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Abstract

In compressive sensing, the fundamental problem is to reconstruct sparse signal from

its nonadaptive insufficient linear measurement. Besides sparse signal reconstruction

algorithms, measurement matrix or measurement dictionary plays an important part

in sparse signal recovery. Orthogonal Matching Pursuit (OMP) algorithm, which

is widely used in compressive sensing, is especially affected by measurement dictio-

nary. Measurement dictionary with small restricted isometry constant or coherence

could improve the performance of OMP algorithm. Based on measurement dictionary,

sensing dictionary can be constructed and can be incorporated into OMP algorithm.

In this thesis, two methods are proposed to design sensing dictionary. In the first

method, sensing dictionary design problem is formulated as a linear programming

problem. The solution is unique and can be obtained by standard linear program-

ming method such as primal-dual interior point method. The major drawback of

linear programming based method is its high computational complexity. The sec-

ond method is termed sensing dictionary designing algorithm. In this algorithm,

each atom of sensing dictionary is designed independently to reduce the maximal

magnitude of its inner product with measurement dictionary. Compared with lin-

ear programming based method, the proposed sensing dictionary design algorithm is

of low computational complexity and the performance is similar. Simulation results
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indicate that both of linear programming based method and the proposed sensing

dictionary designing algorithm can design sensing dictionary with small mutual co-

herence and cumulative coherence. When the designed sensing dictionary is applied

to OMP algorithm, the performance of OMP algorithm improves.
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Notation

x sparse signal

Φ measurement dictionary

ϕi ith column of measurement dictionary

y measurement signal

δk Isometry Restricted Constant

µ coherence

µ1 (k) kth order cumulative coherence

µw Welch bound

r residual signal

Λ index set of selected atoms in OMP algorithm

Γ index set of nonzero components of sparse signal

P orthogonal projection operator

P⊥ orthogonal projection complementary operator

h identification vector

Ψ sensing dictionary

ψi ith column of sensing dictionary

δ′k generalized Restricted Isometry Constant
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µ′ mutual coherence

µ′
1 (k) kth order cumulative mutual coherence

G type Gram matrix

H ideal type Gram matrix

G set of type Gram matrix

H set of ideal type Gram matrix

W weighting matrix

di directional vector

d′
i directional vector

α step length
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Chapter 1

Introduction and Problem

Statement

1.1 Introduction to Compressive Sensing

Compressive sensing is a new signal processing technique, which attracts the attention

of researchers in various areas such as radar, communication and image processing.

The basic idea behind compressive sensing is that an unknown sparse signal can be

accurately recovered from under determined nonadaptive linear measurement. Here,

sparse signal means that the number of nonzero components is far less than the length

of signal itself. Under determined nonadaptive linear measurement represents linear

measurement with the number of measurement being less than the length of sparse

signal. Also, the linear measurement is independent of the sparse signal. In general,

compressive sensing model could be written in the following form:

y = Φx (1.1)
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where x ∈ Rn×1 is sparse signal with the number of nonzero components k far less

than its length n. Φ ∈ Rm×n is measurement matrix with its number of rows m

being less than that of columns n. Measurement matrix is often called measurement

dictionary with each column called atom. y ∈ Rm×1 is measurement signal.

Generally speaking, equation (1.1) has infinite number of solutions as it is an under

determined linear equation. One simple solution is Moore-Penrose pseudoinverse

solution with its closed form as Φ † y, which is based on the least square criterion. Φ†

is Moor-Penrose pseudoinverse of Φ. However, least square criterion often produces

dense signal rather than sparse signal, although the simple solution of closed form

exists.

If we make the assumption that the signal x is sparse, intuitively we could choose

the one which is sparsest among the infinite number of solutions as recovered signal.

This naturally leads to the following optimization problem:

min
x∈Rn×1

‖x‖0 s.t y = Φx (1.2)

where ‖·‖0 is pseudo zero norm which counts the number of nonzero components of the

input vector. Problem (1.2) is difficult to solve as it is an NP hard problem. More gen-

erally, solving problem (1.2) involves total number of combination (nm), where m is the

length of measurement signal. Greedy algorithm is an important class of algorithms

which aims to solve the l0 minimization problem (1.2) approximately. Classical rep-

resentatives are Matching Pursuit algorithm (MP), Orthogonal Matching Pursuit

algorithm (OMP) and Subspace Pursuit algorithm(SP).

Moreover, l0 problem could be relaxed to lp (0 < p < 1) or even l1 problem under

2
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some conditions. lp and l1 problems can be written as

min
x∈Rn×1

‖x‖p s.t y = Φx (1.3)

and

min
x∈Rn×1

‖x‖1 s.t y = Φx (1.4)

where ‖·‖p and ‖·‖1 are p norm and one norm of the input vector respectively.

lp problem is not a convex problem. However, some algorithms are employed to

solve it such as FOCUSS (Gorodnitsky and Rao, 1997) and MCCR (Mourad and

Reilly, 2010). l1 problem is easier to solve than lp as the former one is a convex

problem, which means that there exists an unique global solution (Candes and Tao,

2005). Classical algorithm solving the l1 problem is Basis Pursuit algorithm(BP).

The equivalence of l0 problem with lp or l1 problem requires restrictions of mea-

surement dictionary and sparsity of original sparse signal. Here, sparsity is defined

as the number of nonzero components of sparse signal. One popular parameter de-

scribing the property of measurement dictionary is Restricted Isomentry Constant

(RIC) (Candes and Tao, 2005), which is defined as following:

Defination 1.1.1. (Candes and Tao, 2005): For measurement dictionary, if the

following inequality holds true for any sparse signal x with sparsity k

√

1− δk ‖x‖2 ≤ ‖Φx‖2 ≤
√

1 + δk ‖x‖2 (1.5)

the measurement dictionary is said to be with kth order Restricted Isomentry Constant(RIC)
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δk.

For l1 minimization problem (1.4), if 2kth order RIC of measurement dictionary

satisfies δ2k ≤
√

2 − 1, the solution of l0 minimization problem (1.2) and that of l1

problem (1.4) are identical (Candes and Tao, 2005).

A more fundamental problem is whether the solution of l0 problem (1.2) is equal

to the original signal. Using the language of RIC, it can be said that when δ2k < 1

the solution to (1.2) is exactly the original signal.

Another important parameter is called coherence and culmulate coherence of

measurement dictionary (Tropp, 2004), which are defined as following:

Defination 1.1.2. (Tropp, 2004) The coherence and kth order cumulative coherence

of measurement dictionary Φ are defined as

µ = max
1≤i,j≤n,i6=j

|〈ϕi, ϕj〉| (1.6)

µ1 (k) = max
|Γ|=k,1≤i,j≤n

max
i/∈Γ,j∈Γ

∑

|〈ϕi, ϕj〉| (1.7)

where ϕi ∈ Rm×1 represents the ith (1 ≤ i ≤ n) column of measurement dictionary,

Γ is the set of indices and |·| gives cardinality of input set.

It is proved that if µ < 1
2(k−1)

or µ1 (k − 1) + µ1 (k) < 1, solution of l0 problem

(1.2) and that of l1 problem (1.4) are identical. Moreover, both of Baisis Pursuit

algorithm and OMP algorithm are able to recover the sparse signal in compressive

sensing (Tropp, 2004).

Generally, there are various kinds of sparse signal recovery algorithms such as

the ones based on greedy atom selection (Tropp and Gilbert, 2007), convex opti-

mization (Chen et al., 1998), Bayesian inference (Ji et al., 2008) and mixture of

4
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them (Huggins and Zucker, 2007). We do not intend to introduce them here as it is

a rather big topic and beyond the scope of this thesis.

Compressive sensing has many applications in signal processing field and be-

yond. It is successfully applied to direction of arrival(DOA) estimation (Malioutov

et al., 2005), single pixel imaging (Duarte et al., 2008), imaging and video process-

ing (Donoho, 2006). In DOA estimation problem, the measurement dictionary is

composed by dense samples from the array manifold with each angle predefined.

The number of targets is assumed to be sparse compared to the number of angles

of the samples(or the number of measurement dictionary). Measurement signal can

be viewed as a linear combination of samples in the measurement dictionary with

noise added. As such, DOA estimation problem is transferred to compressive sensing

problem.

1.2 Problem Formulation

From section 1.1, it can be seen that RIC or coherence represents the quality of

measurement dictionary. Generally speaking, measurement dictionary with small

RIC is favored in compressive sensing (Candes and Tao, 2005). When RIC is equal

to zero exactly, linear measurement using measurement dictionary actually satisfies

Parseval theorem. However, as measurement dictionary is a redundant dictionary,

which means that the number of column is larger than that of rows, RIC could never

become zero.

