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Abstract

The discrete-time Poisson (DTP) channel models a wide range of opti-

cal communication channels. The channel capacity and capacity-achieving

distributions are generally unknown. This thesis addresses system design of

DTP channels and presents novel contributions to the capacity of DTP chan-

nel, properties and closed-form expression of the capacity-achieving distribu-

tion under peak and average constraints, signalling design, and sum-capacity-

achieving distributions of DTP multiple access channel (MAC) with peak am-

plitude constraints.

Two algorithms are developed to compute the channel capacity of DTP

channel as well as the capacity-achieving distribution with average and peak

amplitude constraints. Tight lower bounds based on input distributions with

simple forms are presented. Non-uniform signalling algorithms to achieve the

channel capacity are also demonstrated. Fundamental properties of capacity-

achieving distributions for DTP channels are established. Furthermore, nec-

essary and sufficient conditions on the optimality of binary distributions are

presented. Analytical expressions for the capacity-achieving distributions of

the DTP channel are derived when there is no dark current and when the dark

current is large enough. A two-user DTP multiple access channel model is

proposed and it is shown that the sum-capacity-achieving distributions under

peak amplitude constraints are discrete with a finite number of mass points.
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Chapter 1

Introduction

1.1 Motivation

The Poisson photon counting channel models the quantum effects in opti-

cal detection, in which a light field is converted to electric current [1, 2]. At

the receiver, a semi-classical approach for evaluating optical communication

systems treats the received radiation field as a wave [1], and explains its inter-

action with the released electrons through a probabilistic relation. Given the

input light intensity (i.e., power), it was demonstrated that the number of the

released electrons in any time interval obeys a Poisson distribution [1, 3].

This model is typical when the photodetectors are used with deterministic

receiver fields [1]. For example, it exists in wide classes of optical communica-

tion systems, especially those with low input intensity, high background noise

levels and high gain photomultiplier tube (PMT) [1]. An interesting recent

application of practical interest is intersatellite laser communication links. At

the receiver, the optical intensity is low due to the limited power and the long

distance transmission which is usually over thousands kilometres [4]. Further,

optical intersatellite communication is free of atmospheric turbulence since the

1
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links are in space. The only noise is the shot noise from the received signal

which is dominated by background light either scattered from the earth or

directly from other planets.

Practically, due to energy and component limitations, both the mean, ε,

and peak, A, emitted intensities (i.e. power) are constrained for the optical

channel. Moreover, all signals must assume non-negative amplitudes since

the physical quantity modulated is a normalized power. A continuous-time

Poisson (CTP) channel is one in which no bandwidth limitation is imposed

and the input intensity is an arbitrary continuous waveform. It was shown

that to achieve the capacity of the CTP channel the bandwidth of the input

signal is necessarily infinite, which is not practical. In contrast, the discrete-

time Poisson (DTP) channel considers only pulse amplitude modulated (PAM)

signals where the transmitted intensity varies across discrete time slots and

is fixed in each slot. Thus, there is an inherent bandwidth limitation in the

DTP channel. The receiver outputs the photon counts received in each time

slot [5, 6].

The current understanding of the DTP channel is limited. One of the main

challenges in the DTP channel is to find the channel capacity and the corre-

sponding optimal input distribution. Another major issue of the DTP channel

is in signalling design. It is worth noting that signalling schemes developed

for other channels may not be suitable for the DTP channel. This is partly

because the DTP channels are fundamentally different from widely studied

radio frequency (RF) channels or the optical intensity channels with additive

Gaussian noise and partly because the signal must satisfy peak, average and

non-negativity constraints. These open problems in the DTP channel motivate

the need for an innovative study of these systems — a task which is carried

out in this thesis.

2
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Table 1.1: Comparison of the Three Communication Systems at Two Different
Data Volumes for a Mars Mission [9]

Data Volume
(Gb/day)

Communication
Band

Mass (kg) Power (W)

1.0 X-Band
Ka-Band
Optical

16.7
11.3
7.4

29
32

22.8
10 X-Band

Ka-Band
Optical

23.2
22.55

9

62
46
30

1.2 Background

1.2.1 Satellite Experiments

Optical intersatellite communication has witnessed a rapid increase in data

rate and decreasing in mass during the last few years. For satellite applications,

free-space optical (FSO) communications provide larger bandwidth, higher

data rates, smaller beam divergence and higher antenna gains from smaller

apertures as compared to traditional radio frequency (RF) transceivers [7, 8].

This high gain translates into a significant reduction in the required transceiver

power, volume and mass, which are heavily constrained in any aerospace appli-

cation and even more so in deep space communication. For example, Table 1.1

compares optical and RF communication systems for a Mars mission, which is

required to return data with daily volumes of 1 or 10 Gbits over the distance

around 2.7 Astronomical Unit (AU). It can be seen directly that for the same

data volume, optical transceivers can save more than 50% mass and consuming

power as compared with a RF system.

Figure 1.1 presents an illustrative diagram for the concept of optical in-

tersatellite communication including earth relay satellite. The Earth relay

satellite is satellite placed in a geostationary Earth orbit (GEO) at a distance

3
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of 36000 km from the Earth. It relays information to and from low-earth orbit

(LEO) satellites, aircraft, and ground stations that otherwise would not be

able to communicate for long periods of time or would not be able to commu-

nicate at all [10]. In earth observation or military scenarios, high speed and

low latency (high availability) data transmission are critical for exploration or

scientific missions, and large volumes of data collected by the LEO satellite or

aircraft must be returned before the next orbit. Intersatellite laser links be-

tween the earth relay satellites and spacecraft, which are usually over a range

of 1000-45000 km, increase the amount of time that a LEO is in communica-

tion contact with the ground station, and thus would increase the amount of

data that could be transferred.

Table 1.2 presents a collection of optical intersatellite links (OISL) imple-

mented or to be implemented. For these LEO-GEO missions, Fig. 1.1 can be

applied directly. The semi-conductor intersatellite link experiment (SILEX)

is the first civilian optical communications program of the European space

agency (ESA). It consists of two optical communication payloads embedded

on spacecrafts ARTEMIS and SPOT-IV. It allows the optical transmission

at data rate of 50 Mbps from LEO to GEO with a total mass of 160 kg [4].

In 2005, the Artemis-OICETS (inter-orbit communications engineering test

satellite) mission implemented a bi-directional optical link with the data rate

of 50 Mbps from OICETS to Artemis and 2 Mbps in the opposite direction

with a total mass of 140 kg. The AlphaSat-TanDEM mission is a LEO-GEO

mission. These satellites were launched in the end of 2012, which are aimed

to demonstrate an optical link at rate of 1.8-2.8 Gbps over a range up to

45000 km. The JAXA future OISL mission is aimed to implement an optical

link at the data rate of 2.5 Gbps with a total LEO mass of 35 kg [11]. More

LEO-GEO missions are available in [4, 12].

4
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U N I V E R S I T YU N I V E R S I T Y

Figure 1.1: Concept of optical intersatellite communication including the
Earth relay satellite.

5
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The OISL also include LEO-LEO optical links. For example, in 1998,

Motorola announced the Celestri mission, which is a LEO-LEO optical inter-

satellite system and has a high average data throughput with the transmission

data rate of 7.5 Gbps over a range of 1800-6000 km [13]. Recently, an optical

link between two LEO satellites, TerraSAR-X and NFIRE, has been demon-

strated at a rate of 5.625 Gbps over a range of 3800-4900 km with a telescope

diameter of 12.5 cm, a total mass of 32 kg and a power consumption of less

than 120 W for the entire transceiver [14].

1.2.2 Capacity Results

One of the most fundamental steps to design any efficient communication

system is to compute the channel capacity. Channel capacity is defined as

the maximum rate at which reliable communication can take place [15]. The

capacity of a CTP channel is known under different constraints and has been

studied extensively. Kabanov derived the capacity of the CTP channel under a

peak power constraint in [16], and Davis obtained the channel capacity with a

peak power constraint and average power constraint [17]. Frey extended these

constraints to time-varying functions [18] and he also considered the case with

an L-norm constraint [19]. Shamai in [20] considered the capacity of the CTP

channel with constraints on the transmitted pulse width and in [21], Shamai

and Lapidoth developed capacity bounds for general spectral constraints. It

should be noticed that there is no bandwidth limitation for the input signal

of the CTP channel, and to achieve the capacity of the CTP channel the

bandwidth is necessarily infinite.

Currently no analytic expression is known for the capacity of the DTP

channel. However, many capacity bounds have been derived. In [5,6], McEliece

defined the DTP channel with zero dark current and developed several upper

6



Ph.D. Thesis - J. Cao McMaster - Electrical & Computer Engineering

Table 1.2: OISL Experiments [7].
Mission Date

&
Range

Data Rate / Architecture Power
&

Mass
SILEX 1997 LEO to

GEO (SPOT
IV to
Artemis)
45,000 km

50 Mbps (LEO to GEO);
2 Mbps (GEO to LEO);
850 nm, telescope 25 cm, pointing
accuracy 0.3-0.8 µrad, BER< 10−6,
60 mW continuous transmit power.

180 W
160 kg

Celestri 1998 Specs
only
LEO-LEO
1800-6000 km

7.5 Gbps, throughput after overhead
is 4.5 Gbps; BER< 4× 10−10.

<100 W
< 25 kg

Artemis-
OICETS
(LUCE

payload)

2005
LEO-GEO
First
Bi-directional
link

50 Mbps (to Artemis) 847 nm,
200 mW laser diode, 26 cm
telescope;
2 Mpbs (from Artemis);
819 nm, 2PPM.

220 W
140 kg
(LUCE)

NFIRE-
TerraSAR-

X

2008
LEO-LEO
3800-4900 km

5.626 Gbps, 1.064 µm, 700 mW
transmit power, FOV= 2 mrad,
BER< 10−9, 12.5 cm aperture
(diameter)

120 W
32 kg

AlphaSat–
Sentinel 1A

and
Sentinel 2A,

and
TanDEM-X

2012
LEO-GEO
45,000 km

1.8-2.8 Gbps; design BER< 10−8,
13.5 cm telescope, 1064 nm, 5 W
transmit power.

140 W
45 kg

JAXA
future OISL

mission

In
Development
LEO-GEO

2.5 Gbps, 1.064 µm, 4 W transmit
power. Aperture diameter 10 cm
(LEO) and 20 cm (GEO).

150 W
35 kg
(LEO);
50 kg
(GEO)
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bounds under average and peak constraints. In [20], Shamai developed lower

and upper bounds on the channel capacity of the DTP channel with binary

inputs that are located at {0, A} with average power constraint only. Lapidoth

and Moser [22] derived analytical lower and upper bounds on the capacity of

the DTP channel with dark current. These bounds are asymptotically tight

as the peak and average powers tend to infinity, although they are often loose

in the low input power range. In [23] lower and upper bounds on the DTP

channel capacity are given asymptotically as the average power tends to zero

with a fixed peak power. In [24], Martinez derived a class of tight lower bounds

based on the mutual information induced by the Gamma distribution and non-

asymptotic upper bounds via a duality method for the DTP channel with only

an average power constraint and no dark current.

Comparatively little work has been done on the characterization of capacity-

achieving distributions for the DTP channels. Note that the channel capacity

can be easily computed once the capacity-achieving distribution is given; more

importantly, the capacity-achieving distribution provides important guidelines

for practical signalling design. In his seminal work [25], Smith studied the

capacity-achieving distribution for peak amplitude and average power con-

strained additive Gaussian channels and provided a method to check the opti-

mality of an input distribution via the Karush-Kuhn-Tucker (KKT) conditions.

Following Smith’s approach, Shamai [26] found that the capacity-achieving

distributions of the DTP channel consist of finite number of mass points and

proved that the capacity achieving-distribution is binary when dark current

is absent and the peak power constraint in a certain range. Related work ex-

tending Smith’s early approach to different but related channels can be found

in [27–29].
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1.2.3 Signalling Design

Direct detection (DD) receivers measure the intensity of the received field

while ignoring the phase of the received field on the detector. Therefore, inten-

sity modulation is necessary for optical systems utilizing DD. Pulse amplitude

modulation (PAM) is one of the most popular intensity modulation schemes

developed in optical communication systems [29]. In particular, on-off key-

ing (OOK), which is a binary-level version of PAM, is widely used in optical

systems [30, 31]. An alternative modulation method is called pulse position

modulation (PPM), which has gained much attention due to its power effi-

ciency [30,32,33]. Note that PPM can be considered as coded OOK.

Almost all existing PAM-based constructions are based on uniform sig-

nalling (i.e., the input symbols are used with the same frequency). However,

it is well known [34, 35] that uniform signalling is only able to achieve the

mutual information across the DTP channel induced by the uniform input

distribution, which is in general strictly below the true channel capacity ac-

cording to the existing capacity results [22, 23, 26, 36, 37]. On the other hand,

non-uniform signalling design often involves sophisticated encoding and de-

coding operations and several different strategies have proposed. In [38], low-

density parity check (LDPC) codes over GF(q) are designed together with

deterministic mappers to induce the desired (non-uniform) distribution. The

disadvantage of using non-binary LDPC codes is the higher decoding complex-

ity, which limits the use of this technique. Alternatively, in this case where

the capacity-achieving distribution is non-uniform, the channel capacity can

be approached by adopting multi-level coding (MLC) and multi-stage decod-

ing (MSD) with a mapper applied to multiple binary linear codes (e.g., binary

LDPC codes) [39] . In particular, this method has been used to approach the

capacity of terrestrial FSO channels with Gaussian noise [29]. However, in
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general, MLC/MSD suffers from error propagation, latency in decoding and

requires multiple encoders and decoders.

1.2.4 Poisson Multiple Access Channel

Figure 1.2 demonstrates an illustrative diagram for the concept of a two-

user multiple access optical communication between two LEOs and one GEO.

Suppose both the LEOs are Earth observation satellites collecting data. These

LEOs are only in the view of ground station a few minutes per orbit, therefore,

the GEO aids in relaying the downlink data from LEO to ground. A multiple

access channel model is suitable for use in the design of optical links in such

scenarios.

Although no such system exists in practice, many LEO satellites currently

operate within small distances of each other and could be imaged in the

field-of-view (FOV) of the GEO to realize an optical multiple access chan-

nel (MAC). Table 1.3 presents a list of spacecrafts missions where several

LEOs operate in close proximity. In 2007, the Orbital Express spacecraft

successfully demonstrated autonomous rendezvous with a passive spacecraft

with the minimum distance less than 120 m [40]. The TanDEM-X mission

consists of 2 TerraSAR-X radar satellites flying in close formation with the

distance less than 1 km [41,42]. The recently launched PRISMA mission [43]

is a demonstration mission which enables LEO formation flight with a passive

target spacecraft within a minimum distance less than 10 km and an error

less than 10 m. The ASPIICS/PROBA-3 mission [44] will demonstrate two

high earth orbit (HEO) satellites formation flight within a distance of 150 m.

The JC2SAT mission [45] will demonstrate two nano-satellites formation flying

over a range of 100 m to 5 km. The Micro-Arc-second X-ray Imaging Mission

(MAXIM) is a project to investigate the feasibility of achieving astronomical
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Figure 1.2: Concept of multiple access optical intersatellite communication
between two LEOs and one GEO.
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Table 1.3: Satellites & Spacecrafts Formation Flying Missions [12]
Mission Satellites &

Spacecrafts
amount

Orbit radius Minimal
Operation

range
Orbital Express

Program, 2007 [40]
2, ASTRO and

NextSat
492 km <120 m

TanDEM-X,
2010 [41,42]

2 TerraSAR-X
satellites

514 km <1000m

PRISMA, 2010 [43] 2, Mango and
Tango

710 km 10 km

ASPIICS/
PROBA-3,
T.B.D [44]

2 spacecraft Perigee 800 km,
apogee 60524 km,

150 m

JC2SAT,
T.B.D [45]

2 Nanosatellites 650 km 100 m to
5 km

CanX-4/-5,
T.B.D [46]

2 Nanosatellites Perigee 550 km,
apogee 900 km

50 m to
1000 m

The MAXIM
X-Ray

Interferometer
Concept (Shepherd

Satellite),
T.B.D [47]

33 Nanosatellites 10 km 40 m

images using a formation flying x-ray interferometer. It consists of 33 x-ray

mirror satellites, a trailing collector satellite, and a detector spacecraft [47].

These mirror satellites form a disc-shaped constellation with diameter 200 m

and the distance between the detector spacecraft and the constellation is about

5000 km.

This thesis proposes a DTP MAC model, which could be taken as a mod-

ification of the existing CTP MAC. All these experiments listed in Table 1.3

operate within small minimum distances, therefore could adopt the DTP MAC
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model in their optical links. Currently, all the existing results relating to Pois-

son MAC are based on the CTP MAC model. The channel capacity for two-

user CTP MAC was found in [48] and it is shown that code division multiple

access (CDMA) is optimal in this case. The error exponent of continuous-

time, two-user Poisson MAC model was found in [49]. The problem of the

continuous model is that there is no bandwidth limitation on the input signal,

and it is known that infinite bandwidth is required to achieve the maximum

sum-rate ( i.e, the mutual information between the two users and the output),

which is not practical in use.

1.3 Thesis Contributions

The main contributions of this thesis are as follows: 1) analytical results

on the characterization of the capacity-achieving distributions of the DTP

channel, 2) algorithms for computing the capacity and the corresponding op-

timal input distribution, 3) signalling design, and 4) discreteness of the sum-

capacity-achieving distributions of the DTP MAC under a peak amplitude

constraint.

In particular, two algorithms are developed for computing the channel

capacity of the DTP channel as well as the capacity-achieving distribution

in the presence of dark current and under average and peak amplitude con-

straints [36,37]. Although the capacity of this channel is unknown, numerical

calculation of the channel capacity is implemented using a particle method and

deterministic annealing (DA) algorithm. The particle method is typically used

to compute the capacity value under fixed peak power and average power con-

straints, i.e., a single point on the capacity curve. In contrast, the DA method

is capable of producing a segment of the capacity curve with fixed peak power
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constraint and with increasing average power constraint. Tight lower bounds

based on input distributions with simple forms are developed [37]. These

bounds provide extremely good approximations to the channel capacity, espe-

cially in the low power regime.

Motivated by the classical construction by Gallager [50], a non-uniform

mapper is coupled to a binary LDPC code to generate the desired input dis-

tribution and a joint demapper/decoder is designed based on the sum-product

algorithm [36]. This scheme has a lower complexity compared with to con-

structions based on non-binary LDPC codes. Unlike MLC/MSD which re-

quires multiple encoders and decoders, this scheme requires a single encoder

and decoder, and is therefore free of error propagation and has less latency

in decoding. Simulations indicate near capacity performance of the proposed

coding system and significant gains over information rates using traditional

uniform signalling. A key observation of our work is that significant gains in

rate can be achieved for the same average power consumption by using optical

transceivers with non-uniform signalling and a modest increase in peak power.

Several fundamental properties of capacity-achieving distributions for the

DTP channels are established [37]. In particular, it is demonstrated that all

capacity-achieving distributions of the DTP channel have zero as a mass point.

In the case of only a peak constraint, it is further shown that the optimal

distribution always has a mass point at the maximum amplitude. Moreover,

under solely an average power constraint, it is shown that a finite number of

mass points are insufficient to achieve the capacity.

Though binary (i.e. two mass point) distributions have been observed

through simulation to be optimal in many cases, very few analytical results

exist on the optimality conditions or the form of optimal signalling. In this the-

sis, necessary and sufficient conditions on the optimality of binary distributions

14



Ph.D. Thesis - J. Cao McMaster - Electrical & Computer Engineering

are derived by leveraging the general properties of the DTP capacity-achieving

distributions. Furthermore, closed-form analytical expressions of the capacity-

achieving distributions are derived in several important special cases including

the zero dark current case and the high dark current case [51].

