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ABSTRACT

The electric arc furnace (EAF) is a highly energy intensive process used to convert

scrap metal into molten steel. The aim of this research is to develop a dynamic

model of an industrial EAF process, and investigate its application for optimal EAF

operation. This work has three main contributions; the first contribution is developing

a model largely based on MacRosty and Swartz [2005] to meet the operation of a

new industrial partner (ArcelorMittal Contrecoeur Ouest, Quebec, Canada). The

second contribution is carrying out sensitivity analyses to investigate the effect of the

scrap components on the EAF process. Finally, the third contribution includes the

development of a constrained multi-rate extended Kalman filter (EKF) to infer the

states of the system from the measurements provided by the plant.

A multi-zone model is developed and discussed in detail. Heat and mass transfer

relationships are considered. Chemical equilibrium is assumed in two of the zones

and calculated through the minimization of the Gibbs free energy. The most sensitive

parameters are identified and estimated using plant measurements. The model is then

validated against plant data and has shown a reasonable level of accuracy.

Local differential sensitivity analysis is performed to investigate the effect of scrap

components on the EAF operation. Iron was found to have the greatest effect amongst

the components present. Then, the optimal operation of the furnace is determined

through economic optimization. In this case, the trade-off between electrical and

chemical energy is determined in order to maximize the profit. Different scenarios

are considered that include price variation in electricity, methane and oxygen.

A constrained multi-rate EKF is implemented in order to estimate the states of the

system using plant measurements. The EKF showed high performance in tracking the

true states of the process, even in the presence of a parametric plant-model mismatch.

iii



ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my supervisor Dr. Christopher L.E. Swartz

for his continued support and guidance throughout the course of this research project.

Without Dr. Swartz’s vision and guidance, this project would have never been suc-

cessful. I am really honoured to have him as my supervisor.

I am also grateful to Dr. Gordon Irons and John Thompson for their valuable ideas

and support in this project. Additionally, I would like to acknowledge the McMaster

Steel Research Center (SRC), ArcelorMittal Contrecoeur Ouest and the Department

of Chemical Engineering at McMaster University for their financial support.

I would like to thank all my professors who provided me with a solid academic foun-

dation that helped me progress throughout this project especially, Kevin Dunn, Dr.

Tom Adams and Dr. Prashant Mhaskar. I appreciate Kathy Goodram and Lynn

Falkiner’s administrative efforts and Dan Wright for his technical support.

A special thanks goes out to Zhiwen Chong, Yanan Cao, Tinoush Sheikhzeinoddin

and Ian Washington for their support and help during this project. Also, I would like

to thank my penthouse friends Alicia, Jaffer, Jake, Yaser, Chris, Matt, Ali, Brandon,

Dominik and Chinedu for their moral support and making my graduate life experience

memorable.

Finally, I want to thank my father Emad Ghobara, my brother Youssef Ghobara and

my grandparents, Hafez Higgy and Nadia Higgy, for everything they have contributed

in my life to reach this achievement. I am grateful for having my Uncle Khaled Higgy

who made my stay in Canada remarkable.

This thesis is dedicated to my mother, Randa Higgy, for her continued suffering and

support, without her I definitely would have never reached this point in my life.

iv



Table of Contents

1 Introduction 1

1.1 Process Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 7

2.1 Modeling, optimization and control of EAF operation . . . . . . . . . 8

2.1.1 Modeling Approaches . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Economic Optimization . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 EAF Control Applications . . . . . . . . . . . . . . . . . . . . 14

2.2 Dynamic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Sensitivity Analysis and Parameter Estimability . . . . . . . . . . . . 18

2.4 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



2.5 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Mathematical Model 26

3.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Solid Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Molten Metal Zone . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Gas Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 Roof and Walls . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Slag-Metal Interaction Zone . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Material Balance . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Slag foaming . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 JetBox Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Radiation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Effect of slag foaming . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Assumption regarding the melt rate . . . . . . . . . . . . . . . . . . . 51

3.6 Comparing different melting scrap geometry . . . . . . . . . . . . . . 54

3.7 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Parameter Estimation, Sensitivity Analysis and Economic Optimiza-

tion 63

vi



4.1 Parameter Estimation and Model Validation . . . . . . . . . . . . . . 63

4.1.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Raw Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Maximum Likelihood Function . . . . . . . . . . . . . . . . . 73

4.2.3 Model Estimation Results . . . . . . . . . . . . . . . . . . . . 75

4.3 Sensitivity Analysis on Scrap Composition . . . . . . . . . . . . . . . 78

4.3.1 Effect of scrap composition on offgas chemistry . . . . . . . . 79

4.3.2 Effect of scrap composition on slag composition . . . . . . . . 81

4.3.3 Effect of scrap composition on zone temperatures and molten

metal carbon content . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Dynamic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 State Estimation 94

5.1 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.2 Extended Kalman Filter (EKF) . . . . . . . . . . . . . . . . . 96

vii



5.1.3 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.4 Measurement Structure . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Implementing a constrained-multirate EKF . . . . . . . . . . . . . . . 100

5.2.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.2 Observability Analysis: . . . . . . . . . . . . . . . . . . . . . . 102

5.2.3 Plant and Estimator Models . . . . . . . . . . . . . . . . . . . 104

5.2.4 Constrained multi-rate EKF . . . . . . . . . . . . . . . . . . . 105

5.2.5 State augmentation and disturbance rejection . . . . . . . . . 108

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.1 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.2 Case Study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.3 Frequent molten metal temperature measurements . . . . . . . 119

5.3.4 Case Study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Conclusions and Recommendations 129

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Recommendations for Further Work . . . . . . . . . . . . . . . . . . . 130

6.2.1 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2.3 State Estimation and Control . . . . . . . . . . . . . . . . . . 132

viii



References 133

A Modeling Details 141

A.1 Molten Metal Temperature . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 Offgas flow rate and entrained air . . . . . . . . . . . . . . . . . . . . 142

A.3 Total Carbon entering the slag-metal interaction zone . . . . . . . . . 143

A.4 Water entering the gas zone . . . . . . . . . . . . . . . . . . . . . . . 143

A.5 View Factors Calculations . . . . . . . . . . . . . . . . . . . . . . . . 144

A.5.1 Roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.5.2 Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.5.3 Scrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.5.4 Molten Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.5.5 Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.6 Procedure for normalizing the trajectories . . . . . . . . . . . . . . . 149

B Parameter Estimation 150

C State Estimation 152

C.1 Converting DAE system to ODE state space model using linearization 152

C.2 Local Observability Results . . . . . . . . . . . . . . . . . . . . . . . 154

C.3 EKF parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

ix



C.3.1 Tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . 158

C.3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.3.3 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 161

C.4 EKF Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

C.4.1 Case Study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

C.4.2 Frequent molten metal temperature measurements on Case Study

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.4.3 Case Study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

x



List of Figures

1.1 Electric Arc Furnace Operation . . . . . . . . . . . . . . . . . . . . . 2

3.1 Schematic diagram of the EAF model (MacRosty and Swartz [2005]) 27

3.2 JetBox Diagram (Brhel [2002]) . . . . . . . . . . . . . . . . . . . . . . 46

3.3 EAF surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Comparing the trajectories for term1 representing [∆Hfusion
Tmelt

Tss
] and

term2 representing ([∆Hfusion + Cp(Tmelt − Tss]Tmelt

Tss
) . . . . . . . . . 52

3.5 Mass of solid scrap in the furnace . . . . . . . . . . . . . . . . . . . . 53

3.6 Melting rate of scrap . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Temperature of the gas zone . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Mass of solid scrap in the furnace . . . . . . . . . . . . . . . . . . . . 55

3.9 Temperature of the roof of the furnace . . . . . . . . . . . . . . . . . 56

3.10 Temperature of the wall of the furnace . . . . . . . . . . . . . . . . . 56

3.11 Active power trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.12 JetBox trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xi



3.13 Natural gas trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.14 Temperature trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.15 Mass of Scrap and Molten Metal trajectories . . . . . . . . . . . . . . 61

3.16 Offgas composition trajectories . . . . . . . . . . . . . . . . . . . . . 61

3.17 Roof and Wall temperature trajectories . . . . . . . . . . . . . . . . . 62

3.18 Foam height trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Sensitivity analysis on the molten metal zone . . . . . . . . . . . . . . 67

4.2 Sensitivity analysis on the offgas composition . . . . . . . . . . . . . 68

4.3 Sensitivity analysis on the slag-metal zone . . . . . . . . . . . . . . . 69

4.4 Sensitivity analysis on the gas and scrap temperatures . . . . . . . . 70

4.5 Sensitivity analysis on combined measurements . . . . . . . . . . . . 71

4.6 Normalized Offgas Chemistry Predictions . . . . . . . . . . . . . . . . 76

4.7 Slag Composition Predictions . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Molten Metal Temperature Prediction . . . . . . . . . . . . . . . . . 77

4.9 Effect of scrap composition and fluxes on offgas chemistry . . . . . . 80

4.10 Effect of Scrap components on CO offgas composition . . . . . . . . . 81

4.11 Effect of scrap composition and fluxes on Slag chemistry . . . . . . . 82

4.12 Effect of scrap components on FeO slag composition . . . . . . . . . . 83

xii



4.13 Effect of scrap composition on the zones temperatures and molten

metal carbon content . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.14 Effect of Fe in scrap on the solid scrap zone temperature . . . . . . . 85

4.15 Effect of scrap components on the molten metal carbon content . . . 86

4.16 Overall effect of scrap composition on the EAF operation . . . . . . . 87

4.17 Active Power Optimized Trajectories . . . . . . . . . . . . . . . . . . 90

4.18 Methane Optimized Trajectories . . . . . . . . . . . . . . . . . . . . . 91

4.19 JetBox1 Optimized Trajectory . . . . . . . . . . . . . . . . . . . . . . 92

4.20 JetBox2 Optimized Trajectory . . . . . . . . . . . . . . . . . . . . . . 92

4.21 JetBox3 Optimized Trajectory . . . . . . . . . . . . . . . . . . . . . . 93

5.1 The flow between the plant, estimator and estimator model . . . . . . 105

5.2 Interfacing gPROMS and Matlabr using gO:MATLAB tool . . . . . 106

5.3 Multi-rate EKF implementation diagram . . . . . . . . . . . . . . . . 107

5.4 Gas zone state profiles for the base case (Case Study 1A) without

disturbance state augmentation. (×) represents the estimated states

while (–) represents the actual states . . . . . . . . . . . . . . . . . . 112

5.5 Slag zone state profiles for the base case (Case Study 1A) without

disturbance state augmentation. (×) represents the estimated states

while (–) represents the actual states . . . . . . . . . . . . . . . . . . 113

xiii



5.6 Molten metal zone state profiles for the base case (Case Study 1A)

without disturbance state augmentation. (×) represents the estimated

states while (–) represents the actual states . . . . . . . . . . . . . . . 114

5.7 Solid zone state profiles for the base case (Case Study 1A) without

disturbance state augmentation. (×) represents the estimated states

while (–) represents the actual states . . . . . . . . . . . . . . . . . . 114

5.8 Solid zone state profiles for Case Study 1B with disturbance state aug-

mentation. (×) represents the estimated states while (–) represents

the actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.9 Gas zone state profiles for Case Study 1B with disturbance state aug-

mentation. (×) represents the estimated states while (–) represents

the actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.10 Slag zone state profiles for Case Study 1B with disturbance state aug-

mentation. (×) represents the estimated states while (–) represents

the actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.11 Molten metal zone state profiles for Case Study 1B with disturbance

state augmentation. (×) represents the estimated states while (–) rep-

resents the actual states . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.12 Molten metal temperature trajectories with frequent molten metal

temperature measurements . . . . . . . . . . . . . . . . . . . . . . . . 119

5.13 Gas zone state profiles for the Case Study 2A without disturbance state

augmentation. (×) represents the estimated states while (–) represents

the actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xiv



5.14 Molten metal zone state profiles for the Case Study 2A without distur-

bance state augmentation. (×) represents the estimated states while

(–) represents the actual states . . . . . . . . . . . . . . . . . . . . . 123

5.15 Slag zone state profiles for the Case Study 2A without disturbance state

augmentation. (×) represents the estimated states while (–) represents

the actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.16 Solid zone state profiles for the Case Study 2A without state augmen-

tation. (×) represents the estimated states while (–) represents the

actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.17 Gas zone state profiles for the Case Study 2B with disturbance state

augmentation. (×) represents the estimated states while (–) represents

the actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.18 Slag zone state profiles for the Case Study 2B with disturbance state

augmentation. (×) represents the estimated states while (–) represents

the actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.19 Molten metal zone state profiles for the Case Study 2B with distur-

bance state augmentation. (×) represents the estimated states while

(–) represents the actual states . . . . . . . . . . . . . . . . . . . . . 128

5.20 Solid zone state profiles for the Case Study 2B with disturbance state

augmentation. (×) represents the estimated states while (–) represents

the actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

C.1 Slag zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation. (×) represents the estimated states while (–)

represents the actual states . . . . . . . . . . . . . . . . . . . . . . . . . 162

xv



C.2 Gas zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation. (×) represents the estimated states while (–)

represents the actual states . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.3 Solid zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation. (×) represents the estimated states while (–)

represents the actual states . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.4 Molten metal zone state profiles for the base case (Case Study 1A) without

disturbance state augmentation. (×) represents the estimated states while

(–) represents the actual states . . . . . . . . . . . . . . . . . . . . . . . 164

C.5 Gas zone state profiles for Case Study 1B with disturbance state augmen-

tation. (×) represents the estimated states while (–) represents the actual

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.6 Solid zone state profiles for Case Study 1B with disturbance state augmen-

tation. (×) represents the estimated states while (–) represents the actual

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

C.7 Slag zone state profiles for Case Study 1B with disturbance state augmen-

tation. (×) represents the estimated states while (–) represents the actual

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

C.8 Molten metal zone state profiles for Case Study 1B with disturbance state

augmentation. (×) represents the estimated states while (–) represents the

actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.9 Gas zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation using frequent MM.T measurements. (×) repre-

sents the estimated states while (–) represents the actual states . . . . . . 168

xvi



C.10 Slag zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation using frequent MM.T measurements. (×) repre-

sents the estimated states while (–) represents the actual states . . . . . . 169

C.11 Molten metal zone state profiles for the base case (Case Study 1A) without

disturbance state augmentation using frequent MM.T measurements. (×)

represents the estimated states while (–) represents the actual states . . . 170

C.12 Solid zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation using frequent MM.T measurements. (×) repre-

sents the estimated states while (–) represents the actual states . . . . . . 170

C.13 Gas zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation using frequent MM.T measurements. (×) repre-

sents the estimated states while (–) represents the actual states . . . . . . 171

C.14 Solid zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation using frequent MM.T measurements. (×) repre-

sents the estimated states while (–) represents the actual states . . . . . . 171

C.15 Slag zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation using frequent MM.T measurements. (×) repre-

sents the estimated states while (–) represents the actual states . . . . . . 172

C.16 Molten metal zone state profiles for the base case (Case Study 1A) without

disturbance state augmentation using frequent MM.T measurements. (×)

represents the estimated states while (–) represents the actual states . . . 173

C.17 Solid zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated

states while (–) represents the actual states . . . . . . . . . . . . . . . . 174

xvii



C.18 Gas zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated

states while (–) represents the actual states . . . . . . . . . . . . . . . . 175

C.19 Slag zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated

states while (–) represents the actual states . . . . . . . . . . . . . . . . 176

C.20 Molten metal zone state profiles for Case Study 1B with disturbance state

augmentation using frequent MM.T measurements. (×) represents the es-

timated states while (–) represents the actual states . . . . . . . . . . . . 177

C.21 Gas zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated

states while (–) represents the actual states . . . . . . . . . . . . . . . . 178

C.22 Solid zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated

states while (–) represents the actual states . . . . . . . . . . . . . . . . 179

C.23 Slag zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated

states while (–) represents the actual states . . . . . . . . . . . . . . . . 179

C.24 Molten metal zone state profiles for Case Study 1B with disturbance state

augmentation using frequent MM.T measurements. (×) represents the es-

timated states while (–) represents the actual states . . . . . . . . . . . . 180

C.25 Gas zone state profiles for the Case Study 2A without disturbance state

augmentation. (×) represents the estimated states while (–) represents the

actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

xviii



C.26 Solid zone state profiles for Case Study 2A with disturbance state augmen-

tation. (×) represents the estimated states while (–) represents the actual

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C.27 Slag zone state profiles for the Case study 2A without disturbance state

augmentation. (×) represents the estimated states while (–) represents the

actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C.28 Molten metal zone state profiles for the Case study 2A without disturbance

state augmentation. (×) represents the estimated states while (–) represents

the actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C.29 Gas zone state profiles for the Case Study 2B with disturbance state aug-

mentation. (×) represents the estimated states while (–) represents the

actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

C.30 Solid zone state profiles for the Case Study 2B with disturbance state aug-

mentation. (×) represents the estimated states while (–) represents the

actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.31 Slag zone state profiles for the Case Study 2B with disturbance state aug-

mentation. (×) represents the estimated states while (–) represents the

actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.32 Molten metal zone state profiles for the Case Study 2B with disturbance

state augmentation. (×) represents the estimated states while (–) represents

the actual states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xix



List of Tables

4.1 Roles of parameters in the model . . . . . . . . . . . . . . . . . . . . 65

4.2 Most Sensitive Estimated Parameters . . . . . . . . . . . . . . . . . . 74

4.3 Mean Squared Prediction Errors . . . . . . . . . . . . . . . . . . . . . 75

4.4 Optimization summary for the 3 scenarios . . . . . . . . . . . . . . . 93

B.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.1 Observability Results for Case Study 1B with augmented disturbances 156

xx



Chapter 1

Introduction

Electric Arc Furnaces (EAFs) are used extensively in industry to convert scrap metal

into molten steel. EAFs account for approximately one third of the world crude

steel production, which approximately reached 1.5 billion tons in 2012 (World Steel

Association [2012]). This is a highly energy intensive process and possesses a high

degree of complexity. A typical batch consumes approximately 400 kWh/ton of steel

(Fruehan [1998]) and modern furnaces are now consuming less than 300 kWh/ton of

steel (Irons [2005]). Approximately 60% of the energy consumed by the EAF rep-

resents electrical energy and the other 40% accounts for chemical energy resulting

from the burner materials and the chemical reactions occurring within the furnace

(Matson and Ramirez [1999]). This high energy consumption of the EAF motivates

the development of control and optimization strategies that would reduce production

costs, while maintaining targeted steel quality (steel grade) and meeting environmen-

tal standards (carbon emissions). The high energy intensity during the operation of

the furnace limits the number of measurements and makes modeling this process very

complicated. Therefore, some assumptions are often made and a lot of uncertainty

as a result exists.
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1.1 Process Overview

The EAF considered in this work is an AC furnace with a capacity of approximately

100 tons/h. A schematic diagram of the EAF operation is shown in Figure 1.1. The

scrap is loaded into the furnace and the roof is then closed, before the electrodes bore

down the scrap to transfer electrical energy. Natural gas (CH4) and oxygen (O2) are

injected into the furnace from the burners which get combusted releasing chemical

energy that is also absorbed by the scrap. The scrap keeps melting through absorbing

electrical, chemical and radiation energy. When sufficient amount of space is available

within the furnace, another scrap charge is added and melting continues until a flat

bath of molten steel is formed at the end of the batch. Through the evolution of

carbon monoxide from the molten metal a slag layer is formed, which contains most

of the oxides resulting from the reactions of the metals with oxygen. Slag chemistry is

adjusted through oxygen and carbon lancing, beside some direct addition of carbon,

lime and dolomite through the roof of the furnace. Cooling panels are used to cool

down the roof and the walls of the furnace, in addition to the gas and molten metal

zones. Each batch duration is approximately 60 minutes and two charges of scrap are

usually involved within one batch cycle. Online data that are used in this work were

obtained in collaboration with ArcelorMittal Contrecoeur Ouest in Quebec, Canada.

Figure 1.1: Electric Arc Furnace Operation
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1.2 Motivation and Goals

As discussed earlier, the EAF is a very complex and highly energy intensive process.

The EAF process is characterized by a low level of automation and high level of

operator involvement. Several steel industries rely on past experience in the operation

of their furnaces in terms of the recipes of material addition such as scrap, fluxes,

methane, carbon, oxygen and power. Those additions can be performed in several

ways and optimizing the correct timing and quantity of the additions can potentially

save steel makers a significant amount of money.

The aim of this work is to develop a model that can be used to simulate an industrial

EAF process and which can be used to implement different optimization and control

strategies. This work builds on previous models found in the literature. This model

could be used offline by plant operators to carry out what-if scenarios regarding dif-

ferent batches used by the plant. Also, sensitivity analysis case studies are performed

in order to study the effect the scrap composition has on the different outputs from

the EAF process. This could be used to predict the behaviour of different types of

scrap in the EAF.

After developing a model that represents the complex industrial process, dynamic

optimization is carried out which focuses on determining the optimal input profiles to

maximize the profit from the process. The main aim of this component of the project

is to investigate the capability of the optimizer to capture the trade-off between

electrical energy and chemical energy based on their prices.

The EAF process is characterized by the shortage of continuous measurements and

therefore not all the states are measured during the operation of the furnace. In

order to use this model for real-time applications, state knowledge is always necessary.

Therefore, a state observer is implemented to infer the current states of the system

at every time step during the batch. An extended Kalman filter was chosen and used
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to estimate the states of the process. Through the knowledge of the current states

of the process, this could be used by the operator as an advisory tool to determine

the optimal input trajectories of the furnace for the remainder of the batch. The

first challenge in this area, is that the model developed is a differential-algebraic

equation (DAE) model which had to be converted to an ordinary differential equation

(ODE) system. The next challenge is dealing with the different sample rates for

the measurements, and therefore a constrained multi-rate EKF was implemented

to ensure reliable estimates and to accommodate the different measurement sample

rates. This is considered to be a novel contribution to EAF operation.

1.3 Main Contributions

This work has three main contributions to EAF modeling and control. The first con-

tribution is refining the model developed by MacRosty and Swartz [2005] to account

for the operation of a new industrial partner. The reconfiguration accounts for some

new modeling aspects, in addition to some assumptions that were not considered

before. The second contribution is carrying out sensitivity analyses on some of the

initial conditions in the EAF process such as the scrap components. Such sensitivity

case studies help us better understand the conditions of the operation of the furnace

and its relation to the outputs of the process model. The third contribution is es-

timating the internal states of the system using a nonlinear state observer such as

the extended Kalman filter, while accounting for the constraints and the different

sampling rates of the measurements.

1.4 Thesis overview

Chapter 2 – Literature Review

4
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This chapter starts with a literature review on the current EAF models that

have been developed. Previous optimization studies and control applications on

EAFs are then reviewed. Sensitivity analysis techniques, as well as parameter

estimation strategies are also discussed and reviewed. Finally, previous work on

the implementation of an extended Kalman filter (EKF) is reviewed.

