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Preface
This thesis is a compilation of the research work completed during my Ph.D. studies since Septem-

ber 2008 under the supervision of Dr. Duncan O’Dell in the Department of Physics & Astronomy at

McMaster University. The thesis is broadly concerned with the theoretical study of ultracold atoms

confined inside an optical cavity. Although cavity quantum electrodynamics (cQED) is a relatively

old discipline, the development of high quality optical cavities and the ability to cool and manipulate

atoms using laser light is a more recent advance. This has stimulated quite a lot of theoretical and

experimental research in the last two decades. Study of atom-cavity systems in the strong coupling

regime where a single atom can strongly influence the intracavity light field and vice-versa are now

routinely done by many research groups around the world. Atom-cavity systems in the strong cou-

pling regime offer a simple, controllable setting to study various fundamental aspects of quantum

mechanics and are also promising candidate systems for quantum information processing. An im-

portant feature of this system is the open nature of the cavity, i.e. the system of interest is always in

contact with an external bath of electromagnetic modes via the partially transmissive cavity mirrors.

This means the outcoupled cavity light field provides an interesting way to measure and manipulate

the atomic system. This aspect of cQED is important to the main problem I worked on during my

PhD, where we proposed a continuous and non-destructive method to probe the Bloch oscillation

dynamics of atoms in the cavity potential by measurement of the light transmitted through the

cavity.

The thesis is organized in the ‘sandwich’ format with the three middle chapters (Chapters 3,4,5),

coming from three publications (two published and one under peer-review at the time of writing),

providing the central material (‘meat’). Chapters that are papers have their own independent bib-

liography. The rest of the thesis has a single bibliography at the end of the entire text. The first

publication presented concerns the aforementioned measurement scheme to determine the Bloch fre-

quency of ultracold atoms in a cavity subject to an additional linear potential. The idea for this

problem came from my supervisor and some of the ground work was carried out during my Masters

from 2006-08 ans subsequently continued during my doctoral studies. The paper was co-authored

with two other collaborators (M. Trupke & E. A. Hinds) apart from my supervisor and published in

2009. I contributed mainly to the conceptualisation and calculations, and to a lesser extent the writ-

ing of the paper. The second publication (Chapter 4) concerns some interesting ramifications of the

nonlinear atom-light interaction in ultracold atom-cavity systems. The strong individual interaction

between the different atoms and the single mode light field in the cavity leads to an effective mutual

interaction between the atoms which are otherwise non-interacting. The idea for this project arose

from discussions with one of the co-authors Jonas Larson and my supervisor. I contributed equally
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to the conceptualisation, calculations and writing and the paper was published in 2011. The third

paper (Chapter 5) presented in the thesis is both a natural extension and a more detailed study

of the problem introduced in the first paper (Chapter 2). In the first paper we modelled the light

field and atoms as classical fields, whereas in the third paper we consider the dynamics of quantized

fluctuations about the classical solutions. This, apart from providing some suggestions regarding the

regimes in which the experiment proposed in the first paper would be feasible also uncovers other

interesting modifications to the coupled atom-cavity system brought about by including the linear

potential. I conceptualised and performed the calculations presented in this paper. The paper was

co-authored with my supervisor who also played a significant role in refining and streamlining the

subject matter.
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Abstract
Ultracold atoms in an optical lattice Bloch oscillate when subject to a constant force. In the

first work presented in this thesis we have theoretically studied the scenario where the optical lattice

potential is provided by the electric field inside an optical cavity. The coherent atom-light interaction

in a cavity gives rise to a backaction effect on the light field which can modify the intracavity field

amplitude and phase. In our first treatment of this problem we model the cavity light field and

atoms by classical fields and solve the coupled atom-light equations of motion. As a result, we find

that the amplitude and phase of the transmitted light field is modulated at the Bloch frequency.

Remarkably, the Bloch frequency itself is not modified by the backaction. Thus the transmitted light

field can be used to observe the oscillations continuously, allowing high-precision measurement with

small clouds of atoms.

In the second problem presented in this thesis, we explore the band structure of the steady state

solutions of the atom-cavity system. A crucial first step towards determining the band structure is

the identification of an energy functional that describes the coupled atom-light system. Although,

we do not include direct atom-atom interactions in our models, the coupling of the atoms to the

single mode light field of the cavity introduces an effective mutual interaction which is correctly taken

into account by the energy functional we introduce. Corresponding to each point in the band there

exists a steady state light field associated with an average cavity photon number. The dispersive

nonlinear atom-light interaction can lead to bistable solutions for this intracavity photon number. For

parameters where the atom-cavity system exhibits bistability, the atomic band structure develops

loop structures akin to the ones predicted for Bose-Einstein condensates in ordinary (non-cavity)

optical lattices. However, in our case the nonlinearity derives from the cavity backaction rather than

from direct interatomic interactions. We find both bi- and tri-stable regimes associated with the

lowest band, and show that the multistability we observe can be analysed in terms of swallowtail

catastrophes. Dynamic and energetic stability of the meanfield solutions is also studied, and we show

that the bistable solutions have, as expected, one unstable and two stable branches. The presence of

loops in the band structure can lead to a breakdown in adiabaticity during Bloch oscillations as the

entire band is sampled during the dynamics. We therefore use the insight gleaned from this work

in choosing parameters for the Bloch oscillation measurement proposal presented in the rest of the

thesis.

In the third work presented in the thesis, we go beyond the mean field description and consider

effects of the quantised nature of the light and atomic fields. The cavity light field is always in contact

with external electromagnetic fields through the partially transmissive mirrors. This coupling to the

external modes enters as quantum noise in the dynamics of the intracavity field and can also be

viewed as a manifestation of quantum measurement backaction corresponding to the continuous

observation of the transmitted light field. We solve the Heisenberg-Langevin equations for linearized

fluctuations about the atomic and optical meanfields and examine how this influences the signal-to-

vi



vii

noise ratio of a measurement of external forces using this system. In particular, we investigate the

effects of changing the number of atoms, the intracavity lattice depth, and the atom-light coupling

strength, and show how resonances between the Bloch oscillation dynamics and the quasiparticle

spectrum have a strong influence on the signal-to-noise ratio as well as heating effects. One of the

hurdles we overcome along the way is the proper treatment of fluctuations about time-dependent

meanfields in the context of cold atom cavity-QED.
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Chapter 1

Introduction

This thesis concerns a theoretical study of ultracold atoms confined within an optical cavity. The

study of matter cooled down to low temperatures has a rich history but in recent times the interest

in the field has exploded due to the creation of the first atomic Bose-Einstein condensate (BEC), a

macroscopic quantum coherent state, in 1995 [1, 2]. Before the creation of an atomic BEC, super-

fluidity in liquid helium, superconductivity in materials and the laser were the best known systems

where quantum mechanics manifests itself on a macroscopic scale. The ability to control and vary

different aspects such as interactions, external potentials and measurement protocols makes BEC

systems suitable for testing various fundamental quantum phenomena and also powerful analogue

systems to understand aspects of many body physics [3]. A key element used in the control and

manipulation of BEC systems is the electromagnetic field of laser light. In cavity quantum electro-

dynamics (cQED), electromagnetic waves are confined within a small spatial region using mirrors.

With the advances made in mirror fabrication and use of different ranges of electromagnetic fre-

quencies (such as microwave and optical frequencies), present day cavities have very high quality

factors, i.e. a single photon makes millions of round trips before exiting the cavity. Consequently,

the interactions between atoms and the electric field inside a cavity are enhanced greatly compared

to free space and the resulting cooperative atom-light behaviour is qualitatively different. This novel

system has been used to verify some of the most basic yet counterintuitive predictions of quantum

theory [4] and its importance was recognized by the award of the 2012 Nobel Prize (in part) to Serge

Haroche who is one of the pioneers of modern cQED.

This thesis investigates Bloch oscillation dynamics of ultracold atoms confined in an optical cavity.

To set the stage for the main subject matter of the thesis, in the following section we provide short

summaries of the relevant research highlights in ultracold atoms with special emphasis on Bloch

oscillations. In the second section we summarize various developments in cQED leading up to the

recent experiments that have inspired the subject matter of this thesis. In the final section we give

an outline of the different chapters of the thesis.
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1.1 Ultracold Atoms- A short survey

The idea that a collection of non-interacting bosons when cooled to very low temperatures would

exhibit a spontaneous transition to a BEC state with a macroscopic fraction of the particles occupying

the ground state dates back to Einstein [6] closely following the discovery of Bose statistics [5]. In

a BEC state, the entire condensed fraction of particles can be described by a single macroscopic

quantum wave function. A prerequisite to reach such a state is to ensure that the interparticle

separation in the collection of bosons is comparable to the de Broglie wavelength (which increases at

lower temperatures) at which point it becomes impossible to distinguish individual quantum particles.

A gaseous BEC is not in general the natural ground state of cold atoms since interparticle interactions

(especially three body collisions) tend to lead to crystallization at low temperatures. Thus, to realise

a BEC it is important to have a dilute enough cloud of atoms (minimising interactions) well isolated

and cooled to low enough temperatures. In order to achieve a BEC with a gas of neutral atoms (as

eventually done in [1, 2]) it was important to first find ways to manipulate the external states of

atoms and move them around.

The elucidation of mechanical effects of laser light in the 1970s, 1980s, and 1990s provided the

tools necessary to control the external states of atoms. Lasers provide intense sources of coherent light

waves that can cause substantial mechanical effects. Arthur Ashkin’s pioneering work in the 70s [7]

showing the acceleration and trapping of micron sized latex spheres freely suspended in water set the

stage for more sophisticated experiments. Following this Wineland reported the first experimental

realisation of radiation pressure induced cooling for trapped Magnesium ions 1 in [8]. This was

followed by the demonstration of deceleration of (neutral) sodium atoms by W. Phillips [9]. The first

steps towards trapping neutral atoms was taken by Chu and co-workers [11]. Microscopically, the

radiation pressure force on neutral atoms arises due to the absorption and spontaneous emission of

laser photons. Since the absorption is directed and spontaneous emission has no preferred direction

there is a net force in the direction of the laser beam. By using counterpropogating beams tuned

near an atomic resonance [11] one can take advantage of the doppler effect: moving atoms tune

into resonance with the beam opposing the direction of motion. With three orthogonal pairs of

counterpropogating lasers this leads to a a region where the atoms experience a viscous force (‘optical

molasses’) and are confined for several milliseconds. This led to a considerable amount of work

devoted to developing trapping schemes for atoms exclusively using laser light by a combination of

the radiation pressure force and the dipole force (which arises from the coherent redistribution, via

stimulated emission, of photons between counterpropogating laser modes [12]). Although eventually

these methods succeeded in trapping significant numbers of atoms and are widely used in present

day Far Off-Resonance Trap (FORT) schemes [13], at the time they were not optimal. An important

breakthrough in the effort to trap atoms was provided by the invention of the magneto-optical trap

1Note that the technology for trapping charged ions using electromagnetic fields [10] was easier to develop than for
neutral atoms.
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(MOT) [14], where a magnetic field is used to create a position dependent force via the Zeeman

shift of the atomic levels in conjunction with a three dimensional optical molasses trap. Moreover,

the sensitivity of atomic internal level shifts to the spatially varying polarisation of the light field

in a MOT can be cleverly arranged to ensure that the atom continually climbs potential hills (the

‘Sisyphus’ cooling mechanism [15]). Atoms trapped and cooled in a MOT have temperatures of the

order of hundreds of microkelvin which is the limit set by the recoil energy of the atoms from the

absorption and spontaneous emission of a single photon. In total the process of laser cooling reduces

the temperature of atoms from the hot source temperature of 1000 Kelvin by a remarkable nine

orders of magnitude! For a more detailed overview of the development of laser cooling the Nobel

lectures of C. Cohen Tannoudji [16], P. Chu [17] and W. D. Phillips [18] can be consulted.

To produce a BEC one needs to go to even lower temperatures than the microkelvin regime

achieved with the MOT. The final step is provided by evaporative cooling where the cold atoms

from the MOT are loaded into a harmonic trap created using magnetic fields. Following this the

most energetic atoms are allowed to leave the trap leaving the remaining atoms with lower average

energy to thermalise to a lower temperature. This technique finally resulted in the production of

a Rubidium BEC in Colorado [1] and a Sodium BEC at MIT [2]. A comprehensive account of the

work leading up to the creation of the first BECs is described in the Nobel lectures of E. A. Cornell,

C. Wieman [20] and W. Ketterle [21]. The creation of the first BEC proved to be a watershed event

and currently many groups around the world have succeeded in creating atomic traps and/or BEC

set-ups [22]. One of the major research themes pursued in ultracold atoms involves the creation of

analogues of solid state systems by loading BECs (and quantum degenerate cold fermionic neutral

atoms) into periodic laser potentials (the so called optical lattices). Such analogue systems have the

ability to provide idealised and controllable versions of the many body hamiltonians that are used to

describe interesting co-operative phenomena in solid state systems, which are often not as clean or

controllable. This field has come into its own in the last decade and a review of major developments

is provided in [23, 24].

1.1.1 Bloch oscillations

When a quantum particle in periodic potential with period d is subject to an additional constant force

F , it undergoes Bloch oscillations at a frequency ωB = Fd/~. This phenomenon was theoretically

predicted for the motion of electrons in solids under the influence of an electric field by C. Zener in

1934 [25] following the earlier work of F. Bloch on transport in periodic systems [26]. In solid state

systems Bloch oscillations were hard to observe since the presence of lattice defects and impurities

causes quick dephasing of Bloch oscillations. In fact, without such relaxation events that destroy

Bloch oscillations there would be very little DC conductivity in metals. The first experiments on

Bloch oscillations were undertaken in epitaxially grown semiconductor superlattices where direct

electric fields were used to generate electronic Bloch oscillations in the THz frequency range [27].
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However, the oscillations in these systems are not long lived and typically dephase within a few

periods [28]. With the development of laser cooling and trapping it became clear that atoms could

be made to behave as highly coherent matter waves. Moreover, the coherent interaction between a

two level atom and a laser standing wave with frequency far removed from the atomic level separation

sets up, via the AC Stark effect, a periodic potential, a so called optical lattice, for the atomic external

degrees of freedom (see Chapter 2 of this thesis for more details), thereby opening the door to study

Bloch oscillations with cold atoms.

The typical procedure for studying Bloch oscillations using cold atoms [29]-[36] involves the

preparation of a cloud of ultracold atoms in a trapping potential (in some cases a BEC is used but it

is not necessary). An optical lattice is then turned on and the temperature of the atoms should be cold

enough that they are coherent over at least several lattice sites. The constant force that causes Bloch

oscillations can, for example, be provided by the local acceleration due to gravity or by accelerating

the optical lattice using a time varying frequency difference between the counterpropogating laser

beams. Once the atoms are loaded into the optical lattice, the trap holding the atoms is turned

off and the atoms execute Bloch oscillations. After a holding time (which is varied), the optical

lattice is switched off and the atom cloud ballistically expands. After some ballistic expansion the

atomic position space distribution is destructively imaged using a weak resonant probe beam. This

time of flight imaging technique is used to reconstruct the atomic momentum space distribution as

a function of the holding time. Although in the first reported experiment [29] using cold Rubidium

atoms the number of Bloch oscillations that were seen was small, the unique measurement technique

provided, for the first time, a direct measurement of the periodically varying momentum distribution

during Bloch oscillations.

The initial experiments using cold atoms for Bloch oscillations [29, 30] highlighted the unique

advantages of cold atoms systems vis-a-vis solid state systems. Since the Bloch frequency is directly

proportional to the force, this sparked a lot of interest in the use of Bloch oscillations for metrology

[32, 35]. Since the wavelength of the optical lattice is known to great accuracy, a measurement of

the Bloch frequency can be used to get a precise value for the force and for known forces it could

be used to measure fundamental physical constants such as the fine structure constant [33, 34]. One

important requirement for the use of Bloch oscillations for metrology is to ensure that one can have

long lived oscillations with very little dephasing. The main source of dephasing in the initial atomic

Bloch oscillation experiments was the collisional interaction between the background thermal cloud

and the quantum degenerate component [31]. A second important source of dephasing is the inter-

atomic interaction within the quantum degenerate cloud 2. In [32] degenerate fermions were used to

suppress two body collisions by Pauli repulsion. In the group of G. M. Tino [36] collisional dephasing

was suppressed using Strontium atoms, which have very small interatomic interactions, and long-

lived Bloch oscillations (up to 7000 cycles lasting a few seconds) were obtained. The resulting Bloch

2In fact the dephasing rate of Bloch oscillations in an interacting atomic BEC can be used as a probe of the
interaction strength [31].
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frequency measurement was used to determine the acceleration due to gravity at a sensitivity of parts

per million. In recent work by the group of H.-C. Nägerl [39], Feshbach resonances have been used to

minimise the atomic interactions and hence control and lower the interaction induced dephasing of

Bloch oscillations. With this method they were able to observe about 20,000 Bloch oscillation cycles

(lasting about 10 seconds) before dephasing sets in. Furthermore, newer techniques that combine

Bloch oscillations with a modulation of the lattice potential have been implemented [37, 38] and

provide even better sensitivity in the measurement of forces. A more detailed account of the various

cold atom Bloch oscillation experiments are provided in my masters thesis [40].

A common feature of the experiments presented above is the destructive imaging technique,

where the cloud has to be prepared in the same initial state after every measurement event. One of

the motivations that led to work presented in Chapter 3 is to design an experimental protocol that

allows a continuous in-situ measurement of Bloch oscillations.

1.2 Cavity quantum electrodynamics

Cavity quantum electrodynamics (cQED) has its historical origins in an observation [42] by E.

M. Purcell regarding the change in the spontaneous emission rate of a nuclear magnetic moment

when coupled to the field of a resonant electrical circuit. The so called Purcell enhancement of the

spontaneous emission rate occurs because the mode density of electromagnetic field within a cavity,

with resonance frequency close to the transition, is different from the free space mode density.

The first observation of the Purcell effect in atomic systems was made by S. Haroche in 1983 [43]

using sodium atoms in Rydberg states 3 coupled to high quality factor superconducting niobium

cavities with frequencies in the higher microwave range. This was followed by demonstrations of the

modification of the spontaneous emission rate in cavities operating in the optical frequency regimes

[44, 45]. In these early experiments the spontaneous emission rate was changed by a few percent

from the free space value. With the atom-cavity field interaction in the perturbative regime the

cavity field only slightly modifies the mode density of the electromagnetic vacuum in free space. The

important frequencies in a simple model of a two-level atom in a cavity are the single photon Rabi

frequency g0 (see Eq. (2.21) for the exact definition) that characterizes the strength of coherent light-

atom interactions [46], γ the spontaneous emission rate and κ the cavity field amplitude damping

rate. When the coherent coupling exceeds the dissipation rates the g0 � {γ, κ}, one reaches the

so called strong coupling regime of cQED. In this regime the coherent dynamics takes place at a

much faster rate than the dissipative processes, thereby allowing many coherent absorption and

emission cycles of the photon by the atom before the photon is lost from the cavity. As a result, in

the strong coupling regime, it is in fact possible to have bound states of a single atom and single

photon, an atom-photon molecule [47]. Experimentally, the strong coupling regime was first reached

3An atom in a Rydberg state has a valence electron in an excited electronic state with very large principle quantum
number

5



Ph.D. Thesis - B. P. Venkatesh - McMaster University - Department of Physics and Astronomy

in the experiments of S. Haroche in 1996 [48, 49] in the microwave regime using niobium cavities and

Rydberg atoms. In [48], working in the strong coupling limit for a single atom in a weak coherent

cavity field, the functional dependence of the Rabi frequency 4 on the photon numbers of the different

states that constitute the coherent state was experimentally verified. This provided a direct test of

the electric field quantisation in a cavity. In [49] the decoherence of a photon state made from the

mesoscopic quantum superposition of states with classically distinct phases, the so called CAT state

was observed. A comprehensive summary of the different fundamental experiments performed with

microwave cavity systems in the strong coupling cQED regime is described in [4].

In the optical frequency domain, the small wavelength of light means one needs small cavity

volumes in order to reach large light field intensities [111]. Since at such small cavity lengths photon

losses via the mirrors can be dominant, the development of high quality dielectric mirrors was a

decisive step in reaching strong coupling. In the first experiment to reach the strong coupling

regime [50], Cesium atoms trapped in a MOT above the cavity were allowed to fall through the

cavity. Individual atom transits produced perceptible changes in the transmitted photon current.

Since the coherent atom-light coupling in the cavity inherits the position dependence of the cavity

mode profile, the transmitted photon current has real time information about atomic dynamics as

it passes the cavity. The first experiments to irrefutably show strong coupling behaviour were from

H. J. Kimble’s group at Caltech in [51] followed closely by G. Rempe’s results [52] at Garching.

In [51], the modification of the cavity transmission spectrum due to the presence of atoms (the

‘Rabi’ doublet) was observed. In [52] mechanical forces on cold atoms dropped from a MOT into

an optical cavity containing less than one photon on average were inferred using the transmitted

photon current through the cavity. At the turn of the century two remarkable experiments [54, 55]

illustrated the full development of strong coupling cQED. Improving upon [50], in the Kimble group

atoms were trapped within the optical potential of a high finesse cavity with fields containing of

order of one photon. From the observed dynamics of the transmitted photon current, real time

trajectories of the atoms inside the cavity were reconstructed. This brings into focus an important

feature of light-atom interaction in a cavity in the strong coupling regime, namely, the backaction of

atoms on the light field is significant. This has to be contrasted with atomic motion in a free-space

laser field which acts as a passive external potential. Another intuitive way to think about strong

coupling in the optical domain is to picture the atom-cavity system as a microscope [54, 55] where

the reconstruction of atomic trajectories provides a position measurement of a quantum particle at

a resolution of micrometers. These experiments were followed by the development of methods to

deterministically deliver atoms from the MOT into a cavity [56, 57]. The idea was to move atoms

from the MOT using a translating optical lattice (dubbed the “optical conveyor belt”) in a direction

transverse to the cavity axis. This enabled the position of atoms in a cavity to be determined with

a resolution of less than a micron [58].

4Rabi frequency denotes the rate of the coherent population oscillations between the excited and ground state of
a two level atom irradiated by an electric field.
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Following the demonstration of various facets of strong coupling cQED attention moved on to

understanding some unique features of mechanical effects of light on atom dynamics inside the cavity.

The same physical phenomena that lead to laser cooling in free space are present for single trapped

atoms in a cavity. Moreover the modification of the spontaneous emission rate inside a cavity had

already inspired some work examining laser cooling within a cavity [59, 60]. In the strong coupling

regime of cQED, a novel cooling mechanism for the motional degrees of freedom of the atoms was

uncovered in the theory group of H. Ritsch [61, 62, 63, 64]. Consider a single atom moving in the

standing wave potential inside a cavity mode that is far off-resonance from the atomic level difference.

In the strong coupling regime, the atomic back action on the light field implies the intracavity light

field is dynamically controlled by the atomic position along the axis. Since the cavity field has a finite

relaxation rate (set by κ) the atom experiences a velocity dependent retarded potential which can be

chosen to damp the atomic motion. Thus, the atomic energy gets entirely drained via the dissipation

channel of the cavity mode. Atomic spontaneous emission plays no role in the cooling mechanism

since the intracavity field is far off-resonance from the atom. Since this cavity cooling mechanism

relies on the dipole force in the far off-resonance limit, there is no exchange of real excitations and

hence provides prospects for extension to other polarizable objects with complicated level structures

such as molecules [67]. Cavity cooling was experimentally observed by the Rempe group in 2004

[65].

In the recent past, interest in cQED has shifted to understanding and observing many body

effects for a collection of atoms placed inside the cavity. In the strong coupling regime one can

anticipate co-operative effects, for the back action on the cavity field by one atom will be felt by

all the other atoms in the ensemble. Collective light forces were first experimentally observed by

the Rempe group in [68]. Interestingly, because in this early experiment it was difficult to place

more than one atom in the small cavity volume, the cavity mirror separation was increased to place

multiple atoms inside. Even though this decreased the single atom-light coupling, the collective

coupling was shown to be enhanced by the number of atoms. Theoretical studies on the different

phenomena that can arise with many atom cavity QED was pioneered by the group of H. Ritsch

[71, 72, 73]. Collective dynamics of atoms was also observed around the same time in ring cavity set

ups in the group of A. Hemmerich [69, 70]. The most interesting effect discovered during this period

was the self-organisation phenomenon, where a collection of atoms placed in a cavity are driven in

the transverse direction by a laser standing wave potential. The cavity mode is excited by scattering

light from the atom by a transverse laser. For transverse driving with low intensity the atomic cloud

is homogeneously distributed in space but above a critical intensity [73, 75] the atoms spontaneously

arrange themselves into a periodic pattern maximising the scattering of light into the cavity mode.

This super-radiant phase transition was observed in the group of Vuletić in 2003 [74]. Closely related

to the self-organisation transition is the idea of Collective Atomic Recoil Lasing (CARL) in a ring

cavity. There, one of the two degenerate counterpropogating photonic modes of a ring cavity is
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driven. In the presence of atoms in the cavity, this leads to a large spontaneous transfer of photons

from the driven to the undriven light mode above a threshold [76, 77] accompanied by the formation

of a regular spatial pattern of the atomic density.

In experiments on atomic cQED prior to 2007, the quantum degeneracy of the atoms did not play

an important role in the dynamics. This changed with the experiments by the Esslinger group [79]

where a BEC of Rubidium atoms was successfully placed inside an standing wave optical cavity. A

single collective (momentum) excitation mode about the homogeneous BEC state couples strongly

with the light field and provides a mapping of the dynamics onto a cavity optomechanical system [80]-

a mechanical oscillator coupled to the cavity light field. The nonlinear oscillator-light interaction can

lead to optical bistability with even less than a single photon in the cavity. This is remarkable since

conventional dispersive optical bistability results from placing crystals with nonlinear polarizability

inside cavities driven intensely with laser fields [81]. In more recent work from the Esslinger group

the self-organisation transition was observed with a BEC [84, 85, 86] in a transversely pumped optical

cavity (as opposed to a thermal ensemble of atoms in Vuletic’s work [74]). The subsequent study

of the excitation spectrum of the BEC near the self-organisation transition also revealed a mode

softening indicative of the long-range interactions in the system [87].

In the Esslinger experiment the BEC was held in a trap along the directions transverse to the

cavity axis and there was no additional trapping along the axial direction. In similar experiments

performed at Berkeley in the group of D. M. Stamper-Kurn, cold atoms were trapped along the axis

of a cavity with a deep external optical lattice (with a different wave number compared to the cavity

mode). The atoms were localised at the nodes of the optical lattice and a single collective position

co-ordinate provided a coherent quantum mechanical oscillator that interacts strongly with the cav-

ity light field. The resulting nonlinear dynamics, including bistable response, was studied in [82]. An

important difference between quantum and classical mechanics is the special role measurement plays

in the former. In classical mechanics the act of measurement disturbs the system only in a quantita-

tive manner that can in principle be removed by a refinement of the measuring device. Hence, there

is no physical principle which sets limits to the accuracy with which a given physical parameter can

be measured without disturbing the state of a classical system. This is not the case in quantum

mechanics. The Heisenberg uncertainty principle [101] requires that a measurement that determines

a system variable simultaneously causes the system to evolve to a state that makes the uncertainty

in the conjugate variable larger. This principle was at the heart of the experiment presented in

[83] from Berkeley, where the quantum measurement backaction due to the continuous measurement

of the atomic collective position via the monitoring of cavity light transmission was quantified and

measured. Quantum measurement backaction manifests itself via the force fluctuations induced by

the “noisy” cavity 5 field on the atomic collective co-ordinate. The resulting broadening of the col-

lective momentum leads to a heating of the atoms out of the trapping potential which is measured to

5The photon number fluctuations in the damped cavity can also be justified using the Fluctuation-Dissipation
theorem
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quantify the backaction. The experiments from the Esslinger group in Zurich and the Stamper-Kurn

group in Berkeley have provided important inspiration for the subject matter in this thesis.

The experiments at Berkeley and Zurich have also generated a lot of interest amongst theory

groups working on ultracold atoms in cavities in recent times. It is known [88] that the ground state

of a dilute gas of ultracold atoms in an optical lattice is either an extended coherent superfluid (SF)

state or a localized Mott-insulator (MI) state. The system chooses one of these states depending

upon the depth of the optical lattice wells which controls the relative strength of the atomic repulsion

in a given well to the tunnelling energy between the wells. The phase transition between the SF-MI

states was experimentally observed in [89]. In [90], J. Larson and co-workers, considered the MI-SF

transition when the standing wave potential inside an optical cavity plays the role of the optical

lattice. Since the light field inside the optical cavity which sets the lattice depth is dependent on the

atomic density distribution, this can lead to novel MI states in this system. A related work from

the group of P. Meystre [91] demonstrated the possibility of certain parameter regimes where the

cavity light field is bistable and the corresponding atomic configurations can be a Mott-insulator

or superfluid. In another work from the Meystre group [92], a BEC placed inside a ring cavity

with two degenerate travelling wave light modes is considered. Interestingly even when the two

travelling modes are equally pumped, the strong atom-light interaction can lead to bistable steady

states with unequal photon numbers in the two modes. In work from H. Pu’s group multistable

solutions [93] were shown to be possible at a few photon level for a two-component spinor BEC in

an optical cavity. In a subsequent paper [94] the effects of measurement backaction corresponding

to a homodyne measurement of the cavity light field carrying information about the atomic spin

dynamics was analysed. In the paper [95], L. Zhou and co-workers consider a proposal for cavity

induced switching between localized and extended atomic states (similar to [91]) in the experimental

set up used in Berkeley. The rich non-equilibrium many body phenomena that can emerge from

situations similar to the one considered in the self-organisation experiment from the Esslinger group

[84] was the subject matter of [96, 97, 98, 99]. In the self-organisation experiment [84] the collective

interaction between the atomic cloud and the cavity light field can be mapped on to the well known

Dicke model describing a collection of two-level systems uniformly coupled to a single mode light

field. In [96, 97] different dynamical phases that can occur in the non-equilibrium Dicke model

realised in the experiment [84] were explored. In [98] BECs coupled to multimode cavities were

examined and found to lead to interesting many body states with dislocations, frustration, glassiness

and supersolidity. In a related work [99] a quantum spin glass phase was proposed for the Dicke

model in a multimode optical cavity. The theory papers we have summarized in the above paragraph

are a representative sample of the large and growing body of work in this topic. For a comprehensive

overview of the current state of the art and future prospects in the exciting field of many atom

cQED, the review article [100] can be consulted.
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1.3 Thesis Outline

The main topic of this thesis is a theoretical study of Bloch oscillations of ultracold atoms confined

within an optical cavity. This thesis will be a compilation of three publications that have been

completed during my graduate studies. In the second chapter of the thesis we introduce the basic

theoretical description for ultracold atoms interacting with a single mode light field inside an optical

cavity.

When a cloud of cold atoms is placed in an optical cavity driven by a coherent laser field with

frequency quasi resonant with, but still significantly detuned from, an atomic transition the atoms

effectively feel a periodic potential along the cavity axis. The strength of the lattice potential

is controlled by the number of photons within the cavity. From the point of view of the cavity,

the atomic cloud acts like a dispersive medium changing the effective length and hence effectively

detuning the cavity resonance mode further from the driving laser’s frequency. The intracavity light

intensity is not a static quantity but is self-consistently set by the strength of the coupling provided

by the atomic density distribution and so becomes time-dependent if the atoms are undergoing

dynamics. On the addition of a linear potential, the atomic cloud undergoes Bloch oscillations leading

to a periodic change in the atom-light coupling. The intracavity light intensity varies periodically

as a result and a measurement of the transmitted photon current provides a sensitive measurement

of the Bloch frequency and hence the force. Remarkably, the Bloch frequency is unaffected by the

backaction which provides a dynamical lattice depth whose periodicity is unchanged. Chapter 3

provides the publication concerned with this problem. The atoms are described by a single coherent

quantum degenerate wavefunction (mean field theory) and the light field is given by a coherent

classical field.

In Chapter 4, we change gears slightly and examine some interesting properties that arise from

the nonlinearity inherent in the atom-cavity field interaction. When the frequencies relevant to

atomic dynamics such as the strength of the average intracavity lattice depth and the atomic recoil

energy are much less than the cavity relaxation time scale, the intracavity light field dynamics can

be adiabatically eliminated. This leads to a non-local, nonlinear eigenvalue problem in a closed form

for the atomic steady state wavefunction alone. We work out an energy functional that describes the

problem and evaluate it using a Bloch ansatz. The resulting energies can be arranged into bands.

For large enough collective coupling strengths, the band structure can develop interesting swallow

tail loops as a function of quasimomentum analogous to behaviour seen for self-interacting BECs in

optical lattices [102, 103]. For the light field these interesting atomic solutions translate to optical

multistability, where, at a given value of system parameters, there is more than one steady state

intracavity intensity possible.