Following the same logic, measurement dictionary with small coherence or cu-

mulative coherence is favored in compressive sensing (Tropp, 2004). In the extreme

case when both of coherence and cumulative coherence become zero, measurement

5
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dictionary becomes an orthogonal matrix and sparse signal recovery becomes sim-

ple. However, we could never expect that coherence becomes zero as measurement

dictionary is redundant. It is proved that for redundant measurement dictionary,

coherence coefficient can not be reduced to be zero. There exists a lower bound of

coherence µw which is called Welch bound. For real dictionary with size m by n and

n ≤ 0.5m (m− 1), Welch bound is

µw =

√
n−m

m (n− 1)
(1.8)

Note that Welch bound is a theoretical bound. The bound can not be always achieved

by any pair of m and n. Welch bound tells us the best we could do to reduce

the coherence of measurement dictionary. (Tropp et al., 2005) gives a method to

design measurement dictionary with small coherence based on alternating projection

method. From the simulation in (Tropp et al., 2005), it can be seen that for dictionary

with certain dimensions, the coherence could achieve Welch bound.

As mentioned in section 1.1, RIC is often used to evaluate the quality of mea-

surement dictionary. However, for a given measurement dictionary, calculation of its

kth order RIC is impractical as it involves computation of eigenvalue of Gram matrix

of the matrix formed by any k columns of measurement dictionary. kth order RIC

satisfies the following equation:

δk = max
|Γ|=k

{
λmax

(
ΦT

ΓΦΓ

)
− 1, 1− λmin

(
ΦT

ΓΦΓ

)}
(1.9)

where ΦΓ is a matrix composed of atoms of Φ with index in the set Γ, λmax
(
ΦT

ΓΦΓ

)

and λmin
(
ΦT

ΓΦΓ

)
are maximal and minimal eigenvalue of ΦT

ΓΦΓ.

6
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Moreover, the relationship between RIC and cumulative coherence can be written

as

δk ≤ µ1 (k − 1) (1.10)

A simple interpretation of (1.10) is that kth order RIC is equal to or less than

k − 1th order cumulative coherence. Although calculation of RIC is computational

intensive, calculation of cumulative coherence is relatively easy. Therefore, most of

dictionary construction algorithms aim to construct dictionaries with small coherence

or cumulative coherence. RIC is often used to analyze the performance of signal

recovery algorithm (Davenport.M.A and Wakin.M.B, 2010). We could see from (1.10)

that when k − 1th order cumulative coherence is small, kth order RIC will never

get very large. Thus, it is reasonable to use coherence as a criterion to construct

measurement dictionary.

OMP algorithm, as introduced in detail in the next chapter, is a classical greedy

algorithm that is widely used in compressive sensing. OMP algorithm is easy to un-

derstand and the computational complexity is not large. OMP algorithm sequentially

selects atom to calculate the sparse signal. There are mainly three steps in one loop

of OMP algorithm: atom identification, coefficient renewal and residual update. The

most important step in OMP algorithm is atom identification. In atom identification

step, atom is selected based on its correlation with residual signal. As will be ana-

lyzed in the next chapter, coherence or cumulative coherence has great influence on

the performance of atom identification. When measurement dictionary is orthogonal

and the measurement is noise free, true atoms can be always selected based on the

maximum correlation criterion. In practice, measurement dictionary is redundant,

7
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which is far from orthogonal matrix. In this case, it is proved that measurement

dictionary with small coherence will improve the ability of correct atom selection in

atom identification step. Therefore, measurement dictionary with small coherence

has a positive effect on the performance of OMP algorithm.

In common practice, atom identification in OMP algorithm is based on correlation

of residual signal and measurement dictionary. Firstly, inner product of residual signal

and measurement dictionary is calculated. Index corresponding to the maximum

absolute value of the inner product is viewed as index of selected atom. This procedure

can be expressed as

i = max
1≤j≤n

∣
∣ϕTj r

∣
∣ (1.11)

where i is the index of selected atom and r ∈ Rm×1 is residual signal. In (Schnass and

Vandergheynst, 2008), a new concept termed sensing dictionary is proposed which is

used to correlate with residual signal in atom identification step. With the use of

sensing dictionary, the identification step can be written as

i = max
1≤j≤n

∣
∣ψTj r

∣
∣ (1.12)

where ψj ∈ Rm×1 is jth atom of sensing dictionary Ψ ∈ Rm×n and others are the

same as (1.11).

The advantage of sensing dictionary involved here is that the mutual coherence of

sensing and measurement dictionary is less than coherence of measurement dictionary.

The definition of mutual coherence is similar to that of coherence and the exact

definition will be given in the next chapter. Similarly, it is proved that small mutual

8
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coherence will improve the ability of OMP algorithm to select a correct atom in atom

identification step.

In (Schnass and Vandergheynst, 2008), sensing dictionary is designed via alter-

nating projection method. The basic idea is to construct a sensing dictionary to

make the Gram type matrix approximate the set of predefined matrix. The set of

predefined matrix is a set which contains matrix with diagonal entries equal to one

and the absolute value of non diagonal elements equal to or less than Welch bound.

Alternating projection method is utilized to minimize the approximation. As such,

sensing dictionary could be designed and the corresponding mutual coherence will be

reduced.

In (Li et al., 2011), a pair of sensing and measurement dictionary is constructed

simultaneously based on alternating projection method. The method used in (Li

et al., 2011) is similar to that in (Schnass and Vandergheynst, 2008). The difference

is that in (Li et al., 2011) both sensing and measurement dictionaries are updated

iteratively and mutual coherence could be lowered further. Sensing dictionary could

be applied to any kind of measurement dictionary, from typical Gaussian dictionary to

the pairs of orthogonal dictionaries. In contrast, simultaneous construction of sensing

and measurement dictionaries gives no choice of the form of measurement dictionary

and its application is limited.

1.3 Contribution of the Thesis

In this thesis, we give two methods to design sensing dictionary based on given mea-

surement dictionary.

In the first algorithm, the sensing dictionary design problem is formulated as an

9



M.A.Sc. Thesis - Bo Li McMaster - Electrical Engineering

optimization problem with linear equality and inequalities constraints. This opti-

mization problem is then formulated as standard linear programming problem which

can be solved by classical linear programming methods such as log barrier interior

point method and primal-dual interior point method. In this thesis, primal-dual inte-

rior point algorithm is utilized, which is in line with the Matlab function linprog.m.

When the size of sensing dictionary is large, primal-dual interior algorithm is compu-

tationally demanding.

The second algorithm, which is termed sensing dictionary design algorithm, is

introduced to reduce the computational complexity while keeping good performance.

To construct each atom of sensing dictionary, the proposed sensing dictionary design

algorithm is to minimize the maximal magnitude of its inner product with measure-

ment dictionary iteratively.

The two algorithms given in this thesis are with similar performance while the

latter is computationally less intensive. Both of the algorithms could reduce the value

of mutual coherence and cumulative mutual coherence of sensing and measurement

dictionary. When applying the designed sensing dictionary to OMP algorithm, the

sparse signal successful recovery rate in compressive sensing is improved.

1.4 Outline of the Thesis

In chapter one, a basic introduction of compressive sensing problem and related con-

cepts are given. In chapter two, OMP algorithm is analyzed using RIC. More over,

the concept of sensing dictionary in OMP algorithm is introduced and the advantage

of sensing dictionary involved in OMP algorithm is given. Chapter three gives two

kinds of algorithm to construct sensing dictionary. In both of the algorithms, each

10
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column of sensing dictionary is designed separately. In the first algorithm, designing

each atom of sensing dictionary can be formulated as an infinite norm optimization

problem with linear equation and inequations constraints. This problem is further

written as linear programming problem which can be solved by standard linear pro-

gramming method. The second method is to minimize the largest coherence of each

column of sensing dictionary with measurement dictionary iteratively. The mini-

mization is implemented iteratively and mutual coherence coefficient is minimized

consequently. Chapter four gives simulation results using the methods proposed in

chapter three. The performance of OMP algorithm using different kind of sensing

dictionaries is also compared. Chapter five gives the summary of the thesis.

11



Chapter 2

Analysis of Orthogonal Matching

Pursuit Algorithm

2.1 Introduction to Orthogonal Matching Pursuit

Algorithm

For sparse signal x with sparsity k, denote Γ as set of index corresponding to the

nonzero components of sparse signal. Sparsity k also means |Γ| = k. There is

x(i) 6= 0 i ∈ Γ (2.1)

where x(i) is the ith component of sparse signal x.

The basic compressive sensing problem can be written as

y = Φx =
∑

i∈Γ

ϕix (i) (2.2)

12
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where ϕi ∈ Rm×1 is ith column or atom of measurement dictionary. As can be seen

from (2.2) that measurement signal y is a linear combination of k atoms of measure-

ment dictionary. Moreover, the atoms and combination coefficients are determined

by nonzero components of sparse signal x.

Orthogonal Matching Pursuit(OMP) algorithm is an iterative greedy algorithm

that solves the problem (2.2). OMP algorithm is given in the table 2.1 where ΦΛ

represents the matrix formed by columns of Φ with index in the set Λ. At each

iteration, OMP algorithm selects the atom of measurement dictionary Φ which is

most correlated with the current residual r as Step 1 in table 2.1. In Step 2, the

index of this atom is added into the set of selected atoms Λ. The algorithm updates

the nonzero coefficient of sparse signal using least square technique. In Step 3, the

residual signal is renewed using the coefficient and index set estimated in Step 2.

Compared with other iterative methods, a major advantage of the OMP algorithm is

its simplicity and fast implementation.

