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Abstract

We examine the robust downlink beamforming design from the point of outage proba-

bility constraint. We further reason that since the estimated downlink channel corre-

lation (DCC) matrices form a manifold in the signal space, the estimation error should

be measured in terms of Riemannian distance (RD) instead of the commonly used Eu-

clidean distance (ED). Applying this concept of measure to our design constraint, we

establish approximated outage probability constraints using multidimensional ball set

and multidimensional cube set. We transform the design problem into a convex opti-

mization problem which can be solved efficiently by standard methods. Our proposed

methods apply to both Gaussian distribution assumption and uniform distribution

assumption. Simulation results show that the performance of our design is superior

to those of other robust beamformers recently developed.
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Notation and abbreviations

Notation

A matrix

a column vector

(·)∗ the conjugate operator

(·)T the transpose of a vector or a matrix

(·)H the Hermitian transpose of a vector or a matrix

(·)−1 the reciprocal or the inversion operation

(̂·) the estimate of a parameter

(·)j the jth element of a vector

[·]ij the ijth element of a matrix

| · | the magnitude of a complex quantity

‖ · ‖ the Euclidean norm of a vector or a matrix

⊗ the Kronecker product

E{·} the statistical expectation operator

Tr{·} the trace of a matrix

vec{·} the operator stacking the columns of a matrix on top of each other

M manifold
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B,C set

λ eigenvalue

I identity matrix

R the field of real numbers

C the field of complex numbers

p(·) the probability density function

Pr(·) the probability operator

erf(·) the error function

Re{·} the real part of a vector or a matrix

Im{·} the imaginary part of a vector or a matrix

Abbreviation

BS Base Station

QoS Quality of Service

CSI Channel State Information

DCC Downlink Channel Correlation

SDP Semidefinite Program

MSE Mean-square Error

SINR Signal to Interference Noise Ratio

ED Euclidean Distance

PSD Positive Semidefinite

RD Riemannian Distance

SOCP Second-roder Cone Program

SDR Semidefinite Relaxation

LMI Linear Matrix Inequality
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Chapter 1

Introduction

1.1 Overview of beamforming

In a wireless communication system, quality of service and capacity are of great

importance. To ensure the communication reliability for each user, a system need to

overcome interference and multipath fading. Antenna arrays can improve reliability

and capacity. A beamformer is a processor with an array of sensors to provide a

versatile form of spatial filtering. As shown in Fig. 1.1, the base station (BS) is

equipped with multiple antennas so that beamforming can be carried out providing a

satisfactory quality of service (QoS) to each user [1]. To change the directionality of

the array when transmitting, a beamformer controls the phase and relative amplitude

of the signal at each transmitter. Each beampattern has a mainlobe whose direction is

designed to face the corresponding user so that the SINR can be maximized by means

of enhancing the desired signal power and rejecting the interferences by beampattern

nulls.
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Figure 1.1: Illustration of downlink beamforming
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Beamforming usually assumes that the second order statistics of the channel (rep-

resented by the downlink channel correlation matrices) are exactly known. Methods

based on the fully known channel information are called non-robust beamforming

methods. This assumption is difficult to satisfy in practice because the knowledge

of the downlink channel correlation (DCC) matrices depends on the accuracy of the

channel state information (CSI) available at the transmitter which, in turn, depends

on the channel estimation errors caused by channel variability, array calibration, etc.,

as well as feedback quantization errors and feedback delay resulting in serious degra-

dation in the performance of such techniques [2]−[5].

In recent years, consideration of the imperfection of CSI gave rise to the design

algorithms of robust beamforming which is a class of beamforming techniques aiming

to ensure the satisfaction of the QoS requirements of the users in the case of CSI

mismatch. Various CSI mismatch models have been considered that lead to different

robust beamforming approaches. In the worst case approach the concept is to design

beamformers such that the QoS constraints are satisfied for all the channels defined in

a bounded uncertainty set around the presumed CSI which is often the instantaneous

channel estimates or the estimated second-order statistics of the channels [6]−[13].

In [6], three conservative design approaches that yield convex and computationally-

efficient restrictions of the original design problem are derived. The three approaches

yield semidefinite program (SDP) formulations that offer different trade-offs between

the degree of conservatism and the size of the SDP. In [7] and [8], a MIMO system is

considered under error uncertainties where an absolute error bound is given. In [7], the

errors of the channel are bounded within an ellipsoid and a convex reformulation can

be derived as semidefinte programs. The result shows that the optimal transmission

3
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directions are just the right singular vectors of the nominal channel under some mild

conditions. And this result reduces the complicated matrix-valued problem to a

scalar power allocation problem. A convergent iterative algorithm is proposed in [8]

to obtain the robust solution for multiuser MIMO systems with imperfect CSI at

the receiver to guarantee the worst-case SINR. The positive semi-definiteness of the

mismatched channel covariance matrices are taken into account in [12]. In [13], an

exact representation of the worst-case solution is obtained using Lagrange duality.

Others developed algorithms by expressing QoS constraints in terms of the mean-

square errors (MSE) instead of SINR [15]−[17]. When the channel vectors are exactly

know, an MSE constraint is equivalent to an SINR constraint. Under the considera-

tion of partial CSI, MSE constraints provide a conservative lower bound on the SINR.

Such formulations, in general, offer no guarantee on outage performance.

A different view to robust beamforming is motivated by the random nature of

signal-to-interference-noise ratio (SINR) caused by the channel mismatch. This led

to the probabilistic approach which guarantees the QoS for the users with a prede-

fined non-outage probability and which relies on the statistical models of the channel

mismatches [18, 19, 20]. The difficulty of the problem stands in the fact that in

general there are no closed form expressions for the probabilistic SINR constraints.

The mismatch matrix between the real and estimated channel covariance matrix is as-

sumed to have Gaussian distribution in [18] and the initially non-convex optimization

problem is reformulated into tractable convex optimization problem. A relaxation-

restriction approach is proposed to approximate the outage probability constraint

optimization problem in [20] and this approach shows a significant improvement in

computational complexity. Under different assumptions of CSI error distributions,

4
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convex approximations to the initial robust beamforming problem were derived.

1.2 Contribution of our work

In the above developments of beamforming algorithms, the treatment of the errors,

especially the errors in the estimation of the channels or the errors in the estimation of

the DCC matrices is usually in terms of Euclidean distance (ED) (The equivalent inner

product norm for matrices is often called the Frobenius norm.) While the use of the

ED is generally well motivated if the mismatch is applied on the instantaneous channel

estimates, it is generally not appropriate for modeling the mismatch on the DCC. Our

reason is that since DCC matrices are not freely structured, but are Hermitian and

positive semi-definite (PSD), therefore, they form a manifold in the signal space.

Thus, instead of using the Frobenius norm, the distance between the true and the

estimated DCC matrices R and R̂, should be measured by the Riemannian distance

(RD) along the surface of the manifold [21]. This concept is akin to finding the

distance between two cities on earth: The Euclidean distance between two cities is

neither informative nor accurate.

The application of RD to robust beamforming design was proposed in [22] in

which a worst-case approach to downlink robust beamforming with covariance based

CSI feedback at the transmitter was taken. It has been shown that bounding the

uncertainty set of the DCC mismatch with a RD yields a convenient convex reformu-

lation and significantly improved beamforming performance as compared to previous

approaches based on the Frobenius norm. In this thesis, we also employ the RD

for measuring the estimation error in the DCC matrices. However, we take the out-

age probabilistic approach in robust downlink beamforming. The goal of our robust

5
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beamforming design is to attain an SINR non-outage probability larger than a cer-

tain imposed threshold for each receiver in the system. To facilitate a solution, we

define a convex restriction to the beamforming problem such that the probabilistic

non-outage constraints are satisfied for all the errors in this set. We show that this

goal can be achieved by imposing that the errors in the DCC matrices are bounded

based on the RD.

During the process of converting the non-convex problem into convex one, the

relaxation-restriction approach is used to approximate the original problem. The

error model is established under both Gaussian distribution assumption and uniform

distribution assumption. We further derive the relation between the SINR outage

threshold and the RD-based bound on the covariance mismatch set. In both cases,

we can find multidimensional ball set and multidimensional cube set to help turn

the non-deterministic outage probability constraint into a deterministic one. The

results of the reformulation show that different error matrix distribution assumptions

have different effects on the computation complexity of finding the corresponding

alternative set. However, the difference of the formation of the convex reformulation

only depends on the expression of the different set. Simulations show the improved

performance of our approach in terms of transmission power and beamformer accuracy

with respect to previous methods.

1.3 Structure of the thesis

In this thesis, we propose a convex design of outage probabilistic robust downlink

beamforming using RD. In Chapter 1, the background knowledge of beamforming

6
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and the contribution of our work are introduced. Then, in Chapter 2, we intro-

duce some existing beamforming methods in details. These existing methods can be

classified into non-robust beamforming methods, robust beamforming methods with

absolute error bound and probabilistic robust beamforming methods. Several popular

and classical approaches are discussed in details in each section of Chapter 2. Our

proposed method using RD as an error rmeasure is introduced in Chapter 3. A brief

introduction of RD is provided and then a discussion on the derivation of our problem

and the comparison with the worst-case approach is presented. An important step in

the process to turn our problem into a convex one is to find a set such that the problem

can be restricted into a deterministic one and one way of finding such a set is given

in Chapter 3. However, due to the fact that there are many choices of such a set, an

alternative formulation for probabilistic robust beamforming based on a different set

is discussed in Chapter 4. We also make another distribution assumption and derive

the corresponding convex reformulation in this chapter. Numerical results are shown

in Chapter 5, where the simulations of Chapter 3 and Chapter 4 demonstrate the

better performance of our proposed robust beamforming method compared to other

referred methods. Finally, conclusion of the thesis and our future work are presented

in Chapter 6.

7



Chapter 2

Beamforming methods

Beamforming methods can be applied to both the transmitter and the receiver of a

wireless system. In this thesis, we focus our attention on downlink beamforming. This

technique is relatively new. For downlink beamforming methods, the goal of design

beamforming vectors is to make sure that each user would satisfy a predefined QoS

threshold and at the same time, that the transmission power is as small as possible.

In this chapter, we will introduce three kinds of well-known downlink beamforming

methods, non-robust beamforming, robust beamforming with absolute error bound

and a proposed probabilistic robust beamforming.

2.1 Non-robust beamforming method

For simplicity, we consider that there is one single base station equipped with N

antennas serving K users. Each user has single antenna. The transmitted signal at

BS can be expressed as

x(t) =
K∑
k=1

wksk(t) (2.1)

8
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where wk ∈ CN is the beamformer vector and sk(t) is the data stream transmitted

for User k. Hence, the received signal for the kth user is given by

yk(t) = hHk x(t) + nk(t) (2.2)

where hk ∈ CN denotes the downlink channel vector from BS to User k, and nk(t) is

the additive noise with variance σ2
k.