Chapter 5 is devoted to the study of the effects of quantum noise on the Bloch oscillation dynamics

discussed within mean field theory in Chapter 3. This is done by examining the time evolution of

linearised fluctuations of the atomic and light fields. The photonic fluctuations in the cavity are driven

10



Ph.D. Thesis - B. P. Venkatesh - McMaster University - Department of Physics and Astronomy

by the vacuum noise of the electromagnetic field and communicated to the atoms via the atom-light

coupling. The correlated dynamics of the atom-light fluctuations about the time-dependent (due

to the Bloch oscillations) meanfields are numerically solved. We also examine how the signal to

noise ratio for the Bloch frequency measurement is affected by the inclusion of the fluctuations. The

atomic depletion out of the meanfield can also be viewed as a manifestation of quantum measurement

backaction [104, 105]. Chapter 6 discusses the conclusions of the thesis summarizing the different

results presented. We set our work in the context of current research in cQED and indicate some

directions which will be explored in future research.
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Chapter 2

Ultracold atoms in a cavity -

theoretical background

In this chapter we provide the basic theoretical description of ultracold atoms confined within an

optical cavity. We begin by considering the dynamics of a single mode light field in a driven damped

cavity. The following section considers the combined dynamics of a single two level atom moving

along the axis of the cavity. The final section will extend the single atom scenario to a dilute cloud

of cold atoms inside the cavity.

2.1 Single cavity mode damped by Markovian reservoir

For the purposes of this thesis, an optical cavity is an arrangement of two partially transmissive

mirrors facing each other in space separated by a given distance L. When driven with an external

source of electromagnetic waves, standing waves are set up in the space between the mirrors. Due to

interference, waves with frequencies that are integer multiples of the fundamental (angular) frequency

given by ωc = πc/L are sustained within the resonator. The partial transmittivity of the mirrors

ensures that the resonances have a finite linewidth denoted by 2κ. The ratio of the spacing between

the resonances (the free spectral range) and the linewidth is called the finesse of the cavity and is

given by F = cπ
2κL

1. In this thesis we are interested in cavities with a high finesse, which have been

realised [46] by the use of high quality mirrors (which lowers κ) and small cavity volumes (which

lowers L). In such high finesse cavities, the resonances are well separated. This allows a theoretical

description focusing on a single light mode (with frequency centered on ωc) of the cavity modelled

as a simple harmonic oscillator. In the quantised picture of such a mode [107], the effect of partially

1The finesse has both physical and practical significance. It is related to the mirror power reflectivity R by

F = π
√
R

1−R [46]. Physically the number of round trips made in the cavity by a single photon is related to the number

of reflections, which is approximately given by F/π
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transmissive mirrors that gives the finite linewidth is modelled through interaction of the single mode

with a reservoir of harmonic oscillators. We will describe the properties and specific assumptions

regarding the reservoir below but as of now it is sufficient to know that in general the reservoir

has many degrees of freedom and the cavity mode’s coupling does not significantly change the state

of the reservoir. Hence we will aim to describe the effects of the reservoir on the dynamics of the

system of interest i.e. the single mode field. As indicated, the eventual result will ignore the explicit

consideration of reservoir dynamics, which is why this system is amongst the simplest examples of an

open quantum system. In the rest of this section we follow [107] and derive the dynamical equations

governing such an open quantum mode.

We begin by writing down the hamiltonian [107] for the single mode of interest (denoted â) and

the reservoir modes (denoted b̂k):

Hc = ~ωcâ†â+
∑
k

~ωkb̂
†
kb̂k + ~

∑
k

gk

(
b̂†kâ+ â†b̂k

)
. (2.1)

The first two terms are the free field terms for the cavity and reservoir modes respectively. The

third term describes the coherent interaction between the cavity mode and the reservoir mode. The

Heisenberg equations of motion for the operators are given by:

˙̂a = −iωâ(t)− i
∑
k

gkb̂k(t) (2.2)

˙̂
bk = −iωk b̂k(t)− igkâ(t). (2.3)

Since we are interested in a closed form equation for the cavity mode, we formally integrate the

reservoir equation of motion Eq. (2.3) as:

b̂k(t) = b̂k(0)e−iωkt − igk
∫ t

0

dt′â(t′)e−iωk(t−t′)

The first term here arises from the free evolution of the reservoir operators and the second term

comes from the interaction with the cavity mode. We can substitute the above equation in Eq. (2.2)

to remove b̂k(t) dependence:

˙̂a = −iωcâ−
∑
k

g2
k

∫ t

0

dt′â(t′)e−iωk(t−t′) − i
∑
k

gkb̂k(0)e−iωkt. (2.4)

The second term on the right hand side leads to decay and the third term, which is independent

of â(t), can be identified as a noise operator and is determined by the initial state of the reservoir.

Due to the free field evolution the noise operator has all the reservoir mode frequencies in it and

varies rapidly. We can pick out the frequencies that are most relevant to the cavity mode evolution
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by transforming:

˜̂a(t) = â(t)eiωct (2.5)

and Eq. (2.4) reduces to:

˙̃
â = −

∑
k

g2
k

∫ t

0

dt
′ ˜̂a(t′)e−i(ωk−ωc)(t−t′) +

˜̂
F (t) (2.6)

˜̂
F (t) = −i

∑
k

gkb̂k(0)e−i(ωk−ωc)t (2.7)

We focus now on the first term on the right hand side of Eq. (2.6) and rewrite the sum over reservoir

modes (k ) as follows:

∑
k

g2
ke
−i(ωk−ωc)(t−t′) =

∫ ∞
0

dω

2π
κ(ω)e−i(ω−ωc)(t−t′) (2.8)

κ(ω) = 2π
∑
k

g2
kδ(ω − ωk) (2.9)

We have simply rewritten the system-reservoir coupling in frequency space. To proceed further we

assume the frequency dependence of the coupling is flat i.e. κ(ω) ≡ κ. This is known as the Markov

approximation [108]. The physical content of this approximation can be found by taking the time

integral in Eq. (2.6) into consideration. This time integral is appreciable only for ωk ∼ ωc and hence

we mostly require that the frequency dependence of the coupling is flat near ωc. This essentially

means that at the time scales relevant to the system dynamics the reservoir responds to the system

as though it had no intrinsic time scale i.e. instantaneously. Having made this approximation, we

can simplify Eq. (2.8) as:

∑
k

g2
ke
−i(ωk−ωc)(t−t′) = κδ(t− t′).

This leads to the following equation of motion:

˙̃
â = −κ˜̂a(t) + F̂ (t). (2.10)

At this stage it may seem as though we have achieved our objective of getting a closed equation for

the system operators, but unless we can specify the correlation properties of the noise operator F̂ (t),

we will not be able to use Eq. (2.10) in an actual calculation. Before we calculate we note that one

can already see the importance of the noise term for preservation of commutation relations of ˜̂a(t).
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Without the noise term, ˜̂a(t) = ˜̂a(0)e−κt and as a result:

[
˜̂a(t), ˜̂a†(t)

]
= e−2κt.

The Markovian approximation in conjunction with the commutator relations for b̂k(0), can be used

to show that the commutator of the noise operators provides a contribution that is 1−e−2κt, precisely

cancelling the decay of the field commutator.

We assume the reservoir is at thermal equilibrium which leads to the following identities for the

expectation values of the initial time reservoir operators:

〈b̂k(0)〉 = 〈b̂†k〉 = 0 (2.11)

〈b̂†k(0)b̂k′(0)〉 = δk,k′ n̄k (2.12)

〈b̂k(0)b̂†k′(0)〉 = δk,k′(n̄k + 1) (2.13)

〈b̂k(0)b̂k′(0)〉 = 〈b̂†k(0)b̂†k′(0)〉 = 0 (2.14)

From Eq. (2.11), it is simple to see that 〈F̂ (t)〉 = 〈F̂ †(t)〉 = 0. We can then use the Markov

approximation and Eq. (2.12) − Eq. (2.14) to show that:

〈F̂ †(t)F̂ (t′)〉 = 2κn̄th(ωc)δ(t− t′) (2.15)

〈F̂ (t)F̂ †(t′)〉 = 2κ(n̄th(ωc) + 1)δ(t− t′) (2.16)

These are the only non-zero correlations of the noise operator. Knowing the above we can calculate

system operator correlations and also the correlations between the noise operator and the system

operators at later times. Finally, throughout this thesis we will be interested in situations where

the reservoir is approximately at T = 0, as a result of which the correlation Eq. (2.15) vanishes.

Thus the dynamical equation for a cavity mode in contact with a zero temperature reservoir (i.e. an

example of a Heisenberg-Langevin equation) is given by:

˙̂a(t) = −iωcâ(t)− κâ(t) +
√

2κξ̂(t) (2.17)

where the only non-zero correlation of the rescaled noise operator (referred to henceforth as the

Langevin operator) is:

〈ξ̂(t)ξ̂(t′)〉 = δ(t− t′), (2.18)

ξ̂(t) = − i√
2κ

∑
k

gkb̂k(0)e−iωkt. (2.19)

From the above equation it is clear that in the long time limit the field â(t) will have the same

correlation properties as the Langevin noise operator ξ̂(t). The presence of atoms in the cavity
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changes this picture and the light field correlations are not just set by the Langevin noise but also

depend on the atomic degrees of freedom. This is taken into account in the treatment of quantum

noise presented in Chapter 5.

In the next section we consider a single atom moving within a cavity that is driven by a coherent

laser source and establish the equations that describe its dynamics.

2.2 Single two-level atom in a cavity

Let us now consider a single two level atom moving inside an optical cavity that is pumped by a

coherent laser source. Our treatment will closely follow the work in [64]. The hamiltonian for such

a system is given by:

Hb =
p̂2

2m
+ ~ωa |2〉 〈2|+ ~ωcâ†â− i~g(r)

(
|2〉 〈1| â− |1〉 〈2| â†

)
− i~η(âeiωpt − â†e−iωpt). (2.20)

Here the excited (ground) internal levels of the atomic electron are denoted by |2〉 (|1〉) and the

separation between the two relevant atomic levels is given by ωa. The cavity resonance frequency

is denoted by ωc. The atom-single mode interaction [fourth term in Eq. (2.20)] is written in the

Jaynes-Cummings form [109], within the dipole and rotating wave approximations. The rate of

cavity pumping is given by η and ωp denotes the frequency of the pumping laser. The dipole

coupling g(r) depends on the atomic center of mass position r within the cavity mode and is given

by:

g(r) = g0f(r) = d

√
~ωc
ε0V

f(r) (2.21)

d = 〈2| ex.ε̂ |1〉

with the electron position operator x, field polarization ε̂, cavity mode volume V and mode func-

tion f(r). We will henceforth use a pseudo spin-1/2 notation for the two level atom, with σ̂z =

(|2〉 〈2| − |1〉 〈1|) /2, σ̂ = |1〉 〈2|. The optical frequencies occurring in Eq. (2.20) are large and in gen-

eral can be tuned. Thus it is advantageous to work in a frame where only the relative frequencies

are important. To that we apply the following unitary rotation with respect to the pump frequency:

Uf (t) = exp(−iωpâ†â) exp(−iωpσ̂†σ̂)

and upon using the transformation rule:

Hsp → U†fHbUf + i~U̇†fUf ,
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we obtain the transformed hamiltonian:

Hsp =
p̂2

2m
− ~∆aσ̂z − ~∆câ

†â− i~g(r)
(
σ̂†â− σ̂â†

)
− i~η(â− â†), (2.22)

with the pump-atom detuning ∆a = ωp − ωa and the pump-cavity detuning ∆c = ωp − ωa. With

this we can write down the coupled Heisenberg-Langevin equations for the atom and the cavity light

field operators [110]:

˙̂a = (i∆c − κ) â(t) + g(r)σ̂ + η + ξ̂(t) (2.23)

˙̂σ = (i∆a − γ)σ̂ + 2g(r)σ̂zâ+ ζ̂(t) (2.24)

˙̂σz = −g(r)
(
σ̂†â+ â†σ̂

)
− γ(σ̂z + 1/2) + ζ̂z(t) (2.25)

where we use ξ̂(t) to denote the Langevin operators arising from the open nature of the cavity

mode [see Eq. (2.17)]. The operators ζ̂ and ζ̂z denote the Langevin operators that arise from the

interaction of the atom with the reservoir of vacuum electromagnetic modes. The dissipation process

corresponding to this is nothing but spontaneous emission at the rate γ 2. As mentioned in Chapter

1, the coupled dynamics of the atomic internal levels and the cavity light field is interesting in its

own right and has been examined in great detail by many researchers [4].

In this thesis we are interested in the regime where the internal levels of the atom play only a minor

role. Specifically this is the situation when the atom-pump laser detuning ∆a is very large. There

are two key simplifications to the above dynamics as a result. Firstly, the atomic population remains

confined mainly to the ground state and the two level dynamics is in the so called low saturation

limit. This means we can simply replace the population difference operator by its expectation value

in the ground atomic state i.e. σ̂z → 〈σ̂z〉 = −1/2. Within this approximation the dynamics of

σ̂z is completely neglected [including the noise in Eq. (2.25)]. Since the replacement implies the

commutator
[
σ̂, σ̂†

]
= −2σ̂z = 1, this approximation has been called the bosonization of the atomic

dipole [64, 111]. Moreover this leads to the factorization of the atomic internal state and light field

(σ̂zâ→ −â/2) linearising Eq. (2.24).

The second modification comes about by adiabatically slaving the atomic internal level dynamics

to the light field dynamics. This is again justified when the detuning ∆a is much greater in magnitude

than other relevant frequencies such as g0〈â〉, γ and atomic centre of mass energies which are of the

order of the recoil frequency ωR =
~k2p
2m [64, 111]. This modification can be implemented by setting

2This can be derived [110] in a manner similar to Sec. 2.1 by replacing the harmonic oscillator mode with a two
level system. Also, the Purcell enhancement [46] of atomic spontaneous emission into the cavity mode is not important
in our situation since typically the frequency of the driving field is far detuned from the atomic level separation.
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the time derivative ˙̂σ = 0 in Eq. (2.24) leading to:

σ̂ ≈ 1

g0
(−iU0 + Γ0) f(r)â (2.26)

U0 =
g2

0∆a

∆2
a + γ2

, Γ0 =
g2

0γ

∆2
a + γ2

. (2.27)

The parameters U0 and Γ0 can also be viewed as the real and complex parts respectively of the

susceptibility of the atom to the cavity light field. They simply describe the linear relation between

the atomic polarization and applied field. The ratio of the complex to real part scales as Γ0/U0 =

γ/∆a. In the dispersive limit of the atom-light interaction the spontaneous emission frequency is

much less than the detuning ∆a. This will be the regime of choice for our considerations. As a result

we completely neglect spontaneous emission in our calculations and set U0 = g2
0/∆a. We note that

this regime is readily experimentally accessible and is also used in the context of atom trapping in

the FORT schemes [112] (Far Off-Resonance Trap). Substituting the adiabatically eliminated form

Eq. (2.26) in Eq. (2.23) we find in the dispersive limit:

˙̂a = (i∆c − κ) â(t)− iU0f(r)2â+ η + ξ̂(t). (2.28)

Thus, in the dispersive limit, the single atom-cavity hamiltonian Eq. (2.22) can be replaced by the

effective hamiltonian:

Heff
sp =

p̂2

2m
− ~∆câ

†â+ ~U0f(r)2â†â− i~η(â− â†) (2.29)

Usually, the mode function f(r) in a Fabry-Perot cavity has a periodic standing wave profile along

the axis with a gaussian envelope in the transverse directions. Thus, in the dispersive limit the light

field in the cavity provides a periodic potential for the atomic center of mass dynamics [third term in

Eq. (2.29)]. In the next section we will present the second quantised version of the above hamiltonian

which is necessary for the description of a cloud of cold atoms confined in an optical cavity.

2.3 Many cold atoms in a cavity

The hamiltonian Eq. (2.29) serves as the starting point to consider the center of mass dynamics

of moving atoms inside an optical resonator in the dispersive regime. A range of theoretical and

experimental research has taken place in this regime over the last two decades and is summarized in

[100]. Some highlights include the phenomenon of cavity cooling, where the damping of the center

of mass motion of the atom is due to the finite response time (set by κ−1) of the cavity light fields

as they adapt to the change in the atomic configuration (theory in [61] and experimentally verified

in [65]). When a collection of classical atoms, say in a thermal state, are confined in a cavity the

collective interaction with the light field can again manifest itself in spatial self-organisation of the
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atoms. This was theoretically studied in [73],[75] and experiments are described in [74]. Although

there is a wealth of physics that can be studied even while treating the atoms as classical particles, the

problems taken up in this thesis are all set in a regime where the cloud of bosonic atoms in the cavity

is cold enough that the quantum degeneracy is important. This is interesting for a variety of reasons,

chief amongst which (for our interests) it allows for situations where genuine quantum phenomena of

particles in a periodic potential such as Bloch oscillations can be included. A simple first approach

in such problems, as described in [78], is to assume all the atoms in a cloud occupy the same single

particle state. In other words, we consider a dilute Bose-Einstein condensate of atoms in a cavity

[79]. Experimentally, such regimes have become accessible in the last few years. In [82] the collective

heating due to the cavity photon number fluctuations of a cloud of (non-BEC) bosonic atoms was

experimentally measured. In [79] a BEC of Rubidium atoms was confined inside a cavity and the

interesting phenomena of optical bistability in the transmission spectrum of light through the cavity

containing a BEC was experimentally studied. In the many atom works described in this section

so far, the contact interactions between atoms due to collisions is accounted for when comparing

quantitatively to experiments. But, the novelty and to a large extent, the qualitative behaviour, lies

in the correlated dynamics of the atoms and the light field. Thus, in our theoretical investigations

we will ignore direct atom-atom interactions completely. Moreover these contact interactions can be

tuned experimentally using Feshbach resonances as well. In Chapter 5, we make this consideration

quantitative and show that for experimentally relevant parameter regimes our approximation is

justified.

We can now write down the basic many-atom hamiltonian that will serve as the starting point

for all our discussions in the different works presented in the rest of this thesis. This is an extension

of the single particle hamiltonian Eq. (2.29) to describe a collection of bosonic atoms. Moreover, we

also include an external potential for the atoms which will account for the force that causes Bloch

oscillations 3. We will also specialise to considering dynamics in 1-dimension along the axis of the

cavity. The transverse profile of the atomic cloud is assumed to not vary significantly during the

axial dynamics. Correspondingly the dispersive shift U0 will now be assumed to have been scaled

by factors that depend on the overlap of the atomic cloud with the transverse cavity mode profile.

Denoting the bosonic field annihilation operator for the atoms as Ψ̂(x, t) we have:

Hmb =

∫
dxΨ̂†(x, t)

(
p̂2
x

2m
+ ~U0â

†â cos2(kpx) + Vext

)
Ψ̂(x, t)− ~∆câ

†â− i~η(â− â†).. (2.30)

3In experiments from the Esslinger group [79] an additional external harmonic trapping potential was used to
confine the atoms in a cavity but we envisage our theoretical problems without this trap. This is not too restrictive
since in many current Bloch oscillation experiments all external potentials except for the periodic lattice are switched
off during the experiment.
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Chapter 3

Atomic Bloch-Zener oscillations for

sensitive force measurements in a

cavity

Preface

When a particle in a periodic potential is subject to a constant force, it undergoes Bloch oscillations.

This phenomenon was originally predicted for electrons in a metal accelerated by an electric field

[26, 25]. Due to the presence of defects and impurities the relaxation time scale for electronic motion

is typically much shorter than the Bloch period. Consequently, long-lived Bloch oscillations have

been hard to observe in solid state systems. In the work presented in this chapter we propose a

scheme for the measurement of the Bloch frequency of ultracold atoms moving in the standing wave

potential inside an optical cavity which is oriented vertically, i.e., the local acceleration due to gravity

provides the force. As the atoms execute Bloch oscillations the intensity and phase of the cavity

light field is modulated at the Bloch frequency due to the strong backaction of the atoms on the

light field. The light transmitted through the cavity can be measured to extract the Bloch frequency.

This provides a continuous, non-destructive measurement method compared to the usual techniques

used in earlier experiments on Bloch oscillations of cold atoms in optical lattices (see Chapter 1).

In the present work the atoms are assumed to be cold enough to be described by a single coherent

wavefunction and the light field is assumed to be in a coherent state. The ground work for this

chapter was done during my masters [40] and completed during my doctoral research period. 1

1Note we have used the term ’Bloch-Zener oscillation’ in the paper reproduced below to refer to Bloch oscillations.
We used this term since the first paper making explicit reference to the phenomenon of Bloch oscillations was authored
by Clarence Zener [25]. We have discontinued this usage in the rest of this thesis to avoid confusion with current
literature where inter-band oscillations of the atomic probability density are known as Bloch-Zener oscillations [41].
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Abstract
Cold atoms in an optical lattice execute Bloch-Zener oscillations when they are accelerated. We

have performed a theoretical investigation into the case when the optical lattice is the intra-cavity

field of a driven Fabry-Perot resonator. When the atoms oscillate inside the resonator, we find that

their back-action modulates the phase and intensity of the light transmitted through the cavity. We

solve the coupled atom-light equations self-consistently and show that, remarkably, the Bloch period

is unaffected by this back-action. The transmitted light provides a way to observe the oscillation

continuously, allowing high precision measurements to be made with a small cloud of atoms.
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When quantum particles in a potential lattice are subjected to a constant force F , they execute

Bloch-Zener oscillations (BZOs) [1] with a frequency

ωB = Fd/~ , (3.1)

where d is the period of the lattice. This behavior was first demonstrated [2] with electrons in

semiconductor superlattices, where a DC electric field provided the force. However, rapid dephasing

due to impurities [3] has prevented BZOs from becoming useful in solid state devices.

Cold atoms in optical lattices have recently provided an alternative realization of BZOs [5, 6, 7,

8, 9, 4, 10] in which long coherence times are possible. Initially, acceleration of the lattice induced

the oscillations, but in subsequent experiments [7, 9, 10], gravity provided the required force. In [10],

the BZO damping time was 12s, allowing some 4000 cycles to be measured over 7s. With such long

coherence times, cold atom BZOs become suitable for high precision measurements, for example to

determine the fine structure constant α [4], to measure gravity [10], or to explore Casimir-Polder

forces [11]. In the experiments to date, it has been necessary to reconstruct the oscillations by

making destructive measurements at a large number of different times, each measurement requiring

a new cloud of atoms to be trapped, cooled, and loaded into the lattice. The process is laborious and

suffers from shot-to-shot variations in the initial cloud conditions. In this paper, we discuss how the

measurement could be substantially improved by using an optical cavity to enhance the interaction

of the atoms with the light. We show how the light transmitted through the cavity can provide an

in vivo observation of the BZOs and we assess the extent to which this perturbs the motion of the

atoms. Finally we consider the statistical sensitivity of the method and show that it can yield high

precision in a single shot.

Let us take the cavity to be a vertical Fabry-Perot resonator illuminated by a laser, which makes a

standing-wave light field inside, shown in Fig. 3.1(a). Cold atoms in this lattice execute BZOs under

the influence of gravity, as illustrated in Fig. 3.1(b). The optical dipole interaction between one

cavity photon and an atom placed at an antinode of the field is given by ~g0 = µ
√
~ωc/(ε0V ), where

ωc and V are the frequency and volume of the relevant cavity mode and µ is the atomic transition

dipole moment. The effect of one atom on the cavity field is characterised by the cooperativity

C = g2
0/(2κγ), where 2γ is the atomic spontaneous emission rate in free space and 2κ is the cavity

energy damping rate. When C & 1, the cavity field is strongly perturbed by the atom, as illustrated

in Fig. 3.1(c). Thus the light transmitted or reflected by such a cavity can detect the presence of a

single atom [12], and can be sensitive to the motion of atoms trapped within the cavity [13], as in

Fig. 3.1(d). Although we shall not discuss Bose-Einstein condensates (BECs) in this paper, we note

in passing that several experiments have succeeded in placing BECs inside optical cavities [14].

Consider a cavity mode, whose frequency in the absence of any atoms is ωc, pumped by an

external laser of the same frequency. A cloud of N atoms, each of mass m, is placed inside the

cavity and is sufficiently dilute that the atoms do not interact directly with each other. The coupled
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(a)

(b)
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d=/2

(c)

(d)

Figure 3.1. Schematic of the proposed experiment. (a) A cloud of cold atoms is held in a standing-wave
optical trap inside a vertical Fabry-Perot cavity. (b) The atoms execute Bloch-Zener oscillations, leading
to a periodic modification of their wave function. (c) This modulates the intra-cavity power and hence the
lattice depth s. (d) The power modulation is seen in the light transmitted by the cavity.
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atom-cavity hamiltonian becomes [15]

Ĥ =
~2

2m

∫
|∇zψ̂|2dz +

~g2
0

∆
â†â

∫
ψ̂†ψ̂ cos2(kcz)dz + F

∫
ψ̂†ψ̂ z dz − i~(η∗â− ηâ†) (3.2)

where the operator â(t) annihilates a photon in the cavity mode and the operator ψ̂(z, t) anni-

hilates an atom at the point z. The first term gives the kinetic energy of the atom. The second

describes the quadratic Stark interaction in the rotating-wave approximation. Here, ∆ = ωc − ωa is

the detuning between the cavity mode and the atomic transition frequency ωa, and kc = ωc/c. This

is an approximate form, that is valid when ∆� γ and η2 � (κ∆/g0)2. Under these conditions the

atom has negligible population in the excited state. The third term accounts for the external force,

and the last term describes the coherent excitation of the cavity by the external laser. For a cavity

with equal mirror reflectivities, the pumping rate is η =
√
κI, where I is the rate of incident photons

matching the cavity mode. The cavity field is a driven and damped quantum harmonic oscillator

for which it is known that exact solutions of the Fokker-Planck equation are coherent states [16].

Furthermore, since there is negligible spontaneous emission by the atoms, the cavity field remains in

a coherent state in the presence of atoms. Taking the expectation value of the Heisenberg equations

of motion for â and ψ̂ in the coherent state |α〉 yields the equations of motion [17]:

α̇ = −i
αNg2

0

∆

∫
|Ψ|2 cos2(kcz)dz + η − κα , (3.3)

i~Ψ̇ =

(−~2

2m
∂2
z +

~g2
0 |α|2
∆

cos2(kcz) + Fz

)
Ψ (3.4)

where Ψ(z, t) = 〈ΨN−1|ψ̂(z, t)|ΨN 〉/
√
N is the wave function occupied by all N atoms and |ΨN 〉

is the corresponding state vector in Fock space. We have added a damping term proportional to κ in

Eq. (3.3) to account for leakage of light through the mirrors [18]. These equations neglect quantum

fluctuations of the light field which can heat the atoms: we return to this effect later. Equations (3.3)

and (3.4) must be solved self-consistently: the coupling

g2(t) = g2
0

∫
|Ψ(z, t)|2 cos2(kcz)dz (3.5)

changes α, which changes the depth of the lattice. This alters the atomic wave function and therefore

changes g, etc. In static equilibrium, α̇ = 0 and then

α =
η

κ

1

1 + iNg2(t)/(κ∆)
. (3.6)

Even if the atoms are in motion, (3.6) remains a very good approximation since κ is generally much

greater than the highest frequency in the atom dynamics, so that the field ‘instantaneously’ adapts

25



Ph.D. Thesis - B. P. Venkatesh - McMaster University - Department of Physics and Astronomy

to the atomic distribution. Frequencies that feature in the atomic motion are the BZO frequency, the

band splitting, and the harmonic frequency ωho = 2g0|α|
√
ER/(~∆) at the bottom of each potential

well, ER = ~2k2
c/(2m) being the atomic recoil energy. For the experiments we consider here ωB and

ωho are much smaller than κ, so we assume in our analytic calculations, though not in our numerical

simulations, that Eq. (3.6) holds.

Let us recall the standard theory of BZOs without a cavity [19, 21, 22, 23, 20, 24, 25]. The

Schrödinger Eq. (3.4) can be written as i~Ψ̇ = (Ĥ0 + Fz)Ψ, where Ĥ0 = p̂2/(2m) + s cos2 kcz.

The eigenfunctions χq,s,n(z) of Ĥ0 are Mathieu functions (Bloch waves) that in general depend on

position z, lattice depth s, band index n and quasimomentum q, restricted to the first Brillouin zone

−π/d ≤ q ≤ π/d [26]. We assume in our analytic calculations that the atoms are in the lowest

band, whose energy is Eq,s, and dispense with the band index so that Ĥ0χq,s = Eq,sχq,s. The Bloch

theorem allows us to write χq,s(z) = Uq,s(z) exp[iqz], where Uq,s(z) = Uq,s(z + d) obeys

(p̂+ ~q)2

2m
Uq,s(z) + s cos2(kcz)Uq,s(z) = Eq,sUq,s(z). (3.7)

To tackle the full hamiltonian Ĥ0+Fz we make the gauge transformation Ψ(z, t) = exp[−iFtz/~]Ψ̃(z, t),

yielding the Schrödinger equation i~ ˙̃Ψ =
˜̂
HΨ̃, where

˜̂
H = (p̂ − Ft)2/(2m) + s cos2 kcz. Comparing

this with (3.7) we see that the effect of the force is to evolve the quasi-momentum according to

Bloch’s acceleration theorem [1]

q → q(t) = q0 − Ft/~ , (3.8)

where q0 is the quasimomentum at t = 0. When q(t) reaches the edge of the Brillouin zone at −π/d
it is mapped to the identical point q = +π/d, giving rise to oscillatory behaviour - the BZO. The

corresponding Bloch wave has the approximate form [27] (setting q0 = 0)

Ψ̃(z, t) ≈ Uq(t),s(z) exp[−i/~
∫ t

dt′ Eq(t′),s] , (3.9)

within the adiabatic approximation that the rate of change U̇/U is too small to excite higher bands.

Here Uq(t),s(z) is the instantaneous solution of Eq. (3.7). During a BZO the spatial distribution

Uq(t),s(z) oscillates with a breathing motion, as shown schematically in Fig. 1(b).

Consider now the effect of the BZOs on the field inside the cavity. The coupling g (Eq. (3.5))

depends on |Ψ(z, t)|2 which equals |Ψ̃(z, t)|2. Its breathing motion changes g, which in turn modulates

the cavity field through Eq. (3.6). Inserting (3.6) into (3.4), and replacing η by
√
κI, we obtain the

Schrödinger equation for atoms in a periodic potential i~Ψ̇ = (p̂2/2m+ s(t) cos2(kcz) + Fz)Ψ, with

the time-dependent potential depth

s(t) = ~I
(
g2

0

∆κ

)
1

1 + (Ng2(t)/(∆κ))
2 . (3.10)
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WhenNg2
0/(κ∆)� 1, s is approximately constant in time and α becomes (η/κ)[1−iNg(t)2/(∆κ)],

i.e. the light exhibits a small phase modulation and has negligible intensity variation. In this case, the

atoms oscillate in a lattice that is essentially static. With stronger coupling, where Ng2
0/(κ∆) ' 1,

s(t) is changed significantly during an oscillation. The fundamental period is nevertheless unchanged

and is still given by Eq. (3.1). Physically, this is because BZOs arise from an interference of waves in

a lattice akin to Bragg scattering and lattice depth plays no role in determining the phase-matching

condition. Rather, this is determined by the symmetry of the hamiltonian which is precisely main-

tained at all times. To examine the effect of lattice depth modulation in more detail, let us begin

with the adiabatic case where the frequency spectrum of s(t) remains largely at low frequencies un-

able to excite higher Bloch bands. An example is shown in Fig. 3.2(a). In that case, the lowest band

energy Eq,s(t) is still determined by the instantaneous value of s(t), with H0(t)χq,s(t) = Eq,s(t)χq,s(t),

and q0 remains a constant of the motion generated by H0(t) despite the time-dependent potential

([19] reaches a similar conclusion for electrons in an ac field). Consequently, the Bloch wave in the

presence of an external force can still be calculated using Eq. (3.9), provided we use the instanta-

neous values of s(t) and s(t′). It only remains to find the self-consistent solution for s(t) by solving

Eq. (3.10) at each instant of time. Here s(t) appears explicitly on the left and also implicitly on the

right as a parameter determining the Bloch wave function that is required to calculate the coupling
√
Ng(t) using Eq. (3.5). We conclude that despite the lattice depth modulation, the Bloch accelera-

tion theorem (3.8) still holds for atoms in the lowest band and therefore the fundamental oscillation

frequency remains identical to the ωB of an atom in a static lattice. Furthermore, because ωB is

the same for all bands, there is no frequency shift even when higher bands are excited, as we have

verified numerically for a wide range of Ng2
0/(∆κ).

