
 

   

CHARACTERIZING THE ROLE OF TOLL-LIKE 

RECEPTOR 2 IN SENSING AND REGULATING HUMAN 

IMMUNDEFICIENCY VIRUS-1 INFECTION FROM 

MOTHER-TO-CHILD THROUGH BREAST MILK 

By 

Bethany Michele Henrick, BSc 

 

A thesis submitted in conformity with the requirements for the degree of 

Doctor of Philosophy 

McMaster University 

© Copyright by Bethany M. Henrick, July 2013. All rights reserved. 

 
 
 

 
 
 
 
 
 
 
 
 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 ii 

DOCTOR OF PHILOSOPHY (2013)    McMaster University 
(Medical Sciences)            Hamilton, Ontario 
 
 
 
 
TITLE:   Characterizing the Role of Toll-like Receptor 2 in Sensing and  

   Regulating Human Immunodeficiency Virus-1 Infection from  

   Mother-to-Child Through Breast Milk 

 

AUTHOR:  Bethany Michele Henrick, BSc (Honours) 

 

SUPERVISOR: Dr. Kenneth L. Rosenthal, PhD 

NUMBER of PAGES:  



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 iii 

⎯TABLE OF CONTENTS ⎯  

 
Title Page                     i 
Descriptive Note                   ii 
Table of Contents                  iii 
Abstract                    v 
Acknowledgements                  vi 
List of Abbreviations                 vii 
Table of Figures                   x 
Preamble                   xi   
     
Chapter 1: Introduction………………………………………………………………...1-46 
   
1.0 Human Immunodeficiency Virus (HIV): Origins, Global Impact and Response 
 1.1 Structure  
  1.1.1 Envelope (ENV) 
  1.1.2 GAG 
 1.2 Infection Cycle 
 1.3 Transmission 
  1.3.1 Confounding Risk Factors 
  1.3.2 Viral Bottleneck  
 1.4 Course of Infection 
  1.4.1 Acute 
  1.4.2 Asymptomatic 
  1.4.3 AIDS 
 
2.0  Pattern Recognition Receptors and HIV Immunopathogenesis 
 2.1 Viral Recognition  
 2.2 Chronic Immune Activation 
 2.3 Regulation of TLR Mediated Immune Activation 
 
3.0 Mother-to-Child HIV Transmission 
 3.1 Anatomy of the Mammary Gland  
 3.2 Risk Factors 
 3.3 Viral Determinants of Transmission through Breast Milk  
 3.4 Prevention of Transmission through Breast Milk 
  3.4.1 Antiretroviral Therapies 
  3.4.2 Exclusive Breastfeeding 
 3.5 The Role of Breast Milk in Mother-to-Child Transmission of HIV 
  3.5.1 Non-cellular Components 
  3.5.2 Cellular Components 
 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 iv 

4.0 Hypothesis & Objectives…………………………………………………………47 
 
Chapter 2: Milk Matters: Soluble Toll-Like Receptor 2 (sTLR2) in Breast Milk   
       Significantly Inhibits HIV-1 Infection and Inflammation………………51                                                
  (Published: July 2012; PLoS ONE) 
 
Chapter 3: sTLR2 is significantly elevated in HIV-1 infected breast milk and inhibits  
       HIV-1 induced cellular activation, inflammation and infection…...................62 
  (Submitted: June 2013: Journal of Infectious Diseases) 
 
Chapter 4: Unlikely Suitors: Identification of Novel HIV-1 PAMPS that Activate TLR2  
       and Significantly Increase HIV Integration………………………………......99 
  (Submitted: May 2013: Journal of Virology) 
 
Chapter 5: Discussion……………………………………………………………...…...148 
 
Chapter 6: Concluding Remarks………………………………………………………..163 
 
Chapter 7: References (for Chapters 1, 5 and 6)………………………………………..165 
 
Appendix 1 (Figures Included in the Discussion)………………………………………185 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 v 

 
—ABSTRACT— 

 

 Breastfeeding from HIV-infected mothers is one of the major sources of pediatric 

HIV-1 infection; however, an intervention that promotes exclusive breastfeeding has 

significantly reduced vertical HIV transmission rates and infant mortality.  The 

mechanisms underlying this phenomenon remain unknown; however, have been closely 

linked to high levels of innate immune factors in breast milk.  Indeed, the level of several 

innate factors in breast milk correlate with protection and/or have direct anti-viral 

properties in vitro.  The innate immune factor, soluble TLR2 (sTLR2) is found in high 

concentration in breast milk and has previously been investigated for its anti-bacterial 

properties; however, its anti-viral properties remain poorly understood.  Thus, the 

research presented in this thesis extended our understanding of sTLR2 by characterizing 

the mechanisms by which sTLR2 inhibited HIV-induced inflammation and infection.  

Chapter 2 examined the predominant forms of sTLR2 in breast milk from different 

women, its cellular source, bioavailability and kinetics postpartum.  Functionally, we 

confirmed sTLR2’s anti-bacterial properties and extended to show, for the first time, that 

sTLR2 directly inhibited HIV infection in vitro.   Chapter 3 documented a potential 

mechanism of sTLR2’s direct inhibition of HIV infection in vitro and, investigated 

sTLR2 and TLR2 expression in HIV uninfected compared to HIV infected breast milk 

and breast milk cells, respectively.  Chapter 4 investigated the role of TLR2’s recognition 

of novel HIV pathogen associated molecular patterns (PAMPs), and whether TLR2 

expression increased HIV infection and integration.  Taken together, we present novel 

anti-viral functions of sTLR2 by demonstrating that sTLR2 bound to specific HIV 

PAMPs, which led to significantly decreased HIV-induced inflammation, co-receptor 

expression, and HIV infection.  Furthermore, we demonstrated, for the first time, that 

TLR2 recognizes specific HIV PAMPs, which led to significantly increased pro-

inflammatory cytokine production, co-receptor expression and HIV infection.  Thus, 

sTLR2 and TLR2 represent innate immune factors that might have preventative and 

therapeutic applications for both infants and adults in the future.
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— PREAMBLE — 
 
 The research presented in this thesis includes material that has been previously 

published or has been submitted for publication.  Chapter 1 provides an overview of 

human immunodeficiency virus (HIV) including the origins, global impact, structure, 

infection cycle, immunopathogenesis.  As well, it highlights mother-to-child transmission 

(MTCT) of HIV and focuses on breast milk immunology as a protective mucosal fluid.  

Chapters 2 through 4 present three peer-reviewed scientific manuscripts that, as of July 

2013, are published or have been submitted. Completion of the research for the each 

manuscript required collaboration with colleagues and, therefore, resulted in multiple 

authors. 

 
CHAPTER 2 Henrick BM, Nag K, Yao X-D, Drannik AG, Aldrovandi GM, Rosenthal  
  KL. Milk matters: soluble Toll-like receptor 2 (sTLR2) in breast milk  
  significantly inhibits HIV-1 infection and inflammation. PLoS ONE 2012  
  July 6; 7:e40138. 
 
 This work was conducted from 2008 to 2010. I designed and performed the 

experiments, analyzed and interpreted the data, and wrote the manuscript.  Drs. Kakon 

Nag (post-doctoral fellow), Xiao-Dan Yao (research scientist), and Anna Drannik (PhD 

candidate), all at McMaster University, provided guidance in the design of experiments, 

assisted with experiments and offered scientific input. Our collaborator, Dr. Grace 

Aldrovandi (University of California Los Angeles) provided multiple breast milk samples 

for use in this study.  In addition, we started the Hamilton Breast Milk Cohort (Research 

Ethics Board #08-176) to collect HIV-uninfected breast milk samples from the area.  Dr. 
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Kenneth Rosenthal, my supervisor provided guidance and supervision throughout the 

study. 

 

CHAPTER 3 Henrick BM, Yao X-D, Nag K, Abumiku A, Rosenthal KL. Direct binding 
  of sTLR2 to HIV-1 structural proteins reduces cellular activation and  
  inhibits HIV-1 infection. 
 
 This work was conducted from 2011 to 2013. I designed and performed the 

experiments, analyzed and interpreted the data, and wrote the manuscript.  Dr. Xiao-Dan 

Yao (research scientist) provided novel technology and offered scientific input.  Dr. 

Kakon Nag (post-doctoral fellow) provided novel technology.  Our collaborator Dr. 

Alash’le Abumiku (Institute of Virology, University of Maryland, USA; Institute of 

Human Virology, Nigeria) provided breast milk samples.  Dr. Kenneth Rosenthal 

provided guidance and supervision for the preparation of the manuscript.  

 

CHAPTER 4 Henrick BM, Yao X-D, Rosenthal KL. Unlikely Suitors: Identification of  
  HIV-1 Ligands that Activate Through TLR2 and Significantly Increase  
  HIV Infection/Integration.  Submitted to Journal of Virology. 
 
 This work was conducted from 2011 to 2013. I designed and performed the 

experiments, analyzed and interpreted the data, and wrote the manuscript.  Dr. Xiao-Dan 

Yao (research scientist) provided novel technology and offered scientific input.  Dr. 

Kenneth Rosenthal provided supervision, ideas and general guidance throughout the 

study.
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⎯  CHAPTER 1 ⎯  
 
1.0 HIV: Origins, Global Impact and Response 

 Human immunodeficiency virus (HIV) is a lentivirus, originating from the 

retroviridae family, and is the etiological agent of human acquired immunodeficiency 

syndrome (AIDS).  Lentiviruses cause slow, persistent infections unique to their 

mammalian hosts (i.e. equine, bovine, ovine, lagomorphine, feline, and simian) [1,2].  

The human lentivirus, HIV, which is categorized into two main types (HIV-1 and HIV-2) 

is thought to have entered into the human population as a result of multiple zoonotic 

transfers from primates infected with the lentivirus, simian immunodeficiency virus 

(SIV).  The most accepted explanation, ‘the natural transfer theory’, describes multiple 

human cutaneous and mucosal exposures with SIV-infected body fluids, which are a 

common occurrence during bush meat hunting [3].  Indeed, epidemiological studies 

indicate that a substantial percentage of people living in rural areas and participating in 

bush meat hunting, have been exposed to SIV [4].  The exact mechanism that enabled 

SIV to mutate in order to propagate in humans remains poorly understood, although it 

likely has to do with the error prone reverse transcription of the virus and its astonishing 

ability to evolve in relation to mammalian DNA [5]. 

 

 HIV-1 is categorized into four major groups (M, N, O, P), each of which is a 

result of an individual cross-species transfer event.  Specifically, groups M and N share 

the closest genetic relationship to SIV infecting chimpanzees (SIVcpz) [6], while groups 

P and O are closely related to SIV infecting gorillas (SIVgor) [7].  Group M, which is 
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responsible for the pandemic of HIV-1, is believed to have crossed species between 1910-

1930 in colonial West Africa near Kinshasa (formally Leopoldville, Republic of the 

Congo) [8,9], as it was here that the first documented case of HIV-1 was identified in 

historic blood samples obtained between 1959 and 1960 [10].   

 

 HIV infection went largely unnoticed until it presented itself in the United States 

(US) in the early 1980’s.  It was during this time that physicians began documenting rare 

opportunistic infections, including Pneumocystis carinii pneumonia, candida mucosal 

infections, and cytomegalovirus infections, in young homosexual men from Los Angeles, 

CA who had previously been healthy [11].  Following these reports, clusters of other 

unusual opportunistic infections that were previously exclusively unique to 

immunosuppressed individuals [12], including Kaposi’s Sarcoma and lymphadenopathy, 

were identified in men living in major urban centres in the US.  In the summer of 1982, 

the disease was referred to as Acquired Immune Deficiency Syndrome (AIDS) and, by 

1983, Dr. Luc Montagnier, Fancoise Barre-Sinoussi, and Robert Gallo had independently 

identified the etiological agent that caused AIDS.  By 1986, the causative agent was 

termed HIV [13].  This name was derived from the virus’ ability to incapacitate the 

immune system, thus rendering infected individuals unable to mount an immune response 

to opportunistic infections, most of which were lethal. 

  

 Since HIV was first recognized, an estimated 60 million people worldwide have 

become infected with the virus.   Current estimations report approximately 33.2 million 
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HIV-1-infected people globally and, without greater universal access to testing, 

counseling, and treatment, the number is expected to surpass 60 million by 2050 [14].  

The most endemic areas, including sub-Saharan Africa, account for approximately 70% 

of the global pandemic.  More alarming, in the high endemic area in sub-Saharan African 

countries where infection rates are at an estimated 23-26%, including Botswana and 

Swaziland, reports estimate that almost a fifth of their adult population will die 

prematurely from AIDS [14,15].  However, despite these disturbing statistics, the 

prevalence of HIV-1 infection globally has stabilized and begun to decline in many high 

incidence countries, which is likely due to the unprecedented application of universal 

antiretroviral (ARV) drug therapy, increased access to testing and education about 

prevention [16]. 

 

 Children account for approximately 2.5 million of the global HIV-1 burden [16] 

which is primarily transmitted from their HIV-1-infected mothers during pregnancy, 

delivery, and/or breastfeeding.  HIV-2 is very rarely transmitted to infants; therefore, the 

vast majority of research investigates mother-to-child transmission (MTCT) of HIV-1 

[17].  Ninety percent of all HIV-infected children live in sub-Saharan Africa and studies 

indicate that one in three newborns infected with HIV-1 will die before the age of one, 

over one half of these will die before reaching their second birthday, and the majority of 

such infected children will die before they are five years old [18].  Notably, however, 

significant progress has been made in the past decade in the prevention of mother-to-child 

transmission.  The number of infants infected during pregnancy and delivery has 
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dramatically declined, which is largely due to short-course ARV therapy given around the 

time of delivery [16].  However, in 2011, only 57% of women in low to middle income 

countries received a World Health Organization (WHO)-recommended regimen of ARV 

therapy [19], which rarely continues postnatally [20].  For this reason, as well as the fact 

that breastfeeding is associated with a 50% reduction in hospitalization for diarrheal and 

30% reduction for respiratory disease, the WHO has endorsed a prevention therapy that 

promotes exclusive breastfeeding irrespective of the HIV status of the mother when safe 

and accessible feeding alternatives are not available [21].  While the risk of HIV 

transmission from mother-to-child (also known as vertical transmission) exists, the risk is 

significantly reduced in mothers that exclusively compared to mix breast feed [22-25], 

and, importantly, EBF is a feasible preventative strategy in resource poor areas. 
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1.2 HIV-1 Structure  

 HIV-1 is a 100 nm diameter spherical retrovirus with nine genes (ENV, GAG, 

POL, nef, rev, tat, vif, vpu and vpr) that encode for 15 distinct proteins (gp120, gp41, 

p24, p17, p7, p6, integrase, protease, reverse transcriptase, vif, vpu, vpr, nef, rev and tat) 

[2,26].  The genes are classified into two major groups: structural genes (GAG, POL, and 

ENV) and regulatory/accessory genes (nef, rev, tat, vif, vpu, and vpr).  Additionally, as a 

provirus, each end of the genome contains long-terminal repeats sequences (LTRs) along 

with promoters, enhancers, and other gene sites that facilitate binding to host cellular 

transcription factors including nuclear factor kappa light chain enhancer of B cells 

(NFκB), activator protein (AP)-1, and nuclear factor of activated T cells (NFAT) [27].   

 

 Mature virions consist of a viral membrane, which is a host-derived phospholipid 

bilayer containing approximately 10-100 surface glycoprotein spikes [28] (Fig.1).  The 

glycoprotein spike, known as the envelope protein (ENV) is a trimer composed of 

triplicate copies of two non-covalently associated proteins: surface glycoprotein, gp120, 

which interacts with host cellular receptors, and gp41, the transmembrane protein 

responsible for viral and target membrane fusion [29].  The viral membrane is stabilized 

internally by the viral matrix protein (MA, p17) [30,31].  Within the viral envelope, there 

is a cone-shaped capsid comprised of capsid protein (CA, p24), which encapsulates two 

single-stranded, positive-sense RNA molecules and enzymatic proteins critical to viral 

integration, including: (1) reverse transcriptase (RT), (2) integrase (IN), and (3) protease 

(PR).  Additionally, the capsid contains accessory and regulatory proteins (vif, vpu, vpr, 
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nef), as well as cellular factors [32] (Figure 1; [33]).  To thoroughly understand and 

complement the data defining Toll-like receptor (TLR) 2-dependent, HIV-1-induced 

cellular activation and soluble TLR (sTLR) 2 inhibition of HIV-1 infection described in 

Chapters 2 through 4, the HIV-1 structural proteins studied in this thesis will be described 

in greater detail than the accessory and regulatory proteins. 

 

 

Figure 1. Figure of a mature virion.  The phospholipid bilayer contains 10-100 ENV 

(gp120 and gp41) spikes.  The matrix proteins (MA; p17) provide the inner core, capsid 

proteins (CA; p24) comprise the inner capsid surrounding the two ssRNA, nucleocapsid 

protein (NC; p7), reverse transcriptase (RT), protease (PR), and integrase (IN).  Figure 

adapted from Sierra et al., 2005. 
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1.2.1 Envelope (ENV) 

 The ENV protein is comprised of two non-covalently bound glycoproteins, gp120 

and gp41.  Glycoprotein 120 (gp120) is the sole surface viral antigen and mediates viral-

host interaction essential to viral entry.  This glycoprotein has conserved inner and outer 

portions which are retained among all primary immunodeficiency viral subtypes; and 

these permit the virus to bind to host cluster of differentiation (CD) 4 and co-receptors, C-

C chemokine receptor type (CCR) 5 and C-X-C chemokine receptor type (CXCR) 4 [34].  

Notably, gp120 is highly variable (largely restricted to the variable loops (V1-V5)), which 

are key to HIV’s success in circumventing host adaptive immune responses (reviewed in 

[35].  Importantly, gp120 peptides are known to dysregulate the biological activity of 

many cell types, including the loss of tight junctions in the female genital tract tissues 

[36], as well as being responsible for the immunostimulatory effects related to HIV-1-

associated dementia [37,38]. 

 

 Glycoprotein 41 (gp41) is the transmembrane glycoprotein component of ENV 

that mediates viral-host fusion through C-terminal interactions rooted in the viral 

membrane and the N-terminal spike or ectodomain fusing with the host plasma 

membrane.  As a mature virion, gp41 lies underneath gp120 in its pre-hairpin state 

(Fig.2), and once revealed after a conformational change in the envelope complex, the 

interaction between gp120 and host CD4 and CCR5 receptors occurs (Fig.2) and it inserts 

its N-terminus peptides into the host cell membrane.  Subsequently, gp41 

conformationally rearranges by bringing the N-terminal and C-terminal ends towards 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 8 

each other, thus pulling the host and viral membranes into close proximity to complete 

the fusion process [39] (Fig.2; step 4).  Additionally, gp41 has been shown to regulate 

cellular functions by interacting with a number of cellular proteins [40], and manipulates 

the expression of chemokine receptors on monocytes [41].  Additionally, gp41 

significantly enhances HIV-1 infection and replication by binding to CD74 and triggering 

cellular division through the MAPK/ERK pathway [42].  Furthermore, we showed that 

gp41 significantly increased cellular activation, pro-inflammatory cytokine production, 

and CCR5 expression in macrophages through a TLR2/1-dependent mechanism (Henrick 

et al., 2013; submitted, Chapter 4) that was readily inhibited by sTLR2 (Henrick et al., 

2013b; submitted, Chapter 3). 

 

 1.1.2 GAG  

 The precursor GAG polyprotein (Pr55GAG) self-assembles on the inner surface 

of an immature virion, and during maturation is proteolytically cleaved by viral protease 

into four proteins: p17 (matrix protein, MA), p24 (capsid protein, CA), p6 (nucleocapsid 

protein, NC), and p7, which are all critically important in the formation of a functional 

infectious virion [43].  Pr55GAG has previously been referred to as the ‘particle-making 

machine’ as it will continuously form virus-like particles (VLPs) in the absence of other 

viral proteins or RNA [44,45].  Due to this intrinsic feature, soluble GAG proteins are 

often found at high levels systemically and have been shown to correlate with disease 

progression [46,47]. 
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 p17 (MA) is a 132 amino acid myristoylated polypeptide originating from the N-

terminal end of the Pr55GAG polyprotein [30].  Using its myristoylated N-terminus, p17 

anchors Pr55GAG to the inner surface of host cells [48], thus directing GAG polyproteins 

to the plasma membrane during assembly and budding [43].  Mutations to p17, including 

the N-terminal myristoylation, severely inhibit viral budding and lead to the accumulation 

of viral particles in the cytoplasm of infected cells [45].     Importantly, it has recently 

been shown that p17 enhances HIV-1 infection and replication in permissive cells by 

triggering cellular activation possibly through CXC chemokine receptor 1 (CXCR1) 

[49,50].  In addition, we showed that p17 activates cells through heterodimer TLR2/1 

leading to increased NFκB activation, IL-8 production, and CCR5 expression (Henrick et 

al., 2013; submitted, Chapter 4).  Furthermore, sTLR2 directly interacts with p17, thus 

inhibiting its induced cellular activation (Henrick et al., 2013b; submitted, Chapter 3). 

 

 

 p24 (CA) forms the cone-shaped capsid core surrounding the viral genome and 

core-associated proteins [44,51].  This protein plays an important role in post-entry 

integration, assembly, budding, and maturation of new virions [44,51].  Furthermore, high 

circulating levels of p24 correlate with disease progression [46,47] and have been shown 

to stimulate peripheral blood mononuclear cells (PBMCs) of HIV-1-infected individuals 

receiving highly active anti-retroviral therapy (HAART) [52].  Our recent data indicated 

that p24 binds to TLR2/6 leading to increased cellular activation.  Importantly, however, 

in cells lacking TLR6 expression, p24 readily blocked gp41 and p17-induced activation 
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(Henrick et al., 2013; submitted, Chapter 4).  Furthermore, p24 interacts directly with 

sTLR2 in vitro and significantly correlates with sTLR2 levels in HIV-1-infected breast 

milk (Henrick et al., 2013b; submitted, Chapter 3). 