In non-robust beamforming, we assume there is no error in the estimation of

the channel vector or the channel covariance matrix. A basic goal of the downlink

beamforming is to minimize the total transmission power subject to the chosen QoS

constraints. We often choose the received SINR to be the QoS and give a predefined

threshold on it. The problem formulation can be written as

min
{wk}Kk=1

K∑
k=1

‖wk‖2

s.t.
|wH

k hk|2∑K
6̀=k |wH

` hk|2 + σ2
k

≥ γk, k = 1, . . . , K (2.3)

where γk is the threshold of SINR for User k. One way of solving this problem is to

rewrite it as a second-order cone program (SOCP) problem [1]

min
{wk}Kk=1

K∑
k=1

‖wk‖2

s.t. (wH
k hk)

2 ≥ γk

K∑
`6=k

|wH
` hk|2 + γkσ

2
k, k = 1, . . . , K (2.4)

In Eq. (2.3), we employ instantaneous CSI hk, such that the expression of SINR is

a measure of the instantaneous SINR. However, instantaneous SINR is hard to obtain

9
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in practice. It is, therefore, more often to assume that the second order statistics of

the channel is known and apply that to our problem. Thus, denoting the channel

covariance matrix as Rk = E{hkhHk }, the problem can be reformulated as

min
{wk}Kk=1

K∑
k=1

‖wk‖2

s.t.
wH
k Rkwk∑K

6̀=k wH
` Rkw` + σ2

k

≥ γk, k = 1, . . . , K (2.5)

where we define the average SINR as

SINR =
average signal power

average interference + noise power
(2.6)

and γk is the threshold of average SINR for User k.

The problem of (2.5) is non-convex and difficult to solve. A popular method to

convert it into a convex problem is semidefinite relaxation [27]. Letting Wk = wkw
H
k ,

problem (2.5) can be rewritten as

min
{Wk}Kk=1

K∑
k=1

Tr(Wk)

s.t. Tr(RkWk)− γk
K∑
`6=k

Tr(RkW`) ≥ γkσ
2
k

Wk � 0, rank(Wk) = 1, k = 1, . . . , K (2.7)

The objective function is linear in terms of Wk, and the constraints are convex except

the rank-one condition. Dropping the rank-one condition, the problem becomes an

SDP problem which is convex and easy to solve. This relaxed problem is equivalent to

10
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the original problem when the solutions of Wk are of rank one. It has been shown [1]

that simulation results to such kind of problem invariably yield rank-one matrices Wk

when solving the relaxed problem with the rank-one constraint dropped. Therefore,

semidefinite relaxation is an effective way to convert the non-convex problem into a

convex one and can make sure that the two problems yield the same solution.

In the non-robust beamforming method, we assume that we know the channel

information. We design the beamforming vector wk to match the corresponding

signal steering vector hk and make sure that their inner product is large, while the

inner product between wk and other users’ steering vectors h`(` 6= k) is as small

as possible. However, the true channel vector or channel covariance matrix is not

known in practice, and there is always error when we do estimation. Under such

situations, the non-robust beamforming design may not have good performance in

practice. Therefore, we introduce robust beamforming methods in the next sections

where estimation error is taken into account when we design the beamforming vectors.

2.2 Robust beamforming method with absolute er-

ror bound

Robust beamforming algorithms become popular in recent years when taking into ac-

count of consideration of the imperfection of CSI. Many papers [13][14] have proposed

approaches to solve beamforming problems under the consideration of uncertainties

in the channel knowledge.

Most of the papers [13][14] apply worst-case robust beamforming methods in which

the absolute error bound is given. For example, errors in the estimation of DCC

11
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matrices in [13] are taken such that the true covariance matrix Rk is modeled as

R̂k + ∆k. The estimation error ∆k is upper bounded by a known constant εk such

that ‖∆k‖ ≤ εk. The worst-case robust beamforming problem can then be formulated

as

min
{wk}Kk=1

K∑
k=1

‖wk‖2

s.t. min
‖∆k‖≤εk

wH
k (R̂k + ∆k)wk∑K

` 6=k wH
` (R̂k + ∆k)w` + σ2

k

≥ γk, k = 1, . . . , K (2.8)

The constraint in (2.8) includes the worst-case SINR. In [1], the minimum value of the

constraint can be approximated by the known error bound of ∆k. Then the problem

can be expressed as

min
{wk}Kk=1

K∑
k=1

‖wk‖2

s.t.
wH
k (R̂k − εkI)wk∑K

6̀=k wH
` (R̂k + εkI)w` + σ2

k

≥ γk, k = 1, . . . , K (2.9)

This problem can be converted into a convex problem by applying semidefinite re-

laxation similar to the process in Section 2.1. However, this approximation is too

conservative in that it may have excluded many feasible solutions. A less conserva-

tive way is to solve the sub-optimization problem in the constraint first [13]. Denoting

Ak = γk

K∑
` 6=k

w`w
H
` −wkw

H
k (2.10)

12
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The constraint in (2.8) can be rewrite as

min
‖∆k‖≤εk

Tr{(R̂k + ∆k)wkw
H
k } ≥ γk

K∑
`6=k

Tr{(R̂k + ∆k)w`w
H
` }+ γkσ

2
k (2.11)

which is equivalent to

min
‖∆k‖≤εk

−(Tr{∆kAk}+ Tr{R̂kAk}+ σ2
kγk) ≥ 0 (2.12)

Considering the fact that the true covariance matrix Rk is positive semidefinite, we

formulate the constraint as the following optimization problem

min
∆k

−(Tr{∆kAk}+ Tr{R̂kAk}+ σ2
kγk)

s.t. ‖∆k‖ ≤ εk

R̂k + ∆k � 0 (2.13)

This problem can be solved by solving its Lagrange dual problem. By introducing

Lagrange multiplier Zk, the Lagrange dual problem is

max
Zk
−εk‖Ak + Zk‖2 − Tr{Rk(Zk + Ak)} − σ2

l γk

s.t. Zk � 0 (2.14)

Therefore, the minimization problem in (2.8) can be replaced by the maximization

problem shown in Eq. (2.14). Therefore, the original problem can now be rewritten

13
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as

min
{wk,Zk}

K∑
k=1

‖wk‖2

s.t. max
Zk�0

(−εk‖Ak + Zk‖ − Tr{R̂k(Ak + Zk)} − σ2
kγk) ≥ 0, k = 1, . . . , K (2.15)

The constraint can be satisfied when there exists a positive semidefinite Zk, so that

problem (2.15) is equivalent to

min
{wk,Zk}

K∑
k=1

‖wk‖2

s.t. − εk‖Ak + Zk‖ − Tr{R̂k(Ak + Zk)} − σ2
kγk ≥ 0

Zk � 0, k = 1, . . . , K (2.16)

Letting Wk = wkw
H
k and dropping the rank-one condition, the problem becomes

min
{Wk,Zk}

K∑
k=1

Tr{Wk}

s.t. − εk‖Ak + Zk‖ − Tr{R̂k(Ak + Zk)} − σ2
kγk ≥ 0

Zk � 0,Wk � 0 k = 1, . . . , K (2.17)

Eq. (2.17) shows a relaxed convex SDP problem and can be solved using interior-point

algorithms. Simulation results in Fig. 2.1 (copied from the original figure in [13]) show

that all the solutions are rank-one matrices and the performance is better than that

in (2.9).

Another robust downlink beamforming method is proposed in [14] where a trace

bound to estimation error matrix is used. The difference between these two bounds

14
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Figure 2.1: Total transmitted power versus required SINR [13]
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is that in [13], the Frobenius norm bound restricts all entries of ∆k, while in [14],

the trace bound only constraints the diagonal elements of the mismatch matrix. The

uncertainty sets are given by

Tr{∆k} ≤ µk, ∆k � 0, k = 1, . . . , K (2.18)

where µk is the predefined trace bound for User k.

Hence, the worst-case robust beamforming problem under trace bound can be formu-

lated as

min
wk

K∑
k=1

‖wk‖2

s.t. min
Tr{∆k}≤µk

wH
k (R̂k + ∆k)wk∑K

`6=k wH
` (R̂k + ∆k)w` + σ2

k

≥ γk

R̂k + ∆k � 0, ∆k � 0 (2.19)

Following similar procedure as used in [13], we deal with the sub-optimization problem

first. Using the same definition in Eq. (2.10), the constraint can be written as

min
∆k

−Tr{(R̂k + ∆k)Ak}

s.t. R̂k + ∆k � 0, ∆k � 0, Tr{∆k} ≤ µk (2.20)

This optimization problem can be converted to its Lagrange dual problem equivalently

by introducing Lagrange multipliers βk and Zk. The simplified dual problem can be

16
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expressed as

max
βk,Zk

−Tr{R̂k(Ak + Zk)} − βkµk

s.t. βkI + Ak + Zk � 0, Zk � 0, βk ≥ 0 (2.21)

The strong duality holds between (2.20) and (2.21). We can solve the above problem

in two steps. First, consider the maximization with respect to βk only. From [14],

the solution of minx x s.t. xI−M � 0 is λmax(M). Thus, the optimum value of the

following problem

max
βk
−βk

s.t. βkI + Ak + Zk � 0

is equivalent to λmax(−Ak − Zk). The other part involving the maximization with

respect to Zk can now be combined with the maximized -βk above so that we can

rewrite the problem (2.21) as

max
Zk�0

−Tr{R̂k(Ak + Zk)} − λmax(−Ak − Zk)µk (2.22)

where the variable βk is replaced by the largest eigenvalue of −(Ax + Zk). Hence, we

just have Zk as our variable in this problem. Applying this optimization problem as
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the constraint, the original problem in (2.19) can be expressed as

min
wk

K∑
k=1

‖wk‖2

s.t. max
Zk�0

−Tr{R̂k(Ak + Zk)} − λmax(−Ax − Zk)µk ≥ σ2
kγk

k = 1, . . . , K (2.23)

The constraint can be satisfied when there exists some positive semidefinite Zk for

which

−Tr{R̂k(Ak + Zk)} − λmax(−Ax − Zk)µk ≥ σ2
kγk (2.24)

Letting Wk = wkw
H
k and applying semidefinite relaxation approach, the relaxed

problem can be rewritten as

min
{Wk, Zk}

K∑
k=1

Tr{Wk}

s.t. − Tr{R̂k(Ak + Zk)} − λmax(−Ak − Zk)µk ≥ σ2
kγk

Zk � 0,Wk � 0, k = 1, . . . , K (2.25)

The original non-convex problem has been converted into a convex problem by some

reformulations and SDR technique. The idea of reformulation used in [14] is simi-

lar to that in [13], the approach proposed in both papers is that we first deal with

the constraint of the original problem, and the constraint can be considered as a

sub-optimization problem which can be solved by solving its Lagrange dual problem.

Finally, applying SDR technique, the original problem can be converted into a con-

vex problem which can be solved by software such as CVX. Both of them choose
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Figure 2.2: Total transmitted power versus SINR [14]

absolute error bound, Frobenius norm adds constraint to each element of ∆k, while

the alternative trace bound just limits the diagonal elements. Simulation results in

Fig. 2.2 (copied from the original figure in [14]) show a small difference in performance

between the two proposed methods.

