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Abstract

The main subject of investigation is the so-called “immediate expansion” phe-
nomenon in various first-order valued-field structures over the corresponding underly-
ing field structures. In particular, certain “valued o-minimal fields”, certain Henselian
valued fields with non-divisible valued groups, and certain separably closed valued
fields of finite imperfection degree, are shown to have this property.
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Chapter 1

Introduction and preliminaries

1.1 Introduction

Our main subject of investigation in this thesis is the immediate expansion phe-
nomenon in various first-order valued-field structures over the corresponding under-
lying field structures. While there are examples of valued-field structures which do
not have this phenomenon, we focus on those that do. In particular, we will prove
that certain Henselian valued fields with non-divisible value groups, certain “valued
o-minimal fields”, separably closed valued fields of finite imperfection degree, have
this phenomenon.

It is perhaps necessary to say a few words about how this investigation came
about. It is said that model theory, to a very large extent, is the study of definable
sets. Definable sets are to first-order structures as open sets are to topological spaces.
Suppose that we have a first-order language L , and a predicate P not in L , it is a
natural and basic question to ask how this new predicate P pertains to the language
L . One can in particular ask, assuming that we have a first-order L ∪{P}-structure
M, what sort of new definable sets one will obtain in addition to those that are L -
definable over the universe of M. More generally, suppose we have two first-order
languages L1 and L2 and a set M , on which there is an L1-structure calledM1 and
an L2-structure calledM2 such that every L1-definable set over M using parameters
from M is L2-definable over M with parameters, then what sort of new definable sets
are obtained with L2? Let us callM2 satisfying the assumption above an expansion
of M1. More precisely, we approach the question through the notion of intermediate
structures, in terms of definability; that is: suppose that M2 is an expansion of M1,
then what are the intermediate first-order structures betweenM1 andM2? Of course,
the basic situation is when there are no intermediate first-order structures between
M1 and M2, in which case we say M2 is an immediate expansion of M1.

Investigations concerning expansions and reducts have been and are being carried
out by many researchers, on various first-order structures from different perspectives.
Most of the time these are not easy. There are results about reducts of ordered
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structures, graphs, fields, the arithmetics, etc.. In general, one has to restrict oneself
into particular kinds of structures to give a “good” answer. In the hope of getting a
good characterization of when it is true that M2 is an immediate expansion of M1,
we want to restrict ourselves to the case where M2 is a valued field, L1 contains
the language of rings {+,−,×, 0, 1} and L2 = L1 ∪ {V }, where V is a predicate
intended to be interpreted as a valuation on the underlying field. We made this choice
first because the author is more familiar with valued fields than with other equally
sensible choices. Second and heuristically, valuation theory has been observed to be
useful in the algebraic investigation of various kinds of fields, in several branches of
mathematics; valuations have been indispensable tools for algebraic number theorists;
they are also tools for investigating resolution of singularities in algebraic geometry;
the model theoretic investigation of valued fields has been a very active subject,
providing applications to other subjects. All these seem to suggest that valuations
are in some sense “very close” to the underlying field structure (using the addition and
the multiplication) in the sense that they can provide relatively-easier-to-obtain and
useful information about the field structure. This sort of “closeness” seems to occur
in many situations on different kinds of fields, which suggests that perhaps one can
hope to have a more organized and systematic way of investigation for the immediate
expansion phenomenon in valued fields. One can of course, treat our investigation
here as a beginning of an attempt to do this, and a beginning of an attempt to
measure the “closeness” of valuations to addition and multiplication using first-order
definability. This also to some extent explains our choice of investigating definable
sets with parameters, rather than definable set without parameters; for example, when
number theorists and algebraic geometers use valuations, they do not care whether
they use any parameters from the underlying set or not (and in fact they use them
freely).

In some practical situations, to study a field, one uses multiple valuations on this
field, for example, in the study of global fields. But a good understanding of multiply
valued fields should be built on a good understanding of singly valued fields. Under the
current circumstance, we have not yet obtained a sufficiently good understanding of
the latter, so we have not touched upon the former. One should view our investigation
here as a beginning of a “local” investigation.

Now, we give a rough description of each chapter in this thesis.

Chapter 1 (Introduction and preliminaries) introduces the general scheme of the
thesis, some preliminary knowledge that is going to be used throughout, and some
convention that is going to be used subsequently. A particular section is also devoted
to the discussion of expansions, reducts, and intermediate structures. The following
chapters then focus on problems specifically related to valued fields.

Chapter 2 (Definable valuations) focuses on the case where L1 is the language of
rings,M1 is a field, and L2 is L1 ∪{V }, with ‘V ’ being the predicate for a valuation
rings on M , and V is L1-definable (hence M2 is an immediate expansion of M1).
A specific result proved in the chapter is that if V is a Henselian valuation ring on

2



Ph.D. Thesis - J. Hong; McMaster University - Mathematics

M with a value group containing a convex non-divisible regular subgroup, then V is
L1-definable over M .

Chapter 3 (T-convexly valued o-minimal fields) focuses on the case where L1

contains the language of rings, M1 is an o-minimal expansion of a field and L2 =
L ∪ {V }, where V is a convex valuation ring on M with respect to the ordering on
M . It is proved that in the case where V is so-called “T-convex”,M2 is an immediate
expansion of M1. This then generalizes a result known about RCVF (see [Haskell
and Macpherson, 1998]).

Chapter 4 (Algebraically closed valued fields revisited) focuses on the case where
M2 |= ACVF and L1 is the language of rings. It has been proved in [Haskell and
Macpherson, 1998] that in this case M2 is an immediate expansion of M1. We first
isolate a critical result in their proof, and then give a new proof which does not rely
on a strong result of Hrushovski (see [Haskell and Macpherson, 1998]) about strongly
minimal expansions of algebraically closed fields.

Chapter 5 (Separably closed valued fields) focuses on the case where M2 is a
separably closed valued field of positive characteristic and finite imperfection degree,
L1 = Lr and L2 = Lr ∪ {V }. We first prove a quantifier elimination result for the
theory of separably closed non-trivially valued fields of characteristic p > 0 and finite
imperfection degree e > 0 (in a suitably nice language). This immediately gives us
the result that this theory does not have the Independence Property. Eventually, we
prove that M2 as mentioned above, is an immediate expansion of M1. We also give
some remarks on the infinite imperfection degree case and on general valued stable
fields.

Finally, in Appendix A, some well-known results in classical algebraic geometry
has been collected for the convenience of the reader. These results are mostly used in
Chapter 4 and Chapter 5.

1.2 Valued fields

A good reference for the basic valuation theory is [Engler and Prestel, 2005].
Recall that given a field K (with 0 6= 1), a subring V of K is said to be a valuation

ring if it is true that for any x ∈ K× := K\{0}, either x ∈ V or x−1 ∈ V . For a
valuation ring V , the set of all elements whose inverses are also in V , is called the set
of units, denoted by V ×. The group V × is in fact a multiplicative subgroup of K×.
The unique maximal ideal of V , denoted by mv, is exactly the set of non-invertible
elements in V , i.e. mv = V \V ×.

Recall that an ordered abelian group is an abelian group with an ordering
which is compatible with the group operation, that is if (G,+) is an abelian group,
then (G,+, <) is an ordered abelian group if for all a < b and z ∈ G, a+ z < b+ z. It
follows that if G is finite, then G = {0}. An element of an ordered abelian group G
is positive if it is larger than 0 (the identity element), negative if it is less than 0.
An ordered abelian group is said to be discrete if there is a smallest positive element
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in this group; otherwise, one can prove that between any given two different elements
of this group, there are always infinitely many elements, in which case the group is
dense.

A subset ∆ of an ordered abelian group Γ is said to be convex, if for all a, b ∈ ∆
and c ∈ Γ such that a < c < b, it is always true that c ∈ ∆. The collection of
all proper convex subgroups of an ordered abelian group is linearly ordered by set
inclusion; the order type is called the rank of this ordered abelian group. An ordered
abelian group of rank 1 is also called an archimedean ordered abelian group.

A valuation on K is a map v : K � Γ ∪ {∞}, where Γ is an ordered abelian
group and Γ <∞, satisfying the following properties:

• for all a ∈ K, v(a) =∞ if and only if a = 0;

• for all a, b ∈ K, v(a+ b) ≥ min{v(a), v(b)};

• for all a, b ∈ K, v(ab) = v(a) + v(b).

It can be shown that these properties imply that for all a, b ∈ K, if v(a) < v(b), then
v(a+ b) = v(a). This latter property will be used frequently.

It is easy to verify that given a valuation map v, the set {x ∈ K | v(x) ≥ 0} is a
valuation ring on K, and the set {x ∈ K | v(x) > 0} is exactly the unique maximal
ideal of that valuation ring.

We sometimes identify valuation maps with isomorphic ordered abelian groups,
that is if v1 : K � Γ1 ∪ {∞} and v2 : K � Γ2 ∪ {∞} have the property that there is
some isomorphism of ordered abelian groups ϕ : Γ1 → Γ2 such that ϕ ◦ v1 = v2, then
we think of v1 and v2 as the same valuation map; in this case v1 and v2 give the same
valuation ring. Given a valuation ring V , the quotient map K× � K×/V × induces a
valuation map v : K → (K×/V ×) ∪ {∞} which extends the quotient map and maps
0 to ∞. The ordering xV × < yV × if y/x ∈ mv, makes K×/V × an ordered abelian
group. So K×/V × is also called the value group of the valuation ring V (or of the
valuation v), usually denoted by vK.

Another quotient map V � V/mv induces a map resv : K → (V/mv)∪{∞}, which
extends the quotient map and maps a ∈ K\V onto ∞. This induced map is called
the place map associated to the valuation ring V , and the field V/mv is usually called
the residue field of V , denoted by Kv.

A valuation (or a valuation ring) is said to be trivial if vK = {0}, or equivalently
V = K.

Notation 1.2.1. Given a field K with a valuation ring V (usually a capital letter), the
corresponding valuation map (e.g. the one induced by the quotient map) is denoted
by the corresponding lower-case letter v. The set K\{0} is denoted by K×. The value
group is denoted by vK (occasionally, we use vK× to denote the value group as well, to
prevent potential ambiguity). We use (vK)∪{∞} to denote the value group together
with the infinity element, which is the full image set of the valuation map. The residue
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field is denoted by Kv, and the residue map is denoted by resv : K → (Kv) ∪ {∞}.
The maximal ideal of V is denoted by mv and the set of units in V is denoted by V ×.
If there is another valuation ring W on K, then we have the corresponding valuation
map w, and wK,Kw, resw,mw, etc..

A valuation ring V is said to be Henselian if it satisfies the so-called Hensel’s
Lemma: for any polynomial f(X) =

∑
aiX

i ∈ V [X], if the corresponding polyno-
mial resv(f)(X) =

∑
resv(ai)X

i has a simple root α ∈ Kv, then f(X) has a root
a ∈ V and resv(a) = α.

A valued field is a field K with a distinguished valuation ring V , usually denoted
by (K,V ). A valued field is Henselian if its valuation ring is Henselian. Sometimes
we use (K, v) to denote a valued field, where v is the corresponding valuation map of
V .

Suppose that L is a field extension of K, and W and V are valuation rings on L
and K respectively. The valuation ring W is called an extension of V if V = W ∩K.
If W is an extension of V , then vK can be naturally identified as an ordered subgroup
of wL, and Kv can be naturally identified as a subfield of Lw.

Fact 1.2.2 (Chevalley; see [Engler and Prestel, 2005]). Suppose (K,V ) is a valued
field and L/K a field extension. Then there is some valuation ring W on L extending
V .

It can be proved (see e.g. Chapter 4 of [Engler and Prestel, 2005]) that a valued
field (K,V ) is Henselian if and only if there is exactly one extension of V in the
separable closure of K.

Fact 1.2.3 ( [Engler and Prestel, 2005]). Suppose that L/K is a normal field exten-
sion, V is a valuation of K, W1 and W2 are valuation rings in L extending V . Then
there exists σ ∈ Aut(L/K) with σ(W1) = σ(W2).

Example 1.2.4. Let p be a fixed prime number. For any integer a, let vp(a) be
the exponent m of p such that pm | a but pm+1 - a. For any a/b ∈ Q, define
vp(a/b) = vp(a) − vp(b) (one checks that this is well defined on Q). Then (Q,Z(p))
is a valued field, where Z(p) is the localization of Z at the prime ideal (p), i.e. it is
the collection of elements of the form a/b with p - b. The value group of this valued
field is Z and the residue is Fp (the finite field of p-elements). This is not a Henselian
valued field.

In fact, it is well-known that every non-trivial valuation on Q is of the form vp for
some prime number p.

Define |x|p := p−vp(x) for every x ∈ Q, then one checks that | · |p is a metric on
Q. The completion of Q with respect to this metric is called the p-adic numbers,
denoted by Qp. Its corresponding valuation ring is called the ring of p-adic integers,
denoted by Zp. The valued field (Qp,Zp) is an “immediate extension” of (Q,Z(p)),
i.e. their value groups and residue fields are the same. Furthermore, (Qp,Zp) is a
Henselian valued field.
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Example 1.2.5. One can do the same thing to F [X], the ring of polynomials in
one variable over some field F . Let p(X) ∈ F [X] be some irreducible polynomial of
degree larger than 0. Define vp(X)(f(X)) to be the exponent m of p(X) such that
p(X)m | f(X) but p(X)m+1 - f(X). Extend the map vp(X) to F (X) similarly. Then
(F (X), vp(X)) is a valued field which is not Henselian. The valuation ring is F [X](p(X)),
the value group is Z and the residue field is F [X]/(p(X)) (a finite extension of F ). The
completion of F (X) with respect to vp(X) is a formal power series field F ((T )) (the
field of Laurent series in T ), where T = p(X). This is also an immediate extension,
and is Henselian.

Example 1.2.6. Given any field K and any ordered abelian group G, one can define
the field of formal power series K((TG)) to be the following set{ ∑

g∈S⊆G

agT
g

∣∣∣∣∣ S is a well-ordered subset of G, ag ∈ K

}
.

Then K((TG)) with the natural addition and multiplication becomes a field. The
natural valuation v on K((TG)) is defined to be

v

(∑
g∈S

agT
g

)
= the smallest element g of S with ag 6= 0.

Then (K((TG)), v) is a Henselian valued field, with residue field K, and value group
G. For more details, see for example Exercise 3.5.6 of [Engler and Prestel, 2005].

Given a valuation ring V on the field K, there is an induced topology, sometimes
called the valuation topology associated to V , or the V -topology. A basis of
this topology is the collection of all discs of the form {x ∈ K | v(x − a) > v(b)},
where a, b ∈ K. Under this V -topology, K becomes a topological field, that is the
multiplication, addition and the additive and multiplicative inverses are continuous.
This also means that polynomial functions and rational functions are continuous with
respect to the V -topology. It follows that every Zariski-open set in K is also open in
the V -topology (because if p(~a) 6= 0 and ~b is close enough to ~a with respect to the

V -topology, then p(~b) 6= 0.)

Notation 1.2.7. In this thesis, when we write Kn, we mean the n-th Cartesian power
of K. To denote the set of nth-powers of K, we use Pn(K). An element of Kn when

n is larger than or equal to 1, is usually denoted by ~a = (a1, . . . , an), ~b = (b1, . . . , bn)

etc.. When we say a point ~a ∈ Kn is close enough to a point ~b ∈ Kn we mean each

entry of v
(
~a−~b

)
:= (v(a1 − b1), . . . , v(an − bn)) is large enough (i.e. they are close

enough with respect to the V -topology).
On a valued field (K,V ), the set {x | v(x−a) > γ} for some a ∈ K and γ ∈ vK is

6
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denoted by D>
v (a, γ), or simply D>(a, γ) if the valuation we refer to is clear from the

context. The set {x | v(x− a) ≥ γ} will be denoted by D≥v (a, γ) or simply D≥(a, γ).

On a field K, two valuation rings V and W are said to be dependent if they
induce the same topology. One can prove (see e.g. Section 2.3 of [Engler and Prestel,
2005]) that if V and W are both non-trivial, then they are dependent if and only the
smallest subring of K containing both V and W is not K.

It can be proved that

Fact 1.2.8 (F. K. Schmidt; see [Engler and Prestel, 2005]). If a field K admits two
independent non-trivial Henselian valuations, then K is separably closed.

Now, suppose that we have a non-trivially valued field (K,V ). Let W be a subring
of K containing V . It follows easily that W is also a valuation ring, mW ⊆ mV , and
V × ⊆ W×. Therefore, there is a natural quotient map γv,w : vK � wK. The kernel of
γv,w is the set of elements ∆ := {v(x)|x ∈ K,w(x) = 0}, which is a convex subgroup
of vK. Also, wK is isomorphic to (vK)/∆. Furthermore, (Kw, V/mw) is itself a
valued field, with a value group ∆ and residue field Kv.

In fact, we have

Fact 1.2.9 ([Engler and Prestel, 2005]). Suppose that (K,V ) is non-trivially valued.
Then there is a 1-1 correspondence between the set of convex subgroups ∆ of vK and
the set of the ideals p of V (hence also with the valuation rings containing V ). More
explicitly, it is given by

∆ 7→ {x ∈ K | v(x) > ∆};
p 7→ {γ ∈ vK | |γ| < v(p)}.

Fact 1.2.10 (see [Prestel and Ziegler, 1978]). Suppose that (K,V ) is a valued field,
a1, . . . , an ∈ K, ε ∈ vK. Then there is some δ ∈ vK such that for all b1, . . . , bn ∈ K
with

n∏
i=1

(X − ai)−
n∏
i=1

(X − bi) ∈ D>
v (0, δ)[X],

there is a permutation σ of 1, . . . , n such that v(ai − bσ(i)) > ε for all i = 1, . . . , n.

Hensel’s Lemma is in some sense (in terms of t-Henselianity loc.cit.) equivalent
to the following “Implicit Function Theorem”.

Fact 1.2.11 (see [Prestel and Ziegler, 1978]). Suppose that the valued field (K,V )
is Henselian, F (X0, . . . , Xn, Y ) is a polynomial in K[X0, . . . , Xn, Y ], and (~a, b) :=
(a0, . . . , an, b) ∈ Kn+2 is a zero of F which is not a zero of the formal partial derivative
Fy. Then there are ε, δ ∈ vK such that for all ~a ′ with v(~a− ~a ′) > δ, there is exactly
one b′ with v(b−b′) > ε such that (~a ′, b′) is a zero of F . The map ~a ′ 7→ b′ is continuous.
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1.3 Expansions and reducts; immediate and inter-

mediate structures

In this thesis, the word “definable” always allows the use of parameters.
The usual definition of an expansion and a reduct of a first-order structure is a

little bit too restricted for our purpose. Here we re-define these notions in a more
general setting (by allowing parameters). We emphasize that this is different from
the usual definitions of expansions and reducts. We refer the reader to Section 1.1 for
a discussion of the heuristic reasons for allowing parameters.

Throughout this section, let L1 and L2 be two first-order languages, and let M1

and M2 be an L1-structure and an L2-structure respectively. We further assume
that M1 and M2 have the same universe (underlying set) M .

Definition 1.3.1. The structure M2 is called an expansion of/over M1, and M1

is called a reduct of M2, if every L1-definable set over M is L2-definable over M .
We use M1 vM2 to denote that M1 is a reduct of M2.

Definition 1.3.2. The two structuresM1 andM2 are said to have the same (first-
order) structure if they are expansions (equivalently reducts) of each other. We use
M1

∼∼∼ M2 to denote that M1 and M2 have the same first-order structure, and
M1 6∼∼∼M2 otherwise.

If L is another language such thatM2 is also an L -structure, then we useM2|L
to denote the L -structure on M . Therefore M1

∼∼∼ (M2|L1).

Definition 1.3.3. Suppose M1 vM2.
We say that M1 is a proper reduct of M2 if M1 6∼∼∼ M2, in which case M2 is

called a proper expansion of M1; this is denoted by M1 @M2.
We call M1 an immediate reduct of M2, if for all M (in some language L )

with M1 v M v M2, either M1
∼∼∼ M or M ∼∼∼ M2. This is denoted by M1

OMM2

(or M2
OMM1). 1 In this case we also say M2 is an immediate expansion of M1.

We use M1
HMM2 (or M2

HMM1)2 to mean that M1 is not an immediate reduct of
M2. If M1

OMM2, we also say the pair (M1,M2) is immediate.
Any M with M1 v M v M2 is called an intermediate structure of the pair

(M1,M2) (or (M2,M1)).

Most of the time, we are going to be interested in the case that L2 = L1 ∪ {P},
where P is a new symbol.

In the following, we let Lr be the language of rings, that is {+,−,×, 0, 1}.
1The symbol ‘OM’ is an empty hour glass, which could be thought of as meaning “there is no

time” (hence “immediate”) or “there is nothing inside”. One can use M1
OMv M2 or M1 @× M2

(overlapping the two symbols) to emphasize thatM2 is an expansion ofM1. But most of the time,
it will be obvious which one is the bigger structure.

2Obviously, “there is time” or “there is something inside”.
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Example 1.3.4. Let L1 = Lr, and let L2 = Lr ∪ {P}. Suppose that M is the
set of rational numbers, and the predicate P is interpreted as the set of integers,
thenM2

OMM1 just because Z is Lr-definable over Q, by the Lagrange’s Four-square
Theorem.

Example 1.3.5. Let L1 = {+, {λa}a∈C}, and let L2 = L1 ∪ {×}. Let M = C and
interpret λa as the multiplication by a. ThenM2

OMM1 by [Marker and Pillay, 1990].

Example 1.3.6. Let L1 = {+, <, {λa}a∈R}, and let L2 = L1∪{×}. Let M = R and
interpret λa as the multiplication by a. Then M2

HMM1, which is a result of [Pillay
et al., 1989] and [Marker et al., 1992].

Example 1.3.7. Let L1 = Lr and L2 = Lr ∪ {V }, with M being a field and V
interpreted as a valuation ring on M . Then if V is Lr-definable over M ,M2

OMM1 is
trivially true. This is the subject of Chapter 2.

Notice that the notion of immediate expansion is only defined for structures, not
necessarily for theories, i.e. if M2

OM M1 and W2 is an L2-structure which is L2-
elementarily equivalent to M2, then it is not necessarily true that W2

OM (W2|L1).
This phenomenon is similar to that of minimality (versus strong minimality).3

Example 1.3.8. Let M be a countable set with an equivalence relation E which has
countably many equivalence classes, and whose equivalence classes are all finite and
of different cardinalities. Then the first-order structure (M,E) is a typical example of
a minimal but not strongly minimal structure. It is easy to see that (M,E) OM (M,=),
but for any (W,E) which is {E}-elementarily equivalent to (M,E), as long as W is
uncountable (in fact as long as W has an infinite equivalence class), (W,E) HM (W,=).

On the other hand, if we consider a different language, treating M as the structure
(M,E1, E2, . . .), where Ei are predicates of the equivalence classes, then this time we
do have the property that if (W,E1, E2, . . .) is {E1, E2, . . .}-elementarily equivalent to
(M,E1, E2, . . .), then (W,E1, E2, . . .) OM (W,=).

Notation 1.3.9. For two theories T2 and T1 in L2 and L1 respectively such that
every model of T2 is also a model of T1, we write T2

OM T1 to mean that for every model
M2 of T2, M2

OM (M2|L1).

It is well-known that every ω-saturated minimal structure is also strongly minimal.
Similarly, we have

Theorem 1.3.10. Assume that L1 ⊆ L2. Suppose that W2 is an ω-saturated L2-
structure which is L2-elementarily equivalent to M2. Then W2

OM (W2|L1) implies
that M2

OMM1.

3So one can define “strongly immediate expansions” similarly.
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Proof. Suppose that M2
HMM1. Then there are some L2-formulas φ1(~x,~a), φ2(~x,~a)

with parameters ~a from M such that for every L1-formula θ(~x, ~y), and all L1 ∪{φ1}-
formula δ(~x, ~y),

∀~y [θ(~x, ~y) 6↔ φ1(~x,~a)] ,

∀~y [δ(~x, ~y) 6↔ φ2(~x,~a)] ,

where by an L1∪{φ1}-formula, we mean an L2-formula that is obtained by first using
the realization set of φ1 as a predicate, and then replacing the predicate everywhere
by the formula φ1(~x,~a).

But this type (of ~a over ∅) is finitely realizable inM2, thus there is some element
in the universe ofW2 satisfying the same set of formulas, which meansW2

HM (W2|L1).

In the case where L1 = Lr, L2 = Lr∪{V }, with M being a field and V interpreted
as a valuation ring on M , there are examples known to be the case that M2

OMM1.
The main subject of the thesis will be exploring examples whereM2

OMM1. But there
are also cases whereM2

HMM1. Here we give an example provided by F. Delon. First,
recall that for an index set I, and a family of ordered abelian groups Gi indexed by
i ∈ I, the lexicographic product of {Gi}i∈I is the subgroup∏′

i∈I

Gi

of the product
∏

i∈I Gi, consisting of elements of well-ordered support (i.e. the set of
indexes at which the coordinates are non-zero is well-ordered), ordered by (ai) < (bi)
if ai0 < bi0 , where i0 is the minimal index i at which ai 6= bi. One checks that

∏′
i∈I Gi

is indeed an ordered abelian group.

Example 1.3.11 (Delon). Let K be any field. Let I be the ordinal sum ω + ω.
Consider a set of elements {xi}i∈I which are algebraically independent over the field
K. Let Γ =

⊕
i∈I Z be lexicographically ordered. Then one can make the field

L := K(xi, i ∈ I) into a valued field such that v(xi) = 1i, where 1i is the smallest
positive element of the i-th factor Z of Γ. Call this valuation V or v. It follows from
the construction that V is not Lr-definable over L (See Proposition 2.2.13 for a full
proof). It is also true that the structure (L,+,−,×, 0, 1, V ) HM (L,+,−,×, 0, 1). We
will give a more detailed analysis of this example in Chapter 2 (Proposition 2.2.13).

In the following chapters, we focus on the situation where L1 is an extension of
Lr (in fact, most of time L1 = Lr), L2 = L1 ∪ {V }, where V is a valuation ring
on the field M ; in this situation, we try to prove that many examples are immediate
extensions.
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Chapter 2

Definable valuations†

Given the language of rings Lr = {+,−,×, 0, 1}, consider its extension by a single
symbol Ldiv := Lr ∪ {|}. Let (K,V ) be a valued field. One interprets the symbol
‘|’ in Ldiv on K, as x | y if and only if there is some z ∈ V such that xz = y, or
equivalently, v(x) ≤ v(y). Let K be the Ldiv-structure on K. We are interested in
knowing when K OM (K|Lr).

As we have seen before, one trivial case where K OM (K|Lr) is true is when V is
already Lr-definable over K. But to determine when V is Lr-definable over K, is
in fact a very non-trivial task. In this chapter, we focus on addressing this problem.
Classically, this is known as the problem of definable valuations.

Definition 2.0.12. A definable valuation is a valuation ring V on a field K which
is Lr-definable over K.

The main result of this chapter is the theorem stating that on a Henselian valued
field (K,V ), if vK contains a convex subgroup which is p-regular but not p-divisible,
for some prime number p, then V is Lr-definable over K. This enables us to show fur-
ther that if (K,V ) is a Henselian valued field and vK is regular but not divisible, then
V is in fact Lr-definable over K without parameters (i.e. 0-definable), generalizing
the results of Fact 2.1.1 and Fact 2.1.10.

2.1 A brief overview

It seems that people became interested in definable valuation when they were consid-
ering Hilbert’s Tenth Problem, its generalizations and problems related to defining the
ring of integers for a number field, due to the strong connection between the valuation
rings and the ring of integers.

The first and probably the simplest instance of a definable valuation (non-trivial,
of course) is probably the fact that Zp is Lr-definable over Qp. It is in fact, this

†The major results of this chapter have been re-written into a 4-page paper [Hong, 2013].

11



Ph.D. Thesis - J. Hong; McMaster University - Mathematics

particular observation that inspired our main theorem of this chapter. For Qp, simply
pick another prime q 6= p, then one argues that Zp is exactly the set {x ∈ Qp | ∃y(yq =
pxq+1)}. Note that this first-order definition uses a parameter. Ax proved a stronger
statement, which could be rephrased as follows.

Fact 2.1.1 ([Ax, 1965]). Suppose that (K,V ) is a Henselian valued field. If vK is
isomorphic to Z, then V is Lr-definable over K without parameters. In fact, as long
as vK is a Z-group (see the next section), then V is Lr-definable without parameters.

