or a small set of cost functions can be problematic. The reader will see that this

is one of the main issues addressed in this thesis.

17

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Many articles deal with the same type of problems which are analysed in this the-

sis, but approach it from different directions. For example, the works of [3, 16, 22]

looked at determining the optimal configuration of a server farm when the job sizes

are known at arrival, and the decision to turn servers off or keep them on is made

at discrete time intervals. This is then formulated as an optimization problem and

solved for. The article [3] was the first to appear and accounts for wear and tear cost

on the servers by allowing for an E[Sw] term in the cost function. The article [15]

added the variation that jobs can be routed to different geographical locations where

energy costs may differ. The work in [16] took a different viewpoint where different

customers pay a certain amount, based on a function of the response time of that job.

The work of [18] looked at a similar problem where jobs are routed to separate on/off

queues, and the problem was solved using Markov Decision Processes (MDPs).

The work of [13] took a different approach to the same style of problem where the de-

cision of when and what servers to turn on and off is made with the goal of minimizing

the mean response time. Furthermore, the servers can be completely heterogeneous.

However, the optimization problem is constrained by a maximum power value. This

has the interpretation that the system has a limited energy supply and one wishes

to use the power in the most efficient way possible. This paper stands out as in

this setting the optimal policy is not the one which minimizes some constructed cost

function, but rather one which minimizes E[R] under energy constraints. In the un-

constrained case, the optimal policy is one which simply minimizes some given cost

function, while the way the problem is presented here, one can interpret the optimal

policy as maximizing efficiency of the system given a constant power supply.

18

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

The articles [22, 23] explored the issue of speed scaling in the context of green com-

puting. Speed scaling refers to the ability to put more power into a server causing

the processing rate to increase. This of course is another trade-off option between

performance and energy. The authors examined these systems and provide both a

stochastic and worst case analysis, where the job sizes are known upon arrival. The

primary focus is on making two decisions. Firstly, which scheduling policy should the

system employ (FIFO, PS etc.). Secondly, how much power should be put into the

system at a given time. The authors are able to provide many insights. However, the

policies examined are found to be only near-optimal, and many of the insights are

seen numerically.

3.2 Vacation Models

Within the study of classic stochastic models (M/M/1, M/G/1, etc.), there are a

subset of models called vacation models. This refers to systems where the server

can be in a state where it cannot process jobs. When the server is in such a state

it is referred to as being on vacation. These models are of great interest as they

have many natural applications to different areas of industry, such as manufacturing,

telecommunications, healthcare, and customer service to name a few. The primary

motivation for understanding, examining, and extending these models in this work,

is that the vacation time of the server can be viewed as the time which the server is

turned off.

19

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Many authors have analysed different variations of these vacation models. The book

[21] describes in detail many of these systems and the subtle differences between them.

Perhaps the simplest vacation model is one in which the server begins its vacation

period as soon as there are zero jobs in the system. The time the server spends in

this vacation state is exponentially distributed with some rate, say v. If the server

ends its vacation before a new job arrives to the system, it immediately begins a

new vacation period. Due to this behaviour and the properties of the exponential

distribution, this system is equivalent to a system which remains on vacation until

a job arrives, at which time it will start a new vacation period (again with rate v)

and proceed to process the newly arrived job once the vacation ends. In general,

systems which begin their vacation as soon as the server idles are called exhaustive,

and are denoted in a modified Kendall notation where the list of vacation parameters

is presented as a list in () after the classical counterpart. For example, under expo-

nential assumptions for all underlying distributions, the previous model is denoted as

M/M/1(E). The article [5] as well as [21] show that the number in the system, as

well as the response time for such a system can be seen as a decomposition of two

random variables, where one of the variables is the corresponding random variable

for the classical counterpart. Furthermore, this decomposition property holds when

the processing and vacation times follow general distributions.

While this decomposition result has been known for some time, even under expo-

nential assumptions, the steady state distribution of the system, as well as closed

form expressions for metrics such as the expected response time, remained unknown

until it was recently solved in [8]. However, under general assumptions, closed form

20

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

expressions remained unknown, but are later presented in this work.

In Chapter 4, a model is presented which can be seen as a combination of several of

the vacation models described in [21]. These different types of vacation models are

as follows. Firstly, the model is non-exhaustive, meaning that the server may not

vacation as soon as it idles. Secondly, the model is of the setup family. This means

that when the system meets some condition to start ending its vacation, this may

take some random amount of time to achieve. Lastly, the system follows a threshold

policy, meaning that once a certain number of jobs arrive to the system while the

server is on its vacation, the system proceeds to end the vacation period. Although

all of these systems are analysed and discussed in [21], a system which incorporates

all of the above behaviour has not yet been examined in other works.

Other authors have also researched these vacation models in the context of multi-

server system. Certain expressions and properties can be derived from these models.

However, due to the introduced complexity which adding multiple servers bring to the

system, many assumptions must be imposed. For example, the article [24] analyses

an M/M/c system with an (e, d) policy, where one of the limitations of this system is

the number of jobs present in the system when a new server starts to end its vacation

is equal to the number of jobs in the system when a server should shut down. While

such systems have their advantages, it is clear that they do not describe optimal

configurations.

21

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

3.3 Previous Work

Optimal policies for on/off servers is an interesting and active topic. As such, other

authors have previously done research which directly relates to some of the work

presented here. Specifically, this thesis was highly influenced by the research done

in [8, 6, 7, 9]. Here, different on/off server systems are modelled both in the single

and multi-server settings. However, when attempting to establish optimal policies,

the authors gave a perhaps narrow view of what an optimal policy is defined to be.

Specifically, in these articles, the aim is to minimize a cost function which is the

product of the expected energy used by the system and the expected response time

of a given job, which they call the Energy Response Product (ERP). The following

contributions of their work are all under the context of this specific cost function.

• For a single server system with sleep states, [7] defined the set of policies which

the optimal policy must belong to. Furthermore, they showed a property of

the ERP cost function, which will always be minimized if the server begins to

turn on once a single job arrives to the system. However, here exponential

assumptions on the underlying distributions were imposed.

• They derived the steady state distribution of an M/M/c (E SU) (exhaustive

and setup) system. This allows for the derivation of system metrics such as

E[R], and gives further analysis for the optimal policies under the ERP cost

function, due to its optimal properties discussed above.

• They examined and simulated several different intuitive policies in multi-server

settings to give insight into how these systems behave. However, while this

gives intuition for how these policies compare to each other, it is hard to see

22

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

how they compare to the optimal policies, as they remain unknown.

• In [6], a method termed the Renewal Reward Recursion (RRR) was described,

which allows one to determine optimal policies for certain two dimensional

Markov chains. Again, this allows for the exact analysis of simpler policies

but the true optimal policies remain to be solved. Furthermore, exponential

assumptions on the underlying distributions must be imposed.

As one can see, a considerable amount of work has already been done on this sub-

ject. However, some drawbacks certainly do exist. Firstly, the authors focused on

only minimizing the ERP when determining optimal policies. As stated before, other

authors favoured the cost function of E[E] + E[R], for which optimal policies are not

touched on in these works. Secondly, while they gave the exact analysis of many inter-

esting and feasible policies, in the multi-server context, the optimal policies remain

unknown. Lastly, much of their analysis assumed exponential distributions on the

system, which could be unreasonable. While in some sections they did examine cer-

tain results under different distributions that are combinations of exponentials such

as Erlang and hyper-exponential, they did not provide results for general distributions.

The article [1] also deserves mention here as the type of systems they analysed are

similar to the systems which are presented in this thesis. The author looked at M/G/1

systems, which have vacations. The three different types of policies which the author

considered are as follows. Firstly, an N type policy where the server turns back on

once a certain number of jobs arrive to the system. Secondly, a D type policy where

the server turns on once the expected time to process the jobs exceeds a certain value.

Finally, a T type policy where the server turns back on after a certain threshold time

23

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

after its last busy period. The author was able to show that changing the cost function

changes which of the three policies is optimal. While the paper is able to analyse the

three polices under general service times, the model does not include setup times for

the server. That is, when the server chooses to end its vacation, the server instantly

turns on.

The authors of [20] looked at multi-server systems under a specific policy. They

analysed these systems by modelling them as Markov chains (under full exponential

assumptions) and then solved them numerically. Again, the set of policies which they

described does not necessarily contain the optimal policy, even in the single server

setting. The authors made conclusions based on a broad range of parameter values.

Although the field of green computing is relativity new, a lot of progress has already

been made in understanding these systems. Many authors looks at these problems

from many different angles, offering a broad viewpoint of energy trade-offs in data

centers. However, due to this broad outlook, many gaps in the field exist. Specifically,

optimal policies for data centers under general cost functions remain unknown. This

thesis gives a model and analysis in this setting, which yields several results in the

single server setting under general cost functions and distributional assumptions,

allowing for some of these theoretical gaps to be filled in.

24

Chapter 4

Problem Formulation

Given a single server system where the server can be in one of two energy states, the

following metrics are of interest: the expected response time of a job in the system, the

expected number of jobs in the system, the expected energy consumed by the system,

and the expected rate at which the server switches between energy states. From these

metrics, one can construct a cost function associated with the system. It is desirable

to derive a policy in which the cost function is minimized, primarily determining when

the server should move between energy states. Even in the rudimentary single server

setting, optimal policies for the majority of non-trivial cost function are unknown.

Here it is shown how these systems are modelled, and how one can arrive at optimal

policies from these formulations.

4.1 The Model

The system is modelled as having a high and a low state. The system may instantly

move from the higher state to the lower, while it takes time to move from the lower

25

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

state to the higher. While in the lower state the system cannot process jobs. Given

this, such a system can be further broken down to being in one of four energy states,

LOW, SETUP, BUSY, IDLE. These energy states denote the current behaviour of

the system from an energy stand point. Firstly, LOW corresponds to the system

being in its lower state. Secondly, SETUP corresponds to the system currently tran-

sitioning from its lower to its higher state. Thirdly, BUSY corresponds to the server

being in its higher state while processing jobs. Lastly, IDLE corresponds to the sys-

tem being in its higher state, but not processing jobs. Each of these energy states

also has an associated energy level, ELow, ESetup, EBusy, and EIdle, respectively. If

ELow = 0, the energy state LOW is renamed to OFF. For the majority of the analysis

presented in Chapter 5, and for the remainder of the model description it is assumed

ELow = 0. However, the reader should remember that the analysis is robust enough

to disregard this assumption, and in fact does so in Section 6.3. It is often more

relevant when analysing optimal policies to know the ratio of the energy levels. We

take these ratios with respect to EBusy, and denote them as rLow, rSetup, and rIdle.

For ease of intuition and description for the remainder of this work, the lower energy

state will often be referred to the server being off, the higher energy state as being on,

and transitioning from the lower to higher state is referred to as the server turning on.

Jobs arrive to the system in a FIFO queue according to a Poisson process with known

rate λ. When in state OFF, the system allows for k jobs to accumulate. Once the

kth job arrives, the server immediately begins to turn on; the system enters the state

SETUP. The amount of time the system remains in SETUP is generally distributed

with rate γ. Once the server turns on it begins to process the initial k jobs as well as

26

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

any jobs which arrived while it was turning on; the system moves to state BUSY. The

server processes the jobs following some general distribution with rate µ. Once all jobs

in the system are processed, the system enters the state IDLE. Here the system keeps

track of the total time the system has been idling since the last time it turned on.

The server will idle for an amount of time which is generally distributed with rate α

before it moves to its lower energy state; the system enters state OFF. The amount of

time that the server idles for before it turns off is referred to as the idle threshold. If a

job arrives before the idle time reaches the idle threshold, the server begins to process

it; the system enters state BUSY. From here the server will eventually become idle

again, where the system once again can either move to BUSY or OFF depending on

future events. This switching between IDLE and BUSY will continue until the total

idling time of the server, since the last time it turned on, reaches the idle threshold

(in which case the server turns off). From here, the behaviour repeats itself as if

the server started in state OFF with no jobs in the system. It should be noted that

if the idle threshold values follow the exponential distribution, each time the server

becomes idle, the total time the system has spent idling since the last turn on time

can be seen as being reset to 0 due to the memoryless property of the exponential

distribution. This is a result which is exploited later in Chapter 5. The Table 4.5

summarizes the notation and parameters of the model.

4.2 Notation

To denote these systems, a composition of two sets of parameters is used i.e. {} ◦ {}.

The first set of parameters is given in classical Kendall notation to describe the

non-energy-aware portions of the system. The set of parameters listed after the

27

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Parameter(s) Explanation

ELow, ESetup,
EBusy, EIdle

The energy values associated with the different system states.

rLow, rSetup, rIdle The ratios between the energy values and EBusy.
λ The arrival rate of jobs to the system.
µ The server’s processing rate.

γ
The rate at which the server moves to its higher energy state
from the lower.

α
The rate at which a server waits while idle before moving to
its lower energy state.

k
The number of jobs the system allows to accumulate in the
queue before beginning to move to the higher energy state.

Table 4.5: Parameter Summary

composition symbol are all parameters which are incorporated due to energy concerns.

The first of these parameters is the turn on time distribution of the server, the second

is the idling threshold distribution, and the last is the number of jobs allowed to

accumulate before the server begins to turn on. For example, a queue with exponential

assumptions on all four distributions that begins to turn on once k jobs arrive is an

M/M/1 ◦ {M,M, k}, system while if the job service times along with the server turn

on times follow general distributions, the system would be an M/G/1◦{G,M, k}. The

reason for denoting the systems in this way, as will be shown later, is that their metrics

can be written as a decomposition where one of the terms will be the corresponding

metric of the non-energy-aware counterpart (the first set of parameters). This would

suggest these energy-aware queues themselves can be seen as a composition of the

corresponding classical Kendall queues and the energy parameters.

28

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

4.3 Cost Functions

In order to determine the optimal policy, a cost function must be defined. Cost

functions are built upon the system metrics of the expected number of jobs in the

system, E[N], expected response time of a job, E[R], the expected energy used by

the system, E[E], and the expected switching rate, or the expected rate which the

server turns off, E[Sw]. Using these metrics the following class of cost functions can

be defined by:

f(β, w) =
M∑
i=0

βiE[N]wN,iE[R]wR,iE[E]wE,iE[Sw]wSw,i , (4.4)

where β is a vector of weight values for each term and w is a matrix of the specific

weights in the power of each metric contained in the weighted terms, and ∀i.0 ≤

βi, wR,i, wE,i, wSw,i and are of the appropriate units. It is noted that due to Little’s

Law, the E[N]wN,i component of (4.4) can be removed, by adding the wN,i value to

wR,i and by rescaling βi by λ. This yields the same class of cost functions but gives

a simpler form of

f(β, w) =
M∑
i=0

βiE[R]wR,iE[E]wE,iE[Sw]wSw,i . (4.5)

Again ∀i.0 ≤ βi, wR,i, wE,i, wSw,i and are of the appropriate units.

4.3.1 Optimal Policies

Now that the family of cost functions has been defined, it must be shown that the

model described in Section 4.1 can be leveraged to arrive at the optimal policy. To

show this is equivalent to showing the model can describe the policy which minimizes

29

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

any of the cost functions contained within the class described in (4.5). The model

makes two key assumptions about every policy it describes.

• The decision to start transitioning from the lower to the higher energy state

(the decision to turn the server on) is made at the moment a job arrives to the

system.

• If there are jobs in the system and the server is in its higher energy state, the

server will never move to its lower energy state (the server will turn off only

when it is idle).

If it can be shown that the policies which minimize the cost functions have these

properties, then it can be inferred that the model can always describe the optimal

policy. The first assumption is made without loss of generality due to the memoryless

property of the arrival stream (the same decision would be made at any point in time

between arrivals). The second assumption is a property of the optimal policy due

to the nature of the cost function. If the system were to turn the server off while

a job(s) remains in the system, E[R] will increase, since the job(s) that was in the

system when it turned off must now wait until the system turns on before it can

be completed. Furthermore, the E[Sw] component of the cost function would also

increase since the server is turning off at a point where it could have remained on

instead. At the same time, the system does not gain any benefit with respect to

the E[E] component since it will still have to expend energy to complete the job(s)

in the system at some point in the future. Due to the weights (βi) being positive,

i.e. it is never advantageous to increase E[R] or E[Sw] while holding all other values

constant, it is concluded that the second assumption is a property of policies which

30

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

minimize the cost functions. This along with the first assumption being made with-

out loss of generality, it follows that the optimal policy can be described by the model.

It is worthwhile to give another property of the optimal policy. Similar to the argu-

ment made to justify the servers beginning to turn on only when an arrival occurs

to the system, the decision to turn a server off or keep it on is only made when a

job departs the system and leaves it idle. This would imply that in the model, in

any policy which minimizes the cost, α = 0 or α → ∞. We leave α as part of the

model for several reasons. Firstly, it gives insight on how scaling between these two

extremes affects the system. Secondly, it allows one to easily determine where in the

parameter space the optimal policy switches between α = 0, and α → ∞. Thirdly,

it allows for easier extensions of the model where this property may not necessarily

hold. For example, this property does not hold when the arrivals do not follow a

Poisson process, or in a multi-server setting. Lastly when optimizing under different

conditions, i.e. minimizing a linear function of E[E] with a constraint on E[R], the

optimal value of α could lie anywhere on the positive real line.

31

Chapter 5

Analysis

This chapter presents and analyses various instantiations of the model described in

Chapter 4 by imposing assumptions on the underlying distributions as well as some

of the turn on criteria (the value of k). The analysis starts with the assumption that

all underlying distributions are exponential. Later sections progressively relax these

assumptions and build to a general analysis allowing one to derive some practically

useful results.

5.1 The M/M/1 ◦ {M,M,1} Queue

The simplest non-trivial instantiation of the presented model is imposing exponential

assumptions on all underlying distributions, as well as limiting the number of jobs to

build up in the system before moving to SETUP to be held constant at one (k = 1).

While the assumptions on the distributions are not ideal due to potential modelling

inaccuracies, the limitation on k is perhaps more detrimental when making design

decisions based on the analysis. This is due to the fact that the optimal policy under

32

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Figure 5.2: M/M/1 ◦ {M,M, 1} Queue

all cost functions of the form (4.5), cannot be described with an M/M/1 ◦ {M,M, 1}

queue even if the exponential assumptions are justified. Specifically in the optimal

policy k > 0 for some natural number. This leads to the question of, why is this

system worth analysing? There are several reasons why such a system is of interest.