This thesis also proposes a two-user (additive-rate) DTP multiple access

channel model, which can be viewed as a modification of the CTP MAC and as

an extension of the single-user DTP channel. It is assumed that input signals

for both users should be PAM with fixed intensity in each time interval. Also,

due to practical limits, peak amplitude constraints are imposed on the input

signals. It is shown that the sum-capacity-achieving distributions of the DTP

MAC under peak amplitude constraints are discrete with a finite number of

mass points [52].

1.4 Thesis Structure

The balance of this thesis is organized as follows.

Chapter 2 contains a detailed description of the DTP channel model, in-

cluding the sources of the constraints and a typical example based on a satel-

lite laser communication link. Two numerical methods to compute both the

capacity and the capacity-achieving distributions for DTP channel are also

presented, i.e., the particle method and the DA method. The particle method

yields the optimal input distribution under given constraints for a single point

on the capacity curve, while the DA method results in a segment of the capac-

ity curve. Both of these methods rely on the Blahut-Arimoto algorithm [56]

to update the probabilities of the mass points. A simple family of maxen-

tropic input distributions is defined and used to develop tight lower bounds

on the channel capacity through the evaluation of the envelope of information
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rates for different constellation sizes. A novel joint demapper/decoder using

the sum-product algorithm is developed which requires a single encoder and

decoder to implement the non-uniform signalling scheme. It is demonstrated

that the achievable rates closely follow the channel capacity over a range of

input powers.

Chapter 3 provides general results of the capacity-achieving and approach-

ing distributions for DTP channels. It is shown that for an arbitrary discrete

input distribution defined over a finite number of mass points, both shifting

the constellation leftward and stretching the constellation with the correspond-

ing probability unchanged increase the mutual information. Consequently, all

capacity-achieving distributions of the DTP channel have zero as a mass point.

Moreover, in the case of only a peak constraint, the optimal distribution al-

ways has a mass point at the maximum amplitude. It is also proved that a

finite number of mass points are not sufficient to achieve the capacity of DTP

channel under a solely average constraint. Necessary and sufficient conditions

on the optimality of binary distributions are also established in this chapter,

which are further leveraged to obtain closed-form expressions of the capacity-

achieving distributions in several special cases, e.g., for zero dark current and

for large dark current case. It is demonstrated that the binary maxentropic

distribution is capacity-achieving when the dark current is large enough.

In Chapter 4, the two-user DTP-MAC model is precisely defined, involving

the constraints and the channel law. It is shown that to achieve the maximum

sum rate of a two-user DTP MAC with peak constraints, discrete input dis-

tributions are required.

Finally, Chapter 5 presents concluding remarks and suggestions for future

work.
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Chapter 2

Capacity Computation and

Non-Uniform Signalling for

Discrete-Time Poisson Channels

2.1 Introduction

Currently, closed-form analytical expressions for the capacity of DTP chan-

nel under peak and average power constraints remain unknown in general. It

is of practical importance to develop numerical methods to compute such val-

ues. The numerical computation of both the channel capacity and the optimal

distribution are useful for system implementation such as code design. These

numerical results, as well as tight lower and upper bounds, serve as guidelines

for system design.

In this chapter, two numerical algorithms to compute both the channel

capacity and the capacity-achieving distribution are developed. Tight lower

bounds based on simple closed-form input distributions are also presented.
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These bounds are close to the capacity especially during the low input power

range. Non-uniform signalling techniques, which achieve higher rates com-

pared to uniform schemes, are shown based on the capacity and the developed

bounds.

2.2 Channel Model

2.2.1 Channel Description

In discrete-time Poisson channels, data are transmitted by sending PAM

intensity signals which are constant in discrete time slots. In contrast to

continuous-time Poisson channels, which admit arbitrary waveforms, the discrete-

time Poisson model imposes a bandwidth limit by constraining transmitted

signals to be rectangular PAM. The PAM amplitudes are limited to R+ since

the underlying quantity modulated is the optical intensity.

Although intersatellite links operate above the atmosphere, unintended

light scattered from the Earth as well as from other planets and stars will

impinge on the receiver [8]. Dark current represents the detector non-ideality

and corrupts the received counts even in the absence of illumination [53, Chap.

5]. Dark current arises in all photodetectors and is a fundamental limitation

on the performance of any optical receiver.

The receiver is modelled as a photon counter which generates an integer

representing the number of received photons. Specifically, in each time slot,

∆T , a channel input intensity x [photons/second] is corrupted by the combined

impact of background radiation and photodetector dark current at a rate of λ

[photons/second]. The channel output y [photons], is a random value related

to the number of received photons in ∆T and obeys a Poisson distribution with
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mean (x + λ)∆T [1]. Since the intensities, i.e., photon arrival rates, sum at

the receiver, the model is termed additive rate. Notice that this model is only

appropriate for IM/DD optical intensity channels since the phase information

at the receiver is ignored.

Without loss of generality, assume ∆T = 1 and accordingly

PY |X(y|x) =
(x+ λ)y

y!
e−(x+λ), x ∈ R+, y ∈ Z+. (2.1)

Furthermore, due to device constraints and limited energy storage at the trans-

mitter (e.g., a satellite in deep-space laser communications), there is an average

power constraint,

E(X) ≤ ε, [Average Power Constraint]. (2.2)

Also, due to the dynamic range limitation of the transmitter, the peak intensity

must also be constrained,

0 ≤ X ≤ A, [Peak Power Constraint]. (2.3)

Without loss of generality, it is assumed that 0 ≤ ε ≤ A.

Notice that the constraints in this model can also be relaxed to yield DTP

channels with only average power constraint (i.e., A→∞) or only peak power

constraint (i.e., ε = A).

The channel capacity, C, of a discrete-time Poisson channel is the maximum

mutual information over input distributions satisfying channel constraints,

namely,

C , max
Fx∈F

I(X;Y )

= max
Fx∈F

∫
x

[∑
y

PY |X(y|x) log
PY |X(y|x)

PY (y)

]
dFx, (2.4)
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where

F ,

{
Fx(x) :

∫ A

0

dFx = 1,EFx{X} ≤ ε

}
.

It is well known that the capacity-achieving distributions are discrete and

in general have a finite number of mass points for finite A and ε [26]. Therefore,

there is no loss of generality in considering an input distribution defined over

constellation ψx = {x1, x2, . . . , xn}, 0 ≤ x1 < x2 < . . . < xn ≤ A, with

corresponding probability masses ψp = {p1, p2, · · · , pn}. Let Fx denote the cdf

of the input, that is

dFx = p1δ(x− x1) + p2δ(x− x2) + . . .+ pnδ(x− xn), (2.5)

where δ(·) denotes the Dirac impulse functional. E is the expectation opera-

tor, PY (·) denotes the corresponding distribution on the channel output and

PY |X(·|·) denotes the channel law.

Finally, define ψ∗x(A, ε), ψ
∗
p(A, ε), F

∗
x (A, ε) to be the corresponding optimal

values under constraints A and ε.

2.2.2 A Typical Example: LEO Intersatellite Link

Consider an example of a LEO laser communication link demonstrated

between TerraSAR-X and NFIRE satellites [14]. This link operates at a data

rate 5.625 Gbps over a link distance 3800-4900 km. Table 2.4 provides a list

of parameters for these terminals [14] and realistic values for the link.

A simplified link budget analysis can be used to estimate the average num-

ber of received signal photons for a link at wavelength λw over a range z with

signalling interval T as [54]

ε = PTηTηRη

(
λw
4πz

)2

GTLTGRT
λw
hc

= 7.5027, (2.6)
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Table 2.4: Terminal Characteristics

Wavelength, λw 1064 nm

Data Rate, 1/T 5.625 Gbps

Link Distance, z 4900 km

Peak Transmit Power, 2PT 700 mW

Transmitter Aperture Diameter, dt 125 mm

Transmitter Optical Efficiency, ηT
1 0.5

Receiver Aperture Diameter, dr 125 mm

Receiver Optical Efficiency, ηR
2 0.35

Detector Quantum Efficiency, η 3 0.7

Pointing Error, θT 5 µradian (rms)

Spectral Radiance of Earth, W 4 5× 10−3 Watt/cm2 − µm−sr
Receiver Field-of-View, Ω 5 2 mrad

Bandwidth of Receiver Filter, ∆λ 2 nm

1 Assume 0.5, [54]
2 Assume 0.35, [54]
3 Assume 0.7, [54]
4 This value is corresponds to the wavelength 1µm [1]
5 Typically, this value is between 1.7− 2.2 mrad [14]
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where PT is the average transmitter power, ηT and ηR are efficiencies of the

transmitter and receiver optics, η is the quantum efficiency of the detector, dr

and dt are the aperture diameters of transmitter and receiver, h is Planck’s

constant and c is the speed of light in a vacuum.

The receiver antenna gain is

GR =

(
πdR
λw

)2

, (2.7)

while the gain of the transmit antenna relative to an isotropic emitter is

GT =

(
πdt
λw

)2

. (2.8)

The loss due to pointing error θT is estimated by

LT = exp(−GT θ
2
T ). (2.9)

The primary noise source of the receiver is assumed to arise from the sun

and scattered light from bodies such as the moon and Earth. The average num-

ber of background photons received per signalling interval can be estimated

as [1]

λ = W (λw)π

(
dr
2

)2

(∆λ) Ω2π

4
T
λw
hc

= 3.6649, (2.10)

where ∆λ the bandwidth of the receiver filter and Ω is the receiver field-of-

view. The product, Ω2π/4, can be taken as the range of receiver arrival angles

observed by the detector area [1]. The factor W (λw) is the spectral radiance

of Earth, which is mainly due to atmospheric scattering excited by the moon

and galactic sources [1, 55].
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2.3 Particle Method

2.3.1 Particle Method for DTP Capacity Computation

The Blahut-Arimoto algorithm [56] can be used to find the channel capacity

and input distribution for constrained channels where input and output are

chosen from discrete finite sets. In [57], the algorithm is extended to channels

with continuous input distributions by discretizing them into a list of points

termed particles.

In this section, the techniques in [56, 57] are adapted to the discrete-time

Poisson channel with peak and average amplitude constraints to compute tight

bounds on the capacity and to find the capacity-achieving input distribution.

An advantage of this approach is that it is able to produce accurate estimates

of the channel capacity even for large values of ε and A. Previous approaches

using brute-force optimization techniques suffer from very large dimensionality

for large ε and A and take excessive amounts of computing time.

Consider the input probability density for X in (2.5) ,

dFx =
n∑
i=1

piδ(x− xi),

where pi, i = 1, . . . , n, are real and non-negative with
∑n

i=1 pi = 1 and xi ∈

[0, A]. The value of n must be chosen large enough to ensure the convergence

of the algorithm as discussed in [57].

The optimization problem (2.4) is solved iteratively where {(x(k)
i , p

(k)
i )}

denotes the list of particles at the k-th step.

The list of particles is alternately updated using the following two steps:

p(k) , arg max
p

I({(x(k−1), p)}), (W-step) (2.11)

x(k) , arg max
x

I({(x, p(k))}). (X-step) (2.12)
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The W-step (2.11) optimizes the weights p with the positions x(k−1) fixed and

can be accomplished by the constrained Blahut-Arimoto algorithm [56] with

average constraint ε. The X-step (2.12) maximizes I({(xi, pi)}) by optimizing

the positions with the weights fixed. Practically the X-step is accomplished

by means of a steepest ascent technique [57].

After k iterations, a lower bound on the capacity C can be shown to be

C ≥ L(k) = I({(x(k)
i , p

(k)
i )}), (2.13)

while an upper bound on C is given by

C ≤U (k) = max
x∈[0,A]

[
D(PY |X(y|x)||P̂ (y)(k))− s(k)x

]
+ s(k)

n∑
i=1

p
(k)
i x

(k)
i , (2.14)

where s(k) is a parameter set to ensure convergence [56].

The convergence of this particle method is guaranteed by the W-step and

X-step, since both yield non-decreasing mutual information. However, the

convergence point may not be globally optimal. This is because in the X-step,

the result of the gradient descent method might be only locally optimal. In ad-

dition, empirically n is selected to be large enough for convergence. Although

currently the global convergence of this particle method is still unsolved theo-

retically, the optimality of the final result could be verified through the KKT

conditions, which are introduced in Theorem 5 of Section 3.2.

2.3.2 Numerical Results and Analytical Bounds

Figure 2.1 shows L(k) and U (k) for the discrete-time Poisson channel with

A/ε = 4 and λ = 3 as a function of the average input power. The value of

n should be large enough to ensure the convergence of the algorithm, and in

these simulations n = 200. It can be seen that both bounds nearly coincide

over a wide range of powers. The gap between L(k) and U (k) is nearly 10−5
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Figure 2.1: Bounds L(k), U (k) on channel capacity (on top of each other) and
closed form bounds from [22] with A/ε = 4 and λ = 3.

nats per channel use after 100 iterations and the accuracy can be improved

further by increasing the number of iterations. The lower and upper bounds of

Lapidoth and Moser [22, Eq. (12), Eq. (13)] are also presented for comparison.

Notice that due to their asymptotic nature, these bounds yield no insight

at lower power levels. In Fig. 2.1 the mutual information for uniform two

and three point constellations are also plotted. There is a large gap in the

mutual information using equiprobable constellations and the channel capacity,

which demonstrates the importance of non-uniform signalling for discrete-time

Poisson channels.

Figure 2.2 shows the capacity-achieving distributions over ε with A/ε =

4 and λ = 3. As noted in [26], the capacity-achieving distribution for the
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Figure 2.2: Capacity achieving input distributions for A/ε = 4 and λ = 3.

discrete-time Poisson channel with average power and peak power constraint

is discrete. Notice also that there are always probability mass points at xi = 0.

In Corollary 2 of next chapter, it is demonstrated that the capacity-achieving

distribution for the DTP channel under average and peak power constraints

always contains a mass point located at 0. Additionally notice that when ε < 3

dB, the capacity-achieving distributions are non-uniform binary distribution.

Figure 2.3 plots similar mutual information curves with peak-to-average

ratio A/ε = 2 which is common in many optical transceivers. The analytical

upper and lower bounds of Lapidoth and Moser [22, Eq. (18), Eq. (19)] under

the same conditions are also presented. Again, the analytical bounds only yield

insight for very high values of ε. Notice that equiprobable signalling achieves

rates close to the capacity. Indeed, for ε < 6.4 dB the capacity-achieving
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Figure 2.3: Bounds L(k), U (k) on channel capacity (on top of each other) and
closed form bounds from [22] with A/ε = 2 and λ = 3.

distribution is binary and nearly uniform. Thus, non-uniform signalling is not

essential in the case of A/ε = 2 to approach capacity. However, comparing

Figs. 2.1 and 2.3 illustrates that for a given average power consumption,

large increases in channel capacity are available by increasing the peak emitted

power. For spacecraft applications, ε is a metric of the lifetime of the batteries.

Thus, building optical transceivers with higher peak powers and non-uniform

signalling can deliver far higher rates for the same average power consumption.
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2.4 Deterministic Annealing Algorithm

2.4.1 Deterministic Annealing Algorithm for DTP Ca-

pacity Computation

The particle method is able to compute the capacity of the DTP chan-

nel under fixed average and peak power constraints as well as the associated

optimal input distribution, however, it is computationally intensive as it re-

quires an initial discrete distribution with large enough cardinality (usually

hundreds) to ensure convergence.

In this section, a more computationally efficient algorithm is proposed

based on the deterministic annealing (DA) method. The DA method was orig-

inally developed to compute the rate-distortion function [58], which provides a

strong motivation for our work due to the similarity between the computation

of channel capacity and rate-distortion function. Unlike the particle method

which only generates a single point on the capacity curve, the DA method

results in a discretized segment of the capacity curve. Therefore, it would be

helpful to adapt this DA method to analyse how the capacity evolving with

increasing average power.

According to [56, Corollary 9], a parametric expression of channel capacity

in terms of s for a given A is given by

C(ε) = sε+ max
Q(x|y)

∑
x

exp

(∑
y

PY |X(y|x) logQ(x|y)− sc(x)

)
, (2.15)

where C(ε) is some point on the capacity curve parameterized by s, Q(x|y)

is the conditional distribution of X = x given Y = y, with c(x) being the

cost associated with symbol x. For the DTP channel, we have c(x) = x.

The parameter s can be interpreted as the slope of the capacity curve at a
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given average power, ε and a fixed peak amplitude and has a similar physical

meaning as β in [58].

Define the cost function κ as

κ , max
Q(x|y)

∑
x

exp

(∑
y

PY |X(y|x) logQ(x|y)− sx

)
. (2.16)

In contrast with the case of computing the rate-distortion function where the

cost function is minimized [58], the cost function (2.16) is maximized in the

computation of channel capacity.

Figure 2.4 presents a sketch of the DA algorithm. The input to the al-

gorithm are A and λ. The algorithm initializes with a binary distribution

(n = 2) and s set to some positive value. Through the annealing process, the

value of s decreases to 0 gradually. For every fixed s, the cost function (2.16)

is deterministically maximized through updating the probability masses and

positions of the input symbols recursively. The input probability is updated

based on the Blahut-Arimoto rule (2.17)-(2.19), while the positions of mass

points are updated via a gradient descent technique (2.20). A similar gradi-

ent descent method has been used to improve clustering performance through

deterministic annealing [60] and in our previous work [36]. It should be men-

tioned that, although simple to implement, the gradient descent technique is

not guaranteed to converge to the global optimal solution.

More mass points may be needed during the annealing process as s de-

creases. To change the value of n, a two-symbols-one-location strategy is

adapted from [58, Sec. VI]. In this technique two mass points are assigned

to each location, each carrying half the probability mass. During the itera-

tion of algorithm, the points may stay merged at the same location or diverge

depending on the phase transition condition. Constellation points that ap-

proach to within a small distance of each other (e.g. 10−3) are merged into a
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two co-located mass points with the same total probability. Notice that some

of the duplicate mass points may also diverge away from each other during the

gradient descent phase. For example, assume for a given s, n = 2. However, if

the corresponding optimal distribution is ternary, then one of the mass points

will diverge away from its pair during step (2.20). The algorithm will then

store 6 points before next iteration. For further details on this technique, the

reader is referred to [58].

The result of the DA algorithm has not been proven to necessarily converge

to the global optimum (i.e., capacity-achieving) distribution. Convergence

of the Blahut-Arimoto algorithm is guaranteed and the convergence of the

gradient descent algorithm to a local optimum can be realized through the

proper selection of the step size θk in (2.20) (e.g., according to the Armijo

rule [59]). Although not necessarily optimum, the output of the DA algorithm

can be tested for optimality against the KKT conditions in Theorem 12. In

the numerical results that follow, in practice all of the outputs of the DA

algorithm satisfy Theorem 12 are are thus capacity-achieving.

The convergence of this DA method to a local optimum is guaranteed by

similar reasoning as the particle method introduced in Section 2.3. However,

the global optimality of the numerical results of the DA algorithm can be

verified through the KKT conditions (Theorem 5) in Chap. 3.