Fig. 3.2(a) compares the lattice depths obtained by numerical solution of Eqs. (3.3) and (3.4)

(lines) and by the adiabatic approximation of Eqs. (3.9) and (3.10) (dots). The two are in good

agreement. Figure 3.2(b), shows a case of stronger coupling, where one can see fast oscillations

superimposed on the main motion. The Fourier transform of this reveals two effects, illustrated in

Fig. 3.2(c). (i) There are higher harmonics of ωB because the oscillations at the Bloch periodicity

are not exactly sinusoidal. In the adiabatic solution, the first four are accurately reproduced and the

higher harmonics are very small. (ii) The exact solution of Eqs. (3.3) and (3.4) predicts non-adiabatic

components at higher frequencies, shown inset in Fig. 3.2(c). These are predominantly harmonics

of ωB (the sharp lines), but in addition, there are other frequency components that can be seen as

broad lines. These are only found in the full numerical solution and are due to a small amount of

excitation to higher Bloch bands. These non-adiabatic effects become stronger as the parameter

Ng2
0/(κ∆) is increased.

The atoms are driven not only by the mean-field potential s(t) cos2(kcz), but also by random

forces due to i) spontaneous emission, and ii) fluctuations in the photon number, that are associated

with the decay rates γ and κ, respectively. In particular, in the strong coupling regime photon number
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Figure 3.2. Calculated evolution of lattice depth s(t) normalized to the recoil energy for 87Rb atoms
undergoing 840 Hz Bloch-Zener oscillations in a 780 nm lattice with s ≈ 3ER. Lines: numerical solution to
Eqs. (3.3) and (3.4). Dots: self-consistent adiabatic approximation of Eqs. (3.9) and (3.10). (a) Ng2

0/(κ∆) =
0.4. (b) Close-up of lattice depth oscillations with stronger coupling, Ng2

0/(κ∆) = 1. Non-adiabatic effects
are seen in the line. (c) Fourier transform s̃(ω) of result in (b), showing harmonics of fundamental frequency
ωB. Inset: Close-up of s̃(ω) at higher frequencies. Harmonics of ωB appear as sharp vertical lines. In
addition, one sees much weaker, broad, Fourier components due to band excitation, corresponding to the
rapid oscillations in (b). The actual individual values of the parameters used ( or assumed in the case where
only ratios enter) in the calculations were (see text): N = 5× 104, g0 = 2π × 2.8 MHz, κ = 2π × 1.0 MHz.
In (a) ∆ = 2π × 1.0 THz, η = 2π × 39 MHz; in (b) and (c) ∆ = 2π × 0.39 THz, η = 2π × 28 MHz.
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fluctuations can significantly heat atoms inside an optical cavity [13]. We quantify the heating effect

via the increase in the width σp of the atom’s momentum distribution according to dσ2
p/ d t = 2D.

The diffusion constant D =
∫∞

0
dt′[〈Fdip(t)Fdip(t+ t′)〉 − 〈Fdip〉2] [28] involves two-time correlations

of the dipole force Fdip, and hence of the intracavity electric field. It has been calculated for atoms

in cavities in [29] and has two terms. The first occurs in any standing-wave light field and at

low saturation is given by Dsw = ~2k2/2τsp [28], where τ−1
sp = 2γ|α|2g2

0/∆
2 is the spontaneous

emission rate at an antinode. The second term, specific to cavities, is Dcav = 2Dsw C sin2(2kcz).

This diffusion limits the coherent measurement time, which we take to be the time τ when the

momentum distribution has a width equal to one half of the first Brillouin zone, i.e. σp = ~kc. Then

τ = τsp/(1 + C), where we have replaced sin2(2kcz) by 1/2 - a good approximation in the ground

band for a lattice of depth s = 3ER.

The BZOs can be observed by detecting the photon current |α(t)|2κ transmitted through the

cavity which is directly proportional to the depth s(t) of the lattice (s = ~g2
0 |α|2/∆, see Eq. (3.4)),

whose evolution is shown in Fig. 3.2. For an estimate of the measurement precision, let us write

the detection rate as R[1 + ε cos(ωt)]. After measuring this for a time τ with detectors having an

efficiency ξ, the shot noise gives an uncertainty in the oscillation frequency of σω ≈ 2πτ−3/2/(ε
√
ξR),

in which τ−1 comes from the linewidth due to the finite duration of the measurement, and τ−1/2

comes from the shot noise in this bandwidth. This simple estimate is close to the Cramér-Rao lower

bound [30], the limit given by the information content of the signal. For small ε, R ≈ |α|2κ, then

the frequency uncertainty can be written as σω ≈ 2π s~
1
ε
√
ξ
(
g20
κ∆ )2( 1

C + 1)3/2. In order to bring out

the implicit dependence on the number of atoms N contained in this result, we define the parameter

x = Ng2
0/(κ∆). Referring to Eq. (3.10), if the number of atoms is increased then proportional

increases in the laser detuning and intensity maintain constant values of s, x and ε, while the

measurement time τ and the intra-cavity power both increase by the factor N . With this scaling,

the measurement time, detuning and frequency uncertainty are given by

τ =
~
sx

NC

1 + C
(3.11)

∆ =
2γ

x
NC (3.12)

σω ≈
2πsx2

√
ξ~ε

1

N2

(
1

C
+ 1

)3/2

. (3.13)

The uncertainty σω therefore decreases rapidly with a dramatic 1/N2 dependence which ultimately

derives from the continuous observation of the oscillations (via the enhanced measurement time τ).

Small s reduces σω, but the lattice must support the atoms against gravity. We find that s = 3ER

is a reasonable compromise. In the example of Fig. 3.2(a) we have chosen x = 0.4, which gives

ε = 1.3% in this lattice. Taking a reasonable number of atoms, let us say 5× 104, a readily achieved

cooperativity of C = 1.3, and a photon detector with 60% efficiency, brings σω/ωB to 1ppm. From
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the definitions of x and C this requires a detuning of ∆ = 2π × 1 THz and from Eq. (3.11) a

measurement time of only τ = 1 s. These numbers fix the ratio g2
0/κ = 2π × 7.8 MHz. If we choose

κ = 2π × 1 MHz, then using s = ~g2
0 |α|2/∆, this means there are on average > 1400 photons in the

cavity.

We have not included direct atom-atom interactions in the model discussed here. These can

lead to quasimomentum-changing transitions (non-vertical transitions in the language of [31]) which

dephase the BZOs. However, as summarized in the opening paragraphs of this paper, long-lived

BZOs have already been successfully demonstrated in cold gases containing many atoms, and so it is

a question of degree, i.e. at what atom density and interaction strengths do the interactions become

important? An experiment investigating the control of interaction-induced dephasing of BZOs in a

Bose-Einstein condensate has recently been reported [32]. Using a Feshbach resonance they were

able to increase their dephasing time from a few to more than 20 thousand BZO periods. From the

details of their measurements we estimate that, for our example given immediately above involving

5 × 104 atoms, the dephasing due to collisions is negligible for reasonable cavity geometries. The

effect becomes significant on increasing the number of atoms to several million, but can be suppressed

by tuning to a Feshbach resonance [32]. Large detuning and laser power impose a practical limit on

the useful atom number at about this level anyway.

For atoms being continuously measured, an important source of dephasing is quantum measure-

ment back-action. This effect is included in the estimate above in a quasi-classical way through the

diffusive heating of the atoms by fluctuations of the cavity light field. The cavity field suffers fluctua-

tions because it is dissipatively coupled to the outside world and it is precisely the light escaping from

the cavity (at rate κ) that contains the information about the state of the atoms. In other words,

it is the cavity decay that is doing the measuring. For our parameters, τ < 1
2τsp because C > 1,

and therefore it is the fluctuations due to cavity decay that limit the measurement time, rather

than the spontaneous emission. We plan to perform a more microscopic study of the measurement

back-action in the future.

In conclusion, we predict that the force on a small cold atom cloud can be measured very accu-

rately by a new method based on BZO oscillations in an optical cavity. The BZO oscillations are

measured continuously by monitoring the light that leaks out of the cavity. This enables a relatively

fast and high precision measurement of the oscillation frequency, the error being given by Eq. (3.13).

Our treatment of the problem is based upon solving the coupled equations of motion for the atoms

and light. This gives a detailed picture of the dynamics, including the adiabatic and non-adiabatic

aspects.

We note that since the submission of this paper a related proposal on monitoring of Bloch

oscillations using an optical cavity has appeared [33].
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Chapter 4

Band-structure loops and

multistability in cavity QED

Preface

Bloch oscillations, as explained in the introductory section in Chapter 3, can be understood as a

consequence of adiabatic dynamics in a periodic potential. The quasimomentum evolves linearly as

a function of time but the atoms are predominantly confined to a single band leading to a repeated

sampling of the same band. For a Bose Einstein condensate (BEC) in an optical lattice, collisional

inter-atomic interactions can be taken into account at the meanfield level using the Gross-Pitaevskii

equation, a type of nonlinear Schrodinger equation. The resulting band structure has previously been

shown to develop loop shapes when the interaction strength exceeds a certain threshold, in [102, 103].

The presence of loops in the band can have a profound effect on Bloch oscillations since the system

will have to make non-adiabatic jumps once the ’edge’ of a loop is reached and this non-adiabaticity

is independent of the size of the force [102, 103]. In our system of interest we do not include direct

atom-atom interactions, but nonetheless, since the atoms are all interacting with the cavity light

field an effective mutual interaction is set up. In this chapter we work out the nonlinear eigenvalue

equation and associated energy functional that govern this effective atom-atom interaction and show

that they lead to loops in the dispersion relation, similar to the case of an interacting BEC in an

optical lattice. Note that in Chapter 5 our choice of parameters for the Bloch oscillation proposal is

designed to avoid such looped solutions.

To each solution for the atomic wavefunction there is a corresponding light field in the cavity.

The presence of loops in the band structure therefore manifests itself as multistability in the cavity

photon number. For an unaccelerated BEC (quasimomentum q = 0 in our language) in an optical

cavity, the hysteresis derived from such a bistability was experimentally observed in [79]. In the
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work presented in this chapter we include the quasimomentum degree of freedom and it leads to

a richer situation including tristability. A convenient mathematical framework to study problems

where the number of solutions suddenly changes as a parameter is smoothly varied, i.e., the study

of bifurcations, is catastrophe theory [114]. We have analysed our problem in the framework of

catastrophe theory and show that the system under consideration can be described by a swallowtail

catastrophe.
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Abstract
We calculate the band structure of ultracold atoms located inside a laser-driven optical cavity. For

parameters where the atom-cavity system exhibits bistability, the atomic band structure develops

loop structures akin to the ones predicted for Bose-Einstein condensates in ordinary (non-cavity)

optical lattices. However, in our case the nonlinearity derives from the cavity back-action rather

than from direct interatomic interactions. We find both bi- and tri-stable regimes associated with

the lowest band, and show that the multistability we observe can be analyzed in terms of swallowtail

catastrophes. Dynamic and energetic stability of the mean-field solutions is also discussed, and we

show that the bistable solutions have, as expected, one unstable and two stable branches. The

presence of loops in the atomic band structure has important implications for proposals concerning

Bloch oscillations of atoms inside optical cavities [Peden et al., Phys. Rev. A 80, 043803 (2009),

Prasanna Venkatesh et al., Phys. Rev. A 80, 063834 (2009)].

39



Ph.D. Thesis - B. P. Venkatesh - McMaster University - Department of Physics and Astronomy

4.1 Introduction

Optical bistability is a manifestation of nonlinearity in optical systems which is well known in the

laser physics community [1, 2] (see also [3] and [4] and references therein). It describes a situation

in which there are two possible stable output light intensities for a single input intensity, and occurs

when an optical medium with a nonlinear refractive index is placed inside an optical cavity formed

from two mirrors. The bistable behaviour results from the combination of the nonlinearity of the

medium with the action of the feedback provided by the mirrors.

A new addition to the family of systems displaying optical bistability has recently been demon-

strated in experiments performed by the ultracold atom groups at Berkeley [5] and the ETH [6] who

found optical bistability in systems comprising of vapors of ultracold atoms trapped inside optical

cavities which are driven by laser light. The atomic vapor acts as a dielectric medium and, despite

being tenuous, can significantly perturb the light in a cavity with a small mode volume and high

finesse if the cooperativity CN is in the regime CN ≡ Ng2
0/2κγ > 1, where N is the number of atoms,

g0 is the single photon Rabi frequency, 2γ is the atomic spontaneous emission rate in free space, and

2κ is the cavity energy damping rate. The perturbation of the light by the atoms is nonlinear and

distorts the cavity lineshape away from being a lorentzian which is symmetric about the resonance

frequency into one with an asymmetric shape. For large enough cooperativity the lineshape becomes

folded over (see Fig. 4.2 below), so that for a certain range of frequencies there are three possible

output light intensities (two stable, one unstable) from the cavity for a single input intensity. The

experiments [5] and [6] exhibited this optical bistability as a hysteresis effect seen by chirping the

laser frequency through the cavity resonance from above and below the resonance: a sudden jump

in the intensity of light transmitted through the cavity was observed which occurred at two different

frequencies, depending upon the direction of the chirp.

An important difference between traditional laser systems and the ultracold atom experiments

[5, 6] is the origin of the nonlinearity. In the former case the nonlinearity of the medium occurs

in its polarization response, i.e. it arises from the internal degrees of freedom of the atoms. By

contrast, in the ultracold atom experiments the detuning of the cavity from atomic resonance was

large enough that the polarization response was in the linear regime. The nonlinearity was instead

due to the response of the centre-of-mass wave function of the atoms: the atoms re-arrange their

position distribution according to the balance between the dipole force applied by the intracavity

light field (which forms a periodic lattice) and their zero-point energy. As a consequence, the depth

of the optical lattice that forms inside the cavity in experiments like [5] and [6] is not fixed purely

by the drive laser intensity, as is the case in standard optical lattices made by interfering laser

beams in free space. Rather, when CN > 1 the depth of the lattice is sensitive to the spatial

distribution of the atoms trapped in the cavity, and, in turn, the atoms’ center-of-mass wave function

is sensitive to the lattice depth. This feedback nonlinearity, which leads to different amounts of

transmitted/reflected light for a given input intensity depending on the spatial distribution of the

40



Ph.D. Thesis - B. P. Venkatesh - McMaster University - Department of Physics and Astronomy

atoms, has been previously employed to detect the presence of a single atom in a cavity [7], as well as

to monitor the motion of atoms trapped in cavities [8]. More recently, there has also been considerable

theoretical interest in the effect of the feedback nonlinearity upon the many-body quantum state of

ultracold atoms in cavities [9, 10, 11, 12, 13]. We note, in particular, the theoretical work on self-

organisation and related phenomena [14], culminating in the experimental observation of the Dicke

quantum phase transition [15].

Striking nonlinear phenomena also occur when ultracold atoms are trapped in standard “fixed”

free-space lattices [16]. Of special interest to us here are the curious swallowtail loops that occur in

the band structure (energy versus quasi-momentum) of atomic Bose-Einstein condensates (BECs) in

one-dimensional optical lattices. These loops have been studied theoretically by a number of groups

[17, 18, 19, 20, 21] in order to explain the breakdown in superfluidity observed in experiments where

a BEC flows through a lattice [22, 23]. The loops correspond to multiple solutions for the atomic

wave function within a single band for a certain range of quasi-momenta. They can occur either

around the boundaries of the Brillouin zone or the center, depending upon the band and the sign of

the interactions. They manifest themselves physically via a dynamical instability that destroys the

superflow. However, the nonlinearity responsible for the swallowtail loops in the free-space lattices is

provided by the interatomic interactions, which become important at the densities required for Bose-

Einstein condensation. The loops occur when the strength of the interactions is above a critical value

[17, 18], and therefore non-interacting atoms in an optical lattice do not display these instabilities.

Our purpose in this paper is to investigate whether the cavity feedback nonlinearity associated with

optical bistability in ultracold atoms can also lead to loops in the atomic band structure. As we

shall see, the answer to this question is in general affirmative, and so band structure loops appear

to be a robust phenomenon which appear whatever the source nonlinearity, although the structure

and location of the loops does depend on the details of the nonlinearity.

One consequence of loops in the atomic band structure is a hysteresis effect [19] if the quasi-

momentum is swept through the band, and a consequent loss of adiabaticity even if the quasi-

momentum is swept infinitely slowly [24]. Recent experiments on a two-site lattice have confirmed

this scenario [25]. These effects have implications for experiments that use Bloch oscillations of

cold atoms in optical lattices for high precision measurements, for example to determine the fine

structure constant α [26], to measure gravity [27, 28], or to investigate Casimir-Polder forces [29].

The band structure hysteresis is reminiscent of the hysteresis described above in the context of the

optical bistability experiments [5] and [6]. Indeed, as we shall show in this paper, for atoms in

an optical cavity the two effects are different sides of the same coin, one being seen in the light

and the other in the atoms. Of particular relevance, therefore, are two recent proposals [30, 31]

concerning Bloch oscillations of atoms inside optical cavities that rely upon the modification of the

transmitted/reflected light arising from the feedback nonlinearity as a non-destructive measurement

of the Bloch oscillations. The presence of loops will severely disrupt the Bloch oscillations. In the
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case where the nonlinearity has its origin in atom-atom interactions the loops can be eliminated by,

e.g., using spin polarized fermions [29] or by reducing the interactions via a Feshbach resonance [32].

However, when the nonlinearity is due to the feedback nonlinearity these methods do not apply, and

one of our aims here is see if there are regimes where the feedback nonlinearity is present and leads

to a modification of the light, but remains below a critical value needed to form loops in the atomic

band structure. In order to allow the origin of the nonlinearity to be clearly identified, we shall only

consider non-interacting atoms in this paper, but our calculations can be easily extended to include

interactions.

The plan for the rest of the paper is as follows. In Section 4.2 we give a brief description of

the system and introduce the mean-field hamiltonian describing cold atoms dispersively interacting

with the single mode of a cavity. In Section 4.3 we derive a reduced hamiltonian describing the

nonlinear evolution for the atomic field after the adiabatic elimination of the light field. In Section

4.4 we calculate the band structure by two different methods that solve for the spatially extended

eigenstates (Bloch states) of the reduced hamiltonian, and show that the two methods give the same

results. We find that for certain parameter regimes, the energy as a function of quasi-momentum

develops loop structures. In Section 4.5 we recall the optical bistability in atom-cavity systems

discussed by [5, 6] and make the connection between the loop dispersions and bistability. In Section

4.6 we develop an analytical estimate for the critical pump strength necessary to generate loops and

in Section 4.7 we test this result by illustrating how the band structure depends on laser detuning

and laser intensity, i.e. the birth and death of loops as these parameters are varied. In Section 4.8,

we show that for quasi-momentum q 6= 0 the system can exhibit tristability (five solutions for the

steady state cavity photon number).

A convenient mathematical framework for describing bifurcations of a system whereby there is a

sudden change in the number of solutions as a parameter is smoothly changed is catastrophe theory

[33, 34, 35, 36, 37]. Catastrophe theory was applied to the problem of optical bistability in the late

1970s by a number of authors including Gilmore and Narducci [38] and Agrawal and Carmichael

[39]. In Section 4.9 we relate the problem of atom-cavity multistability to catastrophe theory and

show that the system under consideration can be described by swallowtail catastrophes organized

by an (unobserved) butterfly catastrophe and use this to understand multistability. This is followed

in Section 4.10 by a discussion of the stability of these solutions and finally we conclude in Section

4.11. There is also an appendix which summarizes some concepts of catastrophe theory.

4.2 The hamiltonian

Consider a gas of N ultracold atoms inside a Fabry-Perot optical cavity. The atoms interact quasi-

resonantly with a single cavity mode of the electromagnetic field of frequency ωc, and it varies along

the cavity axis as cos(kcz), where kc = ωc/c. This cavity mode is externally pumped by a laser of
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frequency ωp. The relevant frequency relations can be characterized with the two detunings

∆c ≡ ωp − ωc, (4.1)

∆a ≡ ωp − ωa, (4.2)

where ωa is the atomic transition frequency. In the dispersive regime, the occupation of the ex-

cited atomic state is vanishingly small and it can be adiabatically eliminated. A one-dimensional

hamiltonian for the atom-cavity system in the dispersive regime can then be written as [9, 10]

H = −~∆câ
†â+ i~η

(
â† − â

)
+

∫
dz Ψ̂†

[
− ~2

2M

∂2

∂z2
+

~g2
0

∆a
â†â cos2(kcz)

]
Ψ̂, (4.3)

where Ψ̂(z, t) and â(t) are the field operators for the atoms and the cavity photons, respectively. We

have written the hamiltonian in a frame rotating with the pump laser frequency ωp, which leads to

the appearance of the two detunings. The first term is just the free field evolution of the cavity mode.

The second term represents the laser coherently pumping the cavity at rate η, and the third term

describes the atomic part of the hamiltonian. It consists of a kinetic energy part and a potential

energy part. The potential energy term can either be understood as the atom moving in a periodic

potential with amplitude (~g2
0/∆a)〈â†â〉, or, if combined with the first term in the hamiltonian, as

a shift in the resonance frequency of the cavity due to the coupling between the atom and the field

(see also Eq. (4.5) below).

The Heisenberg equations of motion for the atom and photon field operators can be obtained

from the above hamiltonian. In this paper we are interested in properties at a mean-field level, where

operators are replaced by their expectation values and correlations between products of operators are

neglected. In other words, the light is assumed to be in a coherent state with amplitude α(t) = 〈â〉,
and the atoms are assumed to all share the same single-particle wave function ψ(x, t) = 〈Ψ̂〉/

√
N .

From the Heisenberg equations these amplitudes obey the following coupled equations of motion [40]

i
∂ψ

∂t
=

(
− ∂2

∂x2
+ U0 nph cos2(x)

)
ψ, (4.4)

dα

dt
=

(
i∆c − iNU0

∫
dx cos2(x)|ψ(x)|2 − κ

)
α+ η, (4.5)

where we have scaled energies by the recoil energy ER = ~2k2
c/2M , and time by ~/ER. The depth

of the periodic potential seen by the atoms is then given by U0 nph, where nph ≡ |α|2 is the mean

number of photons in the cavity, and U0 is defined as

U0 ≡ ~g2
0/(∆aER) . (4.6)

The damping rate κ (in units of ER) of the amplitude of the light field in the cavity has been added
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into the equation of motion in order to account for a markovian coupling between the cavity mode

and a zero temperature bath. We have also introduced the dimensionless length x ≡ kcz. In the

above equations, any fluctuations induced by the reservoirs have been neglected. This is justified

when considering relatively large quantum numbers, for corrections see reference [12].

In this paper we are interested in the band structure and this requires the quasi-momentum to

be a good quantum number. Physically, this implies that we are studying delocalized atomic wave

functions which cover many lattice sites (this is closer to the situation realized in the experiment

[6] than that realized in [5] where the atoms were localized to just a few sites). We shall therefore

expand the wave function ψ(x, t) in Bloch waves, as will be detailed in subsequent sections. It thus

makes sense to normalize ψ(x, t) over one period of the potential as
∫ π

0
|ψ|2dx = π, and also evaluate

the integrals appearing in the above equations over one period. In particular, the integral in Eq. (4.5)

which determines the coupling between the atoms and the light will be defined by

〈cos2(x)〉 ≡ 1

π

∫ π

0

|ψ(x)|2 cos2(x)dx. (4.7)

4.3 The reduced hamiltonian

In this Section we shall eliminate the optical degrees of freedom from the hamiltonian in order to

obtain a description only in terms of the atoms. This results in a nonlinear Schrödinger equation

and an energy functional we shall refer to as the reduced hamiltonian.

Setting dα/dt = 0 in Eq. (4.5) gives the steady state light amplitude in the cavity,

α =
η

κ

1

1 + i∆c−NU0〈cos2(x)〉
κ

(4.8)

which leads to the following equation for the steady state photon number

nph =
η2

κ2 + (∆c −NU0〈cos2(x)〉)2 . (4.9)

In fact, this expression also holds to high accuracy in many time-dependent situations because κ

is typically far greater than any frequency associated with the evolution of the external degrees of

freedom of ultracold atoms. The light field is then slaved to the atoms and “instantaneously” adjusts

itself to any change in ψ(x, t). The steady state solution can then be substituted back into Eq. (4.4)

to give us a single, closed, nonlinear Schrödinger equation for the atomic wave function

i
∂ψ

∂t
=

(
− ∂2

∂x2
+

U0 η
2 cos2(x)

κ2 + (∆c −NU0〈cos2(x)〉)2

)
ψ . (4.10)

The stationary solution ψ(x, t) = ψ(x)e−iµt of this equation leads to an expression for the eigen-
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value µ of Eq. (4.10),

µ[ψ,ψ∗] =
1

π

∫ π

0

dx

(∣∣∣∣dψdx
∣∣∣∣2 + U0nph cos2(x)|ψ(x)|2

)
. (4.11)

If the Schrödinger equation (4.10) were linear, then the eigenvalue µ would be the energy of the atoms

in state ψ. Furthermore, the functional (4.11) would serve as the energy functional from which this

Schrödinger equation could be obtained as an equation of motion using Hamilton’s equation

i~
∂ψ

∂t
=
δE[ψ,ψ∗]

δψ∗
. (4.12)

i.e. E[ψ,ψ∗] = µ[ψ,ψ∗] for a linear equation. However, this is not the case here. Instead, the

eigenvalue µ is the chemical potential which is related to the true energy E via µ = ∂E/∂N (a

prominent example that illustrates this distinction is the Gross-Pitaevskii equation and its energy

functional [21]). Using this fact, one can show that the true energy functional from which the

equation of motion (4.10) can be derived is in fact [10, 13]

E[ψ] =
N

π

∫ π

0

dx

∣∣∣∣dψdx
∣∣∣∣2 − η2

κ
arctan

(
∆c − NU0

π

∫ π
0

dx|ψ|2 cos2(x)

κ

)
. (4.13)

as can be verified by applying Hamilton’s equation (4.12). We shall refer to this functional as the

reduced hamiltonian. The first term represents the kinetic energy. The second term is an atom-light

coupling dependent term that can be interpreted as follows. The phase shift of the steady state light

field inside the cavity relative to the pump laser is, from Eq. (4.8),

φ = arctan
Im(α)

Re (α)
= arctan

(
∆c − NU0

π 〈cos2(x)〉
κ

)
. (4.14)

This allows us to rewrite the reduced hamiltonian as

E[ψ] =
N

π

∫ π

0

dx

∣∣∣∣dψdx
∣∣∣∣2 − Iphφ , (4.15)

where Iph = η2/κ is the incident photon current from the pump laser. Note that this hamiltonian

looks similar in form to the effective quantum two-mode hamiltonians obtained in the optomechanical

limit in [12] and [13], and also the ones describing bistability in [10].

4.4 Band structure

From now on we specialize to Bloch wave solutions. We begin by describing two methods for calculat-

ing the Bloch waves and their energies. Agreement between the two methods will be demonstrated.
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Figure 4.1. Energy loops in the first band. The curves were obtained by extremizing the reduced hamilto-
nian (4.13). For both (a) and (b) the laser pumping η = 909.9ωR, the cavity decay κ = 350ωR, the atom-light
coupling U0 = ωR, and number of atoms N = 104. In (a) the pump-cavity detuning was ∆c = 1350ωR,
which gives no loops, and in (b) it was ∆c = 3140ωR which gives a loop symmetric about the band center
as shown. As explained in the text, the number of photons in the cavity and hence the lattice depth change
with q. For example, in (a) at q = 0 we have nph = 0.06 and at q = 1 we have nph = 0.68. In (b) at
q = 0 we have for the lowest branch nph = 4.13, for the middle branch nph = 0.28, and for the upper branch
nph = 2.4. At q = 1 we have nph = 1.08. At the point where the middle and upper branches meet we have
nph = 0.58.
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4.4.1 Method 1: Energy extremization

The first method, which adapts that detailed in [18] for a static optical lattice, hinges on the obser-

vation that the potential in the Schrödinger Eq. (4.10) is periodic with period π (in dimensionless

units). Despite the nonlinearity, the Bloch theorem [42, 43, 31] applies so that the eigenfunctions

can be written as the product of a plane wave with wavenumber q, called the quasi-momentum, and

an amplitude Uq(x) which is periodic with the period of the lattice

ψq(x) = eiqxUq(x), (4.16)

Uq(x+ π) = Uq(x) .

For the linear problem, the energies E(q) are arranged into bands separated by gaps. In the so-called

reduced zone scheme for the band structure, q lies in the first Brillouin zone −1 ≤ q < 1, and the

band energies are folded back into the first Brillouin zone.

The periodicity of Uq(x) implies that it can be expanded as a Fourier series. The Bloch wave can

therefore be written

ψq(x) = eiqx
∑
n

aq,ne
i2nx. (4.17)

The notation for the nth expansion coefficient aq,n reflects the fact that it depends on the chosen

value of q. This expansion can now be substituted into the reduced hamiltonian Eq. (4.13), and

the resulting function numerically extremized with respect to the parameters aq,n, maintaining the

normalization of ψq(x) throughout the procedure. We take the parameters aq,n to be real for the

same reasoning as given in [18]. The Fourier series is terminated at some n = R, which is determined

by the convergence of the energy eigenvalues as R is varied.

In Fig. 4.1 we plot the low lying part of energy spectrum E[ψq] as a function of quasi-momentum

resulting from the extremization. The values of κ and N are very close to the values used in the

experiment with rubidium atoms described in [6], and the other parameters are chosen so as to

exhibit the interesting behavior to be discussed in the rest of the paper. The two panels of Fig. 4.1

differ only in the value of the pump-cavity detuning ∆c. Fig. 4.1a shows a result familiar from linear

problems involving quantum particles in periodic potentials, but Fig. 4.1b shows a very different

story: there are two other branches that together form a looped structure that is a manifestation

of the nonlinearity of the reduced hamiltonian. As will be discussed more below, the loop shown in

Fig. 4.1b belongs to the first band (in particular, it does not correspond to the second band because

it only extends over part of the first Brillouin zone). Looped structures have been found before for

BECs in static optical lattices [18, 17]. We will come back to the similarities and differences between

our results and [18, 17] in the next section.

It is important to appreciate that, by virtue of the nonlinearity of the problem, the lattice depth
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nphU0 is different at each value of the quasi-momentum shown in Fig. 4.1. Furthermore, the lattice

depth is different for each of the curves even at the same values of q (except at degeneracies). In

this sense, the band structure plots we display in this paper are non-standard because for static

lattices the depth of the lattice is fixed for all values of q. In order to obtain the lattice depth at each

point on a curve E[ψq] in Fig. 4.1, one should take the wave function that extremizes the energy

functional (4.13) at that point and enter it into the integral 〈cos2(x)〉 appearing on the righthand

side of Eq. (4.9) for the photon number. This change in lattice depth with detuning is reported in

Fig. 4.2, but for the reader’s convenience we have included some values at particular points q in the

caption of Fig. 4.1.

The fact that, depending on the detuning ∆c, there are either one or more steady state photon

numbers for the cavity reminds us of the optical bistability observed in [5, 6]. There, as the cavity

driving laser detuning was swept through the resonance, bistability was observed for certain pump

strengths η. The bistability derives from quantum effects [41] in the sense that it is due to changes

in the atomic center-of-mass wave function. It is distinct from standard semi-classical optical bista-

bility [4]. The connection between the loops in the atomic band structure and optical bistability

will be examined in detail in Section 4.5. To complete this section we look at an alternative method

for determining the eigenfunctions of the effective hamiltonian which makes the connection with

bistability more transparent.

4.4.2 Method 2: Self-consistency equation

In the second method, the strategy is to solve Eq. (4.9) directly for the steady-state photon number.

This equation contains nph both explicitly on the left hand side and implicitly on the right hand side

through the atomic wave function ψq(x, nph) appearing in the integrand of the integral

〈cos2(x)〉 =
1

π

∫ π

0

cos2(x)|ψq(x, nph)|2dx. (4.18)

The photon number is not a parameter set from the outside (e.g. by the pump laser) but must be

solved for self-consistently. In our notation for the wave function we have therefore included nph

in the list of arguments rather than the list of parameters. The dependence of ψq(x, nph) upon the

number of photons is because the depth of the lattice in which the atoms sit is given by U0 nph, as

can be seen directly from the Schrödinger equation (4.4). Therefore, Eq. (4.9) must be solved self-

consistently for nph, and we will often refer to it as the “self-consistency equation”. As mentioned

in the introduction, the physical mechanism that gives rise to the feedback between the atoms and

the light stems for the atom-light coupling, Eq. (4.7) [or Eq. (4.18)]. The atoms’ spatial distribution

controls the phase shift suffered by the light on traversing the cavity, and hence the cavity resonance

condition, and therefore the amplitude of the light in the cavity. At the same time, the amplitude

of the light determines the depth of the lattice which influences the atomic wave function.
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One class of solutions to the self-consistency problem is provided by the Mathieu functions [44].

