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Abstract

In this thesis, we present the results for the finite frequency response of a variety

of materials. These materials all share the common theme that their low energy

excitations are Dirac-like. This coincidence was not by design, and highlights the

now-ubiquitous nature of Dirac-quasiparticles in condensed matter physics. We present

results for graphene, the high temperature superconducting cuprates, and Weyl semi

metals.

For graphene, our calculations revolve around a new experimental technique: Near

field infrared spectroscopy. Conventionally it is ok to use the q → 0 limit when

calculating the low energy optical response. This new technique is able to directly

probe the finite q response by using an atomic force microscope tip as an antenna.

We computed the optical conductivity of graphene at finite wavevector and studied

how the quasiparticle peak is altered by disorder and the electron-phonon interaction.

The calculations on the high Tc cuprates use a model of the pseudogap phase

known as the Yang, Rice and Zhang (YRZ) model. We employed the model to study

the resistivity in the pseudogap regime, both in-plane and along the c-axis. We used

a coherent tunneling matrix element to describe transport along the c-axis. We found

that the model was able to reproduce the metaliclike behavior in the plane while being

resistive out of plane. We then extended the model to the finite frequency response, as

well as the superconducting phase. We found a pseduogap feature at finite frequency

that was previously explained through an interlayer collective mode. We also found

that microwave spectroscopy puts strong limits on the form of the scattering rate.

Finally, we computed the optical response of Weyl semimetals subjected to an

applied magnetic field. Weyl semimetals are a topological phase of matter that have

yet to be observed. The form of the conductivity contains a series of asymmetric

peaks, whose spacing is a signature of the underlying relativistic dispersion. These

peaks remain robust, even with moderate disorder.
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Preface

This is a ‘sandwich thesis’. It contains five published articles. The surrounding

material is meant to provide background and place the work into a broader context.

All of the original research is found in the five publications.

For the four publications:

Phillip E.C. Ashby and J.P. Carbotte “Tracking quasiparticle energies in graphene

with near-field optics” Phys. Rev. B 86 165405 (2012).

Phillip E.C. Ashby and J.P. Carbotte “Resonating valence bonds and Fermi surface

reconstruction: Resistivity in the underdoped cuprates” Phys. Rev. B 87 014514

(2013).

Phillip E.C. Ashby and J.P. Carbotte “c-axis optical conductivity from the Yang-

Rice-Zhang model of the underdoped cuprates”Phys. Rev. B 87 0184514 (2013).

and

Phillip E.C. Ashby and J.P. Carbotte “Magneto-optical conductivity of Weyl

semimetals” Phys. Rev. B 87 245131 (2013).

I am the primary author. I wrote the manuscripts, did all the calculations, and made

all of the figures. Jules provided help along the journey, and provided useful edits and

advice for the manuscripts I produced.

For the paper

J.P Carbotte, J.P.F. LeBlanc and Phillip E.C. Ashby “Impact of electron-phonon

coupling on near-field optical spectra in graphene” Phys. Rev. B 87 045405 (2013).

I do not appear as the primary author. My contributions to the main text of

this article are at the 10% level, but this manuscript could not have moved forward

without the insight and results of my previous paper on near field optics. I helped

James with two of the figures and with the analysis and results. I also provided useful

feedback on the manuscript once it was written. This work is an excellent example of

a scientific collaboration.
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Chapter 1
Introduction

I think it is a peculiarity of myself that I like to play about with equations,

just looking for beautiful mathematical relations which maybe dont have

any physical meaning at all. Sometimes they do.”

– P. A. M. Dirac

Broadly speaking, condensed matter physics is the study of the physical properties

of the different phases of matter. In school we are taught about the phases of matter:

solids, liquids and gases. Condensed matter physicists focus on the possible states of

solids and liquids. In particular, they focus on how electrons behave in these materials.

Different solids and liquids are universes with different laws for electrons. These

different universes are called the phases of matter.

Superconductivity is one such universe. Metals and insulators represent other

distinct universes. To classify these different phases we rely on the measurement

of different average properties of the system. For example, metals, insulators and

superconductors all have very different AC conductivities.

One might attempt to classify all the states of matter starting from the Hamiltonian

for electrons and the underlying lattice

H =
∑
i

p2
i

2m
+
∑
i

P 2
i

2M
+
∑
i<j

e2

|ri − rj|
+
∑
i<j

Z2e2

|Ri −Rj|
−
∑
i,j

Ze2

|ri −Rj|
, (1.1)

where e is the electron charge, Z is the atomic number of the ions; p (P ), m (M), and

5
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r (R) are the momentum, mass, and position of the electrons (ions), respectively.

The Hamiltonian and appropriate initial conditions, combined with the Schrodinger

equation for the many body wavefunction,

i
∂ψ

∂t
= Hψ, (1.2)

specifies the quantum state of the system at all times. The solution of this equation for

any realistic system, involves an enormous number of degrees of freedom. In addition

to the problem with the large number of degrees of freedom is that involved with

the range of scales. Typical electronic energies are of the order ≈ 1eV . The phase

transition for conventional superconductors onsets at ≈ 10−4eV . This means we would

be required to solve the problem over several orders of magnitude in energy; not a

simple task! Even if the solution of Equation 1.2 was possible, the structure of the

wavefunction would be so complicated that it would be difficult to extract meaningful

information.

Fortunately it is not necessary to deal with all these complications. This is because

many physical observables are related to average properties of the system. It is because

of this that we can often deal with effective models. These models attempt to capture

the essential physics of the problem, often using a much smaller set of degrees of

freedom.

In this thesis we will explore the optical properties of a few different condensed

matter systems. Questions like: ‘why are metals shiny?’, ‘why are clouds white?’,

and ‘why is the sky blue?’ all involve the interaction of light with matter. Thus it

is very natural to think about the optical response of different materials. We will

compute the optical response of several different materials. In particular we consider

the finite frequency optical response. It is useful for studying the properties of the

metal insulator transition, for example.

All of the materials that we will examine in this thesis share the fact that their

low energy excitations are ‘Dirac-like’. That is, they have a dispersion relation that is

linear with momentum. This type of dispersion used to be viewed as quite unusual,

but is now ubiquitous in condensed matter physics. In this thesis we will look at
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graphene, the High-Tc cuprate superconductors, and Weyl semi-metals as examples of

materials with Dirac dispersions. Dirac dispersions are also of interest in the new field

of topological insulators, whose surface states have a Dirac structure.

In Chapter 2 we will discuss how Dirac Fermions can appear naturally in con-

densed matter systems, as well as introducing some standard formalism for the optical

conductivity.

Chapter 3 contains two papers on a new spectroscopic technique, near-field optics,

as applied to graphene.

Chapter 4 features two papers where we study the optical properties of the

underdoped cuprates by employing a phenomenological model developed by Yang,

Rice and Zhang.

In Chapter 5 we present one paper where we study the magneto-optical response

of a new class of materials, known as Weyl semimetals.

In Chapter 6 we conclude and talk about possible future directions.
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Chapter 2
Preliminaries

The now famous Dirac equation is a great triumph of theoretical physics. It was the

first equation to unify the theory of special relativity with quantum mechanics. Dirac

wrote his equation in the form [1]

i~
∂Ψ

∂t
= (cα · p + βmc2)Ψ, (2.1)

where α and β were 4× 4 matrices, m is the particle’s mass, c is the speed of light,

and Ψ is a 4-component wavefunction, known as a spinor. This multiple component

wavefunction gave a natural explanation for Pauli’s theory of electron spin. Before this

time, the 2-component nature required to explain spin was purely phenomenological.

The Dirac equation also led to the prediction of the positron, which was discovered a

few years later [2].

When the particles are massless the Dirac equation can be simplified [3]. The α

matrices are all block diagonal, while β is block off-diagonal. So, when m = 0 the

4-component spinor can be split into two parts, ψL and ψR. They satisfy the equation

i~
∂ψR,L
∂t

= ±cσ · pψR,L, (2.2)

where σ is the vector of Pauli matrices. This equation is known as the Weyl equation,

and ψL and ψR are Weyl Fermions.

9
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2.1 Where to find Dirac Fermions

In condensed matter physics, the time evolution of a state is given not by the Dirac

equation, but by the Schrodinger equation

i
∂ψ

∂t
= Hψ. (2.3)

When H is a non-relativistic Hamiltonian, how can we expect to get a Dirac equation?

The relativistic form for the energy might be acquired if two bands cross. Accidental

band touchings have been studied since the early days of the theory of solids. They

were first studied by Herring [4, 5] in 1937. In 1968 Halperin and Rice [6] visited the

problem of a quadratic band touching. They showed that this problem was unstable

to the formation of bound states of electrons and holes, that is it was unstable to the

formation of an excitonic insulating state. There is no reason that bands should touch

quadratically. One would assume that a generic band touching should occur linearly,

unless there was some symmetry present to forbid it. In 1971 Abrikosov [7, 8] studied

the problem of a linear band touching and showed that it was stable. In such a way

one can get a Dirac like Hamiltonian in a condensed matter system.

For a non-interacting system (or one where interactions can be effectively mapped

onto a non-interacting system, like a Fermi liquid) Bloch’s theorem [9] tells us that

the wavefunctions |ψn(k)〉 and the energy eigenvalues, En(k), are labeled by a band

quantum number, n as well as a continuous quantum number k, the crystal momentum.

If one considers two such bands, E1(k) and E2(k), such that in some region of the

Brillouin zone |E1(k)− E2(k)| � |E1(k)− En(k)| for all other bands n, then we may

write an effective Hamiltonian for the system by expanding in the Bloch states

Heff =

(
〈ψ1(k)|H |ψ1(k)〉 〈ψ1(k)|H |ψ2(k)〉
〈ψ2(k)|H |ψ1(k)〉 〈ψ2(k)|H |ψ2(k)〉

)
. (2.4)

We may write this Hamiltonian in terms of the Pauli matrices and the 2× 2 identity
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matrix

Heff = g0(k)I +
3∑
i=1

gi(k)σi (2.5)

for some functions gi(k).

For there to be a band touching it is sufficient to satisfy the condition that

g1(k) = g2(k) = g3(k) = 0. This leads to a very interesting result. In 3-dimensions

there are 3 independent components of the crystal momentum that can be varied. So

in 3-dimensions there are three variables and three unknowns, and so the implicit

function theorem tells us that we can have accidental band touchings in 3-dimensions.

However, in 2-dimensions there are only two components of the crystal momentum

that can be varied. In general band touchings will not happen for dimension less

than three! This problem can be circumvented if there are additional symmetries that

constrain equations between the g’s.

2.2 The Kubo formula for the optical conductivity

Here we will show the essentials required to arrive at our standard formulas for the

conductivity. For more details on the Kubo formula see a standard many body theory

book like Mahan [10] or Altland and Simons [11]. To study the optical conductivity

we generally want to know how a material responds to an applied electric field. The

incident electric field has the form

E(r, t) = E0e
iq·r−iωt. (2.6)

Within linear response the conductivity is found from the relation

Jα(r, t) = σαβ(q, ω)Eβ(r, t). (2.7)
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To derive a formula for the conductivity one usually starts with a minimally coupled

Hamiltonian (working in the gauge ∇ · A = 0, and in units where c = 1)

H =

∫
ddr

[
1

2m
ψ†(x)(p− eA)2ψ(x)− eφ(x)φ†(x)ψ(x)

]
+Hint. (2.8)

The current is found in the usual way

j = −δH
δA

(2.9)

=
−ie~
2m

(
ψ†(x)∇ψ(x)− ψ(x)∇ψ†(x)

)
− e2

m
Aψ†(x)ψ(x). (2.10)

The first term is known as the paramagnetic current, jp and the second term is known

as the diamagnetic current jd. In some of the literature the diamagnetic term is

mistakenly forgotten. While calculating the real part of the conductivity within the

Drude approximation, this term does not make a contribution. The diamagnetic terms

should be kept so that the conductivity has the correct behaviour at ω = 0 and so

that the conductivity obeys the Kramers-Kronig relations.

The observed current will be the expectation value of the current operator

J(r, t) =
〈
jp(r, t)

〉
− ne2

m
A(r, t), (2.11)

where n is the electron density. From linear response we know that since the coupling

of the paramagnetic current to the vector potential is of the form

−
∫
ddrj ·A (2.12)

that

〈
jpα(r, t)

〉
= i

∫
t′<t

ddr′dt′
〈[
jpα(r, t), jpβ(r′, t′)

]〉
(2.13)
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Then remembering that E = −∂A
∂t

we obtain the famous formula for the conductivity

σαβ(q, ω) =
ine2

m(ω + i0+)
δαβ +

1

ω + i0+

∫ ∞
0

dtei(ω+i0+)t 〈[jα(−q, t), jβ(q, 0)]〉 (2.14)

This result is often recast in terms of the retarded current-current correlation function:

Παβ(q, ω) = −i
∫
dtθ(t− t′)eiω(t−t′) 〈[jα(−q, t), jβ(q, t′)]〉 . (2.15)

This gives

σαβ(q, ω) =
i

(ω + i0+)

[
Παβ(q, ω) +

ne2

m
δαβ

]
. (2.16)

The advantage of this form is that we can use the well established Green’s function

formalism for computing the current current correlation function. We are also usually

interested in the real part of the conductivity, as this coresponds to optical absorption.

The imaginary part can easily be obtained from the real part using a Kramers-Kronig

relation, if desired. The real part is given by

Re[σαβ(q, ω)] = − 1

ω
Im[Παβ(q, ω)]. (2.17)

At the one loop level the current-current correlator is given by

Παβ(q, ω) = e2T
∑
k,νn

[vα(k)G(k, νn)vβ(k + q)G(k + q, ω + νn)]. (2.18)

Finally using the spectral representation for the Green’s function

G(p, z) =

∫
dω

2π

A(p, ω)

z − ω , (2.19)

one can cast the problem in terms of the spectral functions, A(p, ω). The advantage of

this form comes when treating a problem where particles have a finite lifetime. There

are many Kubo formulas in the literature that involve matrix elements of current

operators divided by energy denominators. The form in terms of spectral functions
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reduces to these when A(k, ω) = 2πδ(ω − εk), that is, for non-interacting particles. In

the presence of interactions described by a self energy Σ(k, ω) they take the form

A(k, ω) =
1

π

|ImΣ(k, ω)|
(ω − ReΣ(k, ω)− εk)2 + |ImΣ(k, ω)|2 , (2.20)

and the expression in terms of spectral functions is more useful.



Chapter 3
Graphene

Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. It was first

studied in 1947 by Wallace [12], who was attempting to calculate the band structure

of graphite. The three-dimensional graphite calculation was too difficult, and so he

ended up studying the simpler two-dimensional version. Graphene can be thought

of as the building block of other forms of carbon. By rolling it up into balls, one

obtains fullerenes, rolling it up along one direction produces cylinders known as carbon

nanotubes, and stacking many layers together gives graphite.

The Mermin-Wagner theorem [13, 14] forbids the breaking of a continuous symmetry

for systems with dimension 2 or less. Thus, for a long time Wallace’s calculation

remained a theoretical curiosity. It was thought that graphene would be unstable,

and form a different allotrope of carbon. This changed in 2004 when graphene was

isolated by Geim and Novoselov [15] using mechanical ex-foliation (the ‘scotch tape

method’). Graphene overcomes the assumptions of the Mermin-Wagner theorem since

it is free to ripple in the plane, or is often mounted on a substrate. The observation of

graphene was first confirmed by an optical interference experiment on silicon dioxide

wafers.

The relativistic band structure in graphene stirred up a great deal of interest

once it was successfully isolated. It opened the door to the possibility of studying

relativistic quantum mechanics in table-top experiments. One relativistic effect is Klein

tunneling [16]. Klein tunneling is the ability for the electron waves to penetrate large

15
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'A'

'B'

Figure 3.1: Graphene naturally forms a honeycomb lattice. The set of basis vectors,
a1 and a2 is shown. The two in equivalent points A and B are also labeled. Notice
that A and B have different nearest neighbor vectors.

potential barriers. The chirality of the electronic wavefuctions in graphene suppresses

backscattering, leading to the Klein effect. Thus the electrons near the Dirac points

can move through disorder unhindered, leading to high carrier mobility. In graphene

vF ≈ 106 plays the role of the speed of light. Hence graphene is like a universe with a

slower speed of light. This leads to a different value for the fine structure constant.

For electrons in QED the fine structure constant is αQED = e2/(~c) ≈ 1/137. In

graphene αgraphene = e2/(~vF ) ≈ 2.2. This could lead to the possibility of studying

possible strong coupling effects in graphene.

The crystal structure of graphene is shown in Figure 3.1. Graphene is a simple

example of a Bravais lattice with a 2 point basis. There are two chemically equivalent,

but topologically inequivalent sites often referred to as A and B, that make up the

lattice. The honeycomb network of carbon atoms is formed from sp2 hybridized bonds.

The conduction electrons reside in an additional p orbital that sticks out of the plane.

These hopping of electrons between these orbitals can be most simply treated within

a tight binding formalism.
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The lattice vectors can be written

a1 =
a

2

(
1,
√

3
)
, a2 =

a

2

(
−1,
√

3
)
, (3.1)

where a =
√

3a0, with a0 the carbon-carbon distance.

The tight-binding Hamiltonian for nearest neighbor hopping has the form

H = −t
∑
〈i,j〉,σ

(
a†i,σbj,σ + H.c.

)
. (3.2)

Here t is a hopping integral, and ai,σ (a†i,σ) annihilates (creates) an electron with spin

σ on site ri of sublattice A (likewise for the B sublattice).

This Hamiltonian is a set of 2× 2 matrices in momentum space with eigenvalues

E(k) = ±t
√
|f(k)|2, (3.3)

where f(k) = 1 + eik·a1 + eik·a2 is the matrix element after evaluating the sum over

nearest neighbors. Some simple algebra leads to

E(k) = ±t

√√√√3 + 4 cos

(
kxa

2

)
cos

(
ky
√

3a

2

)
+ 2 cos (kxa). (3.4)

The resulting band structure is shown in Figure 3.2. We can see that there are

two bands, as expected for a Bravais lattice with a two point basis. These bands

touch at isolated points in the Brillouin zone. Solving E(k) = 0 we find that the band

touchings happen at two distinct points, called K and K ′. They are given by

K =

(
4π

3a
, 0

)
, K ′ =

(
2π

3a
,

2π√
3a

)
. (3.5)

The low energy physics will be dominated by these points. To make their Dirac

like nature explicit we can expand around the K (or K ′) point. Writing k = K + q

the Hamiltonian takes the form
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Figure 3.2: The band structure of graphene in the tight binding model. Notice the
isolated points in the Brillouin zone where the conduction and valence bands touch.
It is around these points that the dispersion has a Dirac like structure. These points
dominate the low energy physics.
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H =

√
3at

2

(
0 qx − iqy

qx + iqy 0

)
. (3.6)

With the identification vF =
√

3at
2

, we have H = vFσ ·k, where σ is the vector of Pauli

matrices. In this form it becomes obvious that the low energy Hamiltonian takes the

same form as the equation for massless Dirac Fermions. Interestingly, the velocity is

also independent of energy. This is in stark contrast to usual Schrodinger particles

where v ∝
√
E.

The wavefunctions around the point K can be found by solving the eigenvalue

problem

−ivFσ · ∇ψ = Eψ. (3.7)

In momentum space we have

ψ±(q) =
1√
2

(
e−iθq/2

±eiθq/2

)
, (3.8)

where the ± labels the band index given by the Energy E = ±vF q, and θq =

arctan
(
qy
qx

)
. Defining the variables θqq′ = θq − θq′ and s = ±1, the wavefunction

overlap is given by

Fss′(θqq′) = ψ†s′(q
′)ψs(q) =

1

2
[1 + ss′ cos(θqq′)]. (3.9)

The wavefunction overlap encodes information about the allowed scattering processes

in graphene. Specifically, the angular dependence suppresses backscattering. This

is a reflection of the fact that the low energy quasiparticles in grahene are chiral.

This wavefunction overlap naturally arises in the formula for the conductivity since it

involves both inter- and intra-band processes.
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0 0.5 1 1.5 2 2.5 3

ω/µ

0

0.5

1

1.5

2

σ
/σ

0

Figure 3.3: The q = 0 limit of the optical conductivity of graphene is shown. Note
that the delta function was broadened according to δ(z)→ 1

π
ε

ε2+z2
with ε = 0.01 for

graphing purposes. This figure can be compared to the finite q graphs shown in the
manuscripts.

3.1 Optical conductivity

For comparison to the finite q conductivity presented in the papers that follow, I

include the expression for the conductivity in the q = 0 case. It is shown in Figure

3.3. There is an intraband piece corresponding to the free charge carriers, and an

interband piece at higher energies. The gap between the inter and intra band pieces is

due to the Pauli exclusion principle.