 

 Surprisingly, however, HIV-1 proteins have not been well studied for their ability 

to serve as viral pathogen associated molecular patterns (PAMPs), despite numerous 

publications that emphasize their immunostimulatory effects.  Specifically, gp120 has 

been shown to stimulate the production of pro-inflammatory cytokines related to HIV-1-

associated dementia [37,38].  Additionally, a seminal publication by Nazli et al., (2010) 

highlighted the role of gp120-specific impairment of tight junctions in genital and rectal 

mucosae, which might be critical to transmission and acute infection [36].  Furthermore, 

gp41 binds to CD74 and significantly enhances HIV-1 infection and replication 

[42].  Additionally, p24 exposure stimulated PBMCs obtained from HIV-1-infected 

individuals receiving HAART to produce increased IL-10 [52].  Furthermore, p17 

possesses potent immunostimulatory properties and increased HIV-1 replication in 

activated PBMCs, [50,53].  Thus, HIV-1 creates a more suitable environment for its own 

integration and replication via virus-induced innate immune activation.     
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1.2 Viral Infection Cycle 

 HIV infection and replication is an intricate biological process that involves 

several molecular phases as reviewed by Sierra et al., 2005 [33], including (1) viral-host 

binding and entry, (2) reverse transcription of viral RNA; (3) proviral integration into host 

DNA; (4) viral DNA transcription; (5) mRNA translation; (6) assembly, budding, and 

maturation of virions. 

 

 HIV binding and entry into permissible cells is the first critical phase in the viral 

infection cycle and can be divided into four major steps.  Initially, viral-host interactions 

are relatively non-specific.  Here, viral envelope proteins (ENV or non-specific host 

cellular membrane proteins previously incorporated into the virion bilayer) attach to 

negatively charged cell surface proteoglycans [54].  As well, more specific interactions 

between HIV and α4β7 integrins and/or dendritic cell-specific intercellular adhesion 

molecule-2-grabbing non-integrin (DC-SIGN) have been documented [55].  These non-

canonical interactions facilitate viral ENV proximity with the primary host receptor, CD4.  

Next, gp120 binds to CD4 (Fig.2, step 2), using a specific CD4 binding site (CD4bs), 

which triggers a conformational change within gp120 causing its variable loop regions to 

rotate outward [34].  The third step involves gp120 attaching to co-receptor CCR5 or 

CXCR4 (Fig.2, step 3).  Notably, HIV strains that use CCR5 as a co-receptor are 

classified as R5 virus, while virus strains that preferentially use CXCR4 are termed X4 

virus [56,57].  Upon co-receptor attachment, the ENV protein ejects the transmembrane 

fusion protein, gp41, into the host cell membrane (Fig.2, step 4).  The N-terminal peptides 
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of gp41 attach to the target cell and fuse the virus and host membranes [58] (Fig. 2;  [56].  

Once fusion has taken place, the virion capsid is released into the host cell [56].  Inside 

the host cell, the virus requires the use of its RT, which is transported inside the viral 

capsid, to transcribe its ssRNA into proviral dsDNA [59].  RT is one of the defining 

features of all retroviruses and is paramount to the variation of HIV virions.  Reverse 

transcription is error-prone and lacks any proofreading function; therefore, during this 

step mutations frequently occur at a rate of about once every genome transfer [59].  The 

ability of the virus to diverge rapidly plays an important role in its ability to avoid 

stimulating the adaptive immune system and it quickly becomes resistant to ARV 

therapies [60]. 

 

Figure 2. Viral Binding to Host Cell.  Overview of viral entry into permissible cell in 

which (1) HIV ENV (gp120 and gp41); (2) Attaches to host CD4; (3) ENV undergoes a 

conformational change allowing gp120 to bind to co-receptor (CCR5 or CXCR4); (4) 

gp41 inserts into the host membrane allowing fusion of both membranes.  Figure adapted 

from Wilen et al., 2012. 
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 After RT, proviral cDNA is incorporated into the host DNA using the viral 

integrase (IN) enzyme, which is a necessary step in the retroviral infection cycle [33,60].   

Once integrated, proviral DNA is transcribed, starting LTR sequence, which functions as 

a promoter [33].  The LTR contains the transcriptional promoter TATA box and two 

specificity protein (Sp) 1 transcriptional factor sites [61].  Despite these transcriptional 

promoters, viral transcription is not efficient without HIV’s viral trans-activator protein 

(TAT), which significantly enhances viral transcription [62,63].  Notably, upstream of the 

viral promoter are transcriptional enhancers, NFκB, AP-1 and NFAT which, when 

activated following PAMP recognition, further promotes viral transcription [64].  After 

viral transcription, viral mRNA is exported to the cytoplasm and translated into three 

precursor proteins, Pr55(GAG), ENV, and GAG-POL polyproteins [33] 

 

 The assembly of new virions at the plasma membrane initiates the final stage of 

the viral infection cycle which is largely directed by Pr55GAG polyprotein [44,45].  

During assembly, Pr55GAG polyproteins associate with the inner surface of the cell 

membrane along with ENV proteins and HIV genomic RNA [33].  Once this happens, the 

virion starts forming into an immature HIV capsid and buds from the host cell taking a 

portion of the host cell’s phospholipid bilayer as its viral envelope [65].  After budding 

from the host cell, the virion matures as the Pr55GAG polyprotein is cleaved by viral PR, 

thus, resulting in the generation of structural proteins, p17 (MA), p24 (CA), p6 (NC) and 

p7 [63].  Together, these proteins produce a mature virion that is capable of infecting 

permissible cells. 
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Figure 3. Viral Infection Cycle.  The main steps of HIV replication include, (1) Viral 

binding, fusion, and capsid release into host cell; (2) Reverse transcription of viral RNA; 

(3) Integration of viral DNA into host genome; (4) Transcription of viral mRNA; (5) 

Translation of viral proteins; (6) Assembly, budding and maturation of new virions.  

Figure adapted from Sierra et al., 2005. 
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1.3 Transmission 

 An estimated 2.7 million people transmitted HIV infection in 2010 resulting from 

viral exposure across mucosal membranes, from mother-to-child or direct percutaneous 

injection through intravenous drug use and hypodermic needle accidents [16].  The vast 

majority of transmission (80%) occurs through sexual contact when infected seminal or 

vaginal fluid comes into contact with mucosal membranes [66].  HIV transmission 

probability per coital act is extremely low overall; however, confounding factors can 

significantly increase acquisition incidence.   

  

 1.3.1 Confounding Factors 

 Sexually transmitted infections (STIs) that cause genital ulcers or local 

inflammation lead to significant increases in HIV acquisition in susceptible individuals 

[67].  These coexisting infections are thought to abrogate barrier defenses and permit 

virions to directly enter the mucosa.  As well, STI-induced inflammation might attract 

permissible cells in the genital mucosa environment, thus leading to an increase in 

activated target cells and a two to 11-fold increase in HIV susceptibility [67].  

Additionally, HIV-infected people who also have an STI shed more HIV-1 virus in semen 

and vaginal fluids [68,69].  Male circumcision lowers the risk of HIV acquisition by 60%, 

although the exact mechanism accounting for this is not clear.  It has been proposed that 

removal of the foreskin, which is rich in Langerhans and dendritic cells (DCs), CD4+ T 

cells, and macrophages, might simply remove cells permissible from infection [70,71].  

Moreover, circumcised men are less likely to have micro-tears in the penile mucosa 
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during intercourse compared to uncircumcised men [72].  A study showed women are 

significantly more likely to acquire HIV if they are pregnant or breastfeeding compared to 

non-pregnant and non-lactating women.  This increased risk might be attributable to 

hormonal changes that likely affect the genital mucosa and/or immune response [73].  

The clinical stage of HIV infection can increase the risk of transmission since acutely 

infected individuals often have the highest viral burden with little immune control, and 

highly infectious virus [74,75].  Importantly, the most accurate predictor of transmission 

is viral load.  Indeed, in discordant couples, a 2.5-fold increase in transmission was 

documented when the HIV-infected partner’s viral load went up 10-fold [76].  A similar 

effect has been documented with MTCT of HIV through breast milk (discussed in Section 

3.1). 

 

 1.3.2 HIV Bottleneck and Founding Viruses  

 Although a chronically infected individual has a heterogeneous pool of HIV, only 

one or a few founder viruses are successfully transmitted to the susceptible individual 

[77].  The factors underlying this ‘transmission bottleneck’ are incompletely understood.  

In a study of 300 acutely infected individuals, approximately 80% of heterosexual 

subjects were infected by a single viral genome [78].  While approximately 68% of 

infants were infected by their mothers, 60% of men who have sex with men and 40% of 

intravenous drug users were infected by a single virus [79-84].  The selection of one 

founder virus remains unclear but is likely related to host biological mechanisms and/or 

the fitness of the virus itself [77].  It is well established, however, that founding viruses 
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are predominantly CCR5 tropic [85].  This phenomena is irrespective of the route of 

transmission and the fact that cellular targets for X4 tropic virus are readily available 

during acute infection [80].  Indeed, individuals with a CCR5 mutation, due to a 32 base 

pair deletion (known as CCR5∆32), are largely protected from acquiring HIV infection 

[85].  Given the inefficiency of transmission and the overwhelming evidence that one 

founder virus establishes new infection in the host, further understanding of acute 

infection and founder virus remains an important objective to effectively prevent HIV 

transmission.  
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1.4 Course of Infection 

 The natural course of untreated HIV infection in adults is well characterized and 

described below in Fig. 4; however, very little is known about the course of infection in 

infants and children.  Furthermore, the exact mechanism of transmission across the 

mucosal barrier (whether vaginal, penile, rectal, oral or gastrointestinal) remains poorly 

understood.  Vaginal HIV transmission is the most widely investigated route of 

transmission and several routes across the mucosal barrier have been proposed based on 

in vitro and ex vivo experiments including direct infection of mucosal epithelium [86], 

passage through tissue micro-tears [87], viral capture by the dendrites of Langerhans’ 

cells [88], passage between cells after loss of tight junctions [36], and transcytosis [89].  

To my knowledge, only one publication has investigated routes of MTCT in vivo using a 

humanized mouse model in which breast milk completely inhibited oral transmission of 

HIV [90].  Importantly, with the advent of this model, the characterization of MTCT of 

HIV will likely be studied in greater detail in the future; however, this section (1.4 Course 

of Infection) relies on data available detailing the course of infection in adults and SIV 

infection in non-human primates. 

 

 1.4.1 Acute Infection 

 Acute infection, commonly referred to as the primary infection or the initial phase, 

occurs in the first three to six weeks following transmission and is characterized by an 

exponential increase in systemic viral load (up to 107copies/mL HIV RNA systemically) 

and destruction of substantial proportions of mucosal and systemic CD4+ T cells.  During 
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this time, diseased individuals are highly infectious, however only about half of all 

acutely infected individuals exhibit general symptoms associated with acute retroviral 

syndrome (ARS) including fever, diarrhea, night sweats, and general malaise [91].  

Evidence from macaque primate models of acute SIV infection indicate that once virus 

has crossed the mucosa, CD4+ T cells and Langerhans cells are the first viral targets 

[1,92], although other DCs likely play an important role in transferring virus via DC-

SIGN [55].  Within the first few days after transmission, the high viremia facilitates 

widespread dissemination of HIV to lymphoid tissue, including the gut associated 

lymphoid tissue (GALT).  It is here that the most substantial loss of CCR5+ CD4+ T cells 

occurs.  Specifically, within the first three weeks of infection, up to 80% of CD4+ T cells 

are depleted from the gut and remain depleted evermore [93].  Despite the subsequent 

activation of DCs, natural killer (NK), NK T cells, and seroconversion, plasma viremia 

continues to rise, peaking at around 21-28 days post infection.  Importantly, following 

peak viremia, substantial increases in immune activation occur [94,95](Fig. 4). 

 

 1.4.2 Asymptomatic Infection 

 The asymptomatic or chronic phase is characterized with the dramatic decline of 

viremia from the acute peak to a relatively stable level, termed the viral set point, in 

which CD8+ T cells are largely responsible for virus control [96].  Importantly, the viral 

set point has been shown to correlate with the rate of disease progression to AIDS, which 

in untreated infection, results in a slow, steady CD4+ T cell decline and CD8+ T cell 

exhaustion in an average of 2-7 years [95].  This disease phase is largely asymptomatic; 
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however, the immune system is irreparably damaged through persistent immune 

activation (discussed in Section 2.2), low-level virus production (viral reservoirs), 

dysregulated expression and responsiveness of TLRs [97,98], high CD4+ turnover [99], 

and CD8+ cell exhaustion, as evidenced by the presence of activation markers HLA-DR 

and CD38, which are considered the most predictive of disease progression [100].  

Ultimately, this sustained immune activation leads to immune dysfunction and the onset 

of opportunistic infections that are characteristic of AIDS. 

 

 1.4.3 AIDS 

 The outcome of systemic CD4+ T cells counts below 200/mm3 generally signifies 

the onset of AIDS [101].  Concurrently, there is a rapid rise in viremia (Fig. 4) and 

opportunistic infections begin to appear, most commonly Pneumocystis pneumonia, re-

emergence of cytomegalovirus (CMV), and Epstein Barr Virus (EBV) [102].  Typically, 

these infections coincide with weight loss, fatigue, fever, and sweating and, if left 

untreated, will eventually lead to death. 
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Figure 4.  A schematic representation of untreated course of HIV infection.  Adapted 

from Forman et al., 2008. 
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2.0 Pattern Recognition Receptors and HIV Immunopathogenesis 

 There is a growing body of evidence that supports the idea that chronic immune 

activation drives HIV-specific immune dysfunction [95]; however, we still do not have a 

clear understanding of what fuels HIV immunopathogenesis.  Historically, research has 

focused on HIV-specific adaptive immune responses, whereas the role of innate immune 

responses have been largely overlooked, despite the fact that it provides the first line of 

defense and shapes adaptive responses.  Innate immune activation begins with the 

recognition of PAMPs leading to inflammatory and antiviral responses.  The 

identification of HIV PAMPs that are recognized by innate pattern recognition receptors 

(PRRs) remain poorly elucidated, although they likely play a critical role in driving 

chronic immune activation.  To complement our data identifying novel recognition of 

HIV structural proteins through TLR2, HIV PAMP-induced immune activation and 

infection studied in Chapters 4, this Section focuses on innate responses resulting from 

the recognition and associated immunopathogenesis specific to HIV infection. 
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2.1 Viral Recognition 

 Although our knowledge of HIV infection and pathogenesis continues to expand, 

our understanding of how HIV is recognized by the innate immune system remains 

poorly understood.  Indeed, innate immune recognition of PAMPs by PRRs is essential 

for an effective host response against invading pathogens [103,104], including HIV.  To 

date, the primary sensing model of HIV relies on the recognition of uridine-rich HIV 

ssRNA through endosomal and cytosolic PRRs [105].  Multiple families of intracellular, 

germline-encoded PRRs are responsible for triggering an innate immune response against 

HIV, including endosomal TLRs and cytosolic PRRs retinoic acid-inducible gene-like 

receptors (RIG-I) and myeloma differentiation-associated gene 5 (MDA5).  Currently, a 

total of 10 TLRs have been identified in humans that have proven fundamental in our 

understanding of early recognition and subsequent activation of immune responses to 

many pathogens.  The TLRs are categorized into two main categories: extracellular and 

endosomal.  The extracellular TLRs (TLR1, 2, 4, 5, 6, and 10) characteristically 

recognize bacterial, fungal and parasitic PAMPs, whereas, endosomal TLRs (TLR 3, 7/8, 

and 9) sense viral dsRNA and ssRNA, respectively [105-107].  Cytosolic PRRs, RIG-I 

and MDA-5 RNA helicases are pivotal in the recognition of cytoplasmic viral RNA.  

Specifically, during HIV infection, RIG-I and MDA-5 sense HIV entry and translation, 

respectively [108].  Specific to HIV infection, DC-SIGN, a C-lectin-like receptor (CLR), 

have been shown to mediate antigen presentation between DCs and CD4+ T cells [55].   
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 Although TLR2 is classically considered in the context of bacterial recognition, 

the breadth of ligand recognition has not been fully elucidated.  Indeed, since it was first 

identified in 1998 [109], it has been shown to sense specific PAMPs from a variety of 

phyla including viruses, bacteria, fungi, and parasites [110].  The reason for this wide 

breadth of pathogen recognition comes from its unique ability to heterodimerize with 

other members of the TLR1 superfamily including TLR1, 2, and 10, and non-TLR 

cellular molecules [110,111].  The crystal structure for TLR2/1 and TLR2/6 has been 

determined in which the extracellular domains of each heterodimer forms an ‘m’-shaped 

complex with specific bacterial ligands held in the crevice between the two TLRs [112].  

Specifically, these structures indicate that TLR2/1 recognizes triacylated bacterial 

lipoproteins, while TLR2/6 senses diacylated bacterial lipoproteins [112]. In this way, the 

ligand is required for the heterodimeric interaction and downstream signaling [112,113].  

Additionally, publications describe a TLR2/10 complex, although the ligand(s) and 

function of this heterodimer remains undetermined [114]. 

  

 Of particular interest to our studies is the number of viral proteins that have been 

identified as PAMPs for TLR2 including those from cytomegalovirus (CMV) [115], 

herpes simplex virus (HSV) [116], hepatitis C virus (HCV) [117], and measles virus 

[118].  Specifically, CMV glycoproteins B and H have been shown to directly interact 

with the TLR2/1 heterodimer, leading to activation of NFκB, thereby initiating pro-

inflammatory cytokine production which supports productive infection [115,119].  

Similarly, a recent publication indicated that HSV glycoproteins gH/gL and gB co-
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immunoprecipitated with TLR2, while only gH/gL led to downstream NFκB activation 

[116].  Furthermore, TLR2/1 and TLR2/6 were shown to be involved in sensing HCV 

core and NS3 proteins, respectively, which led to NFκB activation and significant 

increases in cytokine production in human macrophages and cell lines [117].  

Importantly, TLR2-/- mice did not produce pro-inflammatory cytokines compared to wild 

type mice after exposure to HCV core and NS3 proteins [117].  Additionally, the 

hemagglutinin protein of measles virus significantly increased cellular activation in 

human monocytic cells but, more importantly, facilitated virus spread by increasing the 

surface expression of the measles receptor, CD150 through a TLR2-dependent 

mechanism [118].  Several HIV structural proteins have immunomodulatory functions 

(described in detail in Section 1.1) that are likely critical for immunopathogenesis.  We 

recently showed that HIV proteins, p17, p24 and gp41 interacted with TLR2 leading to 

substantial increases in NFκB activation.  Specifically, p17 and gp41 interacted with 

TLR2/1, while p24 was sensed by TLR2/6 (Henrick et al, 2013; submitted, Chapter 4).  

Taken together, these publications highlight an understudied function of TLR2 and its 

heterodimers as important extracellular PRRs for viral PAMPs recognition that lead to 

increased cellular activation and facilitate viral entry.  
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2.2 Chronic Immune Activation 

 Increasing evidence supports the notion that chronic immune activation is a 

fundamental driver and a hallmark of HIV-1.  The mechanisms underlying chronic 

activation are believed to be primarily driven by translocation of bacterial and virus 

components from the gastrointestinal tract and low level viremia [99,120].  Indeed, 

increased lipopolysaccharide (LPS) levels in sera, a result of microbial translocation, 

strongly correlate with immune activation in chronically HIV-infected individuals [120].  

However, we and others have proposed a direct contribution of HIV itself to immune 

activation.  Indeed, the initiation of HAART therapy and subsequent reduced levels of 

viremia led to an almost immediate decline in correlates of immune activation [98].  

Furthermore, a number of laboratories, including ours, showed that multiple HIV proteins 

can directly activate cells in vitro leading to increased production of pro-inflammatory 

cytokines, significantly increased co-receptor (CCR5) expression and HIV infection 

[36,38,121,122] (Henrick et al., 2013; submitted, Chapter 4). It is unlikely, however, that 

immune activation is exclusively dependent on viral load, since natural simian 

immunodeficiency virus (SIV) hosts have limited immunopathology despite high levels 

of viremia [123]. 

 Regardless of the exact antigenic stimulation, however, persistent immune 

stimulation during HIV infection leads to immune exhaustion, a phenomenon where T 

cells become dysfunctional, lose their proliferative capacity, and become functionally 

unresponsive to further antigenic stimulation [124].  Several cellular and serum markers 
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have been identified to quantify the level of T cell activation, including CD38, HLA-DR, 

CD25, CD69, CD70, neopterin, and β2-microglobulin [125-127].  However, the most 

accurate marker of T cell activation, CD38, is up regulated during early T cell activation, 

correlates with increased cytokine production, and CD4+ proliferation [95,127].  

Furthermore, several markers of immune exhaustion have been identified, including 

programmed death-1 (PD-1), lymphocyte activating gene-3 (LAG-3) and T cell 

immunoglobulin and mucin domain-containing molecule-3 (Tim-3) [124].  Over time, 

chronic immune activation leads to immunosenescence and overall immune deficiency, 

thus rendering the individual incapable of developing an immune response to 

opportunistic infections that eventually lead to death.  
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2.3 Regulation of TLR Mediated Immune Activation 

 Since the discovery of PRRs, research primarily focused on the engagement of 

PAMPs that trigger innate immunity and enhanced adaptive immune responses against 

pathogens; however; alternatively control of aberrant immune activation and signaling are 

equally important.  Without proper regulation, PRR activation can lead to undesirable 

consequences and, indeed, overactivation of TLRs is directly involved in the pathogenesis 

of autoimmune diseases and plays a crucial role in chronic activation particular to HIV 

disease (discussed in Section 2.2).  Multiple stages of intrinsic extracellular and 

intracellular regulatory mechanisms balance TLR-dependent immune responses.  Indeed, 

extracellular regulatory mechanisms include the production of soluble TLRs (sTLRs) that 

act as decoy receptors and inhibit TLR-PAMPs engagement.  Furthermore, once TLR-

ligand interaction occurs there are multiple intracellular regulators that inhibit signaling 

pathways, including negative feedback loops, downregulation of TLR expression, 

degradation of TLR proteins or, as a last resort, activation-induced cell death.  Although 

intracellular mechanisms play an important role in regulating cellular activation, to 

thoroughly understand and compliment the data defining sTLR2 and its role in regulating 

HIV-induced activation and infection as it pertains to the manuscripts presented in 

Chapters 2 and 3, this section will focus on soluble TLRs.  