In OMP algorithm, once one atom is selected and its index is added to the index set

Λ, residual signal is updated. Let PΛ and P⊥
Λ be the orthogonal projection operator

on the column space of ΦΛ and its orthogonal complement respectively. PΛ and P⊥
Λ

can be written explicitly as

PΛ = ΦΛΦ
†
Λ (2.3)

P⊥
Λ = I−PΛ = I−ΦΛΦ

†
Λ (2.4)

where Φ
†
Λ =

(
ΦT

ΛΦΛ

)−1
ΦT

Λ is the Moore-Penrose pseudoinverse of ΦΛ. As such, the

13
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Input: measurement dictionary Φ, measurement signal y and sparsity k.

Initialization: index set Λ=∅ and residual signal r = y.

repeat step 1 to 3 for k iterations.

Step1(identification): i = max1≤j≤n
∣
∣ϕTj r

∣
∣.

Step2(sparse signal reconstruction): Λ = Λ ∪ i, x̃ = Φ
†
Λy.

Step3(residual update): r = r− ΦΛx̃.

Output: reconstructed sparse signal x̂ with x̂Λ = x̃ and x̂Λc = 0.

Table 2.1: Orthogonal Matching Pursuit

residual signal can be written as

r = y −ΦΛx̃ = y −ΦΛΦ
†
Λy = (I−PΛ)y = P⊥

Λy (2.5)

As can be seen from expression (2.5), residual signal is the orthogonal comple-

mentary projection on the subspace spanned by all the selected atoms whose index

is in the set Λ. According to the property of orthogonal and orthogonal complemen-

tary projection, residual signal r is orthogonal to the selected atoms which can be

expressed as

ϕTi r = 0 i ∈ Λ (2.6)

14
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In the atom identification step, the identification vector h can be written as

h = ΦT r (2.7)

(2.6) can be written in another way as

hΛ = ΦT

Λ
r = 0|Λ|×1 (2.8)

where hΛ denotes the components of vector h whose index is in the index set Λ and

0|Λ|×0 is a zero vector with size |Λ| by 1. As can be seen from (2.8), once one atom is

selected and its index is added to the index set Λ, its inner product with the residual

signal is always zero. It also means that the selected atoms could not be selected

twice.

Another important fact is that in OMP algorithm, only when all the right atoms

are selected, the reconstructed sparse signal is exact in the noiseless case. This could

be further proved and analyzed in the next section.

2.2 Analysis of OMP Algorithm

The performance of OMP algorithm is heavily dependent on measurement dictionary.

Usually the performance of OMP algorithm is analyzed using RIC or coherence. In

the first iteration of OMP algorithm, the residual signal can be written explicitly as

r = Φx (2.9)

According to the RIC of measurement dictionary, the following inequalities can

15
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be obtained (Davenport.M.A and Wakin.M.B, 2010):

|h (i)− x (i)| ≤ δk+1 ‖x‖2 i ∈ Γ (2.10)

|h (i)| ≤ δk+1 ‖x‖2 i /∈ Γ (2.11)

where h (i) is ith component of identification vector h. (2.10) and (2.11) mean that

the identification vector h is analogous to the original signal x but experiences changes

whose magnitude is bounded. If the maximum value of h (j) , j ∈ Γ is smaller than

the maximum value of h (j) , j /∈ Γ, OMP algorithm will definitely fail in the first

iteration. Thus, we expect that the changes are small and OMP algorithm could

select a right atom.

After some iterations, assume that the selected atoms are all right, which means

that Λ ⊂ Γ. If we want to represent residual signal as a linear combination of atoms

of measurement dictionary, it could be written as

r = (I−PΛ)y = (I−PΛ)Φx = (I−PΛ)
(
ΦΛxΛ + ΦΓ\ΛxΓ\Λ

)

= (I−PΛ)ΦΓ\ΛxΓ\Λ = ΦΓ\ΛxΓ\Λ −ΦΛ

(
ΦT

ΛΦΛ

)−1
ΦT

ΛΦΓ\ΛxΓ\Λ

=

(

ΦΓ\Λ ΦΛ

)






xΓ\Λ

−
(
ΦT

ΛΦΛ

)−1
ΦT

ΛΦΓ\ΛxΓ\Λ






(2.12)

where the third equality means that measurement signal could be decomposed as two

parts: one part is a linear combination of atoms whose index is in the set Λ and the

other part is a linear combination of atoms whose index is in the set Γ \ Λ.

From (2.12), we could see that when the selected atoms in set Λ is right, the

estimated nonzero coefficient, which is x̃ = Φ
†
Λy, is not always right. The reason is
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that if the estimated coefficient x̃ are right which is equal to xΛ, the residual signal

r is only a linear combination of the unselected right atoms, which can be written as

r = y −ΦΛx̃ = Φx−ΦΛxΛ = ΦΓ\ΛxΓ\Λ (2.13)

However, as can be seen from (2.12), residual signal r is not only the linear com-

bination of the unselected atoms. Residual signal r is a linear combination of all the

right atoms whose index is in set Γ.

In the ideal situation, we hope that when right atoms are selected, its correspond-

ing coefficients can be estimated correctly. As such, the residual signal is simply the

linear combination of the unselected right atoms such as

r = ΦΓ\ΛxΓ\Λ (2.14)

However, (2.14) is seldom true. From (2.12), if we want to write residual signal r

as a linear combination of atoms whose index is in set Γ, which is r = ΦΓxr, linear

combination coefficient xr ∈ R|Γ|×1 can be written as

xr =






xΓ\Λ

−
(
ΦT

ΛΦΛ

)−1
ΦT

ΛΦΓ\ΛxΓ\Λ




 (2.15)

Comparing with ideal case (2.14), besides xΓ\Λ, there is another part as

−
(
ΦT

ΛΦΛ

)−1
ΦT

ΛΦΓ\ΛxΓ\Λ

which is not always zero. Lemma 2.1 gives the relationship between xr and xΓ\Λ.

17



M.A.Sc. Thesis - Bo Li McMaster - Electrical Engineering

Lemma 2.1. For xr defined in (2.12), the following inequality exists:

‖xr‖2 ≤
1

1− δk+1

∥
∥xΓ\Λ

∥
∥

2
(2.16)

Lemma 2.1 tells us that in the signal xr, although the coefficients corresponding to

the selected atom are not zero, two norm of xr is bounded by that of the unidentified

coefficients. Moreover, when RIC δk+1 is small enough, the coefficient xr approxi-

mate the coefficient of unselected atoms xΓ\Λ. In other word, two norm of the part

−
(
ΦT

ΛΦΛ

)−1
ΦT

ΛΦΓ\ΛxΓ\Λ in xr is small.

In OMP algorithm, after certain iterations, the relationship between the identity

vector h and the signal xΓ\Λ can be easily obtained as:

|h (i)− x (i)| ≤ δk+1

1− δk+1

∥
∥xΓ\Λ

∥
∥

2
i ∈ Γ \ Λ (2.17)

|h (i)| = 0 i ∈ Λ (2.18)

|h (i)| ≤ δk+1

1− δk+1

∥
∥xΓ\Λ

∥
∥

2
i ∈ Γc (2.19)

where Γc = {1, 2, · · · , n} \ Γ. (2.17) to (2.19) are similar to (2.10) and (2.11) re-

spectively and we do not give additional discussion here. (2.18) actually corresponds

to (2.8), which means that the elements of identification vector corresponding to in-

dex of the selected atom are always zero. This is also one of the most important

characteristics of OMP algorithm that one atom could never be selected twice.

In compressive sensing, there are two types of sparse signals that are frequently

used. For the first type, its nonzero component is Gaussian distributed or with other

distribution. The nonzero component of the second type is of unit value. It is widely

recognized that the first type signal is easier to recover than the second type for
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greedy algorithm. (2.17),(2.18) and (2.19) can give the explanation of this phenomena.

For both nonzero and zero components of the sparse signal, the upper bound of

perturbations are the same which is proportional to the square root of the energy

of signal
∥
∥xΓ\Λ

∥
∥

2
. Assume that the energy of signal xΓ\Λ is fixed. In other word,

the maximum magnitude of perturbation is fixed. For nonzero component of sparse

signal, the larger the maximal magnitude, the higher possibility that its corresponding

component of identification vector being the maximal over all the components. In

this case, OMP algorithm will choose the corresponding atom. Conversely, when the

magnitude of all the nonzero component of sparse signal with equal value, none of

the magnitude of nonzero component is significant and the largest magnitude of h

would not be very high. When OMP algorithm selects the atom index according to

the largest magnitude of h, the selection is not right with high probability if RIC

δk+1 is not small enough. Thus, recovering sparse signal with its nonzero entries of

equal magnitude is regarded as challenge for not only OMP algorithm but also for all

the greedy algorithms. The analysis here keeps in line with observations.

Assume OMP algorithm selects the right atom at each iteration. After k iterations,

all the atoms whose index set is Γ are selected and the estimated coefficients are

x̂ =
(
ΦT

ΓΦΓ

)−1
ΦT

Γy =
(
ΦT

ΓΦΓ

)−1
ΦT

ΓΦΓx = x (2.20)

as can be seen from (2.20) that when all the right atoms are selected in the noiseless

case, the spare signal can be recovered successfully.