Firstly, for some of the widely used cost functions which can be generated from (4.5),

it is known that in the optimal policy it is always the case that the server begins to

turn on as soon as there is a job present (k = 1). Secondly, due to the relatively simple

nature of such a system it allows for a more elegant analysis which can be used as a

stepping stone, and sanity check when moving onto more complex systems. Lastly,

there may be some applications of the model where while perhaps it is optimal to

allow jobs to build up in the queue, it is however not practically feasible i.e. allowing

for k customers to build up at a single cash register instead of instantly having an

employee begin to start serving them may be considered “bad business”. Due to the

exponential assumptions the queue can be represented as a CTMC and is depicted

in Figure 5.2, where the state n1, n2 conveys that n1 servers are on and there are n2

jobs in the system.

33

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

5.1.1 Markov Chain Solution

Let πn1,n2 denote the steady state probability of being in state n1, n2. It follows from

Figure 5.2 that the balance equations are:

(λ+ γ)π0,n = λπ0,n−1 (n > 0) (5.6)

(λ+ µ)π1,n = λπ1,n−1 + γπ0,n + µπ1,n+1 (n > 0) (5.7)

where the boundary condition is:

π1,0 =
λ

α
π0,0 (5.8)

The first step in solving the steady state probabilities is solving the first row of the

Markov chain. This is done by applying z–transforms to (5.6).

(λ+ γ)π0,n = λπ0,n−1

⇒ (λ+ γ)
∞∑
n=1

π0,nzn = λ
∞∑
n=1

π0,n−1zn

⇒ (λ+ γ)
∞∑
n=1

π0,nzn = λz
∞∑
n=0

π0,nzn

⇒ π0(z)− π0,0 =
λ

(λ+ γ)
zπ0(z)

⇒ π0(z) =
π0,0

1− λ
λ+γ

z

⇒ π0(z) = π0,0

∞∑
n=0

zn
(

λ

λ+ γ

)n

34

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Taking the inverse z–transform it follows that

π0,n = π0,0

(
λ

λ+ γ

)n
. (5.9)

The second row can be described in the form of,

π1,n = Axn +B

(
λ

λ+ γ

)n
(5.10)

where

(λ+ µ)x = λ+ µx2 ⇒ x = 1,
λ

µ
.

B is solved by substituting Equations (5.10) and (5.9) into (5.7), which yields:

(λ+ µ)

(
Axn +B

(
λ

λ+ γ

)n)
= λ

(
Axn−1 +B

(
λ

λ+ γ

)n−1)
+ γπ0,0

(
λ

λ+ γ

)n
+ µ

(
Axn+1 +B

(
λ

λ+ γ

)n+1)
(5.11)

⇒ (λ+ µ)B
λ

λ+ γ
= λB + γπ0,0

λ

λ+ γ
+ µB

(
λ

λ+ γ

)2

⇒ B

(
(λ+ µ)

λ

λ+ γ
− λ− µ

(
λ

λ+ γ

)2)
= π0,0

λγ

λ+ γ

⇒ B

(
��
�(λγ)(µ− λ− γ)

(λ+ γ)���
�(λ+ γ)

)
= π0,0

��
�(λγ)

��
��(λ+ γ)

⇒ B = π0,0
λ+ γ

µ− λ− γ
. (5.12)

35

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

With B determined, all that remains is to solve for A and x. Using the definition of

(5.10) and letting n = 1 in (5.11) gives,

(λ+ µ)Ax+ (λ+ µ)B

(
λ

λ+ γ

)
= λπ1,0 + γπ0,0

(
λ

λ+ γ

)
+ µAx2 + µB

(
λ

λ+ γ

)2

.

Substituting in (5.8) and grouping terms yields,

A[(λ+ µ)x− µx2] =
λ2

α
π0,0 + γπ0,0

(
λ

λ+ γ

)
+B

(
λ

λ+ γ

)[
µλ− (λ+ µ)(λ+ γ)

(λ+ γ)

]
.

From here it is seen that letting x = 1 or x = λ
µ

gives the same result. Therefore, A

can now be solved for directly by substituting for x and B.

λA = π0,0

(
λ

λ+ γ

)[
λ(λ+ γ)

α
+ γ − λ2 + λγ + µγ

µ− λ− γ

]

⇒ A = π0,0

(
1

λ+ γ

)[
(λ2 + λγ + γα)(µ− λ− γ)− λ2α− λγα− µγα

α(µ− λ− γ)

]

⇒ A =
π0,0

���
�(λ+ γ)

[
���

�(λ+ γ)(λµ− λ2 − λγ − γα− λα)

α(µ− λ− γ)

]

⇒ A = π0,0

[
λ

α
− λ+ γ

µ− λ− γ

]
(5.13)

Substituting (5.13) and (5.12) into (5.10) gives a closed form expression for the steady

state probabilities in terms of x and π0,0.

π1,n = π0,0

[
λ

α
− λ+ γ

µ− λ− γ

]
xn + π0,0

λ+ γ

µ− λ− γ

(
λ

λ+ γ

)n
(5.14)

36

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

It is not clear if x is 1 or ρ. However, on inspection of (5.14) it becomes clear that

letting x = 1 would imply π0,0 ≤ 0, therefore it must be the case that x = λ
µ

= ρ.

π1,n = π0,0

[
λ

α

(
λ

µ

)n
− λ+ γ

µ− λ− γ

(
λ

µ

)n
+

λ+ γ

µ− λ− γ

(
λ

λ+ γ

)n]

⇒ π1,n = π0,0

[
λ

α

(
λ

µ

)n
+

λ+ γ

µ− λ− γ

((
λ

λ+ γ

)n
−
(
λ

µ

)n)]
(5.15)

Now all that remains is to solve for π0,0. The constraint that all steady state proba-

bilities sum to 1 is invoked.

∞∑
n=0

π0,n +
∞∑
n=0

π1,n = 1

⇒ π0,0

[∞∑
n=0

(
λ

λ+ γ

)n
+
λ

α

∞∑
n=0

(
λ

µ

)n
+

λ+ γ

µ− λ− γ

∞∑
n=0

(
λ

λ+ γ

)n
−
(
λ

µ

)n]
= 1

⇒ π0,0 =

[
1

1− λ
λ+γ

+
λ

α

(
1

1− λ
µ

)
+

λ+ γ

µ− λ− γ

(
1

1− λ
λ+γ

− 1

1− λ
µ

)]−1

⇒ π0,0 =

[
λ+ γ

γ
+

µλ

α(µ− λ)
+

λ+ γ

���
���

�
(µ− λ− γ)

(
λ���

��
��

(µ− λ− γ)

γ(µ− λ)

)]−1

⇒ π0,0 =

[
α(λ+ γ)(µ− λ) + µλγ + λα(λ+ γ)

γα(µ− λ)

]−1

⇒ π0,0 =
αγ(µ− λ)

µ(α(λ+ γ) + λγ)

37

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ π0,0 = (1− ρ)
αγ

αγ + αλ+ +λγ
(5.16)

Theorem 1. Given an M/M/1 ◦ {M,M, 1} queue, described by the balance and

boundary equations (5.9), (5.15), and (5.16), and µ > λ, the steady-state distribution

is given by:

π0,n = π0,0

(
λ

λ+ γ

)n

π1,n = π0,0

[
λ

α

(
λ

µ

)n
+

λ+ γ

µ− λ− γ

((
λ

λ+ γ

)n
−
(
λ

µ

)n)]

π0,0 = (1− ρ)
αγ

α(λ+ γ) + λγ

5.1.2 Deriving System Metrics

With the CTMC solved, one can begin to work towards deriving closed form expres-

sions for E[R], E[E], and E[Sw]. Theorem 1 is used as a starting point to solve for

E[R]. From the distribution of the number of jobs in the system, one can arrive at

E[N], and with Little’s Law one can then arrive at E[R]. The analysis begins by

summing the steady state probabilities weighted by the number of jobs in system for

38

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

each state.

E[N] =
∞∑
n=0

nπ0,n +
∞∑
n=0

nπ1,n

⇒ E[N] = π0,0

[∞∑
n=0

n

(
λ

λ+ γ

)n
+
λ

α

∞∑
n=0

n

(
λ

µ

)n
+

λ+ γ

µ− λ− γ

(∞∑
n=0

n

(
λ

λ+ γ

)n
−
∞∑
n=0

n

(
λ

µ

)n)]

⇒ E[N] = π0,0

[
λ

λ+ γ

(
d

d(λ
λ+γ

)

(
1

1− (λ
λ+γ

)

))
+
λ

α

(
λ

µ

)(
d

d(λ
µ
)

(
1

1− (λ
µ
)

))
+

λ+ γ

µ− λ− γ

[
λ

λ+ γ

(
d

d(λ
λ+γ

)

(
1

1− (λ
λ+γ

)

))
+
λ

µ

(
d

d(λ
µ
)

(
1

1− (λ
µ
)

))]]

⇒ E[N] = π0,0

[
(λ
λ+γ

)

(1− (λ
λ+γ

))2
+
λ

α

(
(λ
µ
)

(1− (λ
µ
))2

)

+
λ+ γ

µ− λ− γ

(
(λ
λ+γ

)

(1− (λ
λ+γ

))2
−

(λ
µ
)

(1− (λ
µ
))2

)]

⇒ E[N] = π0,0

[
λ(λ+ γ)

γ2
+

µλ2

α(µ− λ)2
+

λ+ γ

µ− λ− γ

(
λ(λ+ γ)(µ− λ)2 − µλγ2

γ2(µ− λ)2

)]

⇒ E[N] = λπ0,0

[
λ+ γ

γ2
+

µλ

α(µ− λ)2
+

λ+ γ

��
���

�
µ− λ− γ

(
���

���
�

(µ− λ− γ)(µλ− λ2 + µγ)

γ2(µ− λ)2

)]

39

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ E[N] = λπ0,0

[
αλ(λ+ γ)(µ− λ)2 + µλ2γ2 + αλ(λ+ γ)(µλ+ λ2 − µγ)

αγ2(µ− λ)2

]

⇒ E[N] = µλπ0,0

[
α(λ+ γ)(µ− λ+ γ) + λγ2

αγ2(µ− λ)2

]

⇒ E[N] = π0,0
µλ

µ− λ

[
(λ+ γ)

γ

(
1

µ− λ
+

1

γ

)
+

λ

α(µ− λ)

]

⇒ E[N] =
αγ���

�(µ− λ)

�µ(α(λ+ γ) + λγ)

(
�µλ

���
�µ− λ

)[
(λ+ γ)

γ

(
1

µ− λ
+

1

γ

)
+

λ

α(µ− λ)

]

⇒ E[N] =
α(λ+ γ)

α(λ+ γ) + λγ

(
λ

µ− λ
+
λ

γ

)
+

λγ

α(λ+ γ) + λγ

(
λ

µ− λ

)

⇒ E[N] =
λ

µ− λ

(
���

���
���

�α(λ+ γ) + λγ)

α(λ+ γ) + λγ)

)
+
λ

γ

(
α(λ+ γ)

α(λ+ γ) + λγ

)

⇒ E[N] = E[NM/M/1] +
λ

γ

(
α(λ+ γ)

αγ + αλ+ λγ

)
(5.17)

The expected response time is solved by applying Little’s Law to (5.17).

E[R] = E[RM/M/1] +
1

γ

(
α(λ+ γ)

αγ + αλ+ λγ

)
(5.18)

It is seen that E[N] and E[R] both are decompositions, where one term is the classical

queueing component which has no energy concerns (here an M/M/1 queue) and some

other term weighted by α which captures the influence of the energy-aware portion

40

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

of the queue (here it is the idling, and setup time distributions, {M,M, 1}). This

makes sense as the interpretation of α = 0 is that the server never turns off, in which

case it would behave identically to an M/M/1 queue. On the other hand, as α→∞,

which means the server immediately switches off when it idles, the values of E[N]

and E[R] are equal to that of an M/M/1 queue summed with the terms of λ
γ

and 1
γ

respectively as seen in (5.17) and (5.18). It is also noted that E[N] and E[R] both

increase in α. Taking these observations of the relationship of these metrics to the

feasible range of α, one can conclude that when choosing an α and holding other

parameters constant, E[N] and E[R] have lower and upper bounds and increasing α

scales the metrics increasingly between these two bounds.

The idling time is chosen as the decision variable in this setting because managers

usually do not have control over parameters such as the server turn on time or the

arrival rate. On the other hand, they typically have control of when or how often

to turn a server off. Due to this, it is important to understand how the choice of

α impacts the system under varying conditions. Figure 5.3 shows E[R] versus α for

several systems under different configurations. Looking at each sub-figure (a)-(d) in-

dividually, the shape of each curve is relatively the same across all system loads, and

is shifted up the y-axis as ρ increases. These curves are similar because the difference

in the upper and lower bounds of E[R] is the constant value 1
γ
. The difference is that

the higher the system load (the greater λ is), the slower the system will approach

its upper bound as α increases. However, this difference is not large as can be ob-

served across all sub-figures of Figure 5.3. Comparing sub-figures allows one to see

41

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

(a) µ = 1, γ = 0.1 (b) µ = 1, γ = 0.25

(c) µ = 1, γ = 0.5 (d) µ = 1, γ = 1

Figure 5.3: M/M/1 ◦ {M,M, 1} response time vs α for varying γ values

the impact that the turn on times have on E[R]. As one would expect, the lower

the setup rate, the larger the range between the two bounds. However, something

perhaps more surprising is how fast E[R] increases with α. Looking at Figure 5.3-(a),

where the distance between the bounds is 1/0.1 = 10, moving from a configuration

where the server always remains on, to a configuration where the idling time rate is

only 0.1, has a significant impact on E[R]. In fact E[R] increases by at least 5 (50%

of the distance between the bounds) over all system loads. From this, one can make

the interesting conclusion that if the setup time is relatively large, having the server

42

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

have even a small chance to turn off when it idles can have a drastic (and perhaps

unfavourable) effect on the expected response time of a job.

With E[N] and E[R] solved for, the analysis moves on to E[E]. This is achieved by

summing the steady state probabilities of being in the energy states SETUP, BUSY

and IDLE defined in Section 4.1, weighted by their corresponding energy values.

These steady state probabilities are denoted by, πSetup, πBusy, and πIdle respectively.

E[E] = EBusyπBusy + EIdleπIdle + ESetupπSetup (5.19)

One can start by making the simple observation that for any stable single server

system,

πBusy = ρ. (5.20)

Also, there is only one system state in the energy state IDLE, so it follows that,

πIdle = π1,0 = (1− ρ)
λγ

αγ + αλ+ λγ
. (5.21)

So to solve for E[E], all that remains is to solve for πSetup. This is done by summing

all steady state probabilities in the first row of the Markov chain, excluding π0,0.

πSetup =
∞∑
n=1

π0,n

⇒ πSetup =
∞∑
n=0

π0,n − π0,0

⇒ πSetup = π0,0

(∞∑
n=0

(
λ

λ+ γ

)n
− 1

)

43

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ πSetup = π0,0

(
1

1− λ
λ+γ

− 1

)
⇒ πSetup =

λ

γ
π0,0

⇒ πSetup = (1− ρ)
λα

α(λ+ γ) + λγ
(5.22)

Substituting 5.20, 5.21, and 5.22 into (5.19) gives a closed form expression for the

expected energy.

E[E] = ρEBusy + EIdle(1− ρ)
λγ

αγ + αλ+ λγ
+ ESetup(1− ρ)

αλ

α(λ+ γ) + λγ

⇒ E[E] = EBusy

[
ρ+ rIdle(1− ρ)

λγ

α(λ+ γ) + λγ
+ rSetup(1− ρ)

αλ

α(λ+ γ) + λγ

]

⇒ E[E] = EBusy

[
ρ+ (1− ρ)

λ

α(λ+ γ) + λγ
(rIdleγ + rSetupα)

]

⇒ E[E] = EBusy

[
ρ+ (1− ρ)

���
���

��αγ + αλ+ λγ

αγ + αλ+ λγ
rIdle

+ (1− ρ)
α

αγ + αλ+ λγ
(λrSetup − (λ+ γ)rIdle)

]

⇒ E[E] = E[EM/M/1] + EBusy(1− ρ)
α

αγ + αλ+ λγ
(λrSetup − (λ+ γ)rIdle)

This gives us the true expected energy usage of the system, however since in the cost

functions (4.5), E[E] is weighted by a constant β, the constant EBusy can be absorbed,

44

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

and a metric normalized by this weight can be derived.

E[EN] = E[EN
M/M/1] + (1− ρ)

α

αγ + αλ+ λγ
(λrSetup − (λ+ γ)rIdle). (5.23)

The final metric is the simplest to solve for. The expected rate of switching is equal

to the product of α and the steady state probability of being idle, π1,0.

E[Sw] = απ1,0

⇒ E[Sw] = (1− ρ)
αλγ

αγ + αλ+ λγ
(5.24)

While there is more analysis to be done on equations (5.23) and (5.24), this is deferred

to Section 5.3 as the reader will see conclusions about these expressions can be made

in a more general setting.

With (5.18), (5.23), and (5.24), system metrics for the M/M/1 ◦ {M,M, 1} are fully

determined. However, as stated previously in this section, although one can derive

optimal policies within the set of policies described by the M/M/1◦{M,M, 1} queue,

one cannot derive the optimal policy for a single server system (even under full expo-

nential assumptions), under most non-trivial cost functions. This is due to the fact

that the M/M/1 ◦ {M,M, 1} queue does not account for jobs accumulating before

entering SETUP. In order to arrive at an optimal policy under any cost function, a

more general system must be analysed, which is done in the following section.

45

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

5.2 The M/M/1 ◦ {M,M,k} Queue

Here the exact analysis of the M/M/1 ◦ {M,M, k} queue is presented. As was seen

in the previous section, the analysis of the M/M/1 ◦ {M,M, 1} queue fell short when

determining the optimal policy. Although in this section all assumptions on the

underlying distributions are unchanged, the M/M/1 ◦ {M,M, k} allows for jobs to

accumulate in the queue before entering the state SETUP. For the reasons discussed

in Section 4.3.1, this small change to the system now allows for the model to describe

the optimal policy under any cost function of the form (4.5).