After extracting the spectral functions from the graphene Green’s function and

substituting them into the Kubo formula, the conductivity is given by
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σxx(ω)

σ0

=
4

ω

∫ µ

µ−ω
dω′
∫
εdε [δ(ω′ + ω − ε)δ(ω′ − ε) + δ(ω′ + ω + ε)δ(ω′ + ε)

+δ(ω′ + ω + ε)δ(ω′ − ε) + δ(ω′ + ω − ε)δ(ω′ + ε)] ,

(3.10)

where σ0 = e2/4 and µ is the chemical potential. The first two terms are the intraband

terms and the second two are the interband terms. Looking at the intraband terms

and doing the energy integral gives

4

ω

∫ µ

µ−ω
dω′|ω′|δ(ω) (3.11)

=
4

ω
δ(ω)

(
µω − ω2

2

)
(3.12)

= 4µδ(ω). (3.13)

For the interband terms doing the energy integral leaves

4

ω

∫ µ

µ−ω
dω′|ω′|δ(2ω′ + ω) (3.14)

= θ(ω − µ− ω/2)− θ(−ω/2− µ) (3.15)

= θ(ω − 2µ). (3.16)

So we arrive at the result

σxx(ω)

σ0

= 4µδ(ω) + θ(ω − 2µ). (3.17)
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3.2 Paper I – Tracking quasiparticle energies in

graphene with near-field optics

Reprinted with permission as follows: Phillip E.C. Ashby and J.P. Carbotte “Tracking

quasiparticle energies in graphene with near-field optics” Phys. Rev. B 86 165405

(2012). Copyright (2012) by the American Physical Society.

Near field optics is a new technique developed for probing the finite wavevector

response in various materials. The technique uses an atomic force microscope tip as

an antennae for the incident radiation. The sharp tip effectively acts as an antennae

that provides a finite wavevector for the radiation. In particular, graphene was being

studied using this technique. In this paper we study the optical response of graphene

at finite momentum transfer. In particular we focused in on the properties of the

quasiparticle peak. We studied the optical conductivity at finite temperatures, and

were able to derive a formula for the finite wavevector conductivity in the presence of

residual scattering.
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Advances in infrared nanoscopy have enabled access to the finite momentum optical conductivity σ (q,ω). The
finite momentum optical conductivity in graphene has a peak at the Dirac fermion quasiparticle energy ε(kF − q),
i.e., at the Fermi momentum minus the incident photon momentum. We find that the peak remains robust even
at finite temperature as well as with residual scattering. It can be used to trace out the fermion dispersion curves.
However, this effect depends strongly on the linearity of the Dirac dispersion. Should the Dirac fermions acquire
a mass, the peak in σ (q,w) shifts to lower energies and broadens as optical spectral weight is redistributed over
an energy range of the order of the mass gap energy. Even in this case structures remain in the conductivity, which
can be used to describe the excitation spectrum. By contrast, in graphene strained along the armchair direction,
the peak remains intact but shifts to a lower value of q determined by the anisotropy induced by the deformation.

DOI: 10.1103/PhysRevB.86.165405 PACS number(s): 78.67.Wj, 72.80.Vp, 81.05.ue

I. INTRODUCTION

Graphene, first isolated in 2004,1 has been the host of a
variety of novel electronic properties. The main difference in
graphene is its unique energy dispersion. The charge carriers
in graphene are massless Dirac fermions, which accounts
for the differences from the conventional 2D electron gas.
Remarkable behavior has already been reported in the plasmon
dispersion relation,2–5 as well as the optical conductivity,6–8

which supports a transverse electromagnetic mode.9 There
is also recent evidence for plasmarons,10,11 a new type of
quasiparticle formed by the interaction of charge carriers with
plasmons. Optical spectroscopy is a useful tool for obtaining
information about the dynamics of charge carriers and has
been used to great success in graphene.12

The real part of the q → 0 optical conductivity in graphene
is well known. At finite chemical potential, μ, it contains a
Drude peak at ω = 0 due to intraband absorption, followed
by a Pauli-blocked region. There is then a sharp rise at ω =
2μ to a universal background conductivity σ0 = e2/4,7,13–15

due to interband transitions. Experimentally, the region that
should be Pauli-blocked and have no absorption does not fall
below about σ0/3.16 Electron-electron interactions, electron-
phonon interactions, and impurity scattering can all provide
contributions to the optical conductivity in this region, but
nothing as large as the observed value.17–20 The origin of this
anomalously large background is still a mystery.

More recent experiments have granted access to the finite
momentum transfer optical conductivity σ (q,ω).21–23 In the
paper by Fei et al.,21 they describe how an atomic force
microscope (AFM) operating in tapping mode allows one to
obtain information about the finite q conductivity. The incident
light scatters off the tip and is confined to a nanoscale region.
The precise details depend on the geometry of the tip, and
Fei et al. report a distribution of q values with a peak at
q ≈ 3.4 × 105 cm−1. In principle, a sharper tip would lead
to higher confinement, and thus larger values of q could be
accessible through adjustments to the AFM tip.

In this paper we study the properties of the quasiparticle
peak at ω = q in the real part of the optical conductivity.
In Sec. II we discuss the properties of this peak and its
relationship to the joint density of states at T = 0 as well as at
finite temperatures. We find that the quasiparticle peak remains
robust even at large temperatures. In Sec. III we consider the
presence of residual scattering and provide a simple analytical
formula for the quasiparticle peak. Again, the peak position
remains robust, even for large impurity concentration. We
finally consider two methods of altering the Dirac dispersion
in Sec. IV, gapped and strained graphene. We find that these
modifications do alter the position of the quasiparticle peak
and, so, the linearity and isotropy are crucial for its robustness.

II. FORMALISM AND EXPRESSIONS FOR THE
CONDUCTIVITY

The xx component of the real part of the finite temperature
optical conductivity is given by

σxx(q,ω)

σ0
= 8

ω

∫
[f (ω′) − f (ω′ + ω)]dω′

∫
d2k
2π

×
∑
s,s ′

Fss ′ (φ)As(k,ω′)As ′
(k + q,ω′ + ω). (1)

In the above, σ0 = e2/4 is the universal background con-
ductivity, Fss ′ (φ) are the coherence (or chirality) factors,
f (ω) = 1/(eβω + 1) is the Fermi-Dirac distribution function,
and As(k,ω) is the spectral density. We chose our x direction
along the zig-zag axis (see Fig. 1). From here on we use σ (q,ω)
to denote σxx(q,ω). We work in units where h̄ = vF = 1.

The spectral densities, As(k,ω), reduce to Dirac delta
functions in the bare-band case. In the presence of interactions
described by a self energy �s(k,ω), they are given by

As(k,ω) = 1

π

|Im�s(k,ω)|[
ω − Re�s(k,ω) − εs

k

]2 + |Im�s(k,ω)|2
, (2)

where εs
k = sk − μ.
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The peaks in the spectral density control the shape of the
optical conductivity and correspond broadly to two types of
processes: intraband and interband transitions. The intraband
transitions occur at ω = q and are the focus of this paper.
Interband scattering is responsible for subsequent peaks in
the spectral functions, which occur at ω = 2μ − q and ω =
2μ + q. We will first consider the bare-band case and examine
the effect of impurity scattering in Sec. III.

A. Results for bare bands, T = 0

Since the spectral functions are simply given by Dirac delta
functions in the bare-band case, the physics is governed by the
coherence factor Fss ′ (φ), which encodes information about
scattering. It is given by

Fss ′ (φ) = 1
2 (1 + ss ′ cos φ). (3)

The angle φ is defined in terms of the angles of k and
k + q, denoted by θk and θk+q, respectively (Fig. 1). For
the optical conductivity, φ = θk + θk+q. The longitudinal
dielectric function is related to the density-density correlation
function, often called the polarizability, 
. In comparison to
the optical conductivity, the polarizability has φ = θk − θk+q.

We can write down an expression for Fss ′ (φ) in terms of the
magnitudes of k and q and their angles with respect to the kx

FIG. 1. (Color online) (Top) The scattering geometry in k space
for the optical conductivity and polarizability. Both the optical
conductivity and polarizability contain coherence factors Fss′ (φ) =
1
2 (1 + ss ′ cos φ). The important difference is that φ = θk + θk+q in
the optical conductivity, while φ = θk − θk+q in the polarizability.
We orient our axes so that x is along the so-called zigzag direction of
graphene, while the y axis is along the armchair direction. (Bottom)
Energy dispersions for bare, strained, and gapped graphene. The
effect of strain distorts the Dirac cones from a circular to an elliptical
cross section. Gapped graphene retains its circular shape, but the
low-energy dispersion is now quadratic, and the Dirac point is no
longer accessible.

axis, θ , and α, respectively (Fig. 1). We have

Fss ′ (φ) = 1

2

[
1 + ss ′ k cos(2θ ) + q cos(θ + α)√

k2 + q2 + 2kq cos(θ − α)

]
, (4)

for the optical conductivity, and

Fss ′ (φ) = 1

2

[
1 + ss ′ k + q cos(θ − α)√

k2 + q2 + 2kq cos(θ − α)

]
, (5)

for the polarizability, which we include for comparison. Notice
that the polarizability only involves the angle θ − α, while the
optics contains θ − α, θ + α, and 2θ . A consequence of this
is that for the polarizability, the dependence on the direction
of the photon momentum q can be eliminated by a shift in the
integration variable. For the optical conductivity, no simple
change of variables exists, and Fss ′ (φ) remains dependent on
the angle q makes with respect to the kx axis.

In an isotropic system only two directions need to be
considered for q: q along kx (longitudinal) and q along ky

(transverse). This gives

Fss ′ (φ) = 1

2

[
1 + ss ′ k cos(2θ ) + q cos(θ )√

k2 + q2 + 2kq cos(θ )

]
, (6)

for the longitudinal part of σxx , and

Fss ′ (φ) = 1

2

[
1 + ss ′ k cos(2θ ) − q sin(θ )√

k2 + q2 + 2kq sin(θ )

]
, (7)

for its transverse part. The difference between Eqs. (6) and (7)
has a drastic difference in the shape of σ (q,ω), its longitudinal
part diverges at ω = q, while the transverse parts vanishes at
ω = q (Fig. 2).

To understand this difference in behavior, we introduce a
reference function, the joint density of states (JDOS). It is

0 0.1 0.2 0.3 0.4
ω/μ

0.001

0.01

0.1

1
(JDOS)ω/q
Π/π
JDOS
qσL

/π
qσT

/π

FIG. 2. (Color online) The real part of the longitudinal and
transverse conductivity, σL and σT , for q = 0.4 scaled by q/π as
a function of ω/μ. JDOS and the polarizability 
 as a function
of ω/μ. The prefactors have been chosen to make the longitudinal
conductivity and JDOS agree at ω = q.
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given by

JDOS(q,ω) = 4
∫

d2k
(2π )2

[
f

(
εs

k − μ
) − f

(
εs ′

k+q − μ
)]

δ
(
ω + εs

k − εs ′
k+q

)
, (8)

where the factor of 4 is from the degeneracy (spin and valley) in graphene. The JDOS for the intraband piece at T = 0 is given
by

JDOS(q,ω) = 1

4π2
√

q2 − w2

{
(w − q + 2μ)

[
(2μ + w)

√
(2μ + w)2 − q2 − (q2 − 2w2) ln

√
(2μ + w)2 − q2 + (2μ + w)

q

]

−(2μ − q − w)

[
(2μ − w)

√
(2μ − w)2 − q2 − (q2 − 2w2) ln

√
(2μ − w)2 − q2 + (2μ − w)

q

]}
. (9)

The longitudinal and transverse conductivity differ from the
joint density of states by the coherence factors, as mentioned
above. Both the joint density of states and the conductivity
contain the same delta function. Evaluating the coherence
factors Eqs. (6) and (7) at ω = q subject to the delta function
constraint shows that F++ = 1 and 0, respectively. This
explains the fact that the longitudinal conductivity has a square
root singularity (inherited from the JDOS), while the transverse
conductivity is zero.

A physical picture for this difference is as follows. We
consider a possible optical transition with momentum transfer
q and energy ω = q from an occupied state below the
chemical potential, to an empty state above the chemical
potential. We will consider the momentum of the final state
to determine the contribution to the conductivity. For the
longitudinal case, that is, q taken along the kx direction,
the final state momentum is the sum of the magnitude of
the initial momentum k and the photon momentum q and
results in a maximum momentum along kx . For the transverse
case, the initial k must also be transverse to be an allowed
transition (recall ω = q). The resulting state has no momentum
along the kx direction, and so the transverse conductivity
vanishes.

The joint density of states, Eq. (9), bares a strong re-
semblance to both the polarizability 
 and the longitudinal
conductivity, which have been computed previously.2,4,5,24

The conductivity, polarizability, and joint density of states
are all shown in Fig. 2. The factor q/π multiplying the
conductivity was chosen to make the functions agree at
ω = q, and the factor 1/π multiplying the polarizability was

chosen to make the polarizability have the same prefactor as
the JDOS.

The agreement between the joint density of states and the
polarizability is excellent (Fig. 2). In fact, the difference is
given by

JDOS − 1

π



= w2

2π2
√

q2 − w2

[
ln

w + 2μ +
√

(2μ + w)2 − q2

2μ − w +
√

(2μ − w)2 − q2

]
,

(10)

and so the differences between the two are logarithmically
small. In Fig. 3 we also see that w

q
JDOS agrees remarkably

well with q

π
σL. The difference between these two functions is

in fact controlled by the same logarithmic factor as in Eq. (10).

B. Finite temperature

We now turn to the effect of finite temperature. In this case,
the expression for the real part of the longitudinal conductivity
is

σL(q,ω)

σ0
= 4

πω

∑
ss ′

∫
d2k

[
f

(
εs

k − μ
) − f

(
εs ′

k+q − μ
)]

×Fss ′ (φ)δ
(
ω + εs

k − εs ′
k+q

)
, (11)

where Fss ′ (φ) is given as in Eq. (6). We use the delta function
to do the integral over the angular variables and find that the
conductivity naturally separates into two parts, one part for
ω < q and the other for ω > q. They are given by

σ<

σ0
= 8

π

w

q2
√

q2 − w2

{∫ ∞

0
dx

[
sinh w

2T

cosh w
2T

+ cosh q+2x−2μ

2T

]√
x(x + q) +

∫ ∞

0
dx

[
sinh w

2T

cosh w
2T

+ cosh q+2x+2μ

2T

]√
x(x + q)

}

≈ 8

π

w

q2
√

q2 − w2

{∫ ∞

0
dx

[
sinh w

2T

cosh w
2T

+ cosh q+2x−2μ

2T

]√
x(x + q)

}
, (12)

for ω < q, and

σ>

σ0
= 8

π

w

q2
√

w2 − q2

{∫ q

0
dx

[
sinh w

2T

cosh w
2T

+ cosh q−2x−2μ

2T

]√
x(q − x)

}
, (13)

for w > q. We have simplified the expression for σ< by noting that the thermal factors in the second term cause it to be much
smaller than the first.
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FIG. 3. (Color online) (Top panel) The real part of the finite
momentum optical conductivity σ (q,ω) as a function of ω/μ for
q/kF = 0.4 and T/μ = 0, 0.03, 0.07, 0.15, 0.3 for bare bands.
There is a strong quasiparticle peak at ω = q, which is unaffected
by the finite temperature. The finite temperature smears the interband
contribution and begins to fill in the Pauli-blocked region for large
enough temperature. (Bottom panel) The real part of the finite
momentum optical conductivity σ (q,ω) as a function of ω/μ for
q/kF = 1.0 and T/μ = 0, 0.03, 0.3 for bare bands. Included for
comparison is the T = 0 result with a residual scattering rate γ /μ =
0.005. (Insets): The insets show the optical spectral weight for
T/μ = 0, 0.3. The quasiparticle peak holds less spectral weight
at larger momentum transfer (q). For the q/kF = 0.4 case, we can
see that the finite temperature has transferred spectral weight to the
previously Pauli-blocked region.

The remaining integrals were evaluated numerically and the
results for T/μ = 0, 0.03, 0.07, 0.15, and 0.3 are shown for
momentum transfer q/kF = 0.4 in Fig. 3. There is a sharp
quasiparticle peak from intraband transitions at ω = q. It
remains sharp even at elevated temperatures. However, the
interband transitions are thermally broadened. One naively
expects thermal broadening to occur over a width ∼T , and we
see the effect is much larger for the interband transitions. This
excess broadening can be understood as an enhancement from
the square root singularity present in the JDOS. All the finite

temperature curves intersect at the point ω = 2μ. This could
be used as a method of determining the chemical potential. We
also computed the optical spectral weight (see insets Fig. 3)
given by

I (ω) =
∫ ω

0
dω′ σ (q,ω′)

σ0
. (14)

We see that finite temperature shifts spectral weight from the
interband region into the previously forbidden region q < ω <

2μ − ω. Figure 3 also shows the finite temperature effect for
momentum transfer q/kf = 1.0. Again the quasiparticle peak
is sharp, and the interband transitions are smeared. Notice that
for larger q the spectral weight carried by the quasiparticle
peak is diminished. Increasing q has the effect of decreasing
the spectral weight carried by the quasiparticle peak. This
spectral weight is regained in the interband transitions so that
the optical sum rule remains satisfied.

Although we cannot obtain an analytic formula for the
spectral weight carried by the peak at general q, we can obtain
expressions for the spectral weight at T = 0 in the limit q → 0,
for both the longitudinal and transverse conductivity. For the
quasiparticle peak, in the q → 0 limit we obtain

σL

σ0
≈ 8μω2

πq2
√

q2 − w2
, (15)

σT

σ0
≈ 8μ

πq2

√
q2 − w2. (16)

So that ∫ q

0
dw

σL

σ0
=

∫ q

0
dw

σT

σ0
= 2μ, (17)

and both the transverse and longitudinal peaks carry the same
spectral weight in this limit. The fact that the quasiparticle
peak in the longitudinal and transverse conductivities have
the same spectral weight, combined with isotropy implies that
the peak carries the same weight regardless of the direction of
q in the q → 0 limit.

III. EFFECT OF IMPURITIES

We have, until now, considered only the bare-band case. We
now consider the effect of scattering. The simplest approxi-
mation that includes scattering is to take a self energy with
Im�(k,ω) = γ and Re�(k,ω) = 0. Note that, in particular,
we ignore vertex corrections. In this case, and at T = 0,
the general formula for the intraband conductivity, Eq. (1),
becomes

σL

σ0
= 8

ω

∫ 0

−ω

dω′
∫

kdk

∫ 2π

0

dθ

2π
F++(φ)

× 1

π2

γ

γ 2 + (ω′ + k + μ)2

× γ

γ 2 + (ω′ + ω +
√

k2 + q2 + 2kq cos θ + μ)2
.

(18)

We are only interested in the case when ω,γ,q � μ. In this
case, consideration of the Lorenzian factors tells us that the
dominant part of the integral in Eq. (18) is from the region
k ≈ μ. This allows us to simplify the expressions for both
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F++ as well as the second Lorentzian in Eq. (18). Working to lowest order in q we obtain

σL

σ0
= 8

ω

∫ 0

−ω

dω′
∫

kdk

∫ 2π

0

dθ

2π
cos2(θ )

1

π2

γ

γ 2 + (ω′ + k + μ)2

γ

γ 2 + (ω′ + ω̄ + k + μ)2
, (19)

where ω̄ = ω + q cos(θ ). The integration over k can be performed and we have

σL

σ0
= 8γ 2

π2w

∫ 0

−w

dw′
∫ 2π

0

dθ

2π
cos2(θ )

[−2

w̄

1

2γ 2 + w̄2

(
ω′ + ω̄

2

)
ln

∣∣∣∣ (ω′ + μ)2 + γ 2

(ω′ + ω̄ + μ)2 + γ 2

∣∣∣∣
− 4γ − ω̄

γ
(ω′ + ω̄ + μ) tan−1

(
ω′ + ω̄

γ
+ μ

)
+ ω̄

γ
(ω′ + μ) tan−1

(
ω′

γ
+ μ

)]
. (20)

Under our conditions that ω,γ,q � μ, this simplifies to

σL

σ0
= 4μ

π2

∫ 2π

0
dθ

2γ cos2 θ

(w + q cos θ )2 + 4γ 2
. (21)

A similar calculation gives the transverse conductivity

σT

σ0
= 4μ

π2

∫ 2π

0
dθ

2γ cos2 θ

(w + q sin θ )2 + 4γ 2
, (22)

and the polarizability


 = ωμ

π2

∫ 2π

0
dθ

2γ

(w + q cos θ )2 + 4γ 2
. (23)

These integrals can all easily be evaluated. They are most
conveniently expressed in terms of the complex number

Z = 1√
(w − q + 2iγ )(w + q + 2iγ )

. (24)

Our final expressions for the quasiparticle peak in the presence
of scattering are

σL

σ0
= 16γμ

πq2

[
1 − 2ωRe(Z) + ω2

2γ
Im(Z∗) + 2γ Im(Z)

]
,

(25)
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FIG. 4. (Color online) The real part of the longitudinal optical
conductivity σ (q,ω) for q/kf = 0.4 as a function of ω/μ. Included
are the result for bare bands at T = 0 in black, a numerical evaluation
of Eq. (1) including impurity scattering with γ /μ = 0.005 in dashed
green, and our analytic expression for the quasiparticle peak, Eq. (25),
in light green circles.