In fact, these provide exact solutions because the Schrödinger equation (4.4) for a particle in a

sinusoidal potential is nothing but the Mathieu equation. Despite the fact that the amplitude of the

sinusoidal potential in (4.4) itself depends on the solution ψq(x, nph) of the equation, this amplitude

evaluates to a constant because ψq(x, nph) appears under the integral given by Eq. (4.7). All that

is necessary is that the wave function that enters into the integral is the same as the wave function

appearing in the rest of the Schrödinger equation. This is the case precisely when the self-consistency

equation (4.9) is satisfied. This leads us to a very important point: by virtue of the self-consistency

equation (4.9), the photon number nph is completely equivalent, in the sense of the information it

carries, to the wave function ψ. Said another way, the Mathieu functions are specified by only two

quantities: the value of the quasi-momentum and the depth of the potential. Thus, once we set the

quasi-momentum, which is a parameter, the wave function is entirely determined by U0nph, where

U0 is also a parameter. We shall frequently take advantage of the equivalence between ψ and nph in

the rest of this paper because it allows us to replace the wave function by a single number nph.

We shall denote the Mathieu functions by χm,q,nph
(x), where m is the band index. They satisfy

Mathieu’s equation which in our problem takes the form(
− ∂2

∂x2
+ U0nph cos2(x)

)
χm,q,nph

(x) = µm,q,nph
χm,q,nph

(x) . (4.19)

Our notation for the Mathieu functions indicates the full parametric dependence with the exception

of the atom-light coupling strength U0. Note that in the Mathieu functions we list nph as a parameter,

like q, because that is the role it plays in the Mathieu equation. We therefore have that

ψm,q(x, nph) = χm,q,nph
(x). (4.20)

Mathieu’s functions can, of course, be written in Bloch form. In this paper we focus on the

first band and so we shall suppress the band index from now on. We therefore have χq,nph
(x) =

exp(iqx)Uq,nph
(x). Substituting this Bloch form into the time-dependent Schrödinger equation (4.4)

as ψq(x, nph, t) = χq,nph
(x) exp(−iµt) one obtains

(
− ∂

∂x
+ iq

)2

Uq,nph
(x) + U0nph cos2(x)Uq,nph

(x) = µq,nph
Uq,nph

(x). (4.21)

This equation can either be solved numerically from scratch, or a package such as Mathematica

can be used which gives the Mathieu functions for each value of q, and U0 nph. For a particular

choice of q, these Mathieu functions can now be used in (4.9) to find the value(s) of nph that give

self-consistency.

There are two main differences between method 1 and method 2 described above. Firstly, method

1 is a variational calculation, whereas method 2 exploits the definition of the steady state photon
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number to obtain a single nonlinear integral equation (4.9) which must be satisfied by the atomic

wave function. Secondly, in method 2 we can explicitly set the band index whereas the variational

wave function used in method 1 is rather more general. In spite of these differences, we find that

the two methods are in complete agreement (to within numerical accuracy) for all the parameter

ranges we were able to test (for very deep lattices method 1 becomes unworkable because a very

large number of terms in the Fourier expansion are required). We have also checked that the two

methods agree for higher bands.

It may at first seem surprising that two such seemingly different methods are equivalent. We

emphasize that both stem from the non-linear Schrödinger equation (4.10), which is just Mathieu’s

equation with a potential depth which is set self-consistently. Method 1 minimizes an energy func-

tional that is derived from this non-linear Schrödinger equation. In principle, one could minimize

ansatze other than the Bloch functions we use here (e.g. localized functions), but these would not

then satisfy the original non-linear Schrödinger equation (4.10) exactly. Method 2 is based upon

the observation that wave functions that satisfy the self-consistency equation (4.9) are precisely the

required solutions of the non-linear Schrödinger equation (4.10) providing we restrict ourselves to

solutions which are Mathieu functions. Again, one could find other types of solution, but these would

not satisfy Eq. (4.10).

An interesting question to ask is whether the nonlinearity of our problem mixes the linear bands,

so that, for example the self-consistent first band is a superposition of Mathieu functions from

different bands. This is not what we find. Instead, the solutions we have found all correspond

to being from one or other band, but not a superposition. Method 2, in particular, allows us to

explicitly set the band index and we are therefore able to identify all three curves shown in Fig. 4.1

as belonging to the first band (we have also checked that the Mathieu functions corresponding to

all three curves are orthogonal to the Mathieu functions for the second band for the same three

lattice depths). Actually, we do not find loops in higher bands for the parameter values considered

in Fig. 4.1. Although in this paper we restrict our attention to the first band, we have found that

we can have loops in the higher bands as well. The calculation of energy dispersions using the self-

consistent method is numerically less demanding and so we will continue to use the latter for the

remainder of this paper. In the next section we discuss optical bistability and its relation to loops

in the band structure.

4.5 Bistability and Loops

As mentioned in the Introduction, optical bistability was discovered in the ultracold atom experi-

ments [5] and [6] via a hysteresis effect as the detuning of the pump laser was swept from above and

below the cavity resonance. This effect can be described theoretically by using the self-consistency

equation to calculate the number of photons nph in the cavity at each value of the detuning (the
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Figure 4.2. The steady state photon number inside the cavity as a function of detuning ∆c for the param-
eters κ = 350ωR, U0 = ωR, N = 104. Each curve is for a different value of the pump strength η: thick blue
η = 0.5 ηcr, dashed brown η = 1.5 ηcr, thin magenta η = 2.5 ηcr, and dash-dotted red η = 3.5 ηcr. As can be
seen, as η increases the lineshapes become more and more asymmetric and fold over at the critical pump
strength ηcr(q = 0) ≡ η0 = 325ωR. The atomic wave function corresponds to the first band with q = 0.
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Figure 4.3. The energy given by the reduced hamiltonian (4.13) as a function of detuning ∆c for the
parameters q = 0, κ = 350ωR, U0 = ωR, N = 104. Each curve is for a different value of the pump strength η:
thick blue η = 0.5 ηcr, dashed brown η = 1.5 ηcr, thin magenta η = 2.5 ηcr, and dash-dotted red η = 3.5 ηcr.
The critical pump strength is η0 = 325ωR. For η > η0 swallowtail loops develop corresponding to bistability.
The loops grow in size as η increases.
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number of cavity photons can be measured directly from the photon current transmitted through

the cavity which is given by nphκ). The results are plotted in Fig. 4.2 for different values of the

pump strength η. In the absence of atoms the cavity lineshape is a lorentzian centered at ∆c = 0

with a full width at half maximum 2κ. At small pump intensity, the presence of the atoms shifts

the center of the resonance by NU0〈cos2(x)〉 while the shape is largely unaltered. But as η is in-

creased, the lineshape curve becomes asymmetric and eventually folds over when η is above a critical

value ηcr(q = 0) ≡ η0, indicating multiple solutions and hence bistability. ηcr(q) depends on the

quasi-momentum and η0 is defined as its value at q = 0.

In the folded over region, only one of the solutions (corresponding either to the highest or the

lowest photon number) is seen at a time, depending upon the direction of the sweep. The middle

branch cannot be accessed using this experimental protocol and is in any case unstable, as will be

discussed at more length in Section 4.10.

Note that in Fig. 4.2 we have chosen the quantum state of the atoms to be the q = 0 Bloch state.

In fact, this is the case for all the plots in this section because that is closest to the situation in the

experiments that have been conducted so far. One of the main points of this paper is essentially to

examine the extra degree of freedom conferred by the quasi-momentum. For atoms in ordinary optical

lattices the quasi-momentum can be controlled by accelerating the lattice (rather than the atoms)

via a phase chirp [45]. An accelerated lattice is hard to achieve inside a Fabry-Perot cavity, but if the

atoms have a magnetic moment one can instead subject them to an inhomogeneous magnetic field

so that a force is applied (or, of course, in a vertically oriented cavity the atoms will be accelerated

by gravity). As is well known from the theory of Bloch oscillations, under a constant force F the

quasi-momentum evolves according to the Bloch acceleration theorem [42, 43]

q(t) = q0 +
Ft

kcER
(4.22)

where q and t are expressed in the dimensionless units given in Section 4.2, and q0 is the quasi-

momentum at time t = 0. The Bloch acceleration theorem requires that the evolution be adiabatic,

and the implications of this for intra-cavity optical lattices have been discussed in [31], albeit without

loops. The effect of a constant force is thus to sweep the system through the band at a constant rate

and, in principle, any quasi-momentum can be achieved by switching off the magnetic field after an

appropriate time delay.

Figure 4.3 depicts the energy versus detuning curves corresponding to the photon number versus

detuning curves shown in Fig. 4.2. In the bistable regime, the energy curves in Fig. 4.3 develop

swallowtail loops. This can be understood in terms of the familiar connection between bistability,

hysteresis, and the change in the energy manifold described in detail by [19]. Consider one of the

curves in Fig. 4.3 where there is bistability, e.g. the curve with η = 3η0. For ∆c values to the left and

right of the swallowtail loop, the energy functional Eq. (4.13) has a single extremum corresponding to

a particular wave function ψq(x, nph). In the bistable region, the energy functional has the structure
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Figure 4.4. The double well structure of the energy of the reduced hamiltonian (4.13) as a function
of cavity photon number nph. Each curve is for a different value of the detuning ∆c. The values are
∆c = 1600, 2000, 2400, 2800, 3200, 3600ωR. The arrow indicates how the curves evolve as ∆c increases. The
top most curve (blue), and the bottom most curve (yellow), have only one minimum, whereas the rest of
the curves have two minima (the inset shows a zoom-in of the curves close to nph = 0) indicating bistability.
Consequently, bistability only occurs for a certain limited range of ∆c. The other parameters are q = 0,
κ = 350ωR, U0 = ωR, N = 104, η = 3.5 η0, where η0 = 325ωR.
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of a double-well, furnishing three extrema: two minima and one maximum, that give the three

branches of the loop corresponding to three different wave functions. This double-well structure is

shown in Fig. 4.4 as a function of nph for different values of detuning ∆c. Note that, as already

observed above, the self-consistency equation (4.9) provides a direct mapping between the wave

function and nph.

Figures 4.2, 4.3, and 4.4 all show different aspects of hysteresis as ∆c is swept either from above

or below the cavity resonance. It is enlightening to see how it arises in Fig. 4.4. If the detuning is

swept from below the resonance then initially there is a single solution for nph, given by the minimum

in the reduced energy functional which occurs at the very left hand side of Fig. 4.4, as best seen in

the inset. When ∆c is increased another solution appears at a larger value of nph. However, this

state of the system is not realized (for this direction of the detuning sweep), even when it becomes

the global minimum, until the energy barrier between the two solutions vanishes and the left hand

minimum disappears. The system then jumps to the new minimum at a larger value of nph. The

reverse happens when ∆c is swept in the other direction. This hysteretic behavior is corroborated

by Figs 4.2 and 4.3.

In the Section 4.6, a method for determining ηcr(q) is described. Generally, this requires a

numerical computation, but for small values of the intracavity lattice depth an analytical expression

can be worked out. It turns out that the dependence of ηcr on the atomic state quasi-momentum

can be used to explain the loops in the energy quasi-momentum plots (Fig. 4.1).

4.6 Critical pump strength for bistability

4.6.1 Conditions for bistability

Returning to the cavity lineshape shown in Fig. 4.2, we recall that as the pump strength η is increased

the steady state photon number in the cavity can exhibit bistability for a certain range of detuning

∆c. Bistability first develops at a single value of the detuning, which we denote by ∆c = ∆0. The

critical pump strength at which this bistability at ∆0 occurs is ηcr(q), and in this section we want

to calculate it. Let us first re-write the self-consistency equation (4.23) as

nph

nmax
=

1

1 +
(

∆c−NU0f(U0nph,q)
κ

)2 , (4.23)

where nmax ≡ η2/κ2 is the maximum number of the photons that can be in the cavity at steady

state. In order to reinforce the idea that the wave function and the number of photons are really

equivalent quantities, we have replaced the notation for the integral 〈cos2(x)〉 appearing in (4.23) by

f(U0nph, q) ≡ 〈cos2(x)〉 . (4.24)
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Figure 4.5. Plot of the atom-light overlap integral f(nph, q) = 〈cos2(x)〉, first defined in Eq. (4.7), as a
function of the cavity photon number nph. The atomic wave function is taken to be the q = 0 Bloch wave of
the first band, and the atom-light interaction is set at U0 = 5ωR. Note that the maximum value f(nph, q)
can take is one half, irrespective of the values of U0 and q. As nph →∞ we find that f(nph, q)→ 0.

This function is plotted in Fig. 4.5 for blue detuning (∆a > 0) where we see that as the lattice gets

deeper the atomic wave function adjusts to become more localized on the lattice nodes and reduce

the overlap between the light and the atoms. Furthermore, the steep gradient at shallow lattices

implies that the system is more sensitive, and so more nonlinear, at small photon numbers.

It is instructive to solve Eq. (4.23) graphically as the intersection between two functions of nph,

as shown in Fig. 4.6. The left hand side is a straight line whose gradient is 1/nmax. For very small

nmax the gradient is very large and there is only one solution close to the origin. As nmax is increased

the gradient is reduced and the straight line just grazes the curve at a critical value of nmax at which

there are now two solutions. Increasing nmax further, there is then a range of values of nmax for

which there are three solutions. Finally, for large nmax there is only one solution again. When

three solutions exist for certain values of nmax, the system becomes bistable and a plot of the input

intensity (proportional to nmax) versus the output intensity (proportional to nph) has the classic

s-shaped form shown in Fig. 4.7. This picture suggests a convenient way to determine the conditions

for bistability because the two points where the curve turns over delimit the bistable region. These

points satisfy ∂nmax/∂nph = 0, giving

κ2 + (∆c −NU0f)
2 − 2nph (∆c −NU0f)NU0

∂f

∂nph
= 0. (4.25)

This equation can be solved numerically for nph for different values of ∆c, assuming that κ, N , and
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Figure 4.6. A graphical solution of the self-consistency equation in the form (4.23). The blue curve
represents the right hand side of Eq. (4.23) for typical values of the cavity parameters (q = 0). The red
dash-dotted, green dashed and black straight lines represent the left hand side of the equation plotted for
different values of nmax; they intersect the blue curve at one, three, and one points, respectively. The blue
curve tends to a finite value at nph = 0 which is set by the fact that for nph = 0 we have f = 1/2.
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Figure 4.7. Input intensity vs output intensity for a bistable cavity system. In this example the atomic
wave function in the cavity is in the q = 0 state and κ = 350ωR, ∆c = 1500ωR, and U0 = ωR. The points
where the curve folds over are given by the solution of Eq. (4.25).
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U0 are fixed. As expected from Fig. 4.7 (see also Fig. 4.14), depending on the value of ∆c, there

are either zero, one, or two values of nph that satisfy Eq. (4.25). For large values of ∆c there are

no solutions. As ∆c is reduced, a single solution for nph suddenly appears at ∆c = ∆0, which, by

substituting this value of nph into the self-consistency equation (4.23), gives us ηcr(q). Reducing ∆c

further, this single solution immediately branches into two solutions for nph. Referring to Fig. 4.7,

we see that these two solutions for nph define a range of values of nmax, and hence also of η, where

bistability occurs. We can find this range of values of η by inserting the two solutions for nph into

the self-consistency equation to give us η1 and η2. When η1 < η < η2 bistability occurs. Note that

the values of ηcr(q), η1, and η2, all depend on the state of the atomic wave function and hence are

different for different quasi-momenta. This dependence on quasi-momentum is what lies behind the

existence of loops in the band structure.

4.6.2 Critical pump strength in shallow lattices

In the regime of shallow lattices, the bistability condition given by Eq. (4.25) can be solved analyt-

ically. First consider the critical pump strength of the q = 0 case, for which we use the notation

ηcr(q = 0) ≡ η0. As described in [6], and as can be seen from Fig. 4.5, for small lattice depths we

can linearize the atom-light overlap integral as

f(U0nph, q = 0) =
1

2
− U0nph

16
. (4.26)

Substituting this into the self-consistency equation (4.9), we obtain a cubic equation in nph, which

is reminiscent of the classical Kerr nonlinearity in a medium with an intensity dependent refractive

index [4] (note that when we come to numerically solve Eq. (4.25) below in this section and in the

rest of the paper, we are going beyond the classical Kerr effect). The condition (4.25) for bistability

in this limit then reduces to the solution of a quadratic equation in nph,

3n2
phN

2U2
0 − 32nphNU

2
0 (NU0 − 2∆c) + 64((NU0 − 2∆c)

2 + 4κ2) = 0. (4.27)

The vanishing of the discriminant of the above equation requires that ∆0 = NU0/2 −
√

3κ, η0 =√
8κ3

3
√

3NU2
0

, and n0 =
NU2

0

√
3

64κ . In the last expression, n0 is the number of photons in the cavity at

the critical point ∆c = ∆0.

4.6.3 Critical pump strength as a function of quasi-momentum

We now extend the above analysis for shallow lattices to include non-zero quasi-momentum. Ex-

panding the atomic Bloch state in a Fourier series, and assuming shallow lattice depths, we can
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truncate the series after three terms

ψq(x, nph, t) = eiqx(c0(t) + c1(t)ei2x + c2(t)e−i2x). (4.28)

In this state one can explicitly calculate 〈cos2(x)〉 as

〈cos2(x)〉 =
1

2
+

1

2
(Re c0c

∗
2 + Re c0c

∗
1) ≡ 1

2
+

1

2
(X(t) + Y (t)). (4.29)

Rewriting the equations of motion (4.4) and (4.5) for the newly defined variables one finds

d2X

dt2
+ (4q + 4)2X + (q + 1)U0α

∗α|c0|2 = 0,

d2Y

dt2
+ (4q − 4)2Y − (q − 1)U0α

∗α|c0|2 = 0,

dα

dt
=

(
i∆c − i

NU0

2
− iNU0

2
(X + Y )− κ

)
α+ η.

The atomic state has therefore been mapped onto two coupled oscillators X and Y . The oscillators

are not coupled to each other directly, but do interact through the light field α which acts as a

driving term for both of them. The above equations resemble Eqns (3) and (4) of [6], and introduce

an analogy to optomechanics [46]. Solving these equations at steady state gives

α =
η

κ− i(∆̃c −NU0/2(X + Y ))
,

(4q + 4)2X+
(q + 1)U0η

2

κ2 +
(

∆̃c −NU0/2(X + Y )
)2 |c0|2 = 0,

(4q − 4)2Y− (q − 1)U0η
2

κ2 +
(

∆̃c −NU0/2(X + Y )
)2 |c0|2 = 0,

where ∆̃c = ∆c−NU0/2. Combining the steady state solutions into a single equation for the variable

p = X + Y , and assuming |c0|2 ≈ 1 gives

p =
n̄max

1 +
(

∆c

κ − NU0

2κ −
NU0p

2κ

)2 , (4.30)

where n̄max = U0η
2

8(q2−1)κ2 . Comparing Eqns (4.30) and (4.23) in the limit when f = 1/2− U0nph/16,

we finally obtain an expression for the critical pump strength above which bistability occurs as a

function of q

ηcr(q) =

√
8κ3(1− q2)

3
√

3NU2
0

(4.31)
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Figure 4.8. Comparison between exact numerical calculation (dots) and analytical estimate (line) for the
critical pump strength ηcr at which loops appear as a function of the quasi-momentum. The values of the
parameters are U0 = ωR, N = 104, and κ = 350ωR. The analytical estimate is from Eq. (4.31) which is
accurate for small lattice depths. Note that the agreement is good for quasi-momentum close to q = 0.

where we remind the reader that the frequencies in this expression are in units of the recoil frequency

ωR. This estimate for ηcr(q) is compared to the full numerical solution of Eq. (4.25) in Fig. 4.8. The

parameters are such that the maximum intracavity depth is only of the order of one atomic recoil

energy ER, and hence the approximation agrees well with the numerical calculation. The agreement

deteriorates as q → 1. This is due to the fact that the above two mode approximation fails at q = 1

because the coefficient c0 in Eq. (4.28) is equal to zero at the edge of the Brillouin zone. 1

Let us now connect the above results to the phenomenon of loops in the band structure. Because

ηcr, and also η1, and η2 depend on the value of q, as we vary q we expect that the conditions required

to have bistability won’t necessarily be met over the entire Brillouin zone. That is, as q is varied, η

may no longer lie in the range η1(q) < η < η2(q). In that case, we expect any additional solutions to

form closed loops extending only over part of the Brillouin zone, rather than entire bands covering

the whole Brillouin zone. The dependence of ηcr upon q given by Eq. (4.31) suggests that for shallow

lattices the loops will form first at the edge of the Brillouin zone and then propagate inwards as η is

increased. Looking back at Fig. 4.1, which shows the energy plotted as a function of quasi-momentum

at a fixed value of η and ∆c, we see a loop centered at q = 0, but which does not extend out to

q = 1, in apparent contradiction to what is predicted by Eq. (4.31). This is because the lattice in

Fig. 4.1 is too deep for Eq. (4.31) to apply. In the next section we shall examine how loops appear

1This line was erroneously published and should read-This is due to the fact that the above two mode approximation
fails at q = 1 because the coefficient c0 ≈ c2 in Eq. (4.28) is equal to 1/2 at the edge of the Brillouin zone.
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and disappear and, in particular, we will see that loops are indeed born at the edges of the Brillouin

zone.

4.7 The birth and death of loops

In this Section we examine how loops appear and disappear in the band structure as the detuning

and pumping are varied. We have already seen in Sections 4.4 and 4.5 how multiple solutions and

swallowtail loops develop as the detuning from the cavity resonance is varied, but this was for fixed

quasi-momentum q. Here we include the quasi-momentum dependence. In Fig. 4.9 we plot the

evolution of the loop structures that appear in the band structure as ∆c is varied. The detuning

increases from the top to the bottom panel. In the plots, the pump strength is fixed at η = 2.8η0 and

we see that for small detunings, when bistability initially sets in, swallowtail shaped loops appear

at the outer edges of the Brillouin zone. As the detuning is increased the swallowtail loops from the

two edges move closer and merge. Initially, the merged loop lies partly below the lowest band, but

as the detuning is further increased it moves up and separates from the lowest band. The loop then

shrinks in size and vanishes.

One important point to notice is that the swallowtail loop in plot (b) of Fig. 4.9 is qualitatively

different from the ones obtained in [18, 17] for an interacting BEC in an optical lattice because in

our case the energy dispersion continues to have zero slope at the band edge even when the loops

have been formed. The nonlinearity in [18, 17], which is due to interatomic interactions, has quite

a different form to that considered here. For example, the nonlinearity arising from interactions

is spatially dependent due to the variation in density of a BEC in an optical lattice, whereas the

nonlinearity considered here does not have a spatial dependence because it appears under an integral

over space, see Eq. (4.7).

In Fig. 4.10 we plot the same thing as Fig. 4.9, except that we have reversed the sign of the

atom-light coupling U0 so that it is negative. Experimentally, this is the case when ∆a < 0, i.e. the

pump laser is red detuned from the atomic resonance. Note that the effect of the sign flip upon the

potential term U0nph cos2(x) occuring in the atomic Schrödinger equation is equivalent to a spatial

translation of π/2. This transforms the atom-light overlap integral (4.7) as

〈cos2(x)〉 → 1− 〈cos2(x)〉 (4.32)

where the left hand side refers to the U0 < 0 case, and the right hand side to the U0 > 0 case. The

self-consistency equation therefore becomes

nph =
η2

κ2 + (∆c +N |U0| −N |U0|f(|U0|nph, q))
2 . (4.33)

Figure 4.11 plots the evolution of the band structure as the external laser pumping η is varied,
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Figure 4.9. The birth and death of band structure loops as the laser-cavity detuning ∆c is varied, for the
case when the laser is blue-detuned from atomic resonance (∆a > 0). ∆c increases as one goes from (a) to
(e) as follows: 1500ωR, 2100ωR, 2600ωR, 3100ωR and 3600ωR. The rest of the parameters are κ = 350ωR,
U0 = ωR, N = 104, η = 2.8 η0 and η0 = 325ωR.
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Figure 4.10. The birth and death of band structure loops as the laser-cavity detuning ∆c is varied, for
the case when the laser is red-detuned from atomic resonance (∆a < 0). ∆c increases as one goes from (a)
to (e) as follows: −8500ωR, −7900ωR, −7400ωR, −6900ωR and −6400ωR. The rest of the parameters are
κ = 350ωR, U0 = −ωR, N = 104, η = 2.8 η0 and η0 = 325ωR.
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Figure 4.11. The birth and death of band structure loops as the pumping rate η is varied. In this
figure the detuning is held constant at ∆c = 2900ωR. The value of η increases from (a) to (e) as follows:
0.5η0, 2η0, 3η0, 4η0, 5η0, where η0 = 325ωR as usual. The inset shows a zoom-in for η = 0.5 η0, illustrating
that as η is increased, the loops are born at the edges of the Brillouin zone.
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Figure 4.12. Energy as a function of quasi-momentum q and detuning ∆c. At smaller values of ∆c, the
swallowtail loops occur in pairs close to the edges of the Brillouin zone at q = ±1, and as the detuning is
increased they propagate inwards and merge as shown in this plot. ∆c increases out of the page. Parameters
are κ = 350ωR, U0 = ωR, N = 104, η = 2.8 η0, and η0 = 325ωR.

Figure 4.13. Energy as a function of quasi-momentum q and detuning ∆c. ∆c increases out of the page.
For larger values of ∆c, the band center loops move up in energy and do not touch the lower band (shaded
red in the plot). Eventually, for still higher values of detuning, they shrink and disappear as shown in this
plot. Parameters are κ = 350ωR, U0 = ωR, N = 104, η = 2.8 η0, and η0 = 325ωR.
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Figure 4.14. Bifurcation structure of the solutions to the self-consistency equation Eq. (4.9) in the {η,∆c}
plane with q = 0, U0 = ωR, κ = 350ωR, N = 104. The numbers on the plot indicate the number of solutions
that exist for the steady state photon number in the cavity. The critical value of the pumping η0 = ηcr(q = 0)
for bistability for these parameters is indicated by the arrow. Inside the crescent shaped region the system
supports three solutions (one unstable), i.e. it is bistable.

for fixed detuning ∆c. We see that as η increased the loops first appear as swallowtails at the edges

of the Brillouin zone (see inset in Fig. 4.11a), in agreement with the predictions of Eq. (4.31).

Figures 4.12 and 4.13 are both 3D plots of the loops as functions of ∆c and q, but each one covers

a different range of ∆c. In the first plot the merging of the swallowtail loops into the band center

loops is shown. In the second plot, as ∆c increases the band center loops move upwards in energy

and separate from the ground band, shrink in size and eventually disappear.

As will be demonstrated in the next section, in certain parameter regimes the spectrum may

qualitatively change compared to the above. In particular, we show that for some q 6= 0, and

for sufficiently larger pump strength η, we can achieve tristability. Moreover, we show how this

multistable behaviour can be understood in terms of catastrophe theory.

4.8 Tristability

Thus far we have seen that there are regions of the parameter space {∆c, η, q, U0} where the self-

consistency equation (4.9) applied to the first band admits either one or three solutions. In the latter

case we have bistability. It is natural to ask whether there are other regions of parameter space where

even more simultaneous solutions can occur? A recent paper discussing two-component BECs in a

cavity has found regions of parameter space that support tristability [47] and in this section we want
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Figure 4.15. Bifurcation structure of the solutions to the self-consistency equation Eq. (4.9) in the {η,∆c}
plane with q = 0.95, U0 = ωR, κ = 350ωR, N = 104. The numbers on the plot indicate the number of
solutions that exist for the steady state photon number in the cavity. Inside the swallowtail shaped curve
there are five solutions and hence multistability, see Fig. 4.16.
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Figure 4.16. Plot of multistable steady state photon number nph versus nmax (equal to η2/κ2) for ∆c =
1630ωR and q = 0.95, U0 = ωR, κ = 350ωR, N = 104. The ∆c value is chosen from the region which
supports five solutions in Fig. 4.15.
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to examine whether tristability is possible in the ordinary one-component case but with finite values

of the quasi-momentum.

In Fig. 4.14 we show the region of {∆c, η} space where bistability occurs. This plot is for fixed

values of U0 and q. In particular, for q = 0 we at most find bistability. The crescent shape in Fig.

4.14 demarks the region with three solutions: the number of solutions changes by two as one crosses

its boundary. The location of η0, the smallest pump strength for which bistability occurs when

q = 0, is indicated by an arrow on the vertical axis in order to make contact with the discussion of

Sec. 4.5. However, when we allow non-zero values of q we find that we can indeed have regions of

tristability, due to the presence of five solutions, which occur inside the swallowtail shaped region in

Fig. 4.15, which is plotted for q = 0.95. Fig. 4.16 plots the corresponding photon number versus laser

pumping curve for a fixed value of ∆c, and illustrates how, as the laser pumping strength is changed,

the system goes from one solution, to three solutions, to five solutions, back to three solutions and

finally back to one solution again. This curve is calculated for a vertical slice through the parameter

space shown in Fig. 4.15. We give an example of the band structure when there is tristability in Fig.

4.17.

So far we have conducted a rather ad hoc exploration of the four-dimensional parameter space

given by {∆c, η, q, U0}. Furthermore, in the two-dimensional slices shown in Figures 4.14 and 4.15

we have glimpsed snap shots of a rather complex looking structure of solutions. We are therefore

led to ask whether there is any order in this complexity? Are the geometric structures seen in the

plots random, or is there in fact an underlying structure that organizes them? In order to make

progress with understanding multistability it would be useful to have a more systematic framework

for analyzing our solutions and just such a framework is provided by catastrophe theory, which we

now discuss. As will become clear, the structures we see in parameter space are not only generic,

but are organized in a very particular, and therefore predictable, way.

4.9 Catastrophe theory analysis

4.9.1 Overview of catastrophe theory

Catastrophe theory is a branch of bifurcation theory that concerns the study of singularities of

gradient maps [35, 37]. Examples of gradient maps abound in physics, for example Hamilton’s

principle of least action in mechanics, and Fermat’s principle of least time in optics. In both theories

the physical paths (rays) are given by the stationary points of a generating function Φ(s; C), which

in mechanics is the action and in optics is the optical distance. In both cases the gradient map is

obtained from a variational principle that takes the form

∂Φ(s; C)

∂s
= 0 . (4.34)
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Figure 4.17. Plot of tristable band structure. The parameters are given by η = 980ωR, ∆c = 1640ωR,
κ = 350ωR, N = 104, and U0 = ωR.

In catastrophe theory, this equation is sometimes referred to as the state equation, the generating

function Φ(s; C) is called the potential function and the variables appearing in the potential function

are considered to be of two basic types: the state variables s = {s1, s2, s3 . . .} and the control

parameters C = {C1, C2, C3 . . .}. The state variables parameterize all possible paths (not just the

paths corresponding to the stationary points) and the control parameters determine the conditions

imposed on the paths. For example, if we are interested in the path(s) which pass through the point

{X,Y, Z} in three dimensional space, then the coordinates {X,Y, Z} form the control parameters.

For a fixed set of control parameters, the potential function defines the height of a landscape with

coordinates s. The classical paths (rays) are then the stationary points si (labelled by the index i if

there are more than one) of this landscape, namely the mountain peaks, valley bottoms and saddles

[35].

The gradient map becomes singular when there is more than one stationary point for a given

set of control parameters. In optics this is the phenomenon of focusing, because more than one

ray passes through the same physical point C = {X,Y, Z}, leading to a caustic. The caustic, or

catastrophe, as it is known in catastrophe theory, lives in control space, which in the standard optics

case is physical 3-dimensional space. As C is varied one can explore the structure of the caustic.

This is what was shown above in Figures 4.14 and 4.15, which are two dimensional slices through

the parameter space {∆c, η, q, U0}. The crescent and swallowtail shapes are the catastrophes, whose

full structure only becomes apparent when viewed in four-dimensional parameter space.

Catastrophes are points, lines, surfaces, and hypersurfaces in control space across which the
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Figure 4.18. The cusp catastrophe is generated by the quartic potential function Φ given in Table 4.1, which
can be viewed as representing a double-well potential. The red folded-over surface plotted in this figure obeys
the cubic state equation ∂Φ/∂s = s3 + C2s + C1 = 0, which gives the stationary solutions si of Φ. When
C2 < 0 there can be up to three stationary points, s1, s2 and s3, for each value of C1 and C2. These points are
the two minima and single maximum of the double-well potential. When C2 > 0 there is only one stationary
point s corresponding to the minimum of a single well. A vertical slice through the figure such that C1 = 0
gives a pitchfork bifurcation. The {C1, C2} plane forms the two dimensional control space where the cusp
catastrophe itself lives, and this is shown at the bottom of the figure. The cusp catastrophe is formed of two
fold curves joined at a singular cusp point. The cusp catastrophe demarks the region of control space that
sustains three solutions for s, and so it is given by the projection of the folded-over part of the state surface
onto the {C1, C2} plane. Crossing the fold lines from inside the cusp to outside it, two of the solutions (the
maximum and one of the minima) annihilate. Mathematically, this is described by the potential function
being stationary to the next higher order [35], i.e. ∂2Φ/∂s2 = 3s2 +C2 = 0. Eliminating s by combining this
equation with the state equation gives the equation for the cusp catastrophe as C1 = ±

√
−16C3

2/27. Right
at the cusp point itself, which is given by the control space coordinates C1 = C2 = 0, all three stationary
points coalesce simultaneously to leave a single solution.
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number of solutions to the problem changes. Catastrophe theory classifies these catastrophes in

terms of their codimension K, which is the difference between the dimension of the control space

and the dimension of the catastrophe. For example, if we consider the two dimensional space shown

in Figures 4.14 and 4.15, we find “fold” curves (K = 1) and “cusp” points (K = 2). If we add a

third dimension then we would find fold surfaces (K = 1), cusp edges (K = 2), and “swallowtail”

points (K = 3).

