
A Feature Modelling Language Based on Product

Family Algebra

A FEATURE MODELLING LANGUAGE BASED ON PRODUCT

FAMILY ALGEBRA

BY

MOHAMMED ALABBAD, B.Sc.

a thesis

submitted to the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

© Copyright by Mohammed Alabbad, June 2013

All Rights Reserved

Master of Applied Science (2013) McMaster University

(Software Engineering) Hamilton, Ontario, Canada

TITLE: A Feature Modelling Language Based on Product Family

Algebra

AUTHOR: Mohammed Alabbad

B.Sc., (Computer Science)

King Saud University, Riyadh, Saudi Arabia

SUPERVISOR: Dr. Ridha Khedri

NUMBER OF PAGES: xiii, 135

ii

To my parents, wife, siblings, and kids to come

Abstract

Feature modelling is an emerging software engineering paradigm, which helps orga-

nizations to develop products from core assets. Products are organized into families

that share common core features. Feature modelling involves capturing, into a feature

model, the commonality and variability of product families and several relationships

among features or products.

This thesis is about proposing a language for specifying feature models that is based on

product family algebra (PFA). The language is intended to encompass the constructs

found in early feature modelling graphical notations and languages. The thesis gives

the syntax and the semantics of the proposed language. It discusses the design of

its compiler that takes a feature model specification and generates its corresponding

PFA, which can be analyzed using the tool Jory. The thesis uses a quite extensive

case study to illustrate the use of the proposed language and its compiler.

iv

Acknowledgements

I would like to thank my supervisor, Dr. Ridha Khedri, for his support and close

mentoring of my work. Also, I would like to thank Qinglei Zhang and Jason Jaskolka

for their valuable comments and contibutuions.

v

Contents

Abstract iv

Acknowledgements v

Contents ix

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 7

1.1.1 Shortcomings in the Current Language Used by Jory 7

1.1.2 Strengths and Weaknesses of Jory 8

1.1.3 Advantages of a High Level Language 10

1.2 Objectives . 12

1.3 Thesis Structure . 14

2 Background 15

2.1 Feature Modelling . 15

vi

2.1.1 Graphical Feature Modelling . 16

2.1.2 Non-Graphical Feature Modelling 22

2.2 Product Family Algebra . 24

2.2.1 Set Model . 26

2.2.2 Bag Model . 27

2.2.3 Products, Features, Refinement, and Constraints 28

2.3 Jory Tool . 30

3 Language Design 34

3.1 Syntax and Semantics . 34

3.1.1 Syntax . 35

3.1.2 Semantics . 39

3.2 Design Objectives . 40

3.3 Design and Structure . 41

3.3.1 Syntax . 42

3.3.2 Semantics . 47

3.4 Assessment . 49

3.5 Conclusion . 52

4 Design of the Compiler as a Part of the Tool Jory 53

4.1 Compiler Structure . 54

4.1.1 Flex and Bison . 57

4.2 System Design . 60

4.2.1 Overview . 60

4.2.2 Detailed Design . 62

vii

4.3 Conclusion . 69

5 Case Study 71

5.1 E-shop System . 71

5.1.1 Store Front . 72

5.1.2 Business Management . 76

5.2 E-shop Specification . 80

5.3 Assessment and Results . 83

5.3.1 Customer Service . 84

5.3.2 Registration . 86

5.3.3 Targeting . 87

5.4 Conclusion . 89

6 Conclusion 90

6.1 Contributions . 91

6.2 Future Work . 92

A Feature Modelling Techniques Constructs 93

B Sample Code: Family Generator 95

C E-shop Specifications 100

C.1 home page.spec . 100

C.2 registration.spec . 101

C.3 registration.spec . 102

C.4 wish list.spec . 105

C.5 buy paths.spec . 105

viii

C.6 customer service.spec . 109

C.7 user behaviour tracking.spec . 110

C.8 order management.spec . 110

C.9 targeting.spec . 112

C.10 affiliates.spec . 114

C.11 inventory tracking.spec . 114

C.12 procurement.spec . 115

C.13 reporting and analysis.spec . 115

C.14 external systems integration.spec . 115

C.15 administration.spec . 116

D Customer Service Result 117

Bibliography 130

ix

List of Tables

3.1 Lexemes and Tokens of a C statement 37

3.2 Proposed Language Semantics . 49

3.3 Study Summary . 52

A.1 Constructs of Feature Modelling Techniques 94

x

List of Figures

1.1 Mobile Phone Feature Model in FODA 3

1.2 Mobile Phone Feature Model in FDL . 4

1.3 Mobile Phone Feature Model in PFA . 5

1.4 Equivalent Mobile Phone Feature Model in PFA 6

1.5 The Grammar of the Feature Modelling Language Used by Jory. . . . 8

1.6 Mobile Phone Feature Model in Jory’s Language. 8

2.1 Mobile Phone Feature Model in FeatuRSEB 18

2.2 Mobile Phone Feature Model in Riebisch et al. 20

2.3 Mobile Phone Feature Model in CBFM 21

2.4 Mobile Phone Feature Model in TVL . 24

2.5 The BDD of f(x, y, z) = x ∨ y ∧ ¬z . 31

2.6 The Architecture of Jory . 32

3.1 Calculator Grammar . 39

3.2 Language Grammar . 43

3.3 FODA Extension Feature Modelling Techniques 50

4.1 A General View of a Compiler . 54

4.2 The Main Components of a Compiler . 55

4.3 The Compiler Phases . 56

xi

4.4 Layers of Jory Tool . 61

4.5 User Interface . 63

4.6 A Model of the Syntax Analysis Layer 65

4.7 Module Uses Diagram of the Code Generator 66

4.8 Tool Illustration . 69

5.1 E-shop System Overview . 72

5.2 Store Front Overview . 73

5.3 Home Page Overview . 73

5.4 Registration Overview . 74

5.5 Catalog Overview . 74

5.6 Wish List Overview . 75

5.7 Buy Paths Overview . 75

5.8 Customer Service Overview . 76

5.9 User Behaviour Tracking Overview . 76

5.10 Business Management Overview . 77

5.11 Order Management Overview . 77

5.12 Targeting Overview . 77

5.13 Affiliates Overview . 78

5.14 Inventory Tracking Overview . 78

5.15 Procurement Overview . 79

5.16 Reporting and Analysis Overview . 79

5.17 External Systems Integration Overview 80

5.18 Administration Overview . 80

5.19 Customer Service on Jory After Compilation 84

xii

5.20 Customer Service on Jory After Executing Queries Part 1 85

5.21 Customer Service on Jory After Executing Queries Part 2 86

5.22 Registration on Jory After Executing . 87

5.23 Targeting on Jory After Executing . 88

xiii

Chapter 1

Introduction

The software product family approach offers a solution to the demand for faster

software development, lower development and maintenance costs, and higher quality

software [Som01]. Product families are sets of related products in a domain that

share common core assets. The process of building these core assets is called domain

engineering. One of the most important steps of domain engineering is to analyze

the commonalities and variabilities of product families. Studies have shown that it is

advantageous to study product families in terms of features [HKM11]. Feature mod-

elling is the process of capturing commonalities and variabilities of a product family

by producing a feature model. Feature models represent the features of a system and

the relationships between them. They provide a way to select features and create valid

products of a family. Although feature models are related to requirements and de-

sign, all of the software development stages can benefit from feature models [KCH+90].

A system’s feature is a characteristic that is visible to its stakeholders [HKM11]. Ev-

ery hardware part or software artefact such as a requirement, code, or a component

1

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

can be considered as a feature [HKM06, HKM11]. For example, features in a mobile

phone include elements such as the hardware component Screen or the software com-

ponent responsible for making calls. A collection of compatible mandatory features

constitute a product. We formally introduce the concepts of features and products

in Chapter 2.

A product family is a set of products (might be empty) that usually share common

features. The concept of product families started in the hardware industry, where

manufacturers produce a variety of products by sharing most of the assets, which

leads to a considerable reduction of the development cost. Product families were

found to be useful in software development and made their way into the software

industry [Par76]. In embedded systems, the specification of a product family can be

given from a hardware perspective or a software perspective [HKM06, HKM11]. An

example of product family is a mobile phone product family where all products in

the family share common features such as the feature Screen, and differ by features

such as Keypad and Accessories .

A feature model can be presented in several ways: graphically, textually, mathemat-

ically, or a combination of graphically and textually. A graphical feature model is

represented as a hierarchal diagram where the root represents the system or a prod-

uct family label. All the other nodes represent features or subfamilies. In graphical

feature models, a feature can be composite or primitive. A composite feature (i.e.,

subfamily) constitutes all or some of its children. A leaf node (i.e., subfeature) is

a primitive feature. A feature can be mandatory or optional. A mandatory feature

2

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

must exist in a product. Optional feature that its existence is optional. Constraints

are used to eliminate unwanted features and products of a feature model, and come in

two main types: inclusion and exclusion. Figure 1.1 shows an example of a graphical

feature model for a mobile phone product family specified in Feature-Oriented Do-

main Analysis (FODA) [KCH+90]. The root is the product family labelled Mobile. It

is formed of the following features: Screen, Accessories , Keypad , and Calling feature.

The features Screen and Calling feature are mandatory features in every product of

the mobile phone family. However, Keypad and Accessories are optional features in-

dicated by hollow circles. The arc in the feature Screen indicates the choice between

its subfeatures Touch Screen and Basic Screen.

Touch_screen

Mobile

Calling_feature Accessories ScreenKeypad

GPS Camera MP3_Player Basic_screen

Figure 1.1: Mobile Phone Feature Model in FODA

A textual feature model consists, in most text-based feature modelling techniques,

of a list of feature definitions followed by constraints. The example shown in Fig-

ure 1.2 is for the same mobile product family given in Figure 1.1 but given in Feature

Description Language (FDL). It shows that the mobile phone family consists of the

features Screen, Accessories , Calling feature, and Keypad . Screen and Calling feature

are mandatory features, while Keypad and Accessories are optional features indicated

3

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

by the question mark “?”. Screen can be only one of the two features Basic Screen

and Touch Screen.

Accessories: all(GPS, Camera, MP3_Player)

Screen: one−of(Touch_Screen, Basic_Screen)

Mobile: all(Screen, Accessories?, Calling_feature, Keypad?)

Figure 1.2: Mobile Phone Feature Model in FDL

Feature-Oriented Domain Analysis (FODA) [KCH+90] is among the earliest proposed

feature modelling techniques which is a graphical one. Most of the graphical feature

modelling techniques proposed after FODA are extensions of FODA. Feature-Oriented

Reuse Method (FORM) was proposed in [KKL+98] as an extension of FODA. Fea-

ture Oriented Product Line Software Engineering (FOPLE) is a refinement of FORM

and FODA [KL02]. Generative Programming (GP) [CE00] and Cardinality-based

Feature Models (CBFM) [CHE05] are extensions of FODA. Feature/Reuse-driven

Software Engineering Business (FeatuRSEB) [GFA98] is a combination of FODA and

the Reuse-driven Software Engineering Business (RESB). FeatuRSEB has three ex-

tensions, van Gurp et al. [vGBS01], Product Line Use case modelling for System

and Software engineering (PLUSS) [EBB05], and Riebisch et al. [RBSP02]. Family

Oriented Requirements Engineering (FORE) [Str04] extends Riebisch et al.. Feature

Assembly Modeling (FAM) is a feature modelling technique that models a product

family based on multiple perspectives [AZKT10].

Text-based feature modelling languages are proposed to solve the limitations of graph-

ical feature modelling. To our knowledge, Feature Description Language (FDL) [vDK02]

4

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

was the first textual language to describe feature models. Text-based variability lan-

guage (TVL) [BCFH10] is a very recent feature modelling technique which claimed

to be expressive, scalable, and possessing an easy syntax.

Product family algebra (PFA) [HKM06, HKM11] is a mathematical structure of prod-

uct families. It is based on the mathematical structure of an idempotent and commu-

tative semiring. It helps capturing and analyzing the commonalities and variabilities

of a product family. It also allows mathematical description and manipulation of

product family specifications. We discuss PFA in detail in Section 2.2.

Accessories = GPS . Camera . MP3_Player

Screen = Touch_Screen + Basic_Screen

Mobile = Screen . (1 + Accessories) . (1 + Keypad) . Calling_Feature

Figure 1.3: Mobile Phone Feature Model in PFA

Figure 1.3 shows the mobile phone product family defined in PFA. The operator “⋅”

indicates the mandatory presence of its operands while for instance “(1+ Keypad)”

indicates that the feature Keypad is optional. Screen and Accessories are product

families by themselves.

Using product family algebra, it is possible to perform calculations on features, prod-

ucts, and product families. Through calculus, one can verify the equivalence of two

specifications, give the number of possible products of a product family, list the

common features, or verify whether a family refines another family. In addition, it

is possible to build new families, find new products, and exclude unwanted feature

combinations [HKM06, HKM11]. To illustrate the equivalent specification of the

5

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

specification in Figure 1.3, we substitute the subfamilies Screen and Accessories by

their values to get the equivalent specification shown in Figure 1.4.

Mobile = (Touch_Screen + Basic_Screen) . (1 + GPS . Camera . MP3_Player) . (1 + Keypad) . Calling_Feature

Figure 1.4: Equivalent Mobile Phone Feature Model in PFA

Based on Product Family Algebra (PFA) [HKM11] a feature modelling tool, called

Jory, has been built. Jory is a feature modelling tool for product families that is

based on PFA and Binary Decision Diagrams (BDDs) [Ake78]. PFA gives Jory the

mathematics to specify, analyze, and calculate on product families. Moreover, PFA

brings all of its benefits such as giving formal specifications for the concepts of feature,

product, and family. Also, it brings the benefit of the algebraic structure and mathe-

matical models of PFA. Jory is designed into layers to be easy to manage and improve.

It implements PFA models using BDDs to handle large systems with efficiency and

speed. In one megabyte of memory BDDs can handle up to 50,000 features, and it

has been tested with 232 nodes [Alt10]. Since my work is an addition to Jory, I will

present its design in Chapter 2.

The feature modelling tools found include AHEAD [Bat05], FaMa [BSTRc07], Fea-

ture Modelling Plugin [MC04], FeatureIDE [KTS+09], Pure::variants [Beu08], Cap-

tainFeature [BEL03], Requiline [ML04], XFeature [CPRS04], SPLOT [MBC09], and

compositional variability management framework (CVM) [APS+10]. Most of these

tools do not support the conversion between feature modelling techniques. These

tools support one feature modelling technique which is FODA or one of its exten-

sions. Some tools support feature modelling as their main functionality. On the

6

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

other hand, some tools do not support feature modelling as a main functionality, but

as a sub-functionality. Also, some tools add extensions and concepts that are not

part of the feature modelling techniques.

1.1 Motivation

1.1.1 Shortcomings in the Current Language Used by Jory

The current language used by Jory is that of PFA which is a low level language.

Figure 1.5 shows the grammar of the language. The specification written in Jory’s

language consists of two main parts. The first part consists of declarations of ba-

sic features. Each statement in the declaration part starts with the keyword “bf”

followed by a feature name, then “%” sign followed by a comment describing the fea-

ture; this statement defines one basic feature. The first two lines of Figure 1.6 declare

Touch Screen and Basic Screen features. The second part of the specification con-

sists of product family definitions. The definition of a family has three parts: a family

name followed by “=” sign, a product family algebra term that defines a family, “%”

sign proceeding a short comment describing the family. Figure 1.6 shows an example

of a product family for a mobile phone defined in Jory. The language is essentially

limited to that of idempotent semiring. It does not allow concise specifications. I will

elaborate further on this issue toward the end of the next subsection.

7

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

PFA ∶= (⟨Basic Feature⟩/n)+ (⟨Labeled Family⟩/n)+
⟨Basic Feature⟩ ∶= bf⟨Basic Feature ID⟩%⟨Comment⟩/n
⟨Labeled Family⟩ ∶= ⟨Labeled Family ID⟩ = ⟨Family Term⟩

%⟨Comment⟩/n
⟨Family Term⟩ ∶= 0∣1∣⟨Basic Feature ID⟩∣⟨Labeled Family ID⟩∣

⟨Family Term⟩ + ⟨Family Term⟩∣
⟨Family Term⟩⟨̇Family Term⟩

⟨ID⟩ ∶= Letter(Letter∣Digit)+

Figure 1.5: The Grammar of the Feature Modelling Language Used by Jory.

bf keypad %keypad feature

bf mp3_player %MP3_player feature

bf basic_screen %basic screen

bf calling_feature %call functionaly feature

bf camera %Camera feature

bf touch_screen %touch screen

mobile = screen . (1+ accessories) . (1 + keypad) . call %Mobile system
accessories = gps . camera . mp3_player %accessorise family
screen = touch_screen + basic_screen %screen family

bf gps %GPS feature

Figure 1.6: Mobile Phone Feature Model in Jory’s Language.

1.1.2 Strengths and Weaknesses of Jory

Jory is a powerful tool that is precise and fast. It uses the theory of PFA models

that are implemented using Binary Decision Diagrams (BDDs). The fast calculations

using BDDs and its mathematical soundness are the source of its strength. Yet, Jory

has some limitations. It lacks the support for graphical notations (i.e., the translation

layer, in Jory’s design, which translates between PFA and other graphical notations,

is not implemented). The capability of accepting a graphical feature model as an

input or generating one as an output is not enabled. Also, the translation between

graphical and non-graphical feature models is not available.

8

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

The language used by Jory is a low level language: it is the language of a semiring.

Writing specifications for large systems using the basic language of product family

algebra is a tedious task and specifications would be too long. Moreover, many nota-

tions and terms in the language can be ambiguous for users that are unfamiliar with

the PFA syntax.

When we write specifications in PFA, sometimes the existence of a feature in a prod-

uct is bound to the existence of another feature. This type of dependency between

features and families is specified using constraints. In other terms, constraints are

used to exclude all the undesired products from the concerned family. The interpre-

tation of constraints is not fully implemented in the Jory tool but rather passed from

the interface to the BDD layer. Therefore, only one constraint can be handled at a

time. The editor in the Jory Interface is not user friendly and needs improvement.

Moreover, the editor does not report any syntax or semantic errors in the specifica-

tion, which makes finding errors tiresome and frustrating. The tool does not include

any functionality to parse the entered specification.

Jory is implemented in a way that allows it to be scalable and extendable. Therefore,

solving its limitations and adding even more extensions is a feasible task. To over-

come the limitations off Jory, the following solutions are suggested:

1. Designing a high level language that is close to natural languages can make

the writing of specifications easier and reduce their size. Also, the high level

language would enable a more comprehensive way to express constraints.