5.2.1 Markov Chain Solution

Again, due to the assumption that all underlying random variables are exponentially

distributed, the system can be modelled as a CTMC, as seen in Figure 5.4. The same

notation for the states of the form (n1, n2), is kept from Section 5.1, where n1 is 0 if

the server is off, and 1 if it is on, and n2 denotes the number of jobs in the system.

However, this Markov chain is considerably more complex than the one previously

solved, as upon inspection, the two rows do not begin to repeat until the after the

kth column. This leads to having four clear sections of the CTMC, which yields the

following balance equations:

π0,n = π0,0 (n < k) (5.25)

(λ+ γ)π0,n = λπ0,n−1 (n ≥ k) (5.26)

µπ1,n = λπ1,n−1 + λπ0,n−1 (0 < n < k) (5.27)

(µ+ λ)π1,n = λπ0,n−1 + γπ0,n + µπ1,n+1 (n ≥ k) (5.28)

46

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Figure 5.4: M/M/1 ◦ {M,M, k} Queue

and the boundary equation is:

π1,0 =
λ

α
π0,0. (5.29)

The steady state probabilities of the first section of the Markov chain, where n1 = 0

and 0 ≤ n2 < k, are trivially solved with respect to π0,0 using (5.25). This follows

so simply because the only action performed in these states is a job arriving to the

system.

The recursion observed for the first row in the Markov chain shown in Figure 5.2 is

seen again for the steady state probabilities of the repeating section of the first row,

described by (5.26). The difference here is the repeating portion of the first row does

not occur until the state (0, k), so the base case of the recursion is π0,k−1. However,

due to the first balance equation, it is known that π0,k−1 = π0,0, and the steady state

probabilities of the repeating section of the first row are thus given by:

π0,n = π0,0

(
λ

λ+ γ

)n−(k−1)

(k ≤ n). (5.30)

With the steady state probabilities of the first row now solved for (with respect to

47

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

π0,0), the analysis proceeds to solve for the steady state probabilities of the second

row, which is a more challenging problem, as will be seen. To solve for the first section

of the second row, where n1 = 1 and 0 ≤ n2 < k, the balance equation (5.27) was

carefully chosen. Instead of looking at the rate in and rate out of every state (which

leads to an overflow into the unknown probabilities of the repeating component), one

can choose to look at the rate in and rate out between the columns of the CTMC.

This allows the exploitation of the simplicity of the steady state probabilities in the

non-repeating portion of the first row. Furthermore, using this balance equation, all

the steady state probabilities in question can be described without any of the steady

state values of the repeating portion. Using (5.27) to solve each of these probabilities,

one can build up to a finite sum, and arrive at a general closed form solution after

applying the boundary condition of (5.29).

µπ1,1 = λπ1,0 + λπ0,0

⇒ π1,1 = ρπ1,0 + ρπ0,0

µπ1,2 = λπ1,1 + λπ0,0

⇒ π1,2 = ρ2π1,0 + ρ2π0,0 + ρπ0,0

...

µπ1,n = λπ1,n−1 + λπ0,0 (0 < n < k)

⇒ π1,n = ρnπ1,0 + π0,0

n∑
i=1

ρi (0 < n < k)

⇒ π1,n = π0,0

(
λ

α
ρn + ρ

1− ρn

1− ρ

)
(0 < n < k) (5.31)

48

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Now all that remains to solve the steady state probabilities with respect to π0,0 is to

solve the repeating portion of the second row. Similar to the analysis in Section 5.1,

this part of the Markov chain can be described in the form,

π1,n = Axn−(k−1) +B

(
λ

λ+ γ

)n−(k−1)

, (5.32)

where again, x = 1, ρ. Substituting (5.32) and (5.30) into (5.28) yields,

(λ+ µ)

(
Axn−(k−1) +B

(
λ

λ+ γ

)n−(k−1))
= λ

(
Axn−k +B

(
λ

λ+ γ

)n−k)
+ γπ0,0

(
λ

λ+ γ

)n−(k−1)

+ µ

(
Axn+2−k +B

(
λ

λ+ γ

)n+2−k)
(5.33)

and from which, one can separate and solve for B.

(λ+ µ)B
λ

λ+ γ
= λB + γπ0,0

λ

λ+ γ
+ µB

(
λ

λ+ γ

)2

⇒ B

(
(λ+ µ)

λ

λ+ γ
− λ− µ

(
λ

λ+ γ

)2)
= π0,0

λγ

λ+ γ

⇒ B

(
��
�(λγ)(µ− λ− γ)

(λ+ γ)���
�(λ+ γ)

)
= π0,0

��
�(λγ)

���
�(λ+ γ)

⇒ B = π0,0
λ+ γ

µ− λ− γ
(5.34)

49

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

It is noted that (5.34) is equivalent to (5.12). In other words, the value for B (the non-

homogeneous coefficient) in the M/M/1◦{M,M, 1} analysis equals the value of B in

the M/M/1◦{M,M, k} analysis. This is perhaps not surprising, as B is the coefficient

of the non-homogeneous component (values from the first row of the Markov chain)

in (5.32) and the recursion on the repeating portion of the first row of the Markov

chain of an M/M/1◦{M,M, k} is the same as that of an M/M/1◦{M,M, 1} queue.

With B solved, the analysis continues by solving for A. This is done by letting n = k

in (5.33) and using the definition (5.32) to reveal a term involving π1,k−1.

λA = λπ1,k−1 + γπ0,0
λ

λ+ γ
+B

λ

λ+ γ

(
µλ− (µ+ λ)(λ+ γ)

λ+ γ

)

Substituting in (5.31) for n = k − 1 gives

A =
π0,0

λ+ γ

[
λ(λ+ γ)

α
ρk−1 + ρ(λ+ γ)

1− ρk−1

1− ρ
+ γ − λ2 + λγ + µγ

µ− λ− γ

]

⇒ A =
π0,0

λ+ γ

[
λ(λ+ γ)

α
ρk−1 + ρ(λ+ γ)

1− ρk−1

1− ρ
+�
�γµ−��µγ − (λ+ γ)2

µ− λ− γ

]

⇒ A = π0,0

[
λ

α
ρk−1 + ρ

1− ρk−1

1− ρ
− λ+ γ

µ− λ− γ

]

⇒ A = π0,0

[(
λ

α
− λ

µ− λ

)
ρk−1 +

λ

µ− λ
− λ+ γ

µ− λ− γ

]

50

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ A = π0,0

[(
λ

α
− λ

µ− λ

)
ρk−1 − µγ

(µ− λ)(µ− λ− γ)

]
(5.35)

From here one can solve for the steady state probabilities of the repeating portion of

the second row by substituting (5.35), (5.34), and x = ρ into (5.32) and simplifying.

π1,n = π0,0

[(
λ

α
− λ

µ− λ

)
ρn − µγ

(µ− λ)(µ− λ− γ)
ρn−(k−1)

+
λ+ γ

µ− λ− γ

(
λ

λ+ γ

)n−(k−1)]

⇒ π1,n = π0,0

[(
λ

α
− λ

µ− λ

)
ρn +

1

µ− λ− γ

(
(λ+ γ)

(
λ

λ+ γ

)n−(k−1)

− γ

1− ρ
ρn−(k−1)

)]
(5.36)

Now all that remains to completely determine the steady state distribution is to solve

for π0,0. The typical approach of exploiting the fact that all probabilities sum to 1 is

used.

1 =
k−1∑
n=0

π0,n +
∞∑
n=k

π0,n +
k−1∑
n=0

π1,n +
∞∑
n=k

π1,n

⇒ 1 = π0,0

k−1∑
n=0

1 + π0,0

∞∑
n=k

(
λ

λ+ γ

)n−(k−1)

+ π0,0

k−1∑
n=0

(
λ

α
ρn +

λ

µ− λ
(1− ρn)

)
+ π0,0

∞∑
n=k

[(
λ

α
− λ

µ− λ

)
ρn

+
1

µ− λ− γ

(
(λ+ γ)

(
λ

λ+ γ

)n−(k−1)

− γ

1− ρ
ρn−(k−1)

)]

51

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ π0,0 =

[
k +

∞∑
n=0

(
λ

λ+ γ

)n
− 1 +

(
λ

α
− λ

µ− λ

) ∞∑
n=0

ρn +
λ

µ− λ
k

+
λ+ γ

µ− λ− γ

(∞∑
n=0

(
λ

λ+ γ

)n
− 1

)
− µγ

(µ− λ)(µ− λ− γ)

(∞∑
n=0

ρn − 1

)]−1

⇒ π0,0 =

[
µk

µ− λ
+

1

1− λ
λ+γ

− 1 +
λ(µ− λ− α)

α(µ− λ)

(
1

1− λ
µ

)
+

λ+ γ

µ− λ− γ

(
1

1− λ
λ+γ

− 1

)
− µγ

(µ− λ)(µ− λ− γ)

(
1

1− λ
µ

− 1

)]−1

⇒ π0,0 =

[
µk

µ− λ
+
λ

γ
+
µλ(µ− λ− α)

α(µ− λ)2
+

λ(λ+ γ)

γ(µ− λ− γ)
− µλγ

(µ− λ)2(µ− λ− γ)

]−1

⇒ π0,0 =
µ− λ
µ

[
k +

λ(µ− λ)

µγ
+
λ(µ− λ− α)

α(µ− λ)
+
λ(λ+ γ)(µ− λ)2 − µλγ2

µγ(µ− λ)(µ− λ− γ)

]−1

⇒ π0,0 = (1− ρ)

[
k +

λ(µ− λ)

µγ
+
λ(µ− λ− α)

α(µ− λ)
+
λ(µγ + µλ− λ2)���

���
�

(µ− λ− γ)

µγ(µ− λ)���
��

��
(µ− λ− γ)

]−1

⇒ π0,0 = (1− ρ)

[
k +

λ(α(µ− λ)2 + µγ(µ− λ− α) + α(µγ + µλ− λ2))

µαγ(µ− λ)

]−1

⇒ π0,0 = (1− ρ)

[
k + �

µλ(αµ− �2αλ+ µγ − λγ −��αγ +��αγ +�
��αλ) +���αλ3 −���αλ3

�µαγ(µ− λ)

]−1

52

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ π0,0 = (1− ρ)

[
k +

λ(α + γ)���
�(µ− λ)

αγ���
�(µ− λ)

]−1

⇒ π0,0 = (1− ρ)
αγ

kαγ + αλ+ λγ
(5.37)

Theorem 2. The steady state distribution of an M/M/1 ◦ {M,M, k} queue is given

by,

π0,n = π0,0, π1,n = π0,0

(
λ

α
ρn +

λ

µ− λ
(1− ρn)

)
for (0 ≤ n < k),

π0,n = π0,0

(
λ

λ+ γ

)n−(k−1)

and,

π1,n = π0,0

[(
λ

α
− λ

µ− λ

)
ρn

+
1

µ− λ− γ

(
(λ+ γ)

(
λ

λ+ γ

)n−(k−1)

− γ

1− ρ
ρn−(k−1)

)]

for (k ≤ n), where

π0,0 = (1− ρ)
αγ

kαγ + αλ+ λγ
.

5.2.2 Deriving System Metrics

As usual, from this point the analysis proceeds to solve for E[N] with the goal of

arriving at E[R]. The typical approach of summing weighted steady state probabilities

53

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

is used.

E[N] =
k−1∑
n=0

nπ0,n +
∞∑
n=k

nπ0,n +
k−1∑
n=0

nπ1,n +
∞∑
n=k

nπ1,n

⇒ E[N] = π0,0

k−1∑
n=0

n+ π0,0

∞∑
n=k

n

(
λ

λ+ γ

)n−(k−1)

+ π0,0

k−1∑
n=0

n

(
λ

α
ρn +

λ

µ− λ
(1− ρn)

)
+ π0,0

∞∑
n=k

n

[(
λ

α
− λ

µ− λ

)
ρn

+
1

µ− λ− γ

(
(λ+ γ)

(
λ

λ+ γ

)n−(k−1)

− γ

1− ρ
ρn−(k−1)

)]

⇒ E[N]

π0,0

=
k−1∑
n=0

n+
∞∑
n=k

n

(
λ

λ+ γ

)n−(k−1)

+
λ

α

∞∑
n=0

nρn +
λ

µ− λ

k−1∑
n=0

n

− λ

µ− λ

∞∑
n=0

nρn +
λ+ γ

µ− λ− γ

∞∑
n=k

n

(
λ

λ+ γ

)n−(k−1)

− µγ

(µ− λ)(µ− λ− γ)

∞∑
n=k

nρn−(k−1) (5.38)

Due to the complexity of these expressions, some of the terms are solved separately

to keep the algebra clean. These terms are denoted by T1, T2, and T3.

T1 ,
∞∑
n=k

n

(
λ

λ+ γ

)n−(k−1)

⇒ T1 =
∞∑
n=1

(n+ (k − 1))

(
λ

λ+ γ

)n
⇒ T1 =

∞∑
n=1

n

(
λ

λ+ γ

)n
+ (k − 1)

∞∑
n=1

(
λ

λ+ γ

)n

54

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ T1 =
λ

λ+ γ

∞∑
n=0

n

(
λ

λ+ γ

)n−1

+ (k − 1)

[∞∑
n=0

(
λ

λ+ γ

)n
− 1

]
⇒ T1 =

λ

λ+ γ

d

d(λ
λ+γ

)

∞∑
n=0

(
λ

λ+ γ

)n
+

k − 1

1− λ
λ+γ

− (k − 1)

⇒ T1 =
λ

λ+ γ

1

(1− λ
λ+γ

)2
+

(λ+ γ)(k − 1)− γ(k − 1)

γ

⇒ T1 =
λ(λ+ γ)

γ2
+
λ(k − 1)

γ

⇒ T1 =
λ(λ+ kγ)

γ2
(5.39)

T2 ,
∞∑
n=k

nρn−(k−1)

⇒ T2 =
∞∑
n=1

(n+ (k − 1))ρn

⇒ T2 =
∞∑
n=1

nρn + (k − 1)
∞∑
n=1

ρn

⇒ T2 = ρ
∞∑
n=1

nρn−1 +
k − 1

1− ρ
− (k − 1)

⇒ T2 = ρ
d

dρ

1

1− ρ
+
µ(k − 1)− (µ− λ)(k − 1)

µ− λ

⇒ T2 =
λ

µ

1

(1− λ
µ
)2

+
λ(k − 1)

µ− λ

⇒ T2 =
µλ

(µ− λ)2
+
λ(k − 1)

µ− λ

⇒ T2 =
λ(k(µ− λ) + λ)

(µ− λ)2
(5.40)

T3 ,
∞∑
n=0

nρn

55

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ T3 = ρ

∞∑
n=0

nρn−1

⇒ T3 = ρ
d

dρ

∞∑
n=0

ρn

⇒ T3 = ρ
d

dρ

1

1− ρ

⇒ T3 =
µλ

(µ− λ)2
(5.41)

Substituting (5.39), (5.40), and (5.41) into (5.38) yields,

E[N]

π0,0

=
k(k − 1)

2
+
λ(λ+ kγ)

γ2
+
λ

α

(
µλ

(µ− λ)2

)
+

λ

µ− λ

(
k(k − 1)

2

)
− λ

µ− λ

(
µλ

(µ− λ)2

)
+

λ+ γ

µ− λ− γ

(
λ(λ+ kγ)

γ2

)
− µγ

(µ− λ)(µ− λ− γ)

(
λ(k(µ− λ) + λ)

(µ− λ)2

)

⇒ E[N]

π0,0

=
k(k − 1)

2

(
1 +

λ

µ− λ

)
+
λ(λ+ kγ)

γ2

(
1 +

λ+ γ

µ− λ− γ

)
+

µλ

(µ− λ)2

(
λ

α
− λ

µ− λ

)
− µλγ(k(µ− λ) + λ)

(µ− λ)3(µ− λ− γ)

⇒ E[N]

π0,0

=
µk(k − 1)

2(µ− λ)
+

µλ(λ+ kγ)

γ2(µ− λ− γ)
+
µλ2(µ− λ− α)

α(µ− λ)3
− µλγ(k(µ− λ) + λ)

(µ− λ)3(µ− λ− γ)

⇒ E[N]

π0,0

=
µk(k − 1)

2(µ− λ)
+

µλ(λ+ kγ)

γ2(µ− λ− γ)

+
µλ2(µ− λ− α)(µ− λ− γ)− µαλγ(k(µ− λ) + λ)

α(µ− λ)3(µ− λ− γ)

56

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ E[N]

π0,0

=
µk(k − 1)

2(µ− λ)
+

µλ(λ+ kγ)

γ2(µ− λ− γ)
+ µλ

µ2λ− 2µλ2 − µλγ + λ3 + λ2γ

α(µ− λ)3(µ− λ− γ)

− µλµαλ+ αλ2 − αγk(µ− λ) +��
�αλγ −���αλγ

α(µ− λ)3(µ− λ− γ)

⇒ E[N]

π0,0

=
µk(k − 1)

2(µ− λ)
+

µλ(λ+ kγ)

γ2(µ− λ− γ)
+
µλ���

�(µ− λ)(µλ− λ2 − αλ− λγ − αγk)

α���
�(µ− λ)(µ− λ)2(µ− λ− γ)

⇒ E[N]

π0,0

=
µk(k − 1)

2(µ− λ)
+
µλ[α(µ− λ)2(λ− kγ) + γ2(µλ− λ2 − αλ− λγ − αγk)]

αγ2(µ− λ)2(µ− λ− γ)

⇒ E[N]

π0,0

=
µk(k − 1)

2(µ− λ)
+ µλ

µ2αλ− 2µαλ2 + αλ3

αγ2(µ− λ)2(µ− λ− γ)

+ µλ
γ(kµ2α− 2kµαλ+ kαλ2 + µλγ − λ2γ − αλγ − λγ2 − kαγ2)

αγ2(µ− λ)2(µ− λ− γ)

⇒ E[N]

π0,0

=
µk(k − 1)

2(µ− λ)
+ µλ

µ2αλ− 2µαλ2 + αλ3 + γ(µ− λ− α)(kαγ + αλ+ λγ)

αγ2(µ− λ)2(µ− λ− γ)

+ µλ
γ(kµ2α− 2kµαλ+ kαλ2 − kµαγ + kαλγ − µαλ+ αλ2)

αγ2(µ− λ)2(µ− λ− γ)

⇒ E[N]

π0,0

=
µk(k − 1)

2(µ− λ)
+
µλ�γ���

���
�

(µ− λ− γ)(kαγ + αλ+ λγ)

αγ�2(µ− λ)2
���

���
�

(µ− λ− γ)

+ µλ
µ2αλ− 2µαλ2 + αλ3

αγ2(µ− λ)2(µ− λ− γ)

+ µλ
γ(kµ2α− 2kµαλ+ kαλ2 − kµαγ + kαλγ − µαλ+ αλ2)

αγ2(µ− λ)2(µ− λ− γ)

⇒ E[N]

π0,0

=
µk(k − 1)

2(µ− λ)
+
µλ(kαγ + αλ+ λγ)

αγ(µ− λ)2

57

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

+
µ�αλ���

�(µ− λ)(µλ− λ2 + kµγ − kλγ − kγ2 − λγ)

�αγ2(µ− λ)�2(µ− λ− γ)

⇒ E[N]

π0,0

=
µk(k − 1)

2(µ− λ)
+
µλ(kαγ + αλ+ λγ)

αγ(µ− λ)2
+
µλ���

���
�

(µ− λ− γ)(λ+ kγ)

γ2(µ− λ)���
���

�
(µ− λ− γ)

⇒ E[N] =
kαγ(k − 1)

2(kαγ + αλ+ λγ)
+

λ

µ− λ
+

αλ(λ+ kγ)

γ(kαγ + αλ+ λγ)

⇒ E[N] = E[NM/M/1] +
αλ(λ+ kγ)

γ(kαγ + αλ+ λγ)
+

kαγ(k − 1)

2(kαγ + αλ+ λγ)
. (5.42)

An application of Little’s Law gives the expected response time.