Definition 2.1.2 (see e.g. [Cassels and Fröhlich, 1967]). A number field is a field
which is a finite extension of Q. A global field is a field which is either a number
field or a finite extension of the function field F (T ), where F is a finite field. A
non-archimedean local field is a completion of a global field with respect to a
(non-trivial) valuation.

The value group of a valuation on a global field or a non-archimedean local field is
always isomorphic to Z (as an ordered abelian group). While the valuation on a non-
archimedean local field is always Henselian, a non-trivial valuation on a global field is
never Henselian. The valuation on a non-archimedean local field is Lr-definable for
the simple reason mentioned above, but to prove the fact that a valuation on a global
field is Lr-definable, one needs a certain amount of number theory.

Fact 2.1.3 (Rumely, [Rumely, 1980]). Every valuation ring on a global field is Lr-
definable.

There are also some special cases about Henselian fields with real closed residue
fields. See for example, [Jacob, 1979], [Jacob, 1981], [Delon and Farré, 1996] etc.. And
some isolated cases on function fields, which are usually not very explicitly mentioned
in the literature.

The next major advance was made by Koenigsmann in (mostly) two papers
[Koenigsmann, 1995] and [Koenigsmann, 1994], using p-Henselian valuations and
t-Henselian valuations. The notion of p-Henselian valuation was first introduced
in [Wadsworth, 1983]. In [Koenigsmann, 1995], a result about definable p-Henselian
valuations was proved, which has application in proving many Henselian valuations
to be definable as well. We explain his main results here.

Recall that for a field K and a prime number p, the maximal Galois p-exten-
sion, or the p-closure, of K, usually denoted by K(p), is the compositum (inside a
fixed algebraic closure) of all finite p-extensions of K (namely, of all Galois extension
of degree a p-power). A field K is said to be p-closed if K = K(p).

Definition 2.1.4. Suppose that (K,V ) is a valued field. The valuation ring V is
called a p-Henselian valuation ring if there is exactly one extension of V in the
maximal Galois p-extension K(p) of K.

It follows easily that every Henselian valued field is also p-Henselian.

12
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Fact 2.1.5 (p-Hensel’s Lemma, [Koenigsmann, 1995]). Suppose that (K,V ) is a val-
ued field. Then (K,V ) is p-Henselian if and only if for every polynomial f(X) ∈ V [X]
which splits in K(p), and has a simple zero α ∈ Kv, f(X) has a zero a ∈ V with
resv(a) = α.

Fact 2.1.6 ([Koenigsmann, 1995]). Suppose that K is not p-closed. Let

Hnc,p := {V | V is p-Henselian, Kv 6= (Kv)(p) } ,
Hc,p := {V | V is p-Henselian, Kv = (Kv)(p) } .

Then with respect to set inclusion, Hnc,p is linearly ordered, and Hc,p is upper directed
and has a maximal element if non-empty. Furthermore, every element inHnc,p is larger
than or equal to (i.e. contains) every element in Hc,p. If Hc,p = ∅, then Hnc,p has a
minimal element.

Definition 2.1.7 ([Koenigsmann, 1995]). For any field K not p-closed, define the
canonical p-Henselian valuation, Op, to be, the largest element in Hc,p if Hc,p 6= ∅,
or the smallest element in Hnc,p if Hc,p = ∅. Naturally if K is p-closed, then we define
Op to be K.

When we write ζp ∈ K for a field K and some prime number p, we mean that
there is a primitive pth-root of unity in K, i.e. there is some ζp such that ζpp = 1 but
ζkp 6= 1 for all 0 < k < p.

A field is Euclidean if it is an ordered field whose every positive element is a
square.

The main result of [Koenigsmann, 1995] is

Fact 2.1.8 ([Koenigsmann, 1995]). Suppose that ζp ∈ K or char(K) = p. Then
except in the case where p = 2 and Kop is Euclidean, Op is always Lr-definable over
K.

There are several other results obtained by Koenigsmann.

Fact 2.1.9 ([Koenigsmann, 1994]). Suppose that K is a field which is neither real
closed nor separably closed, V is a non-trivial Henselian valuation ring on K. Then
there is some valuation ring W on K which is Lr-definable such that V and W induce
the same topology on K.

An ordered abelian group is divisible if for each element a, and each positive
natural number n, there is another element b such that nb = a.

Fact 2.1.10 ([Koenigsmann, 2004]). Suppose that (K,V ) is a Henselian valued field.
Suppose that vK is archimedean, and not divisible. Then V is Lr-definable over K
without parameters.

The following is an interesting case (which can be safely ignored within the context
of this thesis):

13
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Fact 2.1.11 ([Scanlon, 2008]). Every Rosenlicht differential valuation on a differen-
tially closed field is trivial.

During the preparation of this thesis, there are two more papers about definable
valuations being published; one is about Henselian valued fields with finite or pseudo-
finite residue fields by Cluckers, Derakhshan, Leenknegt and Macintyre (see [Cluckers
et al., 2013]); and the other is the work of Jahnke and Koenigsmann (see [Jahnke and
Koenigsmann, 2012]) about Galois theoretic characterization of definable valuations.
Both of these results adapt the viewpoint through the residue fields of the value fields,
proving that under certain assumptions on the residue fields, the valuation rings are
definable (most of the time without parameters) in the language of rings over the
underlying field. The work of this thesis distinguishes itself as an approach through
the value groups instead of residue fields.

2.2 Regular ordered abelian groups

Our main theorem concerns Henselian valuations with groups related to regular or-
dered abelian groups. Here we collect the results needed later for the next section. The
notion of regular ordered groups originates from the work of [Robinson and Zakon,
1960] (in which they give a classification of these groups up to elementary equiva-
lence), which turns out to be strongly related to the study of model theory of ordered
abelian groups in general. Here we only include relevant results.

We refer the reader to the first chapter for some discussion on ordered abelian
groups as well.

Let LOAG be the language of ordered abelian groups, i.e. {+,−, <, 0}.

Definition 2.2.1. Let n > 1 be a positive integer. An element a in an ordered
abelian group G is called n-divisible (in G) if there is some b ∈ G such that nb =
b + b + · · · + b = a. Then G is n-divisible if every element of it is n-divisible. An
ordered abelian group G is divisible, if it is n-divisible for all positive integers n,
or equivalently, p-divisible for all prime numbers p. Sometimes, we say G is non-
divisible to mean that G is not divisible.

Definition 2.2.2 ([Zakon, 1961]). Let n > 1 be a positive integer. An ordered abelian
group G is n-regular if every infinite convex subset of it has at least one element
which is n-divisible in G.

An ordered abelian group is called a regular ordered abelian group1 if it is
p-regular for all primes p.

1Originally, these groups were called “regularly ordered groups”. The author has decided that
“regular ordered abelian groups” is better, as the former seems to suggest that there is one ordering
on G which is regular, but not necessarily the one in question.
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Fact 2.2.3. It is well-known that every archimedean ordered abelian group is regular;
see for example, [Robinson and Zakon, 1960] or [Zakon, 1961]. But the converse is
not true, although it is true that every regular ordered abelian group is elementarily
equivalent to an archimedean ordered abelian group in LOAG.

Definition 2.2.4 ([Ax and Kochen, 1965]). A Z-group is an ordered abelian group G
with a smallest positive element (i.e. G is discrete) with the property that [G : nG] = n
for all positive integers n.

Fact 2.2.5. It can be proved that (see e.g. [Robinson and Zakon, 1960], [Zakon, 1961])
Z-groups are exactly the regular discrete ordered abelian groups. Equivalently, these
are all the ordered abelian groups LOAG-elementarily equivalent to Z.

In particular, if G is p-regular, with a smallest positive element γ, then for any
g ∈ G, exactly one of the p elements: g, g + γ, g + 2γ, . . . , g + (p− 1)γ is p-divisible.

Fact 2.2.6 (cf. [Conrad, 1962]). Suppose that G is an ordered abelian group. Then
G is p-regular if and only if for any H which is a non-zero convex subgroup of G,
G/H is p-divisible.

Definition 2.2.7 ([Schmitt, 1984]). For an ordered abelian group G, and an element
g ∈ G, let A(g) be the largest convex subgroup that does not contain g; let B(g) be the
smallest convex subgroup of G containing g. One can check that A(g) is the collection
of elements h ∈ G such that for all natural numbers n > 0, nh < g; B(g) is the
collection of elements h ∈ G such that there is some natural number n with ng > h.

For any integer n > 1, let An(g) be the smallest convex subgroup C of G such
that B(g)/C is n-regular; let Bn(g) be the largest convex subgroup C of G such that
C/A(g) is n-regular.

An(0) is defined to be the empty set and Bn(0) is defined to be {0}.

Definition 2.2.8. Given an ordered abelian group G, the collection of An(g) for all
non-negative elements g ∈ G, is clearly a linearly ordered set with respect to inclusion.
We denote this ordered set by An(G). The order type of An(G) is called the principal
n-regular rank of G.

The following is a simple fact observed by Schmitt.

Fact 2.2.9 ([Schmitt, 1984]). An(g) and Bn(g) defined above are LOAG-definable in
G using g as the only parameter.

We also have the following.

Fact 2.2.10 ([Delon and Farré, 1996]). Suppose that G is an ordered abelian group
and H is a convex subgroup of G. If H is LOAG-definable over G, then there is some
n > 1 such that

H =
⋂
g 6∈H

An(g).
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The first-order definability of sets in a valued field is related to the first-order
definability of sets in the valued group. We have the following well-known proposition.

Proposition 2.2.11. Suppose that (K,V ) is a valued field. If C ⊆ vK ∪ {∞} is
definable in vK ∪ {∞} in the language LOAG ∪ {∞}, then the set v−1(C) is definable
over K, in Ldiv.

Proof. The proof is by induction on the complexity of formulas.

Proposition 2.2.12. Suppose that (K,V ) is a Henselian valued field with char(Kv) =
0, and W is a valuation ring containing V . Then W is Lr ∪ {V }-definable over K if
and only if the convex subgroup of vK corresponding to W is definable in the language
of ordered abelian groups in vK.

Proof. One direction is given by Proposition 2.2.11. The other direction mentioned
in the proof of Theorem 4.4 in [Delon and Farré, 1996], which in fact comes from a
result of Delon’s thesis [Delon, 1982] about quantifier elimination of Henselian valued
fields of residue characteristic 0.

Now, we come back to Delon’s example of a valued field with an intermediate
structure between itself and the field structure (Example 1.3.11).

Proposition 2.2.13 (Delon). Let K be any field. Let I be the ordinal sum of two ω.
Consider a set of elements {xi}i∈I which are algebraically independent over the field
K. Let Γ =

⊕
i∈I Z be lexicographically ordered. Notice that Γ is discrete, but not

regular. Then the field L := K(xi, i ∈ I) has a valuation V defined by v(xi) = 1i,
where 1i is the smallest positive element of the i-th factor Z of Γ. It follows from the
construction that the valuation ring V is not Lr-definable over L. It is also true that
the structure (L,+,−,×, 0, 1, V ) HM (L,+,−,×, 0, 1).

Proof. First, V is not Lr-definable because there are infinitely many xi algebraically
independent over K and one can permute infinitely many of them while fixing finitely
many of them at the same time, to get the same field structure but different valuation
rings.

Let W be the valuation ring corresponding to the convex subgroup ∆ which con-
sists of elements whose i-th coordinate is 0i if i is in the first copy of ω.

Then by the same reason, W is not Lr-definable over K and V is not Lr ∪ {W}-
definable over K. It is enough to show that W is Lr ∪ {V }-definable over K. This is
because ∆ is definable in vK, by using the fact that it is the union of An(g), where
g ∈ vK satisfies that An(g) = An(1i0), with i0 being the element 0 in the second copy
of ω.

It is not always true that a Henselian valued field with non-divisible value group
will have its valuation ring Lr-definable over the field. Indeed, we give an example
below. But under certain certain circumstances, as in the next section, we give some
sufficient conditions.
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Example 2.2.14. Let K be the field Q((tG)) with the natural valuation V , where G
is the lexicographic product Z×Q×Q. Let H be the convex subgroup {0}×{0}×Q
of G. Then by Proposition 2.2.10, H is not LOAG-definable in G. By Proposition
2.2.12, the valuation W containing V , corresponding to H is not Lr-definable over
K.

2.3 The main theorem

Definition 2.3.1. Fix a prime number p. An ordered abelian group is p-rendible if
it is p-regular but not p-divisible. An ordered abelian group is rendible if it is regular
but not divisible.2

Notice that if an ordered abelian group G is not p-divisible, then G 6= {0}. Thus a
p-rendible group is always not trivial. Every discrete ordered abelian group contains
a convex subgroup which is rendible, e.g. the smallest convex subgroup containing the
smallest positive element.

In the following, p always denotes a fixed prime number. The following is an
elementary fact in field theory.

Fact 2.3.2 (see e.g. [Karpilovsky, 1989]). (1) Suppose that K is a field containing a
primitive p-th root of unity. Then for any a ∈ K\Pp(K), K[X]/(Xp − a) is a cyclic
extension of degree p. In particular, Xp − a splits in K(p).

(2) Suppose that K is field of characteristic p. Then for any a ∈ K, if Xp−X − a
has a solution in K, then it splits in K; if Xp−X − a does not have a solution in K,
then K[X]/(Xp −X − a) is a cyclic extension of degree p. In any case, Xp −X − a
splits in K(p).

Lemma 2.3.3. Suppose that the valued field (K,V ) satisfies one of the following
conditions:

• V is Henselian;

• V is p-Henselian, ζp ∈ K, char(Kv) 6= p;

• V is p-Henselian, char(K) = p.

If there is some ε ∈ K with p - v(ε), then the set

Φε := {x ∈ K | v(εxp) > 0}

is Lr-definable over K.

2The word “rendible” is the adjective of “rend”, which is short for “regular non-divisible”.
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Proof. First, suppose that V is Henselian. Consider the formula

φε(x) := “∃y(yp − yp−1 = εxp)”.

We show that φε is a definition of Φε.
On one hand, suppose a ∈ K such that φε(a) is true. Then there is some b ∈ K

such that bp − bp−1 = εap. Notice that because p - v(ε), v(εap) can not equal zero.
If v(εap) < 0, then v(bp − bp−1) < 0, which implies that v(b) < 0 and v(bp − bp−1) =
v(bp) = pv(b) = v(εap) = v(ε) + pv(a). But this implies that p | v(ε), contradicting
the assumption. Thus v(εap) > 0, and a ∈ Φε.

On the other hand, suppose that a ∈ K such that a ∈ Φε, namely v(εap) > 0,
then consider the polynomial f(Y ) = Y p − Y p−1 − εap ∈ V [Y ]. The polynomial
resv(f)(Y ) = Y p − Y p−1 = Y p−1(Y − 1) has a simple zero Y = 1 in Kv. Thus by
Hensel’s Lemma, there is some b ∈ K such that bp− bp−1 = εap, which means φε(a) is
true in K.

The proof for the other two cases of the hypothesis are more or less the same. The
formula for the second case is “∃y(yp − 1 = εxp)” and the formula for the third case
is “∃y(yp − yp−1 = εxp)”. For the last two cases, instead of Hensel’s Lemma, we use
the p-Hensel’s Lemma (see Fact 2.1.5) and Fact 2.3.2.

Corollary 2.3.4. Suppose that the valued field (K,V ) satisfies one of the following
conditions:

• V is Henselian;

• V is p-Henselian, ζp ∈ K, char(Kv) 6= p;

• V is p-Henselian, char(K) = p.

If vK is discrete, then V is Lr-definable over K.

Proof. Let v(ε), with ε ∈ K, be the smallest positive element in vK. Then p - v(ε)
for some prime (in fact all primes) p. So by Lemma 2.3.3, Φε = {x ∈ K | v(εxp) > 0}
is Lr-definable over K.

Clearly V ⊆ Φε. On the other hand, if a 6∈ V , then v(εap) < 0 since v(ε) is the
smallest positive element in vK, which means a 6∈ Φε.

Therefore V = Φε and we conclude that V is Lr-definable over K.

Now we are ready to prove our main theorem of this chapter:

Theorem 2.3.5. Suppose that the valued field (K,V ) satisfies one of the following
conditions:

• V is Henselian;

• V is p-Henselian, ζp ∈ K, char(Kv) 6= p;
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• V is p-Henselian, char(K) = p.

If vK contains a convex p-rendible subgroup C, then V is Lr-definable over K.

Proof. The case where vK is discrete has already been proved in Corollary 2.3.4.
Thus we may assume that vK is dense.

Let ε ∈ K be such an element that v(ε) ∈ C and p - v(ε). By Lemma 2.3.3, the
set Φε = {x ∈ K | v(εxp) > 0} is Lr-definable over K.

Suppose first that V is Henselian. Let Ψε be the set {εxp | v(εxp) > 0}. Define
the set

Ωε :=
{
xp − xp−1 ∈ K

∣∣(∃y ∈ K) (∃z ∈ Ψε)
[
z
(
yp − yp−1

)
= xp − xp−1

]}
.

It is clear that Ωε is Lr-definable over K. We show that Ωε = mv. The valuation ring
is then Lr-definable as K\(mv\{0})−1.

On one hand, if a ∈ Ωε, then there is some x ∈ K such that xp−xp−1 = a and there
are y ∈ K and z ∈ Ψε such that z(yp− yp−1) = xp− xp−1. Notice that Ψε ⊆ mv. So if
it were the case that v(a) ≤ 0, then v(z(yp−yp−1)) = v(xp−xp−1) = v(xp) ≤ 0, which
means v(z) + v(yp − yp−1) ≤ 0; because v(z) > 0, this implies that v(yp − yp−1) < 0;
thus we get v(z)+pv(y) = pv(x). But because p - v(z), the last equality is impossible,
hence a contradiction.

On the other hand, if a ∈ mv, then by Hensel’s Lemma, there is some x ∈ K
such that xp − xp−1 = a. Because C is p-rendible and vK is dense, there is some
element g ∈ K satisfying −v(ε) < v(gp) < v(a)− v(ε). Let z be the element εgp, then
0 < v(z) < v(a). Thus, by Hensel’s Lemma again, there is some y ∈ K such that
yp − yp−1 = a/z, because v(a/z) > 0. Therefore, a ∈ Ωε.

For the case where V is p-Henselian, ζp ∈ K and char(Kv) 6= p, one can prove
similarly (using p-Hensel’s Lemma) that mv is the set

{xp − 1 ∈ K |(∃y ∈ K) (∃z ∈ Ψε) [z (yp − 1) = xp − 1]} .

Similarly, if V is p-Henselian and char(K) = p, then one proves that mv is the set

{xp − x ∈ K |(∃y ∈ K) (∃z ∈ Ψε) [z (yp − y) = xp − x]} .

In short, in all cases, V is indeed Lr-definable over K, using ε as the only param-
eter.

The conclusion of the main theorem is that the valuation ring is Lr-definable with
a single parameter. We can in fact improve the result to show that it is Lr-definable
without parameters (0-definable), with stronger assumptions of course. To do this,
we use Ax’s trick from [Ax, 1965] and include the details of the argument.

Lemma 2.3.6. Suppose that the valued field (K,V ) satisfies the following conditions:

• V is Henselian, char(Kv) 6= p;
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• V is p-Henselian, ζp ∈ K, char(Kv) 6= p.

If vK is p-rendible and discrete, then V is Lr-definable over K without parameters.

Proof. For any ε ∈ K, we define the following sets:

Φ′ε := {x ∈ K | v(εxp) > 0},
Φε := {x ∈ K | ∃y(yp − 1 = εxp)},
Φ′′ε := {x ∈ K | v(εxp) ≥ 0}.

It follows from Hensel’s Lemma or p-Hensel’s Lemma that we have Φ′ε ⊆ Φε; if p - v(ε),
then Φ′ε = Φε = Φ′′ε .

We show that Φε ⊆ Φ′′ε provided that ε is not a pth-power. Suppose towards a
contradiction that x ∈ Φε but v(εxp) < 0. Then since there is some y ∈ K such that
yp − 1 = εxp, 0 > pv(y) = v(ε) + pv(x). Therefore, p | v(ε). We have

1−
(

1

y

)p
= ε

(
x

y

)p
,

thus

resv(1) = resv

(
ε

(
x

y

)p)
.

Therefore the polynomial f(Y ) = Y p − εxp/yp ∈ V [Y ] has the property that resv(f)
has a simple root in Kv, hence it has a root in K as well. But this contradicts the
assumption that ε is not a pth-power.

To prove the lemma, we use Ax’s trick in [Ax, 1965], taking the union of Φε for
suitable ε. Define the set

R := {x ∈ K | x ∈ Φε for some ε, with the property that

ε is not a pth-power and Φε is closed under multiplication }.

Then V = R. To see this, on one hand, if v(ε) is the smallest positive element of the
value group, then we have seen in Corollary 2.3.4 already that Φε is actually V . It
follows that V ⊆ R.

On the other hand, we are done if we can show that for any ε not a pth-power,
Φε ⊆ V if Φε is closed under multiplication. To see this, we notice that since Φε ⊆ Φ′′ε ,
if v(ε) ≤ 0, then Φε ⊆ V is already true, because then for any x ∈ Φε, pv(x) ≥ −v(ε) ≥
0. So we just to need to focus on the situation where v(ε) > 0. Notice that if v(ε) > 0,
then for any x ∈ Φε, pv(x) ≥ −v(ε); in fact, for any x ∈ Φε, pv(x) > −v(ε), because
otherwise x2 ∈ Φε as Φε is closed under multiplication, but v(ε(x2)p) = −v(ε) < 0,
contradicting the fact that Φε ⊆ Φ′′ε .

Therefore, suppose towards a contradiction that there is some w ∈ Φε with v(w) <
0, then v(ε) > 0 and pv(w) > −v(ε). Because Φ′ε ⊆ Φε, and vK is p-regular, we can
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then in particular find one p-divisible element in the interval (−v(ε),−v(ε) + pγ]; we
can thus assume that w satisfies the condition that

0 > −v(ε) + pγ ≥ pv(w) > −v(ε),

where γ ∈ vK is the smallest positive element in vK. But then since Φε is closed under
multiplication, wn is in Φε as well, for all positive integer n. But since −v(ε) < p(−γ),
v(wp) ≤ −v(ε) + pγ, and γ is the smallest positive element in vK, we have

(p+ 1)v(wp) ≤ (p+ 1)(−v(ε) + pγ) ≤ −v(ε) < 0.

This means v(ε(wp+1)p) ≤ 0, contradicting the fact that wp+1 ∈ Φε as Φε is closed
under multiplication and v(εxp) 6= 0 for all x ∈ Φε.

We therefore conclude that R is indeed exactly V , which is Lr-definable over K
without parameters.

Lemma 2.3.7. Suppose that (K,V ) is a Henselian valued field with vK being p-
rendible and dense. Then V is Lr-definable over K without parameters.

Proof. For any ε ∈ K, we define the following sets:

Φ′ε = {x ∈ K | v(εxp) > 0},
Ψ′ε = {εxp | x ∈ Φ′ε},
Φε = {x ∈ K | ∃y(yp − yp−1 = εxp)},
Ψε = {εxp | x ∈ Φε}.

Then Ψ′ε contains arbitrarily small positively valued elements in K, because vK is
p-regular, as we have seen before. Also Ψ′ε ⊆ Ψε, and if p - v(ε), then Φε = Φ′ε.

Define the set

Ωε =
{
xp − xp−1

∣∣(∃y ∈ K) (∃z ∈ Ψε)
[(
yp − yp−1

)
z = xp − xp−1

]}
.

We have seen that because of Hensel’s Lemma, mv ⊆ Ωε, and when it is the case that
p - v(ε), we also have Ωε = mv.

Thus the set
⋂
ε6=0 Ωε is exactly mv, which implies that V is Lr-definable over K

without parameters.

Remark 2.3.8. One can prove similarly, using the p-Hensel’s Lemma, that if (K,V )
is p-Henselian, ζp ∈ K, char(Kv) 6= p, vK is p-rendible, then V is Lr-definable over
K without parameters.

Theorem 2.3.9. Suppose that (K,V ) is Henselian with vK being rendible. Then V
is Lr-definable over K without parameters.

Proof. If vK is dense, then by Lemma 2.3.7, V is Lr-definable over K without
parameters.
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If vK is discrete, then the value group is p-rendible for all primes p. Choose one
p, such that char(Kv) 6= p. By Lemma 2.3.6, V is also Lr-definable over K without
parameters.

Because every Z-group is rendible and every non-divisible archimedean ordered
abelian group is also rendible, Theorem 2.3.9 is a generalization of both Fact 2.1.1
and Fact 2.1.10.

2.4 Some miscellaneous connections

The results in the previous section give sufficient conditions on the value group for
a valuation ring to be Lr-definable. None of these conditions are necessary. Indeed,
given any ordered abelian group, there is always a valued field whose value group is
that group and whose valuation ring is definable without parameters.

Remark 2.4.1. Given an ordered abelian group G, consider the value field K :=
Q((tG)) with the natural valuation ring V . Then K is an ordered field with respect to
the lexicographic ordering induced from K. By Lemma 4.3.6 of [Engler and Prestel,
2005], every Henselian valuation ring on K is convex, hence comparable (in terms
of set inclusion) to the natural valuation ring V . But V is the smallest 2-Henselian
valuation with a residue field which is not 2-closed. Clearly Kv is not Euclidean, and
ζ2 ∈ K. We thus conclude that V is the canonical 2-Henselian valuation of K, which
is Lr-definable over K without parameters, by Fact 2.1.8.

Under certain circumstances, Theorem 2.3.5 follows from Fact 2.1.8. Let us begin
with a lemma.

Lemma 2.4.2. If K is p-closed, then for any valuation ring V on K, Kv is p-closed;
if furthermore ζp ∈ K or char(K) = p, then vK is p-divisible.

Proof. For the fact that Kv is p-closed, see Theorem 4.2.6 of [Engler and Prestel,
2005]. Here we prove that vK is p-divisible if ζp ∈ K or char(K) = p.

If ζp ∈ K (and char(K) 6= p), suppose towards a contradiction that there is some
γ ∈ vK which is not p-divisible. Then pick some a ∈ K such that v(a) = γ; the
polynomial Xp − a is separable over K, so it splits over the separable closure of
K. Let L = K(λ) be the splitting field of Xp − a. By Theorem 2.4 of Chapter 7
in [Karpilovsky, 1989], L/K is a cyclic extension of degree diving p. But then [L : K]
has to be p, which in turn implies that λ ∈ K(p) = K, a contradiction.

If char(K) = p, then again, suppose towards a contradiction that there is some
γ ∈ vK which is not p-divisible and negative. Then pick some a ∈ K such that
v(a) = γ; the polynomial Xp − X − a can not have a solution in K (otherwise
p | v(a)). But then Theorem 2.7 of Chapter 7 in [Karpilovsky, 1989] implies that
Xp − X − a gives rise to a p extension, which must be contained in K(p) = K, a
contradiction.
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Example 2.4.3. It is possible for a p-closed field, not to have a primitive p-th root
of unity, and to be of characteristic other than p, in which case, the value group could
be not p-divisible. An example given by Koenigsmann to the author through personal
communication is the following: consider a prime l 6= p and l, p > 2 satisfying l 6≡ 1
mod p, then Ql(p) does not have a primitive p-th root of unity. It can be proved (see
e.g. [Serre, 1979]) that Ql(p) is unramified over Ql, which means that the value group
is still Z, not p-divisible.

Corollary 2.4.4. Let K be a field which is not p-closed. Suppose that ζp ∈ K, or
char(K) = p, or when p = 2, the residue field of Op is not Euclidean. If V is a
p-Henselian valuation on K with vK containing a convex p-rendible subgroup C, then
V is not finer than Op (i.e. Op ⊆ V ) and is Lr-definable over K.

Proof. We first show that if ζp ∈ K, then for any valuation ring W with char(Kw) 6=
p, Kw has a primitive p-th root of unity. This is because, if ζp ∈ K, then resw(ζp)

p = 1
is also true, which means if resw(ζp) 6= 1, then Kw has a primitive p-th root of
unity. But it is impossible for resw(ζp) to be 1, otherwise we have 0 = resw(0) =
resw(1 + ζp + ζ2

p + · · · + ζp−1
p ) = p in Kw, which contradicts the assumption that

char(Kw) 6= p.
Since V is always comparable with Op by Fact 2.1.6, there are two cases.
Suppose that Op ⊆ V . Then there exists some convex subgroup ∆ of the value

group opK such that (opK)/∆ is isomorphic to vK. Pick any element a ∈ K such
that 0 < v(a) + ∆ ∈ C and v(a) + ∆ is not p-divisible in C. Let g = v(a). Then
An(g) in opK is exactly ∆, since B(g) in opK has the property that B(g)/∆ is not
p-divisible and p-regular in vK, which implies that An(g) is at least ∆ (Fact 2.2.6)
and at most ∆ (p-regularity). But then by Theorem 2.2.9, ∆ is definable, and hence
V is definable from Op. So V is Lr-definable over K (using a as the only parameter).