σT

σ0
= 16μγ

πq2

[
Im(Z∗)

2γ |Z|2 − 1

]
, (26)

Im(
) = 2ωμ

π
Im(Z∗). (27)

The agreement between the analytic expressions and a
numerical calculation of Eq. (1) is excellent (Fig. 4). We
verified that this agreement is maintained up to q = 1.0, even
though our derivation assumed q was a small parameter. We
show evaluations of the longitudinal conductivity, Eq. (25),
for two impurity concentrations in Fig. 5 for q = 0.4 and
1.0. The case with no impurity scattering is included for
reference. The peak becomes progressively broadened as we
increase the impurity scattering rate, γ , but the peak position
remains robust, even for large disorder.

Interestingly, our formulas for the conductivity with finite
residual scattering are almost the same as the q → 0 limit of the
conductivity given in Eqs. (15) and (16) with the replacement
ω → ω + 2iγ . There is an additional term present in our
formulas that is not captured by this simple substitution. For
the longitudinal conductivity, our expression is the same as

0 0.2 0.4 0.6 0.8 1
ω/μ

0.01

0.1

1

10

σ(
q,

ω
)/σ

0

γ = 0
0.005
0.05

0 0.5 1 1.5
0.1

1

10
q = 1.0q = 0.4

FIG. 5. (Color online) The quasiparticle peak in the real part
of the optical conductivity for momentum transfer q = 0.4 (main
panel) and q = 1.0 (inset) as a function of ω/μ. We show impurity
concentrations of γ /μ = 0, 0.05, and 0.005. The position of the peak
stays robust even with large impurity content and is broadened as the
impurity content increases.
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[compare with Eq. (15)]

σL

σ0
= 8μRe

[
(ω + 2iγ )2

πq2
√

q2 − (ω + 2iγ )2

]
+ 16γμ

πq2
. (28)

While for the transverse conductivity it is the same as [compare
with Eq. (16)]

σT

σ0
= 8μRe

[√
q2 − (ω + 2iγ )2

πq2

]
− 16γμ

πq2
. (29)

As a final remark, we comment on the difference between
the polarizability and the optical conductivity. In the noninter-
acting case it has been shown24 that the polarizability is related
to the conductivity through the standard formula

σL = ω

q2
Im(
). (30)

We remarked on the differences between the coherence factors
of the polarizability and the conductivity in Sec. II A. In the
noninteracting case, the spectral densities in Eq. (1) reduce to
delta functions, and the delta-function constraints restrict the
coherence factors of the polarizability and the conductivity
to be related through only the factor ω/q2. In the presence
of impurities, the delta functions become broadened and the
coherence factors are no longer proportional. In fact, we see
that the replacement given by Eq. (30) using the polarizability
in the presence of impurities Eq. (27) only generates one of
the terms present in the optical conductivity Eq. (25). It is

worth noting that the term generated by the polarizability is
the dominant term near ω = q. At small values of ω, the Z-
independent piece becomes the dominant contribution. All the
terms not proportional to the polarizability are suppressed by
factors of γ so that the correct limit is obtained as we turn off
impurity scattering.

IV. MODIFICATIONS TO THE DIRAC SPECTRUM

Finally, we examine the consequences of altering the energy
spectrum in graphene on the quasiparticle peak in the optical
conductivity. We will consider two physical mechanisms for
altering the spectrum in graphene. The first is the opening
of a mass gap, �. The second is the application of strain,
which makes the Fermi velocities along x and y different.
These alterations to the spectrum are shown pictorially
in Fig. 1.

A. Gapped graphene

In graphene with gap �, the energy eigenvalues are no
longer linear in k but instead are given by

εk =
√

k2 + �2. (31)

The optical conductivity of gapped graphene was first studied
by Scholz and Schliemann.24 As we saw in Sec. II, the peak in
the optical conductivity depended strongly on the joint density
of states. The joint density of states for gapped graphene is

JDOS(q,ω) = 1

4π2
√

q2 − w2

{
(w − qx0 + 2μ)

[
(2μ + w)

√
(2μ + w)2 − q2x2

0 (32)

− (
q2x2

0 − 2w2
)

ln

√
(2μ + w)2 − q2x2

0 + (2μ + w)

qx0

]
− (2μ − qx0 − w)

[
(2μ − w)

√
(2μ − w)2 − q2x2

0

− (
q2x2

0 − 2w2
)

ln

√
(2μ − w)2 − q2x2

0 + (2μ − w)

qx0

]}
, (33)

where μ = √
k2
F + �2 and x0 =

√
1 + 4�2

q2−ω2 . Figure 6 shows

the quasiparticle peak in the optical conductivity for several
values of the gap, as well as the joint density of states. We see
that as the gap opens, the joint density of states flattens out
and is pulled back to smaller values of ω. Consequently, this
behavior is inherited in the optical conductivity. The peak is
shifted to smaller values of ω and broadened as � increases. In
particular, the flattening onsets at ωl =

√
k2
F + �2 − ε(kF −

q) and persists to ωu = ε(kF + q) −
√

k2
F + �2, where the

conductivity then vanishes.

B. Strained graphene

We consider, for simplicity, the case where strain is applied
along the armchair (or y) direction in graphene (Fig. 1). The
effect of such a strain can be captured by introducing two strain
parameters, γx and γy , which control the anisotropy into the

Dirac Hamiltonian25–27

H = γxσxkx + γyσyky. (34)

First we consider the longitudinal conductivity, that is, q

along kx . By examining the Kubo formula for the conductivity,
Eq. (1), we find that the change of variables k̄ = (γxkx,γyky) is
sufficient to give us a result for the strained conductivity. There
is a Jacobian from the k-space integration that contributes a
factor 1/(γxγy). Additionally, there is a factor of v2

F (1 in our
units), which contributes a γ 2

x (for σxx). Last, since q appears
only in εk+q, it is changed to q̄ = qγx . Expressed in terms of
k̄,q̄, all the integrations are the same as the unstrained case.
Thus, we arrive at the simple result

σL
strained(q,ω) = γx

γy

σL
iso(qγx,ω). (35)
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FIG. 6. (Color online) The quasiparticle peak in the real part of
the optical conductivity as a function of ω/μ for q/kF = 0.4 for
graphene with mass gap � = 0, 0.05, 0.1, 0.15, 0.2, and 0.25. The
peak is pulled to smaller values of q and slowly broadened as the
mass gap increases. The broadening happens over an energy scale
approximately given by the mass gap and is physically caused by
changes in the joint density of states (shown in the inset).

A similar calculation for the transverse conductivity gives

σT
strained(q,ω) = γx

γy

σ T
iso(qγy,ω). (36)

We see that the position of the peak is shifted from ω = q to
ω = γxq, and the overall conductivity is modified by the ratio
γx/γy .

This shift in the peak is also understandable from the
physical picture described in Sec. II A described earlier.
Considering the same transitions described there gives the
peak at ω = q. The effect of strain on the system is to distort
the shape of the cone. Focusing on the x direction, we have
that, geometrically, this changes the lengths of the vectors by
a factor γx . To still land on the energy dispersion (and thus be

an allowed transition), the energy must also be modified by
a factor of γx . This simple geometric consideration gives the
shift in the peak position.

V. CONCLUSIONS

We have considered the peak in the real part of the near-field
optical conductivity. The peak is located at ω = q, and, as long
as the dispersion is linear and isotropic, this position is robust.
This quasiparticle peak is due to intraband transitions and is
the finite q analog of the Drude peak, in the q = 0 conductivity.
At q = 0, the peak carries 2μ worth of spectral weight so that
the optical sum rule is satisfied. At finite q, the quasipatricle
peak carries less weight, with the missing weight transferred
to interband processes.

We find that both finite temperatures and finite residual
scattering rate fill in the Pauli-blocked region, and that this
filling is enhanced near ω = q due to a square-root singularity
in the density of states. We used the Kubo formula in the
bubble approximation, which ignores vertex corrections, to
understand how the bare band picture is modified, in the
presence of residual scattering. This allowed us to derive
simple expressions for quasiparticle peaks in longitudinal
and transverse conductivity, as well as the contribution from
intraband scattering to the polarizability.

Finally, we examined the effect of altering the Dirac
dispersion on this peak. We found that in the presence of a
gap, the peak was shifted to smaller values of ω, and reduced
in size, no longer able to feel the square-root singularity in the
JDOS. The peak also broadened as the mass gap increased.
In the presence of strain, the effect was to scale the height
of the peak by a geometric factor related to the ratio of the
anisotropies induced by the strain, in addition to the position
of the peak being shifted by the relevant anisotropy parameter.
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3.3 Paper II – Impact of electron-phonon coupling

on near-field optical spectra in graphene

Reprinted with permission as follows: J.P Carbotte, J.P.F. LeBlanc and Phillip E.C.

Ashby “Impact of electron-phonon coupling on near-field optical spectra in graphene”

Phys. Rev. B 87 045405 (2013). Copyright (2013) by the American Physical Society.

In this paper we follow up on our previous paper, but examine the effects of the

electron-phonon interaction on the near field conductivity. While I am not the primary

author on this paper, my previous manuscript “Tracking quasiparticle energies in

graphene with near-field optics” provided much background needed to push this project

forward. Again, we studied the properties of the quasiparticle peak in graphene to

gain an understanding of how this interaction changes the bare results.
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Impact of electron-phonon coupling on near-field optical spectra in graphene
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The finite momentum transfer q longitudinal optical response σL(q,ω) of graphene has a peak at an energy
ω = h̄vF q. This corresponds directly to a quasiparticle peak in the spectral density at a momentum relative
to the Fermi momentum kF − q. Inclusion of coupling to a phonon mode at ωE results, for ω < |ωE |, in an
electron-phonon renormalization of the bare bands by a mass enhancement factor (1 + λ), and this is followed by
a phonon kink for ω around ωE where additional broadening begins. Here we study the corresponding changes in
the optical quasiparticle peaks, which we find continue to track directly the renormalized quasiparticle energies
until q is large enough that the optical transitions begin to sample the phonon kink region of the dispersion curves,
where linearity in momentum and the correspondence to a single-quasi-particle energy are lost. Nevertheless
there remain in σL(q,ω) features analogous to the phonon kinks of the dispersion curves which are observable
through variation of q and ω.

DOI: 10.1103/PhysRevB.87.045405 PACS number(s): 78.67.Wj, 71.38.Cn, 78.66.Tr

Important information on the charge dynamics of the
Dirac fermions in graphene is obtained in optical-absorption
experiments. Results are reviewed by Orlita and Potemski.1

For bare bands the real part of the zero-momentum limit optical
conductivity σ (q = 0,ω) has a Drude peak around ω = 0,
which has its origin in the intraband optical transitions. There
is also an additional piece due to the interband transitions with
onset at twice the chemical potential, which provides a constant
universal background of value σ0 = πe2/2h.2–4 While in the
clean limit the Pauli blocked region between the Drude and the
universal background would have essentially no conductivity,
experimental work5 has found instead a value of order
σ0/3. This observation can be partially explained6–9 due to
impurities, electron-phonon interactions (EPIs), and Coulomb
correlations, although its precise origin remains controversial.
In conventional metals the electron-phonon interaction is
known to renormalize many of their properties.10 It leads to
incoherent phonon-assisted Holstein sidebands11 in addition to
the main coherent Drude response with optical spectral weight
now being distributed between these two parts. The effect on
the Drude weight can be expressed in terms of the electron-
phonon mass renormalization parameter λ. The Drude weight
is reduced by a multiplicative factor of 1/(1 + λ), while the re-
maining λ/(1 + λ) is transferred to the sideband due to the new
absorption processes in which a phonon is created by a photon
along with a hole-particle pair. In graphene, electron-phonon
effects have been seen12 in the electronic density of states
(DOS), N (ω), measured in scanning tunneling spectroscopy
(STS). These observations are expected in systems where
the DOS is energy dependent.13–16 Phonon “kinks” have
also been seen in angle-resolved photoemission spectroscopy
(ARPES)17,18 as predicted theoretically.19–22 Recently, near-
field optical techniques have been used to obtain information
on the finite momentum conductivity23–26 rather than the
standard long-wavelength, q → 0, limit. This has allowed
for nanoimaging23–25 of the graphene plasmons and could in
principle be employed to get information on plasmarons,26

a scattering resonance of an electron and a plasmon.27 In
this paper we show how σ (q,ω) can provide information

on electron-phonon renormalization effects complementary to
ARPES and STS.

The Kubo formula for the real part of the finite momentum
optical conductivity is approximated by the simplest bubble
diagram, which is not exact since it neglects vertex corrections.
Cappelluti and Benfatto28 have studied the effect of vertex
corrections on the conductivity of graphene and found that,
as is the case in conventional metals, their main effect can
be incorporated into Eq. (1) by changing the scattering rate
from its quasiparticle value to an appropriate optical rate
which contains an extra factor of (1 − cos β), where β is the
scattering angle. This well-known factor gives more weight
to backward scattering and de-emphasises forward scattering.
In this approximation interactions are included through and is
given by

σ (q,ω)

σ0
= 8

ω

∫ 0

−ω

dω′
∫

d2k
2π

∑
s,s ′=±

Fss ′ (φ)

×As(k,ω′)As ′
(k + q,ω′ + ω), (1)

where As(k,ω) is the spectral function of the Dirac fermions.
The overlap factor, Fss ′ (φ), has the form Fss ′ (φ) = 1

2 [1 +
ss ′ cos φ], where φ is the sum of the angles of initial
momentum k and final momentum k + q, with respect to the
kx axis (zigzag direction). We define α to be the angle between
the kx-axis and q and obtain

Fss ′ (φ) = 1

2

[
1 + ss ′ k cos(2θ ) + q cos(θ + α)√

k2 + q2 + 2kq cos(θ − α)

]
. (2)

In this representation, θ is the angle over which k is integrated
in Eq. (1). The values of s and s ′ are each either +1 or −1,
which represents the upper (+) and lower (−) Dirac cones. For
simplicity we take the chemical potential to fall in the upper
cone, representing an electron doped sheet. In general the
conductivity σij (q,ω) can be written as a linear combination of
a longitudinal part σL(q,ω) and a transverse part σT (q,ω).29

If we select q = qx̂, where α = 0 in our orientation, then we
find that the conductivity along the x direction, σxx(q,ω), has

045405-11098-0121/2013/87(4)/045405(5) ©2013 American Physical Society
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only a contribution from the longitudinal conductivity, i.e.,
σxx(q,ω) = σL(q,ω), while the conductivity along the y axis,
σyy(q,ω), has only a contribution from the transverse part, i.e.,
σyy(q,ω) = σT (q,ω). Throughout this work, we are interested
in examining quasi-particle-like peaks which appear only in
the longitudinal part of the near-field optical spectra, and
therefore we will limit our discussion to examining σL(q,ω).

Denoting the self-energy by 
s(k,ω), the spectral function
is

As(k,ω) = 1

π

|Im
s(k,ω)|[
ω − Re
s(k,ω) − εs

k

]2 + [Im
s(k,ω)]2
,

(3)

where εs
k = svF k − μ, where vF is the Fermi velocity. The

self-energy 
s(k,ω) can, in general, depend on band index and
momentum as well as on energy. Detailed calculations of the
electron-phonon interaction in graphene have been presented
by Park and coworkers,30,31 who conclude that a reasonable
approximation to the complete calculations is to use a model
of coupling to a single phonon of energy ωE = 200 meV
with no dependence on valley index and momentum. Here
we follow this suggestion. If one were inclined, a distribution
of phonon modes can be created through an integration over
ωE in Eq. (4) weighted by the phonon density of states
at each frequency, as has been done previously.9,32 For an
electron-phonon interaction (EPI) which includes coupling to
a single phonon at frequency ωE , the imaginary part of the
self-energy, 
EPI(ω), is given by

−Im
EPI(ω,ωE) =
{

πA
Wc

|ω − ωE + μ0|, for ωE < ω < Wc − μ0 + ωE

πA
Wc

|ω + ωE + μ0|, for − ωE > ω > −Wc − μ0 − ωE

, (4)

from which the real part can be obtained through a Kramers-
Kronig transform. We use the notation set out in Ref. 9,
where more details can be found. In Eq. (4), A is a constant
that can be adjusted to get a desired value of the mass
enhancement parameter λ, and Wc is a cutoff on the bare band
energies adjusted to get the correct number of states in the
Dirac approximation of two valleys in the Brillouin zone. By
definition λ is obtained from the small ω limit of the real part
of 
(ω). In this limit, Re
EPI(ω) = Re
EPI(0) − λω, where
the constant piece, Re
EPI(0), shifts the chemical potential
from its bare to interacting value.

The real part of the longitudinal conductivity follows from a
numerical evaluation of Eq. (1). Results are shown in Fig. 1 for
ten values of q/kF from 0.0 → 0.9. The solid black curve is the
well-known6–9 q = 0 case and is included here for comparison.
There is a Drude piece at small ω, which is followed by a boson
assisted part that sets in abruptly at ω = ωE . Here we have used
a model for the self-energy which also includes a constant
impurity scattering term η, in addition to the self-energy
from the electron-phonon interaction. This constant scattering
contributes no energy renormalization but broadens the Drude
component. The EPI, however, reduces the optical spectral
weight of the coherent Drude part and redistributes it in
the phonon assisted part, which corresponds to intraband
absorption. At higher energies (not shown here) there is
additional absorption due to interband optical transitions,
which in the bare band case start abruptly at a frequency of
twice the chemical potential. With electron-phonon coupling
these also spill into the Pauli blocked region below 2μ. When
q is finite we get the series of curves labeled by the energy of
the position of the peaks in σL(q,ω). One might refer to these
peaks as quasiparticle peaks since their energies correspond
exactly to ε+

kF −q in the bare band case.
Here, for small values of q, the peaks in σ (q,ω) correspond

instead to the renormalized quasiparticle energies ε+(kF −
q)/[1 + λ]. However, when q approaches the phonon energy

this simple renormalization ceases to hold. The broadening
of the curves increases above ω = ωE . This indicates that a
new channel for scattering has opened: in our case, phonon
emission. In the inset of Fig. 1, we plot the imaginary part of
the self-energy, which contains a sharp jump in scattering at
the phonon energy. Note that the Dirac point in the inset occurs
where the imaginary part of the EPI self-energy is zero, which
comes from a zero in the electronic density of states at this
energy.

Figure 2 illustrates in a schematic fashion the effect of
the electron-phonon interaction on the Dirac cone dispersion
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FIG. 1. (Color online) The real part of the finite momentum
longitudinal optical conductivity σL(q,ω)/σ0 as a function of ω/μ0

for a selection of values of q/kF from 0.0 → 0.9 (as defined in the
legend). These include an electron-phonon interaction with λ ≈ 0.18
for a single optical phonon mode at ωE = 200 meV (shown by the
vertical dashed line), where μ0 = 1 eV, A = 0.08 eV, and Wc =
7.0 eV, and a residual scattering η = 0.005μ0. Inset: −Im
EPI(ω)/μ0

as in Eq. (4) for parameters in the main frame.
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FIG. 2. (Color online) Schematic of doped Dirac bands. An
electron-phonon interaction renormalizes the Dirac bands, changing
the slope through the Dirac point and producing kinks at ω = ±ωE ,
where the Fermi level (ω = 0) is illustrated by a change in color.

relations. For the bare case, the Fermi velocity sets the angular
dimension of each cone. Interactions distort the cones in
two important ways. First, around the Fermi level the bare
Fermi velocity is renormalized to a dressed value through
a mass enhancement factor of (1 + λ). As we move away
from the Fermi energy this simple law starts to break down
and phonon structures (referred to as “kinks”) develop at
ω = ±ωE from the Fermi energy, and they are measured in
ARPES experiments. These features are shown in the inset of
Fig. 3. The solid red curve depicts the peaks in the phonon
renormalized spectral function, which illustrates the kinks at
±ωE as compared to the dashed black curve, which is the bare
cone dispersion. In general the renormalized dispersion curves
are also broadened.