2.4.2 Simulation Results Using DA

Figure 2.5 plots the channel capacity curves for increasing ε, with the peak

power constraint A = 100 and for λ = 0 and λ = 10. For comparison, the

results obtained via the particle method [36] are also presented. From the sim-

ulation results, it is apparent that both of these algorithms yield the channel

capacity as well as the capacity-achieving distribution. Notice, however, that
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Input: A, λ
Output: A discretized segment of the capacity curve
Initialization (typical values): s = 1, n = 2, x1 = 0, x2 = 0.01, p(x1) = p(x2) = 0.5, ω = 10−5,1

δ = 10−2, NBA = NGD = 20 ;
repeat2

Initialize: k = 1, ε(0) = 0;3
repeat4

k = k + 1;5
[Blahut-Arimoto] for NBA iterations do6

For every mass point, update p(xi) according to rules:7

Q(k)(xi|yj) =
p(x

(k−1)
i )P (yj |x

(k−1)
i )P

i′ p(x
(k−1)
i′ )P (yj |x

(k−1)
i′ )

, (2.17)

p(k)(xi) =
exp

“P
j P (yj |x

(k−1)
i ) logQ(x

(k−1)
i |yj)− sx

(k−1)
i

”
P
i exp

“P
j P (yj |x

(k−1)
i ) logQ(x

(k−1)
i |yj)− sx

(k−1)
i

” , (2.18)

p(k)(yj) =
X
i

p(x
(k−1)
i )P (yj |x

(k−1)
i ), (2.19)

end8
[Gradient Descent] for NGD iterations do9

Update all xi with appropriate choice for step-size θk10

x
(k)
i = x

(k−1)
i + θk

∂

∂xi

0@X
y

PY |X(y|xi) logQ(xi|y)− sxi

1A ˛̨̨̨˛
xi=x

(k−1)
i

(2.20)

end11

Compute ε(k) =
P
i x

(k)
i p(x

(k)
i ) ;12

until |ε(k) − ε(k−1)| ≤ ω ∨ k ≥ 100 ;13
14

C =
X
i

p(xi)
X
j

P (yj |xi) log

„
P (yj |xi)
p(yj)

«
.

Apply the “two-symbols-one-location strategy” ;15
Re-initialize: s = (1− δ)s ;16

until s ≤ 10−5 ;17

Figure 2.4: Algorithm for the deterministic annealing algorithm
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Figure 2.5: Channel capacity when A = 100, λ = 0 and 10 with various ε. The
dash lines indicate the transition points of |ψ∗x|, the number of mass points in
the capacity-achieving distribution.

the DA algorithm generates a discretized segment of the capacity curve rather

than discrete points.

Consider the case of A = 100 and λ = 10 in Fig. 2.5 where |ψ∗x| denotes the

total number of the mass points in the capacity-achieving distribution. For

ε < −4 dB, the optimal input distribution is binary and as ε increases, so too

does |ψ∗x|. However, for ε > 11 dB, the capacity-achieving distribution has

|ψ∗x| = 8 points. Notice also that for ε > 16 dB, neither the capacity-achieving

distribution nor the channel capacity changes with increasing ε. This satura-

tion in capacity with increasing ε indicates that the average power constraint

becomes ineffective and the capacity is limited by the peak power constraint.

Notice that this phenomenon occurs for ε >≈ A/2 = 17 dB.

The case of peak power constraint only and λ = 0 was treated by Shamai
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in [26, Eq. (14)], where it is claimed that the capacity-achieving distribution

is

dF ∗x = (1− β1 − β2)δ(x) + β1δ(x− 0.3839A) + β2δ(x− A) (2.21)

in the region 3.3679 ≤ A < φ, for some φ > 3.3679. In other words, the constel-

lation of the capacity-achieving distribution scales linearly with A. However,

after extensive simulation, it can be shown that for ternary capacity-achieving

distributions, (2.21) is only capacity-achieving with A = 3.3679 but not for

larger values of A. In particular, for λ = 0, A = 4 and only peak power

constraint, the capacity-achieving distribution is

dF ∗x = 0.4927δ(x) + 0.0768δ(x− 1.4033) + 0.4305δ(x− 4),

where the middle point is not located at x = 4× 0.3839 = 1.5356.

2.4.3 Comparison of DA and Particle Method

There are many similarities between the particle method and the DA

method. For example, both algorithms update the input probabilities through

the Blahut-Arimoto algorithm for fixed constellations, and both adapt the

gradient decent technique to update the positions of the input constellations

under the resulting probability. Simulations indicate that both the particle

method and the DA method are capable of providing precise capacity results

under given constraints for DTP channels.

It is also beneficial to compare the computational complexity of these

two algorithms. Suppose for any discrete input distribution defined as (2.5),

let B(n) and G(n) denote the number of operations that are required to

implement the Blahut-Arimoto method and the gradient decent method in

33



Ph.D. Thesis - J. Cao McMaster - Electrical & Computer Engineering

one iteration, respectively. It is not difficult to see that B(n) and G(n) in-

crease linearly in n. For computing a single capacity point corresponding

to (A, ε), the particle method approximately needs K(B(n) + G(n)) opera-

tions, where n is the number of mass points used and K is the number of

iterations, while the number of steps the DA method needs to run is ap-

proximately upperbounded by NK(B(2n′) + G(2n′)) and lowerbounded by

max{
∑n′

i=2 K(B(2i) + G(2i)), NK(B(4) + G(4))}, where n′ is the number of

constellation points used in the final step of the DA method (which is in gen-

eral significantly smaller than n) and N is the number of points on the capacity

curve computed by the DA method before the given average power constraint

is reached (note that the number of mass points in the DA method is twice

the number of constellation points due to the “two-symbols-one-location strat-

egy”).

Generally speaking, compared with the particle method, the DA method

has the advantage of computing a discretized segment of the capacity curve of

the DTP channels with a fixed peak power constraint and increasing average

power constraints. However, for computing a single point on the capacity curve

(i.e., for fixed ε and A), the DA method may not be a suitable choice since it

still needs to initialize with some small ε′ < ε, for which the capacity-achieving

distribution is binary, then increases ε′ and the size of the input constellation

gradually until ε′ = ε. Therefore, in this setting, the particle method, which

is designed specifically for computing a single point on the capacity curve, is

in general more advantageous. However, the DA method is still a desirable

choice when 2n′N is smaller than n.
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2.5 Maxentropic Capacity-Approaching Distri-

butions

2.5.1 Maxentropic Capacity-Approaching Distributions

Although there are many algorithms for computing both the capacity and

the optimal input distributions for DTP channels (e.g., the particle method in

Sec. 2.3 and DA method in Sec. 2.4), often it is instructive to develop simple

closed-form input distributions which give tight lower bounds on the capacity.

Define a family of distributions, termed maxentropic, which have equally

spaced mass points in [0, A] and which maximize entropy subject to average

and peak power constraints. In particular, the maxentropic distributions are

given as [29]

dF †x(K) =
K∑
k=0

p̄kδ

(
x− k A

K

)
,

where

p̄k =
1

K + 1
, A ≤ 2ε. (2.22)

p̄k =
tk

1 + t+ t2 + . . .+ tK
, A ≥ 2ε. (2.23)

and t is some number between 0 and 1. These distributions are in fact Boltz-

mann distributions which are widely applied in statistical physics and clus-

tering [61] and have also been applied in Gaussian noise-corrupted optical

channels [29].
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Figure 2.6: Mutual information induced by the maxentropic input distribu-
tions and the number of mass points versus ε when A/ε = 4/3 and λ = 3.
For comparison, the channel capacity and the number of mass points in the
capacity-achieving distribution, |ψ∗x|, are also provided.

2.5.2 Performance of Maxentropic Distributions on DTP

Channels

The information rates induced by the maxentropic distributions are shown

in Figs. 2.6 and 2.7 for different A/ε and λ = 3. The channel capacity in both

cases are included for comparison and computed through the deterministic

annealing method of Section 2.4.1.

It can seen from the figures that the performance of the maxentropic dis-

tributions is very close to the channel capacity and even capacity-achieving in

some cases. At low ε, the binary maxentropic distribution

dF †x(1) =
(

1− ε

A

)
δ(x) +

ε

A
δ(x− A) (2.24)
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Figure 2.7: Mutual information induced by the maxentropic input distribu-
tions and the number of mass points versus ε when A/ε = 4 and λ = 3.
For comparison, the channel capacity and the number of mass points in the
capacity-achieving distribution, |ψ∗x|, are also provided.
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is capacity achieving in both figures. As ε increases, the number of mass

points, K, required to approach the capacity also increases. In fact, the mu-

tual information induced by the maxentropic distributions is often negligibly

far from the capacity for high ε with less mass points than the optimal case.

For example, in Fig. 2.6 when ε > 12.5 dB, a K = 3 maxentropic distribution

is close to the channel capacity while |ψ∗x| = 5 points are in the optimal dis-

tribution. Similarly, in Fig. 2.7, a K = 6 maxentropic distribution approaches

the capacity where up to 8 mass points are needed when ε > 12.5 dB.

Therefore, the envelope of the information rates of maxentropic distribu-

tions forms a close approximation to the channel capacity of DTP channels.

The simple form of the maxentropic distributions also makes them a useful

first step in non-uniform signalling design for DTP channels and often has the

practical benefit of having near-capacity performance with less mass points.

2.6 Non-Uniform Signalling Design for Discrete-

Time Poisson Channels

2.6.1 Motivation for Non-Uniform Signalling

As discussed, the example in Fig. 2.1 in Sec. 2.3 indicates a large gap

between the mutual information using uniform signalling and the channel ca-

pacity, and demonstrates the importance of non-uniform signalling for DTP

channel. In addition, based on the practical link budget in Sec. 2.2.2, the ca-

pacity of the LEO-LEO intersatellite link is computed following Sec. 2.3 using

the estimated ε = 7.5027 and λ = 3.6649 and shown in Fig. 2.8 versus the

peak constraint A. As a metric of comparison, the mutual information rate

achieved by conventional uniform binary signalling scheme with the same ε
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and λ is computed to be C0 = 0.6718 nats per channel. Fig. 2.8 also presents

the rate gain available by using non-uniform signalling over C0.

Notice that even for A/ε = 2 there is a gain in rate of 12% over the

baseline uniform binary scheme C0
1. Thus, non-uniform signalling is useful

in improving the data rate in all cases in Fig. 2.8. Increasing the available

peak power by 50% to about 1 W gives an A/ε = 3 and yields a 30% gain in

rate over conventional binary uniform signalling for the same average power.

Further increasing the peak constraint improves the capacity with smaller

relative increases in rate. Thus, using laser emitters with larger peak powers

and non-uniform signalling can yield impressive gains in the channel capacity

of the LEO intersatellite link while keeping the average power consumption

constant. That is, this improvement in rate does not come at the expense of

increased average energy usage.

The remainder of this section considers practical algorithms to approach

these large gains in rate by employing non-uniform signalling.

2.6.2 Practical Constellation Design: Constrained Par-

ticle Method

The resulting capacity-achieving distributions obtained in Sec. 2.3 and

Sec. 2.4 have arbitrary probability mass values which may not be practical

for code design. Simply quantizing the optimal distribution does not take full

advantage of the average power constraint.

Consider a constrained particle method which incorporates the quantization

levels into distribution design and is defined as follows:

1. Choose a large enough n and run the W-step and X-step of Sec. 2.3

1In fact, in this case the capacity-achieving distribution is non-uniform and ternary.
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Figure 2.8: Channel capacity for LEO intersatellite link versus A/ε with ε =
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signalling, C0, is also presented.
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iteratively until convergence to yield the capacity-achieving distribution

{(x∗i , p∗i )}.

2. Select N ∈ Z+ according to the system requirements. In general, larger

N provide more precise quantization results at the expense of complexity.

3. Enumerate all possible distributions of the form {(x∗i , p̂i)} where p̂i =

k/2N for k ∈ {0, 1, . . . , 2N − 1}. Notice that
∑
p̂i = 1. Denote the

collection of all such distributions by P̂ and P̂ε ⊆ P̂ as the collection

which satisfy the average amplitude constraint.

4. If |P̂ε| > 0 (i.e., at least one combination satisfies the average power

constraint), choose the element in P̂ε which has the smallest Kullback-

Leibler (K-L) divergence to {(x∗i , p∗i )}. Then, run the X-step (2.12) under

the average constraint.

5. Else, no elements in P̂ satisfy the average constraint. Choose the dis-

tribution in P̂ − P̂ε which has the smallest K-L divergence to {(x∗i , p∗i )}

and denote it {(x̃i, p̃i)}. Scale this distribution as {(αx̃i, p̃i)}, where

α = ε/
∑
x̃ip̃i to ensure the average constraint is satisfied.

Notice that the resulting source distribution satisfies all channel constraints

and has quantized probability mass values. Steps 4 and 5 are the most costly

in terms of time complexity but guarantee that the algorithm will converges

to an optimal point.

The mutual information of the constrained particle method with N = 2

and 3 as a function of 1/λ for fixed ε and A is shown in Fig. 2.9. For com-

parison, the channel capacity computed by the particle method of Sec. 2.3 is

also presented. The largest gap between the mutual information and channel

capacity is approximately 0.02 nats/channel use. Notice that as λ decreases,
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Figure 2.9: Channel capacity and mutual information for constellations from
the constrained particle method for ε = 4 dB and A/ε = 4.

constellations with more quantization levels are required to approach the chan-

nel capacity.

Fig. 2.10 plots the capacity-achieving input distributions and the results

of the constrained particle method for ε = 4 dB and A/ε = 4 with λ =

10, 4, 0.1, 0.01, respectively. When λ = 10, the capacity-achieving distribution

and the constrained signal constellation coincide. Notice also that for λ = 4

the output of the constrained method results in fewer mass points than the ca-

pacity achieving distribution. Thus, the constrained technique often produces

a less complex transmitter with fewer output amplitudes while remaining very

close to the channel capacity.
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Figure 2.10: The optimum and the proposed input distribution for different
λ when ε = 4 dB and A/ε = 4. For (a) and (b) N = 2 and for (c) and (d)
N = 3.
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2.6.3 Coding and Non-Uniform Signalling

As seen in earlier sections, to approach the capacity of the discrete-time

Poisson channel, signalling at discrete amplitudes with non-uniform proba-

bilities is necessary. In previous work on related channels [29, 39], a mapper

is used to induce the correct distribution and coupled with multilevel coding

(MLC) and multi-stage decoding (MSD) to approach capacity. In general,

however, MLC/MSD suffer from error propagation, latency in decoding and

require multiple encoders and decoders.

In this work, a single code is used to encode all bits and the mapper

obtained from the constrained particle method is implemented to induce the

correct distribution. At the receiver demapping and decoding are done jointly

via the sum-product algorithm.

Binary 
k-bits

LDPC
Encoder Binary 

nN-bits

Mapper 
Channel

YX
nN n

U W f

Figure 2.11: System model for the developed encoding method and mapping
scheme

Fig. 2.11 presents a block diagram of the encoder. Let the message U be

composed of k bits assumed to be uniformly distributed and input to the low-

density parity check (LDPC) encoder. Define the length of the LDPC code

to be nN , where 2N is the number of quantization steps in the constrained

particle method. The value n is an integer selected so that the capacity C >

k/n. Additionally, group the output coded bits as
(
W

(i)
1 ,W

(i)
2 , . . . ,W

(i)
N

)
, for

i = 1, 2, . . . , n. Notice that since the LDPC code is a linear block code, the

output distribution of the symbols in W can be assumed to be uniform. Let

f : {0, 1}N → [0, A] be a deterministic mapper which induces the desired
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distribution as determined by the constrained particle method in Sec. 2.6.2.

This mapper is straightforward to implement since all probability masses are

constrained to be of the form k/2N .

Thus, each block of N coded bits, indexed by i, is input to the mapper to

yield a single channel input Xi.

2.6.4 Code Design: Example I

Consider channel constraints A/ε = 4 and λ = 3. From Fig. 2.2, it is

apparent that for the range −10 ≤ ε ≤ 2 dB that the capacity-achieving

distribution has two mass points at {0, A} and p0 = 3/4. In this example, the

encoding, mappping and joint demapping/decoding processes are described in

detail and their performance simulated.

2.6.4.1 Encoding and Mapping

For N = 2 and assuming uniformly distributed input bits, the mapper f

induces the desired distribution

(
W

(i)
1 W

(i)
2

) f7−→ X : X =

 A, W
(i)
1 = W

(i)
2 = 1,

0, otherwise.
(2.25)

The equivalent channel seen by bit W1 (and W2 due to the symmetry of

the mapper) can be found by marginalizing the conditional probability

PY |W (y|w1 = 1) =
∑
w2

PY |X(y, w2|w1 = 1)

=
1

2
PY |X(y|A) +

1

2
PY |X(y|0),

PY |W (y|w1 = 0) = PY |X(y|0),

where PY |X(·|·) is the channel law.
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Figure 2.12: Developed factor graph for joint demapping and decoding

2.6.4.2 Joint Demapping and Decoding

Consider representing the LDPC code and the mapper together in a factor

graph. An example for N = 2 with the mapper (2.25) is presented in Fig. 2.12.

Message passing on this graph using the sum-product algorithm can demap

and decode the bits jointly.

Notice that the lower part of the graph represents a traditional LDPC code

and the mapping function f is represented by the triangular nodes. Further-

more, both w(i) and xi are binary in this example. Following the standard

sum-product algorithm [62], the message from the mapper to the message bit

w
(i)
1 is

µ
f→w(i)

1
(w

(i)
1 = 1) = µxi→f (xi = A)µ

w
(i)
2 →f

(w
(i)
2 = 1)

+ µxi→f (xi = 0)µ
w

(i)
2 →f

(w
(i)
2 = 0),

µ
f→w(i)

1
(w

(i)
1 = 0) = µxi→f (xi = 0)µ

w
(i)
2 →f

(w
(i)
2 = 1)
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+ µxi→f (xi = 0)µ
w

(i)
2 →f

(w
(i)
2 = 0).

An analogous message from f to w
(i)
2 is also simple to derive based on (2.25).

Notice that the mapper may induce loops with small girth. In practice, 50 iter-

ations of message passing on the LDPC graph are done between each iteration

of messages from the mapper, µf→w.

For this example, the message from xi to f can be written as the log-

likelihood ratio

mxi→f = ln
µxi→f (xi = 0)

µxi→f (xi = 1)
= ln

P (xi = 0|yi)
P (xi = 1|yi)

= ln
3P (yi|xi = 0)

P (yi|xi = A)
. (2.26)

All other message passing for the LDPC code takes place in the standard

manner [63]. Due to the symmetry of the mapper in w
(i)
1 and w

(i)
2 , the update

rules for both are the same. After several rounds of message passing, a hard

decision is made for each w(i).

2.6.4.3 Simulation on BER Performance

Notice that the previous discussion of the joint demapping/decoding tech-

nique depends only on the particular mapper chosen. In order to have a con-

crete example, referring to Fig. 2.1, the channel capacity when ε = −1.21 dB,

A/ε = 4 and λ = 3 is approximately 0.2438 bits (0.169 nats) per channel use.

As shown in Fig. 2.2, the capacity-achieving distribution in this case has two

amplitude points at 0 and A and has probability mass p0 = 0.75 corresponding

to the previously developed mapper (for N = 2).

In order to realize the code design for this system, an LDPC code with

rate R = 0.12 bits/channel use is required since two encoded symbols are

mapped to a channel symbol. An LDPC code with rate 0.12 bits/channel use

is designed using [64] for an AWGN to yield the degree distributions

λ(x) = 0.5513x+ 0.2031x2 + 0.0917x4 + 0.0045x6
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+0.017x7 + 0.0995x8 + 0.033x9,

ρ(x) = x2.

The total length of the code is set to 10000 bits, which corresponds to 5000

transmitted channel symbols.

The bit error rate (BER) performance of the system is shown in Fig. 2.13

versus 1/λ for ε and A fixed. The figure indicates the point corresponding

to λ = 3 which was used for design. Notice that the BER drops as 1/λ

increases. For comparison, a uniform distribution which satisfies the same

average power constraint is also considered. At 1/λ = 1.31 the information

rate using uniform signalling is 0.24 bits/channel use which is identical to

the designed rate. Clearly, uniform signaling is quite far from the channel

capacity and a non-uniform signaling scheme, such as the one presented here,

is a required to take full advantage of discrete-time Poisson channels.

2.6.5 Code Design: Example II

Consider the design of a non-uniform mapper and coding scheme under the

conditions for a LEO intersatellite link described in Sec. 2.2.2 (i.e., ε = 7.5027

and λ = 3.6649). A value of A/ε = 2.62 is selected since, from Fig. 2.8, the

channel capacity is approximately 25% greater than the uniform signalling

case (i.e., 1.22 bits/channel use). Notice that this is a mild increase in the

peak-to-average ratio over the uniform system which inherently has A/ε = 2.