Suppose now that V ( Op. Then the residue field (Kop) is p-closed by the
definition of Op. Then Op corresponds to a convex subgroup ∆ of vK, which also
contains a convex p-rendible subgroup. Also, V induces a valuation on Kop with
the value group being ∆. But ∆ is not p-divisible, therefore Kop is not p-closed;
otherwise, since either ζp ∈ Kop or char(Kop) = p, ∆ has to be p-divisible. Therefore,
we get a contradiction which means that this situation can not occur.

Combining our main theorem and Corollary 2.4.4, we get the following.

Corollary 2.4.5. Suppose that the valued field (K,V ) satisfies one of the following
conditions:

• V is Henselian;

• V is p-Henselian, ζp ∈ K;

• V is p-Henselian, char(K) = p.
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If vK contains a convex p-rendible subgroup C, then V is Lr-definable over K (using
a single parameter).

In terms of defining a valuation ring up to the equivalence of topologies, we have
the following results. Let us still begin with a lemma.

Lemma 2.4.6. Suppose that G is an ordered abelian group with a non-dense principal
p-regular rank. Suppose that G is not p-divisible. Then there exists some convex
subgroup C of G such that G/C contains a convex p-rendible subgroup.

Proof. It is enough to show that B(g)/Ap(g) is not p-divisible for some g > 0. By
assumption, there are some g1 < g2 such that Ap(g1) ( Ap(g2) and for all g1 < g ∈
Ap(g2), Ap(g) = Ap(g1). We may assume that g1 6= 0. Because B(g2)/Ap(g1) is not
p-regular, the equality

B(g2)/Ap(g2) =
B(g2)/Ap(g1)

Ap(g2)/Ap(g1)

implies that either B(g2)/Ap(g2) is not p-divisible, or for some g1 < g ∈ Ap(g2), we
have that B(g)/Ap(g) = B(g)/Ap(g1) is not p-divisible.

Remark 2.4.7. It is actually possible for an ordered abelian group G to be not p-
divisible and yet G/C p-divisible for all non-zero convex subgroup C. An example
of such a group is given in [Conrad, 1955]. A similar example was also provided by
Delon through personal communication.

Inspired by their examples, we give an example of an ordered abelian group G
which is not p-divisible, but for any convex subgroup C, G/C does not contain a
convex p-rendible subgroup. Such a group, of course, is going to have a dense principal
p-regular rank.

Let I = Q be our index set with the usual ordering for Q, and let Gi
∼= (Q,+, <)

be our ordered abelian group with index i ∈ I. Then we have the direct product of
abelian groups

∏
i∈I Gi, which has an ordered subgroup

H :=
∏′

i∈I

Gi =

{
g = (gi) ∈

∏
i∈I

Gi

∣∣∣∣∣ supp(g) is well-ordered

}
,

where (gi) < (hi) if gi0 < hi0 with i0 = min{i | gi 6= hi}.
Given a < b ∈ Q, let s(a, b) be the sequence {b− (b−a)/n}∞n=1. Define an element

es(a,b) = (ei) of the direct product by

ei =

{
1, i ∈ s(a, b),
0, i 6∈ s(a, b).

Now, let G be the ordered abelian subgroup of H generated by
⊕

i∈I Gi and all
the elements of the form es(a,b).
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If C1 and C2 are two different convex subgroups of G such that C1 ( C2 then
C2/C1 is not p-divisible. It follows that, G has the property we want in the beginning
of this remark. Indeed, es(a,b)/2 +C1 is always not in C2/C1 for a < b (as elements of
I) with C1 < G>0

b < G>0
a ⊆ C2.

Theorem 2.4.8. Suppose that the valued field (K,V ), with K not p-closed, satisfies
one of the following conditions:

• V is Henselian;

• V is p-Henselian, ζp ∈ K;

• V is p-Henselian, char(K) = p.

If vK is not p-divisible with a non-dense principal p-regular rank, then there exists
some non-trivial valuation ring containing V (hence inducing the same topology),
which is Lr-definable over K.

Proof. This is a direct consequence of Corollary 2.4.5 and Lemma 2.4.6.

There is also some connection the Independence Property. Recall that a complete
theory T in some first-order language L is said to have the Independence Property
if there is some L -formula φ(~x, ~y) such that, for every model M of T , and for all n,

there are ~a1, . . . ,~an ∈M and {bJ}J⊆{1,...,n} ⊆M such that M |= φ(~ai,~bJ) if and only
if i ∈ J .

Corollary 2.4.9. Suppose that the valued field (K,V ) is Henselian; suppose further-
more that char(Kv) = 0 and vK contains a convex p-rendible subgroup. Then K as a
field in Lr does not have the Independence Property if and only if K as a valued field
in Ldiv does not have the Independence Property if and only Kv as a field in Lr does
not have the Independence Property.

Proof. The first equivalence is true because V is Lr-definable over K. The sec-
ond equivalence is a direct consequence of a theorem due to Delon in [Delon, 1981]
(Théorème 8), but see [Kaplan et al., 2011] Fact 5.2 for the version we need (that is,
a Henselian valued field of residue characteristic 0 has the Independence Property if
and only if the residue field has the Independence Property).
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Chapter 3

T-convexly valued o-minimal fields

Moving away from definable valuations, starting from this chapter, we will focus on
valued fields whose valuations are not definable (in the smaller language). Typical
examples of fields on which non-trivial valuations are not definable, are o-minimal
fields and stable fields. On an o-minimal field, a non-trivial convex valuation ring
is not definable in the smaller language because there is not any definable convex
subring on the field; on a stable field, a non-trivial valuation ring is not definable
because stable theories do not have the Order Property. In the following chapters, we
focus on these two kinds of fields endowed with valuations.

Let L be a first-order language containing the language of ordered rings Lor :=
Lr∪{<}. In terms of definability, because we are going to work with o-minimal fields
(which are real closed fields) on which the orderings are always Lr-definable, it does
not matter whether we consider languages containing Lr or Lor.

3.1 Preliminaries

We refer the reader to [van den Dries, 1998] for basic knowledge about o-minimal
structures, and to [Marker, 2002] for a summary about real closed fields.

Suppose R is a set, on which ‘<’ is a linear ordering. A subset C of R is convex if
for all a, b, c ∈ R with a < b < c, a, c ∈ C, it always follows that b ∈ C. An interval
is a convex subset of R quantifier-free definable in the language {<}. We will use the
usual notation for intervals, e.g. (a, b), [a, b), etc., where a, b could be ±∞; notice that
an interval could be just a point, or even empty. An ordered commutative ring
(R,<) is a commutative ring R (0 6= 1) with an ordering ‘<’ which respects the ring
operations (and satisfying that 0 < 1). An ordered field is an ordered commutative
ring which is also a field. An ordered field has a natural order topology associated
to its ordering, which makes it a topological field.

A first-order structure R, with the universe R, in a language containing the order
relation ‘<’ so that R is linearly ordered, is o-minimal if every definable subset of R
is a finite union of intervals. A field R is real closed if it does not have any proper
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algebraic extension which is also an ordered field. A real closed field is o-minimal
in the language of ordered rings. It is well-known that if R is real closed, then an
element is non-negative if and only it is a square. In fact, an ordered field is real
closed if and only if all of the non-negative elements are squares and every odd degree
polynomial has a root. The class of all real closed fields is an elementary class in Lor,
whose theory is usually denoted by RCF. It is well-known that RCF has quantifier
elimination in Lor.

Fact 3.1.1 ([van den Dries, 1998]). Suppose that R is an o-minimal field in the
language L containing Lor. Then R has the Intermediate Value Property, that
is, if f : [a, b]→ R is definable and continuous, then for any value d between f(a) and
f(b), there is some c ∈ [a, b] with f(c) = d.

There is an important theorem which is the so-called Monotonicity Theorem for
an o-minimal structure.

Fact 3.1.2 (see e.g. [van den Dries, 1998]). Suppose that R is an o-minimal structure
with the universe R. Let f : (a, b)→ R be a definable function. Then there are points
a1, . . . , ak ∈ (a, b) such that on each sub-interval (aj, aj+1), with a0 = a, ak+1 = b, the
function is either constant, or strictly monotone and continuous.

Different from minimality and immediate expansions, o-minimality is a first-order
property, that is, if R is o-minimal in a language L ′ and R ′ is L ′-elementarily
equivalent to R, then R ′ is also o-minimal. This is a consequence of an important
theorem called the Cell Decomposition Theorem.

Definition 3.1.3 ([van den Dries, 1998]). Suppose that R is an o-minimal structure.
Let (i1, . . . , im) be a sequence of zeros and ones. An (i1, . . . , im)-cell is a definable

subset of Rm obtained by induction on m as follows:

1. a (0)-cell a singleton {r}; a (1)-cell is an open interval (a, b);

2. an (i1, . . . , im, 0)-cell is the graph of a definable and continuous function on an
(i1, . . . , im)-cell; (i1, . . . , im, 1)-cell is a subset of a set of the form {(~x, y) ∈
X × R} with X being an (i1, . . . , im)-cell, satisfying the property that there are
two functions f < g being definable and continuous function, or the constant
functions −∞,+∞, such that f(~x) < y < g(~x).

Definition 3.1.4 ([van den Dries, 1998]). Suppose that R is an o-minimal structure.
A decomposition of Rm is a special kind of partition of Rm into finitely many

cells, defined by induction on m as follows:

1. a decomposition of R is a finite set of disjoint intervals whose union is R;

2. a decomposition of Rm+1 is a finite partition of Rm+1 into cells A such that the
set of projections π(A) (from Rm+1 into Rm) is a decomposition of Rm.
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A decomposition of Rm partitions a set S ⊂ Rm if S is a union of cells in the
decomposition.

Fact 3.1.5 (Cell Decomposition Theorem, [van den Dries, 1998]). Suppose that R is
an o-minimal structure.

(1) Given any definable sets A1, . . . , Ak ⊂ Rm there is a decomposition of Rm

partitioning each of A1, . . . , Ak;
(2) For each definable function f : A → R, A ⊆ Rm, there is a decomposition D

of Rm partitioning A such that the restriction f |B : B → R to each cell B ∈ D with
B ⊆ A is continuous.

Remark 3.1.6 ([van den Dries, 1998]). Suppose that R is an o-minimal field in
the language L containing Lor. Let X ⊆ R be a definable nonempty set. We can
“definably pick” an element e(X), uniformly for all X. If X has a least element, then
let e(X) be that element; otherwise, let a = inf X, b = sup{x ∈ R | (a, x) ⊆ R} and
let

e(X) :=


0, a = −∞, b = +∞,
b− 1, a = −∞, b ∈ R,
a+ 1, a ∈ R, b = +∞,
(a+ b)/2, a, b ∈ R.

This procedure can be performed inductively to the higher Cartesian powers of R. In
view of this, it follows that R in fact has definable Skolem functions.

Fact 3.1.7 (Definable Choice, [van den Dries, 1998]). Suppose that R is an o-minimal
field in L containing Lor.

(1) If S ⊆ Rm+n is definable and π : Rm+n → Rm the projection on the first m
coordinates, then there is a definable map f : πS → Rn such that the graph of f is
contained in S.

(2) Each definable equivalence relation on a definable set X has a definable set of
representatives.

Definition 3.1.8 ([Dickmann, 1987]). Suppose that M is a first-order structure in
a language containing a linear ordering. Then M is weakly o-minimal if every
definable subset of M is a finite union of definable convex subsets of M . A theory is
weakly o-minimal if all of its models are.

Definition 3.1.9. Suppose that (R,<) is an ordered field. A valuation ring V on R
is called a convex valuation (ring) if V is convex with respect to the ordering ‘<’
on R. In this case R is called a convexly valued field.

Remark 3.1.10. If V is a convex valuation ring on R, then for all x, y ∈ R, with
|x| < |y|, we know that y 6= 0 and |x/y| < 1; thus since ±1 ∈ V , we have x/y ∈ V ,
i.e. v(x) ≥ v(y). Therefore, we have

|x| ≤ |y| =⇒ v(x) ≥ v(y).

29



Ph.D. Thesis - J. Hong; McMaster University - Mathematics

The contra-positive of this statement is for all x, y ∈ R,

v(x) < v(y) =⇒ |x| > |y|.

Proposition 3.1.11 (cf. [van den Dries and Lewenberg, 1995]). Suppose that R is
an o-minimal field in a language L containing Lor and V is a convex valuation ring
on R. Suppose that the expansion (R, V ) of R to the language L ∪ {V } (‘V ’ as a
predicate for V ) has quantifier elimination. Then (R, V ) is weakly o-minimal.

Proof. It is enough to show that every realization set of an atomic L ∪{V }-formula
in R is a finite union of definable convex sets. If the atomic L ∪{V }-formula is an L -
formula, this follows from the o-minimality of R. Otherwise, the atomic formula is of
the form V (f(x)), where f(x) is an L -definable function on R. By the Monotonicity
Theorem, the domain of f can be decomposed into a finite union of intervals, on each
of which f is either constant or continuously monotone; then by Remark 3.1.10, the
realization set of V (f(x)) has to be a finite union of definable convex subsets of R.

Let RCVF be the theory of real closed fields with non-trivial convex valuation
rings, in the language Lor ∪ {|}.

Fact 3.1.12 ([Cherlin and Dickmann, 1983]). RCVF has quantifier elimination.

It follows that RCVF is weakly o-minimal.

Fact 3.1.13 ([Haskell and Macpherson, 1998]). RCVF OM RCF.

It is natural to ask whether one can generalize Fact 3.1.13 to a more general
context, for example, to valued o-minimal fields (i.e. o-minimal fields endowed
with a valuation). The framework of T-convex valuation rings on o-minimal fields
provides a good context for our investigation. It is perhaps not a surprise, since
the original motivation of the work on T-convexity was to generalize the quantifier
elimination for RCVF to more general valued o-minimal fields.

Definition 3.1.14. Suppose that T is a complete o-minimal theory extending RCF
(in the language L containing Lor). Suppose that R |= T . A convex subring1 V of
R is T -convex if every continuous function f : R→ R which is L -definable without
parameters has the property that f(V ) ⊆ V .

Suppose that T is a complete o-minimal theory extending RCF in L (containing
Lor), R |= T , and V is a non-trivial T -convex valuation ring on R. Let TV be the
theory of (R, V ) in the language L ∪ {V }.

Fact 3.1.15 ([van den Dries and Lewenberg, 1995]). If T admits quantifier elimination
and universal axiomatization, then TV admits quantifier elimination.

1A convex subring is in fact the same as a convex valuation ring.
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The following is usually called expansion by definition. Suppose that T is a com-
plete theory in the language L . For each n ≥ 1 and for every φ(x1, . . . , xn; y), an
L -formula, such that

T ` ∀x1 · · · ∀xn∃!yφ(x1, . . . , xn, y),

we add to the language L a function symbol fφ and add to the theory T the defining
axiom

∀x1 · · · ∀xnφ(x1, . . . , xn, fφ(x1, . . . , xn)),

then, we get a new theory T df in the new language L df extending T .
An immediate corollary of Fact 3.1.15 is the following:

Fact 3.1.16 ([van den Dries and Lewenberg, 1995]). Suppose that T is a complete
o-minimal theory extending RCF in L , R |= T and V is a non-trivial T -convex
valuation ring on R. Then (T df)V admits quantifier elimination.

3.2 The main theorem

In this section, we generalize Fact 3.1.13 to T -convexly2 valued o-minimal fields. The
original proof in [Haskell and Macpherson, 1998] of Fact 3.1.13 uses a result in [Holly,
1995], which is not used in our proof.

Throughout this section, we assume that T is a complete o-minimal theory ex-
tending RCF in the language L containing Lor, R |= T , and V is non-trivial convex
valuation in R.

3.2.1 The proof

Definition 3.2.1 ([Macpherson et al., 2000]). A cut in R is a pair of subsets (C1, C2)
of R such that C1 < C2 and R = C1 ∪ C2. A cut (C1, C2) is called valuational if
there is some positive element ε ∈ R such that

(∀x ∈ C1)(∀y ∈ C2)(y − x > ε).

A cut is non-valuational if it is not valuational.

Definition 3.2.2. Let C be a non-empty convex subset of R. We say that C is right-
valuational if C is bounded from above and the cut ({x ∈ R|∃y ∈ C, x ≤ y}, {x ∈
R|x > C}) is valuational. We say C is left-valuational if C is bounded from below
and the cut ({x|x < C}, {x|∃y ∈ C, x ≥ y}) is valuational. And C is valuational if

2The author uses ‘T -convexly’ instead of ‘T -convex’ here because we say a valuation is T -convex,
not a valued o-minimal field is T -convex. This is different from the ‘regular ordered abelian group’
scenario.
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C is right-valuational or left-valuational. We say C is non-valuational if C is not
valuational. We say that ∅ and R are non-valuational.

Remark 3.2.3. Note that any non-trivial convex valuation ring V is a valuational
convex subset of R. Indeed, let x ∈ V and y ∈ R\V , then v(x− y) = v(y) < 0 = v(n)
for any n ∈ Z; and since V is convex, |x− y| > n for any n ∈ Z by Remark 3.1.10; it
then follows that V is both left-valuational and right-valuational.

Remark 3.2.4. If C is a convex subset of R which is right-valuational, then it clearly
follows that C does not have a right-endpoint, i.e. a point that is smaller than any
other point bigger than C and any other point in C.

Lemma 3.2.5. If TV has quantifier elimination, then for any given parameter set
X ⊆ R, its L ∪ {V }-algebraic closure in R is the same as its L -algebraic closure in
R.

Proof. It is obviously true that the L -algebraic closure is always contained in the
L ∪{V }-algebraic closure. Since we have the ordering of the underlying field involved,
the algebraic closure of X is the same as the definable closure of X regardless in L
or L ∪{V }. So it is enough to prove a stronger conclusion: if b is L ∪{V }-definable
using parameter set X, then b is L -definable using parameter set X.

Since we have quantifier elimination for TV , every formula can be written in dis-
junctive normal form. Therefore, we can assume that b is defined by the following
formula:

(3.2.1)
m∨
i=1

[θi(x,~a) ∧Wi1(gi1(x,~a)) ∧ · · · ∧Wini(gini(x,~a))] ,

where the θi are L -formulas and the gij are functions defined by L -terms (they are
actually L -terms) and each Wij is either V or ¬V ; and ~a is a tuple of parameters in
X.

By the assumption, we know that there exists some i0 with 1 ≤ i0 ≤ m such that
b is defined by

θi0(x,~a) ∧Wi01(gi01(x,~a)) ∧ · · · ∧Wi0ni0
(gi0ni0 (x,~a))

Note that the realization sets of θi and Wij are finite Boolean combinations of convex
sets. Thus either b is one endpoint of the realization set of θi0(x,~a), or there exists
some j0 with 1 ≤ j0 ≤ ni0 such that b is one endpoint of the realization set of
Wi0j0(gi0j0(x,~a)). Note that in both cases, b is inside the realization set. We are done
if it is the first case.

For the second case, we show that b is a point of discontinuity of gi0j0 ; and since
by Fact 3.1.2 gi0j0 has only finitely many points of discontinuity and we have the
ordering, b can be defined in the language L using gi0j0 without introducing additional
parameters.
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We write f := gi0j0 for convenience. We can assume that Wi0j0 is actually V and
b is a right endpoint of the realization set B := {x ∈ R|V (f(x, a))}, since the other
cases could be proved similarly.

Since B is a finite Boolean combination of convex sets and b is one of the right-
endpoints of B, we know that there exists some y 6∈ B such that (b, y)∩B = ∅, i.e. for
any z ∈ (b, y), v(f(z)) < 0. But then by Remark 3.2.3, |f(b)−f(z)| > n for all n ∈ Z.
Thus f is not continuous at b.

Lemma 3.2.6. Assume that TV has quantifier elimination. For any RV -definable set
A ⊆ Rl for some l, if the expansion of R to L ∪ {A}, denoted by RA, is o-minimal,
then A is definable in R.

Proof. It suffices to prove that each RA-cell (i.e. an L ∪ {A}-definable set which
is a cell in the o-minimal structure RA) is definable in R. We prove the following
assertions by induction on n:

(1)n Any RA-cell in Rn is L -definable using the same parameters;

(2)n any L ∪{A}-definable partial function f : Rn → R whose domain is an RA-cell
is L -definable using the same parameters.

(1)1 is evidently true by the definition of o-minimality and the invariance of the
algebraic closure; also (1)n+1 is clearly true by the definition of cells and the induction
hypothesis that (1)n and (2)n are true. So we just need to prove (2)n+1 assuming (1)n+1

and (2)n for any n > 0 ( if n = 0, we just assume that (1)1 is true).
Let MA be an ω-saturated elementary extension of RA, and M be the correspond-

ing reduct of MA to the language L . Then M is an elementary extension of R. It is
easy to see that if (1)n and (2)n are true for the pair M and MA, then they are also
true for R and RA. (Note that we are paying attention to the parameters.) By this
observation, there is no harm to assume that RA is ω-saturated.

Now suppose that f : C → R is an L ∪ {A}-definable function defined on an
RA-cell in Rn+1, and both f and C are L ∪ {A}-definable using ~a as parameters.
By the invariance of the definable closure, we know that for each ~x ∈ C, there exists
a function θ~x(·) defined on C in the language L , using parameters ~a, such that
θ~x(~x) = f(~x). Now, we consider

Γ(~x) := {f(~x) 6= θ~y(~x)}~y∈C ∪ {~x ∈ C}.

We claim that Γ(~x) is not consistent with RA. Otherwise, suppose that Γ(~x) is

satisfied by ~b in some model. Since RA is ω-saturated, we can assume that there is
some ~t ∈ Rn+1 realizing Γ(~x). But then this implies that there is some ~t ∈ C such
that for any ~y ∈ C, f(~t ) 6= θ~y(~t ), which is a contradiction.

Thus, it follows from the Compactness Theorem that there exists a finite sequence
~y1, . . . , ~ym such that

RA |= ∀~x ∈ C
m∨
i=1

(f(~x) = θ~yi(~x)).
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Now, for each i, the set

Xi := {~x ∈ C|f(~x) = θ~yi(~x)}

is L ∪ {A}-definable over R, hence L -definable in R by (1)n+1. And therefore f is
definable in R using the Xi and the θ~yi .

Lemma 3.2.7. Assume that TV has quantifier elimination, and A is an L ∪ {V }-
definable subset of Rl. If there is a convex valuational subset B of R which is L ∪{A}-
definable, then V is L ∪ {A}-definable.

Proof. Since TV has quantifier elimination, using the notation in (3.2.1), we can
assume that B is defined by

m∨
i=1

[θi(x,~a) ∧Wi1(gi1(x,~a)) ∧ · · · ∧Wini(gini(x,~a))] .

Since only finite intersections and unions are involved, by intersecting with some
appropriate interval I, we can further assume that B is defined by

θi(x,~a) ∩ I or Wij(gij(x,~a)) ∩ I

for some i and j and B is right-valuational (the other cases can be proved similarly).
It is impossible that we have the first case since any L -definable convex subset of R
is an interval, which is always non-valuational. Thus, we only need to consider the
second case.

Let α ∈ B and β > B; we may assume that for any x ∈ [α, β] ∩ B, we have
Wij(gij(x,~a)) and for any x ∈ [α, β]\B, ¬Wij(gij(x,~a)). By shrinking [α, β], we
can assume that gij is continuous on [α, β], because it has only finitely many points
of discontinuity, and B is right-valuational which means that B does not have a
right-endpoint (in particular, B can not have a right-endpoint which is a point of
discontinuity of gij). Furthermore, we can assume that Wij = V . Then by the
intermediate value property of o-minimal fields, the set

O = {y ∈ R||y| ≤ |gij(x,~a)|, for some x ∈ [α, β] ∩B}.

is the valuation ring V . Indeed, on one hand, O ⊆ V is obviously true because V is
convex. On the other hand, for any z ∈ V , if z is not in O, we would get

(3.2.2) |z| > |gij([α, β] ∩B,~a)|;

then since ¬V (gij(β,~a)) and z ∈ V , we know that |z| < |gij(β,~a)|, by Remark
3.1.10. By the intermediate value property, we would have some t ∈ [α, β] such
that |gij(t,~a)| = |z|. But t 6∈ [α, β] ∩ B by (3.2.2) and t 6∈ [α, β]\B since z ∈ V . This
contradiction proves that z ∈ O. Hence V = O is RA-definable.
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Theorem 3.2.8. Assume that TV has quantifier elimination, and A is an L ∪ {V }-
definable subset of Rl. Then either A is R-definable or V is RA-definable.

Proof. By the preceding lemma, it is enough to prove that an RV -definable convex
non-valuational subset B of R is an interval. Again, we can assume that B is defined
by V (f(x,~a)) ∩ [α, β] for some appropriate parameters α and β > B, and is not
right-valuational. But for any s ∈ B and any t ∈ [α, β]\B, we have |f(s)− f(t)| > n
for all n ∈ Z. Since B is non-valuational, we can choose s and t to be arbitrarily
closed, but this implies that f has a point of discontinuity in [α, β]. But [α, β] could
be shrunk, meaning that B has an endpoint as a point of discontinuity of f . Thus B
is an interval.

Theorem 3.2.9. If V is T -convex, then TV OM T .

Proof. Since V is T -convex, V is T df-convex; and T df
V admits quantifier elimination.

Every model of TV is of the form (R, V ) where R |= T and V is T -convex. Thus the
conclusion follows from Theorem 3.2.8.

3.2.2 Examples

Definition 3.2.10 ([van den Dries and Lewenberg, 1995]). An L -definable function
f : R → R is polynomially bounded if there is some n and a positive element
a ∈ R such that for all r > a, |f(r)| < rn. The structure R is called polynomially
bounded if every L -definable function is polynomially bounded. The theory T is
polynomially bounded if every model of T is.

The relation between T -convexity and polynomially bounded o-minimal theories
has been discussed quite thoroughly in [van den Dries and Lewenberg, 1995]. It is
pointed out that for a complete polynomially bounded o-minimal field theory T , if T
has an archimedean model, then every proper convex valuation is T -convex.

Fact 3.2.11 ([van den Dries and Lewenberg, 1995]). The following are equivalent:
(1) the theory T is polynomially bounded;
(2) for every R |= T , every convex subring containing the prime model is T -convex;
(3) some model of T is polynomially bounded.

Corollary 3.2.12. For every complete polynomially bounded o-minimal field theory
T , if T has an archimedean model, then TV OM T for every convex valuation ring on R.

Example 3.2.13. We know that RCF is polynomially bounded and has an archime-
dean model, hence (for any proper convex valuation V ) we have RCVF OM RCF (note
that V and ‘|’ are Lr-interdefinable). This is the former result of Haskell-Macpherson,
Fact 3.1.13.

We refer the reader to [van den Dries and Lewenberg, 1995] for related definitions
and discussion of the following examples.
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Example 3.2.14. Let Tan be the theory of the ordered field of reals with restricted
analytic functions, in the language of Lor augmented by a function symbol for each
restricted analytic function. Let R = (R,<, . . .) |= Tan. It can be shown that
every one-variable function which is definable without parameters in this theory is
polynomially bounded, thus every convex subring V of R is Tan-convex. Thus Tan,V

OM

Tan.

Example 3.2.15. Let Tan,powers be the theory of the ordered field of reals with re-
stricted analytic functions and power functions, in the language of Tan augmented by
function symbols for all power functions, where a power function is a function asso-
ciated with a real number α such that it maps x to xα if x > 0 and it maps x to 0
if x ≤ 0. Let R = (R,<, . . .) |= Tan,powers. It can be shown that every one-variable
function definable without parameters in this theory is polynomially bounded. Hence
for any proper convex valuation ring V , Tan,powers,V

OM Tan,powers.