9

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

2. To make Jory more user friendly, the editor of Jory needs to be improved. Areas

of improvement include hiding details that are not needed by the user, clarifying

buttons and options functionalities, and separating the input and output area.

3. To support graphical notations, the implementation of the translation layer is

essential. The translation layer allows the translation between different feature

modelling techniques including graphical ones. Moreover, supporting graphical

notations needs an editor that supports input and output in graphical format.

Suggestions 1 and 2 are in the scope of the current work. However, suggestion 3 is

not under the scope of this thesis.

1.1.3 Advantages of a High Level Language

Designing a high level language has a significant number of benefits. A high level lan-

guage is closer to natural languages. It would have a compiler which reports errors

and handles exceptions. The compiler would also have a mechanism to recover from

errors. Therefore, it is advantageous for users, specifiers, and maintainers.

A high level language is more readable and comprehensive for the user due to the fol-

lowing characteristics. First, the overall simplicity and naturalness of the language’s

syntax improves the language’s readability. Second, the limited number of keywords

and constructs of the language makes guessing the constructs effects an easy task

and makes the user familiar with them. Moreover, the abstraction level makes the

specification shorter by allowing some structures to be defined once and used multiple

10

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

times throughout a specification.

From the perspective of the specifier, writing a specification in a high level language

is easier because of the simplicity of the syntax and the level of abstraction. More-

over, error reporting makes the specification more reliable and robust. Also, a high

level language reduce time needed to write specifications. Expressivity means that

the language has complex operators that can be expressed in a long specification in

the low level language. Expressivity is a factor that shortens the specification.

One of the main costs and time consumption of a specification life cycle is mainte-

nance and modification. Maintenance relies heavily on the readability and writability

of the specification. A high level language is easier to read, thereby makeing the

job of the maintainer less tedious. Error reporting and type checking also ease the

maintenance and modification task.

Designing a high level language for PFA is recommended for a number of reasons.

First, we can gain the benefits of a higher level language over the low level language of

Jory that we discussed previously. To reach a wider community of users for PFA that

might not be very comfortable with mathematical notations of the language currently

used by Jory. Second, we can solve some of the limitations of Jory. In Section 2.1.2, I

reported on several feature modelling languages. They use language constructs that

can be adopted in the sought language.

11

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

1.2 Objectives

This thesis is about proposing a feature modelling language and designing its com-

piler. The sought language is based on Product Family Algebra. The compiler is

expected to a part of the feature modelling tool Jory [Alt10].

The sought language combines all the benefits of a high level language, PFA, and the

Jory tool. Also, it addresses the limitations of the current language that is used by

Jory. To fulfil our objective, the following tasks are required:

1. Design a language by providing its syntax and semantics.

2. Build a compiler for the language.

3. Connect the compiler to the Jory tool.

4. Assess the quality of the whole system.

The high level language is required to have a simple syntax, error reporting capabili-

ties, and an exception handling mechanism. It is intended to be easy for the user to

write, read, and modify specifications. Moreover, it is intended to enable writing long

and complex specifications and constraints. It is required to support the inclusion of

different modules from other specification files.

The first step toward coming up with the language is to propose its design according

to the above objectives. In designing the language, we need to provide the syntax

and semantics of the language. The syntax of a programming language is the form

of the language’s expressions and statement units. The semantics is the meaning of

12

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

those expressions and statement units. The clarity and precision of the design is an

important factor for the success of the language.

The smallest syntactic units of the language are tokens which are used to specify

lexemes. Lexemes include identifiers, operators, and keywords. Tokens are described

using regular expressions. The expressions and statement units which consist of one or

more tokens are described using context-free grammar or Backus Naur Form (BNF).

The grammar of the language is discussed in detail in Section 3.3.

The second step is designing and implementing a compiler for the language. The

compiler accepts the PFA specification written in the high level language, checks the

syntax of the specification, reports errors if there are any, and generates the output

specification in Jory’s language. The compiler is to be connected to Jory to generate

the final result of the specification.

The compiler validates the syntax of specifications. It keeps track of the identifiers of

the specifications, reports errors and their positions, then translates the specification

to the equivalent specification in the target language (i.e., the language of product

family algebra). The structure of the compiler comes in two parts: front-end (anal-

ysis) and back-end (synthesis). The main functionality of the front-end deals with

the input specification. It validates the syntax of the input, then generates an in-

termediate representation of the specification. The back-end functionality deals with

the target specification by taking the intermediate representation as an input and

generating the equivalent target specification. The compiler is discussed in detail in

13

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Section 4.1. Connecting the compiler to Jory brings the benefits of both the com-

piler and Jory in the form of one black box with hidden details from the user. In

this way, the user writes the specifications and obtains the result in the same interface.

The last step is to assess the system. In order to validate the system and ensure

that it meets the expectations and generates the correct results, I focus on testing.

Testing involves sub-system testing and whole system testing. The testing will be

carried out on different levels and aspects. The test plan involves unit testing up

to system testing. Unit testing assesses the smallest code units. Sub-system testing

is the test performed on the level of the major components of the system. System

testing is done on the level of the whole system. This involves providing the system

with an input and validating the generated output with the expected output.

1.3 Thesis Structure

In Chapter 2, I give the needed background. We consider the concepts presented in

this chapter in more detail. In Chapter 3, we consider the design of the proposed

language. In Chapter 4, I present the design and implementation of the language’s

compiler. In Chapter 5, I present a case study to assess and validate the system. In

Chapter 6, I conclude and point to future work.

14

Chapter 2

Background

In this chapter, I present the background behind this work. In Section 2.1 we study

feature modelling techniques in more detail. In Section 2.2, we examine PFA and its

models. In Section 2.3, we consider the Jory tool design.

2.1 Feature Modelling

The basic elements in a feature model include features, products, product families,

and constraints. In Chapter 1, we have seen their definitions with examples of a

mobile phone product family. We have introduced feature modelling. We have also

discussed that depending on the feature modelling technique, feature models can have

many forms such as graphical, textual, and combination of graphical and textual. In

this section, we discuss graphical and non-graphical feature modelling techniques in

more detail.

15

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

2.1.1 Graphical Feature Modelling

Graphical feature modelling techniques represent a product family as a graph. The

model is a hierarchal tree with the root node representing the name of the system.

Every other node represents a feature or a subfamily. A graphical feature model can

be an and/or tree or a directed acyclic graph (DAG).

One of the drawbacks of graphical feature modelling can be perceived when we handle

large systems. It becomes hard to visualize the product family because the result-

ing model is so large. Therefore, it becomes difficult and tedious to understand the

model. Finding features and their relationships in the model becomes a difficult task

for stakeholders. Also, counting the different products of the family from the model

would be nearly impossible.

After analyzing and studying the literature, we can classify graphical feature mod-

elling techniques in four classifications: basic feature models, constraints feature mod-

els, cardinality-based feature models, and extended feature models.

Basic Feature Models

This group is basically the feature modelling technique FODA and its successors

which have added minor extensions to it. The main characteristics of this group of

feature models are the following:

• The feature diagram is an and/or tree as in FODA or a DAG as in FORM.

• The root node represents the system label or the product family name.

16

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

• Leaf nodes denote basic or primitive features (i.e., undividable features).

• All other nodes which are not the root or leaf nodes, represent composite fea-

tures or subfamilies. A composite feature has subfeatures and a relation between

the parent and its subfeatures.

• Features can be mandatory or optional. A mandatory feature means that if

its parent is selected in a product then it has to be selected as well. The root

feature is mandatory in all products. Optional features are those such that if

their parent features are selected then their existence is optional.

• The relations between a parent feature and its subfeatures are one of the fol-

lowing relations: AND (i.e., if the parent feature is selected then all of its

subfeatures are selected), OR (i.e., one or more subfeatures can be selected), or

XOR (i.e., exclusive-or, only one subfeature is selected if the parent is selected).

• Constraints are a textual presentation. Constraints are one of two forms: in-

clude (i.e., if feature A is selected then feature B must be selected), and exclude

(i.e., if feature A is selected then feature B is excluded).

FORM and FOPEL techniques extend FODA with four layers. Each feature belongs

to one of the following layers: capability layer, operating environment layer, domain

technology layer, and implementation technique layer. They also add more types of

relations which are generalization/specialization and implemented-by.

The most basic feature modelling technique is FODA. In Figure 1.1, we saw an ex-

ample of a model for a mobile phone product family specified in FODA. The feature

diagram is an and/or tree. The root node is enclosed in a box and has the product

17

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

family name. Screen and Accessories are composite features while the rest are leaf

nodes. Keypad and Accessories are optional features indicted by the hollow circle

above them; the other features are mandatory features. The relation between Screen

and its subfeature is an XOR relation. The relations between the root node and

Accessories and their subfeatures are AND relations.

Constraints Feature Models

Feature models in this group extended the basic feature models with representing

the constraints graphically in the diagram. Include and exclude constraints are rep-

resented as lines connecting the features on the feature diagram. This extension to

FODA was added in FeatuRSEB and Van Gurp. Other feature modelling techniques

have even more complex constraints of the form: “if features A and B are selected

then feature C is selected.”

<< excludes >>

Mobile

Calling_feature Accessories ScreenKeypad

Touch_screenBasic_screenMP3_PlayerGPS Camera

Figure 2.1: Mobile Phone Feature Model in FeatuRSEB

Figure 2.1 shows the mobile phone product family specified using the FeatuRSEB

18

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

feature-modelling technique. The main difference with FODA is the existence of

the excludes constraint in the feature diagram. In the mobile phone product family,

the existence of Keypad excludes the existence of Touch Screen and vice versa. In

Figure 2.1, the relationship between Screen and its subfeatures is an XOR relation

indicated by the white diamond. On the other hand, the relation between Accessories

and its children is an OR relationship represented by the black diamond.

Cardinality-Based Feature Models

Cardinality-based feature models extend constraints feature models with the following

notations:

• Feature cardinality represents the number of occurrences of a feature in a prod-

uct family. It is of the form ⟨n−m⟩, where n is the least number of occurrences

of a feature in a product and m is the maximum number of occurrences of the

feature. Mandatory and optional features can be presented using feature car-

dinality. A mandatory feature can be presented as ⟨1 − 1⟩, and the optional

feature as ⟨0 − 1⟩.

• Group cardinality indicates the number of subfeatures to be selected when the

parent feature is selected. Group cardinality is of the form n ..m where n

indicates the minimum number of selected subfeatures while m represents the

maximum number of selected subfeatures. The relationships AND, OR, and

XOR can be considered as special cases of group cardinality. For example, the

AND relation is the cardinality n .. n where n is the number of subfeatures. The

OR relation is the cardinality 1 ..m where m is the number of subfeatures. The

19

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

XOR relation is the cardinality 1 ..1 where only one subfeature is selected.

1..3

Mobile

Calling_feature Accessories ScreenKeypad

GPS Camera MP3_Player Basic_screen Touch_screen

1..1

4..4

<<Excludes>>

Figure 2.2: Mobile Phone Feature Model in Riebisch et al.

In Figure 2.2, we see the feature diagram in the feature modelling technique Riebisch

et al. for the mobile phone product family. We notice that all features are boxed.

Also, mandatory features are denoted by black circles and optional features denoted

by white circles. Moreover, we changed all the relationships between composite fea-

tures and their subfeatures to be alternative relations with cardinalities. The first one

is the relation between the root node and its children. The cardinality of this relation

is 4 ..4 where the minimum and maximum bounds are the same and equal to the

number of children. This means all features have to be selected in all products and

this is an alternative of the relation AND. The second relation is between Screen and

its subfeatures. The cardinality is 1 ..1 which means only one feature can be selected

which is equivalent to XOR relation. The third relation between Accessories and its

subfeatures, which has the cardinality 0 ..3, means the number of selected features is

between 0 and 3.

20

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Extended Feature Models

This group of feature models extend the previous models with attributes or diagram

reference or both. Attributes were proposed to present a choice of value from a large

domain such as: Integer or Float. To model this, a feature is associated with a type

and a value. The type comes between parentheses after the feature name (i.e., fea-

turename(type)), and if the feature has a value, then it comes after the type (i.e.,

featurename(type: value)). If a feature has multiple attributes, then they are mod-

elled as subfeatures. An attribute is represented on the model graph. Feature models

use diagram references as a way of abstraction and reuse of an already created models.

The feature model would have a special node which refers to a model.

Mobile

Calling_feature Accessories Screen

[1..1][0..1]

Touch_screenBasic_screen

Keypad
<1−1>

MP3_PlayerCamera

[0..2]

Camera Type

Model_number(Int)

GPS

Figure 2.3: Mobile Phone Feature Model in CBFM

Figure 2.3 shows the mobile phone product family specified using the CBFM feature-

modelling technique. There are three main extensions to the previous model in Fig-

ure 2.2. First, feature cardinalities are added to the features Screen, Keypad , and

Camera. Second, a feature attribute is added to the new feature Model number which

21

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

means it has an attribute of type integer. Third, the model refers to another model

using diagram reference. The feature Camera refers to another model which contains

the type of Camera.

2.1.2 Non-Graphical Feature Modelling

The non-graphical feature modelling techniques include textual and algebraic feature

modelling techniques. Textual feature modelling techniques model product families

in forms of text rather than diagrams. On the other hand, PFA is an algebraic feature

modelling technique that was introduced to empower feature modelling with algebraic

functionalities such as calculating ways to expand feature modelling and abstraction.

Feature modelling diagrams are not sufficient to be used in industrial settings for

many reasons. This led to the creation of text-based feature modelling techniques.

Textual feature modelling techniques solve some of the limitations and drawbacks

of graphical feature modelling techniques. Moreover, they have a better abstraction

mechanism. They are easier to read and write by humans because they are close to

natural languages. A textual feature model can be written in a normal text editor

without the need for specific tools. However, a textual feature model could be long

and hard to follow in large scale feature models. Also, some of the textual techniques

assume some programming background for the user. Moreover, manipulation of tex-

tual feature models cannot be automated.

Feature Description Language (FDL) [vDK02] is a textual language for describing

22

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

feature models. FDL claims to be easy to communicate through emails and to be

translated easily to UML models and subsequently to actual code. FDL feature mod-

els consists of two parts: feature definitions and constraints. The first part consists of

feature definitions, each of which starts by a feature name followed by an expression.

An expression could be one of the following: atomic features, mandatory features,

alternative features, or non-exclusive feature groups. The constraints part contains

diagram constraints and user constraints. Diagram constraints are of the form “f1 re-

quires f2”. User Constraints are of the form “include f1”. In Figure 1.2, we have seen

the mobile phone product family specified using the FDL feature-modelling technique.

Another textual feature modelling technique is the Text-based Variability Language

(TVL). The goal of this language is to handle large scale models. It is presented as

an alternative and complementary to the graphical models. TVL is a C-like program-

ming language. The root feature starts with the word “root”, followed by the feature

name then the composed features. A decomposition is denoted by “group” followed

by “allOf” for mandatory features, “oneOf” for alternative features, “someOf” for

non-exclusive features, or the group cardinality. An optional feature is denoted by

“opt”. A feature that is already a member of a family can be reused in a different

family proceeded by the keyword “shared”. Moreover, features in TVL can have at-

tributes with types associated to them. Constraints in TVL are boolean expression

that can be added to the body of the feature. Figure 2.4 shows the mobile phone

product family specified using the TVL feature-modelling technique.

23

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

root Mobile group allOf {
Screen group oneOf {

Bas ic Screen ,
Touch Screen
} ,

opt Keypad ,
Ca l l i n g f e a t u r e ,
opt Acce s s o r i e s group someOf {

GPS,
Camera ,
MP3 Player
}

}

Figure 2.4: Mobile Phone Feature Model in TVL

2.2 Product Family Algebra

Product family algebra (PFA) is an algebraic feature modelling technique. PFA is

based on the mathematical structure of an idempotent and commutative semiring

which gives it the power to describe product families precisely. Moreover, it allows

algebraic calculations and manipulations of product families to generate new infor-

mation about those product families.

In Figure 1.3, we have seen an example of a specification written in PFA for a mobile

phone product family. In the following, we introduce the mathematical foundations

of product family algebra in more detail.

Let S be a set, and let + and ⋅ be two binary operations on S (i.e., +, ⋅ ∶ S × S → S).

We say that:

The operation ⋅ is associative ⇐⇒ ∀(x, y, z ∣ x, y, z ∈ S ∶ x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z).

The operation ⋅ is commutative ⇐⇒ ∀(x, y ∣ x, y ∈ S ∶ x ⋅ y = y ⋅ x).

24

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

The operation ⋅ is idempotent ⇐⇒ ∀(x ∣ x ∈ S ∶ x ⋅ x = x).

The element 1 is the identity element for ⋅ ⇐⇒ ∀(x ∣ x ∈ S ∶ x ⋅ 1 = x = 1 ⋅ x).

The element 0 is an annihilator for ⋅ ⇐⇒ ∀(x ∣ x ∈ S ∶ x ⋅ 0 = 0 = 0 ⋅ x).

The operation ⋅ right-distributes over the operation + ⇐⇒ ∀(x, y, z ∣ x, y, z ∈ S ∶

(x + y) ⋅ z = x ⋅ z + y ⋅ z).

The operation ⋅ left-distributes over the operation + ⇐⇒ ∀(x, y, z ∣ x, y, z ∈ S ∶

x ⋅ (y + z) = x ⋅ y + x ⋅ z).

Definition 2.2.1. A semigroup is an algebraic structure (S, ⋅) such that S is a set, and

⋅ is an associative binary operation. A semigroup is commutative if ⋅ is commutative,

and idempotent if ⋅ is idempotent.

Definition 2.2.2. A monoid is an algebraic structure (S, ⋅,1), such that (S, ⋅) is a

semigroup and 1 is the identity element.

Definition 2.2.3 ([HKM11]). A semiring is an algebraic structure (S,+,0, ⋅,1), such

that (S,+,0) is a commutative monoid and (S, ⋅,1) is a monoid such that ⋅ distributes

over + and 0 is an annihilator for ⋅. A semiring is idempotent if + is idempotent and

commutative if ⋅ is commutative. In an idempotent semiring the relation a ≤ b⇔df

a + b = b is a partial order (i.e., a reflexive, antisymmetric and transitive relation)

called the natural order on S. It has 0 as its least element. Moreover, + and ⋅ are

isotone with respect to ≤.

Definition 2.2.4 ([HKM11]). Product family algebra is an idempotent and commu-

tative semiring (S,+,0, ⋅,1) in which 1 is a product. Its elements are product families.

A family g is a subfamily of a family f iff g ≤ f , where ≤ is the natural semiring order.