2.3 Probabilistic robust beamforming method

In Section 2.2, we introduce robust downlink beamforming methods in which the error

is bounded under a given constant such that the QoS is satisfied for each user. In these
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proposed worst-case robust downlink beamforming methods[1, 13, 14], it is required

that even the worst SINR must satisfy the predefined QoS threshold. However, in

some cases, it seems to be good enough that the QoS constraint for each user can

be satisfied with a high probability. Under this consideration, probabilistic robust

beamforming methods have been proposed in many previous works, such as [18], [19]

and [20]. In these papers, a stochastic model for the uncertainty is established, and

the transmission power is minimized under an outage probabilistic QoS constraint.

In [18], the mismatch matrix between the true and estimated covariance matrices

is modeled as a Hermitian matrix with Gaussian distribution. While in [19] and

[20], a stochastic model is applied to the channel estimation error with Gaussian

distribution and uniform distribution, respectively. In all the three papers, a convex

approximation is employed to solve the robust downlink beamforming problem.

The basic signal model in [18] is the same as what we introduced before. It is

assumed that there is error in estimating the channel covariance matrix such that

Rk = R̂k + ∆k, where the entries of ∆k are assumed to be zero-mean, independent

Gaussian with variance σ2
ek

. Instead of using the QoS constraint in the worst-case

robust downlink beamforming approach, an outage probability constraint is applied.

If we define γk to be the threshold of SINR and εk to be the outage probability for

User k, then the original problem formulation can be expressed as

min
wk

K∑
k=1

‖wk‖2 (2.26a)

s.t. Pr{ρk ≥ γk} ≥ 1− εk, k = 1, . . . , K (2.26b)
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where Pr(·) denotes the probability and ρk is the average SINR as defined in Eq. (2.6)

ρk =
wH
k (R̂k + ∆k)wk∑K

` 6=k wH
` (R̂k + ∆k)w` + σ2

k

(2.27)

Letting Wk = wkw
H
k and introducing Zk = Wk − γk

∑K
`6=k W`, the constraint in

Eq. (2.26b) can be written as

Pr{Tr{(R̂k + ∆k)Zk} ≥ γkσ
2
k} ≥ 1− εk (2.28)

SDR technique is applied in this problem, but the remaining outage probability con-

straint is still non-convex and difficult to be solved. With the assumption that the

entries of ∆k are zero-mean Gaussian variables, the distribution of Tr{(R̂k + ∆k)Zk}

can be obtained. Define a random variable as

yk = Tr{(R̂k + ∆k)Zk} (2.29)

Therefore, yk ∼ N (Tr{R̂kZk}, σ2
ek

Tr{ZkZ
H
k }), where N ( ·, ·) denotes Gaussian dis-

tribution. With known probability density function(pdf) of variable, the probability

of the region that yk ≥ γkσ
2
k can be calculated.

The result of the probability can be expressed using the Gaussian error function

erf(·)

Probability =


1
2

+ 1
2
erf
(

µk−γkσ2
k√

2σek‖Zk‖

)
, for γkσ

2
k ≤ µk

1
2
− 1

2
erf
(

γkσ
2
k−µk√

2σek‖Zk‖

)
, for γkσ

2
k ≥ µk

(2.30)

where µk = Tr{R̂kZk}. Among the two equations shown in Eq. (2.30), we should

choose the upper one since we need the probability being close to one. Therefore, the
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outage probability constraint can be expressed as

erf

(
µk − γkσ2

k√
2σek‖Zk‖

)
≥ 1− 2εk (2.31)

After some straightforward transformation, we have

Tr{R̂kZk} − γkσ2
k ≥
√

2σekerf−1(1− 2εk)‖Zk‖ (2.32)

where εk is a small number and erf−1(·) is the inverse error function. The outage

probabilistic constraint has been converted into a deterministic constraint using the

inverse error function together with the outage probability. Therefore, the original

optimization problem becomes

min
Wk

K∑
k=1

Tr{Wk}

s.t. ‖Zk‖ ≤
1√

2σekerf−1(1− 2εk)
(Tr{R̂kZk} − γkσ2

k) (2.33)

Wk � 0, k = 1, . . . , K

where we drop the rank-one condition to make the optimization problem convex. We

can introduce a slack variable tk to rewrite the constraint, so that the problem can

be clearer and more tractable. The reformulated and relaxed optimization problem
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can be written as

min
Wk

K∑
k=1

Tr{Wk}

s.t. ‖Zk‖ ≤ tk, tk =
1√

2σekerf−1(1− 2εk)
(Tr{R̂kZk} − γkσ2

k) (2.34)

Wk � 0, k = 1, . . . , K

which is a convex optimization problem with linear objective function along with SDP

and SOCP constraints. It can be solved by optimization tool such as CVX. Simulation

shows that the results always satisfy rank-one condition, so the relaxed optimization

problem actually yields the same solution for the original problem. What is more,

the performance of the optimum beamformer in this method is better compared to

that in the worst-case robust downlink beamforming approaches [1, 13, 14].

Another robust downlink beamforming method is proposed in [20], in which a

stochastic model in channel estimation error vector is established and an outage

probability constraint is considered on instantaneous SINR. Again, the base station

is equipped with N antennas serving K users. The basic signal model is the same as

before. The imperfect CSI is modeled as

hk = ĥk + ek, k = 1, . . . , K (2.35)

where hk stands for the real channel vector from the BS to the kth user and the

corresponding estimated channel vector is represented by ĥk with error denoting by

ek. It is assumed that ek ∈ CN is complex Gaussian CSI error with covariance matrix

Ck.
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The QoS is represented by the instantaneous SINR for each user with the definition

as follows:

SINRk =
|hHk wk|2∑K

`6=k |hHk w`|2 + σ2
k

(2.36)

For User k, the minimum SINR threshold is defined as γk, so that the outage proba-

bility robust downlink beamforming problem can be formulated as

min
wk

K∑
k=1

‖wk‖2

s.t. Pr{SINRk ≥ γk} ≥ 1− εk, k = 1, . . . , K (2.37)

where εk is the outage probability.

First, the problem can be relaxed using semidefinite relaxation approach. Letting

Wk = wkw
H
k , the optimization problem above can be expressed as

min
Wk

K∑
k=1

Tr{Wk} (2.38a)

s.t. Pr

{
(ĥk + ek)

H

(
1

γk
Wk −

∑
`6=k

W`

)
(ĥk + ek) ≥ σ2

k

}
≥ 1− εk (2.38b)

Wk � 0, rank(Wk) = 1, k = 1, . . . , K (2.38c)

where the rank-one condition can be dropped. The next step is to find a convex

approximation of (2.38b). The constraint in the bracket of Pr(·) can be expressed as

a quadratic form in terms of ek, so that (2.38b) can be written as

Pr{eHQe + 2Re{eHr}+ s ≥ 0} ≥ 1− ε (2.39)
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where e represents the whitened standard complex Gaussian vector with identity

covariance matrix. The corresponding Q, r and s are defined as

Q = C
1/2
k

(
1

γk
Wk −

K∑
` 6=k

W`

)
C

1/2
k , r = C

1/2
k

(
1

γk
Wk −

K∑
` 6=k

W`

)
(2.40a)

s = ĥHk

(
1

γk
Wk −

K∑
6̀=k

W`

)
ĥk − σ2

k, ε = εk (2.40b)

The outage probability constraint is non-convex, so that a convex approximation

to this non-convex problem is needed. Due to the fact that the part in the bracket

is quadratic function in terms of variable e, we can apply the following lemma to

convert the outage probability constraint into a deterministic one.

Lemma 1. Suppose that we have a set B that satisfies the outage probability con-

straint, and the quadratic constraint

eHQe + 2Re{eHr}+ s ≥ 0

holds for all e ∈ B, then we have Pr{eHQe + 2Re{eHr}+ s ≥ 0} ≥ 1− ε

The lemma above suggests the replacement of the outage probability constraint by

a deterministic worst-case constraint. The outage probability constraint is satisfied

by finding the set B. There are many choices of such a set, however, a natural one

is a spherical set which gives a bound to the uncertainty just like what we use in

worst-case approach. The set B can be defined as

B = {e ∈ Cn | ‖e‖ ≤ d} (2.41)
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where d is the error bound and it can be calculated according to the outage probability

ε. In worst-case approach, for example in [13], we consider the robust problem in the

situation that the estimation error is upper bounded by ‖e‖ ≤ d, where d is a given

constant. If the bounds of worst-case method and outage probabilistic method are

chosen the same, then the problem formulations of the two methods would be the

same. Therefore, we approximate the outage probability problem in a conservative

step by a worst-case deterministic constraint as shown in (2.41). We have assumed

that e is standard complex Gaussian, so that the real part and imaginary part of e

are independent Gaussian variables with covariance matrix 1
2
I. The Frobenius norm

square of e can be expressed as

‖e‖2 =
1

2

2n∑
i=1

z2i (2.42)

where zi are independent, standard normal variables. Therefore, 2‖e‖2 is distributed

according to the chi-squared distribution with 2n degrees of freedom. If we define

Φ−1
χ2
2n

(·) as the inverse cumulative function of Chi-square distribution, then it is easy

to get the value of d.

d =

√
Φ−1
χ2
2n

(1− ε)
2

(2.43)

After finding the set B, the outage probability constraint can be approximated by the

following two constraints

eHQe + 2Re{eHr}+ s ≥ 0 (2.44a)

‖e‖ ≤ d (2.44b)
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The constraints shown in (2.44) are infinite constraints due to the random variable

e. To convert these infinite constraints into finite ones, S-lemma is applied.

Lemma 2. (S-lemma) Let fi(x) = xHQix + 2Re{xHri} + si for i = 0, 1, where

x ∈ Cn. Suppose that there exists an x̂ ∈ Cn satisfying f1(x̂) < 0. Then, the follow-

ing statements are equivalent:

1. f0(x) ≥ 0 for all x ∈ Cn satisfying f1(x) ≤ 0.

2. There exists a t ≥ 0 such that

Q0 r0

rH0 s0

+ t

Q1 r1

rH1 s1

 � 0 (2.45)

According to S-lemma, the corresponding Qi, ri, si can be chosen as (Q0, r0, s0) =

(Q, r, s) and (Q1, r1, s1) = (In, 0, −d2).

Therefore, the optimization problem can be converted into the following convex

problem:

min
Wk

K∑
k=1

Tr{Wk} (2.46a)

s.t.