Chapter 3 – Mathematical Model

In this chapter, the process model formulation is discussed. The model used in

this work is discussed in detail, showing all the relationships involved. Assump-

tions regarding the melting and radiation parts of the model are presented and

validated.

Chapter 4 –Model Validation, Sensitivity Analysis and Optimization

Model validation is presented through parameter estimation and calibration

against plant measurements. Sensitivity analysis is conducted to investigate

the effect of the scrap composition and flux components on the EAF operation.

The optimal operation of the furnace is then identified through dynamic opti-

mization of the EAF process. Different scenarios are considered that include

price fluctuations in electricity, methane and oxygen.

Chapter 5 – State Estimation

The formulation of a constrained multi-rate EKF is presented and two different

case studies are investigated. The two case studies investigate the ability of the

observer to track the true states of the process, while lacking the knowledge of

the exact initial conditions. One of the case studies also includes the presence

of parametric plant-model mismatch.
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Chapter 6 – Conclusions and Recommendations

This final chapter addresses the main results and conclusions. Future potential

work is also discussed and the motivation behind it is illustrated.

6



Chapter 2

Literature Review

The intent of this chapter is to review related previous work in the literature. First,

previous EAF models that were developed and published in the open literature will

be discussed. The use of the models developed to implement different optimization

strategies for EAF operation and investigate optimal control strategies of the EAF will

be described. Second, dynamic optimization formulation and methods used to solve

such problems will be reviewed. Third, sensitivity analysis approaches to understand

the input-output behaviour of dynamic systems will be reviewed. Fourth, parameter

estimation techniques will be reviewed and finally a review on the application of state

observers to estimate the internal states of dynamic systems will be discussed.
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2.1 Modeling, optimization and control of EAF

operation

2.1.1 Modeling Approaches

In order to be able to optimize or control a process, a model describing this process

needs to be developed. The complexity of the EAF discussed in Chapter 1, moti-

vated researchers to come up with different models that could describe the process

to a required level of accuracy. This took into account the heat and mass transfer

relationships. Models differed in complexity based on the amount of detail it could

capture in the process. Different first principles approaches were taken by researchers

to model the EAF batch process. Most of these approaches divided the EAF furnace

into different zones or volumes in order to describe the mass and heat transfer within

the zones and between each zone and another.

One of the earliest models that described the whole EAF process was developed

by Matson and Ramirez [1997], in which the furnace was divided into two control

volumes; a gas control volume and another control volume containing the slag, bath

and some gas. The gas control volume mainly contained the free-board gases. The

scrap was modeled as a surface made up of n identical spheres. Therefore, modeling

the heat transfer can be reduced to one sphere, and then it can be scaled up to n

spheres. The melting model was comprised of partial differential equations to compute

the scrap temperature change and the rate of melting based on the sensible heat and

the latent heat of fusion. Compounds of interest were chosen (CO, CO2, H2, O2, N2

and H2O) as well as their precursors which included dissolved oxygen and hydrogen

in the bath and carbon dissolved in the bath. Chemical equilibrium was assumed

within each control volume through the minimization of the Gibbs free energy. Before

a material balance was executed, the equilibrium state was calculated and this was to
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ensure that equilibrium did exist at all time steps during the simulation. 17 material

balances were used to track the transfer of material that were limited by concentration

gradients, mass transfer coefficient and contact area. The model was able to predict

the offgas chemistry and bath chemistry. A finite difference approach was used to

solve the PDEs. The finite difference ODEs were augmented with a melting algorithm.

When the temperature of the shell of the sphere reached the melting temperature, the

melting algorithm was implemented causing a decrease in the radius of the spheres.

At each time step, the temperature profile was monitored which then decides, if the

next time step will involve a sensible heating or a melting iteration. The melting

algorithm assumed no sensible heat transfer taking place, and as a result small time

steps were used to attain a reasonable level of accuracy. Similarly, Bekker et al. [1999]

developed a dynamic nonlinear ODE EAF model consisting of 14 equations based on

first principles thermodynamics for use in a control application for the offgas system.

The temperature of the bath, molten slag and gas were assumed to be the same. The

model mainly consisted of a solid group, which contains the solid scrap and solid slag

from fluxes that have not dissolved, and a fluid group which contains molten metal,

molten slag and gas phase. It was assumed that all the heat from the arc is transferred

to the molten metal, and a power division coefficient is used to differentiate between

the energy available for melting the scrap and that responsible for heating the scrap to

the melting temperature. All the oxygen blown into the steel reacts with Fe which is

the major component in the bath. It was also assumed that the scrap does not contain

any impurities. The CaO and MgO were lumped together in a single state variable.

The solid group received energy from the fluid group. Hydrogen was ignored in the

offgas composition system. The metallurgical reactions considered included those for

C, Si, Fe as well as the reduction of FeO. The reaction rates for carbon and silicon are

driven by the difference between their concentrations in the slag and bath and their

equilibrium concentrations. Unlike Matson and Ramirez [1997], chemical equilibrium

was calculated using reaction kinetics. The model was solved using a 4th order Runge
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Kutta fixed step size numerical method.

Modigell et al. [2001] developed an EAF model to serve as a simulation tool. The

furnace was divided into four main reaction zones which are the molten metal, scrap,

metal-slag and post-combustion zones. The scrap zone mainly contains the scrap, and

the slag metal zone consists of the slag phase and a part of the metal bath. Chemical

equilibrium was assumed in the zones due to the high temperatures which make them

not limited by reaction kinetics. The model was validated against offgas composition

in addition to end-point measurements. This included end-point bath chemistry in

addition to masses of steel, slag and offgas.

Nyssen et al. [2004] et al. developed a model for the electric arc furnace, which was

divided into fifteen sectors. A sector identifies the location of the scrap within the

furnace. Each sector has different rate of melting depending on its location within

the furnace and has its specific scrap layers. Ten modules describing the physical

parts of the furnace were identified which are the scrap, liquid metal, slag, solidified

metal, refractory lining, arc, furnace chamber exhaust gas system, burners and roof

and panels modules. Mass and heat exchanges between the modules were considered.

The liquid metal bath composition was determined based on the oxidation rates and

metal-slag equilibrium. The model also was able to calculate the physical properties

of the slag, as well as slag foaming. The model was implemented online at the Arcelor

Profil Luxembourg Esch-Belval steelshop.

In contrast to the full EAF models described above, Guo and Irons [2003] developed a

three-dimensional radiation model to quantify the radiative energy distribution within

the furnace. The model used the power factor, current and voltage to determine the

amount of energy radiated from the arc. It distinguished the energy received by a

surface from the arc from that from the bath. It also determined the amount of heat

extracted by the cooling panels and the roof, and considered the effect of slag foaming

on the wall temperature and other parts of the furnace. MacRosty and Swartz [2005]
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developed a first principles dynamic DAE model in which the furnace was divided

into four main zones; slag-metal interaction zone, molten metal zone, gas zone and

solid scrap zone. The authors used some of the conclusions of the work done by

Guo and Irons [2003] to model the radiation part in the process. The scrap melting

geometry was assumed to form a cone-frustum. Chemical equilibrium was assumed

in the slag and gas zones, where chemical reactions take place. Chemical equilibrium

was calculated through the minimization of the Gibbs free energy. It was assumed

that all the oxygen lanced enters the slag phase and that no chemical reactions occur

in the molten metal zone. A constant free-board gas pressure was assumed and was

considered the main driving force for the air being ingressed into or expelled from the

furnace. All reactions were limited by mass transfer relationships. Slag foaming was

calculated through the duration of the batch. This model represents the basis for this

research project, in which few modifications are carried out and will be discussed in

Chapter 3.

Wendelstorf and Spitzer [2006] identified 7 volumes of the electric arc furnace to be

balanced. This included the upper shell, lower shell, liquid metal, solid metal, slag,

gas and roof. A system of equations was written based on conservation of mass,

momentum and energy. No information was provided regarding the kinetics of the

chemical reactions occurring in the furnace. One specific fit parameter was used to

describe how the energy is distributed in the EAF system. The model was capable of

predicting the tapping temperature and melt-down status to an accuracy depending

on the precision of input measurements and the model, which was verified through a

sensitivity analysis.

Stankevic et al. [2009] developed a mathematical model for calculating the heat and

mass transfer relationships during a three phase electric arc furnace operation. A

system of equations was formulated based on the conservation of mass, momentum

and energy. Lateral radiation flow was also considered to determine the heating of

11
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the melt.

One of the recent models developed in literature is by Logar et al. [2012a]. The

authors developed a first principles multi-zone dynamic model for an 80 MVA AC

furnace using mass and heat transfer relationships. The model used the principles

from Bekker et al. [1999] and MacRosty and Swartz [2005] models as the basis for

the model development and considered the conductive and convective heat transfer

between the zones and the CO post combustion. Reaction kinetics were considered

in the slag, gas and bath zones. The model illustrated 15 oxidation and reduction

chemical reactions taking place. Constant activity coefficients close to 1 were assumed

to calculate the chemical equilibrium and an ideal solution was assumed for the slag

phase. The model also took into account some aspects such as electrode oxidation

and slag foaming.

2.1.2 Economic Optimization

EAF models such as those discussed enabled researchers to identify potential oppor-

tunities for improving the EAF process in terms of optimal control. This is usually

formulated as an optimization problem, in which some control variables are adjusted

in order to maximize or minimize an objective function, which is usually an economic

one.

Some of these approaches considered simplified models to apply optimal control strate-

gies. Woodside et al. [1970] used a highly simplified model to control the decarbur-

ization rate in order to find the optimal power trajectory. A second-order nonlinear

model involving two state variables was used, which are the reacted atoms of carbon

and temperature. The control inputs represented the input power and the terminal

reaction time. The total cost was minimized and some constraints were enforced on

the carbon content, temperature and power input. Hard constraints were replaced
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by soft constraints. The steepest descent and direct methods were used to solve the

optimization problem. Gosiewski and Wierzbicki [1970] formulated an optimization

objective function for the EAF taking into account the cost of power and time. The

melting stage only was considered in the optimization problem, while the refining

and oxidizing stages were not considered. A simplified single state model was used

which relates the power input to the bath temperature. The control variables were

the secondary transformer tap, which was assumed to remain at its maximum and the

arc current. The optimization problem was solved using Pontryagin’s maximum prin-

ciple. Gitgarts and Vershinina [1984] used a dynamic statistical model to obtain the

optimal electrical conditions in order to minimize the total costs. The electrical prop-

erties were related to the two states of the model representing the progression of the

process through a sequence of stages and molten metal temperature. The optimiza-

tion criterion considered the costs of energy, refractory materials and labour costs.

Pontryagin’s maximum principle was used to solve the optimization problem. Görtler

and Jörgl [2004] developed a control system for a three phase industrial electric arc

furnace. The aim was to optimally transfer electrical energy to the scrap without

damaging the furnace walls. An electrical subsystem and a thermodynamic system

were used to relate the arc radiation to the temperature of the furnace roof and walls.

A fuzzy logic controller was used to manipulate the set-point of the impedances of the

three phases and transformer tap to control the amount of arc radiation through mea-

suring the temperature of the cooling panels. The optimization in this case focuses

on how to select the electrical input parameters for a maximum meltdown power such

that the temperatures of the roof and the walls of the furnace remain at the desired

level, without causing any damage to the furnace structure.

Jones et al. [1999] discussed the use of offgas system analysis to identify and trou-

bleshoot EAF operation. Through the offgas composition, temperature and flow, the

operator can get feedback regarding the efficiency of heat transfer in terms of burners,

lancing, amount of oil in scrap, etc. Through increasing the efficiency of heat transfer,
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the overall operating costs could be decreased.

In contrast to the optimal control applied on subsystems of the EAF, some other

approaches considered all the subsystems simultaneously. The disadvantage of the

aforementioned approaches, is that optimizing a subsystem could have a negative

impact on the rest of the system. Therefore, Matson and Ramirez [1999] developed

a model for the EAF process as described previously and investigated an optimal

operating strategy of the process. The performance incorporated the idea of faster,

better, cheaper tending towards less processing time, maximizing the yield from raw

material and maximizing the utilization of chemical energy. This included the CO

emitted from the offgas system, the tapped molten metal temperature and the amount

of FeO present at the tapping time. A performance criterion was optimized aiming to

maximize yield, reduce cost and run sustainably through reducing carbon monoxide

emissions. Similarly, MacRosty and Swartz [2007] considered the optimal performance

based on an economic objective criterion to maximize profit. The model developed

by MacRosty and Swartz [2005] was used and path constraints and end-point con-

straints were enforced on some of the variables. The trade-off between process inputs

and processing time was illustrated and sequential approach was used to solve the

optimization problem.

2.1.3 EAF Control Applications

Some applications were developed to control certain variables of interest in the EAF

at specific ranges, through manipulating the inputs to the process. Oosthuizen et al.

[1999] used the model by Bekker et al. [1999] and added three more states describing

the mass flow of CO, CO2 and N2. The authors implemented a model predictive con-

troller (MPC) to control the steel temperature, relative pressure in the furnace and the

amount of CO in the offgas system. The manipulated variables were the fan speed,
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slip gap width and the rate of addition of direct reduced iron (DRI). A linearized

state space model was utilized and setpoints were specified for the steel temperature

at the end of the heat, relative furnace pressure and the CO emission. Similarly,

Bekker et al. [2000] used the model by Bekker et al. [1999] and implemented MPC

control of the offgas system. The forced draught fan power and the air-entrainment

slip-gap width were also the manipulated variables. The control variables were the

relative pressure in the furnace, the CO content in the offgas and the offgas temper-

ature. Unlike Oosthuizen et al. [1999], DRI was considered as a disturbance rather

than a manipulated variable. Oosthuizen et al. [2004] extended the work done by

Oosthuizen et al. [1999] and Bekker et al. [2000] by designing a linear MPC for the

EAF with an economic objective function. The manipulated variables were the off-

gas fan power, slip-gap width, oxygen injection rate, DRI feed-rate and the graphite

injection rate. The controlled variables were the relative furnace pressure, CO emit-

ted to the atmosphere, offgas temperature, steel mass, steel temperature, percent of

carbon in the steel melt and slag foam depth. This was implemented through trans-

lating the process economics into weights based on the cost of the feed materials and

the economic implications of reaching or not reaching the control objectives. These

weights are then included in a quadratic MPC objective function. Pozzi et al. [2005]

discussed the use of a control system (EFSOP), which uses the measurements of the

offgas composition at the fourth hole of the furnace. Through closed loop control,

set-points are generated for the burners and oxygen lancing operations which con-

trol the combustion process in the freeboard gas volume. Information regarding the

decarburization rate and amount of reacted carbon could be deduced based on the

measurements of the CO and H2 in the offgas system.
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2.2 Dynamic Optimization

This section will focus on formulating the dynamic optimization problem for a differential-

algebraic equation (DAE) system and outlining the key methods used to solve it.

DAE systems are considered more challenging than purely algebraic systems due to

the presence of differential states that are required to be integrated and the infinite-

dimensional search space of the decision variables. The general form for the optimiza-

tion of a DAE system is shown as (Cervantes and Biegler [2001]),

min
u(t),tf

φ(x(tf ), z(tf ), u(tf ), tf , ) (2.1)

subject to :

dx(t)

dt
= f(x(t), z(t), u(t), t) (2.2)

0 = h(x(t), z(t), u(t), t) (2.3)

0 ≥ g(x(t), z(t), u(t), t) (2.4)

xL ≤ x(t) ≤ xU (2.5)

zL ≤ z(t) ≤ zU (2.6)

uL ≤ u(t) ≤ uU (2.7)

x0 = x(0) (2.8)

in which z(t) represents the algebraic variables, x(t) is the vector of differential state

variables and u(t) is the set of control input variables. f, h and g represent the differen-

tial equation constraints, equality constraints and inequality constraints respectively.
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Two key approaches for solving dynamic optimization problems are the sequential

approach and simultaneous approach.

The simultaneous method involves discretizing both the control variables and the state

variables. It discretizes the DAE system to form an algebraic equation system. This

method is often referred to as a full discretization approach. The state variables are

discretized through approximating them using a set of polynomials. This reduces the

dynamic optimization problem into a finite nonlinear programming (NLP) problem.

The optimization in this case is carried in the full space of the discretized variables.

This is also referred to as the infeasible path approach (Vassiliadis et al. [1994]),

because the differential equations are satisfied at the converged solution of the NLP

only. The solution of the model and the optimization is carried out simultaneously.

The sequential approach discretizes the control variables only and as a result the ODE

still holds. This allows the optimization to be carried out in the decision variables

space only (Chachuat [2009]). The sequential method is also referred to as a single

shooting method. It uses a set of initial conditions for the states and passes them

to an ODE solver, which integrates the state variables. The final state value of each

interval is used as initial state value for the next discretized interval, and as a result

any error associated with the initial conditions will propagate until the end of the

process. The ODE solver sends the time trajectories and the sensitivity information

to the optimizer, which determines the optimal design parameters. Some approaches

for obtaining the gradient information for the optimization include finite difference

perturbations, integration of the adjoint equations and integrating the sensitivity

equations (Vassiliadis et al. [1994]).
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2.3 Sensitivity Analysis and Parameter Estimabil-

ity

The application of sensitivity analysis techniques aims at understanding the effect of

parameters on a system’s response.

Local sensitivity analysis was used in parameter estimability applications to deter-

mine the optimal subset of parameters to estimate. Franceschini and Macchietto

[2008] discussed the use of model based design of experiments techniques for increas-

ing parameter precision. Parameter estimability was discussed, which checks if the

parameters could be uniquely identified and a local sensitivity analysis on the re-

sponse variables was performed. The rank test was used to check the estimability

and the ill-conditioning of the estimation problem. On the other hand, parameter

distinguishability was discussed which differentiates between rival models. Parame-

ter correlations were investigated and minimized through including the information

content of the experiment in the objective function and constraining the correlation

coefficients between parameter pairs to a threshold value. A global sensitivity test

was discussed, in which the effect on the output from changing one parameter is inves-

tigated, while the other parameters are changing as well. This enables discovering the

degree of parameter interactions in a model. Two methods that were discussed are

the Fourier amplitude sensitivity test (FAST) and Sobols method (Variance based

Monte-Carlo method). Huang et al. [2010] reduced an Interleukin 6 (IL-6) signal

transduction pathway model which consisted of 68 components and 118 parameters

to a model containing 13 components and 19 parameters. A local sensitivity analysis

was performed to identify the most sensitive parameters and the effective correlation

between the parameters on the outputs was identified. The underlying model was

represented by,
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dx

dt
= f(x, p, u) (2.9)

y = h(x, p, u) (2.10)

where x represents the state vector, y is the output vector of length ny and u is

the vector of inputs of the system. The sensitivity profile (∂y/∂pT ) would then be

calculated as,

d

dt

∂x

∂pT
=

∂f

∂xT
∂x

∂pT
+

∂f

∂pT
(2.11)

∂y

∂pT
=

∂h

∂xT
∂x

∂pT
+

∂h

∂pT
(2.12)

The normalized sensitivity vector si,k of response k to parameter i was then calculated

as,

si,k =
p0
i

y0
k

×
[
∂yk(t1)
∂pi

.....∂yk(tnt)
∂pi

]T
(2.13)

where t1,...,tnt represents the time vector t of length nt, p
0
i is the nominal value of the

parameter and y0
k is the nominal value of the response variable. The norm was used

as a single metric representing the impact that the parameter pi has on the combined

outputs.

||si,combined|| =
√∑

k

∑
j

(
p0i
y0k
× ∂yk(tj)

∂pi

)2

(2.14)

The identifiability of the model was improved through this reduction technique and

was validated against experimental data. McLean et al. [2012] identified the optimal

subset of parameters for a batch reactor model which gives the best predictions of the

experimental data. An orthogonalization algorithm combined with a mean squared

error (MSE) criterion was used to rank the parameters from the most estimable to

the least estimable using a sensitivity matrix. McAuley et al. [2010] also applied same

technique on a dynamic chemical reactor to obtain the optimal subset of parameters

to be estimated.
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McLean and McAuley [2012] discussed identifiability (related to model structure)

and estimability (related to experimental data) techniques, in order to obtain better

model predictions and parameter estimates. Identifiability techniques included Taylor

series expansion, linearization and similarity transformation approaches; however, it

was mentioned that applying such methods (except linearization) on large nonlinear

systems with more than 15 parameters is very difficult. The drawbacks regarding the

linearization method is that no confident conclusion can be made about the nonlinear

system, if the linearized system was found to be identifiable. Estimability approaches

were favored, such as the use of the rank of the Fischer Information Matrix (FIM)

or Monte Carlo simulations. Other methods were introduced in case the parameters

were inestimable, in order to choose an estimable subset, while fixing the rest of

the parameters to their nominal values. Such methods included the use of scalar

measures (such as sensitive mean) of FIM, principal component analysis (PCA) and

an orthogonalisation approach. Kravaris et al. [2013] discussed the ill-conditioning

that arises during parameter estimation due to a large number of parameters in

a model. Regularization techniques were discussed, which included ridge regression,

principal component analysis and parameter selection approaches. The three methods

focused on the idea of adding constraints to reduce the feasible space of the estimation

problem. Heuristic and optimization methods for parameter selection were discussed,

in order to identify the subset of parameters to estimate. A local sensitivity approach

was discussed and the norm of the sensitivity vectors was used as a single metric

criterion.

Some of these applications were applied on EAFs to determine the effect of the in-

puts entering the furnace on the output variables. Wendelstorf and Spitzer [2006]

performed a sensitivity analysis on an EAF to identify the effect of inputs on the

outputs, in order to determine the model requirements for input measurements. This

included the initial temperature of the solid scrap, lower shell temperature and weight

precision of second charge. A local sensitivity test was used and the effect on the out-

20



M.A.Sc Thesis-Yasser Ghobara, Chemical Engineering Section 2.4

puts, which included the tapping temperature and melt-down status was calculated.

A similar case study conducted by Wendelstorf [2008] assumed no chemical energy

addition to the system and a local sensitivity test was performed. The idea was to find

the effect of the scrap charging strategies and scrap weight precision on two outputs,

which are the tap-to-tap-time (TTT) and energy efficiency. MacRosty and Swartz

[2005] performed a sensitivity analysis on the EAF model developed, to identify the

most sensitive parameters required to be estimated. Design of experiments (DOEs)

was used and a resolution IV fractional factorial design was implemented to investi-

gate the main effects of the parameters on the model outputs. A single metric was

chosen to be the integral-square-error (ISE) of the predictions from the mean state

predictions to summarize the time-dependent predictions for the entire batch in a

single value.