The goal of this example is to quantify the practical gains in rate which can

be realized by exploiting the small increase in peak amplitude for the same ε

and λ.
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Figure 2.13: BER versus 1/λ for the non-uniform signalling using finite length
LDPC codes for ε = −1.21 dB , A/ε = 4. The value of 1/λ corresponding to
optimal uniform (out of range) and non-uniform signalling at 0.24 bits/channel
use is presented for comparison.
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2.6.5.1 Encoding and Mapping

For ε = 7.5027, λ = 3.6649 and A/ε = 2.62 , the channel capacity is 1.22

bits/channel use, which is achieved by the input distribution

dF ∗(x) = 0.4444δ(x) + 0.2001δ(x− 7.1835)

+ 0.0883δ(x− 9.2315) + 0.2672δ(x− 19.6503).

Setting N = 2 in the constrained particle method results in the following

distribution

p̂∗X(x) = 0.5δ(x) + 0.25δ(x− 8.76) + 0.25δ(x− 19.6505), (2.27)

with the mutual information rate 1.20 bits/channel use.

Notice that this distribution can be induced through the simple mapper f

(
W

(i)
1 W

(i)
2

) f7−→ X : X =


A0, W

(i)
1 = 0

A1, W
(i)
1 = 1, W

(i)
2 = 0

A2, W
(i)
1 = 1, W

(i)
2 = 1

(2.28)

where A0 = 0, A1 = 8.76 and A2 = 19.6505.

The equivalent channel seen by bit W1 and W2 as well as the message

passing rules can be found by simple extension of the results in Sec. 2.6.4.

2.6.5.2 Simulation on BER Performance

Since the information rate with the input (2.27) when λ = 3.6649 is 1.20

bits/channel use, an LDPC code with rate R = 0.568 bits/channel use and

degree distributions [65]

λ(x) = 0.181804x+ 0.197579x2 + 0.011671x3

+0.098834x4 + 0.063856x5 + 0.239152x24
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+0.207105x25,

ρ(x) = 0.839350x10 + 0.160650x11,

is applied in the this system with a code length of 10000 bits.

Fig. 2.14 plots the BER of the coding system with mapper (2.28) versus

1/λ. Notice that the BER of the joint coding/mapping system is less than 10−5

for the target λ = 3.6649 computed in the LEO link budget (Sec. 2.2.2). Thus,

for same ε and λ the resulting system has a rate which is 17% larger than that

of uniform signalling (i.e., C0 = 0.969 bits/channel use). This corresponds to

a data rate of 6.6 Gbps. It must be noted, however, that this increase in rate

is achieved at the expense of an increase in peak-to-average ratio from 2 to

2.62.
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10−3
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!  = 3.6649

Figure 2.14: BER versus 1/λ for the non-uniform signalling using finite length
LDPC codes with R = 1.136 bits/channel use as ε = 7.5027, A/ε = 2.62.
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2.6.6 Code Design: Example III

In some cases to approach the channel capacity an N = 3 encoder and

decoder are necessary. For example, from Fig. 2.9, for ε = 2.51, A/ε = 4 and

λ = 2.59, the channel capacity is 0.7668 bits per channel use. Applying the

N = 3 constrained particle method yields the following distribution

p (0) =
5

8
, p

(
A

2

)
=

2

8
, p (A) =

1

8
, (2.29)

and the corresponding mutual information is 0.75 bits/channel use.

Symbols are drawn three at a time from an LDPC code with rate R = 0.25

bits/channel use and applied to the mapping function f , defined in (2.30),

to yield a channel symbol. An LDPC code of length 12000 bits with rate

R = 0.25 bits per channel use and the degree distributions [65]

λ(x) = 0.602x+ 0.238x2 + 0.0309x3

+0.021x4 + 0.0491x5 + 0.0141x6

+0.0208x7 + 0.023x8 + 0.001x9,

ρ(x) = 0.0001x+ 0.1017x2 + 0.8982x3,

is combined with the mapper f in (2.30). The equivalent channel law as well

as the messages passed during the sum product algorithm can be derived in a

similar fashion to those in the example in Sec. 2.6.4.

W = [W1W2W3]
f7−→ X : X =


A0, W1 = 0.
A0, W1 = 1,W2 = 1,W3 = 0,
A1, W1 = 1,W2 = 0,W3 = 0,
A1, W1 = 1,W2 = 0,W3 = 1,
A2, W1 = W2 = W3 = 1.

(2.30)

The BER performance of the system is shown in Fig. 2.15 versus 1/λ for

ε and A fixed. For the non-uniform distribution (2.29), at 1/λ = 0.389, the
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information rate is identical to the design rate, however, in order to implement

the rate 0.75 bits/channel use with the BER less than 10−5, 1/λ = 0.89 is

needed for this system. The information rate with the input (2.29) and 1/λ =

0.89 is about 0.886 bits/channel use. A uniform distribution with the same

average power constraint has information rate equal to 0.75 bits/channel use

when 1/λ = 1.068. Therefore, the practical coding scheme illustrated here

is reliable at a higher value of λ than the optimal uniform signalling scheme

satisfying the same average optical power constraint.
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Figure 2.15: BER versus 1/λ for the non-uniform signalling using finite length
LDPC codes as ε = 4 dB , A/ε = 4. The 1/λ corresponding to optimal
uniform signalling and non-uniform signalling with R = 0.75 bits/channel use
is presented for comparison.
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2.7 Conclusions

This chapter presents capacity calculations and non-uniform signalling de-

sign for intersatellite discrete-time Poisson channels corrupted by dark current

under peak and average power constraints. Based on a realistic link budget

of a LEO satellite communication link, for a given average power, significant

gains in rate can be achieved using non-uniform signalling with a modest in-

crease in peak power. Thus, non-uniform signalling is necessary and important

to extract the maximum rate from such intersatellite communication links.

The channel capacity and the capacity-achieving distribution are calculated

by adapting a particle-based Blahut-Arimoto algorithm and a deterministic

annealing based algorithm. Although both algorithms adapt Blahut-Arimoto

algorithm to update the probability and adapt gradient decent method to up-

date the constellations, the essential ideas of these two algorithms are different.

The particle method focuses on the capacity result under fixed peak power and

average power constraints, i.e., a single point on the capacity curve. In con-

trast, the DA method, computes a segment of the capacity curve for a fixed

peak power constraint and with increasing average power constraint. Con-

vergence of these algorithms are guaranteed by the Blahut-Arimoto method

and the gradient decent method. The global optimality of the result can-

not be proved theoretically while can be verified through the KKT conditions

presented in Chap. 3.

Practically, these two methods can be applied in different situations. The

particle method, which initializes with some large number of particles, can pro-

vide precise results for DTP channel with fixed peak and average constraints.

In contrast, the DA method needs to initialize with some small ε, has ad-

vantage in drawing a discretized segment of the capacity curve for fixed peak
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power constraint. In other situations, i.e., with both constraints fixed or with

fixed average power constraint, the particle method is more convenient to use.

A simple family of maxentropic input distributions is defined and used to

develop tight lower bounds on the channel capacity through the evaluation of

the envelope of information rates for different K.

An interesting insight of this chapter is that at low input powers, when the

received power is smaller or at most on the same order as the the dark current,

that binary inputs are often optimal. Indeed, our simulations have shown that

at low input powers the binary maxentropic distribution in (2.24) is optimal

over a wide range of A.

In next chapter, analytical results are expanded to develop necessary and

sufficient conditions for binary inputs being optimal as well as presenting a

closed-form for the capacity-achieving distribution for large λ under both peak

and average constraints.

A constrained particle method is also developed which leads to practical sig-

nal constellations that can be applied to code design directly. A joint demap-

per/decoder using the sum-product algorithm is developed and requires a sin-

gle encoder and decoder. This technique is similar in spirit to bit-interleaved

coded modulation (BICM) [66] in the use of mappers and demappers, how-

ever, in this work random bit-interleavers and de-interleavers are not employed

but are designed to induce the correct input distributions. Three code design

examples, including the one based on the practical parameters of the LEO

satellite link, are presented to quantify performance.

Simulation results show that the rate performance is close to the capacity

with the BER less than 10−5 and far outperforms uniform signalling schemes

in all scenarios. For the LEO example, for typical values of ε and λ a gain in

rate of 17% over uniform signalling is realized with practical codes at a cost
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of moderate peak amplitude increase.
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Chapter 3

Capacity-Achieving

Distributions for the DTP

Channel

3.1 Introduction

In contrast to work in last chapter which concentrates on numerical results

of the capacity and capacity-achieving distribution, this chapter investigates

the closed-from expressions of the capacity-achieving distributions of the DTP

channel. This approach not only provides insight on the channel capacity but

is also a useful tool to guide signalling design. It is shown that the capacity-

achieving distributions always have a mass point at zero and, in the case of only

a peak power constraint, also a point at the maximum amplitude. It is also

proved that distributions that consist of a finite number of mass points are not

capacity-achieving for the DTP channel with only average power constraint.

This chapter also places particular emphasis on the low power regime of
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the DTP channel, defined in Section 2.2, which refers to the case when the

received power is smaller or at most on the same order as the the dark current.

This is motivated primarily by the need for a better understanding of the

lower power optical channel, which exists in long-range optical communications

such as intersatellite laser links that operate over ranges of tens of thousands

kilometres with limited transmit power.

Numerical results in Sec 2.3 and Sec. 2.4 show that, in the low power regime,

the capacity-achieving distributions typically consist of two mass points. To

gain a theoretical understanding of this phenomenon, necessary and sufficient

conditions on the optimality of binary distributions are derived and closed-form

expressions of the capacity-achieving distributions are presented in several

special cases.

To remind the reader, the channel model used in the chapter is defined

rigorously in Sec. 2.2.

3.2 General Results for Capacity-Achieving Dis-

tributions

In this section, three general properties of the capacity-achieving distribu-

tion are demonstrated. It is shown that x = 0 is always contained in the con-

stellation of the capacity-achieving distribution (i.e., 0 ∈ ψ∗x(A, ε)). Further-

more, when there is only a peak power constraint A, x = A is also contained

in the constellation of the capacity-achieving distribution (i.e., A ∈ ψ∗x(A,A)).

Finally, it is proved that distributions consist of a finite number of mass points

are not capacity-achieving for the DTP channel with only average power con-

straint.
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3.2.1 Properties of the Capacity-Achieving Distribution

Lemma 1 (Shifting downward increases mutual information). Let X de-

note a random variable defined over constellation ψx = {x1, x2, . . . , xn}, 0 <

x1 < x2 < . . . < xn ≤ A, with corresponding probability masses ψp =

{p1, p2, · · · , pn}, ∀i pi 6= 0. Let Y denote the output of a DTP channel gen-

erated by X. Define another input X∆ to be identically distributed as X but

with a shifted constellation ψx∆
= {x1 −∆, x2 −∆, · · · , xn −∆}, and let Y∆

denote the corresponding output. For any ∆ ∈ (0, x1],

I(X;Y ) ≤ I(X∆;Y∆),

with equality if and only if |ψx| = 1.

Proof. A detailed proof can be found in Appendix A.1.

Corollary 2 (Mass point at zero). The capacity-achieving distribution for

the DTP channel under average and peak power constraints always contains a

mass point located at 0. That is, 0 ∈ ψ∗x(A, ε) for any constraints A and ε.

Proof. This is a direct consequence of Lemma 1.

Lemma 3 (Squeezing decreases mutual information). Let X denote a random

variable defined over constellation ψx = {x1, x2, . . . , xn}, 0 ≤ x1 < x2 < . . . <

xn ≤ A, with corresponding probability masses ψp = {p1, p2, · · · , pn}, ∀i pi 6= 0.

Let Y denote the output of a DTP channel generated by X. Define another

input Xα = αX with squeezed constellation {αx1, αx2, · · · , αxn}, and let Yα

denote the corresponding output. For α ∈ [0, 1),

I(X;Y ) ≥ I(Xα;Yα),

with equality if and only if |ψx| = 1.
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Proof. This result can be proved by invoking [67, Theorem 2]. A more ele-

mentary proof is provided in Appendix A.2.

Corollary 4 (Point at peak amplitude). For the DTP channel, when only the

peak power constraint is imposed, the capacity-achieving distribution always

contains a mass point located at A, i.e., A ∈ ψ∗x(A,A).

Proof. This follows from Lemma 3 directly.

Another interpretation of Lemma 1, is that the mutual information is

monotonically decreasing with λ. By Proposition 15 in Appendix A, increasing

λ is equivalent to shifting the constellation to the right. This interpretation

can also be shown via [67, Theorem 1].

3.2.2 On the Capacity-Achieving Distribution under only

Average Power Constraint

Analogous to the definition made by Smith [25] and Shamai [26], for input

distribution Fx on the DTP channel (see Section 2.2), let

i(x, Fx) , −
∞∑
y=0

PY |X(y|x) log
PY (y)

PY |X(y|x)

= (x+ λ) log(x+ λ)− x−
∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log

(∫ A

0

e−x(x+ λ)ydFx

)
.

(3.1)

The mutual information induced by Fx can be written as

I(Fx) =

∫ A

0

i(x, Fx)dFx.

Finally, define the multiplier function with Lagrange multiplier µ ≥ 0 as

M(µ, x, Fx) = I(Fx) + µ(x− ε)− i(x, Fx). (3.2)
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The following theorem from [26] is of fundamental importance for this

chapter. It works as a basic tool to verify the optimality of any distribution for

DTP channel under peak power and average constraints capacity-achieving or

not. For example, the numerical results from the particle method (Section 2.3)

and DA method (Section 2.4).

Theorem 5 (KKT conditions [26]). Fx(A, ε) is capacity-achieving iff the fol-

lowing conditions are satisfied for some µ ≥ 0,

M(µ, x, Fx(A, ε)) ≥ 0, x ∈ [0, A]. (3.3)

M(µ, x, Fx(A, ε)) = 0. x ∈ ψ(Fx(A, ε)). (3.4)

where ψ(Fx(A, ε)) is the set of points of increase of Fx(A, ε).

The following result provides a partial characterization of the capacity-

achieving distribution for the DTP channel when the peak power constraint is

relaxed (i.e., only an average power constraint is imposed).

Theorem 6 (Insufficiency of distributions with bounded support under av-

erage power constraint). Distributions with bounded support are not capacity-

achieving for the DTP channel under only an average power constraint.

Proof. Suppose instead that the capacity-achieving distribution dF ∗x under

average power constraint ε has a bounded support Ω ⊆ [0, A∗]. It follows from

Theorem 12 that

M(µ, x, F ∗x ) ≥ 0, x ∈ [0, A], (3.5)

M(µ, x, F ∗x ) = 0, x ∈ ψ(F ∗x ),

for any A ≥ A∗.
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Suppose x1 and x2 are two arbitrary points of increase of F ∗x with x1 < x2.

In view of the fact that M(µ, x1, F
∗
x ) = M(µ, x2, F

∗
x ) = 0, we can rewrite the

multiplier function as

M(µ, x, F ∗x ) =
x− x1

x2 − x1

(i(x2, F
∗
x )− i(x1, F

∗
x )) + i(x1, F

∗
x )− i(x, F ∗x ).

Note that

M(µ,A, F ∗x )

=
A− x1

x2 − x1

(i(x2, F
∗
x )− i(x1, F

∗
x )) + i(x1, F

∗
x )− i(A,F ∗x )

=
A− x1

x2 − x1

(i(x2, F
∗
x )− i(x1, F

∗
x )) + i(x1, F

∗
x )− (A+ λ) log(A+ λ) + A

+
∞∑
y=0

e−(A+λ) (A+ λ)y

y!
log

(∫ A

0

e−x(x+ λ)ydF ∗x

)
≤ A− x1

x2 − x1

(i(x2, F
∗
x )− i(x1, F

∗
x )) + i(x1, F

∗
x )− (A+ λ) log(A+ λ) + A

+
∞∑
y=0

e−(A+λ) (A+ λ)y

y!
log ((A∗ + λ)y) (3.6)

=
A− x1

x2 − x1

(i(x2, F
∗
x )− i(x1, F

∗
x )) + i(x1, F

∗
x )− (A+ λ) log(A+ λ) + A

+ (A+ λ) log(A∗ + λ), (3.7)

where (3.6) is due to the fact that the support of dF ∗x is contained in [0, A∗]. It

can be seen from (3.7) that M(µ,A, F ∗x ) < 0 when A is large enough since the

term −A logA prevails (i(x2, F
∗
x ) and i(x1, F

∗
x ) can be viewed as constants),

which is contradictory with (3.5). Thus, under solely an average power con-

straint, distributions with bounded support are not capacity-achieving.

It was shown by Shamai in [26] that, with peak power constraint and with

or without average power constraint, the capacity-achieving distribution for

the DTP channel must consist of a finite number of mass points. Theorem
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6 indicates that this conclusion does not hold if the peak power constraint is

removed.

3.3 Binary Capacity-Achieving Distributions

Intuition from earlier simulation studies in Sec. 2.3 and Sec. 2.4 suggests

that binary signalling is often optimal for low-power DTP channels. In this

section, the general results of Corollary 2 and Corollary 4 in Sec. 3.2 are ap-

plied to binary signalling to develop necessary and sufficient conditions on the

optimality of binary distributions and to derive analytical capacity-achieving

distributions in several special cases.

Theorem 7 (Conditions for the capacity-achieving distribution being binary).

For a DTP channel with peak and average power constraints, the capacity-

achieving distribution is binary, i.e. |ψ∗x(A, ε)| = 2, iff one of the following

two conditions holds:

1. [Average power constraint active] There exists a B ∈ (0, A] such that,

for all x ∈ [0, A],

x

B
(i(B,F ∗x )− i(0, F ∗x )) + i(0, F ∗x )− i(x, F ∗x ) ≥ 0, (3.8)

and

i(B,F ∗x )− i(0, F ∗x ) ≥ 0, (3.9)

where

dF ∗x =
(

1− ε

B

)
δ(x) +

ε

B
δ(x−B). (3.10)

2. [Slack in average power constraint] For all x ∈ [0, A],

i(0, F ∗x )− i(x, F ∗x ) ≥ 0, (3.11)
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and

i(0, F ∗x ) = i(A,F ∗x ), (3.12)

where

dF ∗x = (1− β)δ(x) + βδ(x− A). (3.13)

In this case, β is the solution of

∞∑
y=0

(
e−λ

λy

y!
− e−(λ+A) (λ+ A)y

y!

)
log
(
(1− β)λy + βe−A(λ+ A)y

)
= λ log λ− (A+ λ) log(A+ λ) + A. (3.14)

Proof. This theorem follows from Theorem 5 and Corollaries 2 and 4. Note

that Corollary 2 implies the existence of a mass point at 0. Now consider a

binary input distribution dF ∗x = (1− β) δ(x) + βδ(x − B), 0 < B ≤ A and

0 < β < 1. The KKT conditions lead to two possible cases depending on

whether the average power constraint is active:

• EF ∗x {X} = ε implies µ ≥ 0, where µ is the Lagrange multiplier defined

in (3.2). This further implies β = ε/B. Equations (3.8) and (3.9) follow

directly from Theorem 5.

• EF ∗x {X} < ε (i.e., there is slack in the average constraint) implies µ =

0. Thus, given that F ∗x is capacity-achieving, B = A by Corollary 4.

Now invoking Theorem 5 yields (3.11) and (3.12). The optimal β is the

solution of (3.12), which can be expanded to (3.14).

Theorem 7 can be used to determine whether a binary distribution is

capacity-achieving. If none of the conditions are satisfied then the optimal
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distribution is not binary. In general, it is difficult to use Theorem 7 to ob-

tain a closed-form solution for the binary capacity-achieving distribution for a

general λ. In what follows, several special cases are considered in which more

explicit results can be obtained.