Here we want to know how the phonon “kinks” in the
dressed dispersions manifest in the near-field optics. This is
illustrated in the main frame of Fig. 3, where the energies of
the peaks in the real part of the optical conductivity σ (q,ω) are
traced as a function of momentum, kF − q, and are shown as
the solid black curve. These are compared with the solid red
curve which traces the peaks in the spectral density A(k,ω) as
a function of momentum, relative to the Fermi level. The open
circles with the green curve represent a straight line having
a Fermi velocity renormalized by 1/(1 + λ) as compared to
the bare dispersions shown as the dashed curve. Note that
for energies a bit above the phonon energy at ωE the peaks
in the optical conductivity and in the single-particle spectral
density of ARPES agree with each other and both fall on
the renormalized Dirac fermion energy ε+

k /(1 + λ) (light solid
green curve). In Fig. 4 we show the transitions which contribute
to the optical conductivity at ω = q. Because of the linearity
of the Dirac dispersion curves, all transitions with q1 + q2 = q

contributed to the same energy ω, and this large degeneracy

0.6 0.8 1
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F
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(       )/k

F
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0
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FIG. 3. (Color online) The peaks in σL(q,ω) plotted as a function
of kF − q coincide with peaks in the EPI renormalized spectral
function A(k,ω), plotted as a function of k. For comparison, the
bare dispersion is shown by the dashed line, while the green line
with circles is the bare dispersion divided by (1 + λ), which is the
slope of the EPI renormalized spectral function (shown in red) at
k = kF . The peaks in σL(q,ω) sample the renormalized dispersion
until near ω = −ωE . Inset: A(k,ω) as in the main frame but showing
both positive and negative frequencies.

produces a peak at ω = q in σL(q,ω). This only holds for
linear dispersions. Above ωE this simple relationship ceases to
hold with optics (solid black) roughly tracing the renormalized
dispersion (green curve), while ARPES (solid red) is closer to

FIG. 4. (Color online) Schematic showing the many optical
transitions from occupied states at energy ε = −q1 to unoccupied
states at ε = q2, which all contribute to σL(q,ω) at ω = q when the
dispersion curves are linear. The large degeneracy of transitions gives
a peak in the optical conductivity at ω = q.
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the bare dispersion (dashed). While the dressed quasiparticle
spectral peaks show a phonon kink at ω = ωE there is no
discernible structure in the optical conductivity at this energy.
It is important to remember that optics involves a joint density
of states from an initial occupied electron state to a final
unoccupied one. While many optical transitions correspond to
a given energy it is clear that transitions from a kink to a second
kink have a large weight and thus introduce structures into
σL(q,ω) for frequencies which fall in magnitude just below
|2ωE|.

Very recently, Ashby and Carbotte33 have studied the
case of residual scattering alone and for small q values
have derived in first order an analytic formula which has
proved quite accurate. Here we have generalized their work
to include the electron-phonon interaction in the regime where
the renormalized quasiparticle energies are well represented
by the formula ε+

k /(1 + λ). We obtain

σL(q,ω)

σ0
= 4μ0

π

∫ 2π

0

dθ

2π

2 cos2(θ )(2η)

(2η)2 + [ω(1 + λ) + q cos θ ]2
.

(5)

To obtain this expression we have made an approximation
by including only the coherent part of the Green’s function,
G(k,ω), where the standard ω is replaced by ω(1 + λ). In the
clean limit (η → 0) we get

σL(q,ω)

σ0
= 8μ0

π

(
ω

q̄

)2 1√
q̄2 − ω2

1

1 + λ
, (6)

with q̄ = q/(1 + λ). We see that the square-root singularity is
at ω = q̄ rather than at q as in the bare band case. Also the
optical spectral weight under σL(q,ω) is reduced by a factor
of 1/(1 + λ) and is given by∫ ∞

0
dω

σL(q,ω)

σ0
= 2μ0/(1 + λ). (7)

The missing optical spectral weight is transferred to a phonon
assisted Holstein sideband described by the incoherent piece
of the Green’s function. This band starts at the phonon energy
ωE , as is seen most clearly in the first two curves in Fig. 1
for q/kF = 0.0 and 0.08. For a finite value of η, taking out
the (1 + λ) factor next to ω in Eq. (5) will leave an overall
multiplicative factor of 1/(1 + λ) in addition to changing q to
q̄. The scattering rate is also renormalized in the same manner
as η̄ = η/(1 + λ). This result means that the electron-phonon
interaction reduces the effective residual scattering rate at low
frequencies. These scalings are all in agreement with previous
work9 for the conventional case of q = 0, which exhibits a
Drude peak (intraband transitions) in the energy region below
the onset of the interband transitions, which start at ω = 2μ0.

In Fig. 3 we concentrated on the energies of the renormal-
ized peaks in the optical conductivity and their relationship
to peaks in the quasiparticle spectral density. Both are due to
the real part of the quasiparticle self-energies. In Fig. 5 we
illustrate the effect of interactions on the broadening of the
peaks, which depends on the imaginary part of the self-energy.
For each of the four values of q/kF we show three cases. The
dashed lines include both real and imaginary parts for the full
self-energy with coupling to the phonon as well as to impurities
(η). Open circles are for the clean limit (no scattering) of
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FIG. 5. (Color online) The real part of the finite momentum
optical conductivity σL(q,ω)/σ0 as a function of ω/μ0 for a selection
of values of q/kF . The dashed lines include the electron-phonon
interaction identically to Fig. 1 for q/kF displayed in the legend, while
the solid lines include only the residual scattering of η = 0.005μ0 but
for shifted q values (marked near the peaks). The solid circles mark
the analytical clean limit results, with an adjusted Fermi velocity to
obtain the same peak positions.

Eq. (6) but where the energies ε+
k of the bare bands have

been shifted to peak at the same energy as the renormalized
bands (values labeled on individual peaks). We first note that
all of these curves have a rise as ω approaches q from below,
above which they drop sharply to zero. The peak at ω = q

in the solid lines, which include a small residual scattering
rate of η = 0.005μ0, shows smearing which results in a finite
conductivity for ω just above q. When the electron-phonon
interaction is also included (dashed lines) this smearing of the
spectral peak above ω = q is further increased due to boson
assisted processes. This additional interaction, however, has
little effect at ω = q for small q, as illustrated in the q/kF = 0
and 0.1 cases as compared with the larger q = 0.5 and 0.9. For
the small q values there is no effect of the EPI in the region of
the peak, except to shift the frequency at which the peak occurs
by a factor of the EPI renormalization, (1 + λ). For larger q

values, the EPI causes a significant reduction in the peak height
and filling of the Pauli blocked region. These effects are due to a
finite imaginary part of the electron-phonon self-energy. While
the quasiparticle self-energy has a sharp onset at ω = ωE , as
shown in the inset of Fig. 1, its effect on σL(q,ω) is much
more gradual because many optical transitions (initial and final
states) are involved in the creation of a hole-particle pair, as
depicted in Fig. 4. If we restrict our discussion to scattering
processes in the vicinity of ω = q, then for q < ωE these
transitions will include initial and final states with energies
always below ωE and therefore not sample the EPI scattering
rate. For q > ωE the transitions will begin to sample states
with energies both above and below |ωE| and therefore have
an averaging of EPI scattering rates.

To conclude, we have calculated the effect of electron-
phonon coupling on the finite momentum optical response
of graphene with the aim of getting a first understanding of
how this interaction modifies the bare band results. A Kubo
formula is employed in the simplest bubble approximation,
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which neglects vertex corrections but includes electron-
phonon renormalizations in the Dirac fermion spectral density
A(k,ω). In addition, there appears in the formula for the finite
q conductivity an important scattering factor, Fss ′ (φ), which
incorporates chiral properties of the Dirac charge carriers
associated with initial and final electronic states. As such,
this factor depends in a fundamental way on the direction of
q relative to the crystal lattice and direction of measurement.
The conductivity in the x direction, σxx , for a general direction
of momentum q can be decomposed into a linear combination
of the longitudinal response for q scattering which occurs
along the zigzag direction (kx) and a transverse part for q

scattering along the armchair direction (ky). Here, a peak
is identified in σL(q,ω) which is directly related to the
quasiparticle energy ε+(kF − q) in the bare band case. The
electron-phonon interaction is found to shift the position of
this peak in energy and to broaden it. However, for values of q

small enough that only optical transitions involving both initial
and final states with energies well below the phonon energy
ωE enter, the peaks in σL(q,ω) still track perfectly those in
the electron spectral function A(k,ω) measured in ARPES,
and both relate directly to the renormalized quasiparticle

energies ε+(kF − q)/(1 + λ). However, as the magnitude of
q is increased, the quasiparticle dispersion curve starts to
deviate significantly from linearity and exhibit a phonon kink.
At this point quasiparticle and optics begin to deviate from
each other. For example, optics shows no kink structure at
ω = ωE . Instead the phonon structure in σL(q,ω) is found to
have shifted to higher energies in the region of ω � 2ωE . In
this energy range, optical transitions involving a phonon kink
in both initial and final states become possible, and this leads
to deviations of the optical spectrum from linearity in analogy
to the phonon kinks at ωE found in the renormalized Dirac
fermion energies. In this case there is a contribution from other
optical transitions which emphasize less phonon structure, and
so the image of the phonon is not as sharp in optics as it is in
ARPES. Finally, we found that at higher energies, ω > ωE ,
the optical peaks continue to track well the renormalized
energies ε+(kF − q)/(1 + λ) while the quasiparticle peaks
move instead toward their bare band values.
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Chapter 4
The High Tc cuprate superconductors

Superconductivity is a phenomenon that is characterized by zero resistance below

some critical temperature, Tc. In the superconducting state the material also displays

perfect diamagnetism, the screening of any applied magnetic fields. This expulsion

of magnetic fields is known as the Meissner effect [17]. Superconductivity was first

observed in 1911 in mercury by Kamerlingh Onnes [18]. At T ≈ 4K the resistance

abruptly disappeared. Ironically, he also observed the superfluid transition (the

analogue of superconductivity for particles with no electric charge) of liquid helium

in the same experiment. A search for more superconductors was spurred to try and

understand the phenomenon. Superconductivity was consequently found in many

metals and alloys, all at low temperatures.

Theoretical progress on superconcductivity was slow, and not for a lack of effort.

In the 1930’s the London brothers put forward a phenomenological theory for the

electromagnetic response of superconductors [19], which could account for the Meissner

effect. Further theoretical progress did not come until the 1950’s. In 1950 Ginzburg

and Landau [20] put forward their phenomenological theory of superconductivity.

This was an extension of Landau’s theory of second order phase transitions to the

superconducting state. In particular the Ginzburg Landau theory was an expansion for

the free energy in terms of a complex order parameter. The theory worked remarkably

well, but lacked a rigorous derivation. Furthermore, the identification of the order

parameter with a physical quantity was not put forward in the original publication.

37
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Figure 4.1: The momentum space structure of an s-wave (left) and d-wave (right) gap.
The s-wave gap structure corresponds to that of the conventional superconductors.
The high Tc cuprates are now known to have a d-wave gap. Since this gap vanishes at
points in momentum space, there are low energy excitations about these points.

In 1957, Bardeen, Cooper, and Schrieffer [21] put forward the first microscopic

theory of superconductivity (BCS theory). A few years earlier a paper by Cooper

[22] had shown that the regular Fermi-liquid state was unstable in the presence of

an attractive interaction. This instability leads to the formation of bound states of

electrons, now known as Cooper pairs.

The BCS calculation started from a simplified electronic Hamiltonian and a trial

wavefunction for the paired state. Using a variational method they found the best

such wavefunction. In 1959, Gor’kov [23] showed that the Ginzburg Landau theory

was a limiting case of the microscopic theory, close to the superconducting transition

temperature, Tc. This identified the complex order parameter with the center of mass

wavefunction of the Cooper pairs from the microscopic theory.

With the phase transition to the superconducting state comes the formation of

an energy gap, ∆. This gap is an energy cost for exciting quasiparticles from the

ground state. In conventional superconductors, the attractive interaction is mediated

by the electron-phonon interaction. In this case the attractive interaction occurs in

the lowest angular momentum channel (s-wave), and the energy gap is isotropic. In

1965, a paper by Kohn and Luttinger [24] showed that a weak attractive interaction
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can be generated through Coulomb repulsion. This attractive interaction appears in

higher angular momentum channels. This opened up the door to the possibility of

superconductors with non s-wave gaps.

Two different gaps are shown in Figure 4.1, the isotropic s-wave gap, and a gap with

dx2−y2 symmetry. The former is relevant to the classic conventional superconductors,

while the d-wave gap is of importance to the cuprate superconductors, as we will

see in the next section. The fact that the d-wave gap vanishes at several points,

means there are low energy quasiparticles at these nodes. Their signatures show up in

thermodynamic and transport data.

4.1 The high-Tc cuprate superconductors

In 1986 high temperature superconductivity was discovered by Bednorz and Muller [25].

Superconductivity was reported in Ba doped La2CuO4 early in the year at Tc ≈ 30K.

The Meissner effect was confirmed later in the same year[26]. This observation

was reproduced by many other groups and spurred a search for superconductivity

in the oxide family. One year later Wu et al. [27] discovered high temperature

superconductivity in YBa2Cu3O7 at 92 K. This pushed the realm of superconductivity

above the boiling point of liquid nitrogen, a truly high temperature regime.

There are now many copper oxide materials that belong to the high temperature

family. All of them have tetragonal crystal structure, or an orthorhombic structure,

which is very nearly tetragonal. The common structural theme is the presence of

copper oxygen planes (CuO2) in the ab plane separated by various spacing layers in

the c direction. Transport is very weak along the c direction. Thus, the cuprates are

often viewed as quasi-2D systems: a stack of weakly coupled 2D planes.

Common to the cuprate family is the famous phase diagram as a function of doping,

shown in Figure 4.2. Near x = 0 the cuprates are insulating anti-ferromagnets. Strong

on-site Coulomb repulsion prevents placing more than one electron per copper site.

The localized magnetic moments live on the copper site, alternating in direction. The

anti-ferromagnetic order is rapidly suppressed (x ∼ 0.03) as a function of doping, x.

Superconductivity emerges after the static anti-ferromagnetic order is fully suppressed,
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SC

AF

PG

Figure 4.2: A cartoon version of the cuprate phase diagram. The parent compound
is the anti-ferromagnetic phase (AF) pictured to the left. As hole doping, x is
increased this static anti-ferromagnetic order is suppressed, eventually giving way to
the superconducting dome (SC). Below the temperature T ∗ is the pseudogap (PG)
phase.
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although ani-ferromagnetic spin fluctuations still remain. The superconducting transi-

tion temperature increases with doping, to a maximum, known as ‘optimal doping’

(x ∼ 0.15). Beyond optimal doping the transition temperature decreases and the

superconducting phase disappears at large dopings (x ∼ 0.3). The pseudogap phase

is an anomalous state that exists below a temperature T ∗. It is characterized by a

partial gap in the excitation spectrum. There is no consensus as to the nature of

the pseudogap state at this time. Since superconductivity condenses from this phase,

a more complete understanding of pseudogap phase is believed to be essential to

understanding the mechanism behind high temperature superconductivity. Above

optimal doping, the normal state is non-Fermi liquid like and is commonly referred to

as a ‘Strange metal’. It is most famously characterized by its DC resistivity which

exhibits a linear temperature dependence. This temperature dependence is in sharp

contrast to a normal Fermi-liquid whose resistivity goes like T 2. This Fermi-liquid

behavior is recovered in the normal state of the cuprates at large doping.

4.2 Dirac quasiparticles

The cuprates are now known to be d-wave superconductors. Their gap function takes

the form

∆k = 2∆0(cos(kx)− cos(ky)), (4.1)

where ∆0 is the maximum value of the superconducting gap. Within a BCS mean

field theory, the effective Hamiltonian is of the form

H =
∑
k,σ

(εk − µ)c†σ,kcσ,k +
∑
k

(
∆kc

†
↑,kc

†
↓,−k + H.c.

)
, (4.2)

where εk is the normal state dispersion. The quasiparticle excitation energies are given

by

Ek =
√

(εk − µ)2 + ∆2
k. (4.3)
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Near the intersection of the Fermi surface and the nodes of ∆k, εk − µ ≈ vFk⊥ and

∆k ≈ v∆k‖, where v∆ = ∆0/pF , and k⊥ and k‖ are the wavevectors relative to the

Fermi surface in the perpendicular and parallel directions. Thus the dispersion has

the form

Ek =
√

(vFk⊥)2 + (v∆k‖)2, (4.4)

which is an anisotropic Dirac dispersion. The anisotropy is controlled by the dimen-

sionless number vF/v∆. Interestingly, these emergent Dirac Fermions are massless,

and the Dirac node stays at zero energy even as the chemical potential is changed.

4.3 YRZ Green’s function

The Yang, Rice and Zhang (YRZ) model for the underdoped cuprates is a phenomeno-

logical model aimed at understanding the pseudogap phase of the cuprate phase

diagram. Presumably, an understanding of the pseudogap state will shed light on the

mechanism responsible for High Tc superconductivity. The YRZ model has been able

to qualitatively agree with many available experimental data. This agreement comes

largely from the fact that the YRZ model naturally reconstructs the Fermi surface

as the doping is changed. The motivation for the YRZ model comes from the study

of doped spin-liquids. YRZ took the resonating valence bond gap to play the role of

the pseudogap when they wrote down the form for the electronic propagator. In their

model the gap appears on the surface where the umklapp scattering is strongest (the

anti-ferromagnetic Brillouin zone). This gap eats away at the large Fermi surface at

the intersection with the anti-ferromagnetic Brillouin zone leading to reconstructed

Fermi pockets.

The YRZ model [28] for the underdoped cuprates begins with an ansatz for the

coherent part of the single particle Green’s function. Their ansatz was made by

proposing a self energy analogous to one derived in the study of a doped spin liquid

on two-leg Hubbard ladders by Konik et al. [29]. The self energy derived by Konik et
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al. was of the form

Σa =
∆2

ω + εa(k)
, (4.5)

where εa(k) is the half-filling energy in the two-leg ladder system. The YRZ ansatz

for the self energy is of the same form

Σpg =
∆2
pg

ω + ξ0
k

, (4.6)

where ∆pg is the pseudogap, and ξ0
k is the nearest neighbor hopping term, which

defines the half-filled state at zero doping.

The YRZ Green’s function is

G(k, ω) =
gt

ω − ξk −∆2
pg/(ω + ξ0

k)
(4.7)

=gt
ω + ξ0

k

ω2 − ωξk + ωξ0
k − ξkξ0

k −∆2
pg

(4.8)

=gt
ω + ξ0

k

(ω − E+
k )(ω − E−k )

(4.9)

=gt

(
W+

k

ω − E+
k

+
W−

k

ω − E−k

)
, (4.10)

where gt is a Gutzwiller renormalization factor,

E±k =
ξk − ξ0

k

2
±
√
ξ̃k

2
+ ∆2

pg, (4.11)

W±
k =

1

2

(
1± ξ̃k

E±k

)
, (4.12)

and ξ̃k = (ξx + ξ0
k)/2.

To obtain the superconducting Green’s function, one proceeds in the normal way,

but taking the YRZ model as the normal state. From the above representation of

the Green’s function we can see that the YRZ ansatz for the self energy results in a
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two-band model. Denoting the band index by α = ± we have

Gα
S = gt

Wα
k

ω − Eα
k −∆2

k/(ω + Eα
k )

(4.13)

= gt
Wα

k (ω + Eα
k )

(ω − Eα
S )(ω + Eα

S )
, (4.14)

where Eα
S =

√
E2

k + ∆2
k. This leads to the standard looking form for the Green’s

function for a superconductor in terms of uα =

√
1
2

(
1 +

Eαk
EαS

)
and vα =

√
1
2

(
1− Eαk

EαS

)
:

Gα
S = gtW

α
k

(
uαk

2

ω − Eα
S

+
vαk

2

ω + Eα
S

)
(4.15)

From here the spectral functions required for the Kubo formula can be obtained using

the usual relation A(k, ω) = −2ImG(k, ω + i0+).

For superconductivity the anomalous Green’s function F (k, t) = −i 〈T c↑k(t)c↓−k(0)〉
acquires a non-zero value and is important in determining the conductivity. Adding a

band index to the usual formula for F gives

Fαk, ω = − ∆k

ω + Eα
k

Gα
S(k, ω) (4.16)

= gtW
α
k

∆k

2Eα
S

(
1

ω + Eα
S

− 1

ω − Eα
S

)
. (4.17)

The corresponding anomalous spectral function required for the conductivity follows

from B(k, ω) = −2ImF (k, ω + i0+).

4.4 Luttinger’s theorem

In the mid 1950’s Landau [30] formulated the ideas behind Fermi-liquid theory. The

principles of Fermi liquid theory form the basis of traditional condensed matter theory.