E[R] = E[RM/M/1] +
1

γ

kαγ + αλ

kαγ + αλ+ λγ
+

1

2λ

kαγ(k − 1)

kαγ + αλ+ λγ
(5.43)

As expected both E[N] and E[R] can be written as decompositions involving an

M/M/1 queue. However, the major difference between the expression for E[N] and

E[R] in the context of an M/M/1 ◦ {M,M, 1} queue, is here a third term is present.

One should expect that as k increases so should E[R] (jobs expect to wait while the

server is off). While it is true that k is present in the second term, it is also true that

this term is bounded above by 1
γ
, and therefore an increase in k has a limited impact.

On the other hand, the third term of the expression is not bounded in k at all and in

fact k is raised to the second power in the numerator and only the first power in the

denominator.

Figure 5.5 illustrates the effect which k has on the response time across the range of

58

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

α. Increasing k has little impact on the shape of the curves. However, the distance

between the bounds of E[R] increases with k, and how much it increases seems to rely

on the load on the system. For example, comparing Figure 5.5-(a) to Figure 5.5-(c),

one can see a large increase in the distance between the bounds for ρ = 0.2 (≈ 50%),

while for ρ = 0.8 the increase is relatively low (less than 20%). Due to this difference

of the rate in which the upper bound increases, (perhaps surprisingly) the worst case

response time for the lighter loaded systems is greater than that of the heavily loaded

systems.

In other words, with respect to response time, it is less appealing to have the server

in a lightly loaded system turn off, than it is to have the server in a heavily loaded

system turn off, when k > 0.

This observation may seem counter intuitive, as one would expect that even for the

expected response time, it would be appealing to turn off the server in the system

which idles more. While this intuition is valid for an M/M/1 ◦ {M,M, 1} queue, it

can be misleading for an M/M/1 ◦ {M,M, k} queue. In the case of k > 0 there is

a phenomenon which occurs in the system, in particular in one where the system is

lightly loaded, or one where k is relatively high. If a job arrives while the server is in

state OFF and there are less than k jobs in the system, that specific job may have

to wait a much longer period of time than others which arrive while the server is in

states BUSY or even state SETUP. This is due to the fact that that job has to wait

for potentially k − 1 jobs to arrive before the server even begins to turn on, and if

the system load is light, this takes more time to occur than if the system load were

59

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

(a) µ = 1, γ = 0.1, k = 2 (b) µ = 1, γ = 1, k = 2

(c) µ = 1, γ = 0.1, k = 5 (d) µ = 1, γ = 1, k = 5

(e) µ = 1, γ = 0.1, k = 10 (f) µ = 1, γ = 1, k = 10

Figure 5.5: M/M/1 ◦ {M,M, k} response time vs α for varying γ and k values

60

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

heavy. Furthermore, if the system load is light, the server will find itself in state OFF

more often than if the load is heavy (holding all else constant), leading to even more

cases of some jobs having to wait a long time in the queue. This behaviour of jobs

arriving while the server is turned off skews the mean response time of the system,

which explains why Figure 5.5 shows higher response time for lightly loaded systems

for certain values of α.

Figure 5.6 takes a closer look at how varying the value of k affects the mean response

time. For all sub-figures in Figure 5.6, it is assumed that the server instantly turns

off when it idles. This is done since it is known that in the optimal policy this will

be the case, or the server will always remain on, and here k would have no impact on

the steady state behaviour. Hence, for this context it follows that,

E[R] = E[RM/M/1] +
1

γ
+

1

2λ

k(k − 1)γ

kγ + λ
.

The reader is reminded that although Figure 5.6 shows k on a continuous range, in

practice this parameter must take on discrete values. Here one can see that E[R] for

lightly loaded systems does in fact surpass that of heavily loaded systems for some

value of k. The threshold for which the expected response time of a lightly loaded

system overtakes the heavily loaded one seems to depend on the value of γ. This can

be observed by looking at Figure 5.6-(d), where the server setup time is high. One

notes that once k > 20, the mean response time of the ρ = 0.2 system is larger than

any other. However, even for relatively large values of k, the ρ = 0.8 system has a

larger E[R] than for both the ρ = 0.4 and ρ = 0.6 systems. In contrast, looking at the

61

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

(a) µ = 1, γ = 1 (b) µ = 1, γ = 0.1

(c) µ = 1, γ = 0.01 (d) µ = 1, γ = 0.001

Figure 5.6: M/M/1 ◦ {M,M, k} response time vs k for varying γ values

higher ranges of k in Figure 5.6-(c) (where the setup time is shorter), the expected

response time of the ρ = 0.4 system now exceeds that of the ρ = 0.8 system. Making

the setup times even shorter, one observes that in Figure 5.6-(a) and Figure 5.6-(b),

as k increases, the heaviest loaded system offers the lowest expected response time.

Furthermore, it is noted that the lower the system load, the more drastic the impact

on the response time. For example, for k = 25 in Figure 5.6-(a), the expected response

time of the ρ = 0.2 system is more than double that for ρ = 0.8, while the difference

between the ρ = 0.6 and ρ = 0.8 is relatively small (≈ 10%). Taking all of these

62

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

observations together one should be very careful when making these design decisions

for systems of this nature. Specifically, one should avoid using higher values of k if

the system load is not correspondingly heavy, as the increase in E[R] can be dramatic.

When solving for the expected energy used by the system, the previous method of

weighting the steady state probabilities of different energy states (πSetup, πBusy, and

πIdle) by the corresponding energy values (ESetup, EBusy, and EIdle) is employed. The

observations made in Section 5.1 that πBusy = ρ, and πIdle = π1,0 still hold, but of

course in this context π1,0 is a slightly different expression due to the addition of k.

Therefore, it follows that,

πIdle = (1− ρ)
αγ

kαγ + αλ+ λγ
. (5.44)

As before, to solve for πSetup, all terms in the steady-state distribution where the

server is turning on (π0,n where n ≥ 0) are summed.

πSetup =
∞∑
n=k

π0,n

⇒ πSetup = π0,0

∞∑
n=k

(
λ

λ+ γ

)n−(k−1)

⇒ πSetup = π0,0

∞∑
n=1

(
λ

λ+ γ

)n
⇒ πSetup = π0,0

(∞∑
n=0

(
λ

λ+ γ

)n
− 1

)
⇒ πSetup = π0,0

(
1

1− λ
λ+γ

− 1

)
⇒ πSetup =

λ

γ
π0,0

63

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ πSetup = (1− ρ)
αλ

kαγ + αλ+ λγ
(5.45)

Solving for E[E] gives,

E[E] = EBusyπBusy + EIdleπIdle + ESetupπSetup.

Substituting in πBusy = ρ, (5.44), and (5.45) allows for one to arrive at a closed form

expression.

E[E] = EBusyρ+ EIdle(1− ρ)
αγ

kαγ + αλ+ λγ
+ ESetup(1− ρ)

λα

kαγ + αλ+ λγ

⇒ E[E] = EBusy

[
ρ+ (1− ρ)

λ

kαγ + αλ+ λγ
(γrIdle + αrSetup)

]

⇒ E[E] = EBusy

[
ρ+ (1− ρ)

��
���

���
�kαγ + αλ+ λγ

kαγ + αλ+ λγ
rIdle

+ (1− ρ)
α

kαγ + αλ+ λγ
(λrSetup − (λ+ kγ)rIdle)

]

⇒ E[E] = E[EM/M/1] + EBusy(1− ρ)
α

kαγ + αλ+ λγ
(λrSetup − (λ+ kγ)rIdle)

Using the simplification employed before of factoring out EBusy and solving instead

for the normalized expected energy yields:

E[EN] = E[EM/M/1] + (1− ρ)
α

kαγ + αλ+ λγ
(λrSetup − (λ+ kγ)rIdle) (5.46)

Now all that remains to solve for is the expected switching rate. As before, arriving

64

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

at a closed form expression is extremely simple, since by observation E[Sw] equals

the product of α and π1,0, which implies

E[Sw] =
αλγ

kαγ + αλ+ λγ
(5.47)

With (5.43), (5.46), and (5.47), all metrics of the cost functions are solved for and

optimal policies can be derived. Looking at each closed form expression individually

from the view point of the decision variables, one begins to understand why most

of the optimal policies remained unknown until now, and the core challenges of the

problem. Each metric is minimized when the decision variable is at one of its feasible

bounds, unfortunately to minimize each metrics the variables are “pulled” in different

directions. This is shown in Table 5.6.

Optimal Values of
Metric α k

E[R] 0 1
E[E] 0 or →∞ →∞
E[Sw] 0 →∞

Table 5.6: Optimal Parameters of Metrics

It is observed that to minimize E[E], the optimal choice is α = 0 when ridle <

λ
kγ+λ

rsetup and α→∞ otherwise.

5.2.3 Products of Metrics

As mentioned previously, some popular cost functions in the literature are the prod-

ucts of expectations, for example, the Energy Response Product (ERP), which as its

65

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

name suggests is E[R]E[E]. However, little is known about cost functions which are

the expectations of products, for example, E[R ·E]. In general E[R]E[E] 6= E[R ·E],

as these two random variables can be highly dependent. While E[R]E[E] is a viable

and sensible cost function, E[R · E] is arguably more accurate in determining the

behaviour which the ERP attempts to capture, which in some applications makes the

expectation of products a more appealing choice.

This section attempts to gain understanding on how one would solve for metrics which

are expectations of products, for example E[N · E], E[W · E], and E[R · E], where

W is a random variable denoting a job’s waiting time in the queue. One should note

that these metrics do not belong to the family of cost functions defined by (4.5), and

in general, methods to solve for these metrics are unknown. This section looks to

analyse only the metric E[N ·E], while later on in Section 5.3.2 these expectations of

products are looked at under a more general scope.

To solve for E[N ·E], the steady state probabilities are weighted by the corresponding

number in the system, and the energy values of the corresponding energy state. Due

to the assumption that EOff = 0, and the fact that while the server is idle, there are

0 jobs in the system, the algebra can be simplified to two sums.

E[N · E] = ESetup

∞∑
n=k

nπ0,n + EBusy

∞∑
n=0

nπ1,n

⇒ E[N · E] = ESetup

∞∑
n=k

n

(
λ

λ+ γ

)n−(k−1)

+ EBusy

[
λ

α

∞∑
n=0

nρn +
λ

µ− λ

k−1∑
n=0

n

66

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

− λ

µ− λ

∞∑
n=0

nρn +
λ+ γ

µ− λ− γ

∞∑
n=k

n

(
λ

λ+ γ

)n−(k−1)

− µγ

(µ− λ)(µ− λ− γ)

∞∑
n=k

n

(
λ

λ+ γ

)n−(k−1)]

Substituting in the corresponding expressions in (5.39), (5.40), and (5.41):

E[N · E]

π0,0

= ESetup
λ(λ+ kγ)

γ2
+ EBusy

[
λ+ γ

µ− λ− γ

(
λ(λ+ kγ)

γ2

)
+

µλ

(µ− λ)2

(
λ

α
− λ

µ− λ

)
− µλγ(k(µ− λ) + λ)

(µ− λ)3(µ− λ− γ)

]

⇒ E[N · E]

π0,0

= ESetup
λ(λ+ kγ)

γ2
+ EBusy

λ+ γ

µ− λ− γ

(
λ(λ+ kγ)

γ2

)
+ EBusy

[
µλ2(µ− λ− α)

α(µ− λ)3
− µλγ(k(µ− λ) + λ)

(µ− λ)2(µ− λ− γ)

]

⇒ E[N · E]

π0,0

= ESetup
λ(λ+ kγ)

γ2
+ EBusy

λ+ γ

µ− λ− γ

(
λ(λ+ kγ)

γ2

)
+ EBusy

µλ(µλ− λ2 − αλ− λγ − kαγ)

α(µ− λ)2(µ− λ− γ)

⇒ E[N · E]

π0,0

= ESetup
λ(λ+ kγ)

γ2
+ EBusy

α(λ+ γ)(µ− λ)2(λ(λ+ kγ))

α(µ− λ)2(µ− λ− γ)

+ EBusy
γ2µλ(µλ− λ2 − αλ− λγ − kαγ)

α(µ− λ)2(µ− λ− γ)

⇒ E[N · E]

π0,0

= ESetup
λ(λ+ kγ)

γ2
+ EBusy

µλ(kαγ + αλ+ λγ)

αγ(µ− λ)2

+ EBusy
(µ2αλ− 2µαλ2 + αλ3 − µαλγ + αλ2γ)(λ2 + kλγ)

αγ2(µ− λ2)(µ− λ− γ)

67

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ E[N · E]

π0,0

= ESetup
λ(λ+ kγ)

γ2
+ EBusy

µλ(kαγ + αλ+ λγ)

αγ(µ− λ)2
+ EBusy

λ2(λ+ kγ)

γ2(µ− λ)

⇒ E[N · E] = EBusy
λ

µ− λ
+ ESetup(1− ρ)

αλ(λ+ kγ)

γ(kαγ + αλ+ λγ)

+ EBusyρ
αλ(λ+ kγ)

γ(kαγ + αλ+ λγ)

⇒ E[N · E] = E[(N · E)M/M/1] + ESetup(1− ρ)
αλ(λ+ kγ)

γ(kαγ + αλ+ λγ)

+ EBusyρ
αλ(λ+ kγ)

γ(kαγ + αλ+ λγ)
(5.48)

Taking the derivative with respect to k and setting it equal to 0 allows one to obtain

the optimal value of k assuming the server does not always remain on. Without loss

of generality, it is assumed EBusy = 1.

∂

∂k
E[N · E] = (ρ+ rSetup(1− ρ))

αλ

γ

(
∂

∂k

λ+ kγ

kαγ + αλ+ λγ

)

⇒ ∂

∂k
E[N · E] = (ρ+ rSetup(1− ρ))

αλ

γ

(
γ(kαγ + αλ+ λγ)− αγ(λ+ kγ)

(kαγ + αλ+ λγ)2

)

⇒ ∂

∂k
E[N · E] = (ρ+ rSetup(1− ρ))

αλ

γ

(
λγ2

(kαγ + αλ+ λγ)2

)
(5.49)

Upon inspection one can note that in general (5.49) can not equal 0, for any value of

k. This implies that E[N ·E] is minimized when k is at one of its bounds. Since one

can also note that (5.49) is always positive (E[N ·E] increases with k), the minimum

68

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

must be at the lower bound of k, which is 1 (or possibly 0 if one were to allow such

behaviour).

When taking the partial derivative of (5.48) with respect to the second decision

variable, α, one sees a similar result.

∂

∂α
E[N · E] = (ρ+ rSetup(1− ρ))

λ(λ+ kγ)

γ

(
∂

∂k

α

kαγ + αλ+ λγ

)

⇒ ∂

∂α
E[N · E] = (ρ+ rSetup(1− ρ))

λ(λ+ kγ)

γ

(
kαγ + αλ+ λγ − α(λ+ kγ)

(kαγ + αλ+ λγ)2

)

⇒ ∂

∂α
E[N · E] = (ρ+ rSetup(1− ρ))

λ(λ+ kγ)

γ

(
λγ

(kαγ + αλ+ λγ)2

)
(5.50)

Here one can see that (5.50) also cannot equal 0. Furthermore, the derivative is pos-

itive, meaning the optimal value for α is at its corresponding lower bound, in this

case 0. Taking both these results together, it can be seen that the server has a strong

affinity to remain on. In fact, one can conclude that to minimize E[N ·E] under any

parameter configuration, it is always optimal to keep the server on. At first thought

this may seem like a surprising result. But, after a few observations, one can conclude

that this is the case for a large group of metrics of this form, and in fact this result

is quite intuitive. However, it turns out that these observations can be made under a

more general setting, and therefore are presented later on in Section 5.3.2.

69

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

5.3 The M/G/1 ◦ {G,G,k} Queue

Here all assumptions on the underlying distributions of the model are relaxed to the

most general case, excluding the arrival stream. This makes the system much more

challenging to analyse since it can no longer be viewed as a Markov chain, nor does

it contain an embedded Markov chain that aids analysis. Despite these difficulties

however, it will be shown that this system can still be analysed with respect to the

expected energy used, as well as the expected switching rate.