2.4 Parameter Estimation

Most complex models involve a large set of parameters to be able to describe the

real process. In the previous section, methods for selecting the optimal subset of

parameters to estimate were reviewed. Once, this set of parameters to estimate is

determined, the parameter values are obtained in the framework of a dynamic opti-

mization problem. The main idea is to minimize the deviation between the model

predicted outputs and the actual plant outputs. Biegler et al. [1986] discussed the

solution of a parameter estimation problem formulated by the DOW Chemical Com-

pany, which consisted of a DAE model that described the kinetics of an isothermal

batch reactor. The authors discussed how the objective function should incorporate

the error structure of the experimental data in order to achieve a best fit of the data,

and emphasized the importance of removing unnecessary parameters to improve the

conditioning of the optimization problem. The parameters were estimated through
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maximizing the likelihood function. Similarly, Kravaris et al. [2013] discussed the

stages for formulating and solving a parameter estimation problem for a model de-

scribed by,

ẋ(t) = f(x(t), u(t), θ) (2.15)

y(t) = g(x(t), u(t), θ) (2.16)

where x represents the state vector, y is the output vector, u is the input vector

and θ is the parameter vector. The authors showed that the output y could be

obtained through model simulations assuming the availability of the initial state x(0),

the input profile u(t) and the parameter vector θ. This results in a parameter-

output relationship denoted by y(t, θ) which is time dependent. The next step would

be to formulate the regression model through discretizing the output profiles and

incorporating the noise information. Therefore, for set of time points t1, t2, ...., tm the

output would be sampled as,

h(θ) =
[
y1(t1, θ), ..., y1(tm, θ), ..., yn(t1, θ), ..., yn(tm, θ)

]T
(2.17)

The authors discussed the incorporation of noise for the experimental data as,

ỹ = h(θ) + ε (2.18)

where ỹ is the experimental data vector, h(θ) is the model prediction and ε is the

noise vector. The last step would then to formulate the optimization problem where

the maximum likelihood estimation is reduced to a least squares estimation when the

noise is represented by Gaussian noise denoted by ε ∼ N(0, σ2I) with a mean of zero

and covariance of σ2I.

θ̂ = arg min
θ

(ỹ − h(θ))T (ỹ − h(θ)) (2.19)

22



M.A.Sc Thesis-Yasser Ghobara, Chemical Engineering Section 2.5

In this case, the parameter estimates are obtained through minimizing the deviation

of the model predictions from the measured data. In this work (Chapter 4), the

maximum likelihood function is reduced to a weighted least squares problem, and

will be used to estimate the parameters from plant data.

2.5 State Estimation

In order to apply advanced control strategies such as model predictive control (MPC),

etc., plant state knowledge is always necessary. In complex plants, not all system

states are observable or could be directly measured. State estimation techniques

use state observers and model-based approaches to infer the states of the system

using available measurements observed over time. Some of these state observers

include the Kalman filter, Luenberger observer and moving horizon estimator (MHE)

(Dochain [2003]; Lima et al. [2013]). The Kalman filter (KF) was developed to obtain

optimal estimates of the states from the observations, when the uncertainties in the

measurement and state equations could be modeled as Gaussian white noise processes.

The Kalman filter was developed for linear systems, and in order to apply it for

nonlinear systems a modified version of the Kalman filter was developed which is

the extended Kalman filter (EKF). The EKF uses local linearization to compute the

Jacobians at each time step (Prakash et al. [2010]). The state covariance propagation

is then performed using Taylor series expansion of the nonlinear state transition

operator. This work will focus on applying the EKF on the EAF nonlinear model to

infer the actual states of the process using plant measurements obtained along the

batch.

The extended Kalman filter application has been widely used in semi-batch reactors.

Kozub and MacGregor [1992] implemented an extended Kalman filter on semi-batch

emulsion copolymerization of styrene/butadiene rubber (SBR). The authors also in-
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troduced the application of a reiterative extended Kalman filter, in which two EKFs

are used in parallel. EKF1 is used to provide estimates of unknown initial states

using a sequence of measurements and then send these estimates to a second regular

EKF2. EKF2 is then restarted from time t=0 using the updated estimates provided.

The reiterative EKF showed faster convergence than the regular EKF using poor

initial guesses, but one of the drawbacks of this application is the computational

load required for the reiteration procedure. Non-stationary disturbances were used

to prevent bias in the state estimates and provide an integral action. Clarke-Pringle

and MacGregor [1997] discussed the temperature control of a semi-batch reactor. An

extended Kalman filter was coupled to a nonlinear controller and outperformed the

PID controller with feed-forward compensation.

The previous semi-batch reactors, where an EKF was implemented represented ODE

systems. In contrast, Becerra et al. [2001] implemented the EKF on a DAE model

of index one for a chemical batch reactor consisting of six differential states and

four algebraic equations. Time varying linearization was applied which converts the

DAE system to a system of ODEs. Becerra explored the implementation of an EKF

on a DAE model using a square-root-extended Kalman filter algorithm (Park and

Kailath [1995]). The square-root EKF ensures that the covariance matrix remains

positive definite through propagating the square root of the covariance matrix. LQ

factorization was used to implement the predicting and updating steps for the filter.

In most batch processes, some measurements are obtained more frequently than oth-

ers. Incorporating such delays in the EKF formulation becomes essential. Prasad et al.

[2002] implemented a multi-rate extended Kalman filter for a styrene polymerization

continuous stirred tank reactor, where the authors used the estimates of the molec-

ular weight moments to infer the polymer properties, such as the number average

molecular weight (NAMW) and polydispersity (PD) in the presence of limited mea-

surements. The multi-rate algorithm incorporated the different sample times between
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fast and discrete measurements, through using different EKF versions. Depending on

the measurements available at each time step, a certain EKF version is implemented.

Stochastic disturbances were augmented to the system states and a detailed local

linear observability analysis was carried out on the augmented system. Different

measurement and disturbance combinations were tested on the observability of the

system. The multi-rate estimator was coupled with a nonlinear model predictive

control algorithm to predict the future control moves.

Lima et al. [2013] discussed using a reduced extended Kalman filter (Schmidt-Kalman

filter) that eliminates the weakly observable states from the Kalman gain calculations.

In addition, they discussed the use of a linear time varying autocovariance least

squares (LTV-ALS) technique to estimate the statistics of the covariance matrices.

A limited number of EKF applications on EAF systems exist. Billings et al. [1979]

applied the extended Kalman filter on the refining stage of the EAF process, however

the model was a very simplified model consisting of 4 states only (concentration of

carbon in molten bath, concentration of manganese in molten bath, concentration of

iron oxide in slag and temperature of molten bath) which misses a lot of information

regarding the real EAF system. The authors did not consider the flux additions, which

can result in significant changes in the chemical and thermal behaviour of the process.

The measurements that were considered are the molten metal temperature and the

carbon concentration in the molten bath. At that time, existing instrumentation

technologies for the EAF did not exist. Wang et al. [2005] used the extended Kalman

filter to determine the arc current parameter in order to obtain the electrical properties

of the EAF load. The EAF model used, mainly involves the power system of the

furnace.
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Chapter 3

Mathematical Model

The intent of this chapter is to show the formulation of the model used in this work. A

detailed first principles model based largely on the model developed by MacRosty and

Swartz [2005] will be presented. Assumptions and major changes that were performed

on the model will be highlighted. Some other model details are provided in Appendix

A.

3.1 Model Formulation

The model used for the electric arc furnace (EAF) is a first principles model developed

in a gPROMS (general Process Modeling Software) platform. This model was initially

developed by MacRosty and Swartz [2005] according to the operation of a particular

industrial partner (ArcelorMittal Dofasco, Hamilton, Canada). A new industrial

partner collaboration (ArcelorMittal Contrecoeur Ouest, Quebec, Canada) required

reconfiguring the model to match their furnace configuration and operating strategy.

The EAF model is decomposed into four main zones; the solid scrap zone (SS), slag-

metal interaction zone (SM), molten metal zone (MM) and gas zone (GS). In each
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Figure 3.1: Schematic diagram of the EAF model (MacRosty and Swartz [2005])

zone, material balances and heat transfer relationships are considered. Figure 3.1

shows a schematic diagram of the process and how materials are exchanged between

the zones. This section will discuss the model that was developed and highlight the

changes that were applied during model reconfiguration. The variables from different

zones will be differentiated through the use of the subscripts ss, sm, mm, gs for the

solid scrap zone, slag-metal interaction zone, molten metal zone and the gas zone

respectively.

3.1.1 Solid Zone

The solid scrap zone represents the scrap that is being charged in the furnace. The

solid scrap is modeled as a lump surface, which is mainly composed of iron (Fe).

The other major components are carbon, silicon, manganese and aluminum. The

scrap also usually contains some oil impurities that are modeled in the furnace as a
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hydrocarbon component (C9H20).

Material Balance

Solid scrap absorbs energy and melts to form molten metal. Therefore, the main

material exchange is between the solid scrap zone and the molten metal zone. As

the amount of solid scrap melted increases, the amount of molten metal increases

accordingly. Usually two charges are loaded in a single heat, therefore this scrap

charge addition is incorporated while formulating the rate of mass change for the

scrap. The rate of mass change of solid scrap is represented by the equations below,

d

dt
(mss) = ṁin − ṁmelt (3.1)

ṁmelt(∆Hfusion + Cp(Tmelt − Tss))kdm = Qnet
ss

Tss
Tmelt

(3.2)

ṁin and ṁmelt are the rate of addition of scrap and rate of scrap melted respectively.

Equation (3.2) represents the rate of melting of the scrap which is determined by

dividing the rate of energy available to melt the solid scrap by the energy per unit

mass required to melt the scrap at its current temperature (MacRosty and Swartz

[2005]). ∆Hfusion is the latent heat of fusion of iron, the term Cp(Tmelt−Tss) represents

the sensible heat required to raise the solid scrap temperature (Tss) to the melting

temperature (Tmelt), ( Tss
Tmelt

) represents the fraction of energy that contributes to scrap

melting and kdm is an estimated parameter to account for variations in the bulk

density and composition in the scrap.
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Energy Balance

Solid scrap absorbs net energy (Qnet
ss ) until it reaches its melting point, at which point

it then melts to form molten metal. This is shown in the equation below,

Qnet
ss = Qpower−ss +Qmm−ss +Qgs−ss −Qvolatile −Qcharge − qrad3 (3.3)

The solid scrap absorbs energy mainly from conductive, convective and radiative heat

transfer. Qpower−ss is the heat transferred from the arc to the solid scrap and qrad3 is

the radiative energy released from the solid scrap in which a negative sign convention

implies the gain of radiative energy. The solid scrap zone mainly exchanges heat with

the molten metal zone and the gas zone, as well as absorbing energy from the arc

electrodes. The heat transfer from the molten metal (Qmm−ss) and gas zones (Qgs−ss)

to the solid scrap zone is given by the expressions below.

Qmm−ss =
mss

(mss + γ)
mmmkt1(Tmm − Tss) (3.4)

Qgs−ss = msshgs−ss(Tgs − Tss) (3.5)

hgs−ss = kt3(F in
CH4 + F in

O2) (3.6)

in which mmm is the mass of molten metal, mss is the mass of solid scrap, Tmm is the

molten metal temperature and Tgs is the gas temperature. Equation (3.4) is slightly

modified from MacRosty and Swartz [2005], through adding the fraction mss/(mss+γ)

where γ has a magnitude of 5× 103. This is to ensure that the rate of heat transfer

from the molten metal to the solid scrap diminishes as more scrap melts. Both Qgs−ss

and Qmm−ss are proportional to the temperature gradient across the zones, as well
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as, to the heat transfer coefficients kt1 and kt3, which are estimated from plant data.

During the beginning of the heat, the heat transfer between the gas zone and the

solid zone is very high, and therefore Qgs−ss is assumed to be proportional to the flow

rate of burner’s materials. This is shown in equation (3.6), where hgs−ss is calculated.

Equation (3.6) is slightly simplified from MacRosty and Swartz [2005] in which the

bulk density is accounted for in the estimated parameter kt3.

The solid scrap absorbs energy from the arc in terms of conductive heat and radiative

heat transfer. According to literature (Guo and Irons [2003]), 18% of the arc power is

delivered directly to the steel. A portion of the radiative heat transferred to the walls

and roof of the furnace is retained through slag foaming using an efficiency factor

(Ef ). This will be discussed in more detail later in the following sections. The energy

from the arc is partitioned between the solid scrap and the molten metal according

to their relative masses as shown in the following equation,

Qpower−ss =
mss

mss +mmm

(Ef (q
rad
1 + qrad2 ) + 0.18Parckp) (3.7)

where kp is an estimated parameter and Parc is the active power. qrad1 and qrad2

represent the amount of energy radiated to the roof and the walls of the furnace

respectively, and this will be discussed later in Section 3.4.

Since the scrap contains a small amount of organic volatile material, it would then

lose some energy from the vaporization of this hydrocarbon component (Qvolatile), in

addition to some energy that is lost from the addition of the second charge at room

temperature (Qcharge) as shown below.

Qcharge = kcool
mcharge

Mw

Cp(Tss − 298K) (3.8)
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Qvolatile = ∆HvapF
add
oil (3.9)

kcool is an estimated parameter, mcharge is the mass of the second scrap charge, Mw is

the molecular weight of Fe in this case, ∆Hvap is the latent heat of vaporization for

C9H20 and F add
oil is the rate of volatile component addition.

The solid scrap temperature is calculated as,

d

dt
(Tss) kdt = Qnet

ss (1− Tss
Tmelt

) (3.10)

where Tss
Tmelt

represents the fraction of energy available for melting , while the remaining

is responsible for sensible heating. This ensures that the scrap temperature will never

exceed the melting temperature (Bekker et al. [1999]).

3.1.2 Molten Metal Zone

The molten metal zone contains mainly the metals in their liquid state after the scrap

has melted. Material enters the molten metal zone mainly from the solid scrap zone

as scrap melts and materials exit towards the slag-metal interaction zone. It was

assumed that no reactions occur within the molten metal zone due to the absence of

oxygen (MacRosty and Swartz [2005]). The molten metal zone contains mainly the

components iron (Fe), manganese (Mn), aluminum (Al), carbon (C) and silicon (Si).

Materials are transferred to the slag-metal zone through diffusion. The model takes

into account the lancing of carbon and tracks how it is transfered to the slag-metal

zone, where it reacts with O2 or FeO to form CO through the decarburization process.
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Material Balance

The net molar flow rate of materials into the molten metal zone is represented by the

equation below,

F net
mm,i = (1− θL,i)Flance,i + Fsm−mm,i + Fss−mm,i (3.11)

in which F net
mm is the net molar flow of materials into the molten metal zone, θL is

the lancing fraction, Flance is the flow rate of lanced material which are carbon and

oxygen; it was assumed that all the oxygen lancing goes into the slag-metal interaction

zone. Fsm−mm,i and Fss−mm,i respectively represent the flow of component i from the

slag-metal zone and solid scrap zone to the molten metal zone.

The concentration gradient across the EAF zones is the main driving force for the

transfer of materials from one zone to the other. For the mass transfer between the

slag-metal interaction zone and the molten metal zone, the mass transfer coefficient is

expressed as a product of two parameters. The first parameter represents the relative

mass transfer coefficient with respect to the other components and this could be

obtained from literature sources (Mills and Keene [1987]), and the second parameter

is estimated from the plant data and is considered the base mass transfer coefficient

that has a constant value for all the components. This is represented by the equation

below,

Fmm−sm,i = βikm(ymm,i − ysm,i) (3.12)

in which Fmm−sm,i is the molar flow rate of material i from the molten metal to

the slag-metal, ymm,i and ysm,i are the molar composition of the component i in the

molten metal and slag-metal zones respectively. km and βi are the base mass transfer

coefficient and relative mass transfer coefficient respectively.
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The rate of decarburization is limited through the presence of oxygen either in the

form of O2 or FeO and the rate of mass transport to the reaction interface (MacRosty

and Swartz [2005]). The model takes into account the decarburization rate through

modeling the transport of carbon from the molten metal to the slag-metal interaction

zone. The availability of oxygen is controlled through the lancing rate of oxygen

directly into the slag-metal phase or through the presence of FeO. To account for

the additional mixing effect of lancing in the carbon and oxygen transport from the

molten metal to the slag metal, an additional variable is added (kml) which is directly

proportional to the flow rate of oxygen lancing and the bubble diameter (γd). γd is

an estimated parameter. Those relationships are shown below,

Fmm−sm = βCkm(ymm,C − ysm,C) + kml(ymm,C − y∗C) (3.13)

kml = γdFO2 (3.14)

in which y∗C is the equilibrium concentration of carbon in steel and FO2 is the flow

rate of oxygen lanced. y∗c is considered as an estimated parameter and the limits were

set based on some literature values (Fruehan [1998]).

Energy Balance

The molten metal exchanges energy with the solid scrap zone as described in Section

3.1.1, in addition to the slag metal and the arc. Therefore, the main heat forms are

the conductive, convective and radiative heat transfer. The heat exchange between

the molten metal and the gas zone is assumed to be negligible (MacRosty and Swartz

[2005]). The net heat flow into the molten metal is represented by,
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Qnet
mm = Qpower−mm −Qmm−sm −Qcool −Qmm−ss − qrad4 (3.15)

where Qpower−mm represents the heat transferred from the arc to the molten metal

which is partitioned relative to the amount of molten metal and solid scrap present

in the furnace, as shown below.

Qpower−mm =
mmm

mss +mmm

(Ef (q
rad
1 + qrad2 ) + 0.18Parckp) (3.16)

Qmm−ss represents the heat transferred from the molten metal to the solid scrap and

is given by the expression below, where kt1 is an estimated parameter.

Qmm−ss = kt1mmm(Tmm − Tss) (3.17)

Qmm−sm is the heat transferred from the molten metal to the slag-metal interaction

zone and the relationship is represented below,

Qmm−sm = kt2msm(Tmm − Tsm) (3.18)

Equation (3.18) is slightly modified from MacRosty and Swartz [2005], in which the

mass of slag (msm) is incorporated in the heat transfer equation. In this case the

amount of heat transfer between the molten metal and slag-metal interaction zone

would be proportional to amount of slag present, and therefore Qmm−sm would di-

minish as the slag mass approaches zero.

qrad4 is the radiative heat transfer, in which a negative sign convention indicates that

energy has been received and vice versa. Qcool (equation A.2) represents the heat ab-

sorbed by the cooling water, and kt1 and kt2 are estimated parameters which represent

the heat transfer coefficients.
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3.1.3 Gas Zone

The gas zone in the EAF model considers the freeboard volume in the furnace. This

is the volume that exists above the scrap metal as it melts. Therefore, the freeboard

gas volume increases as melting proceeds. Eight components are being considered

in this zone which are carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2),

hydrogen (H2), nitrogen (N2), methane (CH4), water vapour (H2O) and the volatile

component (C9H20). This volatile component represents the average composition

of organic materials present in the scrap being charged and which vaporizes during

the initial operation stage of the furnace. Materials from the burners are added to

this zone in terms of (CH4) and (O2) to preheat the scrap, before switching the

power to the high mode. Another source of materials added to the gas zone are the

ingressed air which are mainly (O2), (N2) and (H2O), beside water from the cooling

panels. Chemical equilibrium was assumed, which is reasonable considering the high

temperature occurring in this zone.

Material Balance

The chemical equilibrium is calculated through minimizing the Gibbs free energy

which is formulated as an optimization problem. In order to perform this, an atom

tracking balance must be computed as shown below,

d

dt
(bk,z) = F in

k,z − F out
k,z (3.19)

in which bk is the molar amount of element k in zone z, F in
k,z and F out

k,z are the molar

flow of element k in and from zone z respectively.

Calculating the chemical equilibrium through the minimization of the Gibbs free

energy results in a system of equations that corresponds to the first order necessary
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conditions of a constrained minimization of the Gibbs free energy, as shown in the

following equations.

∑
i

niai,k = bk (3.20)

∆Go
f,i +RT lnâi +

∑
k

λkai,k = 0 (3.21)

The advantage of this method, is that the stoichiometric relationships and equilibrium

constants do not need to be considered (Wai and Hutchison [1989]). ni represents the

number of moles of component i at equilibrium in the gas zone, ai,k is the number

of atoms of element k in component i in the gas zone and bk is the elemental molar

amount of element k. ∆Go
f,i is the Gibbs free energy of formation, âi is the activity

coefficient of component i and λk are the Lagrange multipliers. The activity coefficient

is a function of temperature, composition and pressure. An ideal gas is assumed in

this case and an activity coefficient of 1 is used. The elemental molar flow could then

be related to the compound molar flow rate as shown below.

Fk,z =
∑
i

ai,kFi,z (3.22)

The net molar flow rate (F net
gs ) in the gas zone can be represented as,

F net
gs,i = Fburner,i + Fsm−gs,i + Fvolatile,i − Foffgas,i + FPconst,i (3.23)

in which Fburner,i represents the flow of component i from the burners into the gas

zone, Fsm−gs,i represents the flow of component i from the slag-metal zone to the gas

zone, Fvolatile is the flow of volatile material into the gas zone, Foffgas,i is the flow of

material out of the gas zone and into the offgas system and finally FPconst,i represents
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the materials being ingressed into or expelled from the furnace at constant pressure

which will be discussed later.

The materials that flow from the slag-metal zone to the gas zone are CO and O2,

that evolve from the slag as a result of oxygen lancing. Also, the flow of oxygen is

limited by the concentration gradient of oxygen across both zones as represented by

the equation below.

FO2,sm−gs = kPO2(yO2,sm − yO2,gs) (3.24)

kPO2 is the mass transfer coefficient that is estimated in the model, yO2,sm is the

concentration of oxygen in the slag-metal zone and yO2,gs is the concentration of

oxygen in the gas zone. The offgas (Foffgas) is assumed to have the same composition

as that in the freeboard gas volume. Also, the gas volume is assumed to be at constant

pressure and this is the driving force behind the air being sucked in or pushed out

of the furnace. The constant pressure is assumed due to the large openings in the

furnace and the constant offgas flow rate that was assumed (MacRosty and Swartz

[2005]). Therefore, FPconst,i could be positive or negative depending on the direction

of flow of materials in or out of the furnace. The air being sucked into the gas zone is

assumed to have the same composition as the ambient air, while the gas that is being

pushed away would have the composition of the gas zone. Equation (3.25) below

tracks the materials that are being sucked or pushed away from the furnace.

FPconst,i = xfreeboard−gas,i min(0, Fnet) + xair,i max(0, Fnet) (3.25)

Fnet is computed based on the constant pressure assumed in the freeboard gas volume

and the constant offgas flow rate (calculations are provided in Appendix A.2). The

min and max functions in equation (3.25) were approximated as shown in Appendix
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A.2 to avoid discontinuities in the model and the calculations for the air ingressed

and pushed away are also illustrated. The volatile material added to the gas zone was

modeled assuming its addition at a constant rate for a short period of time in order

to approximate the dynamics of the vaporization of the volatiles as shown below.

dNoilgas

dt
= (XoilF

in
oil)− (koil

Tss
Tmelt

Noilgas) (3.26)

XOil represents the fraction of oil in scrap and koil is the rate of combustion of the

volatile component, and both are estimated parameters. Tss
Tmelt

shows the increasing

rate of hydrocarbon combustion with increasing solid scrap temperature (Logar et al.

[2012b]).