Another question is what the value of RIC should be to guarantee the success of

OMP algorithm. The following theorem will give the answer to this question.
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Theorem 2.1. (Mo and Shen, 2012) Suppose that RIC δk+1 of measurement dic-

tionary Φ satisfies:

δk+1 <
1√
k + 1

(2.21)

then for k sparse signal x, OMP will recover x from y = Φx in k iterations.

This is the most relaxed requirement of RIC δk+1 in the existing literatures. For

detailed proof, please refer to (Mo and Shen, 2012). In (Mo and Shen, 2012), a

counter example is given. A measurement dictionary with δk+1 = 1√
k

is designed, but

OMP algorithm fails. This means that there is no big space to improve the upper

bound of RIC based on which OMP will definitely succeed.

In (Tropp, 2004), a sufficient condition for the success of OMP algorithm is given.

Theorem 2.2 restates this sufficient condition.

Theorem 2.2. (Tropp, 2004) (Exact Recovery for OMP): A sufficient condition

for OMP to recover the sparse signal x from under determined linear measurement

y = Φx is that

max
i∈Γc

∣
∣
∣Φ

†
Γϕi

∣
∣
∣ < 1 (2.22)

Theorem 2.2 states that OMP succeeds to recover sparse signal in compressive

sensing in noiseless case so long as the exact condition holds true. In addition, (Tropp,

2004) also gives a sufficient condition for (2.22) based on cumulative coherence of

measurement dictionary, which is stated in Theorem 2.3.

Theorem 2.3. (Tropp, 2004) The Exact Recovery Condition in Theorem 2.2 holds
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whenever

µ1 (k − 1) + µ1 (k) < 1 (2.23)

Therefore, OMP algorithm is a successful algorithm for k sparse signal recovery

whenever (2.23) holds true. Sufficient condition (2.23) is better than (2.22). That

is because in (2.22), the index set Γ is needed. However, in signal recovery proce-

dure, the index of correct atoms is not known beforehand. Therefore, (2.22) is only

significant in theory. In contrast, sufficient condition (2.23) only involves cumulative

coherence which is independent of the sparse signal. Thus, only based on measure-

ment dictionary or more exactly based on cumulative coherence, we could evaluate

whether OMP algorithm could recover k sparse signal successfully. However, please

note that both conditions (2.22) and (2.23) are sufficient. For instance, when condi-

tion (2.23) is not met for certain measurement dictionary, OMP may still be able to

recover k sparse signal. This is because the sufficient condition (2.22) and (2.23) are

obtained based on the worst case analysis.

As stated in the last chapter, two parameters that are used to evaluate the quality

of measurement dictionary, which are mutual coherence and RIC, are not indepen-

dent. The following theorem gives the relationship of them.

Theorem 2.4. There exists the following relationship between RIC and cumulative

coherence for measurement dictionary in compressive sensing

δk ≤ µ1 (k − 1) (2.24)

Theorem 2.4 indicates that minimizing cumulative coherence would bound the
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value of RIC. Although it is not realistic to calculate RIC of measurement dictio-

nary especially when the size of measurement dictionary is pretty large, coherence or

cumulative coherence of measurement dictionary is easy to calculate. The sufficient

condition in Theorem 2.1 is with respect to RIC. Directly designing measurement

dictionary with small RIC is not practical. However, based on Theorem 2.4, we can

attempt to design a measurement dictionary with small coherence. (Elad (2007)),

(Tropp et al. (2005)), (Li et al. (2013)) and (Rusu (2013)) aim to design measure-

ment dictionary with small coherence or to design equi-angular tight frame. They

also proved that with the designed measurement dictionary the performance of OMP

algorithm improved a lot compared to Gaussian random measurement dictionary.

2.3 Incorporation of Sensing Dictionary in OMP

Algorithm

Let matrix Ψ ∈ Rm×n be sensing dictionary, the size of which is the same as that

of measurement dictionary. In OMP algorithm, if sensing dictionary is incorporated

in the identification step in table 2.1, the identification step in OMP algorithm is

changed as following:

i = max
1≤j≤n

∣
∣ψTj r

∣
∣ (2.25)

where ψj ∈ Rm×1 is jth atom of sensing dictionary Ψ. OMP algorithm with sensing

dictionary is given in table 2.2. The only difference from OMP algorithm in table 2.1

is that the identification vector is calculated using sensing dictionary.
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Input: measurement dictionary Φ, sensing dictionary Ψ, measurement signal
y and sparsity k.

repeat step 1 to 3 for k iterations

Step1(identification): h = ΨT r, i = max1≤j≤n |h (j)|

Step2(sparse signal reconstruction): Λ = Λ ∪ i, x̃ = Φ
†
Λy

Step3(residual update): r = r− ΦΛx̃

Output: reconstructed sparse signal with x̂Λ = x̃ and x̂Λc = 0.

Table 2.2: Orthogonal Matching Pursuit with sensing dictionary

As RIC of measurement dictionary, for sensing and measurement dictionaries, a

similar value termed generalized RIC is defined.

Defination 2.3.1. (Li et al., 2011): If a pair of measurement and sensing dictio-

naries satisfies the following inequality for any k sparse signal x

(1− δ′k) ‖x‖2 ≤
∥
∥ΨTΦx

∥
∥

2
≤ (1 + δ′k) ‖x‖2 (2.26)

the parameter δ′k is termed kth order generalized restricted isometry constant(generalized

RIC).

Like RIC for measurement dictionary, there is a relationship between the eigen-

value of type Gram matrix ΨT
ΓΦΓ and generalized RIC. For any index set Γ satisfying

|Γ| ≤ k, there exists the following inequality:

1− δ′k ≤ λmin
(
ΨT

ΓΦΓ

)
≤ λmax

(
ΨT

ΓΦΓ

)
≤ 1 + δ′k (2.27)
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where λmin
(
ΨT

ΓΦΓ

)
and λmax

(
ΨT

ΓΦΓ

)
denote the minimal and maximal eigenvalue

of type Gram matrix ΨT
ΓΦΓ respectively. It can be seen from (2.27) that to calculate

generalized RIC is computational difficult as the eigenvalue of total (nm) numbers of

Gram matrix is required to be calculated.

Define identification vector as h = ΨT r. Similar to (2.17), (2.18) and (2.19), when

involved with sensing dictionary, the identification vector h and signal xT\Λ have the

following relationship:

∣
∣h (i)− xΓ\Λ (i)

∣
∣ ≤ δ′k+1

1− δk+1

∥
∥xΓ\Λ

∥
∥

2
i ∈ Γ \ Λ (2.28)

|h (i)| = 0 i ∈ Λ (2.29)

|h (i)| ≤ δ′k+1

1− δk+1

∥
∥xΓ\Λ

∥
∥

2
i ∈ Γc (2.30)

The analysis is similar to that for (2.17), (2.18) and (2.19). As can be seen from

(2.28), (2.29) and (2.30), we could design a sensing dictionary to make generalized

RIP δ′k+1 as small as possible so as to make the upper bound of perturbation small.

As such, identification vector component h(i), i ∈ Γ \ Λ approximates signal xΓ\Λ

and the value of component of h(i), i ∈ Γc is relatively small. OMP algorithm could

select a right atom at each iteration easily.

Theorem 2.5 gives a sufficient condition based on which OMP algorithm involving

sensing dictionary succeeds in recovering k sparse signal in compressive sensing.

Theorem 2.5. Suppose that k + 1th order generalized RIC of sensing and measure-

ment dictionaries Ψ and Φ satisfy the following inequality

δ′k+1 <
1√
k + 1

(2.31)
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then for any k parse signal x, OMP will recover x from y = Φx in k iteration.

Proof. At the first iteration of OMP algorithm, based on generalized RIC (2.26) and

identification vector (2.8), we obtain

(
1− δ′k+1

)
‖x‖22 ≤ xTΨTΦx = xTh (2.32)

≤ ‖x‖1 max
i∈Γ
|h (i)| (2.33)

≤
√
k ‖x‖2 max

i∈Γ
|h (i)| (2.34)

this implies that

max
i∈Γ
|h (i)| ≥

(
1− δ′k+1

)
‖x‖2√

k
(2.35)

Moreover, for the component of identification vector corresponding to the wrong

index, there is

|h (i)| ≤ δ′k+1 ‖x‖2 i ∈ Γc (2.36)

Based on the above two inequalities, it is easy to verify that when the condition

(2.31) is satisfied, OMP algorithm could select the right atom in the first iteration.

After the first iteration, it is nontrivial to prove that OMP algorithm can select a

right atom at the following each iteration when condition (2.31) is satisfied. The only

modification should be made on (2.35) and (2.36) is to replace x with xr.

The other parameters similar to coherence and cumulative coherence of measure-

ment dictionary are mutual coherence and cumulative mutual coherence defined for

sensing and measurement dictionaries as following:
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Defination 2.3.2. (Schnass and Vandergheynst, 2008): Let Ψ and Φ are sensing

and measurement dictionaries respectively. Mutual coherence and cumulative mutual

coherence are defined as

µ′ = max
1≤i,j≤n

∣
∣ψTi ϕj

∣
∣ (2.37)

µ′
1 (k) = max

|Λ|=k
max

1≤i,j≤n,i/∈Λ,j∈Λ

∑

Λ

∣
∣ψTi ϕj

∣
∣ (2.38)

where ψi ∈ Rm×1 is ith atom of sensing dictionary Ψand ϕj ∈ Rm×1 is jth atom of

measurement dictionary Φ.