Example 3.2.16. Let Tan,exp (resp. Texp) be the theory of the ordered field of reals
with restricted analytic functions (resp. just the theory of the ordered field of the
reals) and exponential function ex, in the language of Tan (resp. Lor) augmented by
the unary function symbol exp. Let R = (R,<, . . .) |= Tan,exp, (resp. R |= Texp).
It is shown in [van den Dries and Lewenberg, 1995] that a convex subring V of R
is Tan,exp-convex or Texp-convex if and only if exp(V ) ⊆ V . Thus, if exp(V ) ⊆ V ,
then both Tan,exp,V

OM Texp and Texp,V
OM Texp. In particular, the Log-exp series field

(see [van den Dries et al., 2001]) as a model of Tan,exp is an immediate reduct of the
valued o-minimal field structure.
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Chapter 4

Algebraically closed valued fields

In this chapter, we focus on the situation where K is an algebraically closed field with
a non-trivial valuation ring V . It has been proved in [Haskell and Macpherson, 1998]
that if one considers K := (K,V ) as an Lr∪{V }-structure, then it is always true that
K OM (K|Lr). Their original proof used the notion of C-minimality, and depended on
a result of Hrushovski (see [Haskell and Macpherson, 1998]) about strongly minimal
expansions of algebraically closed fields. In this chapter, we show that these two things
are not essential ingredients of the proof; we first give a review of their proof, without
using the notion of C-minimality; then we give a new proof, which detaches the result
from the theorem of Hrushovski about strongly minimal expansions of algebraically
closed fields. The idea of the new proof will be used to prove the immediateness of
the expansion in the context of separably closed valued fields of finite imperfection
degree in the next chapter.

For related definitions and results in classical algebraic geometry, we refer the
reader to the appendix. We want to emphasize that for an algebraic set Z in some
Kn and a subfield k ⊆ K, when we say “Z is definable over k”, it means that Z is
model-theoretically definable over k, i.e. it is the realization set of a first-order formula
with parameters coming from k; when we say “Z is defined over k”, it means we are
saying that the field of definition of Z is contained in k, i.e. the ideal associated to Z
is generated by polynomials with coefficients coming from k.

Throughout this chapter, let Ldiv be the language Lr∪{|}, where ‘|’ is the division
predicate for the valuation (i.e. x | y if and only v(x) ≤ v(y)).

4.1 Preliminaries

Let ACF be the first-order theory of algebraically closed fields, axiomatized in the
language Lr. Then

The following was first proved by Tarski. We refer the readers to, for example,
[Marcja and Toffalori, 2003] and [Hodges, 1993], for more discussions about this fact
and its history.
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Fact 4.1.1 (See e.g. [Marcja and Toffalori, 2003]). ACF has quantifier elimination.

It follows immediately that ACF is in fact strongly minimal, that is for every
model of ACF 1 the definable subsets of the universe are either finite or co-finite.

Let ACVF be the first-order theory of algebraically closed fields with a non-trivial
valuation, axiomatized in the language Ldiv (i.e. a collection of Ldiv-sentences ex-
pressing these properties).

Fact 4.1.2 ([Robinson, 1977]). ACVF has quantifier elimination.

Let K be a model of ACVF, with V as its valuation ring. The definable subsets
of K (in Ldiv) are well-understood—they are finite unions of “perforated discs”. In
fact, it is well-known that ACVF is C-minimal (but we are not going to discuss C-
minimality in this thesis).

Definition 4.1.3 (cf. [Holly, 1995]). A disc2 in K is a set of the form D>
v (a, γ) =

{x ∈ K | v(x − a) > γ} or D≥v (a, γ) = {x ∈ K | v(x − a) ≥ γ}, where a ∈ K and
γ ∈ vK ∪ {−∞} with −∞ < vK.

Notice that a disc could be empty, just one point or the whole field K. Every
infinite disc is topologically both open and closed. Every point inside a disc is also a
center of the disc. For two discs, either they are disjoint or one is contained in the
other. Given finitely many discs which are not K, there is always a larger disc, which
is also not K, containing them.

Definition 4.1.4 (cf. [Holly, 1995]). A perforated disc3 is a set of the form D\(E1∪
· · · ∪ En), where D,E1, . . . , En are discs in K.

It can be proved that

Fact 4.1.5 ([Holly, 1995]). Every definable subset ofK is a finite Boolean combination
of discs. In particular, every definable subset of K is a finite union of perforated discs.

The following theorem Theorem 4.1.9 about immediate expansions was originally
proved using C-minimality. Here we provide a somewhat “simplified” proof without
using C-minimality. The idea is essentially that of the original proof.

Lemma 4.1.6. Suppose that K |= ACVF, and E is a finite subset of K which is Ldiv-
definable using parameters ~a. Then E is contained in a finite Lr-definable subset of
K using parameters ~a. In other words, the model theoretic algebraic closure operator
is the same in K and in K|Lr.

1Strictly speaking, every model of the complete theory ACFp for some prime number p, where
ACFp is the theory of algebraically closed fields of characteristic p in the language Lr, because strong
minimality is only defined for complete theories.

2Note that one can define the same notion of a disc and a perforated disc on every valued field.
3In [Holly, 1995], a non-empty perforated disc is called a Swiss cheese. The author prefers the

former name, as it is more acceptable to him to say “a perforated disc” and “a finite union of
perforated discs” than to say “a Swiss cheese” and “a finite union of Swiss cheese(s)”.
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Proof. Because of the quantifier elimination, we can assume that E is defined by

(4.1.1)
∨
i

φi(x,~a) :=
∨
i

[∧j(pi,j(x) = 0) ∧ (gi(x) 6= 0) ∧ θi(x,~a)] ,

where pi,j and gi are polynomials using parameters in ~a, and θi is a finite conjunction
of formulas of the form s(x) | t(x) or s(x) - t(x). After re-writing the first-order
formula, we may assume that for each i, gi contains all the polynomials s(X), t(X)
(as factors) occurring in θi. For example, one can write s(x) | t(x) as

[t(x) = 0]
∨

[s(x) 6= 0 ∧ t(x) 6= 0 ∧ (s(x) | t(x))] ,

and then re-arrange the boolean combination after doing the replacement.

It is enough to prove that every element in E is contained in a finite Lr-definable
subset of K using parameters in ~a. So assume that b ∈ E. Then φi0(b,~a) is true in
K for some i0.

Because of the continuity of the polynomial functions with respect to the valuation
topology, and the assumption that all s(X), t(X) occur as factors of gi0(X), for every
c ∈ K, if v(b− c) is sufficiently large, then

K |= (gi0(c) 6= 0) ∧ θi0(c,~a),

as long as there are gi0 and θi0 occurring in the formula φi0(b,~a). Thus, for this i0,
the pi0,j(x) = 0 part must be non-empty, otherwise, E has to be infinite, because the
realization set of φi0(x,~a) would contain all the c such that v(c − b) is sufficiently
large. Therefore, b is contained in the set {x ∈ K | pi0,j(x) = 0} and we are done.

Lemma 4.1.7 (cf. [Haskell and Macpherson, 1998]). Suppose that F is an infinite
field with a valuation ring V . Assume that E is an infinite and co-infinite subset of
F which is a finite union of perforated discs (with respect to V ), then V is definable
over F in the language Lr ∪ {E}.

Proof. We may assume that V is a non-trivial valuation ring. Then the value group
vF is infinite.

Because E is infinite and co-infinite, after adding finitely many points and remov-
ing finitely many points, we may assume that E is⋃

i

(Di\ (Gi1 ∪ · · · ∪Giji)) ,

where Di, Gik are all discs defined using radii in vF ∪ {−∞}, i.e. they are all of the
form {x ∈ F | v(x − a) > γ} or {x ∈ F | v(x − a) ≥ γ} for some a ∈ F and
γ ∈ vF ∪{−∞} (namely, γ can not be +∞). We can also assume that this expression
is the shortest of this kind. It then follows that all the Di are different discs (as sets).
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In particular at most one of the Di is F ; replace E by its complement F\E if one of
the Di is F . We may thus assume that all the discs Di, Gij are not F .

Let H be a disc {x ∈ F | v(x− a) > γ} containing E with a ∈ E, γ 6= −∞.

By performing a translation x 7→ (x− a)/b with v(b) = γ, and replacing E by its
image, we can assume that H is mv and the image of E under v is an infinite subset
of the value group.

It follows that the image of E under the valuation map is a proper non-empty
subset of vF , say T (note that T is infinite). Let Lt = {x ∈ F | v(x) = t} for each
t ∈ vF .

We next prove that {x ∈ F | v(x) ∈ S} is definable over F in the language
Lr∪{E}, for some proper non-empty subset S of vF . Essentially, the discs containing
0 determine what S is (up to finitely many elements in vF ). There are two kinds of
discs (which are not F ), those containing 0 and those not containing 0. If a disc, say
{x ∈ F | v(x − c) > δ} contains 0, then this disc is the same as {x ∈ F | v(x) > δ},
because every point in the disc is a center of the disc; and in particular the disc
contains Lt for all t > δ. If {x ∈ F | v(x − c) > δ} does not contain 0, then
v(c) = v(0− c) ≤ δ, which means for any point d inside the disc, v(d) = v(c), namely
the disc is totally contained in Lv(c) (the same argument applies to discs of the form
{x ∈ F | v(x− c) ≥ γ}).

It is easy to see that because E is a finite union of perforated discs,

there are only finitely many t ∈ T such that

Lt ∩ E 6= ∅ and Lt ∩ E 6= Lt;
(4.1.2)

this (Lt ∩ E 6= ∅ and Lt ∩ E 6= Lt) occurs in the following two cases.

Suppose there is some t ∈ T such that Lt ∩ E, which is not empty and not
the whole Lt, contains the complement (in Lt) of a finite union of discs of the form
{x ∈ F | v(x−a) > γ} with γ ≥ v(a) = t or {x ∈ F | v(x−a) ≥ γ} with γ > v(a) = t.
Suppose the centers of the discs are a1, . . . , an. Then because there are infinitely many
elements in Lt, there always exists some u ∈ V \mv such that {uai}ni=1 ∩ {ai}ni=1 = ∅.
Replacing E by E ∪ uE (T would stay the same), we have that Lt ∩ E = Lt. After
doing this, Condition (4.1.2) remains true.

Suppose there is some t ∈ T such that Lt∩E is not empty and not the whole Lt, and
Lt∩E is contained in a union of finitely many discs of the form {x ∈ F | v(x−a) > γ}
with γ ≥ v(a) = t or {x ∈ F | v(x− a) ≥ γ} with γ > v(a) = t. Suppose the centers
of the discs are a1, . . . , an. Then because there are infinitely many elements in Lt,
there always exists some u ∈ V \mv such that {uai}ni=1 ∩ {ai}ni=1 = ∅. Then replacing
E by E ∩uE (T would stay the same, up to a finite subset), we have that Lt∩E = ∅.
After doing this, Condition (4.1.2) remains true.

After iterating this procedure, we can make sure that for each Lt, Lt∩E is either Lt
or ∅; we get some proper non-empty subset S of vF such that J := {x ∈ F | v(x) ∈ S}
is definable from E. The set S is the image of some finite Boolean combination of

40



Ph.D. Thesis - J. Hong; McMaster University - Mathematics

discs containing 0, under the valuation map. It follows that the set of units in the
valuation ring is

V × = V \mv = {u ∈ F | uJ = J}.

To see this, if v(u) = 0, then v(uj) = v(j) = v(u−1j) for any j ∈ J , thus uJ ⊂ J
and u−1J ⊂ J ; so uJ = J . On the other hand, suppose that uJ = J but v(u) > 0
(otherwise, consider u−1), then u translates those finitely many end-points of v(J) in
vF , which contradicts uJ = J .

It follows that the valuation ring is definable by V = V × ∪ (1 + V ×) in Lr ∪ {E},
because if x ∈ (V \V ×) = mv, then v(x− 1) = v(1) = 0, namely x ∈ 1 + V ×.

Fact 4.1.8 ([Hrushovski, 1992]). Suppose that the first-order structure M in a lan-
guage L ′ containing Lr, is strongly minimal and (M|Lr) |= ACF. If aclM(·) =
aclM|Lr(·), then M∼∼∼ (M|Lr).

Theorem 4.1.9 ([Haskell and Macpherson, 1998]). ACVF OM ACF; that is, for any
K |= ACVF, K OM (K|Lr).

Proof. By Theorem 1.3.10, we may assume that K is ω-saturated (otherwise, take an
ω-saturated Ldiv-elementary extension). Suppose that D ⊆ Kn is an Ldiv-definable
set.

First suppose that every definable subset of K in the language of Lr ∪ {D}, with
D being a new predicate, is either finite or co-finite, then K|(Lr ∪ {D}) is minimal.
Because K is ω-saturated, K|(Lr ∪ {D}) is actually strongly minimal. But then one
knows that the “acl(·)” operator stays the same in K and K|Lr, by Lemma 4.1.6. It
then follows from Fact 4.1.8 that D is definable over K in Lr already.

Now suppose that there is some definable subset of K in Lr ∪ {D} which is
infinite and co-infinite. Then by Lemma 4.1.7 and Fact 4.1.5, V is definable over K
in Lr ∪ {D}.

4.2 A new proof † ‡

As we have seen from the previous proof of the immediateness of the expansion, a
non-trivial result Fact 4.1.8 was used. Here we give another proof, which does not
depend on Fact 4.1.8. The technique of our new proof will also be “recycled” to be
used in the context of separably closed valued fields in the next chapter. The main
idea is that given an Ldiv-definable set E which is not Lr-definable, one should be
able to explicitly define from E an infinite and co-infinite subset of K, which would
then define the valuation ring, by Lemma 4.1.7.

†The research leading to these results has received funding from the [European Community’s]
Seventh Framework Programme [FP7/2007-2013] under grant agreement n◦ 238381.
‡The research leading to these results was done during the author’s 5-month stay in Université

Paris Diderot - Paris 7, under the supervision of Dr. Françoise Delon.
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Through out this section, we again use K = (K,V, . . .) to denote a model of ACVF.
Let us start with a simple example below.

Example 4.2.1. Suppose that E is defined by

E := {~x ∈ Kn |[f(~x) = 0] ∧ [v(g(~x)) > 0]} ,

where f, g ∈ K[ ~X]. If E is not Lr-definable, then V is Lr ∪ {E}-definable over K.

Proof. Suppose that E is not Lr-definable over K.
It is easy to see that the image of E under the polynomial g( ~X) is co-infinite, as

any element of negative valuation is not in the image. The image is also infinite, for
if not, name those finitely many elements ε1, . . . , εn. Then E is in fact defined by

[f(~x) = 0] ∧ [g(~x) ∈ {ε1, . . . , εn}] ,

so Lr-definable, contradicting the assumption.
Because g(E) is Ldiv-definable over K, it is a finite union of perforated discs.

Therefore, by Lemma 4.1.7, V is Lr ∪ {E}-definable.

Because in the language Lr, K is strongly minimal, for any Lr-definable set in
K, the image of that set under a rational function is always finite or co-finite. If for
the given Ldiv-definable set E, one can find a rational function which takes E onto
an infinite co-infinite subset of K, then V is definable in Lr ∪ {E} over K. Most of
the time, one can find such a function from the definition of E, like the one above.
However, in the following example, it is not easy to see which rational function satisfies
the desired property.

Example 4.2.2. Suppose that E is defined by

E :=
{

(x, y) | [v(x) ≥ 0 ∧ v(y) ≥ 0]
∨

[v(x) < 0 ∧ v(y) < 0]
}
.

Then V is Lr ∪ {E}-definable over K.

Proof. The set {(a, y) | (a, y) ∈ E} for any a ∈ K is an infinite and co-infinite subset
of K, which defines the valuation ring.

Instead, in this example, the intersection with a line is the infinite and co-infinite
subset of K we need. The method of intersecting the set with a line does not always
work, although it works quite well when both E and its complement are Zariski-dense
in the ambient affine space.

Example 4.2.3. Suppose that E is defined by

E :=
{

(x, y) | (f(x, y) = 0)
∧

∧[
(v(x) ≥ 0 ∧ v(y) ≥ 0)

∨
(v(x) < 0 ∧ v(y) < 0)

]}
,
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where f(X, Y ) ∈ K[X, Y ]. Suppose that E is not Lr-definable. Then V is Lr ∪{E}-
definable over K.

Proof. We may assume that K is sufficiently saturated.
It is easy to see that simply intersecting E with a line would not work for this

example, because for a “general” f(X, Y ), the intersection of f(X, Y ) = 0 and a
general line has only finitely many points. The idea of the proof here is to use a
“straight family” of lines (or “a pencil of lines” through some point, where the point
could be the infinity) to intersect with E, and then count the number of points in the
intersection.

We may assume that f(X, Y ) is not the constant-zero polynomial. Otherwise, V is
already Lr ∪ {E}-definable by the Example 4.2.2. We may also assume that f(X, Y )
is irreducible; otherwise, take the Zariski-closure of E. There must be one irreducible
component of the closure whose intersection with E is not Lr-definable; and since
every irreducible Zariski-closed subset of K2 which is not a point or the whole K2, is
the zero set of an ideal generated by one irreducible polynomial, we can then replace
f(X, Y ) by a single irreducible polynomial. Suppose that the degree of f(X, Y ) is d,
which is also the degree of the zero-set of f(X, Y ). Then the dimension of the zero-set
of f(X, Y ) is one.

Observe that a line Y = uX + b for some u ∈ V \mv and b ∈ V , has the property
that v(X) ≥ 0 if and only if v(Y ) ≥ 0. It follows that all the intersection points of
Y = uX + b and f(X, Y ) = 0 are inside E. Choose a general line Y = uX + b, which
would then intersect with f(X, Y ) = 0 at exactly d points.

As E is not Lr-definable, there must be some point (c, d) such that f(c, d) = 0
but (c, d) 6∈ E.

Now consider the family of lines {Hx := L + x(c, d − b) | x ∈ K} where L is the
general line we picked, Y = uX + b. For x very close to 0, Hx has an intersection
with ZK(f(X, Y )) whose points are very close to those of the intersection of H0 and
ZK(f(X, Y )), which are in E. Thus there are infinitely many x ∈ K such that the
number of points in the intersection of Hx and ZK(f(X, Y )) is exactly d. It follows
from the strong minimality that for all but finitely many x ∈ K, |Hx∩ZK(f(X, Y ))| =
d. Notice that H1 passes through (c, d). It follows that for all but finitely many x all of
which are very close to 1, |Hx∩ZK(f(X, Y ))| = d and there is ~w ∈ Hx∩ZK(f(X, Y ))
with v(~w − (c, d)) very large; in particular ~w 6∈ E. Thus, there are infinitely many
x ∈ K such that the number of points in the intersection of Hx and E is strictly less
than d.

Therefore, the set
{x ∈ K | |Hx ∩ E| = d}

is infinite and co-infinite in K, and is Lr ∪ {E}-definable. We hence conclude that V
is also Lr ∪ {E}-definable.

This strategy in Example 4.2.3 does not seem to work well in higher dimensions,
especially when the Boolean combination of the expression involving valuation is
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more complicated. However, the idea of intersecting E with a family of lines and then
counting the number of intersection points is a critical one.4 We now head towards
our proof.

Lemma 4.2.4. Suppose that K |= ACVF is sufficiently saturated, P is an irreducible
affine closed subset of Kn, with ~c ∈ P , of dimension at least 1. Then there are
infinitely many points ~d ∈ Kn with v(~c− ~d) arbitrarily large and ~d ∈ P .

Proof. Suppose that P is defined over the subfield k of K. Viewing K as our “uni-
versal domain”, suppose that ~y ∈ Kn is a generic point of P over k; then k(~y) is
a regular field extension of k. We may assume that y1, . . . , yt is a separating tran-
scendence basis (see Fact 5.1.1) of k(~y)/k. By the saturatedness of K, we can find
infinitely many different sequences of d1, . . . , dt ∈ K algebraically independent over
k, with v(c1 − d1), v(c2 − d2), . . . , v(ct − dt) arbitrarily large. Because yt+1, . . . , yn are
(separably) algebraic over y1, . . . , yt, we can find some primitive element α satisfying
a (monic) separable polynomial over k(y1, . . . , yt) (in particular, α can be taken to
be a linear combination of ys+1, . . . , yn over k, by Fact 5.1.2). We can find some
β ∈ K such that k(y1, . . . , yt, α) and k(d1, . . . , dt, β) are isomorphic as fields. One can
then find dt+1, . . . , dn ∈ K such that k(y1, . . . , yn) and k(d1, . . . , dn) are isomorphic

as fields. But then ~d = (d1, . . . , dn) also becomes a generic point of P over k. By
the continuity of rational functions with respect to the valuation topology, as long as
v(c1 − d1), . . . , v(ct − dt) are sufficiently large, v(ct+1 − dt+1), . . . , v(cn − dn) will be
sufficiently large too.

This construction of ~d clearly gives infinitely many different points.

Lemma 4.2.5. Let K be a model of ACVF which is sufficiently saturated, P an
irreducible affine closed subset of Kn, which is of dimension 1 and non-degenerate.
Let H be a hyperplane in Kn whose intersection with P contains a point ~c.

Suppose that L is an (n − 2)-plane in H which does not contain ~c, and suppose

that ~d is another point outside of H. Then there are co-finitely many x with v(x− 0)

sufficiently large, such that, the smallest hyperplane Hx, containing L and x(~d−~c)+~c,
has an intersection with P which contains a point arbitrarily close to ~c.

Similarly, if ~d is a point outside of H, then H ′x = H+x(~d−~c)+~c has an intersection
with P with contains a point arbitrarily close to ~c, for all but finitely many x with
v(x− 0) sufficiently large.

Proof. In fact, the union
⋃
x∈K Hx is Kn, and thus contains the whole P , which

is an irreducible curve. Thus the affine closed set Q determined by the equations
~y ∈ P and ~y ∈ Hx in variable (~y, x) is an irreducible curve in Kn+1. Because K is
sufficiently saturated, and (~c, 0) ∈ Q, there are infinitely many generic points of Q
which are arbitrarily closed to (~c, 0). Because P is non-degenerate, the intersection of
Hx with P must always be of finite cardinality. Therefore, if there are infinite many

4This idea was first suggested to the author by F. Delon.
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generic points arbitrarily close to (~c, 0), then there must be infinitely many x with
v(x− 0) sufficiently large such that Hx has an intersection with P containing a point
sufficiently closed to ~c. But the set of x having this property is first-order definable,
which is hence a finite union of perforated discs. Therefore, there can only be finitely
many exceptions.

The other case can be proved similarly.

Lemma 4.2.6. Suppose that E ⊆ Kn is an Ldiv-definable set. Suppose that the
Zariski-closure of E in Kn is P , which is an irreducible affine closed set. Then there
is a point ~c ∈ E such that for sufficiently large γ ∈ vK, D>

v (~c, γ)∩P = D>
v (~c, γ)∩E.

We call such a point ~c a (P,E)-interior point.

Proof. We may assume that E is defined by the formula,∨
φi(~x,~a) :=

∨
i

(∧j(pi,j(~x) = 0) ∧ (gi(~x) 6= 0) ∧ θi(~x,~a)) ,

where pi,j and gi are polynomials using parameters in ~a, and θi is a finite conjunction of
formulas of the form s(x) | t(x) or s(x) - t(x). After re-writing the first-order formula,
we may assume that for each i, gi has all the polynomials s(X), t(X) occurring in θi
as factors.

For each i, the intersection Z({pi,j(~x)}j)∩P must be either all of P or be a lower
dimensional sub-variety of P . Because the Zariski-closure of E is P , there must exist
some i0 such that the realization set of φi0(~x,~a) is not empty and Z({pi0,j(~x}j) ⊇ P .
Any point ~c in P which is not in the lower dimensional sub-varieties of P obtained
from Z({pi,j(~x)}j) ∩ P for i 6= i0, will satisfy the property we want.

Lemma 4.2.7. Suppose that E ⊆ Kn is an Ldiv-definable set which is not Lr-
definable. Suppose that the Zariski-closure of E is P , which is an irreducible non-
degenerate curve of degree d. Also suppose that P\E is Zariski-dense in P . If d < 2n,
then V is Lr ∪ {E}-definable.

Proof. We may assume that K is sufficiently saturated.
By the assumption, every hyperplane intersects P at finitely many points. Pick

~p1, . . . , ~pn ∈ E with the property that any points close enough with respect to the
valuation topology to them are in P if and only if they are in E (see Lemma 4.2.6).
Let H be a hyperplane passing through these n points. Pick ~q1, . . . , ~qn ∈ (P\E) with
the property that any points close enough with respect to the valuation topology to
them are in P if and only if they are not in E. Let H ′ be a hyperplane passing through
these n points. Then H 6= H ′, because d < 2n.

As the proofs are going to be similar, we may assume that H and H ′ are not
parallel and let L = H ∩H ′. Let ~a ∈ H and ~b ∈ H ′ be two points such that ~a,~b 6∈ L.
Then consider the family of hyperplanes {Hx | x ∈ K}, where Hx is the hyperplane

spanned by L and x(~b−~a) +~a. Then for all but finitely many x which are very close
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to 0, Hx intersects E at at least n points; for all but finitely many x which are very
close to 1, Hx intersects P\E at at least n points. Because any hyperplane intersects
P at at most d points (d < 2n), there are infinitely and co-infinitely many x ∈ K
such that |Hx ∩ E| ≥ n. Thus V is Lr ∪ {E}-definable.

Corollary 4.2.8. Suppose that E ⊆ K2 is an Ldiv-definable set which is not Lr-
definable. Then V is Lr ∪ {E}-definable.

Proof. We may assume that K is sufficiently saturated.
The Zariski-closure of E must be of dimension either 1 or 2. If it is two, we may

assume that the Zariski-closure of K2\E is also K2, otherwise, by replacing E with
its complement, we are reduced to the 1-dimensional case. With this assumption
about the complement, one can find ~a ∈ E and ~b 6∈ E such that any point ~x close
enough to ~a is also in E, and any point close enough to ~b is also not in E. Then
the set {x ∈ K | x(~b − ~a) ∈ E} is an infinite and co-infinite subset of K which is
Lr ∪ {E}-definable. So then V is also Lr ∪ {E}-definable.

Now suppose that the Zariski-closure of E is an affine plane curve C. We may
assume that C is irreducible (otherwise pick one irreducible component). Because E
is not Lr-definable, C\E is also infinite (hence dense) in C.

Choose a large enough r with p - r such that the image of C under the Veronese
map (see the appendix about this map) vr, has a spanned linear space of dimension
N1 = rd − d(d − 3)/2 > D/2, where D = dr is the degree of vr(C). Then consider
the “affinized” Veronese map vAr : A2 → AN , which takes (x1, x2) to (. . . , xi11 x

i2
2 , . . .),

with 0 ≤ i1 + i2 ≤ r (that is, the projective vr with the last homogeneous coordinate
equal to 1). Here N =

(
r+2

2

)
+ 1.

Then vAr (C) is irreducible and non-degenerate in AN1 (a hyperplane in AN) of
degree D < 2N1. Notice that vAr (E), whose Zariski-closure is vAr (C), is also not Lr-
definable and satisfies the conditions of Lemma 4.2.7. Therefore V is Lr ∪ {vr(E)}-
definable, i.e. Lr ∪ {E}-definable.

Proof of Theorem 4.1.9. We may assume that K is sufficiently saturated.
Assume that E ⊆ Kn is Ldiv-definable but not Lr-definable. We may assume

that the Zariski-closure of E is P , which is an irreducible affine closed subset of Kn.
We may also assume that P\E is also Zariski-dense in P , and P is non-degenerate in
the ambient space (otherwise, we are reduced to lower dimensional cases). Suppose
that the dimension of P is m.

If m = n, then find ~a ∈ E and ~b ∈ P\E such that all points close enough to ~a are

in E and all points close enough to ~b are in P\E. Then the set {x ∈ K | x(~b−~a) ∈ E}
is infinite and co-infinite in K, which then proves that V is Lr ∪ {E}-definable, by
Lemma 4.1.7.

If m = 1, then P is birationally equivalent (see Fact A.1.17) to a plane curve
C, and up to a finite subset, E is Lr-definably in bijective correspondence with an
Ldiv-definable but not Lr-definable subset of C. By Corollary 4.2.8, V is Lr-definable.
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So we may assume that 2 ≤ m ≤ n− 1.
Iterating Theorem A.2.23 for m− 1 times, we get that the intersection of P and a

general (n−m+ 1)-plane is an irreducible non-degenerate curve. If we show that we
can find such a curve containing an Lr ∪ {E}-definable but not Lr-definable subset,
then we are done (that is, we are back to the situation where m = 1).