 

 sTLRs provide the most direct attenuation of innate immune responses to 

pathogens by binding to PAMPs before they engage membrane-bound TLRs, thus 

effectively inhibiting PAMP-PRR engagement [107].  To date, four sTLRs have been 
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identified in humans (sTLR1, sTLR2, sTLR4, and sTLR6), and primarily have been 

identified for their role in inhibiting Gram-negative and Gram-positive bacterial-induced 

cellular activation.  LeBouder et al. (2003) were the first to identify forms of sTLR2 in 

breast milk and plasma.  Computational molecular docking revealed that a cylindrical N-

terminus to C-terminus arrangement between sTLR2 and soluble CD14 (sCD14) 

encapsulated synthetic bacterial lipoprotein, Pam3CSK4, thus, preventing bacterial-

induced cellular activation through membrane-bound TLR2 [128].  Furthermore, other 

publications have highlighted sTLR2’s role in significantly inhibiting bacterially-induced 

pro-inflammatory cytokine production in vitro in oral epithelial cells, placental tissue 

explants and human intestinal epithelial cells [129-131].  As well, sTLR2 significantly 

reduced bacterially-associated inflammation in mice without impairing microbial 

clearance [132].  Together, these publications indicate that sTLR2 is critically important 

in regulating bacteria-induced cellular activation.   

 

 sTLR2-dependent regulation of immune activation during virus infection remains 

poorly understood.  However, accruing evidence indicates that the immune system uses a 

range of soluble molecules, including defensins, anti-proteases, IFNs, and chemokines to 

suppress and control viral infections [133,134].  Indeed, elafin/trappin-2 has been shown 

to directly interfere with viral PAMPs/host engagement, thus modulating immune 

responses [135].  Likewise, we showed that sTLR2 directly interacted with HIV PAMPs, 

including p17, p24, and gp41, leading to significantly reduced NFκB activation, IL-8 

production, CCR5 expression and HIV-infection in a dose-dependent manner.  
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Importantly, sTLR2 levels were significantly increased in HIV-infected compared to 

uninfected breast milk samples, and significantly correlated with p24 (a marker of disease 

progression) [47], Henrick et al., 2013b; submitted).  Furthermore, in vitro mammary 

epithelial cells (MECs) exposed to HIV PAMPs induced production of sTLR2, indicating 

that the breast might provide a local innate compensatory response to HIV-1-induced 

activation and infection.  Taken together, sTLR2 plays a dual role in regulating immune 

activation by directly inhibiting bacterial and virus PAMP engagement with TLR2.  In 

this way, it acts as a decoy receptor and is crucial in regulating aberrant immune 

activation.  
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3.0 Mother-to-child HIV Transmission 

 The vast majority of the 2.5 million children that are infected with HIV globally 

acquire the disease from their HIV-infected mother in utero, intrapartum, and/or 

postpartum through breastfeeding.  Ninety percent of all HIV-infected children globally 

live in sub-Saharan Africa and have very limited access to antiretroviral therapies [16] 

which likely plays a major role in the poor life expectancy of HIV-infected children.  

Statistics indicate that one in three newborns infected with HIV will die before the age of 

one, over one half of these will die before reaching their second birthday, and the vast 

majority of infected children will die before they are five years old [18].  The risk of 

MTCT is strongly associated with the mother’s disease status (including viral load), fetal 

exposure to infected maternal fluids, and breastfeeding.    

 

 In the absence of any preventative intervention, MTCT of HIV occurs in 11-42% 

of all HIV-infected-mother-infant dyads [136,137].  Taken statistically, approximately 

1000 children acquire HIV infection from their HIV-infected mothers every day [16].  To 

comprehensively understand the data defining sTLR2 inhibition of cellular activation and 

HIV infection described in Chapters 2 and 3, postnatal HIV MTCT through infected 

breast milk will be described in greater detail than in utero and intra-partum transmission. 

  

 The benefits of breastfeeding for infants are undeniable due largely to the unique 

composition breast milk, which delivers complete nutrition as well as provides passive 

protection through maternal immunological factors, and imparts tolerance to beneficial 
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gut microbiota.  Indeed, breastfeeding is well recognized to protect against 

gastrointestinal and respiratory infections, diarrheal diseases, and provides long-term 

health benefits to the infant [138,139].  In resource poor areas, breastfeeding is 

particularly important since replacement feeding is cost prohibitive and access to clean 

water needed to hydrate powdered formula milk is limited.  Therefore, the risk of acute, 

life-threatening diseases from formula feeding outweighs the danger associated with HIV-

infected breastfeeding.  Thus, the WHO recommends that women, despite their HIV 

status, exclusively breastfeed their infants for the first six months postpartum if adequate 

and sustainable replacement feeding is not available [140].  Furthermore, the immediate 

benefits of breastfeeding extend to mothers and families as it promotes child spacing, 

social acceptance for women and is cost effective [141,142].   

 

 However, breast milk also provides a medium for cell-free and cell-associated 

HIV transmission to the breastfeeding infant.  Indeed, it is estimated that an infant can 

ingest up to 228,000 copies/mL of cell-free virus (CFV) and 12-58 HIV-infected 

cells/10,000 breast milk cells [143,144] when breastfeeding from their HIV-infected 

mother.  Additionally, the amount of CFV and cell-associated virus (CAV) in breast milk 

is strongly dependent on the systemic viral burden and immunosuppression status of the 

mother (predicted by CD4+ T cell level) [145].  Importantly, ARV therapy significantly 

reduces viral burden in breast milk but is often not available in resource poor areas for the 

duration of breastfeeding [20]. 
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 The exact mechanism of postnatal MTCT of HIV transmission remains unclear. 

However, several laboratories have shown virus production in cells common to the 

mammary gland, including MECs [79], CD4+ cells [146], and breast milk macrophages 

[147].  Multiple target sites in the infant’s gastrointestinal tract, including the oral, 

esophageal, and intestinal mucosal epithelium have been proposed.  Specifically, the oral 

epithelium has been shown to be permissive to both CFV and CAV in vitro [148]. Yet, 

the oral environment also has strong anti-HIV properties [149] making MTCT HIV 

transmission possible, albeit at a very low incidence [148].  Moreover, a recent 

publication describing an in vivo infection model demonstrated that humanized mice were 

readily infected with HIV through the oral cavity; however, breast milk had strong 

inhibitory effects on both CFV and CAV [90].  A more compelling argument has been 

made for MTCT HIV transmission through the infant’s intestine since multiple studies 

have shown that mixed feeding doubles the risk of an infant acquiring the disease 

compared to exclusively breastfeeding [22-25].  Indeed, we showed that bacterial ligands 

increased cellular activation in intestinal cells [131].  Furthermore, HIV transcytosis from 

apical to basolateral poles of intestinal epithelial cells was demonstrated in vitro [150] 

and gastric pH, which is neutral at birth, [151] likely would not deactivate CFV or CAV.  

Although multiple immune factors in breast milk have been shown to correlate with 

protection or directly inhibit HIV infection in vitro, the fact remains that increased viral 

burden can obviate host defenses to establish infection in the infant.  Thus, prevention 

strategies that reduce breast milk virus levels will ultimately be the most effective in 

reduction MTCT of HIV. 
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3.1 Anatomy of the Mammary Gland  

 Mammary glands are thought to have evolved from the innate immune system and 

the nutritional value of milk developed later [152].  Each breast is considered a mammary 

gland and contains 15-20 lobes.  Each lobe contains differentiated lobules of grape-like 

clusters of milk-secreting glands known as alveoli.  These alveoli contain MECs that are 

responsible for the production of milk.  Once the milk has left the alveoli, it travels 

towards the mammary ducts with the help of myoepithelial cells and is propelled towards 

the nipple upon stimulation through suckling [153].  Mammary glands also contain high 

numbers of leukocytes (discussed in Section 3.6.2) that migrate to the breast from the 

intestine during the later stages of pregnancy.  These cells reside within mammary glands 

during lactation or traffic paracellularly or transcellularly through the normally 

impermeable MEC monolayer into the milk [154].  
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3.2 Risk Factors 

 The maternal viral load is the most consistent predictor of vertical transmission 

among all stages of pregnancy, delivery, and breastfeeding [144,155,156] (Fig. 5).  

Indeed, the highest rates of transmission are noted in women who have viral loads of 

more than 100,000 copies/ml in their blood, while MTCT is relatively rare when the 

mother’s viral load is undetectable [157].  A low maternal CD4+ T cell level [158], an 

absence of ARV therapy [159], the use of tobacco and illegal drugs (particularly cocaine) 

[160] and untreated STIs [161] are associated with higher rates of MTCT of HIV.  Also, 

infants who have a prolonged exposure (> 4 hours) to ruptured placental membranes 

[162], are premature, have a low birth weight [163], are vaginally delivered and/or are 

exposed to HIV-infected breast milk greater than six months are more likely to acquire 

the disease from their HIV-infected mothers [164].  Furthermore, specific breast 

pathologies, including mastitis and nipple cracking are associated with significantly 

increased postnatal HIV transmission [165-167].  More recently, it has been documented 

that weaning, which increases breast milk viral load significantly correlates with higher 

incidence of MTCT [168].  Therefore, preventative strategies that can control risk factors 

would play a significant role in reducing MTCT of HIV. 
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Figure 5: A schematic graph identifying the association between maternal plasma HIV 

RNA levels and risk of mother-to-child transmission of HIV.  Figure is adapted from 

Cooper et al., 2002.  
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3.3 Viral Determinants of HIV transmission through breast milk 

 Our understanding of transmitted/founder viruses in breast milk is not clearly 

defined [169,170].  Similar to other mucosally-transmitted/founder viruses, post-natal 

acquisition is primarily CCR5-tropic [169].  Phylogenetic comparison of milk and plasma 

ENV sequences revealed that monotypic viruses are significantly more common in milk 

as compared to plasma from the same mother [169,170], thus suggesting that the majority 

of breast milk viruses are produced by infected cells of the mammary gland.  Conversely, 

other studies suggest that virus variants found in the breast milk and plasma of infected 

mothers are genetically similar [171].  Therefore, a hypothesis to explain these divergent 

observations is that the breast is continuously replenished with systemic CFV or CAV 

that can readily be transmitted to the breastfeeding infant and/or undergoes local 

replication in the mammary compartment [169].   

 

 Despite our increasing knowledge of breast milk virus, it remains unclear whether 

CFV or CAV is responsible for HIV acquisition in the infant.  Indeed, both CFV HIV 

RNA and CAV proviral DNA can be found in HIV-infected breast milk (when the mother 

is not receiving ARV therapy), and both levels correlate with breast milk MTCT of HIV 

[172,173].  Importantly, it has been shown that multiple immune factors that are 

endogenous to breast milk, including mucin, secretory leukocyte proteinase inhibitor 

(SLPI), sTLR2, lactoferrin, lysozyme, and oligosaccharides can effectively inactivate 

CFV infection in vitro [131,149,174-176],  whereas innate immune factors seemingly 

have little to no affect on CAV infection in vitro [176,177].  Indeed, CAV HIV infection 
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has been shown to be more efficient compared to CFV infection [178], and is 

significantly more difficult to neutralize [179], thus indicating that CAV may be 

responsible for transmission.  Conversely, ARV therapy significantly decreases HIV 

RNA and correlates with reduction in breast milk transmission rates [180,181], while 

proviral DNA levels remain largely unaltered [143,182].  These observations suggest that 

CFV likely plays an important role in breast milk transmission.  Given these contradictory 

studies, it could be argued that multiple factors including overall maternal viral load, 

breast health (e.g. mastitis), immune factor levels, as well as feeding practices, all 

contribute to the founding virus infection in the infant.  
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3.4 Prevention of Mother-to-Child HIV Transmission through Breast Milk 

 Without intervention, about 11-42% of infants breastfeeding from HIV-infected 

mothers will acquire HIV through breast milk [136,137].  However, recently, significant 

progress has been achieved in the prevention of MTCT (PMTCT) of HIV globally 

through improved access to ARV therapies for pregnant, birthing, and lactating women.  

For the first time, the elimination of MTCT of HIV is considered a realistic public health 

goal [19]. 

  

 3.4.1 Antiretroviral Therapies 

 In low-and-middle-income countries, prenatal and perinatal ARV therapies, 

namely single dose neviripine (NVP) have been used for almost 15 years.  This 

preventative therapy, given to the mother during delivery and the infant within 72 hours 

postpartum, has proven effective and has undoubtedly played an important role in the 

dramatic decrease of 800,000 cases of MTCT of HIV in 2002 to 300,000 cases in 2011 

[16].  Due to its success, in 2010 the WHO created new guidelines for increased ARV 

therapy use in pregnant and breastfeeding mothers globally in which they recommend the 

following: 

 Maternal CD4+ T cell count: 

• <350 mm3:  Highly activate antiretroviral therapy (HAART) for life. 

• >350 mm3: Zidovudine (AZT) prenatal and NVP peripartum or HAART through 

duration of breastfeeding. 

 Infant: 

• NVP for 6 weeks. 
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 However, in 2011, only 57% of pregnant or lactating HIV-infected women were 

receiving any ARV therapy [16] due to the cost, lack of health care workers and 

inconsistent supply [183].  Given the success of ARV therapy, greater resources and 

infrastructure in resource-poor areas could effectively eliminate MTCT of HIV. 

  

 3.4.2 Exclusive Breast Feeding 

 It is well accepted that exclusive breastfeeding is advantageous to babies who are 

born to healthy HIV-uninfected mothers.  This is associated with decreased risk of 

diarrheal and respiratory infections in developed and developing nations.  Furthermore, it 

facilitates normal production of milk leading to decreased breast pathologies, including 

mastitis [184], and correlates with long-term benefits for both mother and child 

(discussed in Section 3.5).  However, for HIV-infected women, breastfeeding becomes 

uncertain since breast milk can contain high levels of HIV (discussed in Section 3.0).  

Indeed, the method of infant feeding undoubtedly correlates with postnatal MTCT of 

HIV.  Paradoxically, exclusive breastfeeding significantly decreased postnatal MTCT of 

HIV compared to mixed feeding or non-exclusive breastfeeding despite the prolonged 

and repeated exposure to CFV and CAV [22,24,25,185].  Specifically, in four large 

cohort studies, exclusive breastfeeding reduced HIV MTCT of HIV by 4-10 fold 

compared to non-exclusive breastfeeding or mixed feeding.  Kuhn et al. (2007) showed 

that non-exclusive breastfeeding more than doubled the risk of postnatal HIV 

transmission, while Iliff et al. (2005) showed transmission rates as low as 1.3 % in 

women who were exclusive breastfeeding up to 6 months [22,25].  Importantly, there 
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were no significant differences in disease severity between the mothers and, when 

confounding factors including maternal viral load, CD4+ T cell levels, STI screening and 

low birth weight were taken into account, the differences between transmission rates of 

exclusive breastfeeding and non-exclusive breastfeeding remained significant [22,23,25].  

Indeed, this preventative method is so effective in the reduction of MTCT HIV 

transmission, as well as protection against enteric infections, the WHO promotes 

exclusively breastfeeding despite the HIV status of the mother when safe and sustainable 

alternative feeding is unavailable [140].  Although exclusive breastfeeding decreases 

vertical transmission, the mechanism underlying this protection remains unclear.  
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3.5 The Role of Breast Milk Components in Mother-to-Child Transmission of HIV 

 Neonates are immunologically naïve when they are born and, thus, are highly 

vulnerable to opportunistic infections early in life.  Numerous reports, originating with 

Grulee et al (1935), have highlighted the beneficial effects of breast milk in providing 

passive immunity to the infant against a wide range of environmental pathogens [186-

193].  Indeed, gastrointestinal and respiratory infections are significantly less common in 

breast fed infants compared to formula fed infants [138].  Moreover, breast fed infants 

benefit from long term effects including markedly reduced incidence of type 1 diabetes, 

multiple sclerosis, eczema, Crohn’s disease, rheumatoid arthritis, inflammatory bowel 

diseases and allergies when compared to non-breast fed infants [138,139].  Such 

protective effects are incompletely understood yet are thought to be a result of the 

ingestion of a milieu of innate, adaptive, and non-immune factors with direct 

antimicrobial, anti-inflammatory and immunomodulatory functions in breast milk (Fig. 

6).  To complement the data in Chapter 2 and 3 defining sTLR2-dependent reduction in 

bacterial and viral-induced cellular activation and direct inhibition of HIV infection, this 

Section will focus on maternal immune factors in breast milk that have anti-HIV 

properties.  
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Figure 6: Schematic representation of the integration of maternal immunity with 

breastfeeding infant with an emphasis on migration and transfer of maternal leukocytes 

through breast milk.  Figure adapted from Brandtzaeg et al., 2003. 

 

 3.5.1 Non-cellular components  

 A number of non-cellular factors in breast milk have been attributed to the 

breastfeeding infant’s protection from HIV, including innate factors, cytokines and 

oligosaccharides [149,176,194], whereas data are conflicting for other factors such as 

HIV-specific antibodies [195,196].  Many breast milk factor levels correlated with 

protection from MTCT of HIV and/or have direct anti-HIV function in vitro.  Here, I 

discuss particular innate factors that were evaluated or directly relate to our studies 

including lactoferrin, secretory leukocyte protease inhibitor (SLPI), mucin and sTLR2 all 

of which have documented HIV inhibitory properties [131,197-199].  Specifically, 
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lactoferrin has been shown in vitro to bind to the V3 loop of gp120, thus inhibiting gp120 

interaction with host CD4 receptor [192], and breast milk lactoferrin levels have been 

shown to correlate with reduced MTCT of HIV [200]. Moreover, lactoferrin has been 

shown to inhibit bacterial-induced inflammation [201,202].  Similarly, SLPI levels 

correlated with decreased MTCT HIV transmission through breast milk [203], and in 

vitro studies have indicated that it interacts with target cells to inhibit viral entry [204].  

Mucin 1 (MUC1), which is abundant in breast milk, has been shown to inhibit HIV 

infection in vitro by preventing DC-SIGN-mediated transmission of HIV from DCs to 

activated CD4+ T cells [197].  Breast milk oligosaccharides have little to no nutritional 

value for the infant; however, they provide a prebiotic for the growth of commensal 

bacteria, and have been shown to act as soluble decoy receptors to inhibit pathogen 

adhesion [205].  One study identified that HIV-infected mothers with higher than median 

levels of oligosaccharides were less likely to transmit HIV through breast milk [205].  

Additionally, we recently reported that breast milk sTLR2 directly interacts with specific 

structural proteins, namely p17, p24, and gp41, thus inhibiting cell-free HIV infection in 

vitro [131].  Furthermore, sTLR2 has known anti-microbial properties that significantly 

inhibit pro-inflammatory cytokine production in human intestinal epithelial cells, as well 

as reducing bacterial-associated inflammation in mice without impairing microbial 

clearance [131,132].  These factors function concomitantly to control aberrant microbial-

induced inflammation as well as inhibit HIV-host interaction and, thus, are critical in 

protecting breastfeeding infants from acquiring HIV through breast milk. 

 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 45 

 Breast milk contains a range of cytokines, some of which could potentially 

influence immune function and directly correlate with MTCT HIV transmission.  

Specifically, the pro-inflammatory chemokine ligand 5 (RANTES/CCL5) indirectly 

inhibits HIV infection in vitro by binding to its ligand CCR5, thus inhibiting gp120 to 

binding to its co-receptor which is integral to host-viral attachment [206].  However, 

RANTES levels in breast milk positively correlated with increased MTCT of HIV [207].  

Conversely, levels of breast milk interleukin (IL) 15, a pleotropic cytokine involved in 

activating CD8+ T and NK cells, positively correlated with protection from MTCT of 

HIV [208].  Furthermore, we showed a positive correlation of sTLR2 and IL-15 levels in 

breast milk (Henrick et al., 2013b; submitted, Chapter 3), thus indicating that these 

protective factors can function in concert to reduce MTCT of HIV. 

 

 3.5.2 Cellular Components 

 The biological relevance of breast milk cells in MTCT of HIV remains unclear.  

Indeed, there are arguments that infected cells both facilitate and protect against HIV 

transmission in breastfeeding infants [147,209,210].  Depending on the stage of lactation, 

the predominant cells types in milk consist of a variety of leukocytes in colostrum 

(4x106/ml) and mature breast milk (105-106/ml) and MECs.  The majority of leukocytes in 

breast milk are of an activated phenotype [211] and are comprised of macrophages (55-

60%) and neutrophils (30-40%), while 5-10% are lymphocytes (~65% CD8+ T cells, 15% 

CD4+ T cells, 20% B cells) [212-214].  Macrophages and MECs are thought to facilitate 

MTCT of HIV.  First, macrophages comprise the majority of leukocytes in breast milk 
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[212], are readily infected with HIV, and express DC-SIGN, a DC-specific receptor for 

HIV, that facilitates HIV infection in vitro [147].  In addition, oral administration of 

macrophages to newborn mice survived several hours and were found in the neonatal 

intestine [210].  Second, MECs make up a substantial portion of all of the cells in breast 

milk [215].  Importantly, these cells express several canonical HIV receptors, including 

CD4 and CCR5, readily endocytose cell-free HIV and can act as a viral reservoir 

[79,216].  Conversely, however, a recent publication reported that breast milk HIV-gag-

specific interferon gamma (IFNγ) cellular responses correlated with decreased MTCT of 

HIV [209].  Taken together, the role of breast milk cells in MTCT of HIV remains vague. 
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4.0 Hypothesis & Objectives 

 

 Hypothesis 

 Based on the evidence presented above, we hypothesized that sTLR2 plays a 

pivotal role in preventing mother-to-child HIV transmission through breast milk by 

inhibiting cellular activation and HIV infection.  If sTLR2 inhibits HIV cellular activation 

and infection, then we further hypothesize that TLR2 recognizes HIV structural proteins 

leading to increased cellular activation and HIV infection.  