Qk + tkI rk

rHk sk − tkd2k

 � 0 (2.46b)

Wk � 0, tk ≥ 0, k = 1, . . . , K (2.46c)

This is a convex approximation to the original outage probability constraint prob-

lem, and it can be solved by using standard optimization tool. In the simulation

part of [20], the authors compare the performance of the proposed method to that

using probabilistic SOCP method. The simulation results in Fig. 2.3 (copied from the
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original figure in [20]) show better performances in the comparison of both feasibility

rate and transmission power.
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Figure 2.3: Feasibility and transmit power performance of the various methods [20]

29



Chapter 3

Probabilistic robust beamforming

with Riemannian Distance

As we have mentioned before, probabilistic robust beamforming method has been

proposed in [18][19]. In these former works, the Euclidean distance is used to bound

the uncertainty of the estimation error. In this chapter, we will introduce a new

metric, the Riemannian distance (RD), as the measure of estimation error. Due

to the special structure of the PSD matrix, it has been proved that RD is a more

precise way to calculate the distance between two such matrices. With the use of this

error measure for the covariance matrices, we then proposed a probabilistic robust

beamforming method and showed that we could convert this problem into a convex

optimization problem.

30



M.A.Sc. Thesis - Lijin Xu McMaster - Electrical Engineering

3.1 Introduction to Riemannian distance

In robust beamforming, the Frobenius norm ‖∆k‖F is usually used to measure the

distance between Rk and R̂k, such that

‖∆k‖F =

√
trace(∆H

k ∆k) (3.1)

It is induced by the inner product of 〈∆k,∆k〉, so it can be considered as the Eu-

clidean distance between Rk and R̂k. While the Euclidean metric is very useful and

popular in most applications, it may not be the most appropriate measure for the

covariance matrix of the channel. In our paper, the DCC matrices have special struc-

tures. They are Hermitian symmetric and positive semidefinite. As discussed in [21],

these properties describe a hyper-surface, called a manifold, in the signal space on

which these points of PSD matrices are located. Therefore, we can say that our DCC

matrices describe a manifold, a Riemannian manifold, to be more specific. The defi-

nition of RD has been given in [21], three kinds of which are derived in [21]. Among

those, the second version of RD thought to be convenient for robust beamforming.

Theorem 3. M denotes the manifold of PSD matrices. If P1 ∈ M and P2 ∈ M,

then the geodesic distance between P1 and P2 on M is

dR2(P1,P2) =

√
TrP1 + TrP2 − 2TrP

1/2
1 P

1/2
2 (3.2)

The distance between the two matrices should be measured along the shortest

path on the manifold between the points. The Euclidean distance shown in Eq.(3.1)

measures the straight line distance between the two points may be less appropriate
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and shorter than Riemannian distance. This concept is akin to finding the distance

between two cites on earth. As mentioned in the Introduction, Rk and R̂k are Hermi-

tian and PSD matrices forming a manifold in the signal space. Thus, we should use

the RD to measure the difference between Rk and R̂k on the DCC matrix manifold.

3.2 Worst-case robust beamforming method with

Riemannian distance

In [22], the application of RD to robust beamforming was proposed to deal with a

worst-case problem with imperfect second order CSI at the transmitter. A RD is

used to bound the uncertainty of estimation error between the real and estimated

covariance matrices. The worst-case robust downlink beamforming problem has been

first formulated and then a tractable convex optimization problem is derived. The

simulation results show an improved performance of the proposed method comparing

to previous methods.

The authors consider the senario of a BS with N antennas serving K users. The

transmitted signal at the BS is given by

x(t) =
K∑
k=1

√
pkuksk(t) (3.3)

where pk is the transmission power, uk ∈ CN is the normalized beamforming weight

vector and sk(t) is the transmitted data stream with unit power (i.e., E{|sk(t)|2} = 1)

sampled at time t. The received signal for User k can be modeled as

yk(t) = hHk x(t) + nk(t), k = 1, . . . , K (3.4)
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where hk ∈ CN denotes the downlink channel vector from the BS to the kth user,

and nk(t) is the assumed additive complex circular Gaussian noise having zero mean

and variance σ2
k. The real and estimated channel covariance matrices are denoted

by Rk and R̂k respectively with the mismatch matrix ∆k = Rk − R̂k for User k.

As discussed in the last section, the two covariance matrices lie on a Riemannian

manifold, so that we can express the RD between the two as

dRk(Rk, R̂k) =

√
TrRk + TrR̂k − 2TrR

1/2
k R̂

1/2
k (3.5)

Therefore, the worst-case robust downlink beamforming problem can be formulated

as

min
{wk}

K∑
k=1

‖wk‖2 (3.6a)

s.t. min
R̂k+∆k�0
d2Rk≤α

2
k

wH
k (R̂k + ∆k)wk∑K

`=1
6̀=k

wH
` (R̂k + ∆k)w` + σ2

k

≥ γk, k = 1, . . . , K (3.6b)

where αk is the bound on the RD and γk is the predefined SINR threshold. The sub-

optimization problem Eq. (3.6b) can be rewritten by letting Ak = γk
∑K

`=1
`6=k

w`w
H
` −

wkw
H
k

min
∆k

− (Tr{∆kAk}+ Tr{R̂kAk}+ σ2
kγk) ≥ 0 (3.7a)

s.t. d2Rk(R̂k, R̂k + ∆k) ≤ α2
k (3.7b)

R̂k + ∆k � 0 (3.7c)
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Therefore, the robust beamforming problem can be expressed as

min
{wk}

K∑
k=1

‖wk‖2

s.t. The sub-optimizaiton problem Eq. (3.7) is satisfied

for k = 1, . . . , K (3.8)

The difficulty to solve this problem comes from the sub-optimization problem of

Eq. (3.7). To make the constraints satisfied, the authors proposed the following:

Proposition 1: A sufficient condition for the worst case SINR constraints to be

satisfied is that there exists a set of non-negative λk such that

Xk =

−IN ⊗Ak + λkIN2 bk(λk)

bHk (λk) ck(λk)

 � 0 (3.9)

where

bk(λk) = −λkvec(R̂
1/2
k ) (3.10a)

ck(λk) = λkTr{R̂k} − σ2
kγk − λkα2

k (3.10b)

The proof of Proposition 1 has been given in [22] by letting qk = vec((R̂k + ∆k)
1/2)

and solving the sub-optmization problem due to the strong duality property. First,

Eq. (3.7) can be rewritten as

min
qk
−qHk (IN ⊗Ak)qk − σ2

kγk

s.t. qHk qk − 2Re{vecH(R̂
1/2
k qk)}+ Tr{R̂k} − α2

k ≤ 0 (3.11)
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With the notations defined in Eq. (3.10), the dual problem can be expressed as

max
λk

ck(λk)− bHk (λk)(−IN ⊗Ak + λkIN2)bk(λk)

s.t. − IN ⊗Ak + λkIN2 � 0

bk(λk) ∈ R(−IN ⊗Ak + λkIN2) (3.12)

The constraint of the worst-case robust beamforming problem has been converted

to the dual problem as shown above. To satisfy this constraint, we need to find a

non-negative λk that can make the object value of the dual problem greater or equal

to zero. Furthermore, it has been proved that it is sufficient to find one λk in the

feasible set of (3.12) to make sure that the objective value is non-negative.

For some λk that we find, we always have

ck(λk)− bHk (λk)(−IN ⊗Ak + λkIN2)bk(λk) ≥ 0 (3.13)

and it is equivalent to express it using Schur complement as what is showed in Propo-

sition 1.

The worst-case SINR constraints in Eq. (3.7) have been replaced by Proposition

1. Letting Wk = wkw
H
k , k = 1, . . . , K and applying semidefinite relaxation to drop

the rank one condition first, then we can express the original optimization problem
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by a tractable convex optimization problem which can be expressed as

min
Wk,λk

K∑
k=1

Tr{Wk}

s.t.

−IN ⊗Ak + λkIN2 bk(λk)

bHk (λk) ck(λk)

 � 0

λk ≥ 0, k = 1, . . . , K (3.14)

where

bk(λk) = −λkvec(R̂
1/2
k ) (3.15a)

ck(λk) = λkTr{R̂k} − σ2
kγk − λkα2

k (3.15b)

Eq. (3.14) shows that it has a different formation of worst-case robust downlink beam-

forming problem from conventional methods due to the application of Riemannian

distance as the measurement between two DCC matrices. Simulation results in Chap-

ter 5 show that the proposed method applying the RD has dramatically improved

performance compared to other robust beamforming methods employing the Frobe-

nius distance.

3.3 Probabilistic robust beamforming problem for-

mulation

In this section, we develop the approach to robust beamforming based on the outage

probability using the RD as a measure of the covariance matrix estimation error. We
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consider the same scenario as that in Section 3.2. Denote the signal transmitted from

the BS as x(t), and assuming that there are K users in the cell for which the kth user

is receiving signal sk(t), then

x(t) =
K∑
k=1

wksk(t) (3.16)

where wk ∈ CN is the transmitter beamforming vector for User k, and sk(t), the data

stream for User k, is assumed to have zero mean and unit power (i.e., E{|sk(t)|2} = 1).

Hence, the received signal for User k can be modeled as

yk(t) = hHk x(t) + nk(t) (3.17)

where hk ∈ CN is the downlink channel vector from the BS to User k, and nk(t) is

the additive Gaussian noise having zero mean and variance σ2
k.

The commonly used worst case based downlink beamforming approach requires

that all the QoS constraints must satisfy the predefined threshold, but this kind of

method is sometimes too conservative. So, instead of using that, we replace the QoS

constraints which are of worst case based by the more relaxed probabilistic constraints.

Thus, our algorithm aims at minimizing the transmission power while keeping the

SINR outage probability of each user under a specified value. The problem can be

formulated as

minw1,··· ,wK∈CN
∑K

k=1 ‖wk‖2 (3.18a)

s.t. Pr{ρk ≥ γk} ≥ 1− εk, k = 1, . . . , K (3.18b)
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where γk is the SINR threshold for User k and εk is the corresponding outage proba-

bility.

Eq. (3.18b) is the outage probability constraint that we choose. The outage prob-

ability εk adds the flexibility to the problem, and we can choose different value of εk

according to the different requirement of the service fidelity to make sure that for each

user, the QoS constraint can be satisfied no less than the threshold at a percentage

of (1 − εk) × 100%. As we can see that the outage probability constraint has useful

meaning, but it also increases the complexity of the optimization problem because

the probabilistic constraint makes the problem non-convex.