By Proposition A.2.37, there is always a general (n − m + 1)-plane passing one
(P,E)-interior point in E and one (P, P\E)-interior point in P\E. Such an (n −
m+ 1)-plane would then intersect P at an irreducible non-degenerate curve C, whose
intersection with E is not Lr-definable (because in C there are infinitely many points
in E and infinitely many points in P\E). Then we are reduced to the 1-dimensional
case.

Hence, V is Lr ∪ {E}-definable.
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Chapter 5

Separably closed valued fields † ‡

In this chapter, we focus on the situation where we have a separably closed field of
positive characteristic and finite imperfection degree, K, with a non-trivial valuation
ring V . Let K be the Ldiv-structure on (K,V ), then we prove that K OM (K|Lr).
The same question remains open in the infinite imperfection degree case. Almost all
results depend on a quantifier elimination result we obtained.

We emphasize once more that for an algebraic set V in some (Kalg)n and a subfield
k ⊆ K, when we say “V is definable over k”, it means that V is model-theoretically
definable over k, i.e. it is the realization set of a first-order formula with parameters
coming from k; when we say “V is defined over k”, it means we are saying that the
field of definition of V is contained in k, i.e. the ideal associated to V is generated by
polynomials with coefficients coming from k.

5.1 Preliminaries

This section collects some preliminary knowledge about separably closed fields and
separably closed valued fields.

5.1.1 Separably closed fields

A detailed reference for the p-independence relation and separable extensions of fields
could be found in [Karpilovsky, 1989]. A good summary is for example [Delon, 1998].
In particular, some aspects of the model theory of separably closed field has been
studied in [Eršov, 1967], [Wood, 1979], [Delon, 1988], [Delon, 1998], and many more

†The research leading to these results (except the one-sorted quantifier elimination) has received
funding from the [European Community’s] Seventh Framework Programme [FP7/2007-2013] under
grant agreement n◦ 238381.
‡The research leading to these results (except the one-sorted quantifier elimination) was done

during the author’s 5-month stay in Université Paris Diderot - Paris 7, under the supervision of
Dr. Françoise Delon.
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papers (including some from the point of view of differentially closed fields). Here we
only give a fast, partial review.

Let K be a field (not necessarily separably closed). A polynomial over K is said
to be separable if all of its roots are different. An algebraic field extension L over K
is said to be separable if all the minimal polynomials of elements of L over K are
separable. For any field K, there is always a maximal separable algebraic extension,
called the separable closure (or the separably algebraic closure) of K, denoted
by Ksep.

Recall that our notation for the set of nth-powers in a field K, is Pn(K), not Kn

(which is the n-th Cartesian power of K as a set).

A field K is perfect if K is of characteristic 0 or Pp(K) = K where 0 < p =
char(K); equivalently, K is perfect if the separable closure of K, is the same as the al-
gebraic closure of K, denoted by Kalg. Hence a separably closed field of characteristic
0 is always algebraically closed.

In the following, we assume that K is of characteristic p > 0. A useful identity
for a field of characteristic p is that for all a, b ∈ K, (a + b)p = ap + bp. Recall that
over a field of characteristic p > 0, a polynomial f has a multiple root if and only if
f and its formal derivative f ′ has a common factor. Thus if f is irreducible and has
a multiple root, then f ′ has to be zero; it follows that in this case, f(X) = g(Xp) for
some separable polynomial g ∈ K[X]. Thus, if K is separably closed, then because
every separable polynomial splits into linear factors over K, every polynomial over K
is a product of constants in K and polynomials of the form Xpn − a with a ∈ K.

In general, K is a field extension of Pp(K). For x ∈ K and A ⊆ K, x is said to be
p-independent over A in K if x 6∈ (Pp(K))(A), i.e. x not in the field generated by
Pp(K) and A. A set A is said to be a p-independent subset of K if for all x ∈ A, we
have x 6∈ Pp(K)(A\{x}). A p-basis of K is a maximal p-independent subset of K. A
field extension L over K is said to be separable if the p-independence relation in K
is preserved in L. Any purely transcendental extension is separable. One can check
that when L/K is algebraic, this agrees with the definition above, although in the
general case, it is no longer always true that if L/K is separable, then L is separable
over any subfield containing K.

Suppose that B = {bi}i∈I is a p-basis of K, then the set of monomials {
∏

i∈I b
j(i)
i }j,

where j runs through all the maps from I to the set {0, . . . , p−1} with finite supports,
is a vector-space basis of K viewed as a vector space over Pp(K); this is in fact an
equivalent definition of p-basis. The cardinality of different p-bases are the same,
denoted by pe(K), with e(K) a natural number or ∞ (one can prove that it is always
of this form); the exponent e(K) is sometimes simply denoted by e if the field we
are referring to is clear from the context, and is called the Eršov invariant, or the
imperfection degree of K. One can see that e(K) = 0 if and only if K is perfect.

Suppose that B = {bi}i∈I is a p-basis of K, then the coordinates of an element

in K with respect to the basis of monomials {
∏

i b
j(i)
i }j are called p-coordinates. In
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particular, we define functions fj : K → K such that for all x ∈ K,

x =
∑
j

fj(x)p
∏
i∈I

b
j(i)
i ,

with j running through all the functions from I to {0, . . . , p− 1} with finite supports.
Following the notation of [Hrushovski, 1996], we define the function λ1 : K → Kpe

to be x 7→ (fj(x))j, and λn = λ◦n1 = λ1 ◦ · · · ◦ λ1 (the composition of λ1 with itself for

n-times).1

We will make use of the following important theorem about separable field exten-
sions.

Fact 5.1.1 (Separating transcendence basis theorem, e.g. [Karpilovsky, 1989] 2). Sup-
pose that L := K(y1, . . . , yn) is a separable field extension of K. Then there exists a
subset {yi1 , . . . , yit}, of {yi}ni=1, which is algebraically independent over K, and such
that L is separably algebraic over K(yi1 , . . . , yit).

The yi1 , . . . , yit in the above theorem is called a separating transcendence basis
of L/K.

The following is the well-known Primitive Element Theorem:

Fact 5.1.2 (see e.g. [Cox, 2012]). Suppose that k(y1, . . . , yn)/k is a finite separable
field extension, then there exists a primitive element α ∈ k(y1, . . . , yn) such that
k(y1, . . . , yn) = k(α). Furthermore, if k is infinite, then α can be chosen to be of the
form

α = µ1y1 + µ2y2 + · · ·+ µnyn,

where µ1, . . . , µn ∈ k; in fact, this is true for all points in Pn−1
k with only finitely many

exceptions.

Turning to the model theory aspect, we have

Fact 5.1.3 ([Eršov, 1967]). In the language of rings Lr, suppose that K and L are
two separably closed field of characteristic p > 0. Then K and L are elementarily
equivalent if and only if e(K) = e(L) < ℵ0, or e(K), e(L) =∞.

Fact 5.1.4 ([Wood, 1979]). In the language of rings Lr, the theory of separably closed
fields is stable, but not superstable.

It is in fact a conjecture that all infinite stable fields are separably closed. We will
see in the following a way of proving the stability without counting types directly.

Suppose that 0 < e < ℵ0. Let Lp,e be the union of Lr and constant symbols
{bi}i∈e (a p-basis), and unary function symbols {fj}j∈pe (p-coordinate functions). Let

1Perhaps λn would be a better notation than λn.
2A separating transcendence basis is called a separating transcendency basis in [Karpilovsky, 1989].

This theorem is also a corollary of a theorem called MacLane’s Criterion loc.cit..
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SCFp,e be the theory of separably closed fields of characteristic p, imperfection degree
e, having {bi}i as a p-basis with {fj} the corresponding p-coordinate functions. Then
we have

Fact 5.1.5 ([Delon, 1988], [Delon, 1998]). SCFp,e (p > 0, 0 < e < ℵ0) has quantifier
elimination.

For the case where e is infinite, we refer the reader to Section 5.5; in particular,
there is still a quantifier elimination result, in a slightly different language. Except in
Section 5.5, we will always work with the finite imperfection degree case.

F. Point pointed out to the author that it was in [Srour, 1986] that Srour first
showed that the theory of separably closed fields of a fixed characteristic and a fixed
imperfection degree has quantifier elimination in a language slightly different from
Lp,e (note that his language contains the language of fields which has a symbol for the
inverse function (·)−1). F. Point also pointed out that Haran in [Haran, 1988] gave an
explicit primitive recursive quantifier elimination algorithm for the finite imperfection
degree case in the language given by Srour. The author would like to thank F. Point
for pointing these out.

5.1.2 Separably closed valued fields

Suppose that K is a separably closed field of characteristic p > 0, with a valuation
ring V . If V is trivial (i.e. V = K), then clearly the residue field is K itself and the
value group is {0}. If V is not trivial, then because a separably closed field in the Lr

is always stable, V is not definable over K in Lr. But one can ask about the “defining
power” of V compared to Lr over the field K, in terms of “intermediate structures”,
which is the main subject of investigation of this chapter.

Recall that a valued field is Henselian if and only if there is exactly one extension
of the valuation onto its separable closure. Due to this fact, a separably closed valued
field is always Henselian.

Fact 5.1.6 ([Engler and Prestel, 2005]). If (K,V ) is a separably closed non-trivially
valued field (of any characteristic and any imperfection degree), then Kv is always
algebraically closed and vK is always divisible.

It follows that a separably closed non-trivially valued field of positive characteris-
tic is always NOT algebraically maximal (a valued field is algebraically maximal
if there are no proper immediate algebraic extensions, that is, there is no proper al-
gebraic extension which has the same residue field and value group). A valued field
is said to be separably algebraically maximal if there is no proper immediate
extension which is also a separable algebraic extension. It follows trivially that every
separably closed valued field is separably algebraically maximal.

A valued field (K,V ) of positive characteristic p, is called Kaplansky, if vK is
p-divisible and for each a0, . . . , an, b ∈ Kv, the equation xp

n
+an−1x

pn−1
+ · · ·+a1x

p+
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a0x + b = 0 has a solution in Kv. Thus, a separably closed non-trivially valued field
of characteristic p is a Kaplansky valued field.

In [Delon, 1982], certain aspects of the model theory of algebraically maximal
valued fields and separably algebraically maximal valued fields have been studied.
In particular, it was shown that being algebraically maximal and being separably
algebraically maximal are both first-order, in the language Ldiv.

Fact 5.1.7 ([Delon, 1982]). Let k be a field of characteristic p > 0 satisfying that
for all elements a0, . . . , an, b ∈ k the equation xp

n
+ an−1x

pn−1
+ . . . a1x

p + a0x +
b = 0 has a solution in k, and G a non-trivial p-divisible ordered abelian group.
In the language Ldiv, let Te(k,G) be the first-order theory of Kaplansky, separably
algebraically maximal valued fields of characteristic p > 0 and imperfection degree
e ∈ {1, 2, . . . ,∞}, with residue field elementarily equivalent to k in the language of
rings, and with value group elementarily equivalent to G in the language of ordered
abelian groups {+,−, <, 0}. Then Te(k,G) is complete.

Let TeQ(k,G) be the expansion of Te(k,G), in the language obtained by adding all
the n-ary p-independence predicates (i.e. Qn(x1, x2, . . . , xn) if and only if x1, x2, . . . , xn
are p-independent) to Ldiv. Then TeQ(k,G) is model-complete.

In particular, if k is an algebraically closed field, and G is a divisible ordered
abelian group, then Te(k,G) is exactly3 the first-order theory of separably closed non-
trivially valued fields, of characteristic p and imperfection degree e, and this theory
is complete by the theorem.

From this theorem (and its proof), it is possible to obtain a quantifier elimina-
tion result in a suitable one-sorted language (clearly one needs to consider about
p-coordinate functions), as we obtain below. But our proof of the result about quan-
tifier elimination here, in the next section, is self-contained and, most importantly,
independent.

5.2 Quantifier elimination

In this section, we show that in the natural two-sorted language consisting of the
valued-field sort and the value-group sort, the theory of non-trivially valued separably
closed fields with characteristic p > 0 and finite imperfection degree e > 0, has
quantifier elimination. It then follows that the induced structure on the value group
is exactly the ordered abelian group structure; in particular, the value group is stably
embedded (i.e. every definable set in the value group using parameters outside of the
group is already definable using parameters from the group).

Fix e a finite positive integer, and p > 0 a prime number.

3It is enough to see that every separably algebraically maximal valued field with an algebraically
closed residue field and a divisible value group is separably closed. This is true because the separable
closure has the same residue field and value group.
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Let LOAG be the language of ordered abelian groups {+,−, <, 0}. Let Lp,e be
the union of Lr and constant symbols {bi}i∈e (a p-basis), and unary function symbols
{fi}i∈pe (p-coordinate functions). Let L 2

r be the two sorted language for valued fields,
where the language for the field sort is Lr and the language for the value group sort
is LOAG ∪{∞}, and the function connecting these two sorts is the valuation function
{v}. Let L 2

p,e be the two sorted language with Lp,e for the field sort, LOAG ∪ {∞}
for the value group sort, and {v} for the valuation function going from the field sort
to the value-group sort.

To obtain a quantifier elimination result for some one-sorted language, one can
instead prove a quantifier elimination result for a suitable two-sorted language, as we
will do below. This version of quantifier elimination was proved in order to answer a
question regarding the induced structure on the value group, which as we will see is
exactly the ordered abelian group structure itself (hence o-minimal).

Let SCVF2
p,e be the theory of non-trivially valued separably closed fields with

characteristic p > 0 and finite imperfection degree e > 0, with {bi}i∈p being a p-
basis and {fi}i∈pe being the p-coordinate functions relative to the p-basis {bi}i, in the
language L 2

p,e, adjoined with the axiom “v(b0) > 0”.4

We denote the one-sorted reduct of SCVF2
p,e to Lp,e ∪ {|} by SCVFp,e.

Theorem 5.2.1. SCVF2
p,e has quantifier elimination.

We first introduce a critical notion which we will use often, and then prove some
lemmas before coming back to the proof of the theorem above. The phenomenon
below has been observed first by Delon, but has never been explicitly defined.

Definition-Proposition 5.2.2. Suppose that K |= SCVFp,e. Suppose that we are
given a quantifier-free Lp,e ∪ {|}-formula φ(~x,~a) with ~a ∈ Km. Then for sufficiently
large n, λn({~x ∈ Km | φ(~x,~a)}) is definable using a quantifier-free Ldiv-formula over
K; any such a quantifier-free Ldiv-formula is called a λ-resolution of φ, denoted
by λres(φ)(λres(~x), λres(~a)), or simply φ̃(~y, ~̃a), where ~y is the image of ~x under the
corresponding λn (we simply write ~y = λres(~x)).

Proof. We give a quick proof of the fact that for sufficiently large n, λn({~x ∈ Km |
φ(~x,~a)}) is definable using a quantifier-free Ldiv-formula over K.

It is easy to see that every fj is additive, i.e. fj(x + y) = fj(x) + fj(y) using
the uniqueness of the p-coordinate functions. It is also easy to see that fj(xy) could
be express as a polynomial in the variables {fk(x)}k ∪ {fl(y)}l. For example, x =∑

j fj(x)p
∏

i b
j(i)
i , y =

∑
j fj(y)p

∏
i b
j(i)
i ; so if we multiply them together, we get

xy =
∑
k

hk(x, y)p
∏
i

b
k(i)
i ,

4The condition “v(b0) > 0” is to make sure that we have a constant symbol for an element with a
non-zero value, which seems to be necessary in our proof of quantifier elimination. See Lemma 5.2.9.
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where hk(x, y) is a polynomial in variables {fk(x)}k ∪ {fl(y)}l obtained from the
product. But on the other hand by the definition of the p-coordinate functions, we
have xy =

∑
j fj(xy)p

∏
i b
j(i)
i . This implies that fj(xy) = hk(x, y). One can than do

this inductively to see that the p-coordinate function of a polynomial is a polynomial
using the p-coordinate functions of the original variables as variables. We then get an
equivalent formula in which every term is a composition of a polynomial and λn for
some n, one can then replace the terms λn(x) with x being a variable symbol by new
variables ~z. This gives a λ-resolution.

Remark 5.2.3. The λ-resolution of a formula φ is never unique. But all the λ-
resolutions are Lr-interdefinable over K. In fact, for example, for any subset A of K,
λ1(A) = {(fj(x)) | x ∈ A}, and A = {

∑
j x

p
j

∏
i b
j(i)
i | (xj) ∈ λ1(A)} shows that A and

λ1(A) are Lr-interdefinable over K.

Definition 5.2.4. Suppose that K |= SCVF2
p,e. Given a quantifier-free L 2

p,e-formula

whose free variables are all in the field-sort φ(~x,~a, ~δ), with ~a ∈ Km and ~δ ∈ (vK)l, a λ-
resolution of φ is a quantifier-free L 2

r -formula defining the image of the realization
set of φ under λn, for sufficiently large n. It is denoted by λres(φ)(λres(~x), λres(~a),

λres(~δ)), or simply φ̃(~y, ~̃a, ~̃δ).

Lemma 5.2.5. Suppose K is a separably closed field of characteristic p > 0 with a
valuation v, then for any natural number n, Ppn(K×) is dense in K with respect to
the valuation topology.

Proof. We may assume that v is not trivial and n > 0. Then the value group is
a divisible group without upper bound. It is obvious that Ppn(K×) is dense in a
neighborhood of 0.

Suppose that z is an element of K×, and γ > 0 is an element of the value group
of K; it is enough to show that there exists some zγ ∈ K× such that v(z − zpnγ ) > γ.

Case 1. v(z) ≥ 0.
Pick a ∈ K× such that v(a) > γ, then consider the polynomial f(X) = Xpn −

aX − z. Notice that the formal derivative of f , f ′(X) = −a 6= 0. Thus f splits over
K. In particular since ∞ 6= v(z) ≥ 0, there exists some root zγ 6= 0 with v(zγ) ≥ 0.
Then v(z − zpnγ ) = v(azγ) > γ.

Case 2. v(z) < 0.
Pick b ∈ K× such that v(bp

n
z) ≥ 0 (it exists!). Let ε = v(bp

n
) + γ. Then since

ε > 0, applying Case 1 (to bp
n
z and ε), one has a z′ 6= 0 such that v(bp

n
z − z′pn) > ε.

Therefore, letting zγ = z′b−1, we get v(z − zpnγ ) > γ.

Remark 5.2.6. A corollary of Lemma 5.2.5 is that if K is separably closed, then K
is dense (with respect to the valuation topology) in its algebraic closure Kalg, because
for each a ∈ Kalg there is some n such that ap

n ∈ K. This proves that separably
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closed field is “valuationally algebraically closed”, a notion introduced in Definition
5.6.6.

In fact, Delon has proved (independently, and many years ago) that Lemma 5.2.5
is true for all separably algebraically maximal valued fields (using pseudo-convergent
sequences). See Proposition 1.22 of [Delon, 1982].

For the ease of reading, the following is Lemma 3.27 (with its original proof)
from [Van den Dries, 2004].

Lemma 5.2.7 (van den Dries). Let (L, V ) be a valued field extension of (K,W )
(so v|K = w) such that Kw = Lv. Let a1, . . . , an ∈ K, n ≥ 1, and let x ∈ L\K
be such that v(x − ai) ∈ vK for i = 1, . . . , n. Then there exists a ∈ K such that
v(x− ai) = v(a− ai) for i = 1, . . . , n.

Proof. Any a ∈ K with v(a − x) > v(a − ai) for all i has the desired property. We
may assume that v(x − a1) ≥ v(x − ai) for i = 2, . . . , n. Since v(x − a1) ∈ vK, we
can take b ∈ K such that v(x− a1) = v(b). So v((x− a1)/b) = 0 and since Kw = Lv,
(x−a1)/b = c+ ε with c ∈ K, v(c) = 0 and v(ε) > 0. Then a = a1 + bc works because
x− a = bε and v(bε) > v(x− ai).

Lemma 5.2.8. Suppose that L 2 is a two-sorted language with L1 being the language
for the first sort, and the L2 being the language for the second sort. The only function
between sorts is just a function v from the first sort to the second sort.

Suppose that M := (M1,M2, vM) and N := (N1, N2, vN) are two L 2-structures,
and F := (F1, F2, vM) is an L 2-substructure of M, and f : F → N is an L 2-
embedding. Suppose K1 is an L1-substructure of M1 containing F1 and K2 is an
L2-substructure of M2 containing F2. Then

1. If f ′ : K2 → N2 is an L2-embedding extending f |F2, then g := f ∪ f ′ :
(F1, K2, vM)→ N is an L 2-embedding.

2. Suppose that F2 = M2. If f ′ : (K1, vM(K1), vM) → N is an L 2-embedding
extending f |(F1,vM (K1),vM ), then g := f ∪ f ′ : (K1,M2, vM) → N is an L 2-
embedding.

Proof. Any quantifier-free formula of L 2 in free variables ~x1 in the first sort and free
variables ~x2 in the second sort is a boolean combination of formulas of the form φ1(~x1)
or φ2(v(~t(~x1)), ~x2), where φ1 is a quantifier-free L1-formula, and φ2 is a quantifier-
free L2-formula with ~t being a tuple of L1-terms (so v(~t ) means applying v to all the
coordinates of ~t ).

In Case (1), since the field sort of the domain of g stays to be F1, for any φ1(~x1)
and ~w ∈ F1, φ1(~w1) is true in F1 if and only if φ1(f(~w1)) = φ1(g(~w1)) is true in g(F1).

For any ~w ∈ F1 and ~k2 ∈ K2, since vM(~t(~w)) ∈ F2 ⊆ K2, φ2(vM(~t(~w)), ~k2) is true in

(F1, K2, vM) if and only if φ2(vN(~t(f(~w))), g(~k2)) = φ2(vN(~t(g(~w))), g(~k2)) is true in
(g(F1), g(K2), vN). Therefore, g is an L 2-embedding.
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In case (2), again it is clear that for all ~w ∈ K1, φ1(~w) is true in (K1,M2, vM) if
and only if φ1(g(~w)) is true in the image of g.

For any ~k1 ∈ K1 and ~m2 ∈ M2, for any formula of the form φ2 mentioned above,
φ2(vM(~t(~k1)), ~m2) is true in M, if and only if φ2(f(vM(~t(~k1))), f(~m2)) is true in N ,

if and only if φ2(f ′(vM(~t(~k1))), f(~m2)) is true in N , if and only if φ2(vN(~t(f ′(~k1))),

f(~m2)) is true in N , if and only if φ2(vN(~t(g(~k1))), g(~m2)) is true in N . Therefore, g
is indeed an L 2-embedding.

Lemma 5.2.9. Suppose that K1 := (K1,Γ1, v1) and K2 := (K2,Γ2, v2) are two mod-
els of SCVF2

p,e and K2 is |K1|+-saturated. Suppose that F := (F,Γ1, v1) is an L 2
r -

substructure of K1 and f : F → K2 is an L 2
r -embedding, and F is a separably closed

subfield of K1. Suppose that F is non-trivially valued.
Then for any a ∈ K1 which is transcendental over F , there is an L 2

r -embedding
f ′ : (F (a)s,Γ, v1)→ K2 extending f .

Proof. We may assume that v1(a) ≥ 0 (otherwise do the argument for a−1). We
remark that the residue field Fv1 is algebraically closed, because F is not trivially
valued by the assumption.

There are three cases.

Case 1. F (a)v1 6= Fv1 and v1(F (a)×) = v1F .
In this case resv1(a) ∈ F (a)v1 is transcendental over Fv1; otherwise F (a)v1 is

going to be algebraic over Fv1, contradicting the fact that Fv1 is algebraically closed.
Since K2 is |K1|+-saturated, there exists some b ∈ K2 with resv2(b) ∈ (K2)v2 such
that resv2(b) is transcendental over f(F )v2. So b is transcendental over f(F ) as well.
It is also clear that v1(a) = 0 and v2(b) = 0. Then by Corollary 2.2.2 of [Engler and
Prestel, 2005], f extends to a valued field embedding which is also an L 2

r -embedding
f1 : (F (a),Γ1, v1)→ K2 sending a to b. But by Fact 1.2.3, f1 clearly has an extension
to the separable closure f ′ : (F (a)s,Γ1, v1)→ K2.

Case 2. F (a)v1 = Fv1 and v1(F (a)×) 6= v1F .
In this case v1(a) might still be in v1F . Since F (a) is the quotient field of F [a]

and v1(F (a)×) 6= v1F , there is some g(a) ∈ F [a] such that v(g(a)) 6∈ v1F . Because
F is separably closed, there are c′, ci ∈ F and natural numbers ni such that g(a) =
c′
∏

i(a
pni−ci). This implies that there is some factor ap

ni−ci with v(ap
ni−ci) 6∈ v1F .

We assume that n is the minimal integer m such that there is some w ∈ F with
v1(ap

m − w) 6∈ v1F ; let c be a corresponding w.
Subcase 1. There is some γ ∈ v1F such that v(ap

n − c) < γ.
In this case, by the denseness of (F )p

n
, there is some d ∈ F such that v(ap

n−dpn) =
v(ap

n−c) 6∈ v1F , i.e. v(a−d) 6∈ v1F . Then f(v1(a−d)) is not in f(v1F ) either. So for
any b ∈ K2 such that v2(b) = f(v1(a−d)), b is transcendental over f(F ). By Corollary
2.2.3 of [Engler and Prestel, 2005], the valued field isomorphism extending f |A by
sending a − d to b also extends f to an L 2

r -embedding f1 : (F (a − d),Γ1, v1) → K2.
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Because F (a − b)s = F (a)s, it follows that f can be extended to an L 2
r -embedding

f ′ : (F (a)s,Γ1, v1)→ K2, by Fact 1.2.3.

Subcase 2. v1(ap
n − c) > v1F .

In this case, we may assume that v1(a − w) ∈ v1F for all w ∈ F (i.e. n ≥ 1),
otherwise we can extend f by the same method as that in Subcase 1. It also follows
from the minimality of n that c does not have a p-th root in F .

Then for any e ∈ F such that e 6= c, we have v1(ap
n − e) = v1(c − e) ∈ v1F . It

follows that for any m ≥ n and w, if v1(ap
m − w) > v1F , then w = cp

(m−n)
.

Let δ = v1(ap
n − c). Then there is some k ∈ K2 such that v2(k) = f(δ). Then

v2(k + f(c) − f(c)) = f(δ). By the denseness of (K×2 )p
n
, there is some b ∈ K×2 such

that v2(bp
n − f(c)) = f(δ). It then follows that b is also transcendental over f(F ).

For any m ≥ n and w ∈ F with w 6= cp
m−n

, we have

v2(bp
m − f(w)) = v2(bp

m − f(c)p
m−n

+ f(c)p
m−n − f(w))

= v2(f(c)p
m−n − f(w))

= f(v1(cp
m−n − w))

= f(v1(ap
m − w));

for any m ≥ n and w = cp
m−n

, we have

v2(bp
m − f(w)) = v2(bp

m − f(c)p
m−n

)

= pm−nv2(bp
n − f(c))

= f(pm−nv1(ap
n − c))

= f(v1(ap
m − w));

for any m ≤ n and w ∈ F , we have

pn−mv2(bp
m − f(w)) = v2(bp

n − f(w)p
n−m

)

= v2(bp
n − f(c) + f(c)− f(wp

n−m
))

= v2(f(c)− f(wp
n−m

))

= f(v1(c− wpn−m))

= f(v1(ap
n − wpn−m))

= f(pn−mv1(ap
m − w)).

Therefore, extending f |F to F (a) by sending a to b, we get a valued field isomor-
phism, because for all g(a) ∈ F (a), we have that f(v1(g(a))) = v2(g(b)). Hence we
also get an extension f ′ accordingly by Fact 1.2.3.

Case 3. F (a)v1 = Fv1 and v1(F (a)×) = v1F .
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For any g(X) ∈ F [X], one can factorize g into c
∏

j(X
pnj − cj) with c, cj ∈ F ,

since F is separably closed. It is enough to find some b ∈ K2\f(F ) with b being
transcendental over f(F ) such that for all i and cj ∈ F , f(v1(ap

i−cj)) = v2(bp
i−f(cj)),

Because then the field isomorphism F (a)→ (f(F ))(b) sending a to b is also a valued
field isomorphism.

But by the saturation of K2, it is enough to show that for any finitely many
elements c1, . . . , cn ∈ F , and any pα1 , . . . , pαn , there exist infinitely many z ∈ f(F )
(to make sure that one can say that z is transcendental) such that for all i,

∞ 6= f(v1(ap
αi − ci)) = v2(zp

α
i − f(ci)).