With mutual coherence and cumulative mutual coherence defined in (2.37) and

(2.38), sufficient condition for OMP algorithm is given in theorem 2.6.

Theorem 2.6. (Schnass and Vandergheynst, 2008) In OMP algorithm, when sensing

dictionary Ψ is involved, right atom will always be selected if

∥
∥
∥

(
ΦT

ΓcΨΓ

)−1
ΦT

ΓΨΓc

∥
∥
∥

1,1
< 1 (2.39)

which is always satisfied if

µ′
1 (k) + µ′

1 (k − 1) < β (2.40)

where β = min1≤i≤n
∣
∣ψTi ϕi

∣
∣

Detailed proof can be found in (Schnass and Vandergheynst, 2008). As can be

seen that, condition (2.39) is difficult to check whether it is satisfied as the index set

Γ is not known beforehand. Moreover, in compressive sensing, index set is unknown
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before hand and it is the main target of OMP algorithm. However, sufficient condition

(2.40) only involves mutual coherence and cumulative mutual coherence, which are

independent of the index of right atoms. Mutual coherence and cumulative mutual

coherence are only determined by sensing and measurement dictionaries. Therefore,

it is practical to determine whether the sufficient condition (2.40) is met based on

cumulative mutual coherence of sensing and measurement dictionaries. Moreover, it

can be seen from (2.40) that mutual cumulative coherence should be minimized by

designing sensing dictionary with respect to the given measurement dictionary.

Minimization of cumulative mutual coherence also makes sense for generalized

RIC. Like relationship between cumulative coherence and RIC for measurement

dictionary, similar relationship exits between generalized RIC and cumulative mutual

coherence. Theorem 2.7 states the relationship.

Theorem 2.7. (Li et al., 2011) k− 1th order cumulative mutual coherence and kth

order generalized RIC of sensing and measurement dictionaries have the following

inequality:

δ′k ≤ µ′
1 (k − 1) (2.41)

Theorem 2.7 indicates that minimization of k − 1th order cumulative mutual co-

herence would bound the value of kth order generalized RIC. Generalized RIC with

small value is favored by OMP algorithm according to (2.31). Moreover, cumulative

mutual coherence with small value is also of special significance for OMP algorithm

according to (2.40). Therefore, it is necessary to design sensing dictionary with re-

spect to measurement dictionary to make cumulative mutual coherence as small as

possible. There exists simple relationship between mutual coherence and cumulative
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mutual coherence which is

µ′
1 (k) ≤ kµ′ (2.42)

Therefore, based on (2.42), we could design a sensing dictionary with respect to

the given measurement dictionary with small mutual coherence to force the cumu-

lative mutual coherence to be small. In the next chapter, sensing dictionary design

algorithms will be proposed to design sensing dictionary with respect to the given

measurement dictionary to reduce the value of mutual coherence.
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Chapter 3

Sensing Dictionary Design

Algorithms

In the previous chapter, sensing dictionary is introduced in OMP algorithm to improve

the ability of OMP algorithm to select right atoms based on the identification vector.

Designing sensing dictionary with respect measurement dictionary to force the mutual

coherence or the mutual cumulative coherence as small as possible is favored by OMP

algorithm. In this chapter, the existing sensing dictionary design algorithms will be

introduced and novel sensing dictionary design methods will be given.

3.1 Existing Sensing Dictionary Design Algorithms

In (Schnass and Vandergheynst, 2008), sensing dictionary design algorithm using

alternating projection method is proposed. Before introduction of the algorithm, two
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sets are given here as

G =
{
G = ΨTΦ,Ψ ∈ Rm×n,Φ ∈ Rm×n} (3.1)

H =
{
H ∈ Rn×n,Hii = 1,Hij ≤ µw, for i 6= j, 1 ≤ i, j ≤ n

}
(3.2)

where (3.1) is the set of type Gram matrix and (3.2) is the set comprising matrix

whose diagonal entries are ones and the absolute value of off diagonal entries is less

than or equal to Welch bound. µw =
√

n−m
m(n−1)

is Welch bound for m by n matrix.

Hij denotes the component corresponding to the ith row and jth column of matrix

H. Based on the defined two matrix sets, sensing dictionary design problem could be

written as following:

min ‖G−H‖2 s.t G ∈ G,H ∈ H (3.3)

Problem (3.3) can be solved by alternating projection onto convex sets since both

sets G and H are convex. In the alternating projection, the number of iteration is fixed

and initialization is given as G = ΦTΦ , the following iterations are repeated until

the maximum number of iteration is met:

1) find H ∈ H to minimize ‖G−H‖F
2) find G ∈ G to minimize ‖H−G‖F
where ‖·‖F is Frobenius norm of the input matrix.

In the first step, matrix H is to be calculated based on the minimization of Frobe-

nius distance from type Gram matrix G. The Frobenius norm can be written more
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explicitly as

min
H∈H
‖G−H‖F = min

H∈H

(
∑

1≤i,j≤n
|Gij −Hij|2

)1/2

(3.4)

Based on (3.4), it is easy to get the expression of H, which can be written as:

Hij =







1 if i = j

Gij if |Gij | ≤ µw

µwsign (Gij) if |Gij | > µw

(3.5)

In the second step, given matrix H, type Gram matrix whose Frobenius distance

from H is minimal is required to calculate. For this, there exists a closed form solution

to the problem in step two. The problem in step two can be rewritten as:

min
G∈G
‖G−H‖F = min

Ψ

∥
∥H−ΨTΦ

∥
∥
F

= min
Ψ

∥
∥HT −ΦTΨ

∥
∥
F

= min
Ψ

(
∑

1≤i≤n

∥
∥HT

i· −ΦTψi
∥
∥

2

2

)1/2

(3.6)

where Hi· denotes the ith row of matrix H and ψi ∈ Rm×1 denotes the ith column of

sensing dictionary Ψ. It can be seen easily from (3.6) that the minimization problem

can be decomposed into n independent minimization problems and each with its

solution as

ψi =
(
ΦΦT

)−1
ΦHT

i· (3.7)
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This could easily lead to the closed form of sensing dictionary as

Ψ =
(
ΦΦT

)−1
ΦHT (3.8)

The solutions to problems in both step one and two are obtained. The two steps

iterate a certain number of iterations and a corresponding sensing dictionary will be

designed. Alternating projection method minimizes the Frobenius distance between

the set of type Gram matrix and the set of given matrix. As such, for the designed

sensing dictionary, the absolute value of off diagonal entries of type Gram matrix is

near the Welch bound. However, it can not guarantee that its diagonal entries are of

unit value.

Another kind of sensing dictionary design algorithm is dependent on both mea-

surement dictionary and measurement signal (Huang et al., 2011). In (Huang et al.,

2011), besides measurement dictionary, measurement signal is used as a weighting

coefficient to minimize the objection function. The minimization problem can be

formulated as

min
Ψ∈Rm×n

∥
∥ΨTΦW

∥
∥

2

F
s.t. ψTi ϕi = 1, 1 ≤ i ≤ n (3.9)

where W = diag {|h|} is a weighting matrix which provides posterior knowledge. In

(3.9), the objective function can be further written as

∥
∥ΨTΦW

∥
∥

2

F
=

n∑

i=1

∥
∥WΦTψi

∥
∥

2

2
(3.10)

Therefore, the minimization problem (3.9) can be factorized as n sub minimization
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problem with the ith one as

min
ψi∈Rm×1

∥
∥WΦTψi

∥
∥

2

2
s.t. ψTi ϕi = 1 (3.11)

The Lagrangian for (3.11) is

L (ψi, λ) =
∥
∥WΦTψi

∥
∥

2

2
+ λ

(
ψTi ϕi − 1

)
(3.12)

It is nontrivial to obtain the solution when minimizing (3.12):

ψi =
R−1ϕi
ϕTi R

−1ϕi
where R = ΦW2ΦT (3.13)

It can been seen from (3.13) that a closed form solution exists. The constructed

sensing dictionary could reduce local cumulative mutual coherence (local cumulative

mutual coherence is defined in (Huang et al., 2011)). The performance of OMP al-

gorithm improves significantly when incorporating the designed sensing dictionary.

However, one fatal drawback of this algorithm is that it depends on measurement sig-

nal. In practice, for each new measurement signal, a corresponding sensing dictionary

is required to be designed, which is computationally expansive.

3.2 Sensing Dictionary Design Based on Linear

Programming

In this section, a novel sensing dictionary design algorithm is proposed. The aim

of the new algorithm is to minimize the mutual coherence and the corresponding
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problem could be formulated as linear programming problem.

According to the definition of sensing dictionary in the last chapter, if all the

diagonal entries of type Gram matrix are one, then the maximum absolute value of

all the off diagonal entries of type Gram matrix represents mutual coherence. Like the

method in (Schnass and Vandergheynst, 2008) and (Huang et al., 2011), we intend

to construct sensing dictionary atom by atom or column by column. To design the

ith column (1 ≤ i ≤ n) ψi, we intend to solve the following optimization problem

min
ψi∈Rm×1

∥
∥ψTi ΦΛ

∥
∥
∞ s.t. ψTi ϕi = 1 (3.14)

where Λ = {1, 2 · · ·n} \ i.