When dealing with general distributions, it is no longer useful to look at the specific

system states, (n1, n2), denoting the number of jobs in the system, as well as if the

server is on or off, such as was done in Sections 5.1 and 5.2. The reason that dividing

the model into these states is no longer beneficial is due to the loss of the Markovian,

or memoryless property, which is a property of the exponential distribution. If one

were to inspect the state (1, 2) for example, it would not be enough to know just this

information to make predictions about the future. Specifically in this case, one would

also need to keep track of how long the system has been idle since its last turn on, as

well as how long the current job has been processed. Instead, the system is viewed

from a higher level perspective through its energy states of OFF, SETUP, BUSY, and

IDLE as defined in Section 4.1. Furthermore, a specific state within the state OFF

is also defined to denote the server being off with no jobs in the system, OFF0.

5.3.1 The Work-Cycle

Before any analysis of the M/G/1 ◦ {G,G, k} queue is shown, it is important to first

introduce the notion of a Work-cycle. A Work-cycle is defined to be the evolution of

70

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

the system starting in state OFF0, leaving, and then returning to OFF0. In detail, the

system starts a Work-cycle with the server being off with no jobs present, k jobs arrive

and the server begins to turn on and enters SETUP. Once the server turns on, jobs are

processed and the server will eventually become idle. The system may switch between

BUSY and IDLE an arbitrary number of times, but the system will eventually reach

its idle threshold and turn off, returning to OFF0. This basic concept will allow for an

easy analysis of the system with respect to energy used, and the switching rate of the

server. To solve for these metrics, some notation must be defined. The proportion of

time spent in an energy state in steady state is denoted by PIDLE, PSETUP , PBUSY ,

POFF , and POFF,0, respectively. Also, the rate at which Work-cycles occur in the

system is denoted by wrate. From here the following observations are made.

• Work-cycles are mutually independent. This comes from the fact that each

underlying random variable is independently distributed and when the system

reaches state OFF0 all information present in the system needed to determine

future events is completely reset.

• The expected proportion of time spent in any state of the system during one

Work-cycle is equal to the proportion of time spent in the corresponding state

in steady state. Since the system information is reset when the system enters

state OFF0, this must be the case.

• The system evolution can be viewed as an infinite series of Work-cycles, and

the steady state values are equal to the product of the Work-cycle rate and the

expected time being in the corresponding state for a single Work-cycle.

71

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

The last observation allows one to write out the steady state values for the energy

states, in terms of the Work-cycle rate, as seen in (5.51). It is known for a single

Work-cycle, the expected time to be in state OFF is k/λ, the expected time to be in

state SETUP is 1/γ, and the expected time to be in state OFF is 1/α.

POFF =
kwrate
λ

, PSETUP =
wrate
γ

, PIDLE =
wrate
α

(5.51)

We cannot use the Work-cycle approach for PBUSY . However, PBUSY is actually

given for free, due to the well known fact that for any stable single server system

the proportion of time the server is busy is equal to the utilization of the server, i.e.

PBUSY = ρ. As a side note it is very easy, albeit unnecessary, to solve for the expected

time the server is in state BUSY for a single Work-cycle, by working backwards:

ρ = tBUSYwrate ⇒ tBUSY =
ρ

wrate

With the steady state values for all four of the energy states written with respect to

the Work-cycle rate, the fact that all four of the probabilities must sum to 1 may

be invoked. From here one can arrive at a closed form expression for the Work-cycle

rate, seen in (5.52).

1 = POFF + PSETUP + PBUSY + PIDLE

⇒ 1 =
kwrate
λ

+
wrate
γ

+ ρ+
wrate
α

72

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ 1− ρ = wrate
kαγ + αλ+ λγ

αλγ

⇒ wrate = (1− ρ)
αλγ

kαγ + αλ+ λγ
(5.52)

From this point one can go on to solve for E[E], as well as E[Sw]. But before that

analysis is shown, an observation is made. It is noted that the Work-cycle rate is

intuitively equal to several other values present in the system, including the server’s

turn on rate, the turn off rate, and the rate out of OFF0. This is an interesting

observation since we get the following result.

λPOFF,0 = wrate ⇒ POFF,0 = (1− ρ)
αγ

kαγ + αλ+ λγ
⇒ POFF,0 = π0,0,

where π0,0 is the steady state probability from the CTMC in Section 5.2. Furthermore,

due to the Poisson process within the state OFF the system is Markovian, implying

that for every system state within the energy state OFF, the steady state values of

the M/G/1 ◦ {G,G, k} queue are exactly equal to those of an M/M/1 ◦ {M,M, k}

queue. It will be seen that these systems share other non-trivial characteristics later

in this section. For now the derivation of E[E] is continued.

Firstly each energy state is weighted by the corresponding energy value. Then the

value of EBusy is factored out.

E[E] = ρEBusy + EIdle
λ

α
π0,0 + ESetup

λ

γ
π0,0

73

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ E[E] = ρEBusy + EIdle(1− ρ)
λγ

kαγ + αλ+ λγ
+ ESetup(1− ρ)

αλ

kαγ + αλ+ λγ

⇒ E[E] = EBusy

[
ρ+ (1− ρ)

λ

kαγ + αλ+ λγ
(γrIdle + αrSetup)

]

⇒ E[E] = EBusy

[
ρ+ (1− ρ)

���
���

���kαγ + αλ+ λγ

kαγ + αλ+ λγ
rIdle

+ (1− ρ)
α

kαγ + αλ+ λγ
(λrSetup − (λ+ kγ)rIdle)

]

⇒ E[E] = E[EM/G/1] + EBusy(1− ρ)
α

kαγ + αλ+ λγ
(λrSetup − (λ+ kγ)rIdle)

The typical simplification to normalize by EBusy is applied, arriving at

E[EN] = E[EN
M/G/1] + (1− ρ)

α

kαγ + αλ+ λγ
(λrSetup − (λ+ kγ)rIdle). (5.53)

The analysis for E[Sw] is extremely straightforward, only requiring to exploit an

observation which was previously made. The turn off rate of the server (E[Sw]) is

exactly equal to the Work-cycle rate of the system. It directly follows that,

E[Sw] = wrate ⇒ E[Sw] = (1− ρ)
αλγ

kαγ + αλ+ λγ
. (5.54)

Again decompositions of the metrics are seen, showing a deep relationship to the

non-energy-aware counterpart. However, similarities beyond the previously analysed

decomposition are present. Looking at equations (5.53) and (5.54), and comparing

them to the equations in Section 5.2 of (5.46) and (5.47), it can be seen that the

74

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

mean rate that energy is consumed by the system as well as the switching rate of an

M/G/1 ◦ {G,G, k} system are identical to that of an M/M/1 ◦ {M,M, k} system.

Again, the behaviour of these systems is shown to be completely insensitive to the

underlying distributions, save for the arrival stream. Along with this information, we

also see the expression

λrSetup − (λ+ kγ)rIdle, (5.55)

embedded within the second term of (5.53). This term can become negative, and

when it does, E[EN] is minimized as α → ∞. This has the physical interpretation

that when the ratio of energy used while the server is idle is greater than some factor

of the ratio of energy used while the server is turning on, it is optimal with respect to

the energy used by the system to instantly turn off the server when it starts to idle.

The flip side of this situation also exists. If (5.55) is positive, E[EN] is minimized

when α = 0. The physical interpretation here is, when the ratio of energy used while

the server is idle is less than some factor of the ratio of energy used while the server

is turning on, it is optimal with respect to the energy used by the system to always

keep the server on.

The first case of instantly shutting the server off when it idles to minimize energy

use makes sense, since it stops the server from idling and brings it to a state which

consumes no energy. The second case where energy is minimized when the server

always remains on is perhaps not surprising, but is however less intuitive. These

observations can be leveraged to yield a very easy way to determine the optimal

policy for the system under certain conditions, specifically when ridle <
λ

kγ+λ
rsetup. It

is obvious that E[R] and E[Sw] are both minimized when α = 0, so if it is known

75

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

that E[EN] is also minimized when α = 0, it immediately follows that the optimal

policy for the system is to simply always leave the server on.

Theorem 3. The proportion of time spent in the energy states of an M/G/1 ◦

{G,G, k} queue, is dependent only on the means of the underlying distributions, giving

general expressions for E[EN] and E[Sw]. That is,

E[EN] = E[EN
M/G/1] + (1− ρ)

α

kαγ + αλ+ λγ
(λrSetup − (λ+ kγ)rIdle),

E[Sw] = (1− ρ)
αλγ

kαγ + αλ+ λγ

and for any single server system where the arrivals follow a Poisson process, if ridle <

λ
kγ+λ

rsetup, it is always optimal to leave the server on.

5.3.2 Products of Metrics

As was seen in Section 5.2.3 the cost function E[E · N] had the property that it is

always optimal to keep the server on. This section explains why this is the case, even

under general assumptions of an M/G/1 ◦ {G,G, k} queue. Furthermore, it will be

seen that this is also the case for a broad range of other metrics which are of the form:

f(w) = E[Rw1 · Ew2 ·Nw3 · Sww4 ·Ww5], (5.56)

where ∀i.wi ≥ 0.

With regards to the “always on” property of the E[E ·N] cost function, this becomes

intuitively clear after several observations. Firstly, it is known that in a stable system

76

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

there is no avoiding being in state BUSY for a proportion of time equal to the system

utilization, ρ. Therefore, the energy being consumed by the system must equal EBusy

for a proportion ρ of the time. Secondly, it is observed that the expected number in

the system while in state BUSY given that it arrived from state IDLE, is less than or

equal to the expected number of jobs in the system while in state BUSY given that

it arrived from state SETUP. This is due to the fact that arriving from state IDLE

implies there is only one job in the system, while arriving from state SETUP there are

at least k jobs, as well as whatever jobs arrived during the setup process (expected to

be λ
γ
). Thirdly, due to the two previous observations, ignoring the addition of terms

to E[N ·E] when the system is in state IDLE, OFF, and SETUP, one cannot achieve

a lower E[N ·E] than the policy which always keeps the server on. Lastly, it is noted

that when the system is in state IDLE, N = 0, which implies N · E = 0. Therefore

from the third and fourth observation, one can conclude the policy which will always

minimize E[N · E] is the policy which always keeps the server on. This is the exact

result which was seen in the algebra in Section 5.2.3.

This same argument can be extended to E[W · E], since while the system is in state

IDLE, the waiting time of a job will also always be 0. Furthermore, any cost function

of the form (5.56) in which Sw has a non-zero weight, will also be minimized when

the server is always on, since in that configuration Sw will equal 0. One begins to

see that for a large portion of these cost functions, it is simply optimal to leave the

server on.

In fact, for all cost functions of the form (5.56), if w3 > 0, w4 > 0, or w5 > 0, then it

77

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

is optimal to have the server remain on. This is because while the server is idle, W

and N equal 0. Also, as noted previously if Sw has a non-zero weight, it is trivially

optimal to leave the server on. Based on these observations many of the cost functions

can be removed from (5.56), as they have trivial solutions. By simplification this gives

a new family of cost functions of metric products of the form:

f(w) = E[Rw1 · Ew2], (5.57)

where ∀i.wi ≥ 0.

Observe that R = W +S where S is a random variable denoting the service time of a

job. A further observation is made that S is independent from both W , and E. This

gives the following equality,

E[Sw1 ·Ww2 · Ew3] = E[Sw1]E[Ww2 · Ew3]. (5.58)

It is observed that E[Sw1] depends only on the service time distribution, and re-

mains constant no matter what type of policy is chosen. Furthermore, due to reasons

discussed earlier, E[Ww2 ·Ew3] is minimized when the server always remains on. Sub-

stituting R = W + S into (5.57) yields:

f(w) = E[(W + S)w1 · Ew2] (5.59)

Restricting the weight, w1, to be a positive integer allows one to make further com-

ments about these cost functions. Expanding (5.59) gives an expectation of terms, all

78

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

of which contain W and E except for one which equals Sw1 · Ew2 . Letting T denote

all terms except Sw1 · Ew2 , and substituting into (5.59) gives the following.

f(w) = E[(W + S)w1 · Ew2]

⇒ f(w) = E
[(w1−1∑

i=0

(
wi
i

)
Ww1−i · Si + Sw1

)
· Ew2

]
⇒ f(w) = E[T + Sw1 · Ew2]

⇒ f(w) = E[T] + E[Sw1 · Ew2]

⇒ f(w) = E[T] + E[Sw1]E[Ew2] (5.60)

It is noted that all terms contained in T are of the form (5.58) and therefore are

minimized when the server remains on. Also, due to the previous observation that

E[Sw1] is independent from the chosen policy, it follows that E[Sw1]E[Ew2] is mini-

mized when E[E] is minimized. It is known from Theorem 3 that if ridle <
λ

kγ+λ
rsetup

then E[E] is also minimized when the server remains on.

From the above observations it is seen that for a large subset of the cost functions

which are the expectations of the products, the optimal policies are surprisingly triv-

ial. In fact, for all cost functions of the form (5.56) but not of the form (5.57), it is

always optimal to leave the server on. Furthermore, for all cost functions of the form

(5.57) if ridle <
λ

kγ+λ
rsetup, it is also optimal to always leave the server on.

79

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

5.3.3 Energy and Switching

Here the analysis takes a closer look at the effect which different parameter config-

urations have on E[EN] and E[Sw]. Due to the results of Theorem 3 analysing the

energy and switching equations (5.53) and (5.54), can be done by only knowing the

means of all underlying distributions. This allows one to inspect the expressions of

an M/G/1 ◦ {G,G, k} queue, and make the same observations in the context of an

M/M/1 ◦ {M,M, k} or M/M/1 ◦ {M,M, 1} queue. Due to this result, conclusions

can be made with considerable generality, and is the reason why a more detailed

analysis of these metrics has not been presented until now. From this point on, for

the purpose of simplicity, it is assumed that EBusy = 1, rIdle = 0.6, and unless stated

otherwise rSetup = 1.

The first relationship examined is the effect which the expected turn on time has on

the expected energy used by the system. This is shown in Figure 5.7. As one can see,

when γ is relatively low, corresponding to longer turn on times (Figures 5.7–(a)-(c)),

E[E] increases with α. This is due to the fact that the term in the expression for the

expected energy used, (5.55), is positive in these cases. Furthermore, the lower the

value of γ, the larger the increase in E[E] as α increases. One may argue that analysis

of these parameter values is trivial, since due to Theorem 3, one knows that here it

would be optimal to have α = 0. However it is important to understand the impact

α may have on E[E]. For example, a case could arise where due to a mis-estimation

of parameters, the server manager instantly turns the server off, but it is actually

80

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

(a) µ = 1, γ = 0.01, k = 1 (b) µ = 1, γ = 0.05, k = 1

(c) µ = 1, γ = 0.1, k = 1 (d) µ = 1, γ = 0.25, k = 1

(e) µ = 1, γ = 0.5, k = 1 (f) µ = 1, γ = 1, k = 1

Figure 5.7: M/G/1 ◦ {G,G, k}, E[E] vs α for varying γ values

81

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

optimal to always keep the server on. Understanding these risks can help managers

make (or choose to not make) system changes confidently.

Looking forward at Figures 5.7–(d)-(f), one can begin to see parameter configura-

tions where it is optimal to turn the server off. It is noted that in the case where

γ = 0.025 (Figure 5.7-(d)), E[E] for a system load of ρ = 0.2 decreases with α, while

the values of E[E] for other system loads increase, albeit only slightly. Again this is

due to the term (5.55) becoming negative for the lighter load before the other due

to the dependence on λ. As γ continues to increase, one can see that E[E] begins to

decrease with α, for all system loads. However, although E[E] does decrease for all

system loads, the heavier the system load is, the less of an impact α tends to have on

mean energy used. For example in Figure 5.7-(d), the ρ = 0.2 system sees a notable

decrease (≈ 40%), while the ρ = 0.8 system hardly sees a decrease at all. This is

mostly due to the fact that the higher ρ is, the less impact the choice of α can have

on the system’s E[E]. This is seen intuitively, since one knows that the system must

be in state BUSY for a ratio of time equal to the system load, ρ. Furthermore this is

seen mathematically, as the α term in (5.53) is weighted by (1 − ρ). In general, the

observation is made that the longer the server turn on times are, the more appealing

it is from an energy standpoint to keep the server on and the lighter the system load,

the more sensitive E[E] is to changes in γ.

Looking at the relationship between E[E] and α as k increases tells a similar story,

as shown in Figure 5.8. Reaching the threshold at which it becomes advantageous to

turn the server instantly off, as opposed to keeping it on, is accelerated by increasing

82

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

k. This makes sense as having the server turn off and remain in state OFF (where

the energy consumed is 0) for a longer time is clearly more appealing from an energy

standpoint. Furthermore, one notes the same relationship between the system loads

as k increases. That is, the percentage difference between having the server turn off,

rather than remain on, is much higher when considering systems with relatively lower

loads.

This similarity of k and γ is not just seen within the figures. One can also note that

in the expression for E[E], (5.53), as α approaches infinity, k and γ are symmetric.

In other words, if the server immediately turns off when it idles, a change to k while

holding γ constant is equivalent to making the same change to γ while holding k

constant. The interpretation of this is quite interesting, due to the fact that k is

directly related to the time the system spends in state OFF, while on the other hand,

γ is inversely related to the time the system spends in state SETUP. The fact that

these two parameters have exactly the same relationship to E[E] is quite remarkable.