Energy Balance

The gas zone exchanges heat with the solid scrap beside the roof and the walls of the

furnace through convection. The net heat transfer to the gas zone is represented by

the following equation,

Qnet
gs = −Qgs−ss −Qgs−wall −Qgs−roof (3.27)

in which Qgs−ss is the heat transfer from the gas zone to the solid scrap, Qgs−wall is

the heat transfer from the gas zone to the walls of the furnace and Qgs−roof is the

heat transfer from the gas zone to the roof of the furnace.

The heat transfer between the gas zone and the solid scrap is proportional to the

temperature gradient across both zones and is calculated the same way shown in

equations (3.5) and (3.6). This heat exchange is very significant during the preheat

stage, which is the few minutes after the scrap has been charged into the furnace.
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The heat transfer relationships between the gas zone and the walls and the roof of

the furnace are shown below.

Qgs−wall = hgs
Awall

Aroof + Awall
(Tgs − Twall) (3.28)

Qgs−roof = hgs
Aroof

Aroof + Awall
(Tgs − Troof ) (3.29)

in which hgs is the heat transfer coefficient, and the heat transfer is proportional to

the relative area of the roof and the walls (Logar et al. [2012b]), in addition to the

temperature gradient across both zones. Twall is the wall temperature and Troof is the

roof temperature. This has been slightly modified from MacRosty and Swartz [2005]

which considered the area of the wall and the roof independently and not the relative

area. This modification avoided some numerical issues during the estimation of the

parameter hgs.

The overall energy hold up in the gas zone (Egs) is calculated as shown below,

d

dt
(Egs) = Qnet

gs +
n∑
i=1

FiHi |in −
n∑
i=1

FiHi |out (3.30)

in which Fi represents the flow rate of component i and Hi is the corresponding

enthalpy.

3.1.4 Roof and Walls

The roof and the walls of the furnace receive energy from radiation, and convective

heat transfer from the gas phase. The presence of cooling panels is therefore necessary

to ensure that the temperatures of the walls and roof of the furnace do not exceed a
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certain limit, which was set to 800 K. The temperature profile calculations for both

the roof and the walls are represented by,

d

dt
Twall =

Qgs−wall −Qwall−water − qrad2

mwallCp,wall
(3.31)

d

dt
Troof =

Qgs−roof −Qroof−water − qrad1

mroofCp,roof
(3.32)

Cp,roof and Cp,wall are the heat capacities of the furnace roof and walls respectively.

Same negative sign convention for qrad1 and qrad2 is used as that for the solid scrap and

molten metal discussed previously.

Qwall−water and Qroof−water represent the heat transferred to the cooling water from

the walls and the roof of the furnace respectively.

Qwall−water = ṁH2O,wallCp,H2O(T outcw,wall − T incw,wall) (3.33)

Qroof−water = ṁH2O,roofCp,H2O(T outcw,roof − T incw,roof ) (3.34)

ṁH2O,roof and ṁH2O,wall represent the mass flow rate of water to the roof and walls

of the furnace respectively. Cp,H2O represents the heat capacity of water. T outcw,roof and

T outcw,wall are the outlet cooling water temperatures for the roof and walls of the furnace

respectively. Finally, T incw,roof and T incw,wall are the inlet cooling water temperatures for

the roof and walls of the furnace respectively.

3.2 Slag-Metal Interaction Zone

The slag-metal interaction zone contains all the slag material in addition to a portion

of the molten-metal zone which is in contact with the slag-metal zone. The compo-
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nents considered in this zone are Fe, FeO, Fe2O3, Mn, MnO, Al, Al2O3, Mg, MgO, Si,

SiO2, C, CO, CaO, O2 and N2. The slag-metal zone mainly constitutes all the oxides

as a result of the reactions of the metallic elements with oxygen that is lanced in the

furnace. The slag interacts mainly with the molten metal zone and the gas zone.

3.2.1 Material Balance

The net molar flow into the slag-metal zone is given by,

F net
sm,i = θL,iFlance,i + Fflux,i + Fmm−sm,i + Fgs−sm,i (3.35)

in which θL is the lancing carbon fraction, which is an estimated parameter for lanced

carbon, but for the oxygen a value of 1 has been assigned assuming that all the oxygen

lanced goes into the slag-metal phase as discussed before. Flance,i is the flow rate of

lanced component i, Fflux,i represents the addition of flux materials directly through

the roof of the furnace such as lime, dolomite and carbon. Fmm−sm,i and Fgs−sm,i are

the molar flow of materials into the slag-metal phase from the molten metal and the

gas zones respectively. All the materials flow between the slag-metal zone and the

other zones are controlled by the concentration gradient of the components between

these zones.

All the oxidation reactions are controlled by the abundance of oxygen in the slag-metal

phase. The reactions preference for the metallic elements with oxygen is determined

by the reduction potential of the components. Considering the modeling of the flux

additions, there are three main additions which are carbon, lime and dolomite charges.

When carbon is added through the roof in a bulk form, it initially floats on the top

of the slag-metal layer and starts to dissolve in a continuous manner and this can be

explained by the equation below,
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d

dt
(mC,float) = F in

carbon(1−XC)− kdcmC,float (3.36)

in which the rate of carbon entering the slag-metal phase is proportional to the

amount of carbon floating on the slag-metal. mC,float is the amount of carbon floating

on top of the slag-metal layer, F in
carbon is the rate of carbon charged into the furnace

and XC is the fraction of impurities in the carbon charge which is assumed to be

15% (metallurgical coke). kdc is an estimated parameter representing the dissolution

constant which depends on the type, quality and method of the carbon addition

(MacRosty and Swartz [2005]).

The same applies for lime (mCaO,float) and dolomite (mdol,float).

d

dt
(mCaO,float) = F in

CaO(XCaO)− kcaomCaO,float (3.37)

d

dt
(mdol,float) = F in

dol(Xdol)− kdolmdol,float (3.38)

The dissolution constants for lime (kCaO) and dolomite (kdol) were assumed to be the

same magnitude. XCaO and Xdol are the purity of lime and dolomite respectively.

F in
Cao and F in

dol are the flow rate of lime and dolomite through the roof of the furnace.

3.2.2 Slag foaming

Slag foaming results from the evolution of CO from the molten metal and is one of

the most important factors that steel makers consider during the operation of the

furnace. The slag foam that is produced covers the arc of the electrodes and prevents

the loss of radiative energy to the walls and the roof, and therefore, enhances energy

efficiency. The composition of the slag mainly determines its stability through its
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viscosity, density and surface tension. Jiang and Fruehan [1991] derived the foaming

index (Σ) that relates the foam height (Hf ) to the superficial velocity (V s
g ) and the

physical properties of the slag.

Σ =
115µ
√
ρσ

=
Hf

V s
g

(3.39)

The density (ρ) is estimated using the partial molar volumes from data obtained from

Mills and Keene [1987], while the viscosity (ρ) is estimated using a model given in

Urbain [1987]. The slag surface tension (σ) is estimated using an empirical model

obtained from Morales et al. [1997]. The superficial gas velocity is calculated using

the evolution of CO from the molten metal and using the geometry of the furnace. It

should be noted that in most models developed in literature, the slag depth is usually

assumed to be sufficient for foaming to occur. If the slag depth is not considered, this

would result in large unrealistic foam heights during the initial period of the heat,

even if the slag volume is small and not sufficient (MacRosty and Swartz [2005]).

Since this model considers the foam height at every time step during the batch,

incorporating the slag volume and its effect on the foam height becomes necessary.

The equations below explain how the slag depth is related to the foam height through

a proportionality coefficient, in which a critical height for the slag depth was set to

20 cm (MacRosty and Swartz [2005]).

Hf = φ(ΣV s
g ) (3.40)

φ =
1

2
tanh(α(hs) + β) +

1

2
(3.41)

If the slag depth (hs) is equal to or greater than 20 cm, then the coefficient (φ) becomes

equal to 1. This means that equation (3.40) would be the same as equation (3.39).
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On the other hand, if the slag depth is smaller than 20 cm, then the proportionality

coefficient would be calculated using equation (3.41), the (α) and (β) are adjustable

tuning parameters. The proportionality coefficient approaches zero as the slag depth

approaches zero. In this case, the values for α and β were set to 12.95 and -1.289

respectively.

3.2.3 Energy Balance

The slag-metal zone mainly exchanges energy with the molten metal. There is a

negligible heat interaction between the slag-metal zone and both the solid zone and

the gas zones, and therefore these effects were not considered. Modeling the heat

transferred from the arc directly to the slag is very complicated, since this would

depend on the volume of the slag and the force of the strike action of the arc which

will tend to displace the slag and expose the molten metal below (MacRosty and

Swartz [2005]). Therefore, it was assumed that this amount of energy is transferred

to the molten metal, and the slag would then indirectly receive it through the heat

exchange between the slag-metal zone and the molten metal zone. The net heat

transferred to the slag-metal zone is represented by,

Qnet
sm = kt2msm(Tmm − Tsm) (3.42)

in which kt2 is the heat transfer coefficient that is estimated from industrial data,

Tmm is the molten metal temperature and Tsm is the slag-metal temperature.

The energy hold up for the slag-metal zone is calculated using equation (3.43), which

has similar notation as that described before in equation (3.30).
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d

dt
(Esm) = Qnet

sm +
n∑
i=1

FiHi |in −
n∑
i=1

FiHi |out (3.43)

3.3 JetBox Modeling

The plant uses three jetboxes for the injection system. Figure 3.2 shows the compo-

nents of a jetbox. To identify the partition of the oxygen that enters the gas phase and

the slag-metal phase, a switch function was used for each jetbox. When the oxygen

is in a subsonic mode, all the oxygen remains in the gas phase and when it turns into

supersonic mode, the oxygen penetrates through the slag-metal layer (Lainchbury

[2003]). Three switch functions (Oswitchi
2 ) are developed using a hyperbolic tangent

function.

Oswitch1
2 = α3tanh(β3F

in
JetBox1 − θ3) + α3 (3.44)

Oswitch2
2 = α4tanh(β3F

in
JetBox2 − θ4) + α4 (3.45)

Oswitch3
2 = α5tanh(β3F

in
JetBox3 − θ5) + α5 (3.46)

The mode of the jetboxes is therefore modeled as a function of the velocity of the

oxygen being injected. As the flow rate of oxygen from the jetboxes (F in
jetboxi

) increases,

the oxygen lancing tends towards a supersonic mode. Here, α3, α4, α5, β3, β4, β5,

θ3, θ4 and θ5 are tuning parameters that are estimated using industrial data. It

was assumed that α3=α4=α5, β3=β4=β5 and θ3=θ4=θ5. The amount of oxygen that

enters the gas and slag zones is then calculated as,

JetGasi = (1−Oswitchi
2 )F in

JetBoxi
BiasO2GS

∗, for i = 1, ..3. (3.47)

JetSlagi = Oswitchi
2 F in

JetBoxi
BiasO2SM

∗, for i = 1, ..3. (3.48)
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BiasO2GS
∗ and BiasO2SM

∗ are estimated parameters constrained to be less than or

equal to 1 to account for O2 losses.

Figure 3.2: JetBox Diagram (Brhel [2002])

3.4 Radiation Model

One of the most important heat transfer mechanisms that occur in the EAF is the

radiative heat transfer. The radiative heat transfer would depend on the surface

geometry, emissivity and surface area. One of the most challenging dynamics while

modeling the radiation part is the melting geometry of the scrap. Due to the high

temperature nature in the EAF, identifying the exact geometry for the scrap melting

is practically difficult. An approach proposed by MacRosty and Swartz [2005] con-

sidered an initial cone-frustum shaped void melted into the scrap by the electrodes,

which increases in volume as more scrap is melted. This approach was modified and

it was shown that the overall effect on the corresponding EAF trajectories were close.

The reader is referred to MacRosty and Swartz [2005] for the details of the cone-

frustum geometry calculations. In the present model, the solid scrap is assumed as a

flat surface as shown in Figure 3.3 that decreases in volume, as more scrap melts. The

roof was assumed as a disk surface. The solid scrap and molten metal bath have been
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assumed as coaxial disk like surfaces, while the wall of the furnace as a right circular

cylinder. The arc surface was assumed to be cylindrical. These assumptions made

the system much simpler than considering the melting geometry of the scrap as a

cone-frustum. Initially the roof of the furnace is shielded from radiation by the initial

scrap charge present. As the scrap melts, the furnace’s roof and walls get successively

exposed to radiation. While the scrap melts down, the arc, roof and the wall do

not perceive the molten metal until a certain amount of time, where the amount of

scrap present becomes relatively small. Therefore a switch function (Switchrad) was

added to determine when the molten bath perceives the wall and the roof, in order to

calculate the view factors involved. hscrap in the equation below represents the height

of the scrap in the furnace.

Switchrad =
1

2

[
tanh(80(hscrap − 1

2
)) + 1

]
(3.49)

As the scrap melts down, a void volume is formed where offgases are present. The

volume of the EAF surfaces will change over time as scrap melting proceeds. Through

the bulk density and the mass of the solid scrap present over time, the dynamic change

in the scrap volume is calculated. The last surface that has been considered in this

model is the arc surface, which represents the electrodes that transfer radiative heat

to all the other four surfaces. The area of the arc surface has been assumed to be 1

m2 (MacRosty and Swartz [2005]).

View factors (Fij) show the fraction of energy that is transferred between different

surfaces to one another. In the model, the four surfaces have been considered as gray

bodies, which means that not all of the energy that is transferred to one surface is

totally absorbed, but a part of this energy is reflected. Conversely, the arc surface is

considered as a black body and this implies that it is perfectly transparent in receiving

energy. This means that it allows any energy to pass through without absorbing any
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portion of it. As a result, it was assumed that no energy is transferred from any of

the surfaces to the arc surface. The amount of radiative heat transferred from each

surface in the system is calculated as shown below.

qradi =
Ebi − Ji

(1− εi)/εiAi
(3.50)

Ebi = σT 4
i (3.51)

qradi =
N∑
j=1

AiFij(Ji − Jj) (3.52)

The term J represents radiosity, which is the total radiation leaving a surface per

unit area per unit time and ε is the emissive power of each surface. Eb is the black

body emissive power which is calculated from the Boltzman law as shown in equation

(3.51), where σ = 6.676× 10−8 W
m2.K4 , Ai is the surface area of surface i and Ti is the

temperature of surface i.

The view factor calculations for gray body structures are shown in Siegel and Howell

[2001]. These calculations consider the geometry of each surface. View factors have

some properties that have been used in this model. First property is the enclosure

constraint, described as,

N∑
i=1

Fi,j = 1 (3.53)

The other property is the reciprocity relationship as shown below.

AiFij = AjFji (3.54)

After the view factors for each surface have been calculated. The total or net energy

from each surface is calculated. A negative sign would mean that energy is being

gained by the surface rather than being lost. According to Guo and Irons [2003], it
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was assumed that 18% of the energy from the arc is directly transferred to the steel,

2% is transferred to the electrode and finally 80% is being delivered through radiative

heat transfer.

qrad5 = 0.8Qarc (3.55)

in which qrad5 is the net radiative heat transfer delivered by the arc and Qarc is the

total amount of heat delivered by the arc which is proportional to a power factor and

the active power as shown below.

Qarc = kpParc (3.56)

The portion of heat transferred from the arc to each surface is approximated by,

Qarc
5−i = F (5, i) qrad5 (3.57)

where F (5, i) is the fraction of energy being transferred from the arc to surface i. The

detailed view factor calculations are shown in Appendix A.5, where the 5 surfaces in

the EAF were considered (1-roof, 2-wall, 3-solid scrap, 4-molten metal, 5-arc).

3.4.1 Effect of slag foaming

As discussed in Section 3.2, slag foaming does have a great contribution in terms

of the energy efficiency in the EAF. This efficiency can increase from 40% to 90%

as proposed by Fruehan [1998]. As the foam covers the arc, less energy would be

lost to the furnace roof and walls and to capture this effect in the radiation model,
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Figure 3.3: EAF surfaces

the following method was adopted. This was modeled using an efficiency factor (Ef )

which is the product of two parameters E1 and E2.

Ef = E1E2 (3.58)

E1 relates the fraction of the arc covered by the foam to the fraction of radiation that

is shielded from the wall and rather being transferred directly to the steel. MacRosty

and Swartz [2005] assumed that a maximum value of 70% efficiency is achieved when

the arc is fully covered by the arc and a constant arc length of 0.5 m was also assumed.

E1 is related to the foam height as shown in the hyperbolic tangent relationship below.

E1 = 0.7 (
1

2
tanh(α1Hf + β1) +

1

2
) (3.59)

in which α1 and β1 are tuning parameters and are set to 5 and -1.25 respectively.

E2 relates the slag foaming efficiency to the amount of scrap present in the furnace.

This is to ensure that as more scrap is present, the amount of slag foaming will be
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diminished accordingly. The more solid scrap present in the furnace, the higher the

probability that the slag foaming would form in the void spaces of the scrap and the

harder it would reach the arc (MacRosty and Swartz [2005]). It was assumed that

when the solid scrap decreases to less than 20% of the initial charge mass, the value

of E2 will approach unity as represented by the hyperbolic tangent relationship,

E2 =
1

2
tanh(α2(1− current scrap mass

initial scrap mass
) + β2) +

1

2
(3.60)

Same as in equation (3.59), α2 and β2 are tuning parameters for the hyperbolic tangent

function and are set to 3.2 and -1.29 respectively.

3.5 Assumption regarding the melt rate

In equation (3.2), the melt rate was a function of both the latent heat of fusion and

the sensible heating. It was found that such formulation caused several numerical

issues during the model integration and the linearization phase, as will be discussed

in chapter 5. The removal of the term Cp(Tmelt − Tss) was investigated which results

in the following modified expression for the melt rate of solid scrap.

ṁmelt∆Hfusionkdm = Qnet
ss

Tss
Tmelt

(3.61)

Through inspecting the profiles of ([∆Hfusion
Tmelt

Tss
]) and ([∆Hfusion + Cp(Tmelt −

Tss]
Tmelt

Tss
) in the rearranged form of equation (3.2) as shown below,

ṁmelt(∆Hfusion + Cp(Tmelt − Tss))kdm
Tmelt
Tss

= Qnet
ss (3.62)

it was found that both terms have similar dynamics using the same kdm value as
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shown in Figure 3.4 below.
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Figure 3.4: Comparing the trajectories for term1 representing [∆Hfusion
Tmelt

Tss
] and

term2 representing ([∆Hfusion + Cp(Tmelt − Tss]Tmelt

Tss
)

It could be observed that the parameter kdm can be used to compensate for neglecting

the sensible heat from the melting rate equation and approximate it using equation

(3.61).

This assumption is very reasonable, since the melt rate in all literature is fairly uncer-

tain due to the lack of measurements that would validate the speed of scrap melting

in the real furnace. Figures 3.5 and 3.6 show the mass of solid scrap and the melt

rate of scrap for both scenarios. It could be shown that the approximation made is

fairly accurate and both formulations give similar performance using different values

for the melting rate parameter kdm. All the profiles have been normalized between 0

and 100 based on the normalization procedure given in Appendix A.6.
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Figure 3.5: Mass of solid scrap in the furnace
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Figure 3.6: Melting rate of scrap
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3.6 Comparing different melting scrap geometry

As has been discussed previously, two approaches were considered through modeling

the radiation part and specifically the geometry of the solid scrap melting. MacRosty

and Swartz [2005] considered the solid scrap melting geometry as a cone-frustum and

the other approach used in this work did consider it as a flat surface. The benefits

gained from considering the scrap melting geometry as a flat surface, includes simpler

dynamics in terms that the solid scrap does not emit radiation to itself, beside the

simplicity of the dynamic surface area calculations for a disk rather than a cone

where the angle of repose keeps changing. However, before finalizing the use of

this approach a case study was conducted to see the overall effect on important

variables most affected by the radiation part, such as the gas temperature in the

freeboard gas volume, the dynamics of scrap melting, the roof temperature and the

wall temperature. Figures 3.7 to 3.10 show the trajectories of the corresponding

variables for the two scrap geometries. A similar gas temperature profile was obtained

for both cases as shown in Figure 3.7. The same applies to the wall temperature and

mass of solid scrap as shown in Figures 3.8 and 3.10. A similar trend can be observed

in Figure 3.9 for the roof temperature for both cases; however some offset occurs. In

terms of actual temperature, the offset is less than 8 K. The normalization was carried

out as discussed in Appendix A.6. Those results were obtained using the same set

of parameters for the whole model. Adjusting some parameters could likely lead to

closer matching profiles. The motivation of such an assumption, is that no one really

knows if the scrap melts as a flat surface, cone or other geometrical form due to the

complexity of the process. Therefore the simplest configuration that would facilitate

the modeling of the process and enhance different algorithms (such as linearization,

etc.) without undue loss of accuracy, is preferable.
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Figure 3.7: Temperature of the gas zone
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Figure 3.8: Mass of solid scrap in the furnace
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Figure 3.9: Temperature of the roof of the furnace
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Figure 3.10: Temperature of the wall of the furnace
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3.7 Simulation Studies

In this section, a base case study for the nominal operation of the furnace is shown.

Some of the trajectories could not be validated, as result of the lack of their mea-

surements from the plant. However, to ensure the reliability of the trajectories, some

insight based on feedback from steel makers was taken into account in addition to

what has been discussed in the literature. All the profiles have been normalized as

discussed in Appendix A.6. The power profile is shown in Figure 3.11, where it can

be noticed that after adding the first charge the power is turned to minimum and

rather the burners are used to enhance the preheating of the scrap. Then, the power

is turned on, and at t=25 min the power is turned off at which point the roof is swung

open and the second charge is added. Then the power is turned back on until the

end of the batch.
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Figure 3.11: Active power trajectory
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The jetbox profiles are shown in Figure 3.12. The switch function is then used to

split the amount of oxygen injected between the gas zone and the slag zone. On the

other hand, the methane profile is shown in Figure 3.13, and the high flow during the

initial stages of scrap addition to enhance the preheating of the scrap can be observed.

Figure 3.14 shows the temperature profiles for the molten metal, solid scrap and gas
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Figure 3.12: JetBox trajectories

zones. The drop in the molten metal temperature from t=0 min to t=18 min is

mainly due to the heat lost to the scrap to enhance the melting process. Then it

starts to increase as a result of power from the arc, and then at t=25 min it starts

dropping again due to the addition of the second charge before it increases again until

the end of the batch. The gas zone temperature keeps fluctuating, as result of the

burner additions that increase the temperature of the gas zone and the water sprays

that cool down the gas zone, in addition to energy lost to the scrap at the initial

minutes of scrap addition.
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The scrap zone temperature starts at ambient temperature and continue to increase,

until the addition of the second charge where it drops back to ambient tempera-

ture. Then the scrap temperature keeps increasing but never exceeds the melting

temperature.

The mass of scrap and molten metal profiles are shown in Figure 3.15. The mass of

solid scrap starts with the first charge which keeps melting until sufficient space is

available within the furnace, and then the second charge is added and the melting

procedure continues until all the scrap is melted. The molten metal mass starts with

the heel present from a previous batch and continues to increase until it reaches a

plateau, which represents the flat bath conditions where all the scrap has melted.