The key concept is that the thermodynamic and kinetic properties for the low energy

excitations in an interacting Fermion system are described by free Fermions. To

understand Fermi liquid theory we can consider a non-interacting system labeled
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by some set of occupation numbers. The assumption of Fermi liquid theory is that

as we turn on interactions, the free fermion states adiabatically change into the

full interacting states labeled by the same occupation numbers. That is, there is a

one-to-one mapping between the interacting and the non-interacting problems. As

one goes to the interacting problem certain quantities, such as the quasiparticle mass,

m, may change. The properties that we measure in the lab depend on this effective

mass. These concepts underpin our description of all metals. We have also been able

to understand other states of matter, like superconductivity, as an instability of the

Fermi liquid state.

In 1960, Luttinger [31] gave a proof relating to Landau’s conjecture. His proof

established a relationship between the particle density n = N/V and the Fermi-liquid

excitations. Interestingly the Luttinger theorem is not bounded by the restrictions

of Fermi liquid theory and can be applied to systems without sharply defined quasi-

particles. The proof relies on the analytic properties of the Green’s function in the

complex plane. For details on the proof, please see page 166 in Abrikosov, Gorkov

and Dzyaloshinski [32].

In d-dimensions Luttinger’s theorem reads

n = 2

∫
G(k,0)>0

ddk

(2π)d
. (4.18)

The integration region is over the region where the Green’s function at ω = 0 is

positive. The Green’s function may only change sign at its zeroes or its poles. The

poles of the Green’s function specify the Fermi surface. The zeroes of the Green’s

functions define a Luttinger surface. In the case of Fermi-liquid theory this relation

tells us that the density is equal to the number of states below the Fermi surface.

The YRZ Green’s function also has zeros, and we use this relation to determine the

chemical potential as we change our doping in our calculations.
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4.5 Paper III – Resonating valence bonds and Fermi

surface reconstruction: Resistivity in the un-

derdoped cuprates

Reprinted with permission as follows: Phillip E.C. Ashby and J.P. Carbotte “Res-

onating valence bonds and Fermi surface reconstruction: Resistivity in the underdoped

cuprates” Phys. Rev. B 87 014514 (2013). Copyright (2013) by the American Physical

Society.

The pseudogap phase of the underdoped cuprates has remained mysterious since

its discovery. In this paper we employed a model of the underdoped cuprates with the

aim of studying the resistivity along both the c-axis as well as in the ab-plane. We

focused on the resistivity in the pseudogap phase only. It is known that the resistivity

is metalic-like in the ab-plane, and insulating-like along the c-direction. In our paper

we use a coherent tunneling terms to describe c-axis transport. We compared our

findings qualitatively with those of experiments on the cuprates and found good

agreement. This result is very interesting, since one might naively think that coherent

tunneling would lead to a metalic-like response. This work was largely motivated

by two factors. One was the success of the YRZ model in its applications to other

properties of the underdoped cuprates. The second was a paper by Levchenko and

Norman [33], that presented a simple calculation for the resistivity and Hall coefficient.

We also compared our findings with an arc-model for the cuprates, which we argue is

a phenomenological limit of the YRZ model.
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The pseudogap phase of the underdoped cuprates is the host to a variety of novel electronic phenomenon. An
example is the dc resistivity that shows metallic behavior in the ab plane, while the c-axis response is insulating.
We apply a model, originally formulated by Yang, Rice, and Zhang [Phys. Rev. B 73, 174501 (2006)], to study
the resistivity in the pseudogap phase. This model is able to reproduce the qualitative features of the resistivity,
including the systematic deviations from linear behavior for the in-plane conductivity, and the insulating behavior
along the c axis. We compare this to the predictions of the arc model and find similar qualitative behavior. We
find that the most important element in understanding the resistivity is the reconstruction of the Fermi surface,
which puts strong restrictions on the number of quasiparticles allowed to participate in dc transport.

DOI: 10.1103/PhysRevB.87.014514 PACS number(s): 74.72.Kf, 74.20.Mn, 74.25.F−

The pseudogap is the precursor phase from which high-
Tc superconductivity condenses in the underdoped cuprates.
Understanding the pseudogap phase is believed to be cen-
tral for deducing the mechanism that underpins high-Tc

superconductivity.1 To study the low-lying excitations in this
phase, it is essential to understand the character of its Fermi
surface (FS). Photoemission [angle-resolved photoemission
spectroscopy (ARPES)] in the pseudogap phase observes
segments of FS along the Brillouin zone (BZ) diagonals. These
segments were originally interpreted as disconnected segments
of FS and became known as Fermi arcs.2 Recently, they have
been resolved as pockets with small spectral weight along the
aniferromagnetic Brillouin zone (AFBZ) boundary.3 Evidence
for pockets is compounded by the observation of quantum
oscillations, which requires a closed FS.4 The nature of the FS
reconstruction in the pseudogap phase has been the subject of
much debate and has lead to a number of theoretical proposals.

One class of theories of the pseudogap phase involves
competing order parameters whose fluctuations serve to
reconstruct the FS into the observed pockets. These models
involve broken translational symmetry, such as charge- or
spin-density waves. Other theories of the pseudogap begin
from the idea of preformed Cooper pairs that lack off-diagonal
long-range order.5 Indeed, superconducting fluctuations have
been seen to exist above Tc in the form a disordered vortex
liquid.6 However, these fluctuations fail to persist to the
temperature scale associated with pseudogap behavior.7 An
alternative approach is that the pseudogap arises naturally as
one dopes a Mott insulator, which then leads to both insulating
and strongly correlated electronic behavior.8 This was the
approach that Yang, Rice, and Zhang adopted when they put
forth their model of the underdoped cuprates in 2006.9

The Yang-Rice-Zhang (YRZ) model consists of an ansatz
for the coherent piece of the single-particle Green’s function
in the pseudogap phase. It is based on results for Anderson’s
resonating valence bond (RVB) spin liquid.10,11 In this descrip-
tion, as the Mott insulating state is approached a gap opens on
the AFBZ boundary. This gap is an RVB spin gap and appears
as an energy scale separate from superconductivity.

Since its debut, the YRZ model has been shown to
capture many properties of the cuprates that were considered
anomalous. In particular, it has been shown to give good agree-

ment with Raman spectra,12,13 ARPES,3,14 specific heat,15

penetration depth,16 and tunneling spectroscopy.17 Perhaps
most remarkably is that the YRZ model captures all of this
behavior with doping as the only free parameter.

A related model, the arc model, has also been shown to
capture the qualitatively correct behavior in the underdoped
cuprates.13,15,16 In this model, a gap is placed on the antinodal
portion of the metallic Fermi surface, leaving Fermi arc
segments. The length of the remaining FS serves the same
role doping does in the YRZ model. Thus it seems that the
qualitative behavior of many of these experiments can be
captured by any model that gives the disappearance of FS
along the antinodal direction.

Both the arc model and the YRZ model contain recon-
structed holelike Fermi surfaces along the nodal direction. One
might wonder if this is in contradiction to the experiments that
show electronlike transport properties. In fact, a recent paper
has shown that bilayer charge ordering can further reconstruct
a nodal FS into a FS of electronlike pockets.18

In this paper we compute the in-plane (ab) and out-of-plane
(c-axis) resistivity using both the YRZ model and the arc
model for the pseudogap phase of the underdoped cuprates.
This calculation is of an essentially different character than the
previous studies, as it requires us to add ingredients not present
in the initial formulation of the YRZ model. Specifically, the
resistivity relies on the scattering rate and the extension to the
c-axis needs some assumption to be made about the interlayer
tunneling matrix element. After adding these ingredients we
show that the YRZ and arc models agree qualitatively with
dc-transport experiments. Although these two models have
different underlying physics, they give qualitatively similar
predictions for the resistivity in the underdoped cuprates.

The YRZ model. The YRZ ansatz for the coherent part of
the electron Green’s function for a doping x is

G(k,ω) = gt

ω − ξ (k) − �2
PG

/
[ω + ξ 0(k)]

, (1)

where gt = 2x/(1 + x) is a Gutzwiller renormalization factor,
ξ (k) = ξ 0(k) − 4t ′(x) cos(kx) cos(ky) − 2t ′′(x)[cos(2kx) +
cos(2ky)] − μp is the tight-binding dispersion on a
square lattice out to third-nearest neighbors, and ξ 0(k) =
−2t(x)[cos(kx) + cos(ky)] is the first-nearest-neighbor term.
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Here μp is a chemical potential determined from the Luttinger
sum rule. The RVB gap �PG plays the role of the pseu-
dogap and has d-wave symmetry, i.e., �PG = �0(1 − x/xc)
[cos(kx) − cos(ky)]. We use values for all parameters in the
YRZ model as they appear in the original YRZ paper.9 We
work in units where h̄ = kB = 1 and all energies are measured
in units of t0.

Equation (1) would be the Green’s function for a supercon-
ductor if ξ 0(k) = ξ (k). This difference causes the gap to open
on the surface defined by ξ 0(k), which in our case is the AFBZ.
This gap naturally reconstructs the large FS into pockets and
can give rise to an interesting electronic response. Given this
Green’s function, we can compute the conductivity and hence
the resistivity.

The dc conductivity is given by the Kubo formula

σij = − lim
ω→0

[
Im[�ij (ω)]

ω

]
. (2)

The current-current correlation function �ij (ω) is evaluated at
the one-loop level

�ij (ω) = e2T
∑
k,νn

[vi(k)G(k,νn)vj (k)G(k,ω + νn)], (3)

where vi is the ith component of the velocity and the νn

are Matsubara frequencies. For the ab conductivity we use
vx = dξ (k)/dkx . For the c-axis conductivity, we replace v2

with t2
⊥(k)d2, where d is the interlayer distance and t⊥(k) =

t⊥[cos(kx) − cos(ky)]2 is the interlayer tunneling matrix ele-
ment. This matrix element was first suggested by Anderson.19

It was used in the nodal liquid model of the cuprates, which
reproduced the insulatinglike behavior associated with the
pseudogap.20 The final component that we need to compute
the conductivity is the scattering rate �, which broadens the
spectral densities. To correspond with experiments we follow
the suggestion of Ito et al.21 and take a temperature-dependent
scattering rate. For our calculations we include a small residual
scattering and take � = 0.01 + 2πλT , with λ = 0.3. These
choices leave us with doping as our only tunable parameter.

Figure 1 shows the in-plane and out-of-plane resistivities
as a function of temperature for a few values of doping. The
qualitative agreement with experiments21,22 is good for both
the in-plane and out-of-plane results. At high temperatures the
in-plane resistivity is linear. As the pseudogap opens (moving
down in doping), there is a progressively larger deviation from
the linear behavior. This deviation from linearity is a loss of
metallicity associated with the shrinking of the FS. The c-axis
resistivity shows strong insulating behavior at low values of
doping and becomes increasingly metallic as optimal doping
is approached, just as in the experiments.

To understand these results, we found it instructive to
introduce a joint density of states (JDOS). The JDOS can be
thought of as a reference function that captures the effect of the
pseudogap. This function is shown for the optimally doped and
underdoped cases in Fig. 2 for the c axis. The only difference
in the JDOS between the ab- and c-axis conductivities is the
factor [cos(kx) − cos(ky)]2 from the tunneling matrix element.
This factor suppresses the spectral density near zero frequency.

At optimal doping the JDOS contains only a single peak
and the dependence on the resistivity is controlled solely by
the thermal factors appearing in the evaluation of Eq. (3).

FIG. 1. (Color online) In-plane (solid blue curve, in units e−2d)
and c-axis (dashed orange curve, in units e−2t−2

⊥ d−1) resistivities as
a function of temperature in the YRZ model for dopings x = 0.05,
0.10, 0.15, and 0.2. The solid light blue lines are fits to the linear
T region. The c-axis resistivity shows insulatinglike behavior and
the in-plane resistivity shows a systematic deviation from linearity
induced by the pseudogap energy scale. The insets show the Fermi
surfaces (shown for one-quarter of the BZ-AFBZ boundary indicated
by the dashed line) given by the YRZ Green’s function.

Explicitly, the thermal factors are given by −df/dω, where
f = 1/[1 + exp(ω/T )] is the Fermi function. At low temper-
atures, when the thermal factors are more sharply peaked, we
get a higher conductivity and hence a lower resistivity. As
we increase the temperature the thermal factors broaden
and we get a smaller conductivity (larger resistivity). The
underdoped case is more interesting. In the underdoped case

-0.5 0 0.5
ω

-0.5 0 0.5
ω

0

1

2

x 
=

 0
.2

0

T=0.1

0

1

2

3

x 
=

 0
.0

5

T=0.01

FIG. 2. (Color online) Joint density of states involved in the
conductivity calculation for x = 0.05 (highly underdoped) and
x = 0.20 (optimal doping) at low and high temperatures. The red
dashed curves are the thermal factors for the low-temperature case and
have peak height ≈25. The blue dashed curves are the thermal factors
for the high-T case. As the JDOS becomes more flat (pseudogap
fingerprint blurred out) we return to a more metalliclike behavior.
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the opening of the pseudogap causes the peak to split into two
pieces, separated by an energy on the order of the gap scale.
The thermal factors behave as before, but there is no spectral
weight remaining in the low-T case. This gapping of the
region near ω = 0 naturally gives insulating behavior. As the
temperature is increased the JDOS broadens due to increased
scattering and our resistivity falls back down accordingly.
Within the YRZ model the resistivity is determined by this
interplay between thermal factors and the structure of the
density of states coming from the pseudogap.

The arc model. We now turn our attention to a model that
can be thought of as a phenomenological version of the YRZ
model, namely, the arc model. The arc model can be derived
from the YRZ model through a series of approximations. This
was first done by Leblanc and co-workers.15,16 The procedure
is as follows. In Eq. (1) we take ξ (k) = ξ 0(k). We then
take the dispersions to be of the continuum form, that is,
ξ (k) = h̄2

2m∗ k
2 − μ ≡ ε. Then d2k

(2π)2 = Ndε dθ
2π

, where N is the
density of states. Note that we have absorbed the Gutzwiller
factor gt into the density of states. From the symmetry in the
problem we may also take the angular integration to be over
one-eighth of the Brillouin zone, that is, 0 � θ � π/4. Finally
we place a pseudogap � on the FS starting from the antinodal
direction. The amount gapped out is parametrized by an angle
θc. Specifically, in angular coordinates, the Green’s function
is given by

−Im[G(ε,θ )] =
{

�
ε2+�2+�2 cos2(2θ) , 0 � θ � θc

�
ε2+�2 , θc < θ � π

4 .
(4)

The Kubo formula for the conductivity is

σ = e2N

πd

∫
dε

dθ

π/4
v2

kx
{Im[G(ε,θ )]}2. (5)

For the ab plane we take vkx
= vF to be an isotropic Fermi

velocity. For the c axis we make the same replacement as
before, v2 → d2t2

⊥ cos4(2θ ).
The integrations over ε and θ can be carried out analytically.

There are two contributions to the conductivity: a free-electron
part σarc from the remaining FS and an interband part σ� from
the gapped region of the FS. We obtain (units as in Fig. 3)
σ (ab) = σ (ab)

arc + σ
(ab)
� and σ (c) = σ (c)

arc + σ
(c)
� with

σ (ab)
arc = 2

�

(
π

4
− θc

)
, (6)

σ
(ab)
� = λ

�

(
E(2θc|λ2) − λ2

2

sin(4θc)√
1 − λ2 sin2(2θc)

)
, (7)

σ (c)
arc = 1

�

[
3

4

(
π

4
− θc

)
− 1

4
sin(4θc) − 1

32
sin(8θc)

]
, (8)

σ
(c)
� = λ�4

�5

[(
2 + �2

�2

)
E(2θc|λ2) − 2F (2θc|λ2)

− λ2

2

sin(4θc)√
1 − λ2 sin2(2θc)

]
, (9)

where λ = �/
√

�2 + �2, F (x|λ2) is the incomplete elliptic
integral of the first kind, and E(x|λ2) is the incomplete elliptic
integral of the second kind.
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= 1/2
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FIG. 3. (Color online) In-plane resistivity (units of dπ�0
e2Nv2

F

, where

N is the density of states at the Fermi energy and vF is the Fermi
velocity) and c-axis resistivity (units of π�0

e2Ndt2
⊥

) in the arc model for

dimensionless pairing strengths κ = 0, 0.25, 0.5, 0.75, and 1.

Unlike in the YRZ model, in the arc model the arc length is
independent of the magnitude of the pseduogap. To correspond
with the experiments and the YRZ model we chose to trade
θc for a new dimensionless variable κ = �/�0, where �0 is
the magnitude of the pseudogap at 0 doping. The relationship
between the strength of the pseudogap and doping can be found
at the beginning of the section on the YRZ model. In principle,
the function θc(κ) is a strictly increasing function of κ that
could be obtained by fitting the arc model to experimental
data, if one desired. To highlight the essential features, and
for simplicity, we chose θc = κπ/4. The resulting curves are
shown in Fig. 3. Since the scattering rate � ∝ T , the x axis
may be read as temperature.

Although the precise details of the curves differ from both
the YRZ model and the experiments, the broad features are
still captured by this simple model. The in-plane resistance is
linear at high T and shows systematically larger deviations
as the pairing strength is increased. The case κ = 1 is
distinct from the other cases and corresponds to the universal
limit first discussed by Lee.23 The c-axis resistivity shows
progressively insulating behavior as we proceed further into
the underdoped regime. This is due to the loss of FS along
the antinodal direction. The c-axis tunneling matrix element is
then responsible for getting rid of the remaining (nodal) states,
which leads to an insulatinglike behavior.

The results of the arc model can be understood simply as
a two-oscillator model: one Drude oscillator centred at ω = 0
and a displaced oscillator at ω = �. The dc conductivity is the
value from these two contributions at ω = 0. As the scattering
rate is increased these two contributions broaden. At first,
the broadening causes a decrease in the conductivity as the
Drude peak comes down. This continues until the displaced
peak at the gap energy leaks into the ω = 0 region, leading
to a gain in conductivity. The conductivity then tends to
decrease as the peaks broaden further. This explains the weak

014514-3

CHAPTER 4. THE HIGH TC CUPRATE SUPERCONDUCTORS 49



PHILLIP E. C. ASHBY AND J. P. CARBOTTE PHYSICAL REVIEW B 87, 014514 (2013)

0 0.5 1 1.5 2
Γ/Δ0

0

5

10

ρ c

α = 0
= 0.25
= 0.5
= 0.75
= 1.0

κ= 0.5

FIG. 4. (Color online) The c-axis resistivity with the weight given
by the remaining FS as a tunable parameter α. Specifically, α enters
as ασ (c)

arc + σ
(c)
� . This figure shows how the FS contributes to the

c-axis conductivity. The FS still gives an important contribution to
the resistivity, even though the tunneling matrix element gaps out the
nodal excitations.

maxima seen in both the ab-plane and the c-axis resistivity
(Fig. 3). To show the two contributions explicitly we weighted
the FS contribution to the conductivity by a parameter
0 � α � 1 (Fig. 4). As we weaken the Drude component
of the conductivity, the sample becomes increasingly more

resistive. This depletion of the remaining quasiparticles is
precisely the same physics behind the resistive behavior
coming from the c-axis tunneling matrix element.

In conclusion, we have found that the YRZ model of the
pseudogap state with a linear in temperature scattering rate nat-
urally reproduces the resistivity seen in this phase. A simpler
model, the arc model, was also shown to possess qualitatively
correct features of the resistivity. In the YRZ model, it was
the interplay between thermal factors and a density of states
that was responsible for the behavior of the resistivity. In
contrast, the density of states in the arc model is constant and
temperature only entered through the scattering rate. However,
owing to the two distinct contributions to the conductivity, the
arc model still showed qualitatively correct features.

Two elements in the YRZ calculation are vital for the agree-
ment with experimental resistivity. First is the reconstruction
of the FS as a function of doping. This reconstruction reduces
the number of quasiparticles available for dc transport as the
Mott insulating phase is approached. The second element is
the tunneling matrix element. This matrix element effectively
removes the remaining nodal quasiparticles and leaves an
insulating response. The fact that FS reconstruction is so
important allows us to understand why the arc model can
do well, despite lacking all of the microscopic elements of
the YRZ model. Indeed, one can think of the arc model as a
phenomenological version of the YRZ model, where one is
willing to ignore the mechanisms behind the reconstruction of
the FS. Nevertheless, the arc model can still be used to help
deduce the underlying physics and provides simple analytical
results that are of great use.
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4.6 Paper IV – c-axis optical conductivity from

the Yang-Rice-Zhang model of the underdoped

cuprates

Reprinted with permission as follows: Phillip E.C. Ashby and J.P. Carbotte “c-axis

optical conductivity from the Yang-Rice-Zhang model of the underdoped cuprates” Phys.

Rev. B 87 0184514 (2013). Copyright (2013) by the American Physical Society.

This work is an another application of the YRZ model to the underdoped cuprates.