3.3.1 When λ = 0

In the case of λ = 0, Theorem 7 can be simplified to yield some insights.

This condition corresponds to the case when there is no background illumina-

tion falling on the receiver and the dark current is zero. The λ = 0 condition

models cases when the satellite receiver aperture is pointed away from light

scatters, has narrow band optical filters, and the photoreceiver is at low tem-

perature making the dark current negligible [8, pp.96-7].

Theorem 8 (Conditions for |ψ∗x(A, ε)| = 2 when λ = 0). When λ = 0, the

capacity-achieving distribution is binary iff the values of ε and A satisfy one

of the following conditions:

1. (Peak power constraint active only) 0 < A < 3.3679 and

ε > f1(A) ,
A

e
A

eA−1 + 1− e−A
. (3.15)

In this case, the capacity achieving distribution is given by (3.13).

2. (Peak and average power constraints active)

ε ≤ f1(A), (3.16)

and for all x ∈ [0, A],

η(A, x) ≥ 0, (3.17)
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where

η(A, x) =
( x
A
− 1− x

A
e−A + e−x

)
log

1− ε
A

+ ε
A
e−A

ε
A
e−A

− x− x log
x

eA
.

(3.18)

In this case, the capacity-achieving distribution is given by (3.10) with

B = A.

3. (Average power constraint active only) There exists B ∈ (ε, A) such that

ε = f2(B) , B
/(

e
B2+B

eB−B−1 − e−B + 1

)
, (3.19)

and for all x ∈ [0, A],

η(B, x) ≥ 0. (3.20)

In this case, the capacity-achieving distribution is given by (3.10).

Remark: Cond. 1 of Theorem 8 corresponds to Cond. 2 of Thm. 7 while

Cond. 2 and Cond. 3 of Thm. 8 correspond to Cond. 1 of Thm. 7.

Proof. Note that for λ = 0 and dF ∗x = (1 − β)δ(x) + βδ(x − B) for some

β ∈ (0, 1) and B ∈ (0, A],

i(x,F
∗
x ) = x log

x

eB
− e−x log

(
1− β + βe−B

)
− (1− e−x) log

(
βe−B

)
.

Also note that η(A, x) in (3.18) is simply the multiplier function in (3.2) with

λ = 0.

1. The first condition has been treated in [26] and corresponds to Cond.

2 in Theorem 7. With λ = 0 and with peak power constraint only,

Shamai proved that the capacity-achieving distribution is (3.13) with

β∗(−1) = e
A

eA−1 + 1 − e−A when A < 3.3679 and correspondingly the

average power is bounded as (3.15).
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2. The second condition follows from Cond. 1 in Theorem 7 with B = A.

Rearranging (3.9) with λ = 0 gives the first inequality while substituting

λ = 0 into (3.8) yields the second.

3. The third condition also follows from Cond. 1 in Theorem 7, however,

with B < A. In particular, the inequality corresponds to (3.8) in Theo-

rem 7. Note that x
B

(i(B,F ∗x )− i(0, F ∗x ))+ i(0, F ∗x )− i(x, F ∗x ) must attain

the minimum at x = B. As a consequence,

∂

∂x

( x
B

(i(B,F ∗x )− i(0, F ∗x )) + i(0, F ∗x )− i(x, F ∗x )
)∣∣∣∣

x=B

= 0,

which gives

ε = B
/(

e
B2+B

eB−B−1 − e−B + 1

)
= f(B). (3.21)

It can be verified that (3.21) implies (3.9). Moreover, both f1 and f2 are

numerically verified to be monotone increasing functions in the range of

[0, 3.3679], therefore, in Cond. 3, B = f−1
2 (ε).

3.3.2 When λ is Large

Consider the case where there is intense shot-noise as a result of background

illumination, i.e., λ large. This situation can physically arise in intersatellite

communication links where high intensity background light from solar irradi-

ation causes large λ. When λ is large, a high intensity Poisson distribution

approaches a Gaussian distribution. For this reason, the use of a Gaussian

channel law in this regime is popular in the literature on optical wireless com-

munications (see, e.g., [29], [68]).
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The binary distribution which satisfies both the average and the peak power

constraints with equality, i.e.,

dF †x =
(

1− ε

A

)
δ(x) +

ε

A
δ(x− A), (3.22)

has been shown numerically to be capacity-achieving in the optical inten-

sity channel with Gaussian noise in the low signal-to-noise regime [29]. Note

that (3.22) is in fact the binary maxentropic distribution (2.24) introduced

in Sec. 2.5 when A ≥ 2ε. It has also been shown numerically that (3.22) is

capacity-achieving in DTP channel when the input power is relatively small

enough. Here, Theorem 7 is leveraged to give a rigorous proof of the optimality

of (3.22) when λ is large enough.

Theorem 9 (Capacity-achieving distribution when λ is large). For a DTP

channel with ε < A/2, the capacity-achieving distribution dF ∗x = dF †x given by

(3.22) when λ is sufficiently large.

Proof. It suffices to show that the distribution dF †x in (3.22) satisfies (3.8) and

(3.9) in Theorem 7 when λ is sufficiently large.

By definition,

i(x, dF †x) = (x+ λ) log(x+ λ)− x− (x+ λ) log λ

−

(
∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(
1 + re−A(1 + A/λ)y

)
− log(1 + r)

)
,

M(µ, x, F †x) =
x

A

(
i(A,F †x)− i(0, F †x)

)
+ i(0, F †x)− i(x, F †x),

where r , ε/A
1−ε/A and M(·) is the multiplier function defined in [37, (6)] and

corresponds to left-hand side of (3.8). Note that r < 1 when ε < A/2.

To stress the dependence of i(x, F †x) and M(µ, x, F †x) on λ, denote them by

i(x, F †x , λ) andM(µ, x, F †x , λ), respectively. Let z = 1
λ

and define M̂(µ, x, F †x , z) ,

M(µ, x, F †x , λ) and M̂ ′(µ, x, F †x , z) , ∂
∂x
M(µ, x, F †x , λ).
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For any z̃ > 0, it follows from Taylor’s theorem that

M̂(µ, x, F †x , z̃) = M̂(µ, x, F †x , 0) +
∂

∂z
M̂(µ, x, F †x , z)

∣∣∣
z=0

z̃ +

∂2

∂z2M̂(µ, x, F †x , z)
∣∣∣
z=θz̃

2
z̃2,

M̂ ′(µ, x, F †x , z̃) = M̂ ′(µ, x, F †x , 0) +
∂

∂z
M̂ ′(µ, x, F †x , z)

∣∣∣
z=0

z̃ +

∂2

∂z2M̂
′(µ, x, F †x , z)

∣∣∣
z=θ′z̃

2
z̃2,

where θz̃ ∈ [0, z̃] and θ′z̃ ∈ [0, z̃]. It can be shown that

M̂(µ, x, F †x , 0) = 0, (3.23)

∂

∂z
M̂(µ, x, F †x , z)

∣∣∣
z=0

=
x(A− x)

2
, (3.24)

M̂ ′(µ, x, F †x , 0) = 0, (3.25)

∂

∂z
M̂ ′(µ, x, F †x , z)

∣∣∣
z=0

=
A

2
− x, (3.26)

where derivation details are presented in Appendices A–D respectively.

Let δ be an arbitrary number in the interval (0, A
2
). Note that

∂

∂z
M̂(µ, x, F †x , z)

∣∣∣
z=0
≥ δ(A− δ)

2
, x ∈ [δ, A− δ],

∂

∂z
M̂ ′(µ, x, F †x , z)

∣∣∣
z=0
≥ A

2
− δ, x ∈ [0, δ],

∂

∂z
M̂ ′(µ, x, F †x , z)

∣∣∣
z=0
≤ −A

2
+ δ, x ∈ [A− δ, A].

In view of the fact that ∂2

∂z2M̂(µ, x, F †x , z) and ∂2

∂z2M̂
′(µ, x, F †x , z) are continuous

functions of (x, z) over the compact set [0, A] × [0, 1], there exists a constant

Γ such that | ∂2

∂z2M̂(µ, x, F †x , z)| ≤ Γ and | ∂2

∂z2M̂
′(µ, x, F †x , z)| ≤ Γ. As a conse-

quence, one can readily show that

M̂(µ, x, F †x , z̃) > 0, x ∈ [δ, A− δ],

M̂ ′(µ, x, F †x , z̃) > 0, x ∈ [0, δ],

M̂ ′(µ, x, F †x , z̃) < 0, x ∈ [A− δ, A],
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when z̃ is sufficiently close to 0. These inequalities together with the fact that

M̂(µ, 0, F †x , z̃) = M̂(µ,A, F †x , z̃) = 0 imply that

M̂(µ, x, F †x , z̃) ≥ 0, x ∈ [0, A],

when z̃ is sufficiently close to 0. This means (3.8) is satisfied for sufficiently

large λ.

To complete the proof, it remains to verify that the distribution F †x given

by (3.22) satisfies (3.9) in Theorem 7 when λ is sufficiently large. For z = 1/λ,

define

µ̂(z) =
i(A,F †x , λ)− i(0, F †x , λ)

A
.

For any z̃ > 0, it follows from Taylor’s theorem that

µ̂(z̃) = µ̂(0) +
∂

∂z
µ̂(z)

∣∣∣
z=0

z̃ +

∂2

∂z2 µ̂(z)
∣∣∣
z=θz̃

2
z̃2,

where θz̃ ∈ [0, z̃]. In view of (A.11) in Appendix A, µ̂(0) = 0. Moreover, it

can be shown that

∂

∂z
µ̂(z)

∣∣∣
z=0

= lim
λ→∞

((
1 +

λ

A

)
log

(
1 +

A

λ

)
− 1

)
λ+

(Λ(0)− Λ(A))

A

=
A

2
− r

1 + r
A

> 0,

where the last inequality is due to the fact that r < 1 and

Λ(x) , lim
λ→∞

{
∞∑
y=0

e−(λ+x) (λ+ x)y

y!
log
(
1 + re−A(1 + A/λ)y

)
− log(1 + r)

}
λ

=

(
Ax− A2

2

)
r

1 + r
+
A2

2

r

(1 + r)2

through (A.24) in Appendix B.
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Since ∂2

∂z2 µ̂(z) is a continuous function of z over the interval [0, 1], there

exists a constant Υ such that | ∂2

∂z2 µ̂(z)| < Υ for all z ∈ [0, 1]. Now one can

readily see that µ̂(z̃) must be non-negative when z̃ is sufficiently close to 0 (i.e,

i(A,F †x , λ)− i(0, F †x , λ) ≥ 0 when λ is sufficiently large). Therefore dF ∗x = dF †x

for λ large enough. This completes the proof.

Theorem 9 shows that under the high background light condition the opti-

mal signalling is binary and satisfies both peak and average power constraints.

3.4 Numerical Examples

3.4.1 Example: Inactive Peak Power Constraint

In order to provide some insight on the analytical results, several numerical

examples are presented in this section.

It is easy to see that the average power constraint is inactive if it is greater

than the mean of the capacity-achieving distribution under the peak power

constraint only. However, it is natural to expect that the peak power con-

straint is always active since separating constellation points maximally should

improve performance. Somewhat surprisingly, we shall show that the peak

power constraint can be inactive (i.e., A /∈ ψ∗x) in some cases. It should be

pointed out that A /∈ ψ∗x does not mean the peak power constraint is super-

fluous. Indeed, according to Theorem 6, distributions with bounded support

are not capacity-achieving if the peak power constraint is removed.

Figure 3.1 plots the capacity-achieving distributions for λ = 0, ε = 0.0594439

and various A. In both sub-figures, the dashed curve represents the peak power

constraint A while the dots represent the positions of mass points in the op-

timal input distributions. All simulations are carried out using the particle
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method developed in Sec. 2.3.1. In Fig. 3.1(a) the capacity-achieving distribu-

tions are plotted for different peak-to-average ratios, A/ε with ε and λ fixed.

Fig. 3.1(b) highlights how the positions of the mass points in F ∗x evolve with

increasing A. Notice that, when A ≤ 1, the peak power constraint is active

and F ∗x has a mass point at A. When 1 < A < 5.54, as noted earlier, there

is slack in the peak power constraint and ψ∗x = {0, 1}. Once A ≥ 5.54, the

capacity achieving distribution is ternary and again the peak power constraint

is active. Thus, in this example, it is observed that for a fixed ε and λ the peak

power constraint alternates between being active and inactive as A increases.

To investigate further, consider the specific case for the same λ and ε as

above and A = 50ε = 2.972195. Using particle method from Sec. 2.3.1, the

capacity-achieving distribution is found to be binary and of the form

dF ∗x = (1− ε)δ(x) + εδ(x− 1). (3.27)

Thus, the average constraint is active while there is slack in the peak con-

straint. Further, the multiplier function in (3.20) is computed to be

η(1, x) = 3.7844e−x − x log x+ 2.392x− 3.7844, (3.28)

and plotted in Fig. 3.2. Considering Theorem 5, it is clear from Fig. 3.2 that

dF ∗x in (3.27) is in fact capacity-achieving for any A ∈ (1, 5.54) and the peak

power constraint is inactive in this range. Notice also that, when A = 5.54,

both peak and average constraints are met with equality and the capacity-

achieving distribution is ternary with ψ∗x = {0, 1, 5.54}.
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Figure 3.1: Capacity-achieving distributions when λ = 0 and ε = 0.0594439
with various A: (a) distributions and (b) positions of mass points.
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Figure 3.2: Multiplier Function for ε = 0.0594439, B = 1, λ = 0 and A ∈
(1, 5.54).
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[ε, A active]
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[A inactive]

ε′
3 = 0.1738f2(A)
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Figure 3.3: Regions of (A, ε) where binary distributions are capacity-achieving
for λ = 0. Areas corresponding to the activity of peak and average constraints
are highlighted and defined in Theorem 8.

3.4.2 Channels with Binary Capacity-Achieving Distri-

bution when λ = 0

To summarize Theorem 8 for λ = 0, Fig. 3.3 considers DTP channels

with λ = 0 and visualizes regions of ε and A where the capacity-achieving

distribution is binary. In addition, following the three conditions in Theorem 8,

areas where each constraint is active are clearly shown. Note, that by Lemma 3

of Sec. 3.2, stretching the constellation at the input of a DTP channel increases

mutual information. Thus, at least one of peak or average constraint must hold

in the capacity-achieving distribution.

According to Cond. 1 of Theorem 8, the horizontal hatched region in

Fig. 3.3 bounded between A < 3.3679, ε = A, and f1(A) in (3.15) corresponds
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Figure 3.4: Identical results to Figure 1, plotted for peak-to-average ratio
(A/ε) versus ε (λ = 0).

to the set of all DTP channels which have binary capacity-achieving distri-

butions where the average constraint is inactive. The vertical hatched region

including the boundaries corresponds to the set of DTP channels in which

Cond. 2 holds. Both of the constraints are active in this condition and the op-

timal distribution is binary. This region was plotted by sampling points (A, ε)

and repeatedly verifying the inequalities (3.16) and (3.17). An interesting ob-

servation from Fig. 3.3 is that, for λ = 0, if the capacity-achieving distribution

is binary with mass point at A, then A < 3.3679. This numerical observation

complements Shamai’s earlier analytical results [26] for DTP channels with

only peak constraint. The solid filled region in Fig. 3.3 corresponds to the set

of DTP channels (λ = 0) in which Cond. 3 of Theorem 8 is satisfied, i.e., in-

active peak constraint. Notice that A > B = f−1
2 (ε) in (3.19), also plotted in
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Fig. 3.3, is covered by Cond. 3 in Theorem 8. This region is obtained by sam-

pling in ε and computing the corresponding B via (3.19). Then, Cond. (3.20)

is checked by plotting η(B, x) for x ∈ [0, A]. As mentioned earlier, an inactive

peak constraint in the capacity-achieving distribution implies that the mean

constraint is active.

For DTP channels in the area outside the highlighted regions in Fig. 3.3,

the capacity-achieving distribution is non-binary. In particular, for the point

A = ε = 3.3679, i.e., a DTP channel with peak power constraint only, Shamai

showed that the capacity-achieving distribution is ternary [26].

Using Fig. 3.3, the numerical example in Fig. 3.1 can be expanded by

observing the behaviour of the capacity-achieving distribution for λ = 0, fixed

ε = 0.0594 and increasing A. When ε ≤ A < f−1
1 (ε) = 0.1581, Cond. 1 of

Theorem 8 is satisfied and the optimal input distribution is binary and the

average constraint is inactive. In Fig. 3.3, the same interval of A for inactive

mean is found numerically. For larger A, i.e., f−1
1 (ε) ≤ A ≤ f−1

2 (ε) = 1,

Cond. 2 Theorem 8 is satisfied and the capacity-achieving distributions are

binary with both constraints active. Notice that the same conclusion is found

in Fig. 3.3 through numerical computation. Cond. 3 of Theorem 8 is satisfied

for f−1
2 (ε) = 1 < A < 5.54 and the capacity-achieving distribution is binary

with inactive peak power constraint, as in Fig. 3.3. For A ≥ 5.54, none of

the conditions of Theorem 8 are satisfied and the resulting capacity-achieving

distribution is non-binary. The numerical study in Fig. 3.1 shows that the

optimal distribution is in fact ternary. Thus, the results in Fig. 3.3 describe the

phenomenon of oscillating activity of peak constraint observed numerically in

Fig. 3.1. In this example, using Theorem 8, the corner points for the transition

of inactivity of the constraints are described analytically via f1(A) and f2(A).

Figure 3.4 visualizes the results in Fig. 3.3 in a different way. Here regions of
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binary capacity-achieving distributions are plotted on a peak-to-average ratio

(A/ε) versus average constraint axis. This visualization is particularly useful

in cases where A/ε is fixed, say on a launched spacecraft, while the mean power

ε can change due to varying range. Roughly speaking, for A/ε less than about

4 dB for binary capacity-achieving distributions the peak constraint is solely

active. However, for larger peak-to-average ratios, binary capacity-achieving

distributions satisfy both peak and average constraints. For the largest values

of A/ε, only the average constraint is active for binary capacity-achieving

signalling.

Figure 3.5 plots the capacity-achieving distributions for fixed A = 3, λ = 0

and increasing ε. The capacity-achieving distributions of the DTP channel are

computed using the deterministic annealing algorithm described in Fig. 3.3.

The behaviour of the constraints can be understood by following the vertical

line A = 3 in Fig. 3.3. For ε < ε′3 = 0.1738 or equivalently −7.5 dB, it is

evident from Fig. 3.5 that the capacity-achieving distribution is binary with

inactive peak-constraint. Notice in Fig. 3.3, that this corresponds to the re-

gion where Cond. 3 of Theorem 8 is satisfied. Increasing ε yields a region

where the capacity-achieving distribution is ternary and none of the condi-

tions of Theorem 8 are satisfied. Further increase in ε′2 = 1.1971 ≤ ε ≤ ε′1

yields a return to binary capacity-achieving distributions, however, now with

active peak and average constraints, i.e., Cond. 2 of Theorem 8 is satisfied.

For ε′1 = 1.4148 < ε ≤ A the capacity-achieving distribution is binary with

inactive average constraint (Cond. 1 in Theorem 8). This threshold can also

be observed in Fig. 3.3 and can be computed as ε′1 = f1(3).
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Figure 3.5: Capacity-achieving distributions for fixed A = 3, λ = 0 and in-
creasing ε: (a) distributions and (b) position of mass points. The values for
thresholds ε′1, ε′2 and ε′3 can be visualized in Fig. 3.3.
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3.4.3 Capacity-Achieving Distributions for Increasing λ

Figure 3.6 illustrates the capacity-achieving distributions with fixed ε and

A, ε/A < 1/2, and increasing λ. Theorem. 9 states that for λ large enough

the capacity achieving distribution is

dF ∗x =
3

4
δ(x) +

1

4
δ(x− 10).