The offgas composition is shown in Figure 3.16, while the roof and wall temperatures

are shown in Figure 3.17. The slag foam height is shown in Figure 3.18, where it can

be seen to reach the highest level when the flat bath conditions have been reached.

The simulation time in gPROMS using a quad-core i7-intel 3.5 GHz processor is

approximately 4-5 CPU seconds.
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Figure 3.13: Natural gas trajectory
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Figure 3.14: Temperature trajectories
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Figure 3.15: Mass of Scrap and Molten Metal trajectories
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Figure 3.16: Offgas composition trajectories
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Figure 3.17: Roof and Wall temperature trajectories
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Figure 3.18: Foam height trajectory
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Chapter 4

Parameter Estimation, Sensitivity

Analysis and Economic

Optimization

The intent of this chapter is to show how the model is validated using plant data as

will be shown in section 4.1. Sensitivity analyses will be used to determine the effect

of the solid scrap components and flux materials on the EAF operation. Then, the

economic optimal performance of the furnace will be investigated through formulating

an optimization problem in section 4.4.

4.1 Parameter Estimation and Model Validation

The next stage after developing the model as discussed in Chapter 3, is to validate

it using industrial data obtained from the plant. This stage of the model validation

is considered very challenging due to the complexity of the model and due to the

lack of continuous measurements. The model contains 28 parameters to be estimated
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and the only continuous measurements that exist, are the CO, CO2, O2 and H2

offgas compositions. Some discrete measurements exist which are the molten metal

temperature, slag composition and end-point carbon content in the molten bath. The

28 parameters are shown in Table 4.1, which describes the role of each parameter in

the model formulation. It is unlikely that all the parameters can be accurately and

uniquely estimated, and therefore a sensitivity analysis is required to identify the

most sensitive parameters. This will minimize the number of parameters that are

required to be estimated and reduce the complexity of the estimation problem.

4.1.1 Sensitivity Analysis

The first stage of parameter estimation is to identify an initial good set of parameters.

Through using a brute force method, every parameter is perturbed above and below

a nominal value and the mean of square prediction error (MSPE) is calculated for the

response variables representing the measurements.

MSPE =
1

N

N∑
i

(ypredictedi − ymeasuredi )
2

(4.1)

The set of parameters values with the least MSPE is selected to be a good set to

proceed with. The initial set of parameters used before performing the brute force

method was obtained from literature values (MacRosty and Swartz [2005]).

The sensitivity analysis is performed using local differential analysis (∂yk
∂pi

), where it

is approximated using forward finite difference method as shown below,

dx

dt
= f(x, p, u) (4.2)

y = h(x, p, u) (4.3)
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Table 4.1: Roles of parameters in the model

No. Parameter Equation Role in Model

1 kcool (3.8) Heat transfer coefficient for scrap cooling from second charge

2 kdm (3.2) Accounts for bulk density and composition variation in scrap melting

3 kdt (3.10) Accounts for bulk density and composition variation in temperature profile of scrap

4 kp (3.7, 3.16, 3.56) Power factor

5 kt1 (3.4, 3.17) Heat transfer coefficient between the solid scrap and the molten metal zones

6 kt3 (3.6) Heat transfer coefficient between the solid scrap and the gas zones

7 km (3.12) Mass transfer coefficient between molten metal and slag-metal zones

8 kmcool (A.2) Heat transfer coefficient for the cooling of molten metal due to water sprays

9 kt2 (3.18, 3.42) Heat transfer coefficient between the slag metal and the molten metal zones

10 sub (A.1) Accounts for composition variation in molten metal temperature profile

11 θL (3.11, 3.35) Lancing split fraction between the slag and molten metal zones

12 y∗C (3.13) Equilibrium carbon concentration

13 γd (3.14) Bubble diameter

14 α3 (3.44) Tuning parameter for jetbox switch function

15 β3 (3.44) Tuning parameter for jetbox switch function

16 BiasO2GS
? (3.47) To account for uncertainty in the oxygen flow into gas zone

17 EA1 (A.6) Parameter for estimating the offgas flow rate

18 EA3 (A.7) Parameter for estimating ingressed air

19 FstarH2O (A.10) Estimated parameter for water sprays

20 koil (3.26) Estimates the rate of combustion of volatile component

21 kPO2 (3.24) Mass transfer coefficient for oxygen diffusion between the slag and gas zones

22 θ3 (3.44) Tuning parameter for jetbox switch function

23 Xoil (3.26) To estimate the volatile organic component in scrap

24 BiasO2SM
? (3.48) To account for uncertainty in the oxygen flow into slag-metal zone

25 kc (A.9) Estimates the fraction of carbon that reacts

26 kcao (3.37) Dissolution constant for lime/dolomite

27 kdc (3.36) Dissolution constant for carbon

28 hgs (3.28, 3.29) Heat transfer coefficient for gas cooling
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∂yk
∂pi

=
yk(pi + ∆pi)− yk(pi)

∆pi
(4.4)

in which ∆p is the magnitude of the change in the parameter and the numerator

represents the change in the response variable. Rigorous differential sensitivity anal-

ysis could not be applied due to the lack of Jacobian information in gPROMS and

due to the complexity of the model, if it was to be calculated without the aid of a

software. Each parameter was perturbed by 5%. The simulation is carried out in

gPROMS, which takes care of the relationships between the output variables, state

variables and the parameters. The sensitivity analysis was performed on 13 response

variables. The gas zone response variables are the carbon monoxide (CO), carbon

dioxide (CO2), oxygen (O2) and hydrogen (H2) compositions in the offgas system, in

addition to the gas temperature. The slag zone response variables are the composition

of iron II oxide (FeO), silicon dioxide (SiO2), magnesium oxide (MgO), aluminum ox-

ide (Al2O3) and calcium oxide (CaO). The molten metal zone response variables are

the molten metal temperature and the carbon fraction in the molten bath. Finally,

the solid scrap temperature is also included. It could be noticed that some of the re-

sponse variables do not exist in the real plant measurements; however including such

variables is very important in the parameter sensitivity analysis in order to capture

the dynamic behaviour of the those variables in the EAF operation.

The sensitivity is calculated along the batch trajectory forming a vector. In order

to normalize with respect to the magnitude of both the parameters and the response

variables, the sensitivity vector is multiplied by a ratio of the nominal values of the

parameters and the response variables, as shown below,

si,k =
p0
i

y0
k

×
[
∂yk(t1)
∂pi

.....∂yk(tnt)
∂pi

]T
(4.5)

where si,k represents the normalized sensitivity of response yk to parameter pi. The

nominal value of the response variable was considered the mean of the base case
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trajectory and the nominal value of the parameter is the initial value of the parameter.

In order to obtain a single metric for the sensitivity vector, the euclidean norm is used.

||si,k|| =
√∑

j

(
p0i
y0k
× ∂yk(tj)

∂pi

)2

(4.6)

The overall effect of each parameter using the combination of all measurements would

be calculated as,

||si,combined|| =
√∑

k

∑
j

(
p0i
y0k
× ∂yk(tj)

∂pi

)2

(4.7)

Figures 4.1 to 4.4 show the effect of the parameters on all the response variables being

considered in the sensitivity analysis process.

As shown in Figure 4.1, the molten metal carbon content was found to be highly

affected by θL, which is the lancing split fraction. The molten metal temperature is

highly affected by the parameters kdm and kp.
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(a) Sensitivity analysis on the molten metal car-

bon content
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(b) Sensitivity analysis on the molten metal tem-

perature

Figure 4.1: Sensitivity analysis on the molten metal zone
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In Figure 4.2, it can be seen that β3, EA1 and EA3 are the major parameters that

affect the CO, CO2 and H2 offgas compositions. EA1 has the highest influence on the

oxygen concentration in the offgas. hgs shows a strong effect on the CO2 composition,

while α3 shows a strong effect on the H2 composition.
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(a) Sensitivity analysis on the offgas carbon

monoxide composition
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(b) Sensitivity analysis on the offgas carbon diox-

ide composition
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(c) Sensitivity analysis on the offgas oxygen com-

position
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(d) Sensitivity analysis on the offgas hydrogen

composition

Figure 4.2: Sensitivity analysis on the offgas composition
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(a) Sensitivity analysis on the slag FeO

composition
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(b) Sensitivity analysis on the slag MgO

composition
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(c) Sensitivity analysis on the slag SiO2

composition
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(d) Sensitivity analysis on the slag

Al2O3 composition
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(e) Sensitivity analysis on the slag CaO

composition

Figure 4.3: Sensitivity analysis on the slag-metal zone
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Figure 4.3 shows the sensitivity results of the parameters on the slag composition, it

can be seen that kc and kdc have the highest effect on the FeO concentration.

Also, kc has a dominant influence on the MgO and CaO concentration in the slag

phase. km and kc show the highest influence on the Al2O3 concentration. Finally, the

parameters kdm and kp show the greatest effect on the SiO2 content in the slag.

In Figure 4.4, the effect of the parameters on the solid scrap and gas temperatures is

represented. The parameters kdm, kdt, kp and kt1 have the highest influence on the

scrap temperature. On the other hand, the parameters α3, β3, EA1, EA3 and hgs

have the highest effect on the gas temperature.
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(a) Sensitivity analysis on the solid scrap temper-

ature
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(b) Sensitivity analysis on the gas temperature

Figure 4.4: Sensitivity analysis on the gas and scrap temperatures

Figure 4.5 shows the summary of the overall effect of the parameters on all the

measurements combined. The parameters kdm, kp, α3, β3, EA1 and EA3 are the

most sensitive in the model.
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Figure 4.5: Sensitivity analysis on combined measurements

4.2 Parameter Estimation

The most sensitive parameters kdm, kp, α3, β3, EA1 and EA3 were estimated using

gEST/gPROMS, following the procedure described below.

Measurements

Ouputs: The available continuous measurements from the plant are the offgas com-

position of oxygen, hydrogen, carbon monoxide and carbon dioxide. Discrete mea-

surements are the slag composition (FeO, MgO, Al2O3, SiO2 and CaO), as well as the

molten metal temperature and the end-point carbon content in the molten metal.

Inputs: The inputs measured and used in parameter estimation are the active power,

the amount of scrap charged, carbon, lime and dolomite additions, as well as materials

being injected which are oxygen, methane and carbon and finally the water from the

sprays.
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Challenges

Estimating the parameters is challenging due to the limited measurements that are

obtained and accessible from the plant. The more continuous measurements avail-

able, the more accurate the estimation of the data will be for the entire batch. The

only continuous measurements available are the offgas compositions and these still

have some uncertainty due to the nature of the furnace operation. This is mainly

due to the water leaks that might occur, as well as the roof opening routine which

allows some components to enter or exit the furnace. The absence of offgas flow rate

and offgas temperature measurements makes the validation of the energy balance in

the model very hard. This is due to the inability to validate the gas temperature

trajectory and the offgas flow rate, and both variables would greatly affect the off-

gas composition. Only one measurement is available for the slag composition, which

represents a single time point measurement. The availability of continuous slag mea-

surements is likely to improve the estimation of the slag zone properties. One or two

sample measurements usually exist for the molten bath temperature. The molten

metal temperature is important, because it decides when the molten metal will be

tapped out of the furnace, when it reaches a certain temperature (tap temperature).

Due to the lack of continuous molten metal temperature measurements, the profile

of the molten metal temperature between the sample measurements that were ob-

tained is usually unknown. Due to this shortage of measurements, a lot of model

assumptions (such as constant offgas flow rate, no direct heat transfer from the arc

to the slag and the rest was discussed in Chapter 3) are usually required. If those

measurements are available in the future, more complexity (such as dynamic offgas

flow rate, etc.) could be added and validated in the model.
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4.2.1 Raw Data

The raw data provided by the plant is obtained from the EFSOP system that is used

by the industrial partner. The slag composition is obtained using a slag analyzer.

The molten metal carbon content and molten metal temperature were obtained from

laboratory analysis. Data refining is critical in this work, since some overlapping

between the batches requires an insight of all the variables to decide when the batch

starts and ends. Some of the batches were missing some of the heat logs, which could

show if any problems occurred during the plant operation, such as the breakage of

electrodes, etc. High precision predictions do not exist in the literature due to the

above.

4.2.2 Maximum Likelihood Function

The parameter estimation is formulated as a dynamic optimization problem, where

the parameters are treated as decision variables. The objective is to minimize the

deviation of the model predictions from the plant data. Partial discretization was

used, in which the control variables were discretized with a sample time of one minute

and the states were treated as continuous variables. The estimation problem was then

solved using the gEST/gPROMS software package. The maximum likelihood function

is shown below,

φ =
N

2
ln(2π) +

1

2
min
θ

NE∑
i=1

NVi∑
j=1

NMij∑
k=1

(
ln(σ2

ijk) +
(z̃ijk−zijk)2

σ2
ijk

)
(4.8)

in which N is the total number of measurements for all the experiments, NE is the

number of experiments performed, θ is the set of model parameters to be estimated,

NVi is the number of variables measured in the ith experiment, NMij is the number

of measurements of the jth variable in the ith experiment, z̃ijk is the kth measured
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value of variable j in experiment i, zijk is the kth model predicted value of variable j

in experiment i and σijk is the standard deviation of the kth measurement of variable

j in experiment i. This formulation is flexible regarding the definition of the variance

model. Choosing a defined variance model would reduce the above formulation to a

weighted least squares problem, since in this case σijk would be fixed (Process Systems

Enterprise Ltd. [2004]).

During the estimation problem, the parameters were scaled in gPROMS as shown in

the equation below, in which θ0
i is the initial guess of the parameter and ε is set at

10−8 (Process Systems Enterprise Ltd. [2004]).

θ =
θi
di

di =

θ
0
i , if |θ0

i | > ε

1
2
(θmaxi − θmini ), otherwise

(4.9)

Table 4.2: Most Sensitive Estimated Parameters

Parameter Estimate

kp 8× 10−1

kdm 4.5× 10−1

α3 3.7× 10−1

β3 1.11× 10−2

EA1 1.3× 10−1

EA3 1.3

The values for the estimated parameters are shown in Table 4.2. The parameters

estimated in gEST/gPROMS are shown here, while the values for the rest of the

parameters are attached in Appendix B. 3-5 batches were used for the parameter
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estimation as training data and one was used as a testing data set. The small number

of data used for the estimation is due to shortage of accurate data sets that could be

obtained from the plant.

4.2.3 Model Estimation Results

The model predictions for one data set that was used in parameter estimation will be

presented. The model predictions for the offgas composition are shown in Figure 4.6

along with measured data from one of the data sets, in which it can be seen how the

predictions reasonably follow the plant data. The mean squared prediction error for

the selected heat and the average of the MSPE for the 4 batches are shown in Table

4.3. It can be observed that the MSPE for the selected heat is comparable to that of

the average MSPE for all the data sets used for the parameter estimation.

The slag composition and molten metal temperature predictions are shown in Figures

4.7 and 4.8 respectively. The predictions are very close to the plant measurements

which shows the accuracy of the model. It could be noticed how the model predicts

the slag composition fairly well based on only a single data point.

Table 4.3: Mean Squared Prediction Errors

Selected Heat MSPE Average Heat MSPE

CO 5.7× 10−3 6.33× 10−3

CO2 2.8× 10−3 5.27× 10−3

O2 4.7× 10−3 3.13× 10−3

H2 7.2× 10−3 1× 10−2
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Figure 4.6: Normalized Offgas Chemistry Predictions
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Figure 4.7: Slag Composition Predictions
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Figure 4.8: Molten Metal Temperature Prediction
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4.3 Sensitivity Analysis on Scrap Composition

The electric arc furnace (EAF) uses different types of scrap grades and converts them

to ferro-metal alloys. These scrap grades such as pig iron, red brass, etc. differ in

metal composition, which has a direct effect on the composition of the slag, molten

metal and zone temperatures within the furnace. Therefore, it would be interesting

to investigate the effect of some of these scrap constituents, as well as flux additions,

on the main outputs of the EAF. The metals that were considered in this case are iron

(Fe), silicon (Si), aluminum (Al), carbon(C) and manganese (Mn). Also, oil content

was considered since it is one of the volatile impurities that have an effect inside the

furnace. The last two components that were considered are the purities of lime and

dolomite to determine the effect of the fluxes on the operation of the furnace. Two

types of oxides are formed during the EAF operation; fluxing oxides and refractory

oxides. Fluxing oxides are the ones formed from the metallic elements Si, Al, Fe

and Mn present in the scrap. Refractory oxides are CaO and MgO that prevent the

damage of the refractory linings of the furnace from the acidity of the fluxing oxides

formed. The idea is to maintain a balance between both oxides, in order to obtain a

slag that has the appropriate physical properties for foaming (Pretorius and Carlisle

[1998])

The sensitivity analysis was performed using the local differential method that was

described in Section 4.1.1. Each parameter was perturbed by (5%) one at a time

and the change in the response variables was recorded. 13 response variables were

investigated, which are the molten metal temperature, molten metal carbon con-

tent, iron II oxide (FeO) slag composition, aluminum oxide (Al2O3) slag composition,

silicon dioxide (SiO2) slag composition, magnesium oxide (MgO) slag composition,

calcium Oxide (CaO) slag composition, carbon monoxide (CO) gas composition, car-

bon dioxide (CO2) gas composition, hydrogen (H2) gas composition, oxygen (O2) gas

composition, solid scrap temperature and finally the gas temperature.
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The objective is to find the most important scrap parameters that affect each response

variable, as well as finding the overall effect of each parameter on all the variables

combined. The sensitivity profiles were normalized and calculated in the same man-

ner as has been discussed in Section 4.1.1. The sensitivity analysis algorithm was

implemented in Matlabr and simulation results from gPROMS were transferred us-

ing the gO:MATLAB tool (Process Systems Enterprise Ltd. [2004]). The idea of this

sensitivity analysis is that it will give insight into the effect of different scrap types

that differ in metal composition within the furnace and help us better understand the

effect of scrap composition on the EAF operation.

4.3.1 Effect of scrap composition on offgas chemistry

The results of the sensitivity analysis of the scrap components and flux additions

on the offgas composition are shown in Figure 4.9. It could be noticed that the Fe,

Si, C, Oil and CaO greatly affect the CO, CO2, H2 and O2 content in the offgas

system. Most metallic elements react with oxygen before carbon (Jones et al. [1998])

and a competition exists between the metals towards oxygen. Fe also plays a role,

in which FeO has a great effect on the availability of oxygen, which influences the

decarburization rate. Oil mainly exists in the gas zone and contains high number

of atoms of carbon and oxygen and therefore, it is normal to observe its high effect

on the offgas composition and specifically oxygen, since it requires large number of

oxygen moles for combustion. Lime and dolomite also have an effect on the offgas

composition. The basicity of the system affected by lime and dolomite is usually

maintained at a certain level and therefore would affect the amount of fluxing oxides in

the system. The fluxing oxides would in turn affect the offgas composition as a result

of affecting the oxygen concentration in the EAF and as a result the decarburization

rate. Calcination of lime also affects the offgas composition (Pretorius and Carlisle

[1998]). Manganese was found to have the least effect on the offgas composition in
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the furnace. Carbon is shown not to have a high effect on the oxygen concentration in

the offgas system and this could be mainly due to the poor affinity it has for oxygen

compared to the rest of the components.

The change of CO sensitivity with time due to Fe and C is shown in Figure 4.10. It

could be noticed that from time t=39 min onwards, C starts to show a strong positive

effect on the CO composition. Conversely, Fe shows a negative effect from time t=39

min until t= 58 min. A positive peak at t=30 min is observed for the CO sensitivity

due to Fe, and this could be due to the reduction of FeO to form CO as has been

discussed in Chapter 3.
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Figure 4.9: Effect of scrap composition and fluxes on offgas chemistry
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Figure 4.10: Effect of Scrap components on CO offgas composition

4.3.2 Effect of scrap composition on slag composition

The effect of the scrap components on the slag composition is shown in Figure 4.11.

It can be noticed that unlike the case for the offgas composition, oil has a negligible

effect on the slag composition. This is expected, since oil does not enter the slag

phase and remain in the gas phase. Each compound would naturally be affected by

its main metallic constituent, for example FeO is mainly affected by Fe, SiO2 by Si,

etc. Lime and dolomite play a role in maintaining the physical properties of the slag

such as the viscosity, etc. It could be noticed that lime and dolomite have the largest

influence on the MgO slag composition. This is mainly due to the maintenance of

the physical properties of the slag to find the good combination between lime and

dolomite along with the other oxides. The competition between Si, Al and Fe for

oxygen affects their oxide formation and since all these elements react with oxygen
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before carbon, carbon does not have a great effect on them. For the CaO formation,

silicon is found to have an effect and this could be due to the basicity ratio (B3),

which is the ratio between CaO and Si that the steel industry always tries to keep at

a constant desired limit.

Fe Mn Al Si C Oil cao dol
0

5

10

S
M

.F
eO

Fe Mn Al Si C Oil cao dol
0

2

4

6

S
M

.M
gO

Fe Mn Al Si C Oil cao dol
0

2

4

6

8

S
iO

2

Fe Mn Al Si C Oil cao dol
0

2

4

6

8
S

M
.A

l 2O
3

Fe Mn Al Si C Oil cao dol
0

1

2

3

S
M

.C
aO

Figure 4.11: Effect of scrap composition and fluxes on Slag chemistry

Figure 4.12 shows the sensitivity change of FeO slag composition over time for both

Fe and Si in the scrap. It could be observed that at time t=41 min until the end

of the batch, Fe shows a strong positive effect and Si shows a comparable negative

effect. This would be expected due to the competition between Fe and Si towards

oxygen.
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Figure 4.12: Effect of scrap components on FeO slag composition

4.3.3 Effect of scrap composition on zone temperatures and

molten metal carbon content

Figure 4.13 shows the sensitivity results for the effect of scrap constituents and fluxes

on the EAF zone temperatures and molten metal carbon content. It could be observed

that Fe mainly influences the molten metal and scrap temperatures. This should be

expected, since Fe is the main constituent in the scrap and the only reaction that

occurs during the melting of the scrap is the conversion of iron from a solid state to a

molten metal state. Fe also affects the molten metal carbon content through influenc-

ing the decarburization rate, which depends on FeO and would also be affected by the

amount of carbon initially present in the scrap being charged. Fe also affects the zone

temperatures, since it affects the slag foaming through affecting the decarburization

rate. It is interesting to see that the rest of the fluxing oxides do not have a strong
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effect on the solid scrap and molten metal temperatures; however they influence the

gas temperature. This is mainly due to the assumption that the no reactions occur

in the molten metal zone and the solid scrap zone except the state of change for iron.