We present results on the dynamical conductivity for the c-axis which we compare

with results for the ab-plane. In this paper we investigated both the pseudogap as well

as the superconducting phases. We focused on c-axis properties since the c-axis data

tends to show pseudogap features more clearly than the in-plane data. By including

coherent interlayer tunneling we were able to study the c-axis behavior. Our findings

were an explanation for a peak observed in infrared spectroscopy. This peak was

previously explained by invoking an interlayer collective mode, but it appears naturally

in the YRZ model. We also compared our calculations to microwave conductivity and

found that the scattering rate was best described by a T 3 law.
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The c-axis optical response of the underdoped cuprates is qualitatively different from its in-plane counterpart.
The features of the pseudogap show themselves more prominently in the c-axis than in-plane. We compute
both the c-axis optical conductivity and the in-plane optical conductivity using the Yang-Rice-Zhang model of
underdoped cuprates. This model combined with coherent interlayer tunneling is enough to explain the qualitative
differences between the in-plane data and the c-axis data. We show how pseudogap features manifest themselves
in the infrared and microwave conductivity within this model.

DOI: 10.1103/PhysRevB.87.184514 PACS number(s): 74.72.Gh, 74.25.Gz, 74.20.De

I. INTRODUCTION

The nature of the pseudogap phase in the underdoped
cuprates is believed to be central to the understanding of
high-Tc superconductivity.1 Many ideas have emerged to help
us understand the origin of the pseudogap. Examples of
theories include the idea of preformed Cooper pairs2 or a
competing order parameter, such as d-density wave order.3

An alternative picture has its roots in Anderson’s resonating
valence bond (RVB) order.4,5 Within the RVB framework the
pseudogap can emerge naturally as one dopes a Mott insulating
state with holes.6 The model of the underdoped cuprates by
Yang, Rice, and Zhang (YRZ) is based on these ideas.7

Since the YRZ model was put forward, it has proved
successful in describing many features of the underdoped
cuprates that cannot be understood from conventional BCS
theory. The essential new feature is the presence of an
additional energy scale, namely, the pseudogap. In the YRZ
model the pseudogap is responsible for reconstructing the
antinodal portion of the Fermi surface into closed Luttinger
pockets. With this modification, the YRZ model has been able
to qualitatively capture the physics of Raman spectra,8,9 angle-
resolved photoemission spectroscopy (ARPES),10,11 specific
heat,12 penetration depth,13 and tunneling spectroscopy.14

More recently, we have applied the YRZ model to the c-axis
transport properties where we showed that the YRZ model
is able to explain the insulting-like c-axis behavior while
remaining metallic in-plane.15 It has also been shown to
account for the c-axis violation of the Ferrell-Glover-Tinkham
sum rule.16 It is remarkable that such a simple modification
is capable of capturing the physics of such a diverse range of
topics. The recent ARPES observation of fully closed pockets
in Bi2212 (Ref. 11) adds further support for the YRZ model.
In fact, the results of Yang et al.11 show that the size and shape
of the Fermi pockets are in excellent agreement with those of
the YRZ model.

The optical response of the c-axis is known to be dramati-
cally different from the in-plane response, for both infrared17

and microwave18 frequencies. In this paper we examine the
differences between in-plane and c-axis optical responses. We
compute the optical conductivity using the YRZ formalism.

We show that the YRZ model is able to capture the qualitative
behavior of the ac optical conductivity both in-plane and along
the c axis. We use the conductivity to extract information about
the behavior of the superfluid density, as well as the distribution
of optical spectral weight. Last, we use the low-frequency
portion of our data to extract the microwave conductivity
and find good agreement with experimental findings. In
Sec. II we introduce the formalism required to compute the
optical conductivity within the YRZ model. We present our
numerical results for the infrared optical conductivity in Sec.
III and discuss optical sums and the microwave conductivity in
Sec. IV. We summarize and conclude in Sec. V.

II. OPTICAL CONDUCTIVITY IN THE YRZ MODEL OF
THE UNDERDOPED CUPRATES

The real part of the c-axis optical conductivity in the
bubble approximation can be expressed in terms of the spectral
density, A(k,ω), and the Gorkov anomalous spectral density,
B(k,ω), through the Kubo formula:

Re[σc(ω,T )]

= −e2d2

ω

∑
k

t2
⊥(k)

∫ ∞

−∞

dω′

2π
[f (ω′ + ω) − f (ω′)]

× [A(k,ω′)A(k,ω′ + ω) + B(k,ω′)B(k,ω′ + ω)]. (1)

Here e is the electron charge, f (ω) is the Fermi distribution
function, t⊥(k) is an interlayer hopping matrix element, and d

is the interlayer distance. We often make comparisons with the
in-plane conductivity where t2d2 should be replaced by v2

kx
, the

electron velocity. The YRZ model provides the coherent part
of the Green’s function from which we can extract the required
spectral densities. For a doping, x, the Green’s function is given
by

G(k,ω) =
∑
α=±

gt (x)Wα
k

ω − Eα
k − �2

sc/
(
ω + Eα

k

) . (2)

In the above gt (x) is a Gutzwiller renormalization factor and
is given by gt (x) = 2x/(1 + x). The two energy branches and

184514-11098-0121/2013/87(18)/184514(8) ©2013 American Physical Society

52 P. E. C. Ashby – Ph.D. Thesis



PHILLIP E. C. ASHBY AND J. P. CARBOTTE PHYSICAL REVIEW B 87, 184514 (2013)

weights are given by

E±
k = 1

2

(
ξk − ξ 0

k

) ± Ek (3)

and

W±
k = 1

2

(
1 ± ξ̃k

Ek

)
. (4)

Here

Ek =
√

ξ̃k
2 + �2

pg, (5)

ξ̃k = ξk + ξ 0
k

2
, (6)

ξ 0
k = −2t(x)(cos kx + cos ky), (7)

and

ξk = ξ 0
k − 4t ′(x) cos kx cos ky

− 2t ′′(x)(cos 2kx + cos 2ky) − μp. (8)

μp is a chemical potential that is determined from the
Luttinger sum rule. The hopping parameters are t(x) =
gt (x)t0 + (3/8)gs(x)Jχ , t ′(x) = gt (x)t ′0, and t ′′(x) = gt (x)t ′′0 ,
where gs(x) = 4/(1 + x)2 is another Gutzwiller renormaliza-
tion factor, J = t0/3, χ = 0.338, t ′0 = −0.3t0, and t ′′0 = 0.2t0.

In Eq. (5), �pg is the pseudogap energy scale which is taken
to have d-wave symmetry, along with the superconducting gap.
That is,

�sc = �0
sc(x)

2
(cos kx − cos ky), (9)

�pg = �0
pg(x)

2
(cos kx − cos ky). (10)

The doping-dependent magnitudes mimic a simplified version
of the cuprate phase diagram (see left panel of Fig. 1):

�0
sc(x) = 0.14[1 − 82.6(x − 0.2)2], (11)

�0
pg(x) = 0.6(1 − x/0.2). (12)

This functional form places both optimal doping (the maxi-
mum of the superconducting dome, shown in dashed purple in
Fig. 1) and the vanishing of the pseudogap energy scale (shown

FIG. 1. (Color online) The phase diagram and Fermi surface for
the YRZ model. The quantum critical point at which the pseudogap
emerges is set to x = 0.2 in this work and corresponds to optimally
doped superconductivity. As the pseudogap grows with reduced
doping the Fermi surface reconstructs from the large band structure
Fermi surface at optimal doping into closed Luttinger pockets.

by the solid blue line in Fig. 1) at x = 0.2, in accordance with
the original YRZ paper.7 Unless otherwise specified, we use
all parameters in the band structure for the YRZ model as they
appear in the original publication.7 In principle, one could alter
these parameters to obtain fits to experimental data, but in this
work we only wish to show that YRZ captures the essential
physics. For the magnitude of the superconducting gap, we
use the ratio 2�0

sc(x,T = 0)/(kBTc) = 6. We work in units
where h̄ = 1 and measure all of our energies in terms of t0, the
nearest-neighbor hopping amplitude.

From the Green’s function we obtain the spectral densities

A(k,ω) = 2πgt (x)
∑
α=±

Wα
k

[
(uα)2δ(ω − Eα

s )

+ (vα)2δ
(
ω + Eα

s

)]
(13)

and

B(k,ω) = 2πgt (x)
∑
α=±

Wα
k (uαvα)

× [
δ
(
ω − Eα

s

) − δ
(
ω + Eα

s

)]
. (14)

The Bogoliubov quasiparticle energies, Eα
s , and amplitudes,

uα and vα , are given by

Eα
s =

√
E±2

k + �2
sc, (15)

uα =
√

1

2

(
1 + Eα

k

Eα
s

)
, (16)

and

vα =
√

1

2

(
1 − Eα

k

Eα
s

)
. (17)

The right-hand frame of Fig. 1 shows the normal state
[�0

sc(x) = 0] Fermi surface reconstruction brought about by
the emergence of the pseudogap. Only the upper-right quadrant
of the Brillouin Zone (BZ) is shown. The dashed black line
indicates the antiferromagnetic BZ (AFBZ) boundary. The
solid green curve in the upper frame is the large Fermi surface
of Fermi liquid theory for a doping of x = 0.2. The Fermi
liquid contour crosses the AFBZ but is unaffected by it and
is characteristic of a good metal. As the doping is reduced
towards half filling the Mott insulating state is approached
and the Fermi surface contours change radically. The lower
frame is for a doping of x = 0.13 where the Fermi surface
has reconstructed into a Luttinger hole pocket. The backside
of the Luttinger pocket at x = 0.13 closely follows the AFBZ
boundary and has very small weight [Wk in Eq. (4)]. On the
other hand, the front side is heavily weighted and is very
close to the underlying Fermi liquid surface (�pg = 0) in the
nodal direction. As x is reduced further the Luttinger pocket
continues to shrink and only a small number of well-defined
quasiparticles remain in the nodal direction. This fact is very
important for much of the physics that we describe in this
paper.

These small holelike pockets are a prediction of the
YRZ model and are in excellent agreement with recent
photoemission data.11 However, it is believed that some of the
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transport properties in the pseudogap phase are electronlike.
Experimentally, it is found that both the Hall and Seebeck
coefficients are negative in the pseudogap phase. This apparent
contradiction is nicely overcome in a recent proposal by
Harrison and Sebastian.19 They show how a nodal holelike
Fermi arc can be reconstructed into electronlike pockets. Their
reconstruction mechanism is due to bilayer charge ordering.
The wave vectors associated with the charge modulation are
responsible for the reconstruction from the holelike Fermi sur-
face into the electronlike one. Importantly, the reconstruction
happens with the nodal piece of Fermi surface in their model.
The YRZ model naturally makes hole pockets with long-lived
quasiparticles along the nodal direction. Additionally, YRZ
predicts that these hole pockets are heavily weighted along the
front side of the pocket, and so this reconstruction mechanism
should apply in exactly the same way as they describe. This
extra reconstruction offers a nice explanation for why these

transport coefficients are observed as negative in this part of
the phase diagram.

Using the above spectral functions, the conductivity can be
written as the sum of two terms, Re[σ ] = Re[σD] + Re[σIB].
The first term, Re[σD], is peaked around ω = 0 and is a Drude-
like response, while the second term, Re[σIB], arises from
interband transitions between the different energy branches. In
our calculations we take into account the effect of impurities
by replacing the Dirac δ functions by Lorentzians of half-width

. In the clean limit we find

Re[σD] = −2πe2d2g2
t

∑
k

t2
⊥(k)δ(w)

×
[
W+2

k
∂f (E+

s )

∂E+
s

+ W−2
k

∂f (E−
s )

∂E−
s

]
(18)

and

Re[σIB] = 2πe2d2g2
t

∑
k

t2
⊥(k)W+

k W−
k

{
(u−v+ − u+v−)2 1 − f (E+

s ) − f (E−
s )

E+
s + E−

s

[δ(ω − E+
s − E−

s ) + δ(ω + E+
s + E−

s )]

− (u+u− + v+v−)2 f (E+
s ) − f (E−

s )

E+
s − E−

s

[δ(ω − E+
s + E−

s ) + δ(ω + E+
s − E−

s )]

}
. (19)

When using the clean limit formulas, one must instead replace
the Dirac δ functions by Lorentzians of half-width 2
.

For the interlayer tunneling matrix element we fol-
low Chakravarty et al.20 and choose t⊥(k) = t⊥[cos(kx) −
cos(ky)]2. This choice reflects the geometric arrangement of
the atoms between adjacent CuO2 planes. For the ab plane
the velocity is simply vkx

= dξ/dkx . The last free parameter
we have is the scattering rate which broadens the Dirac δ

functions. We used


 =
{

0.001 + 0.1
(

T
Tc

)3
, T � Tc,

0.051 + 0.05 T
Tc

, T > Tc.
(20)

A linear in T quasiparticle scattering rate has been associated
with the inelastic scattering in the high-Tc oxides. It is taken
to be a characteristic of their normal state. The marginal
Fermi liquid phenomenology21 is based on this observation
as well as the idea that the dominant scattering processes
involve spin and charge excitations of the electronic system
itself. On entering the superconducting state, the emergence
of the superconducting gap reduces both the charge and
spin susceptibility and leads to a reduction in scattering.
This reduction in scattering is a hallmark of an electronic
mechanism for the inelastic scattering and is often referred to
as the collapse of the inelastic scattering rate.22–26 This collapse
of the scattering rate is the accepted explanation of the large
peaks observed in the microwave27 and thermal conductivity28

of the cuprates well below Tc. While the normal fluid density
(which is resistive) is reduced with temperature, the inelastic
scattering lifetime increases. The increase ceases when the
residual scattering becomes dominant and it is the further

reduction in normal fluid density that drives the conductivity
to zero as observed in the experiment.27

III. NUMERICAL RESULTS

After all of these choices we can evaluate the conductivity.
In all of our plots Re[σab] is in units of e2/d while Re[σc]
is measured in units of e2dt2

⊥. This choice of units does not
limit us to a particular material. Once one chooses values for
t⊥, d, and the band structure parameters (which determine the
Fermi velocity), then our calculations can be compared to any
cuprate superconductor. Note that in these units, the in-plane
conductivity need not be greater than its c-axis counterpart,
which it is for any realistic value of Fermi velocity and
tunneling matrix element. Figure 2 shows the result of a
calculation at T = 0.25Tc for optimal doping (x = 0.20) as
well as underdoped (x = 0.13). We chose x = 0.2 to highlight
the physics in the absence of a pesudogap. By contrast, the
x = 0.13 case has sizable pseudogap and superconducting
energy scales. This choice allows us to see the effect of
both energy scales in our data most easily. In the x = 0.20
case (bottom two frames of Fig. 2), there is only a coherent
Drude-like response from the large Fermi surface in both the
ab plane and the c axis. The c-axis response is reduced as
compared with the ab response by the out-of-plane matrix
element t⊥(k) which gives less weight to the part of the Fermi
surface in the nodal direction. In the underdoped case (top
two frames of Fig. 2), there is still a Drude response from
the remaining Fermi surface. It is suppressed in both the ab

plane and the c axis due to both the shrinking size of the Fermi
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FIG. 2. (Color online) Top panel: The optical conductivity
[Re(σab) measured in units of e2/d , and Re(σc) measured in units of
e2dt2

⊥] at doping x = 0.13 and T = 0.25Tc. Both the ab plane and the
c axis contain a coherent Drude response (red/shaded area on left) and
an interband contribution from the presence of the pseudogap energy
(orange/shaded area on right). Bottom panel: The optical conductivity
at optimal doping (x = 0.20) and T = 0.25Tc. At optimal doping the
pseudogap vanishes and there is only a Drude contribution to the
conductivity.

surface and the Gutzwiller renormalization factors. There is
also a piece due to interband transitions at higher energies.
This piece is the signature of the pseudogap energy scale. It is
the dominant feature in the c-axis data.

With a more realistic treatment of the inelastic scattering
we expect this interband feature to broaden beyond what is
shown in Fig. 2. In the cuprates the inelastic scattering rate
is known to have a strong energy dependence29 in addition
to temperature variation. In Eq. (20) we have included only
temperature dependence through an impurity model; i.e.,
there is no dependence on ω. This model for the inelastic
scattering rate is perfectly adequate as far as dc properties
are concerned. It is oversimplified when the photon energy
falls in the infrared. In this energy range, 
(T ,ω) can be much
larger than its ω = 0 value, modeled in Eq. (20). Consequently,
the interband optical transition peak in Re[σ (t,ω)] will be
broadened.

In Fig. 3 the optical conductivity is shown as a function
of frequency for four temperatures: as labeled in the figure,
T = 4Tc, dashed blue line; T = 2Tc, solid orange line;

FIG. 3. (Color online) Top panel: The optical conductivity
[Re(σab) measured in units of e2/d , and Re(σc) measured in units
of e2dt2

⊥] at doping x = 0.13 for temperatures T = 0.25Tc, Tc, 2Tc,
and 4Tc. The Drude peak becomes increasingly broadened with
temperature. At low temperatures a feature of the pseudogap emerges
beyond ω = 0.3t0. This feature is a natural explanation for the broad
peak observed at 400 cm−1 in Homes et al.17 Middle panel: The optical
conductivity at doping x = 0.20 for temperatures T = 0.25Tc, Tc,
2Tc, and 4Tc. Both in-plane and c axis only have Drude contributions
which become increasingly broadened with temperature. Bottom
panel: The resistivity in the underdoped cuprates from the YRZ model
as a function of temperature at x = 0.05. The underdoped phase is
metallic in-plane and resistive along the c axis. Taken with permission
from Ashby and Carbotte.15
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T = Tc, in solid green with boxes and T = 0.25Tc in solid
black. The top two frames are for doping x = 0.13 and
the middle two frames are at optimal doping (x = 0.2). For
ω � 0.2t0 all curves are Drude like and order in temperature
in the usual way, except the c-axis curves in the underdoped
case. In this case, we see a different trend, the curves order in
the opposite sense as temperature is reduced. This behavior is
emphasized in the lowest frame where we show our results (for
x = 0.05) for the dc resistivity as a function of temperature.
We see that the c axis displays insulating like behavior (ρc

increases as T decreases), while the ab plane response remains
metallic (ρab decreases as T decreases). We stress that the
YRZ model captures this behavior though a coherent tunneling
Hamiltonian.15,30,31

The top two frames of Fig. 3 are to be compared with
the experimental work of Homes et al.17 on the c-axis
conductivity of yttrium barium copper oxide (YBCO). As
in the experiments, the signatures of the pseudogap are
more pronounced at low energies. This is characterized by
a flat region at low frequency which becomes increasingly
suppressed at lower temperatures. The reduction we calculate
is not as dramatic as that observed in the experimental data.
If one wished to obtain better fits to the experimental results
this could be achieved by adjusting the scattering rate or the
magnitude of the pesudogap energy scale. Note that the low-
frequency c-axis conductivity behaves very differently from
the in-plane conductivity as a function of temperature. Perhaps
the most striking feature in Fig. 3 is the broad interband feature
from ω ∼ 0.3t0 to ω ∼ 0.5t0 associated with the pseudogap.
This feature is a natural explanation for the broad peak
observed in Homes et al.17 at 400 cm−1. Taking t0 = 125 meV,
this feature falls in the range of 300–500 cm−1, in agreement
with the experiments. Previous explanations of this feature
invoke the existence of an interlayer plasmon collective
mode.32 Within the YRZ model this peak is produced only
from pseudogap physics with no need for this collective mode.

IV. OPTICAL SUM AND MICROWAVE CONDUCTIVITY

A. Optical sums

Sum rules and partial optical sums also provide useful
information. In a conventional superconductor, the suppres-
sion of Re[σ ] for T < Tc is connected to the appearance
of a superconducting condensate. The “missing” optical
spectral weight appears in a δ function of the appropriate
weight at ω = 0. This fact is usually presented as the
Ferrel-Glover-Tinkham sum rule. In terms of the superfluid
stiffness, ρs ,

NN − NS = ρs, (21)

where

NN =
∫ ∞

0+
dωRe[σn(ω,T )] (22)

is the normal state optical sum and

NS =
∫ ∞

0+
dωRe[σs(ω,T )] (23)

is the superconducting optical sum. While this sum rule holds
in-plane, it is known to be violated in the c axis.33 The

FIG. 4. (Color online) Normal state optical sum minus supercon-
ducting state optical sum as a function of temperature for doping
x = 0.13. The behavior of the superfluid density in the c direction is
qualitatively different from that in the ab plane.