In order to make the foregoing discussion more concrete, consider the structure shown in Fig. 4.18

which illustrates the cusp catastrophe. The surface shown in the figure is the state surface ∂Φ/∂s = 0

plotted in a composite of control and state space. The control space is two dimensional and is given

by the C1, C2 plane at the bottom of the figure. As listed in Table 4.1, the cusp catastrophe is

described by a quartic potential function which, by varying the control parameters C1 and C2, can

be tuned between being a double or a single well potential. A prominent physical example of such

quartic potential function is the thermodynamic potential in Landau’s phenomenological theory for

continuous phase transitions [48]

Φ(s;P, T, h) = Φ0 +Bs4 +As2 + hs. (4.35)

The order parameter s for the phase transition can be identified as the state variable. The parameter

h describes an external field, and A and B are functions of pressure P and temperature T . At

first sight, it appears as though the Landau potential function contains three control parameters,

and so does not correspond to the cusp catastrophe. However, it is easy to see that one of the

parameters is redundant because the state equation can be written in terms of only two control

parameters: C1 = h/B and C2 = A/B. The Landau thermodynamic potential can therefore be seen

to correspond to the cusp potential function.

In the present case of ultracold atoms in an optical cavity, the potential function is the re-

duced hamiltonian (4.13), the state variable is the wave function ψ, and the control parameters are

{∆c, η, q, U0}. We assume that the cavity decay rate κ and number of atoms N are constants that

are unchanged throughout the analysis. The stationary Schrödinger equation, obtained from the

time-dependent Schrödinger equation (4.10), is therefore the state equation which determines the

allowed classical “paths” (rays) ψ. However, because we are interested here in solutions of the Bloch

wave form, our “paths” ψ are Mathieu functions labelled by the quasi-momentum and the depth of

the optical lattice. The quasi-momentum q is one of the control parameters, but the depth of the

optical lattice is determined uniquely, via the self-consistency equation (4.9), by the number of pho-

tons in the cavity nph. Therefore, we can choose to work with nph rather than ψ as already discussed

in Section 4.4.2. The state equation which determines its stationary values is the self-consistency

equation (4.9).

The purpose of formulating our problem in terms of catastrophe theory is that we can now take

advantage of a very powerful theorem [33]. This states that there are only a strictly limited number of
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Table 4.1. Standard forms of the cuspoid catastrophes

Name Φ(s;C) K
Fold s3/3 + Cs 1
Cusp s4/4 + C2s

2/2 + C1s 2
Swallowtail s5/5 + C3s

3/3 + C2s
2/2 + C1s 3

Butterfly s6/6 + C4s
4/4 + C3s

3/3 + C2s
2/2 + C1s 4

different forms which the potential function Φ(s; C) can take in the neighbourhood of a catastrophe.

The first four are listed in Table 4.1. Note that each of the standard forms is a polynomial in s,

but is linear in the control parameters. In fact, for control spaces of dimension four or less there are

only seven distinct structurally stable potential functions. Three of these require two state variables,

whereas we only require one state variable, so that leaves the four so-called cuspoid catastrophes,

which are the ones listed in Table 4.1.

This remarkable result allows us to predict, at least qualitatively, the structures seen in Figures

4.14 and 4.15 given only very rudimentary information such as the number of control parameters.

However, the sting in the tail is that it is rare for the potential function that appears in any particular

problem to already be in one of the standard forms shown in Table 4.1. Rather, it is generally

necessary to perform various transformations upon the variables in order to manipulate the raw

potential function into one of the standard forms. We already saw this for the rather simple case of

the Landau theory discussed above, and we shall see below that this is also true for the problem of

multistability in atom-cavity systems.

From Table 4.1, we see that the butterfly potential function is the only one which gives up to five

stationary solutions and has a four dimensional control space. We can therefore immediately say that

our problem corresponds at least to a butterfly catastrophe because we have already found parameter

regimes which give five solutions. This does not rule out the possibility of a higher catastrophe (the

higher catastrophes contain the lower ones, as can be seen in Fig. 4.18 for the case of the cusp

and the fold), but until we find regimes with a higher number of solutions (and, indeed, we have

not) we shall work with the hypothesis that we are dealing with a butterfly catastrophe. We might

therefore expect to find a very special point in parameter space where all five solutions merge into

one (the “butterfly point”). However, this requires us to be able to maneuver through parameter

space in order to find this point. The delicate issue of whether the four experimental parameters

{∆c, η, q, U0} can be transformed into the butterfly’s four linearly independent control parameters

{C1, C2, C3, C4}, and so allow us to fully explore the butterfly catastrophe, will be studied in Section

4.9.3 below. First, we begin with the simpler case of shallow lattices.

4.9.2 Application of catastrophe theory to shallow lattices

The starting point for our analysis will not be the potential function Φ, which in our case is the energy

functional (4.13) that explicitly depends on the atomic wave function ψq(x, nph) and implicitly on
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the photon number nph. Instead, we begin one step further along with the state equation which, as

explained above, is provided by the self-consistency equation Eq. (4.9) for the photon number. This

was also the approach adopted in [39] in order to tackle bistability in traditional laser systems. The

photon numbers that satisfy the state equation for given values of the control parameters form the

set of stationary points of the potential function. For our state variable we shall actually choose

v ≡ U0nph . (4.36)

In terms of v the state equation can be written

v + v (∆c −NU0f(v, q))
2 − η2U0 = 0. (4.37)

where 〈cos2(x)〉 = f(v, q) is evaluated in a Bloch state ψq(x, v), and the choice of v as the state

variable is motivated by the dependence of the Bloch state on the product U0nph, which is the depth

of the optical lattice, see Eq. (4.4). In the above equation we have also rescaled all frequencies by κ

(i.e. we have divided throughout by κ2 and set κ = 1).

Equation (4.37) is not straightforward to analyze because we do not have a closed-form analytical

expression for f(v, q). Thus, we find ourselves in the common situation, as mentioned above, that it is

not obvious which standard potential function, and hence which standard state equation, corresponds

to our problem. However, we have already seen in Sec. 4.5 that when the depth of the optical lattice

is small, we can perform a series expansion and obtain an approximate analytical expression for

f(v, q). This is the approach we shall follow first and we will take up the general case in the next

subsection. Specializing to the case of q = 0, we use Eq. (4.26) to write f(v, q = 0) = 1/2 − v/16,

and upon substitution into Eq. (4.37) this gives

v3 + b1v
2 + b2v + b3 = 0, (4.38)

b1 =
32∆c

NU0
− 16,

b2 =
64
(
4 + (NU0 − 2∆c)

2
)

N2U2
0

,

b3 =
−256η2

N2U2
0

.

The leading term in the above equation is cubic in the state variable v (similar in that respect to the

classical Kerr non-linearity [3, 4]). It is therefore close to, but not yet identical with, the standard

form of the state equation for a cusp

s3 + C2s+ C1 = 0. (4.39)

Complete equivalence to the cusp can be achieved by removing the quadratic term from (4.38) via
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the transformation s = v + b1/3, leading to the following values for C2 and C1

C2 = b2 −
1

3
b21, (4.40)

C1 = b3 −
1

3
b1b2 +

2

27
b31. (4.41)

Thus, we see that the canonical control parameters in the final mapping to the standard form are

complicated functions of the physical control parameters η,∆c, and U0.

Let us compare the above prediction to the case illustrated in Fig. 4.14. The figure shows the

number of steady state solutions for the photon number in the {η,∆c} plane, for fixed values of U0

and q. The figure was calculated for q = 0, and the part of it close to the horizontal axis corresponds

to low photon number, and so the shallow lattice theory outlined above applies in that region. We

indeed find that the first derivative of the state equation vanishes at all points along the curves

separating regions with one and three solutions (this is how the curves were computed), which are

therefore fold curves, while at the point with η = η0 we find the second derivative also vanishes,

identifying it as a cusp point where all three solutions coalesce into a single solution. We therefore

find that catastrophe theory correctly accounts for the structure seen in Fig. 4.14.

A key point to note from the above analysis is that the underlying catastrophe that we identified

had only two control parameters even though there were three “experimental” parameters that could

be varied in the original statement of the physical problem (we set q = 0). We met a similar situation

for the Landau theory of continuous phase transitions discussed above. The question then arises,

how do we identify the underlying catastrophe in cases where the transformation to standard form

is hard to find? One way to proceed is via the defining character of each potential function in Table

4.1, which is the highest derivative that vanishes at the most singular point. For the cusp the most

singular point is s = C1 = C2 = 0 where the first, second, and third derivatives of the potential

function with respect to s vanish. We shall take advantage of this defining character in order to

tackle the general case of a lattice of arbitrary depth in the next subsection.

It is worth commenting on the role of the extra dimension in control space that was present in

the original statement of the shallow lattice problem, as given by Eq. (4.38). It is easy to imagine

that, given a basic catastrophe, we can always embed it in a control space of higher dimension

without fundamentally changing the catastrophe providing we extend it into the extra dimension

in a trivial way. For example, given the cusp catastrophe that has a minimal control space which

is two-dimensional, as shown in Fig. 4.18, we can always add a third dimension such that the cusp

becomes a structure rather like a tent, with the ridge pole being a cusp edge (a continuous line of

cusps). The existence of the line of cusps can be inferred from the shift of variables s = v+ b1/3 that

was performed: the location of the highest singularity is parameterized by the parameter b1 which

is the extra control parameter.
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Figure 4.19. A plot showing the values of 1/(NU0)2 obtained from the simultaneous solution of Eqns
(4.43)–(4.45) for different values of quasi-momentum. These equations give the first three derivatives of the
state equation (4.42), and hence correspond to swallowtail points. Only the crosses satisfy 1/(NU0)2 > 0
and occur only for q > qsw.

4.9.3 Application of catastrophe theory to lattices of arbitrary depth

Lifting the restriction of small photon number, we define the notation G(v; ∆c, η, q, U0) for the left

hand side of the state equation (4.37)

G(v; ∆c, η, q, U0) ≡ v + v (∆c −NU0f(v, q))
2 − η2U0 = 0. (4.42)

The fact that we have four experimental parameters holds out the possibility that the above state

equation is that of a butterfly catastrophe (see Table 4.1). Furthermore, because we have already

discovered regimes with five solutions, we must have at least a butterfly. However, from our experi-

ence with the shallow lattice case, we know that we may not be able to fully explore the catastrophe

if some of the control parameters are trivial. We shall therefore investigate whether we can find a

singular point (the butterfly point) where the fifth and all lower derivatives of the potential function

with respect to v simultaneously vanish (i.e. the fourth and lower order derivatives of G(v; ∆c, η, q, U0)

simultaneously vanish) and Eq. (4.42) is also satisfied.
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Figure 4.20. A plot showing the values of the state variable v = U0nph for which the first three derivatives
of the state function G vanish simultaneously (swallowtail points). For approximately 0.6 < q < 0.8 there
are two such points for any given q.

Taking the derivatives of Eq. (4.42), and simplifying slightly the resulting equations, we find

(
∆c

NU0
− f

)2

− 2vff i
(

∆c

NU0
− f

)
=
−1

N2U2
0

(4.43)

2ff i + v
(
ff ii + (f i)2

)
2f i + vf ii

=
∆c

NU0
(4.44)

3ff ii + 3(f i)2 + v
(
3f if ii + ff iii

)
vf iii + 3f ii

=
∆c

NU0
(4.45)

12f if ii + 4ff iii + v
(
4f if iii + ff iv + 3(f ii)2

)
vf iv + 4f iii

=
∆c

NU0
(4.46)

where the first, second, third, and fourth derivatives of the function f(v, q) with respect to v are

denoted by f i,f ii,f iii,f iv, respectively. In fact, we have seen Eq. (4.43) before, as it is the same as

Eq. (4.25) that we used as a condition for bistability. Our strategy will be to find solutions to Eqns

(4.43–4.46) numerically. In order to facilitate this, observe that Eq. (4.44) and Eq. (4.45) can be

combined into a single equation:

2ff i + v
(
ff ii + (f i)2

)
2f i + vf ii

− 3ff ii + 3(f i)2 + v
(
3f if ii + ff iii

)
vf iii + 3f ii

= 0 . (4.47)

We solve this equation for v at different values of q by numerically finding the zeros of the left hand

side. Once we find the zeros for a particular q, we can use Eq. (4.44) to calculate ∆c/NU0 at these

values. Next, these values of v and ∆c/NU0 are used in Eq. (4.43) to calculate 1/(NU0)2. In this last

75



Ph.D. Thesis - B. P. Venkatesh - McMaster University - Department of Physics and Astronomy

step we find that we obtain the unphysical result 1/(NU0)2 < 0 unless q > qsw, where qsw = 0.545 is a

certain critical value of the quasi-momentum. This is illustrated in Fig. 4.19 where we plot the values

of 1/(NU0)2 computed using the above method for different values of the quasi-momentum q in the

neighborhood of qsw. Only the crosses satisfy 1/(NU0)2 > 0. We drop the solutions corresponding to

the dots, for which 1/(NU0)2 < 0. For q > qsw there are always values of q at which 1/(NU0)2 > 0.

Note that qsw = 0.545 is a universal result since it does not depend on any other parameter values.

The final step is to check if Eq. (4.46) for the fifth derivative is satisfied at the values of ∆c, NU0,

and v that we computed using the lower derivatives. We did not find any value of q > qsw where

this was the case. The important part of our numerical computation involves the calculation of the

derivative of the function f(v, q) for which we do not have an analytical expression. We used the

MATLAB® [49] routine DERIVSUITE [50] to calculate the derivatives. This routine also provides

errors on the derivatives and we can compound errors and find values for expressions like the left

hand side of Eq. (4.47) with error. We use this error as the tolerance in our zero finding. Some more

details of this procedure are provided in the Appendix.

The fact that we did not find a point where the four higher derivatives of the function G si-

multaneously vanish in the range 0 < q < 1 (we do not consider negative q because f(v, q) is

symmetric under q → −q) means that although the underlying catastrophe that organizes the solu-

tions is at least a butterfly (because we find five solutions), the four experimental parameters at our

disposal {∆c, η, q, U0} do not translate into four linearly independent coordinates in control space

{C1, C2, C3, C4} [51]. We are therefore not able to navigate freely through the four-dimensional

control space and locate the butterfly point at C1 = C2 = C3 = C4 = 0. This is the extension into

four dimensions of the situation we already found in Section 4.9.2 for shallow lattices.

The identification of places where three derivatives of G simultaneously vanish means that the

highest singularities we have in the parameter space {∆c, η, q, U0} are swallowtail points (swallowtails

are contained within a greater butterfly catastrophe). In the Appendix we outline a proof that in the

neighbourhood of a point where three derivatives of the state equation vanish the potential function

must be equivalent to that of a swallowtail catastrophe. Note that these swallowtails occur entirely in

control space and are thus true swallow tail catastrophes in the sense of Table 4.1. The swallowtails

shown previously in Figures 4.3, 4.9, 4.10, 4.11, 4.12 and 4.13 are not swallowtail catastrophes

because these figures show a combination of state and control spaces. By contrast, Figures 4.14, 4.15

and 4.21 are solely in control space. In particular, Fig. 4.21 shows a two- dimensional slice through

the three-dimensional swallowtail catastrophe in control space. Unlike Fig. 4.15, this slice includes

the swallowtail point, which is the highest singularity on the swallowtail catastrophe, and is the point

where four solutions of the state equation (4.42) simultaneously coalesce so that number of solutions

changes by 4 (i.e. the point where three derivatives of G simultaneously vanish). We emphasize that

this can only occur when q > qsw. We also note from Fig. 4.20 that between 0.6 < q < 0.8 we

find more than one swallowtail point for a given q, which is again an indication of the presence of
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Figure 4.21. Bifurcation structure of the solutions to the self-consistency equation Eq. (4.9) in the {η,∆c}
plane with q = 0.96, U0 = 1.13ωR, κ = 350ωR, N = 104, and hence NU0/2 = 16.1κ. The numbers on
the plot indicate the number of solutions for nph in that region of the parameter space. The inset shows
a swallowtail singularity point where five solutions coalesce into a single solution. The coordinates of the
swallowtail point shown in this figure are v = 0.04, η = 1.7κ, ∆c = 6.4κ.

a higher underlying catastrophe. As described in reference [52], swallowtails contain two cusps, and

butterflies contain two swallowtails.

4.10 Stability Analysis

The stability of cold atoms in an optical cavity has been treated in Refs. [12, 53]. In this case we

follow an approach more in line with [18], where the energy functional, Eq. (4.13), and the nonlinear

equation of motion, Eq. (4.10), for the atomic wave function serve as the starting points for an

examination of energetic, and dynamic stability, respectively. Hence, we examine the stability of the

Bloch states at different values of quasi-momentum at fixed values of η and ∆c. Before going into

the details of the calculation we note that it is well known from the study of bistability in classical

nonlinear cavity systems, that the back-bent branch of the lineshape profile shown in Fig. 4.2 is

unstable, see, for example, [3]. From the three dimensional plots Fig. 4.12 and Fig. 4.13, we see

that this back-bent branch corresponds to the upper branch of the loop in energy-quasi-momentum

space. Thus, we expect to find this branch unstable.

We first consider energetic stability in the spirit of [18]. The grand canonical potential per unit
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length is G[ψ] = E[ψ]− µN

G[ψ]

N
=

1

π

∫ π

0

dx

∣∣∣∣dψdx
∣∣∣∣2 − η2

κN
arctan

(
∆c − NU0

π

∫ π
0

dx|ψ|2 cos2(x)

κ

)
− µ

∫
dx|ψ(x)|2. (4.48)

We perturb the wavefunction as ψ(x) = ψ0(x) + δψ(x), where ψ0 extremizes G, i.e. one of the

solutions that we obtained in Sec. 4.5. Since ψ0 is an extremum, the first order variation in G

vanishes and the second order contribution can be written as

δG2

N
= 〈δψ|H0|δψ〉+ ρ〈δψ| cos2(z)|ψ0〉2 + ρ〈ψ0| cos2(z)|δψ〉2

+ 2ρ〈δψ| cos2(z)|ψ0〉〈ψ0| cos2(z)|δψ〉, (4.49)

where

H0 = − d2

dz2
+ U0nph cos2(z) (4.50)

and

ρ =
η2N2U2

0

κ3

∆c−NU0〈ψ0| cos2(z)|ψ0〉
κ

1 +
(

∆c−NU0〈ψ0| cos2(z)|ψ0〉
κ

)2 . (4.51)

Equation (4.49) can be cast into a simple matrix form [18]

δG2

N
=

1

2

∫
dxΨ†(x)AΨ(x). (4.52)

Here

Ψ(x) =

(
δψ(x)

δψ∗(x)

)

and

A =

(
H0 + 2ρ cos2(x)ψ0(x)I∗[. . .] 2ρ cos2(x)ψ0(x)I[. . . ]

2ρ cos2(x)ψ∗0(x)I∗[. . . ] H0 + 2ρ cos2(x)ψ∗0(x)I[. . .]

)
,

where I[. . . ] is an integral operator defined by

I[δψ∗(x)] ≡
∫

dx cos2(x)ψ0(x)δψ∗(x). (4.53)

The eigenvalues of the matrix A decide the energetic stability. If A is positive definite, the solution

ψ0 is energetically stable.
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Figure 4.22. Energetic and dynamical stability of the band structure loops. The upper branch of the loop
(black dashed line) is energetically and dynamically unstable. The other branches (red lines) are energetically
and dynamically stable. Parameters are, ∆c = 3140ωR, κ = 350ωR, U0 = ωR, N = 104, η = 2.8 η0, and
η0 = 325ωR.

In order to examine dynamic stability, we linearize the equation of motion Eq. (4.10) by writing

ψ(x, t) = [ψ0(x) + δψ(x, t)]e−iµt. This leads to

i
dδψ

dt
=

[
− d2

dx2
+ U0 | α0 |2 cos2(x)− µ

]
δψ(x) + 2ρ cos2(x)ψ0(x) (I∗[δψ(x)] + I[δψ∗(x)]) . (4.54)

One can write a similar equation for δψ∗ and combine the two into a matrix equation similar to

Eq. (4.52)

i
dδΨ

dt
= σzAδΨ, (4.55)

where σz is the Pauli z-matrix. The solution ψ0 is dynamically stable if all the eigenvalues of σzA

are real. Thus, the occurrence of complex eigenvalues of σzA signals dynamical instability. Before

we quote the results, a comment is in order about the form of the perturbations δψ. The integral

operator in Eq. (4.53) couples the perturbation and ψ0. If ψ0 = eiqxUq(x), with Uq(x) = Uq(x+ π),

i.e. a Bloch function with quasi-momentum q, the form of δψ that leads to non-zero coupling is

δψ(x) = eiqz
∑
j

bje
i2jx. (4.56)

That is, the perturbation should be a Bloch wave with the same quasi-momentum as ψ0. In Eq. (4.49)
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we consider the change in the grand canonical potential per unit length, but the above choice is

made to satisfy the requirement that the integral operator I over the system size gives a non-zero

answer. A physical way to motivate the above choice goes as follows: in the absence of interatomic

interactions the allowed excitations of the quasi-momentum state q have to be in multiples of the

crystal momentum 2kc (simply 2 in dimensionless units) since the only source of perturbation is the

interaction with the cavity field. The above form respects this requirement. Also, the number of

terms in the Fourier expansion Eq. (4.56) has to be less than the number of terms in the original

expansion for ψ0 in Eq. (4.16) to avoid spurious instabilities [18]. Using Eq. (4.56), we find that the

upper branch of the looped dispersions is both dynamically and energetically unstable as expected.

The other two branches are stable. This is shown in Fig. 4.22 for one particular case. We shall not

perform the stability analysis for the case when there are five solutions, but anticipate by an extension

of the case for the bistability scenario, that two of the solutions will be dynamically unstable and

three will be stable.

4.11 Summary and Conclusions

In this paper we have analyzed bistability in atom-cavity systems in situations where the atoms

are in spatially extended states (Bloch waves) with non-zero quasi-momentum q. We find that

bistability in the number of photons in the cavity goes hand-in-hand with the emergence of loops

in the band structure. Both are manifestations of a bifurcation in the stationary solutions of the

coupled atom-light equations of motion.

We have studied how the loops appear and disappear as the laser detuning and the laser pumping

rate are changed. In particular, Eq. (4.31) provides an analytical estimate of the critical pump

strength ηcr(q) at which bistability sets in. It depends on the quasi-momentum of the atomic state,

and predicts that loops first appear at the edges of the first Brillouin zone (q = ±1) and then move

inwards. This is indeed what we find upon solving the coupled atom-light equations numerically:

swallowtail loops appear at the edges of the first Brillouin zone as the pump strength η is increased

above ηcr(q = 1). As η is increased further the swallowtails extend inwards, merge, and detach

from the rest of the band to form a separate loop centred at q = 0 which ultimately closes up and

vanishes. A rather similar behaviour is observed as the pump-cavity detuning ∆c is swept from

below the cavity resonance to above it.

The loops we find are qualitatively different from those that occur for BECs in static optical

lattices in the presence of repulsive interatomic interactions [17, 18, 19]. There, the loops are centered

at the edge of Brillouin zone and cause the dispersion to have a finite slope at that point. By contrast,

the band structure we find always has zero slope at the edge of the Brillouin zone. Nevertheless,

there are also many similarities, including the stability of the various branches of the loops. We find

that the upper branch of the loops are energetically and dynamically unstable, as expected from
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optical bistability considerations.

The extra degree of freedom afforded by the quasi-momentum (over considering only q = 0)

results in the possibility of tristability, namely regions of parameter space where there are five

solutions, three stable and two unstable. The complexity of the solutions in parameter space led us

to perform an analysis of the problem in terms of catastrophe theory which is a useful mathematical

tool for understanding the organization of bifurcations of solutions. The key to our treatment was

the recognition that, because exact solutions for the atomic wave functions are Mathieu functions

which are specified only by the lattice depth (once one chooses a quasi-momentum), the photon

number nph which determines the cavity depth provides a completely equivalent description to the

wave function.

In the case of shallow lattices we were able to proceed analytically and found that the structure

of the solutions in parameter space when q = 0 corresponds to a cusp catastrophe, at the most

singular point of which three solutions (two stable and one unstable) form a pitchfork bifurcation,

and this describes the onset of bistability as the laser pumping is increased. Interestingly, the

three experimental parameters {∆c, η, U0} reduced to just two effective control parameters. In the

general case of arbitrary lattice depth and 0 ≤ q ≤ 1, the highest singularities we found were

swallowtail catastrophes where four solutions simultaneously merge. The swallowtails only exist

when q > qsw = 0.545. However, there is good evidence that there is an underlying butterfly

catastrophe, but, once again, the experimental parameters {∆c, η, q, U0} reduced to three effective

control parameters meaning that generically one is unable to locate the butterfly point (where five

solutions simultaneously merge).

The band structure loops found here have important implications for Bloch oscillations of atoms

in cavities [30, 31]. Bloch oscillations are essentially an adiabatic effect where, as a force is applied

to the atoms they remain in the same band but their quasi-momentum evolves linearly in time, as

shown in Eq. (4.22). Swallowtail loops in the band structure will have a deleterious effect on Bloch

oscillations because, as the quasi-momentum evolves, the atoms will reach the edge of a loop where

the branch they are following vanishes. This will lead to a sudden, non-adiabatic, disruption in

the state of the atoms as they are forced to jump to another branch or even another band. For

BECs in ordinary static optical lattices these non-adiabatic jumps are thought to be the cause of

the destruction of superfluidity during Bloch oscillations [22, 23]. We have not included interactions

in our treatment (interactions are necessary for superfluidity), but related effects will likely occur,

especially considering the added heating due to the fact that the lattice depth will also abruptly

change at the same point. However, when the loop detaches from the main band it will no longer

affect Bloch oscillations. Furthermore, loops only occur for certain limited regions of parameter

space, i.e. inside the cusp and swallowtail catastrophes shown in Figs 4.14, 4.15, and 4.21. For

experiments involving Bloch oscillations we therefore recommend that parameter regimes are chosen

which lie outside to these regions.
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Finally, we add that although we have only considered Bloch waves in this paper, localized states

(for example Wannier functions) can be formed from superpositions of Bloch waves with different

values of the quasi-momentum. In this sense, localized states therefore contain all values of the

quasi-momentum and so might be expected to display tristability too. However, it should be borne

in mind that the nonlinearity of the system means that superpositions of Bloch states of different q

but the same lattice depth will not in general obey the effective Schrödinger equation (4.10).

Acknowledgements

We gratefully acknowledge E. A. Hinds, D. Pelinovsky and M. Trupke for discussions. For funding,

DHJO and BPV thank the Natural Sciences and Engineering Research Council of Canada, and the

Ontario Ministry of Research and Innovation, and JL thanks VR/Vetenskapsr̊adet.

Appendix

We shall now sketch a proof showing that the function G defined in Eq. (4.42) produces swallowtail

catastrophes between 0.545 ≤ q ≤ 1 (in fact it produces two lines of swallowtail points, as shown in

Fig. 4.20) where its derivatives up to third order vanish simultaneously [36, 54].

Consider, for example, the point in control and state space given by C0 = {∆c = 0.90, η =

14.5, q = 0.69, U0 = 0.15} and v0 = 7.75, nph = 50.3 (frequencies are measured in units of κ and

the number of atoms is set at N = 102). The numerical package [50] we used for calculating the

derivatives gives error bounds allowing us to estimate the accuracy of our calculations. For the point

{C0, v0} we found that the right hand side of Eq. (4.47) was equal to 8.09 × 10−15 with an error

of 4.00 × 10−13. This means that the third derivative of the state function vanishes within error,

indicating a swallowtail point. However, the smallest value we found anywhere in parameter space

for the difference between the left hand side and the right hand side of Eq. (4.46) was −8.64× 10−5

with error 6.00× 10−12. This means that the fourth derivative of the state function does not vanish

within error, suggesting there is no butterfly point. The value of the quasi-momentum at the point

where we found this minimal fourth derivative was q = qsw = 0.545.

Before outlining the proof, we first give some definitions [36]. If n is the number of state variables,

then consider a function p: Rn → R

� jkp is the Taylor expansion of p to order k

� Jkp is jkp minus its constant term

� p is k-deteminate at 0 if any smooth function p + q, where q is of order k + 1 (leading order

term of the Taylor expansion is of order k + 1), can be locally expressed as p(y(s)) with y:

Rn → Rn being a smooth reversible change of co-ordinates.
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� Ekn is the vector space of polynomials in s1, . . . , sn of degree ≤ k.

� Jkn is the subspace of Ekn with zero constant term

� ∆k(p) is the subspace of Jkn spanned by all Qjk
(
∂p
∂si

)k
, where 1 ≤ i ≤ n, Q ∈ Ekn, and the bar

symbol represents the restriction to the k-th order of the expansion.

� The codimension of a function p is the codimension of ∆k(p) in Jkn for any k for which p is

k-determinate.

� An r − unfolding of p at 0 is a function:

P : Rn+r → R,

(s1, . . . , sn, t1, . . . , tr) 7→ P (s, t) = Pt(s),

such that P0,...0(s) = p(s).

More informally, the term “unfolding” refers to how the catastrophe unfolds as one moves away from

the origin in control space. At the origin in control space the catastrophe reduces to its most singular

part, known as its germ. For example, from Table 4.1, the germ of the swallowtail catastrophe is

given by s5. The terms in the potential function which depend on the control parameters are called

the unfolding terms, and the number of them is equal to the codimension. If P is an r − unfolding

of p, set

{
wk1 (P ), . . . , wkr (P )

}
=

{
∂

∂t1

(
Jk(Pt1,0,...,0)

)
, . . . ,

∂

∂tr

(
Jk(P0,...,tr )

)}
. (4.57)

W k(P ) is the subspace of Jkn spanned by {wk1 (P ), . . . , wkr (P )}.
Referring to the standard forms given in Table 4.1, the potential function and state equation for

the swallowtail are given by

Φ(s;C) =
1

5
s5 +

C3

3
s3 +

C2

2
s2 + C1s (4.58)

G(s;C) ≡ s4 + C3s
2 + C2s+ C1 = 0 . (4.59)

Notice that the state equation for a swallowtail catastrophe is similar to the potential function

for a cusp catastrophe up to a constant C1. Since the state function G is the central object in

the treatment given in Section 4.9 rather than the potential function, instead of proving that the

underlying potential function is equivalent to that of a swallowtail catastrophe, we will prove that

the state function G around the singular point v0 and C0 is equivalent to the potential function of

a cusp catastrophe (note that this is different from the small photon number case we studied in

Section 4.9.2 where we showed that the underlying potential was equivalent to the potential for a
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cusp catastrophe). To that end, first notice that the role of the constant term C1 in Eq. (4.59) is

played by −η2U0 in Eq. (4.42). Subtracting this function we have a modified form of G (where we

have also dropped the dependence on q since we are focusing on a particular quasi-momentum):

F (v; {∆c, U0}) = F (v;C) = v + v(∆c −NU0f(v, q))2 (4.60)

which satisfies F
′
(v0;C0) = F

′′
(v0;C0) = F

′′′
(v0;C0) = 0. In order to have a function defined in the

neighborhood of v0 and C0, let us set the origin of v at v0 and the origin of C at C0 and define

F1(v; {∆c, U0}) ≡ F (v + v0, C + C0)− F (v0, C0). (4.61)

Thus, we have F1(0, 0) = 0 and for the function g(v) ≡ F1(v, {0, 0, 0}) the most singular point is at

v = 0 where g
′
, g

′′
, g

′′′
vanish. The function g is the germ which we described above, and is the key

feature which identifies the catastrophe. When g is Taylor expanded around 0 one has

g(v) =
g(iv)

4!
v4 +

g(v)

5!
v5 +O(v6) (4.62)

where g(iv)(0) is the first non-zero Taylor coefficient. This means that g is 4-determined around 0 and

we say that g ∼ v4 around 0. According to Table 4.1, the canonical unfolding of the 4-determined

germ around 0 is the cusp catastrophe Φ(s;C) = s4/4 +C2s
2/2 +C1s, where v and s are related via

a differomorphism (smooth transformation of coordinates).

Next we calculate the codimension of g. The Jacobian ideal for g is in this case ∆4(g) =

{v4, v3 + gv

4giv |v=0v
4}. Hence, the codimension of g is dim(J4

1 ) − dim(∆4(g)) = 4 − 2 = 2. The

function F1 is thus a 2 parameter unfolding of the germ g. In order to prove that the function F1

can be described by a cusp catastrophe, we need to prove that F1 is isomorphic as an unfolding to

the canonical form Φ(s;C) = s4/4 +C2s
2/2 +C1s. In order to do this we need to invoke the idea of

transversality.