On the other hand, oxidation reactions occur in the gas and slag-metal zones and as a

result all metals contributing to these reactions would affect the gas temperature. Oil

could also be noticed to affect the gas temperature and this due its existence mainly

in the gas phase. CaO and dolomite affect the zone temperatures through influencing

the slag foaming and as a result the energy efficiency of the system.
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Figure 4.13: Effect of scrap composition on the zones temperatures and molten metal

carbon content

The sensitivity profile of solid scrap temperature over time due to Fe is shown in

Figure 4.14. The sharp decrease at t=18 min and t=35 min is due to the negligible

amount of scrap present in the furnace at these time instants, since all the scrap has

melted. The sharp increase at t=27 min represents the time after adding the second
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scrap charge in the furnace.
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Figure 4.14: Effect of Fe in scrap on the solid scrap zone temperature

The sensitivity change of molten metal carbon with time due to Fe and C is presented

in Figure 4.15. It makes sense that C has a positive effect on the amount of carbon

present in the molten metal. Fe shows a negative effect on the molten metal carbon

content which would be expected as a result of the decarburization reactions that

removes carbon from the molten metal. From t=47 min until the end of the batch, it is

observed that carbon does not have an effect on the molten metal carbon content and

only Fe shows a small interchanging positive and negative effects. This is interesting

since this the time when slag foaming occurs intensively due to decarburization which

is highly influenced by FeO.
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Figure 4.15: Effect of scrap components on the molten metal carbon content

The overall effect of the scrap and flux composition is shown in Figure 4.16, which

summarizes the performance that was discussed in detail in the previous subsections.

It can be noticed that manganese has the least effect on the EAF. Conversely, Fe has

the highest influence on the EAF operation, followed by Si, CaO, dolomite and Al.

This is consistent with the literature (Pretorius and Carlisle [1998]), in which Fe, Si,

Al and lime have a great effect on the slag chemistry.
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Figure 4.16: Overall effect of scrap composition on the EAF operation

4.4 Dynamic Optimization

This section will focus on finding the optimal operation of the furnace based on an

economic objective function. Such optimal operation has the potential for generating

significant savings in the steel industry. Some case studies will be investigated and

the performance obtained will be discussed.

4.4.1 Formulation

An economic objective function is used in which the total profit (Z) of the process is

maximized. The objective function is shown in the equation below.
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Z =c0Msteel(tf )− c1

∫ tf

0

Pdt− c2

∫ tf

0

(FO2,burner + FO2,lance)dt− c3

∫ tf

0

FCH4,burnerdt

− c4

∫ tf

0

FC,injdt− c5

∫ tf

0

FC,chargedt− c6

∫ tf

0

Ffluxdt− c7

∫ tf

0

Fscrapdt

(4.10)

The first term in the objective function represents the revenue of the process which is

proportional to the amount of molten steel produced (Msteel) and the rest of the terms

represent the costs of materials used during the operation of the furnace. P is the

active power, FO2,burner is the flow of oxygen from the burners, FO2,lance is the oxygen

being lanced, FCH4,burner is the natural gas from the burners, FC,inj is the carbon being

lanced, FC,charge is the charged carbon, Fflux is the addition of lime/dolomite, Fscrap

represents the addition of second charge and tf is the final time of the heat. Different

types of constraints were enforced such as the model equations, input constraints,

path constraints and end-point constraints, as shown below.

Model equations:

h(ẋ(t), x(t), u(t), y(t), t) = 0 (4.11)

Input Constraints:

Pmin
i (t) 6 Pi(t) 6 Pmax

i (t) (4.12)

Fmin
i (t) 6 Fi(t) 6 Fmax

i (t) (4.13)

End-point Constraints:

msolid(tf ) 6 ε (4.14)

yc(tf ) 6 Y max
c (4.15)

Path Constraints:

Twall 6 Tmax (4.16)

Vsteel 6 Vfurnace (4.17)
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The optimization problem was solved using a sequential approach in which gOPT/gPROMS

was used to solve the problem. The control variables were discretized using a one

minute sample time with piecewise constant functions. The control input trajectories

were constrained to within 10% of the plant nominal values to ensure reliable trajec-

tories. The batch duration is fixed and the state trajectories are continuous variables.

The computation time for optimization was between 8 to 14 CPU minutes using a

quad-core i7-intel 3.5 GHz processor.

4.4.2 Case Studies

Three case studies were investigated in which the price of electricity, methane and

oxygen were varied to see how the optimizer would perform in finding the trade-off

between chemical and electrical energy. Initially the nominal operation of the plant is

optimized and is considered as an optimized base case to which the different scenarios

will be compared.

Scenario 1: Increasing the price of electricity to 0.35$/kWh.

Scenario2: Decreasing the price of electricity 0.015$/kWh.

Scenario3: Increasing the price of chemicals (methane and oxygen) by a factor of

1.5.

It is expected that as the price of electricity increases, the optimizer would use more

chemical energy to melt the scrap and use less electrical energy. On the other hand,

if the price of chemicals increases or the price of electricity decreases, the optimizer is

expected to use more electrical energy and less chemical energy in order to increase

the profit from the process.
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4.4.3 Results

The results are shown in Figures 4.17-4.21. In the power arc profile it could be noticed

that the optimizer uses more power when the electricity price is low followed by when

the chemicals price is high and uses the least amount of electrical energy when the

electricity price is high. This is shown in Figure 4.17 below.
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Figure 4.17: Active Power Optimized Trajectories

Looking at the methane profile, it is observed that more methane is injected through

the burners when the electricity price is high, and less methane is used when the

electricity price is low or the chemicals price is high. It is interesting to observe,

that the optimizer managed to capture the effect of preheating which can be seen in

Figure 4.18. More methane is used at the time when the first scrap basket is charged.

This is the period when the heat transfer between the gas zone and the scrap zone is

highly efficient.
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Figure 4.18: Methane Optimized Trajectories

Finally, the flow of oxygen from the three jetboxes as shown in Figures 4.19-4.21

shows similar performance. The highest flow of oxygen occurs when the electricity

price is high and less oxygen is used when the electricity price is low followed by

when the chemicals price is high. As shown in the results, the change in the control

profiles is not highly significant, and this is mainly due to constraining the control

input trajectories to within 10% of the nominal operation of the plant. Therefore, the

optimizer is constrained to adjust the control inputs only within this range. This was

meant to ensure reliable estimates. Through further feedback from the plant, some

of the constraints could be relaxed. Table 4.4 shows a summary of the results for the

three scenarios, where the total usage of each component is represented for each case.
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Figure 4.19: JetBox1 Optimized Trajectory
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Figure 4.20: JetBox2 Optimized Trajectory
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Figure 4.21: JetBox3 Optimized Trajectory

Table 4.4: Optimization summary for the 3 scenarios

Batch Base Base OptimizedHigh ElectricityLow ElectricityHigh Chemicals

Active Power(MW )[
∫
P ] 48.32 49.59 44.6 50.47 49.59

Methane Flow(m3/h)[
∫
CH4] 459.51 415.26 420.81 413.56 414.24

Oxygen Flow(m3/h)[
∫
O2] 2493.74 2257.46 2623.24 2244.37 2256.33
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Chapter 5

State Estimation

The intent of this chapter is to show how the internal states of the EAF system could

be estimated using a state observer. This is required for real-time applications which

require state knowledge.

The motivation behind state estimation in EAFs is the limited number of measure-

ments it involves and most of the measurements are not the states themselves. The

EAF process is a highly energy intensive process and high fluctuations occur during

the batch cycle, due to additions and removal of materials to and from the furnace.

The ability to estimate most of the states accurately, would enable the operator to

implement effective control and optimization strategies during the batch or within a

batch-to-batch framework. Such strategies could potentially save significant amount

of money for the steel sector and could enhance sustainable operability in terms of

emissions control. In this work, a novel application of a constrained multi-rate ex-

tended Kalman filter (EKF) on the EAF process is introduced and implemented.
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5.1 State Estimation

5.1.1 Kalman Filter

The Kalman filter determines estimates of the states of a process that is governed

by a linear model and an observation model as shown in the equations below for a

discrete-time framework:

xk = Axk−1 +Buk−1 + wk−1 (5.1)

yk = Hxk + vk (5.2)

wk−1 and vk are random variables that represent the process and measurement noise

respectively. These random variables are white noise (independent of each other) and

have normal probability distributions w ∈ N ∼ (0, Q) , and v ∈ N ∼ (0, R). Q and

R represent the covariance of the process and measurement noise respectively. The A

matrix relates the state at the current time step (k) to the previous time step (k−1).

The Kalman filter equations are given below (Simon [2006]):

e−k ≡ xk − x̂−k (5.3)

e+
k ≡ xk − x̂+

k (5.4)

P−k = E[e−k e
−
k
T

] (5.5)

P+
k = E[e+

k e
+
k
T

] (5.6)

x̂+
k = x̂−k +Kk(yk −Hx̂−k ) (5.7)

∂tr(P+
k )

∂Kk

= 0 (5.8)

Kk = P−k H
T (HP−k H

T +Rk)
−1 (5.9)
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The a priori estimate indicated by a (-ve superscript) x̂− shows the prediction of

the state given knowledge of the process prior to time (k − 1) (alternative notation

is x̂(k|k-1)). The a posteriori estimate indicated by a (+ve superscript) (x̂+
k ) shows

the estimated state at time k, when measurement z was taken (alternative notation

x̂ (k|k)). The error (ek) indicates the residual between the predicted estimate and

the real value of the process. The aim of the Kalman filter is to find an equation

that computes the a posteriori estimate (x̂+
k ) as a linear combination of the a priori

estimate (x̂−k ) and weighted difference between the measurement prediction and the

actual measurement (yk−Hx̂−k ). The Kalman gain (K) is the decision variable for

minimizing the trace of the a posteriori estimate covariance as shown in equations

(5.8) to (5.9).

5.1.2 Extended Kalman Filter (EKF)

The Kalman filter (KF) was developed for linear systems, which do not apply to

nonlinear systems represented by:

xk = f(xk−1, uk−1) + wk−1 (5.10)

yk = g(xk) + vk (5.11)

The extended Kalman filter (EKF) is a nonlinear version of the KF, in which lin-

earization about the current state is applied, as shown in the equations below (Simon

[2006]):

x̂−k = f(x̂+
k−1, uk−1) (5.12)
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Ak−1 =
∂f

∂x
|x̂+k−1,uk−1

(5.13)

Hk =
∂g

∂x
|x̂−k (5.14)

This is the main step that differentiates the Kalman filter from the extended Kalman

filter. The nonlinear model is used to provide an a priori estimate, while the linearized

model would be used to give an a posteriori estimate as in the case of the KF. The

EKF is widely used in nonlinear state estimation, since its implementation is straight-

forward.

The EAF model is nonlinear and therefore this work will focus on the extended

Kalman filter (EKF) as a state estimator. The algorithm for implementing the ex-

tended Kalman filter is given below, which consists of state model, observation model,

prediction stage and an update stage (Simon [2006]).

State Model:
dx

dt
= Ax+Bu+ w (5.15)

Observation Model:

z = Hx+Du+ v (5.16)

Prediction Stage:

x̂−k+1 = f(x̂+
k , uk) (5.17)

P−k+1 = AkP
+
k A

T
k +Qk (5.18)

Update Stage:

ỹk+1 = zk+1 −Hk+1x̂
−
k+1 (5.19)
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Sk+1 = Hk+1P
−
k+1H

T
k+1 +Rk+1 (5.20)

Kk+1 = P−k+1H
T
k+1S

−1
k+1 (5.21)

x̂+
k+1 = x̂−k+1 +Kk+1ỹk+1 (5.22)

P+
k+1 = (I −Kk+1Hk+1)P−k+1 (5.23)

The confidence in our initial guesses, model and instrumentation are represented by

P+
0 , Q and R respectively. P+

0 , Q and R are typically treated as tuning parameters,

and generally have great influence on the EKF performance. Tuning those covariance

matrices is challenging and different methods were proposed in the literature. Lima

and Rawlings [2011] used the linear time-varying auto-covariance least squares (LTV-

ALS) method to tune the noise matrices and obtain their statistics. On the other

hand, Prasad et al. [2002] used trial and error to determine those matrices for their

polymerization reactor. For simplicity, the tuning parameters P+
0 , Q and R in this

work were adjusted through trial and error to achieve the satisfactory performance

for the EKF. A common mistake that is often made is to choose a high Q value to

obtain good convergence properties of the filter. Through choosing a high Q, this

would actually mean that the model is useless and is disregarded and all the weight

lies towards the measurements with a covariance R (Kozub and MacGregor [1992]).

Instead of doing this, Kozub and MacGregor [1992] proposed the incorporation of

stochastic disturbances which will be discussed in Section 5.2.5.

5.1.3 States

The EAF model consists of 40 differential states. While transforming the DAE model

to ODE state space model, gLinearize in gPROMS finds the minimal subspace of the

states that explains the relation between the inputs and the outputs (Process Systems

Enterprise Ltd. [2004]). 10 states were neglected by gPROMS and after investigating
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those states, it was found that they do not have any effect on the model. 9 of those

states are the metal oxides in the molten metal and based on the assumption that

no reactions occur in the molten metal, no oxides are formed in this zone. The other

state is nitrogen in the slag-metal zone which is assumed to be constant and negligible

through the duration of the batch. These states are initialized at zero and remain at

this value until the end of the batch.

The 30 differential states that are considered for state estimation are shown below

according to their corresponding EAF zone:

Gas Zone: The gas zone consists of 8 states, which are the elemental moles of car-

bon (GS.C), oxygen (GS.O), hydrogen (GS.H) and nitrogen (GS.N). It also includes

the moles of volatile component (GS.Noilgas) and energy hold-up (GS.E). Beside

those states formerly mentioned, two more states are included in the gas zone which

represents the temperature of the roof (RD.T1) and the walls (RD.T2) of the furnace.

Slag-Metal Interaction Zone: The slag-metal zone consists of 12 states, which are

the elemental moles of carbon (SM.C), oxygen (SM.O), iron (SM.Fe), manganese

(SM.Mn), magnesium (SM.Mg), silicon (SM.Si) and aluminum (SM.Al). The other 5

states represent the moles of calcium oxide (SM.CaO), mass of calcium oxide floating

on the slag layer (SM.mCaO,float), mass of carbon floating on top of the slag layer

(SM.mC,float), mass of dolomite floating on slag layer (SM.mdol,float) and energy hold-

up (SM.E).

Molten Metal Zone: The molten metal zone contains 8 states, which are the molar

amount of carbon (MM.C), oxygen (MM.O), iron (MM.Fe), manganese (MM.Mn),

magnesium (MM.Mg), silicon (MM.Si) and aluminum (MM.Al). The last state is the

molten metal temperature (MM.T).

Solid Scrap Zone: The solid zone contains 2 states, which are the mass of solid

scrap (SS.mss) and the temperature of the solid scrap (SS.T).
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5.1.4 Measurement Structure

In the EAF process two types of measurements exist; continuous measurements and

discrete-time measurements. The continuous measurements are the offgas composi-

tions, specifically the concentration of carbon monoxide (CO), carbon dioxide (CO2),

oxygen (O2) and hydrogen (H2), beside the roof and walls temperatures. The sample

time for these measurements is 1 min. On the other hand, discrete measurements are

the molten metal temperature, composition of carbon in molten metal and slag com-

position specifically the composition of iron II oxide (FeO), aluminum oxide (Al2O3),

silicon dioxide (SiO2), magnesium oxide (MgO) and calcium oxide (CaO). Typically

only one sample is taken to measure the slag composition and two samples for the

molten metal temperature and carbon content in molten metal.

5.2 Implementing a constrained-multirate EKF

5.2.1 Linearization

The EAF model developed in Chapter 3 is a nonlinear DAE model and in order to

implement an extended Kalman filter, the DAE model is converted to a linear ODE

state space model. As discussed in Section 5.1.2, the main difference between the

KF and EKF is the linearization using the current estimate. The gPROMS linearize

function tool was used to perform this linearization at every time step to convert the

DAE system to an ODE state space model of the form (Process Systems Enterprise

Ltd. [2004]):

˙̄x = Ax̄+Bū

ȳ = Cx̄+Dū
(5.24)
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The linearize function tool requires specifying the input and output variables. The

input variables are carbon flux addition, carbon lance, oxygen lance, amount of wa-

ter sprayed, natural gas addition, arc power, oil addition, lime, dolomite and scrap

additions. The outputs at each time step depend on the measurement structure as

described in Section 5.1.4. A DAE model is represented by the following equation

system,

F (ẋ(t), x(t), u(t), z(t), t) = ẋ− f(x(t), u(t), z(t), t) = 0

g(x(t), u(t), z(t), t) = 0
(5.25)

y(tk) = h(x(tk)) (5.26)

in which x and z represent the differential state and algebraic variables respectively,

and u represents the input variables. ẋ is the set of derivatives of x(t) with respect to

time t. Considering a reference trajectory point (x∗(t), ẋ∗(t), z∗(t), u∗(t)) that satisfies

equation (5.25), linearization would take place at this point as shown in the equations

below:

Fẋ ˙̄x+ Fxx̄+ Fuū+ Fz z̄ = 0 (5.27)

gxx̄+ guū+ gz z̄ = 0 (5.28)

in which Fẋ, Fx, Fu, Fz, gx, gu and gz represent ∂F
∂ẋ

, ∂F
∂x

, ∂F
∂u

, ∂F
∂z

, ∂g
∂x

, ∂g
∂u

and ∂g
∂z

respectively. All the partial derivatives are calculated about the reference trajectory

points in which ˙̄x, x̄, ū and z̄ represent the deviation of the variables from the reference

trajectories. Since the DAE system is of index 1, ∂g
∂z

is non-singular and invertible. The

z̄ from equation (5.28) is then substituted into equation (5.27). Through linearization,

the Jacobian matrices are hence calculated to give the A, B, C and D matrices, as

shown in the equations below:
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A = Fzg
−1
z gx − Fx (5.29)

B = Fzg
−1
z gu − Fu (5.30)

C = hx (5.31)

The full linearization derivation is provided in Appendix C.1 (Becerra et al. [2001]).

The A and C matrices are the crucial ones for this work, since the observability

analysis and the EKF implementation depend on those two matrices, as we will see

in later sections. The B matrix becomes critical when controllability studies are

investigated. The D matrix is usually zero, since in most dynamical systems the

inputs do not have a direct influence on the output variable y. The dimension of the

C matrix will depend at each time step on the number of measurements available.

For the batch system considered in this work, this linearization algorithm is carried

out at every time step.

5.2.2 Observability Analysis:

Before implementing a state observer, a detailed observability analysis is required.

This is necessary to ensure that we get appropriate performance of the filter. Ob-

servability indicates the ability to fully reconstruct the internal states of the system

through using the inputs and outputs of the system. Observability tests for nonlinear

systems represented a great challenge to researchers and no rule exists for determin-

ing the observability of a general nonlinear system, therefore no prior judgments can

be made about the EKF performance (Southall et al. [1998], Wu et al. [2012]). The

observability of a nonlinear system generally depends on the inputs applied to the

process and on the region of the measured output trajectory (Böhm et al. [2008];

Marafioti et al. [2009]). In this work, local linear observability is tested using the lin-

earized A and C matrices obtained at every state estimate. One test for observability
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is the rank test on the observability matrix. The Obsv command in Matlabr could

be used to obtain the observability matrix (ϑ ), which is calculated as,

ϑ =



C

CA

CA2

.

.

.

CAn−1


(5.32)

The system is fully observable, if for any initial state x(0) and some final time k the

initial state can be uniquely determined through the knowledge of the input ui and

output yi for all i ∈ [0,k] (Simon [2006]) . The system is locally observable when the

observability matrix is full rank. The rank could be calculated using Matlabr and

the default tolerance (tol) formula in Matlabr is used. The rank would then be the

number of singular values that are greater than this tolerance. The syntax of the obsv

command is shown in Appendix C.2.

Although this test is widely used in literature to obtain the rank test for the observ-

ability analysis (eg. Prasad et al. [2002]), it has some limitations as well. This test

is unique for linear systems, where the A and C matrices do not change with time

and when the number of states in the system is small. Some nonlinear systems are

ill-conditioned and as a result, when the observability matrix is calculated, a sin-

gular matrix could be obtained (MathWorks [2013]) and this could cause numerical

issues. Therefore, a similarity transformation (observability staircase form) is often

applied to the matrices, which separates the observable modes from the unobservable

ones (observability canonical form). The transformation calculations are shown in

the equations below.
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Ā = TAT T (5.33)

C̄ = CT T (5.34)

Ā =

Aunob A12

0 Aob

 (5.35)

C̄ =
[
0 Cob

]
(5.36)

A and Ā are called similar matrices and they share several properties such as the

rank and determinant. The same applies to the C and C̄ matrices. The T matrix

which is called the similarity transformation matrix (nonsingular) is obtained using

QR decomposition (Lima and Rawlings [2011]; Brogan [1991]). The Obsvf command

in the Control Systems Toolbox of Matlabr could be used to apply the similarity

transformation and to extract the observable states (MathWorks [2013]). The eigen-

values of Aunob are the unobservable modes and the system is fully observable, when

the subspace Aunob is empty (Xue and Atherton [2007]). In this work the similarity

transformation is applied and the obsvf command in Matlabr is used to test the ob-

servability of the system based on a tolerance calculated by Matlabr. The syntax for

this command is shown in Appendix C.2. The outcome of the observability analysis

is discussed later in the results section.

5.2.3 Plant and Estimator Models

Two models are used in the state estimation procedure. Both models are built in

gPROMS. A model (plant model) comprising 30 states mimics the plant and another

model (estimator model) consisting of 30 states is used for the EKF estimator. The

plant model provides the measurements to the estimator. The estimator interacts

with the estimator model, which provides it with the a priori estimates. The estima-

tor uses the measurements from the plant model and updates its states to give the a
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posteriori states. The a posteriori states are then provided to the estimator model

where integration occurs and a new a priori estimate is calculated. This algorithm is

repeated until the end of the batch is reached. Figure 5.1 shows a schematic diagram

of the algorithm.

gPROMS Plant Model

gPROMS Estimator Model

MATLAB EKF Estimator

Measurements

A Priori estimates

A Posteriori estimates

Figure 5.1: The flow between the plant, estimator and estimator model

The EKF is implemented in Matlabr and the nonlinear model is used by gPROMS. In

order to carry out the state estimation, an interface between gPROMS and Matlabr

is necessary. The gO:MATLAB tool is used in gPROMS (Process Systems Enterprise

Ltd. [2004]). The nonlinear model in gPROMS is used to carry out the integration

steps and provide the a priori estimates that is exported to Matlabr and used by

the EKF to obtain the updated estimates (a posteriori estimates). Figure 5.2 shows

the flow of information between Matlabr and gPROMS.

5.2.4 Constrained multi-rate EKF

Due to the fact that different sampling rates occur for the measurements (as discussed

in Section 5.1.4), this should be taken into account, while designing the EKF. The
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gPROMS gOMATLAB MATLAB

Figure 5.2: Interfacing gPROMS and Matlabr using gO:MATLAB tool

algorithm for the EKF will remain the same and the main variable that would change

is the dimension of the C matrix which would affect the Kalman gain. Therefore, we

will have three EKF versions. EKF1 would be used when only fast measurements

represented by the offgas composition and the wall/roof temperatures are available.