25

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

In product family context, addition + can be interpreted as a choice or option between

two product families as an OR relation in feature diagrams, and multiplication ⋅ as a

mandatory composition of features as an AND relation. The constant 0 represents the

empty family and the constant 1 represents the family that has one product without

features. The term a + 1 is the product family offering the choice between a and the

identity product and indicates that the feature a is optional.

2.2.1 Set Model

To give a meaning for the semiring structure, concrete models have been proposed

in [HKM06]. In the model that we discuss in this section, a product is a set of features

and a family is a set of sets of features.

Let F be a set of arbitrary features. A product is a member of the power set of F.

The set of all possible products is P =df P(F), the set of all subsets of F. The special

element 1 = {∅}; the family of one product that has no features. The special family

0 is the empty set.

The definition of the semiring operations on the set model are given in [HKM11].

The operation ⋅ offers the composition between families.

⋅ ∶ P(P) × P(P) → P(P)

P ⋅Q =df {p ∪ q ∣ p ∈ P ∧ q ∈ Q}.

26

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

The operation + offers the choice between families.

+ ∶ P(P) × P(P) → P(P)

P +Q =df P ∪Q,

where ∪ denotes the set union.

The structure of the set model is PFS =df (P(P),+,∅, ⋅,{∅}). As we can see from the

above representation of the model, the set model does not allow multiple occurrences

of a feature in a product.

2.2.2 Bag Model

Sometimes, we need to have multiple occurrences of the same feature in a product. To

do this, we use the bag model. The definition of 1, 0, and the operation + are exactly

the same as in the set model. However, we define the operation ⋅ as the composition

of families.

⋅ ∶ P(P) × P(P) → P(P)

P ⋅Q =df {p ⊎ q ∣ p ∈ P ∧ q ∈ Q},

where ⊎ denotes the bag sum.

27

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

2.2.3 Products, Features, Refinement, and Constraints

Definition 2.2.5 ([HKM11]). Assume a commutative idempotent semiring A, and

an element a ∈ A. We say a is a product if it satisfies:

∀(b ∣∶ b ≤ a Ô⇒ (b = 0 ∨ b = a)), (2.1)

∀(b, c ∣∶ a ≤ b + c Ô⇒ (a ≤ b ∨ a ≤ c)). (2.2)

The element 0 is a product. A product is said to be proper if a /= 0.

Equation 2.1 indicates that a product does not have a subfamily except the empty

family and itself. Equation 2.2 states that if a product a is a subfamily of a family

formed by c and b, it must be a subfamily of one of them. An example of a product

is Mobile specified as follows:

Mobile = Screen.Keybad.Calling feature

Mobile is a product according to Definition 2.2.5.

Definition 2.2.6 ([HKM11]). We say that a is a feature if it is a proper product

different than 1 satisfying:

∀(b ∣∶ b ∣a Ô⇒ b = 1 ∨ b = a), (2.3)

∀(b, c ∣∶ a ∣(b ⋅ c) Ô⇒ a ∣ b ∨ a ∣ c), (2.4)

where the division operator ∣ is defined by x ∣ y⇐⇒df ∃(z ∣∶ y = x ⋅ z).

28

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Equation 2.3 states that if we have a product b that divides a, then either b is 1 or

b = a. Equation 2.4 states that for all product families b and c, if a is mandatory to

form b ⋅c, then it is mandatory to form b or it is mandatory to form c. Some examples

of features in the mobile phone product family are the features Screen and Keypad .

Definition 2.2.7 ([HKM11]). The refinement is the relation defined as

a ⊑ b⇐⇒df ∃(c ∣∶ a ≤ b ⋅ c).

This refinement relation a ⊑ b means that every family in a has all features of some

families in b. It is a preorder (i.e., reflexive and transitive).

We consider families NewMobile and OldMobile that are defined as follows:

NewMobile = Screen ⋅Keypad ⋅Calling feature ⋅ (GPS +Camera +MP3 Player)

OldMobile = Screen ⋅Keypad ⋅ (GPS +Camera +MP3 Player)

The family NewMobile has the following three products:

Screen ⋅Keypad ⋅Calling feature ⋅GPS

Screen ⋅Keypad ⋅Calling feature ⋅Camera

Screen ⋅Keypad ⋅Calling feature ⋅MP3 Player

The family OldMobile also has three products:

Screen ⋅Keypad ⋅GPS

Screen ⋅Keypad ⋅Camera

Screen ⋅Keypad ⋅MP3 Player

29

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

We say NewMobile refines OldMobile and we write NewMobile ⊑ OldMobile be-

cause every product in NewMobile has all features of some products in OldMobile.

Definition 2.2.8 ([HKM11]). Assume a product family algebra. For elements a, b,

c, d, and product p we define constraint, in a family-induction style,

a -p b ⇐⇒df (p ⊑ a Ô⇒ p ⊑ b),

a -c + d b ⇐⇒df a -c b ∧ a -d b,

where a -e b means that if product e has feature a then it also has feature b.

Constraints have two main usages: inclusion or exclusion. Consider the following

features for a mobile phone: Screen, Keypad , Touch Screen, Battery , and Mem-

ory . An example of an inclusion constraint is: Screen -Mobile
Keypad, which

means if we have a Screen in mobile phone product then we must have a Key-

pad . On the other hand, an example of an exclusion constraint comes in the form:

Screen ⋅ Touch screen -Mobile 0, which states that we cannot have a Screen and a

Touch Screen at the same time in a mobile phone product.

2.3 Jory Tool

In Chapter 1, I introduced the tool Jory. We have seen that it is based on PFA and

BDDs. In this section, we look into the detailed design of the tool.

30

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Jory implements PFA models (i.e., set and bag) using Binary Decision Diagrams

(BDDs). BDDs are used to handle large systems with efficiency and speed. BDDs

are directed acyclic graphs (DAGs) representing binary functions as binary trees. The

nodes represent boolean variables while the terminal nodes are 0 or 1. Every node

has two children. One is connected by a low-edge (denoted by ⇢) while the other

is connected by a high-edge (denoted by →). Jory uses Ordered Binary Decision

Diagrams (ROBDDs) which always has the nodes ordered. Nodes are unique, which

means that is no two nodes at the same level have the same label.

Z

X

Y

1 0

Figure 2.5: The BDD of f(x, y, z) = x ∨ y ∧ ¬z

Figure 2.5, which is borrowed from [Alt10], shows the BDD representation of the

function f(x, y, z) = x ∨ y ∧ ¬z. The function f is a boolean function that evaluate

31

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

to true or false. The nodes x, y, and z are boolean variables. If the boolean variable

evaluates to true then the high-edge is selected, otherwise, the low-edge is selected.

The boolean operators ∨, ∧, and ¬ denote or, and, and negation, respectively. When

the function evaluates to true, then the path of nodes leads to 1, and we say the

function is satisfied.

...

Term Evaluation layer

User Interface Layer

Translation Layer

Concrete Models Layer
Other ModelsSet ModelBag Model

BDD layer

Figure 2.6: The Architecture of Jory

Jory is designed using a layered architecture. Generally, a layered architecture is best

to design, implement, maintain, and modify layers separately. Jory consists of five

layers: User Interface Layer, Translation Layer, Term Evaluation Layer, Concrete

Model Layer, and BDD Layer. Figure 2.6 shows the architecture of Jory.

The User Interface Layer includes all the modules that make the user interface of the

32

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

system. The user interface is where the user inputs the specification written in the

language of PFA. Also, it allows the user to set the configurations and the environ-

ment and select the preferences. The User Interface Layer is implemented in Python.

The Translation Layer translates from one feature modelling technique to another.

It is used by Jory to translate from the different modelling techniques to PFA to

be used in lower layers, and from PFA to other modelling techniques to be used in

upper layers. This layer is not currently implemented and is intended for future work.

The Term Evaluation Layer takes PFA specification, evaluates it, analyzes it, and

generates a registry of the features, products, and families. This layer is implemented

in Haskell.

The Concrete Model Layer uses the registry generated from the Term Evaluation

Layer to handle the set and bag models. It generates the BDD code in the selected

model.

The BDD Layer is where the BDD code generated from the concrete model layer gets

executed. Also, it is where the specification, queries, and transactions take place, and

also where the result is produced.

33

Chapter 3

Language Design

The aim of this chapter is to discuss the main issues that are faced when designing

the proposed language. In Section 3.1, we examine syntax and semantics of pro-

gramming languages. In Section 3.2, we list the objectives of the proposed language

design. In Section 3.3, we present the actual design and structure of the language.

In Section 3.4, we assess the language with regard to the design objectives. Finally,

Section 3.5 concludes the chapter.

3.1 Syntax and Semantics

Language design involves presenting the constructs of the language and their intended

effects. Therefore, language design involves the discussion of two aspects of the lan-

guage: its syntax and its semantics. The syntax is the format of the language state-

ments and expressions while the semantics is the meaning or effect of these statements

and expressions [Seb01].

34

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

3.1.1 Syntax

The syntax of a programming language defines the set of acceptable strings. It is usu-

ally articulated using a combination of regular expressions and context-free grammars.

Regular expressions are used to describe the lexical units of tokens while context-free

grammars, usually given under Backus-Naur Form (BNF), are used to describe the

grammatical structure of the language.

A regular expression is a sequence of symbols that are used to represent or recognize

a regular set of strings. If Σ is a finite alphabet set, a regular expression represents a

(possibly infinite) set of strings in Σ∗. Regular expressions are defined by induction.

The basic regular expressions are the following:

• a, ∀a ∈ Σ: It recognizes the symbol a only. Therefore, L(a) = {a};

• ε: It recognizes only ε (the null string). Therefore, L(ε) = {ε};

• ∅: It recognizes nothing. Therefore, L(∅) = {};

Compound regular expressions are defined inductively from basic regular expressions

and binary operators + and ⋅ and unary operators ∗, +, and ?. If σ and β are two

regular expressions, then:

• σ + β or σ ∣ β are regular expressions that express the choice between σ and β.

For example, ab + ba recognizes the string ab or the string ba.

• σ⋅β or σβ are regular expressions that recognize the set of strings in the language

obtained by the concatenation of L(σ) with L(β). For example, ab recognizes

the string given by a followed by b.

35

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

• σ∗ is a regular expression that recognizes the set of strings in the language ob-

tained by the concatenation of L(σ) repeated zero or more times. For instance,

a∗ recognizes the set of strings {ε, a, aa, ...}.

• σ+ is a regular expression that recognizes the set of strings in the language

obtained by the concatenation of L(σ) repeated one or more times. For instance,

a+ recognizes the set of set of strings {a, aa, aaa, ...}.

• σ? is a regular expression that recognizes the set of strings in the language

obtained by the concatenation of L(σ) repeated zero or one time. For instance,

a? recognizes the strings ε and a only.

In regular expressions, unary operators have higher precedence than binary opera-

tors. The operator ⋅ has a higher precedence than +. Moreover, parentheses can be

used to delimit the scope of an operator. For example, the regular expression (a ∣ b) c

recognizes the strings ac or bc. Also, square brackets are used to recognize one char-

acter between the brackets. For example, [abc] recognizes a, b, or c. To recognize a

rang of characters or numbers, we use −. For instance, [a− z] recognizes a lower case

character in the range a to z.

Regular expressions are used to describe tokens and lexemes in programming lan-

guages. For example, the expression used to describe identifiers is [a − z A −Z][a −

z A −Z 0 − 9]∗ which starts with a lower case or an upper case letter followed by “ ”,

a lower case letter, an upper case letter, or a digit, repeated zero or more times.

36

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Lexical Structure

In programming language syntax, a lexical structure is described as a set of regular

expressions. These regular expressions define the set of acceptable sequences of char-

acters also known as tokens. Tokens are used to categorize lexemes which include

identifiers, operators, and reserved words. Lexemes are the actual value of tokens.

Tokens can refer to multiple lexemes. For example, an identifier token can be any

string that forms an identifier like “name” or “id”. However, a token can refer to a

specific lexeme. For instance, a plus token can only refer to “+” in a specific language.

The following is an example of tokens and lexemes of a C statement: if (a == 5) x = 6;

Lexem Token Lexem Token

if IF) CP
(OP x ID
a ID = Equal
== is Equal 6 DIGIT
5 DIGIT ; SC

Table 3.1: Lexemes and Tokens of a C statement

Table 3.1 shows the lexemes and tokens of the previous C statement. “if” is a keyword

and its token is “IF ”. The tokens for open and close parentheses are “OP” and “CP”,

respectively. The identifier “a” and “x” have the token “ID” and the lexeme of each

is the actual name “a” and “x”. Also, “5” and “6” share the token “DIGIT ” and

differ in the lexeme or value. The assignment operator “=” has the token Equal while

the token is Equal is for the comparison operator “==”.

37

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Grammatical Structure

To describe the syntax of a programming language, we need to write the grammar of

that language. Grammar specifies the structure of the program and the acceptable

form of statements and expressions. BNF is a notation used to describe and define

programming language grammars. A grammar written in BNF is a finite set of rules

or productions defining the expressions and statements of the language.

A BNF rule is of the form ⟨LHS⟩ Ð→ ⟨RHS⟩, where LHS is a non-terminal or an

abstraction name. RHS is the definition of the abstraction which contains terminal

“tokens” and non-terminals. A non-terminal, which is given between two angle brack-

ets (i.e., ⟨ ⟩), generates strings and tokens and is defined in another rule. A terminal

is the actual string or token and has no further definitions. For example, the BNF

rule of an expression can be as follows:

⟨EXPR⟩ Ð→ ⟨EXPR⟩ + ⟨EXPR⟩ ∣ ⟨EXPR⟩

The expression is defined as an expression followed by a plus token, then another

expression. A non-terminal or abstraction can have multiple definitions. They can

be grouped into one definition separated by a “∣” symbol.

A BNF rule can be used to describe lists. For this purpose, the rule needs to be

recursive by having its name in the RHS. For example, the following rule is used to

describe a list of identifiers.

⟨ID LIST⟩ Ð→ ID ∣ ID, ⟨ID LIST⟩

38

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

A list of identifiers is defined as a single identifier, or an identifier followed by a

comma, followed by a list of identifiers. Using this rule, a list of one or more identi-

fiers can be articulated.

⟨PROGRAM⟩ Ð→ ⟨EXPR⟩
⟨EXPR⟩ Ð→ ⟨EXPR⟩ + ⟨TERM⟩ ∣ ⟨TERM⟩
⟨TERM⟩ Ð→ ⟨TERM⟩ ∗ ⟨FACTOR⟩ ∣ ⟨FACTOR⟩
⟨FACTOR⟩ Ð→ (⟨EXPR⟩) ∣ ⟨NUMBER⟩
⟨NUMBER⟩ Ð→ ⟨DIGIT⟩ ∣ ⟨DIGIT⟩⟨NUMBER⟩
⟨DIGIT⟩ Ð→ 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9

Figure 3.1: Calculator Grammar

In Figure 3.1, we consider a simple BNF grammar for a calculator to illustrate the

usage of BNF to articulate a grammar. In this illustrative grammar, ⟨PROGRAM⟩

is the start symbol. The first rule of the grammar gives the structure of the program,

which is an expression ⟨EXPR⟩. The second rule specifies an expression which is either

⟨EXPR⟩ + ⟨TERM⟩ or ⟨TERM⟩. A term is ⟨TERM⟩ ∗ ⟨FACTOR⟩ or ⟨FACTOR⟩. A

factor is an expression enclosed in parentheses or a number. A number a digit repeated

one or more times. A digit is within [0 − 9].

3.1.2 Semantics

The semantics of a programming language is the meaning of its constructs. There

is no universally accepted method for describing semantics. Some methods have

been developed such as operational semantics, axiomatic semantics, or denotational

semantics [Seb01]. In practice, natural language descriptions are used to articulate

the meaning and expected behaviour of the language constructs.

39

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

3.2 Design Objectives

In this section, we consider the design objectives of the proposed language. The

sought language has to be readable, writable, modular, expressive, and have a deter-

ministic interpretation on the domain of use. These characteristics of the proposed

language overlap and contribute to one another. For example, the simplicity of a

language improves its readability and writability. In the following, we consider the

objectives one by one.

Readability

The objective of readability means that the language is easy to be read and under-

stood by general users. The readability of a language plays a big role in the whole

development life cycle, especially the maintenance phase. Therefore, it enhances the

quality of a specification or a program written in the language.

Writability

We aim for our proposed language to be writable. This means that it should be easy

to write a specification in the language. A language is writable when it is simple.

Language simplicity can be achieved by limiting the number of basic constructs and

keywords. Having these constructs and keywords close to what one would find in

natural language enhances the easeness of writing specifications or programs.

40

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Modularity

Modularity means that the language allows for designing modules that can be reused

as parts of other specifications. Modularity can be seen as abstraction where com-

plicated structures can be defined and reused later with hiding or ignoring the details.

Expressiveness

Expressiveness means that the language has operations and functions that allow for

articulating the specification of product families. The language should allow for the

expression of all the notions of dependencies among product families that we find in

the literature. It should also express them in a simple and elegant way.

Deterministic Interpretation

A specification has a deterministic interpretation if it performs as expected under all

conditions. We expect that the proposed language will have one interpretation for

each of the models of product family algebra (i.e., set and bag model).

3.3 Design and Structure

In this section, I discuss the design and structure of the proposed language. I present

the grammar of the proposed language and the structure of a specification written in

the language. Then, I discuss the semantics of each of the language constructs.

41

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

3.3.1 Syntax

1 inc lude f i l e . spec

2 bf gps

3 bf camera

4 bf mp3 player

5 bf b a s i c s c r e e n

6 bf touch sc r e en

7 bf keypad

8 bf c a l l i n g f e a t u r e

9 a c c e s s o r i e s = some of (gps , camera , mp3 player)

10 sc r e en = one o f (ba s i c s c r e en , touch sc r e en)

11 mobile = a l l o f (opt (a c c e s s o r i e s) , c a l l i n g f e a t u r e , opt (keypad) ,

s c r e en)

Listing 3.1: Mobile Phone Product Family Specification

The specification of Listing 3.1 shows two main components of the specification struc-

ture: basic feature introductions and family definitions. In line 1, the keyword “in-

clude” tells the compiler to include the content of the referenced file into the current

specification. Lines 2 − 8 define the basic features GPS , Camera, MP3 Player , Ba-

sic Screen, Touch Screen, Keypad , and Calling feature, respectively. Lines 9 − 11

define the families accessories, screen, and mobile.