  

 Objectives  

 The research presented in Chapters 2 and 3 was designed to test our hypotheses 

and expand our knowledge regarding the direct anti-HIV properties of sTLR2 and the 

potential mechanism in inhibiting HIV infection.  Furthermore, we investigated the role 

of TLR2 in recognizing HIV specific structural proteins and the role viral-induced 

cellular activation played in infection. 

 

 In the first manuscript presented in this thesis (Chapter 2), we characterized forms 

and concentrations of sTLR2 in breast milk from HIV-uninfected women, determined 

sTLR2 kinetics, its cellular source and determined its effect on bacterially-induced 

inflammation and HIV-infection.  To accomplish this, breast milk was collected at one 

week and one, three, and six months postpartum and fractions were separated (lipid, 

supernatant, and cell layers).  Supernatant layers from each sample were evaluated for 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 48 

sTLR2 forms, concentration, degradation, and expression kinetics over time postpartum.  

Furthermore, breast milk cells were evaluated for production of sTLR2.  We used human 

embryonic kidney cells (HEK293) stably transfected with TLR2, the monocyte cell line 

(U937) and a human intestinal cell line (Caco-2) to test whether mock-depleted or 

sTLR2-depleted HIV-uninfected breast milk could inhibit Pam3CSK4-induced 

inflammation. Also we specifically determined whether mock or sTLR2-depleted breast 

milk could inhibit HIV infection in a HIV infection indicator assay (CD4, CCR5, and 

CXCR4 stably transfected cervical epithelial cells (TZMbl)).  We focused on the sTLR2-

specific inhibition of pro-inflammatory, IL-8, production after TLR2 ligand, Pam3CSK4, 

challenge and the inhibition of HIV-infection.  Here we identified novel predominant 

forms of sTLR2 in breast milk that closely resembled forms previously reported in saliva 

and amniotic fluid [129,130].  Furthermore, we determined that these forms were quickly 

degraded at room temperature and were produced, at least in part, by MECs.  

Functionally, our studies showed that sTLR2 inhibited Pam3CSK4-induced inflammation 

in intestinal cells and, for the first time, that sTLR2 directly inhibited cell-free R5 HIV 

infection in vitro. 

  

 In the second manuscript (Chapter 3), we built on findings from Chapter 2.  Here, 

we investigated the mechanism by which sTLR2 inhibited HIV-induced cellular 

activation and infection in vitro, evaluated sTLR2 levels in HIV-infected and uninfected 

breast milk, as well as TLR2 expression levels from breast milk cells.  We determined 

TLR2 expression in HIV-infected and HIV-uninfected breast milk cells. Furthermore, we 
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evaluated sTLR2 levels in HIV-uninfected and infected breast milk and its correlation to 

HIV disease progression and pro-inflammatory markers.  In vitro, we investigated 

sTLR2’s ability to interact with specific HIV structural proteins, decrease HIV-induced 

NFκB activation, IL-8 production, CCR5 expression, and HIV infection.  The data 

reported in Chapter 3 showed a possible mechanism by which sTLR2 directly inhibited 

HIV-induced NFκB activation and IL-8 expression in dose-dependent manner through 

direct interaction with HIV structural proteins, including p17, p24, and gp41. 

Additionally, we evaluated breast milk cells for TLR2 expression and sTLR2 

concentration in uninfected and HIV-infected breast milk and found significantly 

increased levels in HIV infected compared to uninfected women.  sTLR2 concentrations 

correlated with both p24 and IL-15 levels in breast milk and could be induced in vitro in 

MECs and macrophages after exposure to HIV structural proteins.  These findings 

indicated novel mechanisms by which sTLR2 played a critical role in inhibiting MTCT of 

HIV. 

 

 Based on the data collected in our first and second manuscripts (Chapters 2 and 3) 

that indicated that sTLR2 directly interacted with specific HIV structural proteins, we 

sought to investigate whether TLR2 recognized HIV and led to increased cellular 

activation and HIV-infection.  Here, we stably-transfected the well-characterized HIV 

infection indicator assay, TZMbl, with TLR2 (TZMbl-2) and evaluated the differences in 

direct HIV structural protein interaction, HIV-specific NFκB activation, tumour necrosis 

factor alpha (TNF-α) and IL-8 production and HIV infection rates between the two cell 
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lines.  In this study, we also identified specific TLR2 heterodimers that interacted with 

particular HIV structural proteins and led to cellular activation.  Specifically, we 

demonstrated that HIV structural proteins, including p17, p24, and gp41 act as viral 

pathogen-associated molecular patterns (PAMPs) that are recognized by TLR2 and its 

heterodimers leading to significantly increased NFκB activation and IL-8 production.  

TLR2/1 heterodimer recognized p17 and gp41, while p24 signaled through TLR2/6.  

However, p24 blocked p17 and gp41-induced cellular activation in a TLR2-dependent 

manner, thus providing a novel mechanism by which HIV can manipulate extracellular 

innate sensing.  Importantly, TLR2-dependent cellular activation led to significantly 

increased CCR5 expression in macrophages, which mechanistically explains why HIV 

integration was significantly increased in TZMbl-2 cells compared to TZMbl cells.  Our 

results identify, for the first time, novel HIV PAMPs that play a role in cellular activation 

via TLR2, and showed that cellular TLR2 expression significantly increased HIV 

infection/integration.  These results have important implications for our fundamental 

understanding of HIV immune activation and immunopathogenesis. 
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 This manuscript investigated multiple forms of sTLR2 in HIV-uninfected breast 

milk and their effect on synthetic bacterial-ligand induced inflammation and HIV-1 

infection in vitro.  To better understand breast milk sTLR2’s role in inhibiting 

inflammation and directly inhibiting HIV-1 infection, we utilized immunodepletion 

assays to remove sTLR2 from breast milk.  From this study, we discovered that sTLR2 

concentrations differ dramatically among women and specific forms decrease over time 

postpartum.  Additionally, it was determined that sTLR2 is an essential innate immune 

factor critical to the inhibition of bacterial ligand induced inflammation.  Furthermore, for 

the first time, our data strongly suggested that sTLR2 inhibits HIV-1 infection in vitro.  

The results of these experiments showed that breast milk sTLR2 played a dual role in 

inhibiting inflammation and HIV-1 infection in vitro.  
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 This manuscript investigated the mechanism of sTLR2 in inhibiting HIV-induced 

cellular activation and viral infection in vitro.  These experiments were an extension of 

our previous findings, which strongly suggested that sTLR2 directly inhibited HIV 

infection in vitro.  Here we evaluated TLR2 expression and sTLR2 concentration in HIV 

uninfected and infected breast milk, and determined a possible mechanism by which 

sTLR2 directly inhibits HIV-1-induced cellular activation and infection in vitro.  Notably, 

we showed that sTLR2 concentration positively correlates with p24 levels in HIV 

infected breast milk.  We also demonstrated that sTLR2, produced in vitro, inhibited 

HIV-1-induced NFκB activation and downstream IL-8 production in TLR2-bearing cells.  

Furthermore, we determined that MEC exposed to HIV-1 viral proteins increased sTLR2 

production, which significantly decreased elevated CCR5 expression, and led to lower 

HIV-1 infection in vitro.  Together, these results indicated that sTLR2 played a critical 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 63 

role in inhibiting MTCT of HIV through breast milk. 
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ABSTRACT  

Background:   We previously demonstrated that breast milk soluble Toll-like receptor 2  

(sTLR2) directly inhibited HIV infection, and have identified HIV-1 pathogen-associated 

molecular patterns (PAMPs) that activate through TLR2.  We extended these findings to 

identify mechanisms by which sTLR2 inhibits HIV-induced activation and infection.  

Methods: Milk was collected from HIV-infected and uninfected women and mRNA 

expression of TLR2 and sTLR2 levels and their correlation to p24 and IL-15 was 

evaluated.  Inhibition of HIV-1 PAMP-induced cellular activation, inflammation, CCR5 

expression and infection were assessed. 

Results: HIV-1-infected milk had significantly elevated TLR2 expression and sTLR2 

levels compared to uninfected samples.  In HIV-infected milk sTLR2 significantly 

correlated with p24 and IL-15, and sTLR2 directly interacted with HIV-1 PAMPs.  

Pam3CSK and HIV-1 PAMPs significantly increased sTLR2 levels in vitro, which 

inhibited NFκB activation, IL-8 production and increased CCR5 expression.  Lastly, 

sTLR2 significantly inhibited cell-free R5 HIV-1 infection and inflammation, and this 

effect was abrogated with TLR2-specific antibodies.  

Conclusions: Our data indicate an innate compensatory response to HIV-1-induced 

activation and infection in the mammary gland that significantly elevated sTLR2 

levels.  We show for the first time a mechanism by which sTLR2 inhibits HIV activation, 
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inflammation and infection thus contributing to the inhibition of mother-to-child HIV 

transmission. 
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INTRODUCTION  

           Breast milk (BM) evolved to provide the optimal source of nutrition for the 

developing infant and confers protection against a wide range of pathogens via innate and 

adaptive immune factors. An intervention that promotes exclusive breastfeeding, 

regardless of the mother’s HIV status, led to significantly decreased mother-to-child 

transmission (MTCT) compared to mixed feeding [1-4].  Although it is poorly understood 

how infants breastfeeding from HIV-infected mothers remain uninfected despite repeated 

and prolonged exposure to HIV-1, the protection is attributed to innate factors in milk that 

possess potent anti-viral activities [5,6] including lactoferrin, secretory leukocyte protease 

inhibitor (SLPI), and soluble Toll-like receptor 2 (sTLR2); all of these are found at high 

levels in BM and have HIV-1 inhibitory properties [7-9].  Our recent data, using 

neutralization and immunodepletion of sTLR2 from BM, indicated that sTLR2 directly 

interacted with the virus, thus inhibiting cell-free HIV-1 infection in vitro.  Moreover, our 

results showed that MECs and breast milk cells (BMCs) produced sTLR2 [9]. 

 

           Soluble forms of TLRs play a fundamental role in regulating pro-inflammatory 

responses that trigger innate immunity.  sTLR2, which is produced through post-

translational modification of the extracellular domain of TLR2, has direct anti-microbial 

modulatory effects by binding pathogen-associated molecular patterns (PAMPs) that 

signal through TLR2 [10-12].  Through computational molecular docking, a cylindrical 

N-terminus to C-terminus arrangement between sTLR2 and soluble cluster of 

differentiation 14 (sCD14) that encapsulated synthetic bacterial lipoprotein, Pam3CSK4 
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[12], thus preventing bacterial-induced cellular activation through membrane-bound 

TLR2.   

 

 Although TLR2 is classically considered in the context of bacterial-associated 

PAMP recognition, multiple viral proteins have been identified that trigger cellular 

activation in a TLR2-dependent manner.  Specifically, cytomegalovirus glycoproteins, 

hepatitis C core and structural proteins, and measles hemagglutinin protein trigger TLR2-

dependent pro-inflammatory responses [13].  The outcome of virus-specific cellular 

activation mediates a range of responses including acceleration of anti-viral clearance to 

establishing a favorable microenvironment that facilitates viral integration and replication 

[14], or inducing inflammation thereby recruiting more target cells.  Cellular activation 

promotes HIV-1 replication due to its NFκB binding sites [15].  NFκB is critical to a 

variety of host immune responses [16] and is activated through multiple TLRs, including 

TLR2, signaling [17].  We recently identified specific HIV-1 structural proteins that serve 

as TLR2 PAMPs triggering NFκB activation, increased pro-inflammatory cytokine 

production and CCR5 expression and, importantly, significantly increased viral 

infection/integration (Henrick et al., submitted, 2013), thus indicating that HIV-1 

manipulates host innate immune responses to promote a desirable microenvironment to 

accommodate HIV-1 infection and replication.  

 

 The primary aim of the present study was to identify a mechanism by which 

sTLR2 inhibits virally-induced cellular activation and HIV-1 infection in vitro.  The 
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secondary aim was to characterize sTLR2 concentrations in HIV-uninfected and HIV-

infected BM and its association with correlates of disease progression.   
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RESULTS 

Significantly increased TLR2 expression in breast milk cells and sTLR2 in HIV-

infected breast milk  

 We recently showed that TLR2 recognized novel HIV-1 PAMPs leading to 

increased cellular activation, CCR5 expression and infection (Henrick et al, submitted, 

2013).  In addition, we showed increased TLR2 expression in peripheral blood 

mononuclear cells (PBMCs) over the course of untreated HIV infection [18].  Therefore, 

we evaluated the influence HIV-1 infection might have on TLR2 expression levels in 

breast milk cells (BMCs).  Our results showed increased TLR2 expression in BMCs from 

HIV-infected Nigerian women compared to uninfected Nigerian and Canadian women 

BMCs (Fig. 1A; P=0.0010, P=0.0022, respectively).  Similarly, sTLR2 levels were 

elevated in milk from HIV-infected Nigerian women compared to HIV-uninfected 

women from Nigeria and Canada (Fig. 1B; P=0.0011, P=0.0002, respectively).  

 

sTLR2 levels in HIV-1 infected breast milk correlates with p24 and IL-15 

concentration. 

 HIV-1 p24 antigen levels correlate with HIV disease progression [19], and we 

recently showed that p24 is an HIV-specific PAMP signaling through TLR2/6 (Henrick et 

al, submitted 2013). Therefore, we evaluated the association between p24 and sTLR2 

concentrations in BM, and results revealed that the p24 concentration positively 

correlated with sTLR2 levels in HIV-infected BM (Fig. 1C; P=0.0158, R=0.3791).   
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 A protective association between IL-15 concentrations in BM and postnatal HIV 

transmission via breastfeeding has been reported [20].  Therefore, we determined whether 

IL-15 and sTLR2 levels correlate in BM.  Our data demonstrated a strong correlation 

between sTLR2 and IL-15 levels in HIV-infected BM (Fig. 1D; P<0.0001, r=0.5698).  

These results suggest a compensatory innate mechanism by which sTLR2 levels are 

significantly increased in HIV-infected milk as the p24 concentration increased which 

positively correlated with IL-15 levels in infected BM. 

 

HIV-1 PAMPs significantly elevate sTLR2 concentration in vitro 

 Previously, we and others showed that MECs and macrophages produce sTLR2 

[9,12].  Given the increase of sTLR2 in HIV-infected BM, we evaluated whether MECs 

and/or macrophages exposed to HIV-1 PAMPs (p17, p24, and gp41) and a TLR2 ligand 

(Pam3CSK4) influenced sTLR2 levels.  Qualitative and quantitative analysis of MEC 

supernatants revealed that HIV-1 PAMPs, as well as Pam3CSK4, increased supernatant 

sTLR2 levels compared to medium alone (Fig. 2A & B; P=0.0135, 0.0116, 0,0390, 

respectively).  Similarly, macrophages exposed to Pam3CSK4 or HIV-1 PAMPs elevated 

supernatant sTLR2 levels compared to medium (Fig. 2C; P=0.0008, 0.0055, 0.0131, 

0.0263, respectively).  These data suggest that elevated sTLR2 levels in HIV infected BM 

might be a result of local, virally-induced release and/or production of sTLR2 from 

resident macrophages and MECs. 

 

sTLR2 binds directly to HIV-1 PAMPs 
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 We tested our hypothesis that sTLR2 inhibits infection through direct interaction 

with HIV-1 proteins.  Recombinant HIV-1 components (p17, p24, gp41, gp120, nef and 

ssRNA40) were blotted onto a nitrocellulose membrane, along with positive controls 

(sCD14, Pam3CSK4), a membrane control (recombinant sTLR2), and negative carrier 

controls (urea solution, PBS).  Viral protein-sTLR2 interactions were identified using 

anti-TLR2 antibodies and indicated that HIV-1 structural proteins p17, p24, and gp41 

directly interacted with sTLR2, whereas no interaction was identified between sTLR2 and 

viral components, gp120, nef, or ssRNA40 (Fig. 3A).  Interactions were also detected 

between sTLR2 and the positive control, Pam3CSK4 and sCD14.  The membrane control 

indicated that anti-TLR2 antibodies were at a sufficient concentration to detect sTLR2 if 

present (Fig. 3A).  When sTLR2 was immunodepleted from BM, no interaction was 

observed between p17, p24, and gp41 (Fig. 3B).  However, a slight interaction between 

Pam3CSK4 and remaining sTLR2 was observed under our experimental conditions, thus 

indicating that immunodepletion methods left trace amounts of sTLR2.  These results 

demonstrated that sTLR2 directly interacted with HIV-1 PAMPs (p17, p24, and gp41). 

 

sTLR2 inhibits HIV-induced NFκB-dependent cellular activation  

 Given the importance of cellular activation in HIV-1 infection [21,22], we tested 

whether sTLR2 containing supernatants (sTLR2-sup.), produced in vitro, inhibited HIV-1 

PAMP induced NFκB activation.  Pam3CSK4 or HIV-1 PAMPs (p17, p24 and gp41) were 

incubated with sTLR2 sup. or sTLR2-free supernatant (sTLR2-free sup.) for one hour 

prior to the addition to TZMbl-2 cells.  Cells exposed to sTLR2-free sup. and Pam3CSK4 
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or HIV-1 PAMPs (p17 or gp41) showed increased nuclear p65 (a subunit of NFκB) 

translocation while sTLR2-sup inhibited nuclear p65 translocation (Fig. 4), thus 

indicating an important function of sTLR2 in suppressing HIV-1 PAMP-induced NFκB-

dependent activation. 

 

sTLR2 inhibits HIV-1 PAMP-induced inflammation 

 Using sensitive qRT-PCR quantification, we tested IL-8 expression after TZMbl-2 

cells were exposed to HIV-1 PAMPs with sTLR2-sup. or sTLR2-free sup.  TZMbl-2 

cells, which stably express TLR2 and endogenously express TLR1, allowed us to 

specifically determine whether sTLR2 inhibited TLR2-dependent activation.  sTLR2 and 

sTLR2-free supernatants, at various concentrations, were incubated with HIV-1 PAMPs 

(p17 or gp41) or Pam3CSK4 for one hour before addition to TZMbl-2 cells.  cDNA 

analyses of exposed cells after 4 hours indicated that sTLR2 sup. inhibited Pam3CSK4-

induced IL-8 production in a dose-dependent manner compared to sTLR2-free sup. (Fig. 

5A; P=0.0115, 0.05).  Additionally, sTLR2 sup. inhibited HIV-1 PAMPs (p17 and gp41)-

induced IL-8 expression in a dose-dependent manner compared to sTLR2-free sup. (Fig. 

5B & C; P=0.0032, 0.0036, 0.0041;P=0.0086, 0.0023, 0.0007, respectively).  

Collectively, these data indicated that sTLR2 inhibits HIV-1 PAMP-induced cellular 

activation by competitively suppressing ligand interaction with TLR2.  

 

sTLR2 inhibits increased CCR5 expression 
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 We and others showed an increase in CCR5 expression through TLR2 [23,24, 

Henrick et al, submitted 2013].  Given the importance of this chemokine receptor to R5-

specific HIV-1 infection, we determined whether sTLR2 inhibited increased expression 

of CCR5.  qRT-PCR analysis revealed that CCR5 expression was increased at four hours 

in macrophages (differentiated THP-1 cells) exposed to HIV-1 PAMPs (p17, p24 and 

gp41) or Pam3CSK4 that were pre-incubated with sTLR2-free sup. (Fig. 6A; P=0.0092).  

While CCR5 expression remained unchanged after exposure to HIV PAMPs or 

Pam3CSK4 in the presence of sTLR2-sup (Fig.6A).  These data indicated a possible novel 

mechanism by which sTLR2 acted as a decoy receptor to inhibit HIV-1 protein-induced 

increase in CCR5 expression.  

 

sTLR2 significantly inhibits cell-free R5 HIV-1 inflammation and infection  

 We determined whether sTLR2 inhibited pro-inflammatory cytokine production 

after exposure to cell-free R5 virus.  HIV-1 was incubated with sTLR2-sup. or sTLR2-

free sup. for one hour before its addition to TZMbl cells.  Forty-eight hours after 

infection, IL-8 production was decreased in cells exposed to HIV-1 in the presence of 

sTLR2-sup. compared to sTLR2-free sup. (Fig. 6B; P=0.001).  When sTLR2 was 

neutralized, using TLR2-specific monoclonal antibodies (as shown previously [9]), IL-8 

production significantly increased after exposure to HIV-1 (Fig. 6B; P=0.0151).   

 

 We tested the ability of sTLR2 to inhibit HIV-1 infection.  Cell-free R5 HIV-1, at 

varying concentrations (TCID50) was pre-incubated with sTLR2-sup. or sTLR2-free sup. 
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for one hour before being added directly to TZMbl cells.  Our results indicated that cells 

incubated with sTLR2-sup. had significantly lower HIV-1 infection rates at various 

infectious doses compared to sTLR2-free supernatants (Fig. 6C; P=0.014, P=0.0004, 

respectively). To evaluate whether sTLR2 was directly responsible for the inhibition of 

HIV-1 infection, sTLR2 was neutralized using TLR2-specific antibodies prior to the 

addition of cell-free virus, which resulted in significantly increased HIV compared to 

sTLR2 supernatant (Fig. 6C; P=0.037, P=0.018).  
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DISCUSSION 

 The low rate of transmission in infants breastfeeding from HIV-infected mothers 

is suggestive of the multitude of protective innate factors that are present in high 

concentrations in BM [5,6].  The innate factor, sTLR2, has recognized anti-microbial 

properties [10-12] and we previously showed that sTLR2 significantly inhibited cell-free 

HIV-1 infection in vitro [9]; however, the mechanism remained undetermined.  Presently, 

we demonstrated that sTLR2, produced in vitro, directly bound to HIV-1 PAMPs, 

inhibited HIV-1-induced cellular activation, inhibited increased CCR5 expression and 

decreased HIV-1 infection in vitro.  In vitro MEC and macrophages exposed to HIV-1 

PAMPs increased sTLR2 production, thus providing an innate immune mechanism in 

which the mammary gland compensates for HIV infection.  These data indicated that 

manipulation of local innate immune defenses might provide important prophylactic and 

therapeutic strategies for prevention and care of HIV-1 infection.  