With the effects of k and γ discussed, the analysis proceeds to look at the relationship

between E[E] and rSetup. While one can make the obvious observation that as rSetup

increases, so too will the expected energy used, it is of interest to see how exactly it

affects the system, specifically with respect to α and ρ. These relationships can be

seen in Figure 5.9. As expected, as rSetup increases so does the energy consumption

as the server is switched off. However, a result that was perhaps not initially obvious

83

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

(a) µ = 1, γ = 0.1, k = 2 (b) µ = 1, γ = 1, k = 2

(c) µ = 1, γ = 0.1, k = 5 (d) µ = 1, γ = 1, k = 5

(e) µ = 1, γ = 0.1, k = 10 (f) µ = 1, γ = 1, k = 10

Figure 5.8: M/G/1 ◦ {G,G, k}, E[E] vs α for varying k and γ values

84

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

(a) µ = 1, γ = 0.1, k = 1, rSetup = 1 (b) µ = 1, γ = 0.1, k = 1, rSetup = 2

(c) µ = 1, γ = 0.1, k = 1, rSetup = 3 (d) µ = 1, γ = 0.1, k = 1, rSetup = 5

Figure 5.9: M/G/1 ◦ {G,G, k}, E[E] vs α for varying rSetup values

85

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

is also noted here. As rSetup increases, E[E] for lower system loads surpasses that for

higher system loads. This is similar to the effect seen with the relationship between

E[R] and k, as shown in Figure 5.6. This is due to the server turning off more fre-

quently as the load decreases. Furthermore, the observation is made that the system

loads of ρ = 0.2 and ρ = 0.4 have little difference between their corresponding values

of E[E] while the gap increases significantly between ρ = 0.4, ρ = 0.6 and ρ = 0.8.

Again a similar effect was seen with E[R] in Figure 5.5. While the curves there were

closer when the system loads were heavy, the opposite is seen here with E[E], as the

curves are close when the loads are light.

In conclusion, with regards to E[E] under general settings, increasing k and γ have

the same positive effect on the metric. On the other hand, increasing rSetup will have

a negative impact on the overall metric, as well as shifting which system loads have

the highest and lowest expectations. Finally, in general, changes to these parameters

will have a higher impact for a lightly loaded system, compared to a heavily loaded

one.

E[Sw] is considered next. It is important to note that the expected switching rate

is always equal to 0 when the server is kept on at all times (α = 0). Furthermore,

given this fact, E[Sw] can also be viewed as a decomposition with the corresponding

classical counterpart (M/G/1 in this context), as the switching rate for an M/G/1 is

simply 0.

86

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

(a) µ = 1, γ = 0.1, k = 1 (b) µ = 1, γ = 0.5, k = 1

(c) µ = 1, γ = 1, k = 1 (d) µ = 1, γ = 5, k = 1

Figure 5.10: M/G/1 ◦ {G,G, k}, E[Sw] vs α for varying γ values

Figure 5.10 shows how increasing γ affects the switching rate for varying system loads.

As perhaps initially expected, Figure 5.10-(a) shows the switching rate increase with

α, where the lighter the system load, the higher the switching rate. However, when

one inspects Figure 5.10–(b)-(d), where the server setup time is increased, one can

see that E[Sw] for the system loads of ρ = 0.4 and ρ = 0.6 begin to surpass that

of the lightest system load ρ = 0.2. From this observation, one would perhaps con-

clude that as γ increases, systems with higher loads will also have higher switching

rates. However this is not the case. In fact, allowing γ to become very large (10,000),

87

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

gives a similar relationship to that of Figure 5.10-(d). This occurs because there are

advantages to having a high or low system load when trying to keep the switching

rate low. For a heavily loaded system, the server is less likely be in state IDLE and

therefore the server does not have an opportunity to turn off. On the other hand, for

a lightly loaded system, when the server does shut down and enters state OFF, the

amount of time for k jobs (k = 1 in this context) to arrive, causing the server to turn

on, is expected to be higher than for a more heavily loaded system. Systems with

medium loads do not benefit from either of these conditions sufficiently often to have

(a) µ = 1, γ = 1, k = 2 (b) µ = 1, γ = 1, k = 5

(c) µ = 1, γ = 1, k = 10 (d) µ = 1, γ = 1, k = 20

Figure 5.11: M/G/1 ◦ {G,G, k}, E[Sw] vs α for varying k values

88

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Figure 5.12: M/G/1 ◦ {G,G, k}, E[Sw] vs ρ, µ = 1, γ = 1

their corresponding switching rate be competitive with systems where the load is at

one of the extremes.

The effects of this switching rate phenomenon can also be seen in Figure 5.11. How-

ever, as one can see, as k and α increase, E[Sw] for the two medium loaded systems,

and the two systems where the loads are at the extremes begin to converge to the

same value. This behaviour may initially be viewed as quite odd and unexpected.

Looking at the relationship between E[Sw] and ρ for varying k values, things become

clear. Inspecting Figure 5.12, one can see that the expected switching rate has an

apparently quadratic relationship to ρ. Furthermore, for higher values of k, these

curves become closer to being symmetric around ρ = 0.5. For lower values of k, the

curves are slightly “slanted” to the left. This explains the convergence of the different

system loads as seen before in Figure 5.11, as ρ = 0.2, and ρ = 0.8, as well as ρ = 0.4,

and ρ = 0.6 all share the same difference from ρ = 0.5.

89

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

When considering what system configuration to use when concerned about the switch-

ing rate, one should understand the relationship that k and ρ have on the metric.

The value of γ has relatively little impact, and is often not able to be chosen. On the

other hand, increasing k will always decrease E[Sw]. Furthermore, when choosing to

have the server shut off, instead of always remaining on, one should note that systems

with a medium load will see the greatest increase in the expected switching rate.

5.4 The M/G/1 ◦ {G,M,k} Queue

While one is able to analyse the expected energy and switching costs of an M/G/1 ◦

{G,G, k} queue, it is much more difficult to arrive at a closed form expression for

the expected response time. In order to achieve this goal, the assumption of the

idling times being exponentially distributed must again be imposed. The reason for

this will be made clear during the analysis presented in this section. However, the

reader is reminded that when the arrival stream is a Poisson process (which it is

here), the optimal policy will be one which always leaves the server on, or one which

instantly turns the server off when it idles. This leads to the fact that the optimal

distribution for the idling times is one where the rate is either 0 or ∞. This means

that the “shape” of the idling time distribution has no impact on the set of policies

which are optimal, but only on the choice of when each of the two policies would be

optimal. Furthermore, the assumption that the arrival stream is a Poisson process is

typically a reasonable assumption in practice. On the other hand, imposing exponen-

tial assumptions on processing and turn on times can be quite inaccurate. Taking all

this information together, one can conclude that the M/G/1 ◦ {G,M, k} queue is a

powerful model. Although it is not completely general, it is general where it “counts”.

90

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

The M/G/1 ◦ {G,G, k} queue is analysed in a similar way as to the M/G/1 queue,

with the goal of arriving at a closed form equation for the expected response time of

a job, as shown in Section 2.2.4. Firstly, a recursion for the number of jobs in the

system is derived, where Nn is a random variable denoting the number of jobs left in

the system as the nth job departs.

Nn+1 =

Nn + An+1 − 1 Nn ≥ 1

An+1 Nn = 0

(5.61)

Here, An+1 is a random variable denoting the number of arrivals which occur between

the departure of the nth and (n + 1)th job, excluding the (n + 1)th job itself (if it

arrived during that period). In the model, An+1 must also be conditioned on Nn.

An+1 =

AS,n+1 Nn ≥ 1

AS,n+1 +XOff,n(k − 1 + AΓ,n) Nn = 0

(5.62)

Here the analysis begins to differ from the classical M/G/1 analysis, as more notation

is introduced: AS,n, AΓ,n, and XOff,n. Firstly, AS,n is a random variable denoting the

number of jobs which arrive while the nth job is being processed. Secondly, AΓ,n is a

random variable denoting the the number of arrivals which occur while the server is

turning on after the nth job has left the system. Lastly, XOff,n is an indicator variable

that equals 1 when the system is in state IDLE after the departure of the nth job,

and the next state it moves to is OFF, and equals 0 otherwise. It is noted that since

all underlying distributions are iid, all of these random variables are independent of

91

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

n, and therefore from here on are simply referred to as AS, AΓ, and XOff .

Using the Heaviside step function, one can rewrite (5.61) and (5.62) without the use

of cases:

Nn+1 = Nn − U(Nn) + An+1, (5.63)

An+1 = AS + (1− U(Nn))XOff (k − 1 + AΓ), (5.64)

and after substituting (5.64) into (5.63), one arrives at,

Nn+1 = Nn − U(Nn) + AS + (1− U(Nn))XOff (k − 1 + AΓ). (5.65)

The goal is to arrive at the expected response time. Due to Little’s Law, this is

equivalent to solving for the expected number of jobs in the system in steady state.

To achieve this, one lets n → ∞ and then takes the expectation of both sides of

(5.65). However a problem arises when this is done, as E[N] is present on both sides

of the equation and cancels:

�
��E[N] =��

�E[N]− E[U(N)] + E[As] + E[(1− U(N))XOff (k − 1 + AΓ)].

The random variables U(N), XOff , and AΓ are all independent of each other. This

allows the previous equation to be rewritten as,

E[U(N)] = E[As] + (1− E[U(N)])E[XOff](k − 1 + E[AΓ]). (5.66)

92

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Although with this equation one cannot reach an expression for E[N], one can rear-

range to solve for E[U(N)]. At this point in the classical M/G/1 analysis it would be

seen that E[U(N)] = ρ. This of course makes perfect sense since the interpretation of

E[U(N)] is the steady state probability that there is at least one job in the system.

In the case of an M/G/1 queue, this is equivalent to the server being busy, which is

known to be ρ. However, in the analysis of the M/G/1 ◦ {G,G, k} queue one should

not expect E[U(N)] to equal ρ, because ρ is not equal to the probability that the

system has at least one job in steady state. From Section 5.3 it is known that this

probability is given by,

P [N > 0] = 1− POff,0 − PIdle

⇒ P [N > 0] = 1− (1− ρ)
αγ

kαγ + αλ+ λγ
− (1− ρ)

λγ

kαγ + αλ+ λγ

⇒ P [N > 0] =
1

kαγ + αλ+ λγ

(
µ((k − 1)αγ + αλ) + λ(αγ + λγ)

µ

)
. (5.67)

As a sanity check, one can rearrange (5.66) and solve for E[U(N)] to ensure it equals

(5.67). However, before doing so, the expectations of AS, XOff , and AΓ must be

evaluated. Firstly, E[AS] is the product of the arrival rate and the expected time

to process a job, which is λ
µ

= ρ. Secondly, E[XOff] equals the probability that

the system turns off before a job arrives, once the system enters IDLE. Due to the

memoryless nature of both the idling times and the arrival stream this is easily seen

to be α
α+λ

. Here it becomes apparent why the idling times must be exponentially

distributed, as otherwise solving for this probability could become very difficult. The

93

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

reader is reminded that the system keeps track of how long the server has been idle

since the last time it turned on, and not simply how long it has been idle since it

entered the state IDLE. Lastly E[AΓ], similar to E[AS], is the product of the arrival

rate and the expected time it takes to turn on, λ
γ
. Putting it all together,

E[AS] = ρ, E[XOff] =
α

λ+ α
, and E[AΓ] =

λ

γ
.

With these expectations solved, one can now calculate E[U(N)].

E[U(N)] =
E[AS] + E[XOff](k − 1 + E[AΓ])

1 + E[XOff](k − 1 + E[AΓ])

⇒ E[U(N)] =

ρ+
α

α + γ

(
(k − 1) +

λ

γ

)
α

α + γ

(
(k − 1) +

λ

γ

)

⇒ E[U(N)] =

λγ(α + λ) + µα((k − 1)γ + λ)

��
���

�
µγ(α + λ)

µ(λγ + αγ + (k − 1)αγ + αλ)

���
���µγ(α + λ)

⇒ E[U(N)] =
1

kαγ + αλ+ λγ

(
µ((k − 1)αγ + αλ) + λ(αγ + λγ)

µ

)
(5.68)

⇒ E[U(N)] = ρ
αγ + λγ

kαγ + αλ+ λγ
+

(k − 1)αγ + αλ

kαγ + αλ+ λγ

94

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ E[U(N)] = ρ+ (1− ρ)α
(k − 1)γ + λ

kαγ + αλ+ λγ
(5.69)

The sanity check succeeds in showing that E[U(N)] is equivalent to P [N > 0], by

showing that (5.67) equals (5.68). It also goes further to show that E[U(N)] can also

be seen as a decomposition, seen in (5.69). Although this result is refreshing to see,

as well as building confidence in the analysis, it still remains that one cannot solve

for E[N].

The analysis returns to (5.65), again letting n→∞, but before taking expectations,

both sides of the equation are squared.

N2 = N2 − 2NU(N) + 2NAS +N(1− U(N))XOff (k − 1 + AΓ)

+ U2(N)− 2U(N)AS − 2U(N)(1− U(N))XOff (k − 1 + AΓ)

+ A2
S + 2AS(1− U(N))XOff (k − 1 + AΓ)

+ (1− U(N))2X2
Off (k − 1 + AΓ)2

Taking expectations of both sides of the previous equation yields,

��
��E[N2] =��

��E[N2]− 2E[NU(N)] + 2E[NAS] + E[N(1− U(N))XOff (k − 1 + AΓ)]

+ E[U2(N)]− 2E[U(N)AS]− 2E[U(N)(1− U(N))XOff (k − 1 + AΓ)]

+ E[A2
S] + 2E[AS(1− U(N))XOff (k − 1 + AΓ)]

+ E[(1− U(N))2X2
Off (k − 1 + AΓ)2].

(5.70)

At first glance this equation looks daunting, with several expectations which seem

95

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

difficult to compute. However some fortunate simplifications can be made due to the

following observed equalities, which exploit independence and the definition of the

Heaviside step function.

E[NAS] = E[N]E[AS]

E[ASAΓ] = E[AS]E[AΓ]

E[ASXOff] = E[AS]E[XOff]

E[NU(N)] = E[N]

E[U2(N)] = E[U(N)]

E[(1− U(N))2] = E[1− U(N)]

E[X2
Off] = E[XOff]

E[U(N)(1− U(N))] = 0

E[N(1− U(N))] = 0

Applying these equalities to (5.70) makes the expression much simpler.

2E[N] = 2E[N]E[AS] + E[
���

���
��:0

N(1− U(N))XOff (k − 1 + AΓ)]

+ E[U(N)]− 2E[U(N)]E[AS]

− 2E[
���

���
���

�:0
U(N)(1− U(N))XOff (k − 1 + AΓ)]

+ E[A2
S] + 2E[AS](1− E[U(N)])E[XOff](k − 1 + E[AΓ])

+ (1− E[U(N)])E[XOff]E[(k − 1 + AΓ)2]

⇒ 2E[N] = 2E[N]E[AS] + E[U(N)]− 2E[U(N)]E[AS]

96

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

+ E[A2
S] + 2E[AS](1− E[U(N)])E[XOff](k − 1 + E[AΓ])

+ (1− E[U(N)])E[XOff]((k − 1)2 + 2(k − 1)E[AΓ] + E[A2
Γ])

Substituting in the values for E[AS], E[AΓ], and E[XOff] previously derived, and then

substituting in (5.69) yields,

2E[N](1− ρ) = E[A2
S] + E[U(N)]− 2ρE[U(N)]

+ 2ρ(1− E[U(N)])
α

α + λ

(
k − 1 +

λ

γ

)
+ (1− E[U(N)])

α

α + λ

(
(k − 1)2 + 2(k − 1)

λ

γ
+ E[A2

Γ]

)

⇒ 2E[N](1− ρ) = E[A2
S] + ρ+ (1− ρ)α

(k − 1)γ + λ

kαγ + αλ+ λγ

− 2ρ

(
ρ+ (1− ρ)α

(k − 1)γ + λ

kαγ + αλ+ λγ

)
+ 2ρ

(
1− ρ− (1− ρ)α

(k − 1)γ + λ

kαγ + αλ+ λγ

)
α

α + λ

(
k − 1 +

λ

γ

)
+

(
1− ρ− (1− ρ)α

(k − 1)γ + λ

kαγ + αλ+ λγ

)
α

α + λ

·
(

(k − 1)2 + 2(k − 1)
λ

γ
+ E[A2

Γ]

)

⇒ 2(1− ρ)E[N] = ρ− 2ρ2 + E[A2
S] + (1− ρ)α

(k − 1)γ + λ

kαγ + αλ+ λγ

− 2ρ(1− ρ)α
(k − 1)γ + λ

kαγ + αλ+ λγ

+ 2ρ(1− ρ)

(
1− α (k − 1)γ + λ

kαγ + αλ+ λγ

)
α

α + λ

(
k − 1 +

λ

γ

)
+ (1− ρ)

(
1− α (k − 1)γ + λ

kαγ + αλ+ λγ

)
α

α + λ

97

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

·
(

(k − 1)2 + 2(k − 1)
λ

γ
+ E[A2

Γ]

)
(5.71)

From [12] it is noted that E[A2
S] = ρ + λ2σ2

S, where σ2
S denotes the variance of the

service time distribution. Due to this observation, one can make the same argument

with respect to E[A2
Γ], concluding that E[A2

Γ] = λ
γ

+ λ2σ2
Γ, where σ2

Γ denotes the

variance of the setup time distribution. For the sake of simplicity, a place-holder

variable is defined to keep the algebra clean.

Γ = (k − 1)2 + 2(k − 1)
λ

γ
+ E[A2

Γ]

⇒ Γ = (k − 1)2 + 2(k − 1)
λ

γ
+
λ

γ
+ λ2σ2

Γ

⇒ Γ = (k − 1)2 + (2k − 1)
λ

γ
+ λ2σ2

Γ

Substituting Γ and E[A2
S] = ρ+ λ2σ2

S into (5.71) gives,

E[N] = ρ+
ρ2 + λ2σ2

S

2(1− ρ)
+
α

2

(k − 1)γ + λ

kαγ + αλ+ λγ
− ρα (k − 1)γ + λ

kαγ + αλ+ λγ

+ ρ

(
1− α (k − 1)γ + λ

kαγ + αλ+ λγ

)
α

α + λ

(
(k − 1)γ + λ

γ

)
+

1

2

(
1− α (k − 1)γ + λ

kαγ + αλ+ λγ

)
α

α + λ
Γ

⇒ E[N] = E[NM/G/1] +
α

α + λ

[
ρ

(k − 1)γ + λ

γ
+

1

2
Γ

]
+ α

(k − 1)γ + λ

kαγ + αλ+ λγ

[
1

2
− ρ− ρ α

α + λ

(
(k − 1)γ + λ

γ

)
− 1

2

α

α + λ
Γ

]
.