To convert this problem into a convex optimization problem, we can first use

semidefinite relaxation (SDR) to rewrite the formulation. Let Wi = wiw
H
i and

denote

Dk =

(
1

γk
wkw

H
k −

K∑
`6=k

w`w
H
`

)
=

1

γk
Wk −

K∑
`6=k

W` (3.19)

Then the problem of Eq. (3.18) can be rewritten as

minW1,··· ,WK∈HN×N
∑K

k=1 Tr(Wk) (3.20a)

s.t. Pr {Tr[(R̂k + ∆k)Dk] ≥ σ2
k} ≥ 1− εk (3.20b)

rank(Wk) = 1, Wk � 0, k = 1, · · · , K (3.20c)

where HN×N denotes the set of N ×N Hermitian matrices. This is a non-convex

problem due to the non-convex constraints. After relaxing the rank constraint of
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Eq. (3.20c) to a PSD constraint, the relaxed problem can be written as

minW1,··· ,WK∈HN×N
∑K

k=1 Tr(Wk) (3.21a)

s.t. Pr {Tr[(R̂k + ∆k)Dk] ≥ σ2
k} ≥ 1− εk (3.21b)

Wk � 0, k = 1, · · · , K (3.21c)

We have to remember that the solutions of Wk in this relaxed problem may have

rank higher than one, so we need to check the solution afterward to see whether

solutions to the two problems are identical. However, the non-convex outage proba-

bilistic constraint of Eq. (3.21b) may still present us with difficulties. Examination of

Eq. (3.21b) shows that the outage probabilistic constraint is now expressed in terms of

the random error matrix ∆k, which is the error matrix between Rk and R̂k. Thus the

constraint will depend on the way this difference is measured. As we have discussed

in the last two sections, RD is a more precise way to measure the error between two

DCC matrices with PSD structure. Therefore, we apply RD as the measurement in

our work. The RD between Rk and R̂k can be expressed as

dR2(Rk, R̂k) =

√
TrRk + TrR̂k − 2TrR

1/2
k R̂

1/2
k (3.22)

From Eq. (3.22), we can see that the expression of RD involves terms of square root of

Rk and R̂k, to rewrite this equation, we can assume that R
1
2
k = R̂

1
2
k + ∆̃k, where ∆̃k

can be considered as the mismatch matrix between the square root of DCC matrices.

∆̃ should be chosen to guarantee that both R
1
2
k and R̂

1
2
k are PSD matrices. Thus, we
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can express Eq. (3.22) as follows:

d2R(R̂k + ∆k, R̂k) = Tr(2R̂k + ∆k)− 2Tr[(R̂k + ∆k)
1
2 R̂

1
2
k ]

= Tr[(R
1
2
k − R̂

1
2
k )(R

1
2
k − R̂

1
2
k )H ] = vecH(∆̃k)vec(∆̃k) (3.23)

We now apply Eq. (3.23) to reformulate the constraint in (3.21b).

3.4 Reformulation of design constraint

Our objective function is linear in terms of variables Wk. To simplify the problem

formulation, we need to transform the constraints further. The constraint we have is

a probabilistic constraint which is not convex. The expression of RD involves random

variable ∆̃k which has probabilistic property. We can make reasonable assumptions

on these distribution of these random variables and arrive at a probabilistic constraint

on the outage. We can then relates the outage probability to the uncertainty bound

using Lemma 1. Finally, we can reformulate the constraint by a set of deterministic

constraint.

3.4.1 Application of Lemma 1

We first introduce the following lemma [20]

Lemma 1: Given a set B ⊂ CN2
with Pr{y ∈ B} ≥ 1 − ε such that ∀ y ∈ B,

yHQy + yHb + bHy + c ≥ 0, we have

Pr{yHQy + yHb + bHy + c ≥ 0} ≥ 1− ε �

Proof. Assume the probability density function of y is p(y), and yHQy + yHb +
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bHy + c ≥ 0 is satisfied, for all y ∈ B, then

Pr{yHQy + yHb + bHy + c ≥ 0}

=

∫
yHQy+yHb+bHy+c≥0

p(y)dy

≥
∫

y∈B
p(y)dy

≥ 1− ε

The reverse statement in Lemma 1, however, may not be true in general.

The argument in the outage probability constraint is quadratic form in Lemma 1,

so we can rewrite constraint in Eq. (3.21b) to turn it into quadratic form.

Tr[(R̂k + ∆k)Dk] = Tr{(R̂
1
2
k + ∆̃k)

HDk(R̂
1
2
k + ∆̃k)}

= Tr{∆̃H

k Dk∆̃k + ∆̃
H

k DkR̂
1
2
k + R̂

1
2
H

k Dk∆̃k + R̂
1
2
H

k DkR̂
1
2
k }

= vecH(∆̃k)(IN ⊗Dk)vec(∆̃k) + vecH(∆̃k)vec(DkR̂
1
2
k )

+ vecH(DkR̂
1
2
k )vec(∆̃k) + Tr(R̂

1
2
H

k DkR̂
1
2
k ) (3.24)

with R̂
1
2
H

k denoting the Hermitian conjugate of R̂
1
2
k . Expressing Eq. (3.24) using the

vec(·) function, the outage probability constraint of Eq. (3.21b) can be re-written as

Pr[vecH(∆̃k)(IN ⊗Dk)vec(∆̃k) + vecH(∆̃k)vec(DkR̂
1
2
k )

+ vecH(DkR̂
1
2
k )vec(∆̃k) + Tr(R̂

1
2
H

k DkR̂
1
2
k )− σ2

k ≥ 0] ≥ 1− εk (3.25)

The argument of the probability constraint in Eq. (3.25) is in the same quadratic

form as that in Lemma 1, with vec(∆̃k) standing for y.
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Motivated by Lemma 1, we define suitable convex sets Bk, (k = 1, · · · , K) for

which the bounds can be related to the non-outage thresholds in Eq. (3.21) and

which allow us to reduce the probabilistic constraints Eq. (3.21b) to deterministic

SINR constraints for all the mismatches in the newly defined set.

3.4.2 Choice of set B

From Chapter 2, we know the expression of Riemannian distance d2R in Eq. (3.23),

according to which, a natural choice for Bk is a sphere:

Bk ={vec(∆̃k) ∈ CN2
∣∣∣ d2R ≤ α2

k}

={vec(∆̃k) ∈ CN2
∣∣∣ vecH(∆̃k)vec(∆̃k) ≤ α2

k} (3.26)

where the constant α2
k is the bound of RD. We need this set to satisfy the condition

Pr(vec(∆̃k) ∈ Bk) ≥ 1 − εk. So α2
k should be chosen according to the probability

density function of ∆̃k to make sure that the outage probability constraint is achieved.

Therefore, αk is a function of the outage probability εk.

3.4.3 Gaussian Assumption for vec(∆̃k)

To obtain the relationship between αk and εk, we need to calculate the probability of

vec(∆̃k) appearing in the set B. To do that, we first assume that vec(∆̃k) is zero-

mean complex Gaussian with known covariance matrix Ck, that is to say vec(∆̃) is

CN (0,C). The covariance matrix could be defined correspondingly to approximate

the channel correlation, no matter whether the error matrix is independent or not.

In the following, we show two cases. In the first case, we assume that vec(∆̃) is
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independent which implies that the covariance matrix Ck would be a scaled identity

matrix, i.e., Ck = σ2
eI. Thus, we have

‖vec(∆̃k)‖2 =
1

2σ2
e

2N2∑
i=1

z2i (3.27)

where zi are independent, standard normal variables. Therefore, it is easy to deduce

that 2σ2
e‖vec(∆̃k)‖2 is Chi-square distribution with 2N2 degrees of freedom. The

bound αk can be achieved as

αk =

√√√√Φ−1
χ2
2N2

(1− εk)

2σ2
e

(3.28)

where Φ−1χ2
n
(·) is the inverse cumulative distribution function of the Chi-square random

variable with n degrees of freedom.

We then consider the second case when the variable vec(∆̃k) is correlated. Here,

we may not know the expression of cumulative distribution function directly. How-

ever, for a given the covariance matrix, we can apply eigenvalue decomposition to

Ck, so that Ck = UH
k ΛkUk, where the diagonal elements of Λk are denoted by

λ1, λ2, · · · , λq with q ≤ N2, q being the number of non-zero eigenvalues, and Uk is a

unitary matrix.

Let vk = UkC
− 1

2
k vec(∆̃k), we have vk ∼ CN (0, I) such that

vecH(∆̃k)vec(∆̃k) = vHk Λkvk =

q∑
i=1

λiζi ≤ α2
k (3.29)

where ζi = |vki|2, i = 1, · · · , q with vki being the ith element of vk. vk is the whitened

variable and is independently distributed. So that ζi is Chi-square distribution with
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2 degrees of freedom which is an exponential distribution with probability density

function p(ζi) = e−ζi [23]. We also know that ζi is independent, so we can express

the joint probability density function by the product of each one of them, which is

p(ζ1, ζ2, · · · , ζq) =
∏q

i=1 p(ζi). Therefore, the probability P of the condition shown in

Eq. (3.29) can be evaluated as

P =

∫ Luq

0

· · ·
∫ Lu1

0

p(ζ1, ζ2, · · · , ζq) dζ1 · · · dζq

=

∫ Luq

0

· · ·
∫ Lu1

0

p(ζ1) · · · p(ζq) dζ1 · · · dζq (3.30)

where the lower and upper limits of integration are given by 0 ≤ ζi ≤ Lui .

Integrating consecutively following the index order, in each integral, we consider

other variables as constant, so we obtain the expression of the upper bound each time

as Lui = 1
λi

(α2
k −

∑q
j=i+1 λjζj). For example, we take the first integral in terms of ζ1,

then Lu1 = 1
λ1

(α2
k −

∑q
j=2 λjζj), the result of the first integral would be

∫ Lu1

0

p(ζ1)dζ1 =

∫ Lu1

0

e−ζ1dζ1 = 1 + (−1)e−ζ1|Lu1

= 1 + (−1)e
− 1
λ1

(α2
k−

∑q
i=2 λiζi) (3.31)

The result as shown in Eq. (3.31) would take part into the next integral in terms of ζ2.

After the ith integral, we will have the expression involving all i+1, . . . , qth variables,

and during the process of integral, we can find out that the integral results include

terms e
− 1
λi

(α2
k−

∑q
m=i+2 λmζm)

, i = 1, . . . , q and the corresponding coefficients of these

terms satisfy recursion. We let ci represents the coefficient of e
− 1
λi

(α2
k−

∑q
m=i+2 λmζm)
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after the ith integration. We conclude that ci satisfies the following regular pattern.

c1 = −1

c2 = −1− (− λ1
λ2 − λ1

)c1

c3 = −1− (−1)2
λ1

λ2 − λ1
λ1

λ3 − λ1
c1 − (− λ2

λ3 − λ2
)c2

...

ci = −1−
i−1∑
m=1

{
(−1)i−m

[
i∏

n=m+1

λm
λn − λm

]
cm

}
(3.32)

After integrating all q integrations, the result contains terms e
− 1
λi
α2
k (i = 1, · · · , q),

the result can be expressed as

P (αk) = 1 + a1e
− 1
λ1
α2
k + a2e

1
λ2
α2
k + · · ·+ aqe

− 1
λq
α2
k = 1 +

p∑
i=1

aie
−α

2
k
λi (3.33)

where ai is the corresponding coefficient to each term, and it can be obtained from

ci, the relationship between ai and ci would be

ai = (−1)q−i
q∏

m=i+1

λi
λm − λi

ci

The probability is a function of αk, now, according to the outage probability con-

straint, we have P (αk) ≥ 1− εk. Hence, we can write αk = P−1(1− εk), where P−1(·)

is the inverse cumulative distribution function which can be obtained numerically

from Eq. (3.33).