We may assume that α1 ≥ αi for all i. By Lemma 5.2.7 we can find some w ∈ F
such that for all i,

(5.2.1) ∞ 6= v1(ap
α1 − cp

α1−αi
i ) = v1(w − cp

α1−αi
i ).

By Lemma 5.2.5, by varying the accuracy of the approximation, there are infinitely
many t ∈ F such that v1(w − tpα1 ) are sufficiently large and hence, for all i

v1(ap
α1 − cp

α1−αi
i ) = v1(tp

α1 − cp
α1−αi
i ),

namely,
v1(ap

αi − ci) = v1(tp
αi − ci).

Now this carries over to K2 because t ∈ F , that are infinitely many z ∈ f(F ) satisfying
the conditions we wanted. Eventually, by Fact 1.2.3, we get an L 2

r -embedding f ′ :
(F (a)s,Γ1, v1)→ K2 extending f to include the separable closure of F (a).

Fact 5.2.10 (see e.g. [Marker, 2002]). Let ODAG be the theory of non-trivial ordered
divisible abelian groups in the language LOAG. Then ODAG is complete and has
quantifier elimination. ODAG is o-minimal.

Proof of Theorem 5.2.1. Suppose that we are given two models K1 := (K1,Γ1, v1)
and K2 := (K2,Γ2, v2) of SCVF2

p,e, where K2 is |K1|+-saturated; suppose also that
(A,∆, v1) is an L 2

p,e-substructure of K1, which has an L 2
p,e-embedding f into K2. We

need to show that f can be extended to an L 2
p,e-embedding of K1 into K2.

First, because the theory ODAG has quantifier elimination, one can extend the
LOAG ∪ {∞}-embedding of ∆ onto the whole Γ1, which would still be an L 2

p,e-
embedding of (A,Γ1, v1) into K2 extending f .

So we may assume that ∆ = Γ1. It is also clear that we can assume that A is a
field already, since the coordinate functions and the valuation of an element in the
quotient field of A are uniquely determined by those of elements of A and the ring
structure of A. Then because A is closed under the p-coordinate functions, we know
that K1 is separable over A, and since K1 is separably closed, the separable closure
of A, As, is contained in K1. The same things are true for f(A) in K2.
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For any y ∈ As, we have A ⊆ A(yp) ⊆ A(y) with the second field extension being
purely inseparable, which implies that A(y) = A(yp) = A[yp]. Thus the p-coordinate
functions of elements in A(y) are uniquely determined by its field structure. Since As

and f(A)s are isomorphic as fields, and all valuations on As are conjugated by elements
in the Galois group of As/A, one can extend the embedding to an L 2

p,e-embedding of
(As,Γ1, v1). Therefore, we may furthermore assume that A = As.

Now for any c ∈ K1\A, c is transcendental over A (because K1 is a separable
extension of A). We would like to extend the embedding to cover c. To do this, it is
enough to realize, in K2 the image under f of the quantifier-free type of c over (A,Γ1).

Let φ(x,~a, ~δ) be a quantifier-free L 2
p,e-formula realized by c in K1. It is enough to

show that φ(x, f(~a), f(~δ)) is realizable in K2.

After taking a λ-resolution of φ, one can assume that we want to realize φ̃(~y, ~̃a, ~̃δ)
in K2, where φ̃ is a quantifier-free L 2

r -formula, and ~y = λres(x). Let ~t = λres(c). It is
enough to realize the L 2

r -diagram of ~t in K2.
Suppose that d = tr.deg(A(~t )/A), and ti1 , . . . , tid a separating transcendence basis

of A(~t )/A (note that K1 is a separable extension of A).
By the previous lemmas, we can extend the L 2

p,e-embedding f to an L 2
r -embedding

of (A(ti1),Γ1, v1). The embedding can then be extended to its separable closure. Then
we extend the embedding to an L 2

r -embedding of (A(ti1)
s(ti2),Γ1, v1), etc. Eventually

we will get an L 2
r -embedding covering A(~t ). Therefore φ(x, f(~a), f(~δ)) can be realized

in K2.
It then follows that the L 2

p,e-substructure generated by (A,Γ1, v1) and c has an
L 2
p,e-embedding, extending f , into the K2. Eventually, we get an L 2

p,e-embedding of
K1 into K2 which finishes our proof.

Corollary 5.2.11. SCVFp,e has quantifier elimination in Lp,e ∪ {|}.

Proof. Any quantifier-free formula involving the valuation function v in the two
sorted language whose free variables are all of the field sort, can be re-written as a
quantifier-free formula in the one-sorted language Lp,e ∪ {|}.

Corollary 5.2.12. Suppose that K is a model of SCVFp,e. Then the induced structure
on vK is exactly the ordered abelian group structure.

Proof. Expand K to be a model of SCVF2
p,e. Then a set of the form v(A), where A

is an Lp,e ∪ {|}-definable subset of Kn, can (by the quantifier elimination) be defined
by a quantifier-free L 2

p,e-formula whose free variables are all in the value group sort.
But any of such a quantifier-free L 2

p,e-formula is equivalent to a quantifier-free LOAG-
formula.

Recall that a complete theory T in some first-order language L is said to have
the Independence Property if there is some L -formula φ(~x, ~y) such that, for every
model M of T , and for all n, there are ~a1, . . . ,~an ∈ M and {bJ}J⊆{1,...,n} ⊆ M such
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that M |= φ(~ai,~bJ) if and only if i ∈ J . The following was pointed out by Delon to
the author.

Corollary 5.2.13. SCVFp,e does not have the Independence Property, that is, if K |=
SCVFp,e, then Th(K) does not have the Independence Property. In particular, the
theory Te(k,G) in Theorem 5.1.7 does not have the Independence Property.

Proof. Suppose that K |= SCVFp,e. We want to show that for any Lp,e∪{|}-formula
φ(~x, ~y), there is some n such that for all ~a1, . . . ,~an ∈ K and {bJ}J⊆{1,...,n} ⊆ K, it is

not true that K |= φ(~ai,~bJ) if and only if i ∈ J .
By the quantifier elimination, we may assume that φ(~x, ~y) is quantifier free. Taking

a λ-resolution of φ. Then φ has the property we want if and only if λres(φ) has the
property we want. Because λres(φ) is a quantifier-free Ldiv-formula, one can interpret
it as a quantifier-free Ldiv-formula with parameters inside Kalg. It follows from the
fact that ACVFp does not have the Independence Property, that λres(φ) must have
the property we want.

Remark 5.2.14. The argument above, using quantifier elimination and λ-resolution,
can also be used to show that the theory of separably closed fields of characteristic
p and imperfection degree e is stable, by showing that it does not have the Order
Property (the idea of the proof is the same). B. Hart observed the similarity between
the method we use for proving results related to the Independence Property and Order
Property on separably closed (valued) fields and the techniques used in Hrushovsi’s
paper [Hrushovski, 2002], where he studied various model-theoretic properties of PAC-
structures with their algebraic closures (which are usually strongly minimal structures
with special properties). The author would like to thank B. Hart for bringing that
paper to his attention.

5.3 Denseness

As definable sets in a model of ACVF are usually relatively easier to study than those
in a separably closed valued subfield, we would like to know whether there is a good
relation between these two collections of definable sets.

In the previous section, through obtaining a quantifier elimination result for the
two sorted language L 2

p,e, we deduced that the induced structure on the value group
is exactly the ordered abelian group structure. One can naturally ask whether the
same thing is true for the residue field. In order to answer this question, one can try
to prove a quantifier elimination result for a suitable 3-sorted language. Instead of
doing that, Delon suggested to the author to prove something easier which probably
also gives more insight—to prove that any definable set in the separably closed valued
field is dense (in the valuation topology) in some definable set in the algebraic closure,
which has the same image in the value group and in the residue field.
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Let K |= SCVFp,e; let Kalg be the (field-theoretic) algebraic closure of K. Then
Kalg |= ACVFp. Because ACVFp has quantifier elimination in the language Ldiv, and

for any f( ~X) ∈ Kalg[ ~X], there is some natural number n such that (f( ~X))p
n ∈ K[ ~X],

we know thatK is stably embedded (i.e. for every definable set inKalg, the intersection
of that set and K is the same as the intersection of K and a definable set in Kalg

defined using parameters from K) into Kalg (as a field structure or as a valued-field
structure). It follows that the pure valued-field structure on K is the same as the
induced (first-order) structure on K in Kalg.

In this section, we assume that K, as a model of SCVFp,e, is ℵ1-saturated.
We show that for a quantifier-free Ldiv-definable set over K, there is a corre-

sponding quantifier-free Ldiv-definable set in Kalg containing the original set in such
a manner that the original set is dense with respect to the valuation topology. This
in turn gives us information about the induced structure on the value group and the
residue field, of K.

The idea in this subsection mostly comes from Delon.
Suppose that D ⊆ K l. By quantifier elimination of SCVFp,e, we can suppose that

D is defined by a quantifier-free formula in Lp,e ∪ {|}. Take a λ-resolution of the
defining formula of D, one gets a set D̃ which is in some Cartesian power of K (not
smaller than l), and is defined by a quantifier-free formula φ(~x,~a) in Ldiv. We can
assume that φ is of the following form

(5.3.1)
∨
i

φi(~x,~a) :=
∨
i

[∧j(fi,j(~x) = 0) ∧ gi(~x) 6= 0 ∧ θi(~x,~a)] ,

where the fi,j, gi are polynomials in K[ ~X] with parameters ~a, and θi is a finite con-

junction of formulas of the form p(~x) | q(~x) or p(~x) - q(~x), with p, q ∈ K[ ~X] using
~a as parameters. By using more disjunctions, we can in particular assume that for
each i, the polynomials p, q occurring in θi are factors of gi, that is to say that for
each realization ~v of φi, p(~v) 6= 0 and q(~v) 6= 0 if p, q occurs inside θi (see also the
discussion after Equation (4.1.1)).

Now for each i, since ∧j(fi,j(~x) = 0) defines an algebraic set in K, say it is Vi, we
can write Vi into a finite union of irreducible algebraic sets in K, say Vi = ∪mPi,m.

Then by Proposition A.1.16, IK(Pi,m)⊗Kalg = IKalg(Pi,m
alg

). It follows that Pi,m
alg

is

defined over K for each m. By Fact A.1.14, Pi,m
alg

is already absolutely irreducible,

i.e. IKalg(Pi,m
alg

) is a prime ideal in Kalg[ ~X].
At this point, we remark that we can rewrite the definition of D̃ as

(5.3.2)
∨
i

(
~x ∈ ZK

(∏
m

(IK(Pi,m))

)
∧ gi(~x) 6= 0 ∧ θi(~x,~a)

)
,

which is first order as the ideals IK(Pi,m) are finitely generated. The above procedure
defines an operator R on the quantifier-free Ldiv-formulas with parameters in K, so we
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call Formula (5.3.2) (“the right definition” of φ) R(φ). Notice that the parameters
may not be ~a anymore.

Now, because R(φ) is a quantifier-free formula in Ldiv with parameters in K, we
can interpret it as a quantifier-free Ldiv-formula with parameters in Kalg. Let R(D̃)alg

be the realization set of R(φ) in Kalg.

We remark that in general, the realization set of φ in Kalg and the realization set
of R(φ) in Kalg are different. This is related to the issue of field of definitions. For
example, suppose that a ∈ K is not a pth-power, then the realization set of Xp−a = 0
in K is empty, while it has a point in Kalg; the right definition of this formula is 1 = 0.

Theorem 5.3.1. Using the notation above, D̃ is a dense subset of R(D̃)alg, with
respect to the valuation topology, inside Kalg.

Proof. Suppose that all the Pi,m are defined over k ⊆ K. As K is ℵ1-saturated,
we can treat Kalg as our “universal domain” for the classical algebraic geometry (see
the appendix of this thesis about the classical algebraic geometry). The proof is very
similar to that of Lemma 4.2.4.

Assume that ~c ∈ R(D̃)alg. Then there is some fixed i and m such that ~c is a
realization of

~x ∈ ZK (IK(Pi,m)) ∧ gi(~x) 6= 0 ∧ θi(~x,~a).

Let ~y in Kalg be a generic point of Pi,m
alg

; we may assume that dim(Pi,m) ≥ 1; it
follows that k(~y) is a regular extension of k, and k(~y) has a separating transcendence
basis over k, say y1, y2, . . . , ys. It follows from Fact 5.1.2 that ys+1, . . . , y|~y| are rational
functions of y1, . . . , ys over k.

Write ~c = (c1, . . . , cs, . . .). For each cj, 1 ≤ j ≤ s, by the saturatedness of K, we
can find some dj ∈ K, 1 ≤ j ≤ s, such that v(cj − dj) are very large and d1, . . . , ds
are algebraically independent. By using the rational expressions of yj, j ≥ s + 1 in
terms of y1, . . . , ys, we can find dj ∈ K, j ≥ s + 1, such that k(~y) is isomorphic to

k(~d) as a field. By the continuity of rational functions with respect to the valuation
topology, it follows that as long as v(cj − dj) are large enough, for 1 ≤ j ≤ s, then

v(cj − dj) are large enough, for all j. Then ~d = (d1, . . . , ds, ds+1, . . . , d|~y|), is also a

generic point of Pi,m
alg

, with all dj ∈ K. But by the continuity of polynomials again,

as long as v(dj − cj) are large enough, gi(~d) 6= 0 and θi(~d,~a) remain true.

Therefore, we proved the denseness.

Corollary 5.3.2. Using the notation above, suppose that D is Lp,e ∪ {|}-definable
over K. Then there is some Dalg in Kalg which is Ldiv-definable (using parameters
in K) such that D ⊆ Dalg and D is dense in Dalg (as subsets of Kalg) with respect to
the valuation topology.
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Proof. Suppose that D̃ = λn(D) for some n. Define Dalg to be the set{
~x = (x1, . . . , xl) ∈

(
Kalg

)l ∣∣∣∣∣[
∃~y = (~y1, . . . , ~yl) ∈ R(D̃)alg

] l∧
k=1

(
xk =

∑
j∈pne

yp
ne

k,j

∏
i

b
j(i)
i

)}
.

It is clear that Dalg is Ldiv-definable using parameters from K. Because D̃ is dense in
R(D̃)alg, it follows by the continuity of polynomials that D is also dense in Dalg.

Corollary 5.3.3. Suppose that K = (K,V, . . .) |= SCVFp,e. Then the induced struc-
ture on vK is exactly the ordered abelian group structure and the induced structure
on Kv is exactly the pure field structure.

Proof. For any D which is Lp,e ∪{|}-definable over K, we have seen that D is dense
as a subset of Dalg ⊆ (Kalg)n. It follows that D and Dalg have the same image (up
finitely many points; in fact they differ from each other by at most one element, ∞)
under the valuation map, in the value group, and they have the same image (up to
finitely many points) under the residue map in the residue field as well. The conclusion
then follows from the fact that the induced structure on v(Kalg)× and Kalgv from Kalg

as a model of ACVF are respectively the pure ordered abelian group structure and
the pure field structure.

Remark 5.3.4. Related to this result, after this investigation, the author learned
that in [Kollár, 2007], J. Kollár proved that every pseudo-algebraically closed field F
has the following property: for any non-trivial valuation w on F alg, for every affine
variety V defined over F , V (F ) is dense in V (F alg) with respect to the topology
induced by w. It is known that a separably closed field is pseudo-algebraically closed.
One may be able to the generalize our result in this section to definable sets (in Ldiv)
over a pseudo-algebraically closed field.

5.4 Immediate expansions

In this section, assume that K |= SCVFp,e, with e > 0 being finite. Let V be the
valuation ring on K. We want to show that K OM (K|Lr).

The main idea is that the proof for ACVF OM ACF works for this case, as long as
we make sure that everything can be done over K instead of Kalg.

Recall that the Grassmannian G(k, n)(K) is Zariski-dense in G(k, n)(Kalg) (Pro-
position A.2.29). Note that if two irreducible affine varieties P1 ⊆ (Kalg)n and P2 ⊆
(Kalg)n are defined over K, then P1 ∩ P2 is NOT necessarily defined over K, even
though it is definable over K; but we can use results in Appendix A.3 to ensure that
this is the case generically.

64



Ph.D. Thesis - J. Hong; McMaster University - Mathematics

It is easy to see that if D ⊆ Kalg is a finite union of perforated discs, then D ∩K
is also a finite union of perforated discs—one can choose the centers and radii of
the discs occurring in the expression of D (which have non-empty intersection with
K) using parameters from K, as K is dense in Kalg in the valuation topology and
vK = v(Kalg)×. To define the valuation ring, by Lemma 4.1.7, it is enough to find
an infinite and co-infinite subset of K, which is also a finite union of perforated discs,
definable from the structure given; we do this by “ascending” to Kalg to make sure
that one can indeed get a finite union of perforated discs, and then “descending” back
to K.

We always assume that K is sufficiently saturated (in fact, K being ω-saturated is
enough).

Theorem 5.4.1. Suppose that D is a quantifier-free Lp,e ∪ {|}-definable set over K
which is not Lr-definable. Then none of the D̃alg is Lr-definable over Kalg.

Proof. Suppose that some D̃alg is Lr-definable. Then there is some quantifier-free
Lr-formula ψ such that ~x ∈ D̃alg if and only ψ(~x) is true in Kalg, for all ~x from
Kalg. By the stable embeddedness of K as a field into Kalg, this equivalence carries
downwards to K (that is ~x ∈ K is in D̃ if and only ~x satisfies a quantifier-free Lr-
formula). Because D is Lr-definable over K if and only D̃ is Lr-definable over K,
the conclusion then follows.

Lemma 5.4.2. Suppose that E ⊆ K2 is a quantifier-free Ldiv-definable set which is
not Lr-definable. Then V is Lr ∪ {E}-definable.

Proof. The Zariski-closure of E must be of dimension either 1 or 2. If it is two,
we may assume that the Zariski-closure of K2\E in K2 is also K2, otherwise, by
replacing E with its complement, we are reduced to the 1-dimensional case. With
this assumption about the complement, one can find ~a ∈ E and ~b 6∈ E such that any
point ~x close enough to ~a is also in E, and any point close enough to ~b is also not in
E. Then the set N := {x ∈ Kalg | x(~b − ~a) + ~a ∈ Ealg} is an infinite and co-infinite
subset of Kalg which is Lr ∪ {E}-definable and hence is a finite union of perforated

discs. Then {x ∈ K | x(~b− ~a) + ~a ∈ E} = K ∩N is also a finite union of perforated
discs which is infinite and co-infinite in K. So then V is also Lr ∪ {E}-definable.

Now suppose that the Zariski-closure of E is an affine plane curve C. We may
assume that C is irreducible (otherwise pick one irreducible component). Because E
is not Lr-definable, C\E is also infinite (hence Zariski-dense) in C.

Choose a large enough r (with p - r) such that the image of C under the Veronese
map (see the appendix about this map) vr has a spanned linear space of dimension
N1 = rd − d(d − 3)/2 > D/2, where D = dr is the degree of vr(C). Then con-
sider the “affinized” Veronese map vAr : A2(K) → AN(K), which takes (x1, x2) to
(. . . , xi11 x

i2
2 , . . .), with 0 ≤ i1 + i2 ≤ r (that is, the projective vr with the last homoge-

neous coordinate equal to 1). Here N =
(
r+2

2

)
+ 1.
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Then vAr (C) is irreducible and non-degenerate in AN1(K) (a hyperplane in AN(K))
of degree (i.e. the degree of vAr (C)(Kalg)) D < 2N1. Notice that vAr (E), whose Zariski-
closure is vAr (C), is also not Lr-definable. Furthermore, vAr (E) is a quantifier-free
Ldiv-definable set. This is because when one applies vAr to Calg, which is defined over
K, a point in Calg is a K-point (i.e. with all its coordinates in K) if and only if its
image under vAr is a K-point. And since vAr (Ealg) is a quantifier-free Ldiv-definable set
in Kalg, vAr (E) as the set of K-realization points of that quantifier-free Ldiv-formula
is also quantifier-free Ldiv-definable in K.

It follows that the set of points in vAr (E) which are (vAr (C)alg, vAr (E)alg)-interior
points (and K-points at the same time) is Zariski-dense in vAr (C)alg; denote this
set by G. Meanwhile the set of points in vAr (C)\vAr (E), which are also (vAr (C)alg,
vAr (C)alg\vAr (E)alg)-interior points (and K-points) is also Zariski-dense in vAr (C)alg;
denote this set by G′. Let H be a general hyperplane passing through N1 points in G,
and let H ′ be a general hyperplane passing through N1 points in G′. By Proposition
A.2.29, we may assume that H and H ′ are defined over K. Then by Proposition
A.3.10, H ∩ vAr (C)alg and H ′ ∩ vAr (C)alg are both defined over K, as the pre-image of
H and H ′ under vAr are general plane curves of degree r in (Kalg)2. We may assume
that H ∩H ′ = L, which is an (N1 − 2)-plane defined over K. Note that because the
degree of vAr (C)alg is D < 2N1, H ∩ vAr (E)alg has at least N1 points and H ′ ∩ vAr (E)alg

has at most N1 − 1 points. Pick some K-point ~a ∈ H and some K-point ~b ∈ H ′ such
that L and ~a span H, L and ~b span H ′. Consider the family of hyperplanes

F :=
{
Hx ⊆ (kalg)N1 | Hx =

〈
L,~a+ x(~b− ~a)

〉
, x ∈ Kalg

}
.

Notice that F is an irreducible family of hyperplanes (it is the line joining H in H ′ in
the Grassmannian of hyperplanes) with both H ∩ vAr (C)alg and H ′ ∩ vAr (C)alg being
defined overK, by Proposition A.3.10 again, except finitely many x ∈ K, Hx∩vAr (C)alg

is defined over K. Therefore, except finitely many x ∈ K, KN1 ∩ Hx ∩ vAr (C)alg =
(Kalg)N1 ∩Hx ∩ vA(C)alg.

But the set {x ∈ Kalg | |Hx ∩ vAr (E)alg| ≥ N1} is an infinite co-infinite subset of
Kalg which is also a finite union of perforated discs, up to a finite subset; therefore, up
to finitely many points in K, {x ∈ K | |Hx ∩ vAr (E) ∩KN1| ≥ N1} is also an infinite
co-infinite subset of K, which is a finite union of perforated discs.

Therefore V is Lr ∪ {vr(E)}-definable, i.e. Lr ∪ {E}-definable.

Theorem 5.4.3. SCVFp,e OM SCFp,e, if e > 0 is finite.

Proof. Suppose that K |= SCVFp,e. We want to show that K OM (K|Lr). We may
assume that K is sufficiently saturated.

Let E be an Ldiv-definable set over K which is not Lr-definable. We may assume
that E is quantifier-free Ldiv-definable, after picking a λ-resolution. We may assume
that E is obtained by its right definition already.

We may assume that the Zariski-closure of E is P , which is an irreducible affine

66



Ph.D. Thesis - J. Hong; McMaster University - Mathematics

closed subset of Kn. We may also assume that P\E is also dense in P , and P is
non-degenerate in the ambient space (otherwise, we are reduced to lower dimensional
cases). Suppose that the dimension of P is m.

If m = n, then find ~a ∈ E and ~b ∈ P\E such that all points close enough to ~a are

in E and all points close enough to ~b are in P\E. Then the set {x ∈ K | x(~b−~a) ∈ E}
is infinite and co-infinite in K and is also a finite union of perforated discs, which then
proves that V is Lr ∪ {E}-definable.

If m = 1, then P is K-birationally equivalent (see Fact A.1.17) to a plane curve
C, and up to a finite subset, E is Lr-definably in bijective correspondence to an Ldiv-
definable but not Lr-definable subset of C. Because the K-birational equivalence map
has the property that a point in the image is a K-point if and only if its pre-image is a
K-rational point; Up to finitely many points, the image of E under this K-birational
equivalence map is quantifier-free Ldiv-definable in K, because the same holds in the
algebraic closure (which descends to K). By Lemma 5.4.2, V is Lr-definable.

So we may assume that 2 ≤ m ≤ n− 1.
We use Fact A.3.6 and its proof. Suppose that P alg is defined over a subfield k of

K. One can choose an (P alg, Ealg)-interior point ~a; we can find a generic point of P alg

over k, say ~x ∈ Kn. We may assume that k(~x) has a separating transcendence basis
containing x1, x2. Then there are co-infinitely many c ∈ K such that k(~x)/k(x1 +cx2)
is a regular field extension. As, P\E is Zariski-dense in P , one can in particular choose
one (P alg, P alg\Ealg)-interior point which is also in Kn, say ~y such that x1 + cx2 =
y1 + cy2 (i.e. c = (x1− y1)/(y2−x2)) and k(~x)/k(x1 + cx2) is a regular field extension.
The hyperplane H := X1 + cX2 − (x1 + cx2) has the property that H is defined over
k(x1 + cx2) ⊆ K, passing through ~x and ~y, and H ∩ P alg is an irreducible variety
of dimension m − 1 defined over K. One can iterate this process until one gets an
irreducible affine curve C defined over K, passing through some (P alg, Ealg)-interior
point in E and one (P alg, P alg\Ealg)-interior point in P\E. Such an irreducible curve
C(K) would then contain (C,Ealg)-interior points and (C,C\Ealg)-interior points.
Then we are reduced to the 1-dimensional case.

Hence, V is Lr ∪ {E}-definable.

5.5 The infinite imperfection degree case

In this section, we make some remarks on separably closed valued fields with an
infinite imperfection degree.

On a separably closed field K of characteristic p > 0 and imperfection degree
e = ∞ (i.e. e ≥ ℵ0; the following functions can in fact be defined for the finite case
too), as in [Delon, 1988] or [Srour, 1986], one can define the (n + 1)-ary functions
fn,i for all n ∈ ω and i ∈ pn such that z = fn,i(x; y1, . . . , yn) if and only if one of the
following is true:

• y1, . . . , yn are p-independent, x ∈ Kp(y1, . . . , yn) and z is the i-th p-coordinate
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of x with respect to y1, . . . , yn;

• y1, . . . , yn are p-independent, x 6∈ Kp(y1, . . . , yn) and z = 0;

• y1, . . . , yn are not p-independent, z = 0.

Let Lp,∞ be the language obtained by taking the union of Lr and all the function
symbols {fn,i}n∈ω,i∈pn . Let L 2

p,∞ be the corresponding 2-sorted language for separably
closed valued fields, i.e. the field-sort language is Lp,∞, the value-group-sort language
is LOAG ∪ {∞}, and the only function symbol between sorts is the valuation map v.
Let L 2

r be the sub-language of L 2
p,∞ with the field-sort language replaced by Lr. Let

L 2,∗
p,∞ be L 2

p,∞ ∪ {∗} where ‘∗’ is a constant symbol (for an element with v(∗) 6= 0).
Naturally, one defines L 2,∗

r , L ∗
p,∞, L ∗

r in the same way.
Define SCFp,∞ to be the theory of separably closed fields of characteristic p > 0 and

imperfection degree e =∞, in the language Lp,∞. Define SCVF∗p,∞ to be the theory
of separably closed non-trivially valued fields of characteristic p > 0 and imperfection
degree e = ∞, with v(∗) 6= 0, in the language L ∗

p,∞. Define SCVF2,∗
p,∞ to be the

expansion of SCVF∗p,∞ to the language L 2,∗
p,∞.

Theorem 5.5.1 ([Delon, 1988]). SCFp,∞ has quantifier elimination.

Working with SCVF2,∗
p,∞, we do not really have a version of λ-resolution. As a

consequence, the proofs in the finite case can not be re-used in the infinite case
immediately. However, we do still have quantifier elimination. One can easily see
that given a K |= SCVF2,∗

p,∞, if we fix a p-basis, say {bi}i∈I , then for every finite subset
J ⊆ I, we have a corresponding λ-resolution with respect to the set of elements
{bi}i∈J , although in general it does not provide a bijection.

Theorem 5.5.2. SCVF2,∗
p,∞ has quantifier elimination.

Proof. The proof is similar to the finite case; each time a new element is to be added
to the embedding, only a finite subset of the p-basis would be used. Thus the method
for the finite case still works.

Corollary 5.5.3. SCVF∗p,∞ has quantifier elimination.

Due to time constraint, this investigation on the infinite imperfection degree case
can not be carried on further. Delon has provided a counting-coheir argument to
show that SCVFp,∞ does not have the Independence Property. But we shall not
record it here. We pose several questions, hoping that a slight alteration, of the proof
for the finite imperfection case for the non-Independence Property and immediate
expansions, would still work for the infinite imperfection degree case.