 

 

 Chemokine receptors serve as cofactors for viral entry and HIV-1 infection [25].  

CCR5 is endogenously expressed in many innate immune cells [26], mammary [27], 

tonsil [28] and intestinal epithelial cells [29].  We recently showed that HIV-1 PAMPs 

significantly increased CCR5 expression in a TLR2-dependent manner (Henrick et al, 

submitted 2013).  Here, we extend these findings and show that sTLR2 inhibited CCR5 

expression in MEC exposed to HIV-1 PAMPs.  These findings are important since MEC 

might act as a viral reservoir [27].  Thus, sTLR2 might affect virus levels in BM. 
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 TLR2 is classically considered in the context of bacterial recognition and 

signaling; however, evidence indicates that TLR2 is involved in viral sensing [13].  We 

recently provided evidence that TLR2 recognizes specific HIV-1 structural proteins 

(Henrick et al, submitted, 2013).  TLR2 activation has been shown to enhance HIV 

infection in T cells [30], viral replication in macrophages of HIV-1 infected patients, and 

TLR2 expression is significantly increased in monocytes from HIV-infected individuals 

[23].  Here, cells from HIV-1-infected BM had elevated TLR2 expression compared to 

uninfected BMCs.  Given that macrophages are a major cell population in BM [31] and 

are thought to be a predominant cell type involved in vertical HIV transmission [32], our 

current findings indicating increased TLR2 expression in BMCs highlights a novel HIV 

PAMP-induced alteration in innate immune signaling in BM.  

 

 Soluble TLRs provide a first line regulatory mechanism by binding PAMPs before 

recognition by their membrane-bound counterparts, thus preventing aberrant cellular 

activation [33].  This function might be particularly important in breastfeeding infants 

since neonatal lymphocyte activation is required for HIV-1 infection [34].  Viral entry 

itself might not equal transmission until viral integration is established in permissive cells 

[35].  Our finding that sTLR2 concentration was significantly elevated in HIV-1-infected 

BM is intriguing for three reasons: (1) sTLR2 has known anti-inflammatory properties to 

bacterial-induced ligands, and, we show here, significantly inhibits HIV-1-induced NFκB 

activation and IL-8 production in a dose-dependent manner; (2) sTLR2 directly binds to 
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HIV-1 structural proteins; and (3) sTLR2 inhibits TLR2-dependent, HIV-1-induced 

increases in CCR5 co-receptor expression, thus contributing to significantly decreased 

infection shown here.  

 

 sTLR2 levels correlated with IL-15  in HIV-1 infected BM.  This result is 

intriguing since IL-15 is associated with protection against breastfeeding HIV 

transmission [20].  Our findings that HIV-1 PAMPs induced TLR2-dependent cellular 

activation are similar to previous results indicating that exposure of macrophages to HSV 

envelope glycoproteins stimulated pro-inflammatory production and IL-15 release 

through a TLR2-dependent mechanism [36,37].  Given that macrophages are a major cell 

type in BM [31], release sTLR2 when stimulated with HIV-1 PAMPs, and produce IL-15 

through a TLR2-dependent viral protein-induced mechanism [36], we propose that BM 

macrophages provide crucial, compensatory innate immune protection that plays a role in 

inhibiting HIV MTCT.  Moreover, IL-15 increases proliferation and function of NK cells 

which have previously been shown to control HIV replication [38].  Given the strong 

correlation between sTLR2 and IL-15 in BM, we speculate that these innate factors act in 

concert to help control HIV infection. 

  

 To the best of our knowledge, this is the first study to demonstrate that sTLR2 

inhibits viral protein-induced NFκB activation.  This is important since multiple viruses, 

including HIV-1 (Henrick et al, submitted, 2013), induce NFκB activation through a 

TLR2-dependent mechanism [13].  Specifically, sTLR2-dependent inhibition of HIV-1-
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induced p65 nuclear translocation shown here is important since this factor is directly 

associated with secretion of pro-inflammatory cytokines, HIV-1 replication and 

pathogenesis [39].  These findings are similar to previous reports indicating that SLPI can 

affect NFκB nuclear translocation and gene expression [40].  However, contrary to SLPI, 

we showed direct protein-to-protein interaction between sTLR2 and HIV-1 PAMPs.  Our 

data indicated that sTLR2 binds directly to HIV-1 proteins inhibiting infection in at least 

two possible ways: (1) sTLR2 inhibits HIV-1 from inducing cellular activation, thus 

retaining low CCR5 expression levels, typical of unstimulated cells [41] and, (2) sTLR2-

gp41 binding directly impeded virus-host membrane fusion critical to HIV entry and 

infection [42]. 

  

 sTLR2 positively correlated with p24 levels in BM, and our in vitro data indicated 

that MECs and macrophages exposed to HIV-1 PAMPs increased sTLR2 levels in cell 

supernatants.  Indeed, monocyte/macrophage cell lines, and placental explants exposed to 

Pam3CSK4 increased sTLR2 secretion in cell supernatants [10,12].  We extended these 

findings to show that HIV-1-specific cellular activation promoted sTLR2 release from 

BMCs.  This is in contrast to Heggelund et al. (2004) whose results did not indicate 

significant differences in sera sTLR2 levels between HIV-uninfected and HIV-infected 

patients [43].  We speculate that this observation is specific to the mammary tissue and is 

intriguing since it suggests a host homeostatic mechanism of the innate immune system 

particular to the breast.  Here, HIV-1 infection stimulated increased sTLR2 release that 

led to decreased HIV infection, thus explaining why HIV-infected BM sTLR2 
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concentration positively correlated with p24 levels.  Indeed, similar findings have been 

reported for α-defensin level, which correlated with viral burden in BM [44]. 

 

 In summary, we demonstrated, for the first time, that sTLR2 inhibited HIV-1 

PAMP-induced cellular activation, increased CCR5 expression and viral infection 

through direct interaction with HIV-1 structural proteins.  Moreover, our data 

demonstrated that sTLR2 is significantly elevated in HIV-infected BM and positively 

correlated with p24 and IL-15.  Importantly, MECs and macrophages exposed to HIV-1 

PAMPs led to significantly increased sTLR2 levels in vitro.  These data highlight a need 

to further investigate the mammary gland for critical compensatory mechanisms that are 

likely pivotal in the prevention of HIV-1 MTCT, and underscore the importance of BM 

sTLR2 in infant health and development.  
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MATERIALS & METHODS 

Study cohort and breast milk   

 This study was approved by the McMaster Research Ethics Board (REB Approval 

#08-176), the University of Maryland Institutional Review Board and the Plateau State 

Specialist Hospital Ethics Committee.  All participants provided voluntary written 

informed consent.  Samples included in these analyses were obtained from women who 

were not taking medications (other than neviripine for HIV-infected women or vitamin 

supplements intra or post partum) and did not receive epidural intra partum.  All HIV-

infected Nigerian women were provided with single-dose nevirapine (200 mg tablet) at 

the onset of labor and to the neonate (2 mg/kg) by 48 hours of life according to the 

Nigerian National guideline at the time of the study.  Milk samples were self-collected 

into sterile tubes and shipped on ice for processing in our laboratory.  Samples were 

separated into lipid, supernatant, and cellular fractions and stored at -80°C and liquid 

nitrogen, respectively. BM supernatant fractions were used for dot blots and ELISA while 

cellular fractions were used for evaluation of TLR2 expression.   

 

Cell Lines 

 Establishment of TZMbl-2 from TZMbl cell line (kindly provided by Dr. 

Montefiori, Duke University) was described previously (Henrick, et al. submitted, 2013).  

TZMbl and TZMbl-2 were cultured in DMEM, THP-1 (Dr. D. Bowdish, McMaster 

University) were cultured in RPMI 1640 supplemented with 10% FBS (Invitrogen), 

10mM HEPES (Invitrogen), 2mM L-glutamine (Invitrogen), 100 units/mL 
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penicillin/streptomycin (Sigma-Aldrich), G418 (TZMbl-2 only). MCF-10A cells were 

cultured as previously described [45].  All cells were maintained at 37°C and 5% CO2.  

THP-1 cells were differentiated into macrophages using 50ng/mL phorbol 12-myristate 

13-acetate (PMA; Sigma) supplemented media and cultured for 48 hours before use. 

 

Reagents and antibodies  

 HIV-1 components included p17 (Virogen, Mississauga, Ontario, Canada), p24 

(Genway Biotech, Inc., San Diego, California, USA), gp41 (Genway), gp120 (NIH AIDS 

Reference & Reagent Program), nef (Genway) and ssRNA40 (Mobix, McMaster 

University, Hamilton, Ontario, Canada). Pam3CSK4 (InvivoGen, Burlington, Ontario, 

Canada and Poly I:C (Sigma-Aldrich) was reconstituted in phosphate-buffered saline 

(PBS) and used at concentrations shown in the figures. The following anti-sTLR2 

antibodies were used for western blots and neutralization: goat polyclonal IgG, N-17 

(Santa Cruz Biotechnology; Santa Cruz, California, USA); mouse monoclonal IgG1, T2.5 

(Santa Cruz Biotechnology was used for neutralization of sTLR2 in immunoassays at 

200ng/mL. 

 

Supernatants 

 Supernatants were collected from TZMBl-2 and TZMbl cells and tested for 

sTLR2 concentration using TLR2 ELISA (R&D).  sTLR2 was stably produced at 

approximately 430pg/mL in TZMbl-2 cells while sTLR2 was not detected in supernatants 

from TZMbl cells (Supplementary Figure 1).  Supernatants were concentrated using 
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Amicon 10K concentrators (Millipore, Burlington, Ontario, Canada) and sTLR2 levels 

were tested using TLR2 ELISA (R&D). 

 

Nuclear extraction 

 TZMbl-2, THP-1, and MCF-10A cells were grown in 12-well plates and treated 

with HIV-1 proteins or Pam3CSK4 in the presence of sTLR2 medium or sTLR2-free 

medium for one hour at 37°C and nuclei were isolated as described previously (Henrick, 

et al. submitted, 2013).  

 

Western Blot 

 Nuclear and cell lysate samples were loaded at 10 µg protein per lane and 

separated using SDS-PAGE in 4-15% Mini-Protean TGX gels (Bio-Rad) and transferred 

onto PVDF membranes as previously described [9].  Optical densitometry was 

determined using Un-Scan-It image digitizing software and fold expression was 

normalized to loading control and medium (Silk Scientific Inc., Orem, Utah, USA). 

 

Immunodepletion of sTLR2  

 Immunodepletion of sTLR2 from HIV-uninfected BM samples using N-17 and 

non-specific normal goat IgG (Santa Cruz Biotechnologies) antibodies with Protein G 

magnetic Beads (Invitrogen) was described previously [9].  

 

Dot blot 
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 Nitrocellulose membranes were blotted with 20 pmol of viral components, 

negative controls, and positive controls as previously described in detail previously 

(Henrick, et al. submitted, 2013) and incubated with 1:20 diluted mock-depleted or 

sTLR2-depleted HIV-uninfected pooled BM, washed and incubated with anti-TLR2 

antibodies (R&D), before exposure to enzyme conjugate and substrate as described for 

western blotting [9]. 

 

Quantitative reverse-transcriptase real-time polymerase chain reaction (qRT-PCR) 

 Total RNA was extracted from BMCs pellets in Trizol according to the 

manufacturer’s instructions (Invitrogen, USA), treated with DNAse I (DNA-free, 

Ambion, USA), reverse transcribed and qRT-PCR was completed as previously described 

[18]. PCR primers for IL-8, TLR2, and RPL13A were designed using the program, 

Primer 3.0 (http://frodo.wi.mit.edu), and were supplied by Mobix (McMaster University).  

The organized data was a ratio of gene quantity and normalized to RPL13A quantity, 

defined as relative expression. 

 

Immunoassays 

 OptiEIA was used to measure IL-8 levels in cell culture supernatants according to 

manufacturer’s instructions (BD Biosciences, Oakville, Ontario, Canada).  TLR2 ELISA 

was used to determine sTLR2 levels in cell supernatants according to manufacturer’s 

instructions (R&D Biosciences, Burlington, Ontario, Canada).  p24 ELISA was used to 

determine p24 levels in HIV-infected BM according to manufacturer’s instructions 
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(Advanced Bioscience Laboratories, Burlington, Ontario).  Interleukin (IL)-15 

concentration in BM supernatants was measured in a multiplex ELISA-based assay 

according to manufacturer’s instructions (Meso Scale Discovery, Gaithersburg, MD). 

 

HIV Preparation and Reporter Assay 

 R5-tropic ADA or BaL virus was prepared and tissue culture infectious dose 

(TCID50) of pooled supernatants as well as in vitro infection functional assays were 

determined using TZM-bl cells as described previously [46] and reported as relative light 

units (RLU).   

 

Statistical analysis  

 Data were plotted and analyzed using Prism 5.0 software (GraphPad Software, 

USA). Non-parametric tests were used including Student t-test, t-tests, and correlation 

with Welch’s correction for unmatched comparisons. Statistical significance was obtained 

if P<0.05.  
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Figure 2. HIV-1 PAMPs significantly elevate sTLR2 concentration in vitro. (A) 

Western blot analysis of MEC exposed to HIV-1 proteins (p17 and p24) for 20 

hours produced increased sTLR2 protein compared to medium alone. (B) 

Enzyme-linked immunosorbant assay (ELISA) quantification of sTLR2 in cell 

supernatants exposed as in (A).  (P=0.0396, 0.0117).  (C) Activated THP-1 cell 

supernatants exposed as in (A). *P<0.05, **P<0.01, ***P<0.001. Errors bars, 

SEM. A representative data set from triplicate experiments is shown.  MCF-10A-

mammary epithelial cell line.  THP-1-Human monocyte cell line. 
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Figure 5.  sTLR2 inhibits HIV-1 PAMP protein-induced inflammation.  TZMbl-2 

supernatant (sTLR2 sup.) was collected, concentrated, and sTLR2 concentration 

was evaluated before being pre-incubated at various dilutions with Pam3CSK4, 

p17, and gp41 for one hour at 37°C and placed on TZMbl-2 cells.  (A) IL-8 cDNA 

analysis after 4 hours indicated that sTLR sup. and various concentration 

significantly inhibited Pam3CSK4-induced IL-8 production in a dose dependent 

manner (P=0.022, P=0.0054, P=0.0148).  (B) p17 treated as in (A; P=0.0041, 

0.0036, 0.0032).  (C) gp41 treated as in (A; P=0.0007, P=0.0023, P=0.0086).  

Data set is representative of at least three different experiments completed in 

triplicate and are considered statistically significant if *P<0.05, **P<0.01, 

***P<0.001. 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 98 

 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 99 

 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 100 

 
 
Figure 6.  sTLR2 significantly inhibits cell-free R5 HIV-1 inflammation and 

infection.  (A) CCR5 cDNA expression was analyzed 4 hours after exposure to 

HIV-1 PAMPs (p17, gl41), or positive control, TLR2 ligand (Pam3CSK4) with cell 

supernatant that did or did not contain sTLR2 (TLR2-free sup. or sTLR2 sup., 

respectively). Data indicated that sTLR2 sup. significantly inhibited HIV-1 PAMPs 

and TLR2 ligand-induced increase in CCR5 expression (P=0.0024).  (B) IL-8 

production after 48 hours was investigated in TZMbl cells exposed to cell-free R5 

virus with or without supernatant containing sTLR2, and sTLR2 sup. show a 

significant decrease in IL-8 production after HIV-1 exposure compared to sTLR2-

free sup (P=0.0010), and significantly increased when sTLR2 was neutralized 

with specific antibody (P=0.0151).  (C) HIV-1 infection was evaluated in TZMbl 

cells exposed to various doses of cell-free R5 virus with or without sTLR2-

containing supernatant, and shows a significant decrease in HIV-1 infection in the 

presence of sTLR2 sup. compared to sTLR2-free sup. (P=0.0004), which was 

neutralized using TLR2-specific antibody (P=0.0008). 
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 This manuscript investigated the role of TLR2 in sensing HIV-1 structural 

proteins and increasing HIV integration.  Specifically, we stably transfected an HIV 

infection reporter assay, TZMbl, to express non-endogenous TLR2, and then assessed 

cellular activation after exposure to HIV structural proteins.  Further, we evaluated HIV 

integration rates in TZMbl-2 compared to TZMbl cells.  From this study, we discovered 

that HIV structural proteins, p17, p24 and gp41, bind to TLR2.  Furthermore, p17 and 

gp41 induced NFκB-dependent cellular activation through a TLR2/1 heterodimerization, 

which could be blocked by p24.  However, p24 promoted inflammation through TLR2/6 

heterodimers.  Importantly, HIV proteins that induced cellular activation significantly 

increased CCR5 expression thus providing a mechanism by which HIV integration was 

significantly elevated in cells expressing TLR2 compared to those that did not.  Taken 

together, these data indicated that TLR2 expression played a role in sensing of HIV-1 

proteins, inducing cellular activation, and increasing HIV-1 infection 
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ABSTRACT 

 Immune activation is a critical driver of HIV infection and pathogenesis; however, 

our understanding of HIV innate immune activation remains incomplete.  Here, we 

investigated TLR2 as an innate PRR for HIV-1 proteins using TZMbl cells stably 

expressing TLR2 (TZMbl-2).  Our results demonstrate that HIV-1 structural proteins p17, 

p24, and gp41 act as viral pathogen-associated molecular patterns (PAMPs) and are 

recognized by TLR2 leading to significantly increased cellular activation via the NFκB 

signaling pathway.  Initial studies demonstrated direct protein interactions between p17, 

p24, gp41 with TLR2, while only p17 and gp41 bound with TLR1.  Specifically, TLR2/1 

heterodimer recognized p17 and gp41 leading to cellular activation, while p24 signaled 

through TLR2/6.  These results were confirmed using TLR2/1 siRNA knock down assays 

which ablated p17 and gp41-induced IL-8 production and through studies of HEK293 

cells expressing selected TLRs. Interestingly, p24 blocked p17 and gp41-induced cellular 

activation in a TLR2-dependent manner, thus providing a novel mechanism by which 

HIV can manipulate innate sensing.  Importantly, significantly increased HIV-1 

infection/integration occurred in TZMbl-2 cells compared to cells lacking TLR2, and 

mechanistically this appeared to be due to increased expression of CCR5.  Taken 

together, our results identify, for the first time, novel HIV-1 PAMPs that play a role in 

cellular activation via TLR2, and show that cellular TLR2 expression significantly 

increased HIV infection/integration.  These results have important implications for our 

fundamental understanding of HIV immune activation and pathogenesis, and for HIV 

vaccine development. 
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INTRODUCTION:  

 Chronic immune activation is a fundamental driver of HIV-1 infection, 

replication, and pathogenesis (1, 2).  Although our knowledge of HIV-1 infection and 

pathogenesis continues to expand, our understanding of how HIV-1 is recognized by the 

innate immune system remains poorly understood.  Currently, HIV-1 immune activation 

is believed to be primarily driven by translocation of bacterial and viral components from 

the gut (3).  Indeed, increased lipopolysaccharide (LPS) levels in sera, a result of 

microbial translocation through the gut-associated lymphoid tissue (GALT), were 

strongly correlated with immune activation in chronically HIV-1-infected individuals 

(3).  However, HIV-1 itself is an important contributor to chronic immune activation.  In 

untreated HIV-1-infected individuals we showed that significant and progressive 

increases in Toll-like receptor (TLR) expression occurred and became progressively 

dysfunctional (4).  Moreover, following antiretroviral therapy (ARV), TLR expression 

was normalized, suggesting that HIV itself was involved in increased expression 

(4).  Thus, we hypothesized that HIV-1 components play a fundamental role in 

facilitating immune activation that is central to this infection. 

            HIV-1, a single-stranded ribonucleic acid (RNA) virus from the lentivirus genus, 

is composed of multiple structural proteins including envelope glycoproteins 120 (gp120) 

and gp41, capsid protein p24 and matrix protein p17 (5).  Importantly, the vast majority 

of viral particles released from HIV-infected cells are considered non-infectious (6), thus 

creating a milieu of viral antigens that are potentially highly immunogenic and possess 

differing abilities to activate the innate immune system (7).  Specifically, gp120 is known 
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to deregulate the biological activity of many cell types, as well as being responsible for 

the immunostimulatory effects related to HIV-1-associated dementia (8).  gp41 

significantly enhanced HIV-1 infection and replication (9).  p24 stimulated peripheral 

blood mononuclear cells (PBMCs) of HIV-1-infected individuals receiving HAART 

(10).  Further, p17 possesses potent immunostimulatory properties, and in vitro increased 

HIV replication in activated PBMCs, possibly through a recently-described interaction 

with CXCR1 (11, 12).  Thus, HIV-1 creates a more suitable environment for its own 

integration and replication via virus-induced innate immune activation.     

            Surprisingly, HIV proteins have not been well studied for their ability to serve as 

viral pathogen-associated molecular patterns (PAMPs). To date, despite the potent ability 

of HIV-1 to initiate the signaling events responsible for immune cellular activation, the 

only HIV-1 PAMP identified is uridine-rich HIV-1 ssRNA (13). 

            Currently, 10 TLRs have been identified in humans (14).  TLRs have proven 

fundamental in the early recognition of many pathogen classes and are largely responsible 

for activating innate immunity and shaping subsequent adaptive immune responses (15, 

16).  Typically, the recognition of viral PAMPs via TLR engagement triggers a signaling 

cascade resulting in the activation of transcription factor, nuclear factor kappa B (NFκB), 

leading to the downstream production of anti-viral and pro-inflammatory cytokines 

(17).  While, untreated HIV-1 infection has been associated with progressively increased 

TLR expression (4) and induction of NFκB, the particular components that engage TLRs 

are only beginning to be elucidated.  Furthermore, given that NFκB is particularly 
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important during HIV infection, for host immune activation as well as viral replication 

due to the presence of NFκB binding sites found within HIV-1’s long terminal repeats 

(18), it is necessary to understand the interaction between HIV PAMPs and TLR 

engagement. 