Transversality generalizes what we know of two intersecting lines in a two dimensional plane to

multidimensional manifolds. Two subspaces of a manifold are transverse if they meet in a subspace

that is as small in dimension as possible. If X1 (dim r) and X2 (dim t) are subspaces of X (dim n),

X1 and X2 are transverse if their intersection is empty or if it is of the dimension max(0, r+ t− n).

Our first aim is to prove that the 2−unfolding of F1 is a versal unfolding. To do this we use a defining

theorem for versality from [36] which states that: an r− unfolding P of p, where p is k-determinate

is versal if and only if W k(P ) and ∆k(p) (defined above) are transverse subspaces of Jkn . We have
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already found ∆4(g), the polynomial space W 4(F1) is spanned by the vectors:

w1(F1) =
∂

∂U0

(
J4(F1(0, U0, 0,))

)
,

w2(F1) =
∂

∂∆c

(
J4(F1(0, 0,∆c))

)
,

The expressions depend on the derivatives of the coupling function f(v, q) and the value of the

parameters at the singular point {v0, C0}. They are too cumbersome to state here but their general

forms are given by

wi(F1) =
∑
j=1..4

zijv
j ,

which we determined numerically and all of the zij ’s are non-zero. The polynomials wi are linearly

independent which gives the dimensionality dim(W 4(F1)) = 2. Furthermore, we have verified that

the rank of the matrix formed by the polynomial coefficieints of ∆4(g) and W 4(F1) is 4 and this

combined with the fact that dim(∆4(g)) + dim(W 4(F1)) = 2 + 2 = dim(J4
1 ) proves that ∆4(g) and

W 4(F1) are transverse. Thus, by the theorem stated above F1 is a versal unfolding of the germ g and

since it is a 2−unfolding (codimension of g = 2) it is also universal [36]. This proves the equivalence

of the unfolding of F1 to the cusp catastrophe.
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Chapter 5

Bloch Oscillations of Cold Atoms in

a Cavity: Effects of Quantum Noise

Preface

In this chapter we return to examine Bloch oscillations in an optical cavity. In Chapter 3 the atomic

and light degrees of freedom were described in the meanfield approximation. Here, we are interested

in the dynamics of the quantised fluctuations about the meanfields. We assume that the cavity is

in contact with a zero temperature electromagnetic bath through the partially transmissive mirrors.

The fluctuations in the cavity light field are then driven by the vacuum fluctuations of the external

electromagnetic field. Due to the atom-light coupling the vacuum fluctuations affect the atomic

fluctuation dynamics as well. The effect of vacuum fluctuations on the atomic degree of freedom can

also be understood as a manifestation of quantum measurement backaction [104, 105] arising from

the continuous leaking of the light field from the cavity.

We obtain the quantised fluctuations by solving the coupled Heisenberg-Langevin equations for

the atomic and light fields in the regime where the fluctuation potential provide a small correction

to the meanfields. One challenging aspect of this is that the meanfields about which the fluctuations

are calculated are not static but are given by the Bloch oscillating solutions that we discussed in

Chapter 3. Previous studies on cavity cooling [61, 62, 63, 64], have shown that atomic fluctuations

can be damped due to the finite response time of the cavity field to changes in atomic configuration.

However, we find that this cooling effect vanishes when Bloch oscillations are present and we identify

the mechanism underlying this modification. We also compute how the signal-to-noise ratio (SNR)

for a measurement of the Bloch frequency is affected due to the inclusion of the fluctuations. Thus,

the material discussed in this chapter extends and augments the main problem presented in the

earlier parts of this thesis.
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Abstract
We extend our theory of Bloch oscillations of cold atoms inside an optical cavity [B. P. Venkatesh et

al., Phys. Rev. A 80, 063834 (2009)] to include the effects of quantum noise arising from coupling

to external modes. The noise acts as a form of quantum measurement backaction by perturbing the

coupled dynamics of the atoms and the light. We take it into account by solving the Heiseberg-

Langevin equations for linearized fluctuations about the atomic and optical meanfields and examine

how this influences the signal-to-noise ratio of a measurement of external forces using this system.

In particular, we investigate the effects of changing the number of atoms, the intracavity lattice

depth, and the atom-light coupling strength, and show how resonances between the Bloch oscillation

dynamics and the quasiparticle spectrum have a strong influence on the signal-to-noise ratio as well as

heating effects. One of the hurdles we overcome in this paper is the proper treatment of fluctuations

about time-dependent meanfields in the context of cold atom cavity-QED .
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5.1 Introduction

When quantum particles in a periodic potential of period d are subject to a weak additional constant

force F they do not uniformly accelerate like free particles, but instead undergo Bloch oscillations

[1] at an angular frequency given by:

ωB = Fd/~ . (5.1)

Bloch oscillations (BOs) of cold atoms in optical lattices were first observed in 1996 by uniformly

accelerating the lattice [2]: in a frame co-moving with the lattice the atoms experience a constant

force. At about the same time, the accelerating lattice method was used to observe Wannier-

Stark ladders [3], which are a different aspect of the same “tilted lattice” physics. The method has

subsequently been employed to realize beam splitters for atom optics capable of large momentum

transfers, see, e.g. [4].

In gravity-driven BOs the lattice is held fixed in space but oriented vertically so that gravity

provides the force Fg = mg on the atoms (of mass m). From Eq. (5.1), a measurement of ωB

corresponds to a measurement of the applied force F if we know d/~. This Bloch oscillator may be

viewed as an interferometer in momentum space [5] and has been experimentally demonstrated by a

number of groups [6, 7, 8, 9]. For example, the experiment [9] used gravity-driven BOs of strontium

atoms to measure the local acceleration due to gravity at the level of ∆g/g = 5 × 10−6. Like

any interferometer, long coherence times are crucial for precision measurements and in [9] the BOs

were coherent over 7 s, corresponding to ≈ 4000 oscillations. This remarkable degree of coherence

was greatly facilitated by the choice of strontium atoms, which have very weak s-wave scattering,

and thus dynamical instabilities normally associated with superflow in lattices [10, 11] were highly

suppressed. Variations on this scheme that improve the visibility of the BOs, including frequency

[12] and amplitude [13, 14] modulation of the lattice, have allowed for the measurement of gravity

at the level of ∆g/g = 10−9. In these latest experiments the BOs were coherent for over 20 seconds.

The experiments referred to above all involve destructive measurements of the BOs due to the

nature of the imaging process of the atoms, whether it be in situ or by a time-of-flight technique

after the lattice has been switched off [14]. Therefore, a precision measurement of ωB by the above

methods requires that the experiment be re-run many times, each run being for a slightly different

hold time, so that the oscillations can be accurately mapped out. This not only takes a long time,

but also requires that the initial conditions be recreated as faithfully as possible for each run.

In [15] we proposed a scheme for continuous (i.e. non-destructive) measurements of BOs based

upon placing the atoms inside a Fabry-Perot optical resonator which would allow for an estimate of

ωB from the data acquired over a single run. A related scheme has also been independently proposed

for ring cavities [16]. The periodic potential is now provided by the standing wave of light which

forms inside the cavity when it is pumped by a laser. Orienting the cavity vertically, the atoms
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execute BOs along the cavity axis as depicted in Fig. 5.1. The enhanced atom-light coupling inside

a high-Q cavity means that the oscillating atoms imprint a detectable periodic modulation on both

the phase and amplitude of the light which can be seen either in transmission or reflection. Thus,

the measurement is performed upon the light leaking out of the cavity rather than directly upon the

atoms.

The strong atom-light coupling that can be realized in cavity-QED stands in contrast to the

case of optical lattices in free space where the atoms exert only a tiny backaction upon the light.

The optical dipole interaction between a single cavity photon and a single atom is characterized

by the Rabi frequency g0 = (µ/~)
√
~ωc/(ε0V ), where ωc and V are the frequency and volume of

the relevant cavity mode and µ is the atomic transition dipole moment. Defining the cooperativity

C ≡ g2
0/(2γκ), where 2γ is the spontaneous emission rate of the atom in free space and 2κ is the

energy damping rate of the cavity, 1/C is the number of atoms required to strongly perturb the light

field. The normal mode splitting that results from strong coupling has been directly observed in a

number of cold atom optical cavity experiments [17, 18, 19, 20]. In the experiment [20], which was

performed with a Bose-Einstein condensate, the cooperativity was C = 145. Even more pertinently,

these systems have been used to detect the presence of single atoms [21, 22, 23], as well as to follow

their dynamics in real time [24, 25]. The collective dynamics of ultracold atomic gases have also

been tracked using cavities [26, 27, 28]. The key experimental steps necessary for the continuous

monitoring of BOs in a cavity have, therefore, already been demonstrated.

The drawback with any continuous measurement scheme is measurement backaction. In cavities

this backaction typically takes the form of cavity photon number fluctuations which lead to random

force fluctuations on the atoms, as is evident in the erratic nature of the single atom trajectories seen

in the experiments [24, 25] referred to above. In the many atom context, quantum measurement

backaction generally manifests itself in a heating of the atom cloud (although under some circum-

stances it can lead to cooling [29]). In the cavity-optomechanical regime (where the collective motion

can be modelled as a harmonic oscillator of angular frequency ω) the heating rate is expected to be

R = (xzpf/~)2SFF (−ω) [30], where xzpf is the zero-point fluctuation and SFF is the spectral density

of the force fluctuations (which is directly proportional to the cavity photon number fluctuations).

This heating rate is in agreement with observations when convolved with technical fluctuations [31].

In the system considered in this paper (see Fig. 5.1), we can divide the backaction into two types.

One type comes from the fact that the atoms sit in an optical lattice whose depth is periodically

modulated in time at the frequency ωB due to the effect of BOs. This backaction is a classical effect in

the sense that it occurs even when the light field is treated classically (no photons). The nonlinearity

that arises from this backaction can lead to swallowtail loops in the atomic band structure [32, 33] that

mimics the effects of direct atom-atom interactions [34, 35, 36, 37]. These loops are the counterpart

in the atomic wave function of optical bistability in the light [26, 27, 28, 38]. The second type of

backaction arises only when the fluctuations due to the discrete photon nature of the light field are
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bottom mirror
aout

to detector

top mirror

Figure 5.1. Schematic of the precision measurement proposal in [15]. A dilute cloud of cold atoms undergoes
BOs in the combined intracavity lattice potential and the acceleration due to gravity. The transmitted light
field’s intensity and phase are modulated at the Bloch frequency. A in-situ precise measurement of the Bloch
frequency (and hence the force) can be performed by detecting the transmitted light.
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taken into account and is related to the heating effect mentioned above. The characteristic frequency

of these latter fluctuations is κ which is much larger than ωB.

The first type of backaction was analyzed in our previous paper [15] where our main aim was to

show that, despite the self-generated time modulation of the intracavity optical lattice, the Bloch

acceleration theorem still applies and the BO frequency is not modified (although harmonics can

be generated). This latter result is clearly very important if the cavity BO method is to be used

for precision measurements and may be viewed as a consequence of the fact that the formula (5.1)

does not depend on the depth of the lattice, only its spatial period. An estimate of the effects of the

second type of backaction was also given in our previous paper, but this estimate was obtained under

the assumption that the photon number fluctuations were purely due to the photon shot noise found

in a coherent state of light. This ignores the correlations that build up between the atoms and the

light inside the cavity and our main aim in this paper is to solve the dynamics of the coupled photon

and atom fluctuations systematically from first principles and thereby capture these correlations.

This will allow us to properly determine the sensitivity of the measurement of the Bloch frequency

to quantum fluctuations.

The plan of this paper is as follows: in Section 5.2 we introduce the physical system, the associated

hamiltonian, and the equations of motion. We then review in Sections 5.3 and 5.4 the meanfield

approximation and the associated numerical results which were the focus of our previous paper [15],

before introducing in Section 5.5 the main model to be treated in this paper which adds quantum

fluctuations. This is an elaboration of the linearization approach presented in, e.g. [39, 40, 41], to

include a time-dependent meanfield component (due to the BOs). The fluctuations correspond to

quasiparticles (excitations out of the meanfield), and their spectrum is analyzed in Section 5.6 and

then used to help interpret the numerical results for the quantum dynamics presented in Section

5.7. We also develop a simple rate equation picture, valid in the weak coupling regime, to help us

understand the rate of quasiparticle excitation. Following this we change gears slightly and apply

the above results to investigate how quantum fluctuations affect a precision measurement of ωB by

calculating the signal-to-noise ratio (SNR). We present the theory lying behind these calculations in

Section 5.8 and in Section 5.9 we examine the results, paying particular attention to whether or not

there is an optimal value for the atom-light coupling parameter β = NU0/κ. We also present results

illustrating the dependence of the SNR on other system parameters such as the number of atoms

and the intracavity lattice depth. We summarize our results and provide some perspective in Section

5.10. We have also provided three appendices that give details omitted from the main text: the

first derives an approximation wherein the cavity field is assumed to be in a coherent state and the

atomic fluctuations about the meanfield are treated as independent oscillators, the second discusses

the effects that BOs have on cavity cooling, and the third discusses our approach to calculating

two-time correlation functions.
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5.2 Hamiltonian and Equations of Motion

Our system consists of a gas of N bosonic atoms inside a vertically oriented Fabry-Perot optical

cavity. A single cavity mode of frequency ωc is coherently pumped by a laser with frequency ωp that

is detuned from both the atomic and the cavity resonance frequencies. This sets up a standing wave

mode along the cavity axis of the form cos(kcz), where kc = ωc/c. The relevant frequency relations

are characterized by the two detunings

∆c ≡ ωp − ωc, (5.2a)

∆a ≡ ωp − ωa, (5.2b)

where ωa is the atomic transition frequency. In the dispersive regime, the occupation of the ex-

cited atomic state is vanishingly small and it can be adiabatically eliminated. A one-dimensional

hamiltonian for the atom-cavity system in the dispersive regime can then be written as [42, 43]

Ĥ = −~∆câ
†â+ i~η

(
â† − â

)
+

∫
dz Ψ̂†

[
− ~2

2M

∂2

∂z2
+ ~U0â

†â cos2(kcz)− Fz
]

Ψ̂, (5.3)

where Ψ̂(z, t) and â(t) are the field operators for the atoms and the cavity photons which obey

the equal time bosonic commutation relations [Ψ̂(x, t), Ψ̂†(x′, t)] = δ(x − x′), and [â(t), â†(t)] = 1,

respectively. The single atom dispersive light shift has been denoted by U0 ≡ g2
0/∆a.

The hamiltonian has been written in a frame rotating with the pump laser frequency ωp, and this

leads to the appearance of the two detunings. The first term is just the free evolution of the cavity

mode. The second term represents the laser coherently pumping the cavity at rate η, and the third

term describes the atomic part of the hamiltonian. The first two terms of the atomic part represent

the kinetic energy and a light induced potential energy. This latter term can either be understood

as the atom moving in a periodic potential with average amplitude ~U0〈â†â〉 or, if combined with

the first term in the hamiltonian, as a shift in the resonance frequency of the cavity due to the

coupling between the atom and the field. The third term in the atomic part provides the external

force that drives the BOs. We assume this force arises from the vertical orientation (z increases in

the downward direction) of the cavity and is given by F = Mg.

We have not included direct atom-atom interactions in the hamiltonian (5.3) because under

realistic experimental conditions they are three orders of magnitude smaller than the recoil energy

ER ≡ ~2k2
c/(2M) which characterizes the single-particle energy (kinetic and potential) of an atom

in an optical lattice. Consider, for example, the meanfield interaction energy per particle Eint/N =

(2π~2asN/M)
∫
|Φ(r)|4d3r for a cloud of N = 5× 104 87Rb atoms trapped in a 178 µm long cavity

[28]. Here as = 5.3 nm is the s-wave scattering length. We take the normalized 3D wave function

Φ(r) to be the product of a ground band Bloch wave that extends 178 µm along z and a gaussian 25

µm wide in the transverse plane. Then, evaluating the Bloch wave for a lattice which is 3 ER deep
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and made from 780 nm light (456 wells are occupied), we find the ratio Eint/N : ER = 1.1 × 10−3.

The interactions can be tuned to smaller values still using a Feshbach resonance: the experiment

[44] increased the dephasing time of BOs from a few oscillations to 20,000 using this technique. The

fact that the atoms all interact with a common light field whose magnitude is modified by the sum

of their individual couplings gives rise to a nonlinearity (the classical backaction referred to above)

that is in some ways analogous to that due to direct interactions [32, 45], but in other ways differs

and can lead to novel behavior [42, 43, 46].

Natural units for the length and energy in cavity-QED are given by 1/kc and the recoil energy

ER, respectively. From here on we scale all lengths by 1/kc and consequently define x ≡ kcz. We

scale frequencies by the recoil frequency ωR ≡ ER/~ and time by 1/ωR and retain the same symbols

for the scaled variables. The Heisenberg-Langevin equations of motion for the light and atomic field

operators in the scaled variables are [42]

i
dâ

dt
=
[
−∆c +

∫
dx Ψ̂†(x, t)Ψ̂(x, t)U0 cos2(x)− iκ

]
â+ iη + i

√
2κξ̂(t) (5.4a)

i
∂Ψ̂

∂t
=
[
− ∂2

∂x2
+ U0â

†â cos2(x)− fx
]
Ψ̂ (5.4b)

where f ≡ F/(~kcωR) = ωB/(πωR) is the dimensionless form for the external force. The operator ξ̂(t)

is the Langevin term and is assumed to be Gaussian white noise with the only non-zero correlation

being

〈ξ̂(t)ξ̂†(t′)〉 = δ(t− t′). (5.4c)

Mathematically, the Langevin noise terms are necessary in order to preserve the commutation re-

lation [â(t), â†(t)] = 1 in an open system. Physically, their origin is vacuum fluctuations of the

electromagnetic field that are transmitted into the cavity via the mirrors and they thus only appear

in the equations for the light field. Nevertheless, the noise is conveyed to the atomic dynamics by

the atom-light coupling.

5.3 Meanfield dynamics: theory

The approach we follow in this paper is based upon a separation of the field operators into meanfield

and quantum parts:

â(t) = α(t) + δâ(t) (5.5a)

Ψ̂(x, t) =
√
Nϕ(x, t) + δΨ̂(x, t). (5.5b)
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In the meanfield approximation the light is assumed to be in a classical state with amplitude α(t) =

〈â(t)〉, where |α(t)|2 corresponds to the average number of photons in the cavity, and the atoms are

assumed to all share the same single-particle wave function ϕ(x, t) = 〈Ψ̂(x, t)〉/
√
N . The equations

of motion for the meanfield amplitudes α(t) and ϕ(x, t) are

i
dα(t)

dt
=
[
−∆c +NU0〈cos2(x)〉 − iκ

]
α(t) + iη (5.6a)

i
∂ϕ(x, t)

∂t
=

[
− ∂2

∂x2
+ |α(t)|2U0 cos2(x)− fx

]
ϕ(x, t) (5.6b)

where the second equation has the form of a Schrödinger equation. The expectation value

〈cos2(x)〉(t) =

∫
dx|ϕ(x, t)|2 cos2(x) (5.6c)

that appears in the first of these equations provides the time-dependent coupling between the atomic

probability density and the cavity mode function. Multiplying this integral is the collective atom-

cavity coupling parameter NU0. When measured in units of the cavity linewidth we denote this

parameter by β

β ≡ NU0/κ . (5.7)

We illustrate the effect that β has on the meanfield dynamics in Figs. 5.2 and 5.3 below.

In reference [32] we studied the influence the classical backaction nonlinearity has upon the band

structure of atom-cavity systems. The band structure is given by the steady state solutions [α̇ = 0,

ϕ(x, t) = ϕ(x) exp(−iµt/~)] of the coupled equations of motion (5.6a) and (5.6b) in the absence of

the external force f . It is straightforward to see that, despite the nonlinearity, exact solutions of

the steady state problem are given by Mathieu functions (like in the linear problem of a quantum

particle in a fixed cosine potential). Mathieu functions are Bloch waves and so can be labelled by a

band index b and quasimomentum q [47]

ϕq,b(x) = eiqxUq,b(x) (5.8)

where Uq,b(x + π) = Uq,b(x) has the same period as the lattice. In the reduced zone picture q is

restricted to lie in the first Brillouin zone −1 < q ≤ 1. Substituting the Bloch wave solution into the

equations of motion yields the steady state equations

αss =
iη

∆c −NU0〈cos2(x)〉+ iκ
(5.9a)

µq,b Uq,b(x) =

[(
−i ∂
∂x

+ q

)2

+ |αss|2U0 cos2(x)

]
Uq,b(x) (5.9b)

where the subscript ss denotes “steady state”. Solving these equations one obtains a band structure
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analogous to that in the linear case but with the striking difference that the nonlinearity can lead to

swallowtail loops in the bands. It is important to appreciate that this band structure is not for the

atoms alone, but for the combined atom-cavity system. For example, the eigenvalue µ is actually a

chemical potential rather than the band energy (for the underlying energy functional with the light

adiabatically eliminated see [32]), and another difference from the linear case is that the lattice depth

s = U0|αss|2 is not fixed, but instead depends on the values of {b, q}. So, for example, the lattice

depth changes during a BO as q is swept along the band.

The external force f breaks the spatial periodicity and means that Bloch waves are replaced by

Wannier-Stark states as the stationary solutions of the equations of motion (in fact, in finite systems

the Wannier-Stark states are resonances rather than true eigenstates [48]). The spatial periodicity

can be restored by applying the unitary transformation ϕ̄(x, t) = exp(−iftx)ϕ(x, t) which removes

the fx term appearing in the hamiltonian in the Schrödinger equation (5.6b) and introduces a shift

ft into the momentum operator

H = − ∂2

∂x2
+ s(t) cos2(x)− fx −→ H̄ =

(
−i ∂
∂x

+ ft

)2

+ s(t) cos2(x) . (5.10)

We denote the frame resulting from this transformation as the transformed frame (TF), and the

original frame as the lab frame (LF).

Let us now consider the dynamics under the influence of the force term. We take the initial

atomic state ϕ̄(x, t = 0) = ϕ(x, t = 0) to be a Bloch state in the ground band with quasimomentum

q = q0. In the adiabatic approximation the atoms remain in the ground band but the force causes

the quasimomentum to sweep periodically through the first Brillouin zone in accordance with the

Bloch acceleration theorem

q(t) = q0 + ft (5.11)

as can be seen by comparing Eqns. (5.9b) and (5.10). In fact, a careful analysis [49] shows that Eq.

(5.11) holds even when adiabaticity is broken and interband transitions are allowed providing these

transitions are “vertical”, i.e. they conserve q.

This standard approach to BOs remains valid even when the lattice depth is modulated in time,

as takes place in cavities, because amplitude modulation does not break the spatial periodicity of the

potential and so cannot change q [15]. We therefore find that at any later time t, the exact atomic

meanfield can be expressed as

ϕ(x, t) = exp [i(q0 + ft)x]U(t) . (5.12)

In general U(t) is in a superposition of bands and so is no longer the steady state solution of Eqns.

(5.9a) and (5.9b), although it does retain its Bloch form. The advantage of the TF is that the
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Figure 5.2. Intracavity optical lattice depth s(t) ≡ U0|α(t)|2 in units of the atomic recoil frequency ωR
plotted as a function of time. The curves, which are each for a different value of the collective atom-cavity
coupling parameter NU0/κ, were obtained by solving the meanfield equations of motion Eqns. (5.6a) and
(5.6b) and illustrate the fact that the change in lattice depth over one Bloch oscillation increases with NU0/κ.
In order to maintain a minimum lattice depth of 3ER as NU0/κ was increased by changing U0 = {1, 3, 5}u0,
where u0 = 7 × 10−3ωR, we also changed the pumping strength as η = {30.7, 24.2, 24.3}κ, giving mean
photon numbers {458, 172, 117}, respectively. The other parameter values used in this plot are ∆c = −0.75κ,
κ = 345ωR, and N = 5× 104. For all the plots in this paper the force is such that the Bloch frequency has
the value ωB = ωR/4.

quasimomentum is frozen at its initial value and we have

ϕ̄(x, t) = exp [iq0x]U(t) (5.13)

so that it is only the spatially periodic function U(t) that evolves in time. From the point of view of

numerical computation this allows us to work with a basis of periodic functions (we normalize our

wave functions over one period of the lattice). At any given time a relatively small number of basis

functions can accurately describe the atomic meanfield state and this greatly reduces the numerical

effort in the calculation of BOs.

By working in terms of Bloch waves, our approach is predisposed towards treating wave functions

which are localized in momentum space rather than coordinate space. This choice is sensible because

momentum space is a natural setting for BOs as is evident from Eq. (5.11). This is also in line with

existing experiments demonstrating cold atom BOs in free space optical lattices [2, 6, 7, 8, 9, 12, 13],

where the initial state is generally a fairly narrow wavepacket in momentum space. In this paper we

shall therefore restrict ourselves to states that are completely localised in quasimomentum (δ-function

wave packet).
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(b) Fourier transform in time of lattice depth

Figure 5.3. The lattice depth s(t) in units of the atomic recoil frequency ωR is shown in (a) and its Fourier
transform s(ω) is given in (b). We have increased the atom-cavity coupling from Fig. 5.2 to NU0/κ = 7.75.
At this larger value some fast fluctuations on top of the slow BO become visible. Their frequency is dominated
by a harmonic at 10ωB as can be seen in the inset.

5.4 Meanfield dynamics: results

We now present our numerical results for the meanfield dynamics. The initial state at time t = 0

is taken to have quasimomentum q = 0, and be given by the solutions αss and U0,0(x) of the

meanfield steady state equations [Eqns. (5.9a) and (5.9b)] for atoms in the ground band. This state

is propagated in time using the meanfield equations of motion [Eq. (5.6a) and Eq. (5.6b)]. The

reasons for our choices for the parameter values {U0, N, η,∆c, κ} will be explained at the end of this

Section.

Under the action of the external force the atoms begin performing BOs, which for atoms in

extended Bloch states gives rise to a breathing motion of the atomic density distribution on each

lattice site [15]. The classical backaction imprints an oscillation on the amplitude and phase of the

light field at the Bloch frequency ωB. In Fig. 5.2 we plot the time-dependence of the intracavity

lattice depth s(t) = U0|α(t)|2 seen by atoms, which is proportional to the number of cavity photons

|α|2. The experimental signature of the BOs is the photon current transmitted by the cavity, and

this is given in the meanfield approximation by κ|α(t)|2, and hence is directly proportional to s(t).

The size of the backaction is controlled by the collective coupling β = NU0/κ, as is apparent

from the different curves in Fig. 5.2. As β is increased the change in the lattice depth over a Bloch

period increases and hence the visibility or contrast of the BOs as measured by a photon detector
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outside the cavity increases also. We define the contrast ε as

ε ≡ (smax − smin) / (smax + smin) . (5.14)

Each curve in Fig. 5.2 has a different pumping strength η in order to maintain the same minimum

lattice depth of 3ER. If the lattice becomes too shallow interband transition rates (e.g. due to

Landau-Zener tunnelling around the band edges) become so high that the atoms effectively fall out

of the lattice. On the other hand, if the lattice becomes too deep the contrast decreases (see Fig. 5.9a

below and also Fig. 5 in [32]). A depth of 3ER gives a reasonable compromise. Therefore, although

in the rest of this paper we will examine the effects of changing the various system parameters, we

will always maintain the minimum lattice depth at 3ER (except in Fig. 5.9a and Fig. 5.14). This

also allows us to make comparisons between the effects of different parameter values upon, e.g. the

quantum fluctuations, whilst keeping the atomic meanfield dynamics as similar as possible.

As the coupling β is increased other effects appear apart from an increase in the contrast. These

effects are visible in Fig. 5.3 (see also Fig. 2 in [15]). In Fig. 5.3a we see that small-amplitude fast

oscillations of the lattice depth appear on top of the basic BO. Referring to the Fourier transform of

s(t) plotted in Fig. 5.3b, we see that the basic BO dynamics is governed by the fundamental ωB and

its low lying harmonics, whereas the fast oscillations are clustered around the tenth harmonic (see

inset) and include a continuum of frequencies with some peaks at half harmonics. In this context it

is important to bear in mind that the band gaps change continuously in time as q is swept through

the Brillouin zone and so a range of frequencies is to be expected.

The precision to which ωB can be measured in the scheme proposed in this paper depends upon

the contrast. From the results shown in Fig. 5.2 it may therefore seem that in order to make the

most sensitive measurement possible one should choose β to be as large as possible. However, this

is false for two reasons. One is the effect of quantum fluctuations due to measurement backaction

which is also controlled by β and will be the focus of Section 5.8. Another reason, which enters

even at the meanfield level, is the possibility of bistability in cavity photon number for large values

of β (when the pumping is sufficiently large). In [28] this bistability was studied experimentally

in a uniform unaccelerated condensate, which in our language has a quasimomentum q = 0. In

[32] we studied this problem theoretically and generalized it to include finite q: we showed that

bistability arises from the appearance of swallowtail loops in the bands. In the semiclassical picture

of a BO the quasimomentum scans adiabatically through the entire band and so when it encounters

a swallowtail loop the system can follow a branch that suddenly terminates at some later time,

leading to fundamentally nonadiabatic behavior [15, 50]. Hence, in a scheme to measure BOs, it

would be better to be in a parameter regime where the cavity is not bistable for any value of q.

In Fig. 5.4 we plot the pump strength required to maintain the lattice depth at a minimum value

of 3ER as a function of β. The red (solid) and blue (dot-dashed) lines enclose the values of η for

which the steady state photon number in the cavity displays bistability for at least some values of
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Figure 5.4. Plot of pump strength (dashed black line) required to maintain a minimum lattice depth of
3ER as a function of NU0/κ. The red (solid) and blue (dash dotted) lines enclose the values of η for which
the steady state photon number in the cavity is bistable for any value of the quasimomentum of the atomic
wave function. One sees that for NU0/κ ∼ 25, the pump strength required to maintain the lattice depth
leads to bistability. Other parameters for the plot are ∆c = −0.75κ, κ = 345ωR, N = 5× 104

.

the quasimomentum. We see that for β values as large as 25 (at the fixed detuning ∆c = −0.75κ)

one can avoid bistability and get large contrast in the lattice depth evolution.

Having emphasized that our choice for the pumping strength η is guided by the tradeoff between

contrast and bistability according to Fig. 5.4, let us now explain how we chose the rest of the system

parameters used in the calculations. There are three parameters we hold constant throughout this

paper; the first is the cavity damping rate κ = 345ωR which is the value realized in the experiment

[28]. As a guide to the magnitude of the atomic recoil frequency ωR used as the frequency unit, we

note that for 87Rb atoms in 780nm light ωR = 2π × 3.8 kHz. The second constant parameter is the

Bloch frequency ωB = ωR/4. The gravitational force on 87Rb atoms in a 780nm lattice provides a

Bloch frequency very close to this value. Finally, unless specified otherwise, we keep the meanfield

atom number fixed at N = 5 × 104 and vary U0 in order to vary β. This last choice is motivated

by a scaling symmetry of the meanfield equations [Eqns. (5.6a)-(5.6b)], which also holds for the

quantum operator equations [Eqns. (5.22a)-(5.22b)] below; solving the coupled equations for the

set of parameters {U0, N, η,∆c, κ} is exactly the same as solving them for {U0r,N/r, η/
√
r,∆c, κ},

where r is some positive scaling factor. In both the scaled and unscaled versions the lattice depth

s(t) = U0|α(t)|2 is maintained at the same value. Thus, each specific calculation one performs

represents a family of parameters. Our choice for N keeps the atomic density dilute enough in a

typically sized cavity that the approximation of ignoring collisional atom-atom interactions remains
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valid. There is some latitude in the choice of ∆c, but the contrast one obtains at a given value of β

is larger for ∆c closer to the cavity resonance. On the other hand, one also has to make sure that

the effective cavity detuning

∆eff
c ≡ ∆c −NU0〈cos2(x)〉 (5.15)

is less than zero so that we are in the cavity cooling regime for the fluctuations [40] (see Section

5.6). We set ∆c = −0.75κ since we find that it maximizes the contrast for the coupling value of

NU0/κ = 1. We will examine the effect of changing the number of atoms N and the minimum lattice

depth when we examine the signal-to-noise ratio in Section 5.8.

5.5 Quantum Dynamics: theory

The approach we take to quantum dynamics is based upon a linearization about the meanfield

solution, retaining the quantum operators δâ and δΨ̂ only to first order in the equations of motion.

This corresponds to the Bogoliubov level of approximation [51, 52], suitably generalized to describe

coupled atomic and light fields. A new feature of our problem in comparison to previous linearization-

based treatments of cavity-QED systems, e.g. [39, 41, 53], is that our meanfield is time-dependent

because of the BOs. This means that the fluctuation modes, which must be orthogonal to the

meanfield mode, also evolve in time (not just their occupations).