Figure 3.2 shows the grammar of the proposed language. Every specification ⟨spec⟩

consists of: inclusion section ⟨inclusion⟩, basic feature declaration ⟨declaration⟩, fam-

ily defenition section ⟨body⟩, constraints section ⟨constraints⟩, and conditions section

⟨if statements⟩. These sections have to follow the same order in a specification. Some

42

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

sections are mandatory and others are optionals. In the following, we consider each

one of the sections.

⟨spec⟩ Ð→ ε ∣ ⟨spec⟩⟨inclusion⟩⟨declaration⟩⟨body⟩⟨constrints⟩⟨if statements⟩
⟨inclusion⟩ Ð→ ε ∣ ⟨inclusion⟩“include”⟨identifier⟩
⟨declaration⟩ Ð→ “bf”⟨identifier⟩ ∣ ⟨declararion⟩“bf”⟨identifier⟩
⟨identifier⟩ Ð→ id
⟨body⟩ Ð→ ⟨labelled family⟩ ∣ ⟨body⟩⟨labelled family⟩
⟨labelled family⟩ Ð→ ⟨idenntifier⟩“=”⟨term⟩
⟨term⟩ Ð→ ⟨identifier⟩ ∣ number ∣ ⟨term⟩“+”⟨term⟩ ∣ ⟨term⟩“ ⋅ ”⟨term⟩

∣ (⟨term⟩) ∣ “all of”(⟨family list⟩) ∣ “one of”(⟨family list⟩)
∣ “some of”(⟨family list⟩) ∣ number (⟨family list⟩)
∣ number .. number (⟨family list⟩) ∣ ⟨term⟩∧ number
∣ ⟨term⟩∧ number .. number ∣ “opt”(⟨term⟩)

⟨family list⟩ Ð→ ⟨term⟩ ∣ ⟨term⟩“,”⟨family list⟩
⟨constraints⟩ Ð→ ε ∣ ⟨constraints⟩⟨constraint⟩
⟨constraint⟩ Ð→ “in”⟨identifier⟩“,”⟨term⟩“require”⟨term⟩

∣ “in”⟨identifier⟩“,”⟨term⟩“exclude”⟨term⟩
∣ “in”⟨identifier⟩“,”“every family has”⟨term⟩
∣ “in”⟨identifier⟩“,”“most occurrence of”⟨term⟩“is”number
∣ “globally”“,”⟨term⟩“require”⟨term⟩
∣ “globally”“,”⟨term⟩“exclude”⟨term⟩

⟨if statements⟩ Ð→ ε ∣ ⟨if statements⟩⟨if statement⟩
⟨if statement⟩ Ð→ “if”⟨expr⟩then⟨statement⟩

∣ “if”⟨expr⟩“then”⟨statement⟩“else”⟨statement⟩
⟨expr⟩ Ð→ ⟨identifier⟩“equal”⟨identifier⟩ ∣ ⟨identifier⟩“subfamily”⟨identifier⟩

∣ ⟨identifier⟩“refine”⟨identifier⟩ ∣ “size”⟨identifier⟩⟨relator⟩⟨a number⟩
∣ ⟨expr⟩“and”⟨expr⟩ ∣ ⟨expr⟩“or”⟨expr⟩
∣ “not”⟨expr⟩ ∣ (⟨expr⟩)

⟨a number⟩ Ð→ number ∣ “size”⟨identifier⟩
⟨relator⟩ Ð→ “==” ∣ “ > ” ∣ “ >= ” ∣ “ < ” ∣ “ <= ”
⟨statement⟩ Ð→ ⟨constraints⟩ ∣ (⟨if statement⟩)

Figure 3.2: Language Grammar

43

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Inclusion Section

The inclusion section is the first part of a specification. It is an optional part which

consists of one or more inclusion lines. Each line starts with the clause include which

allows for reuse of already written specifications by importing the referenced file into

the current specification. The format of an inclusion line is

include ⟨file name⟩

Basic Feature Declaration Section

The basic feature declaration section introduces a sequence of individual basic features

of the form

bf ⟨feature name⟩

An example of basic features are the features GPS and Camera in the mobile phone

product family given in Listing 3.1.

Family Definition Section

The family definition section is a sequence of one or more family definitions. Each

family definition starts with the family name, followed by “ = ”, followed by a term.

⟨family name⟩ = ⟨term⟩

A term is an algebraic expression that is either a basic term or a compound term.

A basic term is a feature which is an already defined basic feature or family. A

compound term is defined using one or more features and a relation connecting them.

A relation is one of the following:

44

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

• opt(f): It indicates that the feature is optional.

• all of(f1, f2, . . .): It means that all features are selected in the family.

• one of(f1, f2, . . .): It means that one feature is selected in the family.

• some of(f1, f2, . . .): It means that one or more (up to the actual number of

features in the list) features are selected in the family.

• n (f1, f2, . . .): it means that n features are selected in the family.

• n..m (f1, f2, . . .): It means at least n features or at maximum m features are

selected in the family.

• f1 + f2: It indicates the choice between the two features.

• f1 ⋅ f2: It indicates the composition of features.

Feature cardinality is defined in one of the two ways:

• f ∧n: It specifies that the feature is repeated n times.

• f ∧n..m: It specifies that the feature is repeated between n and m times.

Constraints Section

The constraints section of a specification is a list of constraints. Constraints are used

to eliminate undesired products from a certain family or all families. A constraint

45

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

has one of the following forms:

in ⟨family name⟩, ⟨family name⟩ require ⟨family name⟩ (3.1)

in ⟨family name⟩, ⟨family name⟩ exclude ⟨family name⟩ (3.2)

in ⟨family name⟩, every family has ⟨family name⟩ (3.3)

in ⟨family name⟩, max occurrence of ⟨feature name⟩ is ⟨number⟩ (3.4)

globally, ⟨family name⟩ require ⟨family name⟩ (3.5)

globally, ⟨family name⟩ exclude ⟨family name⟩ (3.6)

Constraints 3.1 and 3.2 mean that in family name the existence of the first fam-

ily name requires or excludes the existence of the second family name, respectively.

Constraint 3.3 indicates that every product of a specified family must have a specified

family. To limit the number of occurrences of certain feature in a family, we use a

Constraint 3.4. Constraints 3.5 and 3.6 mean that in all families in the specification,

the existence of the first family name requires or excludes the existence of the other

family name, respectively.

Conditions Section

The conditions section of the structure is a sequence of conditions. A condition is an

if statement that consists of a condition, a then part, and an optional else part.

if ⟨condition⟩ then ⟨constraints⟩

if ⟨condition⟩ then ⟨constraints⟩ else ⟨constraints⟩

46

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

A condition is one or more constraints with a guard. If the guard evaluates to true

then the constraints in the then part are executed, otherwise the constraints in the

else part are executed, if they exist. A basic guard can be one of the following forms:

⟨family name⟩ equal ⟨family name⟩

⟨family name⟩ subfamily ⟨family name⟩

⟨family name⟩ refine ⟨family name⟩

size ⟨family name⟩ relator ⟨number⟩

The relator is an arithmetic relator and it can be one of >,>=,<,<=, or ==. A com-

pound guard is defined using basic guards connected with AND, OR, and NOT.

Comments

The language accepts comments to add information to the specification that will not

be compiled. A comment is a single line comment that starts with double backslashes

“//”. The percentage sign “%”, which is the comment of the language of Jory, is also

acceptable.

3.3.2 Semantics

In Section 2.2, I have presented the PFA models (i.e., set and bag). Also, In Sec-

tion 3.3.1, I have presented the different constructs of the proposed language. In

this section, I present the semantics of the proposed language by showing how each

construct is translated to PFA.

47

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

The optional feature opt(f1) is translated to the choice between the feature f1 and

the family of one product that has no features (i.e., f1 + 1). The operations ⋅ and +

stay the same as in PFA. The construct all of() translates to the composition of the

features. On the other hand, one of() translates to the choice between the list of

features. However, some of() translates to the choice between every possible com-

position of features. n() translates to the choice between every composition of n

features. Similarly, n ..m() is the choice between the composition of n to m features.

Feature cardinality ∧n translates to the composition of the feature n times. The

cardinality ∧n ..m translates to the choice between the composition of the feature n

times to m times.

The language constraint ina, b require c translates to b -a c (i.e., if a has b then a

has c). However, the constraint ina, bexclude c translates to b ⋅c -a 0 (i.e., the prod-

uct of family a that has b and c is invalid). The constraint ina,every family has b

translates to 1 -a b (i.e., every product of a has b). Finally, the constraint ina, max

occurrence of b is n indicates that every product that contains more that n features

is an invalid product. Therefore, it can be expressed as bn+1 -a 0.

Table 3.2 summaries the language semantics by showing each construct and its equiv-

alent PFA term.

48

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Proposed Language PFA

opt(f) f + 1
f1 ⋅ f2 f1 ⋅ f2
f1 + f2 f1 + f2
all of(f1,⋯, fn) ⋅(i ∣ 1 ≤ i ≤ n ∶ fi)
one of(f1,⋯, fn) +(i ∣ 1 ≤ i ≤ n ∶ fi)
some of(f1,⋯, fn) F ≜ ⋅(i ∣ 1 ≤ i ≤ n ∶ (1 + fi))

and we add the following constraint

1 -F one of(f1,⋯, fn)
m (f1,⋯, fn) with m ≤ n F ≜ ⋅(i ∣ 1 ≤ i ≤ n ∶ (1 + fi))

and we require that
∀(p ∣ p ∈ F ∧ p is a product ∶ p ∈ Fm),
where F = {f1,⋯, fn}

m .. l (f1,⋯, fn) F ≜ ⋅(i ∣ 1 ≤ i ≤ n ∶ (1 + fi))
and we require that
∀(p ∣ p ∈ F ∧ p is a product ∶ p ∈ ∪(j ∣ m ≤
j ≤ l ∶ Fj)),
where F = {f1,⋯, fn}

f ∧m ⋅(i ∣ 1 ≤ i ≤m ∶ f)
f ∧m .. l +(j ∣ m ≤ j ≤ l ∶ ⋅(i ∣ 1 ≤ i ≤ j ∶ f))
ina, f1 require f2 f1 -a f2

ina, f1 exclude f2 f1 ⋅ f2 -a 0

ina,every family has f 1 -a
f

ina,max occurrence of f is m ⋅(i ∣ 1 ≤ i ≤m + 1 ∶ f) -a 0

Table 3.2: Proposed Language Semantics

3.4 Assessment

In this section we assess the proposed language. The assessment is done by perform-

ing a comparison study between the feature modelling techniques listed in Figure 3.3

and our language. The criteria of the comparison are readability, writability, modu-

larity, and expressiveness.

49

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

FODA GP

FeatuRSEB

FORM FOPLE

PLUSS

Reibisch

van Gurp

FORE

Figure 3.3: FODA Extension Feature Modelling Techniques

Readability

We compare the proposed language to the graphical feature modelling techniques

given in Figure 3.3 in terms of ease of reading and clarity of meaning.

The techniques FODA, FORM, and GP have a limited number of constructs and

their constraints are textual. Their models are easy to read. Since graphical feature

models, when small and compact, are easy to visualize and comprehend. However,

modelling a large system generates a large feature model which is tedious to read

and comprehend. The model in FOPLE consists of four layers and the three types of

feature relations make it less readable. Although, FeatuRSEB, van Gurp, Riebusch et

al., and PLUSS have clear and limited constructs, these techniques model constraints

graphically. If there are many constraints in the model, they can clutter the model

and make it less readable. The proposed language is easy to read because it has a

limited and comprehensive constructs and its constraints are of the same nature of

the model (i.e., textual). Moreover, the proposed language constructs are close to

natural language which makes them easy to read and guess their meaning by novice

users. On the other hand, the constructs in graphical feature models need a prior

knowledge of their meanings.

50

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Writability

Writability and readability of a feature modelling technique are directly related and

affected by the same properties. Therefore, what applies previously for readability

applies as well for writability. Therefore, models in FODA, FORM, and GP are

easy to write for their limited number of constructs, while models in FOPLE are not

writable. Constraints in FeatuRSEB, van Gurp, Riebusch et al. , and PLUSS models

are easier to write than to read. So their models are writable. Moreover, writing

specifications in the proposed language is easy for the same reasons as readability.

Modularity

All the feature modelling techniques in Figure 3.3 do not support modularity. In

our language, modularity is supported by using the “include” keyword to include a

pre-written specification in the current specification.

Expressiveness

In Appendix A, Table A.1 shows the constructs of each technique in Figure 3.3 as

well as our language. Moreover, it shows the equivalence between these techniques.

The table shows clearly that our language can express all of the constructs of the

other techniques.

Study Summary

To summarize, Table 3.3 shows the summary of the study. It shows whether a tech-

nique has a full support, restricted support, or no support for the considered criteria.

51

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Readability Writability Expressiveness Modularity
FODA full support full support restricted support no support
FORM full support full support restricted support no support
FOPLE no support no support restricted support no support
GP full support full support full support no support
FeatuRSEB restricted support full support full support no support
van Gurp restricted support full support full support no support
Reibisch restricted support full support full support no support
PLUSS restricted support full support full support no support
FORE restricted support full support full support no support
Proposed
Language

full support full support full support full support

Table 3.3: Study Summary

3.5 Conclusion

In this chapter, we considered the design of the proposed language. The structure

of the language is composed of five sections: inclusion section, basic feature declara-

tion section, family definition section, constraints section, and conditions section. I

showed the actual syntax and structure of the language by presenting the grammar of

the language and syntax of each section. Moreover, I presented the semantics of the

language by showing the equivalent PFA for each construct. Finally, I assessed the

language with regard to the criteria of readability, writability, modularity, and ex-

pressiveness by performing a comparison study to other feature modelling techniques

found in the literature.

52

Chapter 4

Design of the Compiler as a Part

of the Tool Jory

In this chapter, we consider the design and implementation of a compiler for the pro-

posed language. Our aim is to make the compiler a part of an integrated environment

for writing and executing specifications. My work is an extension of the tool Jory. We

also extend Jory with a user interface to accommodate the addition of the developed

compiler. The compiler translates the high level language presented in Chapter 3 to

the low level language of PFA (i.e., to that of an idempotent semiring). Then, the

tool Jory runs PFA code. The tool is designed in a layered architecture style.

To better understand the design of the compiler, we discuss the design of compilers

and interpreters in general in Section 4.1. Afterwards, I present the detailed design

of the compiler for the proposed language in Section 4.2.

53

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

4.1 Compiler Structure

A compiler is a system that among its functionalities is the translation of programs

written in one language to their equivalent programs in another language [ALSU06].

Moreover, a compiler detects and reports errors in the source program. Figure 4.1

shows the general view of a compiler. The difference between a compiler and an in-

terpreter is that the latter executes the output on the machine directly. The compiler

generates the output without executing it. With this understanding, we can say that

the developed compiler is one in which its generated code is executed on a virtual

machine (i.e., Jory).

Source Program Compiler Target Program

Figure 4.1: A General View of a Compiler

Looking into the details of a compiler, we find that the main two components of a

compiler structure are the front-end (analysis) and the back-end (synthesis) as shown

in Figure 4.2.

The front-end reads the source program, checks its grammatical structure, reports any

detected errors, then constructs, internally, an intermediate representation equivalent

to the source program. Moreover, the front-end collects information about the pro-

gram in a symbol table. The back-end takes the intermediate representation code

and generates the equivalent target program. A symbol table is a data structure that

holds the names of variables of the source program and the information about them.

54

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Table

Source Code

(Front End)

Analysis

Synthesis

(Back End)

Target Code

Intermediate Representation
Symbol

Figure 4.2: The Main Components of a Compiler

This information includes the type, scope, and other information needed to generate

the target code.

The compiler structure consists of the phases shown in Figure 4.3. Instead of a staged

execution of each one of the phases, a sequence of them are combined to be executed

together. For instance, the front-end phases are grouped together in one execution

and the back-end phases are combined into another execution.

The lexical analyzer reads the character stream of the source code and groups the

characters into lexemes. For each lexeme, the lexical analyzer passes the token type

along with the lexeme value to the syntax analyser.

The syntax analyzer or parser uses the tokens passes by the lexical analyzer to check

the grammatical structure of the source program. It generates an intermediate rep-

resentation of the source program. The intermediate representation has many forms

55

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Symbol

Source Code

Target Code

Semantic Analyzer

Code Optimizer

Intermediate Code Generator

Code Generator

Tokens

Syntax Tree

Annotated Tree

Intermediate Code

Intermediate Code

Syntax Analyzer

Lexical Analyzer

Table

Figure 4.3: The Compiler Phases

but it is most commonly a tree called a parse tree. In the case of a grammatical error,

it reports the error to the user.

The semantic analyzer uses the parse tree and the symbol table to check the semantic

consistency of the source program. Moreover, the semantic analyzer collects type

information to be used later for code generation. One of the most important roles of

the semantic analyzer is type checking. The semantic analyzer checks the consistency

of types, especially in arithmetic operators, and performs the needed type conversion.

56

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

In the process of compilation, the compiler generates multiple intermediate represen-

tations between phases. One important intermediate representation in most compilers

is intermediate code. Intermediate code is generated between syntax and semantic

analysis phases, or between front-end and back-end. The intermediate code has to

be easy to construct from the source program and easy to translate into the target

program. The main role of the code optimizer is to improve the quality of the in-

termediate code. It improves the quality of the code by eliminating redundant and

unnecessary code. The code optimizer combines multiple statements and shortens

the code. Finally, the code generator phase takes the intermediate code, processes it,

and generates the target code.

4.1.1 Flex and Bison

To construct the front-end of the compiler, I used Flex and Bison [Lev09], which are

tools that perform lexical analysis and syntax analysis, respectively.

Flex is a tool to build lexers. It is used to look for patterns (lexemes) described in

regular expressions and performs actions. If Flex is used with Bison, then the action

would be to pass the appropriate tokens and lexemes to the parser. A Flex program

is mostly C code. It consists of three sections separated by %% lines. The fist section

contains definitions and settings. The second section contains regular expressions and

their actions. The third section contains C code that provides functions and proce-

dures that are copied to the generated lexer.

57

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

In the first section, the code between “%{” and “%}” is copied to the generated

lexer. In the second section, each regular expression starts at the beginning of the

line followed by the action between “{” “}”. The action is one or more C statements.

Listing 4.1 is a Flex lexer for the calculator example given Figure 3.1 in Chapter 3.

%%

”+” {return PLUS;}

”∗” {return MUL;}

” (” {return OP;}

”) ” {return CP;}

[0−9]+ { yy lva l = a t o i (yytext) ; return NUMBER;}

\n {return NL;}

[\ t] %ignore white space%

. %ignore anything e l s e%

%%

Listing 4.1: Flex Lexer for Calculator

In practice, a Flex lexer works with a parser, which is the main program. Whenever

the parser needs a token, it calls the lexer to return the next token. Every time the

lexer gets called, it remembers where it was on the input stream, and resumes on the

next call.