While classically considered in the context of bacterial recognition, TLR2 is 

unique among the TLR family in that it can heterodimerize with co-receptors TLR1, 6 

and 10 (19, 20).  These co-receptors allow TLR2 to markedly increase the diversity of 

PAMPs recognized.  Of particular interest, a number of viral proteins have been identified 

as novel PAMPs for TLR2 including cytomegalovirus (CMV) glycoprotein B (21), herpes 

simplex virus (HSV) gH/gL and gB (22), hepatitis C virus (HCV) core protein (23), and 

measles virus hemagglutinin A glycoprotein (24).  In addition, the extracellular portion of 

TLR2 can be found in soluble form systemically and in mucosal fluids.  Indeed, we and 

others (25-28), showed that soluble TLR2 (sTLR2) can inhibit production of pro-

inflammatory cytokines.  Importantly, we also demonstrated that sTLR2 directly inhibited 

cell-free HIV-1 infection in vitro (28), thus indicating that sTLR2 might directly interact 

with HIV-1.  These findings motivated us to hypothesize that TLR2 acts as an innate PRR 

for the recognition of HIV-1 structural proteins.        

In the present study, we investigated the engagement between TLR2 and HIV-1 

proteins and demonstrated that HIV-1 proteins, p17, p24 and gp41 represent a novel 

cluster of viral PAMPs that are recognized by TLR2 heterodimers.  Interestingly, while 

engagement of TLR2/1 by HIV-1 proteins p17 and gp41 led to significant increases in 

pro-inflammatory cytokine production via NFκB activation, p24 did not activate innate 
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responses.  Instead, p24 blocked p17 and gp41-induced pro-inflammatory cytokine 

production.  Importantly, TLR2-expressing cells showed significantly increased HIV 

infection/integration levels compared to cells that did not express TLR2.  Taken together, 

our results identify, for the first time, novel HIV-1 PAMPs that play an important role in 

cellular activation via TLR2, which in turn, significantly increased HIV-1 infection and 

integration.   
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MATERIALS & METHODS 

Cell lines and Toll-like Receptor Ligands 

 TZMbl (JC53-BL) cells (kindly provided by Dr. D. Montefiori, Duke University, 

North Carolina) were cultured in DMEM supplemented with 10% Fetal Bovine Serum 

(FBS; Invitrogen, Burlington, Ontario, Canada), 10 mM HEPES (Invitrogen), 2mM L-

glutamine (Invitrogen), 100 units/mL penicillin/streptomycin (Sigma-Aldrich, Oakville, 

Ontario, Canada).  TZMbl-2 cells required 10% FBS (Invitrogen), 10 mM HEPES 

(Invitrogen), 2mM L-glutamine (Invitrogen), 100 units/mL penicillin/streptomycin 

(Sigma-Aldrich), 0.8mg/mL Geneticin (G418; Invitrogen) selection media.  HEK293-

TLR2, TLR2/1, and TLR2/6 stably transfected human embryonic kidney cells (InvivoGen, 

Burlington, Ontario, Canada) were cultured in DMEM supplemented with 10% FBS, 

10mM HEPES, 2 mM L-glutamine, 100 units/mL penicillin/streptomycin, 10 mg/mL 

blasticidin (InvivoGen).  All cell lines were maintained at 37°C in 5% CO2.   

 HIV-1 components included p17 (Virogen, Mississauga, Ontario, Canada), p24 

(Genway Biotech, Inc., San Diego, California, USA), gp41 (Genway), gp120 was kindly 

provided by NIH AIDS Research and Reference Reagent Program, nef (Genway) and 

ssRNA40 (Mobix, McMaster University, Hamilton, Ontario, Canada). Pam3CSK4 

(InvivoGen, Burlington, Ontario, Canada and Poly I:C (Sigma-Aldrich, Oakville, Ontario, 

Canada) was reconstituted in phosphate-buffered saline (PBS) and used at concentrations 

shown in the Figs.  

 

Establishment of a stable TLR2 transfected TZMbl-2 cell line 
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 cDNA constructs for human TLR2 were generated from PBMC by RT-PCR and 

cloned into pcDNA3.1(+)-002 (kindly provided by Dr. Jonathan Bramson, McMaster 

University).  The plasmid was operationally named phTLR2.  phTLR2 was used as a 

template with XhoI and BamHI endonucleases at either end, respectively, and PCR-

amplified before insertion into pIRES2-ZsGreen1 vector (Clontech, Burlington, Ontario, 

Canada).  DNA sequencing confirmed the structure of the recombinant plasmid pIhT2G, 

and TLR2 protein expression was confirmed using western blot analysis.  pIhT2G was 

transfected into TZMbl cells with Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions.  Selection of transfected cells was completed every 48 hours 

post-transfection by serial dilutions with medium containing 0.8mg/mL G418. Long-term 

expression of TLR2 in these stably transfected TZMbl cells (TZMbl-2) was confirmed 

using RT-PCR and western blot analyses up to passage 15, and all testing was completed 

in cells before this mark. 

Transient transfection of TZMbl cell line 

 TZMbl cells were plated in 24-well plates and left overnight.  At approximately 

80% confluence cells were transfected for 24 hours with Lipofectamine 2000 (Invitrogen) 

containing 0.5 µg/well of plasmid phTLR2, phTLR3 or vector pcDNA3.1(+)-002, 

respectively. The cells were superinfected with 100TCID50 HIV-1 BaL for 48 h. Total 

cellular DNA was extracted for analysis of proviral DNA quantity.  

Viral stocks and reporter assay 

 HIV-1 R5-tropic BaL was prepared and tissue culture infectious doses (TCID) of 
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pooled supernatants as well as in vitro functional assays were determined using TZMbl 

and TZMBL-2 cells, as previously described (29).   Briefly, 3.5 x 104 cells/well were 

plated in 96-well plates with 25µg/ml diethylaminoethyl-dextran (Sigma).  Luciferase 

activity from TZMbl and TZMbl-2 cells were measured using Bright-Glo reagents 

(Promega, Madison, Wisconsin, USA), analyzed using a Veritas luminometer (Promega) 

and reported as relative light units (RLU). 

Quantitative reverse-transcriptase real-time polymerase chain reaction (qRT-PCR) 

 Total RNA was extracted from Trizol samples according to the manufacturer’s 

instructions (Invitrogen, USA) and treated with DNAse I (DNA-free, Ambion, USA).  

Reverse transcription (RT) reactions were prepared by adding 500 ng DNA-free total 

RNA to 20 µL manufacturer’s reagents (Invitrogen).  RT was conducted with incubations 

at 25°C for 5 min, 50°C for 50 min and 70°C for 15 min. cDNA was prepared at various 

dilutions for qRT–PCR of selected genes and an internal control, RPL13A.  PCR primers 

for COX-2, TNF-α, and HIV Pol were designed using the program, Primer 3.0 

(http://frodo.wi.mit.edu), and were supplied by Mobix (McMaster University).  qRT–PCR, 

with one RT sample in duplicate, was performed in a 20 µl reaction containing 2 µl 

diluted complimentary DNA, 200 nmol forward primer, 200 nmol reverse primer, and 10 

µL KAPA SYBR qPCR Master Mix (KAPA Biosystems, Burlington, Ontario, Canada) in 

a 96-well plate with the sequencing detection system 7900HT (Applied Biosystems, 

Burlington, Ontario, Canada).  The organized data was a ratio of gene quantity and 

normalized to RPL13A quantity, defined as relative expression. 
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siRNA knockdown 

 TZMbl-2 cells (2x104) were transfected with Lipofectamine RNAiMAX 

(Invitrogen) and 20 nM siRNA individually, including a negative control siRNA 

(Invitrogen, Cat. # 129201 H07/129296 H05), TLR1 siRNA (Sigma-Aldrich, Cat. # 

SASI_Hs01_00162170/AS) and TLR2 siRNA (Sigma-Aldrich, Cat. # SASI_Hs01_ 

00081589/AS) or with 15 nM of both TLR1 siRNA and TLR2 siRNA together in a 96-

well plates in reverse manner according to the manufacturer’s instructions. 48 hr post-

transfection, the cells were either harvested for detection of protein expression using 

western blot analyses or further treated with HIV-1 proteins for 18 h to test IL-8 

production levels using enzyme-linked immunosorbant assay (ELISA) (BD Biosciences, 

Mississauga, Ontario, Canada).    

Nuclear extraction 

 TZMbl-2 cells were grown in 12-well plates and treated with HIV-1 proteins and 

Pam3CSK4 for selected periods and nuclei were isolated after cells were washed with 

dilute PBS, immersed in 160 µl of a hypotonic buffer, and then 200 µl of 1% Triton X-

100 buffer to rupture cellular membranes. After centrifugation at 12000 ×g for 3 min, the 

nuclear pellets were dissolved in a high salt buffer containing protease inhibitor and 

phosphotase inhibitor cocktails (PhosStop Mini Complete; Roche Applied Science, 

Burlington, Ontario, Canada). The supernatants were collected and protein concentrations 

were determined using the DC assay (Bio-Rad, Burlington, Ontario, Canada).   

Western Blot 

 TZMbl-2 and TZMbl total cell lysates, membranes, and cytosol were evaluated 
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for total protein concentration using DC assay prior to being boiled in 5x Laemmli 

reducing buffer and resolved in a SDS-PAGE gel for the evaluation of TLR protein 

expression and phosphorylation of IκBα.  Signals were detected and developed as 

previously described (28).  Briefly, TLR-specific primary antibodies included: anti-TLR1 

goat polyclonal IgG (R&D Systems, Burlington, Ontario, Canada); anti-TLR2 goat 

polyclonal IgG (R&D Systems) and anti-TLR2 goat polyclonal IgG (Santa Cruz 

Biotechnology, Santa Cruz, California, USA); anti-TLR6 goat polyclonal IgG (Santa 

Cruz Biotechnology). The secondary reagents used in these assays included: HRP-labeled 

donkey anti-goat IgG (Santa Cruz Biotechnology), HRP-labeled mouse anti-rabbit IgG 

(Pierce Biotechnology Inc, Mississauga, Ontario, Canada), HRP-labeled chicken anti-

mouse IgG (Santa Cruz Biotechnology).  Optical densitometry was determined using Un-

Scan-It image digitizing software and normalized to β-actin levels (Silk Scientific Inc., 

Orem, Utah, USA).  

 Nuclear samples were loaded at 10 µg protein per lane and separated using SDS-

PAGE in 4-15% Mini-Protean TGX gels (Bio-Rad) and transferred onto PVDF 

membranes. After blocking with 5% skim milk powder-Tris buffered saline-0.1% Tween-

20 (TBS-t), the membranes were exposed to primary antibodies including: anti-IκBα 

rabbit polyclonal IgG (Cell Sciences Inc, Burlington, Ontario, Canada). β-actin primary 

antibodies included, anti-β-actin mouse monoclonal IgG (Cell Sciences) in 5% skim milk 

powder-TBS-t at 4oC overnight. The membranes were extensively washed and reacted 

with goat anti-rabbit IgG-HRP (Bio-Rad), in 5 % skim milk powder-TBS-t at RT for 1 hr, 
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washed, and stained with either Super Signal West Pico Chemiluminescent Substrate or 

Super Signal West Femto Maximum Sensitivity Substrate (Thermo Scientific, Rockford, 

Illinois, USA) before being exposed to CL-X Posure film (Thermo). 

 

Dot blot 

 Nitrocellulose membranes were blotted with 20 pmol of viral components, p17 

(Virogen), p24 (Genway), gp41 (Genway), gp120 (kindly provided by NIH AIDS 

Research and Reference Reagent Program, Division of AIDS, NIAID, NIH), and 

ssRNA40 (Mobix, McMaster University).  As negative controls, all solutions (Urea) and 

glutathione transferase enzyme tag (GST, Virogen) were similarly blotted.  Positive 

protein control including, sCD14 (Cell Sciences, Burlington, Ontario, Canada) was 

blotted at 20 onto the nitrocellulose membrane.  Once dried and blocked, the membranes 

were probed with the cell membrane fractions of either TZMbl or TZMbl-2, and 

incubated with detection antibodies, anti-TLR1 or anti-TLR2, before exposed to enzyme 

conjugate and substrate as described for the western blot (Material and Methods above). 

 

Endotoxin  

 Endotoxin detection assay (kindly provided by Dr. Bowdish, McMaster 

University) was completed according to the manufacturer’s instructions (Lonza, 

Burlington, Ontario, Canada).  Briefly, the supplied endotoxin standard was prepared into 

serial dilutions.  100µL of standard, blank, and samples were added in duplicate to 

separate wells in a 96-well plate.  The plate was pre-incubated in the reader at 37°C for a 
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minimum of ten minutes.  The working reagent contained a 5:4:1 ratio of fluorogenic 

substrate, assay buffer, and rFC enzyme solution was added to each well and fluorescence 

was determined at time zero.  The plate was incubated for one hour and examined again.  

The difference between fluorescence at time zero and 60 mins was corrected to the blank 

and plotted against the log of endotoxin concentration as a linear regression curve.  

Endotoxin concentrations in the samples were determined using the standard curve. 

Immunoassays 

 OptiEIA was used to measure IL-8 levels in cell culture supernatants according to 

manufacturer’s instructions (BD Biosciences).   Briefly, plates were incubated with 

capture antibody overnight at 4°C before being extensively washed with PBS 0.05% 

tween-20 and blocked with 10% FBS in PBS.  Samples and standards were diluted in 

blocking buffer and aliquoted into 96-well plates for 2 hours at room temperature before 

being washed and coated with detection antibodies.  After 1 hour incubation at room 

temperature, the plates were washed and substrate was added for up to 20 mins.  2N 

sulfuric acid was added to halt the reaction and absorbance was determined using at BIO-

TEK EL800 at 450 nanometers. 

Statistical analysis  

 Data were plotted and analyzed using Prism 5.0 software (GraphPad Software, 

USA). Non-parametric tests were used including Student t-test and t-tests with Welch’s 

correction for unmatched comparisons.  Statistical significance was obtained if P<0.05.  
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RESULTS 

Characterization of TLR expression in TZMbl cells and establishment of functional 

stably transformed TLR2 cell line, TZMbl-2 

 In order to investigate the effect cellular TLR2 expression had on host innate 

responses to HIV-1 proteins and infection, we initially set out to utilize the well-

characterized HIV-1 luciferase reporter assay, TZMbl cell line.  Early results showed that 

TZMbl cells do not endogenously express TLR2, consequently we established a stably 

transformed TZMbl cell line, TZMbl-2, that showed a substantial increase in TLR2 

transcription and protein expression (Fig. 1A and B).  In addition TLR1 protein was 

detected in TZMbl and TZMbl-2 cytosol fractions (Fig. 1B).  We also observed low 

levels of cDNA expression of TLR6 but not at the protein level (Fig. 1A).  TZMbl-2 

exposed to TLR2 ligand, Pam3CSK4, produced significantly increased IL-8 levels in a 

dose-dependent manner compared to TZMbl (Fig. 1C, P<0.05, 0.001, 0.01, respectively). 

Taken together, these results indicated that TZMbl-2 cells expressed TLR2 and TLR1, 

and developed a proinflammatory response to synthetic bacterial TLR2/1 ligand, 

Pam3CSK4. 

 HIV-1 proteins bind TLR2 from TZMbl-2 cell lysates 

 Physical interaction of TLR2 and specific HIV-1 proteins were determined by 

utilizing a previously described dot blot detection method (30).  Recombinant HIV-1 

proteins (p17, p24, gp41, gp120, and nef), positive controls CD14 and 1:20 diluted human 

breast milk, which contains high levels of sTLR2 (25, 28), as well as negative carrier 
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controls (urea solution, PBS, GST) were blotted onto a nitrocellulose membrane.  After 

blocking, the membranes were exposed to TZMbl or TZMbl-2 cell lysates and viral 

protein-TLR interactions were identified using TLR2 and TLR1-specific antibodies.  The 

results indicated HIV-1 proteins p17, p24, and gp41 directly interacted with membrane 

bound TLR2 (Fig. 2C), whereas no interaction was detected between TLR2 and gp120, 

nef, or ssRNA40 (Fig. 2C).  As well, very strong interactions between TLR2 and the 

positive control, CD14 were detected (Fig. 2C), which was critical because it indicated 

direct protein-to-protein interactions.  TZMbl lysate incubation did not reveal a TLR2-

viral protein interaction, and indirectly demonstrated that there was no non-specific 

antibody binding between blotted proteins and antibodies used (Fig. 2B).  Dot blots 

exposed to TZMbl lysates probed with anti-TLR1 antibodies indicated strong interactions 

between TLR1 and viral proteins p17 and gp41, but not with p24 or other viral 

components (Fig. 2A).  In addition, TLR1 did not interact with CD14, which is important 

since CD14 is a TLR2-specific signaling co-factor (Fig. 2A).  These results demonstrated 

direct protein-to-protein interactions between TLR2/1 and HIV-1 structural proteins but 

not regulatory protein, nef.  Specifically, TLR2 preferentially bound p17, p24, and gp41 

while TLR1 only interacted with p17 and gp41. 

HIV-1 proteins activate phosphorylation of IκBα  and translocation of p65 

 PAMPs recognized by TLRs typically induce pro-inflammatory responses via the 

phosphorylation of IκBα and subsequent translocation of NFκB transcription factors (17).  

Given the central role of NFκB to immune responses, we sought to qualitatively assess 

the impact of HIV-1 protein exposure on the phosphorylation of IκBα in TZMbl-2 cells.  
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Following exposure to HIV-1 proteins (p17, p24, gp41, and gp120), positive control 

(Pam3CSK4), and negative control (medium), western blot analysis of TZMbl-2 cell 

lysates showed a substantial increase in phosphorylated IκBα in cells exposed to p17, 

gp41, and Pam3CSK4, compared to medium and gp120 (Fig. 3A).  Interestingly, p24 did 

induce a moderate increase in phosphorylated IκBα (Fig. 3A).  Further, assessment of 

NFκB subunit p65 nuclear translocation in TZMbl-2 cells revealed substantially increased 

p65 in nuclear fractions of TZMbl-2 cells that were exposed to p17, gp41 and Pam3CSK4, 

but not in cells exposed to medium or p24 (Fig. 3A). 

 Given that HIV-1 infection induces COX-2 in multiple cell types (31, 32), we 

examined COX-2 mRNA in TZMbl-2 cells exposed to HIV-1 proteins (p17, p24, gp1, 

and gp120), positive control (Pam3CSK4), and negative control (medium).  Our results 

showed significantly increased COX-2 cDNA expression levels in TZMbl-2 cells exposed 

to p17 and gp41, and Pam3CSK4 compared to medium (Fig. 3B; P=0.0033; P=0.0022; 

P=0.0002 respectively).  Since TNF-α is strongly implicated in HIV-1 pathogenesis (33), 

we examined cDNA expression using qRT-PCR, and showed significantly increased 

TNF-α expression in TZMbl-2 cells exposed to p17 and gp41, and Pam3CSK4 compared 

to medium (Fig. 3C; P=0.0058, P=0.0064, P=0.0051, respectively).  

 We next determined the effect of viral protein exposure on pro-inflammatory 

cytokine production.  TZMbl-2 and TZMbl cells were exposed to various concentrations 

of viral proteins (p17, p24, gp41, and gp120), positive control (Pam3CSK4) and negative 

controls (medium and protein tag glutathione transferase; GST).  Results showed 
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significantly increased IL-8 production in TZMbl-2 after exposure to p17, gp41, and 

Pam3CSK4 compared to medium (Fig. 3D, P=0.0002, P=0.0004, P<0.0001, 

respectively), but not in TZMbl cells (Fig. S1).  p24 and gp120 protein exposure did not 

substantially increase IL-8 production in either TZMbl-2 (Fig. 3D) or TZMbl cell lines 

(Fig. S1).   

 To rule out the possibility that induction of IL-8 might be due to lipoprotein 

contamination all components were tested for the presence of endotoxin, and data 

indicated that all recombinant proteins, including Pam3CSK4, p17, p24, gp41, gp120, and 

GST had undetectable to very low levels of endotoxin that were well below levels found 

in fetal bovine serum used in cell medium (Table S1).   

 Collectively, these data indicate that HIV-1 structural proteins, p17 and gp41, 

induced a TLR2-dependent pro-inflammatory response via NFκB signaling pathway. 

HIV-1 proteins, p17 and gp41, signal through TLR2/1 heterodimer 

 To understand the mechanism by which HIV-1 proteins signal through TLR2 

and/or its binding partner, TLR1, we performed a series of siRNA knockdown 

assays.  Western blot analyses of total cell lysates showed that specific siRNA 

knockdown substantially reduced endogenous TLR1 and TLR2 protein expression in 

TZMbl-2 cells compared to non-specific control (Fig. 4A).  After siRNA knockdown, 

TZMbl-2 cells were exposed to viral proteins overnight and IL-8 levels were assessed.  

Our results indicated that single siRNA knockdown of TLR1 or TLR2 ablated viral p17 

and gp41-induced IL-8 production, as well as significantly reduced Pam3CSK4-induced 
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IL-8 levels (Fig. 4B and C).  In the absence of both TLR1 and TLR2 expression, little to 

no IL-8 response was elicited in the presence of p17 or gp41, and a significant reduction 

in Pam3CSK4–induced cytokine production (Fig. 4D), thus confirming that both TLR1 

and TLR2 are involved in recognizing these HIV-1 structural proteins. 

 To confirm that particular HIV proteins elicited pro-inflammatory responses 

specifically through TLR2 and its co-receptors, HEK293 cells expressing TLR2, TLR2/1 

or TLR2/6 were evaluated.  HEK293-TLR2 cells were shown to express low levels of 

cDNA for TLR1 and TLR2 (Fig. 5A, insert).  Exposure to various concentrations of gp41 

significantly increased IL-8 levels in a dose-dependent manner; whereas no other viral 

protein produced substantial increases in IL-8 levels (Figure 5A; P=0.0042, 0.0136, 

respectively).  TLR2/1 cDNA expression levels were extremely high in HEK293-TLR2/1 

cells (Fig. 5B insert), and they produced significantly elevated IL-8 levels after exposure 

to p17 and gp41 compared to medium, while, p24 and gp120 did not induce a pro-

inflammatory response (Fig. 5B; P=0.0062; P=0.0143, 0.0024, 0.0411; respectively).  