(5.72)

98

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Although (5.72) is not as simple as other expressions seen in this chapter, it is still

tractable, and the decomposition involving the M/G/1 counterpart is clearly seen. It

is noted that E[N] depends on both the mean and variance of the general distributions,

but not on any higher moments. The usual application of Little’s Law is applied to

arrive at E[R].

E[R] = E[RM/G/1] +
α

α + λ

[
1

µ

(k − 1)γ + λ

γ
+

1

2λ
Γ

]
+ α

(k − 1)γ + λ

kαγ + αλ+ λγ

[
1

2λ
− 1

µ
− 1

µ

α

α + λ

(
(k − 1)γ + λ

γ

)
− 1

2λ

α

α + λ
Γ

]
(5.73)

Theorem 4. The expected number of jobs in, as well as the expected response time of

a job in an M/G/1 ◦ {G,M, k} queue in steady state are dependent only on the first

moments of all underlying distributions, as well as the second moments of the service

and setup time distributions, and are given by,

E[N] = E[NM/G/1] +
α

α + λ

[
ρ

(k − 1)γ + λ

γ
+

1

2
Γ

]
+ α

(k − 1)γ + λ

kαγ + αλ+ λγ

[
1

2
− ρ− ρ α

α + λ

(
(k − 1)γ + λ

γ

)
− 1

2

α

α + λ
Γ

]

and,

E[R] = E[RM/G/1] +
α

α + λ

[
1

µ

(k − 1)γ + λ

γ
+

1

2λ
Γ

]
+ α

(k − 1)γ + λ

kαγ + αλ+ λγ

[
1

2λ
− 1

µ
− 1

µ

α

α + λ

(
(k − 1)γ + λ

γ

)
− 1

2λ

α

α + λ
Γ

]
,

99

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

where

Γ = (k − 1)2 + (2k − 1)
λ

γ
+ λ2σ2

Γ.

Taking Theorems 3 and 4 together, one has closed form expressions for E[R], E[EN],

and E[Sw] for an M/G/1◦{G,M, k} queue. With these expressions one can construct

any cost function described by (4.5). Once the cost function has been constructed,

values of k and α which minimize it can be derived.

100

Chapter 6

Applications

With the model presented and analysed, the reader is aware that one may derive

the optimal policy where the cost function is of the form (4.5), using the material

in Chapter 5. This chapter focuses on some of the ways the previous work can be

employed to arrive at these policies, of which some are in contexts not yet considered.

Implications of past results are also examined here, primarily in the setting of multi-

server system with random routing.

6.1 Optimal Parameter Values

One of the more popular cost functions used in the literature is E[R] + β1E[E] +

β2E[Sw] [3, 16, 20, 22], and from here on is denoted by C. However, as previously men-

tioned, the optimal policy for this cost function was not yet known. For this reason,

this section focuses on deriving the optimal policy for the weighted sum of the three

metrics. This derivation is done under the assumptions of the M/M/1 ◦ {M,M, k}

queue, purely for reasons of simplicity, although the results can be easily extended to

101

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

that of an M/G/1 ◦ {G,M, k} queue.

To determine the optimal policy is to minimize the cost function. This is done by

taking the partial derivatives with respect to the decision variables, and setting them

equal to 0. The derivation begins by taking the derivative of the cost function with

respect to α.

∂

∂α
C =

∂

∂α
E[R] + β1

∂

∂α
E[EN] + β2

∂

∂α
E[Sw] (6.74)

To keep the algebra clean, each partial derivative is solved individually. Firstly, the

expected response time partial derivative with respect to α is derived.

∂

∂α
E[R] =

∂

∂α

(
1

γ

kαγ + αλ

kαγ + αλ+ λγ
+

1

2λ

kαγ(k − 1)

kαγ + αλ+ λγ

)

⇒ ∂

∂α
E[R] =

kγ + λ

γ

∂

∂α

α

kαγ + αλ+ λγ
+
k(k − 1)γ

2λ

∂

∂α

α

kαγ + αλ+ λγ

⇒ ∂

∂α
E[R] =

(
kγ + λ

γ
+
k(k − 1)γ

2λ

)
∂

∂α

α

kαγ + αλ+ λγ

⇒ ∂

∂α
E[R] =

(
kγ + λ

γ
+
k(k − 1)γ

2λ

)
��
�kαγ +��αλ+ λγ −���kαγ −��αλ

(kαγ + αλ+ λγ)2

⇒ ∂

∂α
E[R] =

(
kγ + λ

γ
+
k(k − 1)γ

2λ

)
λγ

(kαγ + αλ+ λγ)2
(6.75)

Secondly, the expected normalized energy used partial derivative with respect to α is

102

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

derived.

∂

∂α
E[EN] = (1− ρ)(λrSetup − (λ+ kγ)rIdle)

∂

∂α

α

kαγ + αλ+ λγ

⇒ ∂

∂α
E[EN] = (1− ρ)(λrSetup − (λ+ kγ)rIdle)

��
�kαγ +��αλ+ λγ −���kαγ −��αλ

(kαγ + αλ+ λγ)2

⇒ ∂

∂α
E[EN] = (1− ρ)(λrSetup − (λ+ kγ)rIdle)

λγ

(kαγ + αλ+ λγ)2
(6.76)

Lastly, the expected switching rate partial derivative with respect to α is derived.

∂

∂α
E[Sw] = (1− ρ)λγ

∂

∂α

α

kαγ + αλ+ λγ

⇒ ∂

∂α
E[Sw] = (1− ρ)λγ�

��kαγ +��αλ+ λγ −���kαγ −��αλ
(kαγ + αλ+ λγ)2

⇒ ∂

∂α
E[Sw] = (1− ρ)λγ

λγ

(kαγ + αλ+ λγ)2
(6.77)

Substituting (6.75), (6.76), and (6.77) into (6.74) yields:

∂

∂α
C =

λγ

(kαγ + αλ+ λγ)2

[
kγ + λ

γ
+
k(k − 1)γ

2λ

+ (1− ρ)[β1(λrSetup − (λ+ kγ)rIdle) + β2λγ]

]
. (6.78)

103

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Wishing to minimize C (with respect to α), (6.78) is set to 0.

0 =
λγ

(kαγ + αλ+ λγ)2

[
kγ + λ

γ
+
k(k − 1)γ

2λ

+ (1− ρ)[β1(λrSetup − (λ+ kγ)rIdle) + β2λγ]

]

⇒ 0 =
kγ + λ

γ
+
k(k − 1)γ

2λ
+ (1− ρ)[β1(λrSetup − (λ+ kγ)rIdle) + β2λγ] (6.79)

Here a result which was known previously to be true, is seen, but with additional

detail. In general, the partial derivative of C with respect to α cannot equal 0. This

implies that C is minimized when α is at one of its bounds (0 or∞). This corresponds

to the server remaining on, or instantly turning off when it idles. This result was ob-

served through the properties of the Poisson process, but having it present itself in

the detailed analysis makes for an interesting observation and sanity check.

While it was previously known that the optimal value of α would lie on its bounds,

it was unknown under what conditions each of these bounds would be optimal. It is

known that while (6.78) is positive, it is optimal to have α = 0. On the other hand,

if (6.78) is negative it is optimal to have α → ∞. Which case is optimal can be

determined by rearranging the terms of (6.79), to easily see when (6.78) is negative

or positive. This rearrangement yields the following inequality.

k +
λ

γ
+
k(k − 1)γ

2λ
+ (1− ρ)(β1λrSetup + β2λγ) ≥ β1(1− ρ)(λ+ kγ)rIdle (6.80)

When (6.80) holds it is optimal to leave the server on, while if it does not hold, it is

104

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

optimal to turn the server off. This gives one the ability to make the optimal decision

with respect to α. However, criteria for choosing the second decision variable, k, have

not yet been considered.

There are a few ways in which the corresponding optimal value of k can be determined.

Firstly, one could set (6.80) to be an equality, which gives a quadratic in terms of k.

From here k could be solved, which would give the smallest value of k in which it is

optimal to turn the server off (if such a positive real k exists, otherwise it is optimal

to keep the server on). The reader is reminded that in practice k must be an integer,

and rounding the calculated value may be required. Although this value of k is the

smallest value in which it is optimal for the value of α to approach ∞, a larger value

of k may exist for which the cost function is lower (k may not be optimally chosen).

To determine this optimal value, increasing values of k could be substituted into C

with α→∞ until the function values increase from one k to the next (k + 1). Once

this occurs, the value of k is known to be optimal. Secondly, and perhaps the more

elegant method, the partial derivative of C with respect to k can be taken and set to

0.

∂

∂k
C =

∂

∂k
E[R] + β1

∂

∂k
E[EN] + β2

∂

∂k
E[Sw] (6.81)

Again, for the sake of clean algebra, each partial derivative is derived individually.

Firstly, the partial derivative of the expected response time with respect to k is

determined.

∂

∂k
E[R] =

∂

∂k

(
α

γ

kγ + λ

kαγ + αλ+ λγ
+
αγ

2λ

k(k − 1)

kαγ + αλ+ λγ

)

105

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ ∂

∂k
E[R] =

α

γ

γ(kαγ + αλ+ λγ)− kαγ2

(kαγ + αλ+ λγ)2

+
αγ

2λ

(2k − 1)(kαγ + αλ+ λγ)− k(k − 1)αγ

(kαγ + αλ+ λγ)2

⇒ ∂

∂k
E[R] = αλ

α + γ

(kαγ + αλ+ λγ)2
+
αγ

2λ

k2αγ + (2k − 1)(αλ+ λγ)

(kαγ + αλ+ λγ)2
(6.82)

Secondly, the partial derivative of the expected normalized energy used with respect

to k is derived.

∂

∂k
E[EN] = (1− ρ)α

∂

∂k

λrSetup − (λ+ kγ)rIdle
kαγ + αλ+ λγ

⇒ ∂

∂k
E[EN] = (1− ρ)α

−γrIdle(kαγ + αλ+ λγ)− (λrSetup − (λ+ kγ)rIdle)αγ

(kαγ + αλ+ λγ)2

⇒ ∂

∂k
E[EN] = (1− ρ)αλγ

α(rIdle − rSetup)− (α + γ)rIdle
(kαγ + αλ+ λγ)2

⇒ ∂

∂k
E[EN] = −(1− ρ)αλγ

αrSetup + γrIdle
(kαγ + αλ+ λγ)2

(6.83)

Lastly, the partial derivative of the expected switching rate with respect to k is

derived.

∂

∂k
E[Sw] = (1− ρ)αλγ

∂

∂k

1

kαγ + αλ+ λγ

106

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ ∂

∂k
E[Sw] = −(1− ρ)αλγ

αγ

(kαγ + αλ+ λγ)2
(6.84)

Before any further work is done, as a sanity check each partial derivative is inspected

to ensure the mathematics agree with the known optimal values presented in Ta-

ble 5.6. It is known that E[R] is minimized when k is at its lower bound. When

(6.82) is examined, one observes that there is a decision variable (k in this case),

present for the first time in the numerator of a partial derivative. However, due to

the restriction that k ≥ 1, this expression is always positive, and can never equal

0. This of course implies that the optimal value of k lies on its lower bound, which

agrees with previous observations. For the partial derivatives of E[E] and E[Sw], it

was previously known that these would be minimized as k approaches infinity. This is

the exact result which is observed in (6.83) and (6.84), as both expressions are always

negative, implying that the optimal value of k lies at its upper bound. Therefore, all

sanity checks pass, and the work proceeds to derive the optimal values for the cost

function C.

Substituting (6.82), (6.83), and (6.84) into (6.81) yields:

∂

∂k
C =

αλγ

(kαγ + αλ+ λγ)2

[
α

γ
+ 1 +

1

2λ2
(k2αγ + (2k − 1)(αλ+ λγ))

− (1− ρ)(β1(αrSetup + γrIdle) + β2αγ)

]
. (6.85)

Setting the previous equation equal to 0 allows one to solve for the optimal value of

107

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

k.

0 =
αλγ

(kαγ + αλ+ λγ)2

[
α

γ
+ 1 +

1

2λ2
(k2αγ + (2k − 1)(αλ+ λγ))

− (1− ρ)(β1(αrSetup + γrIdle) + β2αγ)

]

⇒ 0 =
α

γ
+ 1 +

1

2λ2
(k2αγ + (2k − 1)(αλ+ λγ))

− (1− ρ)(β1(αrSetup + γrIdle) + β2αγ)

⇒ 0 = k2

(
αγ

2λ2

)
+ k

(
α + γ

λ

)
+

[
α

λ
+ 1− α + γ

2λ
− (1− ρ)(β1(αrSetup + γrIdle) + β2αγ)

]
(6.86)

Equation (6.86) is quadratic in k, and can be used to solve for optimal values of k

for general values of α. However, as previously shown in this section, α will either

be 0 or ∞ in the optimal policy. Furthermore, when α = 0, the choice of k is triv-

ial. Therefore, the optimal value of k can be determined under the assumption that

α→∞. While one can take the limit as α→∞ of (6.85), it is simpler to start from

the partial derivatives, and retake them under the assumption that α→∞.

Again, the partial derivative of E[R], with the assumption of α→∞ is the first one

solved.

∂

∂k
E[R] =

γ

2λ

∂

∂k

(
k(k − 1)

kγ + λ

)

108

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

⇒ ∂

∂k
E[R] =

γ

2λ

(
(2k − 1)(kγ + λ)− k(k − 1)γ

(kγ + λ)2

)

⇒ ∂

∂k
E[R] =

γ

2λ

(
k2γ + (2k − 1)λ

(kγ + λ)2

)
(6.87)

Secondly, the partial derivative of E[EN], with the assumption of α→∞ is solved.

∂

∂k
E[EN] = (1− ρ)

∂

∂k

λrSetup − (λ+ kγ)rIdle
kγ + λ

⇒ ∂

∂k
E[EN] = (1− ρ)

−γrIdle(kγ + λ)− (λrSetup − (λ+ kγ)rIdle)γ

(kγ + λ)2

⇒ ∂

∂k
E[EN] = −(1− ρ)

λγrSetup
(kγ + λ)2

(6.88)

Lastly, the partial derivative of E[Sw], with the assumption of α→∞ is solved.

∂

∂k
E[Sw] = (1− ρ)λγ

∂

∂k

1

kγ + λ

⇒ ∂

∂k
E[Sw] = −(1− ρ)λγ

γ

(kγ + λ)2
(6.89)

This time, substituting (6.87), (6.88), and (6.89) into (6.81) yields:

∂

∂k
C =

λγ

(kγ + λ)2

[
k2γ + (2k − 1)λ

2λ2
− (1− ρ)(β1rSetup + β2γ)

]

Setting the previous equation equal to 0 allows one to solve for the optimal value of

109

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

k while α→∞ (the server instantly shuts off when it idles).

0 =
λγ

(kγ + λ)2

[
k2γ + (2k − 1)λ

2λ2
− (1− ρ)(β1rSetup + β2γ)

]

⇒ 0 =
k2γ + (2k − 1)λ

2λ2
− (1− ρ)(β1rSetup + β2γ)

⇒ 0 = k2 γ

2λ2
+ k

1

λ
−
[

1

2λ
+ (1− ρ)(β1rSetup + β2γ)

]
(6.90)

From here, one has a quadratic in k which can be solved to find the value which

minimizes C as α→∞. One should note that the ceiling and floor of the value of k,

which solves the quadratic, must be taken and substituted into C to see which value is

lower. One should also note that although this gives the optimal value of k, this does

not guarantee that α →∞ is a configuration of the optimal policy, and the value of

C with α = 0 must also be checked against.

Although there are several cases to consider, the equations and observations presented

in this section give one the ability to derive the optimal policy for the weighted sum

cost function. Hopefully the methods and ideas presented here make it clear to the

reader how other cost functions can be minimized using the expressions derived in

this work.

110

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

6.2 Constrained Optimization

All considerations up to this point assumed that one wished to minimize a cost func-

tion with no imposed constraints. However, in practice this may not be the case. For

example, one may have some constraints on metrics such as the expected response

time. This is seen commonly in service level agreements (SLAs) between parties,

where one party guarantees its customer a certain mean response time. So, a natural

problem that arises in this context is to minimize energy costs while satisfying the

SLA. When this scenario is formulated into a linear optimization problem, it is found

that the optimal value of α does not necessarily lie on one of its bounds, unlike the

previous analysis and applications. As this is the primary point being made here,

the rest of the problem is left as simple as possible, and is set in the domain of an

M/M/1 ◦ {M,M, 1} queue.

Consider the problem of minimizing E[EN] for an M/M/1 ◦ {M,M, 1} queue while

having E[R] be less than or equal to some threshold, denoted by T . The problem is

assumed to be feasible and non-trivial, that is 1
µ−λ < T < 1

µ−λ + 1
γ
. In other words,

the threshold is not less than the server’s expected response time when it always

remains on, but on the other hand, the solution also is not one which immediately

turns the server off. Furthermore, to fully ensure the problem is non-trivial, the

assumption that ridle <
λ

λ+γ
rsetup must also be imposed. This is due to the result

stated in Theorem 3, which implies that if this condition does not hold, then E[EN]

is minimized when E[R] is minimized, which is when the server always remains on.

111

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

This linear optimization problem is seen formally as:

min. E[EN
M/M/1] + (1− ρ)

α

αγ + αλ+ λγ
(λrSetup − (λ+ γ)rIdle)

s.t. T ≥ E[RM/M/1] +
1

γ

(
αγ + αλ

αγ + αλ+ λγ

)
(6.91)

α ≥ 0,

where the single decision variable is α. This formulation can be easily solved directly

without employing any well known algorithms such as simplex, Newton’s method,

trust region, etc. The observation is made that the objective function decreases in α

(based on the assumptions on rSetup and rIdle). Furthermore, the expected response

time (the right hand side of the inequality in the first constraint), increases in α. It

follows from this that the objective function is minimized when (6.91) is an equality.