Question 5.5.4. Suppose that K |= SCVF∗p,∞ with {bi}i∈I being a p-basis. Suppose
that D is Ldiv-definable but not Lr-definable over K. Then is it true that D ∩
(Pp(K)(b0, . . . , bn))n is still not Lr-definable, as long as n is sufficiently large?
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Question 5.5.5. Suppose that K |= SCVF∗p,∞ with {bi}i∈I being a p-basis. Suppose
that an L ∗

p,∞ ∪ {|}-formula φ(~x, ~y) witnesses the Independence Property. Then is it
true that it also witnesses it in Pp(K)(b0, . . . , bn) as long as n is sufficiently large?

5.6 Some remarks on valued stable fields

Related to the conjecture that every infinite stable field is separably closed, one can
ask what we know about a stable field with a non-trivial valuation.

Definition 5.6.1. A valued stable field is an infinite stable field (in the sense of
model theory) endowed with a valuation.

A valued stable field can be treated as an L ∪ {|}-structure, where L is an
extension of the language of rings in which the underlying field is stable and ‘|’ is the
‘division’ predicate for the valuation as usual.

It is known that (see e.g. [Delon, 1998]) SCFp,e has elimination of imaginaries
when e is finite. It is not known whether SCFp,∞ has elimination of imaginaries or
not. One can naturally ask whether SCVFp,e has elimination of imaginaries or not. As
it usually happens, valued fields rarely have elimination of imaginaries in a one-sorted
language.

Definition 5.6.2 ([Poizat, 2000]). A theory T (strongly) eliminates imaginaries
if for every formula f(~x,~a) with parameters ~a in a model M of T there is a tuple
~b with the following property: If σ is an automorphism of an elementary extension
of M, it preserves the formula f(~x,~a) (namely, for every ~x, f(~x,~a) ↔ f(σ(~x),~a))

if and only if it fixes every element of ~b. A theory T is said to weakly eliminate
imaginaries if for every formula f(~x,~a) with parameters in M, there is a smallest
algebraically closed set A ⊆M such that f(~x,~a) is definable over A.

Remark 5.6.3 ([Poizat, 2000]). It can be shown that if T eliminates imaginaries
then T weakly eliminates imaginaries, because the former implies that the algebraic
closure of ~b is the smallest algebraically closed set over which A is definable. But in
general weak elimination of imaginaries does not imply the strong one.

We have the following5

Theorem 5.6.4. A valued stable field, with a non-trivial valuation, does not have
(weak) elimination of imaginaries in the language L ∪{|} as long as aclL∪{|} = aclL .

Proof. Suppose that K is a valued stable field; let M be a sufficiently L ∪ {|}-
saturated elementary extension of K. Then M is also a valued stable field. In the
following, we work inside M.

5The author would like to thank Dr. Martin Bays and Dr. Deirdre Haskell for their discussion
with him.
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For any element m ∈M , define

Φm = {x ∈M | v(x−m) > 0},

which is clearly definable in the language L ∪ {|}.
To show that M does not weakly eliminate imaginaries, it is enough to show

that Φm does not have a minimal algebraically closed defining set, for some m ∈ M .
Because aclL∪{|} = aclL , we denote them just by acl.

Since the acl(∅) is of cardinality |L |, the number of sets L ∪ {|}-definable over
acl(∅) is at most of cardinality |L |. BecauseM is sufficiently large, we can find some
b such that Φb is not acl(∅)-definable (in L ∪ {|}). We may also assume that b is of
positive valuation.

In the following, unless specified, we work in the language L .
SinceM|L is stable, by the theory of stable groups, working in the language L ,

there is a unique generic type over M , which is generic both for the additive group
and the multiplicative group (see e.g. Theorem 5.10 of [Poizat, 2001], or Lemma
2.3.1 of [Wagner, 1997]). Denote this type by tp(e/M) where e is some element in an
elementary extension of M. By Proposition 5.3 of [Poizat, 2001], tp(e/M) does not
fork over the empty set. Therefore, tp(e/b) does not fork over the empty set either.
But this type is realizable in M as M is sufficiently saturated. So suppose a ∈ M
realizes tp(e/b). Then tp(a/b) = tp(e/b) does not fork over the empty set, i.e. a |̂ ∅ b.

In the following, we use that fact that in a stable group G, if g is generic over G,
tp(h/G) is finitely realizable in G, g and h are independent over G, then gh is generic
over G and gh |̂ G h (so gh |̂ ∅ h if h ∈ G). For a proof, see the ‘pivotal’ Proposition
2.1.11 in [Wagner, 1997].

Case 1. v(a) > 0. Then since (e+ b) |̂ ∅ b, we have (a+ b) |̂ ∅ b. But then we have
Φ(a+b) = Φb while acl(a + b) ∩ acl(b) = acl(∅), which implies that M does not have
weak elimination of imaginaries in L ∪ {|}.

Case 2. v(a) ≤ 0. Then since e−1 is also generic over M , we know that e−1b is also
generic over M and e−1b |̂ ∅ b. Furthermore, (e−1b+ b) is again generic over M , and
thus (a−1b+ b) |̂ ∅ b. But then Φa−1b+b = Φb and acl(a−1b+ b) ∩ acl(b) = acl(∅), and
M does not have weak elimination of imaginaries in L ∪ {|} again.

Corollary 5.6.5. SCVFp,e does not have elimination of imaginaries.

Proof. It is enough to see that the algebraic closure operator in the valued-field
structure is the same as that of the field structure. (cf. Lemma 4.1.6.)

Given an infinite stable field, the conjecture says that it should be separably closed.
This conjecture is in general considered hard among the model theorists. Guided by
the philosophy that valuations are in general useful in the algebraic study of fields,
one might try to approach it from the valuation theoretic point of view.

70



Ph.D. Thesis - J. Hong; McMaster University - Mathematics

Definition 5.6.6. A field K is valuationally algebraically closed, if for any non-
trivial valuation V on Kalg, K is dense in Kalg with respect to the topology induced
by V .

A field K is immediately algebraically closed, if for any non-trivial valuation
V on K, and for any extension W of V to Kalg, Kalg is an immediate valued-field
extension of K.

It follows easily that if K is valuationally algebraically closed, then K is always
immediately algebraically closed. Naturally if K is algebraically closed, then it is
valuationally algebraically closed. Any non-trivial valuation on an algebraically closed
field has an algebraically closed residue field and a divisible value group; it follows
that if K is valuationally algebraically closed or immediately algebraically closed,
then for any non-trivial valuation ring V on K, Kv is algebraically closed and vK is
divisible (the last two conditions combined is in fact equivalent to saying that K is
immediately algebraically closed).

We have seen that if K is separably closed, then K is also valuationally alge-
braically closed. In the following, we give an example, showing that R is in fact
valuationally algebraically closed too.

Example 5.6.7. Not every valuationally algebraically closed field is separably closed.
Every pseudo-algebraically closed field is valuationally algebraically closed by Propo-
sition 11.5.3 of [Fried and Jarden, 2008]. But not every valuationally algebraically
closed field is pseudo-algebraically closed; for example, R is valuationally algebraically
closed6, but it is not pseudo-algebraically closed as an ordered field is not pseudo-
algebraically closed.

Proof. Denote again by v a valuation on R which is not trivial. The algebraic closure
of R is C = R[i]; we denote an extension of v on C by v again. For any a + bi with
a, b ∈ R, we want to show that we can find some x ∈ R such that v(a + bi − x) is
arbitrarily large. We may assume that b 6= 0.

Notice that [(a − x) + bi] + [(a − x) − bi] = 2(a − x). If v(a − x + bi) is very
large, in particular larger than v(bi), then v(a− x) = v(bi) = v(b) as i2 = −1. Thus,
v(a− x− bi) = v(2(a− x)) = v(2) + v(b). So we want

v(a+ bi− x) = v((a− x)2 + b2)− v(a− x− bi)
= v((a− x)2 + b2)− v(2b)

to be very large. It is enough to make sure that v((a− x)2 + b2) can be very large.
Because v is not trivial, there must be some element ε ∈ R× with v(ε) > 0 and

ε > 1. To see this, assuming the opposite, i.e. for all z > 1, v(z) ≤ 0; this implies
that v is convex, hence trivial on R. For example, if we have 0 < a < b with b ∈ V ,
then because b/a > 1, v(b/a) ≤ 0, i.e. v(b) ≤ v(a) which implies that a ∈ V too.

6In fact, one can prove that a real closed field is archimedean if and only if it is valuationally
algebraically closed.
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Let y ∈ R be such that y > 0 and v(y) is very large, then there is some n, such that
v(εny) is also very large with the property that εny > b2 (because R is archimedean).
This means that there is an x ∈ R such that (a− x)2 = εny − b2 > 0.

We conclude that R is dense in C with respect to the valuation induced by v.
Therefore, R is valuationally algebraically closed.

Question 5.6.8. Is every immediately algebraically closed field also valuationally
algebraically closed?

Question 5.6.9. Suppose that (K,V ) is a valued stable field, then is the (model-
theoretic) algebraic closure in the valued-field structure the same as the algebraic
closure in the smaller language (in which K is stable)?

Question 5.6.10. Is it true that every valued stable field is valuationally algebraically
closed?

Question 5.6.11. Is it true that every valued stable field, which is also valuationally
algebraically closed, is separably closed?

Question 5.6.12. Suppose that (K,+,−,×, 0, 1) is valuationally algebraically closed,
is it true that (K,+,−,×, 0, 1, V ) OM (K,+,−,×, 0, 1) for any valuation ring V on K?
If this is not true, what about if K is pseudo-alegbraically closed, or pseudo-finite?
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Appendix A

Classical algebraic geometry

The material in this chapter is “classical algebraic geometry” in the sense that we work
with zero-sets of polynomials over some fields. Nothing scheme theoretic is involved.
The main references for this chapter are [Lang, 1958], [Hartshorne, 1977], [Harris,
1992] and [Fried and Jarden, 2008].

A variety in this thesis is always NOT assumed to be irreducible.

A.1 Affine varieties, generic points, etc.

Suppose that K is a field.

A zero-set of a polynomial f( ~X) ∈ K [X1, . . . , Xn] is a set of the form {~a ∈ Kn |
f(~a) = 0}. A zero-set of a set of polynomials A is usually denoted by ZK(A), or simply
Z(A), if the K we refer to is clear from the context. An affine variety or an affine
algebraic set in/over K, is a zero-set of a collection of polynomials over K. It is well
known that every ideal in K[X1, . . . , Xn] for some n is always finitely generated, thus
an affine variety is a zero-set of finitely many polynomials. One can prove that Kn

has a topology with all affine varieties as the closed sets; this topology is called the
Zariski topology on Kn. The set Kn with the Zariski topology is usually denoted
by An(K), or simply An, called the affine space An. A non-empty affine variety is
irreducible if it is not a union of two proper Zariski-closed subsets.

Given a subset Y of An, there is an ideal of Y in K[ ~X] over K, which is

IK(Y ) := {f ∈ K[ ~X] | (∀~a ∈ Y )f(~a) = 0}.

Again we omit the subscript K if it clear from the context what K is.

Fact A.1.1 (see [Hartshorne, 1977]).

(a) If T1 ⊆ T2 are subsets of K[ ~X], then Z(T1) ⊇ Z(T2);

(b) if Y1 ⊆ Y2 are subsets of An, then I(Y1) ⊇ I(Y2);

(c) for any two subsets Y1, Y2 of An, I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2);
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(d) if K is algebraically closed, then for any ideal a of K[ ~X], I(Z(a)) =
√
a (the

radical of a);1

(e) for any subset Y of An, Z(I(Y )) = Ȳ , the Zariski-closure of Y , i.e. the
smallest Zariski-closed set containing Y .

Clause (d) above is also called the Hilbert’s Nullstellensatz.

Fact A.1.2 (see [Hartshorne, 1977]). Suppose that K is algebraically closed. Then
there is a one-to-one inclusion reversing correspondence between affine algebraic sets
in An and radical ideals (i.e. ideals which are equal to their radicals) in K[ ~X], given
by Y 7→ I(Y ) and a 7→ Z(a).

Furthermore, an affine variety is irreducible if and only if its ideal is prime.

Fact A.1.3 (see [Hartshorne, 1977]). Every non-empty affine variety Y in An is a
finite union of irreducible affine varieties Y1 ∪ · · · ∪Ym, for some m. If we require that
Yi 6⊆ Yj if i 6= j, then the Yi are unique (up to permutation), in which case they are
called the irreducible components of Y .

Definition A.1.4 (see [Hartshorne, 1977]). Suppose that Y is an affine variety. A
function f : Y → K is regular at a point ~p, if there is a Zariski-open neighborhood
U of ~p such that ~p ∈ U ⊆ Y and polynomials g( ~X), h( ~X) ∈ K[ ~X] with h( ~X) nowhere

zero on U , such that f( ~X) = g( ~X)/h( ~X) on U . A function f is regular on Y (resp. U)
if it is regular at every point on Y (resp. U).

Fact A.1.5 (see [Hartshorne, 1977]). A regular function is continuous if we identify
K with A1.

A quasi-affine variety is an affine variety or a Zariski-open subset of an affine
variety.

Definition A.1.6 (see [Hartshorne, 1977]). Suppose that X ⊆ An, Y ⊆ Am are two
quasi-affine varieties. Then a morphism ϕ : X → Y is a Zariski-continuous map
such that for every open set U ⊆ Y and every regular function f : V → K, the
function f ◦ ϕ : ϕ−1(U)→ K is regular.

We want to study the behaviour of varieties as we change the underlying fields. It
turns out the early Weil-style analysis is suitable for our purpose, although it is often
criticised as not being functorial enough by modern algebraic geometers, who prefer
to use schemes.

Definition A.1.7 (see [Lang, 1958]). A field K is called a universal domain if it
is algebraically closed and of infinite transcendence degree over its prime sub-field.

1
√
a := {f ∈ K[ ~X] | (∃r ∈ N>0)fr ∈ a}.
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Let k be a subfield of K with K being of infinite transcendence degree over k. Let
p be a prime ideal of k[X1, . . . , Xn], the quotient map

π : k[X1, . . . , Xn]→ K[X1, . . . , Xn]/p,

induces an isomorphism on k (we identify k with its image). Let ξi = π(Xi). Then

f( ~X) ∈ p if and only f(~ξ) = 0.

Fact A.1.8 ([Lang, 1958]). Let k(~ξ) be a finitely generated extension of k. There
exists an isomorphism of k(ξ) into K which is the identity on k.

Proof. We may assume that ξ1, . . . , ξr is a transcendence basis of k(~ξ)/k. Let the
elements x1, . . . , xr ∈ K be algebraically independent over k. Then there is an
isomorphism k(ξ1, . . . , ξr) → k(x1, . . . , xr). This isomorphism can be extended to

k(~ξ)→ k(~x) for some ~x ∈ Kn, because K is algebraically closed.

Definition A.1.9 ([Lang, 1958]). A point (x1, . . . , xn) ∈ Kn satisfying the condition
in the proof of Lemma A.1.8, i.e. satisfying an isomorphism

k(X1, . . . , Xn)/p→ k(x1, . . . , xn)

which restricts to identity on k, is called a generic zero or a generic point of p
(with respect to k and K).

If V ⊆ kn is the zero set of its associated ideal p := Ik(V ) which is also a prime

ideal in k[ ~X], we also called a generic point of p (with respect to K and k) a generic
point of V (with respect to k and K).

Fact A.1.10 ([Lang, 1958]). The dimension (see Definition A.2.14) of ZK(p) is the
transcendence degree of k(~x)/k for some (equivalent any) generic point ~x ∈ K.

Definition A.1.11 ([Lang, 1958]). An ideal A ⊆ K[ ~X] has a basis in k, if there exists

a set of generators of A in K[ ~X] whose elements are polynomials with coefficients in
k. If A has a basis in k, then we say that k is a field of definition for A, or that A
is defined over k. 2

Fact A.1.12 ([Lang, 1958]). Let A be an ideal of K[ ~X]. There exists a minimal field
of definition for A, i.e. there is a field k0 ⊆ K such that A has a basis in k0, and for
any field k, if A has a basis in k, then k ⊇ k0. This k0 is always finitely generated
over the prime field.

Furthermore, if σ is an automorphism of K then Aσ = A if and only if σ leaves
every element of k0 fixed.

Because K is algebraically closed, A is the zero-set of IK(A); the field of defini-
tion of A is defined to be the field of definition of IK(A).

2This should not be confused with “being definable over k”.
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Fact A.1.13 ([Lang, 1958]). Suppose that V is ZK(P) with P being a prime ideal in

K[ ~X]. Suppose that k is a field of definition for V . Let ~x ∈ Kn be a generic point of

p := P ∩ k[ ~X] (with respect to k). Then k(~x) is separable over k and k is relatively
algebraically closed in k(~x).3

Fact A.1.14 ([Lang, 1958]). Suppose that we have a prime ideal p in k[ ~X], and V as
an affine algebraic set of the ideal p⊗kalg in (kalg)n. Suppose that V is defined over k
(that is Ikalg(V ) = p⊗ kalg). Suppose that V is decomposed into V = ∪jVj where the
Vj are the irreducible components (of V over kalg). Then the irreducible components
{Vj}j are mutually conjugated by automorphisms of kalg fixing k.

Fact A.1.15 ([Lang, 1958]). Let a be an ideal in k[ ~X] and let L be an extension of k.

Let f be an element in aL[ ~X]. Then f can be written as a finite sum f =
∑

i cjfj(
~X)

where {cj}j is a set of elements in L linearly independent over k, and fj( ~X) ∈ k[ ~X]

for all j. When f is written in such a way fj( ~X) are all in a and they are uniquely
determined.

The following proposition was pointed out by Delon:

Proposition A.1.16. Suppose that k is separably closed, and kalg is the algebraic
closure of k. If V is an algebraic set in k, that is there are finitely many polynomials
f1, . . . , fr ∈ k[ ~X] such that

V = {~x ∈ k | f1(~x) = 0, . . . , fr(~x) = 0},

then Ik(V )⊗ kalg = Ikalg(V̄
alg), where V̄ alg is the Zariski-closure of V in kalg.

Proof. We first prove that the zero set of Ik(V ) in kalg, which is denoted by
Zkalg(Ik(V )) is V̄ alg.

It is clear that V is contained in Zkalg(Ik(V )). For any g( ~X) ∈ kalg[ ~X], with the
property that V ⊆ Zkalg(g), we need to show that Zkalg(Ik(V )) ⊆ Zkalg(g). By the
assumption on g, for any ~v ∈ V , g(~v) = 0. Because k is separably closed, there is

some natural number m such that gp
m ∈ k[ ~X]. Therefore, gp

m ∈ Ik(V ). Then by the
definition of the zero set, for any ~v ∈ Zkalg(Ik(V )), gp

m
(~v) = 0, which in turn implies

that g(~v) = 0. Therefore, we get that Zkalg(Ik(V )) ⊆ Zkalg(g).
Back to the proof of the proposition, we have that

Ik(V ) ⊆ Ikalg(Zkalg(Ik(V ))) = Ikalg(V̄
alg).

So Ik(V ) ⊗ kalg ⊆ Ikalg(V̄
alg). On the other hand, suppose that we are given one

g ∈ Ikalg(V̄ alg); then we can write (for some n)

g( ~X) =
n∑
i=1

cigi( ~X),

3This kind of field extensions are also known as regular extensions.
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where gi ∈ k[ ~X] and the ci are elements of kalg which are linearly independent over
k. If we show that gi ∈ Ik(V ), then g ∈ Ik(V )⊗ kalg.

For any ~v ∈ V , because g ∈ Ikalg(V̄ alg), we have

0 = g(~v) =
n∑
i=1

cigi(~v),

with gi(~v) ∈ k. But because the ci are linearly independent over k, all the gi(~v) are
zero, which is exactly what we want.

Fact A.1.17 ([Fried and Jarden, 2008]). Every irreducible affine curve C in K which
is defined over k is k-birationally equivalent to a plane curve C ′ (in K2); that is up to
finitely many points, there is a isomorphism from C to C ′ (given by rational functions
over k).

A.2 Projective varieties, dimensions, degrees, etc.

Suppose that K is again a field.

Definition A.2.1 ([Hartshorne, 1977]). A graded ring is a ring S together with a
decomposition S =

⊕
d≥0 Sd of S into a direct sum of abelian groups Sd, such that for

any d, e ≥ 0, Sd · Se ⊆ Sd+e. An element of Sd is called a homogeneous element
of degree d. An ideal a ⊆ S is a homogeneous ideal if a =

⊕
d≥0(a ∩ Sd).

Fact A.2.2 ([Hartshorne, 1977]). An ideal of a graded ring is homogeneous if and
only if it can be generated by homogeneous elements. The sum, product, intersection,
and radical of homogeneous ideals are homogeneous. A homogeneous ideal a is prime
if and only if for any two homogeneous elements f, g such that fg ∈ a, it follows that
f ∈ a or g ∈ a.

We can regard the ring K[X0, . . . , Xn] as a graded ring, where a homogeneous
element of degree d (now called a homogeneous polynomial of degree d) is a
linear combination of monomials of degree d.

Consider the set-quotient obtained by Kn+1\{0} modulo the equivalence relation

‘∼’, where for any ~a,~b ∈ Kn+1, ~a ∼ ~b if and only if there is some λ ∈ K× such that
~a = λ~b. That is, we identify a 1-dimensional linear subspace of Kn+1 with one point.
An element of this set-quotient is usually denoted by [a0 : a1 : . . . : an], which is the
equivalence class of (a0, . . . , an), in which case the ai are called the homogeneous
coordinates of the point [a0 : . . . : an]. For any homogeneous polynomial f ∈
K[X0, . . . , Xn], it makes sense to talk about the ‘zero-set’ of f in (Kn+1\{0})/ ∼; that
is, a zero of f is an element [a0 : . . . : an] such that f(a0, . . . , an) = 0; because f is
homogeneous, this is well-defined—it does not depend on the choice of representative
for the equivalence class ‘∼’. A zero set of a set of homogeneous polynomials A ⊆
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K[X0, . . . , Xn] is denoted by ZK(A). One can show that the zero-sets generate a
topology on (Kn+1\{0})/ ∼ in which they are exactly the closed sets.

Definition A.2.3. The projective n-space over K is (Kn+1\{0})/ ∼ endowed with
the Zariski topology generated by the zero-sets of sets of homogeneous polynomials. It
is denoted by Pn(K), or simply Pn.

Sometimes, given a vector space V over K, we use P(V ) to denote the set of all
1-dimensional subspace of V .

Definition A.2.4. A zero-set of a set of homogeneous polynomials in Pn is called
a projective variety. An open subset of a projective variety is called a quasi-
projective variety.

Let Ui ⊆ Pn be the set of points whose i-th homogeneous coordinate is not zero.
Then the map

[a0 : . . . : ai−1 : ai : ai+1 : . . . an] 7→ (a0/ai, . . . , ai−1/ai, ai+1/ai, . . . , an)

from Ui to An is well-defined and gives a bijection of sets. Thus we identify An as
an open subset Ui of Pn. If X ⊆ Pn is a projective variety, say X = Z({Fj}i), where
Fi is a homogeneous polynomial of degree dj in K[X0, . . . , Xn], then clearly X ∩An,
under that identification, is the zero set of the polynomials {fj(Y1, . . . , Yn)}j, where

fj(Y1, . . . , Yn) := Fj(X0, . . . , Xn)/X
dj
i

= Fj(X0/Xj, . . . , Xi−1/Xj, 1, Xi+1/Xi, . . . , Xn/Xi).

This process is invertible. One can see that if we have an affine sub-variety of An (for
the ease of notation, we identify it with U0), being the zero-set of {fj(X1, . . . , Xn)}j,
then assuming that

fj(X1, . . . , Xn) :=
∑

ai1,...,inX
i1
1 · · ·X in

n ,

we can get

Fj(X0, . . . , Xn) := X
dj
0 fj(X1/X0, . . . , Xn/X0)

=
∑

ai1,...,inX
(dj−

∑
k ik)X i1

1 · · ·X in
n .

We refer to these two operations as the affinization and the projectivization.

Fact A.2.5 ([Hartshorne, 1977]). The projective closure, i.e. the Zariski-closure of
an affine variety X (being identified as a subset of An ∼= Ui) in Pn, is the zero-set of
the ideal of the projectivization of the ideal of X.
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Definition A.2.6 ([Harris, 1992]). An inclusion of vector spaces over the field K,
W ∼= Kk+1 ↪→ V ∼= Kn+1 induces a map PW ↪→ PV ; the image Λ of such a map
is called a linear subspace of dimension k in PV , or a k-plane in PV . In case
n = k − 1, we called Λ a hyperplane. In case k = 1, we call Λ a line. A linearly
subspace is a projective sub-variety of Pn

Suppose that Γ ⊆ PV is a subset, then the span of Γ, is the smallest linear
subspace of PV containing Γ.

Fact A.2.7 ([Harris, 1992]). If Λ = PW of dimension k in PV , then the space of
(k + 1)-planes containing Λ is the projective space P(V/W ).

Definition A.2.8 ([Harris, 1992]). A hypersurface is a sub-variety of Pn which is
the zero-set of a single homogeneous polynomial.

Definition A.2.9 ([Hartshorne, 1977]). Suppose that Y is a quasi-projective variety
in Pn.

A function f : Y → K is regular at a point ~p ∈ Y , if there is an open neighborhood
U with ~p ∈ U ⊆ Y and homogeneous polynomials g, h ∈ K[X0, . . . , Xn] of the same
degree, such that h is nowhere zero on U and f = g/h on U . We say that f is regular
on Y if it is regular at every point in Y .

Definition A.2.10 ([Hartshorne, 1977]). Suppose that X and Y are two quasi-
projective varieties, and ϕ : X → Y is a map. Then ϕ is said to be a morphism if ϕ
is continuous and for every open set V ⊆ Y and every regular function f : V → K,
f ◦ ϕ : ϕ−1(V ) → K is regular. An isomorphism is a morphism with a two sided
inverse.

Fact A.2.11 ([Hartshorne, 1977]). If X ⊆ Pn is a projective variety and ϕ : X → Pn

is a morphism, then the image of ϕ(X) is also a projective variety.

Let G(k, n) be the set of k-dimensional linear subspaces of the vector space Kn;
or in general let G(k, V ) be the set of k-dimensional linear subspaces of the vector
space V . Then G(k, n) is the same as the set of (k− 1)-planes in Pn−1, so sometimes
it is also written as G(k−1, n−1). This kind of sets are called the Grassmannians.
One can see that they are generalizations of the projective spaces.

We want to embed G(k, n) into some projective space, so that it becomes a pro-
jective variety. The embedding is done as follows (following [Harris, 1992] almost
verbatim). Suppose that V is an n-dimensional vector space over K. If W ⊆ V is
the k-dimensional linear subspace spanned by vectors v1, . . . , vk, then we consider the
element v1 ∧ . . . ∧ vk ∈

∧k(V ) in the k-th exterior power of V . If we have a different
basis for W , then the corresponding element in

∧k(V ) is obtained by multiplying the
original one by the determinant of the matrix of basis change. Thus we can define a

map ψ : G(k, V )→ P
(∧k V

)
as

W 7→ [v1 ∧ . . . ∧ wk] .
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One can recover the original vector space W as the set of vectors v ∈ V satisfiying v∧
(v1∧. . .∧vk) = 0 ∈

∧k+1 V . The map ϕ is called the Plücker embedding of G(k, V ).
The homogeneous coordinates on P(∧kV ) are called the Plücker coordinates of
G(k, V ).

If we choose an identification V ∼= Kn, we can represent the plane W by the
k × n matrix MW whose rows are the vectors vi; the matrix MW is determined up
to multiplication on the left by an invertible k × k matrix. It can be shown that the
Plücker coordinates are then just the maximal minors of the matrix MW .

In order to see that G(k, V ) is embedded as a projective variety, it is enough to
characterize the totally decomposable vectors ω ∈ ∧kV . A vector ω ∈ ∧kV is totally
decomposable if it is a product of vectors in V , i.e. ω = v1 ∧ . . .∧ vk for some set of
vectors. Given ω ∈ ∧kV and v ∈ V , ω can be expressed as v ∧ϕ for some ϕ ∈ ∧k−1V
if and only if ω∧ v = 0 ∈ ∧k+1V , in which case we say v divides ω. Thus ω is totally
decomposable if and only if the space of vectors v dividing ω is k-dimensional. For
each ω ∈ ∧kV , consider the map

ϕ(ω) :V → ∧k+1V

v 7→ ω ∧ v.