Bison is a tool used to build parsers. The parser’s job is to identify the relationship

between the tokens. A Bison parser contains the same parts as a Flex lexer. The first

section is the declaration section. The C code between “%{” and “%}” is copied to

the generated parser. The C code is followed by token declarations. The second sec-

tion is a BNF grammar. The grammar section is a set of rules. Each rule is followed

by an action between “{” “}” telling the parser what to do when a rule is matched.

58

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

The value of the left hand side is indicated by “$$” while the values of the right hand

side are “$1”, “$2”, and so on. The value of a token is the value assigned to yylval

in the lexer.

Listing 4.2 is the Bison parser for the calculator example.

%{

#include <s t d i o . h>

%}

%token PLUS MUL OP CP

%token NUMBER NL

%%

program : expr NL { p r i n t f (” = %d\n” , $1) ;}

;

expre : expr PLUS term {$$ = $1 + $3 ;}

| term

;

term : term MUL f a c t o r {$$ = $1 ∗ $3 ;}

| f a c t o r

;

f a c t o r : OP expr CP { $$ = $2 ;}

| NUMBER

;

%%

main ()

{

yyparse () ;

}

Listing 4.2: Bison Parser for Calculator

59

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

4.2 System Design

In this section, I present the design of the compiler. First, I give an overview of the

design and the layers of the tool. Afterwards, I show the detailed design of the new

layers in Jory.

4.2.1 Overview

System design is the presentation of the major components of the system and the

communication between them [Som01]. There are different types of architectures for

systems. We adopt a layered architecture to conceptually decompose our parser. We

choose a layered architecture due to the nature of compiler structure and the design

of the tool Jory.

The layers of Jory are the User Interface Layer, the Syntax Analysis Layer or the

front-end of the compiler, the Code Generation Layer or the back-end of the com-

piler, the Term Evaluation Layer, the Concrete Model Layer, and the BDD Layer.

Figure 4.4 shows the layers of Jory. The User Interface Layer is implemented in

Python while the Syntax Analysis Layer is implemented in Flex and Bison which

generates C code. The Code Generation Layer and the Term Evaluation Layer are

implemented in Haskell. The Concrete Model Layer and the BDD Layer are imple-

mented in C/C++. The first three layers are the subject of this thesis.

The User Interface Layer is the interface between the user and the tool’s internal

components. The user writes a specification in the proposed language and chooses

the model in which the computation ought to be carried (i.e., set or bag). Also, the

60

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

CSyntax Analysis Layer

Term Evaluation layer

Concrete Models Layer
Bag Model Set Model

BDD layer

Code Generation Layer

User Interface Layer Python

C/C++

C/C++

Haskell

Haskell

Figure 4.4: Layers of Jory Tool

user compiles the specification and performs queries on the specification. Compilation

messages and the output of executing the specification are presented on the interface.

The Syntax Analysis Layer reads the specification, checks the lexical and grammati-

cal structure, reports any syntax errors, and generates the intermediate code for the

back-end. The Code Generation Layer takes the intermediate code, processes it and

generates the equivalent PFA code. The Term Evaluation Layer reads PFA code,

evaluates the basic features and families, and generates a registry for them. The

Concrete Model Layer uses the registry from the previous layer to generates BDD

code in the selected model. Finally, the BDD Layer executes the BDD code and

generates the output.

The communication between the layers is top-down, with the User Interface Layer

as a controller of the layers.

61

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

4.2.2 Detailed Design

In this section, we consider the detail design of the three layers added to Jory: the

User Interface Layer, the Syntax Analysis Layer, and the Code Generation Layer.

The detailed design of the other layers can be found in [Alt10].

User Interface Layer

The interface that I propose, shown in Figure 4.5, has a text editor allowing the

user to write a specification or to open an already written one. Moreover, it has two

tabs for showing compilation errors and the output. Also, it has a radio buttons

for the user to select the model which the specification will be compiled in, and the

maximum occurrences in the case of a bag model. There is a part to write queries

on the specification and another part for aspects. The queries part is used to select

operations to be executed on the compiled specification.

The User Interface Layer is written in Python and consists of three classes: main,

compiler controller, and executer.

• main

Secret: It is a class that contains the main components of the frame.

Service: It initializes the interface components. Moreover, it hides the events

handlers of the interface components (e.g., radio button change and button

press).

• compiler controller

Secret: It is a class that contains the methods controlling the compiler.

62

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Figure 4.5: User Interface

Service: It encompasses the methods that call and process the layers of the

Syntax Analysis Layer, the Code Generation Layer, the Term Evaluation Layer,

and the Concrete Model Layer.

• executer

Secret: It is a class that contains the methods controlling the execution of the

BDD Layer.

Service: It holds the methods that process queries, compiles and executes BDD

code, and shows the results to the user.

63

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Syntax Analysis Layer

The Syntax Analysis Layer takes the specification written in the proposed language,

checks the lexical and syntactical structure of the specification, reports compilation

errors, and generates intermediate code. This layer consists of a lexical analyzer

(lexer), a syntax analyzer (parser), a symbol table, and a module to handle parse

trees as shown in Figure 4.6.

• lexical analyzer

Secret: It is an algorithm that does lexical analysis of the specification.

Service: It reads the stream character of the source code, identifies lexemes,

and returns token types and lexemes to the parser. The lexer is written in Flex.

• syntax analyzer

Secret: It is an algorithm that checks the grammatical structure of the speci-

fication.

Service: It takes the tokens generated by the lexer and organizes them accord-

ing to the grammatical structure of the language. It also reports syntax errors

and builds internal partial parse trees for families, constraints, and conditions.

Finally, the parser generates the intermediate code from these trees. The parser

is written in Bison.

• symbol table

Secret: It is a data structure that stores identifiers.

Service: It is used to store information about identifiers (basic features and

64

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

families). This information is used later to check that an identifier is not re-

peated in the specification and that an identifier is defined before it is used.

• tree handler

Secret: It is a data structure that stores parse trees.

Service: It is used to build partial parse trees and generate intermediate code

from them.

Parse

program Handler Code

Lexical

Analyzer

Syntax

Analyzer

Tree IntermediateSource

Table

Symbol

Tree

Figure 4.6: A Model of the Syntax Analysis Layer

Code Generation Layer

The Code Generation Layer takes the intermediate code generated by the Syntax

Analysis Layer, processes it, and generates PFA code for feature and families, and

C++ code for constraints and conditions.

This layer consists of one main module and four submodules. The main module is

code generator and the submodules are respectively for basic features, families, con-

straints, and conditions as shown in Figure 4.7.

65

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Figure 4.7: Module Uses Diagram of the Code Generator

• Basic Generator

Secret: It is an algorithm that translates intermediate code for basic features

into PFA.

Service: This module hides the functions that takes the intermediate code for

basic features and generates the equivalent PFA code.

66

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

• Family Generator

Secret: It is an algorithm that generates PFA code from intermediate code for

product family definitions.

Service: This module hides the functions that read the family section of the

intermediate code and processes each family definition separately. Then, it

translates each family definition recursively to PFA code.

• Constraint Generator

Secret: It is an algorithm that translates the intermediate code for constraints

to PFA.

Service: This module hides the functions that read the intermediate code for

constraints and translate it to C++ code for the BDD Layer to execute the

specification.

• Condition Generator

Secret: It is an algorithm that translates conditions from their intermediate

representation to their equivalence in PFA.

Service: This module hides the functions that read the condition section of

the intermediate code, translate the if conditions to C++, and call Constraint

Generator to translate the constraints.

Let us consider a sample of the Code Generator code shown in Listing 4.3. The

CodeGen module has the following function “main”:

67

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

1 main = do args <− getArgs

2 f <− l o adF i l e (args ! ! 0)

3 p ro c e s sb f f (args ! ! 4)

4 f <− l o adF i l e (args ! ! 1)

5 p ro c e s s f am i l y f (args ! ! 4)

6 f <− l o adF i l e (args ! ! 2)

7 proce s s cons f (args ! ! 5)

8 f <− l o adF i l e (args ! ! 3)

9 p ro c e s s c ond i t i on f (args ! ! 5)

Listing 4.3: Code of CodeGen Module

The function main loads the arguments and calls the appropriate module. In line

4, it loads the file that contains the intermediate code for the family section. Then

in line 5, it calls the function processfamily in the module FamilyGenerator. The

module FamilyGenerator contains the functions that process the family section and

generate the PFA code for that section. The code of FamilyGenerator is presented

in Appendix B.

Illustration

Figure 4.8 shows an illustration of a line of the mobile specification. The line is

passed from the User Interface Layer to the Syntax Analysis Layer where the parser

generates an internal parse tree. Then, the intermediate code is generated from the

parse tree, which is a prefix notation of the term. Afterwards, the intermediate code

is processed in the Code Generation Layer and the equivalent PFA code is generated.

68

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

screen = basic_screen + touch_screen %screen

Syntax Analysis Layer

touch_screenbasic_screen

L

T

one_of

screen

=

screen = one_of (basic_screen, touch_screen)

User Interface Layer

screen = one_of (basic_screen, touch_screen)

Code Generation Layer

(= screen (one_of basic_screen touch_screen))

Figure 4.8: Tool Illustration

4.3 Conclusion

In this chapter, I presented the design of a PFA compiler as an extension of the tool

Jory. I presented the design by giving a brief background on the design and struc-

ture of compilers. Moreover, I gave an overview on Flex and Bison tools. Finally, I

presented the detailed design of our compiler.

The architecture design of our compiler is a layered architecture. The layered archi-

tecture is the most appropriate design for a number of reasons. First, it is the design

69

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

of most compilers. Second, it is the design of the tool Jory which our compiler is a

part of. Moreover, the layered architecture is modifiable and portable. The layered

architecture is the most effective design for changes and maintenance. If a layer is

replaced or changed internally without changing the output of the layer, this does

not affect the system or other layers. For example, if we want to change the language

grammar, we can change the parser code in the Syntax Analysis Layer without af-

fecting the other layers of the tool. However, if the output of a layer is changed, then

we only need to change the adjacent layer accordingly. For instance, if we would like

to add a new construct to the language, then we would need to update the Syntax

Analysis Layer. This will change the intermediate code that is output from this layer

and we would need to update Code Generation Layer to handle the change of its input.

70

Chapter 5

Case Study

In this chapter, I present a case study of an e-shop system. I use the language and

the tool on a case study that is a reference within the feature modelling commu-

nity [Lau06]. The aim is to show that the language and the tool are suitable for

large real-world applications. In Section 5.1, I introduce the e-shop system. In Sec-

tion 5.2, I show the specification of the system written in the proposed language.

In Section 5.3, I present the results after running the specification on the tool Jory.

Finally, in Section 5.4, I conclude the case study.

5.1 E-shop System

An e-shop system is a web site that allows companies to do business over the internet.

A company uses an e-shop system to sell products and/or services to customers. The

system deals with multiple customers, products and services, and stakeholders aiming

to deliver the products or services to the customer.

71

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

The e-shop system that I am presenting is inspired from [Lau06]. For more details

about the system, I refer the reader to [Lau06]. Due to the size of the system, it will

be presented in subfamilies with a FODA feature model.

The e-shop system is constructed from two main subfamilies store front and busi-

ness management, as shown in Figure 5.1. The system consists of almost 290 features

and 21 constraints.

business_management

eShop

store_front

Figure 5.1: E-shop System Overview

5.1.1 Store Front

The store front is the interface of the e-shop system. It is a subfamily containing

the features that are related to the web site interface, which impacts the user ex-

perience directly. Figure 5.2 shows the store front subfamily. The subfamily con-

sists of two mandatory subfamilies catalog and buy paths. Moreover, it consists

of five optional subfamilies home page, registration, wish list, customer service, and

user behaviour tracking.

72

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

wish_list

store_front

home_page user_behaviour_tracking

customer_serviceregistration

buy_pathscatalog

Figure 5.2: Store Front Overview

Home Page

The home page is the first page of the e-shop that a user encounters when using the

website. Figure 5.3 shows the home page subfamilies and features. The content of

home page can be generated dynamically, statically, or both.

type_dependent

home_page

static_content dynamic_content

content_type variation_source

welcome_message special_offers personalized

Figure 5.3: Home Page Overview

Registration

The registration is an optional subfamily. It allows for storing user information. It is

useful for the customers so they do not need to reenter their information with every

purchase. Moreover, it enables the company to develop better targeting strategies.

Figure 5.4 shows the subfamilies of registration.

73

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

registration_information

registration

user_behaviour_tracking_informationregistration_enforcement

Figure 5.4: Registration Overview

Catalog

The catalog is where products and services of the e-shop system are presented to

the customer. Therefore, it is a mandatory to have in the system. The catalog is a

framework that organizes products and services which affect the customers shopping

experience. Figure 5.5 shows the catalog subfamily and its children.

catalog

product_information

categories browsing

custome_views

multiple_catalogs searching

Figure 5.5: Catalog Overview

Wish List

The wish list is where the customer can store a list of products that they wish to

buy or receive as gifts. Also, it allows the customer to keep track of the list prices.

Figure 5.6 shows the wish list subfamily and its subfamilies.

74

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

restricted_access

wish_list

public_access

multiple_wish_lists permessionsemail_wish_listwish_list_save_after_session

private_access

Figure 5.6: Wish List Overview

Buy Paths

The buy paths is a collection of customer purchase workflow features. It includes

shopping cart, checkout, and order confirmation. Figure 5.7 offers a view on the

buy paths subfamily.

buy_paths

shopping_cart order_confirmation phone_orderingcheck_out

Figure 5.7: Buy Paths Overview

Customer Service

The customer service is a subfamily that contains features and subfamilies that deals

with customer services and shopping experience feedback. Figure 5.8 shows the sub-

family and its children.

75

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

order_status_review

customer_service

question_and_feedback_forms shipment_status_tracking

product_return

Figure 5.8: Customer Service Overview

User Behaviour Tracking

The user behaviour tracking subfamily has the information needed to monitor and

track user behaviours. It helps the company to develop better marketing strate-

gies and to generate studies on customer trends. Figure 5.9 shows the subfamily

user behaviour tracking and its children.

locally_visted_pages

user_behaviour_tracking

external_refering_pages previous_purchases

Figure 5.9: User Behaviour Tracking Overview

5.1.2 Business Management

The business management subfamily is a group of features that work as the back-end

of the system. It is used by the e-shop staff and management. Figure 5.10 shows the

subfamilies of this group.

76

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

order_management

business_management

inventory_tracking procurement

external_systems_integrationtargeting

affiliates reporting_and_analysis

administration

Figure 5.10: Business Management Overview

Order Management

This subfamily contains the features that deal with order fulfillment. Figure 5.11

shows the order management subfamily and its subfamilies.

order_management

electronic_goods_fulfillmentphysical_goods_fulfillment services_fulfillment

Figure 5.11: Order Management Overview

Targeting

The targeting subfamily contains all the features and subfamilies that deal with mar-

keting and promotion of products and services. It helps to improve e-shop sales and

company revenues. Figure 5.12 presents the targeting subfamilies.

targeting_mechanisms

targeting

targeting_criteria campaigns

display_and_notification

Figure 5.12: Targeting Overview

77

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Affiliates

The affiliates subfamily deals with business partners who drive customers to the

website. Moreover, it deals with commissioning those partners. Figure 5.13 shows

the subfamily and its two features.

affiliates

affiliate_registration commission_tracking

Figure 5.13: Affiliates Overview

Inventory Tracking

The inventory tracking subfamily allows the e-shop staff to track the inventory stocks.

Figure 5.14 shows the inventory tracking subfamily.

inventory_tracking

allow_backorders

Figure 5.14: Inventory Tracking Overview

Procurement

The procurement subfamily deals with buying products from other business partners.

Figure 5.15 shows the subfamily and its features.

78

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

automaticmanual

procurement

Figure 5.15: Procurement Overview

Reporting and Analysis

The reporting and analysis subfamily allows the staff of the e-shop to generate reports

and analyze the data collected. These reports helps in developing a better business

strategies and assessing the company’s performance. Figure 5.16 shows the subfamily

and its features.

report_formatreport_types

reporting_and_analysis

level_of_detail

Figure 5.16: Reporting and Analysis Overview

External Systems Integration

The external system integration subfamily allows the company to integrate exter-

nal systems to the e-shop system. The external system can be one or more of any

of the following systems: fulfillment system, inventory management system, procure-

ment system, or external distributor system. Figure 5.17 shows the external systems integration

subfamily.

79

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

external_systems_integration

procurement_system

external_distributor_systemfulfillment_system

inventory_management_system

Figure 5.17: External Systems Integration Overview

Administration

The administration subfamily is responsible for operating and managing the e-shop

system. Moreover, it has the configuration options for the system. Figure 5.18 shows

an overview of the administration subfamily.

store_administrationcontent_management

presentation_options

content_optionalproduct_database_management

general_layout_management

site_search
search_engine_registration

domain_name_setup

administration

Figure 5.18: Administration Overview

5.2 E-shop Specification

In this section, I present the specification of the e-shop system written in the proposed

language. To present the specification in an elegant way and to take advantage of

the modularity and abstraction of the language, I split the specification into three

main files. The first file contains the specification for the store front. The second file

contains the specification for the business management subfamily. The third file con-

straints the specification for e-shop system. The reminder of the system specifications

are presented in Appendix C.

80

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Listing 5.1 is the specification of the subfamily store front presented in Section 5.1.1.

The specification includes the specifications of its subfamilies, defines the store front

subfamily, and specifies constraints to the family.

1 include home page . spec

2 include r e g i s t r a t i o n . spec

3 include ca ta l og . spec

4 include w i s h l i s t . spec

5 include buy paths . spec

6 include cu s t omer s e rv i c e . spec

7 include us e r b ehav i ou r t r a ck i ng . spec

8

9 //−−−−− s t o r e f r on t

10 s t o r e f r o n t = a l l o f (opt (home page) , opt (r e g i s t r a t i o n) , cata log , opt

(w i s h l i s t) , buy paths , opt (cu s t omer s e rv i c e) , opt (

u s e r b ehav i ou r t r a ck i ng))

11

12 in s t o r e f r o n t , w i s h l i s t require w i s h l i s t s a v e a f t e r s e s s i o n

13 in s t o r e f r o n t , e l e c t r o n i c g o od s require p roduc t s i z e

14 in s t o r e f r o n t , phy s i c a l goods require p roduc t s i z e

15 in s t o r e f r o n t , u s e r b ehav i ou r t r a ck i ng i n f o rma t i on require

us e r b ehav i ou r t r a ck i ng

16 in s t o r e f r o n t , qu ick checkout require qu i c k c h e c k ou t p r o f i l e

17 in s t o r e f r o n t , r e g i s t e r e d ch e ckou t require r e g i s t e r t o buy

18 in s t o r e f r o n t , r e g i s t e r e d ch e ckou t require r e g i s t r a t i o n en f o r c emen t

19 in s t o r e f r o n t , phy s i c a l goods require product weight

20 in s t o r e f r o n t , category page require c a t e g o r i e s

21 in s t o r e f r o n t , pe rmi s s i ons require r e g i s t r a t i o n

81

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

22 in s t o r e f r o n t , ema i l w i s h l i s t require r e g i s t r a t i o n

Listing 5.1: The store front Specification

Listing 5.2 is the specification of business management subfamily which presented in

Section 5.1.2. The specification file includes the specifications of its subfamilies and

the definition of business management in terms of its subfamilies.