HEK293-TLR2/6 cell line expressed cDNA for TLR2, and both heterodimers TLR1 and 

TLR6 (Fig. 5C, insert).  Exposure to various concentrations of recombinant viral proteins 

(p17, gp41, and p24) induced significantly increased levels of IL-8, while gp120 did not 

induce IL-8 compared to medium (Fig. 5C; P<0.0001; P=0.005, P=0.0106, P=0.0151; 

P=0.0127, P=0.0097; P=0.0003, P=0.0002, P=0.0012, respectively).  IL-8 was 

profoundly induced with gp41, probably due to higher amounts of TLR1/2/6 expression 

in HEK293-TLR2/6 cell line.  Pam3CSK4 (positive control) increased IL-8 production in 

all three cell types (Fig. 5A, B, C; P<0.0001, P=0.0044, P<0.0001).  Taken together, 
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these data indicated specific synergistic effects of the TLR2/1 heterodimer in sensing HIV 

proteins, p17 and gp41, and demonstrated that TLR2/6 heterodimer senses p24 leading to 

cellular activation and production of pro-inflammatory cytokine. 

p24 blocks p17 and gp41 induced production of pro-inflammatory cytokines 

 Our previous data showed a strong protein-to-protein interaction between p24 and 

TLR2, yet failure to induce a pro-inflammatory response in TZMbl-2 cells.  Therefore, 

we next sought to determine whether p24 was interacting with TLR2 in a manner that 

impacted TLR2-dependent pro-inflammatory activation induced by p17 and gp41. 

 TZMbl-2 cells were incubated with increasing concentrations of p24 for one hour 

prior to the addition of cellular activators, Pam3CSK4, p17, or gp41, and resulted in a 

significant dose-dependent attenuation in IL-8 production following exposure to p17 and 

gp41 (Fig. 6B & C; P=0.0054, P=0.0047, P=0.0016, P=0.0034; P=0.011, P=0.0028, 

P=0.0006, P=0.0003, respectively), yet had little to no effect on the inhibition of 

Pam3CSK4-induced production of IL-8 (Fig. 6A). 

 Next, TZMbl-2 cells simultaneously exposed to p24 and Pam3CSK4, p17, or gp41 

indicated that p24 did not inhibit Pam3CSK4 or gp41 cellular activation (Fig. 6D & F).  

However, p24 did significantly block p17-induced production of IL-8 in a dose-dependent 

manner (Fig. 6E, P=0.0135, P=0.0473, P=0.0421, P=0.0345, respectively). 

 Collectively, these data suggest that p24 can block activation by p17 and gp41 

HIV structural proteins, but not Pam3CSK4, and taken together with our dot blot assay 
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indicates that HIV viral proteins are capable of manipulating innate immune signaling 

through a TLR2-dependent mechanism. 

 Cellular TLR2 expression is associated with increased HIV-1 infection/integration 

 Given that multiple viruses induce cellular activation via TLR2 as a means to 

facilitate entry (21, 23, 24), and data here showing an interaction between TLR2 and 

specific HIV-1 structural proteins, we next sought to explore our hypothesis that cellular 

expression of TLR2 increased cell-free HIV-1 infection and integration.  

 Previously, Heggelund et al. (2004) demonstrated that TLR2 stimulation 

increased CCR5 protein expression on monocytes (34).  Given the importance of the 

HIV-1 co-receptor CCR5 expression to viral entry and integration, we determined 

whether THP-1, a monocyte/macrophage cell line, exposed to viral proteins (p17, p24, 

gp41, gp120) or Pam3CSK4 increased CCR5 expression.  Evaluation of cDNA indicated 

that CCR5 expression was significantly elevated after four-hour exposure to p17 and 

gp41, as well as Pam3CSK4 compared to medium (Fig. 7A; P=0.0014, 0.0256, 0.0027, 

respectively).  

 To determine whether TLR2 expression could significantly increase HIV-1 

integration into permissive cells, we first transiently-transfected empty plasmid, TLR2, or 

TLR3 into TZMbl cells and infected the cells for 48 hours.  Our results indicated that 

TLR2-transfected cells showed significantly increased HIV-1 proviral integration 

compared to empty-plasmid control, whereas no significant increases in integration were 

identified in empty plasmid or TLR3-transfected TZMbl cells (Fig. 7B; P=0.0256).  
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 Next, we determined the optimal time of HIV-1 integration following infection of 

TZMbl cells using qRT-PCR analysis for the proviral gene Pol, and found integration 

levels peaked at 8 hours post exposure in TZMbl cells (Fig. S2).  Using these data, 

TZMbl-2 and TZMbl were infected with cell-free R5 virus and DNA evaluated at 8 hours 

post infection indicated that TZMbl-2 had significantly increased HIV-1 integration rates 

compared to TZMbl cells at various infectious doses (Fig. 7C; P=0.0044, P=0.017, 

P=0.0132, respectively).  

 Taken together these data indicated that cellular activation via TLR2 played an 

important role in increased expression of HIV-1 co-receptor CCR5 and led to 

significantly increased HIV infection/integration rates compared to cells that did not 

express TLR2. 
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DISCUSSION 

 Increasing evidence supports the notion that chronic immune activation is a 

central characteristic of HIV-1 infection and the progression to AIDS (1, 2).  Despite this 

understanding, the ability of HIV to alter innate immune responses as a means of 

perpetuating chronic activation is only beginning to be fully elucidated.  Currently, a key 

driver of chronic immune activation is bacterial translocation from the HIV damaged 

intestinal tract (3).  Indeed, during acute HIV infection mucosal CD4 T cells are 

dramatically depleted, especially in the intestine (35), and increased systemic LPS levels 

strongly correlate with immune activation in chronically infected individuals (3).   

However, we previously showed that initiation of ART normalized TLR expression 

despite increased serum LPS levels (36), indicating that although bacterial translocation is 

an important immune activator, HIV-1 itself might play an important role in driving 

chronic immune activation (4).  Indeed, HIV-1 ssRNA triggers cellular activation through 

endosomal RIG-I and TLR7/8 sensing (37).  However, we and others previously showed 

that TLR expression, including TLR2, significantly and progressively increased as 

untreated HIV infection advanced (4).  Several reports also highlight the importance of 

TLR2 expression in sensing multiple viral proteins which lead to increased cellular 

activation and facilitate viral entry (21-24).  In addition, we recently reported that sTLR2 

directly inhibited HIV-1 infection in vitro (28).  Given the correlation between TLR2 

expression and HIV disease progression, the critical role of TLR2 in recognizing multiple 

viral proteins, and the direct inhibition of infection by sTLR2, led us to hypothesize that 

HIV-1 proteins might play a fundamental role in driving innate immune activation and 
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lead to increased viral infection.  Thus, in the present study, we identified a number of 

novel HIV-1 PAMPS, demonstrating that specific HIV proteins can engage and activate 

membrane bound TLR2, while others block TLR2 activation. Moreover, we demonstrated 

that TLR2 expression significantly increased HIV-1 infection/integration in vitro.  

Collectively, we provide an illustrated summary of our results of HIV PAMPs 

interactions with PRRs and TLR2 heterodimer signaling in Fig. 8. 

 To investigate the role of TLR2 in sensing HIV-1 structural proteins, we 

developed a TLR2-stably transfected TZMbl (TZMbl-2) cell line.  TZMbl cells were a 

rationale choice given their stable expression of canonical HIV-1 receptors and Tat-

regulated reporter genes, allowing for sensitive and reproducible quantification of HIV-1 

integration (38).  As well, stable expression of the PRR allowed us to focus our studies 

specifically on TLR2 signaling and validate our findings with reasonably designed 

controls.  TZMbl-2 cells express TLR2/TLR1heterodimer at the mRNA and protein level, 

and together recognize HIV p17 and gp41.  Given that TLR2/1 classically recognizes 

triacylated lipopeptides by forming M-like shapes (39), as well as our findings that HIV 

proteins do not block Pam3CSK4-induced activation, the heterodimer configuration that 

recognizes HIV-1 proteins requires further investigation.  In addition, HEK293 and its 

derived cell lines expressing TLR2 and TLR2 co-receptors, HEK293 TLR2, HEK293 

TLR2/1 and HEK293 TLR2/6 were also used in this study, and the experimental data 

from these cell lines strongly support our findings.  Indeed, further investigation of 

TLR2’s role in HIV-1 sensing and immunopathology is an important endeavor and 
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requires further investigation using primary cells and ex vivo samples from HIV-1 

infected individuals. 

  

 Previous publications have provided evidence that multiple HIV-1 proteins play 

key roles in altering cellular activity.  Indeed, p17 has previously been shown to induce 

the production of pro-inflammatory cytokines in vitro and in vivo (40, 41), and act as an 

adjuvant in vaccine strategies tested in animal models (42).  Additionally, a recent 

publication showed that gp41 activated NFκB in exposed lymphocytes (43), and gp120 

altered both pro- and anti- inflammatory responses in vitro (44-46).  Taken together with 

data indicating HIV-1 infected cells shed enormous amounts of viral proteins (6), it 

seemed critical to determine the role this milieu provided in driving immunopathogenesis.  

In line with previous publications, our data confirms and extends these findings by 

demonstrating a direct role of TLR2/1 recognition of p17 and gp41 that induced 

activation of a key transcription factor, NFκB.  This is an important step in not only the 

TLR2 signaling cascade pathway but is also required for induction of HIV-1 gene 

expression via viral long terminal repeat (LTR) binding (18).  Nuclear translocation of 

p65 led to significantly increased pro-inflammatory gene expression and production of 

pro-inflammatory cytokine, IL-8, in a TLR2-dependent manner that might correlate with 

the increased IL-8 levels observed during HIV-1 infection (47).  Importantly, endotoxin 

testing revealed little to no LPS contamination in protein preparations.  Additionally, 

siRNA knockdown of TLR2 and/or TLR1 but not TLR4 ablated the production of pro-

inflammatory cytokines after HIV-1 PAMP exposure, and HIV-1 PAMPs did not induce 
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production of IL-8 in TZMbl cells which endogenously express TLR4 but not TLR2.  

Moreover, HEK293 cells lines do not express TLR4, yet responded to specific HIV 

proteins in a TLR2-dependent manner.  Taken together, these results indicate a novel 

mechanism in which HIV-1 structural proteins induce cellular activation and increased 

HIV-1 integration through TLR2 that was not due to endotoxin contamination.   

 Surprisingly, gp120 had little to no effect on cytokine production or IκBα 

phosphorylation, which were unexpected given recent publications showing the induction 

of pro-inflammatory cytokines in genital epithelial cells (44), and indicate that cellular 

differences, including PRR expression, might be critical for viral pathogenesis and 

requires further investigation.  To our knowledge, investigating whether HIV proteins can 

engage and activate membrane-bound TLR2 has not previously been demonstrated, 

however CXCR1 has recently been identified as a p17 receptor that triggered adhesion 

and chemotactic-like migration in monocytes (11).  Given that CXCR1 is not expressed 

on many epithelial cell types, including HeLa (48), the data provided here revealed TLR2 

as a novel innate HIV structural protein PRR.  Further, p24 did not induce IL-8 

production in TZMbl-2 cells, despite the strong protein-to-protein interaction observed in 

our TLR2 dot blot analyses, which indicated that p24 did not interact with TLR1.  

However, HEK293-TLR2/6 cells, which express TLR1, TLR2, and TLR6 at the protein 

level (49), produced significantly increased IL-8 levels after exposure to p24 in a dose-

dependent manner.  Thus indicating that TLR6 is a required TLR2 heterodimer in order to 

recognize p24 and stimulate cellular activation.  Importantly, in the absence of TLR6 

expression, p24 blocked p17- and gp41-induced pro-inflammatory cytokine production in 
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a dose-dependent manner.  These data are particularly intriguing since they provide 

evidence that HIV has a mechanism by which it can manipulate the innate immune 

system balance between viral protein-induced cellular activation and quiescence in a 

TLR2-dependent manner.  However, p24 was unable to block Pam3CSK4-induced cellular 

activation, which is intriguing as it is well documented that Pam3CSK4 binds in the 

crevice of the m-shaped heterodimer produced through the interaction of TLR2 and TLR1 

(39, 50).  Therefore, we speculate that HIV proteins bind to alternate conformations or in 

different regions of this heterodimer than previously described for Pam3CSK4.  

 Previous publications showed a TLR2-dependent increase in surface HIV co-

receptor, CCR5 expression on permissible cells (51, 52).  With this in mind, we tested 

CCR5 expression after p17, gp41, and p24 exposure and found significantly increased 

expression of CCR5 after cellular exposure to p17.  These data showed an important 

innate immune mechanism by which HIV-1 proteins can promote infection by 

significantly increasing co-receptor expression on target cells. Several publications 

demonstrated a TLR2-mediated enhancement of HIV infection/integration in resting T 

cells (52). Interestingly, our evaluation of PRR expression in a population of highly 

exposed seronegative (HESN) female commercial sex workers (CSWs) showed 

significantly lower expression of TLR2 in cervical epithelial and cervical mononuclear 

cells compared to HIV-uninfected and HIV-infected CSWs from the same cohort (Yao et 

al, 2013 manuscript submitted).  Thus, data here may partially account for a mechanism 

by which HESN CSWs remain negative despite working in an HIV endemic area.   
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  In conclusion, the present investigation extends our current understanding of 

innate sensing of HIV-1 and for the first time reveals novel HIV-1 PAMPs, including 

p17, p24 and gp41, that can manipulate innate sensing and immune activation.  Further, 

our finding that TLR2 expression significantly increased HIV integration via increased 

CCR5 expression provides a mechanism by which HIV-1 can regulate host infection and 

persistence.  Thus, perhaps by manipulating innate activation, one can flush out the 

reservoir of latently HIV-infected cells.  Additionally, the data shown here indicated that 

TZMbl-2 cells are more highly activated after exposure to HIV-1 proteins and have 

significantly increased HIV infection/integration rates compared to TZMbl cells.  

Therefore, TZMbl-2 cells might be more suitable for assessing HIV-1 neutralizing 

antibodies and microbicides.   Lastly, identification of these novel HIV PAMPs could be 

utilized as adjuvants or delivery systems to promote immunogenicity of HIV vaccines. 

Thus, these results have important implications for our understanding of fundamental 

innate immune activation by HIV-1 and may provide insight into the design of novel 

vaccine strategies. 
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Figure 1. Establishment of a functional TLR2 stably transfected cell line, 
TZMbl-2. (A) Total RNA was harvested from TZMbl and TZMbl-2 cells and 

mRNA levels for TLR1, 2, 3, 4, 6, and 10 were assessed using conventional PCR.  

(B) TLR1 and TLR2 cellular protein expression in TZMbl and TZMbl-2 cell 

fractions were evaluated by western blot analyses using anti-TLR1 antibodies (α 

TLR1) and anti-TLR2 antibodies (α TLR2).  (C) TZMbl and TZMbl-2 cell 

supernatants were assessed for IL-8 production after exposure to various 

concentrations of Pam3CSK4.  *P<0.05, **P<0.01, ***P<0.001. Errors bars, SEM. 

A representative data set from triplicate experiments is shown. 
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Figure 3.  HIV-1 proteins activate phosphorylation of IκBα and trigger pro-

inflammatory cytokine production in TZMbl-2 cells.  (A) Cell lysates from 

TZMbl-2 were evaluated for phosphorylated IκBα and p65 nuclear translocation 

(except for gst and Poly I:C) using western blot analyses after treatment with 

500ng/mL positive control (Pam3CSK4), 1µg/mL HIV-1 proteins (p17, p24, gp41, 

gp120), and negative control (medium) for 2 and 4 hours, respectively (B) 

Evaluation of COX-2 expression in TZMbl-2 treated as in (A).  (C) Evaluation of 

TNF-α expression in TZMbl-2 treated as in (A).  (D) TZMbl-2 cells were treated 

with 500 ng/mL TLR2 positive control (Pam3CSK4), various concentrations (1-

0.01 µg/mL) of HIV-1 proteins (p17, p24, gp41, gp120), 1µg/mL protein tag 

(GST), or negative control (medium).  Data in (D) represent IL-8 levels in 

supernatants, measured by enzyme-linked immunosorbant assay (ELISA) after 

overnight culture, and are the mean of triplicate samples ± SEM. *P<0.05, 

**P<0.01, ***P<0.001.  For data in (A-D), no less than three independent 

experiments were analyzed. 
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Figure 5.  HIV-1 proteins-induced IL-8 stimulation was significantly 
increased in TLR2 transgene cell lines.  (A) HEK293-TLR2 cells were treated 

with 500 ng/mL TLR2 ligand (Pam3CSK4), 1 µg/mL HIV-1 proteins (p17, p24, 

gp41, gp120), protein tag (GST), or in medium (control). (B) HEK293-TLR2/1 

treated as in (A).  (C) HEK293-TLR2/6 treated as in (A). Data in (A), (B), and (C) 

represent IL-8 concentration in supernatants that were measured in ELISAs after 

overnight culture, and are the mean of triplicate samples ± SEM. *P<0.05, 

**P<0.01, ***P<0.001. Inserts: mRNA expression of TLR1, TLR2, TLR3, TLR4, 

TLR6 and TLR10 was detected in the cell lines with conventional RT-PCR as 

shown by electrophoresis agarose gels.   A representative data set of at least 

three independent experiments is shown. 
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Figure 6.  p24 blocks p17 and gp41 induced production of pro-inflammatory 
cytokines. (A-C) TZMbl-2 cells were exposed to various doses ranging from 0-1 

µg/mL of p24 before 500 ng/mL TLR2 ligand, (Pam3CSK4) or 1µg/mL HIV-1 

structural proteins, p17 or gp41 were added.  Data in (A-F) represent IL-8 

concentrations in supernatants that were measured in ELISAs after overnight 

culture, and are the mean of triplicate samples ± SEM. *P<0.05, **P<0.01, 

***P<0.001.   A representative data set from three independent experiments is 

shown. 
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Figure 7.  Cellular TLR2 expression is associated with increased HIV-1 
infection in TZMbl cells. 
(A) Total RNA was harvested from TZMbl-2 cells after overnight exposure to 

1µg/mL TLR2 ligand (Pam3CSK4), 4 µg/mL HIV-1 proteins (p17, p24, gp41, 

gp120), or in medium (control), and CCR5 mRNA levels were assessed using 

qRT-PCR. (B) TZMbl cells were transiently transfected with empty plasmid, TLR2 

or TLR3 DNA and 24 hours later were infected with 100 TCID50 of BAL (R5) virus.  

48 hours post infection, DNA was isolated and analyzed for HIV-1 Pol integration. 

(C) HIV-1 Pol integration evaluated in TZMbl and TZMbl-2 exposed to various 

concentrations of cell free R5 HIV-1 virus at eight hours, and are the mean of 

triplicate samples ± SEM. *P<0.05, **P<0.01, ***P<0.001.  A representative data 

set from three independent experiments is shown. 
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– CHAPTER 5 – 

DISCUSSION 

1.0 Preamble 

 The correlation between breastfeeding and healthy infants is well documented.  A 

seminal publication by Grulee et al., (1935) was one of the first publications to highlight 

decreased morbidity and mortality in infants who were breastfed compared to those who 

were not [186].  Breast milk contains a plethora of broad-range antimicrobial and anti-

inflammatory factors, which compensate for the naïve immune system of the infant, and 

is currently the most effective intervention for preventing infant disease [201,217,218].  

Notwithstanding the proven benefits of breastfeeding, breast milk also provides a medium 

for vertical transmission of HIV.  Without prophylactic strategies, which are rarely 

available for the duration of breastfeeding in developing nations [20], MTCT through 

breastfeeding accounts for approximately 11-42% of all pediatric HIV infections 

[136,137].    Paradoxically, however, an intervention that promotes exclusive 

breastfeeding, regardless of the mother’s HIV status, has led to significantly decreased 

MTCT compared to mixed feeding [22,24,25,185].  Indeed, this preventative method is so 

effective in the reduction of MTCT HIV transmission, as well as protection against 

enteric infections, that the WHO promotes exclusive breastfeeding despite the HIV status 

of the mother when safe and sustainable supplemental feeding is unavailable [140].  The 

low rate of transmission is suggestive of the multitude of protective innate immune 

factors which are present in high concentrations in breast milk [149,176].  The innate 

factor, sTLR2, has recognized anti-microbial properties [128-130,219]; however, its anti-
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HIV properties were not previously documented.  Given the association between innate 

factor levels and the overall protective effect of breast milk in preventing the majority of 

infants from acquiring HIV from their infected mothers, the identification and 

characterization of soluble factors with anti-viral and immunomodulatory properties 

might have novel applications for therapeutics and/or prophylactic strategies in the future.  

 

 Thus, the objective of the research presented here was to characterize the role of 

sTLR2 in inhibiting HIV-induced cellular activation and infection and to identify the role 

of TLR2 in sensing HIV.  Specifically, the manuscripts presented in Chapters 2 and 3 

examined sTLR2 forms and concentrations among women’s breast milk, and assessed a 

mechanism of inhibition for bacterial and viral-induced cellular activation and HIV 

infection in vitro.  Furthermore, sTLR2 concentration in HIV-infected breast milk was 

evaluated and compared with pro-inflammatory cytokine and viral antigenemia levels.  