Notice that in Fig. 3.6, for λ ≥ 5.525 that the computed capacity-achieving

distribution corresponds to dF ∗x and is fixed for increasing λ.

3.5 Conclusions

This chapter provides insight into the capacity-achieving and approach-

ing distributions for DTP channels, including some fundamental properties of

the capacity-achieving distributions. Moreover, particular emphasis is placed

on the low power regime where binary signalling is often optimal. Necessary

and sufficient conditions on the optimality of binary distributions are estab-

lished, which are further leveraged to obtain closed-form expressions of the

capacity-achieving distributions in several special cases. All these theoretical

conclusions provide significant support to the numerical results in Chapter 2

and provide guidance for practical system design.

In particular, for λ = 0, three conditions on ε and A, corresponding to the

activity of peak and average constraints, are given and corresponding forms of

binary capacity-achieving distributions are provided. In the case of shot-noise

limited DTP channels, it is shown that the binary maxentropic distribution is

in fact capacity-achieving for λ large enough.
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increasing λ: (a) distributions and (b) positions of mass points.
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Numerical simulations are provided to verify the analytical claims and pro-

vide insight on their application. For example, for optical intersatellite com-

munication, when the receiver is corrupted by high background irradiation, bi-

nary signalling with the form of (3.22) is capacity-achieving. Also, under ideal

conditions of negligible dark current, the regions visualized in Fig. 3.3 show

whether the capacity-achieving distribution is binary and what constraints are

active.
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Chapter 4

On the Sum-Capacity of DTP

MAC with Peak Constraint

4.1 Introduction

Previous chapters focus on single user DTP channels, e.g., LEO-LEO or

LEO-GEO optical intersatellite links. In particular, LEO-GEO optical links

are useful to downlink earth observation data to a ground station, as shown in

Fig. 1.1. However, to increase the total data delivered per orbit, it is possible

to consider multiple LEOs simultaneously downlinking their observation data

via a single GEO, as illustrated in Fig. 1.2. In this context, a new channel

model is required.

In this chapter, a multi-user DTP MAC model is proposed, which can

be taken as modification of the traditional CTP MAC and an extension of

the single-user DTP channel. The DTP MAC imposes a bandwidth limit

by constraining transmitted signals to be rectangular PAM (i.e., with fixed

intensities in discrete time intervals), therefore, it should be contrasted with

its continuous-time counterpart [48, 49], in which there is no bandwidth limit
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for any user and the input can be arbitrary waveform. Additionally, this DTP

MAC considers at least two independent inputs in each channel realization.

The channel output, which operates as a similar way of the one-user DTP,

obeys the Poisson distribution with mean proportional to the sum of all the

input intensities with dark current.

Currently, one of the most fundamental results known regarding single user

DTP channel is that when under peak power constraint, the capacity-achieving

distribution consists of finite number of mass points [26]. In this chapter, it

will be demonstrated that similar conclusion holds, i.e., for the DTP MAC

under peak power constraints, the optimal input distribution consists of finite

number of mass points. This conclusion provides significant support for any

numerical method computing the optimal input distributions which achieve

the sum-capacity under peak power constraints and leads guidance for code

design in practical use.

The proof involving the analytical properties and the KKT conditions relies

heavily on the methods developed in [26], which is in turn based on Smith’s

seminal work [25, 69]. The derivations in [25, 26, 69] cannot be adapted di-

rectly to this work since multiple users are considered at the input. It is also

instructive to compare our work with related work on the Gaussian MAC [70],

in which a two-user discrete-time Gaussian MAC under identical peak power

constraints was studied.

The rest of this chapter is organized as follows. The two-user DTP MAC

model is introduced in Section 4.2. The main result is proved in Section 4.3.

Section 4.4 contains some concluding remarks. The derivation of the KKT

conditions and analyticity are presented in Appendix B.1 and Appendix B.2,

respectively.
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Figure 4.1: Schematic diagram of the single- and two-user DTP multiple access
channel. (a) The single-user channel. y is Poisson distributed with rate x+λ.
(b) The two user channel DTP MAC. y is Poisson distributed with rate x1 +
x2 + λ.

4.2 Channel Model

This chapter considers an additive-rate Poisson MAC. It is assumed that

the users are sufficiently separated so that the images of the incident optical

fields for each user on the surface of the detector do not overlap. Corre-

spondingly, the output of the receiver is taken as resulting from the additive

intensities of each independent user [71]. An additive-rate CTP MAC model

was employed in the analysis of single-user detectors in multiple-access free

space applications [71, 72].

Figure 4.1(b) demonstrates a two-user additive-rate DTP MAC. In this

model, the detector outputs a single Poisson distributed variable which counts

photoelectrons arising from both users as well as shot-noise. Equivalently, as

illustrated in Fig. 4.1(b) the output count, y, is the sum of the output of two
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independent DTP channels for each user plus the shot noise, Po(λ), which is

also Poisson distributed with rate λ. The single user DTP model is drawn in

Fig. 4.1(a) for comparison. Similar to the single user DTP channel, the receiver

of a two-user DTP MAC is modelled as a photon counter which generates

an integer representing the number of receiver photons. Additionally, it is

assumed that there is perfect synchronization for the two users both on frame

and symbol levels. Moreover, it is assumed the two users are independent, i.e.,

there is no collaboration between the two LEOs.

Specifically, in each time interval ∆T , the two channel input intensity x

[photons/second] and w [photons/second] are corrupted by the combined im-

pact of dark current and background radiation at a rate of λ [photons/second].

The channel output y [photons], represents the number of received photons in

∆T and obeys a Poisson distribution with mean (x+w+λ)∆T . Since the in-

tensities, i.e. photon arrival rates, sum at the receiver, this model is termed as

rate-additive. Notice also that this assumes an intensity modulation, direct de-

tection (IM/DD) optical intensity channel with incoherent light sources where

data is imposed solely on the intensity of the transmitted fields. Without loss

of generality, assume ∆T = 1, that is,

PY |X1,X2(y|x1, x2) =
(x1 + x2 + λ)y

y!
e−(x1+x2+λ),

where x,w ∈ R+, y ∈ Z+ and λ > 0.

Peak amplitude constraints Ai are imposed on the input signals from those

two users, i.e.,

0 ≤ x1 ≤ A1 and 0 ≤ x2 ≤ A2,

due to the dynamic range limitation of each transmitter.

The sum-capacity C is defined as the maximum mutual information over
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all independent input distribution pairs satisfying peak amplitude constraints,

C , max
X1⊥X2,FX1

∈F1,FX2
∈F2

I(X1, X2;Y ) (4.1)

where FX1 and FX2 are the distributions of X1 and X2, respectively, and Fi
denotes the set of distributions over [0, Ai], i = 1, 2.

4.3 The Main Result

4.3.1 The Main Result

The main result of this chapter is summarized in the following theorem.

Theorem 10. For a two-user DTP MAC under peak amplitude constraints,

the sum-capacity-achieving input distributions are discrete with a finite number

of mass points.

Proof. This theorem is a direct consequence of the following theorem. Let

X∗1 , X∗2 be the optimal inputs of the DTP MAC. For fixed X∗1 , according to

Theorem 11, X∗2 is unique and discrete with a finite number of mass points.

Similarly, for fixed X∗2 , according to Theorem 11, X∗1 is also unique and discrete

with a finite number of mass points.

Theorem 11. Let X and W be two independent random variables. For any

fixed FW ∈ F2, the optimal solution to the following maximization

max
FX∈F1

I(X,W ;Y ) (4.2)

is unique and is discrete with a finite number of mass points.

89



Ph.D. Thesis - J. Cao McMaster - Electrical & Computer Engineering

4.3.2 Proof of Theorem 11

As in [69], define

i(x, Fx) , −
∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!

× log

∫ A1

0

∫ A2

0
e−(x′+w′+λ)(x′ + w′ + λ)ydFW ′dFX′

e−(x+w+λ)(x+ w + λ)y
dFW ,

Then,

I(X,W ;Y ) =

∫ A1

0

i(x, FX)dFX .

Notice that

∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
log e−(x+w+λ)(x+ w + λ)ydFW

=

∫ A2

0

∞∑
y=0

e−(x+w+λ)(x+ w + λ)y

y!
log e−(x+w+λ)(x+ w + λ)ydFW

=

∫ A2

0

(x+ w + λ) log
x+ w + λ

e
dFW .

Thus,

i(x, Fx) = −
∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!

× log

∫ A1

0

∫ A2

0

e−(x′+w′+λ)(x′ + w′ + λ)ydFW ′dFX′dFW

+

∫ A2

0

(x+ w + λ) log
x+ w + λ

e
dFW

= −
∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
γydFW

+

∫ A2

0

(x+ w + λ) log
x+ w + λ

e
dFW ,

where

γy , log

∫ A1

0

∫ A2

0

e−(x+w+λ)(x+ w + λ)ydFWdFX .
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In the rest of this chapter it is assumed that FW is fixed. As a consequence,

one can define a mapping χ : F1 → R+ such that χ(FX) = I(X,W ;Y ) for

FX ∈ F1. Note that F1 is a convex and compact space in the Lévy metric

dL [69, p. 21]. (See [73] for the definition of Lévy metric.)

The proofs of the following two technical results are relegated to Appendix

B.1 and B.2, respectively.

Proposition 12 (KKT conditions). Let F ∗X be the optimal solution to the

maximization problem (4.2). Then

i(x, F ∗X) ≤ χ(F ∗X), x ∈ [0, A1]

i(x, F ∗X) = χ(F ∗X), x ∈ ψ∗X (4.3)

where ψ∗X is the set of points points of increase of F ∗X .

Remark: By Proposition 17 in Appendix B.1, the optimal solution to (4.2)

is unique.

Proposition 13 (Analyticity of i(x, FX)). Given FX ∈ F1, i(x, FX) (as a

function of x) is analytic on Rλ , {x : Re(x) + λ > 0} for λ > 0.

Now it is ready to prove Theorem 11. Suppose ψ∗x contains infinite num-

ber of mass points in the interval [0, A1], then it follows from the Bolzano-

Weierstrass theorem that ψ∗x has a limit point in [0, A1]. Therefore, by Propo-

sition 13 and the identity theorem, Equation (4.3), or equivalently,

∞∑
y=0

∫ A

0

e−(x+w+λ)(x+ w + λ)y

y!
γydFW

=

∫ A

0

(x+ w + λ) log
x+ w + λ

e
dFW − χ(F ∗X), (4.4)

must hold for all x ∈ Rλ. It will be shown that this leads to a contradiction.
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Note that

γy = log

∫ A1

0

∫ A2

0

e−(x+w+λ)(x+ w + λ)ydFWdFX

≤ log

∫ A1

0

∫ A2

0

(A1 + A2 + λ)ydFWdFX

= y log(A1 + A2 + λ).

For the LHS of (4.4),

∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
γydFW

≤
∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
y log(A1 + A2 + λ)dFW

=

∫ A2

0

e−(x+w+λ) log(A1 + A2 + λ)
∞∑
y=0

(x+ w + λ)y+1

y!
dFW

=

∫ A

0

(x+ w + λ) log(A1 + A2 + λ)dFw

= (x+ E[W ] + λ) log(A1 + A2 + λ).

As a consequence, the LHS of (4.4) cannot grow faster than x log(A1 + A2 +

λ). On the other hand, the RHS of (4.4) grows as x log x, which leads to a

contradiction. Therefore, |ψ∗x| must be finite.

4.4 Conclusion

A DTP MAC model is proposed in this chapter. In contrast with the CTP

MAC, in which there is no bandwidth limit and the input can be arbitrary

waveform, the DTP MAC imposes a bandwidth limit by transmitting rect-

angular PAM signals. Therefore, this DTP MAC has an implicit bandwidth

limitation making it closer to practice.
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This DTP MAC model is suited for these spacecraft missions where at least

two LEO satellites operate within small distances and communicate with GEO

simultaneously. Such constellations of LEOs for various Earth-observation and

scientific missions exist and several are presented in Table 1.3. The DTP MAC

model developed here, provides an alternative scheme to establish reliable

communication links between the LEOs and GEO.

It is shown that the sum-capacity-achieving distributions under peak am-

plitude constraints are discrete with a finite number of mass points. This

conclusion provides support for numerical algorithms computing the sum ca-

pacity and leads guidance for code design. Additionally, with minor modifi-

cation from this approach, it can be found that the proof can be extended

to the maximum weighted sum rate case, i.e., an arbitrary boundary point.

Moreover, the proof does not rely on the number of the users, i.e., the result

can be extended to the general multiuser case in a straightforward manner.
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Chapter 5

Conclusions and Future

Directions

5.1 Conclusions

This thesis presents techniques of system design for the DTP channel . Four

major contributions are presented in the following areas: 1) Computation of

the channel capacity and the capacity-achieving distributions; 2) signaling de-

sign and implementation algorithm; 3) properties and closed form expressions

of the capacity-achieving distributions, especially the binary distributions; 4)

discreteness of the capacity-achieving distributions of DTP MAC with peak

amplitude constraints.

The channel capacity and the capacity-achieving distribution are computed

by adapting the particle method and DA algorithm. Both are capable of com-

puting capacity and optimal input distribution for DTP channels. The particle

method is suited for computing capacity of a given DTP channel with fixed

constraints, while the DA method is more appropriate when demonstrating a

segment of the capacity curve of DTP channel with increasing average power
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constraint and with fixed peak power constraint. The global optimality of

the results produced by these algorithms can be verified by the KKT condi-

tions. Tight lower bounds on the channel capacity are developed through the

evaluation of the envelope of the information rates of the maxentropic input

distributions. These bounds are close to the channel capacity especially during

the low input power range. A constrained particle method is adapted from [57]

and shows better performance compared the traditional quantization method.

The novel non-uniform signalling scheme demonstrates near capacity perfor-

mance in the DTP channel and shows significant gains over the traditional

uniform signalling.

Over a dozen of satellite missions are mentioned in this thesis. Through the

techniques introduced before, this thesis provides assistance in system design

for optical satellite communications, from channel capacity to code design.

A practical optical intersatellite link budget is considered in thesis, based

on which the channel capacity is computed through the particle method and

non-uniform signalling is implemented. The simulation shows the proposed

non-uniform signalling scheme achieve a rate 17% larger than that of uniform

signalling.

This thesis also presents several fundamental properties of the capacity-

achieving distributions of DTP channels. It is shown that the mass point, zero,

is always contained in the capacity-achieving distributions of DTP channel.

When there is peak amplitude constraint solely, it is further shown that the

optimal input distributions always have a mass point at the peak. Moreover,

in the case of only average amplitude constraint, it is demonstrated that a

finite number of mass points are insufficient to achieve the capacity. These

general properties of the DTP channel are applied to the case where binary

input are optimal. Necessary and sufficient conditions on the optimality of
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binary distributions are also demonstrated. Closed-form analytical expressions

of the capacity-achieving distributions are derived in several important cases

including zero dark current and for high dark current.

A two-user DTP MAC model is proposed, in which only PAM signalling is

considered. This is more practical compared with the traditional continuous-

time Poisson MAC, where no bandwidth limits are imposed on the inputs. It is

shown that the sum-capacity-achieving distributions of the DTP MAC under

peak amplitude constraints are discrete with a finite number of mass points.

The result still holds for general multiuser case. This conclusion provides

insight for numerical algorithm design to compute the capacity region and code

design for these multiple LEOs to one GEO optical communication channels.

5.2 Future Work

In Chapter 2, although the proposed non-uniform scheme illustrates near

capacity performance, the code itself is not optimized for DTP channel. Since

the DTP channel is in fact non-symmetric channel, some codes which oper-

ate well in symmetric channels may not be suitable for the DTP channel.

Therefore, more work should be completed related to code optimizing by the

density evolution or EXIT chart methods. In addition, in the simulation of

Section 2.6.5, one assumption made is that the channel does not change during

the communication. Practically, this may not always be true. Rate-adaptive

procedures for intersatellite optical communication are necessary and should

be investigated for practical use.

In Chapter 3, some general properties of capacity-achieving distributions

are presented. Meanwhile, the closed-form expressions of the optimal input

distributions are also shown in some special cases. However, in general, for
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arbitrary λ, the analytical expressions are still unknown. Future work may

include solving the KKT equations to get the optimal solutions. Also, it would

be interesting to see if there are any other tools besides the KKT conditions

to find or to verify the optimal input distribution.

In Chapter 4, it is demonstrated that for multi-user DTP MAC chan-

nel under amplitude constraints only, the sum-capacity-achieving distributions

consist of finite number of mass points. However, the closed-form of these op-

timal input distribution are unknown. It would be more practical to consider

a model which considers both average power constraint and peak peak power

constraint. Based on the satellite formation flying missions listed in Table 1.3,

it would be interesting to develop algorithms to compute the achievable rate

region. Furthermore, it would be interesting to find out both of the numerical

results and analytical results for the sum-capacity-achieving or weighted-sum-

capacity-achieving distributions. Future work also includes code design to

implement points in the rate region.

As discussed, non-uniform signalling has significant gains in rate compared

with the traditional uniform signalling. Additionally, free-space optical links

have the potential to establish secure high data rate intersatellite communi-

cations links. Therefore, an exciting future direction is to consider implemen-

tation issues for non-uniform coding schemes in intersatellite optical links, in

both the single user and multi-user scenarios.
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Appendices
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Appendix A

Proofs of Chapter 3

A.1 Proof of Lemma 1

Proposition 14. If both X → Y → Z and X → Z → Y form Markov chains,

then PY |X(y|x)/PZ|X(z|x) does not depend on x.

Proof. If both X → Y → Z and X → Z → Y form Markov chains, then

PY |Z(y|z) = PY |Z,X(y|z, x)

=
PY,Z|X(y, z|x)

PZ|X(z|x)

=
PY |X(y|x)PZ|Y (z|y)

PZ|X(z|x)
,

which implies that PY |X(y|x)/PZ|X(z|x) does not depend on x.

Now proceed to prove Lemma 1. Let Pois(∆) denote a Poisson distributed

random variable with mean ∆. Let W ∼ Pois(∆) be independent of X∆ and

Y∆. By the data processing inequality,

I(X∆;Y∆ +W ) ≤ I(X∆;Y∆). (A.1)
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Note that the conditional distribution of Y∆+W given X∆ = x−∆ is the same

as that of Y given X = x, which implies H(Y∆ +W |X∆ = x−∆) = H(Y |X =

x) for any x ≥ ∆. Moreover, Y∆ + W and Y are identically distributed; as a

consequence, H(Y∆ +W ) = H(Y ). Now one can readily show that

I(X∆;Y∆ +W ) = I(X;Y ), (A.2)

which, together with (A.1), yields the desired inequality.

Note that the equality in (A.1) holds if and only if X∆ → Y∆ + W → Y∆

form a Markov chain. Since X∆ → Y∆ → Y∆ +W form a Markov chain, it can

be shown by leveraging Proposition 14 that X∆ → Y∆ +W → Y∆ also form a

Markov chain if and only if |ψx| = 1. This completes the proof of Lemma 1.

A.2 Proof of Lemma 3

For a DTP channel with dark current of rate λ and an input distribution

specified by constellation ψx and probability masses ψp, let Iλ,ψx,ψp denote

the resulting mutual information between the channel input and the channel

output. One can prove the following proposition by following the derivation

of (A.2).

Proposition 15. Iλ,ψx,ψp = I0,ψx+λ,ψp

Now proceed to prove Lemma 3. It suffices to consider the case α ∈ (0, 1)

since the degenerate case α = 0 is trivially true. Define Binom(y, α) as a

Binomial distribution with y ∈ Z+ trials and with success probability α in

each trial.