1 include order management . spec

2 include t a r g e t i n g

3 include a f f i l i a t e s . spec

4 include i n v en to ry t r a ck i ng . spec

5 include procurement . spec

6 include r e p o r t i n g and ana l y s i s . spec

7 include e x t e r n a l s y s t ems i n t e g r a t i o n . spec

8 include admin i s t r a t i on . spec

9

10 //−−−−− bu s ine s s management

11 business management = a l l o f (order management , opt (t a r g e t i n g) , opt (

a f f i l i a t e s) , opt (i nv en to ry t r a ck i ng) , opt (procurement) , opt (

r e p o r t i n g and ana l y s i s) , opt (e x t e r n a l s y s t ems i n t e g r a t i o n) ,

admin i s t r a t i on)

Listing 5.2: The business management Specification

Listing 5.3 is the file that contains the specification of the e-shop system presented in

Section 5.1. The file glues the two previous specifications into e-shop family. More-

over, it has the constraints of the system.

1 include s t o r e f r o n t . spec

82

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

2 include business management . spec

3

4 //−−−−− eShop

5 eShop = a l l o f (s t o r e f r o n t , business management)

6

7 in eShop , e l e c t r o n i c g o od s require e l e c t r o n i c g o o d s f u l f i l l m e n t

8 in eShop , cu s tomer p r e f e r ence s require p r e f r e n c e s

9 in eShop , s e r v i c e s require s e r v i c e s f u l f i l l m e n t

10 in eShop , phys i c a l goods require ph y s i c a l g o o d s f u l f i l lm e n t

11 in eShop , w i s h l i s t c o n t e n t require w i s h l i s t

12 in eShop , sh i pp ing op t i on s require sh ipp ing

13 in eShop , p r e v i o u s l y v i s i t e d p a g e s require pages

14 in eShop , s p e c i a l o f f e r s require d i s count s

15 in eShop , p r o du c t a v a i l a b i l i t y require i n v en to ry t r a ck i ng

Listing 5.3: The e-shop Specification

5.3 Assessment and Results

In this section, I assess three eShop subfamily specifications on the tool Jory. The

three families are customer service, registration, and targeting. They vary in the

number of basic features and families. In the following, I present the specifications,

compile them, perform queries on them, and show the results.

83

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

5.3.1 Customer Service

The customer service subfamily is presented in Section 5.1.1. The specification is

presented in Appendix C. The customer service is a small family. It contains 8 basic

features and 5 families.

First, I loaded the specification in Jory, I chose the set model, and compiled the

specification by pressing the button compile. The message “Compilation Completed”

indicates the finish of compilation. Since no errors are found in the specifications, no

error message was shown. Figure 5.19 shows the tool after compiling the specification.

Figure 5.19: Customer Service on Jory After Compilation

The next step is to perform some queries on the compiled specification. I selected the

84

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

queries “size”, “listCommonality”, and “listProducts” on the family customer service.

The size of the family is 240, there is no commonality of features between the prod-

ucts in the family, and the list of products is shown on the interface as shown in

Appendix D. Figure 5.20 shows the interface of the Jory after running the queries.

Figure 5.20: Customer Service on Jory After Executing Queries Part 1

I performed the queries “refines” and “isSubfamily” to check if the family filter-

ing criteria refines and subfamily of the family order status review. The result of the

both queries is yes as shown in Figure 5.21.

85

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

Figure 5.21: Customer Service on Jory After Executing Queries Part 2

5.3.2 Registration

The registration subfamily is presented in Section 5.1.1 and the specification is pre-

sented in Appendix C. The registration subfamily is larger than the customer service

family. It contains 22 basic features and 8 families.

I loaded the specification into Jory and compiled the specification on the set model.

After compilation, I performed the following queries: “size” on the family registra-

tion, “listProducts” on the family credit card information, and “isEqual” to check

the equality of billing address and shipping address. Figure 5.22 shows Jory interface

after executing the queries on the registration specification. The “size” of registration

is 344064. The family credit card information has the two products as shown below.

86

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

The families billing address and shipping address are not equal.

[

{ card holder name , card number , exp i ry da t e }

{ card holder name , card number , exp i ry date , s e c u r i t y i n f o rma t i on }

]

Figure 5.22: Registration on Jory After Executing

5.3.3 Targeting

I have introduced the family targeting in Section 5.1.2. The specification of the family

is presented in Appendix C. It consists of 33 basic features and 13 families.

87

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

I loaded the specification in Jory and compiled it on the set model. Afterwards, I exe-

cuted the query “size” on the family targeting. I also checked if targeting mechanisms

refines or is a subfamily of advertisements. The number of products in targeting is

1153650 products. Figure 5.23 shows the results after executing the queries on the

targeting specification. The family targeting mechanisms does not refine advertise-

ments but it is a subfamily of advertisements.

Figure 5.23: Targeting on Jory After Executing

88

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

5.4 Conclusion

In this chapter, I presented an industrial case study of an e-shop system. I showed the

specification written in the proposed language. Moreover, I compiled the specification

on the tool Jory and performed some tests and queries on the compiled specification.

This case study illustrated that the the proposed language and Jory are applicable

for large industrial examples.

89

Chapter 6

Conclusion

In this thesis, I proposed a feature modelling language and considered the design and

implementation of its compiler. The language is intended to be readable, writable,

modular, expressive, and have a deterministic interpretation. Moreover, the language

has a compiler that checks the syntax of specifications, reports errors, and handles

exceptions. The developed language is based on PFA and is implemented as a part

of the tool Jory. This work fulfils the need for a feature modelling language that has

an easy syntax and a strong mathematical foundation.

The language proposed in this thesis is precise since it has the advantage of the solid

mathematical background of PFA. PFA is an algebraic feature modelling technique

that is based on the mathematical structure of an idempotent and commutative semir-

ing. It allows to capture and analyze features of product families. Moreover, the tool

Jory, which is is a feature modelling tool built based on PFA and BDDs, makes math-

ematical manipulation fast because it uses BDDs to implement PFA models (i.e., set

and bag). BDDs use memory with efficiency.

90

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

The proposed language solves the limitation of the previous techniques by having an

easy syntax, rich constructs, and a solid background (i.e., by translating specifications

to PFA).

6.1 Contributions

To design the language I had performed the following tasks:

1. Provided the design of the language (i.e., syntax and semantics).

2. Built the compiler and connected it to the tool Jory.

3. Assessed and tested the system by performing a case study.

The syntax of the language is simple and natural. This makes reading, writing, and

modifying specifications an easy task. Moreover, the inclusion construct allows for

reuse of already written specifications and provides a high level of abstraction.

The compiler of the language accepts specifications written in the proposed language,

checks the syntax of the written specifications, reports errors, and generates the

equivalent PFA specifications. This makes the written specifications more reliable

and robust (i.e., error free). Building the compiler as a part of the tool Jory makes

the system a black box that performs the tasks and generates results while hiding the

details from the user.

The assessment of the language and tool presented in this thesis shows that the pro-

posed language and the tool Jory are applicable to real-world applications, and testing

91

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

the system and shows that it generates the expected results.

6.2 Future Work

The proposed language and the tool allow for extension and improvement. The lan-

guage’s design allows for new constructs to be added to the language. It also allows

for editing the current keywords and structure. Moreover, the layered architecture of

Jory permits the addition of new layers and the removal and editing of existing layers.

One of the areas that can be improved in the tool is implementing the constraints in

the Term Evaluation Layer and make the needed changes to the affected layers.

Another suggested improvement is the implementation of the Translation Layer in

the design of Jory [Alt10]. The Translation Layer allows the translation between

graphical feature modelling techniques and PFA language and vice versa.

Another possible future work is to make the tool Jory available online. This would

make the tool accessible for interested users without the need to install the tool lo-

cally. Moreover, it would create a repository of realistic case studies created by users

from different domains and specialities.

92

Appendix A

Feature Modelling Techniques

Constructs

Table A.1, shows the different feature modelling constructs in several techniques.

The constructs are mandatory feature, optional feature, AND relation, XOR rela-

tion, OR relation, requires constraint, and excludes constraint. The feature modelling

techniques presented are FODA [KCH+90], FORM [KKL+98], FOPLE [KL02], Fea-

tuRSEB [GFA98], GP [CE00], Van Gurp [vGBS01], Riebisch [RBSP02], PLUSS [EBB05],

and the Proposed Language.

93

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

E
x
p
re

ss
io

n
F

O
D

A
F

O
R

M
F

O
P

L
E

F
ea

tu
R

S
E

B
G

P
V

an
G

u
rp

R
ie

b
is

ch
P

L
U

S
S

P
ro

p
os

ed
L

an
gu

ag
e

F
ea

tu
re

a

a
a

a
a

a
a

a
a

M
an

d
at

or
y

F
ea

tu
re

a

a
a

a
a

a
a

a

a

O
p
ti

on
al

F
ea

tu
re

a
a

a
a

a
a

a

a

o
p
t(
a
)

A
N

D
R

e-
la

ti
on

a
c

 f b
 c

 f b
 a

 c

 f b
 a

a
c

 f b
a

c

 f b
 c

 f b
 a

 c

 f b
 a

 c

 f

 a
 b

f
=a

ll
o
f(
a
,b
,c

)

X
O

R
R

e-
la

ti
on

 b
a

c

 f

 c

 f b
 a

 c

 f b
 a

 b
a

c

 f

 b
a

c

 f

 c

 f b
 a

1
..
1

 a
 b

 c

 f

 S

 f

 a
 b

 c

 S
 S

f
=o

n
e

o
f(
a
,b
,c

)

O
R

R
el

a-
ti

on
N

/A
N

/A
N

/A
 b

a
c

 f

 b
a

c

 f

 c

 f b
 a

 f 1
..
*

 a
 b

 c
 c

 f

M
M

M

 a
 b

f
=s

o
m

e
o
f(
a
,b
,c

)

R
eq

u
ir

es
C

on
-

st
ra

in
t

te
x
tu

al
te

x
tu

al
te

x
tu

al
a

 b
re

q
u
ir

es

te
x
tu

al
a

 b
R

eq
u
ir

es
a

 b
<

<
re

q
u
ir

es
>

>
a

 b
<

<
re

q
u

ir
es

>
>

in
f
,
a

re
q
u
ir

e
b

E
x
cl

u
d
es

C
on

-
st

ra
in

t

te
x
tu

al
te

x
tu

al
te

x
tu

al
a

 b
m

u
te

x

te
x
tu

al
a

 b
E

x
c
lu

d
e
s

a
 b

<
<

e
x

c
lu

d
e
s
>

>

a
 b

<
<

e
x

c
lu

d
e
s
>

>

in
f
,
a

e
x
cl

u
d
e
b

T
ab

le
A

.1
:

C
on

st
ru

ct
s

of
F

ea
tu

re
M

o
d
el

li
n
g

T
ec

h
n
iq

u
es

94

Appendix B

Sample Code: Family Generator

1 −− | This module reads the in t e rmed ia t e code f o r f am i l i e s and

genera t e s the e q u i v a l e n t PFA code

2 module FamilyGenerator where

3 import System . IO

4 import System . Environment

5 import Data . L i s t

6 import Data . Char

7 import F i l eHandler

8 import Line

9

10 −− | This func t i on reads a fami l y f i l e and genera t e s code to the

output f i l e . I t a l so , g enera t e s a f i l e con ta in ing fami l y names

f o r l a t e r use

11 p ro c e s s f am i l y fm spec = do f i l eEnd <− hIsEOF fm

12 i f (f i l eEnd) then re turn ()

13 e l s e do l i n e <− hGetLine fm

14 s e t F i l e (spec) (process fmLine l i n e)

15 s e t F i l e ” . . / work ing d i r / fami ly . txt ” (ge t fn l i n e)

95

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

16 p ro c e s s f am i l y fm spec

17

18

19

20 −− | This func t i on reads a fami l y l i n e , checks i t , then re turns the

code

21 process fmLine : : S t r ing −> St r ing

22 process fmLine xs

23 | (’ (’ /= head (xs)) = xs

24 | otherwi s e = proce s s fun xs

25

26 −− | This func t i on proce s s e s a l i n e l i s t

27 proce s s fun : : S t r ing −> St r ing

28 proce s s fun xs = fun (g e t l i n e (rmParens xs))

29

30

31 −− | This func t i on take s a l i n e l i s t and re turns i t s PFA code

32 fun : : [S t r ing] −> St r ing

33 fun (x : xs)

34 | (x == ”=”) = equal (x : xs)

35 | (x == ”+”) = plusDot (x : xs)

36 | (x == ” . ”) = plusDot (x : xs)

37 | (x == ” a l l o f ”) = a l lO f (xs)

38 | (x == ” one o f ”) = oneOf (xs)

39 | (x == ” some of ”) = someOf (subsequences xs)

40 | (i sD i g i t (head x)) = c a r d i n a l i t y (x : xs)

41 | (x == ”ˆ”) = power xs

42 | (x == ”opt”) = opt i ona l xs

96

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

43 | (’ (’ == (head x)) && (’) ’ == (l a s t x)) = ” (” ++ (

process fmLine x) ++ ”) ”

44 | otherwi s e = x

45

46 −− | This func t i on proce s s e s the = func t i on

47 equal (f : p1 : p2) = p1 ++ ” ” ++ f ++ ” ” ++ (process fmLine (concat

p2)) ++ ” % ” ++ p1

48

49 −− | This func t i on proce s s e s the + and . f unc t i on s

50 plusDot (f : p1 : p2) = (process fmLine p1) ++ ” ” ++ f ++ ” ” ++ (

process fmLine (concat p2))

51

52 −− | This func t i on proce s s e s the a l l o f f unc t i on

53 a l lO f [] = []

54 a l lO f (x : xs)

55 | (xs == []) = (process fmLine x)

56 | otherwi s e = (process fmLine x) ++ ” . ” ++ (a l lO f xs)

57

58 −− | This func t i on proce s s e s the one o f f unc t i on

59 oneOf [] = []

60 oneOf (x : xs)

61 | (xs == []) = (process fmLine x)

62 | otherwi s e = (process fmLine x) ++ ” + ” ++ (oneOf xs)

63

64 −− | This func t i on proce s s e s the some of f unc t i on

65 someOf [] = []

66 someOf (x : xs)

67 | (x == []) = someOf xs

68 | (xs == []) = a l lO f x

97

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

69 | otherwi s e = (a l lO f x) ++ ” + ” ++ (someOf xs)

70

71 −− | This func t i on proce s s e s the c a r d i n a l i t y

72 c a r d i n a l i t y (x : xs)

73 | (i s I n f i xO f ” . . ” x) = someOf (func t i on (d i g i t o I n t x ’) (

d i g i t o I n t (dropWhile (== ’. ’) x ’ ’)) (subsequences xs))

74 | otherwi s e = someOf (func t i on (d i g i t o I n t x) (d i g i t o I n t x) (

subsequences xs))

75 where (x ’ , x ’ ’) = span (/= ’ . ’) x

76 −− |

77 func t i on n1 n2 [] = []

78 func t i on n1 n2 (x : xs)

79 | ((l ength x) >= n1) && ((l ength x) <= n2) = x : func t i on n1 n2

xs

80 | otherwi s e = func t i on n1 n2 xs

81 −− |

82 power (x : xs : u)

83 | (i s I n f i xO f ” . . ” xs) = repea t s (d i g i t o I n t xs ’) (d i g i t o I n t (

dropWhile (== ’. ’) xs ’ ’)) x

84 | otherwi se = repea t t (d i g i t o I n t xs) x

85 where (xs ’ , xs ’ ’) = span (/= ’ . ’) xs

86

87 −− |

88 r epea t s : : Int −> Int −> St r ing −> St r ing

89 r epea t s n m x

90 | (n == m) = (repea t t n x)

91 | otherwi se = (r epea t t n x) ++ ” + ” ++ (repea t s (n+1) m x)

92 −− |

93 r epea t t n x

98

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

94 | (n == 1) = (process fmLine x)

95 | otherwi s e = (process fmLine x) ++ ” . ” ++ (repea t t (n−1) x)

96

97 −− | This func t i on proce s s e s the opt f unc t i on

98 op t i ona l x = ” (”++ process fmLine (concat x) ++” + 1) ”

99

100 ge t fn xs = fn (g e t l i n e (rmParens xs))

101

102 fn (f : x : xs) = x

99

Appendix C

E-shop Specifications

C.1 home page.spec

1 //−−−−− home page ba s i c f e a t u r e s

2 bf s t a t i c c o n t e n t

3 bf welcome message

4 bf s p e c i a l o f f e r s

5 bf t ime dependent

6 bf pe r s ona l i z ed

7

8 //−−−−− home page

9 content type = some of (welcome message , s p e c i a l o f f e r s)

10

11 v a r i a t i o n s ou r c e = some of (time dependent , p e r s ona l i z ed)

12

13 dynamic content = a l l o f (content type , v a r i a t i o n s ou r c e)

14

15 home page = some of (s t a t i c c on t en t , dynamic content)

100

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

C.2 registration.spec

1 //−−−−− r e g i s t r a t i o n ba s i c f e a t u r e s

2 bf r e g i s t e r t o buy

3 bf r e g i s t e r t o b r ow s e

4 bf r e g i s t e r t o n o n e

5 bf mu l t i p l e s h i pp i n g add r e s s e s

6 bf mu l t i p l e b i l l i n g a d d r e s s e s

7 bf card holder name

8 bf card number

9 bf exp i ry da t e

10 bf s e c u r i t y i n f o rma t i on

11 bf age

12 bf income

13 bf educat ion

14 bf custom demograph ic f i e ld

15 bf s i t e l a y o u t

16 bf l i s t s i z e

17 bf language

18 bf l o g i n c r e d e n t i a l s

19 bf pe r s ona l i n f o rmat i on

20 bf reminders

21 bf qu i c k c h e c k ou t p r o f i l e

22 bf cu s om f i e l d s

23 bf u s e r b ehav i ou r t r a ck i ng i n f o rma t i on

24

25 //−−−−− r e g i s t r a t i o n

26 p r e f e r e n c e s = some of (s i t e l a y ou t , l i s t s i z e , language)