Linearizing about the meanfield solution may appear to be an innocent strategy, but, as is

well known from the theory of Bose-Einstein condensation, care must be taken with such U(1)

symmetry breaking approaches because they introduce a macroscopic (meanfield) wave function

with a particular global phase at the cost of particle number conservation [54]. In particular, when

performing a linearization about the condensate there is always a trivial fluctuation mode parallel to

it with zero frequency (the “zero mode”) which corresponds to unphysical fluctuations of the global

phase. These issues are even more acute when the condensate is time-dependent and the boundary

between condensate and fluctuation is further blurred [55].

The zero mode problem can be handled by only including fluctuations that are at all times

orthogonal to the meanfield. We achieve this by applying the projector P̂ (t) [55, 56]

P̂ (t) = I − |ϕ(t)〉〈ϕ(t)| (5.16)

so that

δΨ̂⊥(x, t) ≡ P̂ (t)δΨ̂(x, t) =

∫
dy [δ(x− y)− ϕ(x, t)ϕ∗(y, t)] δΨ̂(y, t) . (5.17)
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One consequence of this is that the commutator between atomic fluctuations is given by [57]

[
δΨ̂⊥(x, t), δΨ̂†⊥(y, t)

]
= 〈x|P̂ (t)|y〉 = δ(x− y)− ϕ(x, t)ϕ∗(y, t) . (5.18)

Unlike the usual bosonic commutator for the fluctuation field
¯
δΨ̂, this is time dependent.

Next, we transform the atomic fluctuation operator from the LF to the TF

¯
δΨ̂(x, t) = δΨ̂(x, t)e−iftx (5.19)

which simplifies the calculation for the same reasons as mentioned in Section 5.3 for the meanfield.

Since only “vertical” fluctuations between bands can occur, both the fluctuations and the meanfield

have the same quasimomentum (which in the TF is frozen at its initial value), and so we can expand

the fluctuations and meanfield in the same basis

ϕ̄(x, t) =
∑
n

cn(t)ei2nx (5.20)

¯
δΨ̂⊥(x, t) =

∑
n

δĉn(t)ei2nx . (5.21)

This makes the numerics a little easier. Note that we have set the initial quasimomentum in these

equations to q0 = 0 without loss of generality. Meanwhile, back in the LF, the quasimomentum

evolves according to the Bloch acceleration theorem given by Eq. (5.11).

We can now write down the coupled equations of motion for the cavity and atomic fluctuation

operators in the TF as

i
d

dt
δâ(t) = A(t)δâ(t) +

√
NU0α(t)

∫
dx cos2(x)

[
ϕ̄∗(x, t)

¯
δΨ̂⊥(x, t) + ϕ̄(x, t)

¯
δΨ̂†⊥(x, t)

]
+ i
√

2κξ̂(t)

(5.22a)

i
∂

∂t
¯
δΨ̂⊥(x, t) = H̄(t)

¯
δΨ̂⊥(x, t) +

√
NU0P̂ (t) cos2(x)ϕ̄(x, t)

[
α∗(t)δâ(t) + α(t)δâ†(t)

]
(5.22b)

where A(t) ≡
(
−∆c +NU0〈cos2(x)〉(t)− iκ

)
. The structure of these equations is such that without

the Langevin term ξ̂(t) the operators δâ and
¯
δΨ̂⊥ would be fixed at their initial values and so the

quantum parts of the fields would remain zero for all time. The Langevin fluctuations appear as an

inhomogeneous term in the cavity field equation and act as a source that drives the evolution of δâ

which in turn drives the evolution of
¯
δΨ̂⊥ via the atom-cavity coupling.

As pointed out in [41], the dynamics of the complex valued operators in the above equations can

be solved either by separating out their real and imaginary parts (optomechanics approach) or by

simultaneously solving the equations for the hermitian conjugates of the operators (the Bogoliubov-

de Gennes approach). We choose the latter. Collecting the fluctuations into the column vector

R̂(t) =
(
δâ δâ†

¯
δΨ̂⊥

¯
δΨ̂†⊥

)T
, and the noise operators that act as source terms into the column vector
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Ẑ(t) =
√

2κ
(
ξ̂ ξ̂† 0 0

)T
, where T denotes transposition, we obtain the operator matrix equation

i
∂

∂t
R̂ = MR̂(t) + iẐ(t) (5.23a)

with

M(t) =


A 0

√
NU0αV

∗
√
NU0αV

0 −A∗ −
√
NU0α

∗V ∗ −
√
NU0α

∗V
√
NU0α

∗W (x)
√
NU0αW (x) P̂ H̄(t) 0

−
√
NU0α

∗W †(x) −
√
NU0αW

†(x) 0 −P̂ † H̄(t)

 (5.23b)

where we have introduced the operators

V · g(x) ≡
∫
dx ϕ̄(x, t) cos2(x)g(x) (5.23c)

W (x) ≡ P̂ (t) cos2(x)ϕ̄(x, t) (5.23d)

i.e. V is an integral operator that acts on a function g(x). Since they fall on the off-diagonals, the

terms involving V and W couple the cavity and atom fluctuations. Observe, however, that in the

linear approximation used here the atomic fluctuation operators
¯
δΨ̂⊥(x, t) are not directly coupled

to the cavity fluctuation operators δâ(t) because this would lead to terms which are of second order.

Rather, the coupling between the two sets of quantum fields is mediated by the meanfields α(t) and

ϕ̄(x, t).

The matrix M(t) is non-normal, i.e. it does not commute with its Hermitian adjoint and its left

and right eigenvectors are not the same. However, it does have the following symmetry property: a

linear transformation T that swaps the first and second, and simultaneously, the third and fourth

rows, produces a matrix which is proportional to the complex conjugate of the original [40]

T .M.T = −M∗. (5.24)

This symmetry, which is a general feature of Bogoliubov-de Gennes type equations [11], implies

that the eigenvalues (and the associated eigenvectors) occur in pairs of the form ±ωn + iγn i.e.

with the same imaginary parts but with real parts of opposite sign. We shall explore the spectrum

of the fluctuation matrix M further in the Section 5.6. We also note that when written in matrix

form the role of the projection operator becomes clear since one can immediately see that the vectors

(0 0 ϕ̄(x, t) 0)
T

and (0 0 0 ϕ̄∗(x, t))
T

span the zero eigenvalue subspace of the matrix M and the trivial

fluctuations live in this subspace.

The time evolution of the fluctuation operators is given by solving Eq. (5.23a). However, measur-

able observables are given by expectation values and correlation functions of these operators rather
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than by the operators themselves. To this end we consider the covariance matrix C(t) associated

with the vector R̂

Cjk(t) ≡ 〈R̂jR̂k〉(t). (5.25)

Particular cases of Cjk(t) (or more precisely, its sum) include the total number of photonic and

atomic fluctuations

δn(t) = 〈δâ†(t)δâ(t)〉 (5.26)

δN(t) =

∫
dx〈 ¯

δΨ̂†⊥(x, t)
¯
δΨ̂⊥(x, t)〉. (5.27)

The latter correspond to the number of atoms excited out of the meanfield component (i.e. the

atomic depletion).

To obtain the time evolution of the covariance matrix, consider the formal solution to Eq. (5.23)

[58]

R̂(t) = G(t, 0)R̂(0) + G(t, 0)

∫ t

0

G−1(τ, 0)Ẑ(τ)dτ (5.28)

where G(t) is a matrix satisfying:

Ġ(t, 0) = −iM(t)G(t, 0) ; G(0, 0) = I . (5.29)

We drop the dependence of G on the initial time for notational convenience in what follows. Inserting

this formal solution in Eq. (5.25) we find

C(t) = G(t)C(0)GT (t) + G(t)Σ(t)GT (t) (5.30)

Σ(t) ≡
∫ t

0

∫ t

0

G−1(τ)〈Ẑ(τ)Ẑ(τ ′)〉[G−1(τ ′)]T dτdτ ′. (5.31)

Using the property of the Langevin noise terms given in Eq. (5.4c), we can simplify Σ(t) as

Σ(t) =

∫ t

0

G−1(τ)D[G−1(τ)]T dτ (5.32a)

Djk ≡ 2κδj1δk2. (5.32b)

Our main numerical task is thus to solve the matrix differential equation given by Eq. (5.29). In

addition, the matrix elements of M(t) have to be computed from the meanfields {α(t), ϕ̄(x, t)}
obtained by solving the coupled equations Eq. (5.6a) and Eq. (5.6b). These latter equations are

simply a set of ordinary differential equations that we solve using an adaptive time-step Runge-

Kutta scheme. We then solve the matrix differential equation for G(t) using the same time grid
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as the meanfield solution. For the matrix differential equation, and the associated solution for the

covariance matrix C(t), we can again use a Runge-Kutta algorithm or exponentiate the fluctuation

matrix M(t) over the (small) time step intervals [59].

As a check on the results we can use the fact that the elements of the covariance matrix C(t)

have to obey the commutator relations Eq. (5.18) for the operators making up R̂(t). For example,

when the atomic operator is expanded as in Eq. (5.20), the expectation value of the commutator

relation Eq. (5.18) gives

〈δĉnδĉ†m〉 − 〈δĉ†mδĉn〉 = δnm − 〈n|ϕ̄(t)〉〈ϕ̄(t)|m〉. (5.33)

The left hand side of this equation gives the difference between certain entries of the covariance

matrix and we can calculate its expected value (the right hand side) from the meanfield solution.

The degree of agreement between the two sides provides a measure of the accuracy of the fluctuation

calculation. In general, we find that the accuracy can be increased by taking smaller time steps.

In closing this section, we would like to point out that the meanfield solution already includes

Landau-Zener type tunnelling that causes the coherent excitation of higher bands. By contrast,

the effect of Langevin fluctuations ξ is to incoherently populate different bands. Within the linear

approximation used here, the depletion of the atomic meanfield by quantum excitations is not self-

consistent, i.e. the meanfield is always normalized to N atoms, whatever the number of depleted

atoms δN . The linearized equations are only valid when δN << N , as expected from a Bogoliubov-

type approach.

5.6 Spectrum of elementary excitations

Before presenting the results of the combined meanfield and quantum dynamics (see the next section),

we shall first examine the excitation spectrum of the atom-cavity system. The excitation spectrum

gives insight into the dynamics, heating effects, and will also be of use in explaining resonances that

affect the signal-to-noise ratio of the Bloch frequency measurement, a topic we will discuss in Section

5.9.

We first note that there are two distinct types of excitation, and hence spectra. The coupled

atom-cavity band structure discussed in Section 5.3 refers to meanfield excitations which are labelled

by a band index and a quasimomentum. They involve every atom and photon responding identically

since, by the nature of the meanfield approximation, they are assumed to be described by a single

wave function ϕ(x, t) and the coherent amplitude α(t), respectively. On top of these, there are also

elementary excitations or quasiparticles whose energies are the complex eigenvalues ±ωn + iγn of

the matrix M(t) given in Eq. (5.23b). A clear description of the difference between the meanfield

and the quasiparticle spectra for a BEC in a (non-cavity) optical lattice can be found in [60] and

references therein. In the atom-cavity system the quasiparticles correspond to single quanta of the

109



Ph.D. Thesis - B. P. Venkatesh - McMaster University - Department of Physics and Astronomy

−1 −0.5 0 0.5 1
10

0

10
1

10
2

quasimomentum (units of kc)

ω
n
(u
n
it
s
o
f
ω
R
)

 

 

first excited mode
second excited mode
cavity mode

(a) Real part of the quasiparticle spectrum as a func-
tion of quasimomentum
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(b) Imaginary part of the quasiparticle spectrum as a
function of quasimomentum

Figure 5.5. Low lying levels in the quasiparticle spectrum (elementary excitations). The frequency of the
nth level is generally complex ωn + iγn. The parameters used in the plots are U0 = 0.01ωR, κ = 345ωR,
∆c = −0.75κ, and N = 5 × 104. The red (solid) and blue (dotted) lines correspond to hybridised atom-
cavity modes and generally have non-zero imaginary parts except at certain special points such as at the
band center and edges where they can become marginally stable and decouple from the cavity. The green
(dash dotted) line corresponds to a cavity-like mode, i.e. the real part of its frequency is close to the effective
detuning frequency ∆eff

c (q), and the imaginary part is close to −κ.
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combined fields and are thus polaritons. The fact that they come in pairs can be interpreted as an

analogue of particles and antiparticles [11].

Whereas the meanfield band structure is always real, the quasiparticle energies have an imaginary

part which comes from the leaking of the cavity field out of the cavity. If γn < 0, we have dynamical

stability and |γn| can be interpreted as the lifetime of the quasiparticle. This damping effect has

potentially very important applications in cavity-assisted cooling [39, 61]. If, on the other hand,

γn > 0 we have dynamical instability and heating.

In general, the elementary excitations have a band structure all of their own, i.e. the solutions of

the Bogoliubov-de Gennes equations take the form of Bloch waves with a band index and quasimo-

mentum that can differ from that of the meanfield solution about which we are linearizing. However,

as discussed in Section 5.3, here we only allow excitations that preserve the quasimomentum (vertical

transitions), and thus our quasiparticles have the same quasimomentum as their parent meanfield

solution. Some examples of the quasiparticle band structure are plotted in Fig. 5.5 (see also Fig.

5.12a in Appendix 5.B).

The eigenvectors of M can be classified into three kinds: cavity-like modes, hybridised atom-

cavity modes, and marginally stable modes [40]. The cavity-like modes (depicted by the green

dash-dotted lines in Fig. 5.5) are close to being pure cavity field modes with only a small atomic

component. Hence, their eigenvalues have a real part with magnitude close to the effective detuning

∆eff
c = ∆c − NU0〈cos2(x)〉, and an imaginary part approximately equal to −κ. The hybridized

modes (depicted by the red solid and blue dashed lines in Fig. 5.5) have some atomic and some

cavity field properties, whereas the marginally stable modes are purely atomic in nature with zero

cavity component. As we shall demonstrate below, the marginally stable modes occur at the points

q = 0 and q = ±1, i.e. at the band center and edges, and their name derives from the fact that their

imaginary part is zero.

The properties of the hybridised and marginally stable modes are determined by the sign of

∆eff
c . When ∆eff

c < 0 we find γn < 0 and we are on the cooling side of the effective resonance. On

the contrary, when ∆eff
c > 0 we find γn > 0 and we are on the heating side. A calculation of the

dynamics on the heating side is not stable since the linearization will fail after a short time due to

the exponentially growing number of quasiparticles. Thus, the calculation of the spectra serves a

very useful purpose: it guides our choice of ∆c so as to ensure that we are always on the cooling side

of the resonance.

In Fig. 5.5a the red (solid) and blue (dashed) lines give the magnitudes of the real parts of

the frequencies of the two lowest quasiparticle eigenmodes as a function of quasimomentum. The

magnitudes of the imaginary parts are plotted in Fig. 5.5b. Notice that the imaginary part of one of

the modes goes to zero at the band edges (red solid line) and the other goes to zero at the band center

(blue dashed line). This implies that these excitations are only marginally stable at those specific

values of the quasimomentum. The vanishing of the imaginary part of the frequencies at these points
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(a) Excited atom fraction versus time for NU0/κ = 0.1
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(b) Excited atom fraction versus time for NU0/κ = 1

Figure 5.6. Growth of the excited atom fraction over five BO periods for (a) weak and (b) moderately strong
atom-cavity coupling. The red (solid) curves are given by solving the full quantum problem in the form of
Eq. (5.29), whereas the black (dashed) curves are the result of treating the atomic modes as independent
oscillators plus assuming that the quantum fluctuations in the light come purely from vacuum shot noise,
i.e. the coherent state approximation. The meanfield dynamics for (b) is given by the red (solid) curve in
Fig. 5.2. The atom heating rate in these figures oscillates because it is lower at the Brillouin zone edges than
at the center. Referring to Fig. 5.5 we see that at the zone edges the quasiparticle mode with the smallest
real part (red solid curve) becomes marginally stable, i.e. the cavity light field part and the atomic part
decouple.
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can be understood as follows: a Bloch wave with q = 0 (q = 1) is even (odd) about the center of a

single cell [0, π] of the cos2(x) potential. Since the atomic meanfield solution ϕ̄(x) is a Bloch wave

it has well defined parity at these points. The same is also true for the atomic part of quasiparticle

eigenmodes
¯
δΨ̂⊥(x) [and of course

¯
δΨ̂†⊥(x)] of the fluctuation matrix M, for these are also Bloch

waves. In this case the integral
∫
dxϕ̄∗(x) cos2(x)

¯
δΨ̂⊥(x) will sometimes vanish identically because

the integrand can contain functions with opposite parity. Examination of the fluctuation matrix M

given in Eq. (5.23b) shows that it is exactly this integral that controls the weight of the cavity part of

the quasiparticle eigenmodes, and so at q = 0,±1 we can have undamped quasiparticles with γ = 0.

For other values of quasimomentum the meanfield wave function has no particular parity and there

are no marginal modes.

5.7 Quantum Dynamics: results

In this section we present results from the numerical solution of the quantum equations of motion.

We assume that at t = 0 the fluctuation fields corresponding to δâ and
¯
δΨ̂⊥ are in their vacuum

states and expand the atomic part in the basis given in Eq. (5.21). This allows us to construct the

covariance matrix Eq. (5.25) C(t = 0) which we then evolve to later times using Eq. (5.29). In order

to perform this task we need the fluctuation matrix M(t) as a function of time which in turn requires

the meanfield solution {ϕ̄(x, t), α(t)} as input. We therefore solve the meanfield dynamics on the

same discretized time grid in parallel with the computation of Eq. (5.29).

Once we have computed C(t), we can use it to calculate the physical quantities of interest, such

as the number of atomic excitations δN(t), as defined in Eq. (5.27). This should not be confused

with the number of quasiparticles, which are generally made up of both atomic and cavity field

components. If it were not for the Langevin noise, the evolution would be perfectly coherent and δN

would be zero. However, the presence of Langevin noise in the electromagnetic field generates atomic

excitations via the atom-cavity coupling. In Fig. 5.6 we plot the fraction δN(t)/N as a function of

time for five Bloch periods for two different coupling values. The red (solid) curves are given by a

full solution of the quantum equations, whereas the black (dashed) curves are made with a coherent

state approximation for the cavity field, which will be outlined below and is discussed in more detail

in Appendix 5.A. The gradient of the curves in Figs. 5.6 gives the heating rate and we note from

Fig. 5.6b that the coherent state approximation slightly underestimates the true heating rate for

atoms. The behaviour of δN(t)/N over longer times (40 Bloch periods) is shown in Fig. 5.7a and the

equivalent quantity for the photons is shown in Fig. 5.7b. We see that while the number of photons

excited out of the meanfield saturates due to the damping by photon loss from the cavity, the atoms

maintain a finite heating rate over all times we have investigated. This is curious because we are on

the cooling side of the resonance [see Eq. (5.15)] all the time despite the modulations in the effective

cavity detuning due to the BOs. In the inset in Fig. 5.7a we show the case without BOs, and as
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Figure 5.7. Plots of (a) atomic and (b) photonic fluctuation occupation number over 40 BOs calculated
using a numerical solution of Eq. (5.29). The inset in (a) shows δN/N as a function of time for the case
without an external force, and hence without BOs, whereas the main body of (a) shows the results with
an external force: δN/N quickly reaches a steady state in the former but not in the latter case. In (b) the
lowest curve (red) is for β = 1, the middle curve (blue) is for β = 3 and the highest curve (red) is for β = 5.
The inset in (b) shows a close up of the photonic fluctuation number as a function of time for β = 1. It can
be seen how after a transient period the photonic fluctuation number oscillates at the Bloch period, thereby
mirroring the meanfield dynamics.

can be seen, we recover the cooling. The presence of BOs clearly counteracts the cooling to some

degree and prevents δN(t)/N from reaching a steady state. This residual heating effect is analyzed

in detail in Appendix 5.B, but it ultimately turns out to be due to the transport of quasiparticles to

higher energy states by Landau-Zener transitions that are driven by the BOs.

In order to gain further insight into the dynamics, let us develop a semi-analytic model that we can

compare against the exact results: it will allow us to see when atom-light correlations are important.

The model makes two approximations: firstly we treat each eigenstate of the instantaneous meanfield

Hamiltonian Eq. (5.10) as an independent oscillator mode uncoupled from the other modes, and

secondly we approximate the state of the light inside the cavity as a coherent state. Coherent states

have a noise spectrum that corresponds to the vacuum and so neglect correlations with the atoms.

In fact, the second approximation follows naturally from the first as we show in Appendix 5.A. The

results of the approximate model are the black dashed curves in Fig. 5.6. The agreement with the

exact results at weak coupling (β = 0.1) is excellent, but begins to break down over time at stronger

coupling (β = 1), thereby revealing the dynamic generation of correlations. In fact, as mentioned

in the Introduction, the heating rate of a cloud of cold atoms inside a cavity has been measured by

Murch et al [31], and they found it to be consistent with the predictions of vacuum noise. The new
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feature in our problem is that the effective cavity drive detuning ∆eff
c (t), which appears in the phase

terms in Eq. (5.35), is Bloch periodic due to the meanfield dynamics.

To motivate the coherent state approximation consider the exact solution to the first order in-

homogeneous differential equation for cavity field fluctuations Eq. (5.22a), which can be formally

written as

δâ(t) = e−i
∫ t
0
dt′A(t′) ×

∫ t

0

dt′ei
∫ t′
0
dt′′A(t′′)[

√
2κξ̂(t′)− i

√
NU0α(t′)X̂(t′)] (5.34)

where X̂(t) ≡
∫
dx ϕ̄∗(x, t) cos2(x)

¯
δΨ̂⊥(t)+h.c., and A(t) = −∆eff

c (t)− iκ, as above. We see that the

cavity field fluctuation has two distinct contributions: the first term depends on the Langevin noise

which accounts for vacuum fluctuations, whilst the second term depends on the state of the atoms.

The coherent state approximation consists of dropping the latter term in favour of the former to give

δâ(t) ≈
√

2κ

∫ t

0

dt′e(i∆eff
c (t)−κ)(t−t′)ξ̂(t′) . (5.35)

In writing δâ(t) in this way we have taken advantage of the fact that the cavity decay rate κ is

much faster than the frequency ωB at which ∆eff
c (t) evolves, and so the integrand is appreciable

only for times t − t′ . κ−1 during which ∆eff
c is a constant and can be evaluated at time t. The

regime of validity of the coherent state approximation can be estimated from its derivation which

requires r ≡
√
NU0|α(t)|/

√
2κ << 1. Note that r2 = βs(t)/2. In our earlier discussion (Section 5.4)

of desirable parameters, we stipulated a minimum lattice depth of s(t) ∼ 3ωR, which implies that

the validity of the coherent state approximation here is contingent upon β � 1, i.e. this is a weak

coupling approximation.

The assumption of uncorrelated vacuum noise is a standard one in the field of cavity optome-

chanics [30, 62, 63, 64, 65]. The paradigmatic example is a cavity with one end mirror attached to a

spring or cantilever i.e. a harmonic oscillator driven by radiation pressure. Although ultracold atoms

in a very shallow lattice in a cavity can be mapped onto this system [31, 28, 41, 66, 67], that is not

the case here because the atomic Bloch states do not map faithfully onto a single harmonic oscillator.

Nonetheless, we have obtained our approximate model by applying a similar philosophy by mapping

onto a collection of independent oscillators (the eigenstates of H). The coherent state approximation

for the atomic excitation occupation δN(t) that is plotted as the black (dashed) curves in Fig. 5.6

is the sum over the occupation numbers of these independent oscillator modes δN(t) =
∑
j δNj(t).

The details of the mapping are presented in the Appendix 5.A and here we shall only sketch out the

main idea which is to consider the noise as a perturbation to the oscillator dynamics, and then use

Fermi’s golden rule to calculate the noise induced transition rates amongst each oscillator’s states.
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This leads to a rate equation describing the occupation number dynamics for each oscillator [63]

d〈δNj〉
dt

= (Γuj − Γdj) 〈δNj〉+ Γuj , (5.36)

which is Eq. (5.52) in Appendix 5.A. In this expression Γuj and Γdj are the transition rates “up”

and “down” for the jth oscillator and they are proportional to SFF (−ωj) and SFF (ωj), respectively,

where SFF (ω) is the spectral density of force fluctuations (shot noise power spectrum). Thus, each

oscillator is driven and damped by vacuum noise, with the rates of driving and damping being time

dependent (due to the meanfield BO dynamics).

In the next two sections we examine the effects of the fluctuations upon a precision measure-

ment, i.e. how the fluctuations put a limit on how large a value of β can be chosen for a precision

measurement.

5.8 Signal-to-Noise Ratio: theory

We now explore how the inclusion of quantum noise affects the precision measurement proposal

in [15]. Recall the basic idea shown schematically in Fig. 5.1: a cloud of cold atoms undergoes

Bloch oscillations (e.g. due to gravity) inside a Fabry-Perot cavity, and the light field transmitted

through the cavity is measured in order to determine the Bloch frequency. In order to quantify

the measurement performance we will compute the signal-to-noise ratio using standard input-output

theory [68].

Let us consider a double sided cavity with mirrors with matched reflectivities providing equal

amplitude damping rates of κ/2. The quantum part of the input fields for both the top (driving

side) and bottom (detection side) mirrors is given by the electromagnetic vacuum. Since we are not

going to consider classical fluctuations of the driving laser we do not include a classical laser field

contribution in the input field , but introduce it via the hamiltonian in Eq. (5.3). In our consideration

of system dynamics in earlier sections we implicitly assumed a single sided cavity giving an amplitude

damping rate of κ, and associated with this decay is a Langevin noise term
√

2κξ̂(t). In a double

sided cavity we have two independent noise terms of the form
√
κ{ξ̂t(t), ξ̂b(t)}. It can be shown that

the dynamics of the intracavity system (both meanfield and fluctuations) are independent of whether

we assume a double sided or single sided cavity as long as we divide the net damping equally among

the two mirrors (provided they have matched reflectivities). The transmitted light field is the output

field at the bottom mirror which is related to the input field at the bottom mirror as

âout(t) = −âin(t) +
√
κâ(t) = −ξ̂b(t) +

√
κâ(t) (5.37)

where âin and âout in this equation refer to the fields at the bottom mirror. The transmitted photon

current is given by the operator Îout(t) = â†out(t)âout(t), where again âout refers to the field leaving
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the bottom mirror.

An experimentally straightforward method for measuring the Bloch frequency consists of record-

ing the transmitted photon current using a photodetector. It is useful to consider the Fourier

transform of the data [69]

N̂(ω, T ) =

∫ T

0

dt cos(ωt)Îout(t) (5.38)

and define the signal-to-noise ratio for the measurement as

SNR ≡ |〈N̂(ω, T )〉|2
∆N2(ω, T )

(5.39)

where ∆N2(ω, T ) ≡ 〈(N̂ − 〈N̂〉)2〉. Thus, the SNR is the ratio of the spectral density of the photon

current to its variance and provides one measure of the sensitivity of the scheme.

Let us first evaluate the SNR for a classical cavity field â(t) = α(t). In this case one finds that

the signal amplitude and variance are given by

〈N̂(ω, T )〉 = κ

∫ T

0

dt cos(ωt)|α(t)|2 (5.40)

∆N2(ω, T ) = κ

∫ T

0

dt cos2(ωt)|α(t)|2 . (5.41)

In order to obtain an approximate magnitude for the SNR we further assume that the detection rate

goes as ≈ R(1 + ε cos[ωBt]) [15], where ε is the contrast parameter defined in Eq. (5.14). Setting the

classical photon current κ|α(t)|2 in the above formulae equal to this detection rate gives

SNR(ωB, T ) ≈ ε2RT

2
. (5.42)

Despite appearances, this result does include quantum noise to a certain degree because without the

Langevin operators the variance given in Eq. (5.41) would have been zero, i.e. even when the cavity

field is classical the output field contains a quantum part âout =
√
κα(t) − ξ̂b(t). Thus, the above

calculation includes detector shot noise, also known as measurement imprecision [64], but neglects the

effect of quantum fluctuations on the coupled dynamics inside the cavity, i.e. quantum measurement

backaction. Note that this is a different approximation from the coherent state approximation used

in Section 5.7, where quantum fluctuations were included in the cavity dynamics by using a Glauber

coherent state, i.e. a state with vacuum noise, for the cavity field, albeit one whose fluctuations are

unaffected by the presence of the atoms.

The SNR given by Eq. (5.42) predicts that the sensitivity of the scheme can be increased in-

definitely by increasing the mean total number of photons collected RT and also the contrast ε.

The former effect is the standard one expected from the general theory of measurements with un-
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(a) Signal-to-noise ratio as a function of β = NU0/κ.
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Figure 5.8. Plots of the SNR as a function of (a) coupling strength β, and (b) integration time T for
different values of β. In (a) the SNR was computed for an integration time of 10 Bloch periods (TB) and
the red (dots) curve gives the meanfield dynamics plus detector shot noise result, whilst the black (crosses)
curve includes measurement backaction, i.e. the effect of quantum fluctuations upon the coupled atom-cavity
dynamics. In (b) the red (solid) and blue (dotted) curves lie almost on top of each other and correspond to
values of β just before the first dip in the SNR shown in Fig. 5.8a, whereas the green (dash-dotted) curve
corresponds to a value of β in the dip. For all plots the minimum lattice depth was 3ER. Other parameters
are the typical ones mentioned in the text.
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(b) Signal-to-noise ratio as a function of atom number

Figure 5.9. Plots of the SNR as a function of (a) minimum lattice depth s(t = 0), and (b) atom number N .
In both plots the red (dots) curves were computed from meanfield theory plus detector shot noise, and the
black (crosses) curves were computed including quantum measurement backaction. For all points NU0/κ = 1
and the signal is integrated over 10 Bloch periods. In (a) it is evident that the SNR decreases in both cases
for larger lattice depths. In (b) it is evident that the SNR increases linearly as a function of N in both cases.

correlated fluctuations. The latter is intuitively plausible too, but, however, can not be the whole

truth because, as stated above, it neglects the effect of measurement backaction upon the dynam-

ics which is expected to become important at larger values of β. When fluctuations are included

â(t) = α(t) + δâ(t), and the mean signal amplitude is given by

〈N̂(ω, T )〉 = κ

∫ T

0

dt cos(ωt)
(
|α(t)|2 + 〈δâ†(t)δâ(t)〉

)
. (5.43)

In fact, this is not so very different from the meanfield photon number given by Eq. (5.40) because

we are by design working in a regime where the meanfield dominates the fluctuations. However, the

same is not true of the signal variance. The expression for the signal variance including fluctuations

is cumbersome and is presented in Eq. (5.57) in Appendix 5.C. For present purposes it is enough to

note that it includes a collection of terms that depend on integrals over two-time correlations of the

photon fluctuations. These two-time correlations are challenging to evaluate numerically not only

because the fluctuations occur on time scales κ−1 much shorter than the BOs, but also because they

require the storage and manipulation of data at two times. Furthermore, the continuous driving

by the BOs means that the correlations are not stationary in time, i.e. they do not just depend on

t1 − t2, and this forces us to calculate the SNR in parallel to the system dynamics starting at t = 0.

Unfortunately, due to limited computing power, we have only been able to track the SNR over ten
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Bloch periods which is certainly shorter than the coherence time of the BOs for the parameters we

use. An actual experiment would, of course, not suffer from this limitation and would benefit from

running until the BO coherence time is reached. The main steps of our algorithm for calculating the

two time correlations are provided in Appendix 5.C.

5.9 Signal-to-Noise Ratio: results

We now show how the SNR depends on the various system parameters. Due to the size of parameter

space, this will not be an exhaustive study, but rather an ad hoc choice that nevertheless we hope is

experimentally relevant. We begin by looking at the SNR as a function of the coupling parameter

β = NU0/κ. In Fig. 5.8a we plot the SNR evaluated at ωB for an integration time of 10 Bloch

periods. We change β by increasing U0 but also change η to maintain the same minimum lattice

depth of 3ER throughout. The results without measurement backaction (i.e. the dynamics in the

cavity is purely meanfield) are plotted by the red (dots) curve which monotonically increases until

about β = 12. The initial increase of the SNR with β is in line with expectations based on Eq. (5.42).

The turnover of the red curve near β = 12 is in a sense an artefact that arises from having evaluated

our SNR at ωB: it so turns out from the meanfield solution that for β > 12 the fraction of the

power in the fundamental of s(ω) begins to decline and is diverted to higher harmonics. However,

there is no real reason other than simplicity to only consider SNR(ωB) (any harmonic of ωB gives

information about the applied force and inclusion of all of them in the data analysis would extract the

maximum possible information from the measurement). The full calculation including measurement

backaction is plotted by the black (crosses) curve. The first thing to notice is that measurement

backaction always lowers the SNR. Secondly, the full SNR monotonically increases only until β ≈ 7,

and thereafter suffers from dramatic dips which we explain below as being due to resonances with

quasiparticle excitation energies. These two observations are the main results of this paper. In

Fig. 5.8b we plot the SNR as function of the total integration time T for three values of β, two

before the first dip in the SNR and one in it. This plot further illustrates that for β > 7 there is

a dramatic lowering of the SNR. The BO dynamics are also clearly visible due to the fact that the

contrast is periodically growing and shrinking as the lattice depth grows and shrinks.