Now, we obtain the set B which satisfies the outage probability constraint, and

the condition Pr{y ∈ B} ≥ 1 − εk can be replaced by the quadratic expression of
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Eq. (3.29) with αk obtained according to the distribution of vec(∆̃k). From Lemma

1, we can conclude that the outage probability constraint of Eq. (3.21b) is satisfied if

vecH(∆̃k)(IN⊗Dk)vec(∆̃k) + vecH(∆̃k)vec(DkR̂
1
2
k )+

vecH(DkR̂
1
2
k )vec(∆̃k) + Tr(R̂

1
2
HDkR̂

1
2 )− σ2

k ≥ 0 (3.34a)

∀ vec(∆̃k)such that vecH(∆̃k)vec(∆̃k) ≤ α2
k (3.34b)

By applying Lemma 1, we change our outage probabilistic constraint into two

deterministic constraints, and as we can see that the two reformulated constraints

are both of quadratic form. However, vec(∆̃k) is a random vector, thus, Eq. (3.34)

contains an infinite number of constraints.

3.5 Convex design problem

We have reformulated the outage probabilistic constraint into two quadratic con-

straints for each User k. However, we mentioned that the reformulated constraints

are actually infinite constraints which make the problem hard to solve. In this section,

we introduce S-lemma to turn the infinite constraints into tractable constraints.
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After the reformulation in Section 3.4, our problem has been converted to:

min
W1,··· ,WK∈HN×N

K∑
k=1

Tr(Wk)

s.t. vecH(∆̃k)(IN ⊗Dk)vec(∆̃k) + vecH(∆̃k)vec(DkR̂
1
2
k )+

vecH(DkR̂
1
2
k )vec(∆̃k) + Tr(R̂

1
2
HDkR̂

1
2 )− σ2

k ≥ 0

∀ vec(∆̃k) such that vecH(∆̃k)vec(∆̃k) ≤ α2
k

Wk � 0 for k = 1, · · · , K

In order to reduce the infinite number of constraints in Eq. (3.34) to a tractable set,

we can apply the S-lemma [24] here

S-lemma: Let f : Cn → R and g : Cn → R be quadratic functions. We define

Sg = {z|g(z) ≥ 0}, then we have f(z) ≥ 0 ∀ z ∈ Sg if and only if there exists t ≥ 0

such that f(z)− tg(z) ≥ 0 ∀ z ∈ Cn. �

Applying the S-lemma to Eq. (3.34), we let

f(vec(∆̃k)) =vecH(∆̃k)(IN ⊗Dk)vec(∆̃k) + vecH(∆̃k)vec(DkR̂
1
2
k )+

vecH(DkR̂
1
2
k )vec(∆̃k) + Tr(R̂

1
2
HDkR̂

1
2 )− σ2

k ≥ 0

and g(vec(∆̃k)) = α2
k − vecH(∆̃k)vec(∆̃k) ≥ 0

(3.35)

if there exist tk ≥ 0 such that

f(vec(∆̃k))− tkg(vec(∆̃k)) ≥ 0
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and using Schur complement [25], xHAx ≥ 0 for all x iff A � 0, the constraints in

Eq. (3.34) are equivalent to:

 (IN ⊗Dk) vec(DkR̂
1
2
k )

vecH(DkR̂
1
2
k ) Tr(R̂

1
2
H

k DkR̂
1
2
k )− σ2

k

+ tk

IN2 0

0 −α2
k

 � 0

for tk ≥ 0 (3.36)

Thus, relaxing the rank-one constraint to a PSD constraint together with the above

linear matrix inequality, the optimization problem in (3.21) can be written as

min
W1,··· ,WK∈HN×N

K∑
k=1

Tr(Wk)

s.t.

(IN ⊗Dk) + tkIN2 vec(DkR̂
1
2
k )

vec(DkR̂
1
2
k )H Tr(R̂

1
2
H

k DkR̂
1
2
k )− σ2

k − tkα2
k

�0

Wk � 0

tk ≥ 0, for k = 1, · · · , K (3.37)

The design problem now becomes a convex optimization problem and can be solved

by standard optimization tools (such as CVX [26]). If the solutions to this problem

are rank-one, then they are also the solutions to (3.21). If the solutions obtained

are of higher ranks, then a random search procedure [27] can be used to obtain the

approximate solution. We note, however, that in our simulations, rank one solutions

have been obtained in all cases.
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3.6 Comparison of absolute error bound approach

and probabilistic of outage approach

In the derivations in Sections 3.3 to 3.5, we choose the outage probabilistic robust

beamforming approach, while in Section 3.2, a worst-case robust beamforming ap-

proach is applied. The two approaches are totally different from the stand point of

view, however, we observe that the final convex formulations of the two problems

are identical. This observation is shown in this section followed by discussion of the

reasons for the two approaches yielding identical results.

As we can see in Eq. (3.14) and Eq. (3.37), the converted constraints in both

problems are LMI inequalities with similar formation. In both approaches, due to

the application of RD and probabilistic property, we introduce variable vec(∆̃k) and

square root of estimated covariance matrix R̂k. Suppose now, we transform the

result of Eq. (3.14) and express it in terms of R̂
1
2
k . Letting qk = vec(R̂

1
2
k ) + vec(∆̃k),

Eq. (3.11) can be rewritten as

min
vec(∆̃k)

−vecH(∆̃k)(IN ⊗Ak)vec(∆̃k)− 2Re{vecH(∆̃k)vec(AkR̂
1
2
k )}

+ Tr(R̂
1
2
H

k AkR̂
1
2
k )− σ2

kγk

s.t. vecH(∆̃k)vec(∆̃k)− α2
k ≤ 0 (3.38)

(3.38) represents the transformed sub-optimization problem in [22], and by com-

paring to Eq. (3.34), it is obvious that they are identical if and only if the objective

value of the sub-optimization problem is greater or equal to zero. Following the proof

of Proposition 1 in Section 3.2, it can be proved that there exists one λk in the feasible
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set that makes sure the objective value is non-negative. By writing the dual problem

and using the Schur complement, the worst-case SINR constraints can be expressed

as −IN ⊗Ak + λkIN2 −vec(AkR̂
1
2
k )

−vecH(AkR̂
1
2
k ) −Tr

(
R̂

1
2
kAkR̂

1
2
k

)
− λkα2

k − σ2
kγk

 � 0 (3.39)

Comparing Eq. (3.39) to our proposed outage probabilistic constraint of Eq. (3.37)

and noting the different notation of Ak = −γkDk, we find that the two different

methods lead to the same result. However, we have to mention that in the proposed

outage probabilistic method, the error bound αk is chosen according to the prede-

fined outage probability which guarantees the probabilistic constraint. In worst-case

approach, the outage probability has not been taken into account, and that is the

main difference between the two methods.

Another reason that leads to the same result is that, in our outage probabilistic

robust beamforming method, we use Lemma 1 to replace the outage probability

constraint with two quadratic constraints. At the same time, we choose set B to be a

multidimensional ball which makes the two formulations the same. From Lemma 1,

it is evident that there might be other sets of different shapes that may also satisfy

the outage probabilistic condition. If these sets of other shapes are chosen, then the

problem formulation of the two methods would not be the same. We will show such

cases in the next chapter.
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Chapter 4

Alternative formulation for

probabilistic robust beamforming

At the end of last chapter, we mentioned that one of the reasons leading to the

similarity of our probabilistic robust beamforming method and worst-case robust

beamforming method is that we have chosen a multidimensional ball B to be the set

satisfying the outage probabilistic constraint. In this chapter, we will introduce an

alternative set different from the one in last chapter. We can also show that under

this new set the probabilistic robust downlink problem can still be converted into a

convex problem having a totally different formulation from that in worst-case robust

downlink method.

4.1 Approximation of set B

In Section 3.4.2, we choose the set to be a spherical set with radius α2
k and make the

probability of this set equal to the non-outage probability such that we could use this
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set to simplify the constraint in our problem. However, according to Lemma 1, it only

requires the chosen set to satisfy the outage probability constraint. Therefore, there

are many choices of the set no matter what the assumption we make on distribution

of the variable is. The difficulty comes from a good mathematical expression for the

set. The spherical set we chose has a good expression and also shows a meaningful

explanation that the error is bounded under a Riemannian distance. On the basis

of that, we can make an approximation of the set B by other shapes. One simple

approximation of the set B is a multidimensional cube. We simplify the problem by

assuming that the cube is approximately the same as the probability of set B if the

two sets have the same volume.

The equations representing an n-dimensional cube having half its side length a

can be expressed as

− a ≤ x1 ≤ a

− a ≤ x2 ≤ a

...

− a ≤ xn ≤ a (4.1)

where xi (i = 1, . . . , n) represents the variable in the ith dimension. As we can see, a

multidimensional cube can be represented by a set of inequalities.

The volume of an n-dimensional ball with radius of r can be expressed as Vball =

2n−1

n
πrn and for an n-dimensional cube, its volume is Vcube = (2a)n. We let the two
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sets have the same volume, then the relationship between r and a would be

V =
2n−1

n
πrn = (2a)n

so that a = n

√
π

2n
r (4.2)

Eq. (3.26) shows a spherical set of variable vec(∆̃k) with radius αk. For simplicity,

we express the ith element of vec(∆̃k) as ξki, i = 1, . . . , N2. If we denote the half-

length of the approximated cube as βk, according to the relationship in Eq. (4.2), we

have

βk = N2

√
π

2N2
αk (4.3)

Therefore, the approximated multidimensional cube Ck can be expressed as a set

of inequalities such as

−βk ≤ξk1 ≤ βk

−βk ≤ξk2 ≤ βk

...

−βk ≤ξkN2 ≤ βk (4.4)

The set Ck is an approximation to set Bk by assuming that they have the same

volume. However, we have to notice that the probability of set Ck may not be exactly

the same as that of set Bk. We make an assumption that the probability of the two sets

is almost the same, so that we can use this set Ck to simplify our problem later. It is

reasonable to make such an assumption because there does exist a cube that satisfies

the outage probability condition. Due to the distribution of the variable, finding
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the exactly expression of the cube may be complicated. The difference between the

two sets is small and it can be considered that such a difference would not introduce

significant discrepancy on probability of the two sets. In fact, we can also approximate

the set B by other polyhedrons. As an example, let us consider the two-dimensional

case in which we can approximate a circle by square, hexagon or octagon and so on.

With the increase of the number of edges, the approximated shape is closer and closer

to the circle assuming that they have the same area. The same idea can be extended

to the n-dimensional case, therefore we can actually find more precise approximations

to set B. However, in our work, we will only discuss the simplest case of a cube.