It can be seen from (3.14) that to design ith atom of sensing dictionary, the

constraint is that its inner product with the ith atom of measurement dictionary is

equal to one. The maximum absolute value of its inner product with atoms other

than the ith one of measurement dictionary is minimized. According to the definition

of mutual coherence, mutual coherence is reduced when the optimization problem

(3.14) is solved.

The optimization problem (3.14) is equivalent to linear programming as following:

min
ψi∈Rm×1,τ∈R

τ s.t. ψTi ϕi = 1,
∣
∣ψTi ϕj

∣
∣ ≤ τ, j ∈ {1, 2 · · ·n} \ i (3.15)

Problem (3.15) could be solved using linear programming. (3.15) can be written

in standard linear programming format as

min
x̃∈R(m+1)×1

cT x̃ s.t. Ax̃ ≤ 02(n−1)×1, dT x̃ = 1 (3.16)
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where x̃ =
[
ψTi τ

]T
, c =



0, 0 · · ·0
︸ ︷︷ ︸

m

, 1





T

, d =
[
ϕTi , 0

]T
and

A =






ϕ1 −ϕ1 · · · ϕi−1 −ϕi−1 ϕi+1 −ϕi+1 · · · ϕn −ϕn
−1 −1 · · · −1 −1 −1 −1 · · · −1 −1






T

When implemented in Matlab, we could use function linprog.m to solve the lin-

ear programming problem (3.16). The problem is convex and global optimal solution

could be found definitely. Usually, primal dual interior point algorithm is imple-

mented to solve linear programming problem. Logarithmic barrier function is used

for inequality equations and incorporating the logarithmic barrier functions into the

objective function, which could be written as

min
x̃∈R(m+1)×1

cT x̃ +

2(n−1)
∑

j=1

(

−1

t

)

ln (Aj·x̃) s.t. dT x̃ = 1 (3.17)

where Aj· denotes the jth row of matrix A. The modified Karush Kuhn Tucker

(KKT) condition could be written as

c + ATλ+ dTν = 0 (3.18)

diag {λ}Ax̃ = −1

t
1 (3.19)

dT x̃ = 1 (3.20)

where λ ∈ R2(n−1)×1 and ν ∈ R are dual variables for inequality and equality equa-

tions respectively. 1 is a 2 (2n− 1) by 1 vector with all the element equal to 1. If x̃,

λ and ν satisfy modified KKT equations (3.18), (3.19) and (3.20), x̃ is primal feasible
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and λ, ν are dual feasible.

Define dual residual rdual, primal residual rpri and centrality residual rcent as

rdual = c + ATλ+ dTν (3.21)

rpri = dT x̃− 1 (3.22)

rcent = −diag {λ}Ax̃− 1

t
1 (3.23)

Using Newton step to solve the KKT equations for fixed t. Assume current point

(x̃,λ,ν) satisfies Ax̃ ≤ 0 and λ ≥ 0, the Newton step ∆x, ∆λ and ∆ν can be

computed from the following equation:









0 AT b

−diag {λ}A −diag {Ax̃} 0

bT 0 0

















∆x

∆λ

∆ν









= −









rdual

rcent

rpri









(3.24)

Equation (3.24) is a linear equation with total number ofm+2+2(n−1) equalities.

The linear equation (3.24) can be solved by standard solution for linear equation such

as conjugate gradient algorithm.

When the Newton step is obtained by solving equation (3.24), a step length could

be determined by traditional backtracking line search method. For each fixed t,

Newton step and the step length are calculated iteratively until the norm of three

residual is below a given threshold. After that, the value of parameter t is decreased.

The detailed procedure of primal dual interior point algorithm is not illustrated here.

(Boyd and Vandenberghe, 2004) gives more related explanations.
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3.3 The Proposed Sensing Dictionary Design Al-

gorithm

In this part, a novel sensing dictionary design algorithm is given. As given in (3.14),

the aim here is to reduce the maximal absolute value of inner product between the

sensing dictionary atom and measurement dictionary while keeping the linear con-

strain satisfied.

In this algorithm, each atom of sensing dictionary is designed separately. When

designing one specific atom of sensing dictionary, the algorithm is as follows: in each

iteration, a new direction vector is calculated. When the value of the atom of sensing

dictionary changes along the direction vector, the maximal absolute value of its inner

product with measurement dictionary decreases and the linear constraint is satisfied.

As an illustration, take the construction of the first sensing dictionary atom ψ1 for

example. Initialize ψ1 as the first atom of measurement dictionary such as ψ1 = ϕ1.

At the first iteration, we firstly search for the atom in measurement dictionary whose

absolute value of inner product with ψ1 is maximal

i1 = arg max
j=1···n,j 6=1

∣
∣ψT1 ϕj

∣
∣ (3.25)

We want to change atom ψ1 with a direction d to minimize the maximal absolute

value of its inner product with measurement dictionary Φ. It can be formulated as
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an optimization problem as

min
d∈Rm×1

∣
∣
∣(ψ1 + d)T ϕi1

∣
∣
∣

s.t. (ψ1 + d)T ϕ1 = 1
∣
∣
∣(ψ1 + d)T ϕi1

∣
∣
∣ ≥

∣
∣
∣(ψ1 + d)T ϕj

∣
∣
∣ , j ∈ {2, 3, · · ·n}

(3.26)

We do not aim to solve the optimization problem (3.26) directly. We intend to

solve it analytically. Define the index set Γ = {i1}. As can be seen from (3.25), if we

change the atom ψ1 along the vector −ϕi1 , the maximal absolute value of the inner

product with ϕ1i
can be reduced. However, changing atom ψ1 along the direction

−ϕi1 breaks the equality constraint. As a tradeoff, we change the atom ψ1 along a

direction that is orthogonal to ϕ1 and along with direction −ϕi1 . This direction can

be calculated as the complementary projection of −ϕi1 on ϕ1. This direction vector

can be calculated as

d1 = −ϕi1 − ϕ1

(
ϕT1 ϕ1

)−1
ϕT1 (−ϕi1) (3.27)

It is easy to prove that direction vector d1 is orthogonal to the atom ϕ1, which is

as following:

ϕT1 d1 = ϕT1

(

−ϕi1 + ϕ1

(
ϕT1 ϕ1

)−1
ϕT1 ϕi1

)

= −ϕT1 ϕi1 + ϕT1 ϕ1

(
ϕT1ϕ1

)−1
ϕT1 ϕi1

= 0

(3.28)

Another factor we should consider is the sign of vector d1. If we want to lower

the maximum magnitude of inner product along direction d1, vector d1 should be
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modified as

d′
1 = −sign

(
ψT1 ϕi1

)

dT1 ϕi1
d1 (3.29)

where sign(·) denotes the sign of the input value.

As such, it is easy to check that inner product d′T
1 ϕi1 and ψT1 ϕi1 are opposite in

sign, which could be verified as following:

d′T
1 ϕi1 = −sign

(
ψT1 ϕi1

)

dT1 ϕi1
dT1 ϕi1 = −sign

(
ψT1 ϕi1

)
(3.30)

We can change vector ψ1 along the direction d′
1 with nonnegative step length α,

which can be written as

ψ1 + αd′
1 (3.31)

The inner product of the new vector and ϕi1 can be expressed as

(ψ1 + αd′
1)
T
ϕi1 = ψT1 ϕi1 + αd′T

1 ϕi1

= ψT1 ϕi1 − αsign
(
ψT1 ϕi1

)

=
∣
∣ψT1 ϕi1

∣
∣ sign

(
ψT1 ϕi1

)
− αsign

(
ψT1 ϕi1

)

=
[∣
∣ψT1 ϕi1

∣
∣− α

]
sign

(
ψT1 ϕi1

)

(3.32)

The absolute value of the inner product is

∣
∣
∣(ψ1 + αd′

1)
T
ϕi1

∣
∣
∣ =

∣
∣
∣
∣ψT1 ϕi1

∣
∣− α

∣
∣ (3.33)
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It can been seen that if α ≤
∣
∣ψT1 ϕi1

∣
∣, comparing to the absolute value of ψT1 ϕi1 ,

the value in (3.33) decreases by α. Based on this observation, it is easy to obtain the

following result:

∣
∣
∣(ψ1 + αd′

1)
T
ϕi1

∣
∣
∣ ≤

∣
∣ψT1 ϕi1

∣
∣ if 0 ≤ α ≤

∣
∣ψT1 ϕi1

∣
∣ (3.34)

Intuitively, when the value of α is α = 0+, which means that it is a small positive

value, based on (3.30), it is estimated that the absolute value of (ψ1 + αd′
1)
T ϕi1

will decrease. If we increase the value of α further, the absolute value of certain

inner product (ψ1 + αd′
1)
T ϕj, j ∈ {2, 3, · · ·n} \ Γ would increase. We can never

expect that changing the value of α to make all the inner product (ψ1 + αd′
1)
T ϕj ,

j ∈ {2, 3, · · ·n} become zero. As in case that it happens, ψ1 is orthogonal to all the

vector ϕj, j ∈ {2, 3, · · ·n} \ Γ. This means that atoms ϕj , j ∈ {2, 3, · · ·n} \ Γ could

span a subspace and the atom ϕ1 is not in this space. Otherwise, equality constrained

is violated. In practice, it is not true as measurement dictionary satisfies Kruskal

rank or krank, which means that any m atoms from measurement dictionary are

independent. It is impossible to form a subspace using atom ϕj, j ∈ {2, 3, · · ·n} \ Γ

and ϕ1 is not in the subspace.