EKF2 would operate when the molten metal temperature, slag composition and car-

bon composition are available along with the fast measurements. EKF3 would be

used when the molten metal temperature and carbon content are measured along

with the fast measurements. Therefore, EKF1, EKF2 and EKF3 would use 6, 13 and

8 measurements respectively. This will affect the local observability of the system,

in which some of the states were found to be unobservable at some points along the

duration of the batch and observable at others. All the state estimates are stored in

a state vector, and therefore no information is lost, while implementing the multi-

rate algorithm. Figure 5.3 shows a schematic diagram for the implementation of the

multi-rate EKF.

A limitation that could exist, while implementing the EKF, is that the state estimate

could be unreliable. For example, the molar flow, concentration and temperatures can

not be negative in the real process, and therefore this should be taken care of when

implementing the filter. The EKF can drift towards such unreliable regions, especially

that the EKF does not have any knowledge regarding the real operation of the process.

Therefore, constraints were enforced to ensure that we get reliable state estimates.

This is not limited to the sign of the quantities, but also uses industrial insight of
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Plant Model

Estimator Model

State Vector

A Priori estimates

Linearized matrices A, 
B, C and D

A Posteriori estimates

Measurements

EKF2 EKF3EKF1

MATLAB EKF Estimator

Figure 5.3: Multi-rate EKF implementation diagram

the process to enforce certain limits to make sure that the states are industrially

realizable. In this case the unconstrained state estimate x̂+
k is projected to a new

constrained surface. The constrained estimate could be found using the following

(Simon [2006]):

x+
k const = arg min

x
(x− x̂+

k )TH(x− x̂+
k ) (5.37)

s.t. Dx ≤ d (5.38)

This problem is then considered as a quadratic programming problem and an interior

point approach was used in Matlabr. If H is chosen to be the inverse of the covariance

matrix (P−1), this results in a maximum probability estimate of the state subject

to the constraints (Simon [2006]). On the other hand, if H is chosen as an identity

matrix (I), then we get a least squares estimate of the state subject to the constraints

(Simon [2006]). H is chosen as shown in equation (5.41) below, which represents
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a symmetrized version of P−1. Although P−1 is symmetric in theory, small noise

occurring through the estimation may cause the matrix to be non-symmetric in nature

(Chong [2012]). This could be rewritten in a standard quadratic programming format

as shown in the equations below, where we can see how the H matrix and f vector

were chosen.

min
x

1

2
xTHx+ fTx (5.39)

s.t. xL ≤ x ≤ xU (5.40)

H =
1

2
[P+−1

+ (P+−1
)T ] (5.41)

f = −P+−1
x̂+
k (5.42)

5.2.5 State augmentation and disturbance rejection

There is no perfect model that exactly mimics the plant, and therefore we usually

have plant-model mismatch in reality. Two types of plant-model mismatch are usually

considered, which are a structural mismatch and parametric mismatch. A structural

mismatch results due to the inappropriateness of the model to represent the plant

behaviour. A parametric mismatch occurs, when the model parameters do not match

the plant parameters. Such mismatches could result in poor performance of the EKF

and an offset could be obtained in the trajectories. As mentioned before, a com-

mon error in the EKF formulation, is neglecting the incorporation of non-stationary

disturbance states that would be needed to remove the bias in the state estimates

that might result from modeling errors or unknown disturbances occurring in the

system (Kozub and MacGregor [1992]). As mentioned in the introduction, Kozub

and MacGregor [1992], as well as, Prasad et al. [2002] discussed the use of stochastic

disturbance states and augmenting those states to the model states. The disturbance

states are estimated along with the model states, which add an integral action to the
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estimator, in order to eliminate the offset. The true dynamics of the stochastic distur-

bances are usually unknown and it could be assumed that these disturbances follow

a non-stationary random walk behaviour, as represented by the difference equation

shown in equation (5.44) (Kozub and MacGregor [1992]). wdk is a white noise vec-

tor with a N ∼ (0, Qd), which shows the amount of change in the stochastic states

between the sampling intervals, and Qd represents the covariance of the disturbance

states model. The augmented system is then calculated as shown in the equations

below.

xk+1 = Akxk + Adkx
d
k + wk (5.43)

xdk+1 = xdk + wdk (5.44)

xk+1

xdk+1

 =

Ak Adk

0 I

xk
xdk

+

wk
wdk

 (5.45)

The superscript d refers to stochastic disturbance in this case. The augmented states

now include the process states xk and the disturbance states xdk. The disturbance

states and their covariances are augmented to the process states and covariance ma-

trices respectively. Adk is treated as a tuning parameter to reflect the weights of the

disturbances that enter the system. The disturbance estimates may affect the state

estimates significantly and are generally necessary to ensure accurate state estimate

updates. Choosing which disturbances to incorporate and tuning the parameters

(Qd, P+
0
d
) for these disturbance states is an art. In this work, the number of distur-

bances were chosen such that they would never exceed the number of measurements

(Prasad et al. [2002]).
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5.3 Results and Discussion

5.3.1 Observability

Through carrying out local linear observability analysis as discussed in Section 5.2.2,

the system was found to be fully observable. The similarity transformation test was

used and observability results are shown in Appendix C.2. It could be observed that

at some time instants some states were unobservable. These unobservable states

would be associated with a Kalman gain of zero and therefore those states would not

be updated by the measurements provided at that time instant, and rather would be

updated in an open loop fashion (Bageshwar [2008]). The ability to estimate 30 states

from 13 measurements could appear strange, but through the knowledge of the EAF

operation we could notice how all the states can affect the measurements and how the

states affect each other. The stochastic states added were found to be observable as

well. Simulation tests and case studies were used to confirm our observability results

and to show that the EKF did not diverge as will be shown in the next sections.

5.3.2 Case Study 1

The first case study that will be investigated is the lack of knowledge of the true

initial states. The plant model is initialized with the true initial conditions, while the

estimator model does not know the exact initial conditions. The extended Kalman

filter will be tested against its ability to converge to the true states using the feedback

from the measurements provided by the plant. This case study is very critical, since

it reflects what happens in the real plant, where the exact initial conditions are

always unknown. This case study was performed initially without accounting for

stochastic disturbances and the EKF performance was investigated. Then, the process

states were augmented by stochastic disturbances to add integral action and the EKF
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performance was compared to the base case. In this section, the important states are

shown, while the trajectories for the rest of the states are attached in Appendix C.4.

Initial conditions, Constraints and Tuning parameters

The values for the plant’s exact initial conditions (x0), estimator initial conditions

(x+
0 ), tuning parameters (Q, P+

0 and R) and constraints on the states are provided in

Appendix C.3. The tuning parameters were determined by trial and error, through

using insight on the range of variables and through performance analysis of repeated

simulations. The constraints were chosen based on two principles. The first principle

is to enforce the realizability of the variables by making sure that positive variables

do not go negative at some point during the simulation of the batch. The second

principle is to enforce industrial realizability through choosing an appropriate upper

and lower bounds that is based on the current practice of the plant. The initial

condition for the mass of solid scrap mass is supposed to be known to a high degree

of accuracy since it is measured by the plant for every batch.

Case Study 1A: Base Case (no stochastic disturbances added)

The performance of the EKF was investigated without adding any disturbance states

and the results are represented by Figures 5.4 - 5.7. Some of the states that were

discussed in Section 5.3, were represented as mole fractions as shown in Figures 5.4,

5.5 and 5.6. It could be observed that the performance of the EKF is very good

in tracking the true states; however, as expected some offset occurred. The only

two states where offset was obtained are the mole fraction of aluminum (MM.Al)

in the molten metal as shown in Figure 5.6 and the solid scrap temperature (SS.T)

as shown in Figure 5.7. Even though the offset for (MM.Al) is in a magnitude of

(2× 10−4), adding disturbance states could be investigated to see if it will be able to
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remove this offset. The same will be applied to the solid scrap temperature (SS.T),

where a negligible offset was also obtained. The molten metal temperature estimates,

as shown in Figure 5.6, converge to the true states and specifically after the time

instant when full measurements are available. However, a gap could be noticed up to

time t=44 min and in order to apply MPC control strategies getting more accurate

estimates at those time instants would be preferable. The molten metal temperature

is important in EAF control applications as it determines the tap time, which is

the time when the molten metal is poured out of the furnace for further refining.

Stochastic disturbances will be investigated in order to get faster convergence for the

molten metal temperature.
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Figure 5.4: Gas zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation. (×) represents the estimated states while (–) represents

the actual states
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Figure 5.5: Slag zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation. (×) represents the estimated states while (–) represents

the actual states
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Figure 5.6: Molten metal zone state profiles for the base case (Case Study 1A)

without disturbance state augmentation. (×) represents the estimated states while

(–) represents the actual states
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Figure 5.7: Solid zone state profiles for the base case (Case Study 1A) without dis-

turbance state augmentation. (×) represents the estimated states while (–) represents

the actual states
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Case Study 1B: Augmented Disturbances

Two disturbances were added, which affect the (MM.Al) and (MM.T) directly. The

tuning matrix (Adk) is provided in Appendix C.3, in addition to the covariance tuning

parameters (Qd and P+
0
d
) and initial disturbance state estimates (x+

0
d
). It could be

noticed from Figures 5.8-5.11, that the augmented disturbances were able to remove

the offset from the SS.T (as shown in Figure 5.8) and MM.Al trajectories (as shown

in Figure 5.11). Better estimates were obtained for the molten metal temperature

(MM.T) compared to the base case (Figure 5.11) which makes it more suitable for

MPC control algorithms. The only issue with the molten metal temperature profile

is the occurrence of an offset between time t=58 min and t=60 min.
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Figure 5.8: Solid zone state profiles for Case Study 1B with disturbance state

augmentation. (×) represents the estimated states while (–) represents the actual

states
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Figure 5.9: Gas zone state profiles for Case Study 1B with disturbance state aug-

mentation. (×) represents the estimated states while (–) represents the actual states
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Figure 5.10: Slag zone state profiles for Case Study 1B with disturbance state

augmentation. (×) represents the estimated states while (–) represents the actual

states
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Figure 5.11: Molten metal zone state profiles for Case Study 1B with disturbance

state augmentation. (×) represents the estimated states while (–) represents the

actual states
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5.3.3 Frequent molten metal temperature measurements

A hypothetical case study was investigated to see the effect of having more frequent

molten metal temperature measurements on the estimation of the EAF states and

specifically the molten metal temperature. This was mainly investigated on Case

Study 1. Three extra molten metal temperature measurements were obtained at

time t= 25, 56 and 59 minutes. Those time instants were chosen such all the scrap

in the furnace has melted and a pool of molten bath has been formed to ensure its

feasibility. The molten metal temperature profile is shown below and it is compared

to Case Study 1A (as shown in Figure 5.12a) and Case Study 1B (as shown in Figure

5.12b).
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(a) Molten metal temperature without stochastic dis-

turbances
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(b) Molten metal temperature with stochastic distur-

bances

Figure 5.12: Molten metal temperature trajectories with frequent molten metal tem-

perature measurements

It can be observed in Figure 5.12a that better predictions are obtained compared

to Case Study 1A, and specifically at t= 25 min which is the time instant after a

molten metal temperature becomes available. This shows that the more frequent

measurements available, the better the estimation for the molten metal temperature

will be. Figure 5.12b shows the molten metal trajectory when stochastic disturbances

are included and more frequent temperature measurements are available. Comparing
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this trajectory to Case Study 2B, it could be observed that the offset in the molten

metal temperature profile has been eliminated and very good performance was ob-

tained. The rest of the trajectories converged similar to Case Study 1A and Case

Study 1B (Appendix C.4); however, the solid scrap temperature (SS.T) showed bet-

ter convergence in the absence of disturbance augmentation compared to Case Study

1A.

5.3.4 Case Study 2

The previous case study focused on state estimation using a model that lacks the

knowledge of the true initial states of the process. In this case study, a parametric

mismatch is going to be applied and the EKF performance will be analyzed, with and

without the addition of augmented disturbances. Three parameters were chosen to be

mismatched with the plant, which are the power factor (kp), the base mass transfer

coefficient (km) and the oxygen injection factor in the slag-metal zone (BiasO2SM
∗).

The reader is referred to Table 4.1 which indicates the model equations in which

the parameters appear. Those parameters were chosen based on sensitivity results

and due to the fact that they affect a range of different states from all zones. Also

the initial conditions are not known by the model as in Case Study 1. Frequent

temperature measurements similar to that discussed in Section 5.3.3 will be used in

this case as it provided the preferable performance.

Initial conditions, Constraints and Tuning parameters

The initial conditions provided to the estimator model are the same as those in Case

Study 1, and the same applies for the constraints. The tuning parameters for the

process states are given in Appendix C.3.
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Case study 2A: Base Case (no stochastic disturbances added)

After inducing a parameter mismatch between the estimator model and the plant

model, the EKF was initially implemented without the incorporation of state distur-

bances, as a base case. Through inspection of the estimated trajectories by the EKF

in Figures 5.13-5.16, it could be observed that the EKF performance is worse than the

base scenario in Case Study 1A. This is expected due to the errors added to the model

in terms of parametric plant-model mismatch, which resulted in an offset in several

trajectories which are the (GS.C) as shown in Figure 5.13; (SM.O) as shown in Figure

5.15; (SS.T) as shown in Figure 5.16; (MM.C), (MM.Al) and (MM.T) as shown in

Figure 5.14. This shows that the EKF would fail to converge, if such disturbances

occurred without considering stochastic disturbances incorporation. Therefore, aug-

menting some stochastic disturbances would be essential to try to eliminate some of

these offsets in the estimated trajectories.
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Figure 5.13: Gas zone state profiles for the Case Study 2A without disturbance

state augmentation. (×) represents the estimated states while (–) represents the

actual states
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Figure 5.14: Molten metal zone state profiles for the Case Study 2A without distur-

bance state augmentation. (×) represents the estimated states while (–) represents

the actual states
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Figure 5.15: Slag zone state profiles for the Case Study 2A without disturbance

state augmentation. (×) represents the estimated states while (–) represents the

actual states
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Figure 5.16: Solid zone state profiles for the Case Study 2A without state augmen-

tation. (×) represents the estimated states while (–) represents the actual states

Case study 2B: Augmented Disturbances

Five disturbances were chosen to be augmented to the process states. Those dis-

turbances were chosen to affect specific process states, which are (MM.T), (MM.C),

(MM.O), (SM.O) and (MM.Al) in sequence. The tuning parameters (Adk), (Qd) and

(P+
0
d
) are provided in Appendix C.3, as well as the initial disturbance state estimates

(x+
0
d
). The stochastic disturbances have shown a great impact in improving the per-

formance of the EKF, in which it was able to eliminate the offsets that were present

in the base case. Figures 5.17-5.20 show the effect of the stochastic disturbances on

the performance of the EKF in the presence of plant-model mismatch. The distur-

bances were able to completely remove the offset from all the trajectories that were

mentioned above.

125



M.A.Sc Thesis-Yasser Ghobara, Chemical Engineering Section 5.3

0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

G
S

.C

time(min)
0 20 40 60

0.1

0.15

0.2

0.25

0.3

0.35

G
S

.O

time(min)

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

G
S

.H

time(min)
0 20 40 60

0.4

0.5

0.6

0.7

0.8

0.9

1

G
S

.N

time(min)

Figure 5.17: Gas zone state profiles for the Case Study 2B with disturbance state

augmentation. (×) represents the estimated states while (–) represents the actual

states
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Figure 5.18: Slag zone state profiles for the Case Study 2B with disturbance state

augmentation. (×) represents the estimated states while (–) represents the actual

states
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Figure 5.19: Molten metal zone state profiles for the Case Study 2B with disturbance

state augmentation. (×) represents the estimated states while (–) represents the

actual states
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Figure 5.20: Solid zone state profiles for the Case Study 2B with disturbance state

augmentation. (×) represents the estimated states while (–) represents the actual

states
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Chapter 6

Conclusions and Recommendations

The intent of this chapter is to summarize the findings of this research and recommend

some potential future work.

6.1 Conclusions

A detailed first principles model for the electric arc furnace (EAF) obtained from

MacRosty and Swartz [2005] has been reconfigured and modified to meet a new

industrial partner’s operation. The two major modifications in the model involved

the addition of three JetBoxes, which control the supply of oxygen to the furnace.

The second modification was through assuming a flat surface geometry for the scrap

melting. Some assumptions were made throughout the model and validated based on

simulation results.

The model has been validated against plant data through parameter estimation. A

sensitivity analysis on the parameters was performed using local differential analysis

and 6 parameters have been identified to be the most sensitive. An initial set of
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parameters was obtained through brute force method and the 6 most sensitive pa-

rameters were estimated using the maximum-likelihood function in gPROMS/gEST.

A sensitivity analysis on the initial composition of the scrap and fluxes that enter

the furnace was performed using local differential analysis. It was found that iron

has the highest influence on the EAF operation and manganese has the least effect.

This analysis enhanced the understanding of the effect of each scrap component on

the operation of the electric arc furnace.

The optimal input profiles of the furnace were determined through economic optimiza-

tion. The trade-off between chemical and electrical energy was captured, in which

more electrical energy is consumed, when the electricity price is low and as a result

less chemical energy is used. On the other hand, when the electricity price is high

more chemical energy is consumed over electrical energy.

The internal states of the system were estimated through the implementation of a

constrained multi-rate extended Kalman filter. An observability test was performed

and the system was found to be fully observable. Tuning parameters were obtained

through trial and error and stochastic disturbances were considered to add an integral

action. The filter showed satisfactory performance in predicting the true states of the

system even in the presence of parametric plant-model mismatch.

6.2 Recommendations for Further Work

Further potential research and improvements could be investigated due to the complex

nature of the EAF operation. In this section we will provide some potential future

work that could be investigated based on the current work that has been completed.
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6.2.1 Modeling Approach

Rigorous, first principles models for the electric arc furnace operation are highly

complex. Such models are suitable to be used offline due to their complexity and

high computational time. The potential use of data driven models, such as partial

least squares (PLS) would seem promising for real-time applications. Developing such

models does not require significant amount of time as that for a first principles model,

and the solution time should be significantly reduced. A hybrid approach could also

be used, in which the measurements from the plant in addition to data generated

from a first principles model could be used combined to build a PLS model. This

would then allow the data driven model to predict variables that are not measured by

the plant. Data driven models could be also be used to implement optimization and

control strategies. Sandberg et al. [2005] implemented a PLS model using data from

4 EAFs in Sweden and Norway, to predict the final alloying (Cr, Ni, Mo) and tramp

elements (Cu, As, Sn) contents, beside the yield of oxidizable and impurity elements

(C, Si, Mn, P, S), and electrical energy consumption. The model performance was

satisfactory for the alloying and tramp elements predictions and unsatisfactory for

the others. Scrap management applications were discussed, in which a PLS model

would be used to predict the scrap grade composition and be used to optimize the

addition of the second scrap basket.

6.2.2 Optimization

The optimization case studies investigated in this research focused on economic opti-

mization; however the objective function can incorporate other criteria such as pro-

ductivity, etc. The sequential approach was used to solve the optimization problem.

The next stage is to use a simultaneous approach and compare its computational time

for optimization with the sequential method. Reducing the optimization computation
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time will enhance the on-line implementation of the model.

6.2.3 State Estimation and Control

The extended Kalman filter was used in this work; however other nonlinear state

observers such as the moving horizon estimator (MHE) could also be investigated.

Comparing the performance of both filters on the EAF would be of great interest.

Lima and Rawlings [2011] implemented both an EKF and a MHE on a continuous

stirred tank reactor (CSTR). The MHE showed a better performance than the EKF.

The other potential is to incorporate a real-time optimization framework that would

be coupled to the state estimator. This could be used as an advisory tool for the

operator, to find the optimal input trajectories along the batch at every time step.

Park et al. [2002] implemented a model predictive controller (MPC) coupled to an

extended Kalman filter (EKF) on a semi-batch copolymerization reactor, in which

the reaction temperature and feed rate of the polymer were manipulated to control

the weight average molecular weight and the copolymer composition.
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Appendix A

Modeling Details

A.1 Molten Metal Temperature

The molten metal temperature is calculated as shown in equation (A.1). Cp is the

specific heat capacity, n is the number of moles and sub is an estimated parameter to

account for bulk density and compositional variation. Equation (A.2) describes the

cooling that results from the water sprays on the molten metal temperature profile,

and kmcool is an estimated parameter.

dT

dt
(

16∑
i=1

(n(i)Cp(i))sub) = Qpower−mm −Qmm−ss −Qcool −Qmm−sm − q4
rad (A.1)

Qcool = kmcool(Tmm − 298K); (A.2)
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A.2 Offgas flow rate and entrained air

In this section, the calculations for the amount of gas being sucked and pushed away

are shown. A pseudo steady state assumption is made about the freeboard gas vol-

ume in which constant pressure is assumed. The air being sucked (Fsuck) or pushed

away (Fpush) depends on this pseudo steady state and the constant offgas flow rate as-

sumed. The max and min functions that were discussed in equation (3.25) are approx-

imated as shown in the equations below (Biegler and Grossmann [2004]; MacRosty

and Swartz [2007]).

Fsuck = max(0, Fnet) =
1

2
Fnet +

1

2
(F 2

net + ε)
1
2 (A.3)

Fpush = min(0, Fnet) = −1

2
Fnet +

1

2
(F 2

net + ε)
1
2 (A.4)

in which ε has a magnitude of 1× 10−3, and Fnet is calculated based on the constant

pressure assumption in the freeboard gas volume and is calculated using the expression

below:

Fnet = Foffgas − Fsm−gs − Fburner − Fvolatile (A.5)

The offgas flow rate (Foffgas) is calculated using the ideal gas law as shown in the

expression below, in which R is the gas constant, T is the offgas duct’s temperature, P

is the offgas duct’s pressure, V̇offgas is the volumetric flow rate in the offgas duct based

on the fan speed and the cross-sectional area of the duct, and EA1 is an estimated

parameter.

Foffgas(RT ) = V̇offgas P EA1; (A.6)

As mentioned in Section 3.1.3, the gases ingressed will have the same composition

as ambient air and the flow rate of the ingressed components could be calculated as
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follows:

Fingressed,i = Xair,i Fsuck EA3 (A.7)

It is expected that both parameters EA1 and EA3 would be highly correlated. The

reason for including EA3 in this model was to account for ingressed air that has not

been considered in the model due to opening of the roof of the furnace. However, it is

suggested in further work that the parameter EA3 could be neglected and only EA1

would be estimated.

Fpush and Fingressed,i are then related to FPconst,i in equation (3.25) as shown below:

FPconst,i = xfreeboard−gas,iFpush + Fingressed,i (A.8)

A.3 Total Carbon entering the slag-metal interac-

tion zone

In this section, the rate of addition of carbon charged and lanced (FC
add,sm) into the

slag-metal zone is shown. kc is an estimated parameter which represents the amount

of reacted carbon.