Specifically, the objective function is minimized when,

T = E[RM/M/1] +
1

γ

(
α(λ+ γ)

αγ + αλ+ λγ

)
⇒ γ(T − E[RM/M/1])(αγ + αλ+ λγ) = α(λ+ γ)

⇒ α(λ+ γ)(1− γ(T − E[RM/M/1])) = λγ2(T − E[RM/M/1])

⇒ α =
λγ2

λ+ γ

(
T − E[RM/M/1]

1− γ(T − E[RM/M/1])

)
. (6.92)

Here it can be seen that α can take on a large range of non-trivial values. Specifically,

in the setting of constrained optimization it can be optimal to leave the server idling

for some amount of time. In contrast to the non-constrained context, these results

are quite different. The optimal value of α not being at one of its bounds has many

112

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

implications, and raises more than a few questions. Firstly, the shape of the idling

time distribution now has a greater effect on the overall system behaviour in the

optimal policy. Secondly, the question of whether to keep track of idling times between

busy periods now becomes non-trivial. Lastly, out of all possible shapes the idling

time distribution can have, deriving which one is optimal could be a daunting task.

Although these observations and concerns are interesting, they are out of the scope

of this work, and are left for future research.

6.3 Sleep States

The presented model has until now assumed that the sever has exactly two energy

states that it can be set to (on and off). However, modern servers usually have sev-

eral discrete sleep settings which they can be set to. While in these sleep states, the

server consumes a lower amount of energy than being idle but, like being turned off,

it cannot process jobs. The advantage of switching the server to one of these sleep

states, instead of turning it completely off, is that typically if the server is “sleeping”

rather than being off, it takes less time to turn on. This section considers servers

which have sleep states, and extends the model to see what kind of policies can be

derived.

A class of policies, P , is defined, which exhibit very similar behaviour to the policies

which have been considered previously. Policies in class P wait for k jobs to accu-

mulate in the queue while in a lower energy state before beginning to turn on. Once

turned on, the system processes jobs until it becomes idle. If the system idles for a

certain amount of time before a new job arrives, it moves to the same lower energy

113

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

state that it started in, and repeats its behaviour. The key difference here is that now

there exists different lower energy states (the sleep states), and the server is restricted

to only use one of them. It will be shown that the model can be used to find the

optimal policy contained in P .

The following extensions are made to the previous model.

• The server has I different sleep states it can be set to, where the ith sleep state

is denoted by SLEEP i. As stated before, jobs cannot be processed while the

server is in state SLEEP i, ∀i : 0 < i ≤ I. For each state SLEEP i, there is

a corresponding energy cost, denoted ESleep,i (along with an energy ratio with

respect to EBusy, rSleep,i). For each sleep state there also exists a corresponding

turn on rate, denoted γi. Typically, ∀i : 0 < i < I.ESleep,i ≤ ESleep,i+1 and

γi ≤ γi+1. In other words, if a sleep state uses more energy than another, then

it is also expected to take less time to turn on than the one which uses less

energy.

• Instead of moving to the energy state OFF after a given idling time, it instead

transitions to some energy state SLEEP i. Here the steady state probabilities of

πi0,0 to πi0,k−1 now correspond to the steady state probabilities of being in state

SLEEP i rather than OFF. Furthermore, when k jobs arrive to the system and

the system enters the energy state SETUP, it transitions to the energy state

BUSY with rate γi rather than γ.

To analyse this system, two variations must also be made to the expressions derived

in Chapter 5. Firstly, all instances of γ in the equations for E[R], E[EN], and E[Sw]

(for whatever distributional assumptions have been made) must be changed to γi.

114

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

Secondly, a slight addition must be made to the expression for E[EN], (5.53), to

account for the energy now being consumed in the sleep state.

E[EN
Sleep,i] = E[EN] + (1− ρ)

kαγi
kαγi + αλ+ λγi

rSleep,i

From here, one can analyse the system and obtain the optimal values of α and k for a

system where the lower energy state it moves to is SLEEPi. Substituting these values

into the cost function gives the minimum value for the cost function, denoted opti, un-

der the assumption that the lower energy state used by the system is SLEEPi. Once

one has all I of these corresponding optimal values, by iterating through the sleep

states, one can simply take the minimum of them, as well as optOff (the minimum

of the cost function if OFF is used as the lower energy state). With this minimum

opt value, a policy can be designed to always transition to the corresponding energy

state of SLEEP i, or OFF. This policy is the optimal policy in P .

Although accounting for the sleep states of the server allows one to derive improved

policies than if they were to be ignored, it can no longer be claimed that this model

can describe the true optimal policy. In other words, the optimal policy may not be

in P . This is due to the fact that the optimal policy may have the server be in some

sleep state until k1 jobs accumulate, then move to a higher sleep state where it waits

for k2 jobs to accumulate before turning on. However, when the optimal values of k

are low for any individual sleep state under the analysis, it is conjectured that the

policy will be close to, if not optimal.

115

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

6.4 Random Routing

Here the model is applied to a multi-server setting where random routing is employed.

As will be seen, although the model assumes a single server, the random routing con-

text still allows for analysis. Consider a system with two M/M/1◦{M,M, k} queues.

When a job arrives to the system, it is sent to the first queue with probability p and

is sent to the second queue with probability (1− p). When optimizing against some

cost function, there now exists five decision variables, α1, α2, k1, k2, and p, where

the subscripts 1 and 2 denote the values for the first and second server, respectively.

It is known that the values for α1 and α2 will be either set to 0 or approach ∞,

which breaks the problem into three cases (due to symmetry) where we instead look

to optimize against k1, k2 and p and then take the lowest value from among the three

cases. The cases are classified as follows. The first is α1 = α2 = 0, the second is

α1 →∞ and α2 = 0, and the third is α1 →∞ and α2 →∞.

We wish to minimize E[N]+βE[E]. This falls within the class of cost functions, (4.5),

as E[N] can be scaled to give E[R] and here it is in fact scaled by a unit constant of

dollars/jobs. It is well known that for the first case since the servers will always be

on and each server will be in BUSY for pλ
µ

and (1−p)λ
µ

proportion of time respectively,

that the optimal configuration in that case is to set p = 0.5, i.e. balance the loads.

It will be seen that the other cases provide non-trivial and interesting optimal values

for p.

Figure 6.13 shows several examples under different parameter configurations of the

116

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

(a) µ = 2, λ = 1.9, γ = 0.2, β = 22, k1 = 5, k2 = 7 (b) µ = 2, λ = 1, γ = 0.2, β = 15, k1 = 1, k2 = 4

(c) µ = 2, λ = 3, γ = 0.5, β = 15, k1 = 3, k2 = 2 (d) µ = 2, λ = 1.9, γ = 3, β = 15, k1 = 1, k2 = 2

(e) µ = 2, λ = 1, γ = 1, β = 0, k1 = 1, k2 = 1 (f) µ = 2, λ = 1, γ = 1, β = 100, k1 = 1, k2 = 1

Figure 6.13: Random Routing – Optimization vs p

117

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

cost function versus p in the three different cases where the optimal k values are used,

and ridle and rsetup are both set to 0.8 (this implies it would never be optimal from an

energy stand point to leave the servers on). Figure 6.13-(a) shows a medium loaded

system where either server could take all of the arrivals and still be stable. Here it is

seen that the optimal server configuration is to have a server which is always on which

takes the majority of the system load (89.5%), while a server which turns off when it

becomes idle takes a small portion of the system load (10.5%). This means that a lot

of the time, the server that turns off will just remain off with up to four jobs waiting

in the queue. This may seem unfair to the jobs which are “unlucky” enough to be put

into this queue but this is an unfortunate side effect of energy concerns in this setting.

Figure 6.13-(b) shows a lightly loaded system. Perhaps unsurprisingly, the optimal

configuration is still such that one server remains on and one turns off. However, the

server which turns on and off is completely ignored. In other words, the configuration

which optimizes the random routing problem is simply an M/M/1 queue. This is

somewhat expected since the load on the system is so light it is not advantageous to

use the second server. This result is interesting when put in the context of having

many servers to choose from. This result would imply that under certain parame-

ter configurations, a (potentially) large set of servers would be ignored, or remain

off. This implies that for certain configurations, adding servers to the system has no

bearing on the optimal policy.

Figure 6.13-(c) and Figure 6.13-(d) show the results for a heavily loaded system where

both servers must be used or the system will be unstable. The curves of the three

118

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

cases here begin to converge to similar shapes. In Figure 6.13-(c), where the setup

rate is relatively low (γ = 0.5), the classical load balancing approach gives the best

configuration with both servers always on and p = 0.5. It is observed that as the

setup rate of the server increases (γ = 3), both servers being on becomes sub-optimal

and the case of both servers turning on and off begins to dominate. In fact, the

optimal value is p = 0.505 and not p = 0.5 as one might expect. Having the servers

shut down as γ increases is quite intuitive, since the faster the server can turn on, the

more appealing it is to shut it off.

As was seen in Figure 6.13, simple load balancing is not sufficient to arrive at the op-

timal configuration for multi-server systems using random routing, since non-trivial

values of p that optimize the system were shown to exist. Taking a more narrow

look at the single case of having both servers able to turn off in Figure 6.14, shows

a similar non-trivial result. Here the graphs also become asymmetric with respect to

p, and furthermore the optimal values of k1 and k2 are not equal. As in the case of

having one server always on, and one server able to turn off, load balancing is not

optimal. It is noted that if load balancing were used in Figure 6.14-(b), i.e. p = 0.5,

the result would be a disaster, as it is one of the worst configurations possible in this

context. Adding energy concerns to these systems greatly impacts the complexity of

the analysis as typical load balancing algorithms (which are used in practice) are no

longer optimal.

This also raises questions on the implications for other multi-server settings such as

round robin routing or in an M/M/c ◦ {M,M, k} queue. Specifically, there is no

119

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

(a) µ = 2, λ = 1.9, γ = 0.1, β = 15, k1 = 6, k2 =
3

(b) µ = 2, λ = 1.9, γ = 0.1, β = 30, k1 = 3, k2 =
4

(c) µ = 2, λ = 0.5, γ = 0.1, β = 50, k1 = 7, k2 = 1

Figure 6.14: Random Routing – Single Case

reason why in general each server should be identical with respect to the server’s α

and k values. This would make finding the optimal policy for such systems a much

harder problem than others may have previously thought, as the number of decision

variables grows with the number of servers in the system. However, although this

implies the multi-server system has a much greater complexity than the single server

system, by no means does this imply that these problems are intractable.

120

Chapter 7

Conclusions

As energy costs of servers as well as the relative energy consumed by servers increase,

industry must put a greater emphasis on determining optimal policies. Here an exact

analysis was given of the single server systems M/M/1 ◦ {M,M, k} and M/G/1 ◦

{G,M, k}, with respect to E[N], E[R], E[E], and E[Sw] as well as analysis for an

M/G/1 ◦ {G,G, k} queue with respect to E[E] and E[Sw]. This gave us an array of

tools, equations, and results to arrive at optimal policies for many single server energy-

aware systems under general settings. This analysis was also leveraged in several other

applications, such as SLA optimization, servers with sleep states, and a multi-server

system with random routing. For the latter it was shown that typical load balancing

algorithms are not enough to arrive at an optimal configuration. Furthermore, this

context gives a deeper insight into the analysis of these energy-aware multi-server

systems with other routing policies. In particular, heterogeneous servers may be

desirable, in contrast to models where energy costs are not considered. Energy factors

will always be present in these systems and it is important that we gain as much

insight and understanding into these problems as possible.

121

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

7.1 Future Work

While this work presented many useful and broad contributions, there still remains

much work to be done. The field is rich with many open problems which have im-

mediate applications. Even considering the work done here, there are many natural

extensions which are of interest. Firstly, further work can be done on the analysis of

single server systems. Several variations were discussed in Chapter 6, where for some

the model fell short of deriving the optimal policy. Some of these variations are as

follows.

• Alter the model to account for different discrete energy states which the server

can be set to. This includes sleep states, as well as speed scaling. Sleep states

were already discussed in Chapter 6. Speed scaling refers to server having the

option of being set to “higher” energy states where the processing rate, µ, is

increased.

• Do further analysis on constrained optimization. As mentioned earlier, when

the cost function is constrained, the behaviour of these optimal parameters and

policies changes drastically. Many interesting questions of how these constraints

impact the system remain to be answered, such as what type of turn-off criteria

define the optimal policies, and how are these criteria influenced by the cost

function?

• Relax some or all of the model assumptions. The model makes two assumptions

about the system. Firstly, the model assumes the jobs are processed by a first

come first serve (FIFO) policy. Secondly, it is assumed that shutting the server

down happens instantly. It would be of interest how relaxing one or both of

122

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

these assumptions would affect the optimal policies.

• Allow for the derivation under all cost functions. While this work was able

to derive the optimal policy for a broad range of cost functions, some remain

unknown, eg. E[R · E].

Secondly, and perhaps the more daunting extension, is to analyse the system under a

general number of servers. When deriving the optimal policy, allowing for a general

amount, say c servers, greatly increases the complexity of the analysis. As discussed

in the context of random routing, the number of decision variables will increase as

the number of servers increases. Furthermore, when dealing with something like

an M/M/c ◦ {M,M, k} queue, even more decision variables must be introduced.

Specifically, a parameter for the threshold number of jobs in the queue before a

server begins to turn off instead of processing a new job must be introduced, as this

value does not equal 0, as it did in an M/M/1 ◦ {M,M, k} queue.

123

Bibliography

[1] J. R. Artalejo. A unified cost function for M/G/1 queueing systems with remov-

able server. Trabajos de Investigacion Operativa, 7(1):95–104, 1992.

[2] L. A. Barroso and U. Holzle. The case for energy-proportional computing. Com-

puter, 40(12):33–37, Decemeber 2007.

[3] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam.

Managing server energy and operational costs in hosting centers. SIGMETRICS

Performance Evaluation Review, 33(1):303–314, June 2005.

[4] U.S. EPA. Report to congress on server and data center energy efficiency. Tech-

nical report, U.S Environmental Protection Agency, 2007.

[5] S. W. Fuhrmann and R. B. Cooper. Stochastic decompositions in the M/G/1

queue with generalized vacations. Operations Research, 33:1117–1129, 1985.

[6] A. Gandhi, S. Doroudi, M. Harchol-Balter, and A. Scheller-Wolf. Exact analysis

of the M/M/k/setup class of markov chains via recursive renewal reward. In

ACM SIGMETRICS, 2013.

124

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

[7] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch. Optimality anal-

ysis of energy-performance trade-off for server farm management. Performance

Evaluation, 67(11):1155–1171, November 2010.

[8] A. Gandhi and M. Harchol-Balter. M/M/k with exponential setup. Technical

report, Carnegie Mellon University, 2010.

[9] A. Gandhi, M. Harchol-Balter, and I. Adan. Server farms with setup costs.

Performance Evaluation, 67(11):1123–1138, November 2010.

[10] D. Gross and C. M. Harris. Fundamentals of Queueing Theory. Wiley-

Interscience, third edition, 1998.

[11] M. Harchol-Balter. Performance Modeling and Design of Computer Systems:

Queueing Theory in Action. Cambridge University Press, 2013.

[12] L. Kleinrock. Queueing Systems, volume One. Wiley-Interscience, 1975.

[13] K. Li. Optimal power allocation among multiple heterogeneous servers in a data

center. Sustainable Computing: Informatics and Systems, 2(1):13–22, 2012.

[14] J. D. C. Little. A proof for the queuing formula: L = λW. Operations Research,

9(3):383–387, 1961.

[15] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew. Greening geograph-

ical load balancing. In Proceedings of the ACM SIGMETRICS joint international

conference on Measurement and modeling of computer systems, SIGMETRICS,

pages 233–244, 2011.

125

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

[16] Michele Mazzucco and Dmytro Dyachuk. Optimizing cloud providers revenues

via energy efficient server allocation. Sustainable Computing: Informatics and

Systems, 2(1):1–12, 2012.

[17] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic

Approach. Dover Publications Inc., 1994.

[18] A. Penttinen, E. Hyytia, and S. Aalto. Energy-aware dispatching in parallel

queues with on-off energy consumption. In IEEE International Performance

Computing and Communications Conference, pages 1–8, November 2011.

[19] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. Cutting the

Electric Bill for Internet-Scale Systems. In ACM SIGCOMM, Barcelona, Spain,

August 2009.

[20] J. Slegers, N. Thomas, and I. Mitrani. Dynamic server allocation for power and

performance. In Proceedings of the SPEC international workshop on Perfor-

mance Evaluation: Metrics, Models and Benchmarks, SIPEW ’08, pages 247–

261, Berlin, Heidelberg, 2008. Springer-Verlag.

[21] N. Tian and Z. G. Zhang. Vacation Queueing Models Theory and Applications.

Springer Science, 2006.

[22] A. Wierman, L. L. H. Andrew, and M. Lin. Handbook on Energy-Aware and

Green Computing, chapter Speed Scaling: An Algorithmic Perspective, pages

385–406. CRC Press, 2012.

[23] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in

processor sharing systems. In Proceedings of INFOCOM, 2009.

126

M.A.Sc. Thesis - Vincent Maccio McMaster - Software Engineering

[24] X. Xu and N. Tian. The M/M/c queue with (e, d) setup time. Journal of Systems

Science and Complexity, pages 446–455, 2008.

127

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Preliminary Knowledge
	Stochastic Processes
	Markov Processes
	Continuous-Time Markov Chains

	Queueing Theory
	Kendall's Notation
	Little's Law
	The M/M/1 Queue
	The M/G/1 Queue
	Queueing Equations

	Literature Review
	Green Computing
	Vacation Models
	Previous Work

	Problem Formulation
	The Model
	Notation
	Cost Functions
	Optimal Policies

	Analysis
	The M/M/1 {M,M,1} Queue
	Markov Chain Solution
	Deriving System Metrics

	The M/M/1 {M,M,k} Queue
	Markov Chain Solution
	Deriving System Metrics
	Products of Metrics

	The M/G/1 {G,G,k} Queue
	The Work-Cycle
	Products of Metrics
	Energy and Switching

	The M/G/1 {G,M,k} Queue

	Applications
	Optimal Parameter Values
	Constrained Optimization
	Sleep States
	Random Routing

	Conclusions
	Future Work

	Bibliography