4.2 Uniform Distribution Assumption for vec(∆̃k)

In Section 4.1, we assume that the distribution of ∆̃k is zero-mean Gaussian, i.e.,

being the same as what we assume in 3.4.3. Due to the fact that it is complicated

to find an exactly set with probability of 1-εk, we make an approximation of the set

Bk by the set Ck which has the same volume with Bk. In this section, we discuss

the same problem under the consideration of uniform distribution, in which case, no

approximation is needed and Bk and Ck can have exactly the same probability.

We compare here, the worst-case method and the outage probability method. In

the worst-case method, the error uncertainty is upper bounded by a given constant,

i.e., vecH(∆̃k)vec(∆̃k) ≤ α2
kw, where αkw denotes the bound of the error variable in

the worst-case method. We assume that vec(∆̃k) is uniformly distributed within this

set. The problem reformulation is the same as shown in Eq. (3.14) with αk replaced

by αkw. Now, we consider the second case. A spherical set having radius αk can be

found following the method that we have discussed in Section 3.4.2. The radius αk
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can be calculated according to the non-outage probability εk and the distribution of

vec(∆̃k). Because the distribution is uniform within the set vecH(∆̃k)vec(∆̃k) ≤ α2
kw,

we can conclude that the ratio of the volume is the same as the ratio of the probability.

Therefore, the relationship between αk and αkw can be derived as follows:

2n−1

n
παnkw × (1− εk) =

2n−1

n
παnk ⇐⇒ αk = N2√

1− εkαkw (4.5)

Then, the spherical set Bk has been chosen with radius αk of Eq. (4.5). Lemma 1 can

be applied and the final problem formulation is the same as Eq. (3.37).

Now, we consider the alternative formulation when uniform distribution is applied.

Different from what we discussed in Section 4.1, we can choose a multidimensional

cube Ck which has the same volume and the same probability as the set Bk without

approximation. The reason is that, under uniform distribution assumption, the same

volume leads to the same probability no matter what shape we choose. For simplicity,

we still choose the cube as an alternative for comparison. Without loss of generality,

the relationship of Eq. (4.3) is still valid. Thus, the alternative set Ck can be expressed

as a set of inequalities as shown in Eq. (4.4).

In summary, in Section 4.1, a Gaussian assumption is considered following what

we derived in 3.4.3. We notice that under Gaussian distribution, it is complicated

to find an exactly set which has the same probability as the original set Bk, so an

approximation of the set is applied. However, we can choose a simpler assumption

of uniform distribution that makes the probability of the two sets exactly equal. We

notice that under uniform distribution, the expression of the alternative set Ck remains

the same, but the complexity of finding the exact set decreases. And we also think

it is more convincing for us to use this result as a comparison of the performance of
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the two sets Bk and Ck.

4.3 Reformulation

We replace the set Bk by the approximated set Ck. According to Lemma 1, the outage

probability constraint can be converted into two parts:

vecH(∆̃k)(IN ⊗Dk)vec(∆̃k) + vecH(∆̃k)vec(DkR̂
1
2
k )+

vecH(DkR̂
1
2
k )vec(∆̃k) + Tr(R̂

1
2
HDkR̂

1
2 )− σ2

k ≥ 0 (4.6a)

vec(∆̃k) ∈ Ck (4.6b)

Eq. (4.6a) shows a quadratic constraint in terms of vec(∆̃k), while Eq. (4.6b) shows

a set of inequalities in terms of each element ξki of vec(∆̃k). We want to express the

second constraint in quadratic form so that we can transform the two constraints

together later on. As shown in Eq. (4.4), the variable ξk has N2 dimensions, and

for each dimension, the variable is bounded under a calculated constant. For the ith

dimension, the following two expressions are identical for both real and imaginary

part

−βk ≤ ξki ≤ βk ⇐⇒ β2
k − ξ2ki ≥ 0 (4.7)

If we denote ei as a vector with the ith element equal to unity and all the other

elements equal to zero, we have ξki = eTi ξk. Then, Eq. (4.7) can be expressed as

β2
k − ξ2ki ≥ 0 ⇐⇒ β2

k − ξHk (eie
T
i )ξk ≥ 0 (4.8)
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Denoting Ei = eie
T
i , the set of inequalities (4.4) can be written as

β2
k − ξHk Eiξk ≥ 0, i = 1, . . . , N2 (4.9)

Therefore, the constraints shown in Eq. (4.4) can be reformulated as

vecH(∆̃k)(IN ⊗Dk)vec(∆̃k) + vecH(∆̃k)vec(DkR̂
1
2
k )+

vecH(DkR̂
1
2
k )vec(∆̃k) + Tr(R̂

1
2
HDkR̂

1
2 )− σ2

k ≥ 0 (4.10a)

∀ vec(∆̃k) such that β2
k − vecH(∆̃k)Eivec(∆̃k) ≥ 0 (4.10b)

i = 1, . . . , N2

where vec(∆̃k) replaces ξk. Eq. (4.10) shows a set of quadratic constraints in terms

of vec(∆̃k), but there are still an infinite number of constraints.

4.4 Convex design problem

Now, we have converted the outage probability constraint into a set of quadratic

constraints. The reason to express the constraints in terms of vec(∆̃k) is that this will

give us added advantage when reformulating them into a convex design. In Section

3.5, we apply S-lemma to do the reformulation such that we have two quadratic

constraints and they can be combined together according to the lemma. In this

section, we can apply the similar idea again by using S-lemma. However, due to the

fact that right now we have more than two quadratic constraints, we need to apply

the extension of S-lemma. Let us recall what S-lemma says:

S-lemma: Let f : Cn → R and g : Cn → R be quadratic functions. We define
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Sg = {z|g(z) ≥ 0}, then we have f(z) ≥ 0 ∀ z ∈ Sg if and only if there exists t ≥ 0

such that f(z)− tg(z) ≥ 0 ∀ z ∈ Cn.

Corollary ( Extension of S-lemma): Let f : Cn → R and gi(i = 1, . . . , N) : Cn → R

be quadratic functions. We denote Sgi = {z|gi(z) ≥ 0}. Then we have f(z) ≥ 0 ∀ z ∈

∩Sgi if and only if there exist t1, . . . , tN ≥ 0 such that f(z)−
∑N

i=1 tigi(z) ≥ 0 ∀ z ∈ Cn.

Proof. According to S-lemma, we have f(z) ≥ 0 ∀ z ∈ Sg1 if and only if there exists

t1 ≥ 0 such that f(z) − t1g1(z) ≥ 0 ∀ z ∈ Cn. If we let f1(z) = f(z) − t1g1(z),

then we have f1(z) ≥ 0 ∀ z ∈ Sg2 if and only if there exists t2 ≥ 0 such that

f1(z) − t2g2(z) ≥ 0 ∀ z ∈ Cn. Following the same idea until i = N , if we let

fN(z) = fN−1(z) − tNgN(z), then we have fN(z) ≥ 0 ∀ z ∈ SgN if and only if there

exists tN ≥ 0 such that fN(z) − tNgN(z) ≥ 0 ∀ z ∈ Cn. Therefore, if we denote

S = ∩Sgi , then we have f(z) ≥ 0 ∀ z ∈ S if and only if there exist t1, . . . , tN ≥ 0

such that fN−1(z)− tNgN(z) = f(z)−
∑N

i=1 tigi(z) ≥ 0 ∀ z ∈ Cn.

Eq. (4.10) shows N2 + 1 quadratic constraints in terms of z, therefore we can

consider them as

f1(vec(∆̃k)) = vecH(∆̃k)(IN ⊗Dk)vec(∆̃k) + vecH(∆̃k)vec(DkR̂
1
2
k )+

vecH(DkR̂
1
2
k )vec(∆̃k) + Tr(R̂

1
2
HDkR̂

1
2 )− σ2

k ≥ 0

gi(vec(∆̃k)) = β2
k − vecH(∆̃k)Eivec(∆̃k) ≥ 0 i = 1, . . . , N2

Applying the Extension of S-lemma, we have the recursive relationship fi(vec(∆̃k)) =
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fi−1(vec(∆̃k))− tk(i−1)gi−1(vec(∆̃k)). Finally, we have quadratic function as

fN2+1(vec(∆̃k)) = f1(vec(∆̃k))−
N2∑
i=1

tkigi(vec(∆̃k)) ≥ 0 (4.11)

where tki can be found in every step when we apply the S-lemma for User k.

Using Schur complement, Eq. (4.11) can be expressed as:

 (IN ⊗Dk) vec(DkR̂
1
2
k )

vecH(DkR̂
1
2
k ) Tr(R̂

1
2
HDkR̂

1
2 )− σ2

k

+
N2∑
i=1

tki

Ei 0

0T −β2
k

 � 0 (4.12)

where tki ≥ 0.

Thus, after dropping the rank-one condition, the optimization problem under an

approximated cube can be written as

min
W1,··· ,WK∈HN×N

K∑
k=1

Tr(Wk)

s.t.

 (IN ⊗Dk) vec(DkR̂
1
2
k )

vecH(DkR̂
1
2
k ) Tr(R̂

1
2
HDkR̂

1
2 )− σ2

k

+
N2∑
i=1

tki

Ei 0

0T −β2
k

 � 0

Wk � 0

tki ≥ 0, for k = 1, · · · , K (4.13)

Eq. (4.13) shows a convex optimization problem with linear objective function and

LMI constraints and PSD constraints. It can be solved by optimization tools, such

as CVX.

At the end of last chapter, we have a discussion of the comparison between our

proposed outage probabilistic downlink beamforming approach and the worst-case
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downlink beamforming approach. Both of the two methods apply Riemannian dis-

tance as the measurement of DCC matrices, and, after reformulation into convex

optimization forms, the two problems appeared to be identical, yielding identical per-

formance beamformers. This, however, is not the case in general. The two problems

started from two different standpoints, and their approaches are fundamentally differ-

ent. In this chapter, we reveal the difference between the two approaches by choosing

another set Ck which is different from the spherical set Bk, and a convex optimiza-

tion problem is developed under such a set. Comparing Eq. (4.13) to Eq. (3.37), we

can observe that the two optimization problems are different even though we apply

similar idea in the process of convex reformulation. Therefore, we have demonstrated

that the outage probabilistic downlink beamforming problem is essentially different

from the worst-case downlink beamforming problem. In this chapter, we first consider

the Gaussian distribution case where the set Ck is an approximation to the set Bk,

but we have to notice that there exists such a multidimensional cube that exactly

satisfies the outage probability constraint. Due to the reason that finding the exact

half-length of the cube is complicated under the Gaussian variable assumption, we

make an approximation that equal volumes of the hypersphere and the hypercube

yield the same probability of outage. However, such an assumption would not change

the formation of Eq. (4.13), the only difference is that the value of βk contains a slight

error. To make our statement more convincing, a uniform distribution is considered

where the set Ck has the same volume and the same probability as the set Bk. In

this case, there is no approximation error in the value of βk. The expressions of the

set Bk and Ck remain the same as those we derived in the Gaussian assumption case.