FC
add,sm = kcF

Charge+Lanced
C (A.9)

A.4 Water entering the gas zone

The molar amount of water added to the gas zone (FH2O
add ) is modeled as shown

below. V̇ Spray
H2O

is the volumetric flow rate of water from the sprays and FstarH2O is

an estimated parameter. The ideal gas law is used in which P is the pressure of the

freeboard gas volume and T is the temperature of the gas zone.

FH2O
add R T = V̇ Spray

H2O
FstarH2O P (A.10)
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A.5 View Factors Calculations

In this section, the view factors calculations are shown in detail. Those relationships

were obtained from Siegel and Howell [2001]. The five surfaces being considered are

the roof (disk), wall (right circular cylinder), scrap (coaxial disk), bath (coaxial disk)

and arc (cylinder) as discussed in Section 3.4.

A.5.1 Roof

The radiation flow from the roof to the molten metal and the scrap is represented by

equations (A.12) and (A.11) respectively. Switchrad is the switch function to account

when the molten metal and scrap perceives the roof of the furnace. r is the radius of

the surface which is assumed to be the same for the roof, molten metal and scrap. a

is the distance between the roof and the corresponding surface.

F1−3 = Switchrad
1

2

[
X − (X2 − 4)

1
2

]
R =

r

a

X =
(2R2 + 1)

R2

(A.11)

F1−4 = (1− Switchrad) 1

2

[
X − (X2 − 4)

1
2

]
R =

r

a

X =
(2R2 + 1)

R2

(A.12)

No radiation flow from the roof to the arc exists, since the arc is assumed to be a

black body (equation A.13). Also, as a result of assuming the roof as a flat surface,
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no radiation occurs within the roof itself (equation A.14).

F1−5 = 0 (A.13)

F1−1 = 0 (A.14)

A.5.2 Wall

The fraction of energy transferred from the wall to the roof is calculated as shown

in equation (A.15), in which h1 is the height of the exposed wall, h2 is the distance

between the roof and exposed wall height and r is the radius of the roof of the furnace.

F2−1 =
1

4

(
(1 + H2

H1
)
[
4 + (H1 +H2)2

] 1
2 − (H1 + 2H2)− H2

H1
(4 +H2

2 )
1
2

)
H1 =

h1

r

H2 =
h2

r

(A.15)

The fraction of radiation transferred between the inside walls of the furnace and itself

is approximated as shown in equation (A.16), in which h is the height of exposed wall

and r is the radius of the furnace.

F2−2 = (1 +H)− (1 +H2)
1
2

H =
h

2r

(A.16)

The view factors from the wall to the scrap and bath are calculated though the

reciprocity (equation A.18) and enclosure constraint respectively. No radiation is

received by the arc from the wall as shown in equation (A.17) below.

F2−5 = 0 (A.17)
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F2−3 = F3−2
A3

A2

(A.18)

A.5.3 Scrap

The calculations for the fraction of energy from scrap to the other surfaces are shown

in equations (A.19-A.23). It is assumed that no radiation takes place between the

scrap and molten metal as shown in equation (A.21). Also, no radiation takes place

between the scrap and itself due to being a flat surface. Reciprocity relationship was

used to calculate the radiation from the scrap to the roof as shown in equation (A.19)

below.

F3−1 = F1−3
A1

A3

(A.19)

F3−3 = 0 (A.20)

F3−4 = 0 (A.21)

F3−5 = 0 (A.22)

Equation (A.23) shows the fraction of radiation from the scrap to the wall, where h

is the exposed wall height and r is the radius of scrap. It was made sure that the

sum of the view factors equal to one to maintain the enclosure constraint, in the case

when the scrap is present. Switchrad makes sure that when no scrap is present, no

radiation is transfered to/from the scrap anymore.

F3−2 = Switchrad
[
2H
(

(1 +H2)
1
2 −H

)]
H =

h

2r

(A.23)
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A.5.4 Molten Metal

The view factors for the molten metal are shown below. No radiation transfer takes

place between the bath from one side and the scrap, bath and arc from the other.

This is the same as has been assumed for the scrap. The fraction of radiation from

the molten metal to the roof is calculated as through the reciprocity relationship as

shown in equation (A.24). Switchrad makes sure that no radiation takes place when

scrap amount dominates in the furnace.

F4−1 = F1−4
A1

A4

(A.24)

F4−3 = 0 (A.25)

F4−4 = 0 (A.26)

F4−5 = 0 (A.27)

The radiation transfer from the bath to the wall is approximated through equation

(A.28), in which h is the height of exposed wall and r is the radius of the bath. The

sum of the view factors is ensured to be 1 when the molten metal dominates over the

scrap amount.

F4−2 = Switchrad
[
2H
(

(1 +H2)
1
2 −H

)]
H =

h

2r

(A.28)

A.5.5 Arc

The fraction of radiation from the arc to the rest of the surfaces is calculated as

shown below. The amount of radiation transfer from the arc to the scrap and the

molten metal is calculated through equations (A.29) and (A.30) respectively. r1 and
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r2 are the radius of the electrode and (bath/scrap) respectively. h is the exposed wall

height.

F5−3 = Switchrad
[

B
8RH

+ 1
2π

(
cos−1(A

B
)− 1

2H

[
(A+2)2

R2 − 4
] 1

2

cos−1(AR
B

)− A
2RH

sin−1R

)]
R =

r1

r2

H =
h

r2

A = H2 +R2 − 1

B = H2 −R2 + 1

(A.29)

F5−4 = (1− Switchrad)
[

B
8RH

+ 1
2π

(
cos−1(A

B
)− 1

2H

[
(A+2)2

R2 − 4
] 1

2

cos−1(AR
B

)− A
2RH

sin−1R

)]
R =

r1

r2

H =
h

r2

A = H2 +R2 − 1

B = H2 −R2 + 1

(A.30)

The radiation transfer between the arc and the wall is approximated through equation

(A.31), in which h is the height of the exposed wall. r1 and r2 are the radius of the

electrode and wall respectively. No radiation is exchanged between the arc itself and

the fraction of radiative transfer between the arc and the roof would be calculated

using the enclosure constraint property.
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F5−2 =
1

πR1

1
2
(R2

2 −R2
1 − 1)cos−1R1

R2
+ πR1 − π

2
AB − 2R1tan

−1(R2
2 −R2

1)
1
2 +(

(1 + A2)(1 +B2)
) 1

2

tan−1
(

(1+A2)B
(1+B2)A

) 1
2


R1 =

r1

h

R2 =
r2

h

A = R2 +R1

B = R2 −R1

(A.31)

F5−5 = 0 (A.32)

A.6 Procedure for normalizing the trajectories

The trajectories are normalized between 0 and 100 using the maximum and minimum

values for all the trajectories involved in a specified figure. For example, consider two

trajectories x and y. The normalized trajectory for each variable could be calculated

as follows:

xnormalized = 100[x−min(xmin, ymin)]/[max(xmax, ymax)−min(xmin, ymin)] (A.33)

ynormalized = 100[y−min(xmin, ymin)]/[max(xmax, ymax)−min(xmin, ymin)] (A.34)

such that:

xmin = min(x) (A.35)

ymin = min(y) (A.36)

xmax = max(x) (A.37)

ymax = max(y) (A.38)
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Parameter Estimation
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Table B.1: Model parameters

ParameterValue

kcool 1.169× 101

kdm 4.5× 10−1

kdt 6.9× 10−1

kp 8× 10−1

kt1 4.2× 10−4

kt3 3.1× 10−8

km 1.66× 104

kmcool 6× 10−3

kt2 8.5× 10−3

sub 8× 10−1

θL 7.5× 10−1

y∗C 2× 10−3

γd 8× 10−1

α3 3.7× 10−1

β3 1.11× 10−2

BiasO2GS
? 7× 10−1

EA1 1.34× 10−1

EA3 1.3

FstarH2O 2

koil 8.27× 10−1

kPO2 1.3× 102

θ3 1× 101

Xoil 6× 10−1

BiasO2SM
? 1

kc 9.6× 10−2

kcao 7× 10−1

kdc 4.37× 10−1

hgs 4.35
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Appendix C

State Estimation

C.1 Converting DAE system to ODE state space

model using linearization

In this section, the derivation for converting a DAE system to an ODE system will

be illustrated (Becerra et al. [2001]).

Considering a DAE system described by the equations below, in which x and z rep-

resent differential states and algebraic variables respectively. u is the vector of input

variables.

ẋ(t) = f(x(t), u(t), z(t), t)

g(x(t), u(t), z(t), t) = 0
(C.1)

The measurement model is described as shown below, where y represent the measured

variables.

y(tk) = h(x(tk)) (C.2)

Using a reference trajectory (x∗(t), ẋ∗(t), z∗(t), u∗(t)), the variables are expressed in
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their deviation form as follows:

x̄(t) = x(t)− x∗(t) (C.3)

˙̄x(t) = ẋ(t)− ẋ∗(t) (C.4)

z̄(t) = z(t)− z∗(t) (C.5)

ū(t) = u(t)− u∗(t) (C.6)

ȳ(t) = y(t)− y∗(t) (C.7)

The set of differential equations are rewritten as follows:

F (ẋ(t), x(t), u(t), z(t), t) = ẋ− f(x(t), u(t), z(t), t) = 0 (C.8)

Through carrying out a first-order Taylor series expansion of F and g about the

trajectory (x∗(t), ẋ∗(t), z∗(t), u∗(t)), the following expressions are obtained.

F (ẋ∗+ ˙̄x, x∗+x̄, u∗+ū, z∗+z̄, t) = F (ẋ∗, x∗, u∗, z∗, t)+Fẋ ˙̄x+Fxx̄+Fuū+Fz z̄ = 0 (C.9)

g(x∗ + x̄, u∗ + ū, z∗ + z̄, t) = g(x∗, u∗, z∗, t) + gxx̄+ guū+ gz z̄ = 0 (C.10)

By definition, F (ẋ∗, x∗, u∗, z∗, t) and g(x∗, u∗, z∗, t) are equal to 0, and therefore the

following expressions are obtained.

Fẋ ˙̄x+ Fxx̄+ Fuū+ Fz z̄ = 0 (C.11)

gxx̄+ guū+ gz z̄ = 0 (C.12)

Equation (C.12) can be rearranged to solve for z̄ as shown below.

z̄ = −g−1
z [gxx̄+ guū] (C.13)
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Substituting (C.13) into (C.11) and solving for ˙̄x in which Fẋ = I, the following

linearized state expression is obtained.

˙̄x = [Fzg
−1
z gx − Fx]x̄+ [Fzg

−1
z gu − Fu]ū = Ax̄+Bū (C.14)

The A and B matrices are therefore expressed as shown in the following equations:

A = Fzg
−1
z gx − Fx (C.15)

B = Fzg
−1
z gu − Fu (C.16)

The measurement equation is then linearized in the same way to obtain the following

equation, in which hx is evaluated along the trajectory x∗(t).

ȳ = hxx̄ = Cx̄ (C.17)

C.2 Local Observability Results

The rank test on the observability matrix which is obtained using the obsv command

in Matlabr is shown below. The tolerance (tol) is calculated using equation (C.20)

below, in which eps is the floating-point relative accuracy determined by Matlabr.

Ob = obsv(A,C) (C.18)

r = rank(ob, tol) (C.19)

tol = max(size(A)) eps(norm(A)) (C.20)

The similarity transformation is carried out using the obsvf command in Matlabr as

shown below:

[Ā, B̄, C̄, T, k] = obsvf(A,B,C, tol) (C.21)
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tol = 10 n norm(A, 1) eps (C.22)

The tolerance (tol) is calculated as shown in equation (C.22), in which n is the number

of states in the A matrix. k is a vector of length n which represents the number of

observable states that are factored out at each time step during the transformation

matrix calculation. The sum of the elements in k would represent the number of

states in the observable portion of Ā (MathWorks [2013]).
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Table C.1: Observability Results for Case Study 1B with augmented disturbances

TimeNumber of observable states

0 27

1 30

2 30

3 30

4 31

5 32

6 31

7 32

8 32

9 31

10 31

11 31

12 31

13 31

14 31

15 31

16 31

17 31

18 31

19 31

20 31

21 31

22 31

23 31

24 31

25 31

26 31

27 32

28 31

29 32

30 31
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TimeNumber of observable states

31 32

32 32

33 32

34 32

35 32

36 31

37 31

38 31

39 32

40 31

41 31

42 32

43 32

44 32

45 31

46 31

47 32

48 31

49 31

50 31

51 31

52 31

53 31

54 31

55 31

56 31

57 31

58 31

59 31

60 32
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C.3 EKF parameters

The state vector x could be represented as,

x =


xGS

xmm

xsm

xRD


such that:

xGS =



GS.C

GS.O

GS.H

GS.N

GS.Noilgas

SS.T

GS.E


xmm =



MM.C

MM.O

MM.Fe

MM.Mn

MM.Mg

MM.Si

MM.Al

MM.T

SS.mss



xsm =



SM.C

SM.O

SM.Fe

SM.Mn

SM.Mg

SM.Si

SM.Al

SM.CaO

SM.mCaO,float

MM.mC,float

MM.mdol,float

SM.E



xRD =

RD.T1

RD.T2



The tuning matrices Q, R and P+
0 are partitioned accordingly, where they form

diagonal matrices.

C.3.1 Tuning parameters

Case study 1

QGS = diag[103, 103, 103, 103, 101, 102, 103]
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P+
0
GS

= diag[104, 104, 104, 104, 101, 102, 106]

Qsm = diag[104, 104, 104, 104, 104, 104, 104, 104, 101, 101, 101, 106]

P+
0
sm

= diag[103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 106]

Qmm = diag [104, 103, 104, 103, 103, 104, 103, 102, 103]

P+
0
mm

= diag[104, 103, 104, 103, 103, 104, 103, 102, 10−6]

QRD = diag[102, 102]

P+
0
RD

= diag[102, 102]

RGS = diag[1× 10−1, 1× 10−1, 1× 10−1, 1× 10−1]

RRD = diag[1× 102, 1× 102]

Rmm = diag[1× 102, 1× 10−3]

Rsm = diag [1× 10−3, 1× 10−3, 1× 10−3, 1× 10−3, 1× 10−3]

Qd= diag[2× 105, 1× 102]

P+
0
d
= diag[2× 105, 1× 102 ]

Adk= diag[5, 5]

Case study 2

QGS = diag[7× 103, 103, 103, 103, 101, 102, 103]

P+
0
GS

= diag[104, 104, 104, 104, 101, 102, 106]

Qsm = diag[104, 104, 104, 104, 104, 104, 104, 104, 101, 101, 101, 106]

P+
0
sm

= diag[103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 106]

Qmm = diag [104, 103, 104, 103, 103, 104, 103, 102, 103]

P+
0
mm

= diag[104, 103, 104, 103, 103, 104, 103, 102, 10−6]

QRD = diag[102, 102]

P+
0
RD

= diag[102, 102]

RGS = diag[1× 10−1, 1× 10−1, 1× 10−1, 1× 10−1]

RRD = diag[1× 102, 1× 102]
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Rmm = diag[1× 102, 1× 10−3]

Rsm = diag [1× 10−3, 1× 10−3, 1× 10−3, 1× 10−3, 1× 10−3]

Qd = diag [1× 102, 1× 104, 1× 104, 5× 103, 2× 105]

P+
0
d
= diag[1× 102, 6× 105, 1× 104, 5× 104, 2× 105]

Adk= diag[2, 2, 6, 2, 6]

C.3.2 Constraints

The lower (LB) and upper (UB) bounds enforced on the states are shown below, in

which they are partitioned according to the x vector represented previously.

LBGS = [0, 0, 0, 0, 1× 10−6, 298 − 4× 109]
T

LBmm = [0, 0, 0, 0, 0, 0, 0, 1500, 0]T

LBRD = [273, 273]T

LBsm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −5× 109]
T

UBGS =



5× 104

1.2× 105

1× 105

2× 105

2× 104

1809

−2572.0261


UBmm =



3× 104

5× 104

3× 107

1.5× 104

100

4× 105

1.2× 105

3000

6× 105



UBsm =



5× 104

7× 105

8× 104

5× 103

3× 105

5× 104

2× 104

6× 105

2× 104

6× 103

2× 104

−1354371.4
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UBRD =

5.8× 102

5.8× 102



C.3.3 Initial Conditions

Actual initial conditions

x0
GS = [5, 200, 5, 1000, 0, 300, −2572.0261]T

x0
mm = [450, 0, 163× 103, 147.439, 0, 32.044, 2151, 1809, 53982.4]T

x0
RD = [500, 500]T

x0
sm = [10, 2000, 2000, 50, 300, 200, 90, 1000, 0, 0, 0, −1354371.4]T

Case study 1

x+
0
GS

= [6, 240, 10, 1200, 2, 360, −3086.43]T

x+
0
mm

= [540, 2, 162.4× 103, 177, 2, 38, 2580, 1750, 53962.4]T

x+
0
RD

= [440, 440]T

x+
0
sm

= [12, 2200, 2200, 60, 360, 240, 108, 1200, 2, 2, 2, −1625245.7]T

x+
0
d

= [0, 0]T

Case study 2

x+
0
GS

= [6, 240, 10, 1200, 2, 360, −3086.43]T

x+
0
mm

= [540, 2, 162.4× 103, 177, 2, 38, 2580, 1750, 53962.4]T

x+
0
RD

= [440, 440]T

x+
0
sm

= [12, 2200, 2200, 60, 360, 240, 108, 1200, 2, 2, 2, −1625245.7]T

x+
0
d

= [0, 0, 0, 0, 0]T
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C.4 EKF Trajectories

C.4.1 Case Study 1

Case 1A: Base case (no stochastic disturbances added)
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Figure C.1: Slag zone state profiles for the base case (Case Study 1A) without disturbance

state augmentation. (×) represents the estimated states while (–) represents the actual

states
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Figure C.2: Gas zone state profiles for the base case (Case Study 1A) without disturbance

state augmentation. (×) represents the estimated states while (–) represents the actual

states
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Figure C.3: Solid zone state profiles for the base case (Case Study 1A) without disturbance

state augmentation. (×) represents the estimated states while (–) represents the actual

states

163



M.A.Sc Thesis-Yasser Ghobara, Chemical Engineering Section C.4

0 20 40 60
0

1

2

3

4

5

6
x 10

−4

M
M

.O

time (min)
0 20 40 60

6

7

8

9

10

11

12
x 10

−4

M
M

.M
n

time (min)

0 20 40 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

M
M

.M
g

time (min)

Figure C.4: Molten metal zone state profiles for the base case (Case Study 1A) without

disturbance state augmentation. (×) represents the estimated states while (–) represents

the actual states
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Case 1B: Augmented disturbances
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Figure C.5: Gas zone state profiles for Case Study 1B with disturbance state augmenta-

tion. (×) represents the estimated states while (–) represents the actual states
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Figure C.6: Solid zone state profiles for Case Study 1B with disturbance state augmen-

tation. (×) represents the estimated states while (–) represents the actual states
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Figure C.7: Slag zone state profiles for Case Study 1B with disturbance state augmenta-

tion. (×) represents the estimated states while (–) represents the actual states
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Figure C.8: Molten metal zone state profiles for Case Study 1B with disturbance state

augmentation. (×) represents the estimated states while (–) represents the actual states
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C.4.2 Frequent molten metal temperature measurements

on Case Study 1

Case Study 1A
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Figure C.9: Gas zone state profiles for the base case (Case Study 1A) without disturbance

state augmentation using frequent MM.T measurements. (×) represents the estimated

states while (–) represents the actual states
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Figure C.10: Slag zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation using frequent MM.T measurements. (×) represents the esti-

mated states while (–) represents the actual states
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Figure C.11: Molten metal zone state profiles for the base case (Case Study 1A) without

disturbance state augmentation using frequent MM.T measurements. (×) represents the

estimated states while (–) represents the actual states
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Figure C.12: Solid zone state profiles for the base case (Case Study 1A) without dis-

turbance state augmentation using frequent MM.T measurements. (×) represents the esti-

mated states while (–) represents the actual states
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Figure C.13: Gas zone state profiles for the base case (Case Study 1A) without disturbance

state augmentation using frequent MM.T measurements. (×) represents the estimated

states while (–) represents the actual states

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

S
S

.m
ss

time(min)

Figure C.14: Solid zone state profiles for the base case (Case Study 1A) without dis-

turbance state augmentation using frequent MM.T measurements. (×) represents the esti-

mated states while (–) represents the actual states
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Figure C.15: Slag zone state profiles for the base case (Case Study 1A) without distur-

bance state augmentation using frequent MM.T measurements. (×) represents the esti-

mated states while (–) represents the actual states
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Figure C.16: Molten metal zone state profiles for the base case (Case Study 1A) without

disturbance state augmentation using frequent MM.T measurements. (×) represents the

estimated states while (–) represents the actual states
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Case Study 1B
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Figure C.17: Solid zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated states while (–)

represents the actual states
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Figure C.18: Gas zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated states while (–)

represents the actual states
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Figure C.19: Slag zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated states while (–)

represents the actual states
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Figure C.20: Molten metal zone state profiles for Case Study 1B with disturbance state

augmentation using frequent MM.T measurements. (×) represents the estimated states

while (–) represents the actual states
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Figure C.21: Gas zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated states while (–)

represents the actual states

178



M.A.Sc Thesis-Yasser Ghobara, Chemical Engineering Section C.4

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

S
S

.m
ss

time(min)

Figure C.22: Solid zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated states while (–)

represents the actual states
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Figure C.23: Slag zone state profiles for Case Study 1B with disturbance state augmen-

tation using frequent MM.T measurements. (×) represents the estimated states while (–)

represents the actual states
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Figure C.24: Molten metal zone state profiles for Case Study 1B with disturbance state

augmentation using frequent MM.T measurements. (×) represents the estimated states

while (–) represents the actual states
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C.4.3 Case Study 2

Case 2A: Base case (no stochastic disturbances added)
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Figure C.25: Gas zone state profiles for the Case Study 2A without disturbance state

augmentation. (×) represents the estimated states while (–) represents the actual states
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Figure C.26: Solid zone state profiles for Case Study 2A with disturbance state augmen-

tation. (×) represents the estimated states while (–) represents the actual states
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Figure C.27: Slag zone state profiles for the Case study 2A without disturbance state

augmentation. (×) represents the estimated states while (–) represents the actual states
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Figure C.28: Molten metal zone state profiles for the Case study 2A without disturbance

state augmentation. (×) represents the estimated states while (–) represents the actual

states
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Case 2B: Augmented disturbances
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Figure C.29: Gas zone state profiles for the Case Study 2B with disturbance state aug-

mentation. (×) represents the estimated states while (–) represents the actual states
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Figure C.30: Solid zone state profiles for the Case Study 2B with disturbance state aug-

mentation. (×) represents the estimated states while (–) represents the actual states
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Figure C.31: Slag zone state profiles for the Case Study 2B with disturbance state

augmentation. (×) represents the estimated states while (–) represents the actual states
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Figure C.32: Molten metal zone state profiles for the Case Study 2B with disturbance

state augmentation. (×) represents the estimated states while (–) represents the actual

states
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