YRZ model with the same interlayer tunneling matrix element
that we use displays a violation of this sum rule.16 This is
understood most simply in a limit of the YRZ model that
reduces to a Fermi arc model. In this model the Fermi surface
is confined about the nodal direction; the remainder of the
large Fermi surface from Fermi liquid theory is gapped out
by the pseudogap. Only the electrons on the arc contribute
the usual amount to the optical sum rule, while those on the
gapped out portion contribute less. In any case, NN -NS is
well defined and is shown in Fig. 4. The solid blue line is the
ab-plane result, while the orange dashed line applies to the c

direction. As a function of the reduced temperature, t = T/Tc,
those curves behave in much the same way as is found for the
superfluid density itself.13,34 The superfluid density follows
from the imaginary part of the conductivity as

1

λ2(T )
= lim

ω→0

4π

c2
ωIm[σ (T ,ω)], (24)

with c being the velocity of light. The temperature behaviors
are in agreement with the superfluid density inferred from
microwave experiments.18 The ab-plane superfluid density
decreases linearly with temperature while the c-axis is flat
at low temperatures.

A related quantity, the partial optical sum,

I (ω) =
∫ ω

0+
dω′{Re[σn(ω′,T )] − Re[σs(ω

′,T )]}, (25)

provides information about the distribution of spectral weight
that goes into the superconducting condensate. The partial
optical sums for the YRZ model, normalized to their value at
ω = 1, are shown in the top panel of Fig. 5. The solid blue
curve is for the ab plane and the dashed orange curve is for the
c axis. For a regular superconductor this curve would sharply
rise towards 1, with the scattering rate, 
, setting the energy
scale of the rise. In the YRZ model the presence of the pseudo-
gap causes a redistribution of spectral weight from the Drude
to the high-frequency region. This redistribution shows itself in
the suppressed flat region at low frequencies accompanied by
a pileup of spectral weight above the pseudogap energy scale.
This redistribution is much more pronounced for the c axis.
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FIG. 5. (Color online) Top panel: Partial optical sum at T =
0.25Tc for doping x = 0.13 for the ab plane and the c axis. The
gap scales are indicated in the figure. The pseudogap causes an
extra suppression and redistributes the charge carriers available for
condensation to high frequencies. Bottom panel: c-axis conductivities
in the superconducting and normal states for x = 0.13 at T = 0.25Tc.
The redistribution of spectral weight due to having superconductivity
leads to a shift in the interband peak.

Insight into these shifts in spectral weight can be gleaned from
the lower frame where we show the real part of the conductivity
as a function of frequency for x = 0.13 at T = 0.25Tc.
The dashed orange curve is the normal state (�pg = 0) and
the black curve is the corresponding superconducting case.
We see that the opening of the superconducting gap shifts the
interband transitions to higher energies. This shift accounts
for the large peak seen in the orange curve in the top frame of
Fig. 5 for ω � 0.4t0.

B. Microwave conductivity

The microwave data are qualitatively different for the in-
plane conductivity and the c axis conductivity.18 The in-plane

FIG. 6. (Color online) Microwave conductivity [Re(σab) mea-
sured in units of e2/d , and Re(σc) measured in units of e2dt2

⊥] for a
constant 
 = 0.005 as a function of temperature. This is proportional
to the number of particles able to absorb low-frequency radiation.
The behavior in-plane is linear in T , while the c axis behaves roughly
like T 5.

data contain a peak, while the c-axis data do not. The peak is
attributed to the interplay between the quasiparticle lifetime
and the amount of fluid which can absorb radiation. As the
system is cooled below Tc the quasiparticle scattering lifetime
changes. As the temperature decreases the normal component
of the fluid vanishes linearly (Fig. 6). If the lifetime increases
faster than the normal part of the fluid, this will lead to
an increasing conductivity. At low enough temperature, the
lifetime will saturate to the value set by the residual scattering
rate, and the conductivity will decrease as the remaining
normal fluid condenses. This behavior generally produces a
peak in the microwave data. It is thus, very surprising that
the c axis lacks a peak. This was originally interpreted as
evidence for incoherent c-axis transport.18 In this work we
take a coherent model for c-axis transport and interpret the
difference as a signature of how the superfluid density is
changing. This view is similar to the work of T. Xiang and
collaborators31,35 where they obtained good agreement with
the resistivity and microwave conductivity using a different
phenomenological model.

The microwave conductivity is obtained from the low-
frequency part of Re[σ (ω)]. We obtain the microwave con-
ductivity by taking limω→0 Re[σ (ω)]. In Fig. 6 we show
the microwave conductivity for a constant scattering rate,

 = 0.005. The solid black curve is Re[σ (T ,ω = 0)] for the ab

plane while the orange curve is for the c axis, both as a function
of reduced temperature, T/Tc. Their temperature dependence
is strikingly different as we would have expected based on
the results presented in Fig. 4 for NN -NS vs T/Tc. For a first
understanding of the experimental results for Re[σ (T ,ω = 0)],
it is helpful to take guidance from the two-fluid model. Under
the assumption that only the normal fluid component, n,
is involved in the absorption, the expression for the Drude
conductivity is

Re[σ ] = ne2

m

. (26)
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FIG. 7. (Color online) The in-plane and c-axis microwave con-
ductivity [Re(σab) measured in units of e2/d , and Re(σc) measured in
units of e2dt2

⊥] for x = 0.20 as a function of temperature for various
different forms of scattering rate.

Here e is the electron charge and m is the mass. We see
in Fig. 6 that n is nearly linear in plane and ∝ T 5 out of
plane.

In Fig. 7 we show the microwave conductivity at optimal
doping for different scattering rates. We used 
 = 0.001 +
0.1(T/Tc)α for α = 2,3,4. Dotted lines correspond to T 4 law,
dashed lines to T 3, and solid lines to T 2, with black for the
ab plane and orange for the c axis. The in-plane data always
contains a peak, as we expect. If the scattering rate becomes
too strongly temperature dependent, the c-axis conductivity
is no longer convex like in the experiments. Using the Drude
form for the conductivity with 
 = A + BT α and n ∝ T β

we can show that for the conductivity to be convex that
α < 1 − 2β + 2

√
2β(β − 1). Using β ≈ 5 from our constant

scattering rate calculation, we see this sets an upper bound of
α = 3.65.

FIG. 8. (Color online) The microwave conductivity [Re(σab)
measured in units of e2/d , and Re(σc) measured in units of e2dt2

⊥] in
the underdoped phase (x = 0.13) as a function of temperature. We
also show the calculation with �pg = 0. The pseudogap has almost no
effect on the in-plane conductivity, but leads to a dramatic suppression
for the c axis.

In Fig. 8 we show the microwave conductivity for x = 0.13.
To isolate the effect of the pseudogap, we redid the calculation
with �pg = 0. The solid curves are with the pseudogap and the
dashed curves are without. The low-temperature behavior is
unaffected by pseudogap formation. It does cause a dramatic
suppression of the c-axis conductivity at high temperatures,
but this effect is much more modest in-plane (Fig. 8). There
is a great similarity between the change in temperature
behavior of the c-axis microwave conductivity and the specific
heat.36 In both cases the low-temperature part of the curve
is unaffected since this region depends only on the thermal
excitations in the nodal direction. This part of the electronic
structure is not appreciably changed by the pseudogap. As
the temperature is increased towards Tc the specific heat is
strongly suppressed below its �pg = 0 value, much like the
c-axis conductivity. This is not surprising as both quantities
are closely tied to the electronic density of states. The in-plane
microwave conductivity is not and is seen to behave much
differently than its c-axis counterpart. Unfortunately c-axis
measurements are technically challenging and experimental
data only exist for optimal doping. It would be very interesting
to look for the effect of the pseudogap in an underdoped
sample.

V. DISCUSSION AND CONCLUSIONS

We have investigated the c-axis optical conductivity in the
underdoped cuprates using the YRZ model. We focused on
properties in the superconducting phase of the underdoped
cuprates at x = 0.2 (optimal doping) and x = 0.13 (under-
doped) to highlight the essential features of the model. For
the c-axis calculations we used a coherent tunneling matrix
element to describe interlayer hopping. Our choice of matrix
element is one related to the geometric alignment of atoms
between adjacent layers, but any matrix element which gives
little weight to states along the nodal direction should give
qualitatively similar results. We saw that the reduction in
the density of states caused by the pseudogap resulted in the
low-frequency region of the normal state optical conductivity
decreasing as temperature decreased instead of increasing as
observed in-plane. This is in agreement with the experimental
findings. This decrease continued in the superconducting state
with the spectral weight redistributed to higher energies set
by the pseudogap energy scale. This redistribution could
serve as an explanation for the observation of the broad
peak at 400 cm−1 in underdoped YBCO (YBa2Cu3O6.7)
which is not present in the optimally doped sample
(YBa2Cu3O6.95).17

We were also able to extract the behavior of the superfluid
density from both a sum rule and from the microwave
conductivity. The superfluid density behaves very differently
for in-plane and out-of-plane, which manifested itself in the
different shapes of the microwave conductivity as a function
of temperature. The in-plane microwave conductivity exhibits
a peak, while the c axis conductivity does not. A previous
interpretation18 took this observation to mean that the c-axis
interplane transport was incoherent. Here we attribute this to
the very different temperature law associated with the c-axis
superfluid density as compared to that of the ab plane. The
shape of the c-axis conductivity constrains the temperature
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dependence of the scattering in the superconducting state. We
also showed that the pseudogap suppresses the microwave
conductivity at high temperatures. It would be interesting to see
more c-axis measurements, as they display pseudogap physics
more strongly than the in-plane counterparts.
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Chapter 5
Weyl Semimetals

In a non-interacting picture, we understand that materials with partially filled bands

are metals. Likewise, materials without partially filled bands and an energy gap

between the valence and conduction bands are insulators. When there are no partially

filled bands, and the bands just touch, the material is a semimetal. This classification

was one of the great triumphs of the band theory of solids.

Recently it was realized that even within materials of a single category, say

insulators, that there could be qualitative difference in their properties [34]. We now

realize that there are a class of insulators that are insulating in the bulk, but have

conductive surfaces. Interestingly, these conductive surfaces are also incredibly robust

against perturbations, as long as the perturbation leaves the system an insulator.

Materials of the second type are the so called topological insulators. These ideas have

called for a refinement in the classification of solids. The new concept that has proved

useful in this refinement is the study of the topology of the band structure.

In a gapped system, like and insulator or a superconductor, the wavefunctions may

have non-trivial winding around the Brillouin zone. This non-trivial winding is what

separates a topological phase from a normal trivial phase. Perhaps the most famous

example of a topological insulator is the quantum Hall effect. The quantum Hall effect

was first observed in the 1980’s [35] in two dimensional electronic systems subjected

to high magnetic fields. The Hall conductivity was observed to have plateaus as a

function of magnetic field (see Figure 5.1). These plateaus took on very precise values,
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Figure 5.1: The Hall resistivity (top) and diagonal resistivity (bottom) as a function of
applied field. Notice the plateaus in the Hall resistivity. These plateaus are quantized
and robust against disorder. They are a sign of the momentum space topology of the
quantum Hall wavefucntions. Taken from wikimedia. Released under the GNU Free
Documentation License.
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Broken Time Reversal Broken Inversion

Figure 5.2: The low energy spectra for different broken symmetries is shown. The
case of broken time reversal symmetry is pictured on the left, while broken inversion
symmetry is shown on the right. This separation leads to interesting physical effects,
such as an anomalous Hall effect.

and seemed insensitive to the amount of disorder in the system. These values were

quantized at ne2/(2π) for integer n. This robustness to disorder is now understood

from the underlying topological nature of this phase. The quantum Hall systems

are bulk insulators whose edges are conducting wires. These systems were the first

examples of topological insulators.

For a gapless phase, like a semimetal or a metal, if the band structure contains

topological defects in momentum space then it can be classified according to winding

of the Green’s function around these defects [36]. The Weyl semimetal is an example

of such a topologically non-trivial band structure. It is for this reason that Weyl

semimetals have become quite popular in recent years.

The Hamiltonian for an isolated Weyl point with chirality ν = ±1 takes the form

H = ±vFσ · k, (5.1)

here k is the distance from the Weyl point in momentum space.
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The Nielsen-Nynomiya theorem [37] states that such points must always come

in pairs of opposite chirality. Furthermore, in any system with both time-reversal

symmetry and inversion symmetry, these two points must lie on top of each other.

The proof of this is as follows. Suppose there is a Weyl node of chirality +1 at some

point k1 in the Brillouin zone. Action under time reversal tells us there must be a

state with chirality +1 at −k1. But the Nielsen-Nynomiya theorem tells us that the

total chirality in the Brillouin zone must be zero. So by the preceeding logic there

must be two Weyl points of chirality −1 at k2 and −k2. Now we consider action

under inversion symmetry. Inversion symmetry requires that points k and −k have

opposite chirality. So we must have k1 = k2. Thus to have isolated Weyl nodes, one

of the time reversal or inversion symmetries must be broken. Breaking each of these

symmetries separates the Weyl points in different ways. This is pictured in Figure 5.2.

When time reversal symmetry is broken the Weyl points are separated in momentum.

On the other hand, when inversion symmetry is broken they are separated in energy.

One can see from the form of the Hamiltonian that it is very robust against

perturbations. Since all three Pauli matrices are used up, one cannot add a perturbation

that will easily destroy the Weyl point. There is no extra Pauli matrix to gap out the

Weyl node. The only way that one can be destroyed is by adding a perturbation large

enough to push two Weyl point into each other, or by allowing for scattering between

the Weyl points.

A number of very interesting effects have been predicted based on the topological

nature of these Weyl points. Theoretical work [38, 39] shows that their low energy

electrodynamic response is governed by a topological term

e2

8π2

∫
d4xθ(x)E ·B, (5.2)

where θ is ‘axion’ angle and is proportional to the separation of the Weyl points

in momentum space. This term leads to the result that the hall conductivity is

proportional to the separation of the Weyl points [40]. It is given by σxy = e2/(4π2)∆k,

where ∆k is the separation of the Weyl points. This peculiar response to applied

magnetic and electric fields of the form E · B could potentially be used to drive
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a current between two Weyl nodes [41]. This would open the door to the field of

valleytronics in these materials.

Weyl semimetals are also expected to have interesting conductive surface states.

These surface states are open segments of Fermi surface that terminate at Weyl nodes

[42]. Both the top and bottom surfaces are predicted to have open segments of Fermi

surface on them. These two segments taken together would constitute a closed Fermi

surface. Observation of these unique surface states by a technique like Angle resolved

photoemission spectroscopy (ARPES) would be good evidence for the existence of a

Weyl semimetal.

A potential candidate for the existence of the Weyl semimetalic state is in certain

quasicrstaline samples [43]. These samples show linear conductivity over a large

range of frequency. For a Hamiltonian linear in momentum in 3-dimensions a linear

conductivity is expected[44]. Furthermore, the optical evidence shows no sign of a

Drude peak. This is a sign that there are very few free charge carriers in the system,

and thus the chemical potential may lie at the Weyl node.
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5.1 Paper V – Magneto-optical conductivity of Weyl

semimetals

Reprinted with permission as follows: Phillip E.C. Ashby and J.P. Carbotte “Magneto-

optical conductivity of Weyl semimetals” Phys. Rev. B 87 245131 (2013). Copyright

(2013) by the American Physical Society.

Motivated by the possibility that quasicrystals might be Weyl semimetals we

were encouraged by Tom Timusk to pursue this project. Fermi-arcs and anomalous

Hall conductivity would be good evidence for a Weyl semimetal, but many physical

observables have not yet been calculated for this state. A previous paper had studied

the finite frequency conductivity in the presence of disorder and found two regimes of

transport. In this paper we studied the finite frequency conductivity in an applied

magnetic field. We were motivated to do this since Weyl semimetals have an interesting

response to electromagnetic fields. We found that the conductivity was given by a set

of asymmetric series of peaks lying on top of the zero-field limit. These peaks appear

at frequencies that are clear signature of the relativistic Hamiltonian, and are robust

against modest disorder.
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Weyl semimetals are a topological phase of matter that have drawn recent interest and have been suggested
as a possible phase of the pyrochlore iridates, among other materials. Here we compute the magneto-optical
response of an isolated Weyl point. We find that the conductivity is a series of asymmetric peaks lying on top of
a linear background. We find additional features in the conductivity that are explained by the underlying Landau
level structure. We show that weak disorder tends to blur out the peaks, but they still show up as measurable
oscillations on a linear background.

DOI: 10.1103/PhysRevB.87.245131 PACS number(s): 78.20.Ls, 71.70.Di, 71.90.+q

I. INTRODUCTION

A Dirac semimetal is a material in which the conduction
and valence bands only touch at isolated points within the
Brillouin zone (BZ). Around these points the dispersion is
linear and the low energy theory is described by a Dirac
Hamiltonian. Perhaps the most famous Dirac material is
graphene, which contains two inequivalent Dirac points in its
BZ. These two-dimensional (2D) Dirac points are not robust
against perturbations. Any perturbation proportional to σz will
gap out the band touching. For example, in graphene spin-orbit
coupling should induce a mass gap. However, since carbon
has such a small atomic number, spin-orbit coupling is very
weak and this splitting has never been measured in graphene.
Furthermore, only intrinsic spin-orbit interactions will induce
a mass gap. Extrinsic interactions of the Rashba type do not
induce a gap in the Dirac spectrum.1

Dirac semimetals can also exist in three dimensions (3D).
An isolated band touching is described by the Hamiltonian

H = vF σ · k, (1)

where vF is the Fermi velocity, σ is the vector of Pauli
matrices, and k is the momentum as measured from the
band touching. This equation is the electronic analog of the
Weyl equation from particle physics. Materials described by
such a Hamiltonian have become known as Weyl semimetals.
The Weyl Hamiltonian is completely robust against any
perturbation since it uses all three of the Pauli matrices.
In materials with time reversal symmetry (T ) and inversion
symmetry (I) then there must be four bands linearly dispersing
around any band touching point in the BZ. Such a material
is called a 3D Dirac semimetal and it is not robust against
perturbations since there are additional Dirac matrices in the
4 × 4 representation. In a system with broken T or I it is
possible to have a phase described by the Weyl Hamiltonian.

Weyl points also have interesting topological properties.
They are monopoles of Berry flux in the BZ. This peculiar
momentum space topology manifests itself in several ways.
One way is the peculiar nature of the gapless surface states.
The surface states of a Weyl semimetal are known as Fermi
arcs.2 These Fermi arcs are open segments of Fermi surface

connecting the projections of the Weyl points onto the 2D
surface BZ. These arcs connect Weyl points of opposite
chirality and are a signature of the topological nature of the
Weyl points. Another manifestation of the topological nature
of Weyl points is in the low energy electromagnetic response.
The low energy effective action contains a topological θ term
and is described by axion electrodynamics.3 The physical
effect of this exotic θ term is an anomalous Hall conductivity.4

The equations of motion also show that these materials could
exhibit a chiral magnetic effect—dissipationless currents in
response to an applied magnetic field.5 Recent numerical
experiments found no evidence for the chiral magnetic effect
using their lattice model for a Weyl semimetal.6 Charge
transport in Weyl semimetals in the presence of disorder have
also been studied, where they found two distinct regimes for
the conductivity.7 The direct observation of Fermi arcs or
the anomalous Hall effect would be good evidence for the
existence of a Weyl semimetal.

Although Weyl semimetals have not yet been observed
there are several candidates. The pyrochlore iridates2,8–10 are a
promising host for the Weyl semimetalic phase. Proposals have
also been made for the existence of a Weyl semimetalic phase
in topological insulator heterostructures,4,11–13 as well as in
magnetically doped topological insulators.14,15 A recent paper
shows that it may even be possible to induce a topological
phase transition to a Weyl semimetal using the electron-
phonon interaction.16

The optical conductivity in a variety of quasicrystalline
materials is linear over a broad range in frequencies.17 This
has been interpreted as evidence for Dirac fermions in these
materials. Further evidence is needed to show that the physics
in the quasicrystalline samples is due to Weyl fermions and
not simply Dirac fermions. The magneto-optical response18–20

is one possible tool that can help distinguish various exotic
materials.

In this paper we compute the magneto-optical conductivity
for a single Weyl point. For NW Weyl nodes the conductivity
simply scales by a factor of NW . We find that the transverse
optical conductivity is a series of asymmetric peaks with
onsets proportional to the square root of the magnetic field.

245131-11098-0121/2013/87(24)/245131(6) ©2013 American Physical Society
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These peaks lie on the background of the zero magnetic
field limit. The structure of these peaks as the chemical
potential is changed is rich, and its behavior follows from
the underlying dispersive Landau levels. We obtain formulas
for the absorptive parts of both the transverse and Hall
conductivities in the clean limit. Lastly, we examine the
conductivity for circularly polarized light, as well as the
semiclassical limit. These all provide verifiable predictions
distinct to Dirac physics that can give additional support for
the existence of a Weyl semimetal.