27 demographics = some of (age , income , education ,

cus tom demograph ic f i e ld)

101

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

28

29 c r e d i t c a r d i n f o rma t i o n = a l l o f (card holder name , card number ,

exp i ry date , opt (s e c u r i t y i n f o rma t i on))

30

31 b i l l i n g a d d r e s s = opt (mu l t i p l e b i l l i n g a d d r e s s e s)

32

33 sh ipp ing addr e s s = opt (mu l t i p l e s h i pp i n g add r e s s e s)

34

35 r e g i s t r a t i o n en f o r c emen t = some of (r e g i s t e r t o buy ,

r e g i s t e r t o b r ows e , r e g i s t e r t o n o n e)

36

37 r e g i s t r a t i o n i n f o rma t i o n = a l l o f (l o g i n c r e d e n t i a l s , opt (

sh ipp ing addr e s s) , opt (b i l l i n g a d d r e s s) , opt (

c r e d i t c a r d i n f o rma t i o n) , opt (demographics) , opt (

p e r s ona l i n f o rmat i on) , opt (p r e f e r e n c e s) , opt (reminders) , opt (

q u i c k c h e c k ou t p r o f i l e) , opt (cu s om f i e l d s))

38

39 r e g i s t r a t i o n = a l l o f (r e g i s t r a t i on en f o r c emen t ,

r e g i s t r a t i o n i n f o rma t i o n , opt (u s e r b ehav i ou r t r a ck i ng i n f o rma t i on

))

C.3 registration.spec

1 //−−−−− ca t a l o g ba s i c f e a t u r e s

2 bf e l e c t r o n i c g o od s

3 bf phys i c a l goods

4 bf s e r v i c e s

5 bf thumbnail

6 bf image 2d

102

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

7 bf image 3d

8 bf image 360

9 bf d i f f e r e n t p e r s p e c t i v e

10 bf g a l l e r y

11 bf video

12 bf sound

13 bf documents

14 bf complex product con f i gura t i on

15 bf ba s i c i n f o rma t i on

16 bf de t a i l e d i n f o rma t i on

17 bf warranty in format ion

18 bf customer rev iews

19 bf p roduc t s i z e

20 bf product weight

21 bf p r o du c t a v a i l a b i l i t y

22 bf produc t cu s t om f i e l d s

23 bf mu l t i l e v e l

24 bf mu l t i p l e c l a s s i f i c a t i o n

25 bf ba s i c s e a r c h

26 bf advanced search

27 bf p r i c e

28 bf qua l i t y

29 bf p r i c e q u a l i t y

30 bf manufacturer name

31 bf c u s t om f i l t e r

32 bf product page

33 bf category page

34 bf s ea sona l p roduc t v i ews

35 bf pe r s ona l i z ed v i ews

103

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

36 bf mu l t i p l e c a t a l o g s

37

38 //−−−−− ca t a l o g

39 custom views = some of (s ea sona l p roduc t v i ews , p e r s ona l i z ed v i ews)

40

41 s o r t i n g f i l t e r s = some of (pr i ce , qua l i ty , manufacturer name ,

c u s t om f i l t e r)

42

43 index page = opt (s o r t i n g f i l t e r s)

44

45 browsing = a l l o f (product page , opt (category page) , opt (index page)

)

46

47 sea r ch ing = some of (ba s i c s e a r ch , advanced search)

48

49 c a t a l o g c a t e g o r i e s = some of (mu l t i l e v e l , m u l t i p l e c l a s s i f i c a t i o n)

50

51 c a t e g o r i e s = opt (c a t a l o g c a t e g o r i e s)

52

53 produc t va r i an t s = opt (complex product con f i gura t i on)

54

55 image = some of (thumbnail , image 2d , image 3d , image 360 ,

d i f f e r e n t p e r s p e c t i v e , g a l l e r y)

56

57 med i a f i l e s = some of (image , video , sound)

58

59 a s s o c i a t e d a s s e t s = some of (documents , m ed i a f i l e s)

60

61 product type = some of (e l e c t r on i c g ood s , phys i ca l goods , s e r v i c e s)

104

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

62

63 product in fo rmat ion= a l l o f (product type , ba s i c i n f o rmat i on , opt (

d e t a i l e d i n f o rma t i on) , opt (warranty in format ion) , opt (

customer rev iews) , opt (a s s o c i a t e d a s s e t s) , opt (p roduc t va r i an t s) ,

opt (p r oduc t s i z e) , opt (product weight) , opt (p r o d u c t a v a i l a b i l i t y

) , opt (p r oduc t cu s t om f i e l d s))

64

65 ca ta l og = a l l o f (product in format ion , opt (c a t e g o r i e s) , opt (

mu l t i p l e c a t a l o g s) , opt (s ea r ch ing) , opt (browsing) , opt (

custom views))

C.4 wish list.spec

1 //−−−−− wish l i s t b a s i c f e a t u r e s

2 bf pub l i c a c c e s s

3 bf r e s t r i c t e d a c c e s s

4 bf p r i v a t e a c c e s s

5 bf w i s h l i s t s a v e a f t e r s e s s i o n

6 bf ema i l w i s h l i s t

7 bf mu l t i p l e w i s h l i s t

8

9 //−−−−− wish l i s t

10 pe rmi s s i ons = some of (pub l i c a c c e s s , r e s t r i c t e d a c c e s s ,

p r i v a t e a c c e s s)

11

12 w i s h l i s t = some of (w i s h l i s t s a v e a f t e r s e s s i o n , ema i l w i s h l i s t ,

mu l t i p l e w i s h l i s t , pe rmi s s i ons)

C.5 buy paths.spec

105

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

1 //−−−−− buy path ba s i c f e a t u r e s

2 bf inventory management pol icy

3 bf ca r t con t en t page

4 bf cart page summary

5 bf c a r t s a v e a f t e r s e s s i o n

6 bf enab l e p r o f i l e upda t e on che ckou t

7 bf gues t checkout

8 bf q u a l i t y o f s e r v i c e s e l e c t i o n

9 bf c a r r i e r s e l e c t i o n

10 bf g i f t o p t i o n s

11 bf mult ip l e sh ipments

12 bf s h i p p i n g c o s t c a l c u l a t i o n

13 bf country

14 bf r eg i on

15 bf c i t y

16 bf sh ipp ing

17 bf b i l l i n g

18 bf tax codes

19 bf f i x e d r a t e t a x a t i o n

20 bf surcharge

21 bf percentage

22 bf certiTAX

23 bf cyberSource

24 bf custom tax gateway

25 bf cod

26 bf c r e d i t c a r d

27 bf deb i t c a rd

28 bf e l e c t r on i c c h e qu e

29 bf f a x ma i l o r d e r

106

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

30 bf purchase order

31 bf g i f t c e r t i f i c a t e

32 bf phone order

33 bf custom payment type

34 bf f r aud de t e c t i on

35 bf payment types

36 bf author izeNet

37 bf l i n kpo i n t

38 bf paradata

39 bf sk ipJack

40 bf ve r s i on pay f l ow pro

41 bf payment gateways

42 bf e l e c t r o n i c p a g e

43 bf emai l

44 bf phone

45 bf mail

46 bf d i g i t a l d i a l i n g

47 bf r o t a r y d i a l i n g

48

49 //−−−−− buy path

50 phone order ing = a l l o f (d i g i t a l d i a l i n g , opt (r o t a r y d i a l i n g))

51

52 o rde r con f i rmat i on = some of (e l e c t r on i c pag e , email , phone , mail)

53

54 payment options = a l l o f (payment types , opt (f r aud de t e c t i on) , opt (

payment gateways))

55

56 tax gateways = some of (certiTAX , cyberSource , custom tax gateway)

57

107

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

58 amount spe c i f i c a t i on = some of (surcharge , percentage)

59

60 address = a l l o f (sh ipping , opt (b i l l i n g))

61

62 r e s o l u t i o n = some of (country , reg ion , c i t y)

63

64 ru l ed ba s ed taxa t i on = a l l o f (tax codes , address , r e s o l u t i o n)

65

66 type = some of (f i x e d r a t e t a x a t i o n , ru l ed ba s ed taxa t i on)

67

68 custom taxat ion = a l l o f (type , amount spe c i f i c a t i on)

69

70 t axa t i on op t i on s = some of (custom taxat ion , tax gateways)

71

72 sh ipp ing op t i on s = a l l o f (opt (q u a l i t y o f s e r v i c e s e l e c t i o n) , opt (

c a r r i e r s e l e c t i o n) , opt (g i f t o p t i o n s) , opt (mul t ip l e sh ipments) ,

s h i p p i n g c o s t c a l c u l a t i o n)

73

74

75 qu ick checkout = opt (enab l e p r o f i l e upda t e on che ckou t)

76

77 r e g i s t e r e d ch e ckou t = opt (qu ick checkout)

78

79 checkout type = some of (r e g i s t e r ed che ckou t , gues t checkout)

80

81 checkout = a l l o f (checkout type , opt (sh i pp ing op t i on s) ,

t axa t i on opt i on s , payment options)

82

108

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

83 shopp ing car t = a l l o f (inventory management pol icy ,

ca r t content page , opt (cart page summary) , opt (

c a r t s a v e a f t e r s e s s i o n))

84

85 buy paths = a l l o f (shopping cart , checkout , o rde r con f i rmat ion ,

phone order ing)

C.6 customer service.spec

1 //−−−−− customer s e r v i c e ba s i c f e a t u r e s

2 bf que s t i on and f e edback t r a ck ing

3 bf order number

4 bf orde r da te

5 bf o rd e r s t a t u s

6 bf r eques t o rde r hardcopy

7 bf i n t e r n a l t r a c k i n g

8 bf pa r tn e r t r a ck i ng

9 bf produc t r e tu rns

10

11 //−−−−− customer s e r v i c e

12 sh ipment s t a tu s t r a ck ing = some of (i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng)

13

14 f i l t e r i n g c r i t e r i a = some of (order number , order date , o r d e r s t a t u s)

15

16 o rd e r s t a t u s r e v i ew = a l l o f (f i l t e r i n g c r i t e r i a , opt (

r eques t o rde r hardcopy))

17

18 que s t i on s and f e edback fo rms = opt (que s t i on and f e edback t r a ck ing)

109

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

19

20 cu s t omer s e rv i c e = some of (ques t i ons and feedback fo rms ,

product re turns , o rd e r s t a tu s r ev i ew , sh ipment s t a tu s t r a ck ing)

C.7 user behaviour tracking.spec

1 //−−−−− user behav iour t r a c k i n g ba s i c f e a t u r e s

2 bf l o c a l l y v i s i t e d p a g e s

3 bf e x t e r n a l r e f e r r i n g p a g e s

4 bf prev i ou s purchas e s

5

6 //−−−−− user behav iour t r a c k i n g

7 pages = one of (l o c a l l y v i s i t e d p a g e s , e x t e r n a l r e f e r r i n g p a g e s) // to

be used f o r eShop con s t r a i n t

8

9 u s e r b ehav i ou r t r a ck i ng = some of (l o c a l l y v i s i t e d p a g e s ,

e x t e r n a l r e f e r r i n g p a g e s , p r ev i ou s purchas e s)

C.8 order management.spec

1 //−−−−−order management ba s i c f e a t u r e s

2 bf qua l i ty purchased

3 bf o r d e r t o t a l

4 bf order we ight

5 bf p r o d u c t c l a s s i f i c a t i o n

6 bf f l a t r a t e

7 bf fedEx

8 bf ups

9 bf usps

10 bf canada post

110

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

11 bf custom shipping gateway

12 bf sh ipping gateway

13 bf warehouse management

14 bf f i l e r e p o s i t o r y

15 bf l icense management

16 bf appointment schedul ing

17 bf r e s ou r c e p l ann ing

18

19 //−−−−− order management

20 s e r v i c e s f u l f i l l m e n t = 0 . . 2 (appointment schedul ing ,

r e s ou r c e p l ann ing)

21

22 e l e c t r o n i c g o o d s f u l f i l l m e n t = a l l o f (f i l e r e p o s i t o r y ,

l icense management)

23

24 r a t e f a c t o r s = some of (qua l i ty purchased , order we ight ,

p r o d u c t c l a s s i f i c a t i o n)

25

26 p r i c i n g = a l l o f (f l a t r a t e , opt (r a t e f a c t o r s))

27

28 o rde r sh ipp ing = some of (p r i c ing , sh ipping gateway)

29

30 p h y s i c a l g o o d s f u l f i l lm e n t = a l l o f (warehouse management ,

o rde r sh ipp ing)

31

32 order management = some of (p h y s i c a l g o o d s f u l f i l lm en t ,

e l e c t r o n i c g o o d s f u l f i l lm e n t , s e r v i c e s f u l f i l l m e n t)

111

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

C.9 targeting.spec

1 //−−−−− t a r g e t i n g ba s i c f e a t u r e s

2 bf cu s tomer p r e f e r ence s

3 bf shopp ing ca r t con t en t

4 bf w i s h l i s t c o n t e n t

5 bf p r e v i o u s l y v i s i t e d p a g e s

6 bf date and t ime

7 bf c u s t om t a r g e t c r i t e r i a

8 bf t a r g e t i n g c r i t e r i a

9 bf banner ads

10 bf pop up ads

11 bf house adver t i s ements

12 bf pa id adver t i s ement s

13 bf advert i sement r e s p on s e t r a c k i n g

14 bf c o n t e x t s e n s i t i v e a d s

15 bf produc t and qua l i t y s cope

16 bf t ime scope

17 bf purchase va lue s cope

18 bf pe r c en tage d i s count

19 bf f i x e d d i s c oun t

20 bf f r e e i t em

21 bf customer segments

22 bf sh ipp ing addr e s s

23 bf purchase va lue

24 bf quant i ty

25 bf coupons

26 bf hand ing mu l t i p l e d i s c ount s

27 bf p roduc t k i t t i n g

28 bf up s e l l i n g

112

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

29 bf c r o s s s e l l i n g

30 bf pe r s ona l i z e d ema i l

31 bf r e spon s e t r a ck i ng

32 bf a s s i gnmen t t o pag e t yp e s f o r d i sp l ay

33 bf p roduc t f l a gg i ng

34 bf campaigns

35

36 //−−−−− t a r g e t i n g

37 emai l s = 0 . . 2 (p e r s ona l i z ed ema i l , r e s pon s e t r a ck i ng)

38

39 d i s p l a y a nd n o t i f i c a t i o n = some of (

a s s i gnmen t t o pag e t ype s f o r d i s p l ay , p roduc t f l agg ing , emai l s)

40

41 s e l l s t r a t e g i e s = some of (p roduc t k i t t i ng , up s e l l i n g , c r o s s s e l l i n g

)

42

43 graduat ion by= some of (purchase va lue , quant i ty)

44

45 e l i g i b i l i t y r e q u i r em e n t s = 0 . . 2 (customer segments , sh ipp ing addr e s s)

46

47 awards = some of (pe rcentage d i s count , f i x ed d i s c oun t , f r e e i t em)

48

49 d i s c oun t c ond i t i on s = a l l o f (p roduct and qua l i ty s cope , t ime scope ,

opt (purchase va lue s cope))

50

51 d i s count s = a l l o f (d i s c oun t cond i t i on s , awards ,

e l i g i b i l i t y r e q u i r em e n t s , graduation by , opt (coupons) ,

hand ing mu l t i p l e d i s c ount s)

52

113

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

53 adve r t i s ement sour c e s = some of (house advert i sements ,

pa id adver t i s ement s)

54

55 adver t i s ement types = some of (banner ads , pop up ads)

56

57 advert i s ements = a l l o f (advert i s ement types , adve r t i s ement sour c e s ,

opt (adve r t i s emen t r e spon s e t r a ck ing) , opt (pa id adver t i s ement s))

58

59 target ing mechanisms = some of (advert i sements , d i scounts ,

s e l l s t r a t e g i e s)

60

61 t a r g e t i n g = a l l o f (t a r g e t i n g c r i t e r i a , target ing mechanisms ,

d i s p l a y and no t i f i c a t i o n , opt (campaigns))

C.10 affiliates.spec

1 //−−−−− a f f i l i a t e s ba s i c f e a t u r e s

2 bf a f f i l i a t e s r e g i s t r a t i o n

3 bf commiss ion track ing

4

5 //−−−−− a f f i l i a t e s

6 a f f i l i a t e s = a l l o f (a f f i l i a t e s r e g i s t r a t i o n , commiss ion track ing)

C.11 inventory tracking.spec

1 //−−−−− inven tory t r a c k i n g ba s i c f e a t u r e s

2 bf a l l ow backorde r s

3

4 //−−−−− inven tory t r a c k i n g

5 i nven to ry t r a ck i ng = opt (a l l ow backorde r s)

114

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

C.12 procurement.spec

1 //−−−−− procurement ba s i c f e a t u r e s

2 bf manual

3 bf automatic

4

5 //−−−−− procurement

6 procurement = a l l o f (manual , opt (automatic))

C.13 reporting and analysis.spec

1 //−−−−− r epo r t i n g and ana l y s i s b a s i c f e a t u r e s

2 bf r epo r t t ype s

3 bf r epor t f o rmat

4 bf l e v e l o f d e t a i l

5

6 //−−−−− r epo r t i n g and ana l y s i s

7 r epo r t i n g and ana l y s i s = a l l o f (r epo r t type s , r eport format ,

l e v e l o f d e t a i l)

C.14 external systems integration.spec

1 //−−−−− e x t e rna l systems i n t e g r a t i o n ba s i c f e a t u r e s

2 bf f u l f i l lm en t s y s t em

3 bf inventory management system

4 bf procurement system

5 bf e x t e r n a l d i s t r i b u t o r s y s t em

6

7 //−−−−− e x t e rna l systems i n t e g r a t i o n

115

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

8 e x t e r n a l s y s t ems i n t e g r a t i o n = some of (f u l f i l lmen t s y s t em ,

inventroy management system , procurement system ,

e x t e r n a l d i s t r i b u t o r s y s t em)