One can see that [ω] ∈ ψ(G(k, n)) if and only if rank(ϕ(ω)) is n− k. But rank(ϕ(ω))
is always not less than n− k, thus

[ω] ∈ ψ(G(k, n))⇐⇒ rank(ϕ(ω)) ≤ n− k.

Because the map θ := ω 7→ ϕ(ω) from ∧kV to Hom(V,∧k+1V ) is linear, G(k, V ) is
the zero-set of the (n− k + 1)× (n− k + 1) minors of the matrix of θ.

Suppose that ai is one Plücker coordinate of P(∧kV ) after identifying V with Kn

with the standard basis {ei}i, where ei = (0, . . . , 0, 1, 0, . . . , 0), whose only non-zero
coordinate is the i-th coordinate which is 1. Then the set Ui, which is the set of points
with ai 6= 0 in P(∧kV ), is isomorphic to an affine space. For instance, we examine
the U0, where the a0 is the maximal minor obtained from the first k columns. After
a change of basis or performing elementary row operations, we can assume that the
k × n matrix associated to a k-dimensional linear subspace W is in fact of the form

(A.2.1)


1 0 0 . . . 0 x1,1 x1,2 . . . x1,n−k
0 1 0 . . . 0 x2,1 x2,2 . . . x2,n−k
...

...
... . . .

...
...

... . . .
...

0 0 0 . . . 1 xk,1 xk,2 . . . xk,n−k

.


One checks that this gives an isomorphism U0 ∩G(k, n) ∼= Ak(n−k).

Fact A.2.12 ([Harris, 1992]). G(k, n) is an irreducible projective variety (of dimension
k(n− k)).
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Definition A.2.13 ([Harris, 1992]). By a general k-plane in Pn, we mean a point
inside some (previously fixed) Zariski-open dense subset of G(k, n).

For example, if we say “given a projective variety X in Pn, a general k-plane
intersects X at finitely many points”, then what we mean is: ”the subset, of points
in G(k, n) which correspond to k-planes intersecting X at an infinite subset, is the
complement of a Zariski-open dense subset of G(k, n).” It can be proved that for
any quasi-projective variety X in Pn, there is always a smallest integer k such that
a general (n − k)-plane in Pn intersects X at finitely many points (and furthermore
the number of the points is the same for all general (n− k)-planes.

Definition A.2.14 ([Harris, 1992]). The dimension of an irreducible quasi-projective
variety X ⊆ Pn is the smallest integer k such that a general (n−k−1)-plane Λ ⊆ Pn

is disjoint from X. Equivalently, the dimension of an irreducible quasi-projective
X ⊆ Pn is the integer k such that a general (n − k)-plane in Pn intersects X at
finitely many points. The dimension of X is denoted by dim(X) := k.

Fact A.2.15 ([Harris, 1992]). If X is an irreducible variety and Y ⊆ X is a proper
closed sub-variety, then dim(Y ) < dim(X).

Fact A.2.16 ([Harris, 1992]). If X ⊆ Pn is a k-dimensional projective variety and Λ
is any linear subspace of dimension l ≥ n− k, then Λ must intersect X.

Fact A.2.17 ([Harris, 1992]). dim (G(k, n)) = dim
(
Ak(n−k)

)
= k(n− k).

Definition A.2.18 ([Harris, 1992]). Let X ⊆ Pn be an irreducible quasi-projective
variety of dimension k. The degree of X, denoted by deg(X), is the number of points
of the intersection of a general (n− k)-plane with X.

The following two items are not critical to the understanding of the results in this
thesis.

Definition A.2.19 ([Harris, 1992]). Suppose that X and Y are two projective varieties
in Pn and that their intersection has irreducible components Zi. Then X and Y
are said to intersect generically transversely if, for each i, X and Y intersect
tranversely at a general point pj ∈ Zi, i.e. for each pj a general point in Zi the
tangent spaces of X and Y at pj span the whole tangent space of Pn at pj.

Fact A.2.20 (Bézout’s Theorem, [Harris, 1992]). Let X and Y be two irreducible
projective varieties in Pn of dimension k and l with k+ l ≥ n, and suppose that they
intersect generically transversely. Then

deg(X ∩ Y ) = deg(X) deg(Y ).

In particular, if k + l = n, then X ∩ Y consists of deg(X) deg(Y ) points.
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Definition A.2.21 ([Harris, 1992]). A quasi-projective variety is said to be non-
degenerate if it does not lie in any hyperplane.

Fact A.2.22 ([Harris, 1992]). Let C ⊆ Pd be any irreducible non-degenerate curve
(i.e. projective variety of dimension 1). Then deg(C) ≥ d.

Fact A.2.23 ([Harris, 1992]). LetX be an irreducible non-degenerate quasi-projective
variety of dimension k ≥ 1. Let H be a general hyperplane and Y = X ∩H. Then Y
is non-degenerate in H; and if furthermore k ≥ 2 then Y is irreducible as well.

Definition A.2.24 ([Harris, 1992]). We define a family of maps called Segre maps.
For given numbers m,n, denote by Pn×Pm the set-theoretic Cartesian product of the
set Pn and the set Pm. Then σ : Pn ×Pm → P(n+1)(m+1)−1, is the map

σ([X0, . . . , Xn], [Y0, . . . , Ym]) = [. . . , XiYj, . . .].

Fact A.2.25 ([Harris, 1992]). The image of this map, denoted by Σn,m, is a projective
variety, which is the zero-set of polynomials Zi,jZk,l − Zi,lZk,j. If X ⊆ Pn and Y ⊆
Pm are two projective (resp. quasi-projective) varieties, then treating X × Y set-
theoretically, we have that σ(X × Y ) ⊆ Σn,m is a projective (resp. quasi-projective)
variety.

Definition A.2.26. Given two quasi-projective varieties X ⊆ Pn and Y ⊆ Pm, the
set-theoretic product X × Y , endowed with the structure of σ(X × Y ), is called the
product variety of X and Y , also denoted by X × Y .4

Note that the topology on the product variety X × Y is not the product topology
of the topology on X and the topology on Y .

Fact A.2.27 ([Harris, 1992]). If X ⊆ Pn is projective variety, ϕ : X → Pm is a
morphism, then the graph of ϕ viewed as a subset of Pn ×Pm is a sub-variety.

Proposition A.2.28. Suppose that E is a Zariski-dense subset of the projective va-
riety X and F is a Zariski-dense subset of the projective variety Y . Then E × F as
a subset of X × Y is also Zariski-dense.

Proof. For any point ~e ∈ E, {~e}×Y is isomorphic to Y as a projective variety. Thus
the Zariski-closure of {~e}×F is {~e}×Y . It follows that for any point ~y ∈ Y , E×{~y}
is in the Zariski-closure of E × F . But the Zariski-closure of E × {~y} is X × {~y}.
Therefore, X × Y is contained in the Zariski-closure of E × F , which implies that
E × F is Zariski-dense in X × Y .

Proposition A.2.29. Suppose that K is an infinite subfield of L. Then the Grass-
mannian G(k, n)(K) of k-planes in K is Zariski-dense in G(k, n)(L).

4One can check that it is indeed the product in the categorical sense.
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Proof. By the identification U0∩G(k, n) ∼= Ak(n−k) via Equation (A.2.1), it is enough
to verify that Am(K) is Zariski-dense in Am(K) for all m. But this is true when K
is an infinite subfield of L, which can be proved by induction on the dimension and
by Proposition A.2.28.

Fact A.2.30 ([Harris, 1992]). Let X be a irreducible quasi-projective variety and
π : X → Pn a regular map; let Y be the closure of the image. For any ~p ∈ X, let
X~p = π−1(π(p)) be the fiber of π through ~p. Let µ(~p) = dim(Xp). Then µ(~p) is
an upper-semicontinuous function of ~p; that is for all m, the set of all ~p such that
µ(~p) ≥ m is Zariski-closed in X. Moreover, if µ is the minimal value of µ(~p) on X,
then

dim(X) = dim(Y ) + µ.

Fact A.2.31 ([Harris, 1992]). Let X be an irreducible projective variety and π :
X → Pn any regular map; let Y = π(X) be its image. For any ~q ∈ Y , let λ(~q) =
dim(π−1(~q)). Then λ(~q) is an upper-semicontinuous function of ~q. Moreover, if λ is
the minimal value of λ(~q) on Y , then

dim(X) = dim(Y ) + λ.

Fact A.2.32 ([Harris, 1992]). Let π : X → Y be a morphism of projective varieties
with Y being irreducible. Suppose that all fibers π−1(~p) of π are irreducible of the
same dimension. Then X is irreducible.

Fact A.2.33 ([Harris, 1992]). Projective varieties of the following form are called
flag manifolds:

F(k, l, n) = {(Γ,Λ) | Γ ⊆ Λ} ⊆ G(k, n)×G(l, n).

They are irreducible of dimension

dim (F(k, l, n)) = dim (G(k, n)) + dim (G(l − k − 1, n− k − 1))

= (k + 1)(n− k) + (l − k)(n− l).

Fact A.2.34 ([Harris, 1992]). Let Φ ⊆ G(k, n) be any sub-variety. Then the union

Ψ =
⋃
Λ∈Φ

Λ

inside Pn is also a projective variety.

Fact A.2.35 ([Harris, 1992]). Let X ⊆ Pn be a projective variety. Then the set of
k-planes meeting X is a sub-variety of the Grassmannian G(k, n).

Fact A.2.36 ([Harris, 1992]). Similar to Fact A.2.7, the variety of k-planes containing
a linear subspace of dimension l < k, is isomorphic to G(k − l − 1, n− l − 1).
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Proposition A.2.37. Suppose that X is an irreducible non-degenerate5 projective
variety of dimension m < n in Pn, E and F two subsets of X which are both Zariski-
dense in X and disjoint. Then for any 0 ≤ k ≤ m − 1, there is some general
(n−m+ k)-plane passing through some point in E and some point in F .

Proof. Consider the morphism:

s : (X ×X) \∆→ G(1, n)

(~p, ~q) 7→ ~p~q,

where ∆ is the diagonal in X×X, and ~p~q is the line determined by ~p and ~q. Denoting
the image of s by S, the Zariski-closure of S is called the variety of secant lines,
denoted by S (X). It is known ( [Harris, 1992]) that S (X) is an irreducible projective
variety with dim(S (X)) = 2m. Because E ×F is Zariski-dense in X ×X, its image,
s(E × F ), under the continuous map s, has to be Zariski-dense in S, hence in S (X)
as well.

Consider the two projections π1 and π2 from the flag manifold F(1, n−m+ k, n)
to G(1, n) and G(n −m + k, n) respectively. π2π

−1
1 (S (X)) must contain a general

(n−m+ k)-plane, as a general (n−m+ k)-plane passes through two distinct points
on X. Because each point (~p, ~q) ∈ E × F has the property that π−1

1 (s(~p, ~q)) =
G(n − m + k − 2, n − 2), the dimension of the Zariski-closure of π−1

1 (s(E × F )) is
dim(S (X)) + dim(G(n−m+ k − 2, n− 2)). Furthermore, since each fiber of π1 on
S (X) has the same dimension, π−1

1 (S (X)) is irreducible, with dim(π−1
1 (S (X))) =

dim(S (X)) + dim(G(n−m+ k− 2, n− 2)) as well. It follows that π−1
1 (s(E ×F )) is

Zariski-dense in π−1
1 (S (X)). But this implies that there must be a general (n−m+k)-

plane inside π2π
−1
1 (s(E × F )) (π−1

2 takes an open subset into an open subset), which
is exactly the conclusion we wanted to prove.

Definition A.2.38 ([Harris, 1992]). For each n ≥ 0 and r ≥ 0, the Veronese map of
degree r is defined to be the map vr : Pn → PN , which takes [x0, . . . , xn] to [. . . , xI , . . .],
where xI ranges over all monomials of degree r in the variables x0, x1, . . . , xn. One
can show that N =

(
n+r
r

)
− 1.

It is easy to see that when r ≥ 1, vr is a one-to-one function. The image vr(Pn) is
in fact a projective sub-variety of PN . It can be also proved that if X is a projective
sub-variety of Pn, then vr(X) is also a projective sub-variety of vr(PN). In fact, X
and vr(X) are isomorphic. And the corresponding “affinized” vAr (X) is isomorphic to
X.

Suppose that X is a projective hypersurface in Pn defined by a homogeneous
polynomial of degree d (which generates the ideal of the zero set). Consider the r-th
Veronese map vr on X, where r is at least d and p - r. Clearly vr(X) should be of

5As we can see from the proof, being of degree larger than 1 is enough for the conclusion to hold.
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dimension m, inside PN where N + 1 =
(
n+r
r

)
. One can show that the span of vr(X)

is of dimension, 6 (
r + n

r

)
−
(
r − d+ n

r − d

)
.

Furthermore, the degree of vr(X) is rmd.
In the case where n = 2 and m = 1, i.e. when X is a plane curve in P2 (in

particular, X must be defined by a single equation of degree d), the dimension of the
span of vr(X) is (

r + 2

r

)
−
(
r − d+ 2

r − d

)
= rd− d(d− 3)/2.

The degree of vr(X) is rd. It follows that if the degree of the Veronese map, r, is
sufficiently large, then vr(X) is a non-degenerate curve in PN1 of degree rd, where
N1 = rd− d(d− 3)/2 and 2N1 > dr.

A.3 General intersections

In order to prove that SCVFp,e OM SCFp,e (see Chapter 5), we will need to use some
results about intersecting a given irreducible variety defined over a separably closed
field by linear varieties defined over the the same field. This is a critical step to make
the descend from the algebraic closure to the separably closed sub-field that we are
working in possible.

Throughout this section, let K be a separably closed field of characteristic p > 0,
which has an infinite transcendence degree over its prime field. As usual, we use Kalg

to denote the (field-theoretic) algebraic closure of K. The letter k will alway denote
a (most of the time countable) subfield of Kalg.

The reader can find most of the contents (except the part about the resultants) of
this section in the book [Fried and Jarden, 2008].

From now on, we are going to call an affine algebraic set V ⊆ (Kalg)n which is the

zero set of a set of polynomials in k[ ~X] an k-algebraic set, and if V is not a finite
union of proper k-algebraic subsets, then it will be called an irreducible k-variety.
It is easy to see that V is an irreducible k-variety if and only if its associated ideal in
k[ ~X] is prime.

Definition A.3.1 ([Lang, 1958]). Given two points ~x, ~x′ ∈ (Kalg)n, ~x′ is a k-speciali-

zation of ~x if every polynomial in k[ ~X] vanishes at ~x also vanishes at ~x′.

It follows from the definition that we have the following: if V ⊆ (Kalg)n is an

algebraic set whose associated ideal in k[ ~X] is a prime ideal p, and ~x is a generic point

6This is because the dimension of the vector space of homogeneous polynomials of degree r in
variables X0, . . . , Xn has dimension

(
r+n
r

)
; the dimension of the subspace of homogeneous polyno-

mials of degree r in X0, . . . , Xn vanishing on C is
(
r−d+n
r−d

)
. The dimension of the span of the image

is the difference of these two. This is an argument from Page 264 of [Harris, 1992].
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of p over k, then a point ~x′ ∈ (Kalg)n is in V if and only if it is a k-specialization
of ~x. Also, suppose V ⊆ (Kalg)n is a k-algebraic set such that there is a point
~x ∈ V such that all points in V are k-specializations of ~x, then Ik(V ) has to be

{f( ~X) ∈ k[ ~X] | f(~x) = 0}, which is thus a prime ideal in k[ ~X]; so in this case V is an
irreducible k-variety and ~x is a generic point of V over k.

In order to discuss about the results regarding general intersections of an irre-
ducible variety with a linear variety, we need to make a detour into the notion of
derivations of fields.

Definition A.3.2 ([Fried and Jarden, 2008]). Suppose that E is a field. A map
D : E → E is called a derivation of E if D(x + y) = D(x) + D(y) and D(xy) =
D(x)y + xD(y) for all x, y ∈ E. If D vanishes on a subfield F of E then we say that
D is a derivation of the field extension E/F .

Fact A.3.3 ([Fried and Jarden, 2008]). Let E/F be a finitely generated field ex-
tension. Then E/F is separably algebraic if and only if 0 is the only derivation of
E/F .

Fact A.3.4 ([Fried and Jarden, 2008]). Let E/F be a finitely generated separable
extension of positive characteristic p and t ∈ F . Then

(a). If there exists a derivation D of E/F such that D(t) 6= 0, than E is a separable
extension of F (t).

(b). If t is transcendental over F and E/F (t) is separable, then there exists a
derivation D of E/F such that D(t) 6= 0.

Fact A.3.5 (Matsusaka-Zariski, [Fried and Jarden, 2008]). Let E/F be a finitely
generated regular field extension, y, z ∈ E algebraically independent over F . Suppose
that there exists a derivation D of E/F such that D(z) 6= 0. Then there exists a
finite subset C of F such that E is a regular extension of F (y + cz) for all c ∈ F\C.

Fact A.3.6 ([Fried and Jarden, 2008]). Every affine irreducible variety V (i.e. in
Kalg) of dimension r ≥ 1 defined over k contains an affine irreducible curve C (i.e. an
irreducible Kalg-variety of dimension 1) defined over k.

Proof. Here we only provide the proof to the fact that there exist (infinitely many
different choices of) algebraically independent elements t1, . . . , tr−1 over k such that
V contains an affine irreducible curve C defined over k(t1, . . . , tr−1). For the full proof
of the original assertion, see [Fried and Jarden, 2008].

Note that in this section, we always assume that K is of positive characteristic.
If r = 1, then the conclusion is trivial. Thus we may assume that r ≥ 2. Let

~x = (x1, . . . , xn) be a generic point of V over k. Thus k(~x)/k is a regular field
extension and k(~x) has a separating transcendence basis amongst the coordinates of
~x, say x1, x2, . . . , xs, where n ≥ s ≥ 2. Then k(~x)/k(x2) is a separable field extension.
Thus by Fact A.3.4 there exists a derivation D of k(~x)/k such that D(x2) 6= 0. By
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Fact A.3.5, there exists co-finitely many c ∈ k, with t = x1 + cx2, such that k(~x)/k(t)
is a regular field extension.

Let Ht be the hyperplane in (Kalg)n defined over K(t) by X1 + cX2− t = 0. Then
V ∩ Ht is defined over k(t). To see this, observe that ~x ∈ V ∩ Ht; if another points
~y is in V ∩ Ht, then y1 + cy2 = t, thus ~y is a k(t)-specialization of ~x. Therefore,
V ∩ Ht is a irreducible variety defined over k(t) and ~x is a generic point of V ∩ Ht.
The dimension of V ∩ Ht is the transcendental degree of k(~x)/k(t), which is r − 1.
One can then iterate this argument until we get a set of algebraically independent
elements t1, . . . , tr−1 such that V ∩ Ht1 ∩ · · · ∩ Htr−1 is an irreducible curve defined
over k(t1, . . . , tr−1).

Fact A.3.6 does not say anything about the case where V is an affine curve,
i.e. the 1-dimensional case where the intersection is a set of finitely many points. In
the following, we use resultants to prove some results regarding affine curves, which
will be used to prove that SCVFp,e OM SCFp,e.

Recall (see e.g. [Fischer, 2001]) that for a commutative ring A and two polynomials
in A[X],

f(X) = amX
m + am−1X

m−1 + · · ·+ a1X + a0,

g(X) = bnX
n + bn−1X

n−1 + · · ·+ b1X + b0,

where am 6= 0 6= bn, the resultant Res(f, g) of f and g is the determinant of the
(n+m)× (m+ n) Sylvester matrix of f and g, as shown in Equation (A.3.1).

(A.3.1) Res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 am−2 · · · a0

am am−1 am−2 · · · a0

. . . . . . . . . · · · . . .

am am−1 am−2 · · · a0

bn bn−1 bn−2 · · · b0

bn bn−1 bn−2 · · · b0

. . . . . . . . . · · · . . .

bn bn−1 bn−2 · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Fact A.3.7 ([Fischer, 2001]). Suppose that A is an unique factorization domain,
f, g ∈ A[X] with non-zero leading coefficients. Then f and g have a common factor
of degree at least 1 in A[X], if and only if, Res(f, g) = 0 in A.

Remark A.3.8. If there is exactly one of f and g being of degree 0, say f . Then
Res(f, g) = fn, and one can check that the equivalence asserted in Fact A.3.7 is still
valid. Similarly, one can easily check that as long as one of the leading coefficients of
f and g is not zero (so the other one could be zero or not), the equivalence still holds.
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Remark A.3.9. In the expansion of Res(f, g) as a polynomial of the coefficients,
there is a term anmb

m
0 and a term ±an0bmn . See for example the circled items below to

get anmb
m
0 : ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am© am−1 am−2 · · · a0 · · · · · · · · ·
am© am−1 am−2 · · · a0 · · · · · ·

. . .© . . . . . . · · · . . . · · ·
am© am−1 am−2 · · · a0

bn bn−1 bn−2 · · · b0© · · · · · · · · ·
bn bn−1 bn−2 · · · b0© · · · · · ·

. . . . . . . . . · · · . . .© · · ·
bn bn−1 bn−2 · · · b0©

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We are going to use this fact below.

Now, let C be an irreducible affine plane curve defined over k ⊆ K. It follows that
the vanishing ideal of C in k[X, Y ] or (Kalg)[X, Y ] is generated by a single irreducible
polynomial in k[X, Y ], assume that it is f(X, Y ). We want to show that

Proposition A.3.10. Let C be an irreducible affine curve in (Kalg)2 defined over
k ⊆ K. A general plane curve of degree d over K, which is the zero locus of g(X, Y ) =∑

i+j≤dAijX
iY j ∈ K[X, Y ], has an intersection with C (of finitely many points) which

is defined over K.

Proof. To do this, let g(X, Y ) be a polynomial of degree d with undetermined coef-
ficients Aij as follows:

g(X, Y ) =
∑
i+j≤d

AijX
iY j.

These kind of polynomials are clearly parametrized by their coefficients (Aij) ∈
P(2+d

2 )−1; one can think of it as the parametrization for the hyperplane sections of
the Veronese embedding of P2. Notice that g is not necessarily irreducible. We may
also assume that IKalg(C) is generated by a single (absolutely) irreducible polynomial
f(X, Y ) ∈ k[X, Y ].

Note that by results in the previous section, a general ZKalg(g(X, Y )) would only
intersect C at finite many points in (Kalg)2. Therefore, we just need to figure out
when an intersection with finite many points is defined over K.

One can consider both f and g as elements in (K[X])[Y ]; then the resultant of
f and g as elements in (K[X])[Y ], is Res(f(X,−), g(X,−)) ∈ K[X]. If f(X,−) ∈
(K[X])[Y ] is of degree 0, then f(X, Y ) is in fact in K[X]; but then by the assumption
of C being irreducible and defined over k, contained inside K, f(X, Y ) is a linear
polynomial inK[X], which we may assume to be monic, say f(X, Y ) = X−a, with a ∈
K. Then g(a, Y ) =

∑
i+j≤dAija

iY j. As long as g(a, Y ) ∈ K[Y ] is separable (i.e. does
not have multiple roots), all the solutions to the equations (f(X, Y ) = 0)∧(g(X, Y ) =
0) are in K, therefore the intersection is defined over K. But to say that a polynomial
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h(Y ) ∈ K[Y ] is does not multiple roots, it is the same as saying that h(Y ) and h′(Y )
does not have common roots in K[Y ], which by Fact A.3.7, is the same as saying
that Res(h, h′) 6= 0. This means that any (Aij) satisfying7 Res(g(a,−), ∂g

∂Y
(a,−)) 6= 0

would satisfy our requirement that the corresponding intersection is defined over K.
We may therefore assume that f(X,−) and f(−, Y ) both have degrees at least 1

in Y and in X respectively. We proceed by using the same trick—if one makes sure
that Res(f(X,−), g(X,−)) and Res(f(−, Y ), g(−, Y )) are both polynomials without
multiple roots, then they will split into linear factor in K[Y ] and K[X] respectively,
then the solutions of (f(X, Y ) = 0)∧ (g(X, Y ) = 0) will all have to be in K2. Here we
have to be more careful about the leading coefficients. We dictate that Ad0 6= 0 6= A0d,
so that at least the leading coefficients of g(X, Y ) considered as polynomials in X and
in Y respectively are both non-zero. Thus, the following conditions make sure that
ZKalg(f, g) is in K2:

(A.3.2)


Ad0 6= 0,

A0d 6= 0,

Res(f(X,−), g(X,−)) does not have multiple roots,

Res(f(−, Y ), g(−, Y )) does not have multiple roots.

We just need to make sure that the set of all (Aij)ij satisfying these conditions is not
empty.

By the assumption that the degree of f with respect to X and Y are both larger
than or equal to 1, we may assume that

f(X, Y ) =

mY∑
i=0

FX
i (X)Y i ∈ (K[X])[Y ]

and

f(X, Y ) =

mX∑
i=0

F Y
i (Y )X i ∈ (K[Y ])[X],

with mY ,mX > 0 and FX
mY

(X), F Y
mX

(Y ) 6= 0. It follows that if one writes Res(f(X,−),
g(X,−)) as a polynomial in (K[X])[{Aij}ij] there is exactly one term which is a mul-
tiple of AmYd0 , i.e. ±amY (X)d(Ad0X

d)mY ; this implies that Res(f(X,−), g(X,−)) is a
non-trivial polynomial in the variables {Aij}ij, and that it is also a non-constant poly-
nomial in X. By the same reason, Res(f(−, Y ), g(−, Y )) is a non-trivial polynomial
in the variables {Aij}ij because of the term involving AmX0d is non-trivial; and it is also
a non-constant polynomial in Y . We remark that this shows that for a general {Aij}ij,
the intersection ZKalg(f) ∩ ZKalg(g) is finite, because both resultants are non-trivial
polynomials in single variables X and Y respectively (thus f and g can only have
finitely many common zeros).

7Note that this condition gives a Zariski-open set which is not empty.
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(A.3.3)


Ad0 6= 0,

A0d 6= 0,

Res(P (Y ), P ′(Y )) 6= 0,

Res(Q(Y ), Q′(Y )) 6= 0.

Denote Res(f(X,−), g(X,−)) by P (Y ) and Res(f(−, Y ), g(−, Y )) by Q(X). Let
P ′(Y ) and Q′(X) be their formal derivatives with respect to Y and X respectively.
Then because P and Q are non-trivial polynomials, Condition (A.3.2) is equivalent
to Condition (A.3.3).

This gives a Zariski-open condition for the parameters {Aij}ij. We still have to
show that this Zariski-open set is non-empty. In order to do that, we show that there
is some particular element inside this set. We are going to use a union of d lines to
construct such an element. 8

Suppose that the degree of f(X, Y ) is m, because ZKalg(f) is defined over k,
the degree of a general line in (Kalg)2 will intersect ZKalg(f) at m points, which are
not necessarily all in K2. By Proposition A.2.29, a general line in K2 will intersect
ZKalg(f) at m points too and one can make sure that all these points have distinct X-
coordinates and distinct Y -coordinates respectively, because m > 1 by our assumption
and two points on ZKalg(f) have the same X-coordinates or the same Y -coordinates
if and only if they are on the same horizontal or vertical line (so one can achieve
this by picking slant lines). After picking the first line, avoiding all the finitely many
points in ZKalg(f) with the same X- or Y -coordinates (there are only finitely many of
them, because m > 1 and f is absolutely irreducible), one can find a second general
line intersecting ZKalg(f) at m points which have distinct X- and Y -coordinates.
One iterates this process until we get d general lines. The equations of these lines
gives a curve of degree d, defined by the product of the equations of these lines,
which will be our sample g(X, Y ). Note that this sample g will satisfy that Ad0 6= 0
and A0d 6= 0. Because all the common zeros of f and g have distinct X- and Y -
coordinates respectively, the corresponding P (Y ) and Q(Y ) would be polynomials
with all roots being simple roots in Kalg. Because the degree of P and Q are at most
md (this is a simple exercise about resultants), the leading coefficients of P and Q
are not zero (because each of them has md distinct roots already). This means that
Res(P (Y ), P ′(Y )) 6= 0 and Res(Q(X), Q′(X)) 6= 0.

We thus conclude our proof.

8The author would like to thank Sanjay Patel for his useful suggestion on doing so.
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