II. DYNAMICAL CONDUCTIVITY OF A WEYL
SEMIMETAL

The Hamiltonian for an isolated Weyl point in a magnetic
field is given by

H =
[

− i∇ + e

c
A

]
· σ , (2)

where e is the electron charge and c is the speed of light. In the
above we have ignored the effect of Zeeman splitting since this
effect should be small at accessible magnetic field strengths.
The spin degeneracy is accounted for in the number of Weyl
points NW . We consider a field B = Bẑ, and use the gauge
Ay = Az = 0 and Ax = −By. We work in units where h̄ =
kB = vF = 1. It is convenient to define the magnetic length
which is given by l2

B = c/eB. We define the operators

a = lb√
2

(�x − i�y), (3)

a† = lb√
2

(�x + i�y), (4)

where � = −i∇ + eA. Then, the Hamiltonian is given by the
following set of 2 × 2 matrices

H =
(

kz

√
2

lB
a

√
2

lB
a† −kz

)
. (5)

First we find solutions to the eigenvalue problem Hψ = Eψ .
We take ψ = ( λunλ

vnλ
) and for n �= 0 we obtain

±En = ±
√

2n

l2
B

+ k2
z = λ

√
2n

l2
B

+ k2
z = Enλ (6)

and

vnλ

√
2n

lB
= unλλ(Enλ − kz). (7)

This is the same equation as for a superconductor, with the
identification kz = ε, Enλ = E and

√
2n/lB = �. So

unλ =
√

1

2

(
1 + kz

Enλ

)
, (8)

vnλ =
√

1

2

(
1 − kz

Enλ

)
. (9)

For n = 0 we have

E0 = −kz (10)

FIG. 1. (Color online) Dispersive Landau level structure for a
Weyl semimetal at finite chemical potential. In this figure the chemical
potential lies between the fifth and sixth Landau levels. The arrow
at kz = 0 shows an interband transition from n = 5 to n = 6. These
interband transitions at kz = 0 give the main set of peaks shown in
Fig. 2. The two transitions at finite kz occur between the n = 0 and
n = 1 Landau levels. They occur when μ lies between two Landau
levels and are responsible for the additional bumps seen in Fig. 4.

and

ψ =
(

0
1

)
. (11)

These equations describe the energy level structure and
wave functions for the set of 3D Landau levels generated by
the magnetic field. Unlike in the 2D case these Landau levels
are dispersive (in kz) as shown in Fig. 1. The structure of
these energy levels will control the shape of the dynamical
conductivity, as we will elaborate on later.

The dynamical conductivity tensor can be obtained from
the Kubo formula. Expressed in the Landau level basis in the
clean limit we have

σαβ = − ie2

2πl2
B

∑
nn′

∑
λλ′

∫
dkz

2π

(
f (Enλ) − f (En′λ′)

Enλ − En′λ′

)

×
〈
ψn,λ,kz

∣∣jα

∣∣ψn′,λ′,kz

〉 〈
ψn′,λ′,kz

∣∣jβ

∣∣ψn,λ,kz

〉
ω + Enλ − En′λ′ + i0+ , (12)

where f (x) = 1/(1 + eβ(x−μ)), β is the inverse temperature,
and μ is the chemical potential. The current operators are given
by jα = i [H,xα] = σα . The chemical potential is related to the
density of carriers n0 through the density of states in a magnetic
field N (ω) by

n0 =
∫ ∞

−∞
dωN (ω)f (ω), (13)

N (ω) = 1

2π2l2
B

[
1 + 2

∞∑
n=1

Re

( |ω|√
ω2 − 2n

)]
. (14)

We first perform the sum over λ and λ′, this introduces extra
terms for the n = 0 level, but these additional terms all vanish.

245131-2
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Then, for the dissipative components of the conductivity tensor Re(σxx) and Im(σxy) we arrive at

Re(σxx) = − e2

8l2
B

∑
n

∫
dkz

2π

[(
f (En) − f (En+1) + f (−En+1) − f (−En)

En − En+1

)(
1 − k2

z

EnEn+1

)
δ(ω + En − En+1)

+
(

f (En+1) − f (−En) + f (En) − f (−En+1)

En + En+1

)(
1 + k2

z

EnEn+1

)
δ(ω − En − En+1)

]
, (15)

and

Im(σxy) = − e2

8l2
B

∑
n

∫
dkz

2π

[(
f (En+1) − f (En) + f (−En+1) − f (−En)

En − En+1

) (
1 − k2

z

EnEn+1

)
δ(ω + En − En+1)

+
(

f (−En) − f (En+1) + f (En) − f (−En+1)

En + En+1

) (
1 + k2

z

EnEn+1

)
δ(ω − En − En+1)

]
. (16)

In this problem the magnetic length lB sets a natural energy scale for the problem. So, for convenience, we define ω̄ = lBω,
k̄ = lBkz, and Ēn = lBEn = √

2n + k̄2. This choice of units will allow us to produce a single plot for all magnetic fields. In the
clean limit we can use the δ functions to do the integration over kz. We find that there are contributions from

k̄ = k̄± = ±1

2

√
4 − 4ω̄2(2n + 1) + ω̄4

ω̄2
, (17)

and we obtain the following formulas for the absorptive part of the conductivity tensor:

Re(σxx) = e2

8πlB

[
sinh

(
2+ω̄2

2ω̄T̄

)
cosh

(
μ̄

T̄

) + cosh
(

2+ω̄2

2ω̄T̄

) − sinh
(

2−ω̄2

2ω̄T̄

)
cosh

(
μ̄

T̄

) + cosh
(

2−ω̄2

2ω̄T̄

)
] ⌊

(ω̄2−2)2

8ω̄2

⌋∑
n=0

[
|2(2n + 1) − ω̄2|

ω̄
√

ω̄4 − 4ω̄2(2n + 1) + 4
θ (|

√
2 − ω̄|)

]
,

(18)

−Im(σxy) = e2

8πlB

[
eμ̄/T̄ + cosh

(
2−ω̄2

2ω̄T̄

)
cosh

(
μ̄

T̄

) + cosh
(

2−ω̄2

2ω̄T̄

) − eμ̄/T̄ + cosh
(

2+ω̄2

2ω̄T̄

)
cosh

(
μ̄

T̄

) + cosh
(

2+ω̄2

2ω̄T̄

)
] ⌊

(ω̄2−2)2

8ω̄2

⌋∑
n=0

[
|2(2n + 1) − ω̄2|

ω̄
√

ω̄4 − 4ω̄2(2n + 1) + 4
θ (|

√
2 − ω̄|)

]
.

(19)

In the above expressions �x� denotes the integer part of
x. Re(σxx) contains a series of peaks that sit on a linear
background (Fig. 2). The background is the result for free Dirac
fermions in absence of a magnetic field, namely σ0 = e2

24π
|ω|.

In the units of our plots this is a straight line with slope 1/3.
In the inset of Fig. 2 we show the real part of σxx over a larger
frequency range, showing that it becomes linear at large ω̄ with
small oscillations from the Landau level structure. For μ = 0
the peaks occur at ω̄ = √

2(n + 1) + √
2n for integer n. The

series of peaks corresponds to allowed interband transitions in
the Landau level structure. This peak spacing is proportional
to

√
B. From an experimental point of view this means one can

see well spaced peaks even for modest fields. The asymmetry
of the peaks is reflected by the square root singularity in
Eq. (18), physically it comes from the dispersive structure
of the Landau levels. The long tails of the peaks originate
from the square root singularity and add together to provide
the linear background we observe. In Fig. 2 we have shown
the real conductivity for three values of the chemical potential.
These values of the chemical potential are given by the energies
of the Landau levels. We see that as the chemical potential is
increased, the peaks at low energies disappear, and the optical
spectral weight is entirely transferred into an intraband peak
at low frequency. The pattern for how the peaks disappear is
reminiscent of what happens in graphene.21 For comparison

we have calculated the optical conductivity for graphene
(Fig. 3). Indeed, the peaks occur at the same positions as for
a Weyl semimetal, and disappear as the chemical potential
is increased. However, in graphene the Landau levels are
nondispersive, and changes to the optical conductivity can
only happen when the chemical potential passes through a
Landau level. In a Weyl semimetal, the dispersive nature of
the Landau levels produces a richer structure. Note the double
peak structure associated with the intraband peak in the dashed
curve of Fig. 3 at low energy. One comes from the 1 → 2
transition and the other from the 2 → 3 transition. Both are
allowed for μ = 2 which falls in the middle of a Landau level.

Figure 4 shows how the dispersive Landau level structure
affects the optical conductivity. The top panel shows the
evolution as the chemical potential is moved between two
adjacent Landau levels. Unlike in graphene, the spectral weight
of the interband peaks is continuously redistributed into the
intraband peak. The bottom panel shows how the conductivity
changes as the chemical potential moves through a Landau
level. As the chemical potential passes through a Landau level
there is a large redistribution of spectral weight, much like in
graphene. The lowest peak in the solid black curve disappears
entirely as μ sweeps through the energy of the first Landau
level, while the rest of the curve is unaffected. It reappears as a
peak in the dashed orange curve that comes from the intraband
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µ
µ
µ

FIG. 2. (Color online) The real part of the optical conductivity
(in units of e2/8πlB ) for μlB = 0, 1.4, and 2 as a function of ωlB .
In this figure we took T lB = 0.01. The conductivity is a series of
peaks which sit on a linear background. These peaks occur at the
kz = 0 value of the Landau levels shown in Fig. 1. The inset shows
the μ = 0 conductivity over a larger frequency range, demonstrating
its linearity. The background conductivity should be the result for
free fermions, which is a straight line of slope 1/3 in our units.

transition between the n = 1 and n = 2 Landau levels. The
tails of this new peak overlap with the original curve. As μ is
incremented further to 2 (the energy of the n = 2 Landau level)
the second peak in the black curve also becomes modified and
now carries only half its original spectral weight. In a next
step the remainder of this second peak will entirely disappear
into the intraband transitions. The dispersive Landau levels
decorate the graph with additional features. Both the top and
bottom panel of Fig. 4 show additional shoulders that are not

µ
µ

FIG. 3. (Color online) The real part of the optical conductivity (in
units of e2/8πlB ) for graphene in the clean limit. Here T lB = 0.01.
For μ = 0 there is a series of peaks at ω̄ = √

2(n + 1) + √
2n. As μ is

increased these peaks disappear and are transferred into the intraband
peak at low frequency.

µ
µ
µ
µ
µ

µ
µ
µ

FIG. 4. (Color online) The real part of the conductivity (in units of
e2/8πlB ) as a function of frequency for several values of the chemical
potential. The top panel illustrates how the conductivity changes as
the chemical potential sweeps between adjacent Landau levels. The
bottom panel illustrates the change in the optical conductivity as a
Landau level is crossed.

located at the signature frequencies ω̄ = √
2(n + 1) + √

2n.
These additional features are interband transitions involving
the zeroth Landau level. More precisely they are the n =
0 → n = 1 and n = 1 → n = 0 transitions. Since the zeroth
Landau level is an envelope for all the other Landau levels
these additional features exist for all values of the chemical
potential. For a chemical potential μ̄ the shoulders onset at
ω̄ = μ̄ +

√
μ̄2 + 2 and ω̄ = μ̄ +

√
μ̄2 − 2.

So far we have only discussed the diagonal conductivity
Re(σxx). For experiments that probe the polarization of
light, such as the Faraday and Kerr effects, the quantity
σ± = σxx ± iσxy is appropriate. σ+ describes light with right
handed polarization, and σ− describes light with left handed
polarization. The absorptive part of σ± is Re(σ±) = Re(σxx) ∓
Im(σxy). A plot of Re(σ−) is shown in Fig. 5. For left handed
light there is a cancellation between the Hall conductivity and
the longitudinal conductivity in the frequency range ω � 2μ.
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FIG. 5. The real part of the optical conductivity (in units of
e2/8πlB ) for left handed circularly polarized light for μ̄ = 2.0 and
T̄ = 0.01. In the low temperature limit, the imaginary part of the Hall
conductivity exactly cancels the real part of the diagonal conductivity
for ω̄ � 2μ̄.

For right handed polarization (not shown) the peaks in the
region ω � 2μ have double the magnitude as in Fig. 2. The
presence of peaks for left circularly polarized light in this
region could be a signature of correlation effects.

To realistically treat the problem of disorder (especially at
large scattering rates) one would need the study of the Kubo
formula expressed in terms of the spectral density A(k,ω). By
solving a Boltzmann equation, one could obtain an expression
for the self-energy. The imaginary part of the self-energy then
serves to broaden the spectral densities. Here we capture the
effect phenomenologically by introducing a scattering rate �.
By making the replacement

δ(z) → 1

π

�

�2 + z2
(20)

in Eq. (15) we can understand how weak scattering will effect
the conductivity. This replacement should give a qualitatively
correct picture for small values of the inverse scattering time �̄.

Figure 6 shows the real part of the transverse conduc-
tivity for �̄ = 0.05, 0.1, and 0.2. The straight red line
shows the conductivity of free 3D fermions σ0 for comparison.
The disorder tends to smear out the peaks, and at large ωlB
the conductivity trends towards the free limit as the disorder
is increased. In particular the scattering rate needs to be large
compared to the energy level spacing to see any peaks. In Fig. 6
the first few peaks are still very well defined for �̄ = 0.2. For
a Fermi velocity of vF ∼ 106 m/s, and B measured in Tesla,
this corresponds to a scattering rate of � ∼ 7

√
B meV.

Finally we consider the semiclassical limit. The semiclas-
sical limit occurs when the Landau level quantization is no
longer important.22 This occurs when the chemical potential is
the largest energy scale in the problem. For ĒN < μ̄ < ĒN+1,
with N � 1 we have that

�Ē = ĒN+1 − ĒN � 1

μ̄
. (21)

FIG. 6. (Color online) The real part of the optical conductivity
(in units of e2/8πlB ) for μ̄ = 0.0 and T̄ = 0.01 for several values of
scattering rate �̄. The red line shows the conductivity in the absence
of a magnetic field. Increasing disorder tends to blur out the peaks
towards the free limit.

In this limit, if one goes back to the unbarred units, the energy
spacing goes like B in contrast to the

√
B behavior at small μ.

The semiclassical resonance is shown in Fig. 7 for μ̄ = 5, and
10. It appears as a peak at 1/μ̄, and contains the spectral weight
from the interband transitions that have disappeared between
0 < ω̄ < 2μ̄. In graphene where the Landau levels are flat this
line is due only to the EN → EN+1 intraband transition. In
the present case however, the dispersive Landau level structure
gives contributions to this line shape from the set of transitions
En → En+1 with n ∈ [0,N ]. We can also see in Fig. 7 that as
we doubled μ the amount of area in the semiclassical peak
quadrupled. This is a reflection of the linear background of
the conductivity. For a chemical potential of μ, interband

µ
µ

FIG. 7. (Color online) The real part of the optical conductivity
(in units of e2/8πlB ) in the semiclassical limit. This occurs for large
values of the chemical potential. All the spectral weight of the now
forbidden interband transitions piles up into a single resonance at low
frequency.
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transitions are forbidden out to ω = 2μ. The linearity of the
conductivity combined with a sum rule shows that the area
under this peak should scale like μ2, as we observe.

III. DISCUSSION AND CONCLUSIONS

In this paper we calculated the optical conductivity for
a Weyl semimetal in the presence of a magnetic field. We
found that the dispersive Landau level structure produced a
set of asymmetric peaks on a linear background. The peaks
have a

√
B spacing, a signature of Dirac physics. The shape

of the peaks reflects a square root singularity, and their long
tails conspire together to give the linear background in this
case. The positions of the peaks occur at the same frequencies
as in graphene, although there are additional features when
the chemical potential falls between two Landau levels. We
also showed that for left hand polarized light that there is a
cancellation for frequencies ω < 2μ, and peaks in this region
could be associated with interaction effects. We showed that
the semiclassical resonance has a typical line shape, but that it
consists of many intraband transitions and has spectral weight
thats scale like μ2. We also showed the effect of weak disorder.
The sharp peaks tend to blur out towards the linear background
as the scattering rate increased. This may make the peaks hard
to see in dirty samples. In particular, the scatting rate needs to
be less than the Landau level spacing for the peaks to still be
observable.

Finally, we would like to make a remark on units. Through-
out the paper we have used the dimensionless units where lB set
the energy scale. For convenience we include the conversion
to “real” units. For vF measured in m/s and B measured in T
we have

l−1
B = 36.3vF

√
B × 10−9 eV. (22)

This conversion will be useful for comparing to experimental
results. For the quasicrystals the chemical potential sits at
the Fermi level. The estimated value for the Fermi velocity
is vF = 4.3 × 107 cm/s.17 This sets the magnetic energy at
l−1
B = 15.6

√
B meV for the quasicrystalline candidates. In the

pyrochlore iridates (such as Y2Ir2O7) the chemical potential
also sits at the Fermi level and the Fermi velocities are
estimated to be about an order of magnitude smaller than in
graphene.2 In this case the magnetic energy is approximately
l−1
B = 3.63

√
B meV. At accessible magnetic fields 0 <

√
B �

6, and so the effects presented in this paper should be
observable at reasonable energies.
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Chapter 6
Conclusions

In this thesis we presented the results for the finite frequency optical conductivity in

a variety of materials that exhibit Dirac like physics in their low energy excitations.

Papers I and II describe calculations relevant for a new experimental technique, near

field optics. Near field optics pushes spectroscopy into the finite momentum transfer

regime. It can be used to study collective modes such as plasmons or plasmarons. It

also allows for the extraction of the finite q conductivity. Previously, measurements

of the optical conductivity were limited to σ(q = 0, ω). That is, the conductivity only

contained information about frequency. The new near field technique give information

about both momentum, q and frequency, ω. This puts the technique on equal footing

with ARPES. ARPES is able to directly probe the band structure of solids, but is

limited by being a surface sensitive probe. The optical conductivity directly probes

the bulk states. Thus, this near field optical technique will be able to directly probe

the band structure of the bulk states.

Further extensions of this work can be the application of this technique to many

other systems. It will be exciting to see what kinds of systems near field optics

can be applied to. This technique may open the door to presently unmeasurable

quantities. An example of such a quantity is the Hall viscosity. The Hall viscosity is

the anti-symmetric part of the viscosity tensor (in analogy with the Hall conductivity).

For systems that preserve time reversal it is guaranteed to vanish. For systems that

spontaneously break time-reversal (like quantum Hall states) it may be non-vanishing.
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It has been noted that the Hall viscosity is related to the q2 part of the finite momentum

conductivity. Thus, it might be possible to extract information about the Hall viscosity

from near field optics. This would be a very exciting possibility!

Papers III and IV focused on the application of the YRZ model of the underdoped

cuprates. This model has been successful at agreeing qualitatively with a wide range

of experiential data. In this thesis we presented the extension to the c-axis optical

properties. Our calculations show excellent agreement with the existing experimental

data. The YRZ model naturally explains many previously anomalous results since

it naturally reconstructs the Fermi surface as doping is changed. Any model that

has a reconstructed Fermi surface should also agree with the existing data. It would

be very useful to find instances in which the YRZ model does not succeed. Perhaps

more intimately linking it with a microscopic model will be able to expose some of

the weaknesses of the YRZ model.

There are still some further directions that one could push the YRZ model. We

added a scattering rate in an ad-hoc fashion. It would be nice to have a derivation for

the form of the scattering rate, perhaps from the solution of a quantum Boltzmann

equation. It is also not clear how to study the properties in a Magnetic field using the

YRZ model. Since the model does not start with a Hamiltonian it is hard to know

how to correctly add a magnetic field to the calculations. It would be very interesting

to look for quantum oscillations in a magnetic field using an appropriate extension of

the YRZ model.

Lastly, we considered a new topological class of materials, the Weyl semimetal.

We focused on calculating the magneto-optical response, and found signatures of the

underlying relativistic physics. Candidate materials could be checked for Weyl points

by examining the Landau level structure in a magnetic field. A shortcoming of this

calculation is that we only considered the bulk states. Weyl semimetals also have

interesting surface states that will make a contribution to the conductivity. The surface

state contribution could play an important role, especially at low energies. Starting

from a simple microscopic Hamiltonian, it would be possible to include the effects of

both the bulk and the surface states. Our inclusion of scattering was also treated in

the simplest approximation. For a realistic discussion of scattering one needs to go
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back to the spectral functions in a magnetic field and add the appropriate self-energy

corrections. This direction may need to be explored if scattering is important in

candidate Weyl semimetals.

Weyl semimetals have still not been observed in Nature, and so it is important to

classify them further. For the most part research has focused on the properties most

directly related to their non-trivial topology. Further calculations could include the

study of thermodynamic properties in a magnetic field, for example. It could also

be interesting to look at the effect of a Weyl semimetal under strain. Graphene is

known to have a very interesting response to strain. In graphene strain can induce

pseudomagnetic fields on the order of 100’s of Tesla. Once some candidate Weyl

semimetals are more clearly established, one could look for the shear modes of the

lattice and see if a similar effect is expected to exist in these materials.
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