First consider the special case λ = 0. Introduce a random variable Z such

that X → Y → Z form a Markov chain, where the conditional distribution of
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Z given Y = y is Binom(y, α) for all y. By the data processing inequality,

I(X;Z) ≤ I(X;Y ). (A.3)

Note that the conditional distribution of Z given X = x is the same as that

of Yα given Xα = αx, which implies H(Z|X = x) = H(Yα|Xα = αx) for

any x ≥ 0. Moreover, Z and Yα are identically distributed; as a consequence,

H(Z) = H(Yα). Now one can readily show that

I(X;Z) = I(Xα;Yα). (A.4)

which, together with (A.3), implies

I0,αψx,ψp ≤ I0,ψx,ψp . (A.5)

Note that the equality in (A.3) holds if and only if X → Z → Y form a

Markov chain. Since X → Y → Z form a Markov chain, it can be shown by

leveraging Proposition 14 that X → Z → Y also form a Markov chain if and

only if |ψx| = 1. Therefore, the equality in (A.5) holds if and only if |ψx| = 1.

For the general case λ ≥ 0, it can be verified that

Iλ,ψx,ψp = I0,ψx+λ,ψp (A.6)

≥ I0,ψx+ λ
α
,ψp

(A.7)

≥ I0,αψx+λ,ψp , (A.8)

= Iλ,αψx,ψp , (A.9)

where (A.6) and (A.9) are due to Proposition 15, (A.7) is due to Lemma 1, and

(A.8) is due to (A.5). Clearly, Iλ,ψx,ψp ≥ Iλ,αψx,ψp is equivalent to the desired

inequality

I(X;Y ) ≥ I(Xα, Yα). (A.10)
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To complete the proof of Lemma 3, it suffices to show that the equality in

(A.10) holds if and only if |ψx| = 1. The “if” part is trivially true. The “only

if” part is a simple consequence of the fact that the equality in (A.5) holds

only if |ψx| = 1.

A.3 Proof of (3.23)

We shall show that

lim
λ→∞

i(x, F †x , λ) = 0, x ∈ [0, A], (A.11)

from which (3.23) follows immediately.

It is easy to verify that

lim
λ→∞

(x+ λ) log(x+ λ)− x− (x+ λ) log λ = 0.

Therefore, it suffices to show

lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!
log
(
1 + re−A(1 + A/λ)y

)
= log(1 + r). (A.12)

Let L be some positive odd integer. Based on Taylor’s theorem,

log
(
1 + re−A(1 + A/λ)y

)
=

L∑
l=1

(−1)(l+1) r
le−lA(1 + A/λ)yl

l
− ξL+1

(L+ 1)(1 + θξ)(L+1)
,

where

ξ , re−A(1 + A/λ)y, (A.13)

and θξ ∈ [0, ξ]. Note that

lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!
log
(
1 + re−A(1 + A/λ)y

)
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= lim
L→∞(L odd)

lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!

(
L∑
l=1

(−1)(l+1) r
le−lA(1 + A/λ)yl

l
− ξL+1

(L+ 1)(1 + θξ)(L+1)

)

= lim
L→∞(L odd)

lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
e−lAe−(x+λ)e

(λ+x)(λ+A)l

λl −
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

= lim
L→∞(L odd)

lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
e
lAx
λ

+(λ+x)
“
(l2)

A2

λ2 +(l3)
A3

λ3 +···+Al

λl

”

−
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

= lim
L→∞(L odd)

L∑
l=1

(−1)(l+1) r
l

l
− lim

λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

= log(1 + r)− lim
L→∞(L odd)

lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)
.

(A.14)

Since θξ ≥ 0, it follows that

lim
L→∞(L odd)

lim
λ→∞

∣∣∣∣∣
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

∣∣∣∣∣
≤ lim

L→∞(L odd)
lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

L+ 1

= lim
L→∞(L odd)

lim
λ→∞

rL+1

L+ 1
e−(L+1)Ae−(x+λ)e

(λ+x)(λ+A)L+1

λL+1

= lim
L→∞(L odd)

rL+1

L+ 1

= 0. (A.15)

Therefore, we have

lim
L→∞(L odd)

lim
λ→∞

∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)
= 0,

which together with (A.14) proves (A.12).
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A.4 Proof of (3.24)

Note that

∂

∂z
M̂(µ, x, F †x , z)

∣∣∣
z=0

= lim
z→0

M̂(µ, x, F †x , z)− M̂(µ, x, F †x , 0)

z

= lim
λ→∞

M(µ, x, F †x , λ)λ

= lim
λ→∞

x

((
1 +

λ

A

)
log

(
1 +

A

λ

)
−
(

1 +
λ

x

)
log
(

1 +
x

λ

))
λ

+ Λ(x)− Λ(0) +
x

A
(Λ(0)− Λ(A)) . (A.16)

It is easy to prove that

lim
λ→∞

x

((
1 +

λ

A

)
log

(
1 +

A

λ

)
−
(

1 +
λ

x

)
log
(

1 +
x

λ

))
λ =

x(A− x)

2
.

(A.17)

Let

L , 2b log λ+ 1

2
c − 1.

Invoking Taylor’s theorem and changing the order of summation gives

Λ(x) = lim
λ→∞

{
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

L∑
l=1

(−1)(l+1) r
le−lA(1 + A/λ)yl

l
−

L∑
l=1

(−1)(l+1) r
l

l

}
λ

− lim
λ→∞

{
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

(
ξL+1

(L+ 1)(1 + θξ)(L+1)
− rL+1

(L+ 1)(1 + θr)(L+1)

)}
λ

= lim
λ→∞

{
L∑
l=1

(−1)(l+1) r
l

l
λ

(
e−lAe−(x+λ)e

(λ+x)(λ+A)l

λl − 1

)}

− lim
λ→∞

{
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

(
ξL+1

(L+ 1)(1 + θξ)(L+1)
− rL+1

(L+ 1)(1 + θr)(L+1)

)}
λ,

(A.18)

where θr ∈ [0, r].
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Now consider the first limit in (A.18). Let

φ ,
lAx

λ
+
l(l − 1)A2

2λ
+
l(l − 1)A2x

2λ2
+ (λ+ x)

((
l

3

)
A3

λ3
+ · · ·+ Al

λl

)
.

(A.19)

We have

lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
λ

(
e−lAe−(x+λ)e

(λ+x)(λ+A)l

λl − 1

)

= lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
λ
(
eφ − 1

)
= lim

λ→∞

L∑
l=1

(−1)(l+1) r
l

l
λ
(
1 + φ+ θφφ

2 − 1
)

(A.20)

= lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l

(
lAx+

l(l − 1)A2

2

)

+ lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
λ

(
l(l − 1)A2x

2λ2
+ (λ+ x)

((
l

3

)
A3

λ3
+ · · ·+ Al

λl

)
+ θφφ

2

)
=

(
Ax− A2

2

)
r

1 + r
+
A2

2

r

(1 + r)2

+ lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
λ

(
l(l − 1)A2x

2λ2
+ (λ+ x)

((
l

3

)
A3

λ3
+ · · ·+ Al

λl

)
+ θφφ

2

)
,

(A.21)

where (A.20) is due to Taylor’s theorem and θφ = 1
2
eφ
′

for some φ′ ∈ [0, φ].

For l ∈ (3, L],(
l

i

)
Ai

λi
< li

Ai

λi
≤
(
A log λ

λ

)i
≤
(
A log λ

λ

)3

, i = 3, . . . , l.

when λ is sufficiently large. Therefore,

φ ≤ Ax log λ

λ
+

log λ(log λ− 1)A2

2λ
+

log λ(log λ− 1)A2x

2λ2
+
A3(log λ)4(λ+ x)

λ3
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for large λ. As a consequence, φ→ 0 and θφ → 1
2

uniformly for l ∈ [3, L] and

x ∈ [0, A] as λ→∞. Furthermore, we have

lim
λ→∞

∣∣∣∣∣
L∑
l=1

(−1)(l+1) r
l

l
λ

(
l(l − 1)A2x

2λ2
+ (λ+ x)

((
l

3

)
A3

λ3
+ · · ·+ Al

λl

)
+ θφφ

2

) ∣∣∣∣∣
≤ lim

λ→∞

L∑
l=1

rl

l
λ

(
l(l − 1)A2x

2λ2
+ (λ+ x)

((
l

3

)
A3

λ3
+ · · ·+ Al

λl

)
+ θφφ

2

)

≤ lim
λ→∞

L∑
l=1

rl

l
λ

(
l(l − 1)A2x

2λ2
+ (λ+ x)

(
A log λ

λ

)3

(log λ− 2) + θφφ
2

)

≤ lim
λ→∞

L∑
l=1

rl

l
λ

(
l(l − 1)A2x

2λ2
+
A3(log λ)4

λ2
+ θφφ

2

)

≤ lim
λ→∞

L∑
l=1

(
(log λ− 1)A2x

2λ
+
A3(log λ)4

λ
+ λθφφ

2

)

= lim
λ→∞

log λ

(
(log λ− 1)A2x

2λ
+
A3(log λ)4

λ

+
λ

2

(
Ax log λ

λ
+

log λ(log λ− 1)A2

2λ
+

log λ(log λ− 1)A2x

2λ2
+
A3(log λ)4(λ+ x)

λ3

)2
)

= 0,

which together with (A.21) implies

lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
λ

(
e−lAe−(x+λ)e

(λ+x)(λ+A)l

λl − 1

)
=

(
Ax− A2

2

)
r

1 + r
+
A2

2

r

(1 + r)2
.

(A.22)

Next consider the second limit in (A.18). We have

lim
λ→∞

∣∣∣∣∣
{
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

(
ξL+1

(L+ 1)(1 + θξ)(L+1)
− rL+1

(L+ 1)(1 + θr)(L+1)

)}
λ

∣∣∣∣∣
≤ lim

λ→∞

{
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

(
ξL+1

(L+ 1)(1 + θξ)(L+1)
+

rL+1

(L+ 1)(1 + θr)(L+1)

)}
λ

≤ lim
λ→∞

{
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

(
ξL+1

L+ 1
+

rL+1

(L+ 1)(1 + θr)(L+1)

)}
λ

108



Ph.D. Thesis - J. Cao McMaster - Electrical & Computer Engineering

= lim
λ→∞

{
rL+1

L+ 1
e−(L+1)Ae−(x+λ)e

(λ+x)(λ+A)L+1

λL+1 +
rL+1

(L+ 1)(1 + θr)(L+1)

}
λ

= lim
λ→∞

rL+1λ

L+ 1

{
e

(L+1)Ax
λ

+(λ+x)
“
(L+1

2 )A
2

λ2 +(L+1
3 )A

3

λ3 +···+AL+1

λL+1

”
+

1

(1 + θr)(L+1)

}

≤ lim
λ→∞

rL+1λ

L+ 1

{
e

(L+1)Ax
λ

+(λ+x)(L+1)2 A2

λ2 L +
1

(1 + θr)(L+1)

}

= lim
λ→∞

rlog λ+1λ

log λ+ 1

{
e

(log λ+1)Ax
λ

+(λ+x)(log λ+1)2 A2

λ2 log λ +
1

(1 + θr)(log λ+1)

}
= 0. (A.23)

Combining (A.22) and (A.23) with (A.18) gives

Λ(x) =

(
Ax− A2

2

)
r

1 + r
+
A2

2

r

(1 + r)2
. (A.24)

Substitute (A.17) and (A.24) into (A.16) proves (3.24).

A.5 Proof of (3.25)

Note that

M̂ ′(µ, x, F †x , z) =
∂M(µ, x, F †x , λ)

∂x

= −∂i(x, F
†
x , λ)

∂x
+

1

A
(i(A,F †x , λ)− i(0, F †x , λ))

= − log(x+ λ) +
∂S(x, F †x , λ)

∂x
+

1

A
(i(A,F †x , λ)− i(0, F †x , λ)),

(A.25)

where

S(x, F †x , λ) =
∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(

(1− ε

A
)λy +

ε

A
e−A(A+ λ)y

)
.

It can be verified that

∂S(x, F †x , λ)

∂x
= −e−(x+λ)

∞∑
y=0

(x+ λ)y−1(x+ λ− y)

y!

[
− log(1 + r) + y log λ

109



Ph.D. Thesis - J. Cao McMaster - Electrical & Computer Engineering

+ log
(
1 + re−A(1 + A/λ)y

) ]
.

One can readily prove that

e−(x+λ)

∞∑
y=0

(x+ λ)y−1(x+ λ− y)

y!
log(1 + r) = 0,

− e−(x+λ)

∞∑
y=0

(x+ λ)y−1(x+ λ− y)

y!
y log λ = log λ.

Thus,

∂S(x, F †x , λ)

∂x
= log λ− e−(x+λ)

∞∑
y=0

(x+ λ)y−1(x+ λ− y)

y!
log
(
1 + re−A(1 + A/λ)y

)
= log λ−

∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(
1 + re−A(1 + A/λ)y

)
+
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!
log
(
1 + re−A(1 + A/λ)y

)
.

Following the derivation of (A.12), one can show that

lim
λ→∞

∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!
log
(
1 + re−A(1 + A/λ)y

)
= log(1 + r),

which together with (A.11) and (A.12) proves (3.25).

A.6 Proof of (3.26)

Note that

∂

∂z
M̂ ′(µ, x, F †x , z)

∣∣∣
z=0

= lim
z→0

M̂ ′(µ, x, F †x , z)− M̂ ′(µ, x, F †x , 0)

z

= lim
λ→∞

∂

∂x
M(µ, x, F †x , λ)λ

= lim
λ→∞

((
1 +

λ

A

)
log

(
1 +

A

λ

)
− log

(
1 +

x

λ

)
− 1

)
λ− 1

A
(Λ(A)− Λ(0))
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− lim
λ→∞

{
∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(
1 + re−A(1 + A/λ)y

)
−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!
log
(
1 + re−A(1 + A/λ)y

)}
λ. (A.26)

It can be easily verified that

lim
λ→∞

((
1 +

λ

A

)
log

(
1 +

A

λ

)
− log

(
1 +

x

λ

)
− 1

)
λ =

A

2
− x, (A.27)

lim
λ→∞

1

A
(Λ(A)− Λ(0)) =

Ar

1 + r
. (A.28)

Let ξ be defined according to (A.13). By Taylor’s theorem, we have

lim
λ→∞

{
∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(
1 + re−A(1 + A/λ)y

)
−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!
log
(
1 + re−A(1 + A/λ)y

)}
λ

= lim
L→∞,L odd

lim
λ→∞

{
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

(
L∑
l=1

(−1)(l+1) r
le−lA(1 + A/λ)yl

l
− ξL+1

(L+ 1)(1 + θξ)(L+1)

)

−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!

(
L∑
l=1

(−1)(l+1) r
le−lA(1 + A/λ)yl

l
− ξL+1

(L+ 1)(1 + θξ)(L+1)

)}
λ

= lim
L→∞,L odd

lim
λ→∞

{
L∑
l=1

(−1)(l+1) r
l

l
λe−(λ+x+lA)e

(λ+x)(λ+A)l

λl

−
L∑
l=1

(−1)(l+1) r
l

l
λ

(
1 +

A

λ

)l
e−(λ+x+lA)e

(λ+x)(λ+A)l

λl

}

− lim
L→∞,L odd

lim
λ→∞

{
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)

−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!

ξL+1

(L+ 1)(1 + θξ)(L+1)

}
λ,

where θξ ∈ [0, ξ]. Let φ be defined according to (A.19). It is easy to see that

lim
L→∞,L odd

lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
λe−(λ+x+lA)e

(λ+x)(λ+A)l

λl

[
1−

(
1 +

A

λ

)l]
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= lim
L→∞,L odd

lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
λeφ

[
1−

(
1 +

A

λ

)l]

= lim
L→∞,L odd

lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
λ
(
1 + θ′φφ

)(
1− 1−

(
lA

λ
+

(
l

2

)
A2

λ2
+ · · ·+ Al

λl

))

= lim
L→∞,L odd

lim
λ→∞

L∑
l=1

(−1)(l+2) r
l

l

(
1 + θ′φφ

)(
lA+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

)

= lim
L→∞,L odd

lim
λ→∞

L∑
l=1

(−1)l
rl

l

[
θ′φφ

(
lA+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

)
+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

]

+ lim
L→∞,L odd

L∑
l=1

(−1)lrlA

= lim
L→∞,L odd

lim
λ→∞

L∑
l=1

(−1)l
rl

l

[
θ′φφ

(
lA+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

)
+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

]
+
−Ar
1 + r

,

where θ′φ = eφ
′

for some φ′ ∈ [0, φ] and θ′φ → 1 uniformly for l ∈ [1, L] and

x ∈ [0, A] as λ→∞. One can readily verify that

lim
λ→∞

∣∣∣∣∣
L∑
l=1

(−1)l
rl

l

(
θφφ

(
lA+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

)
+

(
l

2

)
A2

λ
+ · · ·+ Al

λl−1

) ∣∣∣∣∣
≤ lim

λ→∞

L∑
l=1

rl

l

[
θφ

(
lA

λ
+ l2

A2

λ2
(l − 1)

)(
lA+ l2

A2

λ
(l − 1)

)
+ l2

A2

λ
(l − 1)

]
≤ lim

λ→∞
L

[(
LA

λ
+ L2A

2

λ2
(L− 1)

)(
LA+ L2A

2

λ
(L− 1)

)
+ L2A

2

λ
(L− 1)

]
= 0

Therefore, we have

lim
L→∞,L odd

lim
λ→∞

L∑
l=1

(−1)(l+1) r
l

l
λe−(λ+x+lA)e

(λ+x)(λ+A)l

λl

[
1−

(
1 +

A

λ

)l]
=
−Ar
1 + r

.

Moreover, following the derivation of (A.15), one can show that

lim
L→∞,L odd

lim
λ→∞

∣∣∣∣∣
{
∞∑
y=0

e−(λ+x) (λ+ x)y

y!

ξL+1

(L+ 1)(1 + θξ)(L+1)
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−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!

ξL+1

(L+ 1)(1 + θξ)(L+1)

}
λ

∣∣∣∣∣ = 0.

As a consequence, we have

lim
λ→∞

{
∞∑
y=0

e−(x+λ) (x+ λ)y

y!
log
(
1 + re−A(1 + A/λ)y

)
−
∞∑
y=1

e−(x+λ) (x+ λ)y−1

(y − 1)!
log
(
1 + re−A(1 + A/λ)y

)}
λ

=
−Ar
1 + r

. (A.29)

Substituting (A.27), (A.28), and (A.29) into (A.26) proves (3.26)
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Appendix B

Proofs of Chapter 4

B.1 The KKT Conditions

In the view of [69, Corollary 1] (see also [25,26]), for the purpose of proving

Proposition 12, it suffices to show that χ is a strictly concave, continuous, and

weakly differentiable mapping from F1 to R+.

Lemma 16. PY (y;FX) is bounded and continuous in FX .

Let {Fn}n≥1 be a sequence in F1 such that Fn converges to F in the Lévy

metric for some F ∈ F1. Note that

lim
n→∞

PY (y;Fn) = lim
n→∞

∫ A1

0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
dFWdFn

(a)
=

∫ A1

0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
dFWdF

= PY (y;F ),

where (a) is due to the Helly-Bray theorem [73]. Now it remains to prove that∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
dFW
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is bounded and continuous in x. The “bounded” part follows from the fact

that ∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
dFW ≤

e−λ(A1 + A2 + λ)y

y!
.

For the “continuous” part,

lim
n→∞

∫ A2

0

e−(xn+w+λ)(xn + w + λ)y

y!
dFW

= lim
n→∞

∫ ∞
−∞

rect

(
w

A2

)
e−(xn+w+λ)(xn + w + λ)y

y!
dFW ,

where

rect(u) =

 1 if 0 ≤ u ≤ 1,

0 otherwise.

and ∣∣∣∣∣rect

(
w

A2

)
e−(xn+w+λ)(xn + w + λ)y

y!

∣∣∣∣∣ ≤
∣∣∣∣∣rect

(
w

A2

)
(A1 + w + λ)y

y!