We can increase the value of α until the value of
∣
∣
∣(ψ1 + αd′

1)
T ϕi1

∣
∣
∣ becomes equal

to the absolute value of inner product of ψ1 +αd′
1 with certain atom in measurement

dictionary. For atom ϕj , it means that

∣
∣
∣(ψ1 + αd′

1)
T
ϕj

∣
∣
∣ =

∣
∣
∣(ψ1 + αd′

1)
T
ϕi1

∣
∣
∣ (3.35)
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Solving this equation, we could obtain the value of α as

α = −ψ
T
1 (ϕi1 + ϕj)

d′
1 (ϕi1 + ϕj)

or α = −ψ
T
1 (ϕi1 − ϕj)

d′
1 (ϕi1 − ϕj)

(3.36)

For each atom ϕj , j ∈ {2, 3, · · ·n} \Γ, we could solve equation (3.35) and get two

solutions with explicit form as (3.36). Therefore, there exists 2(n − 1) value for α.

We should choose the value of α as the smallest positive value among them, such as

α = min
j={2,3,···n}\Γ

{[

− ψ
T
1 (ϕi1 ± ϕj)

d′T
1 (ϕi1 ± ϕj)

, 0

]

+

}

(3.37)

where operator [·]+ is defined as following:

[x, 0]+ =







x if x > 0

0 otherwise
(3.38)

Let ϕi2 be the atom that corresponds to expression that gives the value of α in

(3.37), which is

i2 = argj∈{2,3···n}\Γ

{

α =

[

−ψ
T
1 (ϕi1 + ϕj)

d′T
1 (ϕi1 + ϕj)

,−ψ
T
1 (ϕi1 − ϕj)

d′T
1 (ϕi1 − ϕj)

]

+

}

(3.39)

Renew the index set as Γ = Γ ∪ i2. According to (3.35), α satisfies the following

equation

∣
∣
∣(ψ1 + αd′

1)
T
ϕi2

∣
∣
∣ =

∣
∣
∣(ψ1 + αd′

1)
T
ϕi1

∣
∣
∣ (3.40)
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If we update the atom ψ1 as the following

ψ1 ← ψ1 + αd′
1 (3.41)

then the absolute value of ψT1 ϕi1 and ψT1 ϕi2 is equal and maximal among all the inner

product ψT1 ϕj, j ∈ {2, 3, · · ·n}.

At the second iteration, firstly we could obtain another direction vector as follow-

ing:

d2 = −ϕi2 − ϕ1

(
ϕT1 ϕ1

)−1
ϕT1 (−ϕi2)− d1

(
dT1 d1

)−1
dT1 (−ϕi2) (3.42)

which is the complementary projection of −ϕi2 on the space spanned by d1 and ϕ1,

as d1 and ϕ1 are orthogonal. It is easy to verify the following equalities:

dT2 ϕ1 = 0, dT2 d1 = 0 (3.43)

which means that directional vector d2 is orthogonal to ϕ1 and d1.

Now, we have two directional vector which are d′
1 and d2. Both of them are

orthogonal to ϕ1, so we could change ψ1 along the direction spanned by them without

violating the equality constraint. In detail, changing ψ1 along d′
1 could reduce the

value of ψT1 ϕi1 and changing ψ1 along d2 could reduce the value of ψT1 ϕi2 . As d′
1 and

d2 are orthogonal, we could construct a new directional vector d′
2 as

d′
2 = d′

1 + c2d2 (3.44)

where c2 ∈ R is an unknown coefficient.
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If we change ψ1 along the direction d′
2 with step length α, the atom could be

written as ψ1 + αd′
2. The inner product of this atom with ϕi1 is

(ψ1 + αd′
2)
T
ϕi1 = (ψ1 + αd′

1 + αc2d2)
T
ϕi1

= (ψ1 + αd′
1)
T
ϕi1

=
[∣
∣ψT1 ϕi1

∣
∣− α

]
sign

(
ψT1 ϕi1

)

(3.45)

where the second equality is based on the orthogonality of d2 and ϕi1, the third

equality is based on (3.32). Similar to (3.32), when we change ψ1 along directional

vector d′
2 with step length α, if the value of α is no larger than

∣
∣ψT1 ϕi1

∣
∣, the magnitude

of its inner product with ϕi1 will decrease by α, which is independent of the coefficient

c2. In the same way, we wish that when changing ψ1 in the direction d′
2 with step

length α, the magnitude of its inner product with φi2 decreases by α. This could

expressed as

(ψ1 + αd′
2)
T
ϕi2 = (ψ1 + αd′

1 + αc2d2)
T
ϕi2

=
[∣
∣ψT1 ϕi2

∣
∣− α

]
sign

(
ψT1 ϕi2

)
(3.46)

Based on (3.46), we could get the value of coefficient c2 as

c2 = −sign
(
ψT1 ϕi2

)
+ d′T

1 ϕi2
dT2 ϕi2

(3.47)

We can get the expression of directional vector d′
2 by substituting c2 in (3.44)

with the value in (3.47). As such, both of the magnitude of (ψ1 + αd′
2)ϕi1 and

(ψ1 + αd′
2)ϕi2 change linearly with α with the same speed. The value of α could be
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determined in the same way at the first iteration as (3.35), which could be written as

α = min
j={2,3,···n}\Γ

{[

− ψ
T
1 (ϕi1 ± ϕj)

d′T
2 (ϕi1 ± ϕj)

, 0

]

+

}

(3.48)

After t − 1th (t− 1 < m− 1) iteration, the directional vector is d′
t−1 and the

selected index is it−1. The index set could be renewed as Γ = Γ ∪ it−1. At tth

iteration, a direction vector is obtained as

dt = −ϕit − ϕ1

(
ϕT1 ϕ1

)−1
ϕT1 (−ϕit)−

t−1∑

j=1

dj
(
dTj dj

)−1
dTj (−ϕit) (3.49)

which means that dt is complementary projection of −ϕit on the subspace spanned

by ϕ1 and dj ,(j = 1, 2, · · · , t− 1). A new directional vector d′
t could be written as

d′
t = d′

t−1 + ctdt (3.50)

As (3.47), ct could be explicitly written as

ct = −sign
(
ψT1 ϕit

)
+ d′T

t−1ϕit
dTt ϕit

(3.51)

and the step length could be determined the same way as in the first and second

steps, which is

α = min
j={2,3,···n}\Γ

{[

−ψ
T
1

(
ϕit−1 ± ϕj

)

d′T
t

(
ϕit−1 ± ϕj

) , 0

]

+

}

(3.52)

Note that the maximum number of iterations is m − 1. As at tth iteration,

a directional vector dt is calculated as complementary projection on the subspace
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spanned by ϕ1 and dj ,(j = 1, 2, · · · , t− 1). When the number of iteration is m, the

upper mentioned spanned subspace is full subspace and the complementary projection

of any vector is a zero vector. This is due to the krank property of measurement

dictionary.

Table 3.1 gives the algorithm proposed in this section. The algorithm is termed

sensing dictionary design algorithm. There are in total two loops in this algorithm.

In the outer loop, each atom of sensing dictionary is iterated and in the inner loop

one atom of sensing dictionary is designed.
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Figure 3.1: Inner product of atom ψ1 and measurement dictionary Φ in initialization
step

Here, we give an example which aims to design the first atom of sensing dictionary

ψ1 when the measurement dictionary Φ is given. Each component of measurement

dictionary is generated as random Gaussian value with zero mean and unit variance.

After that, each column of measurement dictionary is normalized to make each atom
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Input: measurement dictionary Φ.

for i = 1 : n

Initialization: ψi=ϕi. i1 = arg max
∣
∣ψTi ϕj

∣
∣ where j = {1, 2, · · ·n} \ {i}.

Γ = {i1}. Calculating d1 and d′
1 using (3.27) and (3.29). Calculating α as in

(3.37). Renewing atom as ψi = ψi + αd′
1

for t = 2 : m-1

Step1: it = argj={1,2,··· ,n}\{i∪Γ}

{

α =

[

− ψT
i (ϕit−1

±ϕj)
d′T

t−1(ϕit−1
±ϕj)

]

+

}

, Γ = Γ ∪ {it}.

Step2: calculating dt, ct, d′
t and α as (3.49), (3.51) and (3.50) and (3.52).