Chapter 4 investigated the role of TLR2, and its heterodimers, TLR1 and TLR6 in sensing 

HIV-1, which led to increased cellular activation, co-factor expression, and infection in 

vitro.  Additionally, results not included in our manuscripts were incorporated into this 

thesis to further support our hypotheses.  Together, these data highlight the importance of 

sTLR2 and TLR2 in inhibiting HIV infection and activating immunopathogenesis, 

respectively.  These data are presented with the hope that a better understanding of 

natural inhibitors of HIV infection and further insight into what is driving 

immunopathogenesis once infection has been established might lead to the development 

of novel immunotherapeutics. 
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2.0 Experimental Models 

2.1 Immunodepletion of sTLR2 

 Our initial experiments utilized immunodepletion methods to remove sTLR2 from 

HIV-uninfected breast milk.  This technique was beneficial to evaluate the specific role of 

sTLR2 in breast milk since we discovered that the commercially available recombinant 

sTLR2 was not functional in vitro.  However, our immunodepletion techniques were 

unable to remove all of the sTLR2 from breast milk; therefore, our results might not 

portray the full effectiveness of sTLR2 at physiological levels.  Furthermore, breast milk 

is a highly complex mucosal fluid containing abundant innate and adaptive immune 

components, many of which have not had their functions fully elucidated.  Consequently, 

we were unable to rule out the possibility that undiscovered immunological factors might 

have played a role in the significant inhibition of cell-free R5 HIV infection in vitro.  

Therefore, we supported our original findings by further investigating the function of 

sTLR2 produced from TLR2 stably transfected TZMbl-2 cells to inhibit bacterially and 

virally-induced pro-inflammatory responses and directly inhibit HIV infection and 

integration.   

 

2.2 Dot Blot 

 Further in our studies, we utilized a dot blot detection method to visualize protein-

to-protein interactions between HIV-1 proteins and sTLR2, TLR2, or TLR1.  This 

method, described previously [220], was critically important to the identification of viral-

host protein interactions that have not been previously reported.  Although this method is 
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not used extensively, its advantages (the ability to evaluate several protein-to-protein 

interaction with high objectivity) outweighed the disadvantages (information regarding 

location of the interaction and inability to quantify) as a preliminary experiment.  

Subsequent experiments using neutralization of sTLR2, short interfering RNA (siRNA) 

knockdowns of TLR2 and TLR1, and stably transfected cell lines expressing TLR2, 

TLR2/1, and TLR2/6 verified and extended our findings from the dot blot method.  

 

2.3 Endotoxin Testing of Reagents 

 We identified several novel HIV-1 PAMPs that specifically signal through TLR2.  

These findings were met with some caution since historically mistakes regarding the 

proper identification of TLR2 ligands have been made.  Specifically, LPS was incorrectly 

identified as an agonist for TLR2 [221,222] and later found to be due to contaminants 

from incompletely purified recombinant LPS [223].  Therefore, all recombinant proteins 

used in our assays were tested for endotoxin contamination and had levels that were 

undetectable or well below LPS levels found in fetal bovine serum (FBS) (which is 

commonly included in cell culture medium).  Furthermore, siRNA knockdown of TLR2 

and TLR1 in cells endogenously expressing TLR4 negated the production of IL-8 after 

HIV protein exposure, and cells not expressing TLR4 only produced IL-8 when TLR2, 

TLR2/1, or TLR2/1/6 were expressed.  Taken together, the data indicated that the results 

were not due to endotoxin contamination.  

 

2.4 Hamilton Breast Milk Cohort 
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 We started a Breast Milk Cohort (approved on 31 July 2008 by the McMaster 

Research Ethics Board; REB Approval #08-176) to collect breast milk from HIV-

uninfected mothers.  All participants provided voluntary written informed consent.  

Inclusion criteria included HIV-uninfected women with full-term pregnancies that 

planned to breastfeed for at least six months postpartum, and were willing to self-collect 

>15mL of breast milk within the first week, and at one, three, and six months after giving 

birth vaginally.  Once at our laboratory, the samples were separated into lipid, 

supernatant, and cellular fractions.  The cellular fractions were frozen in liquid nitrogen 

vapour phase in freezing medium (95% FBS, 5% dimethyl sulfoxide; DMSO) and lipid 

and supernatant fractions were stored at -80°C.  However, given the low number of HIV-

infected mothers in Ontario and the fact that they are counseled to not breastfeed, our 

HIV-infected breast milk samples came from Nigerian mothers.  Although Nigerian HIV-

uninfected samples were used as controls, these samples might not have been processed 

exactly the way they were in our laboratory.  Additionally, some caution has to be used 

when directly comparing HIV-uninfected Hamilton and Nigerian samples as it remains 

unclear how genetic, racial and environmental differences affect TLR2 and sTLR2 

expression.  Indeed, Texereau et al., (2005) have identified TLR2 polymorphisms that 

might impair host responses to Mycobacterium tuberculosis and leprae [224].  Therefore, 

mutations in the TLR2 protein might affect cellular responses to PAMPs and/or sTLR2 

expression thus requires further evaluation in larger cohorts. 

 

2.5 TZMbl-2 Cell Line 



 PhD Thesis-Bethany Michele Henrick                                              McMaster University Medical Sciences 

 161 

 The TZMbl cell line was developed by Dr. Montefiori’s Lab (Duke University) to 

quantify HIV infection in vitro.  The cell line originated from HeLa cells that were stably 

transfected with canonical HIV entry receptors (CD4, CCR5, and CXCR4) and luciferase 

and β-galactosidase genes that are controlled by the HIV TAT accessory protein.  The 

addition of luciferase and β-galactosidase genes enable quantification of HIV infection in 

vitro.  However, TZMbl cells do not endogenously express TLR2 but do express TLR1.  

Consequently, we established a stably transformed TZMbl cell line, TZMbl-2, which 

expressed TLR2 at the protein level.  TZMbl cells were a rationale choice given their 

stable expression of canonical HIV receptors and TAT-regulated reporter genes, allowing 

for sensitive and reproducible quantification of HIV integration [225].  As a model, 

TZMbl-2 allowed us to focus our studies specifically on TLR2 signaling and validate our 

findings with reasonably designed controls.   
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3.0 sTLR2: key findings and direct anti-viral mechanisms 

 The inhibition of MTCT of HIV has been attributed to the plethora of innate 

immune factors in breast milk [149,176].  Indeed, breast milk contains SLPI, lactoferrin, 

mucin, and lysozyme and these innate factors have documented anti-HIV properties 

[149,192,226,227].  Previously, sTLR2 was characterized as an innate immune factor that 

was involved unilaterally in the recognition of bacterial ligands.  This bacterial ligand-

sTLR2 engagement regulated the amount of ligand available to bind to TLR2, thus 

inhibiting bacterial-induced cellular activation and inflammation [128] without hindering 

bacterial clearance [132].  Our key findings clearly established, for the first time, a 

beneficial role and mechanism of action for sTLR2 in preventing HIV-induced cellular 

activation and infection in vitro.  As well, our data highlighted important differences in 

sTLR2 forms and concentrations among women, identified cellular sources, post-partum 

kinetics and provided novel information of sTLR2 concentrations during HIV disease.  

The following Discussion elaborates these findings as described in our manuscripts 

presented in Chapters 2 and 3. 

 

 Classically sTLR2 has been studied for its role in modulating Gram-positive 

bacterial-induced cellular activation.  In 2003, LeBouder et al. were the first to identify 

six major forms of sTLR2, predominantly 66 kDa, in plasma and breast milk [128].  They 

further characterized sTLR2’s role in immunomodulating bacterially-induced pro-

inflammatory cytokine production by PBMCs [128].  Subsequent studies showed sTLR2 

immunodepletion from saliva and amniotic fluid led to significantly increased pro-
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inflammatory cytokine production in oral epithelial cells and placental villous explants, 

respectively [129,130].  Our manuscript presented in Chapter 2 demonstrated previously 

unreported forms of sTLR2 in breast milk that differed in concentration among women, 

had a short half-life at physiological temperatures and the expression levels decreased 

over time postpartum.  These findings were intriguing as the predominant sTLR2 forms in 

our breast milk cohort including the ~38 kDa and ~26 kDa masses were substantially 

different from the previously reported breast milk forms [128], and closely mirrored the 

predominant forms found in saliva, amniotic fluid [129,130] and in cervical fluid (Fig. 8).  

Despite the similarities between LeBouder et al., (2003) and our breast milk sample 

collection, times postpartum, processing, and western blot analyses, we proposed that 

variations in predominant sTLR2 polypeptides might be the result of racial, ethnic or 

genetic variability.  Furthermore, our data highlighted the progressive decline of sTLR2 

levels over time postpartum which were similar to other milk proteins [228].  These 

decreases might correspond to the infant’s increased ingestion of breast milk with age, 

therefore providing the optimal level of sTLR2 over the entire breastfeeding period.    

 

 Furthermore, our manuscript presented in Chapter 2 supported the previous 

finding that breast milk sTLR2 significantly inhibited bacterially-induced inflammation.  

Using our in vitro model, sTLR2-immunodepleted breast milk led to significantly 

increased bacterially-induced inflammation in TLR2-stably transfected HEK293 cells, 

monocytes, and intestinal epithelial cells.  These findings are particularly important as 

they revealed specific sTLR2 control of bacterially-induced inflammation in cells that are 
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likely involved in MTCT of HIV (discussed in Section 3.5.2).  Furthermore, using 

sTLR2-depleted or mock-depleted breast milk, we identified a novel function of sTLR2 

to significantly inhibit HIV-1 infection in a dose-dependent manner in vitro.  Taken 

together, these data suggest that sTLR2, similar to other innate immune factors found in 

breast milk, have anti-bacterial, anti-viral, and immunomodulatory properties, thus 

indicating that sTLR2 is involved in breast milk-specific inhibition of HIV. 

 

 The manuscript presented in Chapter 3 extended these findings to evaluate the 

specific mechanism of sTLR2-dependent inhibition of HIV-induced inflammation and 

infection.  Specifically, evaluation of protein-to-protein interactions using the dot blot 

method demonstrated that sTLR2 binds directly to specific HIV proteins (p17, p24, and 

gp41).  This finding was similar to lactoferrin, which binds directly to the GPGRAF 

peptide of the V3 loop (gp120) resulting in inhibition of viral-host fusion [229].  

Furthermore, sTLR2 inhibited Pam3CSK4, p17, or gp41-induced NFκB activation and IL-

8 expression in a dose-dependent manner.  This inhibitory action is similar to the innate 

factors, SLPI and trappin-2/elafin, which have been shown to inhibit NFκB translocation 

and gene expression [135,230].  This finding is particularly important in breastfeeding 

infants since neonatal lymphocyte activation is required for HIV infection [231].  In 

addition, our data indicated that sTLR2 suppressed HIV-PAMP-induced increases in 

CCR5 expression.  Moreover, sTLR2 significantly decreased HIV infection in vitro, 

which was abrogated using TLR2-specific antibodies (Ab), thus indicating that this 

inhibitory effect was sTLR2-dependent.  Given the importance of CCR5 to R5-specific 
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HIV infection, these data revealed a novel mechanism by which sTLR2 acted as a decoy 

receptor and inhibited HIV integration in two possible ways: (1) reduced HIV PAMP-

induced cellular activation and CCR5 expression and, (2) inhibited viral-host membrane 

fusion by binding directly to gp41.  Taken together, our findings provided novel data 

highlighting the important contribution of sTLR2 to breastfeeding infants as a first line 

regulatory mechanism preventing bacterially and virally-induced cellular activation and 

HIV infection.  

 

 It is debatable whether MECs represent a direct target for HIV infection or simply 

endocytose virions [79,216].  Similar to findings by Dorosko et al., (2010), we showed, 

using p24 ELISA, that cell-free R5 HIV-1 crossed the MEC monolayer from the 

basolateral to the apical compartment (Appendix I, Fig. 7A), without affecting tight 

junctions, as shown by transepithelial electrical resistance (TEER) (Appendix I, Fig. 7B).  

Furthermore, HIV did not integrate into the MEC genome (Appendix I, Fig. 8).  The 

ability of MECs to directly recognize and respond to HIV might largely determine the 

infant’s risk of HIV acquisition through breast milk.  Indeed, we showed that BMCs from 

HIV-infected mothers had significantly elevated expression of TLR1, TLR2, TLR3, 

TLR4, TLR8 and TLR10 (Appendix I, Fig. 9).  As shown in our manuscript presented in 

Chapter 3, MECs exposed to HIV PAMPs led to significantly increased sTLR2 

production in vitro, and MECs exposed to cell-free HIV-1 on the basolateral surface led 

to significantly increased pro-inflammatory cytokine production in both the apical (breast 

milk side) and basolateral compartments (Fig. 10).  Indeed, we found significantly 
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increased sTLR2 concentration in HIV-infected breast milk, which correlated to HIV-1 

PAMP (p24) levels and pro-inflammatory cytokine, IL-15.  The finding that sTLR2 

correlated with p24 concentration is similar to a previous publication showing that breast 

milk α-defensin levels correlate with HIV disease progression [232].  Additionally, breast 

milk IL-15 levels reportedly correlate with protection from mother-to-child HIV 

transmission, which might be due to its ability to activate CD8+ T cells and NK cells 

[233,234].  Nonetheless, given the correlation between sTLR2 and IL-15, we speculate 

that these factors operate in concert to facilitate decreased immune activation while 

eliciting specific innate cellular responses.   

 

 In summary, our manuscripts provided the first evidence that sTLR2 played a 

multifactorial role in breast milk by providing anti-bacterial, anti-viral and 

immunomodulatory activity.  Importantly, these observations compliment previous 

reports highlighting the anti-bacterial activity of sTLR2, and expand our knowledge by 

providing evidence that sTLR2 binds specific HIV structural proteins, thus leading to 

decreased inflammation and infection in vitro.   As well, the characterization of sTLR2 in 

HIV-infected breast milk highlighted a local, innate compensatory mechanism to control 

HIV-induced cellular activation in breast milk, which might be exploited in future 

therapies to control immunopathogenesis. 
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4.0 A new trick for TLR2 

 The TLRs are a family of PRRs that initiate innate immune responses after 

recognition of a broad-range of PAMPs specific to bacteria, virus, or fungus.  TLR2 has 

been thoroughly studied as a bacterial-sensing PRR, specifically recognizing diacylated 

and triacylated lipoproteins after heterodimerization with TLR6 or TLR1, respectively 

[112].  Nonetheless, a number of viral proteins have been identified as novel TLR2 

PAMPs including CMV glycoprotein B and H [115], HSV gH/gL and gB [116], HCV 

core protein [235], and measles hemagglutinin A glycoprotein [118].  Furthermore, 

virally-induced TLR2-dependent cellular activation has been shown to contribute to viral 

spread and pathogenesis due to increased production of pro-inflammatory cytokines, 

recruitment of additional target cells and increased viral entry receptors [116,118,119].  

Our manuscript presented in Chapter 4 investigated the role of TLR2 and its heterodimers 

(TLR1 and TLR6) in sensing HIV-1.  In line with previous findings, our key data clearly 

established a role for TLR2 in sensing HIV-1 PAMPs, which led to increased cellular 

activation, co-receptor expression, and infection/integration in vitro.  As well, our results 

identified unique HIV PAMPs, and were suggestive of a novel mechanism in which HIV 

can manipulate innate sensing with specific viral proteins.  The following Discussion 

elaborates these findings as described in our manuscript presented in Chapters 4. 

 

 Our data indicated that TLR2 binds directly to specific HIV-1 structural proteins, 

p17, p24, and gp41, whereas other viral components including gp120, nef and ssRNA 

(the quintessential HIV PAMP) did not participate in the interaction.  Further, the TLR2 
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heterodimer, TLR1, only interacted with p17 and gp41, whereas it did not interact with 

p24.  These interactions had specific consequences on downstream TLR2-specific cellular 

activation.  Most notably, p17 and gp41 induced TLR2/1-dependent activation and 

nuclear translocation of NFκB, which led to significantly increased pro-inflammatory 

cytokine production.  These data are similar to previous publications showing that 

multiple HIV-1 proteins altered cellular activity.  Specifically, p17 has been shown to 

induce the production of pro-inflammatory cytokines in vitro and in vivo and act as an 

adjuvant in vaccine strategies tested in animal models [49,236,237].  Additionally, a 

recent publication showed that gp41 exposure activated NFκB in lymphocytes [238], 

while gp120 has been shown to effect both pro- and anti- inflammatory responses in vitro 

[36,239,240].  Importantly, in the absence of TLR6 expression, p24 blocked p17- and 

gp41-induced pro-inflammatory cytokine production in a dose-dependent manner.  These 

data are particularly intriguing since they provide evidence, for the first time, that HIV 

employs an extracellular mechanism, which manipulates viral sensing through TLR2.  

Indeed, HIV has several intracellular mechanisms to suppress receptor expression and 

circumvent host restriction factors including Vpu and Vif, respectively [241,242].  Taken 

together, these data are timely since it is becoming increasingly clear that chronic immune 

activation is central to HIV pathogenesis and the progression to AIDS [95,127].  Yet, 

despite this understanding, the ability of HIV to alter innate immune responses is not 

completely understood.  Our current model of chronic immune activation relies on 

bacterial translocation from the HIV-damaged intestinal tract [120] caused by the 

devastation of mucosal CCR5+ CD4+ T cells during acute HIV infection.  Indeed, 
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systemic LPS have been shown to strongly correlate with immune activation in 

chronically infected individuals [120].  However, we previously showed that initiation of 

ART normalized TLR expression despite increased serum LPS levels [97].  Furthermore, 

high-levels of non-infectious HIV particle production and persistent levels of viral 

structural and glycoprotein levels in lymph nodes during HIV infection have been 

previously documented [243,244].  Thus, taken together, these date indicate that HIV-1 

itself might play an important role stimulating chronic immune activation over the course 

of the disease. 

 

 The primary consequence of viral recognition involves production of pro-

inflammatory cytokines and the subsequent recruitment of target cells.  However, we also 

observed a significant increase in CCR5 expression in macrophages exposed to HIV-1 

PAMPs (p17 and gp41).  The consequence of increased co-receptor expression led to 

significantly increased cell-free R5 HIV infection in vitro.  These results are similar to 

other viral proteins that caused cellular activation through a TLR2-mechanism.  Indeed, 

the measles extracellular hemagglutinin protein led to significantly increased co-receptor, 

CD150, expression through a TLR2-dependent mechanism [118].  Furthermore, previous 

publications have shown a TLR2-dependent increase in CCR5 expression on permissible 

cells which led to significantly increased HIV infection [245,246].  These data highlight, 

for the first time, an important innate immune mechanism by which HIV-1 PAMPs 

promote viral infection in permissive cells.  
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 The data presented in Chapter 4 demonstrated that novel HIV-1 PAMPs promoted 

cellular activation in vitro, which might be critically important to understanding aberrant 

immune activation during the course of HIV disease.  Given TLR2’s critical role in the 

innate immune system and its ubiquitous expression on lymphocytes and mucosal 

epithelium, it might be the best PRR to facilitate cellular activation which is required for 

persistent HIV infection.  However, building on novel data presented here might facilitate 

the production of therapeutics that control aberrant cellular activation caused by HIV. 
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— CHAPTER 6 — 

CONCLUDING REMARKS 

 The majority of infants breastfeeding from their HIV-infected mothers do not 

acquire HIV.  Indeed, exclusive breastfeeding has been one of the most successful 

interventions in protecting infants from a broad range of infectious diseases.  Although 

the reason for this remains unclear, coordination of a number of innate immune factors in 

breast milk seem crucial for providing protection when infants are most vulnerable. As 

demonstrated in this thesis, we identified several novel properties and mechanisms of the 

innate immune factor, sTLR2, that advance our understanding of this molecule in 

providing indirect and direct protection against HIV for the breastfeeding infant.  

Furthermore, we identified novel HIV-1 PAMPs that signal through TLR2 and these 

might account, in part, for aberrant immune activation during the course of HIV disease.   

  

 HIV infection is characterized by a profound depletion of gastrointestinal (GI) 

effector T cells, systemic microbial translocation and chronic immune activation.  

Therefore, our sTLR2 data showing direct inhibition of HIV-induced or bacterial-induced 

cellular activation suggests that sTLR2 could possibly be used as an immunotherapeutic 

for HIV infected individuals.  Oral administration of sTLR2 might directly inhibit viral- 

and bacterial-induced inflammation and cellular activation in the GI tract, as we showed 

in vitro.  Moreover, sTLR2 has the potential to be used in microbicides that are applied to 

the vaginal or rectal mucosa before sexual intercourse.  The ability of sTLR2 to inhibit 
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inflammation at mucosal sites could potentially reduce HIV transmission by inhibiting the 

virus’s ability to penetrate the mucosal barrier and subsequent recruitment of host target 

cells.  Importantly, the concentration and forms of sTLR2 at mucosal sites might provide 

important correlates of HIV protective immunity.  Indeed, our evaluation of sTLR2 in 

breast milk indicated striking differences in forms and concentrations between women.  

Taken together with a previous publication that showed that single-nucleotide 

polymorphisms (SNPs) enhanced the risk of acquiring infections [224], it is important 

that future research evaluates whether SNPs affect sTLR2 function against HIV infection. 

 

 Our data revealed, for the first time, the ability of TLR2 to recognize specific HIV 

PAMPs, which led to significantly increased NFκB activation, inflammation and HIV 

infection.  These results advance our fundamental understanding of HIV sensing and 

pathogenesis by providing evidence that HIV itself perpetuates chronic immune 

activation.  Importantly, future experiments need to evaluate whether these novel HIV 

PAMPs are correlates of chronic immune activation during HIV disease in vivo.  A 

previous report [244] indicated that several HIV structural proteins persist in lymphoid 

tissue despite an undetectable viral load.  Taken together, these HIV PAMPs might 

provide persistent antigenic stimulation required for chronic immune activation, a 

hallmark of HIV disease.  Alternatively, these PAMPs might provide a novel therapy to 

systemically activate latent viral reservoirs in chronically infected individuals and/or 

serve as unique HIV vaccine immunogens that possess auto-adjuvant activity.  

Furthermore, it is important that future experiments characterize the interaction and exact 
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location of HIV PAMP binding on the TLR2 heterodimer complex.  These data could 

inform the development of novel antagonists that prevent viral PAMP-TLR2 binding and 

thus inhibit HIV-induced immune activation.  Although several limitations remain, the 

data presented here provide novel and fundamental evidence contributing to our 

understanding of HIV pathogenesis and inhibition of HIV infection that could translate 

into effective immunotherapeutics in the future.  
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