The problem reformulation in each set remains the same for different distribution
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assumptions. A multidimensional cube is a simple approximation of set Bk, besides

that, there are many choices of such a set that could be made use of to turn the

outage probabilistic constraint into a deterministic one. Different choices of sets will

lead to different reformulations of the original optimization problem yielding different

optimum beamforming algorithms.
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Chapter 5

Numerical Experiments

In this chapter, we show several examples in our computer simulations illustrating the

performance of our proposed robust downlink beamforming algorithms in Chapter 3

and Chapter 4. We consider two different assumptions in the simulation of Chapter

3. First, we assume that the elements of the error matrix are independent, complex

Gaussian variables with covariance being the same scaled identity matrix. Then,

we consider the case that the element of the error matrix is correlated having a

given covariance matrix. Under both assumptions, the performances of our proposed

algorithm are compared with those of (i) the non-robust (Rk is exactly known), (ii)

robust beamformer (error bounded by Frobenius norm) [13], and (iii) robust outage

probability beamformer (error measured in Euclidean metric) [18]. Simulations of

the proposed alternative approach discussed in Chapter 4 are compared with those

in Chapter 3.

In all cases, we choose the same scenario as that in [28] for which there are K = 3

users served by a single BS having N = 6 transmitter antennas. The users are located

at θ1 = 10◦, θ2 = 10◦+ φ and θ3 = 10◦+ 2φ, where φ is the separation angle between
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Figure 5.1: Direction of arrival

two users as shown in Fig. 5.1. Each user is surrounded by a large number of local

scatterers corresponding to a standard deviation spread angle of σθ = 1◦. The channel

covariance matrix perturbed by the dispersion is given by

[R(θ, σθ)]kl = ejπ(k−l) sin θe−
(π(k−l)σθ cos θ)2

2 (5.1)

For convenience, we choose the SINR threshold to be the same for all users and

the channel is infested with additive zero-mean white Gaussian noise with the same

variance σ2
k = 0.1. The outage probability threshold is chosen as εk = 0.1 for all

k = 1, · · · , K.
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5.1 Simulations of Methods in Chapter 3

In this section, we first show the simulation results of the first case in Section 3.4.3.

The error matrix ∆̃k is assumed to be zero-mean complex Gaussian with covariance

C̃k = σ2
eIN , where σ2

e denotes the error variance. The bound αk of the set Bk can

be calculated according to Eq. (3.28). We choose error variance to be σ2
e = 0.02 and

σ2
e = 0.025 respectively, so that we can compare the performances of our proposed

method in the two cases.

Fig. 5.2 examines the variation of transmission power against the angle of sepa-

ration between the users. The separation angle φ is varied from 7◦ to 10◦ while the

required SINR level γk is set at 2dB. It can be observed that the transmission power

of all methods decreases as the separation angle is increased. It can also be observed

that the proposed robust design using RD requires lower transmission power than all

the other robust beamforming methods.

We define the normalized QoS as

ηk =
wH
k (R̂k + ∆k)wk

γk
∑K

`=1,` 6=k wH
` (R̂k + ∆k)w` + γkσ2

k

(5.2)

For a beamformer, satisfying the QoS constraint requires ηk ≥ 1 whereas minimiza-

tion of transmission power calls for ηk to be as close to unity as possible. Fig. 5.3

shows the distributions of the value of ηk for the different beamformers in 1500 tri-

als in which γk is set at 2dB. It can be observed that in the case of the non-robust

technique only about 50% of the trials have the QoS constraint satisfied, while the

other three robust techniques have the QoS constraint satisfied in all the trials. Fur-

ther, the robust Frobenius method [13] is comparatively conservative having all the
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Figure 5.2: Variation of transmission power with the separation angle, σ2
e = 0.02
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Figure 5.3: Histogram of weighted SINR for φ = 7◦, σ2
e = 0.02
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Figure 5.4: Variation of transmission power with QoS requirement, σ2
e = 0.02

values of ηk substantially larger than 1 while the proposed design using RD has the

distribution closest to unity.

Fig. 5.4 depicts the variation of the transmission power with the required level

of SINR. Here, all γk are kept equal in each trial but vary together from −2dB to

4dB from trial to trial. Again, it can be observed that the non-robust beamformer

(assuming perfect CSI) requires the lowest transmission power. On the other hand,

among the robust beamformers, our algorithm using RD yields the lowest power

requirement, whereas the robust beamformer using Frobenius error bound requires

the highest transmission power.
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Figure 5.5: Variation of transmission power with the separation angle, σ2
e = 0.025
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Figure 5.6: Histogram of weighted SINR for φ = 7◦, σ2
e = 0.025

We change the error variance to be σ2
e = 0.025 and do the same simulations.

Fig. 5.5 shows the variation of the transmission power against the angle separation

with the required SINR equal to 1dB. The separation angle is set from 7◦ to 10◦.

We can observe the same variation of the transmission power as what we observed in

Fig. 5.2. The required transmission power for all methods decreases with the increase

of separation angle. It can be also observed that in a higher error variance case, our

proposed robust beamforming method still shows better performance in transmission

power than other robust beamforming methods.
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Figure 5.7: Variation of transmission power with QoS requirement, σ2
e = 0.025

Fig. 5.6 shows the histogram of the weighted SINR in which γk is set at 1dB. From

the figure, it can be observed that the central value of our proposed method is closest

to unity. The Frobenius method [13] is comparatively conservative with all the values

larger than unity. In the case of non-robust method, only about 50% of the values

satisfy the QoS constraint. Therefore, even though the non-robust method shows a

minimum transmission power requirement in Fig. 5.5, it can not guarantee the QoS

satisfaction of all the users.

Fig. 5.7 describes the variation of the transmission power against SINR threshold.

The required SINR is varied from -2dB to 3dB, and in each trial, all γk are kept the

70



M.A.Sc. Thesis - Lijin Xu McMaster - Electrical Engineering

same. It can be observed that, similar to Fig. 5.4, except the non-robust method,

our proposed method requires the lowest transmission power among the three robust

beamforming methods. Compare to Fig. 5.4, we will find that for a fixed level of SINR,

with the increase of error variance, the required transmission power increases for all

methods. What is more, as the required SINR increases, the possibility that there

is no feasible solution for Frobenius method [13] and outage probability method [18]

increases. In Fig. 5.4, the maximum feasible level of SINR for Frobenius method [13]

and outage probability method [18] is 2dB, while in Fig. 5.7, the level drops to 1dB

due to the higher error variance. Both simulations (Fig. 5.4 and Fig. 5.7) show that

our proposed robust design not only requires less transmission power but also works

better at higher SINR requirement.

Fig. 5.8 shows a comparison of the performances of our proposed method under

4 given error variances. As the increasing of error variance, at a given SINR, it can

be observed that the required transmission power increases. When the required level

of SINR is low, the increase of error variance does not have a significant effect on

the required transmission power. However, at a high level of SINR, we can observe a

significant increase on transmission power. When the error variance is large enough,

for example, 5dB as the Fig. 5.8 shows, there is no feasible solution in our proposed

method.

Now, we consider the second assumption in Section 3.4.3, in which the error

matrix ∆̃k is assumed to be correlated Gaussian with covariance matrix Ck. The

covariance matrix Ck should satisfy Ck = Ωk ⊗ Σk, where Ωk and Σk are positive

definite matrices. The bound αk can be obtained numerically according to Eq. (3.33).

Fig. 5.9 depicts the variation of transmission power with the separation angle. Because
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Figure 5.8: Variation of transmission power with QoS requirement
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Figure 5.9: Variation of transmission power with the separation angle, correlated
error matrix
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Figure 5.10: Variation of transmission power with QoS requirement, correlated error
matrix

in [18], the error matrix is assumed to be independent, so here we just compare the

performance of our proposed method and Frobenius method [13]. It can be observed

that the transmission power of our proposed robust beamforming method decreases

with the increase of separation angle. Fig. 5.10 shows the required transmission

power against the SINR requirement. Comparing to the Frobenius method [13], our

proposed method has a better performance.
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5.2 Simulations of Methods in Chapter 4

In last section, the simulation results show the performances of the method we pro-

posed in Chapter 3, where a multidimensional ball Bk is applied. In Chapter 4, we

choose an alternative set Ck which is an approximation cube set of Bk to reformulate

the robust beamforming problem. It turns out that the problem formulations under

the two different sets are different. In this section, we will show some simulation

results following the idea of Chapter 4 and compare the results with that in Chapter

3.

To make fair comparison, we generate the channel covariance matrix in the same

way as shown in Eq. (5.1). The error matrix ∆̃k is assumed to be zero-mean complex

Gaussian with covariance C̃k = 0.02IN . The half-length of the cube βk can be calcu-

lated according to Eq.(4.3). The SINR requirement is varied from -5dB to 3dB, and

the separation angle is set at φ = 7◦. Fig. 5.11 shows the variation of the transmission

power against the required SINR for both sets. From the figure, it can be observed

that the simulation results for the two sets have a small difference. The performance

under set Bk is marginally better than that under set Ck. And it can be also observed

that under both sets, the performance of our proposed method is better than the

performances of [13] and [18] in Fig.5.4.

Fig. 5.12 shows the performances of the power variation against required level of

SINR. In this simulation, the error matrix ∆̃k is assumed to be uniformly distributed.

We compare the performance of the worst-case approach proposed in [22] and our

proposed method. It can be observed that the performances of our proposed methods

using the multidimensional ball set and the multidimensional cube set are better

than that of the worst-case approach. Similar result can be also observed that the
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Figure 5.11: Comparison between Bk and Ck
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Figure 5.12: Power variation based on uniform distribution

performance of the ball set is better than that of the cube set even though under the

uniform distribution the two sets are exactly the same in terms of both volume and

probability.
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Chapter 6

Conclusion and Future work

In this thesis we examine the robust downlink beamforming design from a statistical

point of view guaranteeing that the QoS constraints are satisfied with an imposed

non-outage probability. Furthermore, by reasoning that the estimated DCC matrices

are Hermitian and PSD thereby forming a manifold in the signal space, we use the

measure of RD for the estimation errors instead of the commonly used ED in the

formulation of our problem. Applying this measure to our design constraint, we

transform the design into a convex optimization problem the solution of which can be

obtained efficiently using standard methods. We consider two different distribution

assumptions for the error matrix, Gaussian distribution and uniform distribution. In

both cases, we derive the convex reformulations under the multidimensional ball set

and the multidimensional cube set. Simulation results show that the performance of

our design is superior to those of other robust beamformers recently developed.

In this thesis we apply the second type of RD as our measure because of the

convenience of computation. In the future, we can try to apply the first type of

RD to solve our problem. In Chapter 4, we provide two distribution assumptions
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and claim that different distribution assumptions will lead to the different accuracy

of the new set. However, we do not know which kind of distribution is the best

approximation to the real scenario. Thus, it would be a good consideration of our

future research to find a distribution true to the real situation. We have proposed

two sets in our thesis among many possible choices of the set. In our future work, we

can try to find other sets which satisfy the outage probability constraint and derive

the corresponding convex reformulations.
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