Step3: ψi = ψi + αd′
t

end

end

Output: sensing dictionary Ψ

Table 3.1: Sensing Dictionary Design Algorithm
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Figure 3.2: Inner product of atom ψ1 and measurement dictionary Φ after the first
iteration
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Figure 3.3: Inner product of atom ψ1 and measurement dictionary Φ after the second
iteration
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Figure 3.4: Inner product of atom ψi and measurement dictionary Φ after the third
iteration
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Figure 3.5: Inner product of atom ψi and measurement dictionary after the m− 2th
iteration
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Figure 3.6: Inner product of atom ψi and measurement dictionary. Atom ψi is de-
signed by linear programming based algorithm

with unit two norm. The size of measurement dictionary is 25 by 50. Figure 3.1

gives the inner product of ψ1 and measurement dictionary Φ. This is also the ini-

tialization step of sensing dictionary design algorithm. It can be clearly seen that

the inner product ψT1 φ33 is of largest magnitude among all the inner product ψT1 φj,

j = 2, 3, · · · , 50. Moreover, ψT1 φ1 = 1 means the linear constraint is satisfied. Figure

3.2 shows the inner product of ψ1 and Φ after the first iteration. We could see that

both of the inner products ψT1 φ33 and ψ1φ30 are of largest magnitude and are reduced

compared to figure 3.1. In other words, the largest magnitude of inner product ψT1 φj,

j = 2, 3, · · · , 50 decreases. Figure 3.3 and 3.4 are the inner product of ψ1 and Φ

after second and third iterations. We could see that the largest magnitude of the

inner product decreases as the number of iteration grows. After the last iteration,

the inner product is illustrated in figure 3.5. Comparing to figure 3.1, the largest
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magnitude decreases and there exists 24 components of the inner product that are of

equal magnitude which is largest.

Sensing dictionary atom ψ1 can be also designed by linear programming based

method given at the previous section. The inner product of the designed sensing

dictionary atom ψ1 and measurement dictionary Φ is shown in figure 3.6. Compar-

ing figure 3.5 and figure 3.6, it is clear that the two inner products are identical,

which means that the performance of sensing dictionary design algorithm and linear

programming are the same in this example.

Compared with linear programming method, there is no guarantee that sensing

dictionary design algorithm could design a sensing dictionary that is globally optimal.

However, simulation manifests that sensing dictionary design algorithm performs as

well as linear programming method.

3.4 Complexity Analysis

In this section, the complexity of linear programming method and sensing dictionary

design algorithm is briefly analyzed.

For linear programming based method, sensing dictionary is designed atom by

atom. When designing each atom, primal dual interior point algorithm is used. In

primal dual interior point algorithm, for fixed parameter t, a series of Newton steps

is implemented to calculate the Newton step and the corresponding step length is

calculated by backtracking line search method. Each Newton step is obtained by

solving linear programming as in (3.24) with complexity O
(
(m+ 2n)3). Denote the

Nnewton and Nt being the number of Newton step iterations for each fixed parameter

t and the number of parameter t. Although for each fixed parameter t the number

50



M.A.Sc. Thesis - Bo Li McMaster - Electrical Engineering

of Newton steps varies, we use Nnewton to represent the number of Newton step it-

erations for simplicity. Moreover, in practice, the number of Newton step iterations

for each fixed t is of the same order of magnitude. Thus the use of Nnewton is rela-

tively reasonable. Based on the above analysis and assumption, the computational

complexity of primal dual interior point algorithm to design one sensing dictionary

atom is O
(
NtNnewton (m+ 2n)3). In compressive sensing when the length of signal x

is large, the computation of sensing dictionary is burdensome.

In sensing dictionary design algorithm, when designing one sensing dictionary

atom, at jth iteration the computational complexity of complementary projection

(3.49) is O (jm) and the computational complexity of calculation of α in (3.52) is

O (m (n− j)). These two steps are the most computational consuming in this algo-

rithm. In total, at jth step, the computational complexity is O (mn). The number of

iterations is known to be m−1. Thus, computational complexity of sensing dictionary

design algorithm to design one atom is O (nm2).

Comparing the complexity of the two algorithms above, we could see that sens-

ing dictionary design algorithm is computationally simpler than linear programming

based method.
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Chapter 4

Simulation and Comparison

In this part, the performance of the proposed sensing dictionary design algorithm

and linear programming based sensing dictionary design algorithm along with the

algorithm in (Schnass and Vandergheynst, 2008) will be compared.

4.1 Comparison of Sensing Dictionaries

Each component of measurement dictionary is generated as random Gaussian value

with zero mean and unit variance. After that, each column of measurement dictionary

is normalized to make two norm of each atom of measurement dictionary with unit

value. Three algorithms are used to design sensing dictionary, which are the proposed

sensing dictionary design algorithm, linear programming based method and algorithm

in (Schnass and Vandergheynst, 2008).

Figure 4.1 compares the cumulative mutual coherence with sensing dictionary con-

structed by the method in (Schnass and Vandergheynst, 2008) and two algorithms

proposed in this thesis. The size of the dictionary is 128 by 256. When using sensing
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Figure 4.1: Comparison of cumulative mutual coherence
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Figure 4.2: Comparison of mutual coherence with various dictionary size
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dictionary designed by the linear programming based algorithm or sensing dictionary

design algorithm, cumulative mutual coherence are smaller than that of sensing dic-

tionary by (Schnass and Vandergheynst, 2008). Moreover, for the sensing dictionary

constructed either by linear programming based algorithm or sensing dictionary de-

sig algorithm, the cumulative mutual coherence is relatively identical, although the

cumulative mutual coherence by the latter algorithm is larger than the former one.

Figure 4.2 compares mutual coherence with sensing dictionary designed by the

upper mentioned three algorithms. The number of row of the dictionary is 128 and

the number of columns varies from 140 to 240 with interval equal to 10. Welch bound

is also illustrated as a comparison. As can be clearly seen, with sensing dictionary

designed by linear programming based method or the proposed sensing dictionary

design algorithm, the mutual coherence is smaller than that with sensing dictionary

given by the method in (Schnass and Vandergheynst, 2008).

As stated in the last chapter, linear programming based method is computa-

tional burdensome while the proposed sensing dictionary design algorithm is rather

computationally simple. Although computational complexity is analyzed in the last

chapter and algorithm running time using Matlab does not accurately represent the

computational complexity, the latter gives an intuitional realization of computational

complexity. In figure 4.3, the running time of the two algorithms proposed is illus-

trated. The number of columns is 256 and the number of rows varies from 100 to 200

with interval equal to 10. Two algorithms are running under Matlab 7.11.0(R2010b)

in laptop with Intel i7-2620M CUP 2.70 and 2.69 GHz and 8.00G RAM. For both the

algorithm, running time grows with the increased number of rows. As can be seen

from figure 4.3 that the running time of the proposed sensing dictionary designing
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Figure 4.3: Comparison of running time of linear programming based algorithm and
the proposed sensing dictionary design algorithm

algorithm is 5 to 10 times less than linear programming based algorithm.

4.2 Comparison of OMP Algorithm Incorporated

with Sensing Dictionary

In this section, the performance of OMP algorithm is compared when using sensing

dictionary designed by different kinds of algorithms. The size of dictionary is 128 by

256. The number of nonzero component of sparse signal varies from 1 to 79 and for

each sparsity level the experiment is run 500 times. Sparse signal recovery is claimed

to be successful if the support of the recovered signal and that of the original sparse

signal are identical.
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Figure 4.4: Performance of OMP algorithm when the nonzero component of sparse
signal is Gaussian distributed
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Figure 4.5: Performance of OMP algorithm when the nonzero component of sparse
signal is equal to one
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In figure 4.4, the nonzero component of sparse signal is with standard Gaussian

distribution and in figure 4.5 the nonzero component of sparse signal is of unit value.

From figure 4.4 and 4.5, we could see that the performance of OMP algorithm im-

proves when using sensing dictionary. Especially, the sensing dictionary designed by

linear programming based algorithm or the proposed sensing dictionary design al-

gorithm makes OMP algorithm perform better than using sensing dictionary by the

algorithm in (Schnass and Vandergheynst, 2008). Moreover, when using sensing dic-

tionary designed by the two proposed algorithm, the performance of OMP algorithm

is identical.
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Chapter 5

Conclusion

In this thesis, two sensing dictionary design algorithms are proposed to improve the

performance of OMP algorithm when recovering sparse signal in compressive sensing.

The aim of sensing dictionary design is to make the mutual coherence and cumulative

mutual coherence small, which benefits OMP algorithm.

In the first algorithm, sensing dictionary atom design problem is formulated as an

optimization problem with linear equalities and linear inequalities constrictions. This

problem can be transformed as a linear programming problem and primal-dual interior

point algorithm is utilized to solve it. Global optimal point is guaranteed to exist

because of the convexity of the problem. However, high computational complexity is

a major obstacle.

In the second algorithm, each sensing dictionary atom is designed to make the

maximal magnitude of its inner product with measurement dictionary as small as

possible. Compared with the first one, the second algorithm carries low computational

complexity while global optimal solution is not guaranteed.

Simulation verifies that both of the proposed algorithms could design sensing
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dictionary with respect to the given measurement dictionary to make the mutual

and cumulative mutual coherence small. The performance of OMP algorithm also

improves when incorporating the sensing dictionary designed by the two proposed

algorithms.

Further research direction includes derivation of theoretical sufficient conditions

under which the sensing dictionaries designed by the two proposed algorithms in this

thesis are identical. Another idea is to minimize the cumulative mutual coherence

directly in the optimization problem, which may give a designed sensing dictionary

with even smaller cumulative mutual coherence.
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