∣∣∣∣∣,
∫ ∞
−∞

rect

(
w

A2

)
(A1 + w + λ)y

y!
dFW ≤

∫ ∞
−∞

rect

(
w

A2

)
(A1 + A2 + λ)y

y!
dFW

=
(A1 + A2 + λ)y

y!
.

Therefore, by the Dominated convergence theorem,

lim
n→∞

∫ A2

0

e−(xn+w+λ)(xn + w + λ)y

y!
dFW =

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
dFW .

(B.1)

Proposition 17. χ(FX) is a strictly concave function of FX .

Proof. Suppose two arbitrary input distribution F1, F2 ∈ F1. Let X1 and

X2 be distributed according to F1 and F2, respectively. Also assume X ∼

θF1 + (1− θ)F2, where θ ∈ [0, 1].
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Define S as some binary variable independent with X and W , and the

distribution is

P (S = 0) = θ, P (S = 1) = 1− θ.

Then,

I(X,W, S;Y ) = I(X,W ;Y ) + I(S;Y |X,W )︸ ︷︷ ︸
=0

= I(S;Y ) + I(W,X;Y |S)

= I(S;Y ) + θI(X1,W ;Y ) + (1− θ)I(X2,W ;Y ).

Since I(S;Y ) ≥ 0,

I(X,W ;Y ) ≥ θI(X1,W ;Y ) + (1− θ)I(X2,W ;Y ). (B.2)

For the “strict” part, note in (B.2), the equality holds iff I(S;Y ) = 0,

which means S is independent with Y , i.e., PY (y;F1) = PY (y;F2). Therefore,

it suffices to show that

PY (y;F1) = PY (y;F2)⇒ dL(F1, F2) = 0.

Define Vi = Xi +W , i = 1, 2. Note that

ΦVi = ΦXiΦW , i = 1, 2,

where ΦU denotes the characteristic function of U for any random variable U .

By [26, Lemma 2],

PY (y;F1) = PY (y;F2)⇒ ΦV1 = ΦV2 .

Therefore, we have

ΦW (ΦX1 − ΦX2) = 0.
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Since FW is a distribution over an compact support [0, A2], it follows from

Schwartz’s Paley-Wiener theorem [74] that ΦW is an entire function (when

extended to the whole complex plane) and consequently its zeros are isolated,

which, together with the (uniform) continuity of characteristic functions, im-

plies that

ΦX1 − ΦX2 = 0,

i.e., F1 = F2.

Proposition 18. χ(FX) is continuous in FX .

This means the convergence of a sequence of distribution in the Lévy metric

implies the convergence of the corresponding mutual information.

Proof. Note that

χ(FX) = HY (FX)−HY |X,W (FX),

where

HY (FX) =
∞∑
y=0

−PY (y;FX) log(PY (y;FX)),

and

HY |X,W (FX) =

∫ A1

0

[
∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!

× log
e−(x+w+λ)(x+ w + λ)y

y!
dFW

]
dFX .

It suffices to prove that both HY (FX) and HY |X,W (FX) are continuous in FX .

1. HY (FX) is continuous in FX . Let {Fn}n≥1 be a sequence in F1 such that

Fn converges to F in the Lévy metric for some F ∈ F1. Note that

lim
n→∞

∞∑
y=0

−PY (y;Fn) log(PY (y;Fn))
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(b)
=

∞∑
y=0

lim
n→∞

−PY (y;Fn) log(PY (y;Fn))

(c)
=

∞∑
y=0

−PY (y;F ) log(PY (y;F )),

where (c) is due to Lemma 16. For (b), we need to invoke the dominated

convergence theorem [73]. In view of the fact that

e−(A1+A2+λ)λy

y!
≤ PY (y;Fn) ≤ e−λ(A1 + A2 + λ)y

y!
,

therefore,∣∣∣− PY (y;Fn) logPY (y;Fn)
∣∣∣ ≤ e−λ(A1 + A2 + λ)y

y!

×
(

(A1 + A2 + λ)− y log λ+ log y!
)
.

Note that

∞∑
y=0

e−λ(A1 + A2 + λ)y

y!

(
(A1 + A2 + λ)− y log λ+ log y!

)
≤ (A1 + A2 + λ)eA1+A2

+ (A1 + A2 + λ)eA1+A2 log λ+
∞∑
y=0

e−λ(A1 + A2 + λ)y

y!
log y!

≤ (A1 + A2 + λ)eA1+A2 + (A1 + A2 + λ)eA1+A2 log λ

+
∞∑
y=0

e−λ(A1 + A2 + λ)y

y!
y log y

= (A1 + A2 + λ)eA1+A2 + (A1 + A2 + λ)eA1+A2 log λ

+
∞∑
y=0

e−λ(A1 + A2 + λ)y+1

y!
log(y + 1)

≤ (A1 + A2 + λ)eA1+A2 + (A1 + A2 + λ)eA1+A2 log λ

+
∞∑
y=0

e−λ(A1 + A2 + λ)y+1

y!
y
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= (A1 + A2 + λ)eA1+A2

+ (A1 + A2 + λ)eA1+A2 log λ+ (A1 + A2 + λ)2eA1+A2

< +∞. (B.3)

Therefore, the conditions of the dominated convergence theorem [73] are

indeed satisfied.

2. HY |X,W (FX) is continuous in FX . It is obvious that

∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
log

e−(x+w+λ)(x+ w + λ)y

y!
dFW

is continuous in x. Moreover,∣∣∣∣∣
∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
log

e−(x+w+λ)(x+ w + λ)y

y!
dFW

∣∣∣∣∣
≤

∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!

× [y log(x+ w + λ) + (x+ w + λ) + log y!] dFW

≤
∞∑
y=0

[
e−λ(A1 + A2 + λ)y

y!
y log(A1 + A2 + λ)

+
e−λ(A1 + A2 + λ)y

y!
(A1 + A2 + λ) +

e−λ(A1 + A2 + λ)y

y!
log y!

]
< +∞,

where the last step follows by an argument similar to that for (B.3). Now

one can readily complete the proof by invoking the Helly-Bray theorem.

Proposition 19. χ(FX) is weakly differentiable in F1, i.e., the limit

lim
θ→0+

χ((1− θ)FX + θF )− χ(FX)

θ

exists for any FX , F ∈ F1.
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Proof. Let

Fθ , (1− θ)FX + θF, J(θ, FX , F ) =
χ(Fθ)− χ(FX)

θ
.

Recall the definition of χ(FX),

χ(FX)

= −
∞∑
y=0

PY (y;FX) logPY (y;FX)

+
∞∑
y=0

∫ A1

0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
log

e−(x+w+λ)(x+ w + λ)y

y!︸ ︷︷ ︸
fλ(x,w,y)

dFWdFX .

Define

PY (y;Fθ) =

∫ A1

0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
dFW

[
(1− θ)dFX + θdF

]
= (1− θ)PY (y;FX) + θPY (y;F )

= PY (y;FX) + θ(PY (y;F )− PY (y;FX)).

Notice that

J(θ, FX , F )

=
χ(Fθ)− χ(FX)

θ

= −1

θ

∞∑
y=0

PY (y;Fθ) logPY (y;Fθ) +
1

θ

∞∑
y=0

∫ A1

0

∫ A2

0

fλ(x,w, y)dFWdFθ

+
1

θ

∞∑
y=0

PY (y;FX) logPY (y;FX)− 1

θ

∞∑
y=0

∫ A1

0

∫ A2

0

fλ(x,w, y)dFWdFX

= −1

θ

∞∑
y=0

PY (y;Fθ) logPY (y;Fθ) +
1

θ

∞∑
y=0

PY (y;FX) logPY (y;FX)

+

∫ A1

0

∫ A2

0

fλ(x,w, y)dFW (dF − dFX).
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Also,

− 1

θ

∞∑
y=0

PY (y;Fθ) logPY (y;Fθ) +
1

θ

∞∑
y=0

PY (y;FX) logPY (y;FX)

= −1

θ

∞∑
y=0

[
PY (y;FX) + θ(PY (y;F )− PY (y;FX))

]
× log

[
PY (y;FX) + θ(PY (y;F )− PY (y;FX))

]
+

1

θ

∞∑
y=0

PY (y;FX) logPY (y;FX)

= −
∞∑
y=0

PY (y;FX)

θ
log
[
PY (y;FX) + θ(PY (y;F )− PY (y;FX))

]
−
∞∑
y=0

(PY (y;F )− PY (y;FX)) log
[
PY (y;FX) + θ(PY (y;F )− PY (y;FX))

]
+

1

θ

∞∑
y=0

PY (y;FX) logPY (y;FX). (B.4)

By Taylor expansion theorem,

log
[
PY (y;FX) + θ(PY (y;F )− PY (y;FX))

]
= logPY (y;FX) + log

[
1 + θ

PY (y;F )− PY (y;FX)

PY (y;FX)

]

= logPY (y;FX) + θ
PY (y;F )− PY (y;FX)

PY (y;FX)
− 1

2!

[
θPY (y;F )−PY (y;FX)

PY (y;FX)

]2

[
1 + ξθPY (y;F )−PY (y;FX)

PY (y;FX)

]2

= logPY (y;FX) + θ
PY (y;F )− PY (y;FX)

PY (y;FX)

− θ2

2!

[
PY (y;F )− PY (y;FX)

PY (y;FX) + ξθ(PY (y;F )− PY (y;FX))

]2

, (B.5)

where ξ = ξ(y) ∈ (0, 1).

Substitute (B.5) into (B.4),

−
∞∑
y=0

PY (y;FX)

θ
log
[
PY (y;FX) + θ(PY (y;F )− PY (y;FX))

]
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−
∞∑
y=0

(PY (y;F )− PY (y;FX)) log
[
PY (y;FX) + θ(PY (y;F )− PY (y;FX))

]
+

1

θ

∞∑
y=0

PY (y;FX) logPY (y;FX)

= −
∞∑
y=0

PY (y;FX)

θ

{
logPY (y;FX) + θ

PY (y;F )− PY (y;FX)

PY (y;FX)

− θ2

2!

[
PY (y;F )− PY (y;FX)

PY (y;FX) + ξθ(PY (y;F )− PY (y;FX))

]2
}

−
∞∑
y=0

(PY (y;F )− PY (y;FX))

{
logPY (y;FX) + θ

PY (y;F )− PY (y;FX)

PY (y;FX)

− θ2

2!

[
PY (y;F )− PY (y;FX)

PY (y;FX) + ξθ(PY (y;F )− PY (y;FX))

]2
}

+
1

θ

∞∑
y=0

PY (y;FX) logPY (y;FX)

= −
∞∑
y=0

(PY (y;F )− PY (y;FX)) logPY (y;FX)

+ θ
∞∑
y=0

{
(PY (y;F )− PY (y;FX))2(PY (y;FX) + θ(PY (y;F )− PY (y;FX))

2 [PY (y;FX) + ξθ(PY (y;F )− PY (y;FX))]2

− [(PY (y;F )− PY (y;FX)]2

PY (y;FX)

}
. (B.6)

The infinite summation involved θ need to be proved bounded.

θ

∞∑
y=0

[(PY (y;F )− PY (y;FX)]2

PY (y;FX)
= θ

∞∑
y=0

(
PY (y;F )2

PY (y;FX)
− 2PY (y;F ) + PY (y;F )

)

= θ

∞∑
y=0

PY (y;F )2

PY (y;FX)
− θ

≤ θ
∞∑
y=0

PY (y;F )

PY (y;FX)
e−λ

(2A+ λ)y

y!
− θ

≤ θ
∞∑
y=0

e2A

(
1 +

2A

λ

)y
e−λ

(2A+ λ)y

y!
− θ
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= θ
(
e2A−λe

(2A+λ)y

λ − 1
)
.

Also,

PY (y;FX) + ξθ(PY (y;F )− PY (y;FX))

≥ (1− ξθ)PY (y;FX)

≥ (1− θ)PY (y;FX)

≥ 1

2
PY (y;FX).

Thus,∣∣∣∣∣
∞∑
y=0

(PY (y;F )− PY (y;FX))2(PY (y;FX) + θ(PY (y;F )− PY (y;FX))

2 [PY (y;FX) + ξθ(PY (y;F )− PY (y;FX))]2

∣∣∣∣∣
≤ 1

8

∞∑
y=0

(PY (y;F )− PY (y;FX))2

PY (y;FX)

[
(1− θ) + θ

PY (y;F )

PY (y;FX)

]
<∞. (B.7)

Combine (B.4), (B.6) and (B.7),

lim
θ→0+

J(θ, FX , F )

= −
∞∑
y=0

(PY (y;F )− PY (y;FX)) logPY (y;FX) +

∫ A1

0

∫ A2

0

fλ(x,w, y)dFW (dF − dFX)

= −
∞∑
y=0

∫ A1

0

∫ A2

0

{
e−(x+w+λ)(x+ w + λ)y

y!

× log

∫ A1

0

∫ A2

0

e−(x′+w′+λ)(x′ + w′ + λ)y

y!
dFW ′dFX′

}
dFWdF

+
∞∑
y=0

∫ A1

0

∫ A2

0

{
e−(x+w+λ)(x+ w + λ)y

y!

× log

∫ A1

0

∫ A2

0

e−(x′+w′+λ)(x′ + w′ + λ)y

y!
dFW ′dFX′

}
dFWdFX
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+
∞∑
y=0

∫ A1

0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!

× log
e−(x+w+λ)(x+ w + λ)y

y!
dFW (dF − dFX)

= −
∞∑
y=0

∫ A1

0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!

× log

RA1
0

RA2
0 e−(x′+w′+λ)(x′+w′+λ)ydFW ′dFX′

y!

e−(x+w+λ)(x+w+λ)y

y!

dFWdF

+
∞∑
y=0

∫ A1

0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!

× log

RA1
0

RA2
0 e−(x′+w′+λ)(x′+w′+λ)ydFW ′dFX′

y!

e−(x+w+λ)(x+w+λ)y

y!

dFWdFX

=

∫ A1

0

i(x, FX)dF − I(FX)

B.2 Analyticity of i(x, FX)

Let {xn = ηn + jξn}n≥1 be a sequence of complex numbers in Rδ, where

Rδ is a portion of Rλ, and

Rδ ,
{
x : −λ < ηn ≤ δ1, and

∣∣ξn∣∣ ≤ δ2

}
, (B.8)

where δ1 and δ2 are some positive finite numbers.

The first step is to prove that i(x, FX) is a continuous function of x, i.e.,

limn→∞ i(xn, FX) = i(x, FX).

∞∑
y=0

∫ A2

0

∣∣∣∣∣e−(xn+w+λ)(xn + w + λ)y

y!

× log

∫ A1

0

∫ A2

0
e−(x′+w′+λ)(x′ + w′ + λ)ydFW ′dFX′

e−(xn+w+λ)(xn + w + λ)y

∣∣∣∣∣dFW
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=
∞∑
y=0

∫ A2

0

∣∣∣∣∣e−(xn+w+λ)(xn + w + λ)y

y!
log

PY (y;Fx)y!

e−(xn+w+λ)(xn + w + λ)y

∣∣∣∣∣dFW
≤

∞∑
y=0

{∫ A2

0

∣∣∣∣∣e−(xn+w+λ)(xn + w + λ)y

y!

∣∣∣∣∣ logPY (y;Fn)dFW

+

∫ A2

0

∣∣∣∣∣e−(x+w+λ)(x+ w + λ)y

y!
[y log(x+ w + λ) + (x+ w + λ) + log y!]

∣∣∣∣∣dFW
}

≤
∞∑
y=0

e−(ηn+λ) ((ηn + A1 + λ)2 + δ2
2)

y
2

y!
((A1 + A2 + λ) + y log λ+ log y!)

+
∞∑
y=0

e−(ηn+λ) ((ηn + A1 + λ)2 + ξ2
n)

y
2

y!

×
(y

2
log
(
(ηn + A1 + λ)2 + ξ2

n

)
+
(
(ηn + A1 + λ)2 + ξ2

n

) 1
2 + log y!

)
≤

∞∑
y=0

((δ1 + A1 + λ)2 + δ2
2)

y
2

y!
×
(y

2
log
(
(δ1 + A1 + λ)2 + δ2

2

)
+
(
(δ1 + A1 + λ)2 + δ2

2

) 1
2 + (A1 + A2 + λ) + y log λ+ 2 log y!

)
=
∞∑
y=0

kyδ
y!
×
(
y log kδ + kδ + (A1 + A2 + λ) + y log λ+ 2 log y!

)
≤ ekδkδ log kδλ+ ekδkδ + ekδ(A1 + A2 + λ) + 2k2

δe
kδ

< +∞,

where ((δ1 + A1 + λ)2 + δ2
2)

1
2 , kδ. Through dominated convergence theorem,

limn→∞ i(xn, FX) = i(x, FX).

Therefore, in view of Morera’s theorem, it suffices to show that∮
γ

i(x, FX)dx = 0 (B.9)

for all closed contours γ in Rλ. We shall prove (B.9) by verifying the following
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two equations:∮
γ

∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
log

e−(x+w+λ)(x+ w + λ)y

y!
dFWdx = 0,

(B.10)∮
γ

∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
logPY (y;FX)dFWdx = 0. (B.11)

1. Verification of (B.10). Since∮
c

∞∑
y=0

∫ A2

0

∣∣∣∣∣e−(x+w+λ)(x+ w + λ)y

y!

∣∣∣∣∣
∣∣∣∣∣ log

e−(x+w+λ)(x+ w + λ)y

y!

∣∣∣∣∣dFWdx
≤
∮
c

∞∑
y=0

∫ A2

0

e−(ηn+w+λ) ((ηn + w + λ)2 + ξ2
n)

y
2

y!

×

(∣∣∣∣∣y log(x+ w + λ)

∣∣∣∣∣+

∣∣∣∣∣x+ w + λ

∣∣∣∣∣+ log y!

)
dFWdx

≤ lγ

[
∞∑
y=0

kyδ
y!

(
y log kδ + kδ + log y!

)]

< +∞,

where lγ is the length of γ which is finite as γ is a closed curve. The last

step is also due to the similar reason as (B.3).

Therefore, it can be shown by invoking Fubini’s theorem that∮
γ

∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
log

e−(x+w+λ)(x+ w + λ)y

y!
dFWdx

=
∞∑
y=0

∫ A2

0

∮
γ

e−(x+w+λ)(x+ w + λ)y

y!
log

e−(x+w+λ)(x+ w + λ)y

y!
dxdFW .

(B.12)

Since the integrand in (B.12) is an analytic function of x onRλ, it follows

from Cauchy’s integral theorem that∮
γ

e−(x+w+λ)(x+ w + λ)y

y!
log

e−(x+w+λ)(x+ w + λ)y

y!
dx = 0. (B.13)
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Substituting (B.13) into (B.12) yields (B.10).

2. Verification of (B.11). Similar as previous part,∮
c

∞∑
y=0

∫ A2

0

∣∣∣∣∣− e−(xn+w+λ)(xn + w + λ)y

y!
logPY (y;FX)

∣∣∣∣∣dFWdx
≤
∮
c

∞∑
y=0

∫ A2

0

e−(ηn+λ) ((ηn + A+ λ)2 + δ2)
y
2

y!

× ((A1 + A2 + λ)− y log λ+ log y!) dFWdx

≤ lγ

[
∞∑
y=0

kyδ
y!

(
(A1 + A2 + λ) + y log λ+ log y!

)]

< +∞.

Invoking Fubini’s theorem,∮
γ

∞∑
y=0

∫ A2

0

e−(x+w+λ)(x+ w + λ)y

y!
logPY (y;FX)dFWdx

=
∞∑
y=0

logPY (y;FX)

∫ A2

0

∮
γ

e−(x+w+λ)(x+ w + λ)y

y!
dxdFW . (B.14)

Since the integrand in (B.14) is an analytic function of x onRλ, it follows

from from Cauchy’s integral theorem that the contour integration in

(B.14) is equal to zero. This completes the verification of (B.11).
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