In Figs. 5.9a and 5.9b we show how the SNR depends on other parameters, namely the lattice

depth and total number of atoms. In particular, in Fig. 5.9a we plot the SNR as a function of the

minimum lattice depth in the cavity for the coupling value NU0/κ = 1. The lattice depth is changed

by increasing η. The red (dots) curve gives the SNR calculated using only meanfield dynamics

plus the effect of shot noise at the detector and justifies the comment made in Section 5.4 that for

larger lattice depth the contrast decreases. The SNR calculation including measurement backaction

fluctuations is given by the black (crosses) curve, and has the same qualitative behaviour but is

somewhat lower. Fig. 5.9b plots the SNR as a function of N , where for different values of N we
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Figure 5.10. Plots of the lowest quasiparticle excitation frequency ω1 about the adiabatic solution. In (a)
this is given as a function of quasimomentum for three different values of β: For small β (red dashed curve)
the minimum of the frequency occurs at q = ±1, but for larger values of β the minimum shifts in to smaller
values of q. Since each quasiparticle excitation has an energy varying with q, in (b) we plot the range of
possible excitation frequencies contained in ω1 for all q as a function of β. The frequency units are the Bloch
frequency ωB.

keep NU0/κ = 1 constant by scaling U0. We also scale the pump strength η to maintain the same

intracavity lattice depth s(t) in all the cases. As we pointed out in Section 5.4, this method of scaling

the system variables leaves the form of the meanfield and fluctuation equations unchanged. The only

quantitative change is that the meanfield cavity field solution α(t) is scaled by the same
√
r factor

as the pumping. This leads to a linear scaling of the SNR as a function of N (with and without

fluctuations) as shown in the plot. It is interesting to note that the rate of increase is different for

the calculation including fluctuations compared to that without. Clearly there is a gain in the SNR

with N .

Finally, we shall explain the physical origin of the complicated series of dips in the SNR when

β > 7 that are seen in Fig. 5.8a. Consider the spectrum of quasiparticle excitations about the

adiabatic meanfield solution introduced in Section 5.6. For the example shown in Fig. 5.5a, the

smallest excitation frequency occurs at the band edge q = ±1 and the largest at q = 0. As β is

increased in the usual manner (holding the minimum lattice depth constant), the q-dependence of

the quasiparticle spectrum evolves, as shown for the quasiparticle mode ω1 in Fig. 5.10a. Thus, the

range of frequencies (i.e. across the entire Brillouin zone) contained in ω1 also evolves with β and

is shown in Fig. 5.10b. If the meanfield dynamics happens to contain any frequencies that fall in

this range there is clearly the possibility of a resonance, exciting quasiparticles and lowering the

SNR. This is exactly what happens as can be seen from Fig. 5.11 which plots the total power in the
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Figure 5.11. The normalized power in the harmonics of ωB as calculated from the Fourier transform of the
meanfield solution (see Fig. 5.3b) that lies in the frequency range of the lowest quasiparticle excitation (see
Fig. 5.10b).

harmonics of ωB that fall in the frequency range covered by ω1. The two peaks in Fig. 5.11 at β ≈ 8

and β ≈ 12 coincide exactly with the dips in Fig. 5.8a. Referring back to the inset in Fig. 5.3b, which

was deliberately evaluated at β = 7.75 for this very purpose, we can see the part of the meanfield

spectrum that falls in the range spanned by ω1. In the absence of BOs the quasiparticle excitation

ω1 is very narrow, with a width given by the imaginary part γ1 evaluated at q = 0. However, the

BO dynamics effectively broadens the resonance by orders of magnitude to that shown in Fig. 5.10b

and this has a dramatic effect on the SNR.

5.10 Summary and Conclusions

In this paper we have extended our previous analysis of Bloch oscillations of ultracold atoms inside a

cavity to include the effects of quantum noise in the electromagnetic field. The quantum noise origi-

nates from the open nature of the cavity and can be interpreted as a form of quantum measurement

backaction because it perturbs the dynamics. The magnitude of the backaction is controlled by the

dimensionless atom-light coupling parameter β = NU0/κ and we find that it can strongly affect the

sensitivity of a measurement of the Bloch oscillation frequency ωB and therefore the determination

of the magnitude of the external force F driving them.

Our treatment is based upon the coupled Heisenberg equations of motion for the atoms and light

which we linearize about their meanfield solutions, i.e. a Bogoliubov level approximation. We solve

the meanfield level dynamics exactly and hence coherent effects such as Landau-Zener tunneling
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between bands are fully taken into account. A spectral decomposition of the meanfield solution

shows that it is dominated by ωB and its first few harmonics, but as β is increased spectral power

begins to spread to higher frequencies.

Quantum noise is introduced via Langevin operators which act as inhomogeneous source terms

in the Heisenberg equations. These terms excite quasiparticles (quantized excitations with a mixed

atom-light character) out of the meanfield. In the standard situation [39, 61, 41] where there is no

external force then if the system is started off with no quasiparticles their number initially grows in

time but eventually saturates due to competition between cooling and heating processes (provided

we are in the cooling regime ∆eff
c = ∆c − NU0〈cos2(x)〉 < 0 which means that the quasiparticle

energy has a negative imaginary part). By contrast, in this work we have found that the presence of

an external force, and hence BOs, profoundly changes this behaviour so that following some initial

transients the heating rate settles down to a constant value even when we are nominally in the

cooling regime. Nevertheless, for the parameter regimes we tested the heating rate was modest and

the fraction of the atoms excited out of the coherent meanfield over the lifetime of the simulation

was always less than 1% even for quite strong coupling.

In order to gain some insight into the numerical calculations we used Fermi’s golden rule to

develop a semi-analytic model for the heating rate in terms of a simple rate equation for the number

of atomic excitations. In so doing we approximated the cavity light field by a coherent state whose

quantum fluctuations are the same as those of the vacuum. This is a common approximation in

cavity optomechanics but ignores the quantum correlations that build up between the atoms and

the light. Comparing this with the exact numerical results for the number of atomic excitations,

we infer that the field is close to a coherent state for small β, but differs from it as β is increased,

as expected. Furthermore, this comparison allowed us to see the dynamic generation of atom-light

correlations.

The above calculations can be applied to the estimation of the signal-to-noise ratio for a continu-

ous measurement of ωB. For example, we find that the SNR decreases with intracavity lattice depth,

and increases with the number of atoms. Our principal result, however, concerns the dependence

upon β. We find that the SNR can be severely reduced due to resonances between the quasiparticle

spectrum and the Bloch oscillating meanfield for certain ranges of β. Indeed, the SNR behaviour

depicted in Fig. 5.8 is much more complicated than that found in the standard example of a quantum

limited position measurement of a harmonic oscillator, e.g. the end mirror of a resonant cavity [64].

In that system, the SNR is determined by the competition between the “measurement imprecision”

(detector shot noise), which decreases with increasing measurement strength, and the measurement

backaction, which increases with increasing measurement strength, and correlations between the two

can be ignored to a good approximation. This leads to a smooth curve (see Fig. 5 on p.1171 of the

review [64]) with a single maximum at the measurement strength where the two effects are equal.

This is where the measurement should be performed for maximum sensitivity. By contrast, in our
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case we have a cloud of atoms occupying Bloch states in an optical lattice and thus our system does

not correspond very well to a single harmonic oscillator (except in the limit where the lattice is

extremely weak so that the atoms are predominantly in a state which is uniform in space [28], but

then Landau-Zener tunneling will be so severe that the atoms will quickly fall out of the lattice when

the external force F is applied). Add to this the fact that our system is driven by an external force

and so scans through the entire Bloch band in a time-dependent fashion, leading to the possibility

of resonances, and it is not surprising that our resulting SNR in Fig. 5.8a does not have a simple

maximum as a function of β. However, we can make the parameter dependent statement that it

seems safest to choose β < 7 which lies below the point where the resonances set in (and for β > 25

we find optical bistability which will destroy the Bloch oscillations [32]). The resonances only occur

in the calculation when quantum measurement backaction is included and so provide a salutary

example of when the latter is important. Nevertheless, away from the resonances the SNR for this

continuous measurement is large and is in pretty good agreement with an approximate calculation

based upon purely meanfield dynamics in the cavity plus detector shot noise.

In comparison to previously studied cold atom cavity-QED systems, or even cavity optomechan-

ical systems, a new feature of our Bloch oscillating system is the time-dependence of the meanfield.

Apart from the resonances discussed above, this also has implications for the computational scheme

we use to calculate the results. For example, all the fluctuation modes should be orthogonal to the

meanfield mode as well as to each other, and hence they also evolve with time. Furthermore, the two-

time correlation functions that are needed to calculate the signal variance that enters the SNR are

not stationary in time, meaning that a large amount of data must be stored. This is especially true

because the Bloch period is roughly three orders of magnitude larger than the quantum fluctuation

timescale 1/κ and hence the calculation of the SNR over even a few Bloch periods is quite intensive

in the regime where the coherent state approximation breaks down. In non-cavity BO experiments it

has been shown that coherent dynamics can run for thousands of Bloch periods [9]. In a continuous

measurement scheme, such as that proposed here, the quantum measurement backaction reduces

the coherence time but unfortunately we have been unable to go much beyond ten Bloch periods

with our numerical computations of the SNR and thereby find this coherence time for our scheme

(we have, however, given an estimate in [15] based upon the idea that the spontaneous emission

rate sets the upper limit on coherent dynamics). Nonetheless, our short time calculations illustrate

quantitatively that it may be advantageous to remain at small β and integrate for longer times.
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5.A Coherent State Approximation

In this appendix we provide details of how the coherent state approximation introduced in Section

5.7 can be used to derive a simple rate equation for the occupation numbers of atomic fluctuation

modes. Working in the TF, consider the atomic fluctuation operator
¯
δΨ̂⊥(t). Rather than expanding

it in plane waves like in Eq. (5.21), let us instead expand in the instantaneous eigenbasis νk(x, t) of

the time-dependent meanfield hamiltonian H̄(t) [given in Eq. (5.10)]

¯
δΨ̂⊥(x, t) =

∑
k

νk(x, t)δb̂k(t) (5.44)

where H̄(t)νk(x, t) = Ek(t)νk(x, t) . (5.45)

Substituting the decomposition Eq. (5.44) into the equation of motion Eq. (5.22b) we obtain

dδb̂j(t)

dt
= −iEj(t)δb̂j(t)−

∑
k

〈νj(t)|
d

dt
|νk(t)〉δb̂k(t)− i

√
NU0

(
α∗(t)δâ(t) + α(t)δâ†(t)

)
〈νj(t)|P̂ (t) cos2(x)|ϕ̄(t)〉 .

(5.46)

We see that the dynamics of the δb̂j(t) are coupled amongst themselves: this is obvious from

the second term on the right hand side, but also occurs due to the third term as can be seen from

Eq. (5.34). In order to obtain a description in terms of independent oscillators the contribution from

these two terms must vanish, and we will now examine when this happens.

We begin with the second term (with the time derivative) on the right hand side of Eq. (5.46).

It can be shown that [70]:

〈νj(t)|
d

dt
|νk(t)〉 j 6=k=

1

Ek(t)− Ej(t)
〈νj(t)|

dH̄(t)

dt
|νk(t)〉

In general, contributions to the above overlap element are suppressed for states well separated in

energy due to the denominator. Also, we will show below that for k = j the element vanishes. Hence

the dominant contribution comes from adjacent levels i.e. k = j ± 1 and is given by

〈νj(t)|
d

dt
|νj±1(t)〉 =

1

Ej±1(t)− Ej(t)
〈νj(t)|

dH̄(t)

dt
|νj±1(t)〉

= −2
ωB
π∆±

〈νj |p̂|νj±1〉 (5.47)

where the second line is obtained by taking a derivative of the instantaneous hamiltonian and realizing

that, due to the opposing relative parity of adjacent states, the term in the overlap integral due to

the potential is zero. The above term can be neglected if the Bloch frequency is small compared to

the energy gap ∆±. To proceed further we will assume that this is the case but in the next appendix
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we will see that this cannot be guaranteed in general. Specifically, this approximation is most likely

to break down at the times when the quasimomentum comes close to the center or the edge of the

Brillouin zone where there are avoided crossings. Thus, this calculation will be valid only for short

times (since at longer times the system will have repeatedly gone through such crossings) and/or at

parameter regimes where the gaps are large compared to Bloch frequency.

Coming back to the case when k = j we have 〈νk(t)|νk(t)〉 = 1 and so

d

dt
(〈νk(t)|νk(t)〉) = 〈νk(t)| d

dt
|νk(t)〉+ h.c. = 0

i.e. the derivative is purely imaginary. For the time dependent hamiltonian H̄(t) the potential

term cos2(x) has an inversion symmetry about x = 0 and we can always choose the instantaneous

eigenbasis νk(x, t) to have real coefficients when expanded over plane waves. As a result the above

term goes to zero and the second term in Eq. (5.46) can be excluded.

Turning now to the third term on the right hand side of Eq. (5.46), we can see from Eq. (5.34)

that it does not couple the different modes δb̂j(t) if the light field fluctuations are independent of

the atomic fluctuations i.e.

δâ(t) ≈ d̂(t) ≡
√

2κ

∫ t

0

dτe−iA(t)(t−τ)ξ̂(τ) (5.48)

which is exactly the coherent state approximation.

Having now seen the conditions under which the fluctuations in the instantaneous eigenmodes of

H̄(t) become independent, let us assume that these conditions are fulfilled so that the fluctuations

obey the uncoupled equations of motion

dδb̂j
dt

= −iEjδb̂j(t)− uj(t)F̂(t) (5.49)

where

uj(t) = i
√
NU0〈νj(t)|P̂ (t) cos2(x)|ϕ̄(t)〉 (5.50)

and F̂(t) =
(
α∗(t)d̂(t) + α(t)d̂†(t)

)
. (5.51)

These equations describe the atomic fluctuation dynamics in terms of a collection of independent

oscillator modes that are acted upon by the shot noise force F̂(t). As described in [63], we can

now use Fermi’s golden rule to derive a rate equation for each of the oscillator occupation numbers

δNj(t) = 〈δb̂†jδb̂j〉

d〈δNj〉
dt

= (Γuj − Γdj) 〈δNj〉+ Γuj (5.52)
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Figure 5.12. Plots of (a) the real part of the quasiparticle energy spectrum and (b) the occupation number
as a function of time. The two plots are colour coded equivalently. For example, the red (solid) lowest lying
level in (a) has occupation number dynamics shown by the red (solid) line in (b). Since the gaps in the
spectrum in (a) are smaller than the Bloch frequency the level populations are partially exchanged at the
avoided crossings: the gaps become smaller higher up in the spectrum and indeed we see that the exchanges
between higher lying states are almost complete. The system parameters are the same as the case with
NU0/κ = 1 in Fig. 5.2

where the damping and diffusion rates are

Γuj = |uj |2SFF (−ωj); Γdj = |uj |2SFF (ωj) .

These depend on the spectral density (power spectrum) of the shot noise force

SFF (ω) =
2κn̄

(∆eff
c + ω)2 + κ2

. (5.53)

In the above expressions the shot noise spectrum is evaluated at the shifted oscillator frequencies

defined by ωj = Ej(t)−µ(t) with the instantaneous chemical potential µ(t) = 〈ϕ̄(t)|H̄(t)|ϕ̄(t)〉. This

shifting helps in removing the slow time dependence of the couplings uj (derived from the meanfield

Bloch oscillations). Since the damping and diffusion rates for the different oscillators are not the

same, it is in general not possible to write down an equation similar in form to Eq. (5.52) for the

total δN(t), and we have to settle instead for δN(t) =
∑
j δNj(t).
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5.B Absence of cavity cooling in the presence of Bloch oscil-

lations

In this appendix we analyze the long-time behaviour of the number of atomic fluctuations δN . We

do this in order to understand the apparent absence of a cavity cooling effect in the results shown in

Fig. 5.7a. In the standard case where there is no external force [40, 41], cavity cooling occurs when

the effective detuning ∆eff
c ≡ ∆c − NU0〈cos2(x)〉 is negative. This ensures that the quasiparticle

energies have a negative imaginary part γn < 0 which implies dynamical stability as explained in

Section 5.6. Under these circumstances δN reaches a steady state and the heating rate vanishes as

shown in the inset in Fig. 5.7a. This is, however, not what we see in the presence of an external force

as shown in the main body of Fig. 5.7a where the heating rate settles down to a constant nonzero

value. The external force must therefore disrupt the cooling mechanism, and in this appendix we

shall see that indeed the periodic driving due to the BOs drives the quasiparticles to higher energy

states thereby heating the system.

The heating rate is given by the change in the occupation numbers of the various quasiparticle

states as a function of time. These states are nothing but the instantaneous eigenvectors of the

fluctuation matrix M(t) introduced in Section 5.6 [40]

M(t) r(n)(t) = (ωn(t) + iγn(t)) r(n)(t) , (5.54)

and have a mixed atom-photon character. However, the fluctuation matrix M(t) is non-normal and

so its left and right eigenvectors are not the same. The left eigenvectors l(n) are defined as

M†(t) l(n)(t) = (ωn(t)− iγn(t)) l(n)(t). (5.55)

The left eigenvectors can be used to define the quasiparticle mode operator ρ̂n(t) corresponding to

the nth mode as

ρ̂n(t) ≡
(
l(n)(t), R̂(t)

)
(5.56)

where the bracket on the right in the above equation denotes a scalar product and R̂(t) =
(
δâ(t) δâ†(t)

¯
δΨ̂⊥(t)

¯
δΨ̂†⊥(t)

)T
is the fluctuation operator in the basis of atoms and photons [see Eq. (5.23a)]. We therefore see that

the required quasiparticle occupation numbers 〈ρ†nρn〉(t) as a function of time can easily be computed

from the numerical solution of the covariance matrix C(t) [Eq. (5.30)] once the eigenvectors l(n)(t)

are obtained. Before we look at the results, we should first comment on the relation between the

quasiparticle occupation number and the atomic fluctuation number δN(t). As mentioned in Sec.

5.6, quasiparticle modes come in three types and the most relevant ones are the hybridized atom-

light modes which have the strongest atom-light coupling and tend to lie lowest in the spectrum.
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Since the hybridized modes contain both atomic and light components, their occupation number

is not exactly equal to the atomic fluctuation occupation number. Nonetheless, in this system the

atom-light entanglement is not very large [41] and the total quasiparticle occupation number closely

tracks the atomic fluctuation number (as we have verified). Moreover, to establish a connection with

the calculation in Appendix 5.A, we note that for small NU0/κ the atomic part of the hybridised

quasiparticle modes are very close to the higher band eigenstates of the instantaneous meanfield

hamiltonian H̄(t). Thus, the mode occupation of the oscillators in Appendix 5.A can be roughly

mapped to the quasiparticle occupation numbers here.
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Figure 5.13. Plot of quasiparticle (qp) occupation number as a function of time when NU0/κ = 5. The
red (solid) line corresponds to the qp band with the smallest energy, followed by the blue (dashed), green
(dot dashed), black (dotted) and magenta (dash dotted) lines in ascending order. The inset shows the real
part of the qp energy measured in units of ωR as a function of time over a single Bloch period TB for the
lowest three bands. Since the gap between the lowest two bands (red (solid) and blue (dashed) lines) and the
rest of the spectrum is larger than the Bloch frequency, their dynamics is decoupled from the rest. System
parameters are as in Fig. 5.2.

In order to understand the occupation number dynamics, consider first the real part of the

quasiparticle spectrum plotted in Fig. 5.12a as a function of time for NU0/κ = 1. The quasiparticle

energy bands have avoided crossings every half Bloch period which alternate between being with

the band above and below. On the scale of the plot, the gaps at the crossings are not discernible

but for the present parameters it turns out that even the gap between the lowest two bands is

smaller than the Bloch frequency (recall that in this paper we have set ωB = 0.25ωR) and the

magnitude of the gaps gets smaller as we go higher up in the spectrum. During the course of Bloch

oscillations these avoided crossings are repeatedly traversed at the Bloch frequency and consequently

the occupation number dynamics at the avoided crossings are increasingly non-adiabatic as we go up
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Figure 5.14. Plot of the quasiparticle occupation number as a function of time for different values of initial
lattice depth at the fixed coupling value β = NU0/κ = 1. The initial lattice depths s(t = 0) are measured
in the units of ωR and are obtained by setting the pump-strength to η = {44.2, 56.1}κ for the blue (dashed)
and green (dash dotted) curves, respectively. The inset plots the time tl at which the linear increase in the
quasiparticle number is established as a function of the initial lattice depth.

in the spectrum due to Landau-Zener transitions. For example, in Fig. 5.12a at t = TB/2 the green

(dot-dashed) curve of the third band approaches the blue (dashed) curve of the second band and

as a result the populations of the two levels are almost completely exchanged as can be seen at the

corresponding time in Fig. 5.12b. We therefore have the following picture: the occupation number of

a given quasiparticle band increases either by direct scattering out of the meanfield due to quantum

noise or by upcoming quasiparticles from the immediately lower band by a Landau-Zener transition.

The occupation decreases due to quasiparticles scattering back into the meanfield [the hermitian

conjugate term to the excitation processes in Eqns. (5.22a) and (5.22b)], or due to the finite lifetime

of quasiparticles associated with cavity decay at rate κ as described by the A(t) term in Eq. (5.22a),

or due to Landau-Zener transitions to the next higher band. This has to be contrasted with the

dynamics without BOs where the quasimomentum is fixed at q = 0 and the fluctuations occupy a

stationary quasiparticle ladder. Without Landau-Zener transitions there is no directed transport of

quasiparticles up the ladder and cooling effects, due to the finite quasiparticle lifetime 1/γn, have

time to act.

In Fig. 5.7a notice that the linear behaviour is established at later times for larger NU0/κ. In

order to understand why this happens we explore the quasiparticle number dynamics for NU0/κ = 5

in Fig. 5.13, i.e. a factor of 5 greater than in Figs. 5.12a and 5.12b. From the inset we can immediately

see that the two lowest quasiparticle bands are well isolated (by more than ωB) from the rest of the
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ladder. As a result, the occupation numbers in these modes evolves in an adiabatic manner, in

contrast to the situation for NU0/κ = 1. In fact, over the times plotted in Fig. 5.13, the blue

(dashed) band reaches a steady average occupation number. But the higher quasiparticle energy

levels represented, for instance, by the green (dotted) and black (dot dashed) lines have smaller

gaps and behave akin to Fig. 5.12b because they are rapidly emptied by Landau-Zener transitions.

Another relevant observation comes from Fig. 5.7b, where we see that the fluctuation photon number

reaches its quasi-steady state around the same time as the atomic fluctuation number begins to

exhibit linear growth. This can be understood now in the light of the above discussion since the

lowest quasiparticle modes are coupled most strongly to the light field. The red (solid) band in the

inset of Fig. 5.13 has two minima and demonstrates how for larger NU0/κ the quasiparticle bands

can be strongly modified from the single particle (linear) band structure.

We conclude this appendix by examining another way to control the band gaps in the quasiparticle

spectrum and as a result the time taken for the linear increase behaviour (denoted by tl henceforth)

to set in. In Fig. 5.14 we plot the atomic fluctuation number as a function of time for β = NU0/κ = 1

and three different initial meanfield lattice depth values that are set by the pump strength. Since the

initial atomic state has q = 0, the initial lattice depth is the minimum lattice depth over the Bloch

period. Furthermore, we are at relatively small β, and so the linear band picture holds good and one

can anticipate that tl increases with lattice depths due to the widening of band gaps. In the inset in

Fig. 5.14 we plot tl as a function of the initial lattice depth for a range of values at NU0/κ = 1. As

expected, we see a general trend of increasing tl for larger lattice depths. We have identified tl from

the numerical simulation for atomic fluctuation number by requiring that the average change in the

rate of increase of δN(t) over a Bloch period converge to three significant figures.

5.C Two-time correlation calculation

When the intracavity light field is written as â(t) = α(t) + δâ(t), the signal variance is given by:

〈∆N̂2(ω, T )〉 = κ

[∫ T

0

cos2(ωt)
(
|α(t)|2 + 〈δâ†δâ(t)〉

)
dt

]
+

2κ2 Re

[∫ T

0

dt1dt2 cos(ωt1) cos(ωt2)α(t1)α(t2)〈δâ†(t1)δâ†(t2)〉
]

+ κ2

[∫ T

0

dt1dt2 cos(ωt1) cos(ωt2)α∗(t1)α(t2)〈δâ(t1)δâ†(t2)〉

+

∫ T

0

dt1dt2α(t1)α∗(t2) cos(ωt1) cos(ωt2)〈δâ†(t1)δâ(t2)〉
]

−2(κ)3/2 Re [

∫ T

0

dt1dt2α
∗(t1)α(t2) cos(ωt1) cos(ωt2)〈ξ̂b(t1)δâ†(t2)〉θ(t2 − t1)

]
. (5.57)
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In this appendix we provide details of how we numerically compute the signal variance (and hence

the SNR). The important extra computational step compared to the covariance matrix calculation

in Eq. (5.29) is the evaluation of the two time correlations such as 〈δâ†(t1)δâ†(t2)〉. In the vec-

tor notation for the fluctuations, the two time correlations are elements of the correlation matrix

Λ(t1, t2) = 〈R̂(t1)R̂T (t2)〉. The time evolution for the correlation matrix is given by:

i
d

dt
Λ(t, t0) = M(t)Λ(t, t0) + i〈Ẑ(t)R̂T (t0)〉. (5.58)

Let us consider the case when t > t0. Then the last term in above equation gives a correlation between

the Langevin operators at some future time t and the system fluctuation operators at t0. Due to

the delta-correlated nature of the Langevin noise this term will be zero. This means that Eq. (5.58)

becomes homogeneous and we can solve it with the initial condition at t = t0, Λ(t0, t0) = C(t0).

Also note that the time evolution operator for the numerical evolution in Eq. (5.58) is same as the

one for the covariance matrix [denoted by G(t) in Eq. (5.29)], which is an expression of the quantum

regression theorem [68]. A separate computation for t < t0 is not needed since they are related to

the elements of Λ(t, t0) with t > t0 by complex conjugation. For example:

〈δâ†(t0)δâ(t)〉 = 〈δâ(t)δâ†(t0)〉∗.

We can evaluate the correlation 〈ξ̂b(t1)δâ†(t2)〉 using a similar approach as above for the time evolu-

tion of the vector 〈ξ̂b(t1)R̂(t2)〉. In this case the initial condition for the evolution is 〈ξ̂b(t0)δâ†(t0)〉 =
√
κ/2. Since the evolution operators for the correlation matrix and covariance matrix evolution are

the same the calculation can be performed without additional computational cost. The main diffi-

culty in computing the signal variance arises from the fact that the two time correlation functions

are not stationary. As a result, in order to evaluate the integrals in Eq. (5.57) the correlation matrix

needs to be computed for all values of 0 < t1, t2 < T . This is the memory intensive step in the

computation and we simplify the situation by performing the correlation matrix computation over a

coarser grid than the one used in the numerical solution of Eq. (5.29). This is justified since we find

typically the correlation matrix elements do not change significantly over the very short time steps

chosen in the solution of Eq. (5.29). Moreover, for the results presented in Section 5.9, we have taken

care to check that the numerical solutions converge to a value independent of the size of the coarse

grid. The necessity of evaluating two-time correlators over a two dimensional time grid is the main

limiting factor to the maximum integration time for the SNR calculations. Another point to bear

in mind is that for β values larger than the ones that we have presented here we have found that

the size of the coarse grid needs to be essentially matched with the size of the finer computational

grid over which Eq. (5.29) is solved. As a result the calculation for strong coupling becomes very

memory intensive indeed.
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Chapter 6

Conclusion

One unique advantage of ultracold atoms research is the ability to engineer many ideal quantum

mechanical situations in a highly controllable manner. Thus, phenomena that are hard to observe in

conventional situations such as Bloch oscillations of electrons in a metal subject to uniform electric

field are routinely realised in the cold atoms. In a metal defects and impurities cause quick dephasing

of the Bloch oscillations (BOs) whereas in the cold atoms experiments coherence times can extend

to many thousands of oscillations [36, 39]. One drawback with the cold atoms BO experiments in

optical lattices performed so far is the measurement protocol. BOs are interrupted at many time

instants by destructively imaging the atomic cloud to measure the momentum distribution as a

function of time. Moreover, following each measurement the initial conditions have to be recreated

as faithfully as possible in order to obtain the same dynamics. In the proposal that we introduced

in Chapter 3 and discussed extensively in the rest of the thesis, the periodic lattice potential is

provided by the standing wave inside an optical cavity. The strong atom-light coupling that can be

realised in cQED means the atoms exert a significant backaction on the cavity light field. As a result

the atomic dynamics can be probed by measuring the light escaping out of the cavity. This is the

main message of the first paper that was presented in Chapter 3 of the thesis. As we emphasized in

the introductory section in Chapter 5, current state of the art experiments in cQED have already

demonstrated the basic tools required to implement our proposal. This includes experiments where

single atoms have been detected in a cavity [50, 52, 66], and their dynamics followed in real time

[53, 54, 55]. The collective dynamics of ultracold atomic gases have also been tracked using cavities

[69, 82, 79]. Thus, we hope that our theoretical proposal will be implemented in the near future in

an experiment.

In the second paper presented in this thesis (Chapter 4), we considered multistability in cQED,

where a given set of experimental parameters can yield more than one possible steady configuration

for the cavity field and atomic wavefunction as a function of quasimomentum. From the point of

view of the atoms we can draw an analogy to the case of BECs in optical lattices. There the contact
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interaction can be tuned [102, 103] to yield multistable solutions which lead to characteristic loop

shapes for the band energy as a function of quasimomentum. In the atom-cavity system we do

not include contact interactions. Hence, we understand the multistable solutions as a manifestation

of the nonlinearity due to the effective mutual interaction due to the atoms being coupled to a

common cavity mode. This induced interaction has attracted a lot of attention in the last few years

[86, 84, 87, 100] not least because it can be made very strong and lead to interesting many-body

states in the atom-cavity system [98, 99]. This is a very active and open area of current research.

We have also gone beyond simply finding such multistable solutions and have employed the general

tool of catastrophe theory to organize and classify the different possibilities. The presence of loops

in the band can lead to a breakdown of adiabaticity and hence disrupt the Bloch oscillations. In

this manner we have used lessons learnt from this work in guiding parameter choices for the Bloch

oscillation measurement proposal in Chapter 5(see Sec. 5.4).

In Chapters 3 and 4 we adopted a meanfield description for the light field and atoms. In Chapter

5 we focused on the dynamics of linear fluctuations about the time-dependent meanfield solutions

to the cavity Bloch oscillation problem. One important result we found was that the inclusion

of the force term modifies the damping rate of the fluctuations in comparison with the force free

situation. However, our main result was the computation of the signal-to-noise ratio (SNR), including

fluctuations, for short integration times. At large values of NU0/κ one might have expected the SNR

to increase due to the increased contrast of the mean intracavity photon number. On the contrary,

we found that when fluctuations are included, resonances between the quasiparticle spectrum and

harmonics of the Bloch frequency can lead to a lowering of the SNR. Hence we concluded that it

may be a wiser strategy to stay at smaller NU0/κ and integrate for longer times. Since the system

is continuously driven by the Bloch oscillations, the correlations between the different fluctuation

operators do not reach a steady state and this makes the calculation of the SNR numerically intensive.

As part of our future research we would like to devise a method to circumvent this numerical issue.

Since the SNR is sensitive to the parametric resonances between the quasi-particle spectrum and

harmonics of the Bloch frequency we will also look into the prospects for actually using this for

precision measurements.

In this thesis we have explored a few facets of the cold atoms-cavity quantum electrodynamics

paradigm, which is fast emerging as an active field of research [100]. Two of the most interesting

features of current research in cold atoms physics are: ability to experimentally create various inter-

esting many body hamiltonians [23] and study the real time dynamics of a variety of systems [113].

In the different topics considered in this thesis, although we have not explicitly mentioned these

aforementioned themes, we have developed some useful insights that will enable us to contribute to

these topics in the future.
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Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, Phys. Rev. Lett. 102, 076802

(2009)

[42] E. M. Purcell, Phys. Rev. 69, 681 (1946).

[43] P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Phys. Rev. Lett 50, 1903 (1983)

[44] D. J. Heinzen, J.J. Childs, J. E. Thomas,and M. S. Feld, Phys. Rev. Lett 58, 1320 (1987)

[45] D. J. Heinzen and M. S. Feld, Phys. Rev. Lett 59, 2623 (1987)

[46] P. Pinkse and G. Rempe, Chapter 13, Experimental methods in the physical sciences 40 255-295

(edited by Roger van Zee and Patrick Looney), Elsevier Science (2002).

[47] G. Rempe, Ann. Phys. 9,843 (2000)

[48] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche,

Phys. Rev. Lett. 76, 1800 (1996)
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