C.15 administration.spec

1 //−−−−− admin i s t ra t i on ba s i c f e a t u r e s

2 bf product database management

3 bf p r e s en t a t i on op t i on s

4 bf general layout management

5 bf content approva l

6 bf s i t e s e a r c h

7 bf s e a r c h e n g i n e r e g i s t r a t i o n

8 bf domain name setup

9

10 //−−−−− admin i s t ra t i on

11 s t o r e adm in i s t r a t i o n = a l l o f (s i t e s e a r c h ,

s e a r c h e n g i n e r e g i s t r a t i o n , domain name setup)

12

13 content management = a l l o f (product database management ,

p r e s en ta t i on op t i on s , general layout management , opt (

content approva l))

14

15 admin i s t ra t i on = a l l o f (content management , s t o r e adm in i s t r a t i o n)

116

Appendix D

Customer Service Result

The l i s t o f products o f cu s t omer s e rv i c e i s :

[

{ }

{ produc t r e tu rns }

{ pa r tn e r t r a ck i ng }

{ par tne r t rack ing , p roduc t r e tu rns }

{ i n t e r n a l t r a c k i n g }

{ i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

{ o rd e r s t a t u s }

{ o rde r s t a tu s , p roduc t r e tu rns }

{ o rde r s t a tu s , pa r tn e r t r a ck i ng }

{ o rde r s t a tu s , pa r tne r t rack ing , p roduc t r e tu rns }

{ o rde r s t a tu s , i n t e r n a l t r a c k i n g }

{ o rde r s t a tu s , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ o rde r s t a tu s , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ o rde r s t a tu s , i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

117

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ o rde r s t a tu s , r eque s t o rde r hardcopy }

{ o rde r s t a tu s , r eques t order hardcopy , p roduc t r e tu rns }

{ o rde r s t a tu s , r eques t order hardcopy , pa r tn e r t r a ck i ng }

{ o rde r s t a tu s , r eques t order hardcopy , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g }

{ o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

p roduc t r e tu rns }

{ o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng }

{ o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ orde r da te }

{ order date , p roduc t r e tu rns }

{ order date , pa r tn e r t r a ck i ng }

{ order date , pa r tne r t rack ing , p roduc t r e tu rns }

{ order date , i n t e r n a l t r a c k i n g }

{ order date , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ order date , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ order date , i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

{ order date , r eque s t o rde r hardcopy }

{ order date , r eques t order hardcopy , p roduc t r e tu rns }

{ order date , r eques t order hardcopy , pa r tn e r t r a ck i ng }

{ order date , r eques t order hardcopy , pa r tne r t rack ing , p roduc t r e tu rns

}

{ order date , r eques t order hardcopy , i n t e r n a l t r a c k i n g }

{ order date , r eques t order hardcopy , i n t e r n a l t r a c k i n g , p roduc t r e tu rns

}

118

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ order date , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng }

{ order date , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ order date , o r d e r s t a t u s }

{ order date , o rde r s t a tu s , p roduc t r e tu rns }

{ order date , o rde r s t a tu s , pa r tn e r t r a ck i ng }

{ order date , o rde r s t a tu s , pa r tne r t rack ing , p roduc t r e tu rns }

{ order date , o rde r s t a tu s , i n t e r n a l t r a c k i n g }

{ order date , o rde r s t a tu s , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ order date , o rde r s t a tu s , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ order date , o rde r s t a tu s , i n t e r n a l t r a c k i n g , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ order date , o rde r s t a tu s , r eque s t o rde r hardcopy }

{ order date , o rde r s t a tu s , r eques t order hardcopy , p roduc t r e tu rns }

{ order date , o rde r s t a tu s , r eques t order hardcopy , pa r tn e r t r a ck i ng }

{ order date , o rde r s t a tu s , r eques t order hardcopy , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ order date , o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g }

{ order date , o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

p roduc t r e tu rns }

{ order date , o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng }

{ order date , o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ order number }

{ order number , p roduc t r e tu rns }

{ order number , pa r tn e r t r a ck i ng }

{ order number , pa r tne r t rack ing , p roduc t r e tu rns }

119

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ order number , i n t e r n a l t r a c k i n g }

{ order number , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ order number , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ order number , i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

{ order number , r eque s t o rde r hardcopy }

{ order number , r eques t order hardcopy , p roduc t r e tu rns }

{ order number , r eques t order hardcopy , pa r tn e r t r a ck i ng }

{ order number , r eques t order hardcopy , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ order number , r eques t order hardcopy , i n t e r n a l t r a c k i n g }

{ order number , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

p roduc t r e tu rns }

{ order number , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng }

{ order number , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ order number , o r d e r s t a t u s }

{ order number , o rde r s t a tu s , p roduc t r e tu rns }

{ order number , o rde r s t a tu s , pa r tn e r t r a ck i ng }

{ order number , o rde r s t a tu s , pa r tne r t rack ing , p roduc t r e tu rns }

{ order number , o rde r s t a tu s , i n t e r n a l t r a c k i n g }

{ order number , o rde r s t a tu s , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ order number , o rde r s t a tu s , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ order number , o rde r s t a tu s , i n t e r n a l t r a c k i n g , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ order number , o rde r s t a tu s , r eque s t o rde r hardcopy }

{ order number , o rde r s t a tu s , r eques t order hardcopy , p roduc t r e tu rns }

{ order number , o rde r s t a tu s , r eques t order hardcopy , pa r tn e r t r a ck i ng }

120

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ order number , o rde r s t a tu s , r eques t order hardcopy , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ order number , o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g

}

{ order number , o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

p roduc t r e tu rns }

{ order number , o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng }

{ order number , o rde r s t a tu s , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ order number , o rde r da te }

{ order number , order date , p roduc t r e tu rns }

{ order number , order date , pa r tn e r t r a ck i ng }

{ order number , order date , pa r tne r t rack ing , p roduc t r e tu rns }

{ order number , order date , i n t e r n a l t r a c k i n g }

{ order number , order date , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ order number , order date , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ order number , order date , i n t e r n a l t r a c k i n g , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ order number , order date , r eque s t o rde r hardcopy }

{ order number , order date , r eques t order hardcopy , p roduc t r e tu rns }

{ order number , order date , r eques t order hardcopy , pa r tn e r t r a ck i ng }

{ order number , order date , r eques t order hardcopy , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ order number , order date , r eques t order hardcopy , i n t e r n a l t r a c k i n g }

{ order number , order date , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

p roduc t r e tu rns }

{ order number , order date , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng }

121

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ order number , order date , r eques t order hardcopy , i n t e r n a l t r a c k i n g ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ order number , order date , o r d e r s t a t u s }

{ order number , order date , o rde r s t a tu s , p roduc t r e tu rns }

{ order number , order date , o rde r s t a tu s , pa r tn e r t r a ck i ng }

{ order number , order date , o rde r s t a tu s , pa r tne r t ra ck ing ,

p roduc t r e tu rns }

{ order number , order date , o rde r s t a tu s , i n t e r n a l t r a c k i n g }

{ order number , order date , o rde r s t a tu s , i n t e r n a l t r a c k i n g ,

p roduc t r e tu rns }

{ order number , order date , o rde r s t a tu s , i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng }

{ order number , order date , o rde r s t a tu s , i n t e r n a l t r a c k i n g ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ order number , order date , o rde r s t a tu s , r eque s t o rde r hardcopy }

{ order number , order date , o rde r s t a tu s , r eques t order hardcopy ,

p roduc t r e tu rns }

{ order number , order date , o rde r s t a tu s , r eques t order hardcopy ,

pa r tn e r t r a ck i ng }

{ order number , order date , o rde r s t a tu s , r eques t order hardcopy ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ order number , order date , o rde r s t a tu s , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g }

{ order number , order date , o rde r s t a tu s , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ order number , order date , o rde r s t a tu s , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ order number , order date , o rde r s t a tu s , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

122

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ que s t i on and f e edback t r a ck ing }

{ que s t i on and f e edback t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , i n t e r n a l t r a c k i n g , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , o r d e r s t a t u s }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , i n t e r n a l t r a c k i n g ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , i n t e r n a l t r a c k i n g ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , r eque s t o rde r hardcopy }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , r eques t order hardcopy ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , r eques t order hardcopy ,

pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , r eques t order hardcopy ,

pa r tne r t rack ing , p roduc t r e tu rns }

123

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , o rde r s t a tu s , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , o rde r da te }

{ que s t i on and f e edback t rack ing , order date , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order date , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order date , i n t e r n a l t r a c k i n g ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order date , i n t e r n a l t r a c k i n g ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , r eque s t o rde r hardcopy }

{ que s t i on and f e edback t rack ing , order date , r eques t order hardcopy ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , r eques t order hardcopy ,

pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order date , r eques t order hardcopy ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g }

124

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ que s t i on and f e edback t rack ing , order date , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order date , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , o r d e r s t a t u s }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

r eque s t o rde r hardcopy }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

r eques t order hardcopy , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

r eques t order hardcopy , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

r eques t order hardcopy , pa r tne r t rack ing , p roduc t r e tu rns }

125

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order date , o rde r s t a tu s ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number }

{ que s t i on and f e edback t rack ing , order number , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order number , i n t e r n a l t r a c k i n g ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , i n t e r n a l t r a c k i n g ,

pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , i n t e r n a l t r a c k i n g ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , r eque s t o rde r hardcopy }

{ que s t i on and f e edback t rack ing , order number , r eques t order hardcopy ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , r eques t order hardcopy ,

pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , r eques t order hardcopy ,

pa r tne r t rack ing , p roduc t r e tu rns }

126

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ que s t i on and f e edback t rack ing , order number , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order number , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , r eques t order hardcopy ,

i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , o r d e r s t a t u s }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

r eque s t o rde r hardcopy }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

r eques t order hardcopy , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

r eques t order hardcopy , pa r tn e r t r a ck i ng }

127

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

r eques t order hardcopy , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , o rde r s t a tu s ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , o rde r da te }

{ que s t i on and f e edback t rack ing , order number , order date ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date ,

pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , order date ,

pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date ,

i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order number , order date ,

i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date ,

i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , order date ,

i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date ,

r eque s t o rde r hardcopy }

128

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ que s t i on and f e edback t rack ing , order number , order date ,

r eques t order hardcopy , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date ,

r eques t order hardcopy , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , order date ,

r eques t order hardcopy , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order number , order date ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , order date ,

r eques t order hardcopy , i n t e r n a l t r a c k i n g , pa r tne r t rack ing ,

p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date , o r d e r s t a t u s

}

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

129

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, i n t e r n a l t r a c k i n g , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, r eque s t o rde r hardcopy }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, r eques t order hardcopy , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, r eques t order hardcopy , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, r eques t order hardcopy , pa r tne r t rack ing , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, r eques t order hardcopy , i n t e r n a l t r a c k i n g }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, r eques t order hardcopy , i n t e r n a l t r a c k i n g , p roduc t r e tu rns }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, r eques t order hardcopy , i n t e r n a l t r a c k i n g , pa r tn e r t r a ck i ng }

{ que s t i on and f e edback t rack ing , order number , order date , o rde r s t a tu s

, r eques t order hardcopy , i n t e r n a l t r a c k i n g , pa r tne r t rack ing ,

p roduc t r e tu rns }

]

Listing D.1: Customer Service “listProducts” Result

130

Bibliography

[Ake78] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,

27(6):509–516, June 1978.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey Ullman. Compil-

ers: Principles, Techniques, and Tools. Prentice Hall, 2nd edition, 2006.

[Alt10] Fadil Alturki. Jory: A tool for feature modelling based on product fam-

ilies algebra and bdds. Masters thesis, Department of Computing and

Software, McMaster University, 2010.

[APS+10] A. Abele, Y. Papadopoulos, D. Servat, M. Törngren, and M. Weber.

The cvm framework: A prototype tool for compositional variability man-

agement. Proceeding of: Fourth International Workshop on Variability

Modelling of Software-Intensive Systems, pages 101–105, 2010.

[AZKT10] Lamia Abo Zaid, Frederic Kleinermann, and Olga Troyer. Feature as-

sembly: A new feature modeling technique. In Jeffrey Parsons, Motoshi

Saeki, Peretz Shoval, Carson Woo, and Yair Wand, editors, Conceptual

Modeling - ER 2010, volume 6412, pages 233–246. Springer Berlin Hei-

delberg, 2010.

131

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

[Bat05] D.S. Batory. Feature models, grammars, and propositional formulas. In

Proceedings of SPLC’05, pages 7–20, 2005.

[BCFH10] Quentin Boucher, Andreas Classen, Paul Faber, and Patrick Heymans.

Introducing TVL, a text-based feature modelling language. In Proceed-

ings of the Fourth International Workshop on Variability Modelling of

Software-intensive Systems (VaMoS’10), Linz, Austria, January 27-29,

pages 159–162. University of Duisburg-Essen, 2010.

[BEL03] T. Bednasch, C. Endler, and M. Lang. Captainfeature tool.

http://sourceforge.net/projects/captainfeature/, 2003. Last accessed on

July 31, 2013.

[Beu08] D. Beuche. Modeling and building software product lines with

pure::variants. In Proceedings of SPLC’08, page 358, 2008.

[BSTRc07] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-

cortés. Fama: tooling a framework for the automated analysis of feature

models. In Proceeding of the First International Workshop on Variability

Modelling of Softwareintensive Systems VAMOS, pages 129–134, 2007.

[CE00] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programming:

Methods, Tools, and Applications. Addison-Wesley, 2000.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing

cardinality-based feature models and their specialization. Software Pro-

cess Improvement and Practice, 10:7–29, 2005.

132

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

[CPRS04] V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger. Xml-based

feature modelling. In Software Reuse: Methods, Techniques and Tools:

8th International Conference, ICSR 2004, pages 5–9. Springer-Verlag,

2004.

[EBB05] Magnus Eriksson, Jürgen Börstler, and Kjell Borg. The PLUSS approach

- domain modeling with features, use cases and use case realizations. In

Henk Obbink and Klaus Pohl, editors, Software Product Lines, volume

3714 of Lecture Notes in Computer Science, pages 33–44, 2005.

[GFA98] M. L. Griss, J. Favaro, and M. d’ Alessandro. Integrating feature mod-

eling with RSEB. In Proceedings of the 5th International Conference on

Software Reuse, ICSR ’98, pages 76–85, Washington, DC, USA, 1998.

IEEE Computer Society.

[HKM06] Peter Höfner, Ridha Khedri, and Bernhard Möller. Feature algebra. In

In Formal Methods, volume 4085 of LNCS, pages 300–315, 2006.

[HKM11] Peter Höfner, Ridha Khedri, and Bernhard Möller. An algebra of product

families. Software and Systems Modeling, 10(2):161–182, May 2011.

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented

domain analysis (FODA) feasibility study. Technical Report CMU/SEI-

90-TR-21, Software Engineering Institute, Carnegie Mellon University,

Novermber 1990.

[KKL+98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Gerard Jounghyun

Kim, and Euiseob Shin. FORM: A feature-oriented reuse method with

133

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

domain-specific reference architectures. Annals of Software Engineering,

5:143–168, 1998.

[KL02] Kyo C. Kang and Jaejoon Lee. FOPLE - feature oriented product line

software engineering: Principles and guidelines. Pohang University of

Science and Technolog, 2002.

[KTS+09] C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz,

and S. Apel. Feature ide: a tool framework for feature-oriented software

development. Proceedings of ICSE’09, pages 311–320, 2009.

[Lau06] Sean Quan Lau. Domain analysis of e-commerce systems using feature-

based model templates. Masters thesis, University of Waterloo, 2006.

[Lev09] John Levine. Flex & Bison. O’Reilly Media, 2009.

[MBC09] M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T. - software product

lines online tool. In Proceedings of OOPSLA’09, pages 761–762, 2009.

[MC04] Antkiewicz M. and K. Czarnecki. Featureplugin: feature modeling plug-

in for eclipse. In The 2004 OOPSLA Workshop on Eclipse Technology

eXchange - Eclipse ’04. ACM Press, 2004.

[ML04] Thomas Maüen and Horst Lichter. RequiLine: A requirements engineer-

ing tool for software product lines. In Frank J. Linden, editor, Software

Product-Family Engineering, volume 3014 of Lecture Notes in Computer

Science, pages 168–180. Springer Berlin Heidelberg, 2004.

[Par76] David L. Parnas. On the design and development of program families.

IEEE Transactions on Software Engineering, SE-2(1):1–9, 1976.

134

M.A.Sc. Thesis - Mohammed Alabbad McMaster - Software Engineering

[RBSP02] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow.

Extending feature diagrams with uml multiplicities. IDPT 2002, 2002.

[Seb01] Robert Sebesta. Concepts of Programming Languages. Addison-Wesley,

2001.

[Som01] Ian Sommerville. Software Engineering. Addison-Wesley, 6th edidtion

edition, 2001.

[Str04] D. Streitferdt. Family-Oriented Requirements Engineering. Phd thesis,

Technical University Ilmenau, 2004.

[vDK02] A. van Deursen and P. Klint. Domain-specific language design requires

feature descriptions. Journal of Computing and Information Technology

- CIT, 10(1):1–17, March 2002.

[vGBS01] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of

variability in software product lines. In Proceedings of the Working

IEEE/IFIP Conference on Software Architecture (WICSA’01), pages 45–

54. IEEE Computer Society, 2001.

135

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Shortcomings in the Current Language Used by Jory
	Strengths and Weaknesses of Jory
	Advantages of a High Level Language

	Objectives
	Thesis Structure

	Background
	Feature Modelling
	Graphical Feature Modelling
	Non-Graphical Feature Modelling

	Product Family Algebra
	Set Model
	Bag Model
	Products, Features, Refinement, and Constraints

	Jory Tool

	Language Design
	Syntax and Semantics
	Syntax
	Semantics

	Design Objectives
	Design and Structure
	Syntax
	Semantics

	Assessment
	Conclusion

	Design of the Compiler as a Part of the Tool Jory
	Compiler Structure
	Flex and Bison

	System Design
	Overview
	Detailed Design

	Conclusion

	Case Study
	E-shop System
	Store Front
	Business Management

	E-shop Specification
	Assessment and Results
	Customer Service
	Registration
	Targeting

	Conclusion

	Conclusion
	Contributions
	Future Work

	Feature Modelling Techniques Constructs
	Sample Code: Family Generator
	E-shop Specifications
	home_page.spec
	registration.spec
	registration.spec
	wish_list.spec
	buy_paths.spec
	customer_service.spec
	user_behaviour_tracking.spec
	order_management.spec
	targeting.spec
	affiliates.spec
	inventory_tracking.spec
	procurement.spec
	reporting_and_analysis.spec
	external_systems_integration.spec
	administration.spec

	Customer Service Result
	Bibliography

